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Editorial on the Research Topic

Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex

Behavior: From Biology to Technology

1. INTRODUCTION

The brain of biological organisms is a highly complex and very efficient computing unit. It
can deal with a multitude of tasks from low-level sensorimotor coordination to high-level
cognition. Specifically, it can process high-dimensional sensory information and, dependent on
this, generate coordinated motor commands in real time, resulting in actions (like, locomotion and
manipulation). Simultaneously, it can also perform cognitive functions (such as navigation, goal-
oriented behavior, reasoning and decision making, interaction, communication). This amazing
performance is achieved by using the full capacity of its neural dynamics, learning, memory, and
adaptation as well as by interacting with the environment through its body (i.e., sensory-motor
system). Thus, actions and cognition require dynamical brain-body-environment interactions and
thereby cannot be disembodied. A traditional view of embodiment has also emphasized that
complex behavior emerges from continuous and dynamical interactions between computational
and physical means with the environment (Wilson, 2002; see also the embodiment scheme in Pfeifer
et al., 2007). While this radical scientific concept has been promoted since the last three decades
(Brooks, 1991; Chiel and Beer, 1997; Calvo and Gomila, 2008; Pfeifer et al., 2014), the detailed
interaction of the (neural) computation within and across different brain areas, as the sensory,
motor, and higher integrative areas, with the environment to generalize complex and adaptive
behaviors have not been fully addressed.

According to this, this Research Topic called researchers from different fields (including
Biology, Computational Neuroscience, Robotics, and Artificial Intelligence) to share their recent
developments and results and to update our research community with remaining open questions.
The topic has in total 17 articles which cover neural and morphological computations as well
as the transfer of results to real world applications, like prosthesis and orthosis control and
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neuromorphic hardware implementation. Eight articles focus on
the three main areas (sensory, motor, and integrative areas) of the
controller or brain (Figure 1). Among these, two focus on neural
computation mechanisms in sensory areas for action recognition
of a human agent

(Layher et al.) and for acoustic motion perception (Shaikh
and Manoonpong), twointegrative areas for motor-skill learning
(Arena et al.), navigation learning (Goldschmidt et al.), motor
planning and internal representations (Schilling and Cruse), and
self-organized complex locomotion patterns (Martin et al.). In
addition, two articles present neural closed-loop architectures
that link between sensory and motor areas for reaching and
grasping (Knips et al.) and for, e.g., obstacle avoidance behavior
(Pasemann). Three articles consider a tight interaction between
the body and the sensory and motor areas for sensorimotor
coordination of legged robots (Aoi et al.; Owaki et al.) and a
robot arm (Der and Martius). One article provides an insight on
the computation of morphological body for optimal locomotion
learning (Urbain et al.). Regarding to technology transfer, two
articles show the transfer of the principles of the nervous system
for orthosis (Braun et al.) and prosthesis control (Oyama et al.)
and one shows the transfer to neuromorphic hardware-based

FIGURE 1 | The diagram of an embodied closed-loop system. The system concerns an agent that is situated in the environment. It can perceive the environmental

information through its sensors and perform its actions using its motors. In principle, the agent consists of two main components: Nervous system (or controller) and

body. There are three main areas inside the nervous system: Sensory, motor, and higher integrative areas. In the embodied perspective, while all external and internal

stimuli are processed in the nervous system, this computational processing can be offloaded to the body (i.e., morphological computation) for a successful interaction

with the environment (see text for more details).

control (Milde et al.). Based on these contributions, we organize
subsections into two main categories: Embodied closed-loop
systems and their technology transfer.

2. OVERVIEW

2.1. Embodied Closed-Loop Systems
An embodied closed-loop system or a brain-body-environment
system (Chiel and Beer, 1997) is generally formed by three
main ingredients: Nervous system (or controller), body, and the
environment. The nervous system has in general three subareas:
Sensory, motor, and higher integrative areas. Environmental
information is perceived through sensors and processed in the
sensory areas. The sensory areas can be also influenced by
forward internal models (Kawato, 1999) embedded in the higher
integrative areas for sensory prediction and noise cancellation
(von Holst and Mittelstaedt, 1950; Blakemore et al., 1999) as well
as state estimations (Frens and Donchin). The outputs of the
sensory areas are transmitted to motor and higher integrative
areas. The motor areas translate the sensory information into
motor commands to control the body. They also send a copy of
motor commands (efference copy) to the forward models. The
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higher integrative areas have multiple complex functions with
multiple-time scales plasticity (i.e., long-term and short-term
synaptic plasticity) for motor-skill learning, navigation learning,
motor planning, and internal representations. Their outputs
project to both sensory and motor areas. Through these internal
(inside the controller) and external (between the body and the
environment) interactions in the closed-loop system, adaptive
behaviors emerge.

Regarding interactions in embodied closed-loop systems for
adaptive behavior generation, in the Research Topic, Aoi et al.
review various adaptive locomotor behaviors that emerge from
the interactions between the body dynamics, the nervous system,
and the environment in animals and legged robots. They
identify key factors and mechanisms for adaptations to different
speeds, environmental situations, body properties, and tasks.
The factors and mechanisms include CPGs, sensory feedbacks,
forward model, learning model, and muscle stiffness. Owaki
et al. present a novel and minimal Tegotae-based approach, that
exploits the interactions between foot contact sensor signals,
body dynamics, and the environment for adaptive interlimb
coordination of a hexapod robot. The approach can generate
various insects’ gait patterns that allows the robot to adapt to
different locomotion speeds, changes in the weight distribution,
and leg amputation. Der and Martius report self-organized
behavior of an anthropomorphic musculoskeletal robot arm.
The behavior emerges from the interaction between a self-
learning neural controller (nervous system), the elastically
musculoskeletal arm (body), and an object (environment)
through proprioceptive sensory feedback. Through the agent-
environment coupling, the robot can perform handshaking,
pendulum swinging, bottle shaking, rotating a wheel, wiping a
table, and hand-eye coordination.

As a part of embodied closed-loop systems, dynamical
system-based architectures that link between sensory and motor
areas are introduced in the Research Topic. Knips et al.
present a neural dynamic architecture for reaching and grasping
objects. It integrates several modules, having functions for
scene representation, concurrent object classification and pose
estimation, behavioral organization, and movement generation,
into a large dynamical system of an anthropomorphic robot arm
equipped with a Kinect sensor. In addition to the perception,
integration, and movement generation, the architecture can also
allow for the online adaptation of the performed movement
of the robot for successful completion of the grasp. Pasemann
proposes the exploitation of the discrete-time neurodynamics
of networks in a sensorimotor loop for generating adaptive
behavior, like adaptive obstacle avoidance of mobile robots. The
behavior generation is a result from a projection of attractor
transients or meta-transients, embedded in neurodynamics, to
the motor space.

2.1.1. Sensory Areas
In a closed-loop scenario, agents have to extract and process
relevant information from the environment, they are situated
in. For this, the initial step is to perceive at least parts
of the environment via the sensory system. Thereby, the
sensory modality can be multifaceted and requires various

types of sensors in the system, as for visual, touch, or
sound perception. As the next step, the sensory system has
to preprocess the perceived environmental information to
support the computation done in subsequent areas. Based on
experimental insights from the lizard auditory system (Fletcher
and Thwaites, 1979; Christensen-Dalsgaard and Manley, 2005),
Shaikh and Manoonpong developed a model of the auditory
system that can learn to perceive a sound, and to process the
information to localize its source and to estimate the speed and
direction of the motion of the source. Different to previous
approaches, the model can track the source, although it is
occluded for a certain duration. By using the model for the
auditory system of a wheeled robot, the robot was always able
to perceive, to locate, and, by its sensor-motor interaction, to face
the sound source.

The extraction of more abstract but complex concepts from
the environmental stimulus stream requires, in general, a larger
and more sophisticated sensory system. Layher et al. trained a
deep neural network to recognize human poses from a stream
of images. The pose recognition is based only on features of
human body motions and shapes not requiring feedback from
higher integrative areas. By implementing the network on a
neuromorphic hardware, the recognition process becomes real
time with about 1,000 frames per second. Remarkably, the system
already shows indications of generalization of poses.

2.1.2. Motor Areas
Central pattern generators (CPGs) have been identified as one of
key mechanisms in the motor areas particulary for locomotion
control. The principle of biological CPGs has been widely used
for robot locomotion control (Ijspeert, 2008). Although CPGs
do not need any external input or feedback to produce basic
rhythmic activity, they still require sensory feedback to adapt
and tune their produced activity, e.g., their frequency or phase.
Reactive and adaptive mechanisms have been introduced for
this purpose (Buchli et al., 2006). A reactive mechanism can
entrain the CPG signal where the frequency of the signal matches
to sensory feedback. However, if the feedback disappears, the
CPG signal will return to its intrinsic frequency. By contrast, an
adaptive mechanism modifies the intrinsic frequency of the CPG
permanently. Here, Nachstedt et al. propose a novel frequency
adaptation mechanism through fast dynamical coupling (AFDC)
of a CPG model. It is an extension of the standard frequency
adaptation mechanism (Righetti et al., 2009) and based on
dynamically adapting the coupling strength of sensory feedback
to a CPG model. Using this AFDC technique, they achieve fast
and precise adaptation for a wide range of initial intrinsic and
target frequencies without the need for parameter fine tuning.

Hunt et al. report a CPG-based motor control circuit with
sensory feedback and an automatic process for neural parameter
setting. It is based on the known connectivity of mammalian
locomotor systems. The process, faster and more reliable than
manual tuning, can tune neural parameters to generate adaptive
locomotion in the rear legs of a dog-like robot driven by artificial
muscles. Using the CPG-based control approach, they show
that the dog-like robot can adapt its stepping continuously and
maintains rhythmic walking.
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2.1.3. Higher Integrative Areas
Different to sensory and motor areas, higher integrative areas
are associated with cognitive processes as learning, planning,
navigation, or generalization. For instance, Goldschmidt et al.
developed a system, which learned in a reward-based manner to
represent the path an agent has walked. By this, the agent is able
to robustly localize itself within the environment and to find back
to the home position. Thereby, the resulting behaviors are quite
similar to behaviors of insects as desert ants.

Interestingly, the neuronal network underlying cognitive
processes can be quite small by using the computational resources
of other areas or by utilizing the temporal dynamics of the
system (Buonomano and Maass, 2009). Martin et al. use the
ongoing dynamics of short-term synaptic plasticity (Tsodyks and
Markram, 1997) in a three-neuron system to switch between
different, complex motor patterns. Here, Schilling and Cruse
show that already a small neuronal network is sufficient for
successful planning within an environment and generalization
to other environments, if the system recruits and orders the
resources of the downstream motor areas. In other words, the
small network reorders diverse reactive behaviors, each stored
in a different part of the motor area, to adapt according to new
environments.

There is a clear indication that higher integrative areas
are not mandatory for cognitive processes (Cruse and
Wehner, 2011). Arena et al. show in a theoretical model
that learning within the Drosophila mushroom body, which is
in general associated with the sensory processing of olfactory
inputs, adapts motor commands or primitives in the motor
area. Thus, by changes in the sensory area, the sensory-
motor relations are updated yielding new behaviors. This
was demonstrated on a six-legged robot, which can learn
by this mechanism to climb up stairs. The authors also
address the role of Neural Reuse as one of the possible
keys for the emergence of complex behaviors in simple
brains.

2.1.4. Body
Apart from neural computation in the nervous system,
morphological computation also contributes to the generation
of complex behavior. Morphological computation considers
that certain processes can be performed by the body instead
of the nervous system (Pfeifer and Bongard, 2006). In other
words, it captures conceptually the observation that biological
systems utilize their flexible and compliant morphology to
conduct computations required for a successful interaction with
their complex environments. There are numerous illustrative
applications of morphological computation and embodiment
for efficient locomotion in biological systems (Dickinson et al.,
2000) and artificial systems (McGeer, 1990; Jayaram and
Full, 2016; Manoonpong et al., 2016). Here, Urbain et al.
present an analysis of the trade-offs between morphology,
efficiency of locomotion, and the ability of a mechanical
body. This is done by using a detailed dynamical model of
a Mass-Spring-Damper (MSD) network. They also analyze the
computational capacity of a MSD body to generate motor control

signals and integrate the signals as feedback to a locomotion
controller.

2.2. Technology Transfer
Analyzing the neural computation in closed-loop systems, on
the one hand, yields insights of the underlying neural dynamics
and principles and, on the other hand, provides new solutions
for technological control problems. Braun et al. developed a
neural controller which tracks and predicts the gait of a patient
to control the gait-supporting knee-ankle-foot orthosis. This
controller is independent of the actual environmental situation,
as walking on a flat terrain or climbing stairs, and requires a
minimal feedback from the patient.

Based on adaptive principles in neural circuits, Oyama
et al. developed an adaptive controller for a hand prosthesis.
A standard controller requires the user to interfere to avoid
errors given in different environmental conditions. By contrast,
the adaptive controller self-adapts according to the new
environmental state or different hand poses.

Milde et al. transferred the neural controller and the whole
neural sensory processing onto neuromorphic hardware. By
implementing this hardware architecture, they developed an
autonomous, neuromorphic robotic agent, which is able to avoid
obstacles and to acquire targets. Due to the neural nature of the
controller, the agent behaves robustly according to unexpected
changes in the environment.

3. CONCLUSION

The Research Topic presents an embodied closed-loop approach
that considers the interaction of (neural) computation across
sensory, motor, and higher integrative areas with the agent’s
body and the environment. The studies in this Topic cover
the broad spectrum of this approach and show that, indeed,
complex behaviors emerge from the interplay between different
parts of an agent. Thereby, the majority of these studies
focus on the interplay between a subset of the available parts.
The results from these studies confirm that the embodied
approach can be a powerful method to develop autonomous
robotic agents performing complex behaviors and it can even
be a key to understand high-level cognition. Given these and
further studies, it is now possible to address the interaction
between all parts of an agent’s controller (brain), body, and the
environment.
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Walking animals produce adaptive interlimb coordination during locomotion in

accordance with their situation. Interlimb coordination is generated through the dynamic

interactions of the neural system, the musculoskeletal system, and the environment,

although the underlying mechanisms remain unclear. Recently, investigations of the

adaptation mechanisms of living beings have attracted attention, and bio-inspired control

systems based on neurophysiological findings regarding sensorimotor interactions

are being developed for legged robots. In this review, we introduce adaptive

interlimb coordination for legged robots induced by various factors (locomotion speed,

environmental situation, body properties, and task). In addition, we show characteristic

properties of adaptive interlimb coordination, such as gait hysteresis and different

time-scale adaptations. We also discuss the underlying mechanisms and control

strategies to achieve adaptive interlimb coordination and the design principle for the

control system of legged robots.

Keywords: legged robot, interlimb coordination, adaptation, sensorimotor interaction, central pattern generator

1. INTRODUCTION

Animals produce adaptive motor behaviors by skillfully manipulating their complicated and
redundant musculoskeletal systems. Locomotion is an important behavior required in daily life.
Gait selection in accordance with the situation, such as speed and environment, is a prominent
adaptive motor function. Humans walk bipedally and use walking and running gaits. Quadruped
animals use four legs and produce walking, trotting, and galloping gaits. Hexapod insects use six
legs and create metachronal (wave), tetrapod, and tripod gaits as well as intermediate stepping
patterns forming a continuum. These gaits, including the transitions and the intermediate stepping
patterns for hexapods, are generated through the intralimb and interlimb coordination of leg
movements. Intralimb coordination is the relationship between segments or joints within one
leg, whereas interlimb coordination is the relationship between legs. For example, in the adaptive
control of intralimb coordination, peak timings of ankle plantar flexion, knee extension, and hip
extension are out of phase during the human walking gait, but they are shifted and almost in
phase during the human running gait (Diedrich et al., 1998). In the adaptive control of interlimb
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coordination, the footfall sequence between legs
changes (Muybridge, 1957), and the sequence is mainly
explained by the relative phases between leg movements, because
the leg movements are periodic with almost the same period
for each leg (note that different frequencies between the legs
have been sometimes observed in insects due to the flexibility
in the stepping patterns, Pearson and Franklin, 1984). In the
quadrupedal walking gait, although the left and right legs move
in anti-phase, the ipsilateral front and hind legs do not. In
contrast, in the quadrupedal trotting gait, the ipsilateral front
and hind legs as well as the left and right legs move in anti-phase;
that is, the diagonal legs move in phase (Hildebrand, 1965).
Measured data analyses performed to clarify the gait mechanisms
have suggested that gaits are selected based on metabolic and
biomechanical factors (Margaria, 1938; Hoyt and Taylor, 1981;
Farley and Taylor, 1991). However, reports on the roles of these
factors in determining the gaits (Hreljac, 1993; Minetti et al.,
1994; Raynor et al., 2002; Wickler et al., 2003) are conflicting,
and so the underlying mechanism remains unclear.

To elucidate adaptive motor functions in animals,
neurophysiological and biomechanical studies have been
independently conducted. Neurophysiological studies mainly
investigate the configurations and activities of the neural system,
whereas biomechanical studies generally examine the functional
roles of the musculoskeletal system. However, locomotion is
generated through dynamic interactions among the neural
system, the musculoskeletal system, and the environment. It is
thus difficult to fully analyze the locomotion mechanism from a
single perspective. In addition, gaits are viewed as self-organized
patterns in such complex dynamical systems (Schöner et al.,
1990; Diedrich et al., 1998; Griffin et al., 2004; Schilling et al.,
2013a). The stability structure of gaits has been identified from
the response of perturbations, especially by phase oscillators
and phase response curves (Couzin-Fuchs et al., 2015; Funato
et al., 2016) based on the phase reduction theory (Kuramoto,
1984). However, it is difficult to understand how the stability
structure is generated due to the complex nature of interactions
between the dynamic factors in locomotion. To fully elucidate
the locomotion mechanism, integrated studies of neural and
musculoskeletal systems are required to find the processes that
create adaptive locomotor behavior.

Recently, to reveal the locomotion mechanism, legged robots
have attracted attention. A robot’s mechanical system with
actuators, such as electric motors and pneumatic and hydraulic
actuators, has been used to investigate the dynamic role of the
musculoskeletal system in locomotion. The control system of the
robot has been developed based on neurophysiological findings
and employs various sensors, such as a touch sensor, load cell,
acceleration sensor, gyro sensor, laser range scanner, and vision
system. This approach allows us to emulate and investigate gait
generation through dynamic interactions between the neural
system, the musculoskeletal system, and the environment. In
particular, central pattern generators (CPGs), which are located
in the spinal cord of vertebrates and in the thoracic ganglia
of invertebrates, are an important factor for elucidating the
locomotion mechanism (Grillner, 1975; Orlovsky et al., 1999;
MacKay-Lyons, 2002) and have aided the development of

locomotion control systems of legged robots. A CPG is a group
of interconnected neurons that can be activated to generate a
motor pattern without the requirement of sensory feedback. The
evidence that supports this hypothesis was originally shown by
Brown (1911). In addition to the open-loop control function,
CPGs receive sensory feedbacks to modulate motor commands.
This closed-loop structure of sensory feedbacks is crucial to
achieve adaptive behavior depending on the situation. Various
CPG models have been proposed by using neural or oscillator
networks and implemented in control legged robots [see review
by Ijspeert (2008)]. For example, Taga and Shimizu (1991)
and Taga (1995) conducted a pioneering study of a CPG
model for human bipedal locomotion. They employed an
articulated multi-link system for the body mechanical model
and neural oscillators developed by Matsuoka (1985) for the
CPG model. This CPG model received sensory signals of local
and global information for locomotion. They demonstrated
that adaptive locomotion is established through the interaction
between body dynamics, oscillator dynamics, and environment;
they called this “global entrainment.” Although complex and
robust locomotion behavior can be achieved by purely reflexive
control mechanisms (Cruse et al., 1998; Manoonpong et al., 2007;
Lewinger and Quinn, 2011; Schilling et al., 2013a,b) and classical
machine learning control (Bongard et al., 2006; Cully et al., 2015)
instead of using CPG models, the CPG concept and modeling
have had a large influence on the studies of legged robots.

In this review, we focus on the adaptive control of
interlimb coordination in locomotion. We introduce adaptive
interlimb coordination for animals and legged robots induced
by various factors (locomotion speed, environmental situation,
body properties, and task). In addition, we show characteristic
properties of adaptive interlimb coordination in animals
and robots, such as gait hysteresis and different time-scale
adaptations. Finally, we discuss the underlying mechanisms and
control strategies to achieve adaptive interlimb coordination and
the design principle for the control system of legged robots.

2. ADAPTIVE INTERLIMB COORDINATION
IN ANIMALS AND ROBOTS

2.1. Speed-Dependent Adaptation
The most general adaptive interlimb coordination appears when
varying the locomotion speed in legged animals. This has
been observed even in spinal cats on treadmills (Forssberg
and Grillner, 1973; Orlovsky et al., 1999), in which the phase
relationship between the legs changes and the gait varies
among walking, trotting, and galloping. In reported studies,
the spinal cords of cats were transected from the brain, but
they still received sensory feedback through the contact between
their feet and the belt. The sensory signals changed with the
belt speed change, which induced their gait transitions. This
result highlights the important contribution of sensorimotor
interaction to adaptive interlimb coordination. Quadruped
robots have achieved adaptive interlimb coordination that
depends on locomotion speed by modeling spinal CPGs with
local sensory feedback (Maufroy et al., 2010; Aoi et al., 2011,
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2013b; Owaki et al., 2013; Fukuoka et al., 2015; Owaki and
Ishiguro, 2017). This can be seen in the following examples.
Figure 1 shows a quadruped robot, the control system, and the
experimental results of the walk–trot transition in Aoi et al.
(2013b) (this robot showed hysteresis in the gait transition, as
discussed in Section 3.1). Figure 2, which is from the work by
Fukuoka et al. (2015), presents quadruped gaits transitioned
from a walk at slow speeds to a trot at medium speeds, and
a transverse gallop at high speeds. Figure 3, which is from the
work by Owaki and Ishiguro (2017), also shows spontaneous
gait transitions from a lateral-sequence (L-S) walk to a trot
and even to a gallop of a quadruped robot with respect to
the locomotion speed without neural coupling. These robotics
studies used simple neural oscillators or phase oscillators for
the CPG model and produced leg motions from the oscillator
phases. More specifically, one oscillator created one leg motion
and the phase relationship between the oscillators determined the
gait. Each oscillator phase was regulated through local sensory
information of the leg, such as foot contact and leg loading,
occurring only within one leg.

As an important control architecture in these robotics studies,
the phase relationship between the oscillators was not predefined
and the oscillators were only weakly coupled or decoupled. That
is, the gait was not determined by the oscillator dynamics using
strong coupling (Schöner et al., 1990; Canavier et al., 1997;
Ito et al., 1998; Golubitsky et al., 1999), but by the interaction
between whole-body dynamics and oscillator dynamics through
local sensory feedback. The interlimb coordination was generated
only in a self-organizing manner among the neural dynamics, the
body dynamics, and the environment.

Similar adaptive interlimb coordination in accordance with
gait speed also appears in hexapod insects, such as stick
insects (Wilson, 1966; Graham, 1972; Cruse, 1990; Grabowska
et al., 2012), cockroaches (Hughes, 1952; Delcomyn, 1971;
Pearson, 1976; Bender et al., 2011), and flies (Strauß and
Heisenberg, 1990; Wosnitza et al., 2013; Berendes et al., 2016).
In particular, stick insects and flies smoothly change their
interlimb coordination in accordance with gait speed (Wilson,
1966; Graham, 1972; Wosnitza et al., 2013). More specifically,
the relative phases between the legs continuously change in a
linear fashion for gait speed. This is similar to some mammals,
including sheep, but is different from other mammals, including
dogs. In mammals such as dogs, the gait transitions have relative
leg phases that change suddenly in a sigmoid fashion (Alexander
and Jayes, 1983). Although it is suggested that cockroaches
achieve interlimb coordination mainly by the CPG itself (Fuchs
et al., 2011), the CPG by itself does not produce a coordinated
motor pattern for stick insect walking, because sensory feedback
is important (Bässler and Wegner, 1983; Büschges et al., 1995;
Büschges et al., 2008). Cruse and his colleagues proposed an
artificial neural network, named Walknet, which controls leg
movements based on six different rules to regulate interlimb
coordination by sensory information (note that the controller
of the individual leg operates without CPG). The rules were
empirically derived from the behavioral experiments of stick
insects [see reviews by Cruse et al. (1998), Dürr et al. (2004)
and Schilling et al. (2013a)]. Three of the rules were designed

by disturbing leg movements on a slippery surface. The rules
changed the cycle duration of a leg based on sensory information
of the neighboring legs. As a result of sensorimotor interaction,
the insect models controlled by Walknet produced a continuum
of locomotion patterns, such as tripod, tetrapod, and wave
gaits, and intermediate stepping patterns, as observed in stick
insects. In addition, the models were used for various situations,
such as walking on uneven surfaces (Kindermann, 2002), leg
amputation (Schilling et al., 2007), negotiating curves (Schilling
et al., 2013b), and climbing over large gaps (Bläsing, 2006),
and the locomotor behavior was comparable to that of stick
insects. Tóth and Daun-Gruhn (2016) developed neural network
models based on Hodgkin Huxley dynamics and integrated
them with musculoskeletal models to explain the interlimb
coordination mechanism of insects. Although their models did
not produce intermediate stepping patterns as observed in stick
insects (Wilson, 1966; Graham, 1972) and flies (Wosnitza et al.,
2013), their results suggest that the connection between the
levator-depressor neuromuscular systems of the different legs is
necessary to replicate the primary features of tripod and tetrapod
gaits. Ambe et al. (2013, 2015) used simple phase oscillators with
local sensory feedback of foot contact information for a hexapod
robot, in a manner similar to the quadruped robots mentioned
above. They produced a continuum of locomotion patterns,
such as metachronal and tripod gaits and intermediate stepping
patterns, through embodied sensorimotor interaction, without
predefining the patterns in accordance with the locomotion
speed. In addition, one important aspect shown was positive
velocity feedback during the stance of stick insects (Bässler,
1976). The positive velocity feedback has been tested on a
robot (Schmitz et al., 2008).

Similarly, myriapods, such as centipedes, change their
interlimb coordination depending on gait speed. Myriapods have
a long and flexible body axis and produce body undulations
when the gait speed increases (Manton, 1965). In addition to
the amplitude increase of the undulations, the phase relationship
between ipsilateral leg movements changes in synchronization
with the body segment movements of the undulations. In Aoi
et al. (2007, 2013a), a multilegged robot with six body segments
and twelve legs, which use torsional springs for body axis
flexibility, was developed. The robot showed body undulations
through a supercritical Hopf bifurcation of straight walking by
increasing the locomotion speed, and so showed dependence of
body undulations on speed, as was similar to the dependence
shown by centipedes.

2.2. Environment-Dependent Adaptation
The advantage of using legs in mobile motion for animals
and machines is to gain high traversability even in complex
environments by manipulating the foot contact positions.
However, the traversability of legged robots is still far from
reaching the level of animals. During locomotion, the leg motion
consists of the stance phase, in which the foot is in contact
with the ground, and the swing phase, in which the foot is
lifted off the ground. In the stance phase, the leg supports the
body against gravity and produces propulsive and decelerating
forces to move the body through the interaction between the
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FIGURE 1 | Walk–trot transition of a quadruped robot induced by changing the locomotion speed. (A) Quadruped robot. (B) CPG-based phase oscillator network

with local sensory feedback of foot contact information. Left and right leg oscillators are anti-phase and front and hind leg oscillators (1: phase difference) are only

weakly coupled. (C) Footfall sequences during the trot-to-walk and walk-to-trot transitions (white: swing phase, colored: stance phase). These figures were modified

from Aoi et al. (2013b).

foot and the ground. Geometric properties of the ground vary.
These properties include being flat terrain, sloped terrain, or
irregular and rough terrain. The physical properties of the
ground also change. These properties include hard and slippery
ground like stone, soft ground like loose soil, and flowable and
penetrable ground like sand. The interaction between the foot
and the ground is crucial to create locomotion, and real-time
adaptation of motor behavior is required according to the ground
situation. Animals actually show adaptive interlimb coordination
depending on the environmental situation. To control legged
robots, it is crucial to clarify and apply the dynamical principles
of animals.

Manoonpong and his colleagues developed a series of
modular neural CPG-based locomotion control for legged
robots (Manoonpong et al., 2008, 2013; Steingrube et al., 2010;
Goldschmidt et al., 2014; Xiong et al., 2014, 2015; Dasgupta et al.,
2015; Grinke et al., 2015). They showed that using this control
approach leads to adaptive interlimb coordination that allows
the robots to deal with complex environments, such as walking
over difficult terrain (Steingrube et al., 2010; Manoonpong et al.,

2013; Goldschmidt et al., 2014; Xiong et al., 2014, 2015; Dasgupta
et al., 2015) and avoiding obstacles in an unknown cluttered
area (Manoonpong et al., 2008; Grinke et al., 2015), as observed
in insects. For example, they implemented modular neural
control with an adaptive chaotic CPG-based network and sensory
feedback on a hexapod robot (Figures 4A,B; Steingrube et al.,
2010). Due to the intrinsically chaotic dynamics of the CPG
similar to that observed in certain biological CPGs (Rabinovich
and Abarbanel, 1998), the dynamics were exploited to generate
various walking patterns depending on the environmental
condition. In their setup, the robot showed a tetrapod gait for
standard walking, a wave gait for up-slope walking, a mixture
gait between wave and tetrapod gaits for down-slope walking,
and a tripod gait for fast walking to perform fast phototaxis
(Figure 4C). However, this implementation of discrete gaits does
not necessarily correspond to the situation found in insects. In
addition to these multiple gaits, the chaotic dynamics especially
contributed to self-untrapping of a leg from a hole in the
ground (Figure 4B) and thereby enhanced foothold searching
behavior. In Dasgupta et al. (2015), Goldschmidt et al. (2014),
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FIGURE 2 | Simulation results of walk, trot, and gallop gaits with different speeds for a quadruped model. (A) The quadruped model and its hard-wired neural

oscillator network with leg loading feedback for interlimb coordination. (B) The CPG outputs for controlling the legs, different emerged gaits from the interlimb

coordination, and body movement around the pitch axis. The walking speeds are shown as the top meter bars (dark blue to blue and red to orange) where speed level

is denoted as the color meter on the top right gradient bar. The convex curves indicate the flexor half-center outputs for left foreleg (LF, blue), left hindleg (LH, red),

right foreleg (RF, green), and right hindleg (RH, purple), which lead to the swing phase. The thick lines indicate the stance phase and the thin dashed lines refer to the

swing phase. These figures were modified from Fukuoka et al. (2015) with permission.

and Manoonpong et al. (2013) integrating forward models into
the modular neural control enabled the robot to effectively
predict its walking state in order to extend or elevate its legs
during the swing and stance phases while walking on complex
terrains. With this setup, the robot walked on uneven terrain
by using a tetrapod gait and climbed over high obstacles as
well as up a flight of stairs by using a wave gait. Moreover,

it successfully crossed a large gap by using a caterpillar gait,
where each left and right pair of legs moved simultaneously.
In this situation, however, stick insects show more complex
behavior than caterpillar coordination, which is adopted only
rarely, if at all (Blaesing and Cruse, 2004). In Xiong et al.
(2014), modular neural control was extended by introducing
muscle models based on virtual agonist-antagonist mechanisms
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FIGURE 3 | Walk-trot-gallop transitions of a quadruped robot achieved by changing its locomotion speed. (A) The quadruped robot with interlimb coordination

generated by non-wired simple phase oscillators (CPGs) with continuous phase modulation. The oscillator phases are modulated with respect to the magnitude of

local load sensing Ni . (B) Walking speed and gait diagrams of different locomotion modes (walk, trot, canter, and gallop). The pink area shows the change of the

treadmill speed with respect to the value of ω. The colored areas in the gait diagrams mean the stance phase, during which the sensor value Ni becomes greater than

a threshold value. These figures were modified from Owaki and Ishiguro (2017) with permission.

(VAAM), and neuromechanical control was produced to achieve
leg compliance. Combining neuromechanical control with
sensorimotor learning results in energy-efficient walking using
different gaits with corresponding leg compliances (Xiong
et al., 2015). The robot efficiently walked on different surfaces
including sponge, gravel, fine gravel, and grass. For adaptation to
the avoidance of obstacles in a cluttered environment, an adaptive
neural sensory processing network with synaptic plasticity was
introduced to the modular neural control (Grinke et al., 2015).
The adaptive processing network could drive different turning
behaviors with short-term robot memory. As a consequence,
the robot walked around and adapted its turning behavior to
avoid obstacles in different situations and to avoid sharp corners
or deadlocks (Figure 4D). In addition to the modular neural
control approach, Schneider et al. (2012) developed bio-inspired
control, which combinesWalknet (mentioned above) with higher
level control and planning (Figures 5A,B), for adaptive interlimb
coordination of the hexapod robot HECTOR. By using this
control technique, versatile behaviors (e.g., gap crossing, obstacle
crossing, and global planning to avoid or attack obstacles) can
be generated to deal with complex environments (Figure 5C).
Furthermore, Schilling and Cruse (2017) expanded Walknet
to invent new behaviors and test them by internal simulation
before using them in reality. Arena et al. (2017) proposed
multilayered CPG-based locomotion control with insect inspired
motor-skill learning. It can adaptively coordinate the limbs of a
Drosophila-like hexapod robot for stable walking and obstacle
climbing.

When horses walk up an incline (Wickler et al., 2003) or
when they carry weights (Farley and Taylor, 1991), the trot-to-
gallop transition speed is reduced. Hexapod insects, such as stick

insects, cockroaches, and beetles, change their gait depending
on the slope of the ground (Spirito and Mushrush, 1979;
Pelletier and Caissie, 2001; Grabowska et al., 2012). Furthermore,
while cockroaches use the tripod gait during normal walking,
the gait changes to metachronal when they are tethered on
a supported ball to decrease loading (Spirito and Mushrush,
1979); uphill slope and loading induce similar effects on their
gaits (Tang and Macmillan, 1986). Fujiki et al. (2013a) extended
the control system of a quadruped robot (Figure 1B) for a
hexapod walker and showed that the gait changed between tripod
and metachronal gaits through the sensorimotor interaction
depending on the loading and slope angle, as observed in
insects.

Fukuoka et al. (2003), Fukuoka and Kimura (2009), and
Kimura et al. (2007a,b) used the neural oscillators developed
by Matsuoka (1985) to control quadruped robots (Tekken
series). They incorporated models of various reflexes, such as
the flexor reflex, extensor reflex, and vestibulospinal reflex,
based on sensory information. In addition, they modeled the
tonic labyrinthine response to adjust the rolling motion to
synchronize with the pitching motion. The robots produced
robust locomotion over irregular terrain, such as steps and slopes,
while inducing the gait transition between walking and trotting.

When the ground is flowable like sand, the leg penetrates
deeply into the ground during locomotion. Consequently, the
interaction with the ground to produce lift, drag, and thrust
forces becomes complicated [see review by Aguilar et al. (2016)].
Li et al. (2009, 2013) used a tripod gait for a hexapod robot and
produced locomotor performance similar to that in hard ground
by adjusting the leg shape and leg motion with a force model of
the robot moving in granular media.
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FIGURE 4 | Environment-dependent adaptation of a hexapod robot under modular single CPG-based locomotion control. (A) Modular neural locomotion control

consisting of adaptive chaos control (acting as a CPG), CPG post-processing, and neural motor control. Locomotion control can generate multiple gaits (wave,

transition, tetrapod, and tripod gaits) and a chaotic pattern for locomotion on different terrains. A combination of neural control with an adaptive neural sensory

processing network can generate adaptive obstacle avoidance for avoiding obstacles in a complex environment. (B) Hexapod robot AMOS with a chaotic movement

pattern for self-untrapping (i.e., freeing itself when its leg is trapped in a hole). The red light trace recorded from an LED installed at the leg shows the chaos motion of

the leg. (C) Walking experiment on different terrains (floor, slopes, rough terrain, and holes in the ground) where different gaits were used. The white areas in the gait

diagrams indicate the swing phase and the dark blue areas refer to the stance phase. (D) Adaptive obstacle avoidance in a simulated complex environment with

obstacles, sharp corners, and narrow passages. These figures were modified from Grinke et al. (2015) and Steingrube et al. (2010).

FIGURE 5 | Walknet with higher level control and planning for different locomotion behavior generation of the hexapod robot HECTOR for different environments.

(A) Bio-inspired control Walknet with interlimb coordination rules [rules 1, 2, and 3; see Schilling et al. (2013a) and Schneider et al. (2012) for details]. (B) Setup of an

individual leg controller with higher-level control and planning. Its outputs drive the leg joints of HECTOR. (C) Different desired locomotion behaviors that can be

generated by the control approach to deal with complex environments. These figures were modified from Schneider et al. (2012) with permission.
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Along with the adaptation to slopes, rough terrain, cluttered
areas, and flowable areas, interlimb adaptation dealing with an
asymmetric environmental condition has been investigated. For
the asymmetric condition, split-belt treadmills have been used
in studies of humans (Dietz et al., 1994; Reisman et al., 2005;
Morton and Bastian, 2006), cats (Yanagihara and Kondo, 1996;
Frigon et al., 2013), crayfishes (Müller and Cruse, 1991a,b),
and stick insects (Bässler and Wegner, 1983; Foth and Graham,
1983). The treadmills have two parallel belts with independently
controlled speeds and thus are capable of artificially creating
left–right symmetric and asymmetric environments for walking
(tied configuration: same speed between the belts, split-belt
configuration: different speeds between the belts). Although the
details are discussed later in Section 3.2, adaptive interlimb
coordination has been observed in accordance with the belt
speed condition. Such an adaptation appeared even in spinal
cats (Forssberg et al., 1980; Frigon et al., 2013). Otoda et al. (2009)
developed a sensory-driven controller without a CPG model for
a two-dimensional biped robot and Fujiki et al. (2013b) used
simple phase oscillators for the CPG model of a biped robot with
local sensory feedback of the foot contact information, as was
similarly done with the abovementioned quadruped and hexapod
robots that achieved adaptive interlimb coordination (Aoi et al.,
2011, 2013b; Ambe et al., 2013, 2015; Fujiki et al., 2013a). The
biped robots achieved adaptive interlimb coordination on split-
belt treadmills.

2.3. Body-Dependent Adaptation
Animals show adaptive motor behavior also due to changes in
their body properties. As mentioned above, they change walking
patterns when carrying weights or reducing their loads (Tang and
Macmillan, 1986; Farley and Taylor, 1991). For fast locomotion,
such as the galloping gait of cursorial quadrupeds and the
undulatory walk of centipedes, the appearance of trunk and
body-segment movements suggests that body flexibility is crucial
for adaptive locomotion (Alexander, 1988). In Aoi et al. (2011),
a quadruped walker was controlled by simple phase oscillators
with local sensory foot contact information (Figure 1B) and
the change in trunk flexibility induced the walk–trot transition,
where walking and trotting gaits appeared for a hard trunk and
a soft trunk, respectively. In Aoi et al. (2007, 2013a, 2016), a
centipede-like multilegged robot showed the gait transition from
straight walking to body undulatory walking through a Hopf
bifurcation by changing the body axis flexibility.

One of the advantages to using many legs for mobile motion,
as in insects and myriapods, is the avoidance of losing mobility
completely by leg damage due to injury and predation. Through
adaptive control of interlimb coordination, even complete
leg loss does not prevent walking (Grabowska et al., 2012).
To clarify how interlimb coordination changes with leg loss,
amputations of single legs of stick insects have been performed
in order to investigate changes of the relative phases between
the legs depending on which leg is amputated (Graham, 1977).
Dasgupta et al. (2015) used neural CPG-based control with
distributed adaptive forward models for the hexapod robot, as
mentioned above, and demonstrated that the robot successfully
kept walking straight with a slightly modified tetrapod gait

through adaptation despite the damaged right middle leg. Ren
et al. (2015) extended the chaotic CPG controller introduced
above (Steingrube et al., 2010) to a controller of multiple
chaotic CPGs depending on the number of legs (Figure 6A).
They demonstrated that the six-legged robot (AMOSII) could
continue walking by changing the interlimb coordination in
accordance with the disabled leg(s) (Figures 6B,C). Walknet,
which identifies the behavior of stick insects, as introduced
above, was able to coordinate the movements of the remaining
legs so that a six-legged walker could continue walking when
some legs were amputated (Kindermann, 2002; Schilling et al.,
2007). Besides these bio-inspired control approaches, Cully et al.
(2015) proposed an alternative machine learning based approach
consisting of two main parts: an automatically generated, pre-
computed, behavior-performance map, and a trial-and-error
learning algorithm (Figure 7). The behavior-performance map
contains a number of interlimb coordination parameters that
can generate approximately 13,000 different gaits. The trial-
and-error learning algorithm is used to search for successful
robot locomotion behaviors from the map with respect to
robot body condition. They showed that this approach allows
a hexapod robot to walk and rapidly find a walking behavior
that can compensate for damage. Although all these approaches
predefined interlimb connections, another approach based on
the concept of emergent locomotion (i.e., walking patterns
appearing as a result of stabilization in a self-organizing manner,
Schilling et al., 2013a) from tight interaction between neural
systems, musculoskeletal systems, and the environment has been
explored for body-dependent adaptation. For example, Barikhan
et al. (2014) proposed multiple decoupled neural CPGs with
local sensory feedback (Figure 6D). This approach exploited
the interaction between neural and body dynamics through
foot contact feedback to achieve self-organized locomotion and
to allow a hexapod robot to quickly adapt its locomotion to
deal with morphological changes [e.g., leg damage (Figure 6E)
or asymmetric leg lengths between the front and hind legs].
Tsuchiya et al. (2002) used simple phase oscillators with local
sensory foot contact information to control a ten-legged robot
to establish adaptive interlimb coordination, as mentioned above
for quadruped and hexapod robots. The leg loss induced the
change in interlimb coordination, and the change reduced
the degradation of locomotion performance, such as gait
speed.

2.4. Task-Dependent Adaptation
Animals often encounter a situation in which they have to change
locomotor behavior. For example, when an obstacle appears in a
walking path, they step over the obstacle, or turn to the right or
the left to avoid collision with the obstacle (this is also related
to environment adaptation). Such a task is mainly generated by
modulating the leg movements, and thus adaptive control of
intralimb coordination is important. However, also important
is adaptive control of interlimb coordination. To step over an
obstacle, the leading limb first clears the obstacle and then the
trailing limb follows it. The foot of the leading limb must be
raised higher than usual to avoid collision with the obstacle,
and this motion delays foot contact. Especially for bipedal and
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FIGURE 6 | Adaptation to deal with leg malfunction of a hexapod robot under modular multiple CPG-based locomotion control. (A) Implementation of multiple chaotic

CPGs on a hexapod robot. In the setup, the connections between CPGs are predefined. (B,C) Two example scenarios of real robot experiments with disabled legs. In

(B), the robot walked with the R1 leg disabled and in (C) it walked with the R1 and R3 legs disabled. For each subfigure, the upper panel shows one snapshot of a fail

situation (before learning) and three snapshots of a success situation (after learning). The lower panel shows the gait (i.e., suitable leg frequencies) after learning.

A black area means that the leg touched the ground, and a white area indicates that the leg was in the air. In this setup, the robot learned to find a proper combination

of oscillation frequencies of different legs for malfunction compensation. (D) Implementation of multiple CPGs with foot contact feedback on a hexapod robot. This

setup does not have predefined coordination between the CPGs. Intralimb coordination emerges from the interactions between the body dynamics and the

environment through foot contact feedback of each leg. (E) Example of the robot experiment dealing with a temporary handicapped situation. The ground reaction

forces during movement of the robot with middle legs temporarily disabled show that the robot quickly adapted to a new gait (i.e., trot gait) and was able to continue

walking properly. These figures were modified from Barikhan et al. (2014) and Ren et al. (2015).

quadrupedal animals, the foot of the trailing limb must be raised
after foot contact of the leading limb; otherwise, the obstacle
avoidance task will fail because the contralateral limb does not
support the body at the onset of raising the trailing limb (Aoi
et al., 2013c).

Turning behavior to change walking direction is used for
various tasks, such as target pursuit (Szczecinski et al., in press)
and obstacle avoidance (Figures 4D, 5C). Knops et al. (2013)
controlled a mechanical model of a stick insect’s middle legs
by using a neural network model based on Hodgkin Huxley
dynamics and produced turning behavior with two different
strategies observed in stick insects walking on a slippery surface:
switching the inner middle leg from forward to sideward, or
from forward to backward stepping. In Aoi et al. (2016), the
turning maneuverability of a centipede-like multilegged robot
was enhanced via straight walk instability induced by the Hopf
bifurcation by changing the body axis flexibility. Although
arthropods with sprawling legs have a low center of mass and
thus cannot effectively lean, mammals with erect legs have a

high center of mass and can use body leaning to help turning.
The relative phase between legs in human turning shifts from
anti-phase due to the left–right asymmetry of the turning
movement (Courtine and Schieppati, 2003). In Aoi and Tsuchiya
(2007), simple phase oscillators with local sensory feedback about
foot contact information were used for turn walking of a biped
robot, as was used for walking on a split-belt treadmill. The
relative phase between legs shifted depending on the turning
radius to compensate for the left–right asymmetry induced by
body leaning; this shift allowed the robot to achieve high turning
performance.

The transition from quadrupedal gait to upright and bipedal
gait is a challenging task for legged robots, because it requires
drastic changes in locomotor movements (Asa et al., 2009;
Aoi et al., 2012; Kobayashi et al., 2015). In particular, because
the robot has to raise its trunk so that the arms leave
the ground, an adequate relationship between the supporting
limb locations and the center of mass location is important.
That is, adequate interlimb and trunk coordination is crucial;
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FIGURE 7 | Machine learning approach for locomotion and damage recovery of a hexapod robot. (A) Robot setup. (B) Example of a behavior-performance map and

its post-adaptation for damage recovery. Each colored pixel represents the highest-performing behavior discovered during map creation at that point in

six-dimensional behavior space. (C) Robot adaptation using the trial-and-error algorithm to recover from leg damage. These figures were modified from Cully et al.

(2015) with permission.

otherwise, the robot easily falls over. In Aoi et al. (2012),
simple phase oscillators with sensory regulation by ground
contact information of the arms and legs were used for a biped
robot (Figures 8A,B). The controller was extended based on
the concept of kinematic synergy (Freitas et al., 2006; Ivanenko
et al., 2007; Latash, 2008; Funato et al., 2010) to change the
robot movements for gait transition and allowed the robot to
successfully change the gait from quadrupedal to upright and
bipedal (Figure 8C).

Legged robots are useful for search and rescue missions. In
this case, the ground is not only irregular but also fragile, like
an area with scattered debris and collapsed buildings, on which
surfaces may collapse when put under external forces, such as the
pressure from a robot’s leg. It is important to check the ground
condition in such situations by using haptic information of the
legs to secure stable walking. In Ambe and Matsuno (2016),
a control mechanism with haptic sensory feedback for terrain
determination was proposed. With the control mechanism, a
quadruped robot can sense whether the foothold is stable through
its force sensor when it puts its leg on the ground. In addition,
this mechanism produces adequate interlimb coordination so
that the robot never stumbles, even if the foothold collapses in
the probe motion. As a result, the robot can effectively walk on
unstable terrain and avoid stumbling and causing a large collapse
of the surrounding area (Figure 9). Other methods have also
been proposed to estimate fragile and slippery footholds based
on haptic feedbacks and image information (Tokuda et al., 2003;
Hoepflinger et al., 2010, 2013).

3. CHARACTERISTIC PROPERTIES OF
ADAPTIVE INTERLIMB COORDINATION

3.1. Hysteresis in Gait Transition
As discussed in Section 2.1, animals change their walking patterns
depending on their locomotion speed. In general, locomotion
speed has a large sudden change at gait transition in overground
walking. However, using treadmills, which can control gait
speed, we can investigate the speed-dependent gait transition
mechanism by smoothly and continuously changing the belt
speed of the treadmills. It has been reported in humans and
some quadruped animals that the gait changes at different speeds
depending on whether the speed is increasing or decreasing, and
that a speed range exists in which different gaits are used. In
other words, gait transitions may exhibit hysteresis (Diedrich
et al., 1998; Heglund and Taylor, 1998; Raynor et al., 2002;
Griffin et al., 2004). Figure 10A shows the relative phase
between the right front and hind legs of a dog walking on a
treadmill for walk-to-trot and trot-to-walk transitions induced
by changing the belt speed (Aoi et al., 2013b). This figure shows
hysteresis in the walk–trot transition. Such a phenomenon is
difficult to explain by triggering the gait transition based on
metabolic and biomechanical factors. The dynamical system
approach might provide useful insights into such a gait transition
mechanism (Diedrich et al., 1998).

Quadruped robots controlled by simple phase oscillators
with local sensory foot contact information, as introduced in
Section 2.1, showed hysteresis in the walk–trot transition induced
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FIGURE 8 | Gait transition of a biped robot from quadrupedal to upright and bipedal gait. (A) Biped robot. (B) Phase oscillator network with local sensory foot contact

information for the biped robot. (C) Gait transition experiment. These figures were modified from Aoi et al. (2012).

by changing the locomotion speed (Figure 10B; Aoi et al.,
2011, 2013b). Because walking and trotting gaits are mainly
distinguished by the relative phases of the ipsilateral legs, a
stability analysis using the return maps of the relative phases
clarified the stability structure of the gaits. Figure 10C shows
the return maps obtained at three different speeds. While only
one stable relative phase exists in the left and right figures, two
stable and one unstable relative phases exist in the middle figure.
The stable and unstable relative phases explain that hysteresis
is generated through two saddle-node bifurcations induced
by changing the locomotion speed (Figure 10D). From this
result, a potential function is derived, as shown in Figure 10E.
It suggests that gait transition is explained by switching the
stability of self-organized patterns in the complex dynamical
system.

Gait transition hysteresis also appears in other legged robots
controlled by CPG models with sensory feedback, e.g., in the
walk–run transition of a biped model (Taga and Shimizu, 1991)
and the metachronal–tripod gait transition of hexapod robots
(Kimura et al., 1993; Fujiki et al., 2013a; note that insects do not

clearly show abrupt transitions, but a continuum of locomotion
patterns).

3.2. Two Different Time-Scale Adaptations
When the environment suddenly changes, locomotor behavior
is rapidly modulated to adapt to the environmental variation
and successively shows gradual regulation for gaining a new
locomotor pattern. This behavior suggests that motor learning
occurs. This has been observed in interlimb coordination
during locomotion. In particular, the split-belt treadmill walking
mentioned above is a good example.

The regulation of motor behavior in split-belt treadmill
walking appears in various locomotor factors. However, the
factors related to interlimb coordination, such as the relative
phase between the legs, step length, and center of pressure
profile, and those related to intralimb coordination, such
as the duty factor and stride length, show different trends
(Figure 11). A sudden environmental variation rapidly changes
the factors; this is called “early adaptation”. Although the
intralimb coordination factors do not show further change,
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FIGURE 9 | Walking on fragile irregular terrain. (A) Quadruped robot with load sensors on feet. (B) Process to find footfold condition for fore right leg. The robot moves

the center of mass by standing on all four legs, then swings a leg, and probes the foothold by applying force gradually. The robot repeats this process for each of the

four legs. (C) Time response of normal reaction force of the leg in experiments. The robot applies force over a reference value Rref in the grope phase to ensure that

the ground is solid enough for walking, but the robot never applies force over Rref in the other phases. These figures were modified from Ambe and Matsuno (2016).

the interlimb coordination factors tend to gradually return
to their original state after early adaptation; this is called
“late adaptation”. This means that interlimb coordination
has two types of adaptations with different time scales.
Furthermore, when the environment is returned its original
state, the interlimb coordination factors move in the opposite
direction to the early adaptation, which shows the after-
effects.

Rapid changes in the locomotor factors have been observed
during split-belt treadmill walking of spinal cats (Forssberg et al.,
1980; Frigon et al., 2013). These rapid changes suggest that
early adaptation is induced by sensorimotor interaction in the
spinal cord. On the other hand, humans with cerebellar damage
do not show late adaptation or after-effects during split-belt
treadmill walking, and it appears that the cerebellum contributes
to late adaptation and the after-effects (Morton and Bastian,
2006; although split-belt experiments have been performed for
arthropods (Bässler and Wegner, 1983; Foth and Graham, 1983;
Müller and Cruse, 1991a,b), the results showed that they do
not necessarily need learning, which may underestimate their
adaptation ability). Otoda et al. (2009) modeled the stepping
reflex to modulate the touchdown angle of the swing leg and
introduced the adjustment of proportional control gain at the
hip joint of the stance leg as the cerebellar function producing
split-belt treadmill walking of a two-dimensional biped robot,
although they did not use a CPG model with adaptation. In
contrast, Fujiki et al. (2015) incorporated a cerebellar learning
model into the spinal CPG model (Figure 12B). The CPG model
was composed of simple phase oscillators with sensory reflex
by local foot contact information and was used in Fujiki et al.
(2013b) as mentioned above. The learning model modulated
the foot contact timing of each leg through the evaluation

of prediction error by using the local sensory foot contact
information of each leg. Biped robot experiments on a split-
belt treadmill (Figure 12A) showed adaptive intralimb and
interlimb coordination (Figures 12C,D). In particular, despite
the lack of direct interlimb coordination control, early and
late adaptations and after-effects were observed in interlimb
coordination, and showed strong similarities to those observed in
humans.

Rapid modulation by the sensory reflex model and gradual
modulation by the learning model changed the pitching moment
depending on the belt speed condition through the body
dynamics of the robot (Figure 13). The pitching moment
change induced spatiotemporal modification of the robot
movements and altered various locomotor factors. The sensory
reflex model secured the ability to continue walking against
the environmental change, and the cerebellar learning model
modulated the robot movements under those conditions to
make walking smoother and more efficient through optimization
(minimization of prediction error of foot contact timing). For
simple human behaviors, such as arm reaching movements,
learning models that aim to minimize jerk or torque-change
have been proposed (Flash and Hogan, 1985; Uno et al.,
1989). However, for human locomotion, it remains unclear
what factors are predicted and how to facilitate the learning.
This is partly because locomotion is a whole-body movement
through limb movement and posture controls, and is governed
by complicated dynamics including foot contact and lift off,
which change the physical constraints. Robot experiments with
neurophysiologically inspired control models are useful for
examining potential control models through the comparison of
results obtained from human measured data and clarification of
dynamical mechanisms.
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FIGURE 10 | Hysteresis in the walk–trot transition. (A) Relative phases of ipsilateral legs of a dog for walk-to-trot and trot-to-walk transitions induced by changing the

belt speed. (B) Relative phases of a quadruped robot for walk-to-trot and trot-to-walk transitions induced by changing the locomotion speed. The three speeds

indicated by vertical dotted lines are used in (C). (C) Stability analyses using return maps for the relative phases at three speeds. The bold lines are approximated

polynomial functions of the return maps. (D) Estimated stable and unstable relative phases from the stability analyses showing two saddle-node bifurcations.

(E) Possible potential function that shows hysteresis. These figures were modified from Aoi et al. (2013b).

4. KEY FACTORS AND MECHANISMS FOR
ADAPTIVE INTERLIMB COORDINATION

In the previous sections, we presented adaptive interlimb
coordination of animals and legged robots to deal with different
locomotion speeds, environmental situations, body properties,
and tasks. Here, we discuss key factors and mechanisms
underlying the adaptive control of interlimb coordination.

One of the key mechanisms is the CPGs, which are
located in the spinal cord of vertebrates and in the thoracic
ganglia of invertebrates. Except for the anti-phase activity
of antagonistic excitatory motoneurones, no feature of the
pilocarpine-induced rhythm appears to correspond to any
motor output observed in stick insects (Büschges et al., 1995).
However, neurophysiological studies have revealed that CPGs
are important for locomotion (Grillner, 1975; Orlovsky et al.,
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FIGURE 11 | Changes in locomotor factors during human split-belt treadmill

walking, where the belt speed condition changes from the tied to the split-belt

configuration (adaptation period) and returns to the tied configuration

(post-adaptation period). (A) Relative phase between legs as one of the

interlimb coordination factors. This shows both early and late adaptations

when the environmental change occurs. When the environment is returned,

after-effects appear. (B) Duty factor of the legs as one of the intralimb

coordination factors. This shows only early adaptation when the environment

changes. These figures were modified from Fujiki et al. (2015).

1999; MacKay-Lyons, 2002). A CPG is a group of interconnected
neurons that can be activated to generate a motor pattern
without the requirement of sensory feedback. As described
in Ijspeert (2008), various CPG models with different levels
of complexity have been proposed, from detailed biophysical
models using Hodgkin-Huxley neurons (Traven et al., 1993;
Cataldo et al., 2006; Holmes et al., 2006; Bungay and Campbell,
2009) and connectionist models using leaky-integrator neurons
or integrate-and-fire neurons (Buchanan, 1992; Arena, 2000) to
abstract models using coupled oscillators (Ijspeert et al., 2007;
Chung and Slotine, 2010; Yu et al., 2014). Although some
robot studies have shown that complex insect behavior, such
as continuous gait transition, walking over irregular ground
including a large gap, and curve walking with an irregular step
pattern, can be replicated without CPG models (Cruse et al.,
1998; Lewinger and Quinn, 2011; Schilling et al., 2013a,b), these
CPGmodels have improved locomotion control of legged robots,
such as the control of speed (Ijspeert, 2008) and robustness
against sensory noise as well as sensory failure (Di Canio et al.,
2016). In particular, key issues for controlling legged robots are
design of feedforward and feedback controllers and integration
of these controllers. The CPG models give us useful ideas for
the design and integration so that the integrated controller
works in a biologically plausible fashion (comparison between the
controllers with and without CPGmodels would be useful to find
the contribution of the CPG models).

Most research has employed abstract CPG models with
hardwired connections to motor units for generating different
basic locomotor behaviors, such as walking and swimming.
Switching between different gaits or locomotion modes can be

done by using simple external input signals (Kirchner et al.,
2002; Ijspeert et al., 2007; Manoonpong et al., 2008). Though
CPGs acting as open-loop control are the key for production of
basic rhythmic locomotion, sensory feedback is a very important
factor needed for adaptations to different speeds, environments,
bodies, and tasks, as described in previous sections for adaptive
interlimb coordination. Combining CPGs with sensory feedback
results in closed-loop control with adaptability. For robotic
implementation, different sensory feedback affecting CPG
activities includes proprioceptive feedback (e.g., joint/leg
movement and force) and exteroceptive feedback (e.g.,
foot contact and vision). Such feedback can modulate the
frequency, phase, and magnitude of CPG activities [see review
by Buschmann et al. (2015)].

Frequency modulation (also known as entrainment, Buchli
et al., 2006) uses feedback information to adapt the frequency
of the CPG so that the frequencies of the feedback and the
CPG are synchronized (Nachstedt et al., 2017). Usually, joint
angle feedback is used for this process in robotics studies (Endo
et al., 2004; Buchli and Ijspeert, 2008; Di Canio et al., 2016) and
frequency modulation has been mainly employed for adaptations
of locomotion speed (Harischandra et al., 2011; Di Canio et al.,
2016) and body change (Ren et al., 2015). In contrast, phase
modulation typically uses foot contact and foot loading feedbacks
to adjust the phase of CPGs to regulate the swing and stance
phase durations, depending on the situation. In particular, the
phase resetting mechanism, which has often been used for phase
modulation in legged robots, was developed from the phase shift
and rhythm resetting behaviors by the tactile sensor feedback in
cats (Conway et al., 1987; Duysens, 1997; Schomburg et al., 1998;
Rybak et al., 2006; Frigon et al., 2010) and stick insects (Büschges,
1995; Bässler and Büschges, 1998). The functional role of
phase resetting has been investigated by the integration with
musculoskeletal models and muscle synergy hypothesis (Aoi
et al., 2010, 2013c; Aoi and Funato, 2016), and the control strategy
was implemented in legged robots and helped to improved
the robustness of their walking (Tsuchiya et al., 2002; Aoi and
Tsuchiya, 2005, 2007; Nomura et al., 2009; Aoi et al., 2011, 2012,
2013b; Ambe et al., 2013, 2015; Fujiki et al., 2013a,b, 2015). Phase
modulation has also been widely used for different adaptations
including locomotion speed (Tsuchiya et al., 2002; Aoi et al.,
2011, 2013b; Ambe et al., 2013, 2015; Fujiki et al., 2013a; Owaki
et al., 2013; Fukuoka et al., 2015; Owaki and Ishiguro, 2017),
environmental condition (Aoi and Tsuchiya, 2005; Aoi et al.,
2010; Fujiki et al., 2013a,b, 2015), body properties (Tsuchiya et al.,
2002; Aoi et al., 2011; Fujiki et al., 2013a; Owaki et al., 2013;
Barikhan et al., 2014), and task (Aoi and Tsuchiya, 2007; Aoi
et al., 2012, 2013c). Magnitude modulation uses different types of
feedback, such as force and vision, to regulate the magnitude of
the CPG. This regulation is indirectly achieved through premotor
neuron networks (Buschmann et al., 2015). Goldschmidt et al.
(2014) and Grinke et al. (2015) employed this strategy by
using visual feedback for environment-dependent adaptation,
such as hexapod robots climbing over an obstacle or turning away
from it.

One can also achieve adaptive interlimb coordination by
integrating these CPG modulation techniques with other
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FIGURE 12 | Split-belt treadmill walking experiment of a biped robot. (A) Biped robot and split-belt treadmill. (B) Spinal CPG and cerebellar learning models using

simple phase oscillators with sensory reflex by local foot contact information and modulation of foot contact timing through the evaluation of prediction error.

(C) Relative phase between legs of the biped robot. (D) Duty factor of legs of the biped robot. These figures were modified from Fujiki et al. (2015).

bio-inspired approaches, such as adaptive muscle stiffness
control (Xiong et al., 2015). Manoonpong et al. (2013)
showed that bio-inspired forward models that translate
motor commands or efference copies into expected sensory
feedback are important components for environment-
dependent adaptation, i.e., walking on different terrains. By
using a split-belt treadmill, Fujiki et al. (2015) showed that
cerebellar learning models to regulate motor commands

while minimizing the prediction error are also important
for environment-dependent adaptation. Table 1 roughly
categorizes the key mechanisms that have been used for different
adaptations.

In addition to these bio-inspired key factors (CPGs, sensory
feedbacks, forward model, learning model, and muscle stiffness),
which are usually applied to independent control of individual
legs or joints, most of the studies explicitly design complete
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FIGURE 13 | Pitching moment change due to belt-speed change (A–E)

through sensory reflex and learning regarding foot contact timing. These

figures were modified from Fujiki et al. (2015).

interlimb connections to obtain the desired locomotor behaviors.
This results in limitations of adaptive and flexible interlimb
coordination (e.g., Kirchner et al., 2002; Ijspeert et al., 2007;
Harischandra et al., 2011; Manoonpong et al., 2013; Ren

TABLE 1 | Key mechanisms used for different adaptations.

Adaptation Key mechanism

Speed-dependent CF, CP, PF

Environment-dependent CF, CP, PF, CP+LM, CPG+FM, CPG+FM+MS

Body-dependent CF, CP, PF, ML

Task-dependent CP, CM, PF

CPG, Central pattern generator; CF, CPG frequency modulation; CP, CPG phase

modulation; CM, CPG magnitude modulation; PF, Pure feedback; FM, Forward model;

LM, Learning model; MS, Muscle stiffness adaptation; ML, Other machine learning

approaches.

et al., 2015). To overcome these limitations, a proposed
alternative paradigm achieves interlimb coordination by local
sensing, body-environment interactions, and weakly-coupled or
decoupled CPGs (Tsuchiya et al., 2002; Aoi et al., 2011, 2013b;
Shim and Husbands, 2012; Ambe et al., 2013, 2015; Fujiki et al.,
2013a; Owaki et al., 2013; Barikhan et al., 2014; Owaki and
Ishiguro, 2017), rather than by predefined interlimb connections.
Although the proposed paradigm leads to high flexibility and
adaptability in interlimb coordination, it sometimes encounters
unstable locomotion. Phase resetting, which modulates the CPG
phase based on the sensory reflex, as mentioned above, is
one of the solutions to obtain flexible and adaptive interlimb
coordination while keeping stability in locomotion (Tsuchiya
et al., 2002; Aoi and Tsuchiya, 2007; Aoi et al., 2011, 2012,
2013b,c; Ambe et al., 2013, 2015; Fujiki et al., 2013a,b, 2015).
However, this uses only phase modulation and has limitations.
Thus, one future research study in this direction is to find a
method that can autonomously form the plastic connections for
stable but still flexible and adaptive locomotion. Furthermore,
the interactions of CPGs, sensory feedback, body dynamics,
forward model, learning model, and muscle stiffness for highly
adaptive, robust, and energy-efficient locomotion remain to be
explored.

5. CONCLUSION

Although walking animals create adaptive locomotor behavior
by skillfully manipulating their complicated and redundant
musculoskeletal systems, the underlying mechanisms are still
unclear. Designing the control architecture for legged robots
to autonomously achieve such adaptability is still a challenge.
Although some legged robots produced adaptive locomotor
behaviors by purely engineering approaches without inspiration
from biological systems, neurophysiological findings such as
CPG organizations and sensorimotor interactions are useful
for designing the control system of legged robots. Robot
experiments with CPG models and sensory feedbacks are
insightful from a dynamic viewpoint for understanding gait
generation and adaptation in a self-organizing manner among
neural dynamics, body dynamics, and environment. In this
review, we showed adaptive interlimb coordination in the
locomotion of animals and legged robots induced by various
factors, such as locomotion speed, environmental situation, body
properties, and tasks. We also showed characteristic properties
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of adaptive interlimb coordination, such as gait hysteresis and
different time-scale adaptations. Legged robots are becoming
a valuable tool for understanding the locomotion mechanism
including interlimb coordination. In the future, together with
the improvement of robotics systems, such as actuators and
sensors, it will be important to enhance biological plausibility
and feasibility by the integration with sophisticated models
of neural and musculoskeletal systems, such as the Hodgkin-
Huxley model and the muscle-tendon unit model, and to extract
dynamical features by integration with simple models, such
as the template model (Full and Koditschek, 1999; Holmes
et al., 2006). Furthermore, it will also be important to further
improve and develop analytical methods, such as phase reduction
theory (Kuramoto, 1984) and synergy analysis (Ivanenko et al.,
2004; Latash, 2008), to clarify essential factors from multiple and
redundant data.
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Insects exhibit adaptive and versatile locomotion despite their minimal neural computing.

Such locomotor patterns are generated via coordination between leg movements,

i.e., an interlimb coordination, which is largely controlled in a distributed manner by

neural circuits located in thoracic ganglia. However, the mechanism responsible for

the interlimb coordination still remains elusive. Understanding this mechanism will help

us to elucidate the fundamental control principle of animals’ agile locomotion and to

realize robots with legs that are truly adaptive and could not be developed solely

by conventional control theories. This study aims at providing a “minimal" model of

the interlimb coordination mechanism underlying hexapedal locomotion, in the hope

that a single control principle could satisfactorily reproduce various aspects of insect

locomotion. To this end, we introduce a novel concept we named “Tegotae,” a Japanese

concept describing the extent to which a perceived reaction matches an expectation.

By using the Tegotae-based approach, we show that a surprisingly systematic design

of local sensory feedback mechanisms essential for the interlimb coordination can be

realized. We also use a hexapod robot we developed to show that our mathematical

model of the interlimb coordination mechanism satisfactorily reproduces various insects’

gait patterns.

Keywords: hexapedal locomotion, interlimb coordination, local sensory feedback, central pattern generator (CPG),

Tegotae

1. INTRODUCTION

Insects exhibit tremendously versatile gait patterns owing to their locomotion speed and
physical/environmental conditions (Hughes, 1957; Graham, 1972, 1977; Cruse, 1976; Foth and
Graham, 1983a,b; Dean, 1991; Zollikofer, 1994a,b,c; Noah et al., 2004; Goldman et al., 2006;
Sponberg and Full, 2008; Grabowska et al., 2012; Wosnitza et al., 2013). These locomotor
patterns are generated via their interlimb coordination mechanism. Biological findings suggest that
interlimb coordination in hexapedal locomotion is controlled largely in a decentralized manner by
neural networks located in thoracic ganglia (Pearson and Iles, 1969, 1973; Bässler and Wegner,
1983; Dean, 1989; Brekowitz and Laurent, 1996). Thus, clarifying this interlimb coordination
mechanism is expected to allow us to obtain the key to understanding the control principle
underlying animals’ agile locomotion and for realizing truly adaptive legged robots that could not
be realized solely by conventional control methods.

Aiming to elucidate the mechanism responsible for the interlimb coordination in hexapedal
locomotion, various studies have been conducted to date by focusing on specific insects, e.g.,
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stick insects (Graham, 1972, 1977; Cruse, 1976; Foth and
Graham, 1983a,b; Dean, 1991; Grabowska et al., 2012) and
cockroaches (Hughes, 1957; Pearson and Iles, 1969; Noah et al.,
2004; Goldman et al., 2006; Sponberg and Full, 2008) and/or by
focusing on control paradigms, e.g., central pattern generators
(CPGs) (Pearson and Iles, 1973; Bässler and Wegner, 1983;
Bässler, 1986, 1993; Ryckebusch and Laurent, 1993; Büschges
et al., 1995, 2004; Bässler and Büschges, 1998; Büschges, 2005;
Borgmann et al., 2009; Daun-Gruhn and Büschges, 2011; Marder
and Bucher, 2011) and chains of reflexes (Cruse, 1983, 1990;
Cruse et al., 1998; Dürr et al., 2004; Schilling et al., 2013). The
knowledge obtained from these past studies deepened biological
understanding of the interlimb coordination mechanism greatly;
however, the diversity of these approaches may have confused
roboticists who want to build adaptive insect-like hexapod robots
via bio-inspired approaches (Kimura et al., 1993; Beer et al., 1997;
Altendorfer et al., 2001; Ritzmann et al., 2004; Ambe et al., 2013;
Manoonpong et al., 2013).

In order to address this problem, in this study, we attempt
to capture the control principle essential to understanding
the interlimb coordination in a concise form that could help
bridge the gap between biologists and roboticists, in the hope
that a single control principle could adequately reproduce
various aspects of insect locomotion. Since reduction is required
for understanding the essence, we build a “minimal model”
of the interlimb coordination mechanism on the basis of a
mathematically tractable highly abstract model. To this end, we
employ a unique approach in this study. We introduce a novel
concept we named “Tegotae,” a Japanese concept describing the
extent to which a perceived reaction matches an expectation.
We then introduce a Tegotae function, which is a function
that quantitatively measures Tegotae, whereby we can design a
decentralized interlimb coordination mechanism in a systematic
manner. We validated the Tegotae-based interlimb coordination
model by using a physical hexapod robot that we developed. We
confirmed that the model adequately reproduced various aspects
of insect locomotion patterns. We expect that our minimal
model, systematically derived from the concept of Tegotae, will
provide substantial insight into the essence of the interlimb
coordination mechanism to roboticists as well as biologists.

The following section presents the materials and methods
used in this study. First, we describe a basic building block
for the interlimb coordination mechanism. Second, we explain
the Tegotae concept and the design scheme of local sensory
feedback using the Tegotae-based approach. Third, we explain
the developed robotic platform in detail. Section 3 presents the
experimental results to validate our Tegotae-based control for
the interlimb coordination mechanism. Finally, in Section 4, we
discuss our results and future work.

2. MATERIALS AND METHODS

2.1. Basic Building Block of Interlimb
Coordination Mechanism Employed
To capture the control principle essential for the interlimb
coordination mechanism, which works largely in a decentralized

manner in insects’ thoracic ganglia, it is important to determine a
basic building block to be used for the distributed control system.
From a control perspective, past studies have intensively argued
mainly from the viewpoint of two distinct control paradigms:
chains of reflexes (Cruse, 1983, 1990; Cruse et al., 1998; Dürr
et al., 2004; Schilling et al., 2013) and CPGs (Pearson and Iles,
1973; Bässler andWegner, 1983; Bässler, 1986, 1993; Ryckebusch
and Laurent, 1993; Büschges et al., 1995, 2004; Bässler and
Büschges, 1998; Büschges, 2005; Borgmann et al., 2009; Daun-
Gruhn and Büschges, 2011; Marder and Bucher, 2011). In
the chain-of-reflex approach, a control system is modeled by
using many chained discontinuous reflexive events, in which
locomotion can be generated purely from the interaction
between sensory feedback signals and the body. However,
the discontinuity in this approach may impede mathematical
tractability (Daun-Gruhn and Büschges, 2011). In contrast, in
the CPG approach, a control system is modeled by using directly
coupled oscillators to generate feedforward motor commands,
based on a continuous dynamical system, i.e., a set of differential
equations, for the interlimb coordination. Considering the
mathematical tractability stemming from a continuous model,
we employ the CPG approach as a control paradigm. The CPG
approach offers various ways to model a basic building block
at different levels of abstraction (Ijspeert, 2008), ranging from
detailed models using a single cell (Hodgkin and Huxley, 1952;
Hellgren et al., 1992) to abstract oscillator models (Fitz-Hugh,
1969; Van der Pol, 1972; Kuramoto, 1984). Here we use a phase
oscillator (Kuramoto, 1984) for each leg to build a minimal model
of the interlimb coordination mechanism on the basis of a highly
abstract model.

The time evolution of the oscillator phase is described by a
differential equation as follows:

φ̇i = ω + fi, (1)

where ω is the intrinsic angular velocity; φi is the phase of
the oscillator implemented into the ith leg; and fi is a local
sensory feedback term, which plays an essential role in the
interlimb coordination. This equation is one of the abstract
oscillator models, i.e., the Kuramoto model (Kuramoto, 1984) (a
case without coupling between oscillators and with local sensory
feedback fi), which describes a one-dimensional, reduction
model of oscillatory behaviors. Using the trigonometric functions
(sinφi, cosφi, etc.) of oscillator phases enables us to generate a
periodic motor command to control the legs of a robot. As an
example of implementation, we describe the target angles θ̃yaw,i

and θ̃roll,i for the proportional and derivative (PD) control of
the motors (as explained in Section 2.4 and Figure 6 in detail)
through the following equations:

θ̃yaw,i = −A cosφi, (2)

θ̃roll,i =

{

B sinφi, when 0 ≤ φi < π ,

B′ sinφi, when π ≤ φi < 2π ,
(3)

where A, B, and B′ are user-defined parameters, describing
amplitudes in the yaw and roll direction for leg motion (see
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Section 2.4 and Table 1). Thus, the ith leg is actively controlled
according to φi such that the ith leg is in the swing phase when
0 ≤ φi < π , i.e., sinφi > 0, and in the stance phase when
π ≤ φi < 2π , i.e., sinφi < 0, as shown in Figure 1. Below, we
explain how we design local sensory feedback fi by introducing
the concept of “Tegotae” in a systematic manner.

2.2. Tegotae and Tegotae Function
Here we explain the core concept Tegotae in detail. Tegotae is a
novel concept describing the extent to which a perceived reaction
matches an expectation (intention) of a controller. For ease of
understanding, let us explain it metaphorically. Imagine youwant
to lean against a wall nearby. Note that what you want to do,
i.e., leaning against the wall, is regarded as the intention of the
controller, i.e., your nervous system. When you lean against
the wall, if you feel that the reaction force from the wall is
sufficient for supporting your body, we say “good” Tegotae is
obtained. If the reaction force you receive is insufficient (imagine
the wall were a curtain/screen for example), “bad” Tegotae is
obtained. Notice that Tegotae stems not only from the reaction
received from the environment, but also from the consistency
between the perceived reaction and the intention/expectation of
the controller, i.e., what the controller wants to do.

Now the question is how to quantify Tegotae. Of course, there
are various ways to accomplish this. As the initial step of the
investigation, we quantify Tegotae in the simplest mathematical

TABLE 1 | Parameters for each experiment.

Common parameters Gain for T1 σ1 0.2

Weight for anterior NV
j

ka 0.7

Weight for posterior NV
j

kp 0.1

Weight for contralateral NV
j

kc 0.2

Leg amplitude of

anterior-posterior swing

motion

A 15◦

Leg amplitude of up-down

swing motion

B 20◦

Leg amplitude of stance

motion

B′ 5◦

Section 3.1 Intrinsic angular velocity ω 2.0

Gain for T2 σ2 1.2

Section 3.2 Intrinsic angular velocity ω 2.0 → 4.0

(40.0–42.0 s)

Gain for T2 σ2 1.2

Section 3.3 Intrinsic angular velocity ω 2.0 → 4.0

(40.0–42.0 s)

Gain for T2 σ2 1.2

Load 500 g

Section 3.4 Intrinsic angular velocity ω 2.0

Gain for T2 σ2 1.2

Section 3.5 Intrinsic angular velocity ω 2.0

Gain for T2 σ2 0.0

form, i.e., a function based on the type of separation of variables
as follows:

Ti(φi,N) = C(φi)S(N). (4)

Hereafter, we refer to the function Ti as the “Tegotae function”—
a function that quantitatively measures Tegotae. φi is a control
variable (in this case the phase of the oscillator), and N is the
sensory information obtained from multiple sensors embedded
in the body. Note that, the Tegotae function Ti is expressed as the
product of two functions C(φi) and S(N): the former is a function
expressing the intention of the controller, and the latter denotes
the reaction obtained from the environment. Here, we design
Ti such that it becomes more positive when enhanced Tegotae
is detected. Next, we explain how we can design the sensory
feedback term fi by using Ti.

2.3. Tegotae-Based Control
Given that the Tegotae function is defined, the local sensory
feedback term fi is designed in such a way that the control system
modulates φi in order to increase the amount of Tegotae received.
Thus, because a continuous system is used, fi is expressed simply
as the partial derivative of the Tegotae function Ti with respect to
the control variable φi, as follows:

fi =
∂Ti(φi,N)

∂φi
. (5)

Note that we can systematically design decentralized controllers
by only designing the Tegotae functions required.

Now, the question is how to define Ti(φi,N) to satisfactorily
reproduce the hexapedal interlimb coordination observed in
insect locomotion. In this study, we define Ti(φi,N) as follows:

Ti(φi,N) = σ1Ti,1(φi,N)+ σ2Ti,2(φi,N), (6)

Ti,1(φi,N) = (− sinφi)N
V
i , (7)

Ti,2(φi,N) = sinφi





1

nL

nL
∑

j∈L(i)

kjN
V
j



 . (8)

As Equation (6) indicates, Ti(φi,N) consists of two Tegotae
functions, Ti,1(φi,N) and Ti,2(φi,N), both of which are linearly
coupled via the positive constants σ1 and σ2. The suffix i denotes
the leg number (i : 1, 2, . . . , 6). Sensory information N consists
of vertical ground reaction forces (GRFs) acting on each leg
N = [NV

1 ,N
V
2 , . . . ,N

V
6 ]

T . L(i) denotes a set consisting of the
legs neighboring the ith leg, and nL is the number of elements in
L(i) and kj (ka, kp, kc ≥ 0) denotes the weight for each GRF NV

j ,

as shown in Figure 2. Further, we present a detailed explanation
of the approach we followed when designing these two Tegotae
functions.

Ti,1 quantifies Tegotae on the basis of the information that is
only locally available at the corresponding leg; when the local
controller intends to be in the stance leg (− sinφi > 0), and
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FIGURE 1 | Schematic of the basic building block for the control system. We used a phase oscillator (Kuramoto, 1984) with local sensory feedback for each leg for

hexapedal interlimb coordination. The ith leg is actively controlled (see Figure 5) according to φi such that the ith leg is in the swing phase when 0 ≤ φi < π and in

the stance phase when π ≤ φi < 2π .

FIGURE 2 | Definition of L(i), describing a set consisting of the legs neighboring the ith leg. The left, center, and right figures show the set of left fore (L1), left middle

(L2), and left hind (L3) legs, respectively. kj (ka, kp, kc ≥ 0) denotes the weight for each GRF Nj .

results in receiving a ground reaction force (NV
i > 0) (Figure 3,

top), Ti,1 evaluates this situation as “good” Tegotae, and returns
a positive value.

On the other hand, Ti,2 quantifies Tegotae on the basis of the
relationship between the movements of the corresponding leg
and its neighboring legs; when the local controller intends to be in
the swing phase (sinφi > 0) and its neighboring legs offer good
support to the body at that time ( 1

nL

∑nL
j∈L(i)

kjN
V
j > 0) (Figure 3,

bottom), Ti,2 evaluates that the corresponding leg adequately
establishes a relationship with its neighboring legs and returns
a positive value.

By substituting Equations (6–8) into Equations (1) and (5), we
obtain our interlimb coordination mechanism as follows:

φ̇i = ω − σ1N
V
i cosφi + σ2





1

nL

nL
∑

j∈L(i)

kjN
V
j



 cosφi. (9)

Introduction of the Tegotae-based approach enables us to easily
design a minimal model for hexapedal interlimb coordination in
a systematic manner.

2.4. Robotic Platform for the Validation of
Proposed Control Scheme
Figure 4 shows the structure of our hexapod robot. The robot
consists of six leg segments (Figure 5) and a body segment. The
robot is 0.40 m long, 0.30 m wide, 0.20 m high, and weighs 2.4 kg.
The leg and body consist of carbon fiber rods and acrylonitrile
butadiene styrene (ABS) resin printed using a 3-D printer. For
each leg, we used two servo motors (Futaba Corporation, Japan:
RS405CB), which generate leg motion during the swing and
stance phases according to the corresponding oscillator phase
(Figure 5B). As shown in Figure 6, we describe the target angles
θ̃yaw,i and θ̃roll,i for proportional and derivative (PD) control of
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FIGURE 3 | Definition of the “Tegotae” functions, which are expressed as the product of C(φi ) and S(N). We design Ti such that it becomes more positive when

enhanced Tegotae is detected. The upper and lower figures show the Ti,1 and Ti,2 functions for the left middle leg (L2), respectively.

the motors through the following equations:

θ̃yaw,i = −A cosφi, (10)

θ̃roll,i =

{

B sinφi, when 0 ≤ φi < π ,

B′ sinφi, when π ≤ φi < 2π .
(11)

Based on this control scheme, we can generate periodic
leg motion as shown in Figure 5B. From the viewpoint of
neurophysiological findings for a locomotor CPG system in
animals (Lafreniere-Roula andMcCrea, 2005; Rybak et al., 2016),
Equation (9) corresponds to the rhythm generator (RG) and
Equations (10) and (11) correspond to a pattern formation (PF)
network in the two-level CPG concept. For the robot, we choose
parameter values A,B,B′ for the geometric path of the foot by
tuning them through trial and error as shown in Table 1. We
employ passive springs (MISUMI Corporation: WM8-20, 2.9
N/mm) in each leg for shock absorption. Furthermore, we use

three-axis force sensors (OptoForce Ltd., Hungary: OMD-20-SE-
40N) in the feet of the robot to detect ground reaction forces
(GRFs), as shown in Figure 5A.

The body contains a main control board. We calculate the
oscillator phase in each leg by using microcontrollers (mbed
NXP LPC1768) on the main control board.Wemanipulated each
servo motor installed in the legs using proportional-derivative
(PD) control as explained above.

3. EXPERIMENTAL RESULTS

To verify the proposed control scheme in the real world, we
conducted five experiments: (i) steady walking, (ii) gait transition
according to locomotion speed, (iii) adaptability to change in
weight distribution, (iv) adaptability to leg amputation, and (v)
effect of local sensory feedback. The control parameters that were
used in experiments with the hexapod robot (Sections 3.1–3.5)
are listed in Table 1. We conducted over 10 trials for each
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experiment: each trial was conducted on a treadmill for a period
of 50 s using randomly selected initial phases.

3.1. Steady Walking
Figure 7 shows the results of measurements conducted when
our robot was engaged in steady walking. Here, we set the
parameter ω = 2.0 rad/s. Figure 7 shows the gait diagram
(upper graph) and time evolution of the oscillator phases of the
legs (lower graph, sinφi) for the period 0.0–20.0 s. In the gait
diagram, the colored regions represent the stance phase, which
is distinguished by using the threshold data value (1.5 N: less
than 10% of the maximum force detected) from the force sensor.

FIGURE 4 | Hexapod robot developed for the study. The robot is 0.40 m long,

0.30 m wide, 0.20 m high, and weighs 2.4 kg.

Hereafter, we use the gait diagrams and movies (i.e., Movies S1–
S3) recorded by a video camera as a qualitative evaluation index
and the average duty factors (the ratio of the stance phase to one
period) as a quantitative evaluation index. For the quantitative
analysis, the duty factors obtained by the gait diagrams reflect
the direction of the robot motion (i.e., straightness) because
the asymmetric duty factors in the left and right legs indicate
turning in the locomotion. Moreover, the duty factors indirectly
represent the foot point velocity during the locomotion because
the leg trajectory of our robot is determined in response to
oscillator phases (Figure 6). Thus, the data of the duty factors
from the gait diagrams indirectly include physical information
about the speed and the direction of the locomotion (see SM for
more details). The gait pattern rapidly converges from the initial
phase relationship to a tetrapod gait—the ipsilateral feet touch
the ground in the order of hind, middle, and fore legs—within
approximately two periods. Furthermore, we tested the effect of
the variation in the initial oscillator phases on the gait patterns.
The results confirmed that the initial patterns converged to the
same gait patterns from any initial phase relationship (in 10 out
of 10 trials: 100%).

3.2. Gait Transitions According to
Locomotion Speed
We tested the ability of the proposed control scheme to change
the gait patterns according to the locomotion speed by linearly
changing the parameter ω from 2.0 to 4.0 rad/s during the
time period 40.0 to 42.0 s. Figure 8A shows the gait diagram
(upper graph) and the time evolution of oscillator phases of legs
(lower graph, sinφi), during the time period 30.0–50.0 s in this
experiment. After ω was chenged, the gait pattern spontaneously
changed from that of a tetrapod to that of a tripod—the (L1, R2,
L3) and (R1, L2, R3) feet alternately touch the ground in the anti-
phase (Movie S1). Figure 8B shows the profile of vertical and

FIGURE 5 | Detailed structure of the leg segment of the robot. (A) The leg consists of carbon fiber rods and ABS resin printed using a 3-D printer. The feet contain

three-axis force sensors to detect GRFs. (B) Each leg is equipped with two servo motors, which generate leg motion during the swing and stance phases according

to the corresponding oscillator phase.
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FIGURE 6 | Leg trajectory for a single leg, where θ̃yaw,i and θ̃roll,i denote the target angles for proportional and derivative (PD) control of the motors in the yaw and roll

directions, respectively. Based on this control scheme, we can generate periodic leg motion as shown in Figure 5B.

horizontal GRFs (NV
i and NH

i ) in the same experiment. In this
figure, the upper, middle, and lower graphs show the GRF profile
of the front (L1), middle (L2), and hind (L3) legs, respectively.
Furthermore, we confirmed this result for the gait transition in all
10 trials (10/10: 100%). The results indicate that leg coordination
is appropriately modified according to the locomotion speed via
Tegotae-based control.

3.3. Adaptability to Change in Weight
Distribution
Here, we show the adaptability of our robot to changes in weight
distribution by applying a load (500 g) to the hind portion of
the body (upper photograph in Figure 9). The lower graphs in
Figure 9 show the experimental result. Here, we changed the
parameter ω from 2.0 to 4.0 rad/s during the period 40.0 to
42.0 s as in the previous gait transition experiments (Section
3.2). After changing ω, the gait pattern did not change to that
of a tripod; instead, a tetrapod gait was maintained (Movie S2).
We obtained the same results in 10 out of 10 trials (100%).
Figure 10 compares the average duty factor of the front, middle,
and hind legs without and with the load for 10 trials (ω =

4.0 rad/s). The duty factor, which is the ratio of the stance
phase to one period, was calculated by using the gait patterns
during six periods for each trial. This result indicates that
the duty factor of the loaded hind legs is larger than that of
legs that do not bear any load. This result demonstrates the
adaptability of our proposed control scheme to changes in the
weight distribution without requiring prior data about these
changes.

3.4. Adaptability to Leg Amputation
Figure 11 shows the experimental results of the leg amputation
test after both of the middle legs were amputated. In spite
of the amputation, the robot was able to continue walking.
Furthermore, the gait patterns converged to a trot or an L-S
walk gait observed in quadrupeds—i. e. the (L1, R3) and (R1,
L3) feet alternately touch the ground in nearly anti-phase, or
more precisely, focusing on the timing of touch down, the feet
touch the ground in the order from L1, R3, R1, L3 (Movie S3).
Figure 12 compares the average duty factor of the front, middle,
and hind legs for 10 trials of the leg amputation experiment. The
duty factor of each leg was modulated according to the remaining
number of legs, which mainly resulted in increasing the duty
factor of the hind legs. Furthermore, we confirmed that the initial
patterns converged to the same gait patterns from any initial
phase relationship (in 10 out of 10 trials: 100%). These results also
indicate that the proposed control scheme can achieve interlimb
coordination according to the physical properties of the robot’s
body in a self-organizing manner, without any predefined gait
patterns.

3.5. Effect of Local Sensory Feedback
Concerning Neighboring Legs
The usefulness of our proposed local sensory feedback
was verified based on the Tegotae approach by conducting
experiments with the following conditions: we set the parameters
ω = 2.0, σ1 = 0.2, σ2 = 0, which is a model similar to our
previous model for quadrupeds (Owaki et al., 2012; Owaki
and Ishiguro, 2017) or Barikhan’s model for hexapod models
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FIGURE 7 | Upper graph: Gait diagram. Lower graph: Corresponding

phase sinφi . The gait pattern rapidly converges from the initial phase

relationship to a tetrapod gait, in which the ipsilateral feet touch the ground in

the order hind, middle, and fore legs, within approximately two periods. The

results confirmed that the initial patterns converged to the same gait patterns

from any initial phase relationship (in 10 out of 10 trials: 100%).

(Barikhan et al., 2014). We conducted 10 trials in this experiment
using randomly selected initial phases. Figure 13 shows the
experimental results obtained using these parameters. The
gait patterns mostly did not converge to insect-like gaits, e.g.,
tetrapod/tripod gaits, but converged to other patterns under
many initial conditions (in 7 out of 10 trials: 70%) in this model.
In these gaits, the left legs touched the ground in the order L3,
L2, and L1 (hind to fore), whereas the right legs touched in the
order R1, R2, and R3 (fore to hind). This result indicates that
the model with only the second term in Equation (9) (similar to
Barikhan’s model) sometimes reproduced a gait pattern similar
to that of insects, but its robustness against the initial conditions
was insufficient.

4. DISCUSSION

The purpose of this study was to provide a minimal model for the
interlimb coordination in hexapedal locomotion based on a novel
concept named Tegotae. Using the Tegotae-based approach
has enabled us to show how we can design the local sensory
feedback for a decentralized interlimb coordination mechanism
in a systematic manner. Moreover, we have demonstrated that
our hexapod robot, which was developed for the validation of
the proposed control scheme, satisfactorily reproduced various
aspects of insect locomotion, i.e., steady walking, gait transition
according to locomotion speed, and adaptability to changes
in weight distribution and to leg amputation. As shown in
Figure 8B, the role arrangement of the fore, middle, and hind
legs can be achieved via the interlimb coordination mechanism:
(i) the fore legs mainly generate breaking forces (NH

i was mainly
negative), (ii) middle legs mainly support the body (NV

i was

FIGURE 8 | (A) Upper graph: Gait diagram. Lower graph: Corresponding

phase sinφi . We found spontaneous transition from the gait of a tetrapod to

that of a tripod, in which the (L1, R2, L3) and (R1, L2, R3) feet alternately touch

the ground in anti-phase, by changing only parameter ω from 2.0 to 4.0 rad/s

in the period from 40.0 to 42.0 s (yellow highlight in the graph, Movie S1). We

confirmed the same result for the gait transition in all 10 trials (10/10: 100%).

(B) The profile of vertical and horizontal GRFs (NV
i
and NH

i
). The upper, middle,

and lower graphs show the GRF profile of the front (L1), middle (L2), and hind

(L3) legs, respectively.

larger than those for the other legs), and (iii) hind legs mainly
generate propulsion forces (NH

i was mainly positive). Such
adaptive behaviors are commonly observed for various species of
insects, as shown inTable 2. This suggests that our Tegotae-based
interlimb coordination model captures the essential mechanism
for hexapedal interlimb coordination. As a control experiment,
if we set the parameters σ1 = σ2 = 0, i.e., a condition without
local sensory feedback, we can easily imagine that interlimb
coordination did not occur, but the phase relationship between
leg movement maintains the initial condition. Thus, in order to
determine the usefulness of the proposed local sensory feedback,
we verified the effect of the second and third terms of Equation
(9) in Section 3.

In the previous study on quadruped locomotion (Owaki
et al., 2012; Owaki and Ishiguro, 2017), we have proposed a
simple interlimb coordination rule that well reproduced various
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FIGURE 9 | Top: Location of a load (500 g) applied to our robot. Bottom:

Gait diagram and corresponding phase sinφi . After changing ω, the gait

pattern did not change to that of a tripod; instead, a tetrapod gait was

maintained (Movie S2). We found the same results in 10 out of 10 trials (100%).

quadruped gait patterns and well explained the underlying
mechanism. The second term in Equation (9) corresponds to
the quadruped interlimb coordination rule. Inspired by our
model, Barikhan et al. (2014) also implemented an almost
identical mechanism for a hexapedal interlimb coordination
model and verified its usefulness by reproducing some insect-like
locomotion in simulations. However, although our experiments
about the effect of the third term in Equation (9) in Section 3.5
indicate that the model with only the second term in Equation (9)
sometimes reproduces a gait pattern similar to that of insects, but
its robustness against the initial conditions was insufficient. This
is because the local load information on quadrupeds is totally
reflected by physical information throughout the whole body
(Owaki et al., 2012; Owaki and Ishiguro, 2017), whereas that
on hexapods does not sufficiently include physical information

FIGURE 10 | Average duty factor of each leg without and with a load through

10 trials (ω = 4.0 rad/s). This result indicates that the duty factors of the

loaded hind legs and middle legs are larger than those of legs without a load,

whereas the duty factor of the front legs becomes smaller.

FIGURE 11 | Upper graph: Gait diagram. Lower graph: Corresponding

phase sinφi . The gait patterns converged to a trot or an L-S walk gait (in 10

out of 10 trials: 100%) observed in quadrupeds, in which case the (L1, R3)

and (R1, L3) feet alternately touch the ground in anti-phase (Movie S3).

for interlimb coordination. Thus, we concluded that the third
term in Equation (9), which used sensory information about load
distribution in neighboring legs, is essential for the reproduction
of insect-like gait patterns and gait transitions. Moreover, we
have already reported the local sensory feedback mechanism
in Equation (9), but we did not previously confirmed the gait
transition from tetrapod to tripod and the adaptability to change
in the weight distribution and leg amputation (Goda et al., 2016).
Here, we newly introduce anterior-posterior asymmetry in the
parameter ka and kp, which mainly resulted in the stable gait
transition according to locomotion speed, i.e., from tetrapod
to tripod as well as the adaptability to change according to
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FIGURE 12 | Average duty factor of front, middle, and hind legs in the leg

amputation experiment in 10 trials. The duty factor of the hind legs mainly

increased in the case of two-leg amputation experiments.

FIGURE 13 | Experimental results: ω = 2.0, σ1 = 0.2, σ2 = 0. The gait

patters mostly did not converge to insect-like gaits, e.g., tetrapod/tripod gaits,

but converge to other patterns under many initial conditions (in 7 out of 10

trials: 70%). In these gaits, the left legs touched the ground in the order L3, L2,

and L1 (hind to fore), whereas the right legs touched in the order R1, R2, and

R3 (fore to hind).

the weight distribution and as a results of leg amputation. Our
main contribution is the versatility of reproduced behaviors
concerning insects’ locomotion: Barikhan’s model (Barikhan
et al., 2014) differs from ours in that it did not reproduce
the gait transition from tetrapod to tripod and did not exhibit
adaptability against changes in the weight distribution and
robustness against initial conditions. Furthermore, our approach
is unique; we have discussed the common underlying mechanism
of interlimb coordination in the locomotion of both vertebrates
and arthropods by using legged robots.

The proposed interlimb coordination model shows
adaptability to changes in the weight distribution of the
robot’s body, where the gait pattern did not change to a tripod

gait but maintained a tetrapod gait after changing ω and the
average duty factor of the loaded hind legs automatically became
larger than those of the unloaded fore legs. These results were
reproduced in a self-organizing manner by using Tegotae-based
control, without any need to provide prior data about these
changes. We additionally obtained biological evidence for the
adaptability to changes in the weight distribution by conducting
experiments using two crickets (Gryllus bimaculatus). These
experiments are described in the Supplementary Material in
detail. Our results using the robot clearly show good agreement
with our biological evidence of the influence of the load on
the leg coordination in crickets: with a load, (1) they exhibit
a tetrapod gait and (2) increase the duty factor of the middle
and hind legs. Furthermore, another experiment using fruit
flies confirmed the same effect of a vertical load (Mendes et al.,
2014), which suggests that such adaptability is observed for
various species of insects. This fact strongly supports that the
essentiality of using vertical GRFs NV

i for sensory information
S(N) when designing a Tegotae function for hexapedal interlimb
coordination.

Furthermore, our model exhibited adaptability to the physical
conditions resulting from a two-leg amputation. If we use a
predefined neural connection for a tripod gait—where the (L1,
R2, L3) and (R1, L2, R3) legs are in-phase—, we cannot reproduce
a trot or an L-S walk pattern—where the (L1, R3) and (R1,
L3) feet alternately touch the ground in nearly anti-phase—
when the two legs are amputated (Figure 11). Owing to the
Tegotae-based interlimb coordination mechanism using both
local (Ni) and neighboring (Nj) load information (Equation 9),
gait patterns were self-organized in response to load distribution
stemming from the remaining number of legs, which is one
of the advantages of our approach. Some biological studies
have suggested that insects generally exhibit the L-S walk when
their two middle legs are amputated. Hughes (1957) have
shown that two-middle-leg amputee cockroaches exhibited a
gait—the touch-down order was (L3, L1, R3, R1), i.e., the L-
S walk in quadrupeds. Graham (1977) and Grabowska et al.
(2012) have shown that two-middle-leg amputee stick insects
exhibited the same gait as cockroaches (Hughes, 1957) because
the contralateral touch down timing became same such that gaits
could be symmetric about the body axis to ensure its stability.
Here, we did not actually conduct various leg-amputation
tests; we can expect adaptability to some extent against some
conditions, e.g., amputating a front/hind leg, owing to the
potential of our model, as we have shown. However, because our
model did not include any directional or posture controls and
learning algorithms as in Ren et al. (2015) and Cully et al. (2015)
(here, we mainly focus on real-time adaptability), its direction of
motion would vary according to the physical properties: a front-
left-leg amputated robot will turn left when moving forward.
According to the patterns of leg amputation, insects exhibit
modulation of their spatial footfall patterns, i.e., they change
the landing location of a stance leg to maintain their posture
stability (Hughes, 1957; Graham, 1977; Cruse, 1983; Grabowska
et al., 2012); thus, we intend to apply an additional Tegotae-based
controller for themodulation of spatial footfall patterns, resulting
in the adaptation to a large number of leg amputations.
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TABLE 2 | Observed adaptive behavior various species of insects have in common.

Velocity change Our robot Stick insect (Graham, 1972) Fruit fly (Mendes et al., 2013)

Tetrapod → tripod Tetrapod → tripod Tetrapod → tripod

Load on their body Our robot Cricket (results in the SM) Fruit fly (Mendes et al., 2014)

Tetrapod Tetrapod Tetrapod

Amputating two middle legs Our robot Cockroach (Hughes, 1957) Stick insect (Graham, 1977; Grabowska et al., 2012)

Trot/L-S walk L-S walk Wave/L-S walk

In insect locomotion, it is well known that two types of sensory
signals play an essential role in leg coordination: (1) sensory
signals about the position and velocity of joints duringmovement
(Büschges, 2005; Pearson et al., 2006) and (2) force signals from
the leg segments (Pearson, 1972; Bässler, 1977; Cruse, 1985a,b;
Duysens et al., 2000; Zill et al., 2004). Such sensory signals
modulate not only the timing (phase) but also the magnitude
of neural output stems from the nervous system, e.g., CPGs
(Grillner, 2003; Büschges, 2005). In our Tegotae-based approach,
as a first step for the investigation, we use only vertical GRFs NV

i
detected by force sensors installed in the legs to modulate the
phase of oscillators. The obtained control principle, where both
local and neighboring leg load information is essential for the
interlimb coordination, agrees with biological evidence (Pearson,
1972; Bässler, 1977; Cruse, 1985a,b; Duysens et al., 2000; Zill et al.,
2004). To reproduce increased adaptability to different surfaces
and typed of movement, e.g., uneven terrain, uphill/downhill,
similar to insects, other types of sensory signals, e.g., horizontal
GRFs, would requires us to design additional Tegotae functions.
Furthermore, modulation of the magnitude of motor output
from neural systems will also lead to a change in landing
location of a stance leg for negotiating various leg amputation
patterns as discussed in the above paragraph. These topics seem
to be of general interest and will also be studied in further
investigations.

In the past two decades, various hexapod robots were
developed with the aim of reproducing the adaptive functions
of insects and to understand their control mechanisms (Kimura
et al., 1993; Beer et al., 1997; Altendorfer et al., 2001; Ritzmann
et al., 2004; Steingrube et al., 2010; Ambe et al., 2013;
Manoonpong et al., 2013; Dasgupta et al., 2015; Ramdya et al.,
2017). Ours was the first study of its kind to demonstrate
various aspects of insect locomotion with a minimal control
principle without any interlimb neural communication between
oscillators. To the best of our knowledge, no studies have been
reported in which adaptability was reproduced in a completely

self-organized manner by only using local and neighboring load

information. In the CPG approach as a control paradigm in
this study, local sensory feedback fi is described simply as a
partial differential of the Tegotae function Ti with respect to
the control variable φi. This aspect of our model also suggests
a new design scheme of local sensory feedback in the chain-of-
reflex approach based on the discontinuous basic process, which
should also be discussed as a next step. Our minimal model,
which is systematically derived from the concept of Tegotae, is
expected to provide substantial insight into the essence of the
hexapedal interlimb coordination mechanism to roboticists as
well as biologists.
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With the accelerated development of robot technologies, control becomes one of the

central themes of research. In traditional approaches, the controller, by its internal

functionality, finds appropriate actions on the basis of specific objectives for the task

at hand. While very successful in many applications, self-organized control schemes

seem to be favored in large complex systems with unknown dynamics or which are

difficult to model. Reasons are the expected scalability, robustness, and resilience of

self-organizing systems. The paper presents a self-learning neurocontroller based on

extrinsic differential plasticity introduced recently, applying it to an anthropomorphic

musculoskeletal robot arm with attached objects of unknown physical dynamics. The

central finding of the paper is the following effect: by the mere feedback through the

internal dynamics of the object, the robot is learning to relate each of the objects with a

very specific sensorimotor pattern. Specifically, an attached pendulum pilots the arm

into a circular motion, a half-filled bottle produces axis oriented shaking behavior, a

wheel is getting rotated, and wiping patterns emerge automatically in a table-plus-brush

setting. By these object-specific dynamical patterns, the robot may be said to recognize

the object’s identity, or in other words, it discovers dynamical affordances of objects.

Furthermore, when including hand coordinates obtained from a camera, a dedicated

hand-eye coordination self-organizes spontaneously. These phenomena are discussed

from a specific dynamical system perspective. Central is the dedicated working regime

at the border to instability with its potentially infinite reservoir of (limit cycle) attractors

“waiting” to be excited. Besides converging toward one of these attractors, variate

behavior is also arising from a self-induced attractor morphing driven by the learning

rule. We claim that experimental investigations with this anthropomorphic, self-learning

robot not only generate interesting and potentially useful behaviors, but may also help to

better understand what subjective human muscle feelings are, how they can be rooted

in sensorimotor patterns, and how these concepts may feed back on robotics.

Keywords: self-organization, robot control, musculoskeletal, tendon-driven, learning, anthropomimetic, self-

exploration

1. INTRODUCTION

Control is a ubiquitous theme of life and technology. When reaching for a cup of coffee or
walking through themountains, our nervous system controls all movements with great ease, despite
the great uncertainty involved in controlling the muscles, the complexity of the task and many
other factors. That this simplicity is an illusion is seen as soon as trying to program a robot for
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doing a task. While the complexity of programming stands
as a challenge for decades, in recent times considerable
progress has been achieved by new materials (Kim et al.,
2013), powerful actuators (Raibert et al., 2008), the improved
theory of control (Siciliano et al., 2009), but in particular by
the tremendous increase in computational power that allows
modeling and physically realistic simulations of very complex
systems to improve planning and control (Mordatch et al.,
2012; Erez et al., 2013; Posa et al., 2014) and even allows
to simulate large controlled muscular body systems (Yamane
and Nakamura, 2011), or find new perspectives for artificial
evolution (Bongard, 2015) by exploiting super computer power.
Also there are a variety of new control paradigms around, best
demonstrated by the amazing locomotion abilities of the Boston
dynamics robots, like BigDog, PETMAN and others. These are
ingeniously engineered systems for realizing a specific set of
tasks with their highly specialized bodies. The DARPA challenge
also presents numerous examples of progress but also reveals a
realm of failures of these systems even under remote control.
Alternatively, the so-called embodied AI recognizes that the
body can be very helpful in reducing both design efforts and
computational load on the controller. The exploitation of the
specific properties of the body, sometimes called morphological
computation (Paul, 2004; Pfeifer and Gómez, 2009; Hauser
et al., 2012) is an active field of research with many impressive
results, see Pfeifer and Bongard (2006) and Pfeifer and Scheier
(1999), opening new perspectives for both robot control and our
understanding of human sensorimotor intelligence (Pfeifer et al.,
2012).

The embodied approach seems to be favored in systems with
strong physical effects, like soft robotic systems or elastically
actuated robots, where the engineering approaches may run into
severe difficulties. Though there are a number of interesting
results, for instance in employing neural learning to obtain
goal-directed behavior, e.g., Manoonpong et al. (2007), Shim
and Husbands (2012), Toutounji and Pasemann (2014), and
Tetzlaff et al. (2014) using fast synaptic plasticity as in this
work, or using simplified spring-models (Park and Kim, 2015),
a systematic embodied approach for controlling such systems
is not available so far. This is not a surprise, given the
aim of exploiting the physical dynamics which is strongly
embodiment specific. In this paper we will not aim at a
general solution to physics based deliberate control but will
investigate the possible role of self-organization (SO) and
its general phenomenology in robotics. We will devote this
paper to systems with extended embodiment, consisting of a
Myorobotics arm connected to a physical subsystem with an
internal dynamics of its own. The arm is a muscle-tendon
driven (MTD) mechanical system with strong embodiment
effects. The controller is a one-layer feedforward neural
network which may drive systems into self-organization by a
specific learning rule—differential extrinsic plasticity (DEP)—as
introduced recently in Der and Martius (2015). It was applied
to a number of systems in simulation producing a great variety
of behavior. In a slightly modified form, it will face here a
new challenge with MTD systems with their strong embodiment
effects.

To introduce this paper’s topics and claims, imagine that you
get an object, a half-filled bottle for that matter, attached to the
tip of your forearm such that you can neither know orientation
nor identity of the object. When sitting in the dark you probably
will start doing something, trying to find out about the object’s
properties. The idea is, while moving the bottle around, you feel
the reaction from the water when hitting the walls of the bottle.
Intrigued by this signal and driven by curiosity, you may vary the
direction of the shakingmotion to end up with shaking parallel to
the bottle axis, as the strongest and most coherent force response
is coming from there. Without vision or any other external
information on the attached object, motor signals are based on
the sensor values, i.e., the muscle tensions, modulated by the
force responses of the subsystem’s internal dynamics. Humans
will describe this as feeling the muscles (or the embodiment in
general) and generating actions out of this feeling. Generally,
behavior is a direct result of the agent-environment coupling,
here the dynamical contact between the agent, the arm with its
“brain,” and the attached object.

Similarly, with DEP learning, the self-excited motion patterns
of the arm are guided, or piloted, by the object’s internal
dynamics. Specifically, an attached pendulum drives the arm
into a circular motion, a half-filled bottle produces axis oriented
shaking behavior, a wheel is getting rotated, and wiping patterns
emerge automatically in a table-plus-brush setting. This is
of interest for the self-organized acquisition of behavioral
primitives but there is more: as the emerging patterns are object
specific, we may say that the robot was able of identifying the
object’s identity by just the feedback through the (unknown)
internal dynamics of the object. Identifying means that our self-
learning system responds with a specific sensorimotor pattern
for each object attached to the arm. So, this is a cognitive
act closely related to the self-organized discovery of Gibson’s
object affordances, in particular for dynamical interactions, see
below. The observation that DEP learning elicits just these
subtle effects unknown so far is the central result of this
paper.

Acquired with an anthropomorphic robot (arm), these
findings may also provide answers to more general questions
in human related cognitive science. Specifically, while the
phenomenon of feeling the embodiment (and acting out of this
feeling) is easy to grasp from the subjective human perspective,
understanding it from the objective scientific perspective
becomes very demanding. We claim that our experimental
investigation with the self-learning anthropomorphic robot may
help to better understand what the subjective human feelings are
and how they relate to artificial beings so that this knowledge
eventually will help building machines that are in behavior closer
to humans.

The paper is organized as follows: In the next section we
introduce the DEP learning rule for the controller and give
a first discussion of properties, in particular of balancing at
the edge of instability which is loosely related to the edge of
chaos concept. We present in Section 3 the the experiments
with the robot, Figure 3 for an overview of the experimental
settings and Table 1 for a list of videos documenting the
various experiments. Throughout the paper, we present different
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TABLE 1 | Experiments.

Title Description Section Video

Handshake Human robot interaction by manually imposing a periodic movement 3.4 Video 1 (Supplementary Material)

Arm with pendulum Suspending a weight from the tip of the arm: self-excitation of a

circular pendulum mode

3.5.1 Video 2 (Supplementary Material)

Pendulum responses Motors are stopped. Recording spring forces of a swinging

suspended weight

3.5.1 Video 3 (Supplementary Material)

Shaking horizontal Horizontally attached bottle, half filled: Response stronger, shaking

horizontally, following the axis of the bottle

3.5.2 Video 4 (Supplementary Material)

Shaking vertical Vertical attachment, half filled: shaking direction mainly along the

(now vertical) axis

3.5.2 Video 5 (Supplementary Material)

How to rotate a wheel Arm attached frontally to a revolvable bar/wheel. 3.6 Video 6 (Supplementary Material)

Rotating wheel II Parallel wheel—arm arrangement 3.6 Video 7 (Supplementary Material)

Wiping table Arm with brush starts to wipe a table 3.7 Video 8 (Supplementary Material)

Wiping table modes Different wiping patterns from reloaded controllers 3.7 Video 9 (Supplementary Material)

Sensor disruptions With visual input for hand. Camera is turned during behavior. Fast

reorganization

3.8 Video 10 (Supplementary Material)

Hand-eye coordination Coordination develops, such that arm follows a dummy hand 3.8 Video 11 (Supplementary Material)

The videos can be watched at http://playfulmachines.com/MyoArm-1.

methods for the theoretical analysis based on dynamical system
theory. Specifically, we introduce in Section 3.5.1 the eigenvalue
spectrum of the linearized dynamical operator, in Section 3.5.2
parametric plots for visualizing the “purity” of a behavior, in
Section 3.6 local Lyapunov exponents, and in Section 3.7 Hilbert
transforms for analyzing more quantitatively the emerging
sensorimotor patterns. Central to the paper is the piloting effect
introduced in Section 3.3 which explains how the robot may
develop a feeling for the internal dynamics of an object, see also
Section 3.6 for its relation to the concept of object affordances.
This is followed by Section 4 discussing the findings. Some
mathematical details are provided in Section 5 (Supplementary
Material).

2. ROBOT BEHAVIOR AS A SELF-EXCITED
PHYSICAL MODE

The controller we propose is a function that receives at time t a
vector of sensor values xt ∈ R

n and sends a vector ofmotor values
yt ∈ R

m. In the applications, we use a neurocontroller realized by
a one-layer feed-forward network as

yi = g (κizi) (1)

for neuron i, where

zi =

n
∑

j= 1

Cijxj (2)

is the postsynaptic potential and Cij is the synaptic connection
strength to input j. We use tanh-neurons, i.e., the activation
function g(z) = tanh(z) to get motor commands between +1 and
-1. This is also the reason why we did not include a bias term in
Equation (1).

An important ingredient for the intended self-excitation
of behavioral modes is a controlled destabilization of the
system. With a fixed C, this destabilization is controlled
by the gain factors κi in Equation (1) which regulate the
feedback strength for each motor channel i individually. In the
experiments we used the definition1 κi = κ/‖Ci‖ where κ

regulates the overall feedback strength and ‖Ci‖ is the norm
of the synaptic vector of neuron i. The setup is displayed in
Figure 1.

2.1. Learning Dynamics
As we aim at self-organization of behavior, we have to define the
control signals in a self-consistent way on the basis of the history
of sensor signals alone. Let us introduce x′t = xt+θ , the vector of
the sensor values received in the next time step, where θ is a time
lag with θ = 1 in the derivations given below (time is measured
in discrete update-steps, here 1/100 s).

The self-organized definition of the controller outputs is
realized in the following way. Let us postulate the existence of
a forward model given by the (possibly state dependent) matrix
A so that

x′t = Atyt + ξt (3)

where ξ is the modeling error. This describes the physical
dynamics over one time step. IntroducingM which is the inverse
or pseudoinverse of A we require y to be a function of the future
sensor values x′,

yt
!
= Mtx

′
t (4)

Together with the destabilization, Equation (4) displays the
essential idea of our approach to make the system active while
keeping motor signals compliant with the world dynamics. In a

1This needs a regularization, i.e., in the experiments we use κi = κ/(||Ci|| + λ)

with λ > 0 is very small.
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FIGURE 1 | Neural controller network connected to the Myorobotic arm. The inset on the right illustrates the synaptic plasticity rule, called differential extrinsic

plasticity (DEP) (Der and Martius, 2015). It is driven by a modified differential Hebbian law, multiplying the time derivatives of the incoming sensor values ẋ with the

virtual motor values ˜̇y, which are generated by the inverse model (Equation 4) from the next input’s derivative ẋ′. In the case of the arm the inverse model is essentially

a one-to-one mapping of sensor to motor values.

sense, Equation (4) means that the world’s responses, represented
by x′, signals the controller what to do. But of course the
world (i.e., the future sensor values x′t) is also controlled by the
controller through the actions y (Equation 3). The interplay of
these effects is the ultimate reason for the self-excitation of modes
by self-amplification of system responses.

However, we cannot use Equation (4) directly for generating
the control signal y as it contains the future. So, we must find
a model for relating the future sensor signals x′t to their past,
i.e., xt , xt−1, . . .. In other words, we need a time series predictor
for the sensor dynamics. Following the derivation in Section 5.1
(Supplementary Material) we obtain eventually the update rule

τ1Ct = Mt ẋ
′
t x̂

⊤
t − Ct (5)

or in coordinate representation (omitting the time index)

τ1Cij =
∑

k

Mikẋ
′
kx̂

⊤
j − Cij (6)

where x̂ = ẋ‖ẋ‖−2, see also Figure 1. The matrix M defines the
sensor to motor mapping which is one-to-one for normal sensors
and negated one-to-one for the delay sensors in the experiments
of this paper, see Section 5.2 in Supplementary Material, so the
sum in Equation (6) reduces to 2 terms. In generalM can bemore
complicated and can be learned in a prior step.

In accordance with earlier work (Der and Martius, 2015), we
call this update rule differential extrinsic plasticity (DEP), though
there is a difference with ẋ replaced with x̂ as the second factor in
the update. Equation (5) becomes stationary if

Cij =
∑

k

Mik〈ẋ
′
kx̂

⊤
j 〉 (7)

where 〈. . .〉 is the moving time average. Equation (7) is an
important consequence of the update rule, showing that learning
converges toward behaviors with a fixed point in correlation
space, here a fixed pattern of velocity correlations in sensor
space, corresponding to specific attractors in state space. In

principle such a fixed correlation pattern corresponds to any
behavior like crawling, walking, running, hopping or the like of
any amplitude and frequency. If the controller were sufficiently
expressive and the sensor to motor mapping appropriate, any
(cyclic) mode could potentially be realized by this correlation
learning. With the matrix M used in this paper, the spectrum
of (stable) behaviors is of course restricted but the variety of
the observed motion patterns, see below, is still interesting. To
enhance self-organization into periodic patterns, we introduce
additional sensors which are copies of the primary sensors but are
delayed by a fixed time-delay d, see Section 5.3 in Supplementary
Material for technical details.

For the analysis in terms of dynamic systems theory to be
given below, we will need the dynamic operator

L = MC (8)

which describes the mapping from state x to x′ for the linearized
dynamics (Jacobian of linearized system), see Section 5.1 in
Supplementary Material for details. The above learning rule
differs from the DEP rule introduced in Der and Martius (2015)
by the normalization factor ‖ẋ‖−2 introduced with Equation (6)
above. In the experiments this leads to a more continuous
activity in the behaviors avoiding potential pauses of inactivity.
In relation to our earlier work on predictive information
maximization (PiMax) (Martius et al., 2013) there are several
differences: the DEP rule uses derivatives of the sensors values
for learning where PiMax uses the raw ones, PiMax requires
to perform a matrix inversion of the noise-correlation matrix
which is not needed here, and finally the resulting behaviors
obtained from PiMax get high-dimensional (in terms of attractor
dimension, seeMartius andOlbrich, 2015 for details) whereas the
DEP rule yields low-dimensional behaviors as we will see in the
analysis below.

2.2. Properties
The irreducible conjunction of state and parameter dynamics
creates a meta-system—formed by controller, body, and
environment—with a rich variety of all kinds of attractors. These
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can be deliberately switched by manipulative disturbances,
creating an attractor meta-dynamics (Gros et al., 2014). This
explains why we observe so many different behaviors in the
experiments.

2.2.1. Meta-Parameters
Furthermore, there are three parameters in this approach κ , τ and
d, which act as meta-parameters for changing the “character” of
the SO process. κ determines roughly the amplitude of behavior.
In the experiments, the appropriate value for κ is easily found:
when increasing κ gradually, a critical value κc ≈ 1 is eventually
reached. Using κ > κc the amplitude a of an emerging motion
pattern is roughly a ∝ κ − κc for small a. For larger κ the
non-linearities come stronger into play such that the amplitude is
never above 1. The time lag of the delay sensors d determines the
preferred frequency. The parameter τ determines the time scale
for taking previous sensor values into account. This has effects
on how quickly the controller parameters are wandering around
if not yet in a stationary behavior. It is advisable to have it similar
or larger to the period of the expected behavior.

2.2.2. Least Biasing
The implementation of the controller is explicitly given by
Equation (1) together with the update rule Equation (5) which
obviously has no system specific components. In the experiments
we start always with the least biased initial condition, putting the
controller matrix C = 0 so that all actuators are in their central
position. A basic requirement for a “genuine” approach to SO is
its independence of specific properties of the controlled system.
Obviously, this is realized here in an ideal manner by both the
structure of the approach and because there is no specific goal,
no target signal, no platform specific information and no biasing.

2.2.3. Theoretical Analysis
It would be interesting and helpful if the wide spectrum of self-
organizing behavior could be given a quantitative analysis. In
goal oriented learning this can be done by some performance
criterion, assessing the difference between actual and intended
behavior. However, this seems not appropriate in a true self-
organization scenario like that of the present paper. Still one
may ask for a profound theoretical analysis of what these
systems actually are doing. This paper contributes to that task
by presenting several such measures which are partly a bit
unorthodox but were quite successful for analyzing behavior
generated by the DEP learning rule. Central is the use of
dynamical systems theory in several aspects. Specifically, we
investigate below the eigenvalue spectrum of the linearized
dynamical operator L = MC as introduced in Equation (8),
using it for assessing the nature, and the stability of periodic
motions, the prevalent modes in this paper. We use local
Lyapunov exponents as amore quantitative concept of dynamical
system theory, arguing that they may be a first guess for the
claimed realization of an edge of chaos system, see Section 3.6
below. Also, parametric plots have proven a viable tool for
visualizing the nature of behavior and last but not least, Hilbert
transforms of the sensor signals were used for analyzing the phase

relations between sensor and motor signals, thereby quantifying
the closure of the sensorimotor loop, see Section 3.7.

The nature of the dynamical system generated by the learning
rule may also be quantified by a number of methods from
complexity theory, information theory (Bialek et al., 2001)
and more evolved tools from non-linear dynamics (Kantz and
Schreiber, 2004). Akin to this paper are methods for analyzing
emergent behavior (Lungarella and Sporns, 2006; Ay et al.,
2008; Wang et al., 2012; Schmidt et al., 2013) using information
theory. A new quantification based on excess entropy (predictive
information) and attractor dimension was recently proposed in
Martius andOlbrich (2015) and applied to similar self-organizing
behavior as found in this paper. However, there long traces of
repetitive behavior where recorded in simulations to estimate
entropies. Unfortunately it is impossible to perform this analysis
for the fast online learning of the synaptic dynamics, given
the time scale of a few seconds or minutes for the behavior
generation.

There is some pioneering work in using dynamical systems
theory for analyzing behavior generation by fast synaptic
plasticity. In Sándor et al. (2015) and Gros (2015), the interesting
concept of an attractor metadynamics was introduced which is
close to the scenario of this paper. However, their analysis, while
pointing in the right direction, is restricted so far to rather simple
physical systems in simulation, so that we did not apply it in
this paper. Related ideas may also be found in Toutounji and
Pasemann (2014, 2016).

2.2.4. Edge of Chaos—The Working Regime for

Self-Organization
An essential feature of our approach is the possibility to chose,
by the parameter κ , the working regime at the boundary
between stable and unstable dynamics. This working regime
may be associated with the somewhat vague “edge of chaos”
concept (Langton, 1990; Mitchell et al., 1993; Kauffman, 1995;
Bertschinger and Natschläger, 2004; Natschläger et al., 2005).
As is known from dynamical system theory, this region is
not well defined but is otherwise of eminent interest for
understanding both life and creativity in natural and artificial
beings. Unfortunately, with systems of the physical complexity
considered here, a strict mathematical analysis of this region,
e.g., by global Lyapunov coefficients, is out of reach of this paper.
Nevertheless, in a sense, one can observe in the videos the edge
of chaos hypothesis, i.e., to live somewhere between order and
fully developed chaos. In fact, on the one hand the systems react
very sensitively on weak perturbations, in particular one may
observe that the further development of behavior is determined
by the initial kick the system experiences or by the interaction
with attached objects with an internal dynamics. This extremely
sensitive reaction to perturbations is a signature of chaos. On
the other hand, see the pendulum video or the bottle shaking
experiments, the system also has a high degree of organization
as demonstrated by the emergence of long-lived regular orbits.
This is the order aspect of the scenario.

Developing quantitativemeasures for the edge of chaos regime
may get the robotic community interested in this very rich,
intellectually appealing, and potentially highly useful branch of
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dynamical system theory based robotics. But this is a topic of
future research.

2.2.5. Platforms for Embodied AI
Finally, let us discuss on which platforms our controller is
likely to create useful behavior. First of all, the system has
to provide sensory feedback about acting physical forces
to make embodiment effects perceivable by the controller.
This is, for instance, not the case if all perturbations are
perfectly compensated by a low-level PID controller. Secondly,
there should be sensors reporting a similar quantity as used
to control the actuators, e.g., position sensor for position
control or force sensors for force control. Additional
sensors are typically integrated into the loop if they show
a definite response (correlation) to the motor patterns.
Thirdly, the behaviors of interest should be oscillatory.
Since we only need the main sensor-to-motor wiring
information about the particular robot (which can also be
learned) and do not require any other specific information,
we expect our system to work with a wide variety of
machines including soft robots, but this remains for future
research.

3. EXPERIMENTS

The above defined controller was used in the experiments with
a tendon driven arm-shoulder system from the Myorobotics
toolkit (Marques et al., 2013), see Figure 2. The system has 11
artificial muscles, 8 in the shoulder and 2 in the elbow and
one affecting both. However, two of the shoulder muscles where
disconnected. The muscles are composed of a motor winding
up a tendon connected to a spring, see Figure 2B. The length
of a tendon l is given by the motor encoders and the spring
compression by f which is in the interval [−α, 1 − α] where α

defines pretension (here α = 0.1). The length of the tendons is
normalized to l ∈ [−1, 1]. We define the sensor values as

xi = li + βfi (9)

where β regulates the integration of the spring-compression. In
the experiments, β was simply set to 1 without further tuning. It
is expected that this choice is not critical. After the initialization,
where the arm is put in a defined initial position, all tendons
are tightened to their pretension, and all li are set to zero, the
system is put into a position control mode where the controller
output yi defines a target tendon length for each tendon. In the
experiments we used the following parameter settings: κ = 0.5,
τ = 1 s (Equations 1, 5), delay sensor lag: 0.5 s (Section 5.3 in
Supplementary Material), a time distance between x and x′ of
0.08 s, r = 10−3 (Equation 22), and an update frequency of the
control loop of 100Hz.

3.1. Peculiarities of Muscle-tendon Driven
Systems
There are a number of features which make the muscle-tendon
driven (MTD) systems different from classical robots with joints
under rigorous motor control, i.e., the motor positions directly

FIGURE 2 | Myorobotic arm (A), a single muscle element (B), and a

dislocated shoulder (C). The dislocation happens wickedly as soon as the

tendons are getting slack.

translate into joint angles and into poses. Naively one could
think that control is very easy, realized by just pulling the right
strings (tendons) for getting a desired arm pose. However, life is
much more difficult due to a number of annoying effects. The
most obvious effect is seen when tendons are getting slack so
that contact with the physical state of the arm is lost altogether.
This has to be avoided by keeping a permanent tension on the
tendons, which poses another problem: The tension can only
be achieved by tightening each tendon up against all the others,
each individual tension being reported by the spring length.
This means that (i) there are infinitely many combinations of
tension forces for a single arm pose and (ii) that the action of
a single motor will be reflected in a change of spring length
of all other muscles. In other words, actuating a single muscle
is reflected by a pattern of sensory stimulation—a whole-body
answer.

Furthermore, the combination of friction effects and muscle-
pose ambiguity leads to a hysteresis effect. After driving the arm
by a sequence of motor commands from pose A to pose B one
ends up in a different pose and muscle configuration than A after
moving back by reversing the motor commands. In general, this
makes the translation of a kinematic trajectory for the arm into
motor programs difficult, even more so if there are loads and
high velocities involved. Also, the classical approach of learning
a model by motor babbling becomes problematic because actions
cannot be chosen independently.

We conducted several experiments listed in Table 1 which
demonstrate the essential features of the control scheme. All
experiments are done with the same controller with the same
initialization (C = 0) so that it is only the physical situation that
differs between the experiments.

We strongly recommend consulting the videos
for better understanding which can be found at
http://playfulmachines.com/MyoArm-1.
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3.2. Self-Regulated Working Regime
Before presenting the experiments in more detail, let us take
a look at the sensorimotor coupling that is created by our
controller. One of the crucial features is the self-regulation into
a working regime where the tendons are kept under tension even
in very rapid motions with notable loads. This is very important
as it guarantees the signals from the controller to be executed
in a definite way. As a result, in all experiments we never had
to face a shoulder dislocation, see Figure 2C, which may happen
promptly if tendons are getting loose. This is of some importance
as this sensible working regime emerges without any additional
tuning or calibrating (Wittmeier et al., 2012) the system. For
that, the specific sensor configuration (Equation 9) seems to be
important, but we did not study it systematically yet and expect
other configurations to work as well. A more rigorous analysis in
terms of the local Lyapunov exponents will be give in Section 3.6
below.

3.3. The Piloting Effect. Feeling the
Embodiment
In the Introduction, we presented a thought experiment
illustrating the main features of this work. We did not yet carry
out this experiment with humans, but the scenario of getting
piloted by the subsystem toward activities of strongest response
is just what we observe with the learning arm for a series of very
different objects, ranging from the pendulum to the wheel to the
wiping a table setting. In any of those situations we could not
only observe the piloting effect but also support it by quantitative
analysis. Let us remember that any motion of the arm impacts
on the inner dynamics which reacts back on the arm via the
force response of the internal dynamics, like the water hitting
the wall of the bottle. These force responses modulate the sensor
values (measuring the length of the tendons) and may become
self-amplifying under the learning rule as substantiated by the
following arguments (which still need more theoretical support).
Point one is that these signals, though tiny, generically may be
systematic, building correlations over space and time. Examples
are the slow swaying motion of the pendulum or the inertia
motions of the water. As the DEP rule enhances correlations by
the learning process, any systematic signal persisting over the
time scale of learning contributes to the correlation pattern with
an enhanced strength. In the experiments, the time scale set by
τ was one second, about the same as the internal dynamics of
the subsystems. This seems to be the main cause of the piloting
effect. Furthermore, the learning system was seen to be the host
without preferences of a wide spectrum of attractors giving rise to
a kind of attractor morphing. Meaning the learning rule changes
the dynamics such that the attractors continuously change, all
modulated by the systematic force responses from the subsystem.
In other words, the learning system has no resistance to being
piloted into a resonance with the subsystem. The piloting by the
subsystem is the leadingmechanism in the experiments described
in the following.

3.4. Manipulability
The dominance of the physical responses makes the system
manipulable as any externally applied forces—like a physical

robot human interaction—leave their footprint in the sensor
values via the changing spring tension. For instance, the arm can
always be stopped by simply holding it. The reason is not that
the motors are too weak. Instead, ẋ = 0 is a fixed point of the
dynamics of the meta-system to which it relaxes if the mechanical
degrees of freedom are frozen manually2.

Moreover, the system can be entrained by manual interaction
into specific behaviors. We demonstrate this in the handshake
experiment, see Figure 3A and Video 1 in Supplementary
Material, where the user is trying to move the arm in a periodic
pattern. Besides the possibility to train a robot in this way, the
most interesting point is the subjective feeling that comes about
when interacting with the robot. In the beginning of such an
interplay, the robot seems to have a will of its own as it resists
the motions the user is trying to impose. But after a short time
the robot follows the human more and more and eventually is
able (and “willing”) to uphold the imposed motion by itself, see
Figure 4. Otherwise, depending also on the human partner, the
meta-system of robot and human may “negotiate” a joint motion
pattern which might be left if the human quits the loop. This can
be understood by realizing that any periodic patterns creates a
fixed correlation pattern in Equation (7). If the imposed patterns
match one of the stable ones, the robot is controlling this pattern
by itself. In fact, in the experiments, one can well observe that a
“compliant” human is intrigued to follow the system as much as
its own intentions, ending up in an orchestrated human-machine
dynamical pattern.

Training of a robot by directly imposing motions is not
new. The common approaches generate a kinematic trajectory
which is afterwards translated into the motor commands by well
known engineering methods. This method may run into some
difficulties due to the peculiarities of our MTD system discussed
in Section 3.1. With DEP learning, imposing the patterns is
a process of creative interaction with the system, see also the
training of wiping patterns in Section 3.7.

3.5. Emerging Modes
As already mentioned above, DEP learning as formulated in
Equation (1) drives systems toward attractors in state space
corresponding to fixed velocity correlation patterns in sensor
space. The selection of a specific attractor may be realized by the
self-amplification of a dynamical seed, generically provided by an
initial perturbation from e.g., gravitational forces or by tipping
the arm.

3.5.1. Self-Excited Pendulum Modes
In a first experiment, we suspend a weight (the bottle) from
the tip of the arm, see Figure 3B. With the pivot point (arm)
at rest the pendulum may realize ellipsoidal or circular motion
patterns with fixed frequency. In general, when considering a
pendulum with moving pivot it can perform chaotic motions
under certain trajectories of the pivot point. With the pendulum
attached to the MyoArm, the motions of the weight exert small
inertia forces on the arm which change the spring tensions and

2This effect involves the normalization factors and fades away once the

regularization comes into play. After that, the system tries to move to the global

attractor ẋ = x = 0.
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FIGURE 3 | Experimental setups. Handshaking (A), pendulum swinging (B), bottle shaking (C), rotating a wheel (D), wiping a table (E), and hand-eye

coordination (F). All experiments are performed with the same controller.

A

B

C

FIGURE 4 | Handshake experiment. (A) sensor values x, (B) forces f , and

(C) motor values y for channels 1 and 5. Events: 6 s: operator is grasping the

arm and starts the handshake; 21 s: freezing of parameters and release at

31 s. 35.5 s: bringing arm into resting position, it stays there until 37 s where it

got perturbed. See also corresponding Video 1 in Supplementary Material.

thereby leave a footprint in the sensor values. To illustrate this
point, Figure 5 displays the sensor reading for the swinging
pendulumwith themotors being stopped.While being tiny, these
reactions are systematic, leading to the self-excitation of resonant
modes according to the piloting effect described in Section 3.3
above.

In Video 2 (Supplementary Material) it can be seen3 directly
how latent velocity correlations are being amplified to end up in
stable circular motion patterns of the pendulum. The experiment
starts in a situation where the motor activities have settled to
rest, interrupted by occasional bursts leaving irregular footprints
in the sensor values. As to the piloting effect, we have to verify
that, starting with this irregular behavior, the compound system
is driven into a resonance with the pendulum and that this
resonance behavior is dominated by the (tiny) force responses of
the pendulum. This may be supported by analyzing the time lag
between measured force and driving signal (motor commands).
As shown by Figure 6A, the incipiently rather irregular phase
relation is followed by a constant phase from time t > 40 on. This
convergence to a stable mode is also seen by the time evolution of
the controller matrix C, see Figure 6C.

Let us consider here, as a further bit of analysis, the eigenvalue
spectrum of the dynamical operator L = MC, which has proven
very useful in this work. Actually, if the system would obey the
linearized dynamics, any cyclic behavior should be reflected by
the existence of a pair of complex eigenvalues. There might be
more of such pairs if there are different frequencies involved.
Though questionable due to nonlinearities and deficiencies of the
linear operator, this analysis may yield reliable results as seen in
the pendulum case: Figure 6B clearly displays just such a pair of
eigenvalues with absolute value (not shown) a little above one.
All other eigenvalues have a absolute value significantly smaller
than one which makes the corresponding modes short lived4.
The latter point was investigated in terms of the local Lyapunov

3Note that later in the experiment, the string of the pendulum was shortened such

that a different sensorimotor coordination emerges.
4This is true in particular for the other complex eigenvalue with roughly half the

value, apparently belonging to a subharmonics but this still needs some more

analysis.

Frontiers in Neurorobotics | www.frontiersin.org March 2017 | Volume 11 | Article 851

http://playfulmachines.com/MyoArm-1/#vid:handshake
http://playfulmachines.com/MyoArm-1/#vid:bottle:swing
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Der and Martius Self-Organized Behavior Generation for Musculoskeletal Robots

FIGURE 5 | Force measurement with static arm. Displayed are the force

measurements with swinging bottle but without active arm movements for

muscles 2, 3, 4, and 9 (for clarity). Dotted lines indicate when the bottle was

manually set into motion and at dashed lines it was stopped, see Video 3 in

Supplementary Material.

exponents, see Section 3.6 below, for remarks on that method.
Apart from identifying the oscillatory modes, this eigenvalue
analysis also confirms the substantial dimensionality reduction
which is also known as a signature of self-organization.

3.5.2. Bottle Shaking Modes
In a next series of experiments we attached a bottle filled with
some liquid to the tip of the arm in either horizontal or vertical
orientation, see Figure 3C. These experiments are meant to
support our hypothesis on the piloting effect, i.e., that, under
the DEP learning rule, the emerging motion patterns are defined
eventually by force responses of the subsystem. With the bottle,
the force response is solely generated by the internal motions of
the water, i.e., when the water is hitting either the walls or top
and bottom of the bottle. Similar to the pendulum, starting with
spontaneous movements, the arm soon reaches an oscillatory
mode with strong force answers. In the experiment, the emerging
shaking motions are indeed more or less aligned with the axis
orientation of the bottle, see Videos 4, 5 in Supplementary
Material, in correspondence to the piloting effect.

We also performed a more quantitative analysis by using
parametric plots to characterize the state dynamics. Oriented
at the arm’s geometry, we identified two pairs of motor values
(y1, y3) and (y6, y9) which are expected to be discriminating
the direction of the arm movement, i.e., to have different
phase relations for the horizontal and vertical arm movements,
respectively.When plotting the time course of (y1, y3) and (y6, y9)
in the plane, fixed phase relations translate into typical ellipsoidal
figures. In Figures 7C–F we compare the phase relation for the
horizontal and vertical setup (violet and orange line, respectively)
for two behavioral modes (see Figures 7A,B for the time course
and intervals) and indeed find that they are different and often
orthogonal to each other. The emerging motion pattern is
determined by the axis direction of the bottle, with the reactive
forces of the water as the only information for that direction.
Metaphorically, the robot can “read” the information about the
nature of the environment by just getting into dynamical contact
with the latter in a completely self-organized way.

In Figures 7G,H we present the time evolution of the matrix
elements C3j representing the connection to the motor unit 3.
As starting from the zero-initialization, one can see how first
correlations build up due to the dynamics of the C matrix
(Equation 5). The following behavior is highly transient until

convergence is (roughly) reached where the dynamics gets more
stationary. Any perturbation or change in conditions leads to an
adjustment of the controller, always aiming for a mode where
high velocity correlations appear.

3.6. Rotating a Wheel
A further example for the piloting mechanism (Section 3.3)
and the discovery of dynamic object affordances (as discussed
below) is the robot arm connected to a wheel, see Figure 3D.
In Der and Martius (2015), the emergence of rotational modes
was demonstrated for a humanoid robot with revolution joints
and in simulation. With the MyoArm, we have a much more
challenging situation. In the experiments, the tip of the arm is
attached to the crank of a wheel, implemented as a revolvable
bar with weights for giving it the necessary moment of inertia.
In Video 6 (Supplementary Material), initially the connection
between the arm and the wheel was rather loose so that for
small movements there is no definite response from the rotation
of the wheel. After improving this connection, an initial push
by the experimenter was sufficient to excite a rotation mode
that persists over time and is stable under mild perturbations.
It is as if the controller “understood” how to rotate the wheel,
although it is just the result of force exchange in combination
with correlation learning, i.e., by the mechanism described in
Section 3.3. When positioning the wheel in parallel to the arm,
the modes were emerging even more readily as seen in Video 7
(Supplementary Material). Furthermore, the system may be
changed in frequency by changing just the time-delay d as shown
earlier (Martius et al., 2016).

For an analysis, wemay use here themethod of local Lyapunov
exponents, given by the eigenvalues of the dynamical operator
L = MC transforming sensor states x to x′ under the linearized
dynamics. Figure 8A displays the results. The point of interest
are the two largest exponents which are slightly above zero.
They represent the rotational mode. Being above zero means that
they are actually instable which was to be expected given the
slight destabilization of the system controlled by the parameter
κ . However, the system dynamics is kept from exploding by the
nonlinearities so that the rotation modes are stable but all other
modes have to die out, i.e., their Lyapunov exponents have to be
below zero. It is also illustrative to consider the absolute change
of the controller matrix as displayed in Figure 8B (top). At the
beginning of a new mode the changes are large and then settle to
a background level. When, for instance, the rotation is externally
changed (second 40 and 71) then again a high rate of change is
observed. The coupling of the sensors to motors also changes
qualitatively between the modes as illustrated at the example of
motor 6 in Figure 8B (bottom).

The constitutive role of the body-environment coupling is also
seen if a torque is applied to the axis of the wheel. Through this
external force wemay give the robot a hint of what to do.When in
the fluctuating phase, the torque immediately starts the rotation
which is then taken over by the controller. Otherwise, we can also
“advise” the robot to rotate the wheel in the opposite direction.
This can be considered as a kinesthetic training procedure,
helping the robot in finding and realizing its task through direct
mechanical influences.
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FIGURE 6 | Pendulum modes. See Video 2 in Supplementary Material. (A) Force sensors and control signal of muscle 3 and their time lag. The measured force

(spring compression) and the control signal y (desired tendon length) follow a similar trajectory with inverted sign (note −y). The time lag δ (right axis in seconds)

between force and motor value (same result for other muscles) indicates that initially the control and the environmental influences are not in sync whereas in the

swinging mode (from 33 s on) a stable phase/time-lag relation is observed. (B) Displayed are the absolute imaginary parts of the eigenvalues of the linearized system

dynamics (Jacobian L, below Equation 5) (averaged over 1 s) and cumulatively plotted (1, 1+ 2, 1+ 2+ 3, ...). During the pronounced oscillation between 35 and 68 s

there is one pair of dominant complex eigenvalues. (C) Corresponding controller parameter C at the seconds 10, 20, . . . , 70 (from left to right) as indicated by the

black dots in (A). At second 66 the string of the bottle was shortened causing the mode to break down immediately, see Video 2 in Supplementary Material.

Finally, these results can also be of interest for elucidating the
spontaneous discovery of object affordances. Following Gibson
(1977) theory of affordances, object affordances are defined
as a relation between an agent and its environment through
its motor and sensing capabilities (e.g., graspable, movable,
or eatable and so on). In this sense, in the same way as a
chair affords sitting or a knob affords twisting, the wheel in
our experiment affords rotating it, the bottle affords shaking
and pouring and so on. This is of immediate interest for
embodied AI as affordances are prerequisites for planning
complex actions. Because our controller generates dynamic and
typically oscillatory movements it can only discover dynamic
afforcances, such as shaking, turning etc. but will not find static
ones such as sitting on a chair or leaning against a wall.

3.7. Wiping
In the case of the wheel setup, above, the embodiment strongly
constrains the possible motion patterns. In the next setup the
agent-environment coupling imposes a much milder restriction
on the behavior: the robot is equipped with a brush and a table
is placed in its work-space, see Figure 3E. The table height is
about 5 cm above the initialized resting position. Video 8 in
Supplementary Material demonstrates how, by the combination
of the restricting table surface and the manual force, the robot
is guided into the two-dimensional wiping mode. Actually,
even without this guidance the system typically learns a wiping
behavior, because movements perpendicular to the table are
strongly damped such that the directions along the table plane
may create the highest velocity correlation and thus dominate the
generated motion patterns. Later in this video, the robot is forced
by hand into a different behavior.

The analysis of the dynamics during this experiment revealed
that the wiping patterns where not stationary as it appeared in the
video, but are actually slowly drifting. We devised a method to
quantify such high-dimensional oscillatory behavior. It considers
the phase difference between the different degrees of freedom.
For each oscillatory signal we can associate a phase variable that
continuously runs from −π to π using the Hilbert transform.
Now we can compute the phase difference between the signals
from different sensors, for instance. Post-processing is applied to
avoid unnecessary 2π phase jumps and to smoothen the signal
for better visibility.

In a stable oscillation, the phase difference should stay
constant over time. In Figure 9A, these phase differences are
presented for the wiping experiment. One can see that already
before manual interaction, the meta-system is in a transient
behavior, with changing phase relations slowly over time. We
interpret this as a wandering through the metastable cyclic
attractors induced by the learning dynamics. We may also
call this a self-induced attractor morphing. During interaction
(second 11 onward) the changes are initially stronger, fading out
later. After releasing the arm (second 22), behavior persists for a
few seconds and then is again drifting away. The corresponding
controller matrices also show a significantly different structure
in the course of the experiment. With the phase analysis using
Hilbert transform we can thus analyze pseudo-stationary high-
dimensional motion patterns and we believe this methods is
also helpful to analyze other systems where attractor morphing
occurs.

So, what appeared as stationary actually was a transient
behavior. As explained above, there is a potentially infinite
reservoir of attractors in C-space, with the learning dynamics
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FIGURE 7 | Horizontal and vertical bottle shaking experiment. Depicted are the time traces of the motor values for the horizontal setup (A), see Video 4 in

Supplementary Material, and the vertical setup (B), see Video 5 in Supplementary Material. At the marked regions (gray and red bar) both setups are compared in

(C–F) with respect to their motor relation (motor 1 vs. 3 and 6 vs. 9). It is visible that the motions in both setups are mostly orthogonal to each other. (G,H) shows the

evolution of the coupling of the 18 sensors to muscle 3 over time (corresponding to row 3 in C). In both cases the system starts at C = 0. In the horizontal case the

arm was stopped and released at times indicated by vertical lines.

A B

FIGURE 8 | Analyzing the wheel rotation for the parallel setup. (A) Local Lyapunov exponents of the linearized dynamics, i.e., logarithm of absolutes of the

eigenvalues of L (see below Equation 5). (B) Temporal evolution of the controller matrix C. Absolute changes of C over one second (top) and changes in the coupling

of all sensors to motor 6 (row 6 of C over time). The arm started to rotate at second 7 and at second 40 and 71 the rotation was manually inverted (vertical lines) see

Video 7.

slowly and continuously morphing these attractors. Being more
or less a speculation so far, this opens a view into a fascinating
species of dynamical systems generated by the learning rule in
specific agent-environment couplings. Moreover, this also should
substantially improve our understanding of the edge of chaos
hypothesis as an overarching concept.

Otherwise, by simply storing the weights (C) of the controller,
these patterns can be collected into a repertoire. Video 9
in Supplementary Material shows the recall of and switching
between such wiping modes, see Figure 9B. For the transition
into a different mode the controller was changed abruptly,
nevertheless a smooth transition into the new behavior occurs,
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A B

FIGURE 9 | Learning to wipe a table with a brush and recall of different wiping patterns. (A) Shown are the phase differences between a selection of sensor

values (bottom) and the controller matrices (top) at different points in time indicated by green dots. The thick lines show the sliding median of 2 s windows for better

visibility. Note that jumps of 2π are equivalent to no phase change. See corresponding Video 8 in Supplementary Material (Time 0 in the plot is at the first cut in the

video). From second 11 (dashed line) to 22 (dotted line) the arm was trained to perform a different movement, which persists for a few seconds until the system drifts

away. (B) Recall of previously stored behaviors. At vertical dashed lines, a static controller was loaded. Phase differences between a selection of sensor values

(bottom) and the controller matrices (top) (times, see green dots). See corresponding Video 9 in Supplementary Material. Observe the transients between the

behaviors, which are sometimes long, e.g., 15 s for controller 4.

suggesting that most static controllers have a large basin of
attraction.

3.8. Hand-Eye Coordination
In the previous experiments, the sensorimotor loop was closed
in proprioceptive space alone, muscle lengths and tensions
generating muscle feelings with the ensuing piloting effect, see
Section 3.3. This section investigates the integration of additional
sensors given by a camera reporting the spatial coordinates of
a green colored object connected to the tip of the arm, called
the fist in the following. The camera was positioned to observe
the arm from the front, see Figure 3F, but other positions would
also work. The x − y coordinates of the object are obtained from
the green pixels’ center of gravity, whereas the z coordinate is
given by the size of the pixel cluster. These coordinates are scaled
between -1 and +1 as all the other sensors. To better compete with
the 9 proprioceptive sensors, the corresponding synaptic weights
were multiplied by a factor of 3 (before normalization). No
other measures were taken, in particular, all entries for the vision
channels in the model matrix M were put to zero in accordance
with the least biasing commitment described in Section 2.2. In
the experiments, we observed that the robot engaged into all
kinds of trajectories similar to those of the purely proprioceptive
case, i.e., as if the camera were not present. However, a simple
inspection of the C matrix reveals a strong involvement of the
vision channels in the generation of the modes, see the red-
framed rows in Figures 10C,D. The constitutive role of the
camera can also be seen by the following experiment.

3.8.1. Adaptation to Sensor

Transformations—Rotating the Camera
In this setting we rotate the camera about its optical axis while
the system is running and DEP learning is on, with a time scale
of a few seconds. Initially the camera is rotated about its axis
to -90 degrees, see Figure 10E. When a relatively stable motion

occurs (limit cycle), the camera is slowly rotated to a normal
orientation (0 degrees). During that process, the motion pattern
of the arm changes until, after stopping the camera rotation, a
new attractor behavior is reached. Together with Figure 10 this
shows that the emerging patterns are generated with the camera
closely integrated5. Eventually, upon rotating the camera further
to +90 degrees, the motion of the arm even stops until, after
about 15 s, a new consistent behavior emerges, see Video 10 in
Supplementary Material and Figure 10. The experiment shows
that DEP learning generates motion patterns with the camera
tightly integrated, i.e., proprioceptive and vision channels are
strongly mixed. We remark that readaptation and reorganization
of behavior takes place on a time scale of a few seconds.

3.8.2. Hand-Eye Coordination. Emerging Central

Pattern Generator
As discussed above, DEP learning potentially integrates all sensor
channels, converging toward a fixed point in correlation space
which corresponds to a periodic motion pattern in state space.
This is seen from the parametric plots in Figure 11C, first
row displaying a proprioceptive vs. one of the vision channels.
Despite the strong perturbations in the complex physical setting,
a distinct phase relation between vision and proprioception is
seen. This is another corroboration of the integrative strength
of DEP.

In a next experiment, we investigate the acquired
sensorimotor mappings in more detail. During learning the
camera delivers a periodic trajectory in a 3D space, correlated
tightly with proprioception. What if we substitute the camera
coordinates by those of a fake, or virtual, trajectory. In the
experiment, we wait until the system, with the camera included,
settled into a stable motion pattern. Then, we freeze the
controller matrix C and cover the fist with a white cap making

5During a periodic motion pattern the controller matrixC stays relatively constant,

i.e., a fixed point in correlation space is reached.
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FIGURE 10 | Adaptation to disruptive changes in the vision sensors. During the experiment the camera was rotated about its optical axis. (A) Camera angle in

degrees and corresponding camera images in (E). (B) Change of the controller matrix C over time (averaged over 1 s). (C,D) Evolution of the coupling of the 24

sensors to one muscle (3 and 8) over time (row 3 and 8 of C over time). Red-framed sensors are the vision sensors (and their time-delayed version). Vertical lines

indicate times of camera rotation and the point of reentering a stable motion at 160 s. See corresponding Video 10 in Supplementary Material and the text for details.

it invisible to the camera’s green object detector so that the
vision sensors are frozen. Now we use a dummy fist (green ball
attached to a stick) to generate camera coordinates by hand,
see Figures 11D,E for a normal and a dummy fist camera view,
respectively.

As demonstrated in Video 11 (Supplementary Material),
moving the dummy generates defined movements of the arm,
although the arm would typically not follow the dummy if
it is arbitrarily moved. However, if the dummy is moved
along a similar path as the original movement, the arm is
following the dummy, it can be even driven into trajectories
with various velocities, and can be stopped deliberately, see
Video 11 in Supplementary Material. In Figure 11A the time
trace of one of the vision sensors and a proprioceptive sensor
for the course of the experiment visualizes this behavior.
By comparing the parametric plots in Figures 11B,C, first
and second row we confirm the similarity between the
original and the virtual camera trajectory. On the other hand,
Figures 11B,C, third row shows that a different relation between
the sensors occur if the dummy trajectory is in the opposite
direction.

Another interesting point is that behaviors can not only be
replayed and combined, as demonstrated in the wiping case,
but also be driven by virtual trajectories with (moderately)
varying shapes and velocities. This can be operationalized for
deliberate control. For instance, a central pattern generator could
be used to generate the virtual trajectory, giving the opportunity

to systematically vary frequency and shape of the emerging
behaviors. Furthermore, the emergence of hand-eye coordination
and the possibility to deliberately control the arm using virtual
trajectories could be of some interest for the development in
infants during Piaget’s first phase.

3.9. Perspectives for Goal Oriented
Behavior
Though this paper is devoted to robotic self-organization, let us
have a remark on generating user chosen behaviors. The basic
idea is the following: the classical control setting is a two level
hierarchy where the goal driven controller is applied directly
to the low level PID controller realizing the action execution.
Here, we advocate for the inclusion of a third, intermediary level,
meaning that the higher-level controller is realizing its goals by
manipulating the above mentioned meta-system with its wealth
of latent behaviors waiting to be excited. How this could be
effectively done is still to be investigated. However, the potential
success of this extended hierarchy of control is suggested by the
experiments. In fact, if we are able to influence the meta-system
by hand, why not by just superimposing additional motor signals
on the self-regulated meta-system. The use of the approach
is encouraged by the mentioned ability of the meta-system
to uphold a resilient working regime even under extreme
external perturbations, preventing, for instance, shoulder
dislocations.
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A

B

C

D

E

FIGURE 11 | Experiment with camera input. Hand-eye coordination and tracking. (A) a proprioceptive sensor x3 and a vision sensor x11 (up-down direction)

over time. The vertical line indicates when the fist was covered with a cap (see E). Black bars indicate time intervals used in (B,C). The yellow bar indicates the cut out

part of the corresponding Video 11 in Supplementary Material. (B) Trajectory in vision sensor space for different parts. Left: original movement (with normal camera

sight (D), middle: two similar driven behaviors, right: inverted direction movement. (C) The same trajectory relating vision to proprioception sensors x11 → x3 and

x10 → x6. (D,E) camera picture for normal and dummy-fist case.

4. DISCUSSION

This paper is seen as a further step toward a general
theory and practical realization of self-organization (SO) for
embodied AI. There are many facets to such a general idea
worth to be investigated. In many cases, SO is considered
as either self-exploration for scrutinizing the gross properties
of the system (to be deliberately controlled afterwards), or
(wishfully) used for the acquisition of behavior primitives.
While this is often ticked-off as superfluous, to be replaced
by well known methods like motor babbling, SO definitely
has its realm if systems become larger. This has been
demonstrated by a number of successful examples (Der and
Martius, 2012, 2013, 2015; Der, 2016) attributing SO a much
wider range of applicability. We claim that the results of
this paper are a further step as they extend that range to
composed systems consisting of the actual robot connected

to a subsystem with an unknown internal dynamics. In the
paper we ask how a robot may establish dynamical contact
with a subsystem, eventually recognizing its identity, if there
is no information or model of the subsystem’s inner dynamics.
Humans seem to have no problems there as they develop
a feeling, by their muscle tensions, for the reactions of
the subsystem. However, it is not clear what this subjective
feeling is and how it is used for controlling the interacting
system.

As a first insight offered by our DEP controlled robot, we
note that the artificial system does not need any curiosity
or other higher level concepts for producing the observed
human like behaviors. Oriented at the similarity between our
anthropomorphic robot and human behavior, we may question
the ontological status of these higher level concepts also in
humans. Furthermore, we could reveal a very subtle but
dominating effect: by the mere feedback through the internal
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dynamics of the object, the robot is learning to answer with a very
specific sensorimotor pattern to each of the objects. So, the robot
discovers the identity of the attached object without knowing
anything of its dynamical properties which may be very complex
like the water in the bottle. This may be a further example
how the robot can both model and substantiate concepts from
cognitive science, here Gibson’s object affordances. Furthermore,
as we could uncover by the analytical tools developed in this
work, the emergence of the combined mode and the eventual
identification of the attached object—by establishing dynamical
contact—is explained by a subtle mechanism which we call
piloting.

Unfortunately, due to the high complexity of the system and
the subtlety of the effect, a rigorous mathematical analysis is not
possible so far. Nevertheless, using some concepts of dynamical
system theory, we could establish tentative findings. By keeping
the system at the border to instability we find a potentially infinite
reservoir of (limit cycle) attractors “waiting” to be excited. Besides
converging toward one of these attractors, the rich reservoir
of further phenomena could possibly be related to concepts
like attractor meta-dynamics (Gros, 2015; Sándor et al., 2015),
the so called meta-transients (Negrello and Pasemann, 2008)
and the mentioned self-induced attractor morphing. Altogether,
these concepts may serve as a characteristic for self-organized
behavior in the sensorimotor loop, possibly endowing even
the edge of chaos concept with a new realm. There again, we
emphasize that the outstanding sound mathematical analysis of
these concepts can more reliably reveal their enormous potential
for constructing and building such self-learning machines with
their creative properties.

It is also important to note that “reading” the object’s
properties through the mere feedback from its internal dynamics
is a direct consequence of those dynamical system properties.
Considering the similarity with human behavior again, we may
ask if humans also work in this dynamical regime at the border of
instability and what the possible consequences are. It must be left
to future work to reveal the thereby expected cross fertilization
between robotics and cognitive science. Furthermore, the
spontaneous identification of dynamical object affordances may
be also of some interest for both robotics and embodied AI.

In short, we claim that experimental investigation with
anthropomorphic, self-learning robots not only generates
interesting behaviors in complex robotic systems. It may also
help to better understand what subjective human feelings
of physical interactions are, how they can be rooted in
sensorimotor patterns, and how these concepts may feed back

onto robotics. Hopefully, this knowledge may eventually help
building machines that are as close to humans as possible.

Last but not least, let us briefly compare our results with
the literature on SO in robotics. While this paper focuses on

the SO of behavior for robots of a given morphology, much
of the literature is devoted to SO for self-assembling and self-
repairing (Murata and Kurokawa, 2012), and eventually self-
replicating (Griffith et al., 2005) systems. Very influential for
the topic is the paper Pfeifer et al. (2007) presenting the whole
spectrum of bioinspired robotics. The central idea is that control
is outsourced to the morphological and material properties,
see also Hauser et al. (2012), Pfeifer and Gómez (2009), Paul
(2004), Pfeifer and Bongard (2006), Pfeifer and Scheier (1999),
and Pfeifer et al. (2012). This is in line with our work, as our
controller is developing everything from the interplay with the
physics of the system. However, to our knowledge previous work
does not reach robots of such complexity as demonstrated here.
Related to our work is the multiple attractor concept (Tani and
Ito, 2003; Gros, 2015; Sándor et al., 2015), which was not yet
applied to real robots. Another body of literature exists on SO
in swarms (Bonabeau et al., 1997, 1999; Rubenstein et al., 2014;
Blum and Groß, 2015) to get swarm intelligence (Engelbrecht,
2006; Nouyan et al., 2008), but there is no relation to our
work which is devoted to the development of individual
robots.
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Reaching for objects and grasping them is a fundamental skill for any autonomous

robot that interacts with its environment. Although this skill seems trivial to adults,

who effortlessly pick up even objects they have never seen before, it is hard for other

animals, for human infants, and for most autonomous robots. Any time during movement

preparation and execution, human reaching movement are updated if the visual scene

changes (with a delay of about 100 ms). The capability for online updating highlights

how tightly perception, movement planning, and movement generation are integrated

in humans. Here, we report on an effort to reproduce this tight integration in a neural

dynamic process model of reaching and grasping that covers the complete path from

visual perception to movement generation within a unified modeling framework, Dynamic

Field Theory. All requisite processes are realized as time-continuous dynamical systems

that model the evolution in time of neural population activation. Population level neural

processes bring about the attentional selection of objects, the estimation of object shape

and pose, and the mapping of pose parameters to suitable movement parameters. Once

a target object has been selected, its pose parameters couple into the neural dynamics of

movement generation so that changes of pose are propagated through the architecture

to update the performed movement online. Implementing the neural architecture on an

anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by

grasping wooden objects. Their size, shape, and pose are estimated from a neural model

of scene perception that is based on feature fields. The sequential organization of a reach

and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics

of behavioral organization, that effectively switches the neural controllers from one phase

of the action to the next. Trajectory formation itself is driven by a dynamical systems

version of the potential field approach. We highlight the emergent capacity for online

updating by showing that a shift or rotation of the object during the reaching phase leads

to the online adaptation of the movement plan and successful completion of the grasp.

Keywords: neural dynamics, dynamic field theory, autonomous reaching, autonomous grasping, online updating
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1. INTRODUCTION

Object-oriented reaching and grasping in natural settings, a key
element of human-robot cooperation, continues to be a challenge
for autonomous robots (Herzog et al., 2012). Humans grasp and
handle objects fluently, of course, although these are among the
harder movement tasks, learned in infancy (Thelen et al., 1996),
but with continued development for close to 10 years of life
(Schneiberg et al., 2002). Humans easily reach and grasp objects
that they see for the first time or that are partially occluded.
Theymay grasp an object after closing their eyes. Anytime during
movement preparation or execution, humans may update the
motor plan when the object shifts or rotates (Desmurget and
Grafton, 2000). This performance entails, in humans, a close
coupling among perceptual processes including gaze control,
shift of attention, segmentation, recognition, and pose estimation
of the object, as well as between perception and motor processes
including initiating, coordinating, and terminating reach and
grasp movements.

Robotic approaches to grasping (reviewed in Carbone, 2013)
have traditionally made strong demands on what perception
delivers, often based on object models. Except for visual servoing,
those approaches are most appropriate for static situations with
well-known objects. In contrast, recent work has employed
simpler perceptual processes, that deliver fast estimates of pose
and grasp parameters and enable grasping objects that move
with a conveyer belt (Cowley et al., 2013). Another recent
line of work learns to extract grasp parameters that are linked
to probabilistic models that enable generalization beyond the
trained poses, and lead to most impressive real time grasping
performance (Huang et al., 2013). Related work learns grasp
primitives from demonstration (Herzog et al., 2014), from
exhaustive simulation (Curtis and Xiao, 2008), from examples
of object categories (Madry et al., 2012), or based on tactile
feedback (Platt et al., 2006). Explicit modeling of the uncertainty
of grasp parameters provides a potential solution (Li et al., 2016).

This paper is based on two hypotheses. First, we think
that we may learn from how humans generate reaching and
grasping movements. For instance, as a major theme that
we address here, we believe that reaching and grasping is
possible in humans with much simpler, lower-level perceptual
representations than traditionally assumed in autonomous
robotics. The perceptual processes engage attention and enable
continuous online coupling to the sensory surface. Another
example is at the level of control: The nature of actuation through
muscles that act as relatively soft, tunable stringsmakes it possible
to grasp without a precise estimate of grasp points. It is enough
to set the equilibrium length of muscles in the hand to a posture
inside the object and the muscles will then generate grip forces
through their peripheral reflex loops (Santello et al., 2016). In this
paper, we address the first, but not yet the second idea.

The other hypothesis is, in a sense, the converse. Many of the
neural processes underlying human movement that is directed
at objects have not yet been comprehensively understood in
neuroscience (Andersen and Cui, 2009; Lisman, 2015). This
means that neurally based process models do not stand ready
to be imported into robotics. But this also means that how

the component processes work together in the nervous system
needs to be better understood. Integrated models demonstrate
reaching and grasping in neurally grounded ways that may make
a contribution to understanding neural function.

Our research agenda is thus to build an integrated model
of reaching and grasping based on neural process accounts
inspired by the human mind. We do this based on the theoretical
framework of Dynamic Field Theory (DFT, see Schöner, 2008
for an introduction, Schöner et al., 2015 for a systematic
tutorial), a neurally grounded set of concepts that address
visual representations, coordinate transforms, attentive selection,
working memory, and behavioral organization. To build and
implement a complete model of reaching for and grasping
novel objects, we propose a neurally inspired computational
architecture.

All processes are modeled as neural dynamics, so that the
entire architecture is essentially one big dynamical system. The
theoretical framework of Dynamic Field Theory (DFT) provides
the means to represent information, to perform detection and
selection decisions, to model attention, track time varying input,
and to store information in working memory. Instabilities of
the neural dynamics create the discrete events from time-
continuous processes at which processes are initiated and
terminated (Sandamirskaya et al., 2013). The neural dynamics
interfaces with attractor dynamics that generate movements and
control the robotic arm and hand (Reimann et al., 2011). The
model builds on earlier work on scene representation (Zibner
et al., 2011a), and on the simultaneous recognition of objects
and estimation of their pose (Faubel and Schöner, 2009). We
show how neural dynamics enable integrating and organizing all
component processes, from the perception to the initiation and
termination of robotic movements (Richter et al., 2012).

The approach is tested on a robotic agent called CAREN
consisting of a Kuka LWR4 with seven degrees of freedom, with
an attached Schunk Dextrous Hand (SDH) featuring additional
seven degrees of freedom and tactile sensors. The arm is mounted
on a Schunk PR 90 rotary module with one degree of freedom.
We are using a Kinect camera to perceive the scene (see Figure 1).

This work is innovative in two different ways. On the
one hand, this work is part of a research program in
which robotic demonstrations are used to evaluate theoretical
models of human cognition and behavior (Adams et al.,
2000). Neural dynamics is a theoretical perspective within
this program in which process models are formulated that
may be linked to real sensory and motor systems (Erlhagen
and Bicho, 2006). Previously, neural dynamics has been used
to demonstrate reaching (Strauss and Heinke, 2012; Fard
et al., 2015; Strauss et al., 2015). We expand on this work
by including the autonomous sequential organization of the
behavior and addressing grasping as well. Ours is one of
the first demonstrations that cover the complete path from
sensing to acting in a difficult task, that includes attention,
recognition, estimation, executive control, movement planning,
and control. In this demonstration, we integrate four separate
neural dynamics models of component processes for scene
representation (Zibner et al., 2011a), object classification
with concurrent pose estimation (Faubel and Schöner, 2009),
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FIGURE 1 | This figure shows CAREN, the robotic platform used in this

work. It consists of a Kuka LWR4 (A), a Schunk SDH (B), and two Schunk

rotary modules, one used as trunk (C), the other as pan-tilt head (D). A Kinect

(E) is attached to the head of the robot. Two markers (green and blue) are

placed on the table surface (F). They denote the x-axis of the table’s

coordinate system.

behavioral organization (Richter et al., 2012), and movement
generation (Reimann et al., 2011).

On the other hand, in direct comparison to approaches
to grasping that are unconstrained by analogies with human
cognition, the strength of the present work is the capacity to
accomodate online updating to changing sensory information,
while at the same time addressing the sequential organization
of behavior and perception. For instance, work like Huang
et al. (2013) has powerful online updating of the grasping
action itself, but has a highly simplified perceptual system and
limited behavioral flexibility. We think of online updating as a
characteristic and attractive property of the neural organization
of reaching and grasping and this is why we focus on
demonstrating it here.

2. METHODS

We begin by providing a survey over the component processes
involved in autonomous grasping and the over-all flow of
activation in the neural dynamics architecture (Figure 2).
Perception (on the left) consists of scene representation and
object recognition. Scene representation entails the processes of
visual exploration, which sequentially attends to subregions of
the scene that may contain objects and commits an estimate
of local height at each attended location to working memory.

Visual exploration is a precondition of the query behavior, which
processes a cue that defines a target object, brings matching
locations into the attentional foreground and thus enables the
process of object recognition to take over. Object recognition
entails two interacting processes, shape classification, and pose
estimation. Shape classification determines the type of grasp that
will be used for the current target object, while pose estimation
specifies parameters of the reach and the grasp such as hand
orientation. Once both processes have converged, a sequence
of actions executes the grasp (illustrated on the right). Initially,
two behaviors are activated: “Open hand” does what the name
suggests and “approach” drives the hand to a point close to the
target object while orienting the hand based on a pose estimate.
After both behaviors are completed, the “grasp” behavior moves
the fingers. Up to that point, online updating of the classification
and pose estimation processes is possible, after this point, online
updating is suppressed. After detecting contact of the hand on
the object’s surface through tactile feedback, the “lift” behavior is
activated, which raises the arm with the grasped object upwards
from the table surface.

Although this description suggests that the individual
behaviors and processes are separate modules, in reality they are
all just subsets of one large system of differential and integro-
differential equations, the neural dynamics, whose solutions
evolve continuously in time. These equations are coupled
internally according to the architecture and to online sensory
inputs. Online updating is thus a pervasive property of the
architecture and neural dynamics approaches, in general. We
now take a closer look at the elementary building blocks of the
architecture to illustrate how neural dynamics and, specifically,
DFT, are organize the interaction of the behaviors and processes.

2.1. Dynamic Neural Fields
Dynamic neural fields are the building blocks of Dynamic Field
Theory (DFT). Continuous neural activation patterns, u(x, t),
defined over a feature dimension, x, evolve in time according
to an integro-differential equation that has been proposed as a
simplified model of cortical neural dynamics (Amari, 1977):

τ u̇(x, t) = −u(x, t)+ h+ s(x, t)+

∫

w(x− x′)σ (u(x′, t))dx′.

Here, τ determines the time scale on which activation evolves.
The−u-term endows this neural dynamics with the fundamental
stability mechanism that creates different kinds of attractor
solutions under different conditions. The attractor at the resting
level, h < 0, is stable in the absence of external input, s(x, t).
When such input from other neural fields or from sensory
surfaces remains small, the attractor is shifted to h + s(x, t).
When inputs become sufficiently strong so that this solution
reaches a threshold given by the sigmoidal nonlinearity, σ (·) =

1/(1 + exp(−β·)), this attractor becomes unstable. The system
switches to a new attractor state, a localized peak of activation that
is sustained by local excitatory and global inhibitory interaction
characterized by the interaction kernel, w(1x). The instability at
which a switch to such a self-stabilized peak solution occurs is
the detection instability, used to implement detection decisions
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in DFT. Localized peaks become unstable at the reverse detection
instability at lower levels of input. Multi-modal inputs may lead
to the formation of a self-stabilized peak at a single location in
the field. This is how selection decisions are realized in DFT.
Under appropriate conditions (for resting level and interaction
strength), self-stabilized peaks may remain stable once the
inducing localized input, s(x, t), is removed. Dynamic fields
may be analogously defined over multi-dimensional spaces. Such
sustained peaks of activation are the model of working memory
in DFT. See Schöner et al. (2015) for a systematic exposition
of the mathematical and conceptual structure of DFT. The
stability regimes described here depend, of course, on parameter
values. Typical values of the main parameters of the neural field
dynamics used throughout the architecture are: τ = 100ms,
β = 100, h between −15 and −5, global inhibition between 0.01
and 0.5, excitatory interaction 1, width of exitatory interaction
kernel between 3 and 5.

2.2. Neural Dynamics of Behavioral and
Process Organization
Zero-dimensional neural activation fields are essentially discrete
activation nodes described by a differential equation analogous to
Equation 1:

τ u̇(t) = −u(t)+ h+ s(t)+ wσ (u(t))

This dynamics may have an “off” attractor at negative levels of
activation, and an “on” attractor at positive levels of activation.
The “off” attractor may disappear in a detection instability
at sufficiently high levels of input, s. The “on” attractor may
disappear in a reverse detection instability at sufficiently low
levels of input, s. Both attractors may co-exist bistably for
intermediate levels of input. Such nodes are used in DFT to
represent the activation and deactivation of categories, processes,
or behaviors. For the organization of processes and behaviors,
pairs of such activation nodes form an executive control unit
(ECU, see Richter et al., 2012). When the intention node of an
ECU is “on,” it provides spatially homogenous excitatory input
(a “boost”) to parts of the architecture that is responsible for
executing an associated process or behavior. The Condition of
Satisfaction (CoS) node is activated when sensory or internal
inputs are detected that indicate the completion of a process or
behavior. CoS nodes inhibit the intention node, turn “off” the
associated process or behavior. A third node may be joined to an
ECU to represent a working memory of CoS activation, which
maintains a record of the past completion of a processing step.
Typical values of the parameters of the neural dynamic nodes
used throughout the architecture are: τ = 100ms, β = 100, h
between−1 and−2, global inhibition 0.01.

2.3. Visual Processing Pathway
The autonomous neural dynamics of visual processing controls
exploratory attentional processes that build a working memory
representation of the scene, which can be queried to activate a
particular target object. A second block of processes determines
object identity through classification and estimates object pose to
determined grasp parameters.

FIGURE 2 | Schematic overview over the behaviors that make up the

reaching and grasping architecture and how they interact.

2.3.1. Scene Representation
The architecture contains an expanded version of a neural
dynamic system for scene representation (Zibner et al., 2011a),
in which neural dynamic nodes implement a form of process
organization (Richter et al., 2012) to enable the autonomous
visual exploration of the scene which can transition into a query
mode that focusses attention on a target object in the scene.
Figure 3 expands this part of the complete architecture. As a
cue to locations on a table surface, at which objects may be
placed, we use color and visual depth estimates obtained from
a Kinect sensor that views the scene in the work space of the
robot arm. The idea is that color saturation on the homogeneous
table surface guides attention to candidate locations. The height
over the table surface estimated at these locations is then used to
decide if an object is present (Petsch and Burschka, 2010).

Specifically, we use the Point Cloud Library (Rusu and
Cousins, 2011), to find the largest surface in the RGB-D data,
which is then identified as the table surface. Height and color
maps are extracted in world coordinates. The distribution of
saturation in the color map is passed through a sigmoid function
and provides input to a neural field defined over the table surface
(the space field in the green box of Figure 3). Only regions on the
table at which saturation reaches a threshold level drive the neural
field through a detection instability and induce a self-stabilized
local peak of activation. This effectively suppresses outliers and
filters out the noise that is typical of RGB-D data. The field is
operated in a dynamic regime in which multiple self-stabilized
peaks may coexist. It functions as a salience map for color (Itti
et al., 1998).

The color salience space field provides input to a second neural
field, the attention field, also defined over the table surface. This
field is operated in the dynamic regime in which a single localized
peak is stable at any time, implementing a selection decision. A
self-stabilized peak in this field implements, therefore, selective
attention and provides the attentional focus for the rest of the
architecture. Height estimates from the subregion on the table,
at which activation in the attention field is above threshold,
are input into a one-dimensional neural field, the height field.
The selected spatial region and the neural activation pattern
representing height estimates are crossed to provide input into
a three-dimensional field, the space-height field (on the top right
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FIGURE 3 | The portion of the architecture responsible for scene representation.

in the red box of Figure 3). For details of how the combination
of two lower-dimensional inputs can be used to drive a higher-
dimensional field, please refer to Zibner et al. (2011a) or Chapter
9 of Schöner et al. (2015). The space-height field is operated
in multi-peak working memory mode, so that it represents the
location on the table and height of a potential object as a self-
sustained peak, even after the attentional and height inputs are
removed. It provides input to a second, three-dimensional field,
the height query field, that is operated in single-peak mode and
thus selects location and the associated height. Input from the
attention field controls the location at which input from the
space-height field may induce a peak. The height query field thus
serves to retrieve a stored object location and height from scene
memory.

To guide visual exploration, a multi-peak field over the table
surface, the space memory field, keeps track of all locations that
have come into the attentional focus of the system. A sustained
peak of activation is induced each time selective attention is
focussed at a location. The space memory field in turns inhibits
the attention field and thus biases the process of attentional
selection away from locations that have previously been the focus
of attention. Autonomous exploration is now organized by a
Condition of Satisfaction connection from the height query field
into the attention field. Every time a peak has been successfully
selected in the height query field, this signals that a memory has
been created that matches the currently selected location and
currently estimated height. This is the CoS of memory formation
and inhibits the attention field, deleting the self-stabilized peak
there in reverse detection instability. As a result, the peak in the
height query field is no longer supported by selective attention
and also decays, releasing the attention field from inhibition.
The attention field is ready to select the next location for spatial
attention. Inhibitory input from the space memory field now
tends to inhibit return to the same location or other recently

attended locations, biasing the selection process to new locations
with salient color input. This process of visual exploration is
continuously ongoing, confirming past memories in the space-
height field, updating such memories or creating new such
memories as needed.

Autonomous visual exploration can be interrupted at any time
by a query for a target object, that triggers the estimation of grasp
parameters. The target object can be specified by a spatial cue or
by cues of characteristic object features, such as color (for a more
detailed description of the querying behavior, see Zibner et al.,
2011b). There is a set of neural nodes that activate and deactivate
parts of the architecture by boosting or deboosting the resting
levels of the associated fields. Not all of those nodes are plotted in
the survey over the architecture for simplicity (see a description
in the first part of the Results Section for the functional role of
these nodes).

2.3.2. Shape Classification and Pose Estimation
Estimation of grasp parameters is based on a recurrent
architecture for object recognition (Faubel and Schöner, 2009).
In the original work, a weighted sum of object templates, one
for each known object, is compared to the current input image.
Applying cascaded transformation operations of shift, rotation,
and scaling) to the current input and matching the transformed
input to each of the memorized templates (by cross-correlation,
“C”) yields a competitive weight of each template. Dynamic
neural nodes compete with each other, leading to the selection of
the template in a classification decisions. In a concurrent process,
all templates are weighted with the current activation level of
their dynamic neural node and summed. This inverse cascade
of image transformations is applied and a match to the input
image in each possible pose provides input into neural activation
fields defined over the pose parameters for shift, rotation, and
scaling. These fields are operated in a single-peak mode so
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that an emerging self-stabilized peak represents a selection
decision among poses. The concurrent upward classification, and
downward pose estimation processes converge in closed loop,
activating an object identity representation in the set of neural
nodes, and a pose estimate in the set of neural fields.

For the present purpose, we replace learned object templates
with simple geometric shapes (square, circle, oblong rectangles).
The subregion on the table that the attentional focus defines
provides the visual input to the shape classification and pose
estimation system. The two-layer decision architecture of the
original model was further simplified into single layer decision
fields connected each to a single inhibitory node that slows down
the decision process, allowing multiple candidate peaks to form
before a decision emerges. Figure 4 gives an overview of the
resulting architecture. The different stages of pose estimation are
highlighted by the background color: translation (red), rotation
(yellow), and scaling (green). The set of neural nodes that makes
shape classification is highlighted in blue.

As the shape classification and poste estimation process
converges, it delivers a shape candidate whose location is

specification more precisely within the table surface than the
attentional systems does. The scaling and rotation estimates
together with features of the shape category are used to
determined the grasp parameters, represented in the grasp
decision field Oblong objects with a low height are grasped from
above, while cylindrical objects and cuboids with a square base
with sufficient height are grasped from the side. The latter objects
need different approach movements prior to grasping, since
cylinders, unlike cuboids, can be grasped sideways equally well
from any direction.

Note, that the estimation process is continuously coupled to
visual input through the attentional channel. As a result, changes
in the scene are fed into the pose fields enabling online updating
of the grasp parameters. In the current version of the model,
online updating occurs only with respect to two dimensions of
the task, translating, and rotating the gripper.

2.4. Reaching and Grasping
This section explains how data from the scene representation
and the shape classification/pose estimation systems are used to

FIGURE 4 | A sketch of the shape/pose estimation system used to classifify the attended part of the visual scene into a shape category and to

concurrently estimate its pose. Along the downward pathway on the left, the input image is transformed based on the current estimates of translation, rotation,

and scaling before being compared to the stored shape templates at the bottom. Along the upward path on the right, the current weighted sum of shape templates is

inversely transformed by scaling and rotation operations. Cross-correlations with the input image yield updates to pose estimates. The pose fields in the center

column feed into the representation of grasp parameters.
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generate movement and to grasp an object. The overall scheme
is as follows. Depending on the object pose parameters (position,
height, rotation, and shape) and the current arm configuration, a
desired wrist position and orientation for the hand are computed.
These desired values are then set as attractors in a dynamical
system that generates movement for the arm. The movement
unfolds autonomously in three phases organized by a neural
dynamics of the type reviewed earlier (Section 2.2). First, the
hand is opened, brought close to the object, and oriented in a
way that enables grasping the object. Second, the hand is moved
through the remaining distance to the object, and is closed. The
third phase begins when the object has been grasped as signaled
by the tactile sensors on the fingers. The hand is then moved
upward in space, lifting the object. This sequence of actions is
generated by a neural dynamics of behavioral organization that is
illustrated in Figure 5.

2.4.1. Generating Motor Commands
Motor commands are generated from desired values for the
wrist position and hand orientation using the attractor dynamic
approach (Reimann et al., 2011). To move the wrist, movement
speed, and direction are controlled separately. The rate of change
of movement direction depends on the angle between the current

movement velocity, Ev, and the vector, Ek, from the wrist position
to the target position,

φ = arccos





(

Ev, Ek
)

|Ev||Ek|



 . (1)

Reducing this angle to zero corresponds to changing the
movement direction into the direction in which the target
lies. This constraint is imposed by the dynamics of that angle,
given by

φ̇ = −αdirφ, (2)

which is linear, simplifying Reimann et al. (2011). Here, αdir is a
rate factor.

To translate this constraint into a motion command for the
robotic arm, consider the direction, Ev⊥, in which the movement
vector, Ev, is changed. It is perpendicular to Ev and lies in the plane

spanned by Ev and Ek. Computed as:

Ev⊥ = |Ev|
(Ek× Ev)× v

|(Ek× Ev)× v|
. (3)

and normalized to have the same length as Ev.
Combining the two equations we determine the direction in

which the wrist’s velocity vector in cartesian space should change
so as to bring the hand closer to the target location:

Efdir = Ev⊥(φ̇ − φ̇dev). (4)

Here, φ̇dev is the rate at which the direction from the hand to
the target changes due to the movement, Ev, of the hand in space.
The direction of change lies in the appropriate plane and is
proportional to the rate of change of the direction to the target
corrected for the rate of change of that direction that is induced
by the movement of the wrist in space.

To control movement speed, its rate of change, v̇, is
proportional to the difference between the current speed, v = |Ev|,
and a desired speed vdes:

Efvel =
Ev

v
(−αvel(v− vdes)) (5)

where αvel is a rate constant. As a contribution to the rate of
change of the 3D velocity vector, this contribution lies in the
direction of the current velocity.

A third contribution to the dynamics of the hand velocity
vector slows down the hand when it is close to the target object in
order to reduce any impact in case of misestimation and collision.
A local safe control law is proportional to the distance between
hand position, Eg, and target position, Ep:

vlocal = −βpos(Eg − Ep), (6)

FIGURE 5 | The neural dynamics of behavioral organization used for movement generation. There are four ECUs: open hand (A), approach target (B), grasp

target (C), and lift (D). The precondition node (E) ensures that the grasp behavior is only activated once (A,B) have met their CoS. The precondition node (F) ensures

that the grasp behavior has met its CoS before the object is lifted.
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and is expanded in vector form as

Efpos = −αpos(Ev−min{|vlocal|, vdes}
vlocal

|vlocal|
), (7)

where αpos and βpos are two rate factors. The introduction of vdes
is a change over the approach of Reimann et al. (2011) intended
as a safety measure to delimit movement speeds of the arm.

The rates of change of the hand’s velocity vector in Cartesian
space are transformed into joint space with the help of the
pseudo-inverse, J+p , of the Jacobian matrix of the wrist position.
The three contributions are then summed after each contribution
is weighted with a sigmoidal factor that reflects the distance of the
hand to the target. The result is the planned angular acceleration,
EF, of the robotic arm in joint space:

EF = σ (|Ek| − dthr)(J
+
p · Efdir + J+p · Efvel)

+ (1− σ (|Ek| − dthr))J
+
p · Evvel. (8)

This control strategy for the hand’s position largely follows
Reimann et al. (2011). The control law of the hand’s orientation
is formulated for the three Euler angles of the hand used as target
angles for the three most distal joints of the arm. The desired
rotationmatrixR can thus be split into three subsequent rotations
around three fixed axes. For each of these three most distal joints,
θi, the angular acceleration θ̈i is proportional to the deviation
between the current joint angle, θi, and the desired joint angle,
θi,des, corrected for by the current angular velocity, vθi , induced
by the movement of the hand in space according to Equation 9:

θ̈i = −αrot(vθi − βrot(θi − θi,des)). (9)

Here, αrot and βrot are rate constants of the dynamics.
Finally, the opening and closing of the hand is controlled

through a linear first order dynamical system:

Ėθ = −αhand(Eθ − (wgrasp Eθclosed + wapproach
Eθopen)). (10)

This dynamical system has attractors either at a joint angle
configuration, Eθopen, corresponding to an open hand or at a

joint angle configuration, Eθclosed, corresponding to a closed hand.
These joint configurations depend on the shape template of the
object to be grasped.

2.4.2. Target Positions and Orientations
Desired positions, g, for the wrist are defined for the approach,
grasp and lift behaviors, as well as for different grasp types. All
approach points for the different object types are updated online.
The target point, Egapproach, for the approach behavior depends on
the grasp type. For vertical objects, it lies in a horizontal plane
at two thirds of the object’s height at a certain distance from the
object that depends on the object’s shape. For cylindrical objects,

the vector, Ek, from the current wrist position to the object position
is projected onto the table plane to obtain the direction from
which to grasp. For objects with a square base, one of the four

sides is selected. This entails computing the inner product of Ek
with each of four vectors that are orthogonal to each side. Using

four competing neural nodes, the vector that best matches is
selected. For objects that are grasped from above, the approach
point is at a fixed distance above the object. A weighted sum

Egapproach =
1

n

∑

i

wiEgi, (11)

over the n different object types is used to calculate the
instantaneous approach point. The values for wi are the output
values of the grasp decision field.

For the target point of the grasping behavior, we use a point

on the object vector, Ek, at a certain distance, di, from the object

Eggrasp =
1

n

∑

i

widi
−Ek

|Ek|
. (12)

To lift the object, a position, Eglift is set to a point 50 cm above the
table surface located directly above the current position.

The current target position for the movement generation
system is then set to the weighted sum over all these different
target points

Eg = wapproach Egapproach + wgrasp Eggrasp + wlift Eglift, (13)

in which the weight factors are the activation states, wi, of the
corresponding behavior.

The orientation of the hand at grasp is chosen so that the
opening of the hand points toward the object and the fingers
are aligned with the object’s surfaces. For tall, narrow objects
that are grasped from the side, the palm is chosen to be oriented
perpendicular to the table surface. For flat objects that are grasped
from above, the palm is oriented parallel to the table. Again a sum
is used to obtain the desired orientation of the hand from these
contributions, weighted with the activation level of the associated
shape class.

3. RESULTS

A first goal of our experimental work is to illustrate how
the neural dynamic architecture generates the time courses
of visual exploration, shape classification and pose estimation,
and movement generation. In each case, we aim to show
how transitions between different phases of behavior emerge
autonomously from the space time continuous dynamical
systems. Although we inspect the three components of scene
representation, shape classification, and movement generation,
one by one, these componets are tightly coupled in the overall
neural architecture and evolve in parallel. The second goal is to
demonstrate and assess the properties of the neural architecture
in achieving reaching and grasping actions. We report three sets
of experiments that probe online updating with respect to three
dimensions of the task (grasping, translating, rotating). In the
following sections, we first give detailed account of the general
flow of neural activation through the dynamic fields and nodes.
Then we report the results of the three experiments set up to
probe specific characteristics of the system.
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3.1. Time Course of Scene Representation
As long as there is no active cue, the neural architecture of scene
representation (Figure 3) performs visual exploration which can
be described as follows. The distribution of color over the table
surface is captured by the space field that forms one peak at each

location with salient color. These peaks provide localized input
to the attention field, which generates a single peak and inhibits
all alternative locations. This peak masks input from the height
map to the height field so that only height measurements within
this window contribute. A neural node that detects a peak in the

FIGURE 6 | This figure shows the time course of the convergence process of the pose estimation and shape classification processes. In each column,

the current weighted sum of shapes is shown on top. Below, inputs and activation levels of the fields representing the shape weights, as well as scale and rotation

estimates are displayed (the translation estimate is not shown since the attentional blob sufficiently centers the input image, trivializing this estimation). At the bottom,

the raw and transformed input image is shown. At the beginning (time passes from left to right) the transformed input is blurred out and the estimation fields only

contain sub-threshold activity. While the process converges, the estimation fields select pose candidates. With the fixed pose, the shape field converges onto a

classification of the base shape. Note that this is a recurrent process, that is, pose estimates and shape classification converge in parallel and support each other.
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attention field provides a boost to the height field, which together
with significant input from the masked height input may induce
a peak in this field.

The attention and height fields now contain separate
representations of spatial position and height. Spatial input
projects as a cylinder localized in space, elongated along height
into the three-dimensional space-height field. Height input
projects as a slice localized along color, extended along space.
Where these inputs intersect, a localized peak arises that binds
height to location. This peak induces localized input into the
three-dimensional space-height query field, which receives at
the same time a cylinder of input localized in space, extended
along height from the peak in the attention field. These inputs
overlap and create a matching peak in the height query field.
A CoS node detects this peak and inhibits the attention field,
triggering a cascade of reverse detections in the attention, height,
and height query fields, followed by de-activation of the CoS
node itself, and a release from inhibition of the attention field.
Parallel to this cascade of instabilities, the looking memory
field has stabilized a sustained peak at the currently attended
location which projects inhibitorily back onto that same location
in the attention field. Upon the release from inhibition from
the CoS node, the attention field selects a new salient location
for activation, that is not typically the same as the previously
examined location.

This form of visual exploration runs continuously and
completely autonomously, in an ongoing sequence of shifts of
attention. This ongoing sequence is interrupted when a cue is
given from the outside, for example, by a human operator. The
cue resets the attention field through a short burst of inhibition
and acts as a mask to the input path from the color map,
amplifying the specified color. When the attention field recovers
from inhibition, it now selects a locationmatching the cued color.
This attentional peak induces activation from working memory
of the height value associated with that location, which can now
be handed on to the reach and grasp module.

3.2. Time Course of Shape Classification
and Pose Estimation
With the activation of the cueing behavior, a peak in the
attention field defines a window of attention, that channels input
to the shape classification and pose estimation portion of the
architecture (Figure 4). The CoS node of the cueing behavior
provides a boost to the resting level boost of all estimation
fields, which gets the estimation process started. The classification
nodes are all equal and at resting level.

At the beginning of the process (see left column of Figure 6),
the sum of shape templates in the top-down path is a
homogeneous mixture of every known shape. Since all shapes
are stored in a centered fashion, even this sum provide a cue
to translation estimates. Over time, the pose estimation fields
build up peaks, which compete within the fields for selection.
As these estimates sharpen, the cross-correlations at every stage
of pose transformation produce increasingly precise input to the
pose fields. The match between the transformed input image and
the stored shapes improves at the same time (middle column of

Figure 6). The pose estimates converge somewhat earlier than
the neural nodes that make shape selection, which operate on a
slightly slower time scale (right column of Figure 6). At this point
both the top-down pathway as well as the bottom-up pathway are
fully converged onto candidate estimates, but are still reactive to
changes in the input (e.g., caused by rotating or shifting the target
object). Both bottom-up and top-down pathways participate in
this bootstrap process.

3.3. Time Course of Movement Generation
Figure 7 illustrates the time line of the neural dynamics of
behavioral organization of movement generation. Initially, none
of the movement intention nodes is active, since no object has
been recognized yet. When all fields of the pose estimation
system have stabilized a peak, movement generation is initiated.
The approach behavior and the open hand behavior become
active at the same time and unfold in parallel. The open hand
behavior terminates once the hand is open, while the approach
behavior continues until the wrist of the arm has reached a certain
target point and the hand is oriented correctly. The successful
completion of either behavior is signaled through the respective
CoS node. Once both CoS nodes become activated, the grasp
behavior is activated. The arm moves the remaining distance
to the object while the hand is closing. Pressure sensors in the
fingers signal to the CoS node of the grasp behavior which is
activated once a grasp is detected. The grasp intention node is
deactivated by its CoS, and the lift behavior is activated. The
series of snapshots of the robot arm during the reaching toward
and grasping of an object is shown in Figure 8. This instance of
reaching and grasping contains online updating as the object is
moved and rotated by the experimenter after the movement has
been initiated. We examine online updating next.

3.4. Three Experiments to Probe Online
Updating
The task is to successfully reach for and grasp an object that
is positioned on the table in front of the robot and then lift
it up without losing grip, even if the object’s pose is changed
after the beginning of a trial. To assess performance, we count
a grasp and lift as successful, if the object is lifted without losing
grip. Failures include tipping over the object, closing the fingers

FIGURE 7 | Time course of the elementary processing units of

movement generation. Each line represents the activation level of the

intention node of a behavior through line thickness.
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FIGURE 8 | This figure shows snapshots of a reaching and grasping trial. The third and fourth snapshot show a human intervening in the scene by moving and

rotating the target object. Shortly after this intervention, the grasp approach adapts to the new pose leading to a successful grasp in the new pose followed by lifting

up of the object.

without grasping, and not lifting the object. In addition, we also
count trials as failed if the experimenters have to intervene with
a safety stop due to singular arm configurations or any form of
collision. In some cases, the grasp was executed successfully even
without precise estimates (e.g., orientation estimate is off, base
shape is not detected correctly). We count such trials as errors in
classification.

For the experiments, we used a set of three simple wooden
objects. The objects relate to the different grasps that the
architecture is capable of executing: One cylinder and two
cuboids, one with square base shape, the other with an oblong
base shape (see Figure 9 and Table 1). The object recognition
system uses three geometric shapes that loosely fit the base shapes
of the objects, that is, scale and aspect-ratio of the templates are
close to those of the objects.

For practical reasons, the trunk degree of freedom of the
robot was kept constant at 0◦ or −45◦ during all trials. This is
a small number of trials to singular arm configurations, which
our approach did not explicitly avoid. This limitation should
be overcome in future implementations and illustrates how the
trunk degree of freedom helps to cover a large workspace.

3.4.1. Grasping without Online Updating
In a first experiment, we placed a single object from the
object pool onto the table in front of the robot. We picked
five different positions, P1–P5 (see Figure 10) and multiple
orientations for the square cuboid (0◦, 30◦, 60◦) and the oblong
cuboid (0◦, 45◦, 90◦, 135◦). For the cylinder, we repeated each
trial three times, for a total of 50 trials in experiment 1.

The performance of plain grasps without online updating
is shown in Table 2. To minimize singular arm configurations,
the sideways grasps were executed with the trunk joint at
−45◦, while the top grasps were executed with a trunk joint
angle of 0◦. Of the 50 trials, 46 were successful (92% success
rate). Individual trials failed due to a singularity in the arm
configuration (twice) or failed recovery from a lost peak in
the estimation architecture (twice). Table 2 also contains the

FIGURE 9 | The three simple wooden objects used in the experiments

are shown. Each object is colored blue on its top surface. Blue was used as

query cue to indicate the target object.

TABLE 1 | Object sizes.

Object Size axis 1 Size axis 2 Height

Cylinder (cm) 7 7 25

Square (cm) 7 7 25

Rectangle (cm) 15 5 12

classification rate in all successful trials. In three trials, the base
shape of the object was not detected correctly, but nonetheless
the object was grasped successfully.

3.4.2. Online Updating of Position
The second experiment investigates the tracking capabilities for
position changes. For this experiment, we placed the cylindrical
object in one of the five starting positions P1–P5. For positions
P1–P4, we moved the object by hand toward position P5 once the
arms started moving, covering a distance of 10 cm in roughly one
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FIGURE 10 | This is the object placement layout for all experiments.

Point P5 is located at a distance of 45 cm along the x-axis of the world

coordinate frame originating in the center of the robot’s trunk. The shifts of

points P1 to P4 are illustrated.

TABLE 2 | Results of first experiment.

Cylinder Square Oblong Total

cuboid cuboid

No. of successful trials 14 13 19 46

Success rate (%) 93.33 86.67 95 92

Successful classifications 12 12 19 43

Classification rate (%) 85.71 92.31 100 93.48

to two seconds.When the object started in position P5, we instead
moved the object in the direction of one of the four other starting
positions by 10 cm. These eight conditions are tested three times
for a total of 24 trials, which the robot performed at a fixed trunk
joint angle of 0◦.

Of the 24 trials, 21 were successful (87.5% success rate). In
seven trials the cylinder was erroneously recognized as a square
cuboid from the start or after the hand of the experimenter had
touched the object to move it to the new position (see Table 3

for a listing of successful trials per condition). Three trials were
counted as failed due to a safety stop of the experiment. In two
of these cases, the arm configuration reached a singularity, in the
third case the fingers almost collided with the object due to an
erroneous position estimate. Table 3 also lists the rate of correct
classification in successful trials.

3.4.3. Online Updating of Orientation
For the third experiment, we picked the two cuboids, which
require a distinct hand orientation for grasping. Each object
was placed in one of the starting positions P1–P5. Once the
arm started moving, we turned the object in place around 45◦

within about one second. We repeated this three times for each
object and starting position, altering the starting orientation and
turning direction, ending up with 30 trials. Grasps of the square
cuboid were performed with a trunk joint angle of 45◦, while the
top grasp object was grasped with the trunk being at 0◦ (see first
experiment).

Out of 30 trials, 25 were successful (83.34% success rate, see
Table 4). We repeated two trials for the square cuboid due to an

TABLE 3 | Results of second experiment.

P1 → P5 P2 → P5 P3 → P5 P4 → P5 Total

No. of successful trials 3 3 3 2 11

Success rate (%) 100 100 100 66.67 91.67

Classification rate (%) 66.67 0 66.67 50 45.45

P5 → P1 P5 → P2 P5 → P3 P5 → P4 Total

No. of successful trials 3 1 3 3 10

Success rate (%) 100 33.33 100 100 83.33

Classification rate (%) 100 100 100 66.67 90

TABLE 4 | Results of third experiment.

Square P1 P2 P3 P4 P5 Total

No. of successful trials 2 3 3 3 2 13

Success rate (%) 66.67 100 100 100 66.67 86.67

Oblong P1 P2 P3 P4 P5 Total

No. of successful trials 3 1 2 3 3 12

Success rate (%) 100 33.33 66.67 100 66.67 80

erroneous estimate of base shape (circle instead of square). Of
the two failed trials for the square object, one was a safety stop
near a singular arm configuration, while the other failed due to
an error in behavioral organization (the fingers did not open).
The three failed trials of the longish cuboid comprise twowrongly
estimated orientations (and safety stops before collision) and one
approach was aborted by the behavioral organization caused by a
reverse detection in an estimation field.

4. CONCLUSION

The neural dynamics architecture presented in this paper
integrates modules that have previously been developed for
scene representation, concurrent object classification and pose
estimation, behavioral organization, and movement generation
into one big dynamical systems. Sequences of perceptual events
induce reach and grasp actions, as the architecture goes through
controlled instabilities. As a result, the system is open to time-
varying sensor information at all times. We demonstrated on-
line updating of reaching and grasping movements to shifts
and rotations of the object. The architecture also responds
flexibly at the level of organization. When a target object is
removed, the perceptual and motor actions are abandoned and
the system returns to scene exploration. When the concurrent
object classification and pose estimation fail to converge, for
instance, because the object is too different from a learned
template, then the perceptual process terminates and the system
similarly returns to scene exploration.

The stability of all relevant states in the neural dynamics is
critical for both integration and online updating. Attractor states
are robust to the changes in the dynamics of a component that
occur as the component is coupled into the larger architecture.
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Instabilities, at which attractor states disappear, are controlled
through the mechanism of a condition of satisfaction.

Although we have evaluated the implementation of the
architecture quantitatively, the current model is a demonstration
of principle, that has not yet fully exploited all features of the
approach. We did not use the size estimates obtained from the
object classification system, for instance, and have made use
of only a small number of shape templates, which in addition
resemble the target objects and do not show generalization to
objects of different shape. The avoidance of obstacles was not a
focus of this work. We believe that the human-like organization
and the smooth temporal structure of behavior in the neural
dynamics architecture will prove most useful when cognitive
robots cooperate with humans. On-line updating is critical there,
as human users will not always wait for their turn.

Finally, we did not yet address the issue of learning to
grasp. There are two obvious parts of the architecture that
could benefit from learning. One is the set of geometric shapes
used during classification and pose estimation, the other is
the grasp type associated with each geometric body. Naturally,
the set of geometric shapes should arise from exposure to a
large amount of graspable objects. Any learning process has
to address the challenge of making the decision if the shape
of an object can be sufficiently matched by an existing shape
from the set or if the object shape should be added to the
set of templates. This may also include a pruning process
to remove shapes if they become obsolete by adding better-
fitting shapes to the set. The links between grasp types and

geometric shapes will also have to be established by a learning
process. To decide if a grasp type is suitable for a geometric
body (considering the base shape and the height), one may
use a reinforcement learning approach by trying different grasp
types for the same object and using the CoS activation (or its
absence) of the grasping and lifting behaviors as positive or
negative reinforcement signals. The links may also be established
by learning from demonstration (see, for example, Herzog
et al., 2012). If both learning of geometric shapes and links
to grasp types are done concurrently, one might run into a
chicken-egg problem of not being able to learn one without
a mature state of the other. A developmental process of first
restricting possible shapes and executable grasps to small and
primitive sets and bootstrapping the architecture with increasing
complexity over time is a possible procedure to overcome this
dilemma.
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Loop: Representing Behavior
Relevant External Situations
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In the context of the dynamical system approach to cognition and supposing that brains

or brain-like systems controlling the behavior of autonomous systems are permanently

driven by their sensor signals, the paper approaches the question of neurodynamics

in the sensorimotor loop in a purely formal way. This is carefully done by addressing

the problem in three steps, using the time-discrete dynamics of standard neural

networks and a fiber space representation for better clearness. Furthermore, concepts

like meta-transients, parametric stability and dynamical forms are introduced, where

meta-transients describe the effect of realistic sensor inputs, parametric stability refers

to a class of sensor inputs all generating the “same type” of dynamic behavior, and a

dynamical form comprises the corresponding class of parametrized dynamical systems.

It is argued that dynamical forms are the essential internal representatives of behavior

relevant external situations. Consequently, it is suggested that dynamical forms are the

basis for a memory of these situations. Finally, based on the observation that not all brain

process have a direct effect on the motor activity, a natural splitting of neurodynamics

into vertical (internal) and horizontal (effective) parts is introduced.

Keywords: neurodynamics, behavior control, sensorimotor loop, mathematical concepts, neural representations

1. INTRODUCTION

From a neurocybernetics perspective the dynamical systems approach to embodied cognition can
be traced back to the work of Ashby (Ashby, 1960) and von Foerster (Von Foerster, 1960). The
assumption is that a living organism, in order to survive, must be able to develop internally some
stable “entities” (von Foerster) which refer to or classify objects and situations in the physical
world. These “entities” are the result of cognitive and sensorimotor processes developing through
continuous interactions of an individual with its specific environment. On the other hand, cognitive
and sensorimotor processes, relevant for the behavior of the individual, depend on the formation
of these stable structures; i.e., they are complementary in the sense that one defines or implies the
other. The assumption was, that an organism must be able to relate discrete internal structures to
relevant aspects of its own interaction with its environment.

Although, the underlying processes are continuous these internal “entities” have to be discrete
because the referenced objects or situations are discrete features of the environment. They also
have to be “stable” in a certain time domain. On the other hand, due to changing sensorimotor or
cognitive processes, they have to get “unstable” in the sense that different references have to be built
up; i.e., new “stability domains” have to be visited or formed.
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Pasemann Sensorimotorloop

To pursue the dynamical systems approach to embodied
cognition in this spirit, this paper will consider an individual as
an autonomous system called an animat. An animat Dean (1998)
and Guillot and Meyer (2001) is a simulated or physical robot
equipped with sensors and actuators, and a neural network for
behavior control. The neural controllers then have to operate
in the so called sensorimotor loop, getting inputs from sensory
signals and generating motor signals, which in turn will lead
to new sensor inputs. The essential role of these closed loop
processes for living or live-like systems has been discussed over
several decades now from various points of view (Bishop, 1960;
Beer, 1995; Di Paolo, 2003; Philipona et al., 2004; Hülse et al.,
2007; Zahedi et al., 2010; Sándor et al., 2015). Here we use a purely
formal approach and carefully analyze the dynamical description
by making successive approximations to these processes.

Neurocontrollers, mimicking their biological counterparts,
are considered as recurrent neural networks which in general
allow for dynamical properties. That is, for fixed synaptic weights,
bias terms and inputs such a network can be described as a
dynamical system. Then, assuming that a neurocontroller is
driven by slow sensor inputs, it will be properly described as a
parametrized family of dynamical systems, where sensor inputs
(and proprioceptive signals as well) are considered in a first
approximation as parameters of such a family. Furthermore,
for every parameter value the corresponding dynamical system
may have a manifold of different attractors. The postulated
internal “entities” then will be identified with the basins of
attraction of parametrically stable neurodynamical systems. The
interaction with the environment thenmay change the references
to situations in the external world by changing parameter values
given, for instance, by the sensor signals. This process of changing
references will be described by so-called bifurcations.

For theoretical reasons, parameters are assumed to change
so slowly that the system can approach its asymptotic states.
This is often not the case for realistic sensor inputs. So, in a
second step we will introduce sequences of neural states called
meta-transients as for instance in Negrello and Pasemann (2008)
Negrello (2011), and Toutounji and Pipa (2014).

In general these meta-transients can not be given an
interpretation as trajectories of a dynamical system, mainly
because the inducing sequence of sensor signals is not a trajectory
of a dynamical system on sensor space. Instead, because of the
closed loop, it is superposition of movements in the environment
and the result of motor actions. The case where one has access
to controlling parameters has often been discussed in geometric
control theory (Gardner, 1983; Sussmann, 1983; Respondek,
1996; Kloeden et al., 2013). There then one can generalize the
concept of attractors and the like. Although we do not find this
approach applicable for the dynamics in the sensorimotor loop
we will work with a comparable view.

Finally, these meta-transients have to be mapped to motor
neurons, inducing then actions of the animats body; i.e., its
behavior. Due to this projection not all elements of the neural
system will be involved directly in the generation of motor
signals. This leads naturally to a fiber structure over the motor
space allowing to introduce the concepts of vertical or internal
neurodynamics, having no direct effect on behavior, and a

horizontal or effective neurodynamics, the projection of which
generates the movements of the animat.

To clarify concepts, the paper will address the discrete-time
neurodynamics of networks composed of standard sigmoidal
neurons of additive type. Using this simplifying setup, it
is assumed that the aspects described in the following are
transferable also to neural systems employing more biologically
plausible or other types of neurons. The basic concern here is to
specify the role of, for example, attractors, basins of attraction,
transients, bifurcations and stability properties in the context of
systems acting in a sensorimotor loop.

Approaching the description of neurodynamics in the
sensorimotor loop in three steps, we will first define the type of
neurodynamics studied in this paper (Section 2), exemplifying it
by somewell known results. Assuming that sensor inputs are slow
when compared to the activity dynamics of the neural system, we
argue in Section 3 that neural systems in the sensorimotor loop
are effectively described by parametrized families of dynamical
systems, were parameters correspond to the sensor inputs. Other
parameters, not considered here, are, for instance, signals coming
from proprioceptors and the synaptic weights of the network,
the change of which usually is associated with learning. Referring
to the more realistic situations, meta-transients are introduction
in Section 4. Finally, Section 5 discusses the generation of
motor signals resulting from a projection of attractor transients
or meta-transients, respectively, to the motor space; this then
allows to differentiate between so called effective and internal
neurodynamics. Finally the sensorimotor loop is closed through
the environment by a formal mapping from motor space M to
sensor space S. The paper concludes with a discussion of the
possible role the introduced concepts can play for understanding
neural representations of behavior relevant situations in the
external world and, correspondingly, for a notion of memory
which is not based on specific attractors like, for instance, fixed
point attractors in Hopfield networks.

2. NEURODYNAMICS

Besides the body of an animat, three different parts of it will be
discerned: The “brain” considered as a recurrent neural network
N with n neurons. Its sensor neurons will prescribe the sensor
space S, and the output neurons will define the motor space M.
Sensor space S andmotor spaceM are the interfaces of the “brain”
N to the physical world. Assuming strictly the point of view of an
animat, the world for an animat is what happens on its sensor
surface. We describe these parts more concrete as follows.

A state a(t) ∈ A ⊂ R
n of the neural system N at

time t is characterized by the activation of all its n neurons.
Correspondingly, the state space A is called the activation space
or phase space of N. It is a manifold of dimension dim(A) = n.
Neural states may be represented in an equivalent way by the
outputs o(t) of the n neurons, and we call the corresponding state
space of the network N its output space A∗.

The sensor space S consists of all possible sensor inputs, i.e.,
a sensor state s(t) ∈ S at time t consists of all sensor values at
time t. The sensor space is assumed to be a bounded manifold
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S of dimension dim S = m, where m denotes the number of
distinct sensor elements. S may be subdivided into modality
spaces corresponding, for example, to visual, acoustic, or haptic
inputs.

A motor state m(t) ∈ M at time t is given by the activation
of the motor neurons at time t driving the various actuators
of the animat. Thus, the motor space of the animat is an open
bounded manifold M of dimension dimM = k, the number of
all its motor neurons. The motor space M may be segmented
into different domains responsible e.g., for head movement, eye
movement, driving wheels, arms, and so forth. Special domains
may be related to corresponding domains in sensor space: Fixed
infrared sensors may be, for instance, related only to the wheels
domain; but with pan-tilt-camera vision is related to wheels, and
pan-tilt-motors, et cetera.

2.1. Discrete-Time Neurodynamics
For a general introduction into the theory of dynamical system
see for example (Abraham and Shaw, 1992; Hirsch et al.,
2012; Strogatz, 2014). Here, in a first approximation we will
understand the neural system N as a discrete-time dynamical
system (Kloeden et al., 2013); i.e., on its activation space A there
exists a differentiable map φ : Z × A → A, called the flow, with
the following properties:

(i) φ(0, a0) = a0, for all a0 ∈ A.
(ii) φ(s+ t, a0) = φ(s,φ(t, a0)), for all s, t ∈ Z and a0 ∈ A ,

were Z denotes the set of nonnegative integers. In the following
we consider a neural network N with activation space A ⊂ R

n,
writing it as N(A), which is composed of n standard additive
neurons with sigmoid transfer function τ : = tanh. The flow of
this system is then generated by a diffeomorphism f : A → A
given in component form by

ai(t + 1): = θi +

n
∑

j=1

wij τ (aj(t)) , i = 1, . . . , n , (1)

where θi represents a constant bias term of neuron i, wij the
synaptic strength or weight from neuron j to neuron i, and τ
denotes the transfer function. Thus, the output of neuron i is
given by oi: = τ (ai), and for the output space we have A∗ ⊂

(−1, 1)n.
The neural system N(A), considered as a dynamical system,

will be denoted by (A, f ). In this section terms like the bias terms
θi and synaptic weights wij are assumed to be constant. This
means that we consider an isolated system; i.e., there is no neural
plasticity involved, and sensor inputs are not considered.

Furthermore, we endow the vector space A with an Euclidean
metric dτ induced by the transfer function τ ; i.e.,

dτ (a, a
′): = d(τ (a), τ (a′)) =

√

√

√

√

n
∑

i=1

(τ (ai)− τ (a
′
i))

2 .

Due to the saturation domains of the sigmoid τ the distance of
activity states corresponding to very high (positive or negative)
activations is very small.

The flow on the state space A is then defined by

φ(t, a0): = a(t) = f t(a0) = f ◦ f ◦ . . . ◦ f ◦ f
︸ ︷︷ ︸

t times

(a0) ,

where a0 ∈ A is called the initial state. The flow φ satisfies the
group property; i.e., with initial condition φ(0, a0) = a0 one has

φ(n,φ(m, a=)) = f n ◦ fm(a0) = f n+m(a0) = φ(n+m, a0) .

Example 1: The dynamics of 2-neuron networks have been
analyzed extensively, in the continuous-time case as well as the
discrete-time case, because already these simple systems, under
certain conditions, can show all possible dynamical features:
They can exhibit fixed point attractors as well as periodic,
quasiperiodic and chaotic attractors, and even show co-existing
attractors for one and the same condition (Wilson and Cowan,
1972; Marcus and Westervelt, 1989; Wang, 1991; Beer, 1995).
Here we recall some of the results, which can be found for
example in Pasemann (2002), to demonstrate basic properties
of recurrent neural networks for this most simple case. So, let
(A, f ) denote the two-dimensional system given by two neurons
(compare Figure 1) satisfying the equations

a1(t + 1) : = θ1 + w11 τ (a1(t))+ w12 τ (a2(t)) ,

a2(t + 1) : = θ2 + w21 τ (a1(t))+ w22 τ (a2(t)) . (2)

As a bounded dissipative dynamical systems, the time
development of neural states can be characterized by attractors
and transients. We first recall some basic definitions.

A time-sequence of states

O(a0): = {a0, a(1), . . . , a(t), . . .} , a0 ∈ A , (3)

is called an orbit or a trajectory of the system starting from a0 ∈ A.
An orbit O(a0) is called periodic of period p ≥ 1 if a(p) = a0,
and p is the smallest integer such that this equation holds. For
p = 1 the orbit is called a stationary state or a fixed point of
the system. A p-periodic point is a state on a p-periodic orbit
O(a0) = {a0, a(1), . . . , a(p)}. It corresponds to a fixed point of
the p-th iterate f p of the map f :

f p(a): = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

p−times

(a) = a , a ∈ A .

Let U ⊂ A denote a subset which is invariant under the action
of f ; i.e. f (U) = U. A closed and bounded set Ŵ ⊂ U is called

FIGURE 1 | A 2-neuron network.
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an attractor of the dynamical system (A, f ), if f (Ŵ) = Ŵ and there
exists an ε > 0 such that

d(a0,Ŵ) ≤ ε, a0 ∈ U, implies that d(a(t),Ŵ) → 0 as t → ∞ .

There are different types of attractors: Fixed points, periodic
orbits (a finite set of periodic points) as in Figure 2, quasiperiodic
orbits represented by a dense set of points on a closed line, and so
called chaotic attractors which are characterized, for instance, as
a fractal set in A (compare also Figure 3 and Abraham and Shaw,
1992; Hirsch et al., 2012; Strogatz, 2014). If Ŵ is the only attractor
of a system (A, f ), then it is called a global attractor.

The basin of attraction B(Ŵ) of an attractor Ŵ is the set of all
initial conditions a0 ∈ A such that d(a(t),Ŵ) → 0 as t → ∞.
Thus, the basin of attraction of Ŵ is considered as the set of all
orbits attracted by Ŵ. A transient O(Ŵ) of a system (A, f ) is an
orbit in the basin of an attractor Ŵ.

A dynamical system (A, f ) can have more than one attractor.
Then we say that the system has several co-existing attractors.
For instance, in Figure 4 four co-existing period-2 attractors
and their basins with regular boundaries are shown. Figure 5
displays several co-existing attractors separated by fractal basin
boundaries.

FIGURE 2 | Examples of attractors in (o1,o2)-output space for a two

neuron system (2). (Left) A fixed point attractor. (Right) A period-5 attractor.

(Parameters are given in Table A1 in the Appendix referring to networks sys1

and sys2.)

FIGURE 3 | Examples of attractors in (o1,o2)-output space for a two

neuron system (2). (Left) A quasiperiodic attractor. (Right) A chaotic

attractor. (Parameters are given in Table A1 in the Appendix referring to

networks sys3 and sys4.)

Often one uses the metaphor “landscape” to describe a
dynamical system (A, f ) qualitatively. This refers exactly to
what we defined as the flow of the dynamical system (A, f ).
One can think about water running downhill into a sink
when referring to transients approaching an attractor. Basin
boundaries then correspond to water partings. An attractor-
landscape, denoted by [A], then visualizes the different types
of attractors present in the system together with their basins
of attraction and basin boundaries as shown in the figures
above.

Two different dynamical systems can have similar landscapes
in the sense that there is the same number and type of
attractors involved; but attractors, as well as the corresponding
basin boundaries, may be deformed with respect to each
other. If one can map the attractor-landscape of one system
onto the attractor-landscape of the other system such that
orbits are mapped one-to-one onto each other by preserving
the time direction, then the qualitative behavior of such
systems is comparable. This situation is formalized by the
following

Definition 1. Two discrete-time dynamical systems (A, f ) and
(B, g) are said to be topologically conjugate, if there exists a
homeomorphism ψ : A → B, such that f ◦ ψ = ψ ◦ g, i.e., such

FIGURE 4 | (Left) Four co-existing period-2 attractors in (o1,o2)-output

space. (Right) Their basins of attraction (for parameters see Table A1,

network sys5).

FIGURE 5 | (Left) A period-3 attractor (green) and a period-7 attractor (red) in

(o1, o2)-output space, co-existing with two chaotic attractors, one cyclic with

period 14. (Right) The corresponding basins of attraction; the two basins of

the chaotic attractors are white. The system is given as sys6 in Table A1.
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that the following diagram commutes:

f
A −→ A

ψ ↓ ↓ ψ

B −→ B
g

3. PARAMETRIZED FAMILIES OF
DYNAMICAL SYSTEMS

In the last section the bias terms θi and synaptic weights wij,
i, j = 1, . . . , n, were held constant, and one can consider them
as parameters of the neural system (A, f ). For different bias terms
or synaptic weight one gets different dynamical systems. Thus,
we introduce a parameter space Q ⊂ R

q for a neural system (A, f )
as a q-dimensional Euclidean manifold (Q, h) with metric h. A
parameter vector ρ = (θ ,w) ∈ Q is given by the bias vector
θ and the weight matrix w of the network N(A). Thus, one has
dimQ = q = n · (n+ 1).

As a next step we argue that the sensor inputs to the
neural system N(A) can be assumed to act as parameters of
the neurodynamics. Because brain-like systems will always act
in a sensorimotor loop, the sensor signals s(t) ∈ S will always
drive the neurodynamical system N(A). Assuming in a first
approximation that the sensor signals s(t) change so slowly that
the orbits of the neural system are always able to converge to an
attractor, then they can be considered as varying parameters. For
that reason we will subsume the sensor signals s(t) as part of the
bias terms θ(t): = θ̂ + s(t), with θ̂ = constant.

A neural system then has to be described as a parametrized
family of discrete-time dynamical systems denoted by (A, f ;Q),
with A ⊂ R

n the activation space, Q ⊂ R
q the parameter

space, and a differentiable map f : Q × A → A. For a specific
parameter vector ρ ∈ Q, we write fρ : A → A for the
corresponding dynamical system, and denote the q-parameter
family of neurodynamical systems also by (A, fρ), ρ ∈ Q. The
only varying parameters considered in the following are the bias
terms θi, i = 1, . . . , n. As stated above, other parameters of the
animats brain, like synaptic weights wij are constant.

We may now look at the “brain” as a fiber structure over
parameter space Q (compare Figure 6): To every ρ ∈ Q there
is attached the activation space A together with the flow ψρ

corresponding to ρ ∈ Q; i.e., there is a whole attractor-landscape,
denoted by [A]ρ , attached to every parameter ρ ∈ Q.

3.1. Parametric Stability
Now, given two different parameter vectors ρ and ρ′ in Q, one
may ask if the corresponding attractor-landscapes are similar
or not in the sense that there exist a homeomorphism carrying
oriented orbits onto oriented orbits, especially attractors onto
attractors. Using definition 1 we introduce the following

Definition 2. Given a neurodynamical system (A, f ;Q). Two
different parameters ρ, ρ

′ ∈ Q are said to be homologous

FIGURE 6 | The fiber structure of a neural system: there is an

attractor-landscape [A]ρ attached to every parameter ρ.

if the corresponding dynamic systems (A, fρ) and (A, fρ′ ) are
topologically conjugate; i.e., if the following diagram commutes:

fρ
A −→ A

ψ ↓ ↓ ψ

A −→ A
fρ′

If two parameter vectors ρ, ρ
′ ∈ Q are homologous, then

the corresponding neurodynamics have qualitative the same
behavior; i.e., attractors and basin boundaries may be deformed.
In Figures 7, 8, for example, attractors and output signals
of an oscillatory 2n-network with two different bias terms
are displayed. The two attractor-landscapes [A]ρ and [A]ρ′

corresponding to homologous parameters θ , θ ′ are qualitatively,
i.e., topologically, the same.

This leads us to an essential concept, that of parametric
stability, which we define in correspondence to the concept of
structural stability in the general theory of dynamical systems
(Thom, 1989).

Definition 3. Given a neurodynamical system (A, f ;Q) and a
parameter vector ρ0 ∈ Q. Then the system (A, fρ0 ) is called
parametrically stable, if there exists an ǫ > 0 such that for every
ρ ∈ Q satisfying ||ρ−ρ0|| < ǫ the systems (A, fρ) are topologically
conjugate to (A, fρ0 ).

Definition 4. Given a neurodynamical system (A, f ;Q). The
domain of parametric stability corresponding to a parameter
vector ρ0 ∈ Q, denoted by P(ρ0) ⊂ Q, is the maximally connected
parameter set in Q containing all ρ ∈ Q which are homologous to
ρ0 ∈ Q.

Thus, all systems (A, fρ) with ρ ∈ P(ρ0) are topologically
conjugate to (A, fρ0 ).

Parametrically stable systems are essential for modeling
experimental situations: If the experimental inaccuracy is smaller
than a domains of parametric stability, then the model remains
valid in spite of experimental perturbations. More general,
parametric stability is an essential concept, because interesting
real (i.e., physical, biological, etc.) phenomena are of course
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FIGURE 7 | (Left) Attractor in (o1, o2)-output space. (Right) Output signals of the 2-neuron oscillator Osci1 with parameters given in Table A1.

FIGURE 8 | (Left) Attractor in (o1, o2)-output space. (Right) Output signals of the 2-neuron oscillator Osci2 with parameters given in Table A1.

those which are stable under small perturbations of their defining
conditions. For instance, a convergent neural network may stay
convergent under a small perturbation of their parameters.

3.2. Bifurcations
As a second step to describe the dynamics of neural systems we
have assumed that the dynamics depends on control parameters,
that is, on variables that vary much more slowly than the
states of the system. Suppose these parameters change along
a smooth path ρ(t) ∈ Q. If all ρ(t) for t ∈ [t1, t2] are
homologous, the corresponding neurodynamical systems will
show qualitatively the same behavior, although the attractors and
their basins in activation space A will move and deform. To such
a situation we refer to as a morphing attractor-landscape with
its morphing attractors (Negrello and Pasemann, 2008; Negrello,
2011; Toutounji and Pipa, 2014).

But the path ρ(t) may reach a point ρc in parameter space
Q where the behavior of a system changes qualitatively, i.e., the
type and/or numbers of attractors will change, when the path
crosses ρc. Such points ρc ∈ Q are called critical parameters
or bifurcation points. Thus, bifurcation points are associated

with the appearance of topologically non-conjugate systems.
The values of ρc ∈ Q are called the bifurcation values. The
appearance of bifurcations in a system are often studied with
the help of bifurcation diagrams. These are demonstrations of
attractor sequences resulting from the variation of only one
control parameter (compare Figure 10).

The (closed) subspaceK ⊂ Q of all bifurcation points is called
the bifurcation set of the system (A, f ;Q). Bifurcation sets are sets
in Q (i.e., curves, surfaces, hyperspaces) which separate different
domains of parametric stability.

Example 2: As the most simple example we will discuss a
single neuron with self-connection w as a 2-parameter family of
dynamical systems (A, f ;Q) given by

a(t + 1) = θ + w · τ (a(t)) , t ∈ Z , (4)

(compare also Pasemann, 1993a for a single neuron with logistic
function σ (x) = (1 + e−x)−1 as transfer function). Stability
analysis tells us that for |w| < 1 there exist only global fixed
points. Otherwise one will find bi-stable systems for w > 1, and
a domain with global period-2 attractors for w < −1. Typical
bifurcation diagrams are shown in Figure 10.
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FIGURE 9 | The parameter space Q ⊂ R2 of a single neuron with

self-connection w with its three domains of parametric stability: P0

(white) relates to global fixed point attractors, P+ (red) to bi-stable

systems, and P− (green) to period-2 oscillations. These domains are

separated by bifurcation sets K
+ and K

−, respectively.

In Figure 9 the three different domains of parametric stability
in Q ⊂ R2 are shown: Here P

0 (white) denotes the parameter
domain for systems having a global fixed point attractor,P+ (red)
refers to bi-stable systems, and P

− (green) to oscillatory systems.
They are separated by bifurcation sets K+ and K

− in Q. Thus,
a single neuron with self-connection comes in three dynamical
forms (compare definition 5).

At K+, that is for w ≥ 1, there are saddle-node bifurcations,
and at K

−, that is for w ≤ −1, there are period-doubling
bifurcations. This can be clearly seen in the bifurcation diagrams
of Figure 10. They show that a single neuron with positive self-
coupling can act as a hysteresis element (short term memory),
whereas a neuron with negative self-connection can serve as a
switchable oscillator (compare also Pasemann, 1993a).

What should be taken from this simple example is, that
in situations where there are parameter domains for which
there are coexisting attractors, it depends on the direction from
which a path ρ(t) in parameter space Q hits a bifurcation set
K ⊂ Q (compare Figure 10). This leads to phenomena, called
generalized hysteresis effects, demonstrating that the development
of the system depends crucially on the history of the system. And
therefore the behavior of these path-dependent systems will not
be explicitly deducible from the knowledge of their actual state.
This is one reason for the “complexity” of neural systems, and a
source of their fascinating faculties.

Having clarified the decisive role of domains of parametric
stability P ⊂ Q for the behavior of parametrized family of
dynamical systems, it is natural to associate to a non-critical
parameter vector ρ∗ ∈ Q a set of dynamical systems (A, fρ) which
are parametrically stable with respect to ρ∗ ∈ Q. With reference
to the designation of Thom Thom (1989), we give the following

Definition 5. Given a system (A, f ;Q), and let ρ0 ∈ Q denote a
non-critical parameter vector. A dynamical form of (A, f ;Q) is a
connected set Fρ0 ⊂ Diff (A) of dynamical systems (A, fρ) which
are topologically conjugate to (A, fρ0 ).

Assuming that changing parameter values correspond to
changing sensor signals, one can deduce that if a sequence
of signals stays in a certain domain of parametric stability P ,
the dynamics of the neural system stays qualitatively the same.
And therefore we can assume that the resulting behavior of the
controlled system, the animat, will not change dramatically.

4. META-TRANSIENTS

In the next step we will have to ease the restrictions on the
parameters by assuming that the sensor signals can change so fast
that the activations a(t) of the neurodynamical system (A, fρ) can
not approach an attractor Ŵ ⊂ A asymptotically.

In the following the considered parameters will be the sensor
inputs s(t) of an animat, and all other parameters are fixed. Due
to properties of the environment, or due to the behavior of the
animat, its sensor inputs may change so fast that they can not be
considered as parameters in the strict mathematical sense.

Such a situation is often described in terms of the dynamics of
non-autonomous systems. But it is different from the situations
covered by control theory (Gardner, 1983; Sussmann, 1983;
Respondek, 1996) or by skew-product systems (Kloeden et al.,
2013) in so far as a sequence of such sensor inputs is neither
the trajectory of a dynamical system in parameter space, nor
is it a well defined sequence leading to a preexisting goal.
Here the sensor inputs depend on the dynamics of the physical
environment (exo-motion) as well as on the movements/actions
of the animat itself (ego-motion). We will come to that later
again.

Assuming that parameters change almost as fast as the internal
states, the resulting sequence of states is no longer that of a
transient to one and the same attractor. Suppose the neural
system at time t is in a state a(t) on a definite transient
O(Ŵρ(t)) to an attractor Ŵρ(t) of the neural system (A, fρ(t)). If
the parameter vector a short time later satisfies ρ(t + k) 6= ρ(t)
the corresponding state a(t + k) will be an element of a different
transient O(Ŵρ(t+k)) to a different attractor Ŵρ(t+k) ⊂ A.

So, let σθ : = {s(t), s(t + 1), s(t + 2), . . .} denote such a
sequence of sensor inputs represented by a sequence of parameter
vectors θ(t) in Q. This will induce a sequence of states α(σθ ): =
{a(t), a(t + 1), a(t + 2), . . .} on A with

a(t + 1) = fρ(t)(a(t)) , that is, ai(t + 1)

= θi(t)+

n
∑

j=1

wij aj(t) . (5)

Such a sequence α(σθ ) in A will be called a meta-transient
(Negrello and Pasemann, 2008). Thus, a meta-transient is not
a transient of a dynamical system, but it is a sequence of states
a(t) ∈ A following the morphing attractors of a sequence of the
parametrized dynamical systems (A, fρ(t)). The projection of such
a meta-transient on A back to the parameter space Q then gives
the sequence of “driving” parameter values σθ .

If we define a map 8 : Q × A → A associated with the given
parametrized family of dynamical systems by

8(ρ, a) = fρ(a) , a ∈ A ,
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FIGURE 10 | Bifurcation diagrams for output space A∗ of a single neuron with self-connection w; the bias term θ is varied back and forth over the

interval. (Left) Demonstrating bi-stability and hysteresis for w = 2.0. (Right) Switching on and off a period-2 oscillator for w = −2.0.

then the elements of a meta-transient α(σθ ) are generated by this
map according to

α(σθ ) = · · · ◦ fρ(t+2) ◦ fρ(t+1) ◦ fρ(t)(a(t)) .

For example, if the input to a neuron with excitatory self-
connection is slow when compared with the internal dynamics
one will observe a clear hysteresis signal as in Figure 10. If
the input signal changes much faster, then there will not be
“jumps” at the boundaries of the hysteresis domains but a kind
of “squashed” hysteresis loop will appear, as was observed for
instance in Manoonpong et al. (2010) for the dynamics resulting
from audio input signals.

Furthermore, if all the parameter values, corresponding to the
sequence σθ of sensor inputs, lie in one and the same domain of
parametric stability P , the behavior of the animat’s body will not
change dramatically, and one may describe it as “the same.” But
if a sequence of parameter values crosses a bifurcation set K in
parameter spaceQ the systemmay behave in a very different way.

5. PROJECTIONS TO MOTOR SPACE M

All the dynamics discussed so far has the goal to generate
appropriate body movements. Therefore, the only interesting
thing here is the effect of the activities of the neural system which
activate the motor neurons. Thus, we have to project the meta-
transients α(σθ ) on phase space A to the motor space M with
dim(M) = k < n. This projection, denoted by 5 : A → M,
is assumed here to correspond to the application of a one-layer
feedforward network (compare Figure 11). The activations of the
k motor neurons then are spanning the output layer, and we
define

5(a)j: =

n
∑

i=1

wjiτ (ai) , a ∈ A, j = 1, . . . , k , (6)

where wji, i = 1, . . . , n, j = 1, . . . , k denote the weights from the
n internal neurons to the k motor neurons. The activation of the

jth motor neuronmj ∈ M having a bias value θMj is then given by

mj = θ
M
j +5(a)j , a ∈ A, j = 1, . . . , k . (7)

Such a motor neuron in general will not be connected to all of
the brains neurons. Therefore, there will be many internal states
a ∈ A which will project to identical motor activations m ∈ M.
This will give the second fiber structure of the sensorimotor loop,
where the fiber Fm ⊂ A overm ∈ M is given by

Fm: = {a ∈ A |5(a) = m} , m ∈ M . (8)

Then, what is observable is the behavior of the animat generated
by a sequence of motor states

µ(σθ ): = {m(t),m(t + 1),m(t + 2), . . .} (9)

which corresponds to a given meta-transient α(σθ ) on A; that
is, with ρ(t) ∈ Q, a(t) ∈ A, and bias terms of motor neurons
θ
M ∈ R

k one has

m(t) = θ
M +5 ◦8(ρ(t), a(t)) . (10)

From the projection argument it is clear that not the whole state
space A is of direct relevance for the behavior of the animat. It is
obvious that the activity of neurons not connected to the motor
neurons do not have a direct effect on the behavior of the animat.
Therefore an attractor in A, if it is a fixed point, a periodic orbit
or even a chaotic attractor, may be projected to only one and the
same motor state m ∈ M; attractors, their transients or meta-
transients may then have little or no effect on motor activities at
all.

To reflect this property we introduce a splitting of every state
a ∈ A into a so called horizontal and a vertical part; i.e.,

a = av + ah , with 5(av): = 0 . (11)
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And due to this splitting we have a direct decomposition of the
space of brain states A into horizontal and vertical parts; i.e.,

A = Av ⊕ Ah , (12)

where Av is given as Av = ker 5.
Let there be l ≥ k internal neurons being directly connected

with neurons in the motor layer; they serve as an l-dimensional
input space B ⊂ Ah of the feedforward network (compare
Figure 11). Furthermore, due to the geometry of feedforward
networks (Pasemann, 1993b), in general there is a (l − k)-
dimensional linear subspace Cm ⊂ B on which the activation of
the motor neurons is constant.

The dynamics directly relevant for behavior then will actually
live in the horizontal state space Ah ⊂ A. Correspondingly, what
will lead to an effective behavior is a sequence of horizontal states
given by a horizontal meta-transient on A

α
h(σθ ): = {ah(t), ah(t + 1), ah(t + 2), ah(t + 3), . . .} . (13)

Going back to section 3 let us consider again a discrete-time
dynamical systems fρ :A → Awith fixed parameter vector ρ ∈ Q.
Then, post hock, we can introduce a well-defined splitting of the
dynamical system fρ into vertical and horizontal parts by

fρ(a) = f v
ρ
(av)+ f h

ρ
(ah) , f v

ρ
(ah): = 0 , f h

ρ
(av): = 0 . (14)

It is obvious that only the horizontal dynamics f h
ρ

: Ah → Ah

contributes to the observable behavior of an animat, whereas the
vertical dynamics f v

ρ
:Av → Av will describe brain processes which

may be associated to a dynamical kind of memory, to association,
planning, dreaming, contemplation, and the like; that is, to the
cognitive faculties of the brain.

Furthermore, suppose that two dynamical systems fρ and fρ′

with ρ, ρ′ ∈ P ,P ⊂ Q a domain of parametric stability (compare
section 3.1), are topologically conjugate. Then it is reasonable
that their horizontal components f h

ρ
and f h

ρ′
will generate motor

states inM which lead to variants of a specific behavior. The next
example gives a demonstration of this situation.

Example 3: In evolutionary robotics one often used the
motor dynamics of a system as a fitness criterion to reduce
the “ineffective” higher dimensional neurodynamics of evolved
controllers to analyzable, minimalistic solutions for which the
discussed effects could be studied (Wischmann and Pasemann,
2006; von Twickel et al., 2011; Pasemann et al., 2012). Here
only a simple example of a neurocontroller may be given by the
following recurrent neural network (Figure 11). It provides an
obstacle avoiding behavior of a Khepera-like Robot (Toutounji
and Pasemann, 2016). It uses five distance sensors (sensor layer)
and two motor neurons (motor layer).

The hidden layer (the “brain”) has eight neurons, but only
two of them project to the two-dimensional motor space M.
Though the brain dynamics runs in an 8-dimensional state
space A only a 2-dimensional subspace B ⊂ A determines the
motor activity directly. What is going on in the 6-dimensional
vertical state space has no immediate effect on the behavior
of the robot. Indirectly, of course, the dynamics on A can

FIGURE 11 | A neural network for obstacle avoidance behavior of a

two-wheeled robot. One discerns between the sensor space, the so called

“brain” (hidden layer), and the motor space.

influence the behavior of the robot; for instance, the over-critical
excitatory self-connections of the input neurons I (Figure 11)
control the turning angle of the robot at walls. The submodule in
N(A) composed of the two neurons A and B has an interesting
dynamics not influencing the motor behavior. They display a
“chaotic” meta-transient while the the robot is turning, ending up
in a period-2 attractor after a complete right turn, and in a period-
4 attractor after a complete left turn. This internal (vertical)
dynamics does not contribute to the behavior of the robot, but
can be used as a kind of memory for subsequent decisions. The
over all performance of this controller is comparable to that
of the 2-neuron network called the MRC (minimal recurrent
controller) in Hülse et al. (2004).

5.1. Closing the Loop
Every activity of the motor neurons will change the sensor input
to the system (compare Figure 12). In this sense we have a closed
loop, and one may call it the ego-motion-loop. But the essential
point is, that this loop has to go through the environment of
the system; i.e., how the motor activity is reflected by the sensor
input depends, first, on the appearance and properties of the
environment, and second, on processes in the environment itself,
called exo-motion. This may lead to a discrimination of sensor
input variations into those which are due to changes of the motor
signals, and those which are due to changes in the environment
only (Philipona et al., 2003).

That this inextricable fusion of two influences can not be
described as a control theoretical type of closed loop with
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FIGURE 12 | The sensorimotor loop through the environment.

an additional noise term is clear by two facts: First, what is
happening in the physical environment of an animat in general
will not be a well defined process, and, second, the motor
outputs, as we have seen, are not necessarily a direct reflex of
the sensor inputs. Planning, focusing, ignoring performed by the
vertical brain activation dynamics are modulating the reaction
to sensor inputs. Thus, even formally it is difficult to describe
the neural dynamics in the sensorimotor loop in terms of a
control-theoretical model.

6. DISCUSSION

The description of biological brains as dynamical systems is often
assumed to be an appropriate approach to describe cognition
and the behavior of animals (Port and Van Gelder, 1995; Thelen
and Smith, 1996). Based on the observation that the typical
activity of an animat is a reaction to its environment, we
used the sensorimotor loop to carefully approach the dynamics
hypothesis in three steps. Relying on experiences in the field
of evolutionary robotics (Nolfi and Floreano, 2000) we used
discrete-time neurodynamics to, first, describe the (isolated)
brains as dynamical systems. Having realized that (living) brains
are always driven by sensor inputs, we made clear that the
description of brains as parametrized families of dynamical
systems is more appropriate. This allowed to introduce the
concept of parametric stability which helped to formalize the
general observation that a certain behavior is robust against
“noise,” and can be classified as “the same,” although the
initializing sensor inputs vary over a larger domain.

In a third step, assuming that sensor inputs may change so
fast that they can not be assumed to serve as parameters in the
mathematical sense (compare for instance Manoonpong et al.,
2005), we were compelled to introduce the concept of meta-
transients to describe the brains activity in a sensorimotor loop.
These meta-transients in general will not be describable as orbits
of a dynamical system. Finally, we used the fact that not all of
the brains activity is directly reflected in the motor performance
to discern between the brains effective (horizontal) and internal
(vertical) activations.

In a more general sense the horizontal part is associated
more with the sensorimotor pathways, whereas the vertical part
is assigned to the higher centers of the brain, associated with
cognitive faculties of a system. Of course horizontal and vertical
processes are not decoupled and depend on each other; they are

processes on one and the same highly recurrent network. As
usual, higher centers are assumed to check the adequacy of the
activities along the sensorimotor pathways; they are modulating
the sensorimotor flow of signals. On the other hand, the vertical
processes are permanently restricted by the “horizontal” flow of
signals; otherwise, that is, without sensor inputs, they will run
freely into perhaps noxious states of brain and body.

Following a purely formal approach to neurodynamics, we
introduced in Section 3.2 the concept of parametric stability
and the associated concept of a dynamical form. We think
that these concepts may help to discuss questions concerning
the representation of objects or, in this context better, behavior
relevant situations in the external world.

From the dynamical point of view certain patterns of sensor
inputs will be associated with the existence of certain attractors
in activation space A; or otherwise stated, with the existence
of a certain attractor-landscape. Because one has to assume
that the brains dynamics is always driven by sensor inputs
(including proprioception) it is more plausible to refer to a basin
of attraction as a candidate for representing an external situation.
Taking our argument for meta-transients serious it becomes
obvious, that a dynamical form, associated with a certain type
of behavior, is a reasonable representative for behavior relevant
situations in the external world. Thus, taking parametric stability
as essential for the reproducible identification of “the same”
situations gives a reasonable conceptual basis for treating brain
dynamics induced by an ever changing complex environment.

If one approves this interpretation then it will also allow for
a less restrictive dynamical view on memory. Neural memories
usually are represented by asymptotically stable fixed points,
like in Hopfield’s associative-memory model, or are conceived
as periodic, quasiperiodic, or even chaotic attractors of neural
networks. In fact, the correspondence between attractors and
memories is one of the fundamental aspects of neural networks.
But, as we have seen, situated in a sensorimotor loop and driven
by sensor inputs, the best we can expect is that attractors of a
neural network serve as kinds of symbols, while the system always
runs on transients to these attractors (or on meta-transients). So
in a first step memory should be associated with the basins of
certain attractors. Taken that the natural situation is such that
neural systems in the sensorimotor loop run on meta-transients,
we have to assume that the union of all basins of attraction,
belonging to the possibly morphing attractors of a dynamic form,
should be identified with thememory of certain behavior relevant
external situations. We will call this kind of memory model
a blurred memory. The relation between learning and blurred
memory will be the subject of further research.
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APPENDIX

The following is a list of parameters corresponding to the
designated 2-neuron networks used for demonstrations in this
paper.

TABLE A1 | Parameters for 2-neuron neural networks (Equation 2)

discussed in the paper.

System θ1 θ2 w11 w12 w21 w22

sys1 −2.0 0.0 0.0 1.6 −1.6 0.0

sys2 −1.6 0.0 −3.0 1.6 −1.6 0.0

sys3 0.0 0.0 1.1 0.6 −0.6 0.9

sys4 −3.0 0.0 −4.8. 2.3 −2.3 0.0

sys5 0.0 0.0 −1.5 1.5 1.5 1.5

sys6 −2.51 0.0 −2.75 1.5 −1.5 0.0

Osci1 0.0 0.1 1.0 −1.0 1.0 1.0

Osci2 0.0 0.5 1.0 −1.0 1.0 1.0
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Biological motion-sensitive neural circuits are quite adept in perceiving the relative motion

of a relevant stimulus. Motion perception is a fundamental ability in neural sensory

processing and crucial in target tracking tasks. Tracking a stimulus entails the ability

to perceive its motion, i.e., extracting information about its direction and velocity. Here

we focus on auditory motion perception of sound stimuli, which is poorly understood as

compared to its visual counterpart. In earlier work we have developed a bio-inspired

neural learning mechanism for acoustic motion perception. The mechanism extracts

directional information via a model of the peripheral auditory system of lizards. The

mechanism uses only this directional information obtained via specific motor behaviour

to learn the angular velocity of unoccluded sound stimuli in motion. In nature however

the stimulus being tracked may be occluded by artefacts in the environment, such as

an escaping prey momentarily disappearing behind a cover of trees. This article extends

the earlier work by presenting a comparative investigation of auditory motion perception

for unoccluded and occluded tonal sound stimuli with a frequency of 2.2 kHz in both

simulation and practice. Three instances of each stimulus are employed, differing in

their movement velocities–0.5◦/time step, 1.0◦/time step and 1.5◦/time step. To validate

the approach in practice, we implement the proposed neural mechanism on a wheeled

mobile robot and evaluate its performance in auditory tracking.

Keywords: acoustic motion perception, binaural acoustic tracking, sound localisation, correlation-based learning,

lizard peripheral auditory system

1. INTRODUCTION

Historically motion perception has been extensively studied in the context of visual tracking. This
comes as no surprise as it is the dominant sense for humans and most animal species. In humans it
plays an important role in visuomotor coordination tasks such as catching a ball (Oudejans et al.,
1996). In the animal kingdom, motion perception is a crucial element that is relevant to sustenance
and survival. It is particularly important in conditions where the target being tracked is sporadically
occluded (Morgan and Turnbull, 1978) such as a predator tracking a moving prey that occasionally
disappears from view behind trees.

A simple correlation-based neural circuit for motion detection in vision that selectively responds
to direction and velocity given monocular visual input has been proposed decades ago by
Reichardt (1969). Such low-level motion detectors however have not been reported for audition.
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Auditory motion perception has therefore been suggested by
Carlile and Leung (2016) to exist as a higher level system,
similar to binocular, attention-modulated third-order visual
motion detectors. The authors furthermore suggest that such
third-order systems likely respond to snapshots of location
information extracted from binaural cues. However, visual
tracking experiments in the context of smooth eye pursuit that
utilised periodic occlusion of the target indicate that target
velocity may be a significant spatial information source (Barnes
and Asselman, 1992; Churchland et al., 2003; Orban de Xivry
et al., 2008).

Given a means to estimate a moving target’s relative location
and information regarding the time during which subsequent
estimates are determined, the target’s velocity can be derived.
Here we demonstrate that the target velocity for continuous
unoccluded as well as occluded acoustic targets could be learned
based on the determination of these two pieces of information.
We frame the problem of acoustic motion perception as an
active acoustic tracking task. Active acoustic tracking entails
movement of the acoustic organs to track an object, which
is a natural auditory tracking behaviour. The dynamics of
auditory tracking in cats with disconnected optical nerves, which
disabled visual processing, have been behaviourally investigated
(Beitel, 1999). The recorded head motion of these animals
while tracking a series of click sounds emitted by a rotating
loudspeaker suggested sound localisation being performed in
a series of steps. The animals first displayed a rapid saccade-
like head-orienting response to localise the target within the
frontal sound field. This was followed by successive head
movement cycles where the head would overshoot and pause,
ensuring that the target’s location remained close to the median
plane.

1.1. Auditory Localisation Cues for Spatial
Motion Perception
There are three types of cues available for auditory localisation–
the difference in arrival times of a sound (interaural time
difference or ITD), the difference in sound level (interaural
level difference or ILD) and spectral information (direction-
dependent energy minimisation over the entire frequency
spectrum due to filtering by the outer ear). Several animals
such as frogs, crickets and lizards utilise only ITD cues for
sound localisation. For these animals spectral and ILD cues
are unavailable due to lack of pinnae and the diffraction of
sound around the head respectively. Using difference cues
for localisation requires two ears with a frequency-dependent
displacement between them. Generating ILD cues requires a
sufficiently large head between the ears. The dimensions of the
head should however be at least greater than the half-wavelength
of the sound signal to successfully generate ILD cues. This creates
an acoustic shadow inside which the relative sound amplitude is
reduced. ITD cues can however be generated without the need of
such obstructions, but do depend on the displacement between
the ears and the angle of incidence of the sound with respect to
the median plane. Here we restrict ourselves to acoustic tracking
of a moving sound signal using only ITD cues extracted from
microphones.

A sound signal moving in a given direction with a constant
velocity with respect to the microphones generates dynamically
varying ITD cues. The instantaneous values of these cues are
dependent on the relative instantaneous position of the sound
signal, while the rate with which they vary is dependent on the
relative movement speed of the sound signal. Actively tracking
a moving sound signal therefore requires transforming these
relative position- and velocity-dependent cues into a desired
behaviour, for example robotic orientation or phonotaxis. One
must first determine the instantaneous spatial location of the
sound signal to within the desired threshold of the instantaneous
tracking error. This localisation must then be successively
repeated sufficiently quickly to minimise the tracking error.

1.2. Relevance of Acoustic Motion
Perception
There are several applications where actively tracking an
acoustic target can be of interest. In robot phonotaxis
applications, the robot could localise acoustic signals and
navigate toward them (Reeve and Webb, 2003; Oh et al., 2008).
In audio-visual teleconferencing systems, dynamically-steered
microphone systems that automatically orient toward a speaker
as they move about in a room could maximise the power of
the incoming audio signal or orient a video camera toward
the current speaker (Wang and Chu, 1997; Brandstein and
Ward, 2001). Social robots that respond to sound and/or speech
input from the human are another example. The verbal human-
robot interaction element in social robots is deemed to be
more natural and richer if the robot’s acoustomotor response
orients and maintains its gaze as well as auditory focus on the
subject of interest (Nakadai et al., 2000; Okuno et al., 2003) in
motion. For example, a human walks around in a room while
addressing the robot via either directed or undirected speech
commands.

Conventional acoustic tracking techniques (Liang et al., 2008a;
Tsuji and Suyama, 2009; Kwak, 2011; Ju et al., 2012, 2013;
Nishie and Akagi, 2013) are passive in that they require no
movement of the listener. All of these techniques extract ITD
cues for localisation by utilising multi-microphone arrays with
at least four microphones. Typical arrays comprise an order of
magnitude more microphones arranged in various geometric
configurations such as linear, square, circular or in distributed
arrays. ITD-based sound localisation and tracking techniques
also tend to utilise computationally intensive algorithms such as
particle filtering to compute the relative sound signal location
from raw ITD data (Ward et al., 2003; Lehmann, 2004; Valin
et al., 2007; Liang et al., 2008b; Ning et al., 2015). More
conventional approaches are based on the generalised cross-
correlation technique (Knapp and Carter, 1976) or the more
recent steered response power technique (DiBiase, 2000; DiBiase
et al., 2001; Zotkin and Duraiswami, 2004; Dmochowski et al.,
2007; Cai et al., 2010; Wan and Wu, 2010; Marti et al., 2013;
Zhao et al., 2013; Lima et al., 2015). Employing a larger
number of microphones can improve localisation accuracy but
at the expense of greater computational complexity and costly
hardware for synchronisation and processing of multi-channel
acoustic signals.
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1.3. Contribution of the Present Work
We have previously reported a system for acoustic motion
perception (Shaikh and Manoonpong, 2016) employing two
microphones that implements a neural learning mechanism.
The learning utilises a mathematical model that mimics the
functionality of the auditory processing performed by the lizard
peripheral auditory system (Wever, 1978). The system provides
sound direction information and has been characterised via bio-
faithful mathematical modelling (Zhang, 2009). The parameters
of the model have been determined from biophysical data
recorded from live lizards (Christensen-Dalsgaard and Manley,
2005). The model has also been implemented on a number
of robotic platforms as reviewed in Shaikh et al. (2016). The
neural learning mechanism has been adapted from the Input
Correlation (ICO) learning approach (Porr and Wörgötter,
2006), which itself has been derived from a class of differential
Hebbian learning rules (Kosko, 1986). The neural mechanism
is considered to be a first step toward the development of a
biologically-plausible neural learning mechanism for acoustic
motion perception. The mechanism has been validated in
simulation for tracking a continuous unoccluded acoustic signal
moving with a constant and unknown angular velocity along a
semi-circular trajectory. It has also been shown to learn various
target angular velocities in separate simulated trials.

Here we implement the neural learning mechanism and
compare its tracking performance for three different types of
sound signals–continuous unoccluded, periodically occluded
and randomly occluded. We first implement the neural
mechanism in simulation that allows a robotic agent to learn
to track a virtually-moving continuous unoccluded sound signal
for a set of three different and unknown target angular
velocities. As earlier the virtual sound signal is a pure
tone moving along a semi-circular trajectory. To validate the
tracking performance in practice, the learned synaptic weights
representing a given target angular velocity are then used directly
on a wheeled mobile robot that also implements the neural
mechanism.

Next we implement another instance of the neural mechanism
in simulation to learn to track a periodically occluded acoustic
signal, moving with a constant but unknown angular velocity
along a semi-circular trajectory. The occluded acoustic signal is
implemented as an intermittent signal, i.e., it has a continuous
unoccluded sound for a constant interval followed by complete
silence for a constant interval. The silence implies that the
signal is occluded and therefore inaudible. The acoustic tracking
performance is evaluated in simulation for a constant “duty
cycle” of sound emission. In this manner, the acoustic tracking
performance is again evaluated for a set of three different target
angular velocities identical to those used earlier. An instance of
the simulation results is validated in practice via robotic trials
with the wheeled mobile robot.

Finally, we implement a third instance of the neural
mechanism in simulation to learn to track an occluded acoustic
signal as described earlier, however with a randomly varying duty
cycle. The signal moves as before with a constant but unknown
angular velocity along a semi-circular trajectory. We evaluate
the acoustic tracking performance for a set of three different

target angular velocities identical to those used earlier. The main
contribution of this work lies in systematically investigating
the comparative performance of a neural closed-loop learning
mechanism in learning the angular velocity of an acoustic
stimulus with varying sparsity.

This article is organised in the following manner. Section 2
provides background information about the lizard peripheral
auditory system and its equivalent model as well as about ICO
learning. Section 3 presents the adaptive neural acoustic tracking
architecture, the experimental setup and the robot model.
Section 4 shows the experimental results in both simulation and
practice. Section 5 summarises the work and discusses future
directions.

2. BACKGROUND

2.1. The Lizard Peripheral Auditory System
The remarkable sensitivity of the peripheral auditory system
(Christensen-Dalsgaard and Manley, 2005; Christensen-
Dalsgaard et al., 2011) of lizards such as the bronze grass
skink or Mabuya macularia, and the tokay gecko or Gekko
gecko as depicted in Figure 1A is quite well understood.
This “directionality” enables the animal to extract the relative
position of a relevant sound signal. The lizard ear achieves
a directionality higher than that of any known vertebrate
(Christensen-Dalsgaard and Manley, 2005). This is due to
an internal acoustical connection formed by efficient sound
transmission through internal pathways in the head as depicted
in Figure 1B, between the animal’s two eardrums.

In spite of the peripheral auditory system’s relatively small
dimensions (the eardrums for most lizard species are separated
by 10–20mm), the range of sound wavelengths over which
it exhibits strong directionality (Christensen-Dalsgaard et al.,
2011) is relatively wide (340–85mm, corresponding to 1–4 kHz).
Within this range of frequencies the sound pressure difference
between the eardrums is negligible due to acoustic diffraction
around the animal’s head, thus generating almost negligible (1–
2 dB) ILD cues. The system thus relies on µs-scale interaural
phase differences between incoming sound waves at the two
ears due to the physical separation. These phase differences,
corresponding to ITDs, are used extract information about
sound direction relative to the animal. The system essentially
converts these relatively tiny phase differences into relatively
larger (up to 40 dB) interaural vibrational amplitude differences
(Christensen-Dalsgaard and Manley, 2005). These amplitude
differences encode sound direction information. Each eardrum’s
vibrations are the result of the superposition of two acoustic
components generated due to sound interference in the internal
pathways–an external sound pressure acting on the eardrum’s
periphery and an equivalent internal sound pressure acting on
its interior. This leads to the ipsilateral (toward the sound signal)
amplification of eardrum vibrations and contralateral (away from
the sound signal) cancellation of eardrum vibrations. In other
words, the ear closer to the relevant sound signal vibrates more
strongly as compared to the ear further away from it. The relative
phase difference between the incoming sound waves at the two
eardrums determines the relative strengths of their vibrations.
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FIGURE 1 | (A) An eardrum visible on the side of the gecko head (redrawn from Christensen-Dalsgaard et al., 2011). (B) Early cross-sectional diagram of the lizard

(Sceloporus) auditory system (taken from Christensen-Dalsgaard and Manley, 2005). (C) Ideal lumped-parameter circuit model (based on Fletcher and Thwaites,

1979; Fletcher, 1992 and redrawn from Zhang, 2009). Voltages VI and VC respectively represent sound pressures PI and PC at the ipsilateral and contralateral

eardrums. Currents iI and iC, respectively represent the vibrations of the ipsilateral and contralateral eardrums due to the sound pressures acting upon them.

Impedances Zr model the combined acoustic filtering due to the mass of the eardrums and stiffness of the Eustachian tube through the central cavity connecting the

tympani to each other. Impedance Zv models the acoustic filtering effects of the central cavity itself. Voltage Vcc represents the resultant sound pressure in the central

cavity due to the interaction of the internal sound pressures experienced from either side. This causes current icc to flow, representing the movement of sound waves

inside the central cavity as the pressure inside it varies. (D) Contour plot (redrawn from Zhang, 2009) modelling binaural subtraction of the ipsilateral and contralateral

responses as defined by Equation (2).

An equivalent electrical circuit model of the
peripheral auditory system as depicted in Figure 1C

(Fletcher and Thwaites, 1979; Fletcher, 1992) allows the
directionality to be visualised as shown in Figure 1D as a
difference signal computed by subtracting the vibrational
amplitudes of the eardrums. Labelling the vibrational
amplitudes of the ipsilateral and contralateral eardrums
respectively as iI and iC, the difference signal can be
formulated as

∣

∣

∣

∣

iI

iC

∣

∣

∣

∣

=

∣

∣

∣

∣

GI · VI + GC · VC

GC · VI + GI · VC

∣

∣

∣

∣

, (1)

where frequency-dependent gains GI and GC respectively
model the effect of sound pressure on the motion of
the ipsilateral and contralateral eardrum. These gains
are essentially analogue filters in signal processing
terminology with their coefficients determined
experimentally from eardrum vibration measurements
for individual lizards via laser vibrometry (Christensen-
Dalsgaard and Manley, 2005). Expressing iI and iC in
decibels,

iratio = 20
(

log |iI| − log |iC|
)

dB . (2)
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The model responds well for sound frequencies within the
range 1–2.2 kHz, with a peak response at approximately 1.6 kHz.
iratio is positive for |iI| > |iC| and negative for |iC| > |iI|.
The model’s symmetry implies that the model’s response |iratio|

is identical on either side of the centre point θ = 0◦ as
well as locally symmetrical within the sound direction range
[−90◦,+90◦] (considered henceforth as the range of interest of
sound direction). The difference signal expressed as Equation (2)
provides information about sound direction in that its sign
indicates whether the sound is coming from the ipsilateral
side (positive sign) or from the contralateral side (negative
sign), while its magnitude corresponds to the relative angular
displacement of the sound signal with respect to the median.

2.2. Input Correlation (ICO) Learning
Since the proposed neural mechanism is derived from the ICO
learning algorithm (Porr andWörgötter, 2006), this section gives
a brief introduction to the algorithm. The algorithm, depicted as
a neural mechanism in Figure 2, is online unsupervised learning.
Its synaptic weight update is driven by cross-correlation of
two types of input signals–one or multiple “predictive” signal(s)
which are stimuli occurring earlier in time and a “reflex” signal
which is a stimulus occurring later in time, that arrives after
a finite delay and drives an unwanted response or reflex. The
learning goal of ICO learning is to predict the occurrence of
the reflex signal by utilising the predictive signal. This allows an
agent to react earlier, before the reflex signal occurs. The agent
essentially learns to execute an anticipatory action to avoid the
reflex.

The output OICO of the ICO learning mechanism is a linear
combination of the reflex input x0 and the N predictive input(s)
xk where k = 1, . . . ,N and N ∈ N. OICO is formulated as

OICO = ρ0x0(t)+

N
∑

k=1

ρk(t)xk(t) . (3)

FIGURE 2 | Neural circuit for input correlation learning (taken from

Manoonpong et al., 2013).

The synaptic weight ρ0 of the reflex input is assigned a constant
positive value such as 1.0, representing a reflex signal whose
strength does not change over time. During learning, the synaptic
weight(s) ρk of the predictive signal(s) xk(t) are updated through
differential Hebbian learning (Kosko, 1986; Klopf, 1988) using
the cross-correlation between the predictive and reflex inputs.
The synaptic weight update rule is given by

dρk(t)

dt
= µxk(t)

dx0(t)

dt
, k = 1, . . . ,N . (4)

The learning rateµ, usually set to a value less than 1.0, determines
how fast the neural mechanism can learn to avoid the reflex signal
from occurring. The synaptic weights ρk tend to stabilise when
the reflex signal is nullified, which implies that the reflex signal
has been successfully avoided. ICO learning is characterised by
its fast learning speed and stability of synaptic weight updates and
has been successfully applied to real robots to generate adaptive
behaviour (Manoonpong et al., 2007; Porr and Wörgötter, 2007;
Manoonpong and Wörgötter, 2009).

3. MATERIALS AND METHODS

We define the task of acoustic tracking as follows–a robotic agent
must learn to track a moving acoustic signal. The robot learns the
target’s angular velocity by matching it with its (the robot’s) own
angular turning velocity. The correct angular turning velocity
should allow the agent to rotate along a fixed axis sufficiently
quickly so as to align itself toward the instantaneous position of
the acoustic signal. The signal is moved in the horizontal plane
along a pre-defined semi-circular arc-shaped trajectory with an
unknown velocity in an unknown but fixed direction. To solve
this task we employ an adaptive neural architecture (Shaikh and
Manoonpong, 2016) that combines the auditory preprocessing
of the lizard peripheral auditory model with a neural ICO-based
learning mechanism.

3.1. The Neural Architecture
The neural mechanism is embedded within the task environment
as a closed-loop circuit as depicted in Figure 3. The goal of
the learning algorithm is to learn the temporal relationship
between the perceived position of the target sound signal
before turning and after turning. The synaptic weights of the
neural mechanism encode this temporal relationship and they
can then be used to calculate the correct angular turning
velocity. A given set of learned synaptic weights can however
only represent a given angular velocity. This is because the
temporal relationship between the perceived position of the
target sound signal before turning and after turning depends
on the angular turning velocity. Therefore, the synaptic
weights must be re-learned to obtain a new angular turning
velocity.

The output of the neural mechanism is the angular velocity
ω, defined as the angular deviation per time step, required
to turn the robot quickly enough to orient toward the target
sound signal in one time step. The rotational movements of
the robotic agent translate ω into corresponding ITD cues.
The peripheral auditory model (PAM), based on these cues,
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FIGURE 3 | Neural mechanism for acoustic tracking as a closed-loop system.

computes a difference signal x(t) which encodes information
regarding sound direction. Practically, x(t) is the difference
between the modelled vibrational amplitudes of the left and
right eardrums in response to sound input, i.e., it is essentially
iratio as defined by Equation (2). A filter bank decomposes
x(t) into sound frequency-dependent components xk(t), where
k = 1, . . . ,N, to extract frequency information. Each of these
components encodes the extracted sound direction information
within a specific frequency band. Practically, these components
are the difference between the modelled vibrational amplitudes
of the left and right eardrums in response to sound input. This
step is necessary since the peripheral auditory model provides
ambiguous information regarding the sound direction in the
absence of sound frequency information. The ambiguity is a
result of the difference signal x(t) having identical values for
multiple positions of the sound signal if the sound frequency
is unknown (see Figure 1D). The filter bank comprises five
bandpass filters. The centre frequencies of these filters lie at 1.2,
1.4, 1.6, 1.8, and 2.0 kHz within the relevant response range. Each
filter has a 3 dB cut-off frequency of 200Hz. This results inN = 5
filtered difference signals at the output of the filter bank. The
magnitude responses of the individual filters in the filter bank
represent the receptive fields of individual auditory neurons.
These spectro-temporal receptive fields (Aertsen et al., 1980) are
essentially the range of sound frequencies over which the neurons
are optimally stimulated. The filtered difference signals xk(t)
are then used as inputs that are correlated with the derivative
of the unfiltered difference signal x0(t). The input signals xk(t)
represent the earlier-occurring predictive stimuli used to estimate
the instantaneous sound direction before turning, while the

unfiltered difference signal x0(t) represents the later-occurring
“reflex” stimuli or the retrospective signal generated after turning.

In traditional ICO learning the synaptic weights are stabilised
once the reflex signal is nullified, thereby creating a behavioural
response that prevents future occurrences of the reflex signal.
In our case, as soon as the target sound signal moves to a
new position along its trajectory, a new and finite retrospective
signal x0 corresponding to the new position is generated. This
signal is then nullified after turning if the correct synaptic
weights have been learned, and then the target sound signal
moves to a new position along its trajectory. Our approach can
therefore be considered as one successful step of ICO learning
being successively repeated for each new position of the target
sound signal as it moves along its trajectory. This implies that
the synaptic weights can grow uncontrollably if the learning is
allowed to continue indefinitely. A stopping criterion for the
learning was therefore introduced to avoid this condition–the
learning stops when the tracking error θe becomes less than 0.5◦.
θe is defined as the difference between the orientation of the robot
and the angular position of the sound signal in one time step. In
other words, the learning stops when the robot is able to orient
itself toward a position that is within 0.5◦ from the position of
the sound signal within one time step.

3.2. The Experimental Setup
The experimental setup in simulation comprises a virtual
loudspeaker array as depicted in Figure 4 which generates
relevant pure tone sounds at a 2.2 kHz frequency. This frequency
is chosen because sufficient directional information from the
peripheral auditory model is available at this frequency. The
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FIGURE 4 | The simulation setup.

array consists of 37 loudspeakers numbered #1–#37 from right
to left, arranged in a semi-circle in the azimuth plane. The
angular displacement between consecutive loudspeakers is 5◦.
The loudspeakers are turned on sequentially, starting from
the loudspeaker at one of the ends of the array, to simulate
the motion of a continuously moving sound signal (albeit in
discrete steps). To maintain the continuity of the sound the next
loudspeaker plays immediately after the previous loudspeaker
has stopped. A given tone can therefore be moved with a given
angular velocity across the array along a semi-circular trajectory
from either the left or the right side. The angular velocity of the
sound signal is defined as the angular displacement in radians
per time step. A given loudspeaker, when turned on, plays a tone
for 10 time steps before turning off and at the same instant the
next consecutive loudspeaker turns on. This process is repeated
until the sound reaches the last loudspeaker in the array. The
movement of sound from loudspeaker #1 to loudspeaker #37 is
defined as one complete learning iteration. Since one iteration
may be insufficient to learn the correct angular velocity of
the target sound signal, the learning is repeated over multiple
iterations until the stopping criterion ismet. After the completion
of one learning iteration, the sound signal starts again from
loudspeaker #1 in the next learning iteration. The direction of
movement of sound is chosen to be from the right side (+90◦) to
the left side (−90◦) of the array.

The robot that should track the moving target sound signal
is positioned at the mid-point of the diameter of the semi-circle
and is only allowed to rotate in the azimuth plane along a fixed
axis. The robot must turn with a sufficiently large angular turning
velocity to orient toward the instantaneous position of sound
signal before the sound signal moves to the next position along
its trajectory. The angular velocity of the robot is defined as the
angular rotation in radians per time step. The goal of the learning
algorithm is to learn the correct angular velocity that allows the
robot to turn and orient toward the current loudspeaker in one

time step, starting from the time step at which that loudspeaker
started playing the tone.

The learning at every time step occurs as follows. The robotic
agent is initially oriented toward a random direction toward the
right side of the array. Loudspeaker #1 emits a tone and the robot
uses the sound direction information extracted by the peripheral
auditory model to turn toward the currently playing loudspeaker
with an angular velocity ω (computed using the initial values of
the synaptic weights) given by

ω = ρ0x0 +

N
∑

k=1

ρkxk, where N = 5. (5)

After the turn is complete, the robot once again extracts sound
direction information via the peripheral auditory model and
computes the retrospective signal x0(t + δt). The strength of
x0(t + δt) depends on the relative position of the sound signal
with respect to the orientation of the robotic agent after it has
performed a motor action in the task environment. Therefore,
this retrospective signal acts as the feedback information that is
used to update the synaptic weights.

The synaptic weights ρk are then updated according to the
learning rule

dρk(t)

dt
= µxk(t)

dx0(t)

dt
, where k = 1, . . . ,N. (6)

After 10 time steps loudspeaker #1 is deselected and the next
loudspeaker in the array (loudspeaker #2) is selected. This
learning procedure is repeated for all loudspeakers in succession.

We use three different angular velocities for the sound signals–
0.5◦/time step, 1.0◦/time step and 1.5◦/time step. These values
were chosen primarily because the loudspeaker array in the
experimental setup in practice is restricted to sound signal
displacements that are multiples of 5◦. The neural parameters
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for all trials are set to the following values–the learning rate
µ = 0.0001 and synaptic weight for the retrospective signal x0,
ρ0 = 0.00001. All plastic synaptic weights ρk are initially set to
zero and updated according to Equation (6).

We first implement a new instance of the neural learning
mechanism in simulation. The mechanism allows a robotic agent
to learn the synaptic weights required to track a continuous
unoccluded sound signal in simulation. The initial orientation
of the robotic agent is randomly chosen to be 116◦ to emphasise
that the learning is independent of any specific initial orientation.
The continuous unoccluded sound can be viewed as a sound with
100% sound emission duty cycle, i.e., there are no breaks in the
sound emission. We evaluate the acoustic tracking performance
in simulation for a set of three different target angular velocities–
0.5◦/time step, 1.0◦/ time step and 1.5◦/time step. We then verify
the simulation results in practice for a target angular velocity
of 1.5◦/time step by recreating the experimental setup in the
form of robotic trials. We employ a wheeled mobile robot, as
described in Section 3.3, to track a continuous unoccluded pure
tone sound signal that is moved along a semi-circular virtual
loudspeaker array as depicted in Figure 5. The array has an
identical configuration as the one used in the simulation setup
and is located in a sound-dampening chamber to minimise
acoustic reflections. The synaptic weights used on the robot are
those learned offline in simulation.

We then use another identical instance of the neural

mechanism in the same simulation setup as before to learn

to track a virtual pure tone sound signal that is periodically

occluded, i.e., it is structured as a constant sound for a constant

interval followed by complete silence for a constant interval.
This sound emission duty cycle is set to 60%. The target sound
signal again moves with a constant but unknown angular velocity
along a semi-circular trajectory as described earlier. The initial
orientation of the robotic agent in simulation is randomly chosen

to be 97◦ to emphasise that the learning is independent of
any specific initial orientation. In this manner, the acoustic
tracking performance is evaluated in simulation for a set of three
different target angular velocities–0.5◦/time step, 1.0◦/time step
and 1.5◦/time step. The simulation results are validated for a
target angular velocity of 1.5◦/time step in practice via robotic
trials with the mobile robot as described earlier. The synaptic
weights used on the robot are again those learned offline in
simulation.

Finally, we use a third instance of the neural mechanism in
simulation to learn to track a virtual pure tone sound signal that
is occluded as described earlier but with a randomly varying duty
cycle of sound emission. During learning, for every loudspeaker
the sound emission duty cycle is chosen from a uniform random
distribution between 10 and 90%. As before, the target sound
signal moves with a constant but unknown angular velocity
along a semi-circular trajectory as described earlier. The initial
orientation of the robotic agent in simulation is randomly
chosen to be 97◦, once again to emphasise that the learning is
independent of any specific initial orientation. We evaluate the
acoustic tracking performance in simulation for a set of three
different target angular velocities–0.5◦/time step, 1.0◦/time step
and 1.5◦/time step. We once again validate the simulation results
in practice for a target angular velocity of 1.5◦/time step on the
mobile robot as described earlier. The sound emission duty cycles
for each loudspeaker in the robotic trial are again randomly
chosen from a uniform random distribution between 10 and 90%.
This implies that the sequence of duty cycles is not identical to
that used in the simulated trials. As earlier, the synaptic weights
used on the robot are those learned offline in simulation.

3.3. The Robot Model
Figures 6A,B respectively depict the mobile robot used in the
robotic trials and its kinematics. The basic platform is assembled

FIGURE 5 | The experimental arena.
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FIGURE 6 | (A) The mobile robot and (B) its kinematics.

with components from the Robotics Starter Kit from Digilent
Inc.–the chassis, the DC motors (6V), the corresponding H-
bridge motor drivers, the rear wheels and a front omnidirectional
ball caster wheel. The peripheral auditory model and the neural
mechanism is implemented on a Raspberry Pi 2 (Model B+ from
the Raspberry Pi Foundation) controller, which is paired with a
FPGA board (model LOGI Pi from ValentFX). A dual channel
analogue-to-digital (ADC) driver is implemented on the FPGA
IC (Integrated Circuit) using the VHDL (VHSIC Hardware
Description Language) programming language (VHSIC stands
for Very-High-Speed Integrated Circuits). The VHDL design for
the ADC driver is synthesised or compiled via a proprietary
software tool (Xilinx Integrated Synthesis Environment or ISE
from Xilinx Inc.) into a hardware-level binary “bitstream”
containing all the necessary information to properly configure
and program the logic into the FPGA chip. The driver reads in
raw audio data from a dual channel 12-bit simultaneous ADC
that digitises the signals from two omnidirectional microphones
(model FG-23329-P07 from Knowles Electronics LLC) mounted
13mm apart at the front of the robot (see inset in Figure 6). Since
the peripheral auditory model’s parameters have been derived
from laser vibrometry measurements from a lizard with 13mm
separation between its eardrums, the microphone separation
must match that value. Any other separation would create a
mismatch between the ITD cues to which the peripheral auditory
model is tuned and the actual ITD cues. A WiFi access point
(model TL-WR802N from TP-LINK Technologies Co. Ltd.)
allows wireless access to the robot controller for programming
purposes. A 12,000mAh lithium polymer power bank (model
Xtorm AL450 from A-solar bv) serves as the power source for
the robot.

The robot’s kinematics are used to convert the learned angular
rotation in degrees per second into the rotational speed in
revolutions per minute (rpm) for the robot’s wheels. One time
step in simulation corresponds to 0.2 s, such that a learned
angular turning velocity of θ degrees per time step implies
that the robot should turn by θ degrees in a time period
tθ = 0.2 s. This value is chosen because in the experimental
setup the software controlling the loudspeaker array can only

switch between consecutive loudspeakers at least every 2 s. Since
the robot can only rotate along a fixed axis, the wheels travel along
a semi-circular arc of length

⌢
L when the robot performs a turn.

Therefore, an angular displacement of θ degrees corresponds to
the arc length

⌢
L in millimetres as given by

⌢
L = 2πR

θ

360◦
, (7)

where R is the radius in millimetres of the arc along which the
wheels travel, and is essentially the distance between the centre
of rotation of the robot and the centre of either wheel. Assuming
vl and vr as the rotational velocities of the left and right wheels
respectively, to rotate through an arc length

⌢
L the two wheels

must turn with identical angular velocities |vl| = |vr| = v
but in opposite directions (to perform a leftward rotation, vl is
considered as having a negative value and vr is considered as

having a positive value). The angular velocity ω =
⌢L
tθ
mm/s. The

wheel rotational velocity v in rpm is given by

v =

⌢
L

tθ
·

1

πdw
· 60 s

= 2πR
θ

360◦
·
1

tθ
·

1

πdw
· 60 s ,

(8)

where dw is the diameter of the wheel. For the robot, R is
measured to be 80mm and dw is measured to be 70mm.
Substituting for R, dw and tθ into Equation (8), the mathematical
conversion between the robot’s angular velocity in degrees per
second into the corresponding wheel velocity v in rpm can be
formulated as

v = 2π · 80mm ·
θ

360◦
·

1

0.2 s
·

1

π70
· 60 s ≈ 3.81 · θ . (9)

Using Equation (9), the wheel velocities required by the
robot corresponding to the three angular velocities 0.5◦/time
step, 1.0◦/time step and 1.5◦/time step are calculated to be
approximately 19 rpm, 38 rpm and 57 rpm respectively. These
rpm values represent the no-load wheel velocities, i.e., when
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the DC motor shafts experience zero load. In practice these
“ideal” rpm values will be adversely affected by the weight of
the robot, the friction between the wheels and the ground
and the instantaneous battery capacity. To approach real-
life motion constraints during tracking, the effects of these
physical quantities are deliberately not modelled. The speed
commands for the wheels are therefore manually matched to
the corresponding wheel velocities under load. This is done by
making the robot perform an on-the-spot turn on the ground
in the experimental arena, and determining via trial and error
the speed command (which is the duty cycle for the signals
controlling the motor drivers) for which the wheels complete
the necessary revolutions in 1 min. This ensures that the
effects of the aforementioned quantities are taken into account
while the robot is tracking the sound signal during the robotic
trials. Furthermore, there may be a mismatch between the
characteristics of the individual DC motors of the robot. This
may result in a mismatch between the angular velocities of the
motor shafts even though both motors receive identical speed
commands. To compensate for any potential mismatch, the robot
is once again made to perform on-the-spot turns on the arena
floor and the speed commands were fine-tuned via trial and error
to generate turns of 0.5◦, 1.0◦, and 1.5◦ in 0.2 s.

Video footage of the robotic trials was recorded from
an overhead camera (Raspberry Pi camera module from the
Raspberry Pi Foundation). The footage was analysed with a video
analysis software tool (Tracker version 4.95 from Open Source
Physics (Open Source Physics, 2016) to determine the amount
by which the robot turned for each loudspeaker. The robot’s

rotation angles were extracted by manually tracking a green LED
(Light Emitting Diode) on the robot. The tracking was done for
relevant video frames in which the robot was completely still after
completing a turn, to determine its deviation from the reference.
Figure 7 depicts a screenshot of Tracker software.

4. RESULTS AND DISCUSSION

4.1. Simulation Trials
Figure 8 depicts the evolution of the tracking error θe

during learning for a target angular velocity of 1.5◦/time
step as an example. Corresponding data for target angular
velocities of 1.0◦/time step and 0.5◦/time step is illustrated
respectively in Figures 8-1, 8-2 (see files “image1.pdf” and
“image2.pdf” respectively in the Supplementary Materials).
The insets show θe for a single iteration as an example.
θe reduces exponentially over time for all three types of
acoustic stimuli–continuous unoccluded sound (see Figure 8A),
periodically occluded sound with a 60% sound emission duty
cycle (see Figure 8B) and randomly occluded sound with a
random sound emission duty cycle (see Figure 8C).

The spikes in θe as visible in the insets are a result of a
mismatch between the last angular position toward which the
robotic agent was pointing and the new angular position of
the target sound signal as it moves along its trajectory. This
mismatch generates finite ITD cues from which the robotic
agent extracts sound direction information using the peripheral
auditory model. The robotic agent then turns toward the sound
signal with the last learned angular turning velocity, thereby

FIGURE 7 | Example screenshot of Tracker software used for extracting the robot’s turning angles from overhead video footage of the robotic trials.

The red circles indicate the location of the LED on the robot that is used for computing its angular rotation.
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FIGURE 8 | Tracking error θe for a target angular velocity of 1.5◦/time step for varying duty cycles of sound emission. (A) Continuous unoccluded sound.

(B) Periodically occluded sound with 60% duty cycle. (C) Randomly occluded sound with random duty cycle. The insets show θe for a single iteration as an example.

(D) Synaptic weights for continuous unoccluded sound. (E) Synaptic weights for periodically occluded sound with 60% duty cycle. (F) Synaptic weights for randomly

occluded sound with random duty cycle.

reducing the maximum tracking error. This process repeats for
each time step, exponentially reducing the overall tracking error,
until the stop criterion is met.

The number of iterations required for the synaptic weights
to converge toward their final values is relatively lower for
sparse or occluded sound signals as compared to unoccluded
sound signals. For an occluded signal, the number of time
steps for which the sound is emitted per loudspeaker decreases.
Consequently, the number of weight updates per loudspeaker
also decreases. For example, for a 60% duty cycle, the weights
are updated is six of the ten time steps per loudspeaker. When
the loudspeaker stops playing there is no sound input and the
peripheral auditory model’s outputs are balanced, resulting in
the difference signal x(t) being nullified. This implies that both
the retrospective signal x0(t) and the predictive signal xk(t)
become zero. The weight increment given by the update rule
in Equation (6) is therefore also zero when there is no sound
present. From the perspective of the robotic agent’s behaviour,
this implies that the robotic agent does not move in the absence
of sound. This is because there is no directional information
available and the robotic agent “assumes” that it is already
oriented toward the target sound position. Thus for occluded
sound signals the robotic agent takes relatively fewer turns for
each loudspeaker as compared to the number of turns taken for
each loudspeaker for the unoccluded sound signal. This means
that when the sound moves to a new position along its trajectory,
the tracking error is relatively larger for occluded sound signals
as compared to the unoccluded sound signal. This implies a
relatively greater mismatch between the actual angular position
of the loudspeaker and the orientation of the robotic agent and

therefore relatively larger values for both the predictive and
retrospective signals. Consequently, the synaptic weight update
is also relatively larger for occluded sound signals as compared to
unoccluded sound signal from the very first iteration as evident
from Figures 8D,E. These large changes at the very beginning of
the learning bring the synaptic weights relatively closer to their
optimal values earlier in the learning process, and thus fewer
subsequent iterations are required to bring the weights to their
optimal values. Therefore, for a given target angular velocity the
total number of iterations required for the synaptic weights to
converge decreases for occluded sound signals as compared to
the unoccluded sound signal.

The change in tracking error θe for a pure tone sound
signal that is randomly occluded with a sound emission duty
cycle between 10 and 90% for each loudspeaker is depicted
in Figure 8C for the target angular velocity of 1.5◦/time step.
The insets show θe for a single iteration as an example. The
uneven spikes visible in the insets indicate that the tracking
error θe is different for different angular positions of the target
sound signal. For each new angular position of the target sound
signal, the learning algorithm increments the synaptic weights
corresponding to the randomly selected sound emission duty
cycle currently in effect for that angular position. Therefore,
the synaptic weight increments are also random as evident
in Figure 8F. As discussed earlier, a relatively smaller sound
emission duty cycle results in relatively fewer weight updates.
This implies that when the current duty cycle is relatively small,
the robotic agent makes relatively fewer turns and thus the
tracking error may only decrease to a finite non-zero value.
When the target sound signal subsequently moves to the new
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consecutive angular position along its trajectory, the tracking
error increases again due to mismatch between the last angular
position estimated by the robotic agent and the new angular
position of the target sound signal. The amount of mismatch
depends on the last learned angular turning velocity of the robotic
agent. This in turn depends on the sound emission duty cycle
for the last target angular position and that for the current
target angular position. If the new sound emission duty cycle is
relatively larger than the last one then there are relatively more
weight updates. The tracking error may either reduce to zero
or to another finite but non-zero value for that particular target
angular position.

As an example, the relationship between the predictive
signal x5(t) and the derivative of the retrospective signal
dx0(t)
dt

and the corresponding weight updates can be seen in
Figure 9 over one iteration of the learning. In the figure the
sound signal is moving with an angular velocity of 1.5◦/time
step. Similar relationships corresponding to target angular
velocities of 1.0◦/time step and 0.5◦/time step are illustrated
respectively in Figures 9-1, 9-2 (see files “image3.pdf” and
“image4.pdf” respectively in the Supplementary Materials). The
respective weight updates (normalised for comparison) for all
three types of acoustic stimuli–continuous unoccluded sound
(see Figure 9D), periodically occluded sound with a 60%
sound emission duty cycle (see Figure 9E) and randomly
occluded sound with a random sound emission duty cycle (see
Figure 9F)–reflect the dependence of the size of the weight

increments on the sound emission duty cycle as discussed earlier.
The small initial spikes seen in the weight updates are a result

of the dx0(t)
dt

term in Equation (6) being initially positive and then
becoming negative in the subsequent time step. The retrospective
signal x0(t) is first positive due to the sound signal moving further
away from the robotic agent. In the subsequent time step the
robot reacts by turning toward the sound signal, thereby reducing

x0(t). This results in the derivative dx0(t)
dt

being negative. This
leads to a negative weight increment which decreases the weight

in the subsequent time steps after the spike. The term dx0(t)
dt

becomes negative because the robot always turns toward the
sound signal, which reduces x0(t).

A more thorough investigation of the effect of decreasing
sound emission duty cycle on the number of iterations required
to learn the target angular velocity within the given error bounds
is depicted in Figure 10. The number of iterations required
for the synaptic weights to converge decreases with decreasing
sound emission duty cycle, i.e., with increasing sparsity of sound
stimulus as described earlier.

The number of iterations required for the synaptic weights
to converge also decreases for increasing angular velocity
of the sound signal. This can be seen in Figures 8-1, 8-2
(see files “image1.pdf” and “image2.pdf” respectively in the
Supplementary Materials). For increasing target angular velocity,
the mismatch between the angular position toward which the
robot was oriented after its last turn and the current position
of the sound signal is relatively greater. This results in relatively

FIGURE 9 | Example snapshots of the synaptic weight updates (right column) corresponding to the correlation between the predictive signal x5(t)

(solid line, left column) and the derivative of the retrospective signal
dx0(t)
dt

(dashed line, left column) for a sound signal moving with an angular

velocity of 1.5◦/time step. (A) Continuous unoccluded sound. (B) Periodically occluded sound with 60% duty cycle. (C) Randomly occluded sound with random

duty cycle. (D) Synaptic weights for continuous unoccluded sound. (E) Synaptic weights for periodically occluded sound with 60% duty cycle. (F) Synaptic weights

for randomly occluded sound with random duty cycle.
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FIGURE 10 | Comparison of the number of iterations required for the synaptic weights to converge over varying sound emission duty cycles in the

range 10–90%, for the three target angular velocities–0.5◦/time step (square markers), 1.0◦/time step (circular markers) and 1.5◦/time step (diamond

markers).

larger predictive signals xk(t), and therefore a relatively larger

correlation term xk(t)
dx0(t)
dt

per time step in Equation (6). This
consequently leads to relatively faster weight updates, reducing
the total number of time steps and thus iterations taken to learn
the correct angular velocity.

4.2. Real Robot Implementation
Individual robotic trials are conducted for continuous
unoccluded as well as occluded sound signals. In all trials,
the sound signal is moved virtually in the experimental arena as
depicted in Figure 5 with an angular velocity of 1.5◦/0.2 s. We
present video footage of the trials in which the robot’s tracking
behaviour after learning can be seen. Supplementary Videos
#1, #2 and #3 (see files titled “video1.mp4” , “video2.mp4” and
“video3.mp4” respectively in the Supplementary Materials)
respectively show the tracking behaviour for the continuous
unoccluded sound signal with a duty cycle of 100%, the
periodically occluded signal with a duty cycle of 60% and the
randomly occluded signal with a random duty cycle between 10
and 90% for each loudspeaker. As evident from the video footage,
in all trials the robot is able to successfully perceive the acoustic
motion of the sound signal and orient toward the currently
playing loudspeaker as indicated by a green LED mounted on
the top of the loudspeaker.

Figure 11 depicts the tracking performance during the robotic
trials for all three sound signals in terms of the tracking
error θe. In the robotic trials, the robot’s performance is
relatively good. Small errors in tracking are observed during the
trials as evident from the recorded video footage. Even after
undertaking compensatory actions as described in Section 3.3,
errors in tracking are unavoidable under real-life conditions due
to ambient noise introduced in the sound signals. The robot
manages to compensate for any positive or negative tracking

errors (that are introduced by respectively turning either too
fast or too slow) for a given loudspeaker by respectively making
relatively smaller or larger turns for the next loudspeaker. This
is because the difference signal x(t) generated by the peripheral
auditory model also provides some information regarding the
sound direction (see Section 2.1) that the neural mechanism uses
to automatically compensate for tracking errors, even though the
synaptic weights are fixed.

The tracking errors are relatively greater for the randomly
occluded sound signal as compared to those for the unoccluded
and periodically occluded signals. There is a consistent offset
from the reference that implies that the robot’s turns consistently
lag behind the currently playing loudspeaker. This is in
agreement with the consistent offset between the alignment of the
robotic agent and the angular location of the sound signal (i.e.,
a consistently non-zero tracking error) observed in simulation
as evident in the inset in (Figure 8C). This is because the
synaptic weights learned for a randomly occluded sound do not
correspond to any single sound emission duty cycle. Instead,
the algorithm learns the “best possible” values for the synaptic
weights that fit all the sound emission duty cycles. This implies
that in the robotic trials there will always be an offset between
the angular location of the loudspeaker and the orientation of the
robot as well.

In our experiments the loudspeaker sequence was never

broken during a trial. Breaking the sequence, for example by

not playing a given loudspeaker, the sound signal will jump
forward along the trajectory by an amount that is twice the
nominal displacement. For example, if the angular velocity of
the sound signal is 0.5◦/time step (or 5◦/10 time steps) skipping
a single loudspeaker would displace the sound source by 10◦ in
20 time steps. Assuming that the number of time steps between
consecutive loudspeakers is unchanged, the angular speed will
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FIGURE 11 | Tracking performance during the robotic trials for a target angular velocity of 1.5◦/time step. (A) Continuous unoccluded sound. (B)

Periodically occluded sound with 60% duty cycle. (C) Randomly occluded sound with random duty cycle.

however remain unchanged. This forward jump in the sound
signal will cause the synaptic weights to be updated by a relatively
larger amount than usual. This would accelerate the learning
during any such forward jumps in the sound signal, resulting
in relatively faster convergence toward the optimal synaptic
weights.

Furthermore, the loudspeaker sequence cannot be random
because that would imply a sound signal moving with a randomly
varying angular velocity in a randomly varying direction. For
example, if the loudspeaker sequence is #1 → #2 → #7 →

#4 . . ., then the angular velocity of sound signal will vary as
0.5◦/time step → 2.5◦/time step → 1.5◦/time step → . . ., and
the direction of motion will vary as left→left→right→ . . .. This
would cause the synaptic weights to increase when the sound
signal moves from left to right and decrease when it moves from
right to left. The size of weight update, which corresponds to the
angular speed, would vary randomly as well. As a consequence of
these effects, the synaptic weights will not converge. This implies
that the neural mechanism cannot learn a target angular velocity
that is not constant.

We have employed a semi-circular trajectory for the sound
signal in all experiments to simplify the problem of motion
perception such that there is a 1:1 relationship between the agent’s
learned angular turning velocity and the target’s angular velocity.

The problem of motion perception is essentially the same in the
case of a target moving along linear trajectory with a constant

velocity. This is because the temporal relationship between the
perceived position of a target sound signal before turning and
after turning depends only on the signal’s velocity and not on

the shape of the trajectory. Therefore, a robotic agent using the
proposed neural mechanism can still learn an angular turning
velocity that corresponds to the target linear velocity. In the case

of more complicated target trajectories comprising both linear
and angular components, the neural mechanism may only learn
the average velocity over the entire trajectory.

The neural mechanism is furthermore not limited to a specific
sound frequency as its functionality is independent of the

sound frequency. For a different sound frequency the peripheral
auditory model generates a different difference signal that still
encodes sound direction. The neural mechanism essentially uses
the direction information in terms of the sign of difference
signal to drive the synaptic weight updates in the right direction.
However, the size of weight updates is dependent on the
absolute magnitude of the difference signal. Therefore, for a
different sound frequency but keeping all other neural parameters
unchanged, the number of iterations taken for the synaptic
weights to converge will be different.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

Wepresent an adaptive neural learningmechanism, derived from
ICO learning, that employs a synaptic weight update rule adapted
from differential Hebbian learning. The neural mechanism was
able to successfully learn the constant and unknown angular
velocity of a continuous unoccluded pure tone virtual sound
signal moving along a semi-circular trajectory in simulation. We
also investigated the performance of the neural mechanism in
the presence of sparsity in acoustic stimulus. We used three
different types of acoustic stimuli each having a sound frequency
of 2.2 kHz–continuous unoccluded sound, periodically occluded
sound with a 60% sound emission duty cycle and randomly
occluded sound with random sound emission duty cycle chosen
from a uniform distribution within the range 10–90%.

We first implemented an instance of the neural mechanism
in simulation. The neural mechanism was able to learn the
angular velocity of the continuous unoccluded sound signal in
simulation for three different target angular velocities–1.5◦/time
step, 1.0◦/time step and 0.5◦/time step. We validated the acoustic
tracking performance of the neural mechanism after learning
via robotic trials in tracking a virtually-moving continuous
unoccluded sound signal with angular velocity of 1.5◦/time step.

We then investigated whether a second instance of the
neural mechanism could learn the angular velocity of an
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target sound signal that was periodically occluded with a 60%
sound emission duty cycle. The sound signal moved with a
constant and unknown angular velocity along a semi-circular
trajectory as before. The neural mechanism was able to learn
the angular velocity of the periodically occluded sound signal
in simulation for three different target angular velocities–
1.5◦/time step, 1.0◦/time step and 0.5◦/time step. We validated
the acoustic tracking performance of the neural mechanism
after learning via robotic trials in tracking a virtually-moving
but periodically occluded sound signal with angular velocity of
1.5◦/time step.

Finally we investigated whether a third instance of the neural
mechanism could learn the angular velocity of a target sound
signal that was randomly occluded with a randomly varying
duty cycle uniformly distributed within the range 10–90%. Once
again, the sound signal moved with a constant and unknown
angular velocity along a semi-circular trajectory. The neural
mechanismwas able to learn the angular velocity of the randomly
occluded sound signal in simulation for three different target
angular velocities–1.5◦/time step, 1.0◦/time step and 0.5◦/time
step. We validated the acoustic tracking performance of the
neural mechanism after learning via robotic trials in tracking
a virtually-moving but randomly occluded sound signal with
angular velocity of 1.5◦/time step.

In all robotic trials the robot was relatively successful in
tracking the sound signal in spite of the absence of compensation
for possible detrimental effects such as ambient noise, mismatch
between the robot’s motor characteristics, ground friction and
depletion rate of the battery.

The neural mechanism implements a purely reactive closed-
loop system; the robot only turns after the target sound signal
has moved to a new location along its trajectory and it always
follows the sound signal. There is an unavoidable positive
and finite delay between the target sound signal moving to
its new location and the robot completing its turn. In the
simulation this time delay is of one time step and in practice
with the real robot it is the sum of the time step and the
non-deterministic processing time in the sensorimotor loop.
Predatory animals that utilise tracking behaviour, to catch prey

for example, tend to be able to predict its future position.
Such prediction is clearly more advantageous for the predator
to minimise the neural sensorimotor delays (Nijhawan and
Wu, 2009; Franklin and Wolpert, 2011) and to maximise its
chances of success. Behavioural evidence for predictive tracking
mechanisms has been reported in salamanders (Borghuis and
Leonardo, 2015) and dragonflies (Dickinson, 2015; Mischiati
et al., 2015a,b) that use vision for prey capture. In the auditory
domain, the barn owl, Tyto alba is well known for auditory prey
capture (Konishi, 1973). Both behavioural (Langemann et al.,
2016) and neurophysiological (Witten et al., 2006; Weston and
Fischer, 2015) evidence has been reported for auditory motion
representation in the barn owl. Lizards such as theMediterranean
house geckos, Hemidactylus tursicus, are known to prey on
crickets and have been observed to orient and navigate toward
loudspeakers playing male cricket calls (Sakaluk and Belwood,
1984). However, to the best of our knowledge there is no study
or evidence reported in the literature of predictive mechanisms

involved in lizard acoustic prey capture. The presented neural
mechanism may be used to predict the future position of the
sound signal by allowing the learning to continue such that the
synaptic weights increase beyond those that correspond to the
actual angular velocity of the target sound signal. After successful
learning the robot would then turn quickly enough to orient
toward a future position of the sound signal. Such a mechanism
could be considered as an internal forward model (Wolpert et al.,
1995) for acoustic motion perception.
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Intelligent agents, such as robots, have to serve a multitude of autonomous functions.

Examples are, e.g., collision avoidance, navigation and route planning, active sensing

of its environment, or the interaction and non-verbal communication with people in

the extended reach space. Here, we focus on the recognition of the action of a

human agent based on a biologically inspired visual architecture of analyzing articulated

movements. The proposed processing architecture builds upon coarsely segregated

streams of sensory processing along different pathways which separately process form

and motion information (Layher et al., 2014). Action recognition is performed in an

event-based scheme by identifying representations of characteristic pose configurations

(key poses) in an image sequence. In line with perceptual studies, key poses are

selected unsupervised utilizing a feature-driven criterion which combines extrema in

the motion energy with the horizontal and the vertical extendedness of a body shape.

Per class representations of key pose frames are learned using a deep convolutional

neural network consisting of 15 convolutional layers. The network is trained using the

energy-efficient deep neuromorphic networks (Eedn) framework (Esser et al., 2016),

which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic

System platform (Merolla et al., 2014). After the mapping, the trained network achieves

real-time capabilities for processing input streams and classify input images at about

1,000 frames per second while the computational stages only consume about 70 mW

of energy (without spike transduction). Particularly regarding mobile robotic systems, a

low energy profile might be crucial in a variety of application scenarios. Cross-validation

results are reported for two different datasets and compared to state-of-the-art action

recognition approaches. The results demonstrate, that (I) the presented approach is on

par with other key pose based methods described in the literature, which select key

pose frames by optimizing classification accuracy, (II) compared to the training on the full

set of frames, representations trained on key pose frames result in a higher confidence

in class assignments, and (III) key pose representations show promising generalization

capabilities in a cross-dataset evaluation.

Keywords: action recognition, key pose selection, deep learning, neuromorphic architecture, IBM neurosynaptic

system
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1. INTRODUCTION

Analyzing and understanding the actions of humans is one
of the major challenges for future technical systems aiming at
visual sensory behavior analysis. Acquiring knowledge about
what a person is doing is of importance and sometimes
even crucial in a variety of scenarios. In the context of
automated surveillance systems, action analysis is an essential
ability, allowing to identify potential threads emanating from
an individual or a group of persons. In Human-Computer-
Interaction (HCI), action analysis helps in understanding the
objectives and intentions of a user and increases the potential
of a system to adapt to the specific context of an interaction
and appropriately support, guide or protect the user. Moreover,
recognizing actions in the surrounding area is an integral part
of interpreting the own situative context and environment,
and thus is in particular crucial for mobile robotic systems
which may find themselves embedded in a variety of different
situations.

In the presented work, as the first main contribution, a
feature-driven key pose selection method is proposed, which
is driven by combining two features in the biological motion
input, namely extrema in the temporal motion energy signal and
the relative extent of a subject’s pose. Such temporally defined
features (from the motion stream) help to automatically select
key pose representations. The use of these dynamic features
has been motivated by psychophysical investigations (Thirkettle
et al., 2009) which demonstrate that humans select specific
poses in a continuous sequence of video input based on such
criteria. We first show how such key poses define events within
articulated motion sequences and how these can be reliably and
automatically detected. The proposed processing architecture
builds upon coarsely segregated streams of sensory processing
along different pathways which separately process form and
motion information (Giese and Poggio, 2003). An interaction
between the two processing streams enables an automatic
selection of characteristic poses during learning (Layher et al.,
2014). To use such recognition functionality in an autonomous
neurobiologically inspired recognition system various
constraints need to be satisfied. Such neurobiological systems
need to implement the underlying processes along the processing
and recognition cascade which defines the parts of their cognitive
functionality.

As the second key contribution, we employ here an energy
efficient deep convolutional neural network (Eedn; Esser et al.,
2016) to realize the key pose learning and classification, which
achieves a computationally efficient solution using a sparse
and energy efficient implementation based on neuromorphic
hardware. This allows us to establish a cascaded hierarchy of
representations with an increasing complexity for key pose
form and motion patterns. After their establishment, key pose
representations allow an assignment of a given input image
to a specific action category. We use an offline training
scheme that utilizes a deep convolutional neural network with
15 convolutional layers. The trained network runs on IBM’s
TrueNorth chip (Merolla et al., 2014; Akopyan et al., 2015). This
solution renders it possible to approach faster than real-time

capabilities for processing input streams and classify articulated
still images at about 1, 000 frames per second while the
computational stages consume only about 70 mW of energy.
We present cross-validation results on an action recognition
dataset consisting of 14 actions and 22 subjects and about 29, 000
key pose frames, which show a recall rate for the presented
approach of about 88%, as well as a comparison to state-of-the-
art action recognition approaches on a second dataset. To show
the generalization capabilities of the proposed key pose based
approach, we additionally present the results of a cross-dataset
evaluation, where the training and the testing of the network was
performed on two completely separate datasets with overlapping
classes.

2. RELATED WORK

The proposed key pose based action recognition approach is
motivated and inspired by recent evidences about the learning
mechanisms and representations involved in the processing
of articulated motion sequences, as well as hardware and
software developments from various fields of visual sciences.
For instance, empirical studies indicate, that special kinds of
events within a motion sequence facilitate the recognition
of an action. Additional evidences from psychophysics,
as well as neurophysiology suggest that both, form and
motion information contribute to the representation of an
action. Modeling efforts propose functional mechanisms
for the processing of biological motion and show how
such processing principles can be transfered to technical
domains. Deep convolutional networks make it possible to learn
hierarchical object representations, which show an impressive
recognition performance and enable the implementation
of fast and energy efficient classification architectures,
particularly in combination with neuromorphic hardware
platforms. In the following sections, we will briefly introduce
related work and results from different scientific fields, all
contributing to a better understanding of action representation
and the development of efficient action recognition
approaches.

2.1. Articulated and Biological Motion
Starting with the pioneering work of Johansson (1973),
perceptual sciences gained more and more insights about how
biological motion might be represented in the human brain
and what the characteristic properties of an articulated motion
sequence are. In psychophysical experiments, humans show
a remarkable performance in recognizing biological motions,
even when the presented motion is reduced to a set of points
moving coherently with body joints (point light stimuli; PLS).
In a detection task, subjects were capable of recognizing a
walking motion within about 200 ms (Johansson, 1976). These
stimuli, however, are not free of – at least configurational –
form information and the discussion about the contributions
of form and motion in biological motion representation is
still ongoing (Garcia and Grossman, 2008). Some studies
indicate a stronger importance of motion cues (Mather and
Murdoch, 1994), others emphasize the role of configurational
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form information (Lange and Lappe, 2006). Even less is known
about the specific nature and characteristic of the visual cues
which facilitate the recognition of a biological motion sequence.
In Casile and Giese (2005), a statistical analysis as well as
the results of psychophysical experiments indicate that local
opponent motion in horizontal direction is one of the critical
features for the recognition of PLS. Thurman and Grossman
(2008) conclude, that there are specific moments in an action
performance which are “more perceptually salient” compared
to others. Their results emphasize the importance of dynamic
cues in moments when the distance between opposing limbs is
the lowest (corresponding to local opponent motion; maxima
in the motion energy). On the contrary, more recent findings
by Thirkettle et al. (2009) indicate, that moments of a large
horizontal body extension (co-occurring with minima in the
motion energy) facilitate the recognition of a biological motion
in a PLS.

In neurophysiology, functional imaging studies (Grossman
et al., 2000), as well as single-cell recordings (Oram and Perrett,
1994) indicate the existence of specialized mechanisms for the
processing of biological motion in the superior temporal sulcus
(STS). STS has been suggested to be a point of convergence of
the separate dorsal “where” and the ventral “what” pathways
(Boussaoud et al., 1990; Felleman and Van Essen, 1991),
containing cells which integrate form and motion information
of biological objects (Oram and Perrett, 1996) and selectively
respond to, e.g., object manipulation, face, limb and whole
body motion (Puce and Perrett, 2003). Besides the evidence
that both form and motion information contribute to the
registration of biological motion, action specific cells in STS
are reported to respond to static images of articulated bodies
which in parallel evoke activities in the medio temporal (MT)
and medial superior temporal (MST) areas of the dorsal stream
(implied motion), although there is no motion present in
the input signal (Kourtzi and Kanwisher, 2000; Jellema and
Perrett, 2003). In line with the psychophysical studies, these
results indicate that poses with a specific feature characteristic
(here, articulation) facilitate the recognition of a human motion
sequence.

Complementarymodeling efforts in the field of computational
neuroscience suggest potential mechanisms which might explain
the underlying neural processing and learning principles. In
Giese and Poggio (2003) a model for the recognition of
biological movements is proposed, which processes visual
input along two separate form and motion pathways and
temporally integrates the responses of prototypical motion and
form patterns (snapshots) cells via asymmetric connections
in both pathways. Layher et al. (2014) extended this model
by incorporating an interaction between the two pathways,
realizing the automatic and unsupervised learning of key
poses by modulating the learning of the form prototypes
using a motion energy based signal derived in the motion
pathway. In addition, a feedback mechanism is proposed in
this extended model architecture which (I) realizes sequence
selectivity by temporal association learning and (II) gives a
potential explanation for the activities in MT/MST observed

for static images of articulated poses in neurophysiological
studies.

2.2. Action Recognition in Image
Sequences
In computer vision, the term vision-based action recognition
summarizes approaches to assign an action label to each frame or
a collection of frames of an image sequence. Over the last decades,
numerous vision-based action recognition approaches have been
developed and different taxonomies have been proposed to
classify them by different aspects of their processing principles.
In Poppe (2010), action recognition methods are separated
by the nature of the image representation they rely on, as
well as the kind of the employed classification scheme. Image
representations are divided into global representations, which use
a holistic representation of the body in the region of interest (ROI;
most often the bounding box around a body silhouette in the
image space), and local representations, which describe image
and motion characteristics in a spatial or spatio-temporal local
neighborhood. Prominent examples for the use of whole body
representations are motion history images (MHI) (Bobick and
Davis, 2001), or the application of histograms of oriented gradients
(HOG) (Dalal and Triggs, 2005; Thurau and Hlavác, 2008).
Local representations are, e.g., employed in Dollar et al. (2005),
where motion and form based descriptors are derived in the

local neighborhood (cuboids) of spatio-temporal interest points.

Classification approaches are separated into direct classification,

which disregard temporal relationships (e.g., using histograms

of prototype descriptors, Dollar et al., 2005) and temporal
state-space models, which explicitly model temporal transitions

between observations (e.g., by employing Hidden Markov models

(HMMs) Yamato et al., 1992, or dynamic time warping (DTW)

Chaaraoui et al., 2013). For further taxonomies and an exhaustive

overview of computer vision action recognition approaches we

refer to the excellent reviews in Gavrila (1999); Aggarwal and

Ryoo (2011); Weinland et al. (2011).
The proposed approach uses motion and form based

feature properties to extract key pose frames. The identified

key pose frames are used to learn class specific key pose

representations using a deep convolutional neural network

(DCNN). Classification is either performed framewise or by

temporal integration through majority voting. Thus, following

the taxonomy of Poppe (2010), the approach can be classified as
using global representations together with a direct classification
scheme. Key pose frames are considered as temporal events
within an action sequence. This kind of action representation
and classification is inherently invariant against variations in
(recording and execution) speed. We do not argue that modeling
temporal relationships between such events is not necessary in
general. The very simple temporal integration schemewas chosen
to focus on an analysis of the importance of key poses in the
context of action representation and recognition. Because of the
relevance to the presented approach, we will briefly compare
specifically key pose base action recognition approaches in the
following.
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2.3. Key Pose Based Action Recognition
Key pose based action recognition approaches differ in their
understanding of the concept of key poses. Some take a
phenomenological perspective and define key poses as events
which possess a specific feature characteristic giving rise to
their peculiarity. There is no a priori knowledge available
about whether, when and how often such feature-driven events
occur within an observed action sequence, neither during the
establishment of the key pose representations during training,
nor while trying to recognize an action sequence. Others regard
key pose selection as the result of a statistical analysis, favoring
poses which are easy to separate among different classes or
maximally capture the characteristics of an action sequence.
The majority of approaches rely on such statistical properties
and either consider the intra- or the inter-class distribution of
image-based pose descriptors to identify key poses in action
sequences.

Intra-Class Based Approaches
Approaches which evaluate intra-class properties of the feature
distributions regard key poses as the most representative
poses of an action and measures of centrality are exploited
on agglomerations in pose feature spaces to identify the
poses which are most common to an action sequence. In
Chaaraoui et al. (2013), a contour based descriptor following
(Dedeoğlu et al., 2006) is used. Key poses are selected by
repetitive k-means clustering of the pose descriptors and
evaluating the resulting clusters using a compactness metric.
A sequence of nearest neighbor key poses is derived for each
test sequence and dynamic time warping (DTW) is applied
to account for different temporal scales. The class of the
closest matching temporal sequence of key poses from the
training set is used as the final recognition result. Based on
histograms of oriented gradients (HOG) and histograms of
weighted optical flow (HOWOF) descriptors, Cao et al. (2012)
adapt a local linear embedding (LLE) strategy to establish
a manifold model which reduces descriptor dimensionality,
while preserving the local relationship between the descriptors.
Key poses are identified by interpreting the data points (i.e.,
descriptors/poses) on the manifold as an adjacent graph and
applying a PageRank (Brin and Page, 1998) based procedure to
determine the vertices of the graph with the highest centrality, or
relevance.

In all, key pose selection based on an intra-class analysis
of the feature distribution has the advantage of capturing the
characteristics of one action in isolation, independent of other
classes in a dataset. Thus, key poses are not dataset specific and
– in principle – can also be shared among different actions.
However, most intra-class distribution based approaches build
upon measures of centrality (i.e., as a part of cluster algorithms)
and thus key poses are dominated by frequent poses of an action.
Because they are part of transitions between others, frequent
poses tend to occur in different classes and thus do not help
in separating them. Infrequent poses, on the other hand, are
not captured very well, but are intuitively more likely to be
discriminative. The authors’ are not aware of an intra-class
distribution based method which tries to identify key poses based

on their infrequency or abnormality (e.g., by evaluating cluster
sizes and distances).

Inter-Class Based Approaches
Approaches based on inter-class distribution, on the other hand,
consider highly discriminative poses as key poses to separate
different action appearances. Discriminability is here defined
as resulting in either the best classification performance or in
maximum dissimilarities between the extracted pose descriptors
of different classes. To maximize the classification performance,
Weinland and Boyer (2008) propose a method of identifying
a vocabulary of highly discriminative pose exemplars. In each
iteration of the forward selection of key poses, one exemplar
at a time is added to the set of key poses by independently
evaluating the classification performance of the currently selected
set of poses in union with one of the remaining exemplars in
the training set. The pose exemplar, which increases classification
performance the most is then added to the final key pose set.
The procedure is repeated until a predefined number of key
poses is reached. Classification is performed based on a distance
metric obtained by either silhouette-to-silhouette or silhouette-
to-edge matching. Liu et al. (2013) combine the output of
the early stages of an HMAX inspired processing architecture
(Riesenhuber and Poggio, 1999) with a center-surround feature
map obtained by subtracting several layers of a Gaussian pyramid
and a wavelet laplacian pyramid feature map into framewise
pose descriptors. The linearized feature descriptors are projected
into a low-dimensional subspace derived by principal component
analysis (PCA). Key poses are selected by employing an adaptive
boosting technique (AdaBoost; Freund and Schapire, 1995) to
select the most discriminative feature descriptors (i.e., poses).
A test action sequence is matched to the thus reduced number
of exemplars per action by applying an adapted local naive
Bayes nearest neighbor classification scheme (LNBNN; McCann
and Lowe, 2012). Each descriptor of a test sequence is assigned
to its k nearest neighbors and a classwise voting is updated
by the distance of a descriptor to the respective neighbor
weighted by the relative number of classes per descriptor. In
Baysal et al. (2010), noise reduced edges of an image are
chained into a contour segmented network (CSN) by using
orientation and closeness properties and transformed into a 2-
adjacent segment descriptor (k-AS; Ferrari et al., 2008). The
most characteristic descriptors are determined by identifying k
candidate key poses per class using the k-medoids clustering
algorithm and selecting the most distinctive ones among the set
of all classes using a similarity measure on the 2-AS descriptors.
Classification is performed by assigning each frame to the class
of the key pose with the highest similarity and sequence-wide
majority voting. Cheema et al. (2011) follow the same key
pose extraction scheme, but instead of selecting only the most
distinctive ones, key pose candidates are weighted by the number
of false and correct assignments to an action class. A weighted
voting scheme is then used to classify a given test sequence.
Thus, although key poses with large weights have an increased
influence on the final class assignment, all key poses take part
in the classification process. Zhao and Elgammal (2008) use an
information theoretic approach to select key frames within action
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sequences. They propose to describe the local neighborhood of
spatiotemporal interest points using an intensity gradient based
descriptor (Dollar et al., 2005). The extracted descriptors are
then clustered, resulting in a codebook of prototypical descriptors
(visual words). The pose prototypes are used to estimate the
discriminatory power of a frame by calculating a measure based
on the conditional entropy given the visual words detected in
a frame. The frames with the highest discriminatory power are
marked as key frames. Chi-square distances of histogram based
spatiotemporal representations are used to compare key frames
from the test and training datasets and majority voting is used to
assign an action class to a test sequence.

For a given pose descriptor and/or classification architecture,
inter-class based key pose selection methods in principle
minimize the recognition error, either for the recognition of the
key poses (e.g., Baysal et al., 2010; Liu et al., 2013) or for the
action classification (e.g., Weinland and Boyer, 2008). But, on the
other hand, key poses obtained by inter-class analysis inherently
do not cover the most characteristic poses of an action, but the
ones which are themost distinctive within a specific set of actions.
Applying this class of algorithms on two different sets of actions
sharing one common action might result in a different selection
of key poses for the same action. Thus, once extracted, key
pose representations do not necessarily generalize over different
datasets/domains and, in addition, sharing of key poses between
different classes is not intended.

Feature-Driven Approaches
Feature-driven key pose selection methods do not rely on the
distribution of features or descriptors at all and define a key pose
as a pose which co-occurs with a specific characteristic of an
image or feature. Commonly employed features, such as extrema
in a motion energy based signal, are often correlated with pose
properties such as the degree of articulation or the extendedness.
Compared to statistical methods, this is a more pose centered
perspective, since parameters of the pose itself are used to select
a key pose instead of parameters describing the relationship or
differences between poses.

Lv and Nevatia (2007) select key poses in sequences of
3D-joint positions by automatically locating extrema of the
motion energy within temporal windows. Motion energy in their
approach is determined by calculating the sum over the L2 norm
of the motion vectors of the joints between two temporally
adjacent timesteps. 3D motion capturing data is used to render
2D projections of the key poses from different view angles. Single
frames of an action sequence are matched to the silhouettes of
the resulting 2D key pose representations using an extension
of the Pyramid Match Kernel algorithm (PMK; Grauman and
Darrell, 2005). Transitions between key poses are modeled using
action graph models. Given an action sequence, the most likely
action model is determined using the Viterbi Algorithm. In Gong
et al. (2010), a key pose selection mechanism for 3D human
action representations is proposed. Per action sequence, feature
vectors (three angles for twelve joints) are projected onto the
subspace spanned by the first three eigenvectors obtained by
PCA. Several instances of an action are synchronized to derive the
mean performance (in terms of execution) of an action. Motion

energy is then defined by calculating the Euclidean distance
between two adjacent poses in the mean performance. The local
extrema of the motion energy are used to select the key poses,
which after their reconstruction in the original space are used as
the vocabulary in a bag of words approach. During recognition,
each pose within a sequence is assigned to the key pose with
the minimum Euclidean distance resulting in a histogram of
key pose occurrences per sequence. These histograms serve as
input to a support vector machine (SVM) classifier. In Ogale
et al. (2007), candidate key poses are extracted by localizing the
extrema of the mean motion magnitude in the estimated optical
flow. Redundant poses are sorted out pairwise by considering the
ratio between the intersection and the union of two registered
silhouettes. The final set of unique key poses is used to construct
a probabilistic context-free grammar (PCFG). This method uses
an inter-classmetric to reject preselected key pose candidates and
thus is not purely feature-driven.

Feature-driven key pose selection methods are independent of
the number of different actions within a dataset. Thus, retraining
is not necessary if, e.g., a new action is added to a dataset and
the sharing of key poses among different actions is in principle
possible. Naturally, there is no guarantee, that the selected poses
maximize the separability of pose or action classes.

3. MODEL/METHODS

To realize an energy efficient implementation for key pose based
action recognition, the proposed model uses a neuromorphic
deep convolutional neural network (DCNN) to selectively
learn representations of key poses which are assigned to
different action classes. In the preprocessing phase, optical
flow is calculated on the input sequences and key pose
frames are selected in an unsupervised manner. Form and
motion information is calculated for each key pose frame. The
concatenated form and motion information is then used as the
input to the DCNN. In the following, detailed information about
the image preprocessing, the key pose selection automatism and
the structure and functionality of the DCNN are presented. All
simulations were carried out using a neuromorphic computing
paradigm and mapped to the IBM TrueNorth hardware platform
(Merolla et al., 2014).

3.1. Key Pose Selection and Image
Preprocessing
During preprocessing, two elementary processing steps are
performed. First, the key pose selection is performed by
automatically analyzing simple motion and form parameters.
Second, the final input to the network is calculated by combining
the form and motion representations Iform and Imotion obtained
by simple image-based operations.

Key Pose Selection
The key pose selection process operates upon two parameters,
namely (I) local temporal extrema in the motion energy and
(II) the extendedness of a subject at a given timestep. Optical
flow is calculated using a differential method, as suggested in
the Lucas-Kanade optical flow estimation algorithm (Lucas and
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Kanade, 1981). Given an image sequence I(x, t), the optical flow
u(x, t) = (u(x, t), v(x, t)) at timestep t and position x = (x, y) is
estimated in a local neighborhood N(x) by minimizing

∑

y∈N(x)

W(x− y)2[Ix(y, t)u(x, t)+ Iy(x, t)v(x, t)+ It(y, t)]
2, (1)

where W(x − y) increases the influence of the optical flow
constraints within the center of the local neighborhood (for
details see Barron et al., 1994). The spatiotemporal derivatives
Ix, Iy and It are estimated by convolution of the image sequences
with the forth-order central difference [−1, 8, 0, −8, 1]/12
and it’s transpose in the spatial and the first-order backward
difference [−1, 1] in the temporal domain. A separable 2D kernel
with 1D coefficients of [1, 4, 6, 4, 1]/16 is used to realize the
weighted integration of the derivatives within a 5 × 5 spatial
neighborhood (N(x))1. The use of the Lucas-Kanade algorithm
is not a hard prerequisite for the proposed approach. Other
types of optical flow estimators might be applied as well (e.g.,
(Brosch and Neumann, 2016), which is capable to be executed on
neuromorphic hardware). The overall motion energy Eflo is then
calculated by integrating the speed of all estimated flow vectors
within the vector field.

Eflo(t) =
∑

x∈I(x,t)

‖u(x, t)‖2=
∑

x∈I(x,t)

√

u(x, t)2 + v(x, t)2, (2)

Motion energy is smoothed by convolving the estimated motion
energy with a Gaussian kernel, Ẽflo(t) = (Eflo ∗ Gσ )(t). In the
performed simulations, σ = 2 and σ = 4 were used dependent
on the dataset2. Potential key pose frames are then marked by
identifying the local extrema of the motion energy signal.

K
flo = {I(t), t ∈ [1, ...,T]|t is a local extremum of Ẽflo(t)}, (3)

The relative horizontal and vertical extent of a given pose at time
t is then used to reject local extrema with an extent smaller than
a predefined percentual threshold λ, as defined by:

K = K
flo ∩ K

ext. (4)

with

K
ext = {I(t), t ∈ [1, ...,T] | (Extver(t) > (1+ λ)Ext

ver
)

∨ (Extver(t) < (1− λ)Ext
ver

) (5)

∨ (Exthor(t) > (1+ λ)Ext
hor

)

∨ (Exthor(t) < (1− λ)Ext
hor

)}

In the performed simulations, values of λ = 0.1 and
λ = 0.05 were used for the two different datasets. The
percentual thresholds were determined manually with the aim
to compensate for differences in the temporal resolution of the

1In the presented simulations, the MATLAB R© implementation of the Lucas-

Kanade flow estimation algorithm was used.
2The values of σ were chosen manually to take different temporal resolutions into

account.

datasets. The horizontal and vertical extent Exthor and Extver

are derived framewise by estimating the width and the height
of the bounding box enclosing the body shape. The extent of a

neutral pose is used as the reference extent Ext
hor

and Ext
ver

,
which are derived from the width and height of the bounding
box in the first frame of a sequence. Silhouette representations,
and thus the bounding boxes of the bodies, are available for
both datasets used in the simulations. In constrained recording
scenarios, silhouettes can be extracted by background subtraction
or using the optical flow fields calculated for the selection of the
key pose frames. Figure 1A shows the motion energy signal Ẽflo

together with the extent Exthor and Extver and their reference
values. A strong correlation between the motion energy and the
extent of the pose can be seen. In Figure 1B, examples for the
horizontal and the vertical extent are displayed for a neutral
and a extended posture. While the motion energy allows an
identification of temporal anchor points in a motion sequence,
the extent helps in selecting the most characteristic ones.

Form and Motion Representations
For each selected key pose frame Ikey ∈ K, a form representation

is derived by estimating the spatial derivatives I
key
x and I

key
y

and combining them into one contour representation Icon

by concatenating the orientation selective maps (see Figure 2,
second row). The final form representation is then obtained by
applying a logarithmic transformation emphasizing low range
values and normalizing the response amplitudes, using the
transformation:

Iconlog = log(1+ 5|Icon|) (6)

Iform =
Icon
log

max(Icon
log

)
(7)

Likewise, for each key pose frame Ikey, optical flow is separated
into vertical and horizontal components and concatenated (see
Figure 2, first row). The resulting motion representation Iflo is
log-transformed and normalized. As for the contrast mapping,
the transformation is given through:

Iflolog = log(1+ 5|Iflo|)) (8)

Imotion =
Iflo
log

max(Iflo
log
)

(9)

The form representations Iform and the motion representations
Imotion are combined to an overall input representation Iinput

(Figure 2, last column). Iinput is then used as an input for the
training of the DCNN described in the following section.

3.2. Learning of Class Specific Key Pose
Representations
A neuromorphic deep convolutional neural network was used
to establish classwise representations of the preselected and
suppress wrapping key pose frames using a supervised learning
scheme. The network was implemented using the energy-
efficient deep neuromorphic networks (Eedn) framework (Esser
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FIGURE 1 | Key pose selection. For each action sequence, key pose frames are selected by identifying minima and maxima in the motion energy which co-occur

with a sufficiently increased extent of the body pose. In (A), the smoothed motion energy Ẽflo (blue) together with the horizontal (red) and vertical (green) extent of the

body pose Exthor and Extver and their reference values Ext
ver

and Ext
hor

(dashed, dash-dotted) are displayed for one of the actions used as part of the simulations

(SP2/jumping jack). At the bottom, body poses for several frames are shown. Local minima in the motion energy are marked by a circle, local maxima by a diamond.

Extrema which are rejected as a key pose frame because of an insufficient extent are additionally marked with ×. (B) Shows an example for the horizontal and vertical

extent of a neutral and a highly articulated body pose. The first frame of each action sequence is defined to be the neutral pose. (C) Shows the relative number of

identified key poses per action sequence for the uulmMAD dataset used for the simulations (see Section 4.1). Written informed consent for the publication of the

exemplary images was obtained from the displayed subject.

et al., 2016), which adapts and extends the training and
network functions of the MatConvNet toolbox (Vedaldi and
Lenc, 2015). In the following for readers’ convenience, we
will briefly recapitulate and summarize key aspects of the
framework and its extensions presented in Esser et al. (2016).
In the framework, the weights established through learning
match the representation scheme and processing principles used
in neuromorphic computing paradigms. The structure of the
DCNN follows one of the network parameter sets presented
by Esser et al. (2016), which show a close to state-of-the-art
classification performance on a variety of image datasets and
allow the trained network to be run on a single IBM TrueNorth
chip (Merolla et al., 2014).

A deep convolutional neural network is typically organized in
a feedforward cascade of layers composed of artificial neurons
(LeCun et al., 2010), which process the output of the proceeding
layer (afferent synaptic connections) and propagate the result to
the subsequent one (efferent synaptic connections). Following
the definition in Esser et al. (2016), an artificial cell j in a DCNN
calculates a weighted sum over the input to that cell, as defined by:

sj =
∑

xy

∑

f

inxyfwxyfj, (10)

where inxyf are the signals in the input field of cell j at locations
(xy) in the spatial and (f ) in the feature domain and, wxyfj the
respective synaptic weights. In the following, we will use the
linear index i to denote locations in the (xyf ) space-feature cube.
Normalizing the weighted sum over a set of input samples (batch

normalization) allows to accelerate the training of the network by
standardizing sj as defined through:

s̃j =
sj − µj

σj + ǫ
+ bj, (11)

with s̃j the standardized weighted sum, µj the mean and σj the
standard deviation of s calculated over the number of training
examples within a batch (Ioffe and Szegedy, 2015). bj is a
bias term, allowing to shift the activation function φ(•), and
ǫ guarantees numerical stability. The output activation of the
artificial neuron is calculated by applying an activation function
on the standardized filter response:

rj = φ(s̃j). (12)

Weight adaptation is performed through gradient descent by
applying error backpropagation with momentum (Rumelhart
et al., 1986). In the forward phase, an input pattern is propagated
through the network until the activations of the cells in the output
layer are obtained. In the backward phase, the target values of
an input pattern are used to calculate the cross entropy C given
the current and the desired response of the output layer cell
activations, as defined by:

C = −

M
∑

j=1

vj ln(rj) = −

M
∑

j=1

vj ln(φ(s̃j)), (13)

withM denoting the number of cells in the output layer. Here, vj
is the one-hot encoded target value (or teaching signal) of a cell
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FIGURE 2 | Input generation. Each frame of an action sequence is transformed into a combined motion and form representation. In the top row, the estimated

optical flow is displayed in the second column (direction γ color-encoded) for two consecutive frames (first column). The optical flow field is then separated into

horizontal and vertical components (third column) and their absolute value is log transformed (forth column) and normalized (fifth column). Form representations

(bottom row) are derived framewise by estimating the horizontal and vertical derivatives Ix and Iy (second column, gradient orientation with polarity β color-encoded).

The resulting contrast images are then log-transformed and normalized. The form and motion representations are combined into a single feature map Iinput which is

then fed into the convolutional neural network. Image sizes are increased for a better visibility. Written informed consent for the publication of exemplary images was

obtained from the shown subject.

j with activation rj. A softmax function is employed as activation
function in the output layer, as defined through:

φ(s̃j) =
es̃j

∑M
k=1 e

s̃k
. (14)

The cross entropy error E(t) = C is then propagated backwards
through the network and the synaptic weight adaptation is
calculated for all cells in the output and hidden layers by applying
the chain rule. The strength of weight adaptation 1wij is given
through:

1wij(t) = −η
∂E(t)

∂wij
+ α1wij(t − 1) = −ηδjini + α1wij(t − 1),

(15)

with δj =

{

(rj − vj) if j is a neuron in the output layer

φ
′(s̃j)

∑

k δkwjk if j is a neuron in a hidden layer,

(16)

which includes a momentum term for smoothing instantaneous
weight changes. Here, k is the index of cells in the layer
succeeding cell j, t describes the current training step, or iteration,
and η denotes the learning rate. The momentum factor 0 ≤ α ≤

1 helps the network to handle local minima and flat plateaus on
the error surface. After the backward pass, weights are finally
adapted by:

wij(t + 1) = wij(t)+ 1wij(t). (17)

To ensure the compatibility to neuromorphic processing
principles, a binary activation function φ(s̃j) is applied in the
hidden layers (for details see Section 3.3).

Within a convolutional layer, weights wij of a cell j are shared
over multiple input fields, which are arranged as a regular grid in

the source layer. The calculation of the weighted sum during the
forward, as well as the integration of the error derivative during
the backward pass can be formulated as a convolution with the
input from the source, or the error signal from the succeeding
layer. The weights wij act as the filter (or convolution) kernel, s̃j
as the filter response and rj as the output of an artificial cell. The
size and stride of a filter allow to adjust the size and the overlap
of the input fields to a filter in the source layer. A small stride
results in an increased overlap and thus a large number of output
values. The number of features defines how many different filters
are employed in a layer. The weight matrices of the cells within a
layer can be separated into groups of filters, which define the set
of input features from the source layer covered by a filter3.

It is a common practice to construct deep neural networks
by employing convolutional layers for feature extraction in
the lower layers and connect them with (one or more) fully
connected layers (equivalent toMultilayer Perceptrons/MLPs) on
top for classification purposes. In contrast, the proposed network
follows the strategy of global average pooling (gap) proposed
in Lin et al. (2013) and applied in Esser et al. (2016). In the
final convolutional layer of the network, one feature map is
generated for each category of the classification problem. Instead
of a full connectivity, the average value of each class-associated
feature map is propagated to the output (softmax) layer. Due
to their association to classes, the feature maps can directly be
interpreted as confidence maps. Following the softmax layer, the
cross-entropy error is calculated using one-hot encoded target
values vj and propagated back through the network (according
to Equation 16). Networks using parameter-free global average
pooling layers in combination with softmax are less prone to
overfitting (compared to MLPs) and increase the robustness to
spatial translations (for details see Lin et al., 2013).

3In Figure 3, the weightmatrices in the convolutional layer 5 have a dimensionality

of 3 × 3 × 8, since they receive input from 256 feature maps in layer 4 which are

separated into 32 groups of filters, each receiving input from 8 feature maps.
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FIGURE 3 | Deep convolutional neural network structure. The implemented DCNN follows the structure proposed in Esser et al. (2016) and employs three

different convolutional layer types (layers 1–15). Spatial layers (SPAT; colored in blue) perform a linear filtering operation by convolution. Pooling layers (POOL; colored

in red) decrease the spatial dimensionality while increasing the invariance and diminishing the chance of overfitting. Network-in-network layers (NIN; colored in green)

perform a parametric cross channel integration (Lin et al., 2013). The proposed network consists of a data (or input) layer, 15 convolutional layers and a prediction and

softmax layer on top. Each of the cells in the last convolutional layer (layer 15) is associated with one class of the classification problem. In the prediction layer, the

average class-associated activations are derived (global average pooling/gap) and fed into the softmax layer (i.e., one per class), where the cross-entropy error is

calculated and propagated backwards through the network. The parameters used for the convolutional layers of the network are given in the central rows of the table.

In the last row, the number of artificial cells per layer is listed. The cell count in the prediction and softmax layer depends on the number of categories of the

classification task (i.e., the number of actions in the dataset).

The employed network consists of 15 convolutional layers,
which implement three different types of convolutional
operations. Spatial layers (SPAT) perform a standard convolution
operation, pooling layers (POOL) reduce the spatial dimensions
by applying a convolution with a large stride (Springenberg
et al., 2014), network-in-network layers (NIN) are realized by
convolutional layers with a size of 1x1 and a stride of 1 and act as
cross channel integration layers (Lin et al., 2013). The network
structure is summarized in Figure 3. Each of the cells in the last
convolutional layer (layer 15) is assigned to one class. During
learning, activities in this layer are averaged per feature map and
fed into the softmax layer. For recognition, the average output
of the cell populations associated to the individual classes are
used as prediction values and serve as the final output rclassc of the
network (prediction layer in Figure 3).

3.3. Neuromorphic Implementation
Processing actual spikes in hardware, the execution of a DCNN
on a neuromorphic platform poses several constraints on the
activity and weight representation schemes. Since the processing
architecture of the TrueNorth neuromorphic platform is based
on event-based representations, the gradual activations need to
be mapped onto a spike-based mechanism. To be in conformity
with these processing principles, Esser et al. (2016) employ a
binary activation function, as defined by:

φ(s̃j) =

{

1 if s̃j ≥ 0

0 otherwise,
(18)

and ternary synaptic weights (wxyf ∈ {−1, 0, 1}). For the
backpropagation of the error signal, the derivative of the binary

activation is approximated linearly in the range of [0, 1], as given
through:

∂φ(s̃j)

∂ s̃j
≈ max(0, 1−

∣

∣s̃j
∣

∣). (19)

During training, a copy of the model weights is held in a
shadow network, which allows gradual weight adaptation.Weight
updates are performed on values in the shadow network using
high precision values. For the forward and backward pass, the
hidden weights wh

ij in the shadow network are clipped to [−1, 1]

and mapped to the ternary values using rounding and hysteresis,
following:

wij(t) =























−1 ifwh
ij(t) ≤ −0.5− h

0 ifwh
ij(t) ≥ −0.5+ h ∧ wh

ij(t) ≤ 0.5− h

1 ifwh
ij(t) ≥ 0.5+ h

wij(t − 1) otherwise

(20)
(for details refer to Esser et al., 2016). The hidden weights wh

ij

allow the synaptic connection strengths to switch between the
ternary values based on small changes in the error gradients
obtained during backpropagation, while the hysteresis factor h
prevents them from oscillating. The parameters for the training
of the network were chosen according to Esser et al. (2016),
using a momentum factor of α = 0.9 and a learning rate of
η = 20 (reduced by a factor of 0.1 after 2/3 and 5/6 of the total
training iterations). The hysteresis factor h was set to 0.1. The
mapping of the training network on the TrueNorth platform was
performed by the Eedn framework. Training was carried out on
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Nvidia GPUs, testing was performed on the IBMTrueNorthNS1e
board.

The IBM TrueNorth chip consists of 4, 096 interconnected
neurosynaptic cores with 1 million spiking neurons and 256
million configurable synaptic connections. For the execution
of the network on the TrueNorth chip, the trained network
parameters are mapped to hardware using an abstraction of
a TrueNorth program called Corelet (Amir et al., 2013). The
platform independent Corelets translate the network parameters
into a TrueNorth specific configuration, which can be used to
program the parameters of the neurons and synaptic connection
strengths on the chip. For details on Corelets and the mapping of
the DCNN on neuromorphic hardware platforms refer to Amir
et al. (2013); Esser et al. (2016).

3.4. Temporal Integration of Framewise
Class Predictions
After the training of the DCNN, classification is either performed
framewise by directly selecting the class corresponding to the
cell population in layer 15 with the maximum average activation,
or by integrating the individual framewise classification results
using majority voting in temporal windows or over the full
sequence.

For framewise classification, a key pose frame is identified in
an input image sequence I(x, t) and preprocessed as described
in Section 3.1. The resulting input map Iinput is fed into the
DCNN and the class label c associated to the cell population in
layer 15 with the maximum average output rclassc defines the class
prediction for Iinput. The value of rclassc can directly be interpreted
as the confidence in the prediction.

In sliding window based classification, the predicted class
labels for key pose frames are collected within temporal windows
of size n [frames], which are shifted over the input sequence
I(x, t). The class with the most frequent occurrence of key pose
frames determines the class predicted for the window (majority
voting). At the moment, we do not use the confidence rclassc of
the predictions as weights for the voting. Note that it is not

guaranteed, that key pose frames occur in all temporal windows.
Windows which do not contain key poses are not used for
evaluation.

Full sequence classification follows the same principle as
sliding window based classification, but collects all key pose
frames within a sequence. Thus, the amount of temporal
information integrated in the voting process might differ
substantially from sequence to sequence.

4. DATASETS

The proposed action recognition approach was evaluated using
two different action datasets. Due to the higher number of
subjects and actions, we focused our analysis on the uulm
multiperspective action dataset (uulmMAD). In addition, we
analyzed the performance on the widely used Weizmann dataset
to allow a comparison to other approaches and to perform a
cross-dataset evaluation of overlapping classes. In the following,
we will briefly describe the main characteristics of the two
datasets.

4.1. uulmMAD
The uulm multiperspective action dataset4 (uumlMAD; Glodek
et al., 2014) consists of data from 31 subjects performing actions
from the areas of everyday life (ED), sport/fitness (SP) and
stretching (ST). Eight of the actions are repeated three times, six
actions are performed four times with varying speed. Altogether,
each action is performed either 93 or 124 times. Actions were
recorded in front of a greenscreen using three synchronized
cameras and the body posture was captured in parallel by
an inertial motion capturing system worn by the subjects. To
decrease the likelihood of similar visual appearances, the motion
capture suit was covered by additional clothes whenever possible.
Figure 4 shows the 14 actions together with a characteristic
picture, an abbreviation and a short description for each action.

4Available via https://www.uni-ulm.de/imagedb.

FIGURE 4 | uulmMAD – uulm multiperspective action dataset. The uulmMAD dataset contains 14 actions in the area of everyday activities, fitness/sports and

stretching performed by 31 subjects. Per subject, eight of the actions are repeated three times, six actions are performed four times with varying speed. Actions were

recorded by three synchronized cameras (frontal, diagonal and lateral) with a frame rate of 30Hz and an inertial motion capturing system with a sample rate of 120Hz.

Silhouettes were extracted using chromakeying. At the time we carried out the simulations, silhouettes were available for 22 subjects. In the first row exemplary

pictures are shown for all actions. The number of videos (green) and total sum of frames (blue) which were available for the evaluation are displayed in the second row.

At the bottom, an abbreviation for each action is defined and a short description is given. Written informed consent for the publication of exemplary images was

obtained from the displayed subjects.
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FIGURE 5 | Weizmann action dataset. The Weizmann dataset (Gorelick et al., 2007) is one of the most commonly used action recognition datasets and consist of

ten actions, recorded for nine subjects. Actions are performed once (occasionally twice) per subject in front of a static background. Silhouette representations are

provided for all sequences. Representative images are displayed alongside with the number of frames and sequences, a label and a short description per class.

At the time we carried out the simulations, silhouette
representations were available for all sequences of 22 subjects.
Since the silhouettes are used to calculate an estimate of
the horizontal and vertical extent of a pose, only the frontal
recordings of this subset of subjects were used within the
evaluation. Some action pairs (e.g., ED2 and ST4) in the dataset
are deliberately intended to appear visually similar and thus be
difficult to separate. In total, the sequences used for evaluation
contain 381, 194 frames, of which 28, 902 are selected by the key
pose selection procedure.

4.2. Weizmann Dataset
To allow a comparison with different action recognition
approaches, simulations were additionally carried out using a
well established action dataset. The Weizmann dataset5 (see
Figure 5; Gorelick et al., 2007) consists of ten actions performed
by nine subjects. Actions are mostly performed once per subject,
although some actions are occasionally performed twice. Actions
are captured in 25Hz from a frontoparallel perspective in front
of a uniform background.

Silhouettes are available for all subjects and sequences. In
total, the sequences contain 5, 594 frames, 1, 873 of which are
identified as key pose frames by using the procedure described
in Section 3.1.

5. RESULTS

Several simulations were carried out to evaluate the performance
of the proposed key pose based action recognition approach.
The simulations were intended to address questions related to
(I) the overall performance of the approach on different datasets
using a framewise, as well as windowed and full sequence
majority voting recognition schemes, (II) a comparison to
other action recognition methods, (III) a juxtaposition of key
pose based and full sequence learning, and (IV) cross-dataset
evaluation. Since action recognition datasets—in particular, in
case of framewise recognition—are often highly imbalanced,
we provide different types of performance measures, as well

5Available via http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.

html.

TABLE 1 | Performance measures.

Measure Abbreviation Definition

Recall RecM
1
N

∑N
i=1

tpi
tpi+fni

Informedness InfM
∑N

i=1
tpi+fpi

tpi+fni+tni+fpi
× (

tpi
tpi+fni

+
tni

fpi+tni
− 1)

Markedness MarkM
∑N

i=1
tpi+fni

tpi+fni+tni+fpi
× (

tpi
tpi+fpi

+
tni

fni+tni
− 1)

Matthews Correlation MCCM ±
√

MarkM × InfM

as classwise performance values for the most essential results.
Since the nomenclature and definition of performance measures
vary largely in the pattern recognition and machine learning
community we will briefly define and describe the reported
measures to allow a better comparability. For a comprehensive
discussion on performance measures, we refer to Sokolova and
Lapalme (2009) and the contributions of D. Powers, e.g. (Powers,
2013).

In a multiclass classification problem with N classes tpi
(true positives) are commonly defined as the number of
correct acceptances (hits) for a class Ci (i ∈ [1, ...,N]),
fni as the number of false rejections (misses), tni as the
number of correct rejections of samples of different classes Cj 6=i

and fni (false negatives) as the number of false acceptances
(false alarms). Together, these four counts constitute the
confusion matrix and allow to derive a variety of measures
describing the performance of a trained classification system.
The ones used for the evaluation of the presented results are
listed alongside with an abbreviation and their definition in
Table 1.

All multiclass performance measures are calculated using
macro averaging (M), since using micro averaging, classes with
a large number of examples would dominate the averaging.
RecM, often referred to as (average) recognition rate or
somewhat misleading as (classification) accuracy, might be the
performance measurement most frequently used in the action
recognition literature and describes the average percentage of
correctly identified positive examples per class. InfM reflects how
informed the decision of a classifier is in comparison to chance,
whereas MarkM follows the inverse concept by describing how
likely the prediction variable is marked by the true variable
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(Powers, 2013). Note, that when calculating the average per
class values of InfM and MarkM are weighted by the Biasi =

tpi+fpi
tpi+fni+tni+fpi

and the Prevalencei =
tpi+fni

tpi+fni+tni+fpi
, respectively.

The Matthews Correlation Coefficient MCCM can be derived
by calculating the geometric mean of InfM and MarkM and
expresses the correlation between predicted classes and true
values.

Leave-one-subject-out cross-validation (LOSO) was
performed in all test scenarios and the resulting average
performance measures are reported together with the
corresponding standard deviations. In the following, rates
are either reported in a range of [0, 100] or [0, 1] (due to limited
space).

5.1. Classification Performance
The equivalent network structure (see Section 3.2) was used
to train the network on the two datasets described in Section

4. In case of the uulmMAD dataset, 28, 902 key pose frames
(per class average 2, 064.43, std 1, 097.16) were selected and
used as the training input. 576 cells in the last convolutional
layer (layer 15) of the CNN were assigned to each of the 14
classes in the dataset. The network was trained in 150, 000
iterations. Testing was performed using the preselected key pose
frames of the test subject as input. The average population
activation of the cells assigned to each class was used to infer
the final classification decision (for an exemplary activation
pattern see Figure 8). Figure 6 summarizes classification results
obtained for different temporal integration schemes of single
frame classification results. A framewise classification scheme
allows to recognize an action in an instant when the key pose
frame is presented to the network. This kind of immediate
decision might be crucial for systems which rely on decisions
in real time. Not only the processing speed, but also the time
necessary to sample and construct the action descriptors is
relevant in this context. Figure 6A summarizes the framewise

A B C

FIGURE 6 | uulmMAD classification performance. The proposed network was trained on the key pose frames extracted from the uulmMAD action recognition

dataset. (A) Shows the per class classification rates obtained by single key pose frame classification. This allows the recognition of an action in the instant a key pose

frame emerges in the input sequence. Average classwise recall (on the diagonal) ranges from 0.78 to 0.98. Some of the notable confusions between classes can be

explained by a large visual similarity (e.g., between ED2 and ST4). In (B) sequence level majority voting was applied. The final decision is made after evaluating all key

pose frames within an action sequence and determining the class with the most frequent occurrence of key poses. The resulting per class values of RecM range from

0.94 to 1.00. A sliding window based classification scheme was evaluated in (C). The best and worst per class average recall values together with the average value

of RecM are displayed for temporal window sizes from 1 to 60 frames. In addition, the percentage of windows containing one or more key pose frames (and thus allow

a classification of the action) is shown (blue line).

TABLE 2 | uulmMAD classification performance.

RecM InfM MarkM MCCM

S
in
g
le All frames 67.56± 6.06 0.703± 0.062 0.762± 0.041 0.732± 0.051

Key poses 88.65± 5.66 0.915± 0.045 0.915± 0.043 0.915± 0.044

M
a
jo
rit
y

W
in
d
o
w
e
d
* 5 [4] 89.64± 4.97 0.919± 0.041 0.920± 0.040 0.920± 0.040

10 [9] 89.98± 4.69 0.922± 0.039 0.922± 0.039 0.922± 0.039

20 [19] 90.47± 4.48 0.924± 0.038 0.924± 0.037 0.924± 0.037

Full sequence 96.73± 2.84 0.981± 0.014 0.970± 0.033 0.975± 0.021

*Size [overlap]
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classification rates per class (average RecM of 0.887, std 0.057).
Some of the confusions between classes might be explained
by similar visual appearances of the key poses (e.g., ED2 and
ST4). Accumulating the classified key poses over a sequence by
majority voting increases the classification performance (average
RecM of 0.967, std 0.028, compare Figure 6B), but requires to
analyze all frames of a sequence and is thus not well suited for
real time applications. As a compromise between classification
speed and performance, a sliding window based approach was
evaluated. In Figure 6C, the best and worst average per class
recall is displayed together with the RecM for window sizes of
n = [1, ..., 60], each with an overlap of n − 1. In addition, the
relative number of windows which contain at least one key pose
(and thus allow a classification) is shown. Table 2 summarizes
the classification performance for different single frame and
temporal integration schemes. Single frame performance is, in
addition, reported for the evaluation of not only the key pose
but the full set of frames. As can be seen, the classification
performance decreases significantly but the average recall of
RecM of 67.56 (std 6.06) indicates, that the learned key pose

representations are still rich enough to classify a majority of
the frames correctly. Note, that the relative number of correct
classifications clearly exceeds the percentage of key pose frames
in the dataset (per class average of 7.46%, std 2.19%, compare
Figure 1C).

The model was additionally trained using the Weizmann
dataset (Gorelick et al., 2007, see Section 4.2). 1, 873 frames
(per class average 187.30, std 59.51) were selected as key pose
frames utilizing the combined criterion developed in Section 3.1.
Except for the number of output features encoding each class
(806), the same network and learning parameters were applied.
As for the uulmMAD dataset, Figure 7 gives an overview over
the classification performance, by showing confusion matrices
for single key pose frame evaluation (Figure 7A), full sequence
majority voting (Figure 7B), as well as best and worst class
recall for different sized windows of temporal integration
(Figure 7C). In comparison to the results reported for the
uulmMAD dataset, the gap between the best and worst class
recall is considerably increased. This might be explained by
a different overall number of available training examples in

A B C

FIGURE 7 | Weizmann classification performance. The network was evaluated on the Weizmann dataset to allow a comparison to other approaches. As in

Figure 6, (A) shows the classifications rates for a classification of single key pose frames per class. (B) Displays classwise recognition results for a full sequence

evaluation using majority voting. Similar visual appearances might explain the increased rate of confusions for some of the classes (e.g., run and skip). In (C) the

average best and worst per class recall values and ReclM are reported for temporal window sizes between 1 and 30 frames together with the relative number of

windows which contain at least one frame classified as key pose.

TABLE 3 | Weizmann classification performance.

RecM InfM MarkM MCCM

S
in
g
le All frames 77.15± 6.46 0.810± 0.056 0.794± 0.068 0.801± 0.061

Key poses 82.15± 5.81 0.844± 0.061 0.827± 0.070 0.835± 0.065

M
a
jo
rit
y

W
in
d
o
w
e
d
* 5 [4] 83.50± 5.12 0.877± 0.043 0.860± 0.053 0.868± 0.047

10 [9] 86.40± 5.58 0.920± 0.027 0.878± 0.067 0.899± 0.044

20 [19] 90.35± 7.34 0.966± 0.023 0.898± 0.093 0.930± 0.057

Full sequence 92.22± 8.33 0.980± 0.023 0.879± 0.128 0.927± 0.079

*Size [overlap]
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the datasets (the per class average of training examples in
the uulmMAD dataset exceeds the Weizmann dataset by a
factor of 11.02), higher visual similarities between the classes
(the most prominent confusions are observed for skip, jump
and pjump), the lack of a sufficient number of descriptive
key poses, or a combination hereof. A direct relationship of
the classwise performance and the per class number of key
pose frames available for training cannot be observed. Even
though the least number of key pose frames was extracted
for the class bend, the second best recall value was achieved.
As for the uulmMAD dataset, performance measures are
reported for different single frame and temporal integration
schemes in Table 3. Again, the trained key pose representations
achieve a considerable performance even when tested per
frame on all frames of the action sequences (RecM = 77.15,
std 6.46). Table 4 compares the reported classification results
on the Weizmann dataset to state-of the art single frame
based (second block) and sequence level approaches (third
block). In particular, other key pose based action recognition
approaches are listed (first block). The direct comparison of
different classification architectures, even when evaluated on
the same dataset, is often difficult, since different evaluation
strategies may have been applied. Thus, whenever possible,
the number of considered classes (sometimes the class skip
is excluded) and the evaluation strategy is listed together
with classification performance and speed. Evaluation strategies
are either leave-one-subject-out (LOSO), leave-one-action-out

(LOAO) or leave-one-out (LOO, not specifying what is left out)
cross-validation.

On a sequence level, the classification performance of the
proposed approach is on par with almost all other key pose based
methods. Only Liu et al. (2013) achieved a noteworthy higher
performance (recall of 100). It is important to stress that the
compared methods substantially differ in their key pose selection
procedures and thus in the underlying conceptual definition of
key poses. For example, Weinland and Boyer (2008) and Liu
et al. (2013) select key poses that maximize the classification
performance in a validation subset of the dataset, whereas (Baysal
et al., 2010; Cheema et al., 2011) select and weight candidate pose
descriptors dependent on their distinctiveness with respect to the
other classes contained in the dataset. In Chaaraoui et al. (2013),
key poses are selected independently per class using clustering in
combinationwith a compactnessmetric. All the abovementioned
approaches, except the last one, rely on inter-class distributions
of pose descriptors to identify key poses, implicitly stating
that representativeness is equivalent to distinctiveness (among
a known set of classes). If the task at hand is to separate an a
priori defined set of actions, this seems to be the superior way
of defining key poses for the establishment of temporally sparse
representations of actions. On the other hand such poses always
describe differences based on comparisons and do not necessarily
capture characteristic poses of an action.

The presented approach follows a different principle. Certain
properties of image or skeleton based pose features are assumed

TABLE 4 | Weizmann comparison to other approaches.

C
a
ta
g
o
ry

# Actions Evaluation fps Temporal range

Sub-sequence Full sequence

Recall # Frames Recall

K
e
y
p
o
se

Weinland and Boyer, 2008 10 LOSO – – – 93.6

Baysal et al., 2010 9 LOO – – – 92.6

Cheema et al., 2011 9 LOO – – – 91.6

Chaaraoui et al., 2013 9 LOSO 124 – – 92.8

Liu et al., 2013 10 LOSO – – – 100

S
in
g
le
fr
a
m
e Niebles and Fei-Fei, 2007 9 LOSO – 55 1 72.8

Fathi and Mori, 2008 10 LOO 0.25–5 99.9 1 100

Schindler and van Gool, 2008 9 LOSO – 93.5 1 100

Hoai et al., 2011 10 LOSO – 87.7 1 –

F
u
ll
se
q
u
e
n
c
e

Jhuang et al., 2007 9 – 0.83 – – 98.8

Klaser et al., 2008 10 LOSO – – – 84.3

Grundmann et al., 2008 9 LOAO – – – 94.6

Ikizler and Duygulu, 2009 9 LOO – – – 100

Bregonzio et al., 2009 10 LOSO – – – 96.7

Sun and Liu, 2012 10 LOO – – – 97.8

Beaudry et al., 2016 10 LOO 51.63 – – 100

Presented approach 10 LOSO 1,000 82.2 1 92.2

Bold values indicate maximum recall/fps values per column.
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to co-occur with characteristic body configurations and thus
are used to identify key pose frames. The feature characteristic
indicating a key pose and the representations/descriptors used
for the recognition of a pose do not necessarily have a close
relationship. In doing so, we accept the fact that the selected
poses are not guaranteed to be very distinctive and some even
may occur in more than one action in exactly the same way.
Key poses are assumed to be the most representative poses of a
particular action, not in comparison, but in general. Nevertheless,
the presented results demonstrate that a feature-driven, pose
centered key pose selection mechanism is capable of achieving
the same level of performance, without loosing generality.

Most key pose based approaches in the literature try to
assign single frames of an image sequence to key pose frames
with a high similarity, temporally integrate the result (e.g., by
using histograms or majority voting) and perform a classification
of the action on a sequence level. The result of single frame
action recognition based on the extracted key poses (directly
linking key poses to actions) is rarely reported. Single frame
based approaches (see Table 4, second block), however, try to
perform action classification using information solely extracted
within one frame (two frames if optical flow is part of the
descriptor) and achieve impressive results. In direct comparison,
the single frame performance of the presented approach (RecM
of 82.15 for key pose evaluation and 77.15 for the classification
of all single frames, compare Table 3) cannot compete with
the other methods, which, on the contrary, utilize all frames
during learning to maximize classification performance in the
test training dataset. The presented approach, however, achieves
a single frame performance of RecM = 77.15 when evaluated
over all frames, although in case of the Weizmann dataset only
a per class average of 33.84% (std 8.63%) of all frames is used for
training.

In the third block of Table 4, selected approaches performing
action recognition on a sequence level using a variety of different
representations and classification architectures are listed. Note
that in an overall comparison, (I) due to the transfer on
neuromorphic hardware, the presented approach achieves the
highest processing speed6 while consuming a minimal amount
of energy, and (II) due to fact, that we aim at executing the
model on a single TrueNorth chip we only use input maps
with a resolution of 32 × 32 (using 4,064 of the 4,096 cores
available on one chip). This is no limitation of the employed Eedn
framework, which allows to realize models which run on systems
with more than one chip (Esser et al., 2016; Sawada et al., 2016).
An increased input resolution, as well as the use of more than
two flow direction and contour orientation maps might help in
separating classes with a high visual similarity (e.g., skip, jump,
and run).

5.2. Comparison to Full Sequence Learning
To address the question whether and how the proposed
classification architecture might benefit from using all frames (as
opposed to only key pose frames) during training, we performed

6Image preprocessing and key pose selection is not integrated in the estimated

processing time. Optical flow estimation can be performed on a second TrueNorth

chip (Brosch and Neumann, 2016).

exactly the same training and testing procedure twice on the
uulmMAD dataset. First, only key pose frames were presented
during training, while second, all frames were provided during
the training phase. Likewise, testing was performed just on
the preselected key pose frames, as well as the full set of
frames. Table 5 compares the average recall under the different
training (rows) and testing conditions (columns) for single frame
evaluation and sequence level majority voting.

In both cases, training and testing on key pose frames achieves
the highest performance. However, the observed differences
between the two training conditions could not shown to be
significant, neither when testing on key poses nor on the full
set of frames. Nevertheless, having a closer look at the activation
patterns of the network reveals some insights on the effectiveness
of the two variants of trained representations. Figure 8 shows
the average activation pattern of the 14 cell populations in layer
15 assigned to the individual classes of a network trained on
key pose frames and tested on all frames of the action SP2
(jumping jack). The displayed activation levels clearly show how

TABLE 5 | uulmMAD key pose versus all frame learning.

Train

Test Framewise Majority voting

Key poses All frames Key poses All frames

Key poses 88.65± 5.66 67.56± 6.06 96.73± 2.84 93.29± 7.05

All frames 85.84± 7.15 72.84± 8.25 95.27± 3.93 94.70± 7.03

Bold values indicate the maximum average recall for framewise and full sequence majority

voting classification schemes.

FIGURE 8 | Activation of cell populations. The activations of the cell

populations in the last convolutional layer of the DCNN assigned to the 14

classes of the uulmMAD dataset are displayed for a network trained only on

key pose frames and tested on all frames of the action SP2 (jumping jack). The

activation level of the cell population with the maximum activation (red) and the

remaining populations (blue) is encoded by color intensity. Corresponding

poses are displayed for selected frames (bottom row). Key pose frames are

marked by asterisks. The activation pattern shows how the cell population

assigned to the class SP2 selectively responds to frames in the temporal

neighborhood of the corresponding key pose frames. At the beginning and the

end of the sequence, as well as in between the occurrence of key pose

frames, different cell populations achieve the maximum average activation and

thus result in misclassifications. Written informed consent for the publication of

exemplary images was obtained from the shown subject.
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the trained representations of the corresponding class selectively
respond within the temporal neighborhood of the key pose
frames. Frames sampled from periods without the presence of
key pose frames (at the beginning and the end of the sequence,
as well as in between key pose frames) result mostly in a large
activation of other cell populations and thus in misclassifications.
This is in line with the results shown in Table 5, which indicate
that classification performance increases under both training
conditions when testing is only performed on key pose frames.
At this point we can conclude that, compared to a training on
the full set of frames, key pose based learning of class specific
representations at least performs at an equal level. Whether
there is any benefit of training exclusively on key pose frames
next to an increased learning speed, remains, however, an open
question. Figure 9 summarizes the per class activation levels of
the cell populations which resulted in a correct classification. For
almost all classes (except ED3), the activation level is significantly
increased when training was performed on key pose frames
only. This might become a very important property in situations
where it is not an option to accept any false negatives. Applying
a threshold on the activation levels would allow to eliminate
false negatives, while key pose based training would decrease
the number of positive examples rejected by the fixed threshold.
Thus, thresholding might further increase the performance for
the key pose based training reported so far. Taken together, key
pose based learning achieves a slightly increased classification
performance with an increased selectivity of the cell populations
and thus a higher confidence of the classification decisions.

5.3. Cross-Dataset Evaluation
Learning to classify input samples and the associated
representations is conducted with the aim to robustly predict
future outputs and, thus, generalize for new input data. Here, we
evaluate such network capability by evaluating the classification
of the trained network using input data across different datasets.
More precisely, cross-dataset evaluation was performed to
evaluate how the learned representations generalize over
different datasets. The preselected key pose frames of the
uulmMAD and the Weizmann dataset were used for both

FIGURE 9 | Comparison of activation levels. The activation levels of the

cell populations which resulted in correct classifications are displayed per class

for key pose based (blue) and all frame (green) training alongside with the total

number of correct classifications under both conditions (yellow). In case of key

pose based training, activation levels are significantly increased, reflecting a

higher confidence of the classification decision. Increased confidences are

useful in situations where thresholding is applied on the activation level, e.g., to

reduce the number of false negatives.

training and testing constellations. Performance is reported for
two classes, one being one-handed wave (ED1 and wave1), which
is available in both datasets. The second class was formed by
combining the visually similar classes SP2/SP6 and jack/wave2
during evaluation into one joint class raising two hands. Training
was performed on the full set of classes in both cases. Thus,
for one-handed wave a random guess classifier would achieve
a recall of either 7.14 (uulmMAD) or 10.00 (Weizmann). In
case of the combined class raising two hands, the recall chance
level increases to 14.29 (uulmMAD) and 20.00 (Weizmann),
respectively. Table 6 shows the result for one-handed wave for
the two testing (row) and training (column) setups alongside
with exemplary pictures of the classes from both datasets.
When training was performed on the Weizmann dataset, the
recall performance for examples from the uulmMAD dataset
is still considerable (loss of 24.07). Training on the uulmMAD
and testing on the Weizmann dataset results in an increased
performance loss, but still achieves a recall of 53.03.

In case of the combined class raising two hands, the
performance loss is below 30 for both training and testing
configurations. Table 7 shows the achieved performance in detail
for each of the four classes in isolation and their combination.
Note that when trained on the uulmMAD dataset, jumping jack
is recognized almost without any loss of performance. Vice versa,
SP2 is often confused with wave2 when training was performed
on the Weizmann dataset. This may be explained by the large
visual similarities between the classes.

The proposed approach shows promising generalization
capabilities, which might partially be explained by the class-
independent, feature-driven selection of the key pose frames.

6. CONCLUSION AND DISCUSSION

The presented work consists of two main contributions. First, a
feature-driven key pose selection mechanism is proposed, which
builds upon evidences about human action perception. The
selection mechanism does not utilize any information about
the inter- or intra-class distribution of the key poses (or key
pose descriptors) to optimize the classification accuracy. It is
demonstrated, that the classification accuracy is on par with
state-of-the-art key pose based action recognition approaches,
while only motion and form related feature characteristics
are used to select a key pose frame. Second, we propose a
biologically inspired architecture combining form and motion
information to learn hierarchical representations of key pose
frames. We expect such hierarchical feature representations to
make the recognition more robust against clutter and partial
occlusions, in comparison to holistic shape representations of
the full body configurations used in previous approaches. Form
and motion pattern representations are established employing a
neuromorphic deep convolutional neural network. The trained
network is mapped onto the IBMNeurosynaptic System platform,
which enables a computationally and energy efficient execution.

6.1. Relation to Other Work
The presented results demonstrate, that classifying actions using
a minimal amount of temporal information is in principle
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TABLE 6 | Cross-dataset evaluation one-handed wave.

Test

Train
uulmMAD Weizmann Loss

uulmMAD 100 75.93 24.07

Weizmann 53.03 100 46.97

Bold values indicate the maximum recall values per column. Written informed consent for the publication of exemplary images was obtained from the shown subjects (uulmMAD).

TABLE 7 | Cross-dataset evaluation raising two hands.

Test

Train uulmMAD Weizmann Loss

SP2 SP6 Comb jack wave2 Comb Comb

uulmMAD
SP2 96.97 0.00

97.92
24.65 51.04

70.30 27.62
SP6 1.14 97.73 0.00 64.90

Weizmann
jack 95.96 0.00

79.80
100 0.00

100 20.20
wave2 31.82 31.82 0.00 100

Bold values indicate the maximum recall values per column. Written informed consent for the publication of exemplary images was obtained from the shown subjects (uulmMAD).

possible. This is in line with results from other action recognition
approaches. For example, Schindler and van Gool (2008)
reported that actions can be successfully recognized using
snippets of three or even less frames. In their work, the length
of the temporal window used for the classification of an action
sequence was systematically varied. The most important result
was that a reliable action recognition can be achieved by only
using individual snippets, i.e. up to three consecutive frames
in temporal order. The question whether there are special
“key snippets” of frames, which are particularly useful for the
recognition of an action and how theymight be defined, however,
remains open.

Inspired by evidences from perceptual studies (Thurman
and Grossman, 2008; Thirkettle et al., 2009), key poses are
potential candidates for representing such special events in
articulated motion sequences. Unlike the majority of other
approaches reported in the literature (e.g., Baysal et al., 2010;
Liu et al., 2013), the proposed key pose selection mechanism
identifies key pose frames without optimizing the inter-class
distinctiveness or classification performance of the selected key
poses. The feature-driven selection criterion proposed in this
work combines form and motion information and allows the
identification of key poses without any knowledge about other
classes. It extends a previous proposal utilizing local temporal
extrema in the motion energy as a function of time (Layher
et al., 2014) by additionally taking a measure of extendedness
of the silhouette shape into account. Given that these features
are entirely data-driven, this has two major implications. On
the one hand, the selected poses are independent of any other
class and thus are more likely to generalize over different sets
of actions. This property is appreciated and valuable in many
applications since it does not require any prior knowledge
about the distribution of classes/poses in other datasets. On
the other hand, there is no guarantee, however, that a learned

key pose representation is not part of more than one action
and thus results in ambiguous representations. This may lead
to drawbacks and deteriorations of the model performance in
terms of classification rates for rather ambiguous sequences
with similar pose articulations. We argue that, although the
proposed key pose selection criterion might not result in the best
classification performance on all action recognition datasets in
isolation, it selects key pose frames which capture the nature
of an action in general (independent of a specific dataset).
In addition, the reported results demonstrate, that there is no
substantial loss in performance when comparing the proposed
feature-driven key pose selection mechanism to performance
optimizing key pose approaches in literature. In contrast to
other action recognition approaches building upon convolutional
neural networks, the proposedmodel does not aim at establishing
representations which capture the temporal relationship between
successive frames. This can be accomplished by e.g., directly
feeding spatiotemporal input to the network and applying 3D
convolutions (e.g., Baccouche et al., 2011; Ji et al., 2013) or
by applying a multiple spatio-temporal scales neural network
(MSTNN; Jung et al., 2015). Instead, in this work, the employed
DCNN exclusively aims at identifying class specific key pose
frames as events in an image (and optical flow) stream.

The investigation reported in this work adds an important
piece to the debate of how representations for action sequence
analysis might be organized. Some previous approaches have
utilized motion and form information for the classification
of action categories. For example, Giese and Poggio (2003)
proposed that biological motion sequences representing
articulated movements of persons is subdivided into two parallel
streams in primate visual cortex. In particular, the authors argue
that motion patterns are represented in a hierarchy and these are
paralleled by regular temporal sampling of static frames from the
same input sequence. This model architecture has been extended
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in Layher et al. (2014) suggesting that instead of representing
sequences of static frames only key poses need to be selected.
As a candidate criterion, the motion energy is calculated over
time and local energy minima depict reversal points of bodily
articulation. Such reversals, in turn, most likely coincide with
extremal articulations and thus can be utilized to select a key
pose in such articulation sequences. While these models focus
on cortical architecture of visual dorsal and ventral streams,
other computer vision approaches also consider combinations of
motion and form information for action recognition. While the
proposal of Jhuang et al. (2007) builds on a hierarchy of cascaded
form and motion representations, the approach of Schindler
and van Gool (2008) also utilized two parallel streams of motion
and form processing. Both streams generate feature vectors of
equal length which are subsequently concatenated including
a weighting of the relative strength of their contribution. An
evaluation of the relative weights showed that a fusion with 70%
motion against a 30% form feature concatenation yielded the
best performance on the Weizmann dataset. On the contrary,
Schindler et al. (2008) demonstrated that emotion categories can
be classified using static images only which are processed by a
multi-scale bank of filters with subsequent pooling operation
and dimension reduction. Our findings add new insights to the
investigation of utilizing form/shape and motion information in
biological/articulatedmotion analysis for action recognition. Our
findings highlight that key poses defined by events of temporal
extrema in motion energy and dynamic object silhouette features
reliably reflect a high information content regarding the whole
action sequence. In other words, key poses can be detected by
an entirely feature-driven approach (without utilizing any a
priori model of actions in the sequence) and that the associated
temporal events contain a high proportion of the information
about the main components of the action sequence.

We successfully trained a DCNN of 15 convolutional layers
on the key pose frames used as input, which were assigned
to different action classes. The network was trained using the
energy-efficient deep neuromorphic networks (Eedn) framework
(Esser et al., 2016) and executed on a TrueNorth NS1e board
(Merolla et al., 2014). The results show that action recognition
can be performed on mobile robotic platforms under real-
time constraints while consuming a minimal amount of energy.
The reduced energy consumption and the high performance
in classification rate (compare Table 4) makes such a model
architecture a valuable candidate for applications in mobile or
remote control scenarios in which autonomy in energy supply
and external control are constraints of core importance. The
automatic selection of key pose information for the classification
mechanism is a key step to make use of the demonstrated
parameters.

Although some classes contained examples with highly similar
visual appearances, the network shows an impressive single frame
recognition performance when tested on key frames. Even when
tested on the full set of frames, recognition performance is
still significantly above chance level. Using a simple temporal
integration scheme, we show that the results are on par
with competing key pose based action recognition approaches
(Table 4). Cross-dataset evaluation of classes with the same/a
similar visual appearance in both datasets shows how the learned

representations generalize over the different datasets (training
was performed on the full set of classes).

6.2. Shortcomings and Possible Further
Improvements
Currently, the optical flow estimation and the key pose selection
are performed prior to the training and the classification of input
sequences. To realize a complete neuromorphic implementation
of the presented approach, optical flow can be estimated as well
on neuromorphic hardware following the principles described in
Brosch and Neumann (2016). A neuromorphic implementation
of localizing the local extrema in the motion energy and the
extendedness of a person’s silhouette could be realized on top of
the flow estimation process. In addition, dynamic vision sensors
(e.g., iniLabs DVS128) are an option to directly feed a network
similar to the proposed one with spike-based sensory streams.
First attempts to realize an action recognition system using such
sparse asynchronous data streams have already shown promising
results (Tschechne et al., 2014).

The presented approach does not make use of any temporal
relationship between the identified events (key poses) in an
action sequence. Thus, the reversed, or scrambled presentation
of images (and optical flow) of a sequence would result in an
assignment to an action class, although, the visual appearance
of the sequence is totally different. A modeling or learning of
the temporal relationships between the key pose frames, e.g.,
their temporal order, would help in reducing ambiguities and
thus increase sequence-wide or windowed classification rates.
In case of the proposed approach, this could be achieved by
employing, e.g., long short-term memory cells (LSTM; Hochreiter
and Schmidhuber, 1997), which are candidates to realize the
learning of temporal relationships without loosing the invariance
against changes in speed. The simple majority voting based
integration scheme was chosen, because of hardware limitations
and to focus on an analysis of the importance of key poses in the
context of action representation and recognition.

We also did not apply a weighted majority voting scheme
using the confidences of the frame-wise predictions or apply
thresholding on the predictions. Both strategies might further
increase the classification performance but again would weaken
the focus on the analysis of key pose base representations of
action sequences.

The proposed architecture of a deep convolutional neural
network (DCNN) as depicted in Figure 3 builds increasingly
more complex feature representations through learning from
initial simple features. It would be interesting to investigate the
feature selectivities of the feature representations that have been
established by the learning. Such a study would potentially shed
light about the structure of the feature compositions (and their
hierarchical organization) which lead to the selectivity of the key
poses in relation to the action sequences to be classified. Some
approaches analyzing the low-, intermediate-, and higher-level
feature representations have recently been proposed in the
literature (Zeiler and Fergus, 2014; Güçlü and van Gerven, 2015;
Mahendran and Vedaldi, 2016). Such approaches have so far
investigated CNNs for static inputs only. For that reason, some
principles might also be useful for the analysis of key pose
representations. In addition, the consideration of short-term
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spatio-temporal feature representations will help to extend the
scope of the overall study of visualizing internal representations
after learning. We expect necessary major efforts to carefully
develop an extended set of tools which is beyond the scope of
the modeling investigation presented here.

Overall, the presented results show, that the learned key pose
representations allow the classification of actions using aminimal
amount of temporal information. By implementing the proposed
DCNN on the TrueNorth chip, we show that real-time action
recognition relying on the proposed principles is possible while
consuming a minimal amount of energy, as reported for the
runtime environments of the IBM Neurosynaptic System (Esser
et al., 2016).
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Dedeoğlu, Y., Töreyin, B. U., Güdükbay, U., and Çetin, A. E. (2006). “Silhouette-

based method for object classification and human action recognition in video,”

in European Conference on Computer Vision (ECCV), Workshop on HCI

Computer Vision in Human-Computer Interaction, 2006, eds T. S. Huang, N.
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Rhythmic neural signals serve as basis of many brain processes, in particular

of locomotion control and generation of rhythmic movements. It has been found

that specific neural circuits, named central pattern generators (CPGs), are able

to autonomously produce such rhythmic activities. In order to tune, shape and

coordinate the produced rhythmic activity, CPGs require sensory feedback, i.e., external

signals. Nonlinear oscillators are a standard model of CPGs and are used in various

robotic applications. A special class of nonlinear oscillators are adaptive frequency

oscillators (AFOs). AFOs are able to adapt their frequency toward the frequency of an

external periodic signal and to keep this learned frequency once the external signal

vanishes. AFOs have been successfully used, for instance, for resonant tuning of

robotic locomotion control. However, the choice of parameters for a standard AFO is

characterized by a trade-off between the speed of the adaptation and its precision and,

additionally, is strongly dependent on the range of frequencies the AFO is confronted

with. As a result, AFOs are typically tuned such that they require a comparably long

time for their adaptation. To overcome the problem, here, we improve the standard AFO

by introducing a novel adaptation mechanism based on dynamical coupling strengths.

The dynamical adaptation mechanism enhances both the speed and precision of the

frequency adaptation. In contrast to standard AFOs, in this system, the interplay of

dynamics on short and long time scales enables fast as well as precise adaptation of the

oscillator for a wide range of frequencies. Amongst others, a very natural implementation

of this mechanism is in terms of neural networks. The proposed system enables robotic

applications which require fast retuning of locomotion control in order to react to

environmental changes or conditions.

Keywords: adaptive frequency oscillator, central pattern generator, neural networks, resonance tuning,

locomotion control

1. INTRODUCTION

Rhythmic processes are of central importance for many aspects of biological life (Winfree, 1967;
Barkai and Leibler, 2000; Goldbeter et al., 2012). Examples include the cardiac rhythm, various
circadian rhythms and, in particular, all forms of biological locomotion like walking, flying or
swimming. The latter are controlled by specific neural circuits, so called central pattern generators
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(CPGs) (Hooper, 2001; Marder and Bucher, 2001). Theoretical
models of CPGs range from detailed biophysical models
(Hellgren and Grillner, 1992) to pure mathematical oscillators
(Matsuoka, 1985). In general, CPGs can be described as nonlinear
oscillators which have been used in numerous applications for
different variants of robotic control problems (Nakamura et al.,
2007; Ijspeert, 2008; Pinto et al., 2012; Nassour et al., 2014; Santos
et al., 2017). For instance, compared to purely reflexive control
schemes (Foth and Bässler, 1985; Cruse et al., 1995), oscillator-
controlled robots enable more stable and robust locomotion
(Kimura et al., 2001; Righetti and Ijspeert, 2008).

CPGs do not require any external input or feedback to
produce basic rhythmic activity. However, they still require
feedback signals to adapt and tune their produced activity,
for instance its frequency. For the theoretical concept of
nonlinear oscillators, a universal mechanism to adapt the
intrinsic frequency of an oscillator according to the frequency of
an external periodic signal, which is coupled to the oscillator, was
formulated by Righetti et al. (2006). This frequency adaptation
schema is applicable to many different types of oscillators.
In contrast to the well-known phenomenon of entrainment,
which is a purely reactive mechanism with only transient effect
on the oscillatory system (Buchli et al., 2006), the frequency
adaptation schema modifies the intrinsic frequency of the
system permanently. Oscillators with this schema are commonly
called adaptive frequency oscillators (AFOs). Several applications
of AFOs have been proposed including adaptive control of
compliant robots (Righetti et al., 2009), pendulum swing-up
problems (Spong, 1995; Furuta, 2003), understanding, simulation
and support of human locomotion (Ronsse et al., 2011a; Tropea
et al., 2015; Santos et al., 2017), mimicking of fish swimming
(Wang et al., 2013), frequency analysis of an input signal (Buchli
et al., 2008), and construction of limit cycles of arbitrary shape
(Righetti et al., 2009). However, all of these applications suffer
from significantly long adaptation times.

For a given oscillatory system, the dynamics of a standard
AFO is determined by only two parameters: the strength of the
coupling of the external signal to the oscillator and the learning
rate of the parameter determining the intrinsic frequency of the
system. Here, we show that, when choosing these two parameters,
one has to make a compromise between speed and precision of
the resulting adaption dynamics. Furthermore, we demonstrate
that the optimal parameters for a certain balance of speed and
precision strongly depend on the initial intrinsic frequency of the
oscillator and on the target frequency, i.e., the frequency of the
external signal. As a result, situation-specific fine-tuning of the
parameters is necessary.

In contrast, we propose an extension of the standard
frequency adaptation mechanism which provides both fast as
well as precise adaptation for a wide range of initial intrinsic
and target frequencies without the need for parameter fine
tuning. In the following, we call this mechanism “Adaptation
through Fast Dynamical Coupling” (AFDC). It is based on
dynamically adapting the coupling strength of the external signal.
If the difference between the current intrinsic frequency and the
target frequency is high, the coupling strength is increased in
order to accelerate the adaptation. If the difference between the

current intrinsic frequency and the target frequency becomes
small, the coupling strength is reduced to increase the precision
of the adaptation. This process is autonomous and can be
integrated into the dynamical equations of the system. Neither
the current intrinsic nor the target frequency need to be explicitly
available as the mechanism solely relies on signal correlations.
We compare the adaptation processes obtained by regular AFOs
with those obtained with the new AFDCmechanism by means of
quantitative measures of speed and precision of the adaptation.
We find that the AFDCmechanism clearly outperforms standard
AFOs within the tested frequency interval covering two orders of
magnitudes.

2. RESULTS

2.1. Standard Adaptive Frequency
Oscillator
In very general terms, an oscillator is an autonomous dynamical
system with at least one limit cycle attractor (Buchli et al., 2006).
Naturally, every two-dimensional oscillatory system (x, y) can be
expressed as a system of two equations ẋ(t) = gx(x(t), y(t), θ)
and ẏ(t) = gy(x(t), y(t), θ) where the functions gx and gy
define the dynamics of the system. We require that these two
functions do not only depend on the state variables x and y
but also explicitly on a variable θ which determines the intrinsic
oscillation frequency f of the system. The function f (θ) may be of
an arbitrary shape and in many cases is not explicitly known. We
only assume it to be monotonic. The system can be transformed
into an adaptive frequency oscillator (AFO) by coupling it to an
external signal F(t):

ẋ(t) = gx(x(t), y(t), θ(t))+ ǫF(t)

ẏ(t) = gy(x(t), y(t), θ(t)).
(1)

Here, ǫ denotes the coupling strength. Furthermore, additional
dynamics of the θ-variable are introduced (Righetti et al., 2006):

θ̇(t) = ±ηF(t)
y(t)

√

x(t)2 + y(t)2
. (2)

with a learning rate η. The sign on the right-hand side depends
on the direction of oscillation of the actual oscillatory system in
the phase space. Note that in the original publication (Righetti
et al., 2006), always η = ǫ is chosen as it emerges naturally
when deriving the adaptation rule from analyzing the effect of the
periodic external signal F on the phase velocity of the oscillator
(Righetti et al., 2006). Apart from this, however, there is no a
priori reason why this choice should provide optimal adaptation
results. It has been shown that, using this rule, a wide range of
oscillators can adapt their intrinsic frequencies to the frequency
of basically any external periodic signal F(t). In this contribution,
we consider the Hopf oscillator (Figure 1A), which possesses
a harmonic limit cycle, and the Van der Pol oscillator (Van
der Pol, 1920) (Figure 1B), which, depending on the choice of
parameters, exhibits highly non-harmonic oscillations.

For analyzing a given adaptation process, we start with an
oscillator with an initial frequency variable θ0 corresponding to
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FIGURE 1 | Adaptation of two standard adaptive frequency oscillators. The upper panels show the time course of the frequency determining parameter θ . The

time during which the external signal is applied to the system is indicated by the yellow shaded area. The dashed horizontal lines indicate the values θ0 and θext

corresponding to the initial intrinsic frequency f0 and the target frequency fext of the external signal, respectively. The panels below show the oscillating state variables

x and y and the external signal F at different short time windows during the adaptation process. In both cases, the initial intrinsic frequency of the oscillator is f0 = 4.0

and the external signal is a sine wave with unit amplitude and frequency fext = 2.0. (A) Adaptive frequency Hopf oscillator with µ = 1.0 and ǫ = η =1.0 (see

Methods). The initial value of the parameter θ is given by θ0 = 2π f0 ≈ 25.1. Accordingly, the value corresponding to the frequency of the external signal is

θext = 2π fext ≈ 12.6. The external signal is applied for 100 ≤ t < 700. (B) Adaptive frequency Van der Pol oscillator with µ = 100.0 and ǫ = η = 0.7 (see Methods).

The values of the parameter θ corresponding to f0 and fext are θ0 ≈ 34.8 and θext ≈ 22.0 (see Methods). The external signal is applied for 100 ≤ t < 500.

an initial intrinsic frequency f0 = f (θ0). Here, the function f (θ) is
not explicitly known but can be numerically approximated. We
denote the target frequency, i.e., the frequency of the external
signal, by fext. Furthermore, we define the target value θext as
the value of θ such that fext = f (θext) for the given oscillator.
The frequency variable θ is not modified by the adaptation rule
(Equation 2) as long as the external signal F is zero (t < 100
in Figure 1A). After the onset of the external signal, θ is slowly
adapted toward the target value θext (100 < t < 700 in
Figure 1A). The adaptation rate increases as θ gets closer to θext.
The final adaptation phase is typically characterized by a small θ-
overshoot before it converges toward a quasi-constant state with
only small periodic fluctuations (600 < t < 700 in Figure 1A).
Now, when removing the external signal, i.e., setting F = 0, the
oscillator maintains oscillations at the adapted frequency (t >

700 in Figure 1A). Note that it is not guaranteed that the finally
reached value of θ corresponds exactly to θext. In contrast, in
some cases significant deviations can be observed (Figure 1B).
As it turns out, reducing this deviation is only possible when
accepting longer adaptation times.

2.1.1. Speed vs. Precision Trade-Off
In many applications, for instance in robotic systems, it is usually
desired to have systems that are able to adapt to new situations or
circumstances quickly. In contrast, AFOs with the usual choice
of parameters require many periods of oscillations to complete a
given adaptation process. The convergence time of the adaptation
process, i.e., the time between the onset of the external signal
and the quasi-convergence of the frequency parameter θ of the
oscillator, can be adjusted by manipulating the coupling strength

ǫ in Equation (1) or the learning rate η in Equation (2) (Figure 2).
However, increasing ǫ or η does not only increase the speed of
the frequency adaptation but also increases the general influence
of the external signal on the oscillatory system. As a result, the
dynamics of the parameter θ , once it has converged to a quasi-
stable state, is affected as well (Figure 3). On the one hand, high
learning rates η lead to increased fluctuations of the parameter
θ in the finally reached state. On the other hand, higher values
of ǫ result in a higher offset of the finally reached mean value θ̄

from the value θext. Therefore, shorter convergence times in the
standard AFO systems go hand in hand with a loss of precision.
Naturally, this trade-off complicates real-world applications of
the mechanism.

2.1.2. Quantitative Adaptation Quality Measures
In order to quantitatively capture the trade-off between speed and
precision, we introduce three measures characterizing the quality
of a given adaptation process (Figure 3). As already discussed,
in many applications fast adaptation is desired. This is captured
by the convergence time 1 which measures the time interval
between the onset of the external signal and the last deviation
of the intrinsic frequency f of the system (determined by θ) of
more than 5% (10% for the Van der Pol oscillator) from the
finally reached mean value f̄ . The precision of the adaptation, in
turn, is reflected by two measures. First, the intrinsic frequency
to which the system converges should be as close as possible
to the frequency of the external signal. This is measured by the
frequency offset δ which is given by the offset of the finally
reachedmean value of the intrinsic frequency from the frequency
of the external signal. Second, the fluctuations of the intrinsic
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FIGURE 2 | Influence of the coupling strength ǫ and the learning rate η

on the speed of adaptation of standard adaptive frequency oscillators.

The yellow shaded area indicates the time during which the external signal is

applied. In all cases, the initial intrinsic frequency of the oscillator is f0 = 4.0

and the frequency of the external unit sine-wave signal is fext = 2.0. For the

adaptive Hopf oscillator, we choose µ = 1.0. For the adaptive van-der-Pol

oscillator, we choose µ = 100.0 (see Methods).

frequency around its mean value should be low as otherwise
the value of the intrinsic frequency when switching off the
external signal depends on the exact point of time of this event.
The magnitude of these fluctuations is measured by σ which
equals the standard deviation of the intrinsic frequency f in the
converged state.

To allow interpretation of these measures independently
from the chosen internal and external frequencies, we introduce
relative measures scaled by the frequency fext or the cycle
duration f−1

ext of the external signal, respectively: 1̃ = 1/f−1
ext ,

δ̃ = δ/fext and σ̃ = σ/fext. In addition, we define a quality index
Q combining these three relative measures into a single scalar
value:

Q = max

(

1−
1̃

1̃max

−
|δ̃|

δ̃max

−
σ̃

σ̃max
, 0

)

. (3)

Here, 1̃max, δ̃max, and σ̃max are the maximum values of the
respective measures which we allow for a reasonably good
adaptation process. Accordingly, aQ value close to 1 corresponds
to a very fast as well as very precise adaptation process. A value of
Q = 0, in contrast, indicates that 1̃ > 1̃max, δ̃ > δ̃max, σ̃ > σ̃max

or the weighted sum (Equation 3) of the individual measures is
larger than 1. In the following, if not stated otherwise, we use
1̃max = 100, δ̃max = 0.05 and σ̃max = 0.05.

2.1.3. Finding Optimal Parameters
For an easy application of an adaptive oscillator in a given
setup, no fine tuning of the system parameters for the specific
application context should be necessary. It is therefore necessary
to find a system which is able to adapt its intrinsic frequency
to a wide range of external frequencies without the need for
any parameter adaptation other than the one of the frequency
determining parameter θ . It turns out, however, that already
for the comparable simple case of the harmonic Hopf oscillator,
the range of frequencies for which a given set of parameters

FIGURE 3 | Quantitative measures to capture the quality of an

adaptation process. Shown is the time course of the intrinsic frequency of

an adaptive frequency oscillator during the adaptation to an external periodic

signal with high coupling constant ǫ and high learning rate η. The yellow

shaded area indicates the time during which the external signal is applied. The

inset shows a close up of the data in the indicated area. We introduce three

measures to quantify the quality of a given frequency adaption process. The

convergence time 1 is the time interval between the onset of the external

signal at time t0 and the last deviation of the intrinsic frequency of the

oscillator of more than 5% (orange horizontal lines) from the finally reached

average intrinsic frequency f̄ . The frequency offset δ measures the difference

between the final average intrinsic frequency f̄ and the target frequency of the

external signal fext. In order to also capture the periodic fluctuations of the

intrinsic frequency from the average value f̄ , we additionally introduce the final

frequency fluctuation σ given by the standard deviation of the oscillations of

the intrinsic frequency f in the finally reached state (area shaded in light red in

the inset). The shown time course of the intrinsic frequency is taken from an

adaptive frequency Hopf oscillator with µ = 1.0, ǫ = 5.0, η = 5.0, and

f0 = 2.0 adapting to an external unit sine-wave signal with frequency

fext = 1.0.

allows fast as well as precise adaptations is very limited
(Figure 4). Higher values of ǫ and η increase the intervals of
initial intrinsic frequencies f0 and external frequencies fext for
which fast adaptation is achieved (left column in Figure 4).
In contrast, small frequency offsets δ̃ are achieved only for
small values of the coupling strength ǫ (second column in
Figure 4) and small values of the learning rate η enable small
fluctuations as measured by σ (third column in Figure 4). The
compilation of these observations is reflected by only small
intervals of initial intrinsic and external frequencies for which
the quality index Q attains non-zero values (right column in
Figure 4).

Trying to find parameters that allow fast and precise
adaptation for a range of initial intrinsic and external target
frequencies spanning two orders of magnitudes reveals that
actually no ǫ-η-combination allows for an average adaptation
quality index 〈Q〉 higher than approximately 0.12 (Figure 5). We
conclude that a standard AFOwith a fixed set of parameters is not
capable to provide fast as well as precise adaptation over a wide
range of frequencies.
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FIGURE 4 | Adaptation quality measures of the adaptive frequency

Hopf oscillator in the (f0, fext) frequency space for different values of

the coupling strength ǫ and the learning rate η. For every given

(ǫ, η)-parameter pair, from left to right, the relative convergence time 1̃, the

relative final frequency offset δ̃, the final relative frequency fluctuation σ̃ , and

the combined quality measure Q are shown in the plane spanned by the initial

intrinsic frequency f0 and the frequency of the external unit sine-wave signal

fext. As the convergence time is defined as the time difference between the

onset of the external signal and the last point of time of more than 5%

deviation of the intrinsic frequency from the final average, for high values of σ̃ ,

the convergence time cannot be reasonably determined, i.e., takes very high

values. For the same reason, even on the diagonal f0 = fext, high

convergence times are measured for low values of fext.

2.2. Fast Dynamical Coupling Mechanism
As discussed, no fixed value pair for the coupling strength ǫ and
the learning rate η suffices for fast and precise adaptation over a
wider range of initial intrinsic and external target frequencies. In
order to obtain a systemwithout the requirement for application-
specific fine-tuning, the down- or up-scaling of coupling strength
and learning rate has to be accomplished in a self-organized
manner. Here, we propose such a system. Instead of coupling the
external signal F(t) directly to the oscillator, we now use a filtered
signal P(t):

ẋ(t) = fx(x(t), y(t), θ(t))+ P(t)

ẏ(t) = fy(x(t), y(t), θ(t)).
(4)

FIGURE 5 | Average combined quality measure 〈Q〉 for different

parameter values of the frequency adaptive Hopf oscillator. For every

parameter pair of coupling strength ǫ and learning rate η, the average

adaption quality measure 〈Q〉 over the logarithmically sampled space of initial

intrinsic frequencies f0 and frequencies of the external signal fext is shown

(0.1 < f0, fext < 10). The red circles indicate the four cases shown in Figure 4.

In each case, the external signal is a sine-wave with unit amplitude.

Accordingly, also the adaptation of θ is based on P(t):

θ̇(t) = ±ηP(t)
y(t)

√

x(t)2 + y(t)2
. (5)

P(t) is given by a weighted difference of the external signal F(t)
and the oscillator variable x(t):

P(t) = ǫ(t)F(t)− β(t)x(t) (6)

with the adaptive coupling strengths ǫ(t) and β(t). Following
the discussion of the quality measures introduced before, for an
optimal adaptation process, the dynamics of ǫ(t) and β(t) has
to fulfill two requirements: as long as the difference between the
intrinsic frequency f and the target frequency fext of the external
signal is high, P(t) should basically be an amplified version of
F(t) in order to accelerate the adaptation process. In contrast,
when f is already close to fext, P(t) is supposed to attain values
close to zero such as to reduce the influence of the external signal
to a minimum. Both of these requirements can be fulfilled by
adapting β(t) and ǫ(t) according to a combination of correlation-
based growth and a passive decay toward a low resting value. For
β(t), we propose the following dynamics:

τ β̇(t) = β0 − β(t)+ κP(t)x(t) (7)

with time constant τ and correlation learning rate κ . The value
of β scales the subtraction of the system variable x from the
external signal F(t) in Equation (6). The product of P and x
(averaged over time) is large if the difference between the intrinsic
frequency f and the external target frequency fext is low. At this
stage, the influence of the external signal on the oscillator should
be reduced, i.e., the amplitude of P should be decreased, as done
by increasing β . The proposed dynamics for ǫ(t) are very similar:

τ ǫ̇(t) = ǫ0 − ǫ(t)+ κF(t)P(t). (8)
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FIGURE 6 | Adaptation of two oscillators with the AFDC mechanism. The upper-most panels show the time course of the frequency determining parameter θ .

The time during which the external signal is applied to the system is indicated by the yellow shaded area. The dashed horizontal lines indicate the initial value θ0 and

the value θext corresponding to the exact frequency of the external signal. The second panels from the top show the time course of the adaptive coupling strengths β

and ǫ. The third panels from the top show the time course of the filtered external signal P. The panels on the bottom show the oscillating state variables x and y and

the external signal F at different short time windows during the adaptation process. In both cases, the initial intrinsic frequency of the oscillator is f0 = 4.0 and the

external signal is a sine wave with unit amplitude and frequency fext = 2.0. (A) Hopf oscillator with AFDC mechanism with µ = 1.0, η = 0.5, κ = 5.0, τ = 2.0,

β0 = 0.0 and ǫ0 = 0.01. The initial value of the parameter θ is given by θ0 = 2π f0 ≈ 25.1, the value corresponding to the frequency of the external signal is

θext = 2π fext ≈ 12.6. The external signal is applied for 5 ≤ t < 30. (B) Van der Pol oscillator with AFDC mechanism with µ = 100.0, η = 2.0, κ = 5.0, τ = 15.0,

β0 = 0.0 and ǫ0 = 0.01. The values of the parameter θ corresponding to f0 and fext are determined to be θ0 ≈ 34.8 and θext ≈ 22.0 (see Methods). The external

signal is applied for 5 ≤ t < 150.

The value of ǫ scales the influence of the external signal F on
the filtered signal P (Equation 6). If the averaged product of F
and P is large, this implies that the subtraction of x in Equation
(6) cannot cancel the addition of F, i.e., the internal frequency of
the oscillator is different from the target frequency of the external
signal. Thus, an increase of ǫ is desired to increase the influence of
the signal on the system and to herewith increase the adaptation
speed. However, as for β(t) ≈ 0, the last term of Equation
(8) can be approximated by κF(t)2ǫ(t), without adaptation of
β(t), the value of ǫ(t) would not return to ǫ0 as long as the
external signal is present and therefore would not allow precise
adaptation. Only the interplay of the dynamics of ǫ(t), which
detects the onset of an external signal with a frequency different
from the intrinsic frequency of the oscillator, and of β(t), which
detects when the adaptation is nearly completed, allows fast as
well as precise adaptation. In the following, we call the described
mechanism “Adaptation through Fast Dynamical Coupling”
(AFDC).

The process of frequency adaptation supported by the AFDC
mechanism can be separated into several stages (Figure 6) as
qualitatively described in the following: Before the onset of an
external signal (F = 0), the average product of P and F is zero
and the adaptive coupling constants β and ǫ converge toward

their resting values β0/(1 + κ x̄2) and ǫ0. Here, x̄2 is the mean
over time of the squared signal x2. As soon as the external signal

is applied, the average product of P and F gets positive (Equation
6). As a result of this, ǫ starts to increase (Equation 8). A higher
value of ǫ, in turn, increases the average product of P and F. This
establishes a positive feedback loop that leads to a fast increase
of the amplitude of P. The high amplitude of P results in a large
influence of the external signal on the oscillator (Equation 4) as
well as in a fast adaptation of the frequency determining variable
θ toward the frequency of F (Equation 5). As a consequence of
both of these effects, the oscillator follows the external frequency
implying a positive correlation between P and x. This correlation
leads to an increase of β (Equation 7). Higher values of β decrease
the amplitude of P (Equation 6) and, as such, also the average
product between P and x. This is a negative feedback loop. Note
that a decrease of the amplitude of P also reduces the average
product of P and F and therefore breaks the positive feedback
loop between ǫ and the average product of P and F (Equation
8) yielding a decline of both β and ǫ to their respective resting
values. At this point, switching off the external signal does not
significantly change the system dynamics as the influence of the
external signal has already been reduced to a minimum.

In summary, the described interplay of the dynamics of the
two adaptive coupling constants β and ǫ scales up the magnitude
of the external signal as long as adaptation of θ is needed and
reduces it once the value corresponding to the frequency of the
external signal is reached.
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FIGURE 7 | Adaptation quality measures for the Hopf oscillator with

AFDC mechanism in the f0-fext-frequency space for different

parameter values. For each of the given parameter tuples (η, κ, τ ), from left

to right, the relative convergence time 1̃, the relative final frequency offset δ̃,

the final relative frequency fluctuation σ̃ , and the combined quality measure Q

for the given parameter values of η, κ, and τ are shown in the plane spanned

by the initial intrinsic frequency f0 and the frequency of the external unit

sine-wave signal fext.

2.2.1. Adaptation Quality in Frequency Space
The dynamics of the AFDC mechanism is mainly dominated
by three free parameters: The time scale τ of the adaptive
coupling strengths, the correlation learning rate κ and the
learning rate η of the frequency determining variable θ . While,
in general, an oscillator equipped with an AFDC mechanism
shows more tolerance with respect to large frequency ranges,
certain parameter combinations allow a faster or more precise
adaptation over a larger frequency range (Figure 7). Some
combinations (for instance η = 1.0, κ = 100.0, τ = 1.0) result in
a very good performance, as indicated by high values ofQ, for the
complete range of initial intrinsic frequencies f0 and frequencies
fext of the external signal analyzed here.

This is also reflected by the frequency space averaged quality
〈Q〉 (Figure 8). For a sufficiently high κ (κ & 3), parameters ǫ

and η can be found with an average quality value close to the
theoretical maximum of 1 corresponding to very fast adaptation
without significant frequency offset or frequency oscillations

in the finally reached state (Figure 8). A comparison of the
performance of the best found configuration of the regular
adaptive Hopf oscillator with the performance of the best found
configuration of the Hopf oscillator with AFDC mechanism
shows that the AFDC mechanism outperforms the regular AFO
mechanism in terms of all quality measures (Figure 9A). The
same holds true for the comparison of the regular adaptive Van
der Pol oscillator with the respective AFDC implementation
(Figure 9B). In contrast to a regular AFO, the AFDCmechanism
manages to provide fast and precise frequency adaptation over a
wide frequency range with a fixed set of parameters.

Note that the values of the additional parameters ǫ0 and β0

do not significantly influence the dynamics of the mechanism as
long as they are chosen reasonably low.

2.2.2. Neural Implementation
The AFDC mechanism relies on dynamically adapting the
coupling strengths ǫ and β . In terms of signal flow, ǫ can be
interpreted as a feedforward coupling from the external signal
to the filtered signal P. The value of β , in turn, determines
the strength of feedback coupling from the oscillator back
to P. A standard way to implement this kind of signal flow
between different entities is in terms of artificial neural networks.
Neural networks are composed of multiple comparably simple
computational units, the neurons, which project signals to each
other via so-called synapses. Every synapse is characterized by a
scalar value, the synaptic weight, which determines the efficacy of
the synaptic signal transmission.

There exist neuron models on many different levels of
abstraction, ranging from simple binary units to complex
biophysical plausible spiking models. Here, we restrict ourselves
to a very basic model of point-like neurons described by time-
discrete dynamics. It has been shown that already a fully
connected network of only two of these very simple neurons
suffices to autonomously produce oscillatory signals (Pasemann
et al., 2003). In every time step, each neuron sums up the
incoming outputs from other neurons as well as from itself
weighted by the respective synaptic weights. This sum is
transformed into the new neural output by means of a sigmoidal
transfer function. The weight matrix of this two neuron network
is given by a scaled rotational matrix for a rotation angle ϕ. The
value of ϕ monotonically controls the frequency of the obtained
oscillatory signal of this so-called SO(2)-oscillator.

As already shown earlier (Nachstedt et al., 2012), a neural
SO(2)-oscillator with neurons H0 and H1 can be extended by
an AFDC mechanism by introducing an additional neuron H2

into the system (Figure 10A). Now, this neural implementation
can be understood as a special implementation of the general
AFDCmechanism. The additional neuronH2 is used to calculate
the filtered external signal P by receiving synapses from both
the external input F and the output of neuron H0. The latter
takes the role of the variable x of the general oscillators discussed
above. The synaptic weight w2F of the synapse from the external
signal F to the additional neuron H2 implements the dynamics
of the ǫ coupling. The weight w20 of the synapse from the
oscillator neuron H0 to the neuron H2 takes the role of β .
Adapting the synaptic weights according to Equations (7) and (8)
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FIGURE 8 | Average combined quality measure 〈Q〉 for different values of κ in the ǫ-η-parameter space of the Hopf oscillator with AFDC mechanism.

For every parameter triple of coupling strength ǫ, frequency learning rate η and correlation learning rate κ, the average adaption quality measure 〈Q〉 over the

logarithmically sampled space of initial intrinsic frequencies f0 and frequencies of the external signal fext is shown (0.1 < f0, fext < 10). In each case, the external signal

is a sine-wave with unit amplitude. The red circles indicate the four cases shown in Figure 7. Comparing these results to the ones obtained for the standard AFO in

Figure 5, the AFDC mechanism provides significant higher quality values indicating versatility with respect to different initial intrinsic and external target frequencies.

A

B

FIGURE 9 | Comparison of the frequency space averaged adaptation

quality measures for the best found configurations of the regular

adaptive oscillators and the respective oscillators with AFDC

mechanism. Note that the averages of the relative convergence time 1̃, the

final frequency offset |δ̃| and the relative final frequency fluctuation σ̃ include

only values from (f0, fext)-frequency pairs in which the combined quality

measure Q has a nonzero value. The ratio of the number NQ>0 of

(f0, fext)-pairs for which the quality Q has a nonzero value and the total number

Ntot of frequency pairs is shown on the very right. All numbers are rounded.

See methods for the used parameter values. (A) For the Hopf oscillator, all

parameters are identical to the ones used in Figures 7, 8. (B) For the Van der

Pol oscillator, we adapt the maximal allowed values of the quality measures.

We use 1̃max = 200, δ̃max = 0.10 and σ̃max = 0.05. In addition, we calculate

δ̃ and σ̃ directly from the frequency determining variable θ and consider the

last deviation of θ of more than 10% from the finally reached mean value θ̄ to

determine the adaptation time 1. (*) Values shown as 0.00 are too small to be

resolved in the figure. For the Hopf oscillator with AFDC mechanism, we find

〈|̃δ|〉/δ̃max ≈ 5.3 · 10−7 and 〈σ̃ 〉/σ̃max ≈ 8.5 · 10−8. For the Van der Pol

oscillator with AFDC mechanism, the average normalized final frequency

fluctuation is 〈σ̃ 〉/σ̃max ≈ 2.5 · 10−3.

effectively introduces synaptic plasticity into the system (Abbott
and Nelson, 2000). In contrast to earlier publications (Nachstedt
et al., 2012), here, the weight w02 of the synapse feeding the
filtered signal P into the oscillator is simply kept constant.

The adaptation of the intrinsic oscillation frequency by
modifying the parameter ϕ and hereby the synaptic weights
of the neural SO(2)-oscillator is a long-lasting change. The
discussed plasticity of the synaptic weights w20 and w2F , in
contrast, has a transient character. The combination of these
two different kinds of dynamics results in a fast and precise
adaptive neural oscillator (Figure 10B) (Nachstedt et al., 2012).
This shows that the AFDC mechanism can be easily integrated
into existing neural control schemes, for instance, in robotic
applications. In addition, the successful implementation of
the AFDC mechanism in a time-discrete system shows that
the concept can be generalized to this class of dynamical
systems.

2.2.3. Closed-Loop Locomotion Control
In addition to the open-loop scenarios studied so far, the AFDC
mechanism also allows to apply adaptive oscillators in closed-
loop scenarios where fast adaptation toward a specific frequency
is required. A classical problem of robotic locomotion control
is the task to find the optimal frequency to drive the legs of
a walking machine. For animals, it has been found that the
frequency during locomotion is tightly related to the resonant
frequency of the free swinging leg (Holt et al., 1990). This way,
animals are able to maintain energy efficiency during locomotion
(Ahlborn and Blake, 2002). Furthermore, it has been proposed
that animals actively modify the resonant frequency of their legs
in order to optimize for different walking speeds (Ahlborn and
Blake, 2002).

Given that CPGs control locomotion, adaptation of CPGs
toward a system’s resonant frequency to optimize locomotion has
been repeatedly investigated and modeled (Verdaasdonk et al.,
2006, 2009). A simplistic model of this control problem is given
by a mathematical pendulum which is driven by a torque signal
according to the output of an oscillator (Nachstedt et al., 2012).
The most energy-efficient control is achieved if the pendulum is
driven at its resonant frequency determined by its physical length
l and its massm as well as the current amplitude of its oscillation.
Here, a neural SO(2)-oscillator with AFDC mechanism is used
to control the torque applied to the pendulum. The control loop
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A

B

FIGURE 10 | Neural implementation of the AFDC mechanism. (A) The

neurons H0 and H1 are fully connected by the synapses w00, w01, w10, and

w11 and form a neural SO(2)-oscillator. The neuron H2 calculates the signal P

which is the weighted difference between the external signal F and the activity

value of H0. Accordingly, the weight w2F corresponds to the coupling strength

ǫ and the weight w20 represents the variable β of the AFDC mechanism. The

weight w02 can either be fixed at a positive value or adapted with similar

dynamics as w20 and w2F . (B) Example adaptation of the neural oscillator. It

is initialized with an intrinsic frequency of f0 = 0.04 corresponding to a value of

ϕ0 = 0.25 of the internal frequency determining variable. At time step t = 100,

an external signal with a frequency of fext = 0.02 is applied until time step

t = 1, 000 (yellow shaded area). For 1, 000 < t < 1, 900, the frequency of the

external signal is changed to fext = 0.04 (green shaded area). For t ≥ 1, 900,

there is no external signal. Shown from top to bottom are the activities oi of

the neurons Hi (i ∈ {1, 2, 3}), the external signal F, the synaptic weights w20

and w2F and the frequency determining variable ϕ of the SO(2)-oscillator.

is closed by feeding the current position of the pendulum as
external signal back to the oscillator (Figure 11A).

In this closed-loop system, the current frequency of the
pendulum is completely determined by the current frequency of
the driving neural oscillator. The observed oscillation frequencies
of the pendulum and the neural oscillator are therefore always
identical. Still, it is possible to adapt the intrinsic frequency of
the neural oscillator to the target frequency given by the resonant
frequency of the pendulum. The information about the difference
between the intrinsic frequency of the oscillator and the resonant
frequency of the pendulum is encoded in the phase relation
between the internal oscillation and the feedback signal received
as external signal by the oscillator. In particular, driving the

A

B

FIGURE 11 | Closed-loop pendulum control using a neural

SO(2)-oscillator with AFDC mechanism. Energy-efficient control is realized

if the pendulum is driven at its resonant frequency. (A) The output o1 of

neuron H1 controls the torque M driving the pendulum with length l and mass

m. The current angular displacement λ is converted into the external signal F

which is fed back to the adaptive oscillator. The neural network is updated

with a frequency of 25Hz. (B) Simulation of the system with varying pendulum

length l. The initial length of the pendulum is l0 = 0.2m. At t = 30 s, the length

is changed to l1 = 0.4m. At t = 50 s, the original length l0 is restored. At

t = 70 s, the feedback connection from the pendulum to the oscillator is cut to

demonstrate that the oscillator has indeed learned the correct frequency to

drive the pendulum. Shown are the current angular displacement λ of the

pendulum, the outputs o0, o1, and o2 of the three neurons, the synaptic

weights w2F and w20 of the plastic synapses of the AFDC mechanism, and

the intrinsic frequency of the oscillator and the resonant frequency of the

undamped and undriven pendulum (target frequency for the oscillator). The

resonant frequency of the pendulum does not only depend on the current

physical properties of the pendulum but also on the current amplitude of its

oscillations.

pendulum at its resonant frequency is characterized by a phase
shift of π/2 between the applied torque and the current angular
position of the pendulum. In the neural SO(2)-oscillator, the
same phase shift is found between the outputs of the neurons
H0 and H1. Therefore, when using the output of H1 to control
the torque applied to the pendulum, at resonant frequency, the
current angular position of the pendulum is exactly in phase with
the output of neuronH0. This corresponds to the converged state
of the AFDC mechanism. If, in turn, the oscillation frequency
of the neural SO(2)-oscillator is different from the resonant
frequency of the pendulum, the output of H0 and the angular
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position of the pendulum are not in phase. The respective phase
difference encodes the information about the difference between
the intrinsic frequency of the neural oscillator and the resonant
frequency of the pendulum and allows the adaptation of the
former into the direction of the latter.

In our simulation, we first let the neural SO(2)-oscillator
with AFDC mechanism adapt its intrinsic frequency toward the
pendulum’s resonant frequency (0 s < t < 30 s in Figure 11B).
We then simulate a change of the physical properties of the
driven system by abruptly changing the length l of the pendulum.
Accordingly, the neural oscillator readapts its intrinsic frequency
to the new resonant frequency of the pendulum (30 s < t <

50 s in Figure 11B). Afterwards, we change the length l back
to its original value. Finally, we cut the feedback connection
from the pendulum to the oscillator (t > 70 s in Figure 11B)
demonstrating that the oscillator has actually learned the proper
frequency to drive the pendulum.

3. DISCUSSION

Transferring key concepts of biological solutions for complex
control problems to robotic applications has been proven to
be a promising approach regarding the adaptivity, robustness,
versatility and agility found in biological organisms (Pfeifer
et al., 2007). One especially successful concept is the one of
using oscillators, i.e., CPGs, to control complex locomotion. As
such, the study of nonlinear oscillators, their entrainment and
adaptation properties and possible applications in robotics has
gained a lot of interest. The here presented AFDC mechanism
overcomes the demonstrated trade-off between speed and
precision inherent to regular AFOs as introduced by Righetti
et al. (2006). As a result, the AFDC mechanism allows fast
and precise adaptation to external signals for a wide range of
frequencies with a fixed set of parameters.

Since the discovery of the AFO mechanism, various different
mechanisms to improve or extend the adaptation capabilities
have been proposed. Subtracting the output of an oscillator
from the external signal, as also done in the AFDC mechanism,
was used to decompose a signal into its Fourier components
(Ronsse et al., 2011b) with the help of an array of AFOs. In
order to more reliably find the basic frequency of the external
signal, it was proposed to combine a single adaptive frequency
oscillator with a Fourier decomposition (Petric et al., 2011). The
detailed interaction between multiple AFOs has been studied
in the context of networks of self-adaptive dynamical systems
(Rodriguez and Hongler, 2014). As an alternative to adapting
the system parameters in order to modify the frequency of an
oscillator, switching between different oscillation frequencies of
an oscillator operated in the chaotic regime by dynamically
stabilizing different periods was demonstrated (Steingrube et al.,
2010).

The main novelty of the here presented mechanism is
the introduced dynamics of the adaptive coupling strengths
between the external signal and the filtered signal as well as
between the output of the oscillator and the filtered signal.
This dynamics temporally increases the influence of the signal

on the oscillator as long as it is necessary to achieve fast
adaptation and decreases it once precision is needed toward
the end of the adaptation process. Adaptive coupling strengths
have been proposed earlier as a method to increase the
synchronization in a network of phase oscillators with fixed
intrinsic frequencies (Ren and Zhao, 2007). The interaction
of the transient dynamics of the adaptive coupling strengths
on the one hand and the permanent change of intrinsic
frequency on the other hand resembles the interplay of long-
term (Wood et al., 2011) and short-term (Zucker and Regehr,
2002) plasticity in biological organisms. The interplay of long-
term and short-term plasticity in biological system has already
been shown to be highly relevant for biological motor control, in
particular for fast network reconfiguration (Nadim and Manor,
2000).

The AFDC mechanism increases the complexity of the
oscillatory system by the addition of two dynamical equations.
Their interplay is required to first scale up the influence of
the external signal and later on reduce it again. In particular,
this interplay is enabled by the weighted difference P of the
external signal F and the oscillator variable x. The correlation
of P and F determines the growth of the adaptive coupling
constant ǫ which, in turn, increases the correlation of P and
F. To counterbalance this self-enhancing dynamics, a second
dynamic variable, i.e., β , is required. To make β increase,
F and x have to be correlated which is the case once the
oscillator has attained the externally applied frequency. This
delay of the onsets of the growth processes of ǫ and β is crucial
for the AFDC mechanism and cannot be realized by a single
variable.

In this contribution, we focused on the Hopf oscillator
and the Van der Pol oscillator for the detailed analyses
of the regular AFO and the AFDC mechanism. It remains
an interesting question for future research in how far the
results obtained for these oscillators regarding the frequency-
independent choice of parameters as well as regarding the quality
measures of the adaptation process generalize to other types of
nonlinear oscillators (Rayleigh, 1877; Duffing, 1918; Fitzhugh,
1961).

As the dynamics of the coupling strengths in the AFDC
mechanism is solely correlation based, we showed that it is easy to
implement the mechanism in neural networks.We demonstrated
this by discussing the already earlier published neural time-
discrete SO(2)-oscillator with AFDC mechanism (Nachstedt
et al., 2012). This special realization of the AFDCmechanism has
already been successfully applied in different robotic applications
including self-organized control of a snake-like robot (Nachstedt
et al., 2013), adaptive control of a robot leg with compliant tarsus
(Canio et al., 2016b), and bipedal locomotion with robustness
against global loss of sensory feedback (Canio et al., 2016a).
In contrast to the neural implementation, the new general
formulation of the AFDC mechanism makes it possible to apply
the mechanism to all kinds of existing applications of regular
AFOs (Buchli et al., 2005). Additionally, it allows the usage of
adaptive oscillators in completely new scenarios where, up to
now, regular AFOs could not provide sufficiently fast as well as
precise adaptation.
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4. MATERIALS AND METHODS

4.1. Hopf Oscillator
The regular Hopf oscillator with the state variables x and y is
given by the following system of dynamical equations:

ẋ(t) =
(

µ − r(t)2
)

x(t)− θy(t)

ẏ(t) =
(

µ − r(t)2
)

y(t)+ θx(t)
(9)

with r(t) =
√

x(t)2 + y(t)2. The variable µ > 0 determines the
amplitude of the oscillations. Without an external signal (F(t) =
0), this system possesses an asymptotically stable and harmonic
limit cycle with an angular frequency of exactly θ .

4.1.1. Adaptive Frequency Hopf Oscillator
The Hopf oscillator can be turned into an adaptive frequency
oscillator by coupling an external signal F to the system and
introducing the dynamics described by Equation (2) to the
parameter θ . The complete system is given by

ẋ(t) =
(

µ − r(t)2
)

x(t)− θ(t)y(t)+ ǫF(t)

ẏ(t) =
(

µ − r(t)2
)

y(t)+ θ(t)x(t)

θ̇(t) = −ηF(t)
y(t)

√

x(t)2 + y(t)2
.

(10)

4.1.2. Hopf Oscillator with Fast Dynamical Coupling
TheHopf oscillator equipped with the AFDCmechanism is given
by the following system of differential equations:

ẋ(t) =
(

µ − r(t)2
)

x(t)− θ(t)y(t)+ P(t)

ẏ(t) =
(

µ − r(t)2
)

y(t)+ θ(t)x(t)

τ β̇(t) = β0 − β(t)+ κP(t)x(t)

τ ǫ̇(t) = ǫ0 − ǫ(t)+ κF(t)P(t)

θ̇(t) = −ηP(t)
y(t)

√

x(t)2 + y(t)2

(11)

with P(t) = ǫ(t)F(t)− β(t)x(t).

4.2. Van der Pol Oscillator
The Van der Pol oscillator with the state variables x and y is
defined as follows:

ẋ(t) = y(t)

ẏ(t) = µ
(

1− x(t)2
)

y(t)− θ
2x(t).

(12)

The parameter µ > 0 determines the “degree of nonlinearity”
of the system. For µ = 0, the system is harmonic. The intrinsic
frequency f depends in a nonlinear and non-trivial way on the
parameter θ . We use a Fourier transform in conjunction with
a sequence of nested intervals to determine the values of θ

corresponding to a given frequency f .

4.2.1. Adaptive Frequency Van der Pol Oscillator
The adaptive frequency formulation of the Van der Pol Oscillator
coupled to a time-dependent external signal F(t) requires a
positive sign in Equation (2):

ẋ(t) = y(t)+ ǫF(t)

ẏ(t) = µ
(

1− x(t)2
)

y(t)− θ(t)2x

θ̇(t) = +ηF(t)
y(t)

√

x(t)2 + y(t)2
.

(13)

4.2.2. Van der Pol Oscillator with Fast Dynamical

Coupling
Applying the AFDC mechanism to the Van der Pol oscillator is
described by the following system of differential equations:

ẋ(t) = y(t)+ P(t)

ẏ(t) = µ
(

1− x(t)2
)

y(t)− θ(t)2x

τ β̇(t) = β0 − β(t)+ κP(t)x(t)

τ ǫ̇(t) = ǫ0 − ǫ(t)+ κF(t)P(t)

θ̇(t) = +ηP(t)
y(t)

√

x(t)2 + y(t)2

(14)

with P(t) = ǫ(t)F(t)− β(t)x(t).

4.3. Neural SO(2)-Oscillator
We use standard additive time-discrete neurons Hi, i ∈

{0, . . . ,N−1}, whereN is the number of neurons in the network.
The activation ai of neuron Hi at time t + 1 is given by the sum
of incoming presynaptic neural firing rates oj weighted by the
synaptic weights wij at time t:

ai(t + 1) =

N−1
∑

j= 0

wij(t)oj(t), i = 0, . . . ,N − 1. (15)

The activation ai of neuron Hi is transformed into its firing rate
oi by a sigmoidal transfer function:

oi(t) = tanh
(

ai(t)
)

. (16)

The pure SO(2)-network consists of N = 2 fully connected
neurons H0 and H1. The synaptic weight matrix is chosen
according to

(

w00(t) w01(t)
w10(t) w11(t)

)

= α ·

(

cosϕ(t) sinϕ(t)
− sinϕ(t) cosϕ(t)

)

(17)

with 0 < ϕ(t) < π the frequency determining parameter. The
factor α determines the amplitude as well as the nonlinearity
of the oscillations. We use α = 1.01 to obtain very harmonic
oscillations and an approximately linear relationship between ϕ

and the intrinsic frequency of the oscillator.
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4.3.1. SO(2)-Oscillator with Fast Dynamical Coupling
In order to equip the neural SO(2)-oscillator with the AFDC
mechanism, an additional neuron H2is introduced. The external
signal F(t) is fed into the neuron H2 via a synapse w2F . The
neuron H2 calculates the filtered version of the external signal
and receives signals via the synapses w20 (= β) and w2F (= ǫ)
governed by the following plasticity rules:

w20(t + 1) = w20(t)+ (β0 − w20(t)− κo2(t)o0(t))/τ

w2F(t + 1) = w2F(t)+ (ǫ0 − w2F(t)− κF(t)o2(t))/τ .
(18)

In accordance with our earlier publication (Nachstedt et al.,
2012), we simplify the frequency adaptation rule of the AFDC
mechanism and reformulate it in terms of the signals arriving at
neuron H0:

ϕ(t + 1) = φ(t)+ ηw02(t)o2(t)w01(t)o1(t). (19)

For the example adaptation process (Figure 10B), we use α =

1.01, η = 1, κ = 100, τ = 100, β0 = 0 and ǫ0 = 0.01.

4.4. Mathematical Pendulum
The angular displacement λ of a mathematical pendulum with
length l and mass m is described by the following differential
equation:

λ̈ = −
g

l
sin λ −

D

ml2
λ̇ +

M

ml2
(20)

with the gravitational acceleration g, the external torque M
evoked on the system and the damping constant D. The resonant
frequency fres of the undamped (D = 0) and undriven (M = 0)
mathematical pendulum is given by Ochs (2011):

fres =
ω0

4K(k)
(21)

with

k =
λ̇
2 + 4ω2

0(sin
λ

2 )
2

4ω2
0

(22)

and ω0 =

√

g
l
. K(k) is the complete elliptic integral of the

first kind. In Equation (22), the current values of the angular
displacement λ and the angular velocity λ̇ are used to obtain the
current total energy of the system. For our simulations, we use
g = 9.81mm−2 and D = 0.005 kgm2 s−1.

4.5. Numerical Integration
The integrations of the different differential systems are carried
out using the odeint method of the scipy python package (Jones
et al., 2001). This methods relies on the LSODA algorithm
(Brown and Hindmarsh, 1989) from the FORTRAN library
odepack (Hindmarsh, 1983). The LSODA algorithm utilizes an
adaptive step size.

4.6. Frequency and Parameter Scans
For the frequency scans performed for the adaptive Hopf
oscillator (Figures 4, 5) and the adaptive Van der Pol oscillator
as well as for the respective oscillators with AFDC mechanism
(Figures 7, 8), we sample the frequency space in the range
0.1 ≤ f0, fext ≤ 10.0. We consider 21 sample values uniformly
spaced on a logarithmic axis of f0 and fext and investigate the
behavior of the oscillators for all possible 212 (f0, fext)-pairs.
For every frequency pair, in the case of the regular adaptive
oscillators, we sample 21 parameter values again uniformly
spaced on a logarithmic axes of each ǫ and η in the range 0.01 ≤

ǫ, η ≤ 100. Therefore, we investigate a total of 214 (f0, fext, ǫ, η)-
configurations for each regular adaptive oscillator. In the case
of the oscillators with AFDC mechanism, the parameters are
investigated in the ranges 0.01 ≤ η, τ ≤ 100 and 1 ≤ κ ≤

1, 000 again with 21 samples in every parameter dimension
yielding a total of 215 sampled (f0, fext, η, κ , τ )-configurations
each.

The best sampled parameter values of the frequency space
averaged combined quality measure 〈Q〉 are ǫ ≈ 15.85 and
η ≈ 15.85 for the regular adaptive Hopf oscillator and η ≈

1.58, κ ≈ 398.11 and τ ≈ 3.98 for the Hopf oscillator
with AFDC mechanism (Figure 9). For the regular adaptive
Van der Pol oscillator, we find ǫ ≈ 0.0158 and η = 1.0 to
perform best while η ≈ 0.158, κ = 100 and τ ≈ 1.585
yield the best result for the Van der Pol oscillator with AFDC
mechanism.
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Animals dynamically adapt to varying terrain and small perturbations with remarkable

ease. These adaptations arise from complex interactions between the environment

and biomechanical and neural components of the animal’s body and nervous

system. Research into mammalian locomotion has resulted in several neural and

neuro-mechanical models, some of which have been tested in simulation, but few

“synthetic nervous systems” have been implemented in physical hardware models of

animal systems. One reason is that the implementation into a physical system is not

straightforward. For example, it is difficult to make robotic actuators and sensors that

model those in the animal. Therefore, even if the sensorimotor circuits were known

in great detail, those parameters would not be applicable and new parameter values

must be found for the network in the robotic model of the animal. This manuscript

demonstrates an automatic method for setting parameter values in a synthetic nervous

system composed of non-spiking leaky integrator neuron models. This method works

by first using a model of the system to determine required motor neuron activations to

produce stable walking. Parameters in the neural system are then tuned systematically

such that it produces similar activations to the desired pattern determined using expected

sensory feedback. We demonstrate that the developed method successfully produces

adaptive locomotion in the rear legs of a dog-like robot actuated by artificial muscles.

Furthermore, the results support the validity of current models of mammalian locomotion.

This research will serve as a basis for testing more complex locomotion controllers

and for testing specific sensory pathways and biomechanical designs. Additionally, the

developed method can be used to automatically adapt the neural controller for different

mechanical designs such that it could be used to control different robotic systems.

Keywords: central pattern generator, dog, artificial muscle, locomotion, walking

1. INTRODUCTION

Controlling complex robots using traditional control methods with on-line optimization and
“single brain” control becomes increasingly difficult and computationally intensive as more degrees
of freedom andmore points of contact are added. This is in stark contrast with the animal kingdom,
in which high redundancy is the norm, and complex interactions with the environment are often
accomplished with ease. For example, having more feet on the groundmakes an individual animal’s
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control and balance easier, rather than harder. Big or small, it
takes little mental effort on the part of the animal to change from
fast speeds to slow speeds, change gaits, start turning, step over
an object, respond to ground slip, or move from concrete to loose
dirt.

Unfortunately, animals are immensely complex, and the
majority of our current robots barely resemble any animals in
the world today. Instead of muscles for actuation, our most
agile robots use electric motors (Seok et al., 2015) or hydraulics
(Raibert et al., 2008; Boaventura et al., 2013). For determining
body states and sensing the world, modern robots rely on a
few strategically placed sensors instead of an animal’s wide net
of somatic sensory neurons spread across its whole body. For
control, instead of a highly distributed and hierarchical network
of neurons, a single algorithm is often used to calculate the exact
position of each joint needed to maintain stability and provide
locomotion.

All this is beginning to change however, as details on how
biomechanics and neural systems provide advantages to moving
around in the world are being uncovered. The compliant
nature of muscles can automatically reject perturbations and
significantly reduce the burden on the control system (Loeb
et al., 1999; Jindrich and Full, 2002). To take advantage of this,
actuators which add compliance and greater control of force
are being developed (Pratt and Williamson, 1995; Thorson and
Caldwell, 2011; Rollinson et al., 2013; Schilling et al., 2013b). A
compliant actuator combined with the tri-segmented shape of the
legs (Fischer and Blickhan, 2006) produces a mechanical system
which is robust to perturbations capable of performing dynamic
walking with open-loop control (Spröwitz et al., 2014).

Neural control of locomotion is a complex interaction of
rhythm generation, sensory processing, feed-forward muscle
activation, and sensory feedback systems. Central pattern
generators (CPGs) are sub-circuits located in the spinal cord
which are responsible for repetitive behaviors such as walking
and breathing. CPGs are capable of oscillating and providing a
patterned output either with or without external input. CPGs
coordinate complex muscle activations to help the animal
achieve proper timing to accomplish a given task. They have
been found to be involved in a large variety of movement
behaviors including the leech heartbeat (Arbas and Calabrese,
1987), human breathing and gasping (Tryba et al., 2006), lobster
digestion (Meyrand et al., 1994), turtle scratching (Mortin
and Stein, 1989), and locomotion in stick insects (Bässler and
Büschges, 1998), lamprey (Cohen et al., 1992), cats (Brown,
1914), and mice (Hägglund et al., 2013).

Modeling of these circuits show that CPGs coordinate
multiple segments into predictable patterns during locomotion
through entrainment of the CPG to the mechanical systems they
control (Iwasaki and Zheng, 2006; Markin et al., 2010). For
example, a set of CPGs that are coupled similarly to that of a
lamprey have been shown to produce a traveling wave along
the body that provides forward locomotion (Ekeberg, 1993). It
was shown that this wave can be easily modified by sensory
feedback to allow the model to adapt to its surroundings and
produce more robust waves for both water and land (Ekeberg
and Grillner, 1999; Ijspeert et al., 1999; Bicanski et al., 2013).

Similar evidence has shown that sensory feedback can be used
to coordinate multiple CPGs in leech swimming and stick insect,
cricket, and cockroache walking without direct coupling of the
CPGs (Bässler and Büschges, 1998; Ekeberg et al., 2004; Akay and
Büschges, 2006; Chen et al., 2011; Szczecinski et al., 2014).

Less is known about the organization of CPGs in mammals
than in insects and other invertebrates. Early theories
hypothesized the existence of a single CPG per leg, driving
transitions between stance and swing (Brown, 1914). However,
more recent models utilize multiple oscillating circuits at
multiple hierarchical levels (McCrea and Rybak, 2008) supported
by recent neurological data (Zhong et al., 2012). Mammalian
CPG systems may look more similar to those in insects
than previously hypothesized (Büschges and Borgmann, 2013).
Models of CPGs coordinated through sensory feedback pathways
have been shown to successfully replicate many behaviors in
mammalian systems and produce coordinate motion for
multiple joints (Ekeberg and Pearson, 2005; Amrollah and
Henaff, 2010; Markin et al., 2010; Hunt et al., 2014, 2015a; Li
et al., 2016). However, these models have not been tested on a
robot, and it is difficult to determine whether they are true in real
world physics or possibly exploiting the simplified physics of a
simulation.

These advances in understanding of the neuro-mechanical
control of locomotion have led to an increase in bio-inspired
robots (see Ijspeert, 2008, 2014; Iada and Ijspeert, 2016 for
recent reviews) with simultaneous goals of building more
advanced and adaptable robots in addition to developing a better
understanding of the theories produced from the experimental
work. Modern biologically inspired walking robots fall into one
of two categories: abstracted biologically-inspired or biology-
first. Several abstracted biologically-inspired approaches have
effectively demonstrated many principles of animal locomotion.
Hopf oscillator-driven robots such as Amphibot and Salamandra
Robotica II provide valuable insights into how changing sensory
feedback can be used to adapt CPGs and produce rhythmic
movement entrained to the mechanics of the robot and its
surrounding (Crespi et al., 2005, 2013). AMOS and HECTOR
are two robots which are built around machine learning of
specific tasks. AMOS is controlled by a large recurrent neural
network trained by reservoir computing methods to estimate the
leg’s state and anticipate future sensory information (Dasgupta
et al., 2015). HECTOR uses many feedforward artificial neural
networks to map between different states, such as mapping joint
angles to the height of a leg (Schilling et al., 2013a). Both these
robots are also able to effectively integrate sensory information to
produce adaptive, rhythmic output. Additionally, several robots
have been controlled with dynamic spiking neural networks
(Rostro-Gonzalez et al., 2015; Espinal et al., 2016). All these
robots produce adaptive locomotion over diverse terrain, but
their controllers abstract many principles of animals’ nervous
systems, limiting their applications as neurobiological research
tools.

Other robots use a biology-first approach to controller design.
Biology-first approaches begin with known connectivity from
the animal, and set parameter values in the control networks
to match data from the animal. RoboLobster, Bill-Ant and
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LegConNet control walking with finite state controllers based
on previous state-based models of locomotion (Ayers, 2004;
Lewinger and Quinn, 2010; Rutter et al., 2011). Locomotion
direction is changed by modifying local reflexes that cause
transitions between the finite states of leg motion. OCTAVIO
uses an artificial neural network assembled from modular
subnetworks, much like the work we present in this paper (von
Twickel et al., 2011). The biped built by Klein and Lewis and
Redbot both demonstrated how a spiking neural network can be
used to produce locomotion in a biped robot (Klein and Lewis,
2012). These robots have controllers that mimic the logic and
structure of the animal’s nervous systems, and as such, serve
as tools for investigating neurobiological hypotheses, however,
all these controllers were developed by hand tuning parameter
values, and are limited by the engineer’s ability to calibrate the
system.

To improve the applicability and performance of these
robots, methods are being developed for setting parameter
values in these networks. A major component of these methods
focus on breaking the problem into several more easily solved
subproblems. These subproblems are solved individually, and
often in a specific order to build up the complexity of the
network. Redbot uses a staged genetic algorithm process to set
stepping frequency, gait, and finally joint angle profiles (Russell
et al., 2007). This controller, however, does not use sensory
feedback, an important component for adaptive locomotion.
The controller for MantisBot, and is formulated around steady
state activity of the neural system, however, walking has not yet
been demonstrated with this robot (Szczecinski et al., 2015). In
previous work, we developed a training process which utilizes
many of the same tools as MantisBot (Szczecinski et al., 2017)
and sets parameter values in a locomotory network for forward
locomotion of a rat simulation (Hunt et al., 2015b). In the work
presented in this paper, we demonstrate the broader applicability
of this process by applying the same procedure to a dog-like robot
to generate adaptive, forward walking.

The key contributions of this paper are (1) the testing of a
synthetic nervous system for dynamic walking on a hardware
model of a dog’s rear legs actuated by artificial muscles, and (2)
the validation of an automatic, repeatable method for setting
parameter values in a synthetic neural system composed of
a CPG locomotion network without requiring a mechanical
simulation. Additionally, this work demonstrates the validity
of using synthetic neural controllers for controlling dynamic
robotic locomotion and acts as a launching point for developing
more complex controllers for adaptive locomotion.

2. METHODS

2.1. Robot Architecture
Puppy (Figure 1) is a four legged robot with 12 planar joint
degrees of freedom (three per leg), first introduced in Aschenbeck
et al. (2006). It is 57.5 cm tall, 60 cm long, 23 cm wide, and
weighs 6.8 kg (15 lbs). Each joint has an antagonistic pair of
10 mm Festo MXAM-10-AA (Festo Inc.) actuators, also known
as “fluidic artificial muscles,” that are energized by compressed
air. Motion is constrained to the sagittal plane by two plastic

sheets (see Figure 1). A 2.3 kg (5 lb) counterweight was hung
through a pulley on a linear slider and attached to the center
of the robot, partially supporting the robot’s weight for the trials
presented in this manuscript. The robot’s hind legs walked on the
treadmill. The front legs were suspended above the belt to prevent
interference.

Each actuator has separate input and exhaust valves controlled
by a single board real-time, reconfigurable input output module,
sbRIO-9602 (National Instruments), with an embedded field
programmable gate array (FPGA). The sbRIO was connected via
a 10/100 Ethernet port to a host computer running Windows
7 on an Intel i7-2770K. Each actuator is connected in parallel
to a Freescale MPX5700 GP gauge pressure sensor. Joint angles
are collected from a Vishay Spectrol 140-0-0-103 potentiometer
placed at each joint. Analog data from the joints and pressure
sensors is converted to digital data for the sbRIO with a custom
board developed by Osmisys, Inc. Velocity data, calculated by
differentiating length data, was filtered by a 2nd order lowpass
Butterworth filter with a normalized cutoff frequency of 0.01Hz,
applied after differentiation.

The overall control architecture is illustrated in Figure 2. The
neural control system is simulated using Animatlab (Cofer et al.,
2010). The neural controller outputs motor neuron activations
for each of the muscles and receives muscle afferent feedback
values via virtual serial ports with Labview. Labview uses the
motor neuron values to calculate desired muscle force output
and then calculates the pressure required to produce that force.
Desired muscle force is calculated by adapting the Hill muscle
model (Hill, 1970) (Figure 3) parameter values to the artificial
muscle where tension, T, is developed in the muscle according
to:

dT

dt
=

kse

b

(

kpex+ bẋ−

(

1+
kpe

kse

)

· T + A

)

, (1)

where x is the muscle length, kse and kpe are the series and
parallel stiffness, and b is the viscous damping constant. A is the
activation level of the muscle,

A = Am ∗ Al. (2)

Am is the sigmoid adapter equation,

Am =
Fmax

1+ exp(C(Vo − V))+ B
. (3)

Fmax is the maximum muscle force, C is the maximum slope of
the sigmoid,V is the membrane voltage of the motor neuron, and
Vo and B describe the voltage and force offsets of the sigmoid. Al

is the length-tension relationship,

Al = 1−
(l− lrest)

2

l2
width

, (4)

where lrest is the length at which the muscle can provide the most
force and lwidth is the length from lrest at which the muscle can
provide no force.
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FIGURE 1 | The robot is constrained to motion in the sagital plane and a counterweight pulley system is used to reduce the effective weight of the

robot and encourage a center position on the belt.

FIGURE 2 | Diagram of control layout. The neural system is simulated on the computer in Animatlab (Cofer et al., 2010). The neural controller uses muscle afferent

feedback (Ia, Ib, and II) and internal neural dynamics to output motor neuron activations in mV for each of the muscles via virtual serial ports with Labview. Labview

uses the motor neuron values and current readings of joint angles to calculate desired pressure values and passes these to the FPGA. It also uses the current

pressure and joint angles to calculate the muscle afferent feedback and passes this to Animatlab. The FPGA uses the current pressure and desired pressure to

perform bang-bang valve control on the actuators. It also passes the current pressure and angle readings from the robot to Labview.

The series spring element, kse, simulates the tendon and is very
stiff (107N/m). kpe is calculated such that all stretching under the
maximum expected load is absorbed by the parallel and series
elements,

kpe =
kse · Fmax

kse(lmax − lmin)− Fmax
. (5)

To develop the length-tension relationship, the maximum
output force was set to 509 N (based on extrapolation of the
actuator fit curve found in Hunt, 2015 at 90 psi). Length
parameter values were unique for each muscle and set such that
lrest was equal to the length with no pressure and no load, and
the lwidth was set such that Al = 0 when the muscle was at its
shortest length with no load under 90 psi. The peak velocity of
themuscles (vmax) was calculated from empirical testing and used
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FIGURE 3 | The Hill muscle model (Hill, 1970) is modeled as an active contractile element in parallel with a damper and spring element. These

components are attached in series with a stiffer spring element approximating the tendon.

to set b such that b = Fmax/vmax. The values Vo = −50mV ,
C = 121.46, and B = −1.17 are found by solving Equation
(3) for the conditions: Am(−100mV) = 0;Am(−10mV) =

0.99 ∗ Fmax; and Am(−50mV) = 0.5 ∗ Fmax.
The commanded pressure values are calculated from the

empirical model of the actuators derived in Hunt (2015). In this
model, the commanded tension from Animatlab and current
geometry of the robot are used to calculate the commanded
pressure for each of the artificial muscles with the equation

P = 254 kPA+ 1.23
kPA

mN
· T + 15.6 kPA · S+

192 kPA · tan

(

2.03

(

k

−0.33 1
mN · F +max(k)

− 0.46

))

, (6)

where S is the state of the artificial muscle in which 1 indicates
the muscle is shortening and −1 indicates lengthening. For
stability, this value was changed from the binary values calculated
originally to continuous linearly scaled values based on the
maximum velocity of the muscle. This commanded pressure
is sent to the FPGA. Because of limited bandwidth, the valve
controller on the FPGA opens the inlet or exhaust valve until
the actual pressure reading is within±15 kPa of the commanded
pressure, and then closes the valve.

The sbRIO collects joint angle data and muscle pressure data
and passes this information to the Labview computer program
for processing. Labview converts the joint angle data to muscle
lengths such that

lm = am + bm cos (αm + θm) . (7)

am, bm, and θm are unique constants based on the specific
geometry of the robot and αm is the joint angle. Muscle force
is then calculated from pressure and length using a lookup table
built on Equation (6). Types Ia, Ib, and II muscle afferents are
calculated for the neural control system. Though this feedback is
simplified, it captures the main function of each type,

Ia = kaẋ Ib = kbT II = kcx. (8)

where ka, kb, and kc are gain parameters whose values are set
such that the injected current is 20 nA when the muscle is at its
maximum velocity, tension, and length, respectively.

2.2. Neural Network Architecture
The neurons in the control network have leaky integrator
dynamics. The leaky integrator model captures the most basic
behavior of neurons and allows for more complex dynamics
to be added without increasing the complexity of the rest of
the network. It is capable of modeling individual non-spiking
interneurons, the firing rate of a population of neurons, or a
single spiking neuron after a spiking threshold is included. This
work is not concerned with the specifics of how action potentials
are generated and has neglected Hodgkin-Huxley sodium and
potassium currents. In this work, each neuron is used to model
the average firing rate of a population of spiking neurons. The
dynamical equations that describe their behavior can be found in
Szczecinski et al. (2017).

2.2.1. Joint Control
The connectivity of the Zhong locomotor model (Zhong et al.,
2012) was chosen as the basis for the neural control system
for low level control. Since our focus is on understanding how
sensory feedback affects the timing and activation of motor
neurons, the presented model neglects the highest level CPG, and
is simplified to a single network for each joint with a pattern
formation layer and lower level afferent feedback networks
(Figure 4).

Intra-joint sensory feedback controls each joint. Positive
force feedback (Prochazka et al., 1997) provides self exciting Ib
feedback to each muscle. As tension within a muscle increases,
the motor neuron is excited further to apply even more
tension. Though this leads to a destabilizing influence in most
control systems, the length-tension properties of the muscles
and geometric alignment of the musculoskeletal system prevent
unstable behavior. This influence helps the animal compensate
for unexpected increased loads during walking. Cross inhibitory
velocity feedback through Ia pathways limits muscle speed
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FIGURE 4 | Network architecture for a single joint in the hind leg

adapted from Zhong et al. (2012). Blue neurons are CPG half-centers (HC)

with additional sodium currents. Red neurons are motor neurons (MN) used to

provide activation to the muscles in the rat simulation or the actuators in the

robot. Yellow neurons are interneurons (IN) and Renshaw cells (RE). Feedback

from the entire leg is applied directly to the CPG of each joint in the form of hip

flexor Ia and II, hip extensor II, and ankle extensor Ib feedback. Extensor and

flexor Ia and Ib feedback from each joint feed directly back onto the joint

control through Ia interneurons or directly onto the motor neuron. Synapses

that terminate in a close circle indicate an inhibiting synapse while those that

terminate in an open triangle indicate an excitatory synapse.

(McCrea et al., 1980; Lundberg, 1981; Pratt and Jordan, 1987;
Jankowska, 1992; Geertsen et al., 2011). When a muscle is
stretched quickly, it inhibits the antagonist via the Flexor or
Extensor Ia - IN interneuron.

2.2.2. Leg Control
Intra-leg sensory feedback connections are derived from
proposed coordination mechanisms in mammalian literature.
Stance-to-swing transition is the most studied phenomenon, and
is caused both by reduced firing in Ib Golgi tendon afferents
and increased firing from hip flexor stretching (Pearson, 2008).
This integration of signals is shown in Figure 4 as inhibitory
connections from the “Hip Flexor Ia” and “Hip Flexor II” afferent
feedbacks and an excitatory connection from the “Ankle Extensor
Ib” afferent feedback onto the “Extensor Interneuron” for each
joint. Stance is initiated by reduced firing of the hip flexor type II
afferent or increased firing of hip extensor type II afferent (McVea
et al., 2005; Akay et al., 2014). This indicates that the hip is
forward, causing contraction of the hip and ankle extensors. This
is realized as an inhibitory connection from the “Hip Extensor
II” afferent feedback onto the “Flexor Interneuron” for each
joint.

2.2.3. Inter-Leg Control
Commissural interneurons encourage an alternating gait
between the legs. These connections mimic those that have

been found in mice (Talpalar et al., 2013) and cats (Jankowska,
2008), and further described with neural modeling (Rybak
et al., 2013). In these models, the interneuronal connections
are between high level leg CPGs, which are not included in our
model. Because we have a CPG for each joint, our commissural
interneurons are made to act on the most proximal joint,
which drives the protraction and retraction of the leg. The
hip joint CPGs are connected with inhibitory and excitatory
commissural internerons (CINi and CINe), and the rest of the
CPGs remain unconnected. These pathways are set such that the
CINi pathways provide three times as much inhibition as the
CINe provides excitation, similar to related models (Rybak et al.,
2013) and more than an order of magnitude weaker than other
synapses within the model. These connections are illustrated in
Figure 5. Parameter values were used from our previous work
Hunt et al. (2015a).

2.3. Calculating MN Activations
The motor neurons are the interface between the neural and
mechanical systems. The motion of the robot and the dynamics
of the actuators dictate the motor neuron activations during
locomotion, which the neural system must be tuned to produce.
This section describes how we calculate the motor neuron
activations.

2.3.1. Joint Torques and Kinematic Motions
To determine kinematic and dynamic motions for the robot,
models of the hind and fore legs during stance and swing
were developed in Simulink-SimMechanics (Mathworks, Inc.). A
cubic spline was fit to predetermined angles and duty cycles for
touchdown, midstance, liftoff, and midswing based on walking
whippets, a species of dog with similar limb proportions and body
mass to Puppy (Fischer and Lilje, 2011). The data for the walking
kinematics was averaged from 7 dogs with an average stepping
period of 0.54 s, and a speed of 1.01m/s, or 1.97 body lengths/s.

Swing torques were calculated by adding friction to the joints
and doing a forward dynamic analysis using the equations of
motion. The calculation of stance torques was done by building
a closed chain system with a fore and hind leg on the ground
at one time. A proportional-derivative (PD) controller at each
joint was used to produce a kinematic trajectory similar to
that collected from whippets (Fischer and Lilje, 2011). The PD
controller torques are the torques required to produce whippet-
like locomotion with Puppy. The stance data and swing data
were concatenated assuming a 50% duty cycle and smoothed
non-linearly to remove discontinuities at the edges (Figure 6).

2.3.2. Calculating Muscle Tension and MN Activation
Muscle tensions during locomotion were calculated using the
joint torques in the previous section and the active lengths of the
muscles during locomotion. A unique solution was obtained by
assuming only one muscle per joint is activated at a time (Hooper
et al., 2009). The active muscle must produce the previously
calculated torques as well as overcome torques created by the
passive forces produced in each muscle.

Passive forces were calculated using Equation (1) with A = 0.
Muscle length (x) and muscle velocity (ẋ) were calculated using
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FIGURE 5 | Interleg commissural interneronal network for coordinating legs into an alternating gait. While one leg is in hip extension, it provides limited

inhibition to the other leg extensors causing it to stay in the flexion state longer. Synapses that terminate in a close circle indicate an inhibiting synapse while those that

terminate in an open triangle indicate an excitatory synapse.

a forward kinematic model of the Festo attachment points and
joint kinematics. The derivative was discretized and T was solved
for at the next time step based on the previous tension,

Ti+1 = Ti + 1t ·
kse

c

(

kpexi + cẋi −

(

1+
kpe

kse

)

· Ti

)

. (9)

Starting with T = 0 and repeating this process for several
step cycles produces a periodic steady-state tension profile that
resists the ground-force and dynamic torques. The active muscle,
then, must overcome this passive muscle force, the ground force,
and dynamic forces. The active muscle force is calculated by
using a bisection root-finder to balance the static and dynamic
forces acting on each joint for each time step. The motor neuron
activation is calculated by solving Equations (2) and (9) with a
bisection root-finder.

2.4. Training CPG Network Output
Training the CPG network output is performed with the
same four step process as is presented in (Hunt et al.,
2015b) for the simulation of a walking rat. This process
is similar to the staged evolution technique used to evolve
parameters for Redbot locomotion and other systems (Inada
and Ishii, 2004; Russell et al., 2007). A review of the process is
below.

Each leg network (which includes three joints) consists of 82
neurons with 12 parameters each, and 134 synapse connections
with 4 parameters each. The large number of parameters is a
result of the complexity of the biologically-based model that we
use to control each joint (see Figure 4) (Zhong et al., 2012).
Many parameter values were set using basic heuristics such as
resting voltage (−60mV), time constant (5ms), and relative size
(1). Even after these simplifications, approximately 90 parameters
per leg, mostly synapse strengths, still needed to be set. Because
of the large number of possible local solutions, the design and
training of the CPG network was done over the course of four
iterations in which progressively more complete networks were
tuned. First, parameter values within the CPG were tuned to

generate appropriate rhythm and response properties. Second,
synapses from sensory neurons to the CPG were tuned to
generate the intended CPG activity during walking. Third,
synapses from the CPG to the MNs were tuned to obtain
the proper MN activation. Finally, afferent feedback from the
muscles to the MNs was tuned to further refine MN activation.
This entire tuning process was performed without a physics-
based simulation and then the results were tested on the Puppy
robot.

2.4.1. CPG Design
The first step is designing a CPG for the pattern formation
layer of a single joint which is capable of producing the
desired phase transitions in response to sensory feedback.
The system is composed of two mutually inhibitory neurons
called half-centers (HCs), each with persistent sodium channels.
It has the same basic set of equations as has been used
in other recent modeling work (Daun-Gruhn et al., 2009).
These channels provide nonlinear positive reinforcement to
membrane voltage fluctuations, which make sustained oscillation
possible. Mutual inhibition is implemented via non-spiking
interneurons (INs). Each HC excites an IN, which inhibits
the other HC, as shown in Figure 4. Though this CPG
is composed of only 4 non-spiking neurons, it exhibits
many of the same shapes, behaviors, and responses to
perturbations that exist in the average spiking frequency
of reciprocally inhibited spiking neurons with postinhibitory
rebound (Perkel and Mulloney, 1974; Pinsker, 1977; Ayers and
Selverston, 1979). It also has the same network architecture
as the pattern formation neural pools used in the Zhong
locomotor model, and the oscillatory dynamics are also governed
by a slowly activating and deactivating persistent sodium
current.

Our previous work described a bifurcation parameter, δ,
which controls the CPG’s endogenous rhythm and sensitivity to
inputs (Szczecinski et al., 2017). The CPG oscillates endogenously
if δ > 0. When δ is near to 0, it easily entrains with
incoming sensory signals. As δ increases, it less easily entrains
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FIGURE 6 | SimMechanics model, kinematic, torque, and muscle tension profiles for the puppy robot which were used to produce training data for the

neural system. Extension refers to a positive angle movement and flexion refers to a negative angle movement. Though the knee and ankle joints have a period of

little movement during stance, analysis of the torque profile and calculation of the muscle forces show the high torques and tensions required to maintain those

angles. Distinct periods of alternating extension and flexion muscle activation are observable for each muscle through a step cycle. Additionally, the hip flexor remains

active for longer than the knee and ankle, indicating that the step cycle has more modes than “stance” and “swing.”

with sensory signals. Each joint of Puppy is controlled by
a CPG in which δ = 0.1. In addition, the slope of m∞,
h∞, and GNa were adjusted until the CPG’s bursts peaked
approximately 20% above the high equilibrium point, and the
endogenous period was twice that of the robot’s intended
stepping period.

2.4.2. CPG Entrainment
The second step in choosing parameter values for the network to
produce the intendedMN activations is to tune the synapses from
sensory neurons to the CPG, such that the CPG both entrains
to the sensory information and produces the MN activations
calculated in the previous section. In our network, sensory
feedback synapses onto the CPG according to rules discovered
in vertebrates, described in Section 2.2 (e.g., hip flexor stretch
encourages a transition from stance to swing Pearson, 2008,
etc.). The synaptic conductance and threshold of these pathways
determine how they affect the CPG’s phase (Szczecinski et al.,
2017), meaning that they must be carefully calculated for Puppy
to walk properly.

Two steps are required to tune the synapses from sensory
neurons to the CPGs. First, the intended walking kinematics
are used to find the type Ia, Ib, and II afferents during normal
walking motion. These are the signals that entrain the CPG into
the proper phase for walking. Second, a neural simulation is
assembled in which the calculated muscle afferents are input to

the CPG. A fitness function, f1(Vthresh,Gsyn), is calculated that
describes howwell the CPG entrained to the sensory information,

f1(Vthresh,Gsyn) = (P−Po)
2+(Se−Seo)

2+(Sf−Sfo)
2+
∑

(Gsyn),

(10)
where P is the oscillation period, Se is the timing of the extensor
MN’s rising edge, Sf is the timing of the flexor MN’s rising edge,
and Gsyn is a vector of conductance values for the synapses under
consideration. Vthresh is a vector of the conductance threshold
for the same synapses. Terms with the subscript “o” are the
intended values. Note that synaptic conductances are penalized,
preventing synapse conductances from becoming too large.

Gsyn and Vthresh were found to minimize f1 with a two-
step optimization process. First, a genetic algorithm (GA) was
used as a global search of the parameter space. The GA was
initialized with a population of 1,500 possible parameter value
combinations. At the end of every generation, the worst 50% of
solutions were eliminated, and the others were randomly selected
for mating with a performance-based weighting. Mating was
performed with single-crossover, and themutation rate was 0.1%.
Once the GA completed five generations, the best solution was
used as the starting point for a Nelder-Mead simplex minimizer.
Thus, the parameter space was first globally sampled, and then
serially refined to find a promising solution.
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2.4.3. CPG Output
In the third step, the CPG output synapse strength was trained to
produce activations of the motor neurons with a peak magnitude
that matches each desired motor neuron activation and a
minimum of no activation at some point in the cycle. Similar to
entraining the CPGs, we used the GA from the previous section
with a population of 300 parameter value combinations for 5
generations and refined the best solution with a Nelder-Mead
routine. The fitness function is

f2(x) = (max(E)−max(Eo))
2 + (max(F)−max(Fo))

2 +min(E)

+min(F), (11)

where E and F are the a single cycle of extensor and flexor motor
neuron patterns and Eo and Fo are the desired patterns.

2.4.4. Afferent Influence of MN Activation
In the last step, afferent feedback was trained to help shape the
MN output and provide additional force if necessary to overcome
changes in foot placement (excitatory Ib feedback), or reduced
force if the leg is moving too quickly (inhibitory Ia feedback). All
neurons and pathways involved in these networks were designed
to be completely continuous over all possible ranges. The fitness
function for the final training is

f3(x) = (max(E)−max(Eo))
2 + (max(F)−max(Fo))

2+

min(E)+min(F)+ (E− Eo)
2 + (F − Fo)

2.
(12)

3. RESULTS

3.1. Offline Training Results
The final results of the training can be seen in Figure 7. A clear
relationship between the training data and the network output is
observed. A step cycle with the desired period is produced based
on expected sensory feedback. All muscles are active at the correct
point of the step cycle, with extensors active during stance and
flexors active during swing. The transitions between the stance
and swing phases are close to the desired transition point of the
step cycle based on expected sensory feedback. Additionally, five
of the six activation curves follow within 10% of the magnitudes
for the inverse dynamics calculated activation values.

For the hip, extensor output at the beginning of stance
and flexor output at the beginning of swing are both a little
high, but final output is within 5% of the training curve. The
transition from stance to swing in the hip occurs 10% earlier
than the training data anticipates; however, this is a phenomenon
observed in kinematic data for dogs (Fischer and Lilje, 2011) and
other mammals (Fischer et al., 2002). Additionally, knee extensor
output is initially within a few percent of the desired angle, and
it maintains much higher output during stance than the training
data. The knee flexor output peaks at a highermagnitude than the
training data, however, this is not for long. The transition timings
from stance to swing and swing back to stance are directly in time
with the expected feedback and training data. For the ankle, both
trained ankle output for extensor and flexor activity follow the
training data shape and are within a few percent of the desired
output. Here, like the knee, the transitions from stance to swing

and back to stance are directly timed with the expected sensory
feedback and training data.

3.2. Robot Results
The trained network output MN activity based on expected
sensory feedback is nearly as expected and results in robot
walking. With the applied trained network and the commissural
inter-leg network, the hind legs perform sustained, alternating
stepping at a period of 0.83 s. The walking robot had
approximately a 50–50% stance to swing duty cycle. Data
presented in Figures 8–11 is for a stepping speed of 1m/s or 1.67
body lengths/s. A screen capture of a step sequence is shown in
Figure 8 (See Supplementary Material Video 1).

The average MN activations, muscle tensions, and joint
kinematics for 38 right and left steps can be seen in Figure 9.
Average extensor MN activations have peaks that are within 10%
of intended magnitude, while flexor activity peaks are lower.
Relative timing between the joints is as expected, with hip,
knee, and ankle flexors transitioning to swing at about the same
time, and knee and ankle extensors activating mid-swing before
the hip extensors at the beginning of stance. When comparing
averaged activity, overall activity is more spread out than desired
activations, however, activity during single steps show sharp
transitions and distinct off periods as can be seen in Figure 10.

Sensory signals produce adaptive motions by changing step
timing. The transition from swing to stance occurs with
increasing Hip Extensor II feedback (Figure 10, column one,
solid arrow). The transition from stance to swing occurs
with increasing Hip Flexor II feedback and a drop in Ankle
Extensor Ib feedback (Figure 10, column one, dashed arrow).
These sensory changes cause the CPGs to rapidly change phase
between extension and flexion. The CPG change produces a
corresponding rapid change in MN voltage and change in
motion. These transitions vary in timing depending on the
voltage values and rate of change for sensory feedback neurons
(Figure 10, column 2).

Afferent feedback also provides shaping of MN activation
activity. During walking, the contribution to MN output from
the CPGs drop over time due to the decreased level in activity
of the CPG neurons. However, the desired MN activation at
the end of swing and stance increases over time for the hip
muscles (Figure 7). The synthetic neural controller achieves
this with local hip extensor and flexor Ib excitatory feedback
pathways as is seen in row three of Figure 10. This activation
is even more pronounced in the robot than was calculated with
inverse dynamics or predicted by the offline training and neural
simulation.

Comparisons between the right and left leg show activations
and joint angles with similar shapes and peak amplitudes within
a few percent of each other, except with a small phase delay
(Figure 11).

4. DISCUSSION

The robotic system demonstrated here shows the sufficiency
of the known neural system for timing joints and producing
the necessary kinematic motions. Our work reaffirms the work
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FIGURE 7 | Trained network output MN activity compared with desired motor neuron activations. This output is simulated using expected feedback and is

not the actual MN output of the walking robot. The transitions between stance and swing phases are close to the desired transition point of the step cycle and most

activation curves follow within 10% of the magnitudes for the activation values calculated with inverse dynamics.

FIGURE 8 | Series of screen shots demonstrating hind leg walking in Puppy. (A) Left leg is in swing and the right leg is in stance. (B) Double support phase.

(C) As the left leg takes up more weight, and the right leg moves further back, it begins to enter swing. (D) While the right leg swings, the left leg bears the weight of

the robot. (E) When the forward swing position is reached, the right leg begins extension. (F) When the right leg touches down and begins to bear load the left leg

enters swing and the process is repeated.

by Klein and Lewis (2012) that dynamic neural systems are
affective tools for controlling dynamic walking systems. Our
work expands upon this by implementing a more detailed
model of intra-leg sensory pathways and demonstrates that
the proposed mechanisms are effective for regulating stance
and swing timing, as well as muscle force production for
forward walking by adapting each step individually. Additionally,
our work demonstrates a network controller that can produce
locomotion at faster speeds and with less external support than
this previous work.

Our work also demonstrates the larger applicability of the
parameter value setting method first presented in Hunt et al.
(2015b). This method was first developed for setting locomotion
parameter values in a simulation model of a rat actuated by
a Hill muscle model. Compared with the dog robot, the rat
simulation has a different kinematic configuration, different
stepping frequency, different actuators, and different torque

demands. Despite all these differences, the same method is
effective for setting parameter values in the rat simulation and
the dog robot.

The method for setting parameter values in the stepping
network presented here significantly reduces time to application
in two ways. First, by having an autonomous method for setting
parameter values, the computer is able to remove the guesswork
involved and evaluate possible parameter values at a much
faster speed than a human. Second, by eliminating the need for
physics-based simulations or hardware, the method is able to
iterate through possible parameter value choices several orders of
magnitude faster than with a simulation or hardware in the loop.
This methods works by evaluating the network with expected
sensory feedback, assuming locomotion speed, kinematics, and
forces are occurring as designed.

Despite differences in sensory signals that occur when the
robot actually walks vs. those that were predicted, the simulated
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FIGURE 9 | Comparison of desired motor neuron activations and joint kinematics with those produced during walking motions in the robot. Depicted

data is the average of 38 steps at approximately 1m/s. Motorneuron activation magnitudes and timing match closely with the desired magnitudes. Additionally, joint

excursion is close to the desired maximum flexion and extension values.

neural system maintains effective control of locomotion. We
believe this is the case because of the robust design of the
locomotory circuit combined with the stable design of the legs.
The central pattern generator ensures that stepping remains
continuous despite deviations in sensory signals. Additionally,
the sensory feedback pathways are able to adapt the locomotion
steps and maintain stability while there are variations in
stepping behavior. This confirms the effectiveness of the
neural organization and different sensory signals and pathways
implemented in our neural model for rhythm generation (Zhong
et al., 2012), joint coordination (McVea et al., 2005; Akay
et al., 2006; Pearson, 2008; Akay et al., 2014), leg coordination
(Jankowska, 2008; Rybak et al., 2013; Talpalar et al., 2013), and
motor neuron activity regulation (Jankowska, 1992; Prochazka
et al., 1997; Zhong et al., 2012). The Ib and Ia feedback pathways
that modulate motor neuron output add significant control to
the robot. Positive Ib feedback adds additional MN activation
when load is encountered on a muscle, enabling it to pull harder
to overcome obstacles. In terms of walking, this means pushing
harder on the ground if the stance leg is in a position where the
muscles have low mechanical advantage. Negative Ia feedback
reduces MN activation when the joint is moving too quickly,
slowing down stance or swing.

This work also demonstrates a method for determining the
required motor neuron activations from desired kinematics and
a model of the robot. Though these torques were within 20%
of peak torques recorded in the greyhound (another dog of
similar limb proportions and body mass to Puppy) (Colborne

et al., 2006), the method required the implementation of a PD
controller, which can be very sensitive to parameter values.
Recent advances in the fields of biology and biomechanics
have led to more sophisticated methods for calculating joint
torques using both kinematic and dynamic (force) data from
the animal itself, leading to interesting implementations of
biorobotic systems (Andrada et al., 2013; Karakasiliotis et al.,
2016). As this data becomes available for dogs, we can use it to
refine the required joint torque output of the robot similar to
what we did in the simulation of rat locomotion (Hunt et al.,
2015b). However, when this data is not available, e.g., it either has
not be collected yet for a particular animal or when a robot has a
unique morphology, our work demonstrates the effectiveness of
this approach non-the-less.

4.1. Possible Causes of Error
Though there are some observable differences between the
animal data and robot motion and control, the presented
controller is a starting point for developing further
improvements. For example, the Hip Extensor motorneuron
activity has significant additional activation early in stance phase,
which is a result of training the CPG output synapse to match the
highest desired MN activity. This could be improved through the
inclusion of additional pathways and different training methods.
The training of the output strength could be based on the highest
point of initial MN activity or additional feedback pathways may
be required to limit the knee extensor activity during stance.
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FIGURE 10 | Three consecutive steps of the left hind leg. Column one shows the steps in sequence. The transition from swing to stance occurs with increasing

Hip Extensor II feedback (solid arrow). The transition from stance to swing occurs with increasing Hip Flexor II feedback and a drop in Ankle Extensor Ib feedback

(dashed arrow). Afferent feedback provides the desired increased MN activation at the end of swing and stance despite a drop in CPG neural activations. This

activation is even more pronounced than predicted by the offline training and neural simulation. Column two shows the same three steps beginning at foot

touchdown. Differences in sensory signals provide adaptation and changes in the CPG level transition timing as well as MN activity levels.

All joint peak angles are accurate within 5–15◦. The largest
errors occur with the hip. Errors in hip peaks are possibly due
to the delays in communication between Animatlab and Labview
and the robot. The hip is the only joint to provide feedback on
position, and this delay would impact the sensory signal which
causes transitions in the neural system to lag real time of the
robot. The response of the robot would then be additionally
delayed by the returning communication. There is no such delay
built into the training of the neural system. In the future, we could
simulate such a delay in our training method, or improve the
bandwith between the robot and the neural controller.

Observations of individual step data reveal larger variations
occurring on a step by step basis with sharper transitions
and higher peak heights in MN activity than is noticeable
in the average data. This indicates that the neural system is
adapting the stride and adjusting its control continuously. This
also shows the adverse effects of working with data that is
averaged from multiple steps. Though averaged data shows

important information, it does not depict the whole picture
where individual variety and adaptation play an important role
in locomotion.

Another product of using the averaged data is potentially
incomplete training of the sensory feedback in both setting
thresholds, and setting strengths of local Ia and Ib feedback
parameter values. Though sensory feedback could be modulated
by thresholds in the animal, the thresholds were not trained in
our work because we used a single feedback signal without noise.
While training, the reliance on this expected input caused the
system to become overly dependent on exact threshold points,
and small changes in feedback strength produced significant
effects on behavior. Additionally, there is not enough available
data on how intra-joint Ia and Ib pathways affect walking to
properly train and set these weights off-line. Intra-joint feedback
is likely instrumental in changing force production on a step-by-
step basis, and training these pathways using average data may
never be sufficient for adaptive, animal-like walking.

Frontiers in Neurorobotics | www.frontiersin.org April 2017 | Volume 11 | Article 18150

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Hunt et al. Neural Controller for a Dog Robot

FIGURE 11 | Comparison of motor neuron activations, muscle tensions, and joint kinematics between the left and right legs of the robot.

Puppy’s gait was asymmetrical, and one possible explanation
for the asymmetry could be differences in ankle motion. It is
noted that the left anklemaintains amore flexed position than the
right, especially during stance. This difference could be a result of
a problem in the robot controller at the low level, turning theMN
activations into actuator pressures in an unevenmanner. Another
explanation is that the controller is such that when a phase delay
occurs, it continues to occur based on the overall kinematics and
dynamics of the system. This could be determined through more
extensive testing of the robot in different initial conditions and
determining if the lag always occurs on the same side of the robot.

4.2. Future Work
Future work in controller development will be explored in
several areas. First, we will improve our training method in
several ways. To do this, we will perform optimization on a
physics-based simulation or the walking robot. The neural system
could be trained to provide greater stability and/or matching
of animal kinematics. This would enable the system to learn
low-level feedback pathways that are able to make the subtle
corrections necessary for the simulation to produce repetitive,
self-supporting walking that more closely matches that of the
animal. The second method would require more animal data,
using kinematics and dynamics for a series of steps in the
training. These series would have different motor neuron profiles
for each step, and the optimizer could adjust the feedback
pathways to better match the step by step information, and not
just the averaged data.

Though the developed controller is able to produce walking
with only feedback from muscles, animals take advantage of
significantly more sensors while walking. Walking can be made
more robust and able to handle more diverse situations such as
large perturbations or obstacle avoidance by addingmore sensors
to the control system. Currently, Puppy is equipped with sensors
on the bottom of the feet, which are able to sense ground contact
and force in a single direction. Inclusion of these sensors in
the walking control system would add redundancy to ground
detection and would likely result in more stable behaviors. These
could act as ground contact sensors, similar to those used in Klein
and Lewis (2012).

We are also in the processes of redesigning the front legs

to more accurately reflect the anatomy of the dog (Fischer and
Blickhan, 2006). Upon completion of the front legs, we will

be able to apply the same training process to produce forward

walking in the front legs, and then begin to explore processes
which affect inter-leg coordination similar to the work performed
in simulation in Hunt et al. (2015a). By working with the physical
robot, we will be able to more accurately observe the roles that
mechanical interactions play in inter-leg coordination.

This robot and other such biorobots controlled by synthetic
nervous systems offer advantages for further researching neural
control of locomotion and movement. With our robot, we will
be able to test more detailed neurological models of locomotion
by replicating experiments which explore how the elimination of
different sensory signals can cause specific effects in locomotion.
For example, we can adjust the relative strengths of inter-leg
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pathways similar to those performed in Talpalar et al. (2013),
and observe if similar hopping motions result. Additionally,
we can perform experiments which attempt to mimic diseases
and their effect on the nervous system. We can then perform
experiments in the robot, observe the effects on locomotion,
and use the results to inform better models of the disease.
We can additionally perform a variety of interventions to
overcome deficits caused by the disease without risk to an
animal.

5. CONCLUSION

This manuscript presents a robot controlled by a synthetic
nervous system built from the known connectivity ofmammalian
locomotor systems. We demonstrate that the neural controller
effectively adapts the robot’s stepping on a step-by-step basis and
maintains rhythmic walking. This research platform, consisting
of the robot, its hardware control system, and its synthetic
nervous system, will serve as a useful launching point for
studying more complex behaviors as well as the role of different
sensory signals in locomotion. The computational method for
setting parameter values in a synthetic nervous system based on
desired behavior is also presented. This method is significantly
faster and more reliable than manual tuning, and has been
effective for both a rat simulation and the Puppy robot described

here. We believe that the method presented here will prove useful
to other researchers attempting to explore the use of neural
controllers for other simulated models and robotic systems.
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Despite their small size, insect brains are able to produce robust and efficient navigation

in complex environments. Specifically in social insects, such as ants and bees,

these navigational capabilities are guided by orientation directing vectors generated

by a process called path integration. During this process, they integrate compass

and odometric cues to estimate their current location as a vector, called the home

vector for guiding them back home on a straight path. They further acquire and

retrieve path integration-based vector memories globally to the nest or based on

visual landmarks. Although existing computational models reproduced similar behaviors,

a neurocomputational model of vector navigation including the acquisition of vector

representations has not been described before. Here we present a model of neural

mechanisms in a modular closed-loop control—enabling vector navigation in artificial

agents. The model consists of a path integration mechanism, reward-modulated

global learning, random search, and action selection. The path integration mechanism

integrates compass and odometric cues to compute a vectorial representation of the

agent’s current location as neural activity patterns in circular arrays. A reward-modulated

learning rule enables the acquisition of vector memories by associating the local food

reward with the path integration state. A motor output is computed based on the

combination of vector memories and random exploration. In simulation, we show that

the neural mechanisms enable robust homing and localization, even in the presence

of external sensory noise. The proposed learning rules lead to goal-directed navigation

and route formation performed under realistic conditions. Consequently, we provide a

novel approach for vector learning and navigation in a simulated, situated agent linking

behavioral observations to their possible underlying neural substrates.

Keywords: path integration, artificial intelligence, insect navigation, neural networks, reward-based learning

1. INTRODUCTION

Social insects, including ants and bees, have evolved remarkable behavioral capabilities for
navigating in complex dynamic environments, which enable them to survive by finding vital
locations (e.g., food sources). For example, desert ants are able to forage and find small, sparsely
distributed food items in a featureless environment, and form stereotyped and efficient routes
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between their nest and reliable food sources (Collett, 2012;
Mangan and Webb, 2012; Collett and Cardé, 2014; Cheng et al.,
2014). These navigational behaviors not only rely on sensory
information, mainly from visual cues, but also on internal
memories acquired through learning mechanisms (Collett et al.,
2013). Such learned memories have shown to be based on
orientation directing vectors, which are generated by a process
called path integration (PI) (Wehner, 2003).

1.1. Vector Navigation in Social Insects
In PI, animals integrate angular and linear ego-motion cues over
time to produce an estimate of their current location with respect
to their starting point. This vector representation is called the
home vector (HV) and is used by social insects to return back
to the home on a straight path. Many animals have been shown
to apply PI, including vertebrate (Etienne and Jeffery, 2004) and
invertebrate species (Srinivasan, 2015). While PI has mainly been
observed in homing behavior, it can also serve as a scaffold
for spatial learning of food sources (Collett et al., 1999, 2013).
Indeed, experiments have shown that desert ants are capable of
forming such memories by using their path integrator (Schmid-
Hempel, 1984; Collett et al., 1999). Such memory is interpreted
as a so-called global vector (GV), because the vector origin is
fixed to the nest (Collett et al., 1998). If the ant is forced to
take a detour during a foraging trip, the deviation from the GV
is compensated by comparing the GV with the current PI state
(Collett et al., 1999). Another example of vector memory is the
waggle dance of honeybees (De Marco andMenzel, 2005; Menzel
et al., 2005), in which the distance and direction to a goal are
encoded by the duration and direction of the dance, respectively.
After returning from a successful foraging run, insects re-apply
this vector information in subsequent foraging runs (Capaldi
et al., 2000; Wolf et al., 2012; Fernandes et al., 2015).

Although PI plays a key role in navigating through
environments where visual cues, such as landmarks, are
abundant, it also influences navigational behaviors in cluttered
environments (Bühlmann et al., 2011). If an ant follows a
learned GV repeatedly, it learns the heading directions at local
landmarks along the path (Collett and Collett, 2009). These
heading directions are view-based from the visual panorama
surrounding the ant (Graham and Cheng, 2009; Narendra et al.,
2013), and vector-based with additional information about the
path segment length (Collett and Collett, 2009, 2015). The latter
vector memories are also termed local vectors, because their
retrieval is linked to local landmarks instead of global location
with respect to the nest (Collett et al., 1998). Besides spatial
learning of locations and routes, searching patterns of desert ants
have also shown to be influenced by PI (Bolek and Wolf, 2015;
Pfeffer et al., 2015).

1.2. Neural Substrates of Social Insect
Navigation
Neural substrates of social insect navigation have yet to
be completely identified, but previous findings of neural
representations of compass cues and visual sceneries may provide
essential information about how PI and vector learning is
achieved in neural systems (Duer et al., 2015; Plath and Barron,

2015; Seelig and Jayaraman, 2015; Weir and Dickinson, 2015).
In particular, neurons in the central complex, a protocerebral
neuropil in the insect brain, have shown to be involved in visually
guided navigation.

The main sensory cue for PI in social insects is derived from
the linear polarization of scattered sunlight (Homberg et al.,
2011; Lebhardt et al., 2012; Evangelista et al., 2014). Specialized
photoreceptors in the outer dorsal part of the insect eye detect
certain orientations of linear polarization, which depend on
the azimuthal position of the sun. A distinct neural pathway
processes polarization-derived signals leading to neurons in the
central complex, which encode azimuthal directions of the sun
(Heinze and Homberg, 2007). In a recent study, Seelig and
Jayaraman (2015) placed a fruit fly tethered on a track ball setup
in a virtual environment and measured the activity of neurons
in the central complex. They demonstrated that certain neurons
in the ellipsoid body, which is a toroidal subset in the central
complex, encode for the animal’s body orientation based on
visual landmarks and angular self-motion. When both visual and
self-motion cues are absent, this representation is maintained
through persistent activity, which is a potential neural substrate
for short-term memory in insects (Dubnau and Chiang, 2013).
A similar neural code of orientations has been found in the
rat limbic system (Taube et al., 1990). These so-called head
direction (HD) cells are derived from motor and vestibular
sensory information by integrating head movements through
space. Thus, neural substrates of allothetic compass cues have
been found in both invertebrate and vertebrate species. These
cues provide input signals for a potential PI mechanism based on
the accumulation of azimuthal directions of the moving animal
as previously proposed by Kubie and Fenton (2009).

1.3. Computational Models of
Vector-Guided Navigation
Because spatial navigation is a central task of biological as well
as artificial agents, many studies have focused on computational
modeling of such behavioral capabilities (see Madl et al., 2015
for review). Computational modeling has been successful in
exploring the link between neural structures and their behavioral
function, including learning (Bienenstock et al., 1982; Oja,
1982), perception (Salinas and Abbott, 1995; Olshausen and
Field, 1997), and motor control (Todorov and Jordan, 2002). It
allows for hypotheses about the underlying mechanisms to be
defined precisely and their generated behavior can be examined
and validated qualitatively and quantitatively with respect to
experimental data.

Most models of PI favor a particular coordinate system
(Cartesian or polar) and reference frame (geo- or egocentric)
to perform PI based on theoretical and biological arguments
(Vickerstaff and Cheung, 2010). While some models (Müller and
Wehner, 1988; Hartmann and Wehner, 1995) include behavioral
data from navigating animals in order to argue for their proposed
PI method, others (Wittmann and Schwegler, 1995; Haferlach
et al., 2007; Kim and Lee, 2011) have applied neural network
models to investigate possible memory mechanisms for PI.
Despite the wide variety of models, only a few of these models
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have been implemented on embodied artificial agents (Schmolke
et al., 2002; Haferlach et al., 2007) and in foraging tasks similar
to the ones faced by animals in terms of distance and tortuosity
of paths (Lambrinos et al., 1997, 2000). Furthermore, while some
vertebrate-inspired models (Gaussier et al., 2000; Jauffret et al.,
2015) offer underlying spatial learning mechanisms based on
place and view cells, many insect-inspiredmodels have not linked
PI and navigational capabilities to spatial learning and memory.
A notable exception is a recent model based on the Drosophila
brain show impressive results to generate adaptive behaviors in
an autonomous agent, including exploration, visual landmark
learning, and homing (Arena et al., 2014). However, the model
has not been explicitly shown to be scalable for long-distance
central-place foraging as observed in social insects.

Kubie and Fenton (2009) proposed a PI model based on
the summation of path segments with HD accumulator cells,
which are individually tuned to different HDs and hypothesized
to encode how far the animal traveled in this direction. These
summated path vectors are then stored in a fixed memory
structure called shortcut matrix, which is used for navigating
toward goals. Although this model is based on HD cells
and therefore presented as for mammalian navigation, recent
findings inDrosophila melanogaster (Seelig and Jayaraman, 2015)
demonstrate that similar HD accumulator cells can also be
hypothesized for insect navigation. Similar HD accumulator
models have been applied for chemo-visual robotic navigation
(Mathews et al., 2009) and PI-based homing behavior (Kim and
Lee, 2011).

Cruse and Wehner (2011) presented a decentralized memory
model of insect vector navigation to demonstrate that the
observed navigational capabilities do not require a map-like
memory representation. Their model is a cybernetical network
structure, which mainly consists of a PI system, multiple memory
banks and internal motivational states that control the steering
angle of a simulated point agent. The PI system provides the
position of the agent given by euclidean coordinates, which
are stored as discrete vector memories when the agent finds
a food location. To our knowledge, this model is the first
and only modeling approach which accounts for behavioral
aspects of insect vector navigation. However, although they
introduce a learning rule for so-called quality values of stored
vectors in a more recent version of the model (Hoinville
et al., 2012), their model does not account for how the
navigation vectors are represented and learned in a neural
implementation.

1.4. Our Approach
Inspired by these findings, in this paper, we present a novel model
framework for PI and adaptive vector navigation as observed in
social insects. The framework is applied as closed-loop control to
an artificial agent and consists of four functional subparts: (1) a
neural PI mechanism, (2) a reward-modulated learning rule for
vector memories, (3) random search, and (4) an adaptive action
selection mechanism. Here, the artificial agent primarily enables
us to provide the necessary physical embodiment (Webb, 1995)
in order to test the efficacy of our adaptive navigationmechanism,
without a detailed reverse engineering of the insect brain.

Based on population-coded heading directions in circular
arrays, we apply PI by accumulating speed-modulated HD
signals through a self-recurrent loop. The final home vector
representation is computed by local excitation-lateral inhibition
connections, which projects accumulated heading directions
onto the array of output neurons. The activity of these neurons
encodes the vector angle as the position of maximum firing in the
array, and the vector length as the amplitude of the maximum
firing rate in the array. The self-localization ability of PI allows
social insects to learn spatial representations for navigation
(Collett et al., 1999). We design a reward-modulated associative
learning rule (Smith et al., 2008; Cassenaer and Laurent, 2012;
Hige et al., 2015) to learn vector representations based on PI.
This vector, called global vector, connects the nest to a rewarding
food location. Vectors are learned by associating the PI state and
a reward received at the food location given a context-dependent
state. This association induces weight changes in plastic synapses
connecting the context-dependent unit to a circular array of
neurons, which represents the vector. The context-dependent
unit activates the vector representation in the array, and therefore
represents a motivational state for goal-directed foraging. Using
the vector learning rule, the agent is able to learn rewarding
locations and demonstrate goal-directed navigation. Because of
the vector addition of global and inverted home vector in the
action selection mechanism, it can compensate for unexpected
detours from the original trajectory, such as obstacles (Collett
et al., 1999, 2001).

Taken together, our model is a novel framework for generating
and examining social insect navigation based on PI and vector
representations. It is based on plausible neural mechanisms,
which are related to neurobiological findings in the insect central
complex. Therefore, we provide a computational approach for
linking behavioral observations to their possible underlying
neural substrates. In the next section, we will describe the
proposed model for reward-modulated vector learning and
navigation. The results section will provide detailed descriptions
of our experimental setups and simulation results. Finally,
conclusions and implications of our model with respect
to behavioral and neurobiological studies are discussed in
Section 4.

2. MATERIALS AND METHODS

In this paper we propose an insect-inspired model of vector-
guided navigation in artificial agents using modular closed-
loop control. The model (see Figure 1A) consists of four
parts: (1) a neural PI mechanism, (2) plastic neural circuits
for reward-based learning of vector memories, (3) random
search, and (4) action selection. The neural mechanisms in our
model receive multimodal sensory inputs from exteroceptive
and proprioceptive sensors to produce a directional signal based
on a vector (see Figure 1B). This vector is represented by the
activity of circular arrays, where the position of the maximum
indicates its direction and the amplitude at this position indicates
its length. We evaluate our model in simulation using a two-
dimensional point agent as well as a hexapod walking robot (see
Supplementary Material for details).
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FIGURE 1 | Schematic diagram of the modular closed-loop control for

vector navigation. (A) The model consists of a neural path integration (PI)

mechanism (1), reward-modulated vector learning (2), random search (3), and

action selection (4). Vector information for guiding navigation is computed and

represented in the activity of circular arrays. The home vector (HV) array is the

output of the PI mechanism and is applied for homing behavior and as a

scaffold for global vector (GV) learning. These three vector representations and

random search are integrated through an adaptive action selection

mechanism, which produces the steering command to the CPG-based

locomotion control. (B) Spatial representation of the different vectors used for

navigation. The HV is computed by PI and gives an estimate for the current

location of the agent. In general, GVs connect the nest to a rewarding location.

Using vector addition, the agent is able to compute, how to orient from its

current location toward the feeder.

2.1. Path Integration (PI) Mechanism for
Home Vector (HV) Representation
The PI mechanism (Figure 2) is a multilayered neural network
consisting of circular arrays, where the final layer’s activity
pattern represents the HV. Neural activities of the circular
arrays represent population-coded compass information
and rate-coded linear displacements. Incoming signals are
sustained through leaky neural integrator circuits, and
they compute the HV by local excitatory-lateral inhibitory
interactions.

A) Sensory inputs
The PI mechanism receives angular and linear cues as sensory
inputs. Like in social insects, angular cues are derived from
allothetic compass cues. We employ a compass sensor which
measures the angle φ of the agent’s orientation. In insects, this
information is derived from the combination of sun- and skylight
compass information (Wehner, 2003). In desert ants, it has been
found that linear cues are derived from the strides taken by the
animal during the journey (Wittlinger et al., 2006, 2007). For
our model, we assume that such odometry is translated into
an estimate of the animal’s walking speed. For the embodied
agent employed here (i.e., a hexapod robot), the walking speed
is computed by accumulating steps and averaging over a certain
time window. These step counting signals are derived from the
motor signals. The input signals for the angular component φ and

FIGURE 2 | Multilayered neural network of the proposed path

integration (PI) mechanism. (A) Sensory inputs from a compass sensor (φ)

and odometer (s) are provided to the mechanism. (B) Neurons in the head

direction (HD) layer encodes the sensory input from a compass sensor using a

cosine response function. Each neuron encodes a particular preferred

direction enclosing the full range of 2π . Note that the figure depicts only six

neurons for simplicity. (C) An odometric sensory signal (i.e., walking speed) is

used to modulate the HD signals. (D) The memory layer accumulates the

signals by self-recurrent connections. (E) Cosine weight kernels decode the

accumulated directions to compute the output activity representing the home

vector (HV). (F) The difference between the HV angle and current heading

angle is used to compute the homing signal (see Equation 11).

the linear component s have value ranges of

φ ∈ [0, 2π), (1)

s ∈ [0, 1]. (2)

B) Head direction layer
The first layer of the neural network is composed of HD cells with
activation functions

xHD
i (φ(t)) = cos(φ(t)− φi), (3)

φi =
2π i

N
, i ∈ [0, N − 1], (4)

where the compass signal φ(t) is encoded by a cosine response
function with N preferred directions φi ∈ [0, 2π). The resolution
is determined by 1φ = 2π

N and the coarse encoding of variables,
here angles, by cosine responses allows for high accuracy and
optimized information transfer (Eurich and Schwegler, 1997).
Coarse coding has been shown to be present in different sensory
processing in the insect brain, including olfactory (Friedrich
and Stopfer, 2001) and visual processing (Wystrach et al.,
2014). Furthermore, it has been shown that polarization-sensitive
neurons in the anterior optic tubercle of locusts exhibit broad
and sinusoidal tuning curves of 90–120◦ (Heinze et al., 2009;
Heinze and Homberg, 2009; el Jundi and Homberg, 2012). Head-
direction cells in the central complex of Drosophila melanogaster
were shown to have activity bump widths of 80–90◦ (Seelig and
Jayaraman, 2015). However, their measurements are based on
calcium imaging data, which is only an approximation of the
neuron’s firing rate.
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C) Odometric modulation of head direction signals
The second layer acts as a gating mechanism (G), which
modulates the neural activity using the odometry signal s (∈
[0, 1]). Therefore, it encodes in its activity, the traveled distances
of the agent. The gating layer units decrease the HD activities by
a constant bias of 1, so that the maximum activity is equal to zero.
A positive speed increases the signal linearly. The gating activity
is defined as follows:

xGi (t) = f





N−1
∑

j = 0

δijx
HD
j (t)− 1+ s



 , (5)

f (x) = max(0, x), (6)

where δij is the Kronecker delta, i.e., first layer neurons j and
second layer neurons i are connected one-to-one. Forward speed
signals have been found in the central complex of walking
cockroaches (Martin et al., 2015).

D) Memory layer
The third layer is the so-called memory layer (M), where the
speed-modulated HD activations are temporally accumulated
through self-excitatory connections:

xMi (t) = f





N−1
∑

j = 0

δijx
G
j (t)+ (1− λ)xMi (t − 1t)



 , (7)

where λ is a positive constant defined as the integrator leak
rate, which indicates the loss of information over time. A leaky
integrator has previously been applied by Vickerstaff (2007) to
explain systematic errors in homing of desert ants (Müller and
Wehner, 1988). If the leak rate is equal to zero, the accumulation
of incoming directional signals is unbounded, which is not
biologically plausible. As such, any path integration system based
on linear integration therefore bounds the natural foraging range
of the animal in order to exhibit accurate path integration (Burak
and Fiete, 2009).

E) Decoding layer
The final and fourth layer decodes the activations from the
memory layer to produce a vector representation, i.e., the HV,
which serves as the output of the mechanism referred to as PI
state:

xPIi (t) = f





N−1
∑

j = 0

wijx
M
j (t)



 (8)

wij = cos(φi − φj) = cos

(

2π(i− j)

N

)

, (9)

where wij is a cosine kernel, which decomposes the projections
of memory layer actitivities of the jth neuron to the ith
neuron’s preferred orientation. While a cosine synaptic weight
kernel is biologically implausible, it is reasonable to assume

that an approximate connectivity could arise from forming
local-excitation lateral-inhibition connections (e.g., mexican-hat
connectivity). An example of such a connectivity formed by
cell proximity could be the ring architecture of head-direction-
selective neurons in the ellipsoid body of the central complex
(Seelig and Jayaraman, 2015; Wolff et al., 2015). The resulting
HV is encoded by the average position of maximum firing in
the array (angle θHV ) and the sum of all firing rates of the array
(length lHV ). We calculate the position of maximum firing using
the population vector average given by:

θHV (t) = arctan

(

∑N−1
i = 0 x

PI
i (t) sin(2π i/N)

∑N−1
i = 0 x

PI
i (t) cos(2π i/N)

)

, (10)

where the denominator is the x coordinate of the population
vector average, and the numerator is the y coordinate. See
Figure 3 for example output activities of the decoding layer
neurons.

F) Homing signal
To apply the HV for homing behavior, i.e., returning home on
a straight path, the vector is inverted by a 180◦ rotation. The
difference between the heading direction φ and the inverted HV
direction θHV−π is used for steering the agent toward home. The
agent applies homing by sine error compensation, which defines
the motor command:

mHV (t) = lHV (t) sin
(

θHV (t)− φ(t)− π
)

. (11)

This leads to right (mHV < 0) and left turns (mHV > 0)
for negative and positive differences, respectively, and thereby
decreasing the net error at each step. The underlying dynamical
behavior of this sine error compensation is defined by a stable and
an unstable fixed point (see Supplementary Marterial). This leads
to dense searching behavior around a desired position, where the
error changes rapidly (Vickerstaff and Cheung, 2010).

2.2. A Reward-Modulated Learning Rule for
Acquiring and Retrieving Vector Memories
We propose a heterosynaptic, reward-modulated learning rule
(Smith et al., 2008; Cassenaer and Laurent, 2012; Hige et al.,
2015) with a canonical form to learn vector memories based
on four factors (see Figure 4): a context-dependent state, an
input-dependent PI state, a modulatory reward signal, and the
vector array state. Like the HV, GV memories are computed
and represented in circular arrays. The context-dependent state,
such as inbound or outbound foraging, activates the vector
representation, and thus retrieves the vector memory. The
association between the PI-based state and the reward signal
modulates the plastic synapses connecting the context unit
(presynaptic) with the vector array units (postsynaptic). The
associated information is used by the agent on future foraging
trips to steer toward the rewarding location. The received reward
is an internally generated signal based on food reward due to
visiting the feeder.
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FIGURE 3 | Example of vector representations based on the neural activities of the decoding layer (see Figure 2E) in the path integration (PI)

mechanism for a square trajectory. The agent runs for 5 m in one of the four directions (180◦, 270◦, 0◦, 90◦), thus finally returning to the starting point of its journey.

The coarse encoding of heading orientations lead to a correct decoding of memory layer activities. Thus, the activities of the decoding layer in the PI mechanism (see

inlay) represent the home vector (HV), where the position of the maximum firing rate is the angle and the amplitude of the maximum firing rate is the length of the

vector. Note that, as the agent returns to the home position, the output activities are suppressed to zero resulting from the elimination of opposite directions.

The context-dependent unit (see Figure 4) is a unit that
represents the agent’s foraging state, i.e., inward or outward. Here
we apply a simple binary unit given by:

σ (t) =

{

1 if outward trip,

0 if inward trip.
(12)

The context-dependent unit projects plastic synapses onto a
circular array that represents the GV. The GV array has the same
number of neurons, thus the same preferred orientations as the
PI array. In this way, each neuron i ∈ [0,N − 1] has a preferred
orientation of 2π i

N . The activity xGVi of the GV array is given by:

xGVi (t) = wGV
i (t)σ (t), (13)

where wGV
i are the weights of the plastic synapses. For these

synapses, we apply a reward-modulated associative learning rule
given by:

1wGV
i (t) = µ

GVr(t)σ (t)
(

xPIi (t)− xGVi (t)
)

, (14)

wGV
i (t + 1t) = wGV

i (t)+ 1wGV
i (t), (15)

where µ
GV = 2 is the learning rate, and xPIi (t) is the PI activity in

the direction i = 2π i
N . The weights are therefore only changed

when the agent forages outbound, because for the inward trip
we assume that the agent returns to the home on a straight
path. This is in accordance with behavioral data indicating that
ants acquire and retrieve spatial memories based on internal
motivational states, given by whether they are on an inward or
outward trip (Wehner et al., 2006). The food reward r(t) at the
feeder is given by:

r(t) = max(0, 1− 5d(t)) (16)

where d(t) is the agent’s distance to the feeder, which we
computed directly using the positions of the agent and feeder,
given that the reward is physically bound to the location of the
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FIGURE 4 | Canonical vector learning rule involves associations of

path integration (PI) states with context-dependent and reward

signals. Global vector memories are acquired and expressed by this learning

circuit. The home vector array activities are associated with the food reward

given an active foraging state (outward journey). For details, see text below.

food. Due to the delta rule-like term xPIi (t)− xGVi (t), the weights
wGV
i approach same values as the activities of the PI state at the

rewarding location. Thus, the weights represent the static GV to
the rewarding location (feeder). After returning back home, the
agent applies the angle θGV of the GV to navigate toward the
feeder using error compensation. The motor signal of the GV:

mGV (t) = lGV (t) sin
(

θGV (t)− φ(t)
)

, (17)

is applied together with the homing signal mHV and random
search mε , where lGV is the length of the GV. We model the
random search by the agent as a correlated Gaussian random
walk, which has been previously used to study animal foraging
(Bovet and Benhamou, 1988). Therefore, mε is drawn from a
Gaussian distributionN (mean, S.D.):

mε(t) ∈ N (0, ε(t)), (18)

with an adaptive exploration rate ε(t) given by:

ε(t) = σ (t) exp
(

− β(t)v(t)
)

, (19)

where v(t) is an estimate for the average food reward received
over time and β(t) is the inverse temperature parameter. The
exploration rate is thus zero for inward trips, because the agent
applies path integration to reach its home position on a straight
path. We define v by the recursive formula:

v(t) = r(t)+ γ v(t − 1t), (20)

where v(t) is a lowpass filtered signal of the received food
reward r(t) with discount factor γ = 0.995. Convergence of
goal-directed behavior is achieved for ε below a critical value,
which depends on the choice of β . We assume that ǫ and v are
based on a probability distribution with fixed mean. We derive

a gradient rule, which leads to minimization of the Kullback-
Leibler divergence between the distribution of ǫ(v) and an
optimal exponential distribution (see SupplementaryMaterial for
a derivation). The learning rule is given by:

1β(t) = µβ

(

1

β(t)
+ µvv(t)ε(t)

)

, (21)

β(t + 1t) = β(t)+ 1β(t), (22)

where µβ = 10−6 is a global learning rate, µv = 102 is a reward-
based learning rate. The adaptation of beta is characterized by
small changes scaling with the square root of time, while the
term containing v(t) allows for exploitation of explored food
rewards to further decrease ε through β . In ecological terms,
such exploitation of sparse distributed resources is crucial for the
survival of an individual as well as the whole colony (Biesmeijer
and de Vries, 2001; Wolf et al., 2012; Bolek and Wolf, 2015).

The final motor command 6 in our action selection
mechanism is given by the linear combination:

6(t) = (1− ε(t))
(

σ (t)mGV (t)+mHV (t)
)

+mε(t), (23)

where outward trips are controlled by the balance of random
walk and global-vector guided navigation depending on the
exploration rate ε, while inward trips are controlled solely by
the homing signal mHV . The combination of the two sinusoidals
is equivalent to a phase vector (phasor) addition resulting in a
phasor, which connects the current position of the agent with
the learned feeder location (see Supplementary Material for a
derivation).

3. RESULTS

Using the proposed model embedded as a closed-loop control
into a simulated agent, we carried out several experiments to
validate the performance and efficiency in navigating the agent
through complex and noisy environments. We will further
demonstrate that the generated behaviors not only resemble
insect navigational strategies, but can also predict certain
observed behavioral parameters of social insects.

3.1. Path Integration (PI) in Noisy
Environments
It has been shown, both theoretically and numerically, that PI
is inherently prone to error accumulation (Benhamou et al.,
1990; Vickerstaff and Cheung, 2010). Studies have focused on
analyzing resulting errors from using certain coordinate systems
to perform PI (Benhamou et al., 1990; Cheung and Vickerstaff,
2010; Cheung, 2014). Here we apply a system of geocentric static
vectors (fixed preferred orientations) and analyze the effect of
noise on the resulting error. How can noise be characterized in
PI systems? Both artificial and biological systems operate under
noisy conditions. Artificial systems, such as robots employ a
multitude of sensors which provide noisy measurements, and
generate motor outputs that are similarly noisy. Rounding errors
in their control systems can be an additional source of noise.
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In animals, noise is mainly attributed to random influences
on signal processing and transmission in the nervous system,
including synaptic release and membrane conductance by ion
channels and pumps (see Stein et al., 2005 for review).

In order to validate the accuracy of the PI mechanism, we
measure the positional errors of the estimated nest position
with respect to the actual position over time. In the following
experiments, we averaged positional errors over 1,000 trials with
trial duration T = 1, 000 s (simulation time step 1t = 0.1 s).
In each trial, the agent randomly forages out from the nest and
when the trial duration T is reached, the agent switches to the
inward state and only applies the path integration mechanism
for homing (see Figure 5A for example trajectories). After trial
duration T, the mean distance of the agent from the nest is
9.3 ± 5.0 m. The radius of the nest the agent has to reach
for successful homing is set to 20 cm. Figure 5B shows the
distribution of positional errors for three different correlated,
sensory noise levels (1, 2, and 5%). The distribution of errors
follows a two-dimensional Gaussian distribution with mean 0.0
(nest) and width 〈δr〉.

In population coding, neural responses are characterized by
correlated or uncorrelated noise (Averbeck et al., 2006, see
Figure 5C for examples). In the uncorrelated case, fluctuations
in one neuron are independent from fluctuations in the other
neurons. Correlated noise is described by fluctuations which are
similarly expressed across the population activity, and therefore
leads to a shift of the observed peak activity. Here, we numerically
analyze the effects of correlated and uncorrelated noise on the
accuracy of the proposed PI mechanism. Correlated noise is here
defined as a shift δφ of the peak activity, i.e., fully correlated
noise, such that the compass input to the PI mechanism is
given by:

φnoisy(t) = φ(t)+ δφ, (24)

where δφ is drawn from a Gaussian distribution N (0, 2πζsens)
with sensory noise level ζsens. Uncorrelated noise, also referred
to as neural noise, is defined by adding fluctuations δxHDi to
the activities of the HD layer, which are drawn from a Gaussian
distributionN (0, ζneur) with neural noise level ζneur .

Figure 5D shows the effect of different degrees of sensory
noise on the performance of PI for a fixed number of 18 neurons
per layer averaged over 1000 trials. For noise levels up to 5%
(equal to 18◦), the observed mean position error increases only
slowly and nonlinearly with values below 0.4 m demonstrating
that our PI mechanism is robust for sensory noise up to these
levels.

In Figure 5E, we showmean position errors for different levels
of uncorrelated noise. Similar to sensory noise, the errors first
increase slowly and nonlinearly for noise up to 2%, while for
noise larger than 5%, errors increase linearly. In comparison with
sensory noise levels, uncorrelated noise leads to larger errors due
to a more dispersed peak activity. However, for noise levels up
to 2%, mean position errors are well below 0.2 m indicating
robustness of our PI mechanism with respect to uncorrelated
noise. Given this apparent similar nature of correlated and

uncorrelated noise, we only applied sensory, correlated noise for
the following experiments of this study.

In Figure 6, we varied the number of neurons in the circular
arrays of the PI mechanism for three different sensory noise
level (0, 2, and 5%). Note that the errors for 0% noise arise
from the accuracy limit given the number of neurons. While the
mean position error is significantly higher for 6 and 9 neurons,
it achieves a minimal value for 18 neurons. For larger system
sizes, the error only changes minimally. This is again mainly
due to the coarse coding of heading directions. Interestingly, the
ellipsoid body of the insect central complex contains neurons
with 16–32 functional arborization columns (called wedges, see
Wolff et al., 2015). The numerical results heremight point toward
an explanation for this number, which efficiently minimizes the
error.

Besides errors resulting from random noise, there are
also systematic errors observed in navigating animals. Both
invertebrate and vertebrate species exhibit systematic errors in
homing behavior after running an L-shaped outward journey
(see Etienne and Jeffery, 2004 for review). Müller and Wehner
(1988) have examined such errors in desert ants by measuring
the angular deviation with respect to the angle of the L-shaped
course (see Figure 7). In order to show that our mechanism
is able to reproduce these errors, we fit our model against the
desert ant data from Müller and Wehner (1988) using the leak
rate λ (Equation 7) of the PI memory layer as control variable.
Using a leak rate of λ ≈ 0.0075 resulted in angular errors most
consistent with behavioral data. Leaky integration producing
systematic errors is an idea that has been previously proposed
(Mittelstaedt and Glasauer, 1991; Vickerstaff and Cheung, 2010).
Thus, here our mechanism is not only performing accurately in
the presence of random noise, but it also reproduces behavioral
aspects observed in animals.

In Table 1, we compare the accuracy and efficiency with other
state-of-the-art PI models. Haferlach et al. (2007) apply less
neurons than our model, but we achieve a better performance
in terms of positional accuracy with larger sensory noise (values
taken from Figure 9). Note that our model achieves similar
accuracy, when using six neurons (see Figure 6). The model
by Kim and Lee (2011) applies 100 neurons per layer leading
to a fairly small positional error despite of 10% uncorrelated
noise (Figure 6A, N1 = 100 neurons). However, both models
apply straight paths before homing, which results in smaller path
integration errors compared to random foraging as observed in
insects. Furthermore, many desert ant species were measured
to freely forage average distances of 10–40 m depending on
the species (Muser et al., 2005), whereas some individuals
travel even up to multiple hundred meters (Buehlmann et al.,
2014). Our foraging time has been adjusted for realistic
foraging distances, and if we reduce the foraging time in our
model, we achieve similarly small positional errors as previous
models. Furthermore, behavioral data measured in desert ants
(Merkle et al., 2006) revealed that path integration errors are
approximately 1–2 m depending on foraging distance. The
median values are taken from Figure 3B in Merkle et al. (2006)
and reflect the error between the endpoint of an ant’s inward run
and the correct position of the nest. These larger errors compared
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FIGURE 5 | Path integration (PI) accuracy under the influence of external noise. (A) Example trajectories of the simulated agent during random foraging (light

gray) and homing behavior (dark gray) for different sensory, correlated noise levels: 1, 2, and 5%. The red point marks the starting point at the nest, and the blue point

indicates the return, when the agent switches to its inward state. Using only path integration, the agent successfully navigates back to the nest with a home radius

(green circle) of 0.2 m. (B) We evaluate the accuracy of the proposed PI mechanism by using the mean positional error averaged over each time step during each trial.

Distribution of positional errors for different sensory, correlated noise levels: 1, 2, and 5%. (C) Examples of population-coded HD activities with correlated and

uncorrelated noise. Filled dots are activities of individual neurons, while the dashed line is a cosine response function. (D) Mean position errors 〈δr〉 (± S.D.) in PI with

respect to fully correlated, sensory noise levels averaged over 1,000 trials (fixed number of 18 neurons per layer). (E) Mean position errors 〈δr〉 (± S.D.) in PI with

respect to uncorrelated, neural noise levels averaged over 1,000 trials (fixed number of 18 neurons per layer).

to model accuracies are likely due to noise accumulation in
sensing, neural processing and motor control, although it is
difficult to determine an exact quantification. Nonetheless, ants
are able to reliably navigate by falling back to other strategies,
such as searching behavior or visual homing.

3.2. Global Vector (GV) Learning and
Goal-Directed Navigation
In the previous section, we proposed a reward-modulated
associative learning rule for GV learning. In order to test
the performance of our insect-inspired model applying this

learning rule, and to validate the use of learned vector
representation in goal-directed navigation, we carried out several
experiments under biologically realistic conditions. We apply the
PImechanismwithN = 18 neurons per layer and a sensory noise
level of 5%. In the first series of experiments, a single feeder is
placed with a certain distance Lfeed and angle θfeed to the nest.
The agent is initialized at the nest with a random orientation
drawn from a uniform distribution on interval [0, 2π). In this
naïve condition, the agent starts to randomly search in the
environment. If the agent is unsuccessful in locating the feeder
after a fixed time tforage, it turns inward and performs homing
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FIGURE 6 | Mean positional errors 〈δr〉 (± S.D.) in path integration (PI)

with respect to number of neurons per layer averaged over 1, 000 trials

for three different sensory noise level (0, 2, and 5%). In all three cases,

the error reaches a minimum plateau between 16 and 32 neurons (colored

area), which corresponds to the number of functional columns in the ellipsoid

body of the insect central complex (Wolff et al., 2015).

FIGURE 7 | Systematic errors δθ of desert ant homing are reproduced

by leaky integration of path segments. Müller and Wehner (1988) tested

the ants how accurate they return to the nest after following the two

connected, straight channels with 10 and 5 m length to the feeder (sketch

modified from Müller and Wehner, 1988). The second channel angle α was

varied in 2.5◦ intervals for the simulation results. In our model, the leak rate λ in

the self-recurrent connections is used to fit the behavioral data (Müller and

Wehner, 1988). We found that values λ ≈ 0.0075 accurately describe the

observed systematic errors in desert ants.

behavior using only the PI mechanism. If the agent however finds
the feeder, the current PI state is associated with the received
reward, and stored in the weights to the GV array. The agent
returns back home after the accumulated reward surpasses a fixed
threshold. Each trial lasts a fixed maximum time of T = 3

2 tforage,
before the agent is reset to the nest position. On subsequent
foraging trips, the agent applies the learned vector representation
and navigates along the GV, because the exploration rate is
decreased due to the previous reward. If the agent finds the feeder
repeatedly, the learned GV stabilizes and the exploration rate
decreases further.

Figure 8 demonstrates such an experiment for a feeder with
a distance of Lfeed = 10 m and angle θfeed = 90◦ from the nest.

TABLE 1 | Comparison of existing path integration (PI) models in terms of

accuracy and efficiency.

Model Neurons Noise [%] Error [m] Foraging

dist. [m]

Haferlach et al., 2007 6 3 0.46± 0.18 ≤ 5

Kim and Lee, 2011 100 10 0.018± 0.002 ≤ 5

Our model 18 5 0.351± 0.140 9.3± 5.0

18 10 1.160± 0.484 9.3± 5.0

18 5 0.070± 0.037 5± 3

Cataglyphis fortis – – median=1.27 (N = 51) 5

(Merkle et al., 2006) – – median=2.45 (N = 53) 10

– – median=2.47 (N = 50) 20

In Figure 8A, we show the trajectories of the agent during five
trials. The trial numbers are color-coded (see colorbox). During
the first trial, the agent has not visited the feeder yet and returns
home after tforage = 2, 000 s of random search. During the
second trial (see yellow-colored trajectory), the agent finds the
feeder and learns the GV representation from the PI state (see
Figure 8B). Here the red dotted line indicates the correct angle
θfeed = 90◦ to the feeder, while the cyan-colored line is the
average angle estimated from the synaptic strengths of the GV
array. In doing so, the agent is able to acquire an accurate vector
representation (Figure 8B) resulting in stable trajectories toward
the goal for the final three trials, which is again due to a low
exploration rate (Figure 8C). The repeated visits to the feeder
decrease the exploration rate due to the received reward (red
line). In the final two trials, the agent navigates to the feeder on
a stable trajectory (i.e., low exploration rate) demonstrating that
the learning rule is robust for goal-directed navigation in noisy
environments. Note, that the reward signal peak is decreased
for the final two trials, because the agent does not enter the
reward area centrally. Furthermore, switching the context unit to
the inbound state is determined by the accumulated amount of
reward over time. As such, smaller, but broader reward signals
give a similar accumulated reward than a bigger and sharper
signal.

In Figure 9, we simulated 100 learning cycles with different
randomly generated environments, each consisting of 100
consecutive trials. The feeders are randomly placed by sampling
from a uniform distribution U as follows:

rfeed = (rmax − rmin)
√
n1 + rmin, (25)

θfeed = 2πn2, (26)

n1, n2 ∈ U(0, 1), (27)

where rfeed is the distance from the nest to a feeder and θfeed is
the angle with respect to the x axis. We chose the rmin = 1 m
and rmax = 40 m to be the bounds, in which the feeders can be
placed. The density is determined by how many feeders will be
placed within these bounds. Here, we generated 50 feeders for
each environment. In Figure 9A, we show the mean exploration
rate, and the running averages of mean homing and goal success
rates with respect to trials (foraging time tforage = 1, 000 s,
averaged over 100 cycles). Note that the foraging time has been
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FIGURE 8 | Learning walks of the simulated agent for a feeder placed Lfeed = 10 m away from the nest. (A) Trajectories of the agent for five trials with a

feeder in 10 m distance and 90◦ angle to the nest. Each trial number is color-coded (see colorbar). Inward runs are characterized by straight paths controlled only by

PI. See text for details. (B) Synaptic strengths of the GV array changes due to learning over time (of the five trials). The estimated angle θGV (cyan-colored solid line) to

the feeder is given by the position of the maximum synaptic strength. (C) Exploration rate and food reward signal with respect to time. The exploration rate decreases

as the agent repeatedly visits the feeder and receives reward.

FIGURE 9 | Longer foraging durations during global vector (GV) learning increase the average goal success rate, but decrease the ratio of learned

global vector and nearest feeder distance. (A) Mean exploration rate and running mean goal success and homing rate (± S.D.) with respect to trials averaged

over 100 cycles of randomly generated environments (foraging time tforage = 1, 000 s). Goal success is defined by whether a feeder was visited per trial. The homing

rate is determined by the agent’s return to the nest within the given total trial duration T. (B) Mean goal success rate after 100 trials with respect to foraging time

tforage averaged over 100 cycles. (C) Mean ratio of learned GV distance and nearest feeder distance with respect to foraging time tforage averaged over 100 cycles.
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reduced compared to Figure 8, because the random environment
contain multiple, not just a single feeder. This leads to a higher
probability of finding a feeder and for the learning algorithm to
converge. During the 100 trials, learning converges on average
within the first 20 trials given by a low mean exploration rate.
Like in the previous experiment, the agent reaches the feeder in
every trial after convergence is achieved. This is indicated by the
goal success approaching one. Average homing success is one for
every trial, which results from sufficient searching behavior and
the given total time T. The convergence of the learning process
is dependent on the foraging time, because longer time allow for
longer foraging distances, and thus larger search areas. Therefore,
we varied the foraging time tforage = 200, 400, 600, 800, and
1, 000 s and measure the mean goal success rate after 100 trials
averaged over 100 cycles (Figure 9B). Note, that in contrast to
naturalistic learning in ants, our agents reduces the exploration
rate to zero leading to pure exploitation of the learned global
vector. Ants live in environments with rather sparse, dynamic
food sources, thus their exploitation of learned vector memories
is rather flexible. Nevertheless, our results indicate that for longer
foraging times, the mean goal success rate approaches one and
its variance decreases. However, by measuring the averaged
ratio of learned vector and nearest feeder distance, we show
that this ratio decreases for larger foraging times (Figure 9C).
Thus, there is a trade-off with respect to convergence and
rewardmaximization, leading to an optimal foraging time. Desert
ants have been shown to increase their foraging times up to
a certain value, after which it saturates (Wehner et al., 2004).
This adaptation of foraging time might be indicated by the
trade-off resulting from our model. Furthermore, we encourage
the reader to see the Supplementary Video of path integration
and global vector learning performed by a simulated hexapod
robot.

4. DISCUSSION

Social insects, such as bees and ants, use PI-based vector
memories for guiding navigation in complex environments
(Collett et al., 1998, 1999; De Marco and Menzel, 2005; Collett
and Collett, 2015). Here, we proposed a novel computational
model for combining PI and the acquisition of vector memories
in a simulated agent. We have shown that a computational
model based on population-coded vector representations can
generate efficient and insect-like navigational behaviors in
artificial agents. These representations are computed and
stored using a simple neural network model combined with
reward-modulated associative learning rules. Thus, the proposed
model is not only accounting for a number of behavioral
aspects of insect navigation, but it further provides insights
in possible neural mechanisms in relevant insect brain areas,
such as the central complex. In the following, we will
discuss certain aspects of our model juxtaposing it with
neurobiological findings in insects. Furthermore, we provide
comparisons to other state-of-the-art models of vector-guided
navigation (Kubie and Fenton, 2009; Cruse and Wehner,
2011).

4.1. Head-Direction (HD) Cells and Path
Integration (PI)
A main property of the PI mechanism of our model is that
it receives input from a population of neurons, which encode
for allothetic compass cues. Here, we apply a cosine response
curve for coarse encoding of orientations. Such a mechanism was
previously applied by other models (Haferlach et al., 2007; Kim
and Lee, 2011). Neurons in the central complex of locusts contain
a population-coded representation of allothetic compass cues
based on the skylight polarization pattern (Heinze and Homberg,
2007). Similarly, central complex neurons in theDrosophila brain
encode for heading orientations based on idiothetic self-motion
and visual landmarks. Seelig and Jayaraman (2015) measured
the fluorescent activity of genetically expressed calcium sensors
indicating action potentials, while the fly was tethered on an
air-suspended track ball system connected to a panoramic LED
display. Any rotation of the fly on the ball is detected and
fed back by corresponding motions of the visual scene on the
display. The activity of 16 columnar neurons, which display the
full circular range, generates a single maximum, which moves
according to the turns of the fly on the ball. Interestingly, even
though the representation is generated by visual stimuli, it can be
accurately maintained solely by self-motion cues over the course
of several seconds in the dark. A recent study on dung beetles
(el Jundi et al., 2015), which navigate completely unaffected by
landmarks, has shown that celestial compass cues are encoded in
the central complex revealed by electrophysiological recordings.
Taken together, it is likely that the central complex of social
insects contains a similar neural coding of polarization- and
landmark-based compass cues. Not only is the central complex
function and anatomy highly conserved across insect species, but
behavioral experiments on ants and bees also suggest the central
role of using polarization and landmark cues for navigation.
Our model further predicts allothetic goal-direction cues to be
involved in PI mechanisms. Such neural representations have yet
to be observed in experiments, ideally by applying the tethered
track ball setup described in Seelig and Jayaraman (2015). A
recent study has developed such a system for the use in desert
ants (Dahmen et al., 2017), providing a powerful tool for future
investigation of underlying neuronal mechanisms by combining
this technology with electrophysiological recordings.

In our model, we assume that the agent’s walking speed is
neurally encoded as a linear signal that modulates the amplitude
of HD activities by an additive gain. A similar, so-called gater
mechanism has been applied in a model by Bernardet et al.
(2008). Such linear speed signals have recently been found to
be encoded by neurons in the rat’s medial entorhinal cortex
(Kropff et al., 2015) as well as the cockroach central complex
(Martin et al., 2015). This shared encoding mechanism indicates
the necessity of linear velocity components for accurate PI
(Issa and Zhang, 2012). The temporal accumulation of speed-
modulated HD signals in our model is achieved by a self-
recurrent connection. Biologically, these recurrent connections
can be interpreted as positive feedback within a group of neurons
with the same preferred direction. Since our model applies
PI as a scaffold for spatial learning, we apply this simplified
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accumulation mechanism to avoid random drifts observed in
more complex attractor networks (Wang, 2001), which were
applied in previous PI models (Touretzky et al., 1993; Hartmann
andWehner, 1995). We were also able to test the leaky-integrator
hypothesis (Mittelstaedt and Glasauer, 1991) by fitting a single
leakage parameter to observed behavioral data from desert ants
(Müller andWehner, 1988). The leakage parameter decreases the
self-recurrent connection weight for leaky integration.

A HV representation is computed by using a cosine weight
kernel, which was also used in Bernardet et al. (2008). Such a
connectivity acts on each represented direction by adding the
projections from other directions, respectively. This leads to the
formation of an activity pattern with a single maximum across
the population. The angle of the represented vector is readout by
averaging the population vectors, while the distance is encoded
by the amplitude of the population activity. We show that such
a readout of a population-coded vector is sufficient to generate
robust homing behavior in an artificial agent. Furthermore, it
allows for accurate localization required for spatial learning of
locations.

The extensive numerical analysis of noise affecting the
accuracy of our PI mechanism leads to two predictions. First,
PI accuracy seems to follow a similar function with respect to
the noise levels for both the fully correlated and uncorrelated
random fluctuations. While uncorrelated noise could be further
filtered depending on the system size N, decorrelation of sensory
input noise could be achieved by adding inhibitory feedback as
shown in a model by Helias et al. (2014). Second, we varied
the number of neurons N per layer for different levels of fully
correlated noise, which predicts an accuracy plateau between
16 and 32 neurons where the accuracy will not increase for
larger systems. This indicates that such a number of partitions
for representing orientation variables is efficient and accurate
enough. Interestingly, most prominent neuropils of the central
complex exhibit a similar number of functional columns (Wolff
et al., 2015). The central complex has been shown to be involved
in sky compass processing (Heinze and Homberg, 2007), spatial
orientation (Seelig and Jayaraman, 2015), and spatio-visual
memory (Neuser et al., 2008; Ofstad et al., 2011). Its columnar
and reverberating connectivity further supports the functional
role of integrating orientation stimuli. These evidences suggest
that the proposed circular arrays representing navigation vectors
might be encoded in the central complex. We conclude that
further experiments are needed to unravel how PI is exactly
performed in the insect brain by closely linking neural activity
and circuitry to behavioral function.

4.2. Reward-Modulated Vector Acquisition
and the Role of Motivational Context
PI provides a possible mechanism for self-localization. As such,
it has been shown experimentally that social insects apply
this mechanism as a scaffold for spatial learning and memory
(Collett et al., 2013). Here we propose a reward-modulated
associative learning rule (Smith et al., 2008; Cassenaer and
Laurent, 2012; Hige et al., 2015) for acquiring and storing vector
representations. The acquisition and expression of such vector

memories depend on the context during navigation. For GVs, the
context is determined by the foraging state, which we model as a
binary unit. Indeed, behavioral studies on desert (Wehner et al.,
2006) and wood ants (Fernandes et al., 2015) have shown that
expression of spatial memories is controlled by an internal state
in a binary fashion. The association of the context with a reward
signal, received at the feeder, drives synaptic weight changes
corresponding to the difference between the current PI state and
the respective weight. As this difference is minimized, the weights
converge toward values representing the PI state when the reward
was received at the feeder. Thus, like the HV, GVs are population-
encoded with the angle determined by the position of the
maximum activity and the length determined by the amplitude
of the activity. To our knowledge, this is the first model that
applies such a neural representation to perform vector-guided
navigation. Previous models, such as Kubie and Fenton (2009);
Cruse and Wehner (2011), do not provide possible underlying
neural implementations of the PI-based stored information used
for navigation. The HD accumulator model (Kubie and Fenton,
2009) argued that vector information is stored in so-called
shortcut matrices, which are subsequently used for navigating
toward goals. Similarly, the Cruse and Wehner model (Cruse
and Wehner, 2011) stored HVs as geocentric coordinates in
the activity of two neurons. Although it has been argued that
this representation is biologically plausible, it is unlikely that
persistent activity can explain global vector memories which are
expressed over several days (Wehner et al., 2004). Furthermore,
representing a two-dimensional variable requires at least three
neurons, because firing rates are strictly positive. As such, existing
models offer sufficient mechanisms in order to generate vector-
guided navigation, they neither seem biologically plausible nor
provide any explanations how such information is dynamically
learned during navigation.

Our proposed encoding of GVs is validated by recent findings
from a behavioral study on wood ants (Fernandes et al., 2015).
The authors carried out a series of novel experimental paradigms
involving training and testing channels. In the training channel,
ants were trained to walk from their nest to a feeder at a
certain distance, before they were transferred to the testing
channel. There, theymeasured the expression of vectormemories
by observing the behavior. The authors showed that vector
memories are expressed by successful association of direction
and distance, therefore such memories might be encoded in a
common neural population of the insect brain. The acquisition
of vectors were rapid after 4–5 training trials, which corresponds
to the rapid vector learning shown by our model during
learning walks (Figure 8). However, the study mainly examined
the expression of homeward vector memories which are not
included in our model, because here the agent applies PI for
homing. Recent work by Fleischmann et al. (2016) investigates
landmark learning and memory during naturalistic foraging in
the desert ant species Cataglyphis fortis. Like other desert ants,
they spent the initial weeks of their lifetime inside the nest, before
spending about a week foraging repeatedly for food to bring
back to the nest. By placing controlled, prominent landmarks
around the nest, the authors could measure the foraging routes
of individual, marked ants. They also measured the accuracy
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of landmark-guided memories by transferring inward running
ants right before they entered the nest. Their results show that
ants initially forage only within a short distance and duration,
but more experienced foragers increase their average foraging
range and duration. Furthermore, they paths become straighter
and they are more successful in finding food (also shown in
another desert ant species; Wehner et al., 2004). Taken together,
their results indicate that landmark learning and memory is a
gradual process. Our model does not model landmark guidance
during foraging, but it provides a simple strategy that could
support this gradual learning mechanism. Specifically, it could
provide the agent with a directional bias, by which the agent can
learn visual routes toward rewarding food sources (Ardin et al.,
2016). Finally, possible interactions between path integration and
landmark-basedmemories has been recently shown in behavioral
experiments (Wystrach et al., 2015), and as such, a complete
neural model of naturalistic foraging behavior remains to be
future work.

Two major higher brain areas in social insects exhibit
experience-dependent plasticity due to foraging activity: the
mushroom bodies (Yilmaz et al., 2016) and the central complex
(Schmitt et al., 2016). The mushroom bodies are paired neuropils
known to be involved in olfactory learning and memory (Owald
and Waddell, 2015), as well as visual learning in discrimination
tasks (Vogt et al., 2014). Studies on the central complex across
various insect species have revealed its role in visual object
localization (Seelig and Jayaraman, 2013) and visual learning
(Liu et al., 2006), motor adaptation (Strauss, 2002), spatio-visual
memory (Neuser et al., 2008; Seelig and Jayaraman, 2015; Ofstad
et al., 2011), as well as polarization-based compass (Heinze and
Homberg, 2007). A common coding principle in the central
complex appears to be the topological mapping of stimuli within
the full azimuthal circle (Plath and Barron, 2015). Both higher
brain neuropils involve the functional diversity of multiple
neuropeptides and neurotransmitters (Kahsai et al., 2012). The
short neuropeptide F is a likely candidate influencing the foraging
state, as it has been shown to regulate feeding behavior and
foraging activity after starvation (Kahsai et al., 2010). Based on
this evidence, we conclude that the population-coded vector
memories described by our model are likely to be found in the
central complex. Nonetheless, we do not exclude the possibility
of possible interactions between the central complex and the
mushroom bodies involved in spatial learning and navigation,
which is supported by recent findings on novelty choice behavior
in Drosophila (Solanki et al., 2015).

We proposed a novel computational model for PI and the
acquisition and expression of vector memories in artificial
agents. Although existing vertebrate and invertebrate models
(Kubie and Fenton, 2009; Cruse and Wehner, 2011) have
followed a similar approach of implementing vector-guided
navigation, here we provide plausible neural implementations
of the underlying control and learning mechanisms. Tested
on a simulated agent, we show that the proposed model
produces navigational behavior in the context of realistic
closed-loop body-environment interactions (Webb, 1995; Seth
et al., 2005; Pfeifer et al., 2007). In our previous work,

we applied this approach to study adaptive locomotion and
climbing (Manoonpong et al., 2013; Goldschmidt et al., 2014;
Manoonpong et al., 2014), goal-directed behavior (Dasgupta
et al., 2014) and memory-guided decision-making (Dasgupta
et al., 2013). Although our model does not reproduce the full
repertoire of insect navigation, it has shown to be sufficient in
generating robust and efficient vector-guided navigation. Besides
behavioral observations, our model also provides predictions
about the structure and plasticity of related neural circuits in
the insect brain (Haberkern and Jayaraman, 2016). We discussed
our findings in the context of neurobiological evidences related
to two higher brain areas of insects, the central complex and
the mushroom bodies. We therefore conclude that our model
offers a novel computational model for studying vector-guided
navigation in social insects, which combines neural mechanisms
with their generated behaviors. This can guide future behavioral
and neurobiological experiments needed to evaluate our
findings.
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We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate

self-organized motor patterns. We simulated sphere-shaped autonomous robots, within

the LPZRobots simulation package, containing three weights moving along orthogonal

internal rods. The position of a weight is controlled by a single neuron receiving excitatory

input from the sensor, measuring its actual position, and inhibitory inputs from the other

two neurons. The inhibitory connections are transiently plastic, following physiologically

inspired STSP-rules. We find that a wide palette of motion patterns are generated through

the interaction of STSP, robot, and environment (closed-loop configuration), including

various forward meandering and circular motions, together with chaotic trajectories. The

observed locomotion is robust with respect to additional interactions with obstacles. In

the chaotic phase the robot is seemingly engaged in actively exploring its environment.

We believe that our results constitute a concept of proof that transient synaptic plasticity,

as described by STSP, may potentially be important for the generation of motor

commands and for the emergence of complex locomotion patterns, adapting seamlessly

also to unexpected environmental feedback. We observe spontaneous and collision

induced mode switchings, finding in addition, that locomotion may follow transiently

limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit

cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles

of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic

wandering observed for selected parameter settings, which is induced by the smooth

diffusion of the angle of propagation.

Keywords: closed-loop robots, short-term synaptic plasticity, limit cycles, sensorimotor loop, self-organized

locomotion, compliant robot

1. INTRODUCTION

It has been argued (Pfeifer et al., 2007; Aguilar et al., 2016) that “robophysics,” defined as the
pursuit of the discovery of biologically inspired principles of self generated motion, may constitute
a promising road for eventually achieving life-like locomotor abilities. Distinct principles such
as predictive information (Ay et al., 2008), surprise minimization (Friston, 2011), chaos control
(Steingrube et al., 2010), empowerment (Salge et al., 2014), homeokinesis (Der and Martius, 2012),
cheap design (Montúfar et al., 2015), and curiosity (Frank et al., 2014) have been studied in this
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context. Behavior, resulting from guided self organization
(Prokopenko, 2009) or autonomous adaption (Chiel and Beer,
1997), may be generated in addition through suitable synaptic
(Der and Martius, 2015; Der, 2016) and intrinsic (Sándor et al.,
2015) plasticity rules.

Here we point out, that complex dynamics may be generated
through a transient plasticity mechanism widely present in the
brain. Short-term synaptic plasticity (STSP) (Fioravante and
Regehr, 2011; Regehr, 2012) is an activity induced transient
modulation of the synaptic efficiency, which may lead either to
facilitating or to depressing behavior lasting from a few hundred
to a few thousand milliseconds. STSP has been argued, besides
others, to be relevant or causal for working memory (Barak
and Tsodyks, 2014), for the facilitation of time sequences of
alternating neural populations (Carrillo-Reid et al., 2015), for
motor control in general (Nadim and Manor, 2000), and for the
sculpting of rhythmic motor patterns (Jia and Parker, 2016) in
particular. Plasticity mechanisms similar to STSP have also been
shown to allow for stable gaits (Toutounji and Pasemann, 2014)
in neural networks which are distinctively simpler than the ones
used conventionally for bio-inspired controllers (Schilling et al.,
2013).

In this study we use the LPZRobots physics simulation
package (Der and Martius, 2012) for the investigation of the
spherical three-axis robot illustrated in Figure 1. This robot
is driven exclusively by STSP, with locomotion coming to a
stillstand both in the absence of synaptic plasticity and when
the feedback from the environment is cut off, e.g., when the
gravitational constant is set to zero. We find a surprisingly large
palette of self-organized motion primitives, which includes a
chaotic phase. The locomotion observed is flexible, in all modes,
readjusting seamlessly to disturbances like the collision of the
robot with obstacles.

The capability of STSP to have a large impact on locomotion
can be traced back in our analysis to the destabilizing
effect short-term synaptic plasticity may have on attracting
states of the controlling network, inducing attractor-to-attractor
transitions within timescales of the order of a few hundred
milliseconds. We corroborate this findings by short-circuiting

FIGURE 1 | Left: A snapshot of the spherical robot from the LPZRobots simulation environment (Martius et al., 2013). The three weights (red, green, and

blue) can move along the respective rods without interference. Right: A sketch of the robot with the three perpendicular rods together with the three weights of mass

m. The red vertical dashed lines show the actual position x
(a)
i

and a putative target position x
(t)
i

of the red weight along its rod. A damped spring with spring constant k

and damping γ then pulls the weight toward the target position, which is given in turn by the output of a controlling neuron (compare Figure 2).

the sensori-motor loop, viz by taking out the environment.
Transitions between distinct limit cycles within the full
sensori-motor loop are found in addition in the chaotic mode.

2. MATERIALS AND METHODS

2.1. Tsodyks-Markram Model with Full
Depletion
The way neurotransmitters are released through the synaptic
cleft may change transiently upon repeated presynaptic activity
(Tsodyks and Markram, 1997), both for excitatory (Wang
et al., 2006) and for inhibitory (Gupta et al., 2000) synapses.
Physiologically this is, on the one side due to an increase of the
Ca-concentration u ∈ [1,Umax] within the presynaptic bulge,
facilitating the release of the respective neurotransmitter, and, on
the other side, due to the decrease of the number ϕ ∈ [0, 1] of
available vesicles of neurotransmitters. We use here with

u̇ =
U(y)− u

Tu
, U(y) = 1+ (Umax − 1)y

ϕ̇ =
8(u, y)− ϕ

Tϕ

, 8(u, y) = 1−
uy

Umax

(1)

a modified version of the original Tsodyks-Markram model
(Tsodyks and Markram, 1997; Hennig, 2013), in which the the
Ca-concentration u and the number of vesicles ϕ of a given
synapse relax to target values U = U(y) and 8 = 8(u, y),
determined in turn by the level y ∈ [0, 1] of the presynaptic
activity. A prolonged maximal presynaptic activity y ≡ 1 would
lead with ϕ → 0 to a full depletion of the reservoir of vesicles.

The dynamics of the full depletion model (1) is determined
by the relaxation time constants Tu and Tϕ , and by the maximal
level Umax of the Ca concentration. For Umax = 1 a monotone
depression is present, whereas Umax > 1 initially generates
facilitation by a fast calcium influx, being annulled later on by the
depletion of neurotransmitters. Overall, the synaptic efficiency
is proportional to uϕ, viz to the number of vesicles and to the
release probability (which in turn is assumed to be proportional
to u).We use Tu = 300ms andTϕ = 600ms, together with either
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FIGURE 2 | Left: Sketch of the sensorimotor loop of the three-axis spherical robot illustrated in Figure 1. The three weights i = 1,2, 3 with masses m are

each controlled by a single neuron. The excitatory input w0(x
(a)
i

+ pR)/(2pR) of neuron i is proportional to the proprio-sensory measurement of the actual position

x
(a)
i

∈ [−R,R] of the i-th mass (p ∈ [0,1]). The neuron also receives inhibitory inputs −z0ϕjujy(xj ) from the other two neurons (j 6= i). The output y(xi ) of the i-th neuron

determines via x
(t)
i

= pR[2y(xi )− 1] the target position of the i-th mass. Right: A network of (three) neurons having the identical topology as the one of the three-axis

spherical robot, but with the feedback of the environment short-cut by identifying the actual position x
(a)
i

with the target position x
(t)
i
.

Umax = 1 or Umax = 4. These values are within the typical range
of what is physiologically observed (Gupta et al., 2000; Wang
et al., 2006).

2.2. The Robot
The movement of robot illustrated in Figure 1 is induced by
the relative gravitational pull of the three weights, together with
the rolling friction and angular momentum conservation. The
individual neurons i = 1, 2, 3 aremodeled as rate-encoding leaky
integrators,

ẋi = −Ŵxi +
w0

2pR

(

x
(a)
i + pR

)

− z0
∑

j 6=i

ujϕjy (xj),

y(xj) =
1

1+ exp(−axj)
, (2)

where xi and y(xi) are the respective membrane potentials and
firing rates. Ŵ is the relaxation rate, R the diameter of the robot,

p ∈ [0, 1] a rescaling factor, x
(a)
i ∈ [−R,R] the sensory reading

of the actual position of the weight on the rod, w0 > 0 the
weight of excitatory input and z0 > 0 the magnitude of the inter-
neural inhibitory connections. We note that the variables of the
STSP, uj and ϕj, as described by Equation (1), depend only on
the presynaptic activity and can hence be attributed altogether to
the presynaptic neuron. For the slope of the sigmoidal a = 0.4
has been selected. The weight of the excitatory input w0 is not
modulated here by short-term synaptic plasticity, corresponding
to a direct sensory reading.

We selected with p = 1/2 a reduced range for the target

position x
(t)
i ,

x
(t)
i = pR

[

2y(xi)− 1
]

, x
(t)
i ∈ [−pR, pR]. (3)

This choice allows to avoid dynamic overshooting of the weight
when accelerated from its actual to the target position. The force
accelerating the weight is calculated by the LPZRobots package

by simulating a damped spring:

mẍ
(a)
i = −k(x

(a)
i − x

(t)
i )− γ

d(x
(a)
i − x

(t)
i )

dt
+ Fi, x

(a)
i → x

(t)
i ,

(4)
where k is the spring constant and γ the damping. Centrifugal
and other induced forces, Fi, act additionally in Equation (4) on
the individual weights. The complete setup of the three-neuron
network is illustrated in Figure 2.

2.3. Simulation parameters
The LPZRobots simulation environment (Der andMartius, 2012)
is an interactive simulator based on the ODE (Open Dynamic
Engine) (Smith, 2005). LPZRobots contains rigid body dynamics
in terms of a library of basic primitive objects, such as spheres
and cuboids, as well as a variety of joints, sensors and surface
materials.

We used roughness = 0.8, slip = 0.01, hardness = 40 and
elasiticity = 0.5 for the collision and friction properties together
with friction = 0.3 (the rolling friction coefficient), gravity =

−9.81 (the gravitational constant) and noise = 0 (for the global
noise level). All parameters are in SI units. For the stepsize of the
physical simulation simstepsize = 0.001 was used (corresponding
to a millisecond). With controlinterval = 1 one ensures that the
controller, viz Equation (2), is updated as often as the physics of
the environment.

The robot itself has a diameter of 2R = 0.5, a mass offM = 1
and a motorpowerfactor = 120. The parameters for the damped
oscillator (Equation 4) are m = 1, k = m ∗ motorpowerfactor

and γ = 2
√
k ∗m (critical damping). The relaxation rate for

the membrane potential entering Equation (2) has been set to
Ŵ = 20, retaining the bare excitatory and inhibitory weights, w0

and z0, as free simulation parameters.

3. RESULTS

3.1. Emergent Limit-Cycle Locomotion
In Figure 3we present the stability regions for the various regular
movement patterns found, with respective close-ups given in
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FIGURE 3 | Phase diagram for Umax = 1 in the parameter plane of excitatory (w0) and inhibitory (z0) synaptic weights. On the top the different types of

identified regular motion patterns are illustrated, tagged respectively with black triangles in the respective regions of stability (shaded areas). Close-up trajectories are

given in Figure 4; for a comparison see also Supplementary Video 1. Examples of two parameter settings, (200, 360) and (210, 400), for which chaotic behavior is

observed are indicated by black filled circles (at the tip of the respective arrows).
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FIGURE 4 | A close-up of the trajectories in the plane of locomotion,

for the parameters (w0, z0) tagged as black triangles in the phase

diagram presented in Figure 3. T1: (280,650), T2: (230, 415), C1:

(190,600), S1: (250, 530), S2: (240,380), S3: (220, 470).

Figure 4. The results are for Umax = 1 (depressing short-term
synaptic plasticity without Ca dynamics) and for the parameters
specified in Section 2.3. They are obtained by adiabatically
continuing stable states along a grid until stability is lost. Without
STSP only a globally attracting fixpoint corresponding to a
motionless robot is present. We note that regular motion arises
for a wide range of bare excitatory (w0) and inhibitory (z0)
synaptic weights. z0 needs however to be larger than w0.

All motion patterns observed are self-organized. There is no
objective function (Gros, 2014), such as a maximal velocity,
to be optimized. This implies that the quantitative features
of the individual motion patterns change smoothly within
their respective stability regions, and that one can identify
the observed regular movement patters as stable limit cycles
in the sensorimotor loop (Sándor et al., 2015). Fast switching
between motion primitives would be possible by a putative
overarching controller, since more than one limit cycle may
be stable for given synaptic weights w0 and z0. Interactions
between robots or with external obstacles might also lead to the
automatic selection of another coexisting mode (see for instance
Supplementary Video 1).

It is evident that the body plan of the robot examined here
tends to produce meandering motion pattern. T1 and T2 are

sun- and star-like movements with small (T1) and large (T2)

processing angles (compare Figure 4; “T” stands for torus in
phase space). There is, in addition, a (nearly pure) circular

motion, C1, and three types of forward snake-like meandering
motion patters, S1, S2, and S3. From these S3 partly overlaps with

itself. These modes are characterized by distinct motion patterns
of the three weights, as shown in Figure 5, as measured by their
positions along their respective rods. The differences between
the distinct modes are in part qualitative, in terms of the time
sequences in which the three neurons are subsequently active,
and in part only quantitative. The difference between T1 and S1
is, in this respect, that the up-times of the two active neurons
are symmetric for S1, but not for T1. A spontaneous symmetry
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FIGURE 5 | The positions x
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i

of the three weights as a function of time, compare Figure 1, along the corresponding rods. The modes and parameters are

identical to the ones presented in Figure 4. Time is measured in units of 2 s.

breaking can be furthermore observed in case of T1, S1, S2, S3,
for which two weights always have alternating dynamics, the
third one showing a qualitatively different behavior. In contrast
to that, the time-series of the C1 and T2 modes reveals the
symmetrical but phase shifted oscillation of the three weights.
Note that the positions of the weights may overshoot the interval

[−pR, pR] for the target positions x
(t)
i , both due to inertia and due

to the additional gravitational pull. Motion patterns similar to the
ones shown in Figure 4 have been observed in a self-organized
two-wheeled robot in the frozen mode (Der and Martius, 2013).

3.2. Chaotic Modes Allowing for
Explorative Behavior
The dynamics of the robot takes place in a phase space combining
the internal variables, of both body and controller, with the
ones of the environment. The stability regions of the individual
limit cycles presented in Figure 3 will therefore be bounded,
generically, by a suitable bifurcation, such as a supercritical Hopf
bifurcation or a fold bifurcation of limit cycles (Gros, 2015;
Sándor et al., 2015). Alternatively, a transition to chaos may
occur. It is on the other side also possible that chaotic attractors
emerge from previously unstable manifolds and that the stability
region of chaotic and stable manifolds overlap.

Close to a chaotic phase long transients may occur, which
makes it difficult to study systematically the exact extend of
the chaotic region. In Figure 3 we have indicated however a
few representative combinations of parameters, for which stable
chaos is observed both in the limit of long simulations times and
for a wide range of stepsizes of the ODE simulator. No regular

motion patterns can be observed in the screenshots presented in
Figure 6. We have also evaluated the long-time behavior of the
square of the covered real-space distance,

d2(τ ) = 〈
(

x(t + τ )− x(t)
)2
〉t . (5)

We found diffusive transport d ∼
√

τ for the chaotic mode and
ballistic transport d ∼ τ for the forward meandering modes S1,
S2, and S3. Both as expected.

It has been observed, that chaotic locomotion of an embodied
system may be considered as a basic explorative behavior, both
of the environment and of the own motor pattern (Steingrube
et al., 2010; Shim and Husbands, 2012). As a test of this
hypothesis we have set our three-rod robot into a restricted
playground containing movable objects in the form of blocks,
which can be pushed, to a certain extend, over the ground. A
screenshot is presented in Figure 6. One can observe, that the
robot stays for a while close to the object, bumping around,
and retracting in part a trajectory having a shape similar to
the one generated by a C1 limit cycle. This is possible, as
the set of parameters (w0, z0) = (210, 400) considered is
located close to but outside the C1-stability region. The C1
limit cycle is hence only weakly unstable in the chaotic phase.
The active exploration of the environment, occurring here
when bumping into obstacles, gives the robot hence access to
otherwise unstable locomotion options. The overall behavior
may be interpreted alternatively in terms of non-representational
sensorimotor knowledge (Buhrmann and Di Paolo, 2014). For a
longer simulation see the Supplementary Videos.
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FIGURE 6 | Screenshots of the sphere robot in a chaotic mode; Umax = 1 and (w0, z0) = (210, 400). The blue lines retrace the past trajectory. The short-time

motion of the robot is close to the one of the S2 mode, which is here an unstable attractor (compare Figure 4). Left: In open space. Right: In a closed environment

allowing for the interaction with movable objects (yellow blocks). The circular sections correspond to unstable C1 limit cycles. A close-up to the dynamics and a longer

simulation in the maze can be seen in Supplementary Videos 2, 3 respectively.

In themovie presented in the SupplementaryMaterial one can
observe, furthermore, that the robot is pushing the blocks around
in a seemingly “playful” manner (see Supplementary Video 3).
A remarkable behavior, in our view, considering that the
sphere robot disposes of a mere total of three controlling
neurons. We note, that this complex behavior results from the
interplay of the autonomous dynamics, as resulting from the
inter-neural short-term synaptic plasticity, with environmental
feedback.

3.3. Embodiment Shaping the Intrinsic
Dynamics
One can consider the controlling 3-neuron network in isolation

by identifying the sensory reading x
(a)
i for the actual position

of the weight along the rod with the respective target position

x
(t)
i , viz by setting x

(a)
i = x

(t)
i in Equation (2). The resulting

network contains a self-excitatory coupling w0 together with
all-to-all inhibition with a bare synaptic strength z0. The
short-term synaptic plasticity then induces an autonomous
activity, as illustrated in Figure 7, which is topologically
equivalent to the C1 mode. This equivalence becomes even more
pronounced when suspending the robot in air, which can be
achieved in turn by simply removing gravity from the physics
simulation (bottom time-series in Figure 7). One can hence
consider the C1 mode as the driver for the observed physical
motion.

The isolated 3-neuron network has, however, only a single
stable limit cycle. Numerically integrating the isolated network
for parameters settings (w0, z0) corresponding to the six modes
of Figure 5, as well as for chaotic states, we find always an
identical sequential activation of the three neurons illustrated in
Figure 7, with only slight changes in the overall shape. It is hence
clear, that the other modes T1, T2, S1, S2, and S3, as well as
the chaotic behavior, do result from the closed-loop feedback of

the environment. The interaction of the environment with the
intrinsic dynamics then results in the emergence of alternative
types of locomotion.

3.4. Stability with Respect to Noise
We present in Figure 8 an analysis of the stability of the various
modes found, with respect to noise in the sensory readings,
where the level of the noise is given by the relative standard

deviation σ of the sensory readings x
(a)
i . Comparing with the

phase diagram, as presented in Figure 3, one notices that first
modes to disappear, T1 and S3, are the ones with small stability
regions in the phase diagram. Ramping up the noise level the
T1 and S3 modes turn respectively, above their corresponding
critical noise levels, into C1 and S1 modes. The other modes,
including the chaotic phase, are in contrast very stable with
respect to noise.

3.5. Autonomous Mode Switching
We present in Figure 9 the phase diagram obtained when using
Umax = 4 for the maximal Ca-level entering Equation (1).
Within the range of (w0, z0) scanned we find four out of the six
modes observed for Umax = 1 (compare Figure 3). The range
of inhibitory weights z0 for which stable locomotion is found is
rescaled down, in addition, with respect to the Umax = 1 case.
Interestingly we found a chaotic state at (180, 80) which lies just
inside the stability region of the C1 mode.

We did let the robot evolve within the borders of a simple
maze, as shown in Figure 10 and Supplementary Video 4. Most
of the time the robot is in the chaotic state, which is the dominant
mode for the parameters used, namely (w0, z0) = (180, 80)
and Umax = 4. Intermittently, after colliding with a wall, the
robot switches to the coexisting C1 mode. The radius of the
stable C1 limit cycle in real-world coordinates is however so
large, for (w0, z0) = (180, 80), that it does not fit into the maze.
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FIGURE 10 | The trace of the robot in a maze for a simulation time of 83 (left) and 1000 (right) min, respectively. The robot may remain stuck occasionally in

corners, but not forever. The parameters are Umax = 4 and (w0, z0) = (180,80), corresponding to the chaotic mode indicated by the arrow in Figure 9. Bumping

against the wall the robot sometimes turns up in the C1 mode, which is a coexisting stable limit cycle. The radius of the C1 mode is however, in this case, so large,

that it does not fit as a whole into the maze. Also note that the chaotic mode is locally akin to the here unstable S2 mode, and that it changes the overall direction only

on a relatively large scale.

The robot hence continues exploring. We have obtained similar
results when using a Umax = 1 chaotic mode.

A screenshot of a trajectory in open space is presented
in Figure 11. One notices, that the Umax = 4 and
(w0, z0) = (180, 80) chaotic mode wanders around aimlessly in
much smother manner, than the Umax = 1 chaotic mode shown
in Figure 6. This is the result of topologically different attractor
structures, as seen in the phase space of internal variables (see the
Supplementary Materials). Different types of chaos are indeed
known to exist (Wernecke et al., 2016).

The autonomous mode switching observed for the regular
motion primitives can also be seen in Supplementary Video 1.
For a detailed discussion of the possible switching scenarios see
the Supplementary Materials.

3.6. Switching between Degenerate
Unstable Limit Cycles
In Figure 12 we compare for the two chaotic modes, realized
for Umax = 1 and for Umax = 4 respectively, the
time series for the positions of the weights along the
rods. One observes, that the movements of the weight is
qualitatively similar, on short time scales, to an S2 mode
(compare Figure 5, see also Supplementary Video 3). It is
interesting, in this context, that the S2 mode has two types of
degeneracies.

• Continuous. The S2 mode may propagate in any direction.
There is hence a continuous manifold of attractors in the
combined phase of controller, body and environment. Outside
the actual region of stability this manifold contains either
unstable limit cycles or limit cycle relicts (Gros, 2009).

• Discrete. There is a spontaneous symmetry breaking in the
S2 mode, with two weights having identical but phase shifted
movement patterns along their respective rods, which are
qualitatively different to the trajectory of the third weight (see
Figure 5).

For the Umax = 4 chaotic mode we did not observe discrete
mode switching, in above sense, which however occurs frequently
for the Umax = 1 mode (see Figure 12). The chaotic meandering
observed for theUmax = 4 chaotic mode, as evident in Figure 11,
is hence a consequence of a smooth diffusion of the angle of
propagation on the manifold of unstable S2 limit cycles (or limit
cycle relicts Linkerhand and Gros, 2013). In the phase space of
the neural activity (as shown in Supplementary Figure 5), the
trajectory corresponds to a chaotic phase diffusion along a limit
cycle (Wernecke et al., 2016). This process is determinstic and
not due to numerical errors, as we have checked by systematically
reducting the stepsize used for the numerical integration. Noise
is absent.

4. CONCLUSIONS

We have shown here, that a robot controlled by only a very
limited number of neurons, three in our case, may show
complex behavior which may be interpreted as explorative or
playful. This is possible when locomotion results from self-
organizing processes in the sensorimotor loop. The driving
control dynamics, for which we have considered here short-
term synaptic plasticity, then adapts itself seemingless to the
physical requirements. No central controller is needed to detect
an external object (Rai et al., 2014), or to switch direction
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FIGURE 11 | Screenshot of the sphere robot in a chaotic mode for Umax = 4 and (w0, z0) = (180,80), indicated by the arrow in Figure 9. The blue line

retraces the past trajectory. Note that the chaotic wandering is substantially smoother than the one observed for the Umax = 1 case (compare Figure 6).

-pR

0

pR
Umax=1

-pR

0

pR

time [10s]

Umax=4

FIGURE 12 | As a function of time the positions of the three weights, compare Figure 1, along the corresponding rods. Top: For the Umax = 1 chaotic

mode with (w0, z0) = (210,400) shown in Figure 6. Bottom: For the Umax = 4 chaotic mode (w0, z0) = (180,80) shown in Figure 11. Both modes are locally akin to

an S2 mode, albeit with substantial fluctuations (e.g., compare the bottom curvatures of the green line for Umax = 4, see also Figure 5). Note that phase slips do

occur for the case of Umax = 1, but not for Umax = 4.

when colliding with it. Stable and unstable limit cycles, together
with chaotic attractors, arise in the phase space of internal
(control and robot body) variables. These attractors form
continua in the space of physical location and overall propagation
direction, with the chaotic locomotion transitioning between
unstable limit cycles. Transitions may either be between different
types of regular locomotion, bounded circular or propagation
meandering modes, or between the directions of unstable
propagating limit cycles.

We note that the formation of a continuum of attractors
is possible, whenever internal and external variables can be
separated, such that internal variables span an independent
subset of the phase space of the dynamical system. Here,
the position of the robot (on the ground plane, in the
absence of obstacles) acts as an external variable, all the
other variables being independent of it. The limit cycles and
chaotic attractors, living in the subspace of internal variables,
exist thus for all position vectors, generating a continuous
degeneracy of locomotion modes. The interactions with other
robots and obstacles then results in a transient breakdown
of this degeneracy, which is restored instantaneously with the
termination of physical contact. Within this context, higher
order control mechanisms would correspond to an external-
variable dependent feedback, shaping the attractors either

intermittently or slowly (with respect to the internal dynamics),
thus leading possibly to the emergence of transiently stable
attractors.

Our result, that the three-rod robot switches spontaneously
between a continuous set of attractors, in the chaotic state, can be
seen as a realization of chaotic wandering (Tsuda, 2001), which
has been argued in turn to occur in the brain in the form of self-
organized instabilities (Friston et al., 2012), viz as transient-state
dynamics (Gros, 2007). There is furthermore a close relation to
the concept of attractor metadynamics (Gros et al., 2014), which
denotes the either induced or spontaneous switching between
attracting sets.

The here simulated robot is furthermore compliant both on
the level of control and actuators, showing a highly flexible
response. The actuators are implemented by specifying a target
position for a limb, here a moving weight on a rod. The force
acting on the weight then results from the interplay between
the internal driving, provided by a damped spring (between
the actual and the target position), with the physical restoring
forces acting on the weights, which in turn depend on the
body dynamics determined by the interaction with the ground,
obstacles and other robots (Floreano et al., 2014).

The isolated controlling network (realized in the limit of
infinitely strong actuators) can be interpreted in addition
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as a central pattern generator (Steingrube et al., 2010),
having a single intrinsic limit-cycle attractor. The open-
loop control incorporates however the feedback of the
environment through the induced forces. We find here,
that the resulting embodiment (Cangelosi et al., 2015) does
morph the driving dynamics of the central pattern generator
not only quantitatively, but also qualitatively, giving rise to
a vast array of modes which differ in part topologically from
the dynamics of the underlying central pattern generator. We
believe that this dynamical systems approach of the locomotion
of simple robots has not been fully exploited yet, having many
interesting features and applications in store for the field of
neurorobotics.
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It has often been stated that for a neuronal system to become a cognitive one, it has to be

large enough. In contrast, we argue that a basic property of a cognitive system, namely

the ability to plan ahead, can already be fulfilled by small neuronal systems. As a proof

of concept, we propose an artificial neural network, termed reaCog, that, first, is able to

deal with a specific domain of behavior (six-legged-walking). Second, we show how a

minor expansion of this system enables the system to plan ahead and deploy existing

behavioral elements in novel contexts in order to solve current problems. To this end, the

system invents new solutions that are not possible for the reactive network. Rather these

solutions result from new combinations of given memory elements. This faculty does

not rely on a dedicated system being more or less independent of the reactive basis,

but results from exploitation of the reactive basis by recruiting the lower-level control

structures in a way that motor planning becomes possible as an internal simulation relying

on internal representation being grounded in embodied experiences.

Keywords: reactive system, cognitive system; internal model, motor planning, internal simulation, neural

networks, attention

INTRODUCTION

Over the last years more and more findings in neuroscience have shown that higher level cognitive
capabilities cannot be detached from the functioning of lower level sensorimotor control systems
(van Duijn et al., 2006; Barsalou, 2008) which is the core idea of embodied cognition as a field. It is
assumed that cognition recruits the underlying sensorimotor systems (Anderson, 2010). Intensively
studied examples controlled by such sensorimotor, or reactive, systems are insects. Already a lot is
known about their structure and properties of their sensorimotor systems (Menzel et al., 2007;
Cruse et al., 2009) which allows to build well performing biologically inspired systems (Pfeifer
et al., 2007; Ijspeert, 2014). But it is still unclear if all the crucial properties are understood that
are required to form the basis for a cognitive system. Do the known principles allow to leverage the
sensorimotor control systems toward cognition?

A basic problem concerns what, after all, is meant by the term “cognition.” Definitions cover
various ideas, reaching from Maturana and Varela (1981) “life is cognition” (which would include
even bacteria to be cognitive systems), Engel et al. (2013) who note that “cognition is action.” Other
authors avoid the problem of a short definition, which almost inevitably includes comparatively
simple systems, by listing a collection of phenomena to characterize cognitive systems (e.g.,
Khlentzos and Schalley, 2007; Menzel et al., 2007). The most important faculties generally agreed
as to characterize a cognitive system are attention, awareness, emotion, learning, specific aspects
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of memory, language as well as thinking, reasoning, planning
ahead, decision making, volition, Theory of Mind or even
subjective feelings and consciousness (for another list proposed
by Langley et al. (2009, see Discussion). In this article, we will not
enter this discussion but focus on basic properties discussed by
several authors as to be crucial for a cognitive system, namely the
ability to invent new behaviors and the ability to plan ahead the
latter being required to test the feasibility of the new invention.

Lower level behaviors, often termed reactive or automatic,
controlled by “reactive systems,” require procedural elements
ensuring survival and allowing for basic behavioral abilities,
e.g., locomotion, feeding, object avoidance. The combination
of such controllers may also be suited to guide seemingly
more complex behaviors (e.g., navigation). These controllers
constitute the procedural memory of the system. Exploiting the
loop through the world (Brooks, 1989) even a “hard-wired”
memory system allows for adaptation to changing environments
as will be illustrated in the second section (Reactive Walker). In
reactive systemsmany of these procedures (or “action-perception
circuits,” Pulvermüller and Garagnani, 2014) can be active at
the same time, but they may also compete amongst each other
for controlling the system (Brooks, 1989). Therefore, a crucial
ability for each behaving system—including reactive systems—
is the ability to select one among different possible actions. This
architecture is inspired by earlier authors as Arbib (1998), Brooks
(1991b), and Minsky (1986).

Reactive systems, by definition, do not belong to the field of
cognition. However, many authors (e.g., Newell, 1994; Anderson,
2010; Glenberg and Gallese, 2012) argue that cognition in all
known systems is strongly based on and is intimately connected
with a functional reactive system. Even more, as proposed by
Barsalou (2008) and others, reactive (or behavior-based) systems
having internal states (as introduced in the second section,
Reactive Walker) plus being embodied are basic requirements
for a system to become a cognitive one. As already noted briefly
above, there is indeed strong support showing that neuronal
elements forming cognitive properties are tightly intertwined
with the reactive system itself and a functional separation is not
possible. For example, planning of a movement is interpreted in
this view as a mental enactment of the movement (Jeannerod,
2001; Hesslow, 2002). This view is supported as brain regions that
formerly were assumed as being highly specialized, for example
the motor area, are also activated during language processing
or perception (Feldman and Narayanan, 2004; Buccino et al.,
2005; Pulvermüller, 2005; Jeannerod, 2006; Pulvermüller and
Garagnani, 2014). More generally, Gallese and Lakoff state that
“a key aspect of human cognition is. the adaptation of sensory-
motor brain mechanisms to serve new roles in reason and
language, while retaining their original function as well.” (Gallese
and Lakoff, 2005, p. 456). This is supported by behavioral
research showing that behavioral and cognitive processes are
functionally related insofar as both processes seem to apply the
same structuring principles and seem to have access to memory
in a structurally similar way (e.g., Jeannerod and Decety, 1995;
Cross et al., 2006; Barsalou, 2008; Barsalou et al., 2012).

What distinguishes a reactive system from a cognitive one?
A key feature that might be suited for a distinction between

reactive, or behavior-based, systems, and cognitive systems is
that the former are restricted to apply their procedural memory
elements (or internal representations, or internal models) only in
the context in which the latter have been acquired (Wilson, 2008).
For example, a specific movement (e.g., grasping a specific type of
prey) is stored as a (congenital or learned) procedural memory.
The content of this memory element may also be considered as
a model of that movement, which can—in a reactive system—
only be triggered by a specific stimulus, the specific prey. In
contrast, cognitive systems are able to modify their behaviors and
thereby may come up with solutions for a novel task (Glenberg
and Gallese, 2012). A novel task is considered here a task in
which, in the current context, none of the existing procedural
memory elements can be applied to solve the problem, as none
of the available procedures are able to deal with the actual
situation or to predict the resulting consequences. Therefore, to
approach a cognitive level, one has to search for systems that are
creative, i.e., able to alter their procedural memory elements or to
compose them in a new way allowing the system to handle such
a novel tasks. This characterization agrees with the statement of
Limongelli et al. (1995) “cognition is the ability to relate different
unconnected pieces of information in new ways and apply the
resulting knowledge in an adaptive manner.” Taking a broader
view, Anderson (2010), in his massive redeployment hypothesis,
states that “neural reuse” is a fundamental principle not only
applied in evolutionary time scales but also for solving current
problems by a cognitive system. Thus, in this article we will focus
on a system that is able to find solutions for novel tasks.

What are the prerequisites to find a solution to a current
problem? One way to find new solutions is to apply a search
strategy based on simple trial and error. But trial and error is
a risky approach and generally quite slow. As an alternative,
“internal trial-and-error” could be applied. This means that
in addition to the ability to modify the procedures and their
composition, such systems are able to anticipate consequences
of new actions which enables the agent to decide based on
these predictions (Hesslow, 2002). These aspects have already
been captured by McFarland and Bösser (1993) who indeed
define cognition as the faculty to plan ahead. Planning ahead
allows to verify the feasibility of new solutions before execution.
Therefore, planning ahead is the second basic property of our
system. The ability to predict requires internal models, or internal
representations.

Because our system is characterized here as to search for new
solutions by exploiting the already existing memories (or internal
models) in a flexible way, i.e., not only in a specific context,
but in different contextual situations, an organizational scheme
is required that allows for compositionality and modulation of
specific parameters. In the third section (Motor Planning) we will
provide a simple solution for this problem.

Following the view proposed by Barsalou (2008), Glenberg
and Gallese (2012) and others, our approach is to start with
a non-trivial reactive system that is then equipped with the
ability to plan ahead. To this end, we will consider a system
with a complex enough body (i.e., having a considerable
number of extra degrees of freedom), but an arguably
simple controller, which—in order to comply with biological
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constraints—is based on elements forming an artificial neural
network.

Using a system able to control autonomous behavior and
using a complex, non-trivial body, we follow a whole-systems
approach. We take the embodiment approach literally insofar
as our system is constructed in such a way that it is currently
used to control a simulated robot in a dynamical simulation
environment, but will be transferred to a physical robot in a next
step. Thus, we deal with really executable behaviors rather than
with more abstract approaches on a dynamical systems level or
systems that operate on a symbolic level. Application of such
purely high-level approaches may bear the danger that serious
problems occurring at a lower level may be overlooked (Brooks,
1991a; Verschure and Althaus, 2003).

Taken together, we focus on a system that allows for the ability
to plan ahead (McFarland and Bösser, 1993) relying on intersnal
representation (Steels, 2003) that are grounded in embodied
experiences (Gallese and Lakoff, 2005). In this way, we follow the
proposal of Feynman, who stated that we can only understand
a system when we are able to create it (in Hawking, 2001; p.
83). We start with a decentralized, reactive neuronal network
controller (Dürr et al., 2004) for a complex hexapod robot which
is expanded by a holistic body model represented by a “hard-
wired” recurrent neural network (RNN) and used for inverse
kinematics (Schilling et al., 2012). Based on a reactive structure
the robot allows for walking in an unpredictable environment.

We will further enable the robot to cope with situations for
which the reactive system does not offer a solution. In this
case, a “cognitive expansion” shall allow the system to search
for a new solution to this problem. The search space is not
only characterized by the 18◦C of freedom (DoF) of the robot,
but is expanded by the fact that the controller being embodied
heavily depends on the “loop through the world,” i.e., depends
on the unpredictable properties of the environment. Further, the
complexity of the situation is increased as behavioral elements
to be selected show various time dependencies. To cope with
such situations, the system first has to search for a behavioral
element normally not used in the current context. The search
space is large and not continuous. So, gradient descent methods
are not applicable. The search for new solutions is based on (i) a
somatotopic heuristic, (ii) noise applied to part of the cognitive
expansion network as well as (iii) tests for physical feasibility
of the solution proposed, first by internal simulation, second by
performing the behavior in reality. For internal simulation, we
exploit the property of the body model used here, which means
that the same model cannot only be used as an inverse model,
but also as a predictive model. Therefore, this body model can be
used for motor planning applying an internal simulation to test
newly selected behavioral elements.

The results show that the cognitive expansion requires only a
small number of neurons coupled by a quite simple connectivity.
This simple network shows basic properties required for a
cognitive system and can be used as a scaffold for later
introduction of further properties. In addition, capabilities like
showing attention or emotions, might be found as properties
emerging from such an architecture as discussed in Cruse and
Schilling (2013).

The article is structured in the following way. The second
section (Methods and Material) is divided in three parts. In
section Background and Previously Developed Models. Reactive
Walker—the Walknet (Reactive Walker) the simple control
system for a hexapod walker is introduced which is biologically
inspired from studies on the walking of insects. In section
Motor Planning: from Walknet to reaCog (Motor Planning)
the cognitive expansion is presented including an example that
illustrates how the basic reactive system is recruited for planning.
This will be followed by a more detailed explanation of the
control architecture and the experiment setup (section Cognitive
Expansion). Simulation results will be presented, on the one
hand, for an example scenario (section Results) explaining our
approach. On the other hand, a series of simulations shall
demonstrate how the approach deals with disturbed walking.
While there is no similar robotic architecture which applies
behaviors out of context and realizes recruitment as internal
simulation, we will present a brief overview on related work and
discuss differences and implications (section Related Work). In
the Discussion we will analyze the properties of the complete
system, discuss them and briefly turn toward the question as to
how aspects of higher-level phenomena being listed above may
emerge in our system (Discussion and Conclusions).

MATERIALS AND METHODS

Background and Previously Developed
Models. Reactive Walker—The Walknet
Biological Model of Insect Walking
The example we choose as a reactive basis and which will briefly
be explained in the following concerns a hexapod (insect-like)
walking system (see review Schilling et al., 2013b for details).
The task to walk over a non-predictable substrate—possibly
cluttered with obstacles of varying size and holes—is by no
means a trivial one. The walker has six legs each equipped with
three joints. Therefore, the controller has to deal with 18◦C of
freedom (DoF). As body position in space is defined by only six
DoFs (three for position in space, three for orientation) there
are 12 DoFs free to be decided upon by the controller which
means that the controller has to make these 12 (respectively 18)
decisions in a sensible way at any moment of time while dealing
with an unpredictable environment. As a first step, the walker
is only using tactile sensors situated in the legs (and possibly
the antennae Schütz and Dürr, 2011) measuring contact with
external objects, and with proprioceptors measuring position,
torques and velocities of joints.

The walking system to be described in the following is based
on behavioral (and to some extent neurophysiological) studies on
insects, in particular stick insects (Schilling et al., 2013b). At first,
we briefly describe the essentials of the earlier version, Walknet,
and will then introduce expansions.

Experiments on the walking stick insect have shown that the
neuronal system is organized in a decentralized way (Wendler,
1968; Bässler, 1983; Cruse, 1990). Derived from these results,
a model has been proposed in which each leg is attributed a
separate controller (Dürr et al., 2004; for a review Schilling
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FIGURE 1 | General architecture of the reactive controller Walknet. The

complete system consists of one controller for each leg (LF/RF left/right front

leg, LM/RM left/right middle leg, LH/RH left/right hind leg). Coordination rules

(1,2,3) act between neighboring legs, prolonging, or shortening the stance

phase. Each leg controller contains several modules, a Swing-net and a

Stance-net, to control swing and stance movement, respectively. In Figure 2,

the shaded section is depicted in more detail.

et al., 2013b). Figure 1 sketches the approximate anatomical
arrangement of the controllers and the numbering of the legs.
These single leg controllers are assumed to be situated in the
thoracic ganglia (for a review see Bässler and Büschges, 1998).
Figure 2 shows details of the controllers as used in Walknet
for the left middle leg (LM_leg) and the left hind leg (LH_leg).
A single leg controller mainly consists of several movement
primitives that reflect the leg movement consisting of two
phases. These are the stance movement, during which the leg
maintains ground contact and is retracted to propel the body
forward, while supporting the weight of the body, and the swing
movement where the leg is lifted off the ground and moved
in the direction of walking, to touch down at the location
where the next stance should begin. The movement primitives
controlling stance and swing are realized in the leg controller
(Figure 2) as several modules, or procedures, each containing
artificial neurons forming a local, in general, recurrent neural
network (RNN). These modules might receive direct sensory
input and provide output signals that can be used for driving
motor elements. The two most important procedural elements
in our example are the Swing-net, responsible for controlling
a swing movement, and the Stance-net controlling a stance
movement (Figure 2, for swing: see Dürr et al., 2004; Schumm
and Cruse, 2006, for stance: Schmitz et al., 2008; Schilling et al.,
2012). The end positions used during forward walking are
stored in the procedures for the swing and stance movement,
i.e., the Swing-net and Stance-net respectively (in Figure 2

they are part of the gray rounded boxes called Swing-net and
Stance-net. Swing is triggered when the stance-end-position
is reached, Stance movement is triggered by ground
contact).

Following Maes (1990) the overall activation of a procedural
element is controlled by a motivation unit (represented by
yellow circles in the Figures) that gates to what extent the
corresponding procedural element contributes to the control of
the leg. In the network, these units forming rate coded, non-
spiking neurons with leaky integrator, i.e., low pass, dynamics.
They have a piecewise linear activation function (from 0 to 1)
and control the strength of the output of the corresponding
procedure (in a multiplicative way). Here we deal with a very
simple motivation unit network that, initially, consists of just two
units, the motivation units for the two procedural elements used
in forward walking, Swing-net and Stance-net. Each motivation
unit is reinforcing itself (not shown in Figure 2) and at the same
time inhibiting the other motivation unit, forming a winner-take-
all (WTA) net and allowing only one behavior to be active at
any given time (Figure 2). Secondly, sensory signals control the
behavior selection by influencing the motivation units and thus
initiate behavioral transitions. When the leg touches the ground
toward the end of a swing movement, the ground contact causes
switching to stance movement by activating the motivation unit
Stance. Correspondingly, during forward walking, reaching a
given posterior position activates the motivation unit Swing. As
an extension, we introduced backward walking. In this case,
new swing and stance procedures are introduced including their
motivation units (Figure 3). Swing_toBack behavior stores the
target for the swing movement to the back. As for forward
walking, a memory element is required representing the stance
end position (for details see Schilling et al. (2013a) and
explanation of the Stance movement below).

Furthermore, a leg controller must also take into account the
interaction with the other legs. Part of these interactions are
mediated directly by the body and through the environment,
making explicit computations superfluous (see, e.g., the local
positive velocity feedback approach Schmitz et al., 2008). While
the physical coupling through the environment is important, it is
not sufficient. In addition, the controllers of neighboring legs are
coupled via a small number of channels transmitting information
concerning the actual state of that leg (e.g., swing, stance) or its
position (i.e., values of joint angles). These coordination rules
were derived from behavioral experiments on walking sticks
(Cruse, 1990). In Figure 1 the channels are numbered 1–3. These
coordination rules influence the length of the stance movement
by influencing the transition from stance to swing movement,
i.e., they change the value of the PEP. In Figure 2 only one
connection is shown, influence # 1, which suppresses the start of a
swing movement of the anterior leg during the swing movement
of the posterior leg (for details see Schilling et al., 2013b).

Beyond the motivation units that are directly controlling a
procedural element, there are also motivation units (Figure 3,
yellow circles) that are arranged to form some kind of
hierarchical structure. Units which belong to the procedural nets
controlling the left middle leg show positive connections to a
motivation unit termed Leg_LM and this is correspondingly
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FIGURE 2 | Interactions between two leg controllers, left middle leg and left hind leg. This figure details the shaded area of Figure 1. The left side indicates

the interaction with the environment mediated through the body. Each leg controller contains several modules: a Swing-net and a Stance-net to control swing and

stance movement, respectively, each equipped with a motivation unit (depicted by yellow circles). Connections with an arrow indicate positive (“excitatory”) influences,

connections ending with a T-shaped ending indicate negative (“inhibitory”) influences. On the right, one sub-module (Swing-net) is shown in more detail, as it is

implemented as a neural network (numbers refer to weights). Target angles serve as an input to the neural network and are stored in the component. Each of the three

neural units inside the Swing-net controls the movement of one leg joint. Only one coordination influence is shown in the diagram. In this case, coordination influence

1 (see Figure 1) is acting between the hind and the middle leg. While the hind leg is in swing, the posterior extreme position (PEP) of the anterior leg is shifted

backwards and therefore the stance movement is prolonged (1-PEP). For further details see Schilling et al. (2013b).

the case for all six legs (only two legs are depicted in
Figure 3). These six “leg units” are in turn connected to a unit
termed “walk” in Figure 3. This unit serves the function of
arousing all units possibly required when the behavior “walk” is
activated.

In the case considered here, the motivation unit network,
a recurrent neural network, can adopt different stable states,
or attractors, forming different overlapping ensembles. For
example, all “leg” units and “walk” are activated during backward
walking and during forward walking, but only one of the two
units termed “forward” and “backward” and only 12 of the 24
end position memories are active in either case. The network is
therefore best described as forming a heterarchical structure (for
details see Schilling et al., 2013a). Such an “internal state” adopted
by the network protects the system to respond to inappropriate
sensory input. For instance, as a lower-level example, depending
on whether a leg is in swing state, or in stance state, a given
sensory input can be treated differently: stimulation of a specific
sense organ (not depicted in Figures 2–3, but see Schilling
et al., 2013b) leads to a levator reflex when in swing, but not
during stance. In other words, the motivation unit network can
be considered to act as a top-down attention controller. On

higher levels, further internal states could be distinguished, as for
example walking, standing still or feeding (for a more detailed
discussion on how such a heterarchical network can be structured
and learned see Cruse and Schilling, 2010).

The heterarchical structure sketched in Figure 3 comprises
a simple realization of neural reuse as proposed in
Anderson’s massive redeployment hypothesis (Anderson,
2010) as specific procedures are used in different behavioral
contexts.

The system as described so far is a slightly expanded version
of the earlier Walknet that represents a typical case of an
embodied controller (1st order embodiment, c.f. Metzinger,
2006, 2014): Kinematic and dynamic simulations as well as
tests on robots have shown that this network can control
walking at different velocities, producing different insect gaits
including the continuous transitions between the so called
wave gait, tetrapod gait and the tripod gait, negotiating curves
(Kindermann, 2002), climbing over obstacles (Kindermann,
2002; Dürr et al., 2004), and over very large gaps (Bläsing,
2006), and coping with leg loss (Schilling et al., 2007). Thus,
Walknet exhibits a free gait controller where the gaits emerge
from a strictly decentralized architecture. Application of this
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FIGURE 3 | The extended Walknet. Compared to the version shown in Figure 2, the ability to walk backwards has been introduced (not all details are shown

here.). Each procedural element is equipped with a motivation unit (yellow circle). In addition, the coordination influences (only rule # 1 is depicted) can now be

modulated by a motivation unit (yellow circle, coordination Rule # 1). Further motivation units are introduced (red connections and units) being arranged in a

heterarchy—again only a fraction of the network is shown (see also Figure 2).

decentralized approach allows for a dramatic simplification of the
computation by exploiting the loop through the world (including
the own body). For example, trajectories of swing movements

are not explicitly given, but result from the cooperation between
the Swing-net and the “loop through the world,” i.e., the sensor
readings describing the current position of the leg joints. This
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structure allows for immediate adaptation of swing trajectories
to unpredictable disturbances. Similarly, the spatio-temporal
patterns of leg movement (“gaits”) are not explicitly specified
but result from decentralized local coordination rules and the
coupling of the legs via the substrate (see review Schilling et al.,
2013b). This network has been tested in dynamic simulation
(Schilling et al., 2013a,b) and applied to the robot Hector
(Schneider et al., 2011; Paskarbeit et al., 2015). As will be shown
in section Motor Planning: from Walknet to reaCog (Motor
Planning), this modular structure is a crucial condition to allow
recombination of procedural elements as required by a cognitive
system.

Walknet with a Body Model
The control of the stance movement is a complex task which
requires the coordination of multiple legs and joints. While
local embodied approaches can deal with quite complex walking
scenarios and disturbances (Schmitz et al., 2008), a purely
embodied approach relying on the coupling through the body
itself and local leg controllers has shown to become insufficient in
other cases (Schilling et al., 2012). For example, stick insects are
able to negotiate curves which can be very tight (Dürr, 2005; Dürr
and Ebeling, 2005). In the case of curve walking, the different
legs are producing quite different movements and are taking over
different roles as there is, for example, a differentiation between
inner and outer legs. To better cope with such problems, we
apply an internal model of the body for the control of the stance
movement (Schilling et al., 2012).

Body models are used for three different purposes [for a
recent, comprehensive review see Morasso et al. (2015)]. First,
inverse models have been applied (e.g., Wolpert and Kawato,
1998) to compute motor commands for given goal positions
of an end-effector. The second task concerns the ability to
predict the position of the end-effector when motor commands
are known but not yet executed (Wolpert and Flanagan, 2001;
Webb, 2004). In this case the body model is used as a forward
model, for instance to overcome sensory delays. Third, even

simple animals as insects use a high number of sensors, for
example to measure joint positions or load. In order to exploit
this redundancy (e.g., to improve inexact or even missing sensor
data), the different sensory inputs have to be fused which
requires a body model (Makin et al, 2008). Used for visual
perception, the body model, mirroring the observed movement,
is strongly related to mirror systems as found in animals
(Rizzolatti et al., 1996) and in humans (Rizzolatti, 2005), and
might be linked to the understanding of others (Loula et al.,
2005).

Whereas, in other approaches usually an individual model has
been required for each task and each behavioral element (Wolpert
and Kawato, 1998), we use one simple holistic recurrent neural
network that can cope with all three tasks. The body model used
copes with the at least 18◦C of freedom of the insect body (six legs
of 3◦C of freedom each).

The complexity of the six-legged walker is distributed in the
body model into interacting submodels (see Figure 4, Schilling
and Cruse, 2007). On the lowest level, each leg is represented as
a detailed model of all the leg segments and connecting joints
[Figure 4B, right; for details see (Schilling, 2011; Schilling et al.,
2012)]. These leg models are integrated on a higher level in a
model of the central body, where each leg is only represented
by a vector pointing from the body segment toward the tip of
the leg (Figure 4B, left; for details see Schilling and Cruse, 2012;
Schilling et al., 2013a). As this network is based on the principle
of pattern completion, any input vector given to the network—
may it correspond to the input required for a forward model,
an inverse model, or a sensor fusion model—provides an output
that, after relaxation, leads to a coherent body state. This means
that in any case the kinematics represent a geometrically correct
body position. Next, we will explain how this body model can be
integrated into the architecture of Walknet.

Figure 5 illustrates how the body model is integrated into
the network. As depicted in this figure, the internal body model
comprises an independent system, which may receive sensory
input and/or motor commands. In turn, it provides sensory

FIGURE 4 | The body model. (A) illustrates how the body model (black) represents the body of the robot (gray). (B) The Mean of Multiple Computation (MMC) body

model for the six-legged walker is divided into two layers. The lower layer contains six networks, each representing one leg (for details see Schilling et al., 2012). The

upper layer represents the body and the six legs, which are only represented by bold vectors pointing toward the tip of each leg as shown in (B), left. On this level the

leg is described with reference to the respective body segment. Both layers are connected via the shared leg vectors (marked by the double-lined vectors of the left

front leg) and are implemented as recurrent neural networks.
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FIGURE 5 | The first step to reaCog: Walknet expanded by an internal body model. Only a part of Walknet as shown in Figures 1, 2 is depicted (the left

middle leg). During normal behavior, the Internal Body Model (upper left) serves perception. The body provides proprioceptive input (e.g., joint angles from the legs)

that is integrated within the body model to form a coherent sensory experience. With the switch in position 1, the network represents a reactive controller. If the

system runs into a problem, the switch is flipped from position 1 to position 2 and the motor control (double-lined arrows entering the switch on the right) is routed not

to the body anymore, but instead to the body model (dashed double line). This circuit is used for internal simulation and predicts the sensory consequences of the

action. The body model is now driven by the motor commands predicting the sensory consequences instead of integrating them. For further explanations see text.

signals or motor commands to the reactive structure Walknet.
The body model can be used for controlling the motor output
of the stance behavior in complex walking scenarios. In this case
it is part of the reactive controller (in Figure 5 the switch has
to take position 1). Using the body model as an inverse model,
movement of the legs during stance can easily be controlled
by applying the passive motion paradigm (Mussa-Ivaldi et al.,
1988). Like a simulated puppet, the internally simulated body is
pulled by its head in the direction of desired body movement
(Figure 5, sensory input). As a consequence, the stance legs of
the puppet follow that movement in an appropriate way and the
changes of the simulated joint angles can be used as commands
to control the actual joints. Therefore, if such a body model is
given, that represents the kinematical constraints of the real body,
we obtain an easy solution of the inverse kinematic problem, i.e.,
for the question how the joints of legs standing on the ground
have to be moved in concert to propel the body (for details and
application for the control of curve walking see Schilling et al.,
2012, 2013a).

In the next section we will introduce a fundamental expansion
termed “cognitive expansion.” The complete network, as we
will argue, shows how cognitive properties can emerge from a
system heavily relying on reactive structures, why we will call this
network reaCog.

Motor Planning: from Walknet to Reacog
The General Idea
To be able to implement the faculty to plan ahead, the neuronal
system has to be equipped with a representation of parts of the
environment (Schilling and Cruse, 2008; Marques and Holland,
2009). As it has been argued that, as seen from the brain’s point
of view, the body is the most important part of the environment
(Cruse, 2003), a neural representation of the own body is the first
step to take. Later, this body model of course has to be extended
to include aspects of the environment as are tools extending the
body, objects to be handled or an environment to interact with,
for example obstacles to be climbed over or to be circumvented.

As mentioned the body model introduced in the previous
section can be also used for prediction. Therefore, the body
model will be applied to allow the system for being capable of
planning ahead through internal simulation.

The basic idea that will be detailed in this section is simple.
In short, we will apply the following two-step procedure. If a
problem occurs, which means that the ongoing behavior cannot
be continued when using only the existing reactive controller, the
behavior will be interrupted. The system will then try to come
up with new behaviors by recombining the existing procedural
elements in a new way, i.e., not envisaged in the current context.
A procedural element is characterized by a section of the network
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that can be controlled by a motivation unit (as shown in Figure 3,
red and yellow circles). The properties of the new combination
will then be tested by using the internal body model instead of
the real body, the former now exploiting its faculty to serve as a
forwardmodel. If the new combination turns out to be successful,
it will be applied to control the behavior. If not, the system will
search for another new combination.

For better illustration, we will use the following example:
Imagine the case that one—say the left hind leg—has been
moved far to the rear and now receives the signal to start
a swing movement, i.e., to lift the leg off the ground. If
the two neighboring legs—the left middle leg and the other,
right, hind leg—accidentally are positioned far to the front,
lifting the left hind leg might lead the body falling to the rear
(Figures 6A,B).

Interruption of Behavior
To avoid tumbling over backwards, the system must be able to
detect that it is running into trouble. Therefore, one or several
systems are necessary that are able to detect that there is a
problem.While there are different biologically plausible solutions
(e.g., using load sensors as found in the insects), we chose as
a simple approach a stability sensor which is activated in case
the leg would be lifted,. In the example scenario this detector

becomes activated immediately after the motivation unit swing of
the hind left leg becomes activated, i.e., before the animal would
fall backwards onto the lifted leg.

If a problem has been detected by any detector the system
must (i) interrupt the ongoing behavior and (ii) be able to
change from the state “perform behavior” to the state “simulate
behavior.” To this end, we have introduced a switch as shown in
Figure 5. By moving the switch from position 1 to position 2,
the output of the leg controller—which is normally (position 1
of the switch) routed to the motor output to influence the body—
is now instead routed directly to the body model. Thereby the
position of the real body is kept fixed, i.e., the ongoing behavior
is interrupted (Hesslow, 2002) is providing a biological account
for this decoupling which has also been found in insects (Bläsing
and Cruse, 2004), but the internal body model can perform the
movements determined by the reactive controller. As in the case
of activelymoving the body, the output signals of the bodymodel,
in particular the angular values describing the position of the
leg joints, are given to the reactive procedures. In this way the
loop is closed and the system can internally simulate the behavior
by moving the body model instead of the real body. Note that
modules of the reactive procedures as are Swing-net and Stance-
net are still active as is the case in Walknet. 2.2.3 Coming up with
a new solution.

FIGURE 6 | A problem and a possible solution. (A) shows a posture in which the animal would fall over when trying to lift the left hind leg (dashed red arrow),

because the anterior, middle, leg and the other hind leg are too far to the front. The result is depicted in (B). However, the problem detector detects a problem before

the left hind leg is actually lifted, the cognitive system should start searching for a solution through mental simulation (C). The system might come up with the idea to

perform a backward swing with its left middle leg and afterwards proceed walking. After successful testing in simulation (C), the plan can be executed in reality (D),

i.e., first swinging the middle leg backwards and then swinging the hind leg to the front while continuing normal walking.
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This switch given, it appears of course not very interesting to
simulate exactly the behavior which has just led to the problem.
Instead, it is necessary to test new, currently not available
solutions. Therefore, the signal from the problem detectors is not
only used to move the switch, but also to start the search for a
new solution. To allow for this faculty, reaCog requires a further
fundamental expansion.

The main idea is that for internal simulation a new behavioral
element has to be selected. This new behavioral element may
be selected also from procedures not belonging to the current
context. How is this solved by reaCog? In Figure 7, the upper,
left part (i.e., without SAL net, WTA net, and RTB net) shows a

simplified version of the network as presented in Figure 5. The
expansion depicted at the right side enables the system finding
“new solutions” and then testing their qualification to solve the
problem. This expansion—that we will call “cognitive expansion”
or, as will be motivated in Section Discussion and Conclusions),
“attention system”—contains three additional layers, a spreading
activation layer (SAL, red circles), a winner-take-all layer (WTA,
green circles) and a remember-tested-behavior (RTB, blue circles)
layer with identical number of units each. In addition, there is a
small network termed Global Phases (lower part of Figure 7).

At the bottom, Global Phases, the structure is illustrated
that organizes the temporal sequence of finding a behavior as

FIGURE 7 | ReaCog: Walknet plus cognitive expansion. This figure shows an extension of the Walknet structure presented in Figure 5. The motivation unit

structure (yellow, e.g., Swing, Swing_toFront) is replicated on the right side, termed attention system, in three ways. There is a Spreading-Activation-Layer (SAL, red

circles), the WTA layer (green circles), and the remember-tested-behavior (RTB units, blue circles) layer. The problem detector (red and yellow, the latter for the internal

model) not only activates the switch, but also the spreading activation layer (SAL; red arrows) The activated spreading activation layer units activate their partner units

in the WTA network. The winner of the WTA is activating the corresponding motivation unit (dashed black arrows) and the corresponding motor program will be carried

out using internal simulation. Note that the connections within the WTA layer are not completely depicted.
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a solution to a novel problem. Additional units (gray circles)
show temporal properties and are used to organize the switching
between stages as explained in the text. Units “count” represent a
specific time delay.

Cognitive Expansion
In the following we will explain the function of the cognitive
expansion as depicted in Figure 7. The goal of the cognitive
expansion network is to search for a new procedural element
that allows for a solution of the current problem. The first step
is to look for behavioral elements existing in the memory, which
are, however, not activated in the current context. As will be
explained, only such procedural elements can be selected that
can be activated by a motivation unit. Second, the possible
contribution of this additional memory element will be tested by
internal simulation.

How is this done? The units of the SAL (Figure 7, red
circles) receive input frommorphologically neighboring problem
detectors (in Figure 7, one example is depicted by a bold, red
circle). Neighboring units are connected by positive weights. In
this way, an activation arising from a problem detector is spread
over the SAL roughly corresponding to a circular wave starting
at the position of the unit excited by the problem detector.
Further, there is noise added to the units of the spreading
activation layer. The middle layer is representing a winner-take-
all network. The units of the WTA layer (Figure 7, green circles)
are activated by the corresponding partner units in the SAL
layer. In addition, already active behavioral elements, i.e., their
active motivation units, are inhibiting their counterparts in the
WTA-layer (Figure 7, black solid line with T-shaped end). In this
way, currently active behaviors are prevented from being selected
for testing in internal simulation. Through the winner-take-all
process the units are inhibiting each other in a way that only one
unit remains active when the network settles. For the third, the
right hand layer, there is again a one-to-one connection to the
WTA-layer. These RTB units (Figure 7, blue circles) store which
of the WTA units have already been tested in an earlier internal
simulation run.

The different procedural elements of Walknet and their
motivation units are anatomically arranged in a way that this
arrangement coarsely reflects the morphological ordering of
the legs (Figure 1, left). Consequently, the motivation units of
neighboring legs as well as the partner units of the Spreading
Activation layer (SAL) and of the winner-take-all (WTA) layer
are neighboring, too, and thus form some kind of somatotopical
map. Thus, the problem detector is not only signaling the
problem, but in addition also carries some information where the
problem occurred. In this way, the search for a new behavior is
not purely random, but follows some heuristics,—there is some
probability that a solution may be found morphologically near
the cause of the problem—which may accelerate the searching
process.

What is the functional role of these three additional layers
forming an expansion that we will call “cognitive expansion” or,
as will be motivated later in the discussion (Section Discussion
and Conclusions), “attention system”? Assume that in our
example (Figure 5) the problem detector situated in the left hind
leg has been activated (Figure 7, bold red arrow, starting at the
left). As noted earlier, this signal moves the switch from position 1
to position 2 to route the motor output to the body model instead
of the body itself. Thereby the ongoing behavior is interrupted. In
addition this signal activates one (or several) neighboring units of
the Spreading Activation layer. Figure 8 illustrates the sequential
activation of WTA layer, and RTB layer.

The winning WTA unit activates its motivation unit and as
a consequence, the corresponding—new—procedural element.
After the WTA net has made its decision and has activated the
motivation unit of a procedure normally not used in the actual
context, simulation using the internal body model will be started
to test the contribution of this new procedure. Note that therefore
a problem detector is also required inside the internal model
which functions in the same way, i.e., it observes static stability
of the (internally simulated) body (Figure 7, bold yellow arrows).

If during the internal simulation no problem detector becomes
active, the procedure appears to be a suitable solution for the
given problem. Thus, the solution is found following a search

FIGURE 8 | Illustration of the sequential changes of activation of SAL, WTA, and RTB units. When a problem occurs, the problem detector, on the one hand

stops the execution of current behavior (not shown). On the other hand, it induces activity in the spreading activation layer (SAL, red) which indicates where the

problem occurred. The activation is spreading vertically in the SAL. Each SAL unit excites its corresponding WTA unit. Importantly, currently active motivation units

(yellow) inhibit the WTA units (green units). The WTA units compete among each other producing one winning unit which in turn activates the corresponding motivation

unit and behavior. The units in the RTB layer (blue) represent which behavior has been active once during the simulation process and will inhibit a future activation

during the WTA selection process.
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driven by a heuristic including noise (given to the SAL units).
As a next step, this solution is tested for being mechanically
appropriate. In this case the switch is set back to position 1 and
the corresponding behavior will then be applied in reality. By
setting back the switch the real body will provide the sensory
input. As the winning WTA unit is still active (thus representing
a short term memory), the newly selected procedure will be
executed. If, however, already during the internal simulation this
“new solution” has proven not to be a solution—defined by a
problem detector of the internal model becoming active—the
search for a solution will be continued further. To this end, the
internal model will be reset to the current state of the body. Then,
the SAL net will continue the spreading of its activations and a
new behavior will be selected by the WTA-net. In this way the
procedure will be repeated until a solution is found.

When the new solution is tested in reality, there are still two
possibilities to be considered. If the realization of the proposed
solution is successful, behavior continues. However, the solution
may also turn out not to be realizable. This might for example
happen because the body model does not simulate the physical
properties of the body (and the environment) well enough. In this
case a—possibly different—problem detector will be activated by
starting again a new search procedure, with the internal body
model being reset to the current real state of the body as given
through the sensors.

In the remainder of this section, the structure that controls
the temporal sequences sketched above is explained in detail. As
indicated in the lower part of Figure 7, the complete procedure is
controlled by five specificmotivation units, Beh, SAL,WTA, SIM,
and Test forming the center of the Global Phases network. These
units are coupled via mutual inhibition (not depicted in Figure 7)
and in part by transient, i.e., high-pass like, units (Figure 7, gray
units and connections in the lower part).

During normal, i.e., reactively controlled walking the
motivation unit “Beh” is active, thereby inhibiting the other
four motivation units. If a problem is detected, the problem
detector is activated which in turn inhibits the ongoing behavior
(motivation unit “Beh”) and activates the “SAL” motivation
unit. In addition, the switch is moved to bypass the physical
body (the switch might be realized by further mutually coupled
motivation units, not shown in Figure 7) and the current
forward movement of the robot is inhibited for some time
that corresponds to duration of about one step of the leg (i.e.,
100 iterations). This allows sufficient time to test movements
before starting to continue forward walking. After a given time
required for sensible spreading of activations (e.g., two iterations,
triggered by the “Delay” unit shown in gray in Figure 7), the
SAL motivation unit is inhibited and the WTA motivation
unit is activated instead. The relaxation of the WTA net may
require a variable number of iterations. A simple solution is
to introduce one unit observing the convergence of the WTA-
network (“Relax”). This unit is activated as soon as the first unit
of the WTA layer has reached a given threshold, representing the
winning unit.

Only after a winner is detected (“Relax” in Figure 7), the
“WTA” motivation unit is inhibited and the simulation is started
(motivation unit “SIM”). If, after a given time of internal

simulation (we use 400 iterations which equals 4 s or about three
to four step cycles), no problem occurred, the motivation unit
“Test” will be activated instead to start the real behavior. If
during the test of the real behavior the problem occurs again
or a new problem is detected (in contrast to the situation
during simulation), the behavior is inhibited and the “SAL”
motivation unit is activated again. If however the behavioral test
is successful, too, the motivation unit “Beh” is activated (and the
motivation unit “Test” inhibited) to allow continuation of the
normal behavior. In contrast, if during simulation a problem is
detected, the simulation is interrupted (motivation unit “SIM” is
inhibited) and instead the motivation unit “SAL” is excited again
to search for a new “idea.” The temporal order of activation of
the different motivation units of the Global Phases network is
controlled by dedicated connections running in parallel to the
mutual inhibitory connections (Figure 7, gray) of all these units,

Importantly, each internal simulation has to start from the real
situation, i.e., the situation that led to the problem. Therefore, the
internal body model as well as the control system have to be reset
to this state before a new internal simulation is started. This reset
is triggered during the “SAL” stage. As the body did not actively
move during internal simulation, the current posture and sensor
readings can be used to reset the internal body model. It takes
the reactive part of the control system only a couple (one or two)
iterations to converge to the original state. It turned out that the
internal state does not have to be stored explicitly.

The complete procedure controlled by the Global Phase
network corresponds to what has been termed “incubation” and
“verification” (Helie and Sun, 2010), and is similar to the “note-
assess-guide” strategy or “metacognitive loop” as introduced by
Anderson et al. (2006). In a mathematical analysis applied for
example to logic reasoning systems the latter authors could show
that introduction of such a strategy indeed improves the behavior
of the complete system. The complete period, during which the
body is fixed and the body model is used for internal simulation,
may correspond to what Redish (2016), referring to Tolman, has
termed “vicarious trial an error.”

RESULTS

Simulation Results for the Example
Scenario
In this section, we will show a dynamic simulation of the reaCog
system. The example illustrates the faculty of reaCog to find new
solutions to a current problem using its capabilities for planning
ahead. (In this study there is no physical robot used yet, but
it is represented by a dynamic simulation.). Figure 6 shows an
awkward posture. This configuration can become problematic as
the left hind leg is already very far to the back and cannot move
further back. Therefore, in this situation the left hind leg has to
produce a swing movement. If the position of the left middle leg
and right hind leg are positioned very far to the front, lifting the
left hind leg can lead to instability, because the center of mass
is placed quite far to the rear, between the hind legs. A sensible
solution in our paradigm (Figure 6) might be the activation of
the Swing_toBack module of the left middle leg: A backward step
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of the anterior middle leg might allow this leg to take over the
body weight, and—as a consequence—afterwards allow lifting of
the left hind leg. Thereby, continuation of walking may become
possible.

In normal walking the reactive part of the controller is not
ending up in such a strange posture. Therefore, we had to
introduce an external disturbance to make the system tumble.
To this end, the placements of the left middle leg and right
hind leg will be changed in a way that during swing movement
the target position is pushed further to the front (by a third
of a step length). Such a strong change might occur in insects
when climbing over irregular ground. When there is no foothold,
the insects are starting searching movements to the anterior in
order to find a foothold (Dürr and Krause, 2001; Bläsing and
Cruse, 2004; Schütz and Dürr, 2011) which can be quite far to
the front. This does not pose a problem for the stick insect as
stability is strongly supported through the ability to attach the
feet to the ground. As the robot cannot use this method, he
has to find another solution (for example the one sketched in
Figure 6).

In the following, with help from Figures 9, 10, we will
explain how the system deals with this intervention. Figure 9

(middle panel) shows a footfall pattern which illustrates the swing
movements of the legs over time. A leg which is in swing phase is
marked as a black (or red) bar. For the medium velocity chosen a
gait is emerging that can be seen in the stepping pattern in the left
part of the figure. From a tripod-like starting posture the robot
converges more toward a fast tetrapod-like gait (at about 500
iterations). The lower part of Figure 9 shows still images of the
dynamic simulation (see Supplementary Material Videos 1, 2),
whereas the upper part provides a top view of the robots’
(or internal models’) configuration. The upper part shows four
specific snapshots of the posture of the walker (top view) facing
to the right. Only legs in stance phase, i.e., legs which support
stability are depicted.

For the same run, Figure 10 illustrates the position of each
leg over time. The position is plotted on the ordinate showing
the movement of the leg (green lines, swing movements during
forward walking are pointing upwards; stance movements are
going into the opposite direction).

The jumps in the position of the legs are due to the switching
from the real robot to the internal model required to reset
the internal model. Colors are used as in Figure 9. For further
explanations see text.

FIGURE 9 | Solving the problem illustrated in Figure 6: Foot fall patterns. The middle panel shows the footfall pattern of the hexapod over time (black/red bars

indicate swing movement of the leg). The upper panel shows some critical configurations of the robot (or, during internal simulation, the configuration of the internal

model). The robot is walking from left to right. In three cases, the left hind leg is shown as a dashed line indicating that it is supposed to start a swing movement. The

lower panel illustrates the behavior by screen shots taken from the Supplementary Material Videos 1, 2. The robot starts with a tripod-like leg configuration and

converges to a fast tetrapod gait. The problem is detected at (#2). The section highlighted red represents an unsuccessful internal simulation [ending in an unstable

configuration again as shown in (#3)]. The second internal simulation, highlighted green [starting at (#3)], turns out to be successful and solves the problem (backswing

of the left middle leg, depicted by red bars, (#4) shows the new posture before the start of the forward swing movement of the left hind leg). Highlighted blue is the

application of this solution to the robot (starting at (#5) which shows the robot posture at the beginning of the backward swing movement of the left middle leg). This

final test is successful, too, and the robot continues to walk (
⊗

indicates center of mass).
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FIGURE 10 | Solving the problem: Position of the individual legs over time. Green lines show the position of each leg over time—positive values are toward the

front of the walker. Ordinate is given in cm with the origin fixed to the COM of the robot. The blue dashed lines indicate the average extreme positions: The Anterior

Extreme Position (AEP) is the target position for the swing movement and is fixed during forward walking. The Posterior Extreme Position (PEP) indicates the position

at which a leg controller initiates a swing movement on average and switches from stance to swing (note that the coordination rules act on the PEP and shift the PEP

forward or rearward to organize the overall behavior which is not shown in the figure). Shortly after the left middle and right hind leg performed swing movements that

point very far to the front of the working range (#1), the walker becomes unstable (#2) when trying to lift the left hind leg. Therefore, internal simulations are started

(highlighted in green and red) during which motor commands are routed to the internal body model, the leg positions of which are shown. First (highlighted red), an

unsuccessful behavior is tested: a stance movement which has initially no effect as the agent is stopped. But when the agent accelerates again (after 100 iterations)

the problem is still present and the agent becomes instable (#3). As a second trial, a backward swing movement of the middle left leg is tested via internal simulation

(green highlighted area; the swing movement in the unusual direction is plotted in red). Afterwards (#5) the solution found is tested on the real robot (highlighted in

blue) showing that walking continues successfully.

As mentioned, we forced the robot into an awkward posture
in such a way that the swing movement of the left middle and
right hind leg moved very far to the front of their working
range, i.e., beyond their normal AEP. Next, the left hind leg
marked by a dashed line in Figure 9 is supposed to start a swing
movement. The center of mass would then not be supported
anymore by the left middle leg and right hind leg [Figures 9, 10
(2), after 580 iterations]. Therefore, the system would tumble
backwards.

As a consequence, the problem detector is activated, which
stops the overall movement of the robot and triggers the cognitive
expansion which then starts motor planning. In the example
shown in Figures 9, 10 the robot first selects a stance movement
in the left hind leg (due to the somatotopical neighborhood, see
Figure 7, in SAL layer). This stance movement is then applied in
internal simulation.

As a result, an unsuccessful internal simulation can be
observed (highlighted in red) (2)–(3), which is interrupted when
the left hind leg should be lifted, because this action would again
lead to an instable configuration of the internal body model [see
upper panel, (3)]. Note that during the time highlighted in red
(and green, see below) the robot is not moving. Only the internal
model is used to provide predictions of the movements.

As a consequence, a second iteration of the cognitive
expansion is invoked (this section is highlighted green, as it turns
out to be successful): First, activation is further spread in the SAL
layer. Second, a behavior is selected in the WTA layer which has
not yet been tested. And third, the behavior is applied as internal
simulation.

For this second internal simulation, the internal body model
and control system have to be reset initially. To this end, it turned
out to be sufficient to update, first, the internal model with the
values from the real robot structures (this is the starting condition
required for the internal simulations; see Figure 10, at the border
of the red and green section, the position of the leg in the internal
model jumps back to the original position of the robot leg).
Second, as the control system is behavior-based it depends on the
sensor state represented by the current position of the robot. This
state can be enforced onto the control system so that the system
converges back to its behavioral state.

In the simulation run shown, the behavior selected next is a
backward swing movement of the left middle leg (depicted in
Figure 10 by a red line for the position of the left middle leg;
correspondingly, in Figure 9 the swing movement backwards is
shown as a red bar). As illustrated in the parts highlighted in
green, again the forward movement of the body is interrupted for
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some time. During this time the newly selected behavior is tested
by internal simulation. When the system starts to accelerate
again, the left middle leg now being placed further to the rear
helps to support the robot. When the left hind leg starts to swing,
the left middle leg is ready to take over and to support the body
(shown in Figure 9 in the upper panel in the body posture at #4 at
around 800 iterations). The internal simulation runs further for
a given time (here we used additional 300 iterations) in order to
guarantee that normal walking can be continued.

When the internal simulation was successful the behavior
selected (which is still stored in the WTA layer) will be applied
on the (simulated) physical system (see #5 and blue area in
Figures 9, 10). This part is still regarded as a test of the behavior.
This test is necessary because internal simulation and robot can
of course lead to slightly different results which over time might
accumulate. For example, in Figure 9 the behavior of the right
middle leg differs between internal simulation and testing the
behavior on the robot. The right middle leg is very close to
its posterior extreme position and on the verge of starting a
swing movement. In both cases, the robot is standing still and
not supposed to move further forward. But in the case of the
robot (highlighted blue), a small passive movement would be
sufficient to initiate a swing movement. Nonetheless, as can be
seen from the footfall pattern, the application on the robot is
also successful and the system converges to a stable gait pattern.
This stresses the robustness of the underlying control approach
and highlights how important it is that planning and control are
tightly intertwined. In the blue area and beyond, Figure 10 shows
the movements of the leg of the real robot. Immediately after the
new behavior has been induced, one can observe how the phases
of the individual leg controllers are rearranged. For example,
the right front leg is forced to make an early swing movement
after the right middle leg has finished its swing movement (see
Schilling et al., 2013b). But already after a very short time, a single
step of the robot, a stable tetrapod-like gait emerges (as can be
seen in Figure 9).

The example illustrates the faculty of reaCog to activate
behavioral elements out of context in order to find a solution
to a current problem. As illustrated, the system (reaCog plus
robot) manifests an impressive stable behavior, although various
deviations from normal walking behavior can be observed during
the complete process.

Simulation Series on Disturbed Walking
For a more quantitative evaluation of the performance of the
reaCog architecture we performed two additional series of
simulations to illustrate the contributions of the different parts of
the system. On the one hand, there is the underlying reactive and
biological inspired control system (based on Walknet Schilling
et al., 2013a). On the other hand, when running into stability
problems the cognitive expansion has been introduced which can
take over in order to reconfigure the posture in a way that allows
to continue stable walking.

Following the approach presented above in detail, we again
used the repositioning of a leg during swing movement which
means that, for a selected swing movement, the target position
is shifted to the front. This represents a quite natural example

disturbance as the insects are often climbing through twigs
that do not provide many footholds. As a consequence, insects
perform searching movements that may shift the end position of
the swing movements further to the front.

As a first series of simulations, after a randomly chosen point
in time (during the first 10 s of walking) one leg is selected
randomly for which the next swing movement is shifted to
the front (about 5 cm which equals a third of a complete step
length). In this way, different legs are affected in different walking
situations. We ran 100 different simulations, therefore each leg
was targeted multiple times and in the different stages of the
10 s of walking. As a result, when only one leg is targeted the
reactive control system showed to be sufficient and the walker
never got unstable independent of which leg was shifted. For
all simulations, walking continued for at least 5 more seconds
after the disturbance. In most cases, already after one subsequent
step the control system has established again a stable walking
pattern. Only for an early change in a front leg this requires
two stepping cycles. Stability is accomplished mainly through
compensating the leg shift. While the shifting of the target
position would prolong the next step for the respective leg, the
local coordination influences force the leg into an earlier lift-
off in order to compensate. Detailed results are provided as
Supplemental Data 1 in SupplementaryMaterial which show for
each of the different legs (front, middle, and hind leg) a single run
as an example. As can also be seen in the data, the walking pattern
emerges quite early in the first or the second step.

As a more severe disturbance, we performed a series of
simulations in which two legs were targeted. Again, after a
randomly chosen point in time (during the first 10 s of walking)
two legs are selected randomly for which the next swing
movement is shifted to the front (about 5 cm which equals a
third of a complete step length). We performed 100 simulation
runs with all kind of combinations between legs multiple times.
As already discussed for the example shown above (Section
Simulation Results for the Example Scenario), in this case
the reactive biologically inspired control system may run into
unstable situations that require to stop the walking behavior to
avoid that the robot would topple over. In the following we
provide results on for how many cases the system struggled with
stability and how the cognitive expansion was able to deal with
those situations. Overall, there are eight instable situations which
were caused by a disturbance of a middle and the diagonal hind
leg (a case as described in detail above, Section Simulation Results
for the Example Scenario). For these eight simulation runs the
cognitive expansion had to take over and has found a solution in
all instances. The system always became instable when the other
(non-disturbed) hind leg tried to initiate a swing movement.
Interestingly, different solutions have been found. On the one
hand, a rearrangement of the legs could be observed in a way
that one leg was moved backwards and unload the non-disturbed
hind leg which afterwards was able to initiate a swing movement.
This was accomplished either through moving backwards the
anterior middle leg or the contra lateral hind leg. On the other
hand, we observed two cases in which the slowing down of the
walking speed of the complete system was already sufficient to
solve the problem as during the slowing down a swing movement
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could be terminated which provided enough support for the
walker.

These results show that the cognitive expansion is able to
find different suitable solutions. Note, that the solution disrupts
the coordination pattern of all the legs. Only together with the
reactive system and the coordination rules the system is able
to select a movement which enables stable ongoing walking. In
some instances the system discarded solutions which we, on a
first guess, would have assessed as possible solutions, but which
later-on run into conflicts.

RELATED WORK

In this section, we will compare reaCog as a system with related
recent approaches in order to point out differences. While
there are many approaches toward cognitive systems and many
proposals concerning cognitive architectures, we will concentrate
on models that, like reaCog, consider a whole systems approach.
First, we will deal with cognitive architectures in general. Second,
we will briefly present relevant literature concerning comparable
approaches in robotics, because a crucial property of reaCog is
that it uses an embodied control structure to run a robot.

Models of Cognitive Systems
Models of cognitive systems generally address selected aspects
of cognition and often focus on specific findings from cognitive
experiments (e.g., with respect to memory, attention, spatial
imagery; review see Langley et al. (2009), Wintermute (2012).
Duch et al. (2008) introduced a distinction between different
cognitive architectures. First, these authors identified symbolic
approaches. As an example, the original SOAR (State, Operator,
and Result; Laird, 2008) has to be noted, a rule-based
system in which knowledge is encoded in production rules
that allow to state information or derive new knowledge
through application of the rules. Second, emergent approaches
follow a general bottom-up approach and often start from
a connectionist representation. As one example, following a
bottom-up approach, Verschure et al. (2003) introduced the
DAC (Distributed Adaptive Control) series of robot architectures
(Verschure et al., 2003; Verschure and Althaus, 2003). These
authors initiated a sequence of experiments in simulation and
in real implementation. Verschure started from a reflex-like
system and introduced higher levels of control on top of the
existing ones which modulated the lower levels and which were
subsequently in charge on longer timespans (also introducing
memory into the system) and were integrating additional sensory
information. The experiments showed that the robots became
more adapted to their environment exploiting visual cues for
orienting and navigation etc., (Verschure et al., 2003). Many
other approaches in emergent systems concentrate on perception,
for example, the Neurally Organized Mobile Adaptive Device
(NOMAD) which is based on Edelman (1993) Neural Darwinism
approach and demonstrates pattern recognition in amobile robot
platform (Krichmar and Snook, 2002). Recently, this has gained
broader support in the area of autonomous mental development
(Weng et al., 2001) and has established the field of developmental
robotics (Cangelosi and Schlesinger, 2015). A particular focus in

such architectures concerning learning is currently not covered
in reaCog. In general, as pointed out by Langley et al. (2009),
these kinds of approaches have not yet demonstrated the broad
functionality associated with cognitive architectures (and—as
in addition mentioned by Duch et al. (2008)—many of such
models are not realized and are often not detailed enough to
be implemented as a cognitive system). ReaCog realizes such an
emergent system but with focus on a complex behaving system
that, in particular, aims at higher cognitive abilities currently
not reached by such emergent systems. The third type concerns
hybrid approaches which try to bring together the advantages
of the other two paradigms, for example ACT-R (Adaptive
Components of Thought-Rational, Anderson, 2003). The, in
our view, most impressive and comprehensive model of such a
cognitive system is presented by the CLARION system (review
see Sun et al., 2005; Helie and Sun, 2010) being applied to creative
problem solving. This system is detailed enough so that it can be
implemented computationally. Applying the so called Explicit-
Implicit Interaction (EII) theory and being implemented in the
CLARION framework, this system can deal with a number of
quantitatively and qualitatively known human data, by far more
than can be simulated by our approach as reaCog, in contrast,
does not deal with symbolic/verbal information. Apart from this
aspect, the basic difference is that the EII/CLARION system
comprises a hybrid system as it consists of two modules, the
explicit knowledge module and the implicit knowledge module.
Whereas, the latter contains knowledge that is not “consciously
accessible” in principle, the explicit network contains knowledge
that may be accessible. Information may be redundantly stored
in both subsystems. Mutual coupling between both modules
allows for mutual support when looking for a solution to a
problem. In our approach, instead of using representational
differences for implicit and explicit knowledge to cope with the
different accessibility, we use only one type of representation,
that, however, can be differently activated, either being in the
reactive mode or in the “attended” mode. In our case, the localist
information (motivational units) and the distributed information
(procedural networks) are not separated into two modules, but
form a common, decentralized structure. In this way, the reaCog
system realizes the idea of recruitment as the same clusters are
used in motor tasks and cognitive tasks. Whereas, we need an
explicit attention system, as given in the spreading activation and
winner-take-all layer, in the CLARION model decisions result
from the recurrent network finding an attractor state.

Many models of cognition take, quite in contrast to our
approach, as a starting point the anatomy of the human brain. A
prominent example is the GNOSIS project (Taylor and Zwaan,
2009). It deals with comparatively fine-grained assumptions
on functional properties of brain modules, relying on imaging
studies as well as on specific neurophysiological data. While
GNOSIS concentrates mainly on perceptual, in particular visual
input, the motor aspect is somewhat underrepresented. GNOSIS
shows the ability to find new solutions to a problem, including
the introduction of intermediate goals. Although an attention
system is applied, this is used for controlling perception, not
for supporting the search, as is the case in reaCog. Related to
this, the search procedure—termed non-linguistic reasoning—in
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GNOSIS appears to be less open as the corresponding network is
tailored to the actual problem to avoid a too large search space. In
our approach, using the attention system, the complete memory
can be used as substrate for finding a solution.4.2 Cognitive
Robotic Approaches

The approaches introduced in the previous section are not
embodied and it appears difficult to envision how they could
be embodied (Duch et al., 2008). Following the basic idea of
embodied cognition (Brooks, 1989; Barsalou, 2008; Barsalou
et al., 2012) embodiment is assumed as being necessary for any
cognitive system. Our approach toward a minimal cognitive
system is based on this core assumption. Robotic approaches
have been proposed as ideal tools for research on cognition
as the focus cannot narrowed down to a singular cognitive
phenomenon, but it is required to put a unified system into the
full context of different control processes and in interaction with
the environment (Pezzulo et al., 2012).

ReaCog as a system is clearly embodied. The procedures
cannot by themselves instantiate the behavior, but require a body.
The body is a constitutive part of the computational system,
because the sensory feedback from the body is crucially required
to activate the procedural memories in the appropriate way. The
overall behavior emerges from the interaction between controller,
body and environment. In the following, we will review relevant
embodied robotic approaches.

Today, many robotic approaches deal with the task of learning
behaviors. In particular, behaviors should be adaptive. This
means, a learned behavior should be transferable to similar
movements and applicable in a broader context. Deep learning
approaches have proven quite successful in such tasks e.g., Lenz
et al. (2015), but many require large datasets for learning. Only
recently Levine et al. (2015) presented a powerful reinforcement
learning approach in this area. In this approach, the robot
uses trial-and-error during online learning to explore possible
behaviors. This allows the robot to quickly learn control policies
for manipulation skills and has shown to be effective for quite
difficult manipulation tasks. When using deep learning methods
it is generally difficult to access the learned model. In contrast
to reaCog such internal models are therefore not well suited
for recruitment in higher-level tasks and planning ahead. In
particular, there is no explicit internal body model which could
be recruited. Rather, only implicit models are learned and have to
be completely acquired anew for every single behavior.

In the following, two exciting robotic examples tightly related
to our approach will be addressed in more detail. The approach
by Cully et al. (2015) aims at solving similar tasks as reaCog for a
hexapod robot. It also applies as a general mechanism the idea
of trial-and-error learning when the robot encounters a novel
situation. In their case these new situations are walking up a
slope or losing a leg. There are some differences compared to
reaCog. Most notably, the testing of novel behaviors is done on
the real robot. This is possible as the trial-and-error method is
not applying discrete behaviors. Instead, central to the approach
by Cully et al. (2015) is the idea of a behavioral parametrization
which allows to characterize the currently experienced situation
in a continuous, low dimensional space. A complete mapping
toward optimal behaviors has been constructed in advance offline

(Mouret and Clune, 2015). This pre-computed behaviors are
exploited when a new situation or problem is encountered. As
the behavioral space is continuous, the pre-computed behavior
can be used to adapt for finding a new behavior. Further, there is
no explicit bodymodel that is shared between different behaviors.
Instead, the memory approximates an incomplete body model,
as it contains only a limited range of those movements which
are geometrically possible. In contrast, reaCog, using its internal
body model, allows to exploit all geometrically possible solutions
and is not constraint to search in a continuous space, as illustrated
by our example case, where a single leg is selected to perform
completely out of context.

While there is only a small number of robotic approaches
dealing with explicit internal simulation, most of these are
using very simple robotic architectures with only a very small
number of degrees of freedom [for example see Svensson et al.
(2009) or Chersi et al. (2013)]. It should further be mentioned
that predictive models are also used to anticipate the visual
effects of the robot’s movements (e.g., Hoffmann, 2007; Möller
and Schenck, 2008). With respect to reaCog the most similar
approach has been pursued by Bongard et al. (2006). These
authors use a four-legged, eight DoFs robot which, through
motor babbling—i.e., randomly selected motor commands—
learns the relation between motor output and the sensory
consequences. This information is used to distinguish between
a limited number of given hypotheses concerning the possible
structure of the body. Finding the best fitting solution, one body
model is selected. After the body model has been learned, in
a second step the robot learns to move. To this end, the body
model was used to perform different simulated behaviors and
was only used as a forward model. Based on a reward given
by an external supervisor and an optimizing algorithm, the best
controller (sequence of moving the eight joints) was then realized
to run the robot. Continuous learning allows the robot to register
changes in the body morphology and to update its body model
correspondingly. As themost important difference, Bongard et al.
(2006) distinguish between the reactive system and the internal
predictive body model. The central idea of their approach is
that both are learned in distinct phases one after another. In
reaCog the bodymodel is part of the reactive system and required
for the control of behavior. This allows different controllers
driving the same body part and using the same body model for
different functions (e.g., using a limb as a leg or as a gripper,
Schilling et al., 2013a, Figure 10). In addition, different from
our approach, Bongard et al. (2006) do not use artificial neural
networks (ANN) for the body model and for the controller, but
an explicit representation because application of ANN would
make it “difficult to assess the correctness of the model” (Bongard
et al., 2006, p. 1119). ReaCog deals with a much more complex
structure as it deals with 18 DoFs instead of the only eight
DoFs used by Bongard et al. (2006) which makes an explicit
representation even more problematic.

Different from their approach, we do not consider how the
body model and the basic controllers will be learned, but take
both as given (or “innate”). While the notion of innate body
representations is controversial (de Vignemont, 2010), there is
at least a general consensus about that there is some form
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of innate body model (often referred to as the body schema)
reflecting general structural and dynamic properties of the body
(Carruthers, 2008) which is shaped and develops further during
maturation. This aspect is captured by our body model that
encodes general structural relations of the body in service
for motor control, but may adapt to developmental changes.
While currently only kinematic properties are applied, dynamic
influences can be integrated in the model as has been shown in
Schilling (2009).

A further important difference concerns the structure of
the memory. Whereas, in Bongard’s approach one monolithic
controller is learned to deal with eight DoFs and producing
one specific behavior, in reaCog the controller consists of
modularized procedural memories. This memory architecture
allows for selection between different states and therefore
between different behaviors.

DISCUSSION AND CONCLUSION

A network termed reaCog has been proposed that is based
on the reactive controller Walknet equipped with decentrally
organized behavioral modules, or procedures, all connected to
motivation units, and a body model. The motivation units form a
network that represents a heterarchical architecture allowing for
the realization of various internal states. These states result from
parallel activation of elements as well as competitive selection
between elements.

The body model can be used as an inverse model for
controlling motor output, as a forward model for internal
simulation of behavior, and it can be exploited to improve
erroneous sensor data (“sensor fusion”). Whereas, the reactive
part uses the ability of the body model to function as an
inverse model, the cognitive expansion exploits the internal
body model to be used as a forward model and thereby as a
tool for internal simulation of behavior. Internal simulation is
used for finding a new solution for a problem detected by a
problem detector. To this end, a three-layered network has been
introduced that selects a new, currently not used module of
the procedural memory, the contribution of which will then be
tested through internal simulation. If this simulation turns out
to be successful, i.e., shows a solution for the current problem,
the corresponding behavior will be executed in reality. Thus,
motor planning is possible using an extremely small expansion,
a network consisting of essentially six units plus three parallel
layers of units connected in a simple way.

In reaCog, there is no explicit, separate planner as used
in hybrid systems. Rather, the ability to plan ahead relies on
exploiting the reactive basis by operating on it much like a
parasite operates on its host, that is, by only controlling the
functioning of the reactive part. In other words, the cognitive
expansion does not represent a separate planner, but organizes
the activity of the reactive part, which is, during planning, not
connected with the motor output.

Thus, constitutive elements of reaCog are (1) embodiment, (2)
a decentralized organization of various procedures arranged in
a heterarchical architecture, (3) a holistic body model allowing

for pattern completion that is used in reactive behavior and can
be recruited for planning ahead, and (4) a small network, called
cognitive expansion, that enables the otherwise reactive system
to become—in the sense of McFarland and Bösser (1993)—
a cognitive one. We are not aware of any other neuronal
approach that covers all these properties. Although the network
represents a simple architecture, in the following we will argue
that properties often attributed to “higher” brains can be found
in reaCog, too, thereby approaching the question concerning the
basic neuronal requirements of such higher level phenomena.

Before entering into this discussion, one important aspect
missing in the current version of reaCog has to be noted. There
is long term memory represented by the procedures in the form
of “species memory” (Fuster, 1995). There is short term memory
as a new solution is stored until the corresponding behavior
is executed. There is however no faculty yet to transform the
content of this short term memory into a long term memory.
The ability to store such a newly acquired procedure as a long
term memory would of course be an advantageous property.
To gain this capability, the sensory situation accompanying
the occurrence of a “problem” should be able to directly elicit
activation of the procedure found to solve the problem.

When discussing the properties of a network like reaCog,
a crucial aspect concerns the notion of emergence. The
rational behind searching for emergent properties is the
assumption that many “higher level” properties are not based
on dedicated neuronal systems specifically responsible for the
respective properties. Rather, emergent properties arise from the
cooperation of lower-level elements and are characterized as to
require levels of description other than those used to describe
the properties of the elements. In the remainder, such emergent
properties will, where appropriate, be related to the requirements
posed by Langley et al. (2009) supporting the idea that reaCog
provides a minimal functional description for some of those
requirements.

According to Langley et al. (2009), a cognitive system should
show the following properties: (1) Storing motor skills and
covering the continuum from fully reactive, closed-loop behavior
to (automatic) open-loop behavior; (2) Emergent properties
resulting from the cooperation between different independent
modules; (3) Long term memory and short term memory; (4)
Attention to select sensory input; (5) Decisions on the lower
level and “choice” on the higher level; (6) Predictions of possible
actions; (7) Problem solving and planning of actions in the
world; (8) Recognition and categorization of sensory input; (9)
Remembering and episodicmemory; (10) Application of symbols
and reasoning; (11) To support reasoning, relationships between
beliefs have to be realized; (12) Interaction and communication,
including representation of verbal symbols; (13) Reflection and
explanation (metareasoning); (14) Confronting the interactions
between body and mind.

Requirements (1) and (2) are properties of Walknet. Above,
we already argued that requirements (3), (6), and (7) can be found
in reaCog, too. Belowwewill argue that also requirements (4) and
(5) are fulfilled, but not aspects (8)–(14).

As the cognitive expansion of the reactive network allows
the complete system—using psychological terms to describe
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its function—to “focus” or “concentrate” or “attend” on a
specific behavior, we have already earlier termed this expansion
“attention system” supporting Langley et al.’s issue (4). Its ability
to focus on specific memory elements may correspond to what
sometimes has been termed “spot light” (Baars and Franklin,
2007) referring to the observation that the content of only one
memory element becomes aware at a given moment in time.
Recall, that selection of a specific procedure via theWTA network
of the attention system does not mean that the other procedures
are suppressed. The cognitive expansion network does not
prohibit parallel activation of procedures. This requirement is in
line with current developments in the area of cognitive systems
research as pointed out by Duch et al. (2008). Inspired by the
way how brains are organized, these authors propose, first, that
cognitive systems in the future should incorporate a mechanism
to focus attention, which is realized in reaCog through simple
local competition as realized in theWTA structures. And second,
that a neural network-like spreading activation mechanism is
required in order to broaden search and follow associations,
which is given in the spreading activation layer.

The fifth aspect of Langley et al. (2009) is concerned with
action selection on lower levels and “choice” of behavior on
a higher level. Action selection is indeed a crucial property
of the network. On a lower level, within a given behavioral
context—in our case walking—specific procedures compete via
local WTA connections. For instance, a leg controller has to
decide when to perform swing or stance movements. On an
intermediate level, a decision can be made between, for example,
forward walking and backward walking. On an even higher level,
reaCog, exploiting the cognitive expansion, can select one specific
behavioral element to be activated in addition to the currently
active units. Therefore, Langley et al.’s requirement (5) is covered,
too.

Thus, reaCog shows action selection not only on the reactive
level, but also on the cognitive level, whereby the decisions based
on internal simulation (or imagined action, “mental” action, or
“probehandeln” according to Freud (1911) are not determined
strictly by the sensorily given situation. Even if an external
observer had the ability to monitor the internal states of the
agent controlled by reaCog, the behavior of the agent could
not be predicted by this observer. This is the case because,
due to the noise in the SAL network, there is a stochastic
element contributing to the decision. On the other hand, the
final decision is not purely random, because the proposals made
by the attention system are tested for feasibility via the internal
simulation and are to some extent guided by the somatotopic
structure of the SAL network. The proposal is further tested
by performing the behavior in reality. In this way, this process
of finding a new solution may be viewed as to be based on
a Darwinian procedure, starting with an, in part, stochastic
“mutation,” followed by a selection testing the proposal for
“fitness.”

It has been stated that in a cognitive system, in order to
address memory elements out of context (“global availability,”
e.g., Dehaene and Changeux, 2011), these elements have
to be represented independently, i.e., not embedded in
reactive structures. In reaCog, procedures are not represented

independently, but are always represented within their context.
Nonetheless, the functioning of the cognitive expansion allows
to integrate them in another context. In other words, in
reaCog, the procedures are globally available. Therefore, global
availability may not require procedures being stored independent
of any context (or “amodally”). Thus, reaCog represents a
concrete architecture showing how global availability might be
established in a neural system without requiring independent
representation.

There is a group of related terms addressing a fundamental
principle of brains. These are the “massive redeployment
hypothesis” (Anderson, 2010), the “neural recycling theory”
(Dehaene, 2005), the “shared circuits model” of Hurley (2008)
and Gallese’s “neural exploitation” (Gallese and Lakoff, 2005),
summarized by Anderson (2010) by the term “neural reuse.”
Neural reuse means that a system is able to exploit existing
components that do something useful to support a new task,
either in the evolutionary time frame or by learning (Anderson,
2010, p. 250). In other words, neural reuse states that existing
elements are used for other purposes. ReaCog models neural
reuse of two kinds as listed by Anderson. One type, already
applied in the current version of reaCog, corresponds to the use
of the same procedural elements for both motor control and
planning. Here reuse corresponds to the case of having been
installed in evolutionary time scales. The second type addressable
in reaCog concerns the reuse of procedural elements as a result
of learning the integration of a given procedure in a new context
as described above, which is, in reaCog, currently only given in
the form of short term memory. But the ability to transfer this
information into long term memory is a major focus for future
work.

Although the structure of reaCog is far away from any
morphological similarity to mammalian brains, functionally
reaCog shows some similarity and may, therefore, in spite
of its simplicity, be considered as a scaffold helpful for the
understanding of properties of higher brains. To this end,
taking a more abstract view, one might ask whether higher
level properties characterized by using psychological terminology
might be attributed to reaCog. As noted earlier, in reaCog
emergent properties can already be observed at lower levels (e.g.,
production of different gaits) but they can also be found at higher
levels, thereby supporting Langley et al.’s second requirement.
Above, we had already used one such higher level term, attention.
It has been argued (Cruse and Schilling, 2013, 2015) that further
emergent properties as are intentions and emotions might be
attributed to a system as reaCog, too, at least on the functional
level. When adding some further procedures, reaCog might even
be equipped with basic aspects required for Access Consciousness
as well as Reflexive Consciousness (Cruse and Schilling, 2013,
2015).

Taken together, Langley et al.’s (Langley et al., 2009)
requirements for cognitive systems (1)–(7) are well covered by
reaCog. To conclude, we will briefly address the remaining
issues (some of which have already been mentioned above): The
capability to categorize sensory input, [Langley et al.’s issue (8)]
is not given in reaCog as we focus mainly on the motor aspects.
As mentioned, learning will be the focus of future work and
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will address episodic memory (9). Other aspects would require
further extension: Langley et al.’s issues (10)–(12) refer to the
ability to use (verbal) symbols, a property not given in reaCog.
However, a way has been sketched how this might be possible (for
a first step toward this property see (Schilling and Spranger, 2010;
Cruse and Schilling, 2013; Schilling and Narayanan, 2013), based
on ideas of Steels and Belpaeme (2005) and Narayanan (1999).

Langley et al.’s issue (13) concerns Reflection and explanation.
This property is not realized in reaCog and may also depend on
the ability to apply symbolic knowledge. Issue (14), the property
of cognitive systems to “confront the interactions between
body and mind” addresses the property of having phenomenal
experience, and is not found in reaCog, too (for a discussion of
this matter see Cruse and Schilling, 2013, 2015). In summary,
a number of emergent properties can be observed in reaCog,
including Langley et al.’s issues (1)–(7). Issues (8)–(13) require
further expansions.

In this article we focus on the situation that there is a problem
which requires immediate solution and as a consequence,
immediate internal simulation. As in our situation the body
model is needed for simulation, the former cannot be used for
controlling other behaviors at the same time. In other words,
the body position has to be kept constant during internal
simulation. In the following we briefly mention three cases which
do not comply with this situation. In the first case internal
simulation is not required. In this simple case the network is
equipped with reactive procedures that allow for unspecific,
general responses in case a problem detector is activated. An
ubiquitous example is given by freezing behavior without active
search for a solution, hoping that the problem will disappear
on its own. Another example might be a procedure that allows
emitting a general alarm signal that activates conspecifics. As
a second case, one might think of situations that allow to
postpone the search for a solution. In this case the normal
behavior can be continued until a situation is given that allows
to use the internal model without getting into conflict with
current behavior. This case would at least require a short term
memory to store the problem situation so that this could later
be reactivated to start internal simulation, an expansion not yet
implemented in the current version of reaCog. As a third, more
complex case there might be a network that is able to control
any behavior and at the same time, run an internal simulation.
Whereas, for the second case a comparatively simple expansion
of reaCog would suffice, the latter case appears to be much more
demanding. It might, for example, require a second internal

model plus the corresponding circuit to control both models
independently.

The term “cognition” as used here, is based on the simple
definition proposed by McFarland and Bösser (1993), i.e., the
faculty of being able to plan ahead. This faculty is achieved
here by using a reactive system plus introduction of a “cognitive
expansion.” As discussed above, such a system appears to be
suited to form a basis on which further emergent properties may
be realized, properties that are often listed as being required for
a system termed cognitive as are Langley et al’s requirements
(8)–(14), for example. If this view is correct, these properties
need not necessarily be explicitly included in such a definition,
but appear to result from a system based on reactive structures
plus the critical capability of planning ahead, underlining the
power of McFarland and Bösser (1993) clear-cut definition of
cognition.
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In nature, insects show impressive adaptation and learning capabilities. The proposed

computational model takes inspiration from specific structures of the insect brain: after

proposing key hypotheses on the direct involvement of the mushroom bodies (MBs)

and on their neural organization, we developed a new architecture for motor learning

to be applied in insect-like walking robots. The proposed model is a nonlinear control

system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking

neural network (SNN) with novel characteristics, able to memorize time evolutions of

key parameters of the neural motor controller, so that existing motor primitives can

be improved. The adopted control scheme enables the structure to efficiently cope

with goal-oriented behavioral motor tasks. Here, a six-legged structure, showing a

steady-state exponentially stable locomotion pattern, is exposed to the need of learning

new motor skills: moving through the environment, the structure is able to modulate

motor commands and implements an obstacle climbing procedure. Experimental results

on a simulated hexapod robot are reported; they are obtained in a dynamic simulation

environment and the robot mimicks the structures of Drosophila melanogaster.

Keywords: insect brain, insect mushroom bodies, spiking neural controllers, learning, goal-oriented behavior

1. INTRODUCTION

Recent results and experiments performed on insects shed light on their highly developed learning
and proto-cognitive capabilities enabling them to adapt extremely well to their natural environment
(Menzel and Giurfa, 1996; Liu et al., 1999; Tang and Guo, 2001; Chittka andNiven, 2009). Modeling
insect brains is an increasingly important issue for the design of learning and control strategies to
be applied on autonomously walking robots. Within the insect brain an important paired neuropil
with higher control functions are the mushroom bodies (MBs), recently used to model different
behavioral functions (Smith et al., 2008; Arena et al., 2013c). Studies on bees and flies identified
the MBs as a relevant area for associative learning and memory in odor conditioning experiments
(Menzel and Muller, 1996; Menzel, 2001; Scherer et al., 2003; Liu and Davis, 2006). MBs are also
involved in behaviors depending on other sensory modalities, like vision (Liu et al., 1999; Menzel,
2001; Tang and Guo, 2001), other types of learning such as choice behaviors (Tang and Guo, 2001;
Gronenberg and Lopez-Riquelme, 2004; Brembs, 2009) and, as recently introduced, also in the
improvement of gap-climbing tasks (Pick and Strauss, 2005; Kienitz, 2010).

MBs receive olfactory input from the antennal lobes via projection neurons. The latter run in
the medial antennal lobe tract, provide input to the MB calyces and continue on to the lateral
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horn (LH). The mediolateral and the lateral antennal lobe tracts
emerge from the antennal lobes as well, but bypass the calyces
and project directly to the LH. The LH region controls inborn
behavior, whereas the MBs are thought to be involved in learnt
behavior. Analysing the interaction between the different neural
structures we investigated the emergence of interesting neural
activities responsible for specific behaviors in insects, including
flies, like attention, expectation, delayed-match to sample tasks,
and others (Arena et al., 2012a,b, 2013b).

Major dynamical aspects characterizing the locust olfactory
system were already outlined in Mazor and Laurent (2005). Here
a principal component analysis on the firing rate of a population
of PNs revealed different attractors for different odors. These
attractors show two transients and one fixed point, but transients
are most significant for an efficient odor classification. This
addressed for the first time the importance of transient dynamics
to explain and understand neural coding and information
processing in the MBs. Following these results, we hypothesized
that the role of transient dynamics is relevant for the sensory
information coding extending the results obtained in locust
olfactory system to the fruit fly. This hypothesis well match with
the organization properties of the MBs discussed in Nowotny
et al. (2003, 2005). Their model is based on spiking neurons
and synaptic plasticity, distributed through different layers. The
model is able to show consistent recognition and classification of
odors. In the study of Nowotny and colleagues, MBs are assumed
to be multi-modal integration centers, combining olfactory and
visual inputs. As in our current model, the capabilities are
independent of the type and the source of information processed
in the MBs.

Wessnitzer and co-authors investigated the interaction
between MBs and antennal lobes (ALs) and proposed a
computational model for non-elemental learning (Wessnitzer
et al., 2012). Different levels of learning and reinforcement
mechanisms were considered at the stage of the KCs to create
a coincidence detector and non-elemental learning. Reward
mechanisms are commonly considered for the creation of
aversive and appetitive olfactory memories (Schwaerzel et al.,
2003) and the role of dopamine is relevant in Drosophila
(Waddell, 2013). We here extended this scheme to memorize
specific parameters involved in the motor-skill learning process.
On the basis of fruit fly brain structures and on hypotheses
related to information processing and learning mechanisms MBs
are a structure able to adapt and memorize relevant parameters
involved in motor learning. This improves the fly’s capabilities
when it is trained in repeating a task like climbing over a chasm.
Therefore, a simplified computational model of theMB neuropile
was developed using a pool of spiking neurons representing the
so-called Kenyon Cells (KCs).

The computational model proposed in this paper for
motor learning takes the biological characteristics of the MBs
into account and, on the basis of the previously introduced
hypotheses, arrives at a neuro-computational structure similar to
a Liquid State Machine (LSM) proposed by Maass et al. (2002).
The information embedded in the dynamical neural lattice is
transferred to the lower motor layers by extrinsic MB neurons
that have been modeled as read-out maps.

One fundamental difference between the proposed model
and the LSM is the presence of local connectivity among the
neurons within the liquid layer. This element of our model
deserves particular attention: in fact, the structure configures as a
locally connected recurrent neural network which is fairly similar
to the Cellular Neural/Nonlinear Network (CNN) structure
(Manganaro et al., 1999), a paradigm already used for the
generation of complex dynamics and for controlling artificial
locomotion (Arena et al., 1999) and perception phenomena
(Arena et al., 2009). The other important characteristics of the
proposed model is related to the hardware implementation:
in fact there are a number of analog/logic VLSI CNN-based
chips available which implement digitally programmable analog
computers characterized by high computational speed and
analog, parallel computation capability, typically used for high
frame rate visual microprocessors (Rodríguez-Vázquez et al.,
2008). However, the suitable adaptation of the MB structure
modeled in this paper as a CNN architecture via the suitable
addition of trainable read-out maps would allow for the
possibility to adopt a well-assessed reference hardware for the real
time implementation of the proposed approach.

From the modeling perspective, the developed structure
links two main ideas: high parallelism in brain processing
and Neural Reuse (Anderson, 2010). According to the first-
mentioned, sensory pathways run in parallel and concur to form
abstract schemes of the environmental state, useful for motor
actions or abstract decisions. The Neural Reuse approach, on
the other hand, states that the same neural structure can be
concurrently exploited for different tasks. The insect MBs were
already addressed as centers where such characteristics could be
found, and the control structure herewith introduced makes a
step forward to derive an efficient computational model directly
useful as a robot behavioral controller (Arena and Patané, 2014).

2. MOTOR-SKILL LEARNING IN INSECTS

Among the different forms of neural adaptation encountered in
animals, motor-skill learning is a fundamental capability needed
to survive in dynamically changing environments and also to
cope with accidental impairments of animal’s limbs.

Motor-skill learning can be defined as the process to acquire
precise, coordinated movements needed to fulfill a task. Due
to the importance of this capability,sensory-motor conditioning
was one of the earliest types of associative learning found in
cockroaches and locusts. It has been demonstrated in the ventral
nerve cord of insects (Horridge, 1962) and is probably ubiquitous
in moving animals (Byrne, 2008; Dayan and Cohen, 2011).

The motor-skill learning system incrementally improves the
motor responses by monitoring the resulting performance:
this process guides the adaptive changes. By exploiting the
involved sensory motor loops, agents apply operant strategies
during motor learning: when a movement is performed, sensory
feedback is used to evaluate its accuracy (Brembs andHeisenberg,
2000; Broussard and Karrardjian, 2004).

In insects there are different examples of motor learning
processes that adapt motor schemes to specific tasks. For
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instance, honeybees can adapt the antennal movements to
an obstacle after a prolonged presentation of this obstacle.
Furthermore, the use of an outside rewarding mechanism
dramatically speeds-up the learning process (Erber et al., 1997).

Other insect behaviors involving motor learning were
reported by Mohl (1993); he investigated the relevance of
proprioception during flight in locust. In an interesting paper on
Drosophila motor-skill learning capabilities (Wolf et al., 1992),a
series of conditions has been identified for proper motor-skill
learning.

First, the fly has a desired target to reach; to fulfill this
aim, a number of motor programs are activated in a random
sequence. Efference copies of the motor programs are compared
with references and if, for a given motor behavior, a meaningful
correlation is found, this is applied. Other studies in this direction
were performed on bumblebees (Chittka, 1998) and butterflies
(Lewis, 1986).

Behavioral studies on insects confirmed that they are able
to show sophisticated and adaptive motor-control strategies
requiring the joint coordinated activity among the limbs. A
particularly suitable experimental setup to inspectmotor learning
capabilities is the behavioral paradigm of gap crossing, first
described by Blasing and Cruse (2004) and Blasing (2006) in
relation to stick insects, by Pick and Strauss (2005) forDrosophila
and in Goldschmidt et al. (2014) where the coackroach
capabilities were considered. Flies with a body length of typically
2.5mm (and with their wings clipped to disable flight) can cross
gaps of up to 4.3mm when fully exploiting their biomechanical
limits. Direct observation and high-speed video analysis of the
gap climbing procedure (see Pick and Strauss, 2005 and videos
supplied) outlined that flies first visually estimate the gap width
via parallax motion generated while approaching the gap. Then,
if they consider the gap as being surmountable, they initiate the
climbing procedure by combining and successively improving,
through several attempts, a number of parameters for climbing.
The hind legs are placed as close as possible near the proximal
edge; the middle legs are attached to the proximal side wall
of the gap and arrange the body horizontally; the front legs
stretch out to attach to the opposite gap side. Then the middle
legs are detached from the proximal side, swing over and are
attached to the distal side surface of the gap. Finally, the hind
legs are detached and the fly moves toward the other side.
These experiments clearly show that several parameters are
modified from their nominal values (for normal walking) and
also combined together in several successive phases to maximize
the climbing performance.

Later it was shown by Kienitz (2010) that flies improve their
climbing abilities when they iteratively climb over gaps of the
same width. The short-term improvements after 24 training trials
within 1min were seen in tests 20min after training; they are
missing in plasticity mutants. Rescue of plasticity in the MBs was
sufficient to restore the motor-learning capacity. The finding that
plasticity inMBs is a prerequisite for motor learning will be taken
as our working hypothesis for the development of the proposed
computational model. Experiments on gap crossing were also
performed with stick insects (Blasing and Cruse, 2004; Blasing,
2006). In these works the authors outlined the role of single leg

movements, searching reflexes, and coordination mechanisms
as important to fulfill the task. A model of gap crossing
behavior was implemented extending a previously developed bio-
inspired networkWalknet (Cruse et al., 1998), to reach simulated
results comparable with the biological experiments. Here the gap
crossing issue was considered as an extension of normal walking
behavior with only limitedmodifications. In our work we reached
a similar conclusion though starting from quite different models.
In fact the CPG for normal walking is maintained whereas only
a parameter adaptation was introduced to efficiently implement
climbing.

The climbing capabilities of other insects like cockroaches
were also considered to develop experiments on obstacle
climbing and gap crossing using hexapod robots (Goldschmidt
et al., 2014). The presence of an actuated joint in the robot
body was exploited to improve the capabilities of the system
to face with complex situations including gaps and obstacles
(Goldschmidt et al., 2014; Dasgupta et al., 2015). In Pavone et al.
(2006), the sprawled posture was a key element for solving the
obstacle-climbing issue. In other cases the presence of spoked legs
is a simple and efficient solution to improve power efficiency and
walking capabilities in presence of obstacles (Moore et al., 2002).
In some cases hybrid legged and wheeled robots try to take the
advantages of both solutions (Arena et al., 2010).

Whereas, these approaches exploit the mechanical structure,
other strategies instead consider primarily the adaptive
capabilities of the control structure. For instance, for solving
the antenna motor control problem, in Krause et al. (2009)
an echo-state network was applied to generate the antenna
movements in a simulated stick insect robot. The network was
able to store specific trajectories and to reproduce them creating
smooth transitions between the different solutions available,
depending on the control input provided.

Distributed recurrent neural networks, working as reservoirs,
were also used in Dasgupta et al. (2015) to create a forward
model needed to estimate the ground contact event in each leg
of a walking hexapod robot. The prediction error has been used
to improve the robot walking capabilities for different types of
terrains.

Our approach belongs to this last type of strategies, since
it takes into account primarily the adaptive capabilities of a
recurrent spiking network to solve a specificmotor learning issue.

In fact, in our work, we considered only obstacle climbing
scenarios because our Drosophila-like hexapod robot does not
contain body joints (i.e., as exploited in Dasgupta et al., 2015 to
facilitate also gap crossing); on the other hand it is unfeasible
to include in the robot the adhesive capabilities of fly leg tips.
Moreover, we assumed that the same computational structure
as that one involving the MBs for gap climbing tasks is also
involved in obstacle climbing. In the proposed example the
external information used to characterize the scenario to be faced,
was reduced to the obstacle height (e.g., acquired through a
simple visual processing method) in order to learn the set of
parameters that allow to fulfill the climbing task.

In particular, the MB intrinsic neurons are here modeled as a
spiking network working as a reservoir, able to generate a rich,
input-driven dynamics that is projected to other neural centers
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using read-out maps that work as MB extrinsic neurons. An
important added value obtained through the learning process
consists in allowing a generalization of the learned data: in fact
the network can generate the suitable output signals also for input
patterns not included in the learning set by interpolating the
memorized functions.

3. MODELING MOTOR-SKILL LEARNING

3.1. Known and Hypothesized Biological
Functions
Tasks related to motor-skill learning need a specialization of
motor functions to optimize performance.To fulfill this aim, a
strategy for searching for the most suitable system parameters to
be applied for modulating the leg trajectories is envisaged. The
generation of pseudo-random parameters constrained only by
the insect’s body parameters is the initial step needed to improve
the ongoing solution iteratively by trial and error. The searching
process will produce a subset of successful attempts used to
improve the overall system performance, storing the new set of
suitable parameters evaluated on the basis of an internal reward
function.

In insects, thoracic ganglia can be in charge for the generation
of these trials (Horridge, 1962), but MBs should mediate the
selection process consisting in a statistical shaping and in the
final choice of the successful parameters that modulate the basic
behaviors (Kienitz, 2010). Such learning processes are the basic
ingredients for the implementation of a short-term working
memory.

A neuro-control block scheme model is shown in Figure 1

where the main elements involved in the proposed model of
motor-skill learning are depicted. Plasticity and learning is
ubiquitous in the model due to the complexity of the brain
functions but for the aim of the proposed work we focused our
attention only on specific parts. Therefore, we considered all the
interconnections to be fixed except the synaptic output of the
MBs, as will be discussed in details in Sections 3.2 and 3.3, in
relation to the motor system (CPG). Plasticity and learning inside
other blocks, including the visual sensory and pre-processing
system, are not treated in this work.

The central complex (CX) is an excitatory center
responsible for behavior activations on the basis of visual and
mechanosensory inputs. The input signals are here processed
through a series of substructures: the protocerebral bridge (PB),
the fan-shaped body (FB), and the ellipsoid body (EB) (Hanesch

FIGURE 1 | Block diagram illustrating the role of different fly brain neuropils involved in motor control. Our model assumes that the parameter adaptation

for the modulation of the ongoing behavior is performed by the MBs that receive reinforcement signals in form of dopaminargic/octopaminergic neuron activity and

elaborate the learning process using a spiking neural network (SNN). The robot performs a visually guided navigation that acts on the Central Pattern Generator (CPG)

structure to control locomotion. A reinforcement signal is generated for the MBs whereas a Random Function Generator (RFG) is used to include fluctuations in the set

of control parameters for the CPG. The SNN function is used to memorize the temporal evolution of the modulated parameters if this improves the final motor

behavior during learning.
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et al., 1989; Strauss, 2002). Moreover, the PB is directly involved
in motor control; it is also responsible for the stabilization of
the walking direction (Triphan et al., 2010). On the contrary the
MBs seem have an inhibitory effect and are fundamental for the
adaptive termination of behaviors (Mronz and Strauss, 2001).

MBs present a large complexity at the level of the calyx,
due to the different KC types and their interconnection. From
the modeling point of view, KC types could be implemented
through different non-linear functions (or dynamical systems).
No information is available on the dynamics of these neurons
and electrophysiological data are in short supply. On the
other side powerful neurogenetic tools are available for the
fruit fly which allow for precise manipulations of the nervous
system in order to address links among specific neural
substrates, their functions and specific behaviors they are
responsible for.

Learning in Drosophila melanogaster has revealed multiple
memory types and phases and recent investigations underlined
that not all memory processes occur in MB neurons (Wu et al.,
2007; Zhang et al., 2013).

Here we hypothesize that the CX and in particular the PB
plays a role in motor learning: it performs adaptation of the
motor system parameters shaping the motor behavior while
the insect performs a task. The involvement is plausible as the
PB seems to control step length for direction (Strauss, 2002;
Triphan et al., 2010). This variability is attained in our model (see
Figure 1) through a random function generator (RFG) which
perturbs some relevant leg control parameters. This strategy
generates perturbed leg trajectories. On the basis of the expected
results, the on-going behavior is evaluated and eventually, MBs
receive a reinforcement signal via extrinsic dopaminergic and
octopaminergic neurons (Schwaerzel et al., 2003). Memory
consolidation occurs overnight. After consolidation, the MBs are
assumed to inhibit the perturbation provided by the RFG to
allow the memory retrieval. The overall control system designed
and implemented, as outlined in the following constitutes a
clear example of a bio-inspired embodied, closed-loop neural
controller.

3.2. MB Model for Motor Learning: Working
Hypotheses
In order to design both a biologically plausible and a
computationally feasible model of the MBs, the two following
hypotheses were formulated:

• It is possible that different KCs accept different sensorial inputs
at the level of the calyx. This assumption regarding different
sensorymodalities is made in parallel to olfactory learning (Lin
et al., 2013).
• Signal processing within the network takes place at two

different levels: within the KCs we have a spiking dynamics
within locally, randomly connected neurons, whereas, at the
level of extrinsic neurons, we have an external learning needed
to learn different tasks. This is a working hypothesis, useful,
from the one hand, to computationally simplify the model,
and, from the other hand, to allow the concept of Neural Reuse
to be directly implemented.

The following structural elements can be outlined:

1. Presence of randomly distributed internal connections.
2. Structural and functional correspondence between internal

weights, mirroring the connections within the KC lattice, and
the output weights, standing for connections among MBs and
extrinsic neurons.

3. Possibility of using the same neural lattice concurrently
in completely different tasks, following the Neural Reuse
paradigm, by separately training different sets of read-out
weights. The same network can therefore model a multimodal
(and multifunctional) structure, as are the MBs (Arena et al.,
2013c). We are hypothesizing that different sets of extrinsic
neurons are devoted to map different tasks.

The proposed control scheme has been implemented in a
computational model embedded on a robot simulated in a
realistic dynamical environment. Referring to Figure 1, the
robot navigates driven by vision: the heading commands are
provided to the locomotion controller through external stimuli.
An evaluation procedure assesses the suitability of the performed
actions in solving the assigned task. An event detector triggers the
evaluation process.

The reinforcement signal is passed to the MBs to evaluate
the changes generated by the RFG and used to update a set of
motor control parameters. Successful parameter updates, leading
to significant improvements in the climbing behavior lead to
memory formation. A SNN was considered as a plausible model
to generate the long-termmemory of the best parameters selected
during the learning process and to guarantee interpolation
capabilities important for the generation of feasible behaviors in
situations similar to those ones encountered during the learning
procedure. Finally a selector block determines if either a random
trial can be performed or the information stored in the SNN
can be used for the motor actions. Among the different kinds of
neural networks used for solving problems like navigation (Tani,
1996), multi-link system control (Cruse, 2002) and classification,
a lot of interest was devoted to Reservoir computing, which
mainly includes two different approaches: Echo State Network
(ESN) and LSM (Jaeger, 2001; Maass et al., 2002). In previous
studies the idea to use non-spiking Recurrent Neural Networks
to model the MBs memory and learning functions was explored
(Arena et al., 2013a). The core of the newly proposed architecture,
inspired by the biology of MBs’, resembles the LSM architecture.
It consists of a large collection of neurons, the so called liquid
layer, receiving time-varying inputs from external sources as well
as recurrent connections from other nodes in the liquid layer.
The recurrent structure of the network turns the time-dependent
input into spatio-temporal pattern in the neurons. These patterns
are read out by linear discriminant units. In the last years LSM are
becoming a reference point in replicating brain functionalities.
However, there is no guaranteed way to analyze the role of
each single neuron activity on the overall network dynamics: the
control over the process is very weak. This apparent drawback
is a consequence of the richness of the dynamics potentially
generated within the liquid layer. The side advantage is that
the high dimensional complexity can be concurrently exploited
through several projections (the read-out maps) to obtain
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non-linear mappings useful for performing different tasks at the
same time. The proposed network differs from the structure
reported in Arena et al. (2013a) in many aspects: it consists of
a lattice of inhibitory and excitatory spiking (instead of non-
spiking) neurons with a random connectivity, which is mainly
local (instead of non-local). Moreover, the network configuration
in Arena et al. (2013a), for solving the motor learning problem,
required a much larger network configuration. This could be
addressed to the much richer dynamics generated within the
SNN (see Section 5.1). Inputs are here provided as currents that,
through a sparse connection, reach the hidden lattice (i.e., the
liquid layer). Multiple read-out maps, fully connected with the
hidden lattice, can be learned considering the error between the
network output, collected through an output neuron for each
read-out map, and the target signal. The network details are
illustrated in the next section.

3.3. Network Structure and Parameters
Following the biological hints, proposed hypotheses and
suggestions from the classical LSM paradigm, the MBs’ structure
involved in motor learning has been modeled as a spiking-
based network consisting of three layers: an input layer, a hidden
recurrent neural lattice, and an output layer. The input layer
behaves like a filter that randomly redirects input stimuli to a
reduced number of neurons in the hidden-layer (KCs lattice). The
connectivity percentage used in this work is 15% from the input
layer to the KC layer.

The hidden layer is a SNN (i.e., the reservoir network), where
each unit is an Izhikevich Class I spiking neuron (Izhikevich,
2000) organized in a square topology with toroidal boundary
connections. The regular distribution of the neurons in a square-
shaped lattice was selected because, for computational reasons,
we considered the simplest structure where we can perform
distance metrics. The following differential equations describe
the model:

v̇ = 0.04v2 + 5v+ 140− u+ I
u̇ = 0.02(−0.1v− u)

(1)

following spike-resetting condition:

if v ≥ 0.03, then

{

v←−0.055
u← u+ 6

(2)

Here v is the membrane potential, I is the synaptic current and u
is a recovery variable. Izhikevich neural models are well-known
in literature for offering a good compromise between biological
plausibility and computational efficiency.

Neurons are connected through synapses: here the spike-
rate from the pre-synaptic neuron is transformed into a current
for the post-synaptic one. The response of the synapses to a
pre-synaptic spike is as follows:

ε(t) =

{

Wt/τ exp (t/τ ), if t > 0
0 , if t < 0

(3)

where τ is the time constant, t is the time passed since the last
spike arrived at the pre-synapse andW is the synaptic efficiency.

This last parameter can be modulated by learning. This synaptic
model was also used to connect the lattice neurons to the output
neurons.

The fraction of inhibitory neurons in the pool is about 10%.
The connections within the lattice are represented by a synaptic
weight with a random uniform distribution in the range (0.5–
1.5), the input weights are equal to 1. The weights of the read-
out map are subject to training. The generation of the inter-
layer synaptic connectivity depends on a probabilistic function
of the distance di,j between the presynaptic (i) and postsynaptic
(j) neurons:

Pij = k ∗ Ci,j (4)

where

Ci,j Inhibitory (j) Excitatory (j)

Inhibitory (i) 0.1 0.4
Excitatory (i) 0.2 0.3

and

k = 2 if di,j ≤ 1
k = 1 if 1 < di,j ≤ 2
k = 0 if di,j > 2

(5)

The parameters Ci,j, reported in the previous table, have
been chosen according to Maass et al. (2002). The distance
di,j = 1 is calculated, either for horizontal or vertical adjacent
neurons, considering the neurons as distributed on a regular
grid possessing toroidal boundary conditions. From the relations
above it derives that the connectivity realized within the lattice
is local; this is an important element that facilitates a potential
hardware implementation of the control system where the
number of connections is drastically reduced and limited to each
neuron neighborhood.

The time constant in Equation (3) was randomly chosen
among the values τ = 5, 10, 30, and 50ms. This variability
improves the dynamics potentially shown by the network as will
be discussed in the following sections. The values of the synaptic
time constant have been chosen to obtain significant dynamics in
the simulation time window that is limited to 150ms.

The output layer consists of a series of output neurons,
modeled with a linear transfer function and fully connected with
the hidden lattice. The output weights are randomly initialized in
the interval (−1, 1) and are subject to learning. The integration
step used for the reported simulations was fixed to dt = 1.5ms.

3.4. Learning Mechanism
The time evolution of the target signals that the network need
to memorize is generated by shaping the lattice dynamics using
read-out maps. An incremental learning rule based on the Least
mean square algorithm is adopted to update the synaptic weights
of each read-out map. The learning process, resembling the
classical delta rule, depends on the lattice activity and on the error
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FIGURE 2 | Spiking activity of the lattice while generating the output signal during the testing phase. Inhibitory neurons are outlined in red.

FIGURE 3 | (A) Trend of the mean square error during 100 learning trials (epochs), (B) Comparison between the expected output and the network approximation at

the end of the 100 learning trials.

FIGURE 4 | Learning example with two different input-target pairs: input current 5 and 30µA. The interpolation capabilities were tested using different inputs:

5, 7, 10, 13, 15, 20, and 30µA. (A) Trend of the mean square error during 400 epochs used to learn the two input-target patterns. For each epoch we provided

alternatively either one or the other input-target pair, allowing the learning process to update the read-out weights obtained during the previous learning epoch. (B)

Comparison between the expected output and the network approximation at the end of the epochs.
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between the current output and the desired target. The updating
rule of the synaptic weights is here reported:

Wi,j(t + δt) =Wi,j(t)+ η ∗ Zi,j(t) ∗ E(t) (6)

where η is the learning rate, Zi,j(t) is the synaptic output of the
neuron (i, j) at time t and E(t) is the error between the network
output neuron and the desired target. Another possibility consists
of cumulating the weight variations during the simulation time
window, to finally apply the cumulative result during the last
simulation step.

4. SIMULATION RESULTS

The analysed motor learning process consists of adopting a series
of perturbations on specific leg control parameters to reach a
success in the assigned task. To apply a smooth perturbation,
we adopted as target signal, a cosinusoidal function, whose final
value corresponds to the parameter to be applied. In the following
simulations we adopted a lattice with 8 x 8 neurons that is a
good compromise to obtain a considerable variety of internal
dynamics. The learning process needs a series of iterations
(here called epochs) to successfully store the information in

FIGURE 5 | Behavior of the input currents provided to the output neuron from the lattice when the input layer provides a current of 5µA (A) and 30µA

(B). Inhibitory neurons are outlined in red.
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the read-out maps. In the following analysis we considered
100 epochs with a learning rate η = 0.5. During each epoch
the network is simulated for 100 integration steps. A typical
activity of the neural lattice is shown in Figure 2. The input
given to the network through an external current is related to
the information acquired from the environment and, using the
learning rule in Equation (6), we can determine the weights of
the read-out map in order to follow a target signal as shown in
Figure 3.

The network allows to interpolate the information acquired
during learning as illustrated in Figure 4. During the 400
epochs used for the learning phase, two distinct output
signals, corresponding to different input currents (Iin = 5
and 30µA), were learned. During the testing phase, besides
the two inputs already used in the learning phase, also other
input currents were provided obtaining plausible behaviors
that interpolate the dynamics of the two learned target
signals.

Figure 5 reports the synaptic activity (Equation 3), in the form
of currents generated by the lattice before learning, weighted by
the read-out map and summed over the 100 samples for all the
spikes emitted by the neurons to reproduce the two target signals.
It can be noticed that even a lattice with a limited number of
neurons can produce a large variety of dynamics that can be
combined by the output neurons. The differences in the synaptic
time constant, play a role in increasing the richness of dynamics
during the network activity. It is also evident how sensitive the
structure is to a change in the input current provided to the
lattice; it can generate a drastic change in the temporal evolution
of the network dynamics. This allows for a high interpolation
capability. The use of spiking networks over nonspiking ones to
model nonlinear dynamics is often considered as an additional

complication. Our case is an example to the contrary. In
fact, in Arena et al. (2013a) nonlinear nonspiking recurrent
neural networks were used to model MB activity: the non-
spiking recurrent configuration, suitable for solving the motor-
learning problem was fixed to 140 non locally connected units,
whereas the results presented in this paper were obtained via a
network with 64 spiking locally connected neurons in the liquid
layer.

5. MOTOR LEARNING: APPLICATION TO
CLIMBING

5.1. Learning New Motor Activities in a
Stable Locomotion Controller
The insect brain can be considered as a parallel computing
architecture where reflexive paths serve the basic needs for
survival, whereas learned paths allow the formation of more
complex behaviors.

Regarding motor activities in insects, the thoracic ganglia
are mainly responsible for the generation of locomotion gaits,
and the Central Pattern Generator (CPG) has widely been
accepted as being the core unit for locomotion control but
its fine-tuning is usually achieved by sensory information. The
approach proposed here considers the task of motor learning
as that of finding a suitable way for modifying the basic motor
trajectories on the single leg joints so as to improve motor-skills
in the light of novel conditions imposed by the environment.
Using a control approach, we can realize motor-skill learning
through a hierarchical adaptive controller, where, when facing
novel conditions, some parameters controlling the leg joint
trajectories are modulated. These modulations, shaped by the

FIGURE 6 | Neural network scheme: the top layer generates a stable gait pattern, whereas the bottom layer is constituted by additional sub-networks

generating the specific reference signals for the leg joints. The network devoted to control a middle leg is reported. The parameter adapted during the learning

process for the middle legs are indicated in red.
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kinematic constrains, realize novel leg trajectories which are
then applied to assess their suitability for the task. Once the
former locomotion conditions are restored, these modulations
are withdrawn and the baseline stable locomotor activity re-
emerges. Sets of successful parametric values are retained, so
that they can be re-applied whenever similar conditions should
be encountered again. The locomotion controller is made up
of basically two networks: one is devoted to generate a stable
phase displacement among the legs; the other is shaped on the
specific kinematic structure of each leg and constituted by several
motor neuron structures, as illustrated in Figure 6. The basic cell
characterizing the CPG architecture is described by the following
equations:

FIGURE 7 | General scheme of the procedure followed to improve the

robot motor-skills in a multi-stages task. Starting from Home, an event

triggers the request of parameter adaptation for the Step 1 that is tried until a

success occurs or a time-out is reached. Within the time-out triggered

window, it is possible to evaluate the effectiveness of multiple sets of

parameters that persist for about a complete cycle of a leg (i.e., overtime). The

success is evaluated by a cumulated reward and, if an improvement is

obtained, the parameter evolution is stored in the long-term memory (i.e.,

read-out maps). The other stages follow the same procedure.

{

ẋ1,i = −x1,i + (i+ µ+ ε)y1,i − s1y2,i + i1
ẋ2,i = −x2,i + s2y1,i + (i+ µ− ε)y2,i + i2

(7)

with yi = tanh(xi) and the parameters for each cell: µ =

0.23, ε = 0, s1 = s2 = 1, i1 = i2 = 0 generate a stable limit cycle
(Arena et al., 2005). µ is chosen to approximate the dynamics
to a harmonic oscillation. The CPG network is built connecting
adjacent cells using links expressing rotational matrices R(φ), as
follows:

ẋi = f (xi, t)+ k
∑

j 6=i

(R(φi,j)xj − xi) with i, j = 1, · · · , n (8)

where the summation involves all the neurons jwhich are nearest
neighbor to the neuron i; n is the total number of cells; f (xi, t)
represents the reactive dynamics of the i-th uncoupled neurons as
reported in Equation (7) and k is the strength of the connections.
The sum of terms performs diffusion on adjacent cells and
induces phase-locking as a function of rotational matrices
(Seo and Slotine, 2007). The presence of local connections
is an important added value because it reduces the system
complexity in view of a hardware implementation. The bottom
layer is designed based on the desired kinematic behavior; it is
directly correlated to the morphology of the limb. The network
controlling one of the middle legs is sketched in Figure 6. The
CPG neuron identified with the label R2 is connected through
rotational matrices with different angles to a network of motor
neurons arranged in a directed tree graph that uses the same
neuron model as CPG. The blocks H(•) are Heaviside functions
and are used to distinguish, within the limit cycle, between
the stance and swing phases: this allows to associate suitable
modulation parameters to each part of the cycle, depending on
the morphology of the leg. The signals are finally merged to
generate the position control command for the coxa, femur and
tibia joints. A detailed discussion on the CPG structure and
behaviors is reported in a previous study (Arena E. et al., 2012).

The overall network stability was theoretically proven
exploiting tools from partial contraction theory on a network
made of nonlinear oscillators with Laplacian couplings. As
demonstrated in previous studies, the network for gait control
has a diffusive, undirected tree-graph configuration, which
guarantees asymptotic phase stability independently of any
imposed locomotion pattern (Arena et al., 2011; Arena E. et al.,
2012).

The stable phase-locked oscillations generated in that way
are passed on to the motor neural network for each leg, whose
particular structure controls leg motion while maintaining the
imposed phase among the legs. Upon this stable basic locomotor
activity, the motor-learning controller is added, whose role is
to find suitable modulation of the single-leg motions to learn
proper trajectories in the presence of specific needs. Basic motor
activities are so disturbed to find new solutions for the leg
motions, thus implementing motor-skill learning.

5.2. Climbing Experiment
Motor-skill learning in the presented multi-limb system is
applied to improve the robot capabilities in solving different tasks
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involving multiple degrees of freedom; here, in fact a fine tuning
of parameters is required to modulate the basic cycling behavior
in the different legs of the robot.

Among the possible tasks, in the simulation a step-climbing
scenario has been considered in the simulation. In nature, insects
are continuously faced with uneven terrains and they adapt
their motor responses to accomplish tasks like climbing over
surmountable objects. Even flying insects, like D. melanogaster,
show exquisite climbing skills, since searching for food in the
near-field and courtship are achieved during walking. The aim
of motor learning in our experiments is to improve the climbing
capabilities of a simulated robot through the modulation in time
of a group of parameters used in the leg motor layer. This
simulated scenario is a realistic alternative to the gap climbing
scenario used in the biological experiments (Blasing and Cruse,
2004; Pick and Strauss, 2005; Kienitz, 2010; Triphan et al.,
2010). In fact, due to the adhesive capability of the fly legs
(possessing pulvilli and claws), gap climbing is an affordable
task for the real insect, whereas this is extremely difficult for a
Drosophila-inspired robot that cannot reach the same dexterity
as the biological counterpart. In other hexapod robots the
presence of an active body joint, inspired by the cockroach, was
exploited to improve the system capabilities in gap climbing
tasks (Goldschmidt et al., 2014). In our Drosophila-inspired
robot, due to the absence of this degree of freedom in the
body, we considered obstacle-climbing scenarios, which are a

challenging task for legged robots that have to improve their
climbing capabilities by learning. For a future direct comparison
with biological experiments, the new paradigm lends itself for
testing real flies. Moreover, the step climbing scenario can
be made more demanding by using slippery surfaces which
would reduce the advantage of the animal if compared with the
robot.

Step climbing for a robot is quite a complex task and
should involve an optimization method to adapt the
joint movements to different surfaces. To simplify the
problem, the task was split into different phases shown in
Figure 7.

The approaching phase is guided by the visual system that is
able to recognize the distance from the obstacle and its height.
When the robot’s distance from the step is below a threshold,
Phase 1 is activated and the parameters of the front legs are
adapted using the RFG to modify its movements, in an attempt
to find a foot-hold on the step. For sake of simplicity, a subset
of parameters available in the adopted CPG was subjected to
learning in this phase.

In details, for the coxa joint the bias value, for the femur joint
the gain value, for the tibia joint the bias and gain values were
selected for learning. This phase leads to a stable positioning of
the front legs on the step, with the body lifted off. The extent of
the angular motion of the leg joints, caused by the modulation
of the parameter profiles, is used as an index of the energy spent

FIGURE 8 | Effects of the parameter adaptation on the leg joints (only the left body side is shown). A limited number of parameters is subject to learning in

the three phases of the obstacle climbing procedure: (A) in phase 1 only the front legs are involved, (B) the hind legs in phase 2, and (C) both middle and hind legs in

phase 3. The effect of the parameters on the leg joint trajectory is limited to the current phase.

Frontiers in Neurorobotics | www.frontiersin.org March 2017 | Volume 11 | Article 12216

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Arena et al. Insect Inspired Motor-Skill Learning

in this task and to define a reward function. The reward value is
then compared with the previously found best value and, if an
improvement is obtained, the new sets of functions are stored in
the SNN readout map. For the considered task we have a single
lattice with one input (i.e., step height) and a total of ten read-
out maps, one for each parameter to be learned for a specific
leg joint. The SNN receives as input a normalized value related
to the step height and the lattice dynamics generates a spatio-
temporal spiking activity that is transformed in a continuous,
non spiking signal, through the output synapses that converge
on the output neurons, one for each parameter that is subject to
learning.

A series of experiments were performed using a step that is
insurmountable unless a gait adaptation is introduced: the height
of the step is around 0.9mm, whereby we chose the simulated
Drosophila body length as 3.2mm and the average height of the
center of mass as to be located at about 1mm above the ground
during forward walking.

The joint angular positions caused by the parameter
adaptation in the anterior legs are shown in Figure 8A. The
subsequent phase is similar: here as relevant parameters to be
adapted, the bias of femur and tibia joints of the hind legs
are considered to facilitate the climbing of the middle legs.
The event considered in this phase to evaluate the success

FIGURE 9 | (A) Sequence of events obtained during the searching process for the suitable parameters through the RFG. (B) Distribution of the cumulative reward for

each trial; the error bars indicate the range of excursion between min and max value and the marker corresponds to the mean value. The learning of the SNN is

performed only for the IDTrial 11 that is the same as reported in (A) because in the other success event for the third step there are no improvements for the cumulative

reward.
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and the consequent passage to the successive phase is the
horizontal position of the center of mass of the robot with
respect to the obstacle. The parameter adaptation results for
the second phase are depicted in Figure 8B. During the third
phase the robot elevates the hind legs on the step: this is
achieved by modulating the gain of the coxa and bias of the
femur joint for the middle legs and the gain of the coxa
and femur joint of the hind legs (Figure 8C). In the actual
experiments the function adopted to deliver the randomly
generated parameter modulation on the joints is a cosinusoid,
however other functions, like exponentials, quarter sinusoids, or
sigmoids could be used. Actually the function reaches the steady
state value in a given time window that is a portion of a stepping
cycle.

In the dynamic simulation herewith reported, we adopted an
integration time dt = 0.01 s, a stepping cycle of about 1.5 s: these
conditions, the parameters reach the steady state within [20–
60] integration steps. Looking at the learning process, the RFG
generates the new parameters to be tested for the first phase. If
the trial is successful the robot is re-placed to the starting position
to perform a test: this assures the robustness of this new set of
parameters. If the robot succeeds, it can proceed to the second
phase, otherwise the parameters are discarded and the first phase
is repeated. The trial ends when the robot overcomes the last
phase or after a given number of attempts (i.e., 15 events). If
this time-out occurs, the parameters just used for the phases are
discarded because they are not globally suitable for a complete
climbing behavior.

FIGURE 10 | Comparison between the best parameters provided by the RFG and the output of the SNN after the read-out map learning for a step of

0.9 and 1.4mm. Moreover, the output of the network for the input of an intermediate step height is shown.

FIGURE 11 | Trajectories followed by the center of mass of the robot and by the tip of each leg during the climbing behavior facing an obstacle of

1.2mm. A marker is placed in the signals to indicate when the robot completes each phase.
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FIGURE 12 | Snapshots of the fly-inspired robot while climbing an

obstacle: the robot approaches the obstacle (A); it reaches the step with

its front legs (B), middle legs (C), and finally with the hind legs (D).

In Figure 9A an example of a trial is reported: the robot
succeeds in the first attempt to find a suitable set of parameters
to complete the first and second phase, whereas for the third
phase a series of failures both in learning and in test are obtained
until the final success is reached (see Supplementary Video 1
for a typical sequence of trials with successes and failures).
The success in the trial can be followed by a learning process
in the SNN depending on the overall reward value obtained.
In Figure 9B the distribution of the cumulative reward in a
campaign is shown. For each trial the success condition for
each phase can be reached multiple times until the complete
climbing behavior is tested successfully or otherwise a time-
out occurs. If the obtained cumulative reward (i.e., sum of the
rewards for each phase) after the third phase is lower than the
previously obtained values, the parameters are learned by the
network.

To evaluate the interpolation capabilities of the network
we also performed a series of learning sessions with higher
obstacles (i.e., 1.4mm) and subsequently we tested the robot
with a step height never provided during learning (i.e., 1.2mm).
The best-adapted parameters obtained for the two learned step
heights are reported in Figure 10 together with the network
response to the new step with an intermediate height. The
obtained results were tested with the simulated robot obtaining
a success in the climbing behavior as reported in Figure 11.
This depicts the motion of the robot’s center of mass (COM)
and of the tips of each leg when climbing a 1.2mm step.
The edge of the step is placed at 11mm far from the COM
home position (along the y axis) (see Supplementary Video
2). Moreover, a series of snapshots outlining the posture of
the fly-inspired robot during the climbing task are depicted in
Figure 12.

To evaluate the generalization capability of the control system,
the previously learned system was tested in a different scenario
where a stair-like obstacle was introduced. The robot followed
the same climbing procedure as described above, repetitively

applied for the three stair steps encountered on its path with
height 1.3, 1.1, and 0.9mm, respectively. The detection of each
obstacle produces an effect at the motor level on the basis
of the parameter adaptation mechanism induced by the SNN.
Figure 13A shows the trend of the joint position angles for the
left-side legs during the whole climbing procedure. The adapted
parameters produce changes in the leg movements during the
different climbing phases as illustrated in Figure 13 B where the
dynamics of the robot COM and the leg tip positions are reported
(see Supplementary Video 3).

The results obtained were achieved relying only on the
adaptive capabilities of the legs acquired during the learning
phase. The body structure was considered rigid as in the
fruit fly case. Including in the robotic structure active body
joints (Dasgupta et al., 2015), mimicking the body of other
insects like cockroaches, would only improve the robot
capabilities. Therefore, the proposed control strategy can be
also applied to other different robotic structures to improve
their motor capabilities in fulfilling either obstacle climbing
tasks or other similar scenarios affordable for the robot under
consideration.

6. REMARKS AND CONCLUSIONS

In this paper a bio-inspired, embodied, closed-loop neural
controller has been designed and implemented in a simulated
hexapod robot that is requested to improve its motor-skills to
face unknown environments. Taking inspiration from the insect
brain and in particular from the fruit fly, the following hypotheses
were formulated: relevant role of MB neuropiles in the motor
learning task; direct transfer of the important role of transient
dynamics in the olfactory leaning from the locust to the fly brain
and further extension to motor learning; design of a neuro-
computational model based on a LSM-like structure for the
implementation of obstacle climbing in a simulated hexapod
robot.

In details, a computational model for motor-skill learning was
developed and realized in a dynamic simulation environment.
Inspired by behavioral experimental campaigns of motor
learning in real insects, the computational structure consisted
in a randomly connected SNN that generates a multitude of
nonlinear responses after the presentation of time dependent
input signals. By linearly combining the output from the lattice
neurons with a weighted function, a reward-based strategy
allows to learn the desired target by tuning the weights of a
readout map. Looking at MBs in insects, the idea of a pool
of neurons enrolled to solve different tasks depending on the
specific requested output is next to the concept of Neural
Reuse which has a number of biological evidences. The reported
results demonstrate that the system can learn, through a reward-
driven mechanism, the time evolution of several independent
parameters related to the leg movements, to improve the robot
climbing capabilities when exposed to the step-climbing task. The
robot was also able to deal with step heights never presented
before, exploiting the interpolation abilities of the proposed
network.
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FIGURE 13 | (A) Trend of the joint positions for the left side legs when the robot faces a series of obstacles. (B) Trajectories followed by the center of mass of the

robot and by the tip of each leg during the climbing behavior facing with multiple obstacles with height 1.3, 1.1, and 0.9mm, respectively. A marker is placed in the

signals to indicate when the robot completes each climbing phase.
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Robots have proven very useful in automating industrial processes. Their rigid compo-
nents and powerful actuators, however, render them unsafe or unfit to work in normal
human environments such as schools or hospitals. Robots made of compliant, softer
materials may offer a valid alternative. Yet, the dynamics of these compliant robots are
much more complicated compared to normal rigid robots of which all components can
be accurately controlled. It is often claimed that, by using the concept of morphological
computation, the dynamical complexity can become a strength. On the one hand, the
use of flexible materials can lead to higher power efficiency and more fluent and robust
motions. On the other hand, using embodiment in a closed-loop controller, part of the
control task itself can be outsourced to the body dynamics. This can significantly simplify
the additional resources required for locomotion control. To this goal, a first step consists
in an exploration of the trade-offs between morphology, efficiency of locomotion, and
the ability of a mechanical body to serve as a computational resource. In this work,
we use a detailed dynamical model of a Mass–Spring–Damper (MSD) network to study
these trade-offs. We first investigate the influence of the network size and compliance on
locomotion quality and energy efficiency by optimizing an external open-loop controller
using evolutionary algorithms. We find that larger networks can lead to more stable gaits
and that the system’s optimal compliance to maximize the traveled distance is directly
linked to the desired frequency of locomotion. In the last set of experiments, the suitability
of MSD bodies for being used in a closed loop is also investigated. Since maximally
efficient actuator signals are clearly related to the natural body dynamics, in a sense, the
body is tailored for the task of contributing to its own control. Using the same simulation
platform, we therefore study how the network states can be successfully used to create
a feedback signal and how its accuracy is linked to the body size.

Keywords: morphological computation, mass–spring networks, morphological control, physical reservoir
computing, soft robotics

1. INTRODUCTION

Since its very early formulation, control theory has tried to automate increasingly complex systems
(Fernández Cara and Zuazua Iriondo, 2003). The first implementations of PID controllers using
feedback to regulate non-linear systems only originated in the first part of the twentieth century and
were improved considerably, in particular with the progress in aerospace. More recently, with the
evolution of the computation power and the advances in machine learning, the focus has evolved
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toward the control of highly compliant systemswithmany degrees
of freedom. Passive compliant robots indeed possess dynamical
properties closer to animal bodies, whose performances can still
not be reached, and show a real advantage for solving complex
tasks in noisy human environments.

However, the framework for a theory allowing a deep under-
standing of such control systems—and hence engineering oppor-
tunities—is still under construction. It is largely believed that the
concept of morphological computation can partly answer this
issue, as it enables more fluent and robust motion control while
providing adapted embodied controllers that use the body itself
as a computational mean (Paul, 2006; Pfeifer and Bongard, 2006).

Nonetheless, the concept of morphological computation does
not have a clear definition as discussed in Müller and Hoff-
mann (2016). In Füchslin et al. (2013), the authors refer to the
first International Conference on Morphological Computation
in Venice in 2007, where it was defined as “any process that
serves a computational purpose, has clearly assignable input and
output states, is programmable (i.e., the behavior can be adapted
by varying a set of parameters) and has a sort of teleological
embedding.” This definition is however rather broad as it also
includes every traditional digital computing means. Hereafter, we
will restrict our definition to any way of increasing efficiency of
computation or control in terms of energy, memory, time, etc. by
outsourcing computational tasks to analogical physical systems.
This interpretation follows the work of Pfeifer and Bongard (2006)
where morphological computation refers to “certain processes are
performed by the body that otherwise would have to be performed
by the brain” or with the experiments conducted in Hauser et al.
(2011). Moreover, it constitutes a fundamental motivation to
embodiment which states that steps toward adaptive intelligence
do not only come from the controller complexity but also from the
interactions with the body and the environment. Broader analysis
about the quantification of morphological computation as well
as the trade-offs with informational computation include Polani
(2011), Zahedi andAy (2013),Haeufle et al. (2014),Hoffmann and
Müller (2014), and Ghazi-Zahedi et al. (2016).

Illustrative applications of morphological computation and
embodiment for locomotion are numerous in biology and
robotics. For instance, Dickinson et al. (2000) provide an analysis
of how animals succeed in efficient locomotion using their mus-
cles not solely as motors but to provide multiple functions varying
from brakes to springs and struts. The passive walker in McGeer
(1990) constitutes an extreme example of an engineered robot
exploiting the same concept. This two-legged physical structure is
able to walk down a slope in a very natural way without any actu-
ation. This work has been extended later in Collins et al. (2005)
to robots with low-power actuators. They show a walking pattern
that looks natural and energy efficient compared to traditional
stiff controlled robots. In other fields of robotics, we can also cite
the works of Iida and Pfeifer (2006) or Degrave et al. (2015), in
which dynamical properties of compliant quadruped robots are
used to provide low power consumption, to reduce controller
computational complexity, and to observe natural transitions
between gaits. Examples that clearly benefit from compliance to
improve moving can also be found, among others, in Cham et al.
(2004) which focuses on hexapod locomotion.

A practical implementation of morphological computation can
be inspired from Reservoir Computing (RC). RC denotes a com-
putational framework that enables the approximation of a broad
range of dynamical behaviors for which a precise model is not
available. RC originates from the domain of recurrent neural net-
works and is mainly based on the theories of Echo State Networks
(ESN) and Liquid State Machines (LSM) as outlined in Lukoše-
vičius and Jaeger (2009). At the time of their introduction, they
offered a solution to the training of Recurrent Neural Networks
(RNN), which was still considered difficult. They avoided having
to train feedback connections and the problems with bifurca-
tions this brings, i.e., the discontinuities in the network outputs
observed for some points in the parameter space, by training
only the synaptic connections of the readout nodes. The core
architecture consists of a randomly connected RNN, the reservoir,
for which the synaptic weights are sampled from some distri-
bution and then globally rescaled to tune the dynamical regime
close to the edge of chaos. RC also resulted in different robotics
applications as learning of inverse kinematics of an iCub robot arm
from a neural reservoir in Reinhart and Steil (2009) or the creation
Central Pattern Generators (CPG) to control human movements
in Wyffels et al. (2014) and hexapod locomotion in Dasgupta et al.
(2015).

As the reservoir network is constituted of randomly connected
non-linear entities, many physical dynamical systems present-
ing sufficiently complex transformations of their inputs provide
similar dynamical properties and can be used as reservoirs. For
instance, it has been demonstrated in Hauser et al. (2012) that
generic types of physical bodies such as Mass–Spring–Damper
(MSD) networks are able to approximate any given time-invariant
filter with fadingmemory and generate adaptive periodic patterns
autonomously when a feedback loop is added. This extension
of RC is generally referred to as Physical Reservoir Computing
(PRC). The expensive step of computing the reservoir transforma-
tion is now outsourced to a physical system’s natural dynamics.
This means that the neuron states will not be explicitly updated
digitally anymore, but this computation is transferred to the body’s
dynamical evolution. Only the readout layer only needs to be
engineered, most often using digital computing.

The main advantage of PRC lies in the parallelism of the
computations in the physical reservoir and, in the case of robotic
locomotion, in the fact that the transformations computed by
the robot body are a natural result of the gait. However, PRC is
essentially a supervised machine learning technique. By contrast,
robotic control is intrinsically a reinforcement learning problem,
in which the optimal desired actuator signals are not known
a priori. In addition, successful reservoir implementations often
require the observation of the reservoir state at many different
points. In robotics, this implies that for each observation point a
sensor needs to be installed.

Numerous applications of PRC have been demonstrated in the
past decade. In robotics, highly compliant robotmodels have been
addressed for example to MSD networks in Hauser et al. (2011)
(simulation only), tensegrity structures in Caluwaerts et al. (2014)
or a real soft robotic platform inspired by an octopus arm in
Nakajima et al. (2014, 2015). Closed-loop control of quadruped
robot exploiting a spine made with soft material as a reservoir can
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be found in Zhao et al. (2013). Simulations or implementations
of PRC outside robotics include water ripples in Fernando and
Sojakka (2003), electro-optical devices in Larger et al. (2012), or
pure optical devices in Brunner et al. (2013) and Vandoorne et al.
(2014).

This paper presents two main research objectives. First, we
design a small scalable simulation setup to provide empirical
compliance studies on the locomotion of MSD networks. To
our knowledge, such an analysis does not yet exist and should
help to evaluate the potential of compliance for locomotion in
terms of robustness, efficiency, and stability. To this end, three
main experiments are conducted. The first experiment gives an
overview about how increasing the number of nodes in a MSD
network leads to more stable locomotion. The second experiment
provides an analysis on the optimal frequency range for the setup,
and the third experiment explores the maximal reachable speeds
for different driving powers and underlines the limitations of the
design to get high performance. In the second part, we analyze the
computational capacity of a MSD body to generate motor control
signals and integrate them as a regulation feedback to a forward
controller.

2. OPEN-LOOP CONTROL

2.1. Materials and Methods
To run our experiments and analysis, we designed a MSD
network simulator directly implementing mechanical equations
using Python and Numpy.1 These networks, inspired by Hermans
et al. (2014) and Caluwaerts et al. (2013), consist of a set of
nodes with mass, connected by spring–damper links which are all

1https://github.com/Gabs48/SpringMassNetworks.

actuated separately. The simulation can be performed either in 2D
or 3D.

2.1.1. Mass Spring Networks
The MSD morphology is presented in Figure 1. Each of the N
nodes, except those at the end or beginning, is sparsely connected
to its closer neighbors by C connections. The total number of
springs in the network S can be easily deduced using geometry:

S =
(
N − 1 − C/2 − 1

2

)
.
C
2

. (1)

Each node i∈ {1, . . . ,N} is represented by its massmi, whereas
the passive parameters for each connection are the spring stiffness
kj and the damper coefficients dj for j∈ {1, . . . , S}. In this paper,
the notion of compliance will be used. It is defined as the inverse
of the stiffness 1/kj. If not specified, the default values used in the
following experiments areN = 20,C= 3,mi = 1 kg, kj = 100N/m,
and dj = 10Ns/m.

In ourmodel, the acceleration, speed, and position of eachmass
are updated using the force vector Fi which combines the gravity
force, the spring force, the damping force, and the air friction
force:

Fi = Fsi + Fdi + Fgi + Fai , (2)

where

• Fsi is the spring force vector applied on the node i and equals the
sum of the j∈ {1, . . . , C} connected non-linear springs forces
for which the equations can be found in Palm (1999):

Fsj = −kj .
lj
lj

.

(
(lj − lj,0) +

α

l2j,0
. (lj − lj,0)3

)
. (3)

FIGURE 1 | The MSD structures are build automatically with a simple morphology that takes the number of nodes and connections as an input. On the
figure above individuals with three, five, ten, and twenty nodes are drawn in a 2D space. Each black circle represents a mass and each line a set of spring and
damper in parallel. The colors indicate the current amplitude of actuation.
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In this equation, lj represents the spring length vector and lj ,0 its
reference length. The variable α is a non-linearity coefficient
which will induce a saturation of the spring force for large
extension lengths. It also takes inspiration from the work of
Hauser et al. (2011) which demonstrates the importance of
these non-linearities from a computational consideration.

• Fdi is the damper force vector applied on the node i and equals
the sum of the j∈ {1, . . . , C} connected dampers:

Fdj = dj .
vj
vj

. (vj − vj,0), (4)

where vj is the vector of extension speed.
• Fgi is the gravity force vector:

Fgj = g . mi . xyi , (5)

where g is the gravity constant and equals 9.81m/s2.
• Fai represents the drag force induced by air friction. It is

assumed proportional to the speed:

Fsj = −a . vi, (6)

where a is the coefficient of air friction and equals 0.1Ns/m.
It has been included to avoid unrealistic models with very
high speed. However, these did not occur in the experiments
presented in this paper.

The ground reactions are modeled by setting the vertical veloc-
ity to zero and the horizontal friction coefficient to infinite. The
masses perfectly stick to the ground as soon as they touch it.
This is a hard constraint that can impact the nature and the
performance of locomotion. However, it simplifies the study of
the body influence by assessing perfect friction conditions in every
simulation.

2.1.2. Control
To actuate the spring using a control signal, we modulate the
reference lengths of the springs lj ,0. In the simplest and default
case, this will be represented by a simple sinusoidal signal like in
Hermans et al. (2014):

lj(t) = lj,0 . (1 + aj . sin(ωj . t + ϕj)). (7)

It induces a set of tunable parameters lj ,0, ωj, ϕj for each spring
in the simulation.

2.1.3. Physics Solver
The simulation time is discretized using K time steps tk, and
equations are solved numerically using the Verlet algorithm as
described in Thijssen (2007). The Verlet integrator leads to more
accurate trajectories, especially for periodic oscillations where
energy is rigorously conserved due to the time reversibility of
this operator. For non-periodic trajectories, one can prove that
due to symplecticity, the energy does not drift away and errors
remain bounded as demonstrated inYoshida (1990). Although it is
more accurate, the Fourth-Order Runge–Kutta integrator requires
four force evaluations per update step and is not symplectic. In
our implementation, the update equations are slightly changed in
order to take the effect of the ground reactions into account.

2.1.4. Loss Function
The goal is to develop a generic approach to obtain robust loco-
motion in open loop without prior knowledge about the body
dynamics. In the case of simulatedMSDnetworks, this implies the
optimization of controller and morphology parameters for each
specific network. This can be formulated as

θ̂ = arg max
θ

f(θ). (8)

where the score function f (θ) and the optimization algorithms
are detailed below. Typically, the optimized parameters θ of the
MSD network are the controller amplitude aj between 0 and 0.25,
its frequency between 0 and 10Hz, its phase ϕj between 0 and 2π,
and the spring stiffness kj between 0 and 100N/m. To synchronize
the actuators together and impose the fundamental frequency, the
angular speeds ωj are fixed to the same value. In the case of a
MSD with N = 20 nodes connected to their six closest neighbors
(C= 6), this represents a total number of springs S= 54 (see
equation (1)) and therefore 163 parameters to optimize. Loco-
motion characterization and evaluation is performed through two
performance metrics:

• Distance traveled D: the difference between the centers of
mass at the end and at the beginning of the simulation. This
function is determined by the full locomotion sequence along
the simulation.

• Power efficiency P: the power dissipation of the non-linear
spring actuators can be approximated according to Palm (1999):

P =
∑
j

kj .
a2
j l2j,0

(
1 + α2a2

j
)

4π
, (9)

in which aj are the relative amplitudes, α is the spring non-
linearity factor, and lj ,0 are the reference lengths of the springs.

Using the ratio of distance to power is unsatisfactory, as this
could result in robots that consume very little power because
they barely locomote. Instead, we will use the following power
efficiency score displayed in Figure 2:

f(θ) = tanh
(
D(θ)
Dref

)
. tanh

(
Pref
P(θ)

)
, (10)

in which Dref and Pref are reference values allowing to normalize
and homogenize the scores. As it is desirable to operate in the
linear regime and avoid saturation of the score, we set them to
3,600 and 100, respectively, following the statistics of the observed
distance and power values.

2.1.5. Optimization
The aim is to develop an optimization approach that can be
applied to highly compliant physical robots, without any need
for an analytical model for the body dynamics. The Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) as formulated
in Hansen (2006) has been selected from a pool of different
optimization methods. Indeed, it fits very well for browsing non-
convex parameter landscapes with a lot of local minima. In addi-
tion, it presents a good convergence speed and requires very few
initialization parameters:
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FIGURE 2 | The efficiency score to quantify locomotion quality increases with traveled distance and decreases with dissipated power. However, taking
directly the ratio between both metrics (left) could lead to optima close to the origin, i.e., where the body barely moves. Using a hyperbolic tangent (left) solves this
problem for small powers but requires to select Pref and Dref carefully to avoid a saturation due to the measure itself.

• The initial parameter distribution is a Gaussian centered in 0.5
and with a SD of 0.2 after normalization of all parameters.

• The population size, the step size, and covariance matrix
parameter are set to their default values as recommended in
Hansen (2006).

• The iteration number is set to ensure convergence, which will
be assessed qualitatively by observing saturation in the score
evolution.

2.2. Results
In this section, we assess the influence of the MSD network size
and compliance on the best locomotion speed found, on the power
consumption, and on the noise robustness in our specific example.
Three different experiments are described in this context. In the
first one, we increase the number of mass nodes in the network
to determine its influence on locomotion efficiency. The second
investigates how optimal compliance is related to the morphol-
ogy parameters and the locomotion frequency. Finally, we dis-
cuss how the optimized gait changes when the driving power is
constrained.

2.2.1. Morphology Analysis
The choices made during the design of a system can contribute
to more efficient and robust behaviors for solving sophisticated
tasks. In the case of the MSD setup, we can intuitively assume
that increasing the number of nodes will broaden the space of
available trajectories, therefore increasing the number of optima
at the expense of a longer learning process. It is interesting to
note that such a tuning does not necessarily imply an increase of
complexity, in the sense of the definition presented in Lungarella
and Sporns (2006).

To verify this assumption, we have optimized open-loop loco-
motion controllers for networks with increasing number of nodes
and springs. As mentioned before, this optimization consists in
tuning the actuators’ amplitudes and phases, the spring constants,

and the global frequency of locomotion. Other parameters of the
MSD network are set to the same value for all bodies, except for
the nodes mass. This is normalized by the number of nodes, such
that the total mass of the MSD network (20 kg) remains the same
in every simulation and the power levels required for locomotion
can be compared.

In order to converge toward stable gaits, we add random accel-
eration impulses during the simulation. Their value is centered
around 10% of the mean absolute acceleration and applied on
random nodes 5% of the time. In the CMA-ES algorithm, the
number of iterations is tuned specifically for each optimization
to ensure convergence, since optimizing small structures will con-
verge faster than larger ones. From each optimization run, the best
individual is retained. Each optimization is repeated five times in
order to average the results and obtain an estimate of the variability
of our observations.

Figure 3 shows the evolution of the averaged best individual
score for increasing body size in blue. From left to right, we
observe that the scores rapidly decrease for structures of up to five
nodes before steadily increasing again. However, the good results
in the first part of the curve should be interpreted carefully, taking
their robustness to noise into account. To assess this property,
we also represented the scores obtained for simulation using the
same parameters but without noise on the same figure. We notice
that this difference decreases with the number of nodes. This
shows that structures with more nodes are more robust to the
noise added during the simulation. The evolution of the CMA-ES
algorithm represented in Figure 4 also supports this hypothesis.
It shows that the optima of the structures with a small number
of nodes are found randomly instead of through convergence of
the algorithm, unlike the structures with more nodes. High scores
originate from these bodies’ reduced stability. This makes them
very sensitive to impulse noise as small disturbances can either
make them fall over or push them forward. They can therefore
rightly be regarded as outliers.
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FIGURE 3 | In this graph, the best individuals for CMA-ES optimizations of different MSD networks are plotted in blue. Other simulations without noise
are then performed on the same individuals with the same parameters in order to identify the outliers due to noise and qualify the stability of locomotion. The low
performance of 3, 4, and 5 nodes MSD structures indicate unstable gaits. For larger structures, the score first increases with the number of nodes but saturates
rapidly for networks of more than twenty nodes.

FIGURE 4 | In this graph representing the CMA-ES evolution for different structures, we can qualitatively observe that the convergence time, whose
estimation is given by the vertical yellow lines, increases with the MSD network size. This is expected as the problem becomes more complex and the
number of optimized parameters is higher as well. When the structure is too simple such as the three nodes (one in the upper left corner), the problem cannot
converge and the best results encountered during the exploration are mainly due to the random noise added in simulation.

It is finally interesting to note that the score increases grad-
ually starting from six nodes but quickly saturates. A more
detailed analysis in Figure 5 shows that this is due to better
performances in terms of traveled distance, whereas dissipated
powers are very similar. However, note that this is achieved
at the expense of a longer learning process, as pointed out by
the number of epochs represented on the graphs X axis of
Figure 4.

In conclusion, this experiment points out that increasing the
number of nodes and springs in the MSD networks leads to an

increased robustness to external noise and better speed perfor-
mances.

2.2.2. Frequency Range Analysis
In this second set of experiments, we try to evaluate the nature
of a link between robot compliance, which is defined by 1/k,
the inverse of spring stiffness, and the optimum efficiency of
locomotion.

The resonance frequency of a MSD system with one unique
node and spring equals

√
k/m. It ranges from 0.6 to 1.8Hz for
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FIGURE 5 | By displaying separately the distance and power components in the loss function of the CMA-ES optimization, we can acknowledge that
the observed variation for different nodes number are mainly due to the distance. As expected by the normalization factor, the driving power remains
sensibly equals for each structure.

FIGURE 6 | The two graphs in this figure show the evolution of score performances with the fundamental frequency of locomotion. On the left side, we
separated the result according to the number of nodes in the structure. By applying a simple CMA-ES convergence assertion, we notice that the operating range can
extend to higher frequency for larger structures. On the right side, we combined all structures to determine a −3dB bandwidth ranging from 0.3 to 5.2Hz.

the mi, kj, and dj values that we are using in our setup (as a
reminder,mi varies with the number of nodes). There is therefore
a bijective function between compliance and resonance frequency.
By extension, we can formulate the hypothesis that the resonance
frequency of aMSD structure is directly coupled to its compliance.
Since they are composed of several masses and springs, we can
expect that the bandwidth of the resonance peak will broaden but
still appear at the same frequency.

With this assumption, the study of correlation between com-
pliance and locomotion efficiency can be reformulated to focus
on the link between actuation frequency and efficiency. Previous
work such as Buchli et al. (2006) for robotic systems or McMahon
and Cheng (1990) for models of mammalian gaits highlighted
such a link: self-learning systemswith differentmorphology prop-
erties tuned their actuation frequency to the resonance of the
structure to reach optimal performance in locomotion.

In this setup, MSD structures with 5, 10, 15, and 20 nodes
were optimized several times by fixing their global frequency
to values between 0 and 10Hz. In Figure 6 (on the left), we
have represented the results for different numbers of nodes. Each
optimization corresponds then to a point on the graph. For some

of those points, however, the optimization process was not able
to converge to a gait that is both stable (whose pattern does not
change in time) and robust (allowing external noisy perturba-
tions). In the graph, this failure is particularly true for structures
with few number of nodes simulated at high frequencies. A first
empirical conclusion is that the robustness of MSD networks
at high frequencies increases with the number of nodes. This
represents an additional advantage concerning the size of the
system along with the discussion from previous section. In terms
of score, however, there is no significant difference between the
topologies, and their optimal bandwidths are very similar. The
optimal scores are a little lower only for the 5 nodes structures,
which corroborates the results from the previous experiment.
To get a more accurate measure of the bandwidth, it may even
be interesting to combine all the results as they possess very
similar resonance frequency. This is presented on the right side
of Figure 6 where we can observe that the structure is optimal
over a 3 dB bandwidth in the range [0.3; 5.2Hz]. The large con-
fidence intervals around 4 and 5Hz are again explained by the
absence of convergence for the structures with a low number of
nodes.
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To sum up, this experiment provides guidance on the choice of
compliance values in the design of aMSDnetwork for locomotion.
Choosing the global compliance to optimize a robot of a given
mass is conditioned by the frequency at which we plan to actuate
the robot. Also, structures with more nodes tolerate a broader
range of frequencies while keeping stability.

2.2.3. Performance Limits with Constrained Power
So far, we have used a loss function that combines performance
with respect to both traveled distance and energy consumption.
However, it may be beneficial to analyze them separately in
order to understand the limiting factors and to observe what can
be the best compromise between them. The following experi-
ment also allows us to qualitatively characterize the gaits of our
structures and to observe possible transitions between different
modes.

For this purpose, several optimizations have been performed by
constraining the power and forcing their saturation to different
values. In this way, one can expect to observe what is the max-
imum distance an individual can reach for a given power. Since
we work outside the boundaries of the desirable operating range
of the original cost function, we have now increased the reference
value Dref to 1,000m in order to avoid a saturation effect due to
the cost function itself.

Figure 7 shows the evolution of the optimal speed as a function
of a constrained power budget. The best individuals are in the
upper left corner. As might be expected from the conclusions of
the previous section, the 3-Hz frequency gives the best results.
Concerning the shape of the curve, we can see that the maxi-
mum speed increases almost linearly until 15,000W and starts
saturating beyond that.

This saturation highlights the limits of our model. It helps
to understand which factors such as the spring saturation, the
ground friction, the air drag, or the geometry play a larger role in

performance compared to the driving power. It also situates the
previous experiments in the non-saturating range, which helps to
appreciate their significance better.

Finally, for very low power, an energy increase does not seem
to add any improvement and even the opposite happens for
frequencies 1 and 4Hz.

A visual observation of the locomotion is useful to give
more insights about the possible gait transitions on this curve.
For this purpose, we have produced a series of videos ren-
ditions of individual simulations provided in Supplementary
Material. A qualitative analysis of those video shows that the
most common gaits consist of displacing the whole structure
along a wave movement (each node touches the ground a lit-
tle after the previous one) or locomoting in two steps (the
body touches the ground two times per period with a phase
difference of 180°). Concerning the high power saturation, a
video was made for each point of the 3-Hz curve. It shows that
the most energy-consuming individuals present spring exten-
sion close to their saturation, which causes a loss of stability of
the locomotion. In the same way, videos were produced in the
low-power domain for the points on the 4-Hz curve. For the
lowest power, a good two-step alternation of contacts between
the body and the ground is observed, whereas the phase shifts
between the different contacts with the ground are much less
synchronous for the following individuals. The same results have
been established each of the 5 times the experiment has been con-
ducted. Progressively with increasing power, a two-step approach
with robot–ground contacts phase-shifted by 180°comes up
again.

In short, we can stress the role of the body design in locomo-
tion through two principal observations: first, a saturation of the
spring leading to a degraded operation in high power; second, a
qualitative influence of the optimal gait on the performances for a
given morphology and power consumption.

FIGURE 7 | This curves shows the evolution of the maximal speed reached for different constrained power at different frequencies. The saturation
effect for high powers demonstrates the physical limits of the structures, while the slight decrease for very low powers indicates a change in locomotion gaits
associated with a different efficiency.
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3. CLOSED-LOOP CONTROL

3.1. Materials and Methods
The closed-loop control of the MSD network is performed
through physical reservoir computing. In this setup, our goal
is to reproduce the control signals at a time step tk using the
physical states of the network at times tk−1−n . . . tk−1 only. This
is performed by training the weights of a linear combination (the
readout).

3.1.1. Setup
The closed-loop system is composed of different elements repre-
sented at Figure 8:

• TheMSD structure that can be perceived as a physical reservoir
because of its dynamics and high complexity. For each time step
tk, the system’s current state is evaluated using the acceleration

vectors a[k], a[k− 1], and a[k− 2], which comprise both X
and Y components of all the nodes. The choice of acceleration,
instead of, e.g., speed, is based on the work of Caluwaerts et al.
(2013). Trials using integrated quantities such as position or
speed instead have also been evaluated but added a drifting
error during training. Also, based on the same work, we choose
a buffer size of 3 time steps. In our experiments, smaller values
led to deteriorated results but larger ones did not show any
significant improvements.

• A sensor filter, whose principal role is to model the physi-
cal limitations in acceleration sensing. It is composed of an
amplitude threshold followed by a low-pass filter. The cutoff
frequency at 6Hz has been chosen very low to eliminate possi-
ble oscillations due to our numerical integration method while
keeping the locomotion fundamental frequency and its first-
order harmonics. At the output of the filter, a vector x[k] is sent
to the next element.

FIGURE 8 | The principal components in the closed-loop learning pipeline consist in a readout layer whose weight matrix is trained at each time step
and a signal mixer that gradually integrates the feedback in the actuation signal.

FIGURE 9 | Adding some noise on the actuation signal in open loop can give a hint about the maximum error we can accept on the trained signal in
closed loop without damaging the locomotion stability and is helpful to determine the regularization parameter. In this graph, each red point represents
a simulation and the blue line shows the average evolution. Performances start decreasing from a relative Gaussian noise of 0.01.
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• A readout layer, which computes the actuation signals for the
next time step based on the current and previous states of the
MSD:

y[k + 1] = WT
out . x[k]. (11)

To learn the weights of the output matrix Wout, we use the
FORCE learning method as in Sussillo and Abbott (2009),
whose equations are the following:

e[k + 1] = fsigmoid

(
WT

out[k] . x[k + 1]
)

− ytarget[k + 1]

(12)

P[k + 1] = P[k] − P[k] . x[k + 1] . xT[k + 1] . P[k]
1 + x[k + 1]T . P[k] . x[k + 1]

(13)

Wout[k + 1] = Wout[k] − P[k + 1] . x[k] . e[k + 1]T (14)

ytrained[k + 1] = fsigmoid

(
WT

out[k + 1] . x[k + 1]
)
, (15)

where the estimate of the inverse of the correlation matrix P
is initialized to I/α. The sigmoid function added ahead of the
readout adds non-linearity in the control signal by saturating
for too high values.

• A signal mixer to avoid a brutal transition from open-loop
to closed-loop control. Its role is to incorporate gradually the
readout output contribution to the target signal. It is defined
by three parameters: the open-loop time tol when the MSD
network is run in open-loop mode only; the training time
ttrain in which the contribution of closed-loop signal increases
linearly and the percentage β of feedback in the full control
signal before switching to closed-loop mode only.

3.1.2. Parameter Tuning
The α parameter of the FORCE learning algorithm plays the role
of a regularization variable in the process of learning the Wout
matrix. It must be selected in order to avoid an overfitting that

would reduce robustness to undesired forces on theMSDstructure
but also to ensure a trained signal sufficiently close to the target.
This is a major issue since a signal ytrained with too much noise
can easily cause a divergence in the locomotion limit cycle. Tests
on signal noise robustness as presented in Figure 9 allowed to
estimate a value of α= 0.01 as a good compromise.

The open-loop training and running times can be estimated
by analyzing the convergence error of the FORCE algorithm (see
Figure 10) and are fixed to 12 s of open-loop learning followed by
38 s where the feedback signal is gradually added to the target sig-
nal to reach a value of β = 95% before closing the loop. Stopping
the training before the actuation signal reaches 100% of feedback
avoids convergence to a steady state as discussed in Caluwaerts
et al. (2013).

3.2. Results
In order to determine the contribution of the system size in
the process of learning its own locomotion gaits, we simulated
MSD networks with different numbers of nodes and evaluated
the distances traveled over the last 10 s in closed loop. The same
simulation was carried out in open loop to provide a reference.
The results of these simulations are presented in Figure 11. At first
sight, it appears that the learning algorithm with its configuration
can achieve performances of the same order of magnitude in open
and closed loops for the structures between three and twenty-six
nodes analyzed in this simulation. However, it is worth noting
that MSD with less than 6 nodes already provided non-significant
results in open loop.

Alternatively, the study of limit cycles gives an indication of
the stability of closed-loop control. In Figure 12, we represented
the temporal evolution of the internal states xk in a 2 coordinate
space obtained by PCA. Larger structures lead to smoother limit
cycles in closed loop. The limit cycles even diverge from their
basin of attraction for very small MSD networks. A simple inter-
pretation is that more nodes lead to more cycles in the physical
reservoir, which provides more robust trajectories in the principal

FIGURE 10 | The learning error can be used to estimate the required training time and the maximal rate at which the loop should be closed. From this
graph, we can deduce that 12 s of simulation is sufficient to consider the convergence of the readout weights.
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FIGURE 11 | In this picture, we plot the traveled distances for the last 10 s of simulation in open loop in blue and closed loop in red. There is no crucial
difference between the two curves, which seems to indicate that the performances in closed loop are close to the one in open loop for all structures.

FIGURE 12 | From left to right and top to bottom, the limit cycle during FORCE training are represented for structures with, respectively, 5, 10, 15, and
20 nodes. The color ranges from yellow for the initial seconds of the simulation (which point out the transient effect) to black in the end of the simulation. When the
node number is too low, the trained signal can diverge from its basin of attraction.

components reference. This hypothesis is corroborated by ana-
lyzing the quality of the generated actuation signals. This can be
quantified by plotting the Normalized RootMean Square Error, as
shown in Figure 13, which decreases with the number of nodes.

In conclusion, the morphology of MSD bodies has the capabil-
ity to compute at each time step the next value on the parametric
trajectories found in open-loop optimization with a sufficient
accuracy for locomotion task. The computation and memory that
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FIGURE 13 | The normalized root mean square error between the trained and target signals is represented for each node number. It indicates that the
learning tends to produce better more accurate results with an increasing number of nodes.

was previously embedded in an external controller can be fully
distributed in the structure and the readout layer. The size and
number of sensor measurements on the structure have a positive
effect on the accuracy and stability of the feedback signal.

4. DISCUSSION

In this article, we have tried to study systematically the influence
of high-level design choices on the performance of MSD systems.
Because of their analytical simplicity and their modularity, those
body structures seem indeed adapted to conduct studies on the
morphological contribution in the process of locomotion con-
trol. This research was divided into two main parts. On the one
hand, an open-loop study focused on the benefits of body size
to efficiency and stability. A similar analysis was also performed
on locomotion frequency and helped to draw conclusions about
how compliance can be chosen to increase optimal performance.
On the other hand, we aimed at demonstrating the key role of
morphology to generate control signals in a completely closed
operation mode.

The different trials undertaken in open loop indicated the
importance of the structure size to ensure optimal performance
in terms of distance traveled and gait stability. Concerning com-
pliance, its relation to the fundamental frequency of locomotion
was used to demonstrate a link with the efficiency and to provide
a specific suggestion in the design of optimal MSD systems. It
has been noted that the frequency response of the different MSD
networks shows a bell shape, displaying a degraded score for
too high or too low frequencies and that the stability at high
frequencies is better for larger structures. Finally, the behavior at
different power values has highlighted the limits of the design in
reaching high speeds, and a qualitative study has shown the effect
of the gait evolution in this phenomenon.

In closed loop, the ability of MSD structures to generate their
control signals on the basis of a single, fully connected layer of
neurons has been attested. An increase in the size or the number
of sensor signals induced a positive influence with regard to the

limit cycle stability and the accuracy of the signals generated by
the algorithm.

In future work, themain improvement should focus on increas-
ing noise robustness and adaptability on different terrains and
facing various obstacles. In this way, the goal is to provide a simple
and generic locomotion primitive for complex structures, which
learns how to perform actuator synchronization by harvesting the
mechanical feedback while taking higher level control inputs such
as the locomotion frequency. On the other hand, it would be
interesting to generalize our conclusions to both real robots and
biologically inspired dynamical models such as quadrupeds and
bipeds.
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VIDEO S1 | This video presents several simulation renditions. The different
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gait types obtained when constraining the dissipated power at different levels. A
discussion on that matter is given in Section 2.2.3 of the related article.
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Orthoses for the lower limbs support patients to perform movements that they could

not perform on their own. In traditional devices, generic gait models for a limited set of

supportedmovements restrict the patients mobility and device acceptance. To overcome

such limitations, we propose a modular neural control approach with user feedback

for personalizable Knee-Ankle-Foot-Orthoses (KAFO). The modular controller consists

of two main neural components: neural orthosis control for gait phase tracking and

neural internal models for gait prediction and selection. A user interface providing online

feedback allows the user to shape the control output that adjusts the knee damping

parameter of a KAFO. The accuracy and robustness of the control approach were

investigated in different conditions including walking on flat ground and descending

stairs as well as stair climbing. We show that the controller accurately tracks and

predicts the user’s movements and generates corresponding gaits. Furthermore, based

on the modular control architecture, the controller can be extended to support various

distinguishable gaits depending on differences in sensory feedback.

Keywords: artificial neural network, neural orthosis control, adaptation, gait classification, level walking, stair

climbing, internal model, model invalidation

1. INTRODUCTION

Bipedal gait is inherently unstable (Winter, 1995; Milton et al., 2009) and therefore requires
constant balancing and support from the lower limbs. This inherent instability can be amplified
by changes in nerve, muscle, or bone status. Consequences can range from limited mobility to
a complete inability of effective locomotion. Many different supporting techniques have been
developed to regain mobility, e.g., crutches, splints, and prostheses, depending on the physical
condition. Here, we focus on a knee-ankle-foot-orthosis (KAFO), a device which is attached to
the lower limbs and provides mechanical support to its users.

Selecting and fitting such a supportive device for a patient are performed by professional staff.
Based on a given patient’s condition, the professional staff determines a device providing the
support needed to enable or improve the patient’s locomotion. This choice has to take into account
the patient’s remaining abilities, balancing the patient’s need for support against the danger of
excessive support which might prevent use of the patient’s remaining abilities. In this light, it is
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advantageous to maximize the patients’ own contribution to train
their remaining abilities pursuing the aim to preserve or regain
the patients’ mobility. This increase in mobility has, for example,
been observed in terms of the range of kinematic parameters and
walking speed (Irby et al., 2005, 2007).

From the patient’s perspective, other factors contribute to
the assessment of the chosen device and thus to the actual use
or even abandonment of a device. For example, comfort in
daily activities, the ability to fast and easily don/doff the device,
and cosmetic properties, i.e., how the device alters the self-
perception, or the perception of others (Bernhardt et al., 2006;
Robinson et al., 2010; McKee and Rivard, 2011), have a high
impact on patient satisfaction. Kaufman et al. (1996) presents
several studies where abandonment rates “from 60% to nearly
100%” were observed. In Phillips and Zhao (1993), from 60
users of lower extremity braces, 35 abandoned their devices.
In the list of top reasons, the authors cite whether the user’s
“personal opinion [was] considered in the selection process.”
Interestingly, it was not important if there were “alternatives
to choose from.” A follow-up survey on 250 veterans after 22
months of rehabilitation programs showed that only 16 out of
73 contactable patients were still using their braces. In other
words, 78% had abandoned their devices. In another example, in
31% of 35 replies, patients expressed that they did not use their
brace anymore while “60% continued to use their wheelchair
as their main means of displacement” (Mikelberg and Reid,
1981). Although the studies on device abandonment are from the
1980s and 1990s, they make clear the importance of the patient’s
opinion concerning the prescribed brace.

Another problem is side effects of orthosis use, which can
arise from device limitations or mistrust toward its reliability.
Gailey et al. (2008) gives an overview on gait deviations of
prosthesis users, including a tendency to favor the intact limb,
generating additional stress on the less impaired parts of the body
which may induce secondary conditions. There are, for example,
(1) degenerative changes (trunk asymmetry, osteoarthritis, and
scoliosis), (2) pain (lower back, hip, and/or knee joints), and
(3) general deconditioning. These changes can, for example, be
observed as asymmetric and slower gaits. Compensatory gait
patterns like “increased upper-body lateral sway, ankle plantar
flexion of the contralateral foot (vaulting) hip elevation during
swing phase (hip hike) or leg circumduction” are listed especially
for orthoses with fully extended knees in Yakimovich et al. (2009).
Mills et al. (2010) come to the conclusion that “there is a large
amount of variability with regard to how patients respond to
orthoses.” These studies suggest that the patient’s gait and device-
perception can be improved by individual fitting. As a device-
induced gait change surfaces on long timescales (Irby et al., 2005,
2007), Robinson et al. (2010) are speaking about a “lifetime of
adjustments,” an approach for individual fitting has to facilitate
continuous adaptation.

In consequence, to achieve patient acceptance in addition
to an optimal medical outcome, one has to consider the user’s
impression of the device and its fitting as well as the specialist’s
opinion.

When looking at controller techniques, finite state machine
based controllers (FSMs) provide a large fraction of state of the

art approaches. In a FSM, the supported gaits are represented
by a number of states, which define the control output. Given
specific conditions, transitions between these states occur. To
achieve adjustment in such an approach, parameters defining
the control output or transition conditions may be changed. The
number of states and transitions is typically left unchanged, with
exceptions like Zlatnik et al. (2002), where a rule database is used.
As the complexity and variety of the supported behaviors directly
translates to the complexity of the graph, a higher number of
states and transitions are needed. The process of designing or
extending gait support has to ensure that the controller will not
get stuck and that transitions support all possible changes in
patient behavior.

Approaches to provide complex behaviors, i.e., more gaits,
have to deal with increasing complexity. For example, a
controller, consisting of three FSMs for walking, standing and
sitting movements, is presented in Varol et al. (2010), where
additional transitions switch between these individual FSMs.
In Sup et al. (2011), a similar approach handles slopes of varying
degrees, using three FSMs for level ground, as well as 5 ◦ and 10 ◦

inclinations. These approaches try to reduce FSM complexity by
a divide-and-conquer approach, but only tackle sub-problems,
e.g., either level and slope walking or level walking, standing, and
sitting. A similar approach is gait (FSM) switching based on a
Gaussion mixture models (Varol et al., 2008). The switching is
based on a history of means and standard deviations in the input
channels treated with dimension reduction; inputs are sampled
with 1, 000Hz. The behavior was optimized in terms of increasing
the history length, resulting in a switching delay of 430ms in the
testing condition.

Other approaches try to provide adaptive control. Speed
estimation (Herr et al., 2002) and slope estimation in standing
(Lawson et al., 2011) try to achieve control which adapts to gait
and environment by the adjustment of control parameters at
runtime. These approaches are limited by the flexibility designed
into the underlying state machines.

These controllers select between gaits chosen at design
time and are partially able to adapt to environmental changes
or walking speed. The included FSM controllers represent
predefined gait models, only allowing to fit the behavior to
the patient with design-time selected parameters. With more
supported movements comes higher complexity in terms of an
increase in states and possible transitions, which allow more
parameters to be selected, still the designed gait model may
not cover every individual gait. This problem of fitting the
controller to the patient gets worse in case of orthoses, where the
patient’s conditions are more variable. The variability in patients
conditions results in large variability in remaining abilities and,
thus, in large variability in individual need for support. These
varying conditions are often met with very individual avoidance
or compensation strategies, resulting in unique gaits which can
conflict with the general gait model.

In consequence, we identified five important problems, which
dominate the success of a device: (i) individualization according
to the patients’ neurological status and remaining motor
function. As a complication, orthosis patients can show very
differentiated medical conditions which have to be compatible
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with the devices’ support. (ii) Typically devices have a specialized
design supporting a reduced set of movements, which limit
the patients’ mobility. (iii) The target group of orthotic devices
is typically limited as a consequence of (i) and (ii). (iv) An
asymmetric gait due to patients’ favoring of healthy limbs leading
to gait deviations and secondary conditions. (v)Device acceptance
is strongly subjective and depends on users’ opinions toward the
device and their role in the selection process.

These problems have so far not been approached with a
common concept. Here, we assume, that they can be addressed
best on the controller side with a shift of focus on extensive
patient fitting and behavior adaptation. Thus, we propose a
personalized and patient centered approach, which individualizes
via training with patient data. With an user interface, patients
directly influence the control output, giving them direct feedback
on a possible tuning. The patients’ gaits are tracked in terms
of gait dynamics, i.e., joint-sensor dynamics. This approach of
relying on the sensor dynamics makes the controller independent
of the actual mechanical structure of the device as well as, for
example, the moments or joint angles the patients can apply and
maintain. As controller training leads to a high affinity to the gait
dynamics of the trained gait, a modular structure is presented. In
this modular structure, the number of supported gaits is limited
by the systems’ ability to differentiate the gaits by their dynamics.
These dynamics are determined by the chosen sensors. As the
design is not geared toward a specific set of sensors, the modular
controller is not explicitly limited toward specific movements.
Thus, given suitable data, which signifies the new gait, the
extension with a new gait is a simple, formalized process. With
this approach, we want to overcome design limitations and extend
the target group. Furthermore, training of individual gait with
direct patient feedback in the tuning process may lead to a better
fitting and understanding of the controller behavior, hopefully
leading to more symmetric gait and better device acceptance.

Taken together, in this study we present gait dependent
damping modulation based on gait phase tracking. Gait phase
tracking is based on observed gait samples and therefore
implements personalized gait support for single gaits. The
damping modulation is implemented as a one dimensional
mapping from the gait phase to the desired damping, which
can be adapted via a simple user interface. Together, an
implementation of (a) gait phase tracking paired with (b) suitable
damping modulation constitutes a supported gait. The second
contribution lies in the selection of a suitable gait from a set
of supported gaits, allowing to adapt the controller’s behavior
to gait changes. The most suitable gait is selected based on the
gait dynamics, which is predicted by internal models for the
gait dynamics. Thus, for the second contribution, now three
components constitute a supported gait: (a) gait phase tracking,
(b) suitable damping modulation, and (c) a model to predict
the gait’s dynamics for gait identification. Gait selection on three
such defined gaits, for walking on flat ground, stair climbing, and
descending stairs, have been tested on a healthy subject with an
orthosis prototype provided by Otto Bock. This prototype applies
damping to knee flexion, providing support to the users’ body.
Based on the tests with this prototype, we provide performance
data on the method’s ability to linearly track the gait phase, as
well as its ability to fast and reliably select a suitable single-gait

controller. As our long term goals of the study, we aim to
implement a fully adaptive controller with the patient’s user-
feedback. The feedback mechanism will not only enable the user
to influence the devices behavior, but also provide the means to
control changes made by an adaptive controller.

2. MATERIALS AND METHODS

In the introduction, we outlined the five general problems
we see with current control schemes and our approach to
them, like individualization, fitting, and behavior adaptation
based on patient gait data with the inclusion of user feedback.
Here, we outline the implementation based on the concrete
control scheme (Figure 1) for gait phase tracking, prediction, and
selection.

We present the hardware platform together with the sensors
capturing its configuration in section 2.1. In section 2.2, we
introduce the single gait controller as the core neural control
module. It consists of gait phase tracking, the timing module,
and the shaping module which transforms the gait phase into
the control output. The single gait controller relies on the user
interface to gather user-feedback (in section 2.3), which is only
considered here, as it provides the control output as a function of
the gait phase. Based on single gait control, section 2.4 presents
predicting gait models and the gait-selection module, which
will select a single-gait controller in accordance with current
motion. As fundamental basis for the analyses, we describe how
the segmentation of continuous recordings into steps has been
performed in section 2.5. Finally, the experiments underlying this
manuscript are presented in section 2.6.

2.1. Hardware
The hardware platform used during controller development and
for tests with healthy walkers is based on the Otto Bock C-Leg R©

hydraulic damper attached to the knee joint of a knee-ankle-foot-
orthosis. The damper allows the design of a semi-active orthosis,
as it actively manipulates damping of knee-flexion with a motor-
controlled valve. The interface allows to position the valve in
100 configurations from effectively free motion (open valve) over
high damping to blocked motion (closed valve).

While the overall design as leg splint with the knee damper
system restricts the target group, we aim to have the controller
as universally applicable as possible. Therefore, we implemented
and tested with two hardware models (Figure 2). One hardware
model has a compliant ankle joint (Figures 2A,B). It uses a
carbon fiber bar of high stiffness beneath the knee which is
directly attached to the foot, thus fixating the ankle. The other one
has an orthopedic ankle joint (Figures 2C,D). The orthopedic
ankle joint allows either free motion or to constraint the range
of motion by blocking it or inserting a spring (comparable to the
Otto Bock double action joints). Bothmodels’ hardware structure
is similar to Otto Bock’s C-Brace R© system, which is equipped
with a C-Leg

R©

hydraulic damper itself. As each device was fitted
for a different healthy user, the data wouldn’t have been directly
comparable. For this reason, we only include data from the device
with the orthopedic ankle joint in this study, while pointing out
that the controller itself is independent of the actual hardware
structure.
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FIGURE 1 | Overview: Based on (1) the hardware platform and its sensors, we develop (2) neural feed-forward gait controllers consisting of a timing and an output

shaping module. While the timing unit learns the user’s gait from observation, the shaping module is controlled via direct (3) user input, integrating the patient in the

control loop. The whole controller consists of several feed-forward controllers which are augmented with predicting gait models. Based on these (4) internal models,

the controller selects the correct gait for the current motion.

FIGURE 2 | Hardware revisions: In (A,B) the first generation with compliant ankle, in (C,D) the second with orthopedic ankle joint. The schematics include positions of

thigh- and knee-angle sensors indicated by red angles and pressure sensors in green. Force sensing resistors (FSRs) are embedded between the orthosis frame and

the shoe. To protect the highly sensitive FSRs against interactions between the orthosis frame and the shoe, we embed them in a silicone plate (E). The applicability to

different different hardware layouts shows how versatile the presented controller is.

A data acquisition interface allows sampling of the embedded
sensors at 100Hz. As sensors, we equipped angle sensors at the
thigh and the knee-joint, and force sensing resistors (FSRs) in
the soles between orthosis frame and shoe. The latter are very
sensitive and show a binary switch characteristic due to their
measuring range of ≈ 0.1 − 100.0N. We therefore embedded
them in a silicone layer to reduce noise from interactions
between the orthosis frame and the shoe. We localized and
fixated all sensors on the device to keep the procedure of device
application as simple as possible. Additionally, sensor calibration

to achieve full range input signals for the artificial neural
networks does not have to be recalculated when reequipping
the device.

2.2. Neural Control for Gait Tracking
The application of damping to knee-flexion is a one dimensional
control problem, where the controller determines a valve
position regulating the desired damping. We assume, that
the required damping can be determined from the gait
phase, i.e., the configuration of the leg as represented by a
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suitable set of sensors. In practical situations, the controller
has to cope with huge variances in space and time. Here, the
controller is designed as a feed forward controller to achieve
an immediate response to sensory inputs Es(t) in two steps.
The timing unit estimates the phase of the gait ϕ(t) from
the sensory reading Es(t), while the shaping unit determines
the damping c(t) = c(ϕ(t)) given the phase (Figure 1).
Separating these two steps allows to independently
modify the gait tracking and the desired controllers
behavior.

For the time discrete control system we write at time step t:

timing unit : Es t 7→ ϕ
t ,ϕt ∈ [0, 1) (1)

shaping unit : ϕ
t 7→ ct

(

ϕ
t
)

, withc (0) ≡ c (1) . (2)

We chose to implement c with a radial-basis-function network as
universal function approximator, as detailed in section 2.3.

The gait progress ϕ is modeled as a cyclic, angular variable
(Figure 3), thus capturing the periodicity feature of walking.

The timing unit is implemented using a multi-layer
perceptron network with sigmoidal activation function (Nissen,
2003) with four neurons in one hidden layer and two output
neurons, representing ϕ as circular motion in the plane. Thus,
the output function is similar to the periodic sensory inputs,
which improves learning and accuracy.

ϕ̂
t
:Es t 7→

(

xt
ϕ

yt
ϕ

)

=

(

cos
(

2πϕ
t
)

sin
(

2πϕ
t
)

)

.

In case of noisy sensors, a low-pass filter can be applied on top of
the output function ϕ̂. With reliable sensors, this step is typically
not needed. As it only leads to a small delay, it can be applied
anyhow.

The gait phase can then be gained using the transformation

ϕ
t =











1
4 for xt

ϕ
= 0 ∧ yt

ϕ
≥ 0

1
2π tan

−1(yt
ϕ
/xt

ϕ
) for xt

ϕ
6= 0

3
4 for xt

ϕ
= 0 ∧ yt

ϕ
< 0

,ϕ ∈ [0, 1).

To facilitate network training, sensor calibration is used to map
all values to the range [−1, 1]. The calibration procedure uses:
vertical thigh (0), to 90 ◦ flexion (1). The knee angle is mapped

from straight (−1) to 90 ◦ flexion (1). For the force sensors,
thresholds are chosen such that ground contact maps to ≤ 0 and
a free foot to 1.

Training data is then segmented into steps (section 2.5) using
the ground contact signal. The step duration lj is determined as
the number of samples in the jth step. Then, the desired gait
phase ϕi and network output oi for each sample i are given as

ϕi =
i

lj
, (3)

Eoi =

(

o1
o2

)

=

(

−sin(2πϕi)
−cos(2πϕi)

)

. (4)

We chose the sensors with the aim to capture motion in terms of
sensor dynamics, instead of relying on defined events. The timing
module frees the sensory inputs from time dependencies and thus
provides a device, gait, and patient independent description of
gait progress. The second part, the shaping module, generates
the control output. It is augmented by a user interface for direct
user-feedback.

2.3. User Defined Output Modulation
The damping function is tailored to the need of the individual
user by incorporating user feedback in the shaping of the
damping function c(ϕ).

The user interface (Figure 4) provides the samples to fit
the Radial-Basis-Function network, which provides universal
function approximation (Park and Sandberg, 1991; Buhmann,
2003). The sliders represent the applied damping c(ϕ) by
values on a grid of supporting points, with the lowest
position corresponding to no damping, the highest position
to maximum damping. The Radial-Basis-Function network is
updated immediately and thus users can immediately experience
the effect of their changes. The choice of the Gaussian kernels’
widths allows to choose the amount of smoothing of user-input
applied during network-training.

We used a network of n = 10 equidistant nodes in the
interval [0, 1). The Gaussian transfer function had a half-width of

σ =

√

n
2 .

2.4. Gait Recognition
The neural orthosis controller described in section 2.2 is gait
specific: its timing and shaping units were designed to estimate

FIGURE 3 | Mapping of gait progress with time (A) to the cyclic gait-phase variable ϕ (B). Restricting ϕ ∈ [0, 1) allows a direct comparison to classical gait

descriptions in the literature. (Illustration (A) based on marketing material by Otto Bock).
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FIGURE 4 | User interface to tune the control output, i.e., the knee damping.

The horizontal axis shows the gait phase ϕ, the vertical the desired damping c.

Changing a slider, directly modifies the desired damping at the corresponding

gait phase. The system updates its behavior immediately to changed user

input. This enables users to tune the device’s behavior to their expectations

and needs.

the phase of a specific gait and generate the damping appropriate
for that gait. To support different gaits, we propose to train
different controllers for different gaits, and to activate the proper
controller based on model based gait recognition. As long
as the gaits can be differentiated with the available sensory
information (Figure 1), the number of supported gaits is not
directly limited. The controller can be extended by providing
single-gait controller modules together with internal models to
identify the corresponding gait (Braun et al., 2014).

Gait recognition is based on the prediction of sensory input:
each gait is associated with a predictorP that predicts the sensory
input Es t+1 for the next time step based on a subset of the sensory
history HN =

{

Es t ,Es t−1, . . . ,Es t−N+1
}

, where N is the history
length. A comparison of the prediction of the next time step’s
sensory reading Ep t+1 to the actual sensory reading Es t+1 in the
next time step defines a prediction error. The prediction error
allows the decision unit to determine the best fitting gait model
by choosing the model with the smallest error within predefined
acceptable bounds of error.

To estimate reasonable history lengths N, we assume a
minimal step duration Tstep of

Tstep ' 1 s,

for complete steps with the orthosis. Further, we assume a stance
to swing duration ratio of ≈ 60 : 40 and that gait changes can
occur at any time1. When the gait changes, the history contains
two gaits and will naturally lead to diverging predictions of
models trained on a single gait. While this prediction error is

1If we consider, for example, Figures 13, 14, they show a transition from

descending stairs to flat walking. We see that after the heel strike follows a period,

where the dynamics seem to mostly follow the stair regime. This is followed by a

period where differences to both gaits occur. Here, it is difficult to determine the

gait until after the maximum knee flexion, when the gait dynamics converge to

those of the flat walking regime. As the flat walking gait is only reached during the

extension of the knee, we assume that the new gait is reached during the swing

phase. Still, the transition changes the whole step’s dynamics.

critical to achieve a fast invalidation of the old gait, we want the
history to contain only one gait swiftly afterwards. To estimate a
reasonable scale of the new gait’s duration in the transition step,
we go for a fraction of 50% of the swing phase as the smaller gait
phase. This translates to around 20% of the step length. Given the
hardware specific sampling frequency of 100Hz, we determine
the maximum number of samples in the history NHistory to

NHistory / 20 samples =
1

5
s.

When the history length is chosen larger, a gait change could stay
longer in the history than the above requested 20% of the step
length.

The history length is a trade-off between the prediction’s
accuracy and the supported frequency of gait switches. The
prediction accuracy should increase with a longer history, which
can cover more details leading to better discrimination. In
contrast, the frequency of supported gait switches will decrease,
because data from different gaits in the history will lead to lower
quality predictions while conflicting gaits stay in the history. The
choice of TH = 1

5 s allows several gait switches per step with quite
accurate results, as shown below.

2.4.1. Predicting Gait Models
The predicting gait models were implemented like the timing
unit of the feed-forward gait controller above. Based on a history
of sensor data, a single channel was predicted by the predicting
model. To this end, a multi-layer perceptron network with 3
neurons in the hidden layer and one output neuron was trained
on recorded gait samples to predict the sensory inputs using a
history. The history was implemented as a delay line (Figure 5).

First experiments showed that the backpropagation learning
algorithm tended to exploit the last sensor reading as a good
prediction of the next time step. Ignoring most of the history,
this was equivalent to the approximation with a constant value,
predicting the next time step’s state almost only on the preceding
one as the error of the approximation was in many cases of
the order of magnitude of the signal change, considering step
to step fluctuations and sensor noise. This prediction on only
one time step was independent of the trained mode. Thus, this
approach had no predictive power which related to the actual
gait’s dynamics.

As a consequence, only a subset of the history is actually
used for prediction. Especially for the predicted channel, the
current sensory reading is omitted and only older values are used.
Effectively, we have coarsened the history to a grid with a width
of 101t (Figure 5), to exclude simple models. Besides solving the
problem of forwarding of the last reading, this sparse selection
reduces the computational complexity of the models greatly.

Therefore, to predict channel i Ep t+1
i , we use sensory readings

of all other channels for t, t− 9, and t− 19, but only the readings
for t − 9 and t − 19 of the predicted channel (Figure 5).

2.4.2. Prediction-Based Gait Selection
The part of the controller, which selects the current gait based
on the model’s predictions, will be called the decision unit,
in accordance to previous naming conventions. The selection
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FIGURE 5 | Gait detection tries to minimize the prediction error for sensory

inputs Es t by choosing an appropriate model. Delay lines provide a history H

of sensory inputs, which is fed into a feed-forward model predicting a single

value in the next time step, here the knee. The delay relative to the predicted

signal is given as a multiple of the sampling interval 1/100 s. For the predicted

channel, the current input is not fed in, as experiments showed a high

probability of the network to choose it as the best prediction.

process chooses the gait model which minimizes the prediction

error Ee tj =

∣

∣

∣
Ep t
j −Es t2

∣

∣

∣
for the gait j with the sensory inputs Es t2 .

The subscript 2 indicating that the ground contact signal has not
been used for the calculation of the prediction error. The absolute
value was chosen to increase sensitivity to the amplitude of the
prediction error, preventing the low pass filter (below) to average
out fluctuations.

These prediction errors often occur in relatively short intervals
of the step. Thus, we apply post-processing in form of a low pass
filter to prolong the time span that the final fitness-measure is
usable.

ẽti,j = (1− β)ẽt−1
i,j + βeti,j,β = 0.9, i ∈

{

knee, hip
}

.

Model- (j) and channel (i) -specific thresholds θi,j suppress
prediction noise in the low pass filtered errors ẽti,j. These

thresholds are chosen for each gait j individually based on the
error signal ẽti,j for matching gait samples. Remaining prediction

errors are counted if they are greater than this threshold θi,j

(Figure 6) for each predicted channel i ∈
{

knee, hip
}

.

f ti = α ·

{

f t−1
i , if ẽti < θi

max
(

f t−1
i + 1, 2

)

, else
, α ∈ {R|0 < α < 1} .

This count f ti is limited to the range [0, 2] and decays with factor
α = 0.99. The factor α and the maximum value 2 are chosen such
that the value is significant on timescales of steps.

These f ti measure the unfitness of the model’s predictions per
channel and are merged with a gait specific weight γj to reflect the
importance of the individual channels,

f tj = γj f
t
thigh +

(

1− γj

)

f tknee.

Finally, all gaits with f tj > 1.1 are discarded and the gait with the

lowest f tj , i.e., smallest unfitness, is selected from the remaining

gaits. Its feed-forward controller operates the current time step.

2.4.3. Training of Prediciting Models and Selection
Training of predicting models is analogous to the feed-forward
controller’s timing unit and can use the same recordings. The
recordings should reflect the variance in the user’s gait and
should not be too regular. Then, the perceptron is trained using a
backpropagation algorithm.

To improve the performance of the internal models, each
model scales the sensory inputs such that typical signals lie in
the range (−1, 1). Of course, in addition to optimal working
conditions, such a scaling will help to differentiate huge changes
in amplitude which might be connected to different gaits. In a
converse argument, it supports bad predictions for gaits with too
low or too high amplitudes in comparison to a model’s training
data set.

2.5. Step Segmentation
Segmentation of gait data by step boundaries is needed to create
training data as well as for the analysis of the tracking unit’s
and gait recognition performance. As typical in the literature,
the heel-strike marks beginning and end of a step (Figure 3),
which we determine by flanks of the pressure onset at the heel
FSR. Due to the high sensitivity of the sensors and interaction
with the orthosis frame and foot, only onsets can be detected and
we have to apply filters to compensate varying amplitudes and
fluctuations.

The sensory data is assumed to be in the range [−1, 1] with 1
no pressure and−1 high pressure. To improve robustness, we use
a hysteresis to detect state changes, changing to ground contact
when the sensor goes below 0, and to free heel when > 0.8.
Heel-strike detection is implemented with a finite state machine
as:

1. Based on the first sample, the state is initialized to ground
contact or free heel.

2. For each sample

a. If ground contact and the current sample is above threshold
for free heel, then change the state to free heel.

b. If free heel and the current sample is below threshold for
ground contact, then change the state to ground contact.

3. Collect the sample numbers of all touch down events (state
changes to ground contact) in a list.

4. As the detection reacts to the steepest part of the flank in the
FSR signal, we move the touch down event to the preceding
sample which is closest to an FSR reading of 0.8 to determine
the onset of heel-strike.

This list of events now describes the heel-strikes in the given
recording.

2.6. Experiments
2.6.1. Gait Phase Tracking
For single gait support, the following statements hold. (i) We
make no assumptions about when and what kind of support
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FIGURE 6 | Based on the gait-specific predictions for the next sensory inputs Ep t
j
and the actual sensory reading, the decision unit calculates the prediction error Ee t

j

and applies a low-pass filter before an unfitness measure f t
j
is calculated for each gait. At the end, from gaits with f t

j
in an acceptable range, the best fitting one is

selected.

the user needs. (ii) The damping function c is smooth (due
to the representation as an RBF function). And (iii) the
applied damping at knee-flexion is a direct function of the
gait phase and thus of the sensory input ct = ct(ϕt(Est)).
Thus, the applied damping c only changes when the gait

phase ϕ changes and, in consequence, the controller’s ability
to apply the desired damping at any gait phase solely depends
on the properties of the gait phase ϕ. Thus, the quality
of the gait phase ϕ determines the quality of the control
output.
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Ideally, the gait phase ϕ produces a linear mapping for
constant motion velocity, as it guarantees the same detail of
control for all phases of gait, i.e., control accuracy does not
depend on the gait phase. Thus, we investigate the linearity of
the gait progress representation and the timing of the heel strike
after training. We compare to the ideal gait phase ϕ

′ according
to section 2.5, which can only be derived after the heel-strike and
therefore has to be acquired for offline processing. To evaluate
steps of different duration, we will resample and interpolate each
step to 200 samples, leading to an ideal slope of 1ϕ

′ = 1
200 . The

deviation of the controller’s gait phase to these will be investigated
in terms of linearity, monotony, and smoothness.

Furthermore, the timing of the gait phase has to match the
timing of the step to provide a useful representation for users,
such that the tuning of the control output with the user interface
(Figure 4) can be done intuitively.

2.6.2. Gait Selection
Due to the controller providing body support at the knee level,
it assists in the stance phase, while in the swing phase, all single-
gait controllers provide free knee swinging. We therefore argue,
that the most important aspect for secure and seamless operation
is timely gait switching to prepare for the heel-strike. Thus,
to evaluate the accuracy of gait recognition, we check that the
controller not only classifies the step correctly but also achieves
a correct result prior to heel strike. To quantify correctness
and timing, we analyze a walking sequence where a healthy
user annotates the intended gait, for example flat walking, stair
climbing, and descending stairs. The inclusion of descending
stairs requires that we have to deactivate the damping unit for
security reasons.

Then, we analyze step by step and measure the time ahead of
the heel-strike that the decision unit recognized the step’s final
gait. Figure 7 shows how the user’s annotations are compared
to the controllers’ classification: For each step, we compare the
controllers’ classification against the last valid user annotation. If
both match, we measure the duration the correct classification
was known and set this duration in relation to the duration of the
swing phase to allow the comparison independent of the actual

step length. We call this fraction the range of certainty. A range of
certainty of zero means that the correct gait was not known prior
to heel-strike. For a range of certainty of one, the controller was
certain of the used gait for the whole swing phase.

Thus, the range of certainty allows to asses if the controller
is able to apply the correct gait model during swing phase,
where all single-gait models will provide free knee motion. We
then analyze the average success rate and range of certainty
for all tested gaits, to determine if the presented controller in
combination with the sampling frequency of the data acquisition
board can react to gait changes. Then, we quantify the controller’s
ability to differentiate the tested gaits against each other with the
selected set of sensors. We conclude with the investigation of gait
changes for steps showing conflicts between the user’s annotation
and the controller’s classification.

To access the orthosis controllers accuracy, we take a reaction
time into account. At a sampling rate of 100Hz and step lengths
in the experiment between 1.3 and 1.8 s, a range of certainty of 3%
guarantees that the orthosis controllers’ classification is in time
for heel-strike.

3. RESULTS

3.1. Gait Phase Tracking
The experiments conducted aim to show that a trained gait model
is able to track gait progress better than a model trained for other
gaits. Control quality depends on the smoothness and monotony
of the tracked gait phase ϕ, which we quantify in terms of
linearity and the distribution of increments, e.g., discrete slopes.
Furthermore, the accuracy of the tracked heel-strike is used as a
measure for correct timing.

In a first run, the single gait controllers were trained on runs
with 49 steps on even ground and 59 steps on stairs. In a second
run, we record the gait phase ϕ of these two controllers for
later comparison to the ideal gait phase ϕ

′. We analyzed 30
steps on even ground and 38 steps climbing stairs of a healthy
subject wearing the orthosis. Steps at gait changes were manually
removed, due to issues discussed later.

FIGURE 7 | Determination of the time a correct classification result was available before heel-strike: The range of certainty, i.e., the fraction of swing phase where user

annotations (dotted black) and the system’s prediction match. It describes the duration for which the prediction produces a correct result and describes the predictive

power of the model for a specific step.
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FIGURE 8 | Smoothness of gait phase representation. Colored lines indicate 25 steps on flat ground and 8 on stairs, without gait transitions. Compared are models

for walking on flat ground and stair climbing on their native and the opposite terrain. The native models (A r2 = 0.88, D r2 = 0.72) produce smoother gait phase

output in comparison to the unfitting models (B r2 = 0.33, C r2 = 0.06). The latter expose phase shifts and strong deviations the ideal gait phase ϕ
′ indicated by the

dashed line. The coefficient of determination (r2) supports the notion that the native models are generally following the ideal linear relation. The lower number of steps

in (D) increases the influence of the step segmentation, degrading r2.

In Figure 8, the controller-derived gait phases ϕFlat and ϕStair

are plotted against the ideal, offline computed gait phase ϕ
′. In

the case where the model matches the user’s gait (Figures 8A,D),
the ideal gait phase is approximated well. In the mixed cases
(Figures 8B,C), where the model does not match the gait, the
controller’s heel strike has a phase shift against the real event.
In addition, the flat ground model on stairs (Figure 8B) shows 4
steps with almost constant intervals between the steps. The stair
climbing model on flat ground (Figure 8C) fails to reproduce the
gait phase completely; it only oscillates between 0.2 and 0.8. The
r2 values inTable 1 support that the nativemodel is close to linear
and significantly better than the non-native model.

The accuracy in timing of the heel-strike is accurate only
for the trained gait, as the phase shift in Figure 8 and
Table 1 shows. Considering the sampling frequency of 100Hz
and an average duration of 150–200 samples, the gait phase
should progress by 360 ◦

200 – 360 ◦

150 = 1.8 ◦–2.4 ◦ per sample. This
value matches with the average precision shown in Table 1,

which is determined by averaging the phase shift indicated in
Figure 8.

The distribution of increments 1ϕ in Figure 9 supports these
observations. When considering the variation of increments
around 1ϕ

′ = 1
200 , we considered the interval

[

1
21ϕ

′, 21ϕ
′
]

.
Using this interval, we allow a variation of up to a factor of
two in each direction, but do not count extreme or negative
increments, as the standard deviation might have. For level
walking (Figure 9A), the fitting model has 69% of increments
in this interval, while the model for stair climbing only has a
fraction of 31% inside this interval. In the case of steps on
stairs (Figure 9B), 65% of the increments are inside for the
fitting model and only 40% for the flat walking model. The
histogram for the native models (in red) has its maximum around
the optimal slope with lower standard deviation (Table 1). For
the mixed cases (in blue), the optimal slope is not in the
center of the distributions but has a maximum around zero and
larger standard deviations. Furthermore, we see the presence
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TABLE 1 | Linearity of the graphs in Figure 8 according to the r2 values for a linear regression.

Environment

Flat ground Stairs

r2 Accuracy [◦] Std. dev. Skew r2 Accuracy [◦] Std. dev. Skew

Flat 0.88 1.8 0.004 3.94 0.33 34.2± 3.7 0.033 1.17

M
o
d
e
l

Stair climbing 0.06 −18.0± 1.2 0.017 −10.45 0.72 2.5± 5.5 0.005 2.02

Timing accuracy of heel strike based on the heel-strikes’ phase shifts as shown in Figure 8. The standard deviation and skewness relate to Figure 9. For flat ground based on 30 steps

and while stair climbing (38 steps for the flat model and 31 steps for the stair climbing model).

FIGURE 9 | Distribution of gait phase increment sizes 1ϕ. The native models (in red) have a distribution of increments centered near the ideal linear slope. The

non-native models (in blue) show a stronger deviation from the ideal slope. The standard deviation and skewness are noted in Table 1. (A) Increments on flat ground.

(B) Increments while stair climbing.

of significant negative changes for the stair climbing model
on flat ground and an increase in larger values in the case
of the flat ground model on stairs, i.e., less monotony and
smoothness.

The ability to apply a damping pattern to steps of varying
length is shown in Figure 10. As the abstract gait progress ϕ

removes any time dependency from the input, changes in step
duration and length are transparently handled. The red bars in
Figure 10 indicate unit lengths: the steps to the right are twice as
fast as the ones to the left.

3.2. Gait Selection
In this section, we test the hypothesis that a set of feed-
forward single-gait controllers can be combined into to a
multi-gait controller that enables the correct feed-forward
controller to support a wide range of motions. Therefore, to
evaluate the accuracy of gait recognition, we have to show
that the gait recognition provides a correct result and that this
result is available in time for the controller to react to gait
changes.

The experiments include walking on flat ground, stair
climbing, and descending stairs performed by a healthy subject.

FIGURE 10 | Automatic adaptation to different step-lengths. The abstract gait

progress ϕ removes any time dependency from the input. Step duration and

length are transparently handled. The red bars indicate unit lengths: the steps

to the right are twice as fast as the ones to the left.

Prior to use, the gait models were trained with 146 steps for
walking on flat ground, 35 steps for stair climbing, and 32 steps
for descending stairs. The difference in training set sizes is due
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to every stair run including steps of flat ground and the gaits
on stairs being comparatively exhausting. Three independent
recordings with 215 steps were used in the evaluation. These
include gait transitions between 81 steps on flat ground, 64
steps mixing flat ground and stair climbing and 70 steps mixing
flat ground and descending stairs. As the staircase used in the
experiment is comprised of sequences of 5 stairs, each of the
mixed runs includes the high number of 36 transition steps.

The development of gait certainty over the swing phase
(Figure 11) shows that the gait for 83% of steps was known
at toe-off. The fraction of correct classification now increases
toward above 94% at heel-strike. This high accuracy is indicative
of the fact, that most steps stem from step-sequences with the
same gait. Furthermore, it indicates that many gait changes occur
during swing phase.

The final classification accuracy, with ranges of certainty of at
least 3%, are plotted in Figure 12 as confusion matrix between

FIGURE 11 | The average success rate increases during swing phase,

indicating that the classification matches the user annotation better the smaller

the timescale of the prediction is. A high onset of more than 84% indicates

step sequences of unaltered gait. The red line to the right indicates the time,

where the controller can still use gait information before heel-strike at ≈ 97%

swing phase (3% range of certainty Figure 7), e.g., to successfully apply

pre-damping.

the user annotations in the rows and the controllers’ classification
in the columns. Note that the additional column unknown gait
in the controllers’ classifications, which counts cases, where the
prediction errors are unacceptably high for all gait models. In
these cases, the application of a fall back controller allows safe
operation, for example, knee locking on ground contact, although
it is most likely less comfortable. In general, the confusion matrix
shows high classification rates between 87% for descending
stairs, 95% for walking on flat ground, and 100% for stair
climbing. Furthermore, we see a number of steps, where the gait
recognition was unable to differentiate or evenmixing upwalking
on flat ground and descending stairs. The wrong classified steps
are one transition step each for descending stairs and walking on
flat ground.

The dynamics of knee and thigh angle (Figures 13, 14) show
the transition step between descending stairs and walking on flat
ground. It is easy to see that these steps are neither similar to one
nor the other gait in 2D when plotting the angles over time, or
thigh angle against knee angle. For the predicting models, which
are working on a higher dimensional history, the dissimilarity is
even more drastic. As a consequence, prediction errors are high
for all models for this kind of gait transition step. It is to be
expected, though, that many of these transitions fall into swing-
phase transitions, where highly varying dynamics are possible
and the actual control output is not that important for a device
supporting mechanically.

4. DISCUSSION

The presented neural mechanisms set out as an adaptive orthosis
controller, empowering users to control device behavior.

4.1. Gait Phase Representation
We implemented a neural single-gait controller to individualize
gait support in terms of (1) the patient’s gait dynamics with
learning from observation and (2) direct user feedback with

FIGURE 12 | Classification accuracy for a range of certainty of at least 3%. The rows show the user annotation, the columns show the system’s output. Note that the

latter has the additional category “unkown/fall back” which is selected, when all predicting models generate high errors. Stair climbing has a high accuracy due to its

unique phase relation, which leads to a 100% success rate. Flat walking and stair descent have a higher overlap. Of 215 steps, only 2 transition steps were wrongly

categorized (Figures 13, 14).
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FIGURE 13 | Example for mismatch between user-label and gait detection at the transition from stair descent to flat walking. The transition step clearly deviates from

earlier and following steps in that it shows mixed characteristics (Figure 14).

FIGURE 14 | For the label mismatch of Figure 13, the plot of thigh- over knee-angle shows that the transition step has quite unique properties. Note, that the

predicting gait models work on a history going back 0.2 s, i.e., they are working on a higher dimensional space and thus can easier separate these gaits.

an interface for tuning, placing the patient in the loop.
The gait phase abstracts gait dynamics and thereby removes
dependencies on remaining abilities, except the ability to
initiate motion. Furthermore, the gait phase removes the
time domain from the sensory inputs. Thus, it transparently
supports gaits of different speeds and step lengths (Figure 10)
as well as standing; it provides immediate reactions to regular
and critical events like stumbling. Variability in the training
set enables use in varying environments such that a level

walking controller supports even ground as well as slopes of
several degrees (up to ±15 ◦ were tested but not presented
here).

The presented user feedback is a minimal implementation,
which allows to define an arbitrary damping function c in
sufficient detail and allows the user to adapt c at run-time. It
allows the users to understand the controller behavior in an
experimental way: this way the users can develop an intuition of
how changes to c modify the controllers behavior. Furthermore,
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it simplifies the mapping from the gait phase to a valve position.
Calibration and transformation are not necessary, as the user
implicitly deals with these nonlinear operations. From the users’
perspective, the user interface allows to define the level of support
required. More important, their opinion is directly included in
the controller’s behavior. This inclusion of the patient’s opinion
concerns one of the top reasons for device abandonment see
(Phillips and Zhao, 1993) and references therein.

Quantitative measurements verify instant reaction to motion,
and high accuracy in timing and tracking of the patient’s gait.
We validated experimentally that the timing unit determines
the heel-strike with high accuracy in the order of the sampling
frequency. Furthermore, testing under the assumption that
the recorded steps were ideally and steadily progressing, the
timing unit was shown to approximate a linear progression of
gait phase for trained gaits. Our generic approach of function
approximation as representation for the control output provides
intuitive tuning of the control output.

While the accuracy of gait phase tracking shows that gait
models for quite different gaits can be learned, like flat ground
walking and stair climbing, it also makes clear, that training
leads to specialization of the feed-forward controller. To support
movement in different environments, the controller has to be
extended with controllers for multiple gaits in such amanner that
free motion is possible.

4.2. Gait Selection
Specialization to one gait in the single-gait controller is overcome
by a gait selection process based on predicting models. To
support a gait, the controller therefore needs (1) a timing module
with training samples, (2) the desired output shaping module,
and (3) a predicting model which can be trained with the same
samples as (1). This modular control approach overcomes design
problems which typically restrict supported motion and the
patient target group.

Based on the internal models’ prediction errors, the gait
selection swiftly chooses a single gait controller with the
best fitting dynamics. Eighty-four percent of the steps in our
experiments were already correctly identified at heel-off, most of
them as part of a sequence of the same gait. But, the≈ 84% steps
include at least 50% of the 72 transition steps. The ≈ 13% steps,
which are identified between heel-off and heel-strike, indicate
that gait recognition has to perform continuous. Figures 13, 14
indicate that the gait dynamics is not bound to switch at any
specific point and shows the flexibility and precision of the
presented approach. For example, the initial step after standing
phases is typically handled by the stair climbing module, which
supports only vertical lift-off.

A fall-back controller, based on the ground contact sensing
FSR, enables save operation in cases when gait dynamics are not
matched by a model. The requirement for a fall-back controller
is especially associated with transition steps, which often are
singular events. The use of a history enables swift detection of
changes in the motion. But at the same time, a gait change in
the history will reduce the precision of predictions. Therefore,
the history length not only determines the accuracy of gait

prediction, but it also determines the frequency of changes, which
can be tracked.

4.3. Advantages and Limitations
The greatest advantages of the presented approach lie in (1) its
flexibility, as only the equipped sensors determine which gaits can
be differentiated, (2) its implicit support for stumbling support,
due to ground contact directly shifting the gait phase toward
stance phase, (3) device independence, and (4) independence of
remaining abilities, as long as circular motion can be initiated.

A difficulty in the evaluation of the presented approach lies in
the handling of transition steps. As gait transitions can seemingly
happen anytime, training data will not cover them in all possible
variations. This singular nature of transition steps was not
captured in the user annotations. Nonetheless, the results show
that the controller is able to choose a gait with similar dynamics
in many cases. In these cases, the user’s annotation describes an
intention, but not necessarily provides the best match to gait
dynamics. In other words, the annotations are only valid for
steps without transitions, for which excellent recognition rates
could be seen even with 100Hz sampling rate and 3 channels.
For transition steps, a broad selection of training data will allow
to address many transitions. For all other cases, the fallback
controller has to provide save operation, i.e., guarantee support
in stance phase, which can be achieved with the FSRs.

A general problem is the question of the number of supported
movements. While three gaits were sufficient to control all
motions during experiment sessions, it is still unclear how many
gaits need to be supported for comfortable operation in everyday
life. At the same time, support for more gaits might fill gaps in
gait transitions as more independent motions are supported.

The presented control approach integrates the user into
the tuning process and allows to directly model individual
movements.We believe that this approach improves the handling
of gait deviations and device acceptance. Still, the presented
experiments have been conducted with a healthy subject. Thus,
patient tests have to be undertaken to understand the interaction
and consequences for real patients.

For patient tests, the user interface should be simplified.
Instead of defining the damping function via a set of function
values over a grid of support points, more suitable parameters
should be chosen. A promising idea would be to focus on the start
and end points of the support periods. Considering these together
with the amplitude and the slope should provide an interface
which is easy to understand, but even easier to handle.

4.4. Gait Phase Tracking in the Literature
Li et al. (2014) aim for a similar result by gait phase tracking
on the contralateral leg. Inference of the controllers internal gait
phase is based on the assumption of a constant phase shift to the
ipsilateral leg. Besides practical issues with the instrumentation
of the contralateral leg which directly impact comfort of use and
visual appearance, it is important to note that constant phase
shift can only be assumed in non-critical situations. Especially
when stumbling or external forces disturb this phase shift, the
contralateral leg does not reflect the device’s state. The presented
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approach always faithfully reflects the ipsilateral state, keeping
the procedure of device application to the ipsilateral leg.

The first prosthetic device to reduce its wearers energetic cost
of walking were presented in Malcolm et al. (2013) and Mooney
et al. (2014). The effect was highest, when device activation was
triggered at ≈ 43%. This result indicates that control based on
gait progress presents an interesting approach to pursue.

4.5. Multi-Gait Support in the Literature
Besides the here presented prediction error to invalidate gait
models, many other approaches (Meyer, 1997; Mazzaro et al.,
2005; Ding, 2008; Varol et al., 2008, 2010) are proposed. They
are based on, for example, Gaussian mixture models or hidden
Markov Models. Unfortunately, all of these studies discuss
different selections of gaits, gait variations. For this reason, an
actual performance comparison is difficult and would most likely
be possible for image sequence based approaches (Mazzaro et al.,
2005; Meyer, 1997), which are unfitting for prosthetic devices due
to their outside-view on the walker. Furthermore, this study was
working with a healthy walker. Still, average success rates between
83 and 94% are comparable to vision based model invalidation
approaches (Meyer, 1997; Mazzaro et al., 2005).

Besides image sequence based approaches, the literature
mostly covers active prostheses. Due to space and weight
limitations, active prostheses are of higher practical relevance
than active orthoses, and therefore more present in the literature.
Here, we will not cover technical differences, but focus on the
controller.

Lawson et al. (2013) present a prosthesis controller for stair
ascent and descent. The FSM architecture prevents the easy
inclusion of other gaits and the missing support of level walking
omits the region of high model overlap in this study. Sup
et al. (2011) presents a hierarchy of FSMs, where one outer
FSM with a slope estimator selects from three slope specific
FSMs for 0, 5, and 10 ◦, respectively. While the fixation to
slopes is incompatible with the gaits of this study, the addition
of parameter estimation would provide beneficial input to the
presented controller. A history based Gaussian mixture model
differentiates standing andwalking in Varol et al. (2008), selecting
gait-specific FSM controllers on the fly. This study is based
on seven signals sampled at 1, 000Hz. An offline analysis was
performed to reduce the dimensionality of the input for the
Gaussian mixture models. In another step, the history length
was increased, until the method provided a 100% success rate.
History frames of 50, 100, 200, or 400 samples were tried and
finally a window size of 100 samples was selected with an overall
delay of 430ms. Later, this approach was extended to include
sitting motion (Varol et al., 2010). The selection of sensors was
described as task specific. In this study, the optimal delay was
500ms.

All in all, the cross section of literature shows unique, and
often incomparable gait selections and approaches. A similar
approach with instantaneous selection was used in Varol et al.
(2008, 2010) to differentiate standing, walking, and sitting
motion. In contrast, the dynamics based gait tracking in our
approach renders the recognition of standing superfluous. This
focus on the device configuration simplifies data processing

and needs neither explicit models of the device or gait nor
expensive preprocessing. The presented work is based on only
3 sensors sampled at 100Hz. Further improvements can be
implemented with estimators of environmental parameters,
sensors which provide differentiating inputs, or higher sampling
frequencies. Especially with higher sampling frequencies,
extensive optimization of the history and controller parameters,
like amplification gains and weights could lead to significant
improvements.

In comparison to biologically inspired modeling of modular
motor learning and control, our control mechanism implements
a partial function of the internal models for motor control
proposed by Wolpert and Kawato (1998). The internal models
are classified into three types: inverse internal model (the system
calculates a motor command from a desired trajectory/state
information), forward internal model (the system predicts
sensory consequences from efference copies), and integrated
internal model (the system integrates both inverse and forward
models). In our case here, our shaping module acts as an inverse
internal model that translates a user desired damping curve (i.e.,
desired trajectory) into a proper valve control command (i.e.,
motor command).

4.6. Outlook
Further optimization is possible with the many parameters in
prediction, gait selection. Here, also other machine learning
techniques can be employed (e.g., self-organizing learning of
an adaptive resonance model Grossberg, 1987) is possible. The
application of additional sensors, like torque sensors in the joints
or IMUs, can improve differentiation.

Patients tests can show if the desired aims can be reached with
the presented approach in real-world scenarios. Therefore, they
are very important for future research.

The most interesting aspect is that our approach provides
the building blocks for a completely self-learning controller.
We demonstrated generalization of gait patterns, adaptation
to changes in gait and in the environment as observed via
gait changes. The user interface allows a user to adapt the
support to individual needs. Still, at the stage presented
here, the controller is not fully adaptive to a user in that
it neither 1. automatically updates gait patterns, 2. damping
output (lifetime of adjustments), nor does it learn new gaits
on its own. Nonetheless, the modular structure allows to
pursue these advanced aims. Additionally, other procedures (e.g.,
reinforcement learning or imitation learning) can be employed
for offline training, where the subject provides the reward
(good or bad) according to a given profile, or for fitting to
the pattern of damping in human walking (Nakanishi et al.,
2004).

Observation based training can be implemented at runtime,
constructing and improving gait models continuously. A simple
approach is to continuously add new samples to the training
set and update the multi-layer perceptron networks’s weights.
The classification of recorded steps can be used to create new
models, when new observations contradict existing models. In
this way, bootstrapping of the controller can consist of a mostly
generic model for walking on flat ground and an appropriate
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fallback controller. Then, during everyday usage, the controller
adapts to the patient and vice-versa, while the patient can
always influence the control output. Suggestions for automatic
tuning could be generated and tested in accordance with the
patient, based on gait quality assessment in the controller. In
this way, patients would be empowered to fit their own orthosis,
hopefully improving trust into and the general opinion of the
device.
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Background: For mechanically reconstructing human biomechanical function, intuitive

proportional control, and robustness to unexpected situations are required. Particularly,

creating a functional hand prosthesis is a typical challenge in the reconstruction of

lost biomechanical function. Nevertheless, currently available control algorithms are in

the development phase. The most advanced algorithms for controlling multifunctional

prosthesis are machine learning and pattern recognition of myoelectric signals. Despite

the increase in computational speed, these methods cannot avoid the requirement

of user consciousness and classified separation errors. “Tacit Learning System” is a

simple but novel adaptive control strategy that can self-adapt its posture to environment

changes. We introduced the strategy in the prosthesis rotation control to achieve

compensatory reduction, as well as evaluated the system and its effects on the user.

Methods: We conducted a non-randomized study involving eight prosthesis users

to perform a bar relocation task with/without Tacit Learning System support. Hand

piece and body motions were recorded continuously with goniometers, videos, and a

motion-capture system.

Findings: Reduction in the participants’ upper extremity rotatory compensation motion

was monitored during the relocation task in all participants. The estimated profile of total

body energy consumption improved in five out of six participants.

Interpretation: Our system rapidly accomplished nearly natural motion without

unexpected errors. The Tacit Learning System not only adapts human motions but also

enhances the human ability to adapt to the system quickly, while the system amplifies

compensation generated by the residual limb. The concept can be extended to various

situations for reconstructing lost functions that can be compensated.

Keywords: myoelectric prosthesis, artificial intelligence, biomechanical function reconstruction, motor control,

magnetoencephalography, interactive musculoskeletal modeling analysis, muscle, sensory synergy
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INTRODUCTION

When we lose a functional part in our body (e.g., reaching
out, walking, trunk control, breathing, watching, etc.), we
not only lose functional output but also sensory feedback.
Every biomechanical movement is a result of computations
in the central-nervous-system (CNS) and at the same time,
consecutive sensory feedback prediction and modification of
motor behavior goes on in the cerebellum, allowing us to
accomplish natural motion, and construct changes in response
to the external environment (Brooks et al., 2015). Therefore,
reconstruction of lost biomechanical function should not
only include fine motor control but also dense sensory
feedback that precisely, bi-directionally, and with high frequency
communicates with the CNS. However, even the most advanced
neuromotor reconstruction technology has not accomplished
this communication, and lacks appropriate feedback for
natural function. Furthermore, construction of a practical and
ergonomic mechanical system that adapts to environmental
changes within seconds is difficult due to lack of flexibility in
current artificial machine learning.

One typical challenge of reconstructing lost function is
the functional hand prosthesis. These are widely used in
reconstruction on forearm amputees and congenital forearm
deficient individuals for restoring their ability to reach and grasp.
Among these, body power and myoelectric prostheses are widely
used formotor control. In the past, body powered prosthesis were
advantageous in cost, intuitiveness and sensory feedback, but
not in function. Thus, a great effort was required to accomplish
more function and natural movement in myoelectric prosthesis
(Ciancio et al., 2016).

Developments in technology over the past few decades
has improved control on multiple functions, with a primary
focus on minimizing user burden and increasing prosthesis’
function. Nevertheless, increasing the number of myoelectric
input channels resulted in non-physiological muscle activation
that required exhaustive training (Schulz et al., 2005). Target
muscle re-innervation (Kuiken et al., 2007) may be one
solution, but is too invasive and less beneficial for trans-
radial amputees which represent the largest proportion of
individuals with upper extremity deficiency (Hahne et al., 2012).
The development of pattern recognition and machine learning
techniques of electromyography (EMG) signals increased the
number of degrees of freedom (DOFs) while keeping the
number of utilized electrodes low. However, this technique has
a critical limitation of low adaptability to environmental changes
(Ciancio et al., 2016).

Meanwhile, a large number of studies have used the brain’s
plasticity to quickly adapt and reorganize cross-modal sensory
integration for sensory feedback reconstruction. Since most of
the work focuses on tactile feedback for adjusting grip force, it
is still a challenge to reconstruct natural sensory feedback and
mimic natural control. Recently, a few studies have reported
increased sensory information density by neural implants
(Ciancio et al., 2016); however, neurophysiological studies have
indicated that position in space is estimated by integrating
information from multiple sensory inputs rather than direct

input. Moreover, as this integrated feedback is noise-robust,
useful and cost-effective, adding appropriate sensory integration
may result in better reconstruction (Alnajjar et al., 2015).

In our natural motion learning, we use two different
modes, i.e., explicit and tacit learning. The former occurs with
learner’s awareness, while the latter takes place subliminally.
When we perform a motor skill, there is a variety in the
status of our neuromotor situation, which is subliminal and
highly coordinated to express low dimensional motion. The
key to a natural control strategy is management of this
inherent redundancy in the musculoskeletal system mediated
by a high number of DOFs with low dimensional outputs
(Metzger et al., 2012).

Recently, several studies have shown that muscle synergy
is like a neural strategy that the CNS has adopted to
simplify the control of our redundant musculoskeletal system.
Additionally, the importance of integrating environmental inputs
into suitable low-dimensional signals before sending them
to the CNS for simplified control have been documented
(Alnajjar et al., 2015). Yet the neural dynamics inside the
CNS have not been investigated in detail. Shimoda introduced
a biological self-regulatory adaptive control strategy called
“Tacit Learning System” (TLS) for posture control with self-
sufficiency. This system is designed for unsupervised acquisition
of skills or creation of new behavioral structures for adapting
to environmental changes. Signal accumulation is a key factor
for “Tacit Learning” in the adaptation process and primitive
behaviors composed of several reflex actions are gradually tuned
into suitable behaviors for the environment (Shimoda and
Kimura, 2010; Shimoda et al., 2012, 2013).

Shimoda and his team have succeeded in controlling 36
DOFs in a humanoid bipedal locomotive robot using this TLS
and demonstrated a wide adaptation capability to a redundant
motor-skeletal system along with robustness to environmental
changes compared to conventional machine learning algorithms
(Shimoda et al., 2012). We thus hypothesized that introducing
TLS into the biomechanical structure as a subsystem will
integrate it with muscle synergy to control implicit motion
with adaptation to environmental changes, allowing the user to
concentrate on explicit tasks like grasping in myoelectric hand
prosthesis. Clinically, a compensatory strategy to the rotation
function of a lost wrist, involves using proximal residual limbs
to achieve the necessary motion, result in increased burden on
users that limit prosthesis usage (Metzger et al., 2012). This
rotation function of reaching is an example of implicit motion.
Consequently, we performed experiments to evaluate the efficacy
of TLS in a prosthesis hand model, by appointing the system
to regulate wrist rotation to minimize redundant compensatory
motion as a biomimetic regulatory system while performing
reaching tasks.

MATERIALS AND METHODS

In this study, a non-randomized experiment was conducted to
evaluate efficacy of the TLS and its effects on the central nervous
system during the prosthesis control tasks.
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Prosthesis Efficacy Evaluation in Bar
Relocation Tasks
Seven men and one woman participated after giving informed
consent. All participants were below elbow amputees, and
experienced users of the conventional one-degree (hand open
and close) myoelectric hand prosthesis. Table 1 shows the
participants’ demographic data.

Each participant’s prosthesis handpiece was exchanged with
the TLS handpiece and their remaining arm sockets were used
in the trials. The open/close signal detector on the handpiece
was connected to sensors in the socket to allow the participants
to control hand motions as usual. Since we could not find
adequate forearm rotation tasks for hand prosthesis in the past
literature, we placed three plastic bars (3 cm diameter and 10 cm
length with the central 3 cm part covered with Velcro tape
to increase grasp) horizontally on a table. Participants sat in
front of the table, reached out to hold the bars, placed them
vertically and then back to horizontally three times (Figure 1).
This exercise counted as one trial. Initialization of the system
was performed as a pre-trial. Participants were instructed to
stay still for 5 s with their shoulders at 0◦ flexion, rotation, and
abduction, along with elbows at 0◦ flexion. Subsequently, they
were instructed to repeat the trials until the rotational support
of hand prosthesis made no more improvement. Twenty trials
were done in approximately 10 min, and this was sufficient for
every patient to achieve convergence of the parameters. Angles
of shoulder joints derived from three goniometers placed on
the participant’s shoulder (flexion, rotation, and abduction) were
monitored and fed back to the TLS. Participants’ movements
were recorded with a computer vision based human bodymotion
capture tracking system (Section Tacit Learning Handpiece and
Data Preprocessing) First person sight video (FPV) (Video 1, 2)
recording was performed by the camera (HERO,GoPro, Inc., CA,
USA) attached to the prosthesis socket.We conducted descriptive
type questionnaires to determine participant satisfaction and
how effective the participants felt the system was.

Tacit Learning Handpiece and Data
Preprocessing
The system consisted of three goniometer sensors to measure
angles of shoulder flexion (θ1), horizontal flexion (θ2), rotation

TABLE 1 | Demographic data of participants.

No. Age

(y)

Sex Side Duration of

myoelectric

prosthesis use

Device type

1 51 Male Right 5 years Ottobock8E44=6+10S17+10V38

2 40 Male Right 8 years Ottobock8E38=9

3 46 Female Right 12 years Ottobock8E38=6

4 41 Male Right 6 months Ottobock8E44=6+10S17+10V38

5 29 Male Right 2 months Ottobock8E44=6+10S17+10V38

6 52 Male Right 3 years,

6 months

Ottobock8E38=6+10S17

7 33 Male Left 1 year Ottobock8E38=6+10S17+10V38

8 74 Male Right 32 years Ottobock8E38=6

(θ3), and a handpiece with two actuators (rotation and grip)
(Figure 2). One actuator was for handpiece wrist rotation.
Rotation angle θr was a desired angle of prosthesis wrist rotation,
controlled by a low-level controller embedded in the hardware.
The other actuator was for grip with an on-off control provided
by surface EMG sensing which is commonly used by commercial
prosthesis. When the shoulder angles exceeded pre-defined
threshold values θt (the value found at unnatural postures), the
system tuned the control gain, accumulating extremity joint
angles. The control and adaptation laws were defined as follows:

θr = kΘ − θ̇r (1)

k =

∫

qdt (2)

q =

{

Θ |Θ| ≥ θt

0 |Θ| < θt
(3)

Θ = k1θ1 + k2θ2 + k3θ3 (4)

When a linear combination of residual upper limb joint angles
Θ in Expression (4) exceeded the settled threshold angle θt

in Expression (3), primary reflex modulated rotatory assistance
angle θr depending on Θ in Expressions (1) and (2). Expression
(1) was a speed control component of rotation. A previous
mathematical study suggests that biological arm kinematics are
optimized by total energy expenditure (Berret et al., 2008), which
is positively correlated to the total joint angle Θ . Thus, we
determined the control law of system as minimization of Θ . In
this experiment, we set θt = 1, k1 = 0.1, k2 = 0.1, and k3 =

0.5 as the initial values.

Motion Capture System
Kinematic patterns of the participants’ movements were captured
with a motion capture system (Workstation 5.2.4, VICON).
Twenty-four markers (spheres covered with reflective tape) were
attached to various parts of the participant’s body and prosthesis
prior to the experiment. The motion capture system consisted of
six cameras, which tracked and reconstructed the motion of each
of the recorded markers in 3D space.

Data Analysis
We focused on the tacit learning rotational control of prosthesis
on this study.

Hence, we computed system energy consumption by using
the software for Interactive Musculoskeletal Modeling (SIMM,
MusculoGraphics, Inc., Santa Rosa, California, USA). It is
a graphical software system for developing and analyzing
models of musculoskeletal structures, and performs inverse
dynamics calculations from motion capture data (Delp and
Loan, 1995; Neptune et al., 2008). It creates a musculoskeletal
model consisting of representations of bones, muscles, and
ligaments by calculating the joint moments. In this study, we
used a standardized musculoskeletal model calculated from the
participants’ body weight, height, and sex. Pre-trial system energy
in all participants was normalized as one.
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FIGURE 1 | A schematic figure of the trial. After moving three bars vertically, the participants were instructed to place these three bars back to where they were

horizontally.

FIGURE 2 | Three goniometers were attached as shown (left) and linked to the handpiece (center) for measuring the upper extremity joint angle

(θ1, θ2, θ3, right).

RESULTS

All participants successfully completed their assigned tasks.

Online video (Video 1, 2, 3) shows participant 3 working on

his tasks. “After learning” represents 20 trials after the first one.
Adaptation advanced in both wearer and prosthesis in a short

while as shown in the videos (Video 1: Without TLS assistance.
Video 2: After twenty trials). After 20 trials, the shoulder rotation

angle (θ3) decreased in all participants as shown in Figure 3.
Total system energy estimated by SIMM decreased in five out
of six patients (Figure 4). Energy estimation was not possible in
participants 7 and 8 due to failure of the motion-capture marker.

Figure 5 shows changes in the actual estimated system energy
data during trials in participant 1. The graphs show system energy
before and after TLS learning. The compensation rotation angle
of shoulder [Θ in Section Tacit Learning Handpiece and Data
Preprocessing, Expression (4)] in participant 1 decreased after
TLS learning as shown in Figure 6. Seven out of eight participants
were comfortable with TLS assistance. No participant required
special training before the trials. After TLS learning of bar
rotational tasks, participant 8 volunteered to open two types of
drawers and turn the oven indicator (Video 4). Figure 7 shows
rotation angle of the prosthesis wrist during the tasks. Although
TLS did not experience any of these tasks, it provided good
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FIGURE 3 | The maximum shoulder rotation angle (as compensation

movement for forearm rotation tasks) decreased after trials.

FIGURE 4 | Estimated mean system energy decreased significantly in

five out of six participants.

assistance and showed generalized performance for rotational
support despite changes in arm posture. This participant was also
satisfied with the intuitiveness of TLS support as determined by
the descriptive type questionnaires.

DISCUSSION

A good hand prosthesis should reconstruct the original dexterity
of human hands. While far from complete, in this endeavor we
replicated one of the most complex biomechanical structures.
Improvements in EMG signal analysis (Tenore et al., 2009),
Targeted Muscular Reinnervation (TMR) including sensory
feedback (Kuiken et al., 2007; Ohnishi et al., 2007; Li et al.,
2010), brain interface (Yanagisawa et al., 2011), peripheral
nerve interface (Navarro et al., 2005), and new training
systems (Pilarski et al., 2011) were invented, but these methods
required a certain period of special training or special surgery
invasions. Furthermore, none of these methods satisfied the

FIGURE 5 | Estimated system energy change during trials before/after

TLS learning in participant 1.

FIGURE 6 | Shoulder rotation angle (as compensation movement for

forearm rotation tasks) during tria/FCls before/after TLS learning in

participant 1.

contrary demands for intuitiveness, multi-functionality, and cost.
Moreover, due to the lack of flexibility in present control methods
to adapt with environmental changes including complex nature
of the bio-signals, repeated calibration is often required by
patients and physiotherapists (Ciancio et al., 2016).

The present work focuses on reconstructing each joint’s
movement, but not muscle synergy. Reconstruction of muscle
synergy does not involve isolating and reorganizing bio-
kinematic outputs from residual function, but expanding muscle
synergy in a biological way. In other words, an optimization
algorithm should be introduced for mimicking human-like
motion and finding the natural output from residual limb to
cope with. Shimoda described that human kinematic output is
unpredictable formachines with amodel-based strategy that does
not represent certain posture situations (i.e., forearm rotations,
elbow flexion/extension) due to intrinsic fragility (Shimoda and
Kimura, 2008). To cope with all motions, it is necessary to
model all possible posture changes and device control actions
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FIGURE 7 | Wrist rotation angle of the prosthesis during the drawer and indicator tasks. Rotational support was efficient, even though tacit learning TLS did

not experience the tasks.

in every model. To solve these issues, various types of bio-
mimetic and self-organizing learningmethods including artificial
neural networks have been proposed, but the capability of current
learning methods to adapt to unknown situations is not sufficient
in terms of learning speed and the level of generalization.

The “Tacit Learning System” introduced by Shimoda has
two main advantages for controlling the prosthesis compared to
other control methods: learning speed and a simple, inexpensive
system with intrinsic robustness (Shimoda et al., 2012, 2013).
Furthermore, as Alnajjar described, this controller has a role in
reduction of sensory stimulus dimension. This is called “sensory
synergy” in contrast to muscle synergy. They defined “sensory
synergy” as “a group of weighted sensory inputs whose function
is to provide the quality of the resulting motion as feedback to
the CNS through a single synergy recruitment signal in order to
facilitate the generation of the next command, thus accelerating
the search time for the optimal muscle synergy.” In particular,
in TLS, the controller modulates sensory synergies contributed
by acquired sensory signals and inferred artificial sensory
synergies into motor commands. Consequently, activated motor
commands of the prosthesis enable intuitive motor control by the
wearer and simultaneous confirmation with visual feedback. In
short, the output of sensory synergy is used as an input to both
the CNS and the TLS, and control signals for the prosthesis device
are created through motor synergy that combines signals from
the CNS and the prosthesis device (Alnajjar et al., 2015).

Our results from the bar relocation experiment convinced us
that this system has high affinity toward the CNS. It was easy
to add on the conventional system, required no special training,

reduced users’ burden and is low-cost. The level of satisfaction
was high.

Recently, we reported a case report from a
magnetoencephalography study on the effect of the TLS
system on CNS. This report showed that the coherence
value among sensorimotor-related cortices in the dominant
hemisphere increased only while watching a video of oneself
using the prosthesis with TLS support and vice versa. This result
is no more than a showcase, but we are preparing for a future
clinical study evaluating the effect of the “Tacit Learning System”
prosthesis on CNS based on the evidence of this basic study.

A limitation of this study is that we tested this system
on limited tasks and thus, it is still in the prototype phase
currently. We tried several learning motions and determined
that various motions could progress the learning in a similar
way to that shown in the results. This robustness is justified
with the experiments of motion generalizations by the drawer
opening task. In cases where less extreme motions were used
in the training sessions, the learning speed was slow, and it
took many trials to learn the appropriate behaviors. For this
study, we choose a simple relocation task to control the learning
environment for all participants and to compare the differences
in the learning process. The users did not try the system in real life
tasks like cooking, housework etc. However, results of additional
tasks performed by participant 8 in an additional experiment
suggest robustness of the system in different situations. Short
battery life is also a concern. The system continuously senses
upper limb motions and tries to adjust prosthesis positions at
all times, so battery drainage is three to five times greater than
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the conventional systems. Setting the threshold adjustment may
be a solution. Higher threshold to a TLS support may increase
battery life but may result in reduced support, which needs to be
considered according to the users’ lifestyle.

In summary, we introduced a novel “Tacit Learning System,”
a self-regulatory strategy in a myoelectric prosthesis, to control
wrist rotation and confirmed its efficacy in conventional type
myoelectric prosthesis users. We infer that TLS showed the
ability to recover the lost function by adjusting compensatory
overreaction generated by residual function. Theoretically, it can
be used for recovering functions in other situations such as lower
limb amputation, palsy in association with functional electric
stimulation, or even in ventilation failure if residual function is
present.
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Neuromorphic hardware emulates dynamics of biological neural networks in electronic

circuits offering an alternative to the von Neumann computing architecture that is

low-power, inherently parallel, and event-driven. This hardware allows to implement

neural-network based robotic controllers in an energy-efficient way with low latency,

but requires solving the problem of device variability, characteristic for analog electronic

circuits. In this work, we interfaced amixed-signal analog-digital neuromorphic processor

ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and

developed an autonomous neuromorphic agent that is able to perform neurally inspired

obstacle-avoidance and target acquisition. We developed a neural network architecture

that can cope with device variability and verified its robustness in different environmental

situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We

demonstrate how this network, combined with the properties of the DVS, allows the robot

to avoid obstacles using a simple biologically-inspired dynamics. We also show how a

Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic

hardware. This work demonstrates an implementation of working obstacle avoidance

and target acquisition using mixed signal analog/digital neuromorphic hardware.

Keywords: neuromorphic controller, obstacle avoidance, target acquisition, neurorobotics, dynamic vision sensor,

dynamic neural fields

1. INTRODUCTION

Collision avoidance is one of the most basic tasks in mobile robotics that ensures safety of the
robotic platform, as well as the objects and users around it. Biological neural processing systems,
including relatively small ones such as those of insects, are impressive in their ability to avoid
obstacles robustly at high speeds in complex dynamical environments. Relatively simple neuronal
architectures have already been proposed to implement robust obstacle avoidance (e.g., Blanchard
et al., 2000; Iida, 2001; Rind and Santer, 2004), while probably the most simple conceptual
formulation of a neuronal controller for obstacle avoidance is the famous Braitenberg vehicle
(Braitenberg, 1986). When such neuronal control architectures are implemented on a conventional
computer, analog sensor signals are converted and stored in digital variables. A large number of
numerical computations are performed then, which are required to model the involved neuronal
dynamics in software.
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Neuromorphic hardware offers a physical computational
substrate for directly emulating such neuronal architectures in
real time (Indiveri et al., 2009; Furber et al., 2012; Benjamin et al.,
2014; Chicca et al., 2014), enabling low latency and massively
parallel, event-based computation. Neuromorphic electronic
circuits can implement dynamics of neurons and synapses using
digital (Furber et al., 2012) or analog (Benjamin et al., 2014; Qiao
et al., 2015) designs and allow for arbitrary connectivity between
artificial neurons. The analog implementations of artificial neural
networks are particularly promising, due to their potential
smaller size and lower power consumption figures than digital
systems (for a review see Indiveri et al., 2011; Hasler and Marr,
2013). But these features come at a price of precision and
reliability. Indeed, with analog designs, the device mismatch
effects (i.e., variation in properties of artificial neurons across the
device) have to be taken into account for the development of
robust functional architectures (Neftci et al., 2011).

A promising strategy for taking these issues into account
is to implement the mechanisms used in biological neural
networks, which face the same problem of using an unreliable
computing substrate that consists of noisy neurons and synapses
driven by stochastic biological and diffusion processes. These
biological mechanisms include adaptation and learning, but also
using population coding (Ermentrout, 1998; Pouget et al., 2000;
Averbeck et al., 2006) and recurrent connections (Wilson and
Cowan, 1973; Douglas et al., 1995) to stabilize behaviorally
relevant decisions and states against neuronal and sensory noise.
In this work, we show that by using the population-coding
strategy in amixed signal analog/digital neuromorphic hardware,
it is possible to cope with the variability of its analog circuits and
to produce reliably the desired behavior on a robot.

We present a first proof of concept implementation of such
a neuromorphic approach to robot navigation. Specifically, we
demonstrate a reactive vision-based obstacle avoidance strategy
using a neurally-inspired event-based Dynamic Vision Sensor
(DVS) (Lichtsteiner et al., 2006) and a Reconfigurable On-Line
Learning (ROLLS) neuromorphic processor (Qiao et al., 2015).
The proposed architecture is event-driven and uses the neural
populations on the ROLLS device to determine the steering
direction and speed of the robot based on the events produced
by the DVS. In the development phase, we use a miniature
computer Parallella1 solely to manage the traffic of events
(spikes) between the neuromorphic devices, and to store and
visualize data from the experiments. The Parallella board can be
removed from the behavioral loop in target applications, leading
to a purely neuromorphic implementation. In this paper, we
demonstrate the robustness and limits of our system in a number
of experiments with the small robotic vehicle “Pushbot2” in a
robotic arena, as well as in an unstructured office environment.

Several neuromorphic controllers for robots were developed
in the recent years, e.g., a SpiNNacker system (Furber et al.,
2012) was used to learn sensory-motor associations with
robots (Conradt et al., 2015; Stewart et al., 2016), a neural-
array integrated circuit was used to plan routes in a known

1https://www.parallella.org
2http://inilabs.com/products/pushbot

environment (Koziol et al., 2014), three populations of analog
low-power subthreshold VLSI integrate-and-fire neurons were
employed to control a robotic arm (Perez-Peña et al., 2013).
Our system goes along similar lines and realizes a reactive robot
navigation controller that uses a mixed signal analog/digital
approach, and exploits the features of the ROLLS neuromorphic
processor.

In this work we follow a dynamical systems—attractor
dynamics—approach to robot navigation (Bicho et al., 2000),
which formalizes one of the famous Braitenberg vehicles
(Braitenberg, 1986). The neuronal architecture in our work
is realized using a number of neuronal populations on the
neuromorphic device ROLLS. The dynamical properties of
neuronal populations and their interconnectivity allow to process
a large amount of sensory signals in parallel, detecting the
most salient signals and stabilizing these detection decisions in
order to generate robustly closed-loop behavior in real-world
unstructured and noisy environments (Sandamirskaya, 2013;
Indiveri and Liu, 2015). Here, we demonstrate the feasibility of
deployment of a neuromorphic processor for the closed loop
reactive control. We found several limitations of the simple
Braitenberg-vehicle approach and suggest extensions of the
simple architecture that solve these problems, leading to robust
obstacle avoidance and target acquisition in our robotic setup.

2. MATERIALS AND METHODS

The experimental setup used in this work consists of the Pushbot
robotic vehicle with an embedded DVS camera (eDVS) and
the ROLLS neuromorphic processor. A miniature computing
board Parallella is used to direct the flow of events between the
robot and the ROLLS. Figure 1A shows the components of our
hardware setup, while Figure 1B shows the information flow
between different hardware components.

The Pushbot communicates with the Parallella board via a
wireless interface for receiving motor commands and for sending
address-events produced by the DVS. Using a dedicated WiFi
network, we achieve communication latency below 10 ms, which
was enough to demonstrate functionality of our system at speeds,
possible with the Pushbot.

The ROLLS device is interfaced to the Parallella board using an
embedded FPGA, which is used to configure the neural network
connectivity on the chip and to direct stimulating events to
neurons and synapses in real time. The Parallella board runs a
simple program that manages the stream of events between the
neuromorphic processor and the robot.

2.1. The ROLLS Neuromorphic Processor
The ROLLS is a mixed signal analog/digital neuromorphic
chip (Qiao et al., 2015) that comprises 256 spiking silicon
neurons, implemented using analog electronic circuits which
can express biologically plausible neural dynamics. The neurons
can be configured to be fully connected with three sets of
synaptic connections: an array of 256 × 256 non-plastic
(“programmable”) synapses, 256 plastic (“learnable”) synapses
that realize a variant of the Spike-Timing-Dependent Plasticity
(STDP) rule (Mitra et al., 2009), and 4 additional (“virtual”)
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FIGURE 1 | (A) Information flow between the three main components:

ROLLS, Parallella, and the Pushbot, in particular, its sensor DVS and two

motors. (B) The hardware setup used in this work: the neuromorphic

processor ROLLS is interfaced to a miniature computer Parallella, which

communicates with the Pushbot robot over a dedicated WiFi network.

synapses that can be used to receive external inputs. In this
work, only the programmable synapses were used for setting
up the neuronal control architecture, as no online-learning was
employed for the navigation task.

Figure 2 shows a block diagram of the ROLLS device, in
which 256 spiking neurons, implemented using analog electronic
circuits (Indiveri et al., 2006), are shown as triangles on the
right, and 256 × 256 non-plastic (“programmable”) synapses,
which can be used to create a neuronal architecture on the
ROLLS, as well as 256 “virtual” synapses used to stimulate
neurons externally, are shown as white squares. A digital Address
Event Representation (AER) circuitry allows to stimulate neurons
and synapses on the chip, as well as to read-out spike events
off chip; a temperature-compensated digital bias-generator
allows to control parameters of analog electronic neurons and
synapses, such as the refractory period or membrane time
constant.

The programmable synapses share a set of biases that
determine their weight values, their activation threshold, and
time constants. These three parameters determine the synaptic
strength and dynamics of the respective connection between
two neurons. A structural limitation of the hardware is
that each synapse can only assume one of eight possible
weight values (four excitatory and four inhibitory values).
This means that in a neuronal architecture, several different
populations might have to share weights, which limits the
complexity of the architecture. ROLLS consumes ∼4 mW
of power in typical experiments, run here. The ROLLS
parameters (biases) used in this work are listed in the Appendix
(Supplementary Material, Appendix A).

2.2. The DVS Camera
The Dynamic Vision Sensor (DVS) is an event-based camera,
inspired by the mammalian retina (Lichtsteiner et al., 2006; Liu
and Delbruck, 2010). Figure 3 shows a typical output of the DVS
camera accumulated over 0.5 s (right) from the Pushbot robot
driving in the office (left).

Each pixel of the DVS is sensitive to a relative temporal
contrast change. If such change is detected, each pixel sends
out an event at the time in which the change was detected
(asynchronous real-time operation). Each event e is a vector:
e = (x, y, ts, p), where x and y define the pixel location in
retinal reference frame, ts is the time stamp, and p is the polarity
of the event. The event polarity encodes whether the luminance
of the pixel increased (an “on” event) or decreased (an “off”
event). All pixels share a common transmission bus, which uses
the Address Event Representation (AER) protocol to transmit the
address-events off chip.

The AER representation and asynchronous nature of
communication makes this sensor low power, low latency, and
low-bandwidth, as the amount of data transmitted is very
small (typically, a very small subset of pixels produce events).
Indeed, if there is no change in the visual scene, no information
is transmitted off the camera. If a change is detected, it is
communicated instantaneously, taking only a few microseconds
to transfer the data off-chip.

For the obstacle avoidance scenario, important properties
of the DVS are its low data rate, high dynamic range, and
small sensitivity to lighting conditions (Lichtsteiner et al., 2006).
The challenges are noise, inherent in the sensor, its inability
to detect homogeneous surfaces, and relatively small spatial
resolution (128 × 128 pixels), as well as a limited field of view
(60◦). New versions of DVS are currently available, which would
further improve performance of the system. Moreover, more
sophisticated object-detection algorithms for DVS are currently
being developed (Moeys et al., 2016).

The embedded version of the DVS (eDVS) camera (Müller
and Conradt, 2011) used in this work uses an ARM Cortex
microcontroller to initializes the DVS, capture events, send them
to the wireless network, and to receive and process commands for
motor control of the Pushbot.

2.3. Neuromorphic Robot
The robot used in this work is the mobile autonomous platform
Pushbot, which consists of a 10× 10 cm chassis with two motors
driving two independent tracks for propulsion (left and right).
The predominant component on the small robot is an eDVS
(Section 2.2), which acquires and provides sensory information
and controls actuator output, including the robot’s motors,
through its embedded microcontroller. The sensor’s integrated
9 DOF IMU reports changes of velocity and orientation. The
robot actuators include a buzzer, two parallel, horizontal forward
laser pointers and an LED on top, which all can show arbitrary
activation patterns. The Pushbot is powered by 4 AA-batteries,
which ensure∼2 h operation time.

The robot communicates through WLAN at up to 12 Mbps,
which allows remote reading of sensory data (including events
from the eDVS) and setting velocities with a latency < 10ms.
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FIGURE 2 | The schematic visualization of neurons (grey triangles), non-plastic and virtual synapses (white squares), as well as input-output interfaces and bias

generator of the ROLLS chip. Each neuron on the chip (presynaptic neuron) sends its output spikes to 256 non-plastic synapses, which, if set active, can route these

spikes to any of the neurons on the chip (postsynaptic neurons). The connectivity matrix allows for all-to-all connectivity, but also other configurations. AER is a digital

Address-Event Representation, used to communicate spikes (it consists of an index of the spike-emitting neuron).

FIGURE 3 | The Pushbot robot driving in the office (left) and a visualization of

the DVS output (right), accumulated over 0.5 s.

The Pushbot robot is too small to carry the current experimental
hardware setup. In principle, however, it is possible to place the
ROLLS chip directly on a robot, removing the WiFi latency.

2.4. Spiking Neural Network Architecture
The core of the system presented here is a simple neural network
architecture that is realized in the ROLLS device and allows
the robot to avoid obstacles and approach a simple target. The

“connectionist” scheme of the obstacle avoidance part of the
architecture is shown in Figure 4A, while the scheme of the target
acquisition architecture is shown in Figure 4B.

For obstacle avoidance, we configured two neuronal
populations of 16 neurons each to represent a sensed obstacle
to the right (“obstacle right,” or OR) and to the left (“obstacle
left,” or OL) from the robot’s heading direction. Each neuron
in the OL and OR populations receives a spike for each DVS
pixel that produces an event in the left (right) part of the sensor,
respectively (we used the lower half of the sensor for obstacle
avoidance). The spiking neurons in the two obstacle populations
sum up the camera events according to their neuronal integrate-
and-fire dynamics (equations can be found in Appendix B
(Supplementary Material)). If enough events arrive from the
same neighborhood, the respective neuron will fire, otherwise
it will ignore events that are caused by the sensor noise. Thus,
the obstacle representing neuronal populations achieve basic
filtering of the DVS events. The output spikes of the neuronal
populations signal the detection of an object in the respective
half of the field of view.

Each of the obstacle detecting neuronal populations is
connected to a motor population “drive left, DL” or “drive
right, DR” (with 16 neurons per population). Consequently, if
an obstacle is detected on the right, the drive left population
is stimulated, and vice versa. The drive populations inhibit
each other, implementing a winner-take-all dynamics. Thus, a
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FIGURE 4 | The implemented neuronal architectures for obstacle avoidance and target acquisition. (A) Obstacle avoidance: Violet OL and OR circles represent

obstacle detecting neuronal populations. Orange DL and DR circles are motor driving populations. sp is the speed-setting population, and exp is the constantly firing

population that sets the default speed. Thin arrows show excitatory non-plastic connections realized on the ROLLS chip, whereas colors and numbers show the

weights (the exact value of the weight is set by the biases, listed in Table 2) in Appendix B (Supplementary Material). (B) Target acquisition: Same notations. The violet

line of circles shows a DNF population that represent targets. On the chip, both architectures are realized at the same time.

decision about the direction of an obstacle-avoiding movement
is taken and stabilized at this stage by the dynamics of neuronal
populations on the chip.

The drive populations, in their turn, inhibit both obstacle
detecting populations, since during a turning movement of
the robot, many more events are generated by the DVS,
compared to those generated during translational motion. This
inhibition compensates for this expected increase in the input
rate, similar to the motor re-afferent signals in biological neural
systems (Dean et al., 2009). This modification of the simple
Braitenberg vehicle principle is required to enable robust and fast
behavior.

The speed of the robot is controlled by a neuronal population,
“speed, sp,” which receives input from a constantly firing “exc,”
excitatory population. The latter group of neurons has strong
recurrent connections and continually fires when triggered by
a transient activity pulse. In an obstacle-free environment, the
speed population sets a constant speed for the robot. The obstacle
detecting populations OL and OR inhibit the speed population,
making the robot slow down if obstacles are present. The
decreasing speed ensures a collision-free avoidance maneuver.

These six populations comprise only 96 neurons, and
represent all that is needed to implement the obstacle avoidance
dynamics in this architecture (Figure 4A).

The control signals sent to the robot are, first, the angular
velocity, va, that is proportional to the difference in the number
of spikes per neuron emitted between the two drive populations
(Equation 1), and, second, the forward velocity, calculated based
on the number of spikes per neuron emitted by the speed
population (Equation 2):

va = cturn

(

N
spike
DL

Nn
DL

−
N

spike
DR

Nn
DR

)

, (1)

vf = cspeed
N

spike
sp

Nn
sp

, (2)

where N
spike
XX are the numbers of spikes, obtained from the

respective populations [drive left (DL), drive right (DR), and
speed (sp)] in a fixed time-window, we used 500 and 50 ms
in an improved version); Nn

XX is the number of neurons in
the respective population; and cturn and cspeed are turn- and
speed-factors (user-defined constants), respectively.

Thus, we used neural population dynamics to represent
angular and translational velocities of the robot and used the
firing rate of the respective populations of neurons as the control
variable.

2.4.1. Dynamic Neural Field for Target Representation
To represent targets of the navigation dynamics, we use a
Dynamic Neural Fields (DNFs) architecture as defined in Bicho
et al. (2000). DNFs are population-based models of dynamics
of large homogeneous neuronal populations, which have been
successfully used in modeling elementary cognitive function in
humans (Schöner and Spencer, 2015), as well as in implementing
cognitive representations for robots (Erlhagen and Bicho, 2006;
Bicho et al., 2011; Sandamirskaya et al., 2013). DNFs can be
easily realized in neuromorphic hardware by setting a winner-
take-all (WTA) connectivity network in a neural population
(Sandamirskaya, 2013). Each neuron in a soft WTA network
has a positive recurrent connection to itself and to its 2–4
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nearest neighbors, implementing the lateral excitation of the
DNF interaction kernel. Furthermore, all neurons have inhibitory
connections to the rest of the WTA network, implementing
the global inhibition of a DNF. These inhibitory connections
can be either direct, as used here, or be relayed through an
inhibitory population, which is a more biologically plausible
structure.

In our architecture, we select 128 neurons on the ROLLS
chip to represent visually perceived targets. Each neuron in
this population receives events from the upper half of each
column of the 128 × 128 sensor frame from the eDVS and
integrates these events according to its neuronal dynamics: only
events that consistently are emitted from the same column
lead to firing of the neuron. The nearby neurons support each
other’s activation, while inhibiting further neurons in the WTA
population (Figure 4B).

This connectivity stabilizes localized blobs of most salient
sensory events, filtering out sensor noise and objects that are too
large (inhibition starts to play role within object representation)
or too small (not enough lateral excitation is engaged). Thus,
the WTA connectivity stabilizes the target representation. The
target in our experiments was a blinking LED of the second
robot, which was detected in the DNF realized on the ROLLS.
While this target could be easily detected since the blinking LED
produces many events, more sophisticated vision algorithms are
being developed to pursue an arbitrary target (Moeys et al., 2016).

The target population was divided in three regions: neurons
of the DNF that receive inputs to the left from midline of the
DVS frame drive the “drive left” population, whereas neurons
that receive input from the right half of the DVS frame drive
the “drive right” population. We did not connect the central 16
neurons of the target DNF to the drive populations to ensure
more smooth target pursue when the target is in the center of
the DVS frame (Figure 4B).

2.4.2. Combining Obstacle Avoidance and Target

Acquisition
The two neuronal populations that ultimately determine the
robot’s steering direction (DR and DL) sum-up contributions
from the obstacle-representing populations and the target-
representing WTA population (Figure 4). The obstacle
contribution is made effectively stronger than the target
contribution by setting the ROLLS biases accordingly. Thus, in
the presence of an obstacle in the robot’s field of view, an obstacle
avoidance maneuver is preferred.

Figure 5 shows the connectivity matrix used to configure
the non-plastic connections on the ROLLS chip to realize both
obstacle avoidance and target acquisition. This plot shows the
weights of non-plastic synapses on the ROLLS chip (blue being
the negative weights and red the positive weights; the same
color code is used for the different weights as in Figure 4),
which connect groups of neurons (different populations, labeled
on the right side of the figure) among each other. Within-
group connections are marked with black squared frames on the
diagonal of the connectivity matrix. Violet and orange arrows
show inputs and outputs of the architecture, respectively.

This connectivity matrix is sent to the ROLLS device to
configure the neuronal architecture on the chip, i.e., to “program”
the device.

3. DEMONSTRATIONS

We verified the performance of our system in a number of
demonstrations, reported next. Overall, over 100 runs were
performed with different parameter settings. In the following, we
will provide an overview for the experiments and describe a few
of them in greater detail to provide intuition of how the neural
architecture works. For most experiments, we let the robot drive
in a robotic arena with a white background and salient obstacles.
We used a tape with a contrastive texture to make the walls of the
arena visible to the robot. In four runs, we let the robot drive for
several minutes freely in the office.

3.1. Probing the Obstacle Avoidance: A
Single Static Obstacle
In the first set of experiments, we let the robot drive straight
toward a single object (a colored block 2.5 cm wide and 10 cm
high) and measured the distance from the object at which the
robot crossed a virtual line perpendicular to the robot’s initial
heading direction, on which the object is located (e.g., see the
distance between the robot and the “cup” object at the last
position of the robot in Figure 6). We varied the speed factor of
the architecture from 0.1 (∼0.07 m/s) to 3.0 (∼1 m/s) and have
verified the effectiveness of the obstacle avoidance maneuver.
Furthermore, we have increased the turning factor from 0.5 to
1.0 to improve performance at high speeds and have tested color-
dependence of the obstacle perception with the DVS. Table 1
shows results of these measurements. Each trial was repeated 3
times and mean over the trials was calculated.

The table allows to note the following characteristics of
the architecture at the chosen parametrization. First, the
performance drops at very low speeds (speed factor 0.1),
especially for red and yellow objects, due to an insufficient
number of DVS events to drive the neuronal populations on
ROLLS. Second, there is a trade-off between this effect and
the expected decay in performance (in terms of the decreasing
distance to the obstacle) with increasing speed. Thus, at a turning
factor 0.5, best performance is achieved for the blue object at
speed factor 0.5 and for the red object at speed factor 1. Distance
to the obstacle can be further increased by increasing the turn
factor. Thus, at turn factor 1 and speed factor 1 best performance
(i.e., largest distance to the obstacle) can be achieved for both the
blue and red objects. Yellow object provides too little contrast to
be reliably perceived by the DVS in our set-up.

Figure 6 demonstrates how the neuronal architecture on the
ROLLS chip realizes obstacle avoidance with the Pushbot. On
the left, an overlay of video frames (recording the top view of
the arena) shows the robot’s trajectory when avoiding a single
obstacle (here, a cup) in one of the runs. Numbers (1–3) mark
important moments in time during the turning movement. On
the right, summed activity of the neuronal populations on the
ROLLS device is shown over time. The same moments in time
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FIGURE 5 | The synaptic connectivity matrix, configured on the ROLLS chip to implement the obstacle avoidance and target acquisition architectures. Colors

encode different synaptic weights (red for positive and blue for negative connection weights) of the recurrent connections on the chip.

are marked with numbers as in the left figure. In this case, already
the obstacle detecting populations had a clear “winner”—the left
population forms an increasing activity bump over time, which
drives the “drive right” population, inducing a right turn of the
robot. The bottom plot shows the commands that are sent to the
robot (speed and angular velocity): the robot slows down in front
of the obstacle and turns to the right.

We have performed several further trials, varying the lighting
conditions (normal, dark, very dark) and parameters of the
architecture. Since the architecture uses the difference in spiking
activity, induced by sensory events from the two halves of
the visual space, avoiding a single obstacle works robustly,
although the camera might miss objects with a low contrast
(e.g., yellow block in our white arena). More advanced noise
filtering would improve performance. While more extended
version of the performed tests will be reported elsewhere,
Figure 7 show results of some of the successful and unsuccessful
runs.

3.2. Avoiding a Pair of Obstacles
We repeated the controlled obstacle avoidance experiment with
two and three blocks in different positions. Each configuration
was tested twenty times without crashes at speed 0.35 m/s (speed
factor 0.5).

Figure 8 shows an exemplary run that explains how the robot
avoids a pair of obstacles. This example is important, since in the
attractor dynamics approach to navigation, distance between the
two objects determines a decision to move around or between the
objects.

Snapshots from the overhead camera are shown on the left
of Figure 8. Output of the DVS, accumulated in 500 ms time
windows around the time when the snapshots were taken3,
is shown in the second column, and the spiking activity of
neuronal populations recorded from the ROLLS chip is shown
in the two right-most columns. Activity is shown of the obstacle
representing left (red) and right (blue) neuronal populations
(third column), the left (red) and right (blue) drive populations,
and the speed population (gray, forth column). Each of these
populations has 16 neurons, dots represent their spikes4.

At the moment, depicted in the top row of Figure 8, the robot
senses an obstacle on the right, although the DVS output is rather
weak. Note that the neuronal population filters out sensory noise
of the DVS and only detects events that cluster in time and in
space. The robot turns left, driven by the activated drive left
population and now the obstacle on the right becomes visible,
providing a strong signal to the right obstacle population and,
consequently, to the drive left population (second and third row).
Eventually, the obstacle on the right dominates and the robot
drives past both obstacles on the left side (forth row).

Thus, with the chosen parametrization of the neuronal
network architecture, the robot tends to go around a pair of
objects, avoiding the space between them. This behavior could
be changed, making the connections between the obstacle
representing populations and drive populations stronger.
However, for a robot equipped with a DVS, such strategy is

3We dropped 80% of DVS events randomly in our architecture; moreover, we only

used 5% of all remaining events for plotting.
4Only 5% of the ROLLS spikes (every 20th spike) are shown in all our plots.
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FIGURE 6 | An example of an obstacle avoidance maneuver. Left: Overlay of video frames showing the trajectory of the robot. Right: activity of the neuronal

populations on the chip (Top: the left and right obstacle detecting populations; Middle: the left and right drive populations), and the motor commands, sent to the

robot (Bottom plot).

TABLE 1 | Collision avoidance at different speeds: distance to the obstacle when crossing the obstacle-line (mean over 3 trials ± standard deviation in [cm]) at different

speed- and turn-factors and for different colors of the obstacle.

Speed/turn 0.1/0.5 0.5/0.5 1/0.5 1/1 1.5/1 2/1 3/1

Blue 7.0 ± 1.0 10.3 ± 0.6 7.7 ± 1.5 19.3 ± 2.1 16.3 ± 3.3 10.8 ± 2.6 0*

Red 0* 2.3 ± 0.6 4.7 ± 0.6 10.7 ± 1.2 9.7 ± 3.5 5.0 ± 1.0 0*

Yellow 0* 0* 0* 7.0* ± 6.1 0* 0* 0*

* signifies trials when a collision happened.

safer, since for homogeneous objects, the DVS can only sense the
edges, where a temporal contrast change can be induced by the
robot’s motion. The robot thus might miss the central part of
an object and avoiding pairs of close objects is a safer strategy.
Adaptive connectivity that depends on the robot speed is also
feasible.

3.3. Avoiding a Moving Obstacle
In these experiment, the robot is driving straight in the arena
while we move an obstacle (a coffee mug) into its path. We repeat
this experiment six times with varying speed factors (0.1–2) of the
robot. The robot was capable to avoid collisions in all tested cases.
In fact, avoiding a moving obstacle is more robust than avoiding
a static obstacle because the moving obstacle produces more DVS
events than a static one at the same robot speed.

Figure 9 shows how the robot avoids a moving obstacle. The
same arrangement of plots was used as in Figure 8, described in
Section 3.2. The robot was moving with cspeed = 0.5 (0.35 m/s)
here, the cup was moved at∼0.20 m/s.

3.4. Cluttered Environment
In the following set of experiments, we randomly placed obstacles
(8–12 wooden pieces) in the arena and let the robot drive around
at an average speed (0.35m/s). We analyzed the performance of
the architecture, suggesting a number of modifications to cope
with its limitations.

Figure 10 demonstrates behavior of the obstacle avoidance
system in a cluttered environment. In particular, we let the
robot drive in an arena, in which 8 obstacles were randomly
distributed. The robot successfully avoids obstacles in its way
with two exceptions: the robot touches the blue obstacle in the
center of the arena, which entered the field of view too late for
a maneuver, and also collides with the yellow object, which did
not provide enough contrast to produce the required number
of DVS events. These collisions point to two limitations of the
current setup, which, first, uses single camera with a narrow field
of view and, second, drops 80% of events to improve signal to
noise ratio (the latter deprives performance for objects with low
contrast against the background). Usingmore sophisticated noise
filter would improve visibility of the faint obstacles. Note that we
used rather small objects on these trials (blocks of 2 × 5 cm),
which posed a challenge for the event-based detection, especially
taking into account our very simplistic noise-reduction strategy.

To improve behavior in a cluttered environment, we modified
the architecture, adding two more populations on the ROLLS
chip, which receive input from the inertia measurement unit
of the Pushbot and which suppress obstacle populations when
the robot is turning. Moreover, we replaced the homogeneous
connections between the obstacle and the drive populations with
graded connections that become stronger for obstacles detected
in the center than in the periphery of DVS field of view. This
allows the robot to make shorter avoidance maneuvers and avoid
obstacles in a denser configuration at a higher speed. Figure 11
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FIGURE 7 | Exemplary experiments showing successful (Top row) and unsuccessful (Bottom row) obstacle avoidance maneuvers in different light conditions (A)

and with obstacles of different colors (B).

shows a successful run with the modified architecture. Here,
we also changed the sampling mechanism used to calculate the
robot commands, replacing a fixed time window with a running
average. This allowed us to avoid obstacles in the cluttered
environment without collisions at speed as high as 0.5 m/s.

3.5. Variability of Behavior
Since behavior of our robot is controlled by activity of neuronal
populations, implemented in analog neuromorphic hardware,
the behavior of the robot has some variability, even when exactly
the same parameters of the architecture and the same hardware
biases are used. Despite this variability, the robot’s goal—avoiding
obstacles—remains fulfilled. Such variability of behavior can be
used as a drive for exploration, which may be exploited in
learning scenarios in more complex architectures, built on top
of our elementary obstacle avoidance system.

Figure 12 demonstrates variability behavior of our neuronal
controller. In the figure, we show three trials, in which the
robot avoids a two-blocks configuration, starting from exactly the
same position and with the same configuration of the neuronal
controller (speed factor 0.5, turn factor 0.5). Mismatch in the
neuronal populations implemented in analog neuromorphic
hardware, variability of the DVS output, and its dependence on
the robot’s movements lead to strong differences in trajectories.
In particular, in the case shown in Figure 12, the trajectories may
bifurcate and the robotmight avoid the two obstacles on the right,
or on the left side.

3.6. Obstacle-Avoidance in a Real-World
Environment
Finally, we tried our architecture outside of the arena as well.
The robot was placed on the floor in the office and drove
around avoiding both furniture and people. The high amount of
background activity compared to the arena did not diminish the
effectiveness of the architecture: in four 0.5–1.5-min long trials,
the robot only crashes once after it maneuvered itself into a dark
corner under a table where the DVS sensor could not provide
sufficient information to recognize obstacles.

Figure 13 shows an example of the Pushbot robot driving in
the office environment. On the left, three snapshots from the
video camera recording the driving robot are shown (full videos
can be see in the Supplementary Material). The snapshots show
the robot navigating the office environment with its task being
to avoid collisions. The middle column of plots shows pairs of
eDVS events, accumulated over 500 ms around the moment in
time in the corresponding snapshot on the left, and respective
histograms of events from the center region, used for obstacle
avoidance. Events above the mid-line of the eDVS field-of-view
are shown with transparency to emphasize that they were not
used for obstacle avoidance: only events from the region of the
eDVS field-of-view between the two vertical lines in Figure 13

were used.
Histograms below the eDVS plots show the events from this

region of the field of view, summed over the eDVS columns.
These events drive the obstacle left (red colored part of the
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FIGURE 8 | Avoiding a pair of obstacles. First column: Snapshots of four moments in time during avoidance of a cup, moved into the robot’s trajectory.

Second column: DVS “frames”—events, accumulated over a 0.5 s time window. Green dots are off events, blue dots are on events. Events in the upper part of the

frame were not considered for the obstacle avoidance. Third column: Activity of the obstacle representing populations in 0.6–1.5 s before the camera snapshot in the

first column was taken (red—left population (nOL), blue – right population (nOR); each population has 16 neurons). Forth column: Activity of the drive left (red), drive

right (blue), and speed population on the ROLLS chip in the same time as on the plots in column 3.

histogram) and obstacle right (blue part of the histogram)
neuronal populations on the ROLLS chip.

The right column shows activity of the neuronal populations
on the ROLLS chip over time, as in the previous figures.
Black vertical lines mark time moments that correspond to the
three snapshots in the left column. These plots allow to see
that although the left and right obstacle populations are often
activated concurrently, only one of the drive populations (either
left or right) is active at any moment, leading to a clear decision
to turn in either direction in the presence of perceived obstacles.
The speed plot shows that movement of the robot is not very
smooth—it slows down and accelerates often based on the sensed
presence of obstacles. This behavior is improved in the modified
architecture, briefly described in Section 3.4.

When driving around the office, robot faced very different

lighting conditions, as can be seen already in the three snapshots

presented here. This variation in lighting conditions did not effect

obstacle avoidance in most cases, since the DVS is sensitive to
relative change of each pixel’s intensity, which varies less than
the absolute intensity when the amount of ambient light changes.
However, in an extreme case, shown in the lower snapshot in

Figure 13, the robot collided with themetal foot of the chair. This
was the only collision recorded.

3.7. Target Acquisition
In addition to obstacle avoidance we also tested target acquisition
in ten experiments using a second robot with a blinking LED
as target. The robot successfully turns and drives toward the
target every time (at speed and turn factors = 0.5). In 8 out
of 10 experiments the target is recognized as an obstacle when
approached and is avoided; in two experiments, the robot failed
to recognize target as obstacle after approaching it.

Obviously, the simple visual preprocessing that we used
did not allow us to distinguish the target from obstacles
(other than through their position in the upper or lower
part of the field-of-view of the DVS). Moreover, we would
need an object detection algorithm to detect the target and
segregate it from the background. This vision processing is
outside the scope of our work, but there is a multitude
of studies going in this direction (Moeys et al., 2016)
using modern deep/convolutional neural networks learning
techniques.
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FIGURE 9 | Avoiding a moving obstacle. The same arrangement is used as in Figure 8. See main text for the discussion.

FIGURE 10 | Navigation in a cluttered arena. Left: Overlayed frames from the video, recoding the robotic arena from the top. Green line markes the path of the robot.

Right: Summed activation of neurons in populations on the ROLLS chip over the time of the experiment. Obstacle and turn (left and right) population are shown, as

well as the commands sent to the robot (angular velocity and speed).

Figure 14 shows target acquisition for a static target and
demonstrates that the robot can approach the target object. At
a short distance, the obstacle component takes over and the
robots turns away after approaching the target. The figure shows

the overlayed snapshots from the overhead camera, showing
how the robot turns toward the second robot, standing on the
left side of the image. When getting close to the second robot
(∼10 cm), the robot perceives the target as an obstacle, which
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FIGURE 11 | Successful run in a cluttered environment with a modified

neuronal architecture. Overlay of the overhead-camera frames.

has a stronger contribution to its movement dynamics and the
robot turns away. On the left, the spiking activity of the target
representation on the ROLLS chip is shown (raster plot where
each dot represents a spike5). We can see that the robot perceives
its target consistently on the left. After the eighth second, the
obstacle contribution on the right becomes dominant and the
robot turns left strongly.

Figure 15 shows how the robot can chase a moving target.
We have controlled the second Pushbot remotely and have
turned its LED on (at 200 Hz, 75% on-time). The LED
provided a rather strong (though spatially very small) input to
the DVS of the second, autonomously navigating robot. This
input was integrated by our target WTA (DNF) population,
which, however, also received a large amount of input from the
background (in the upper part of the field of view the robot could
see behind the arena’s walls). Input from the localized LED was
stronger and more concise than more distributed input from
the background and such localized input was enhanced by the
DNF’s (WTA’s) lateral connections. Consequently, the respective
location in the target WTA formed a “winner” (localized activity
bump in the DNF terminology) and inhibited the interfering
inputs from other locations.

In the figure, four snapshots of the video recording the two
robots are shown (top row). The leading robot was covered with
white paper to reduce interference from the obstacle avoidance
dynamics as the robots get close to each other (the space in the
arena and the small size of the blinking LED forced us to put the
robots rather close to each other, so that the target robot could be
occasionally perceived as an obstacle).

In the second row in Figure 15, the summed over 500 ms
events of the DVS are shown, around the same time points
as the snapshots. Only the upper part of the field-of-view was
considered for target acquisition. This part is very noisy, since

5Remember, that only 5% (every 20th) of all spikes from the ROLLS processor are

shown.

the robot “sees” outside the arena and perceives objects in the
background, which made target acquisition very challenging.
Still, the blinking LED provided the strongest input and in most
cases the target DNF was able to select its input as the target
and suppress the competing inputs from the background—see
activity of neurons in the target DNF in the bottom plot.

This last plot shows spiking activity of 215 neurons of
the ROLLS chip, used to drive the robot (we don’t show the
constantly firing nexc population here). We can see that the target
DNF (WTA) successfully selects the correct target in most cases,
only loosing it from sight twice, as the robot receives particularly
many DVS events from the background during turning. The
lower part of this raster plot shows activity of the obstacle
populations, the drive populations, and the speed population,
thus the dynamics of the whole architecture can be seen here.

4. DISCUSSION

This paper presents a neuronal architecture for reactive obstacle
avoidance and target acquisition, implemented using a mixed-
signal analog/digital neuromorphic processor (Qiao et al., 2015)
and a silicon retina camera DVS as the only source of information
about the environment. We have demonstrated that the robot,
controlled by interconnected populations of artificial spiking
neurons, is capable of avoiding multiple objects (including
moving objects) at an average movement speed (up to 0.35 m/s
with our proof of concept setup). We have also demonstrated
that the system works in a real-world office environment, where
background clutter poses a challenge for the DVS on a moving
vehicle, creating many distracting events. We demonstrated that
also the target acquisition neural architecture can cope well with
this challenge, which was relevant even in the robotic arena. The
distributed DNF representation of the target, supported by lateral
interactions of the WTA neuronal population, enabled robust
detection and reliable selection of the target against background.

The reactive approach to obstacle avoidance that we adopt
in this work has a long history of success, starting with the
neurally inspired turtle robot more than half a century ago,
as reviewed by Holland (1997). Later, Valentino Braitenberg
analyzed a number of hypothetical vehicles, or creatures, that
use reactive control to produce complex behaviors (Braitenberg,
1986). His controllers were realized as simple “nervous
systems” that directly linked the sensors to the motors of the
vehicle. Using similar sensorimotor, or behavioral modules as
building blocks, Rodney Brooks developed a behavior-based
controller paradigm for roaring vehicles, known as “subsumption
architecture” (Brooks, 1991). Although this framework did not
scale well for complex tasks and is not ideally suited for online
learning methods, this type of controller is at the heart of highly
successful real-world robotic systems such as the autonomous
vacuum cleaners, and has been adopted, to some extent, in a
wide range of impressive controllers for autonomous robots (e.g.,
Khansari-Zadeh and Billard, 2012).

The dynamical systems approach to robot
navigation (Schöner et al., 1995) is an attempt to mathematically
formalize reactive control for autonomous robots using
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FIGURE 12 | Variability of the robot’s behavior. Left: Overlay of video camera frames recording the robot, avoiding a pair of obstacles; top view. Three different trials

are recorded and overlayed here (trajectories are shown with green lines 1–3). Right: Velocity commands, received by the robot from the neuronal architecture

(angular velocity and speed) for the three trials (from top to bottom).

FIGURE 13 | Robot driving in the office environment. Left: Snapshots from the video camera showing robot at three time points during the experiment.

Middle: Events from the DVS camera and histogram of these events, binned over 500 ms in columns in the region between two vertical lines, which were used to

drive obstacle populations on the ROLLS. Each pair of the eDVS events and histogram corresponds to the time point of the video frame in the Left column. Note that

80% of events are randomly dropped here and only “on” events are shown in the relevant region (lower part of the screen). Events above the midline of the image

sensor are shown with transparency (these events were not used for obstacle avoidance). Right: Activity of the obstacle (left and right), drive (left and right), and

speed neuronal populations over time (summed activity across each population). Vertical lines mark time point that correspond to the video frames in the Left column.

differential equations that specify attractors and repellors for
behavioral variables that control the robot’s heading direction
and speed (Bicho et al., 2000). In this framework, obstacle
avoidance has been integrated with target acquisition and
successful navigation in an unknown environment has been
demonstrated both for vehicles and robotic arms (Reimann

et al., 2011). This approach is similar to another successful
reactive approach to obstacle avoidance: the potential field
approach (e.g., Haddad et al., 1998), in which the target creates
a global minimum in a potential that drives the robot, whereas
obstacles create elevations in this potential. However, the use of
Cartesian space instead of robot-centered velocity space used in
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FIGURE 14 | Simple target acquisition: single stationary target. Left: Overlay of video frames from the overhead camera. The robot approaches a stationary target on

the left-hand side of the arena from right to left. The robot turns left toward the target until it perceives it as an obstacle and makes an obstacle avoidance maneuver.

Right: Time-course of the spiking activity (raster plot) of the target-representing (WTA) neurons on the ROLLS chip (top plot) and summed (over 500 ms and over

populations) activity of neurons in obstacle representing and drive populations on the ROLLS chip. Vertical lines mark time points that correspond to two middle

positions of the navigating robot.

this potential field approach makes it prone to getting trapped in
local minima.

In mixed-signal analog /digital neuromorphic hardware, the
neuronal dynamics is taken care of by the physics of analog
electronic circuits, avoiding loosing digital computational
resources on simulating them. Thus, neuromorphic
implementation of simple biologically inspired obstacle-
avoidance architectures can lead to low-latency (on the order of
microseconds) and power-efficient (on the order of milliwatts)
solutions, analogous to the ones used by insects. In contrast,
more conventional obstacle-avoidance systems require a
substantial amount of computing resources to process and store
sensory data, detect obstacles, and compute motor commands.
Neuromorphic implementation of such low-level processing will
allow to use analog sensory signals directly, avoiding their digital
representation and storage, while at the same time allowing to
build complex neural-network based computing architectures,
that could be used for solving cognitive tasks, such as task
planning, map building, or object recognition.

We consider the work proposed as a first feasibility study,
which still has a number of limitations that we will address
in our future work. The main limitation is variability of
neuronal behavior because of parameter drift on the analog
hardware: the parameters of the hardware neural network
change the network properties as the experimental setup
conditions (temperature, humidity, etc.) change. This is a
serious limitation of the hardware used, which makes in
challenging to implement complex architectures that have to
balance contributions of different behavioral modules (e.g.,
controlling turning and forward velocities, or obstacle avoidance
and target acquisition). We are currently working on algorithms
and methods for automatically re-tuning these parameters in
a principled fashion with optimization and machine learning

techniques. In addition, we are designing new versions of
the neuromorphic hardware with on-board stabilization of
the chip parameters, and more resources for simplifying the
fine-tuning process of the architectures. However, approach
employed here—use of populations of artificial neurons in
place of single nodes in the architecture—allowed us to
generate behavior with the state of the art analog neuromorphic
hardware.

Apart from the hardware limitations, our simple architecture
currently allows robust obstacle avoidance at moderate speeds
(∼0.35 m/s). Since the robot slows down when an obstacle
is detected, movement appears to be “jerky.” Although the
smoothness of the robot movement could be improved by
tuning the coupling strength between the obstacle and drive
populations, the best solution would involve improving the
visual pre-processing stages. In our setup, the DVS detects
local contrast changes and produces different amount of
events depending on the objects in the environment, but also
modulated by the robot translational and rotational movements.
Currently we ignore about 80% of all DVS events to remove
both noise and to reduce bandwidth. This very basic strategy
improves the signal to noise ratio, because the architecture
enhances the spatially and temporally coherent inputs and
suppresses the effect of random inputs. However, we plan
to study a more principled approach to pre-processing and
noise reduction, and to investigate other biologically inspired
architectures for obstacle avoidance, for example inspired by
the fly’s EMD (Elementary Motion Detector) (Hassenstein and
Reichardt, 1956) or the locust’s LGMD (looming detector Lobula
Giant Movement Detector) (Gabbiani et al., 2002; Rind and
Santer, 2004). We are currently working on neuromorphic
implementation of these algorithms (Milde et al., 2016; Salt et al.,
2017).
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FIGURE 15 | Chasing a moving target. First row: Snapshots from the overhead camera showing the robot controlled by the ROLLS chip chasing a manually

controlled robot. Second row: Summed eDVS events from 500 ms time windows around the same moments. Events from the upper part were used for target

acquisition, events from the lower part—for obstacle avoidance. Bottom row: Spiking activity of all neurons on the ROLLS chip over the time of the experiment.

Vertical line show the moments in time, selected for the first two rows. Red dots are spikes from the “left” populations and blue dots are spikes from the “right”

populations.

Moreover, the 500 ms time window that we used to create
plots of DVS events and average spiking activity was also used
in our controller for counting spikes when calculating motor
commands, sent to the robot. In our preliminary experiments
on optimizing the controller, we have reduced this time window
to 50 ms and, more importantly, replaced it with a sliding-
window calculation of the average firing rate of the drive and
speed neuronal populations. A more principled solution to this
problem would be development of a more direct hardware
interface between the spiking neuromorphic processor and the
robot’s motors, so that spikes can control the motor rotation
directly, as suggested by Perez-Peña et al. (2013).

Our target acquisition network can also be further improved:
the main strategy will be to introduce target representations
in a reference frame that moves with the robot, but has a
fixed orientation. Such representation will allow the robot to
turn back to a target that has been lost from sight due to
an obstacle avoidance maneuver. Furthermore, increasing the
strength of lateral interactions in the WTA (DNF) population

will allow to stabilize the target representation, allowing it to
form a “working memory,” which will support target acquisition
behavior in cluttered environments. To still make the system
reactive and allow it to follow the visible target, control of the
strength of lateral interactions will be introduced, increasing their
strength when target is being lost from view and decreasing their
strength when the target is visible. Detecting the target based on
its features perceived with a DVS is a separate topic of ongoing
research both in our lab and worldwide (e.g., Lagorce et al., 2015).

Despite of this list of necessary improvements, our
neuromorphic architecture is an important stepping stone
toward robotic controllers, realized directly in neurally
inspired hardware, being the first architecture for closed-
loop robot navigation that uses analog neuromorphic processor
and minimal preprocessing of visual input, obtained with
a silicon retina DVS. Such neuromorphic controllers may
become an energy efficient, fast, and adaptive alternative to
conventional digital computers and microcontrollers used
today to control both low-level and cognitive behaviors
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of robots. While neural network implementations using
the conventional computing architecture are typically
time- and energy consuming, implementation of neuronal
architecture using analog neuromorphic hardware approaches
the efficiency of biological neural networks. Building neuronal
models for higher cognitive function using, for instance,
the framework of Dynamic Neural Fields (Sandamirskaya,
2013) or the Neuro-Engineering Framework (Eliasmith,
2005), will allow to add more complex behaviors to the
robot’s repertoire, e.g., finding a particular object, grasping
and transporting it, as well as map formation and goal-
directed navigation, which is the goal of our current research
efforts.

AUTHOR CONTRIBUTIONS

MM: conceptualization of the model, analysis of the results,
writing up. HB and AD: implementation of combined obstacle
avoidance and target acquisition, experiments, results analysis,
writing up; DS: implementation of first version of obstacle
avoidance, parameter tuning on the chip, state of the art analysis;
JC: support with robotic hardware and middleware, analysis
of the results, writing up; GI: support with neuromorphic
hardware, and state of the art and result analysis, writing

up; YS: conceptualization of the model, development of
the architecture, experiment design, analysis of the results,
embedding in the literature, discussion of the results, writing, and
overall supervision of the project.

FUNDING

Supported by EU H2020-MSCA-IF-2015 grant 707373 ECogNet,
University of Zurich grant Forschugnskredit, FK-16-106, and
EU ERC-2010-StG 20091028 grant 257219 NeuroP, as well as
INIForum and Samsung Global Research Project.

ACKNOWLEDGMENTS

We would like to thank Aleksandar Kodzhabashev and Julien
Martel for their help with the software code used in this work.
This work has started at the Capo Caccia 2016 Workshop for
Neuromorphic Engineering.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnbot.
2017.00028/full#supplementary-material

REFERENCES

Averbeck, B. B., Sohn, J.-W., and Lee, D. (2006). Activity in prefrontal cortex

during dynamic selection of action sequences. Nat. Neurosci. 9, 276–282.

doi: 10.1038/nn1634

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,

A. R., Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Bicho, E., Erlhagen, W., Louro, L., and Costa e Silva, E. (2011). Neuro-cognitive

mechanisms of decision making in joint action: a human-robot interaction

study. Hum. Move. Sci. 30, 846–868. doi: 10.1016/j.humov.2010.08.012

Bicho, E., Mallet, P., and Schöner, G. (2000). Target representation on an

autonomous vehicle with low-level sensors. Int. J. Robot. Res. 19, 424–447.

doi: 10.1177/02783640022066950

Blanchard, M., Rind, F. C., and Verschure, P. F. M. J. (2000). Collision avoidance

using a model of the locust LGMD neuron. Robot. Auton. Syst. 30, 17–38.

doi: 10.1016/S0921-8890(99)00063-9

Braitenberg, V. (1986). Vehicles: Experiments in Synthetic Psychology. Cambridge,

MA: MIT Press.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi: 10.1152/jn.00686.2005

Brooks, R. A. (1991). New approaches to robotics. Science (New York, N.Y.) 253,

1227–1232. doi: 10.1126/science.253.5025.1227

Chicca, E., Stefanini, F., Bartolozzi, C., and Indivei, G. (2014). Neuromorphic

electronic circuits for building autonomous cognitive systems. Proc. IEEE 102,

1367–1388. doi: 10.1109/JPROC.2014.2313954

Conradt, J., Galluppi, F., and Stewart, T. C. (2015). Trainable sensorimotor

mapping in a neuromorphic robot. Robot. Auton. Syst. 71, 60–68.

doi: 10.1016/j.robot.2014.11.004

Dean, P., Porrill, J., Ekerot, C.-F., and Jörntell, H. (2009). The cerebellar

microcircuit as an adaptive filter: experimental and computational evidence.

Nat. Rev. Neurosci. 11, 30–43. doi: 10.1038/nrn2756

Douglas, R. J., Koch, C., Martin, K. A. C., Suarezt, H. H., and Mahowald, M.

(1995). Recurrent excitation in neocortical circuits. Science 269, 981–985.

doi: 10.1126/science.7638624

Eliasmith, C. (2005). A unified approach to building and controlling

spiking attractor networks. Neural Comput. 17, 1276–1314.

doi: 10.1162/0899766053630332

Erlhagen,W., and Bicho, E. (2006). The dynamic neural field approach to cognitive

robotics. J. Neural Eng. 3, R36–R54. doi: 10.1088/1741-2560/3/3/r02

Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming

systems. Rep. Prog. Phys. 353, 353–430. doi: 10.1088/0034-4885/61/4/002

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2012). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Gabbiani, F., Krapp, H. G., Koch, C., and Laurent, G. (2002). Multiplicative

computation in a visual neuron sensitive to looming. Nature 420, 320–324.

doi: 10.1038/nature01190

Haddad, H., Khatib, M., Lacroix, S., and Chatila, R. (1998). “Reactive navigation

in outdoor environments using potential fields,” in Proceedings of the IEEE

International Conference on Robotics and Automation (Leuven), 1232–1237.

Hasler, J., and Marr, B. (2013). Finding a roadmap to achieve large neuromorphic

hardware systems. Front. Neurosci. 7:118. doi: 10.3389/fnins.2013.00118

Hassenstein, B., and Reichardt, W. (1956). Systemtheoretische Analyse der

Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption

des Rüsselkäfers Chlorophanus. Zeitschrift fr Naturforschung B 11, 513–524.

doi: 10.1515/znb-1956-9-1004

Holland, O. (1997). “Gray walter: the pioneer of real artificial life,” in Proceedings

of the 5th International Workshop on Artificial Life (Cambridge: MIT Press),

34–44.

Iida, F. (2001). “Goal-directed navigation of an autonomous flying robot using

biologically inspired cheap vision,” in Proceedings of the 32nd ISR (Seoul),

19–21.

Indiveri, G., Chicca, E., and Douglas, R. (2006). A VLSI array of low-power spiking

neurons and bistable synapses with spike-timing dependent plasticity. IEEE

Trans. Neural Netw. 17, 211–221. doi: 10.1109/TNN.2005.860850

Frontiers in Neurorobotics | www.frontiersin.org July 2017 | Volume 11 | Article 28275

http://journal.frontiersin.org/article/10.3389/fnbot.2017.00028/full#supplementary-material
https://doi.org/10.1038/nn1634
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1016/j.humov.2010.08.012
https://doi.org/10.1177/02783640022066950
https://doi.org/10.1016/S0921-8890(99)00063-9
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1126/science.253.5025.1227
https://doi.org/10.1109/JPROC.2014.2313954
https://doi.org/10.1016/j.robot.2014.11.004
https://doi.org/10.1038/nrn2756
https://doi.org/10.1126/science.7638624
https://doi.org/10.1162/0899766053630332
https://doi.org/10.1088/1741-2560/3/3/r02
https://doi.org/10.1088/0034-4885/61/4/002
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1038/nature01190
https://doi.org/10.3389/fnins.2013.00118
https://doi.org/10.1515/znb-1956-9-1004
https://doi.org/10.1109/TNN.2005.860850
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Milde et al. Navigation Using Analog/Digital Neuromorphic Hardware

Indiveri, G., Chicca, E., and Douglas, R. J. (2009). Artificial cognitive systems: from

VLSI networks of spiking neurons to neuromorphic cognition. Cogn. Comput.

1, 119–127. doi: 10.1007/s12559-008-9003-6

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Indiveri, G., and Liu, S.-C. (2015). Memory and information

processing in neuromorphic systems. Proc. IEEE 103, 1379–1397.

doi: 10.1109/JPROC.2015.2444094

Khansari-Zadeh, S. M., and Billard, A. (2012). A dynamical system

approach to realtime obstacle avoidance. Auton. Robots 32, 433–454.

doi: 10.1007/s10514-012-9287-y

Koziol, S., Brink, S., and Hasler, J. (2014). A neuromorphic approach to path

planning using a reconfigurable neuron array IC. IEEE Trans. Very Large Scale

Integr. Syst. 22, 2724–2737. doi: 10.1109/TVLSI.2013.2297056

Lagorce, X., Ieng, S. H., Clady, X., Pfeiffer, M., and Benosman, R. B. (2015).

Spatiotemporal features for asynchronous event-based data. Front. Neurosci.

9:46. doi: 10.3389/fnins.2015.00046

Lichtsteiner, P., Posch, C., and Delbruck, T. (2006). “A 128 X 128 120db 30mw

asynchronous vision sensor that responds to relative intensity change,” in 2006

IEEE International Solid State Circuits Conference - Digest of Technical Papers,

2004–2006 (San Francisco, CA). doi: 10.1109/isscc.2006.1696265

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.

Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.03.007

Milde, M. B., Sandamirskaya, Y., and Indiveri, G. (2016). “Neurally-inspired

robotic controllers implemented on neuromorphic hardware,” in Proceedings

of IEEE International Conference on Biomimetics (Bremen).

Mitra, S., Fusi, S., and Indiveri, G. (2009). Real-time classification of

complex patterns using spike-based learning in neuromorphic VLSI.

IEEE Trans. Biomed. Circuits Syst. 3, 32–42. doi: 10.1109/TBCAS.2008.

2005781

Moeys, D. P., Corradi, F., Kerr, E., Vance, P., Das, G., Neil, D., et al.

(2016). “Steering a predator robot using a mixed frame/event-driven

convolutional neural network,” in Event-based Control, Communication, and

Signal Processing (EBCCSP), 2016 Second International Conference on IEEE

(Krakow), 1–8.

Müller, G. R., and Conradt, J. (2011). “A miniature low-power sensor system for

real time 2D visual tracking of LED markers,” in Proceedings of 2011 IEEE

International Conference on Robotics and Biomimetics, ROBIO 2011 (Hong

Kong), 2429–2434. doi: 10.1109/ROBIO.2011.6181669

Neftci, E., Chicca, E., Indiveri, G., and Douglas, R. (2011). A systematic method for

configuring VLSI networks of spiking neurons.Neural Comput. 23, 2457–2497.

doi: 10.1162/NECO_a_00182

Perez-Peña, F., Morgado-Estevez, A., Linares-Barranco, A., Jimenez-Fernandez,

A., Gomez-Rodriguez, F., Jimenez-Moreno, G., et al. (2013). Neuro-inspired

spike-based motion: from dynamic vision sensor to robot motor open-loop

control through spike-VITE. Sensors (Basel, Switzerland) 13, 15805–15832.

doi: 10.3390/s131115805

Pouget, A., Dayan, P., and Zemel, R. (2000). Information processing with

population codes. Nat. Rev. Neurosci. 1, 125–132. doi: 10.1038/35039062

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Sumislawska, D., Indiveri,

G., et al. (2015). A Re-configurable On-line learning spiking neuromorphic

processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Reimann, H., Iossifidis, I., and Schöner, G. (2011). “Autonomous movement

generation for manipulators with multiple simultaneous constraints using

the attractor dynamics approach,” in Proceedings of IEEE International

Conference on Robotics and Automation (ICRA) (Shanghai), 1050–4729.

doi: 10.1109/icra.2011.5980184

Rind, F. C., and Santer, R. D. (2004). Collision avoidance and a looming sensitive

neuron: size matters but biggest is not necessarily best. Proc. Biol. Sci. 271,

27–29. doi: 10.1098/rsbl.2003.0096

Sandamirskaya, Y. (2013). Dynamic neural fields as a step toward

cognitive neuromorphic architectures. Front. Neurosci. 7:276.

doi: 10.3389/fnins.2013.00276

Sandamirskaya, Y., Zibner, S. K. U., Schneegans, S., and Schöner,

G. (2013). Using dynamic field theory to extend the embodiment

stance toward higher cognition. New Ideas Psychol. 31, 322–339.

doi: 10.1016/j.newideapsych.2013.01.002

Salt, L., Indiveri, G., and Sandamirskaya, Y. (2017). “Obstacle avoidance with

LGMD neuron: towards a neuromorphic UAV implementation,” in Proceedings

of IEEE International Symposium on Circuits and Systems, ISCAS (Baltimore,

MD).

Schöner, G., Dose, M., and Engels, C. (1995). Dynamics of behavior: theory

and applications for autonomous robot architectures. Robot. Auton. Syst. 16,

213–245. doi: 10.1016/0921-8890(95)00049-6

Schöner, G., and Spencer, J. P. (eds.). (2015). Dynamic Thinking: A Primer on

Dynamic Field Theory. Oxford, UK: Oxford University Press.

Stewart, T. C., Kleinhans, A., Mundy, A., and Conradt, J. (2016). Serendipitous

offline learning in a neuromorphic robot. Front. Neurorobot. 10:1.

doi: 10.3389/fnbot.2016.00001

Wilson, H. R., and Cowan, J. D. (1973). A mathematical theory of the functional

dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80.

doi: 10.1007/BF00288786

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Milde, Blum, Dietmüller, Sumislawska, Conradt, Indiveri and

Sandamirskaya. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org July 2017 | Volume 11 | Article 28276

https://doi.org/10.1007/s12559-008-9003-6
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/JPROC.2015.2444094
https://doi.org/10.1007/s10514-012-9287-y
https://doi.org/10.1109/TVLSI.2013.2297056
https://doi.org/10.3389/fnins.2015.00046
https://doi.org/10.1109/isscc.2006.1696265
https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1109/TBCAS.2008.2005781
https://doi.org/10.1109/ROBIO.2011.6181669
https://doi.org/10.1162/NECO_a_00182
https://doi.org/10.3390/s131115805
https://doi.org/10.1038/35039062
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1109/icra.2011.5980184
https://doi.org/10.1098/rsbl.2003.0096
https://doi.org/10.3389/fnins.2013.00276
https://doi.org/10.1016/j.newideapsych.2013.01.002
https://doi.org/10.1016/0921-8890(95)00049-6
https://doi.org/10.3389/fnbot.2016.00001
https://doi.org/10.1007/BF00288786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org  |  +41 21 510 17 00 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers Copyright Statement
	Neural Computation in EmbodiedClosed-Loop Systems for the Generation of Complex Behavior: From Biology toTechnology
	Table of Contents
	Editorial: Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex Behavior: From Biology to Technology
	1. Introduction
	2. Overview
	2.1. Embodied Closed-Loop Systems
	2.1.1. Sensory Areas
	2.1.2. Motor Areas
	2.1.3. Higher Integrative Areas
	2.1.4. Body

	2.2. Technology Transfer

	3. Conclusion
	Author Contributions
	Acknowledgments
	References

	Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review
	1. Introduction
	2. Adaptive Interlimb Coordination in Animals and Robots
	2.1. Speed-Dependent Adaptation
	2.2. Environment-Dependent Adaptation
	2.3. Body-Dependent Adaptation
	2.4. Task-Dependent Adaptation

	3. Characteristic Properties of Adaptive Interlimb Coordination
	3.1. Hysteresis in Gait Transition
	3.2. Two Different Time-Scale Adaptations

	4. Key Factors and Mechanisms for Adaptive Interlimb Coordination
	5. Conclusion
	Author Contributions
	Acknowledgments
	References

	A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach
	1. Introduction
	2. Materials and Methods
	2.1. Basic Building Block of Interlimb Coordination Mechanism Employed
	2.2. Tegotae and Tegotae Function
	2.3. Tegotae-Based Control
	2.4. Robotic Platform for the Validation of Proposed Control Scheme

	3. Experimental Results
	3.1. Steady Walking
	3.2. Gait Transitions According to Locomotion Speed
	3.3. Adaptability to Change in Weight Distribution
	3.4. Adaptability to Leg Amputation
	3.5. Effect of Local Sensory Feedback Concerning Neighboring Legs

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Self-Organized Behavior Generation for Musculoskeletal Robots
	1. Introduction
	2. Robot Behavior as a Self-excited Physical Mode
	2.1. Learning Dynamics
	2.2. Properties
	2.2.1. Meta-Parameters
	2.2.2. Least Biasing
	2.2.3. Theoretical Analysis
	2.2.4. Edge of Chaos—The Working Regime for Self-Organization
	2.2.5. Platforms for Embodied AI


	3. Experiments
	3.1. Peculiarities of Muscle-tendon Driven Systems
	3.2. Self-Regulated Working Regime
	3.3. The Piloting Effect. Feeling the Embodiment
	3.4. Manipulability
	3.5. Emerging Modes
	3.5.1. Self-Excited Pendulum Modes
	3.5.2. Bottle Shaking Modes

	3.6. Rotating a Wheel
	3.7. Wiping
	3.8. Hand-Eye Coordination
	3.8.1. Adaptation to Sensor Transformations—Rotating the Camera
	3.8.2. Hand-Eye Coordination. Emerging Central Pattern Generator

	3.9. Perspectives for Goal Oriented Behavior

	4. Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating
	1. Introduction
	2. Methods
	2.1. Dynamic Neural Fields
	2.2. Neural Dynamics of Behavioral and Process Organization
	2.3. Visual Processing Pathway
	2.3.1. Scene Representation
	2.3.2. Shape Classification and Pose Estimation

	2.4. Reaching and Grasping
	2.4.1. Generating Motor Commands
	2.4.2. Target Positions and Orientations


	3. Results
	3.1. Time Course of Scene Representation
	3.2. Time Course of Shape Classification and Pose Estimation
	3.3. Time Course of Movement Generation
	3.4. Three Experiments to Probe Online Updating
	3.4.1. Grasping without Online Updating
	3.4.2. Online Updating of Position
	3.4.3. Online Updating of Orientation


	4. Conclusion
	Author Contributions
	Funding
	References

	Neurodynamics in the Sensorimotor Loop: Representing Behavior Relevant External Situations
	1. Introduction
	2. Neurodynamics
	2.1. Discrete-Time Neurodynamics

	3. Parametrized Families of Dynamical Systems
	3.1. Parametric Stability
	3.2. Bifurcations

	4. Meta-Transients
	5. Projections to Motor Space M
	5.1. Closing the Loop

	6. Discussion
	7. Author Contributions
	Acknowledgments
	References
	Appendix

	An Adaptive Neural Mechanism for Acoustic Motion Perception with Varying Sparsity
	1. Introduction
	1.1. Auditory Localisation Cues for Spatial Motion Perception
	1.2. Relevance of Acoustic Motion Perception
	1.3. Contribution of the Present Work

	2. Background
	2.1. The Lizard Peripheral Auditory System
	2.2. Input Correlation (ICO) Learning

	3. Materials and Methods
	3.1. The Neural Architecture
	3.2. The Experimental Setup
	3.3. The Robot Model

	4. Results and Discussion
	4.1. Simulation Trials
	4.2. Real Robot Implementation

	5. Conclusions and Future Directions
	Author Contributions
	Supplementary Material
	References

	Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture
	1. Introduction
	2. Related Work
	2.1. Articulated and Biological Motion
	2.2. Action Recognition in Image Sequences
	2.3. Key Pose Based Action Recognition
	Intra-Class Based Approaches
	Inter-Class Based Approaches
	Feature-Driven Approaches


	3. Model/Methods
	3.1. Key Pose Selection and Image Preprocessing
	Key Pose Selection
	Form and Motion Representations

	3.2. Learning of Class Specific Key Pose Representations
	3.3. Neuromorphic Implementation
	3.4. Temporal Integration of Framewise Class Predictions

	4. Datasets
	4.1. uulmMAD
	4.2. Weizmann Dataset

	5. Results
	5.1. Classification Performance
	5.2. Comparison to Full Sequence Learning
	5.3. Cross-Dataset Evaluation

	6. Conclusion and Discussion
	6.1. Relation to Other Work
	6.2. Shortcomings and Possible Further Improvements

	Author Contributions
	Funding
	Acknowledgments
	References

	Fast Dynamical Coupling Enhances Frequency Adaptation of Oscillators for Robotic Locomotion Control
	1. Introduction
	2. Results
	2.1. Standard Adaptive Frequency Oscillator
	2.1.1. Speed vs. Precision Trade-Off
	2.1.2. Quantitative Adaptation Quality Measures
	2.1.3. Finding Optimal Parameters

	2.2. Fast Dynamical Coupling Mechanism
	2.2.1. Adaptation Quality in Frequency Space
	2.2.2. Neural Implementation
	2.2.3. Closed-Loop Locomotion Control


	3. Discussion
	4. Materials and Methods
	4.1. Hopf Oscillator
	4.1.1. Adaptive Frequency Hopf Oscillator
	4.1.2. Hopf Oscillator with Fast Dynamical Coupling

	4.2. Van der Pol Oscillator
	4.2.1. Adaptive Frequency Van der Pol Oscillator
	4.2.2. Van der Pol Oscillator with Fast Dynamical Coupling

	4.3. Neural SO(2)-Oscillator
	4.3.1. SO(2)-Oscillator with Fast Dynamical Coupling

	4.4. Mathematical Pendulum
	4.5. Numerical Integration
	4.6. Frequency and Parameter Scans

	Author Contributions
	Funding
	Acknowledgments
	References

	Development and Training of a Neural Controller for Hind Leg Walking in a Dog Robot
	1. Introduction
	2. Methods
	2.1. Robot Architecture
	2.2. Neural Network Architecture
	2.2.1. Joint Control
	2.2.2. Leg Control
	2.2.3. Inter-Leg Control

	2.3. Calculating MN Activations
	2.3.1. Joint Torques and Kinematic Motions
	2.3.2. Calculating Muscle Tension and MN Activation

	2.4. Training CPG Network Output
	2.4.1. CPG Design
	2.4.2. CPG Entrainment
	2.4.3. CPG Output
	2.4.4. Afferent Influence of MN Activation


	3. Results
	3.1. Offline Training Results
	3.2. Robot Results

	4. Discussion
	4.1. Possible Causes of Error
	4.2. 

	5. 
	Author Contributions
	Funding
	Supplementary Material
	References

	A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents
	1. Introduction
	1.1. Vector Navigation in Social Insects
	1.2. Neural Substrates of Social Insect Navigation
	1.3. Computational Models of Vector-Guided Navigation
	1.4. Our Approach

	2. Materials and Methods
	2.1. Path Integration (PI) Mechanism for Home Vector (HV) Representation
	2.2. A Reward-Modulated Learning Rule for Acquiring and Retrieving Vector Memories

	3. Results
	3.1. Path Integration (PI) in Noisy Environments
	3.2. Global Vector (GV) Learning and Goal-Directed Navigation

	4. Discussion
	4.1. Head-Direction (HD) Cells and Path Integration (PI)
	4.2. Reward-Modulated Vector Acquisition and the Role of Motivational Context

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion
	1. Introduction
	2. Materials and Methods
	2.1. Tsodyks-Markram Model with Full Depletion
	2.2. The Robot
	2.3. Simulation parameters

	3. Results
	3.1. Emergent Limit-Cycle Locomotion
	3.2. Chaotic Modes Allowing for Explorative Behavior
	3.3. Embodiment Shaping the Intrinsic Dynamics
	3.4. Stability with Respect to Noise
	3.5. Autonomous Mode Switching
	3.6. Switching between Degenerate Unstable Limit Cycles

	4. Conclusions
	Author Contributions
	Supplementary Material
	References

	ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems
	Introduction
	Materials and Methods
	Background and Previously Developed Models. Reactive Walker—The Walknet
	Biological Model of Insect Walking
	Walknet with a Body Model

	Motor Planning: from Walknet to Reacog
	The General Idea
	Interruption of Behavior

	Cognitive Expansion

	Results
	Simulation Results for the Example Scenario
	Simulation Series on Disturbed Walking

	Related Work
	Models of Cognitive Systems

	Discussion and Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System
	1. Introduction
	2. Motor-Skill Learning in Insects
	3. Modeling Motor-Skill Learning
	3.1. Known and Hypothesized Biological Functions
	3.2. MB Model for Motor Learning: Working Hypotheses
	3.3. Network Structure and Parameters
	3.4. Learning Mechanism

	4. Simulation Results
	5. Motor Learning: Application to Climbing 
	5.1. Learning New Motor Activities in a Stable Locomotion Controller
	5.2. Climbing Experiment

	6. Remarks and Conclusions
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Morphological Properties of Mass–Spring Networks for Optimal Locomotion Learning
	1. Introduction
	2. Open-Loop Control
	2.1. Materials and Methods
	2.1.1. Mass Spring Networks
	2.1.2. Control
	2.1.3. Physics Solver
	2.1.4. Loss Function
	2.1.5. Optimization

	2.2. Results
	2.2.1. Morphology Analysis
	2.2.2. Frequency Range Analysis
	2.2.3. Performance Limits with Constrained Power


	3. Closed-Loop Control
	3.1. Materials and Methods
	3.1.1. Setup
	3.1.2. Parameter Tuning

	3.2. Results

	4. Discussion
	Author Contributions
	Funding
	Supplementary Material
	References

	Modular Neural Mechanisms for Gait Phase Tracking, Prediction, and Selection in Personalizable Knee-Ankle-Foot-Orthoses
	1. Introduction
	2. Materials and Methods
	2.1. Hardware
	2.2. Neural Control for Gait Tracking
	2.3. User Defined Output Modulation
	2.4. Gait Recognition
	2.4.1. Predicting Gait Models
	2.4.2. Prediction-Based Gait Selection
	2.4.3. Training of Prediciting Models and Selection

	2.5. Step Segmentation
	2.6. Experiments
	2.6.1. Gait Phase Tracking
	2.6.2. Gait Selection


	3. Results
	3.1. Gait Phase Tracking
	3.2. Gait Selection

	4. Discussion
	4.1. Gait Phase Representation
	4.2. Gait Selection
	4.3. Advantages and Limitations
	4.4. Gait Phase Tracking in the Literature
	4.5. Multi-Gait Support in the Literature
	4.6. Outlook

	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Biomechanical Reconstruction Using the Tacit Learning System: Intuitive Control of Prosthetic Hand Rotation
	Introduction
	Materials and Methods
	Prosthesis Efficacy Evaluation in Bar Relocation Tasks
	Tacit Learning Handpiece and Data Preprocessing
	Motion Capture System
	Data Analysis

	Results
	Discussion
	Human and Animal Rights and Informed Consent
	Author Contributions
	Supplementary Material
	References

	Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System
	1. Introduction
	2. Materials and Methods
	2.1. The ROLLS Neuromorphic Processor
	2.2. The DVS Camera
	2.3. Neuromorphic Robot
	2.4. Spiking Neural Network Architecture
	2.4.1. Dynamic Neural Field for Target Representation
	2.4.2. Combining Obstacle Avoidance and Target Acquisition


	3. Demonstrations
	3.1. Probing the Obstacle Avoidance: A Single Static Obstacle
	3.2. Avoiding a Pair of Obstacles
	3.3. Avoiding a Moving Obstacle
	3.4. Cluttered Environment
	3.5. Variability of Behavior
	3.6. Obstacle-Avoidance in a Real-World Environment
	3.7. Target Acquisition

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover



