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Editorial on the Research Topic

Pharmaceutical strategies to prevent, treat, and recover: advances and

challenges in ischemic stroke and hemorrhagic stroke

Stroke stands as one of the primary causes of death and disability globally, particularly

with an increasing incidence in developing countries (Campbell et al., 2019). At the

present topic, Zhou et al. documented a fatality resulting from cerebral hemorrhage after

parathyroid surgery, underscoring the existence of obscure yet highly lethal etiological

factors. Complications arising from strokes are prevalent and pose significant threats

to life. Zheng M. et al. emphasized the need to consider lumbar cistern blockage as a

potential complication following cerebral hemorrhage. However, pharmaceutical therapies

for both ischemic and hemorrhagic stroke are still lacking, and the available therapeutic

strategies are generally time-sensitive (Jovin et al., 2022). Thus, there is an urgent need

to explore the complex regulation network after stroke, which is essential for developing

new generations of effective treatment strategies. Besides, translational research and clinical

trials are encouraged to improve the prognosis of stroke in the future. This Research Topic

includes 17 articles concerning pathological mechanisms, new therapeutic entities, and

other attractive aspects of stroke.

Concurrently, stroke research remains at the forefront of technological advancements.

Qiu et al. presented a novel method for identifying differentially expressed genes in spatial

transcriptomics data, exemplifying the integration of cutting-edge technologies in stroke

investigations. The intricate relationship between brain function and structure is elucidated

through spatial-omics techniques like spatial transcriptomics, providing researchers with

a more precise characterization of biological processes with spatial data. Recognizing the

pivotal role of stem cells in brain function recovery (van Velthoven et al., 2013; Bacigaluppi

et al., 2016; Tornero et al., 2017), Zhang Q. et al. provided a comprehensive summary of
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the progress in stem cell applications within the realm of

stroke research, offering valuable insights into their potential

therapeutic utility.

The pathological changes following the onset of a stroke

are intricate, involving the activation/inactivation of multiple

cells and pathways, extending even to the interplay between

the brain and gut microbiota (Jeong et al., 2023). These

complexities render stroke treatment a formidable task, and

various articles on this topic have synthesized novel insights

into targets and therapeutic strategies for stroke. Wang J.

et al. reviewed approaches such as dietary intervention, fecal

microbiota transplantation, probiotics, antibiotics, traditional

Chinesemedication, and gut-derived stem cell transplantation were

explored for their influence on gut microbiota and subsequent

regulation of brain recovery post-stroke. Yuan et al. delved

into intermittent hypoxic conditions as a potential strategy for

ischemic stroke prevention and treatment. Their examination

encompassed current evidence, future research directions, and

the proposal of intermittent hypoxia as a non-invasive, non-

pharmacological, systemic, and multi-targeted intervention to

mitigate brain damage.

Contemporary drug research and development are predicated

on the identification of specific targets. Two studies included

in this topic have uncovered novel druggable targets within

this context. Zuo et al. employed CXC3CR1+/GFP mice

to elucidated the increased expression of myeloperoxidase

(MPO) on microglia after ICH. This MPO-targeted therapeutic

interventions consequently facilitated the restoration of motor

function. Meanwhile, Zhang C. et al. offer a comprehensive

overview of the versatile roles played by 15 specific

lncRNAs in the pathological alterations associated with ICH,

suggesting valuable insights into potential drug research and

development targets.

Traditional Chinese medicine (TCM), often composed of

multiple herbs, represents a repository of numerous chemical

entities with potential efficacy in stroke treatment. Zheng

L. et al. conducted a comprehensive review of studies on

treating stroke with Sanhua decoction, consisting of Polygonaceae,

Magnoliaceae, Rutaceae, and Apiaceae, and demonstrated its

multiple effects on brain repair. Similarly, Li L. et al. analyzed

the potential active pharmaceutical ingredients of another TCM,

Zuogui Pill, which facilitated neurite outgrowth via mTOR,

p53 and Wnt signaling pathways following ischemic stroke.

A pressing need persists for high-level evidence regarding

herbal medicines, herbal extracts, gut microbiota, or any novel

strategy for treating stroke (Zheng L. et al.). This need

is pivotal for translating preclinical findings into clinically

applicable interventions. Consequently, numerous scholars actively

investigate the safety and efficacy of herbal medicines or extracts

in stroke treatment through well-designed clinical trials. For

instance, a multi-center, open-label, pilot randomized clinical trial

conducted by Cui et al. demonstrated the effectiveness of Ginkgo

biloba extract in protecting patients from cognitive decline 24

weeks after acute ischemic stroke, as assessed through various

evaluation methods.

Additionally, specific chemical entities and therapeutic

modalities have gained noteworthy attention within stroke

research delineated the attributes of TJ-M2010-5, a BBB-permeable

drug candidate exhibiting efficacy as a MyD88/NF-κB and ERK

pathway inhibitor (Li Z. et al.). Wang X. et al. investigated the

systemic administration of dobutamine, revealing its capacity

to expedite erythrocyte clearance from the brain to cervical

lymph nodes following SAH. Intriguingly, Pichardo-Rojas et al.

conducted a comprehensive review highlighting memantine’s

ability to mitigate NMDA-mediated excitotoxicity, preserve

intracellular ATP stores, and up-regulate neuron-specific

growth factor expression, with clinical evidence proving its

neuroprotective effects in ICH, ischemic stroke, and ischemic

stroke-related aphasia. Besides, anesthesias utilized during

endovascular thrombectomy (EVT), including ketamine,

propofol, sevoflurane, and isoflurane, have been identified

as beneficial for post-stroke brain protection (Zhang T.

et al.).

Moreover, this topic includes two meta-analyses evaluating

the efficacy of inclisiran and mechanical thrombectomy in stroke.

Luo et al. analyzed three randomized clinical trials (ORION-9,

ORION-10, and ORION-11), concluding that inclisiran did not

exhibit significant effects in preventing stroke in atherosclerotic

cardiovascular disease patients or those at high risk. Meanwhile,

Yang et al. analyzed seven studies (including 1,083 patients)

and observed that mechanical thrombectomy with intra-arterial

alteplase might enhance functional outcomes without significantly

impacting recanalization. These meta-analyses contribute valuable

insights to inform clinical decision-making processes.

The assortment of manuscripts within this Research Topic

underscores the diverse facets of stroke prevention, treatment, and

recovery. These articles contribute novel perspectives to preclinical

research and expand the horizons of clinical practice. Notably,

the impact of TCM, intestinal microbiota, intermittent hypoxia,

and anesthetic medications on stroke prognosis is particularly

enlightening. This underscores that, while stroke remains a

condition associated with high mortality and disability rates,

preventive and therapeutic tools are at our disposal. This realization

catalyzes advancing translational research to translate cutting-edge

findings in stroke research into clinical applications expeditiously.

We eagerly anticipate further revelations, discussions, and

practical applications in emerging areas, such as new drug

delivery systems. These developments promise to unveil additional

possibilities for stroke prevention, treatment, and recovery, paving

the way for continued advancements in stroke-related research and

clinical interventions.
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Ischemic stroke (IS) is the leading cause of disability and death worldwide.

Owing to the aging population and unhealthy lifestyles, the incidence of

cerebrovascular disease is high. Vascular risk factors include hypertension,

diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and

effective reperfusion therapy for IS, it is crucial to actively control these

risk factors to reduce the incidence and recurrence rates of IS. Evidence

from human and animal studies suggests that moderate intermittent

hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate

common vascular risk factors and comorbidities. Given the complex

pathophysiological mechanisms underlying IS, effective treatment must

focus on reducing injury in the acute phase and promoting repair in the

recovery phase. Therefore, this review discusses the preclinical perspectives

on IH conditioning as a potential treatment for neurovascular injury

and highlights IH pre and postconditioning strategies for IS. Hypoxia

conditioning reduces brain injury by increasing resistance to acute ischemic

and hypoxic stress, exerting neuroprotective effects, and promoting post-

injury repair and regeneration. However, whether IH produces beneficial

effects depends not only on the hypoxic regimen but also on inter-

subject differences. Therefore, we discuss the factors that may influence

the effectiveness of IH treatment, including age, sex, comorbidities, and

circadian rhythm, which can be used to help identify the optimal intervention

population and treatment protocols for more accurate, individualized

clinical translation. In conclusion, IH conditioning as a non-invasive,

non-pharmacological, systemic, and multi-targeted intervention can not

only reduce brain damage after stroke but can also be applied to the

prevention and functional recovery of IS, providing brain protection at

different stages of the disease. It represents a promising therapeutic
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strategy. For patients with IS and high-risk groups, IH conditioning is

expected to develop as an adjunctive clinical treatment option to reduce

the incidence, recurrence, disability, and mortality of IS and to reduce

disease burden.
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Introduction

With an aging population and unhealthy lifestyles,
cerebrovascular disease morbidity and mortality rates are
gradually increasing, and the disease burden is increasing
(Tsao et al., 2022). Ischemic stroke (IS) is the most common
cerebrovascular disease and the main cause of death and
disability. At present, venous thrombolysis and mechanical
thrombectomy are the only two effective methods for the
treatment of acute IS (Xiong et al., 2022). Although many
neuroprotective drugs have been tested in preclinical trials
with animal models to reduce stroke injury, they have not been
successfully transferred to the clinical setting (Lyden, 2021).
Therefore, it is urgent to identify alternative treatment methods
to improve the brain’s self-protection capacity. It is also critical
to actively control the risk factors for cerebrovascular disease, to
reduce its incidence and recurrence rate.

Over the last two decades, the benefits of adaptive
regulation have been widely reported (Gidday, 2006; Sommer,
2009). Preconditioning refers to the use of short-term sub-
lethal stimuli to improve the tolerance of cells, tissues,
and organs to subsequent lethal damage, thus playing an
endogenous protective role (Dirnagl et al., 2009). Many
preclinical studies have shown that preconditioning schemes,
such as hypoxia, ischemia, hypothermia, drugs, and exercise
can induce adaptive endogenous protective pathways and exert
protective effects against central nervous system diseases, but
the exact mechanism underlying these effects remains unclear
(Obrenovitch, 2008; Stetler et al., 2014; Stevens et al., 2014;
Li et al., 2017; Hafez et al., 2021). Hypoxia conditioning, as a
simple, non-invasive, systemic intervention treatment method
that does not involve the use of drugs, has more extensive
application value than other preconditioning schemes and has
great therapeutic potential for a variety of clinical diseases
(Navarrete-Opazo and Mitchell, 2014; Mateika et al., 2015;
Verges et al., 2015).

Moderate and well-controlled mild intermittent hypoxia
(IH) refers to a short period of daily alternating exposure
to normobaric hypoxia and normoxia (or hyperoxia) for
several weeks (Burtscher et al., 2022). Moderate IH triggers

adaptive phenomena that produce beneficial therapeutic effects,
improving the body’s defense ability against future potential
damage in the future (Arkhipenko et al., 2005; Manukhina et al.,
2013). Moreover, this type of repetitive moderate IH provides
better safety and lasting treatment outcomes compared to acute
or persistent hypoxia modes (Zhu et al., 2007; Stowe et al., 2011;
Terraneo et al., 2017).

Increasingly, experimental and clinical studies indicate that
IH can not only reduce the severity of injury after IS (Stowe
et al., 2011; Monson et al., 2014; Selvaraj et al., 2017), but also
decrease the risk factors for cerebrovascular disease (Lyamina
et al., 2011; Urdampilleta et al., 2012; Serebrovska et al., 2017),
suggesting that IH intervention can increase the body’s ability to
resist injury and promote repair, reduce the risk of developing
IS, and exert neurological and cerebrovascular protective effects.
Therefore, this paper summarizes the relevant supporting
research evidence and proposes the feasibility that IH can be
applied to the prevention, treatment, and rehabilitation of IS.
This treatment method has great translational prospects, but
more basic and clinical studies are still needed to elucidate its
mechanism of brain protection and other potentially beneficial
effects. Further, the optimal hypoxia therapy protocol requires
investigation for safe application to patients and high-risk
populations in a clinical settings.

In clinical translational studies of IH, it is noteworthy that IS
occurs more often in older adults, more often in males than in
females, and most of the affected individuals have comorbidities
(Branyan and Sohrabji, 2020; Candelario-Jalil and Paul, 2021).
Therefore, it should be noted that the therapeutic effects of IH
may vary among individuals. In addition, the opposite circadian
rhythms of humans and rodents, which are normally used in
experimental studies, may also affect the relative effectiveness
of the treatment (Esposito et al., 2020; Lo et al., 2021).
However, it is unclear whether the above-mentioned factors
affect the therapeutic effect of IH. Taking these factors into
account, future experimental and clinical studies can provide
more comprehensive and robust evidence for individualized IH
treatment. It is hoped that the hypoxia intervention program
will be continuously optimized in the future to reduce the
incidence of cerebrovascular disease, decrease the disability
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and mortality rates associated with IS, improve the functional
prognosis of stroke patients, and enhance quality of life.

Intermittent hypoxia: A
therapeutic hypoxia protocol

Intermittent hypoxia is a very promising strategy for treating
and preventing human diseases that has attracted increasing
attention in various fields. Many clinical studies have shown that
intermittent exposure to moderate hypoxia can have beneficial
effects on both sick and healthy individuals (Zhang et al., 2010;
Leone and Lalande, 2017; Liu et al., 2017; Wojan et al., 2021).
IH is also safe and effective for the older adults, for whom
short periods of alternating exposure to moderate hypoxia
and normoxia environments can alter body composition and
health status by improving exercise tolerance, metabolism,
inflammation, and systemic arterial pressure (Burtscher et al.,
2004; Timon et al., 2021, 2022). Studies focusing on central
nervous system diseases have shown that hypoxia conditioning
can promote health in the aging brain (Burtscher et al.,
2021a) and make it more resistant to acute brain injury
(Miller et al., 2001; Lin et al., 2003; Stowe et al., 2011, 2012;
Wacker et al., 2012a,b), as well as play a protective role
against chronic age-related neurodegenerative diseases, such as
cognitive impairment (Bayer et al., 2017; Serebrovska et al.,
2019c; Wang et al., 2020), Alzheimer’s disease (Manukhina et al.,
2016), and Parkinson’s disease (Burtscher et al., 2021b). IH is
expected to become a new therapeutic strategy against aging
and neurodegeneration. However, it should be noted that the
beneficial effects of hypoxia on the body and its effects as disease
treatment depend on factors, such as the concentration, mode,
and exposure time of hypoxia.

Hypoxia is a double-edged sword:
“dose” is the key

The metabolism of the brain is highly active. Oxygen
consumption of the brain accounts for 20% of the amount
consumed by the whole body in the resting state. It is very
sensitive to changes in oxygen concentration (Magistretti and
Allaman, 2015). Therefore, the brain is especially vulnerable
to the adverse effects of hypoxia. When an organism first
enters into a high-altitude area, acute exposure to low oxygen
partial pressure is likely to cause various symptoms collectively
known as acute altitude illnesses, among which high-altitude
brain edema can be life-threatening (Luks and Hackett, 2022).
High-altitude hypoxia environments exert certain effects on the
central nervous system of individuals habituated to low altitudes
(Wilson et al., 2009), which may lead to cognitive dysfunction
(Wang et al., 2022), sleep disorders, and may also induce and
aggravate central nervous system diseases (Falla et al., 2021).

Hypoxia has also been increasingly recognized as an important
factor in the development of neurodegenerative diseases
(Burtscher et al., 2021a). During IS, oxygen delivery to the brain
is impaired due to vascular occlusion, resulting in neurological
deficits. The above shows that maladaptive responses to hypoxia
and local severe hypoxia can cause damage to important organs,
which is harmful to human health.

In contrast, moderate hypoxia adaptation is beneficial to
the body. “Altitude training” and training combined with
normobaric hypoxia can enhance physical fitness through
hypoxia stimulation, improving hypoxia endurance and sports
performance (Flaherty et al., 2016). An epidemiological study
found low mortality rates from stroke and coronary heart
disease in high-altitude areas of Switzerland (Faeh et al., 2009).
High-altitude rodents obtain abundant collateral circulation
through gene selection, which can prevent tissue damage after
brain, coronary artery, and peripheral artery occlusion (Faber
et al., 2021). Many experimental studies in rodents have shown
that hypoxic preconditioning can protect important organs
(including the heart and brain) from fatal cell damage caused
by hypoxia or ischemia (Stowe et al., 2011; Manukhina et al.,
2013). Thus, non-lethal moderate hypoxic stimulation as a
means of enhancing hypoxic adaptation, which subsequently
protects important organs and tissues from similar but more
severe damage, is a promising therapeutic strategy.

In summary, hypoxia can induce either physiological
adaptation or pathological injury, including death. This is
because when oxygen delivery is interrupted or reduced,
body cells sense the reduced oxygen supply and respond by
initiating endogenous protection through adaptive mechanisms
to promote cell survival under hypoxic conditions. However,
when the intensity of hypoxia exceeds their maximum tolerance,
a cascade of gene expression cascades (like a chain reaction)
is initiated, subsequently leading to altered cellular function or
even death (Terraneo et al., 2017; Lee et al., 2020; Burtscher et al.,
2022). Therefore, whether hypoxia is beneficial or harmful to the
body largely depends on the “dose” of hypoxia (Jackman et al.,
2014; Navarrete-Opazo and Mitchell, 2014; Serebrovska et al.,
2016). Low-dose intermittent exposure to hypoxia (FiO2 = 9–
16%), 3–15 times per day, has been proven to be beneficial in
clinical and animal experiments (Navarrete-Opazo and Mitchell,
2014). In addition, it is important to note that differences
in hypoxia tolerance between individuals can also affect the
outcome of hypoxia (Dempsey and Morgan, 2015).

Different forms of intermittent hypoxia
conditioning

Therapeutic IH refers to short-term alternating exposure to
normobaric hypoxia and normoxia (or hyperoxia) (Navarrete-
Opazo and Mitchell, 2014; Mateika et al., 2015; Serebrovska
et al., 2016). As a moderate and non-harmful stressor, it can
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promote adaptive responses and exert various beneficial effects
on physical health (Gangwar et al., 2020; Behrendt et al.,
2022), avoiding the possible harmful effects of continuous
hypoxia. Additionally, IH can also improve the defense against
potential future damage by initiating endogenous protective
mechanisms (Stowe et al., 2011; Manukhina et al., 2013, 2016,
2018; Mallet et al., 2018; Burtscher et al., 2021a; Su et al.,
2022). Intermittent hypoxia-hyperoxia (IHH) is a modified
IH protocol. The normoxia period is replaced by a moderate
hyperoxia period (FiO2 = 30–40%), resulting in a faster recovery
from deoxygenation (Bayer et al., 2017; Glazachev et al., 2017;
Dudnik et al., 2018; Serebrovska et al., 2019c, 2022; Afina et al.,
2021; Behrendt et al., 2022; Bestavashvili et al., 2022). Compared
with IH, IHH offers a more obvious improvement in the clinical
parameters and is considered to offer more beneficial effects
(Serebrovska et al., 2019a). The underlying mechanism may
be related to a more pronounced induction of reactive oxygen
species during mild hyperoxia, triggering an intracellular redox
signaling cascade that induces the synthesis of intracellular
protective proteins with antioxidant and anti-inflammatory
effects through the activation of the transcription factors nuclear
factor erythroid 2-related factor 2 (Nrf2) and hypoxia-inducible
factor (HIF) (Arkhipenko et al., 2005; Serebrovska et al.,
2017; Burtscher et al., 2022). Based on the limited animal
and clinical studies available, we summarized the potential
therapeutic benefits of IH conditioning or IHH conditioning
on cerebrovascular protection in Figure 1. The protective
mechanism of IH and IHH is not completely understood yet,
and further research on their molecular details is needed. In
addition, IH therapy includes IH exposure and IH training
(IHT). The latter consists of a combination of exercise and IH
exposure (Morishima et al., 2015; Timon et al., 2021), while the
former has a wider range of applications and is more appropriate
for groups that, for various reasons, are not suitable for exercise.

Intermittent hypoxia conditioning
improves common risk factors of
ischemic stroke

Ischemic stroke is often accompanied by hypertension,
diabetes, dyslipidemia, and obesity; and these comorbidities
further complicate the pathology of IS (Gottesman and
Seshadri, 2022). These patients often need a combination
of oral medications to control their risk factors, which
may bring unavoidable side effects. Therefore, in addition
to modifying an unhealthy lifestyle, it is very important
to identify effective non-pharmacological interventions for
cardiovascular and cerebrovascular diseases and for metabolic
risk factors that can be applied as adjunctive therapies for
people at high risk for cerebrovascular disease. A growing
number of clinical and experimental findings suggest that
IH can modulate risk factors associated with cerebrovascular

disease (Serebrovskaya et al., 2008; Urdampilleta et al., 2012;
Serebrovska et al., 2017, 2019a; Kayser and Verges, 2021), which
is a potential therapeutic strategy. This evidence supports the
applicability of IH in the preventive treatment of IS.

Intermittent hypoxia and hypertension

Inadequate production and reduced availability of nitric
oxide lead to increased blood pressure (Panza et al., 1993),
and long-term chronic hypertension is a common risk factor
for stroke. Experimental studies on rodents show that the
hypotensive effect of IH in spontaneously hypertensive rats
is due to the stimulation of nitric oxide synthesis and
storage in blood vessels (Manukhina et al., 2011). In addition,
intermittent hypobaric hypoxia can reduce blood pressure in
these rats, potentially through the inhibition of the renin-
angiotensin system (Chen et al., 2021). In a renal vascular
hypertensive rat model, intermittent hypobaric hypoxia also
has an anti-hypertensive effect (Li et al., 2019). In human
studies, intermittent normobaric hypoxic adaptation for 20 days
was reported to reduce blood pressure levels in patients with
stage 1 hypertension, accompanied by an increase in nitric
oxide synthesis (Lyamina et al., 2011). Another study further
confirmed the hypotensive effect of IH conditioning in patients
with stage 1 hypertension, confirmed that hypoxic adaptation
combined with exercise produced a better and longer-lasting
hypotensive effect than oral antihypertensive drugs alone, and
found that the hypotensive effect of hypoxia correlated with
elevated levels of nitric oxide (NO) and hypoxia-inducible
factor-1alpha (HIF-1α) (Muangritdech et al., 2020). Moreover,
IH conditioning also provides good anti-hypertensive effects
in the presence of comorbid conditions. IHH training in
patients with coronary artery disease not only reduced blood
pressure, but also improved exercise capacity, reduced angina
attacks, enhanced the left ventricular ejection fraction, and
reduced blood glucose (Glazachev et al., 2017). In patients with
metabolic syndrome, IHH exposure can significantly reduce
systolic and diastolic blood pressure (Bestavashvili et al., 2022).
Mild IH can reduce blood pressure in patients with obstructive
sleep apnea (OSA) complicated with hypertension (Panza
et al., 2022). Evidence from studies in animals and humans
(Tables 1, 2) suggests that well-controlled mild IH conditioning
regimens may be a safe and effective way to prevent and treat
hypertension.

Intermittent hypoxia and abnormal
glucose and lipid metabolism and
obesity

Modern lifestyle frequently entails lack of exercise and
high-calorie dietary intake, leading to an increasing number
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FIGURE 1

The potential therapeutic benefit of intermittent hypoxia conditioning or intermittent hypoxia-hyperoxia conditioning for cerebrovascular
protection. During intermittent hypoxia (IH) conditioning or intermittent hypoxia-hyperoxia (IHH) conditioning, moderate amounts of ROS are
produced, activating the transcription factor Nrf2, which promotes the synthesis of protective proteins and improves the brain’s defense
response to severe ischemic-hypoxic injury. In addition, hypoxia activates the transcription factor HIF, which induces numerous genes essential
for cell metabolism, proliferation, and survival. Many of these genes play a central role in injury tolerance and promotion of tissue oxygenation,
such as vascular endothelial growth factor (VEGF), and inducible NO synthase (iNOS). Replacing normoxia with hyperoxia during the
reoxygenation phase can amplify the beneficial effects of intermittent hypoxia. ROS, reactive oxygen species; Nrf2, nuclear factor erythroid
2-related factor 2; ARE, antioxidant response element; HIF, hypoxia-inducible factor; HRE, hypoxia-responsive element. Created with
www.biorender.com.

of cases of type 2 diabetes and obesity (Ampofo and Boateng,
2020; Sun et al., 2022), which are, in turn, associated with
increased morbidity and mortality. Clinical evidence shows
that IH can improve abnormal glucose and lipid metabolism
in humans (Table 1). A single session of IH can improve
cardiopulmonary reflexes and exert a hypoglycemic effect in
patients with type 2 diabetes (Duennwald et al., 2013). Moderate
IHT lasting for 3 weeks is potentially useful for the management
of patients with pre-diabetes and can induce an increase in
the expression of HIF-1α mRNA and its target gene, which
can be used as an effective non-pharmacological preventive
therapy (Lyamina et al., 2011). Another study confirmed that
IHT can restore blood insulin levels to normal levels in
prediabetic patients, and this was related to the increased
expression of PDK-1 mRNA in leukocytes (Serebrovska et al.,
2019b). Additionally, in one case, a female patient with
obesity and pre-diabetes not only experienced controlled blood
glucose but also weight loss through IH treatment (Fuller
and Courtney, 2016). For sedentary individuals, 4 weeks
of IHT improved insulin sensitivity more than 2 weeks

of the same number of IHT sessions, suggesting that a
longer IHT schedule may be more beneficial for improving
insulin sensitivity (Susta et al., 2020). IHT also lowered
blood pressure in this study, but this was not related to the
duration of training. In overweight or obese adults, 2 weeks of
passive moderate IH improved cardiovascular risk factors by
lowering blood glucose, low-density lipoprotein, and cholesterol
(Costalat et al., 2018). Three weeks of IHH treatment for
patients with metabolic syndrome can improve the blood lipid
profile and anti-inflammatory state (Afina et al., 2021). IHH
therapy is safe and well-tolerated by patients, can reduce
arteriosclerosis, and positively affect liver function by improving
the hemodynamics and lipid profile of patients (Bestavashvili
et al., 2022). The specific mechanism by which hypoxia
improves glucose and lipid metabolism remains unclear.
Animal studies have shown that the regulatory mechanism
of IH on metabolism may be related to hypoxia-induced
epinephrine (Luo et al., 2022), ameliorating insulin resistance
via the HIF-insulin signaling pathway (Tian et al., 2016), and
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TABLE 1 Effects of intermittent hypoxia on vascular risk factors in humans.

References Participants Hypoxia protocols Results

(Bestavashvili et al.,
2022)

65 patients with MS: IHH group n = 32 (age
56.9± 11.7), control group n = 33 (age
59.8± 10.3)

IHH: 5–8 cycles of 4–7 min hypoxia
(11–12%) followed by 2–4 min hyperoxia
(30–35%), 5 sessions/week for 3 weeks

SBP↓, DBP↓, improve lipid profile and
liver functional state

(Panza et al., 2022) 16 males with OSA and HTN: IH n = 10 (age
40.7± 9.8), control n = 6 (age 46.2± 10.3)

IH: 12 cycles of 2 min hypoxia (8%) followed
by 2 min normoxia, 5 sessions/week for
3 weeks

SBP↓, DBP↓, accompanied by
parasympathetic↑, sympathetic↓

(Muangritdech et al.,
2020)

47 HTN patients: IHR n = 15, IHT n = 15,
control n = 17

IH: eight cycles of 3 min hypoxia (14%)
followed by 3 min normoxia, 2
sessions/week for 6 weeks

SBP↓, Nox and HIF-1α were negatively
correlated with SBP

(Glazachev et al., 2017) 46 CAD patients: IHH n = 27 (age 52–77);
control = 19 (age 43–83)

IHH: 5–7cycles of 4–6 min hypoxia
(10–12%) with 3 min hyperoxia (30–35%), 3
sessions/week for 8 weeks

SBP↓, DBP↓

(Lyamina et al., 2011) 37 stage 1 HTN (age∼32) IH: 4–10 cycles of 3 min hypoxia (10%) with
3 min normoxia, 1 session/day, for 20 days

SBP↓, DBP↓, normalization of NO
production

(Afina et al., 2021) 65 patients with MS: IHH group n = 32 (age
44.5–65.5), control group n = 33 (age
56.2–66.0)

IHH: 5–8 cycles of 4–7 min hypoxia
(11–12%) followed by 2–4 min hyperoxia
(30–35%), 5 sessions/week for 3 weeks

Improved lipid profile and
anti-inflammatory status

(Gangwar et al., 2020) 40 male healthy volunteers (age 22–25) On day 0: 1 h hypoxia (13.5%); Days 1–4:
hypoxia (12%), 4 h/day for 4 days; on day 5:
1 h hypoxia (13.5%)

Regulate lipid metabolism

(Serebrovska et al.,
2019b)

11 prediabetic patients (age 48–70) and
seven healthy volunteers (age 44–68)

IH: four cycles of 5 min hypoxia (12%)
followed by 5 min normoxia, 3
sessions/week for 3 weeks

Normalizing blood insulin level,
correlated with an enhanced mRNA
expression of PDK-1 in leukocytes

(Serebrovska et al.,
2019a)

55 patients with prediabetes (age 51–74):
IHH group n = 17, IH group n = 22, control
n = 16

IHH or IH: four cycles of 5 min hypoxia
(12%) followed by 3 min hyperoxia (33%) or
normoxia, 5 sessions/week for 3 weeks

Reduced blood glucose (fasting and
OGTT); decreased total blood
cholesterol and LDL

(Costalat et al., 2018) Six overweight and obese individuals (age
56.2± 10)

IH: 70 min of repeated cycles of hypoxia
(SpO2 = 70%) followed by re-oxygenation
(SpO2 = 95%), 5 sessions/week for 2 weeks

A single IH: reduced blood glucose and
lactate; 10 sessions IH: decreased LDLc,
LDLc/HDLc ratio and SBP

(Serebrovska et al.,
2017)

Seven healthy and 11 prediabetic individuals
(age 44–70)

IH: four cycles of 5 min hypoxia (12%)
followed by 5 min normoxia, 3
sessions/week for 3 weeks

Reduced blood glucose (fasting and
OGTT), associated with HIF-1α

(Fuller and Courtney,
2016)

A female patient (age 49) with obesity and
pre-diabetes

IH: daily hour-long session of alternating
6 min hypoxia and 3 min normoxia

Weight loss and glycemic control

(Morishima et al.,
2015)

21 sedentary men (age 24.3± 1.2) Hypoxic training (15%) for 2 weeks or
4 weeks

Improving insulin sensitivity

(Duennwald et al.,
2013)

14 patients with type 2 diabetes 1 h single bout IH: 5 min hypoxia (13%)
followed by 6 min normoxia

Reduced blood glucose

DBP, diastolic blood pressure; HTN, hypertension; HIF-1α, hypoxia-inducible factor-1alpha; HDLc, high-density lipoprotein cholesterol; IH, intermittent hypoxia; IHH, intermittent
hypoxia-hyperoxia; LDLc, low-density lipoprotein cholesterol; NO, nitric oxide; NOx, nitric oxide metabolites; OGTT, oral glucose tolerance test; PDK-1, pyruvate dehydrogenase kinase
1; SBP, systolic blood pressure.

recovery of mitochondrial activity (Trzepizur et al., 2015;
Table 2).

Taken together, these results suggest that IH can improve
blood pressure, blood glucose, blood lipids, and weight
loss; providing a new therapeutic strategy for the treatment
and prevention of atherosclerosis and metabolic syndrome.
However, more evidence from randomized controlled trials and
animal experiments is needed to support these conclusions.
Moreover, the above-mentioned clinical and preclinical studies
(Tables 1, 2) suggest that IH can improve conditions that are
common risk factors for IS, which is not only beneficial to the
prevention of cerebrovascular diseases but also helpful to reduce
the likelihood of recurrence.

Application of intermittent hypoxia
conditioning at different stages of
ischemic stroke

The potential therapeutic use of IH in the treatment of
cerebrovascular and cardiovascular diseases is the focus of
extensive research (Manukhina et al., 2016; Serebrovskaya and
Xi, 2016; Mallet et al., 2018). The mechanisms underlying the
beneficial effects of hypoxia adaptation have been investigated at
multiple biological levels, ranging from systemic physiological
responses to genomic regulation and protein modifications
(Terraneo et al., 2017; Lee et al., 2020; Burtscher et al., 2022).
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TABLE 2 Effects of intermittent hypoxia on vascular risk factors in animals.

References Subjects Hypoxia protocols Results Mechanisms

(Chen et al., 2021) SHR and WKY rats Hypobaric hypoxia (4000 m
altitude), 5 h/day for 35 days

ABP↓ Inhibiting RAS activity,
downregulating the ACE-Ang
II-AT1 axis, upregulating the
ACE2-(Ang17)-Mas axis

(Li et al., 2019) RVH rats Hypobaric hypoxia (5000 m
altitude), 6 h/day for 28 days

ABP↓ Upregulating NOS expression in
the nucleus tractus solitarii

(Manukhina et al.,
2011)

SHR rats 5–10 min hypoxia (9.5–10%) and
4 min normoxia, 5–8 cycles/day for
20 days

Suppressed the development of
hypertension

Prevention of endothelial
dysfunction, increased
accumulation of NO stores in
vascular walls

(Luo et al., 2022) C57BL/6L mice with HFD 10% oxygen for 1h/day, 4 weeks Reduce body weight; ameliorate
fatty liver

Associated with hypoxia-induced
epinephrine

(Tian et al., 2016) Sprague–Dawley rats Hypobaric hypoxia (simulate 5000
altitudes) for 6 h/day, 4 weeks

Decreased SAP, serum triglyceride
and cholesterol; improved insulin
resistance and hepatic steatosis

Ameliorating insulin resistance via
the HIF-insulin signaling pathway

(Trzepizur et al.,
2015)

C57BL/6J mice with HFD IH: 1 min cycle, hypoxia (5% O2 ,
30 s) followed by normoxia (21%
O2 , 30 s) for 8 h/day, 2 weeks

Increase insulin and leptin levels;
restore endothelial function and
mitochondrial activity; limits liver
lipid accumulation

Prevented endothelial dysfunction
by restoring NO production;
improved liver lipid metabolism by
restoring mitochondrial activity

ABP, arterial blood pressure; ACE, angiotensin-converting enzyme; Ang, angiotensin; HFD: high-fat diet; HIF, hypoxia-inducible factor; IH, intermittent hypoxia; NO, nitric oxide; NOS,
nitric oxide synthase; RAS, renin-angiotensin system; SHR, spontaneously hypertensive rat; WKY, Wistar-Kyoto.

Preconditioning is a therapeutic strategy that induces
endogenous self-protection of vital organs through sub-lethal
physiological stimulation (Stevens et al., 2014). Experimental
studies in rodents have shown that IH can trigger beneficial
effects through preconditioning, improving the brain and heart’s
defenses against ischemic-hypoxic injury and protecting them
from the harmful consequences of ischemia and reperfusion
(Stowe et al., 2011; Manukhina et al., 2013). Postconditioning
refers to the promotion of recovery from injury by promoting
processes such as repair, regeneration, and plasticity, which
contribute to an improved prognosis (Pietrogrande et al.,
2019; Li et al., 2022). Therefore, the treatment approach of IH
preconditioning and postconditioning at different stages of the
disease can not only reduce risk of stroke but also enhance
neuroprotection to reduce the injury severity and ultimately
improve the prognosis of IS (Figure 2).

Intermittent hypoxia preconditioning

Experimental studies in rodents show that hypoxia
preconditioning before an acute IS can induce endogenous
brain protection, increase the brain’s resistance to ischemic-
hypoxic injury, and produce a neuroprotective effect by
activating the hypoxic signal pathway, the anti-inflammatory
pathway, antioxidative stress, and autophagy (Liu et al., 2021).
How to maximize the protective effect and obtain the greatest
benefit depends on the mode of hypoxia. Animal studies have
found that either a single episode of IH (Miller et al., 2001)
or consecutive days of IH (Lin et al., 2003) reduce the infarct
size in a transient focal IS model and have a neuroprotective

effect. However, this protective effect diminishes over time.
Repeated IH with different concentrations and durations can
provide sustained brain protection by regulating epigenetic
neurovascular plasticity, inducing a longer tolerance time
window (Stowe et al., 2011; Monson et al., 2014; Selvaraj
et al., 2017). It is worth noting that IH preconditioning has
a protective effect against IS, and hypoxic concentration is
the key factor. Studies have confirmed that 10% of IH is
neuroprotective, whereas 6% of IH exacerbates tissue damage,
and this different outcome is associated with changes in
susceptibility to mitochondrial damage (Jackman et al., 2014).
A recent study confirmed for the first time that brief, repeated
exposure to systemic hypoxia attenuates hypoperfusion-
induced cognitive impairment and that this resistance to
dementia is heritable, allowing mice offspring to avoid memory
loss even in the presence of persistent cerebral hypoperfusion
(Belmonte et al., 2022). Due to the unpredictability of IS,
few clinical studies have focused on it, with most studies
conducted on animal models. Therefore, future research
needs to strengthen our understanding of the neuroprotective
mechanism of preconditioning in the brain and find the optimal
hypoxia mode and applicable population to accelerate clinical
translation.

Intermittent hypoxia postconditioning

Hypoxia postconditioning, which is administered during the
acute phase of IS, can have a protective effect by improving
cerebral energy metabolism (Ren et al., 2020). It also stimulates
neural regeneration after IS by promoting the proliferation
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FIGURE 2

Schematic presentation of intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke. IH
conditioning can improve the conditions considered as risk factors for cerebrovascular diseases, such as high blood pressure, glucose, and lipid
content, and high body weight, which is a potential treatment strategy to prevent IS and reduce its incidence and recurrence rate. IH
preconditioning induces endogenous cerebral protective mechanisms, improves cerebrovascular health, and enhances the resistance of the
brain to ischemic-hypoxic injury. IH postconditioning can modulate neuroinflammation, improve brain energy metabolism, promote
neurovascular regeneration and remodeling, and regulate cerebral blood flow. Applying IH conditioning at different stages of IS may ultimately
reduce infarct volume, improve cerebral perfusion, and promote neurological recovery. IH, intermittent hypoxia; IS, ischemic stroke. Created
with www.biorender.com.

and migration of neural stem cells (Li et al., 2022). Hypoxia
postconditioning 48 h after an IS can improve motor function
and reduce tissue loss (Pietrogrande et al., 2019). In addition,
the adaptation after hypobaric hypoxia in the acute stage can
also improve neurological function and reduce the infarct
volume after IS, which is related to the fact that hypobaric
hypoxia attenuates the inflammatory response by regulating the
expression of HIF-α and its target genes (Huang et al., 2014;
Qiao et al., 2015). In contrast, some studies have shown that
hypoxic postconditioning in the acute phase of IS does not
improve neurological function but may increase brain damage
instead (Tsai et al., 2008). These differences in results may be
related to the dose of hypoxia and the animal model used in each
case. A subsequent study, found that hypoxia postconditioning
in the chronic stage of IS can improve cognitive dysfunction in
mice after stroke by inducing hippocampal neurogenesis and
functional synapse formation (Tsai et al., 2013), indicating that
hypoxia postconditioning can promote brain repair after injury.

To summarize, based on the current evidence from
experimental and clinical studies, IH preconditioning may
not only prevent cerebrovascular diseases and reduce their
recurrence by controlling risk factors (Tables 1, 2) but also
reduce post-stroke brain injury and neurological deficit by
activating the adaptive response of the brain (Table 3). IH
postconditioning may promote neurological recovery (Table 4)
and the regulation of cerebral blood flow through neurovascular
remodeling (Manukhina et al., 2016). Moreover, IH may
improve the conditions commonly identified as risk factors for

stroke, promote repair and regeneration after injury, and play
a role in preventing the recurrence of stroke and reducing the
brain tissue injury after recurrence, thus reducing the disability
and mortality rates of the disease, and its burden as well.
Therefore, IH can be used in the prevention, treatment, and
rehabilitation phases of IS and is a very promising adjunctive
therapy. However, the present evidence supporting its use
for the treatment during the acute recovery phases is limited
to a few animal studies and is, therefore, not yet sufficient.
Future studies need to further elucidate the neuroprotective and
neurorestorative mechanisms of hypoxia conditioning while
also considering the effects of age, sex, comorbidities, and
the safety and efficacy of its application during the acute and
recovery phase, to help accelerate its clinical translation.

Therapeutic effects and
mechanism of hypoxia
conditioning on ischemic stroke

Ischemic stroke is the most common acute cerebrovascular
disease, with complex pathophysiological mechanisms and high
heterogeneity. Severe ischemia after vascular occlusion leads
to rapid brain injury and cell death, which activates the
immune system in vivo (Iadecola et al., 2020). Inflammatory
signals participate in all stages of the ischemic cascade reaction,
leading to early blood-brain barrier (BBB) destruction and
infarction progress, but also to later neurovascular repair and
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TABLE 3 Beneficial effects of intermittent hypoxia preconditioning in ischemic stroke.

References Subjects Model Hypoxia protocols Outcomes

(Belmonte et al.,
2022)

C57BL/6J mice Chronic cerebral hypoperfusion Hypoxia (11%) 1 h, every other
day for 8 weeks

Abrogated hypoperfusion-induced
memory/plasticity deficits, resistance
to dementia is heritable

(Jackman et al.,
2014)

C57BL/6J mice tMCAO Hypoxia (10 or 6%) 90 s followed
by normoxia 90 s, 20 hypoxic
episodes per hour

10% CIH is neuroprotective (reduced
infarct volume), 6% CIH exacerbates
tissue damage

(Stowe et al., 2011) Swiss-Webster ND4 mice tMCAO, pMCAO 2 weeks of repetitive hypoxic
(8–11%) preconditioning (RHP)
or single hypoxic preconditioning
(SHP; 4 h, 8% O2)

RHP protection against stroke
persisted for 8 weeks

(Lin et al., 2003) Wistar rats tMCAO Hypoxia (380 mmHg altitude) for
15 h/day, lasted 4 weeks

Reduced infarct volume

(Miller et al., 2001) C57Bl/6, 129SvEv,
Swiss-Webster ND4 mice

tMCAO 48 h before tMCAO, hypoxia
(11%) for 2 h

Reduced infarct volume

CIH, chronic intermittent hypoxia; pMCAO, permanent middle cerebral artery occlusion; RHP, repetitive hypoxic preconditioning; tMCAO, transient middle cerebral artery occlusion.

TABLE 4 Beneficial effects of intermittent hypoxia postconditioning in ischemic stroke.

References Subjects Model Hypoxia protocols Outcomes

(Su et al., 2022) SD rats tMCAO 1 week after stroke, IH (13% O2) for 4 h/day,
lasted 4 weeks

Reduce infarct volume and promote
motor function recovery

(Li et al., 2022) C57BL/6 mice tMCAO 30 min after stroke, IH (8% O2) for 3 h/day,
lasted 13 days

Recovery of neurological function,
promote the proliferation and migration
of neural stem cells

(Ren et al., 2020) C57BL/6J mice dMCAO 15 min after stroke, IH repeated four times Reduce infarct size

(Pietrogrande et al.,
2019)

C57BL/6 mice Photothrombotic occlusion 48 h after stroke, IH (11% O2) for 8 h/day,
lasted 14 days

Reduce motor deficits and tissue loss

(Qiao et al., 2015) C57 mice MCAO 24 h after stroke, IH (simulate 5000 m
altitude) for 4 h, lasted 7 days

Accelerate cognitive function recovery

(Huang et al., 2014) C57BL/6 mice tMCAO 12 h after stroke, IH (simulate 5000 m
altitude) for 4 h

Better neurological performance and
smaller infarct size

(Tsai et al., 2013) SD rats MCAO 7 days after stroke, IH (12% O2) for 4 h/day,
lasted 7 days

Alleviate long-term memory impairment

(Leconte et al., 2009) SWISS mice tMCAO 5 days after stroke, IH (8% O2) for 1 h/day,
3 times/week, lasted 43 days

Reduced delayed thalamic atrophy

IH, intermittent hypoxia; pMCAO, permanent middle cerebral artery occlusion; tMCAO, transient middle cerebral artery occlusion.

remodeling. Like the complex pathophysiological mechanisms
of cerebral ischemia, the protective mechanisms underlying
hypoxia conditioning are diverse and intertwined, and have not
been fully elucidated. The concept that hypoxia can induce an
inflammatory response has been widely recognized from the
study of the hypoxia pathway (Eltzschig and Carmeliet, 2011),
suggesting that beneficial hypoxic modulation can modulate
the body’s immunity, not only by reducing early inflammatory
damage but also by promoting the repair process after brain
injury through anti-inflammatory effects. In addition, it has
been shown that hypoxia is involved in neurovascular repair
(Walshe and D’Amore, 2008), generation of cerebral collateral
vessels (Anan et al., 2009; Zhang et al., 2020), and capillary
neovascularization (Milner et al., 2008; Burnier et al., 2016),
neurogenesis, and neuroplasticity (Sommer, 2009; Zhu et al.,
2010; Tsai et al., 2013; Li et al., 2022) after IS. Therefore,

moderate hypoxia conditioning may improve the clinical
outcome of IS by regulating these processes to promote
endogenous brain repair and regeneration.

Hypoxia and neurovascular protection

The neurovascular unit (NVU) is the structural and
functional unit of the central nervous system. It highlights
the dynamic interactions between endothelial cells, mural cells
(pericytes and smooth muscle cells), basement membrane,
astrocytes, microglia, neurons, and extracellular matrix; and the
importance of such interactions in the pathophysiology of the
CNS (Schaeffer and Iadecola, 2021). The capillary network of
the whole brain is composed of endothelial cells and connected
by tight junctions, surrounded by the endfeet of pericytes
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and astrocytes, constituting an important part of the BBB and
maintaining brain homeostasis (Liebner et al., 2018). The close
communication between microvascular endothelial cells and
surrounding astrocytes plays an important role in maintaining
intact neurovascular coupling (Iadecola, 2017). Moreover, the
regulation of the microvascular basement matrix membrane,
the activation of endothelial cells, and the change of glial
cell adhesion directly affect the transmission of information
between microvessels and neurons. The organism relies on this
complex neurovascular network to achieve the fine regulation
of cerebral blood flow and ensure the normal neurological
function and steady state of the brain (Zhang et al., 2012). It
has been confirmed that IH preconditioning can significantly
reduce oxidative stress during ischemia-reperfusion injury and
stimulate NO-induced vasodilation (Bertuglia, 2008), thereby
maintaining capillary perfusion. In the large vessels, periodic IH
increases the blood flow and shear rate of the internal carotid
artery, which in turn increases shear-mediated vasodilatation
(Iwamoto et al., 2020). It is suggested that hypoxia can improve
cerebral blood flow and cerebral perfusion by regulating the
diameter of cerebral vessels. In addition, the oxygen uptake
capacity of the brain increases during acute periodic hypoxemia
to compensate for the reduced oxygen levels in arterial blood
(Liu et al., 2017). Repeated IH exposures enhance arterial
oxygen delivery and increase O2 availability (Zhang et al.,
2010). These results suggest that hypoxia conditioning can
not only affect cerebral vascular reactivity, but also increase
cerebral oxygen uptake, oxygen transport, and oxygen use
capacity. The studies mentioned above suggest that periodic
IH is a promising non-pharmacological treatment strategy for
optimizing cerebrovascular health.

Under physiological conditions, hypoxia conditioning can
regulate the interactions between various cellular and non-
cellular components in the NVU through HIF-dependent or
independent pathways (Obrenovitch, 2008; Terraneo et al.,
2017; Lee et al., 2020), modulate the organism’s response
to injury, enhance the resistance of the NVU to ischemic-
hypoxic injury, and exert neuroprotective effects (Dirnagl
et al., 2003; Stowe et al., 2011, 2012; Wacker et al., 2012a,b;
Monson et al., 2014; Selvaraj et al., 2017). HIFs are the
major regulators of the hypoxic transcriptional response,
and the O2-sensitive prolyl/aspartate hydroxylase (PHDs/FIH)
regulates HIF activity in the transition between normoxia and
hypoxia conditions (Kaelin and Ratcliffe, 2008). Under various
pathological conditions, hypoxia conditioning serves to improve
the clinical outcome of the disease by regulating the cellular
environment (Taylor and Colgan, 2017), thereby enhancing
mitochondrial metabolism, enhancing antioxidant and anti-
inflammatory capacity, and promoting the repair process to
reduce the extent of neurological and vascular damage (Walshe
and D’Amore, 2008; Tsai et al., 2013; Qiao et al., 2015; Ryou
et al., 2017; Manukhina et al., 2018; Pietrogrande et al., 2019; Ren
et al., 2020; Li et al., 2022; Luo et al., 2022). Since the underlying

cellular and molecular mechanisms are unclear, more relevant
research evidence is needed.

Hypoxia and neurovascular
regeneration

Cerebral collateral circulation refers to the auxiliary
vascular network recruited after arterial occlusion, which can
provide partial blood flow compensation for the ischemic
area (Liebeskind, 2003). Cerebral collateral vessels refer to
the inherent vascular anastomosis among arteries, arterioles,
and capillaries (Faber et al., 2014). When cerebral artery
stenosis or occlusion leads to ischemia of its downstream
brain tissue, good collateral vessel opening can play a role
in blood flow compensation. In IS, collateral blood perfusion
in the area adjacent to occluded vessels can partially alleviate
the ischemic injury caused by insufficient perfusion (Ginsberg,
2018). However, due to the variation in number, diameter,
and compensatory capacity of collateral vessels, the degree of
protection of collateral circulation against occlusive diseases
varies greatly, which directly affects the clinical outcome of
patients. Factors affecting collateral vessels include aging (Faber
et al., 2011; Ma et al., 2020), genetic background (Lucitti
et al., 2016; Faber et al., 2021), and vascular risk factors that
can be treated (Biose et al., 2020), including hypertension
(Moore et al., 2015), type 2 diabetes (Akamatsu et al., 2015;
Nishijima et al., 2016), dyslipidemia, obesity, and metabolic
syndrome (Menon et al., 2013). The above-mentioned factors
can cause the thinning of collateral vessels and the impairment
of the compensation ability of collateral blood flow. The
underlying mechanism remains unclear, but may be related
to the decrease in eNOS levels and an increase in oxidative
stress and inflammation (Faber et al., 2011; Moore et al., 2015;
Rzechorzek et al., 2017). Hypoxia conditioning may improve the
status of the collateral circulation by improving NO utilization
by endothelial cells, antioxidative stress mechanisms, and anti-
inflammatory effects (Anan et al., 2009). In addition, mild
hypoxia can promote endothelial cell proliferation, increase
vascular density, and remodel capillaries and arterioles in
mice (Milner et al., 2008; Boroujerdi et al., 2012; Burnier
et al., 2016; Halder et al., 2018). Recently, the formation of
new collateral vessels induced by arterial occlusion has been
confirmed in mouse models for IS and myocardial infarction
(Zhang and Faber, 2015; Okyere et al., 2020). Furthermore,
it has also been reported that exposure to hypoxia alone can
induce the formation of new collateral vessels in the brain
and the heart (Zhang et al., 2020; Aghajanian et al., 2021).
By gradually acclimating mice to hypoxia and maintaining it
for 2–8 weeks, oxygen concentration-dependent new collateral
vessel formation and remodeling of intrinsic collateral vessels
were observed, and cerebral infarct volume was reduced
after subsequent permanent middle cerebral artery occlusion.
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The expression of Hif2α, Vegfa, Rabep2, Angpt2, Tie2, and
Cxcr4 increased after hypoxia. However, in knockout mice for
Rabep2, new collateral vessels could not be formed, and this
phenomenon was reversed in the conditional knockouts for
Vegfa, Flk1, and Cxcr4 (Zhang et al., 2020). Recently, it has also
been found that hypoxia can induce the formation of coronary
collaterals in adult mice, and that Vegfa and Rabep2 are
required for this (Aghajanian et al., 2021). These results suggest
a mechanistic link between embryonic collateral formation
and new collateral formation in adult mice. How collateral
vessels are formed and how hypoxia promotes collateral vessel
neovascularization and remodeling are questions that need to
be addressed in the future.

Adult neurogenesis is of great medical significance to
cognitive, memory, and motor dysfunction caused by central
nervous system diseases (Culig et al., 2022). Experimental
evidence shows that intermittent hypobaric hypoxia can
promote the proliferation of endogenous neural progenitor
cells, leading to an increase in the number of new neurons,
and produces antidepressant-like effects. IH can also promote
the expression of brain-derived neutrophic factor in the adult
hippocampus (Zhu et al., 2010). In a rat model for Alzheimer’s
disease, IH conditioning protected against neurodegenerative
changes and improved cognitive function (Manukhina et al.,
2010). The benefits of IH for improving cognitive function
have been further confirmed in human studies. Schega et al.
(2013) reported for the first time that additional IH conditioning
administered before physical exercise can enhance cognitive
function and quality of life in the older adults, and demonstrated
good tolerance. Wang et al. (2020) reported that moderate
IH for eight weeks can reduce arterial blood pressure at
rest, enhance cerebral oxygenation and vasodilation in the
cerebral cortex during hypoxia, and improve the short-term
memory and attention of older adults patients with amnestic
mild cognitive impairment. Serebrovska et al. (2019c) showed
that IHH conditioning can improve the cognitive function
of patients with mild cognitive impairment and reduces
the biomarkers for Alzheimer’s disease in the peripheral
blood while increasing the levels of some inflammatory
markers. The upregulation of inflammatory markers may be
a potential trigger for cellular adaptation (Serebrovska et al.,
2022), but whether these proinflammatory factors mediate the
neuroprotective effects is unclear and needs to be further
explored.

However, due to the unpredictability of this acute cardio-
cerebrovascular disease, the clinical research evidence on
hypoxia preconditioning is insufficient. Most rodent studies
have been conducted in young healthy mice; but in the clinical
setting IS patients are usually middle-aged or older adults, often
affected by comorbid hypertension, diabetes, dyslipidemia, and
obesity; which complicates the pathology of IS (Candelario-
Jalil and Paul, 2021). Whether the same pattern of hypoxia
preconditioning can also provide the an equivalent protective

effect to aging individuals exhibiting comorbid conditions
lacks support from relevant research evidence and needs to
be further clarified in future studies. More systematic and
comprehensive studies are needed in the future to enhance
our understanding of the potential molecular and cellular
regulatory mechanisms underlying the beneficial effects of
hypoxia, and to provide a strong basis for the application of
hypoxia conditioning as a clinical treatment for IS at different
stages.

Bridging the gap between
preclinical and clinical studies in
ischemic stroke: A translational
perspective

The current research results provide promising evidence
for the application of IH conditioning in the prevention,
treatment, and rehabilitation of IS. It should be noted
that the inconsistency between the results obtained in
rodent models and in the clinical population may affect
the translational outcome of IH treatment, and these factors
include genetics, age, sex, comorbidity, etc. (Sommer, 2017;
Candelario-Jalil and Paul, 2021). In recent years, researchers
have noticed that the opposite circadian rhythm between
rodents and humans also affects the outcome of stroke
treatment (Esposito et al., 2020; Lo et al., 2021). Therefore,
it is necessary to optimize the preclinical models of IS to
simulate as closely as possible what happens in the actual
clinical patients. Although many clinical and experimental
studies associated with normobaric IH have been reported,
the protocol of hypoxia treatment varies considerably
between individual studies. It is not clear which mode of
treatment is the best. Therefore, searching for potential
clinical biomarkers that can identify hypoxia adaptation and
maladaptation may help to provide more accurate and safer IH
treatment.

The effect of circadian rhythm

A growing body of research has shown that circadian
rhythms interact with multiple aspects of IS pathophysiology,
influencing disease susceptibility, degree of damage, repair
processes, and response to various treatments, but the
underlying mechanism is still unclear (Lo et al., 2021). Recent
evidence suggests crosstalk between HIF-1 signaling and the
circadian rhythm (Manella et al., 2020; Adamovich et al.,
2022). Esposito et al. (2020) reported that three different
neuroprotective methods can reduce infarction in rodent
models during the day, but not at night, pointing out that
circadian rhythm may be one of the factors affecting the clinical
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translation of neuroprotection. This study suggests that the
response of the body to treatment is different in the active
and in the inactive phases, and that the diurnal effect may
lead to different outcomes. Moreover, it has also been found
in clinical studies that aspirin, a drug used to treat IS, can be
orally administered before sleep to reduce platelet reactivity
upon waking, which is related to the endogenous circadian
rhythm of platelet activation (Bonten et al., 2015). A recent
study of circadian gene expression profiles in 12 different mouse
organs showed that circadian rhythms exist in the transcription
of 43% of protein-coding genes and that most of the best-
selling and WHO essential drugs directly target genes that are
regulated by circadian rhythms (Zhang et al., 2014). Therefore,
it can be speculated that different administration times will have
different effects on treatment outcomes and may be beneficial
to the treatment of various diseases. Therefore, the effect of the
timing of the intervention on the treatment outcome should be
considered in preclinical studies of hypoxia conditioning. To
our knowledge, no studies on experimental animals or humans
have been published in this area, and circadian factors could be
included in subsequent studies to provide a basis for the clinical
translation of hypoxia conditioning.

Optimizing the preclinical model of
ischemic stroke

It is well-known that many differences between clinical
and experimental study subjects have resulted in potential
treatments identified as promising in rodent IS models that
have not shown therapeutic effects in clinical trials. Clinically,
stroke is most prevalent in older men and women, and
preclinical studies have mostly tested young male animals.
Therefore, preclinical studies in animal models of IS affected
by aging and comorbidities can more accurately simulate the
clinical situation of patients. Aging is a natural phenomenon
in which mitochondrial dysfunction, oxidative stress, and
inflammation gradually increase with age, resulting in different
cellular dysfunctions and a progressive decline in tissue and
organ function, which leads to an increased risk of IS and
death (Garaschuk et al., 2018). Preclinical studies have also
revealed significant differences in the pathophysiology and
prognosis of IS between young and old animals, with the
latter exhibiting more severe injury and poor recovery. The
cellular mechanisms of aging and IS overlap, and beneficial
hypoxia conditioning can inhibit mitochondrial dysfunction,
oxidative stress, and inflammation, and potentially provide
effective treatment for IS among older adults (Burtscher
et al., 2021a). In experimental studies, female rodents were
found to have milder damage after IS compared to males.
This phenomenon disappeared after ovariectomy or beyond
reproductive age, suggesting that estrogen and progesterone
are potential neuroprotective factors against IS (Alkayed et al.,

2000). Uric acid failed to act as a neuroprotective agent
in patients with acute IS, but it had a positive effect on
functional recovery in female patients (Chamorro et al., 2014).
Given the age and sex differences described above, it is
necessary to clarify the effect that these factors may have
on treatment outcomes in animal models before conducting
clinical trials to further evaluate the efficacy and safety of
IH treatment. Additionally, common comorbidities such as
hypertension, diabetes, hyperlipidemia, obesity, etc. significantly
increase the vulnerability of the brain to ischemic injury,
eventually leading to worse functional results (Biose et al.,
2020; Candelario-Jalil and Paul, 2021). Under the condition
of comorbidity and aging, the protective effect of some
drugs is weakened or absent. Therefore, whether IH can
also induce beneficial effects among older adults affected by
multiple comorbidities is still unclear and needs to be further
explored.

Conclusion and prospects

Intermittent hypoxia conditioning is a very promising
treatment strategy to prevent and treat IS (Figure 2). IH
can improve the conditions considered to be risk factors for
cerebrovascular diseases, such as blood pressure, blood sugar,
blood lipid, and weight, and increase the body’s resistance
to ischemic-hypoxic injury. Therefore, IH may reduce the
incidence and recurrence of IS and have a protective effect on
the central nervous system, thereby reducing the severity of
IS and improving the clinical prognosis of patients. According
to the evidence detailed in this review, IH conditioning can
reduce damage to the BBB and neuronal cells, and can also
induce neovascularization and neurogenesis, contributing to
NVU repair and regeneration. Thus, during the recovery phase
of IS, IH conditioning promotes neurovascular remodeling,
which is beneficial to transition the brain from injury to
the repair process. Future research must further clarify
the cerebral protective mechanisms of IH conditioning and
other beneficial mechanisms, which will help to provide
new therapeutic strategies and potential pharmacological
targets for the prevention and treatment of cerebrovascular
diseases. In addition, issues that need to be solved in future
research include the optimal intervention mode, the timing of
intervention, the difference in circadian rhythms, sex, age, and
comorbidities in response to IH, and the different responses
of different brain regions and cell types to IH. At present,
IH conditioning for ischemic cerebrovascular disease has been
almost exclusively studied in preclinical, animal disease models,
and the challenge for the future is how to apply it safely
and effectively for the prevention and treatment of IS in
clinical patients. Therefore, well-designed controlled clinical
trial studies are needed to confirm these findings and determine
the optimal target population, time points for intervention, and
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mode of hypoxia; and ultimately to provide strong evidence for
establishing the most effective individualized hypoxia protocol.
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Background: Spatial transcriptomics (STs) simultaneously obtains the location

and amount of gene expression within a tissue section. However, current

methods like FindMarkers calculated the differentially expressed genes (DEGs)

based on the classical statistics, which should abolish the spatial information.

Materials and methods: A new method named spatial analysis of spatial

transcriptomics (saSpatial) was developed for both the location and the

amount of gene expression. Then saSpatial was applied to detect DEGs in both

inter- and intra-cross sections. DEGs detected by saSpatial were compared

with those detected by FindMarkers.

Results: Spatial analysis of spatial transcriptomics was founded on the basis of

spatial statistics. It was able to detect DEGs in different regions in the normal

brain section. As for the brain with ischemic stroke, saSpatial revealed the

DEGs for the ischemic core and penumbra. In addition, saSpatial characterized

the genetic heterogeneity in the normal and ischemic cortex. Compared to

FindMarkers, a larger number of valuable DEGs were found by saSpatial.

Conclusion: Spatial analysis of spatial transcriptomics was able to effectively

detect DEGs in STs data. It was a simple and valuable tool that could help

potential researchers to find more valuable genes in the future research.

KEYWORDS

spatial transcriptomics, DEGs, spatial statistics, saSpatial, stroke
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Introduction

Spatial transcriptomic (ST) is a revolutionary technology
that enables us to obtain information on spatial location and
amount of gene expression within a tissue section (Stahl et al.,
2016). It provides us with a unique opportunity to elucidate
the cellular heterogeneity in tissues with a variety of biological
conditions such as tumor and ischemia. Thus, enormous
progress in the fields of embryology, oncology, and neuroscience
has been made in recent years (Maniatis et al., 2019; Baccin et al.,
2020).

Detection of differentially expressed genes (DEGs) among
the different biological situations is the fundamental for
microarray analysis including ST (Dries et al., 2021). Tools
such as FindMarkers or FindAllMarkers, originally designed
for single-cell RNA sequencing (scRNA-seq), have been applied
in ST data (Stahl et al., 2016). FindMarkers is based on the
Wilcoxon rank-sum test, a non-parametric test that belongs
to classical statistics (Dutta and Datta, 2016). The essential
assumption of classical statistics is that each individual must
be independent (Griffith, 2005). Gene expression of one spot
is very likely to be affected by the nearby ones, which indicates
that the individuals of ST data are not independent. It has been
demonstrated by recent studies (Svensson et al., 2018; Xia et al.,
2019). In this way, the ST data was not suitable for classical
statistics. It is necessary to develop a novel method for DEGs
detection that simultaneously considers spatial context and gene
expression.

Spatial statistics, or called spatial analysis, is a method
primarily used in Geography to analyze the effect of spatial
location on certain features (Griffith, 2005). For Health science,
it is widely used in epidemiology. Unlike classical statistics,
there is an essential assumption in spatial statistics: spatial
data gathered from nearby areas are dependent on each other.
Therefore, recent studies have noted the value of spatial statistics
on the analysis of ST data (Xia et al., 2019; Hirz et al., 2022).
There are a lot of parameters in spatial statistics and Moran’s
index (Moran’s I) is a measure of spatial autocorrelation, which
is characterized by a correlation in a signal among nearby
locations. Moran’s I are classified into two categories: global and
local. The global Moran’s I is a measure of the overall clustering
of the spatial data, and the local Moran’s I is developed to
evaluate the local spatial autocorrelation analysis (Li and Calder,
2007). Previous studies used the global Moran’s I to determine
if there was global autocorrelation of ST data (Xia et al., 2019;
Hirz et al., 2022). How to explore the DEGs via spatial statistics
remained unclear.

Spatial statistics can be performed using geographical
information systems (GIS) (Kistemann et al., 2002). Direct
application of GIS for detection of DEGs in ST data was not yet
available. Here we described a method named spatial analysis of
spatial transcriptomics (saSpatial) to identify the DEGs in both
inter- and intra-cross sections.

Materials and methods

Animal preparation

Adult C57BL/6 mice (8 weeks old, 25–35 g), provided by
Animal Center of Southern Medical University (Guangzhou,
China), were used in the present study. The animals were
housed for at least 1 week before surgery under controlled
environmental conditions with ambient temperature of 25◦C,
relative humidity of 65%, and 12/12 h light-dark cycle. The
animals were free access to gain food and water. The protocol
was reviewed and approved by the Institution Animal Care and
Use Committee of The Second Affiliated Hospital of Guangzhou
Medical University (NO. B2019-037).

Distal MCAO mouse model

The mice were anesthetized using isoflurane (1–
2%/oxygen). A cortical stroke model was made by occlusion
of the distal middle cerebral artery using a previously reported
method (Wen et al., 2019). In brief, a 1 cm skin incision was
made between the ear and eye (usually right side). The temporal
muscle was removed from the skull. A hole was made by
the drill right above the MCA and the artery was coagulated
by the electrocoagulation forceps proximal and distal to the
bifurcation. The temporal muscle was relocated to cover the
burr hole. Suture the wound and place the animal in a nursing
box at 32◦C to recover from anesthesia and return it to the cage.

Magnetic resonance imaging

Magnetic resonance imaging (MRI) scanning was
performed 6 h after stroke onset using a Bruker Biospec
7.0 T system (PharmaScan, Bruker Biospin, Rheinstetten,
Germany) with a mouse brain array coil and a transmit only
volume coil. The anesthetized animals were secured within the
cradle by tooth and ear bars, and a mouse head four-channel
phased array surface receiver coil was placed on the head. Body
temperature was maintained at 37 ± 0.5◦C during the MRI
scanning procedure by a closed circuit thermal jacket.

T2 weighted scans using a fast-spin echo sequence: echo
time (TE) 33 ms, repetition time (TR) 8,000 ms, field of view
(FOV) 30 mm × 30 mm, acquisition matrix 512 × 512,
acquiring 0.4 mm thick slices. A four-shot spin-echo planar
imaging DWI scan (TE 30.5 ms, TR 8,000 ms, FOV
25 mm× 25 mm, acquisition matrix 96× 96, three directions x,
y, z, B-values = 0 and 1,000 s/mm2, 50 contiguous thick, 0.4 mm
thick). The PWI can be performed non-invasively by tagging
protons in the arterial blood supply with an inversion pulse
by using a T2∗-weighted echo-planar sequence: TE 76 ms, TR
11,482 ms, FOV 24 mm× 24 mm, acquisition matrix 128× 128,
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1 excitation, repetition 50 times. All MR images were processed
on a commercial workstation (ParaVision Acquisition 6.0.1).

Spatial transcriptomics

Tissue section preparation
The mice were sacrificed under deep anesthesia immediately

after MRI scanning. The animals were perfused transcardially
with 0.1 M PBS (pH 7.4) only, and brains were surgically
removed rapidly and embedded in optimal cutting temperature
(OCT) compound (SAKURA). The brains with OCT compound
were quick-frozen on dry ice immediately and stored at −80◦C
until cryosectioning process. The cryosectioning placed in a
cryostat (Leica, CM1950) to cryosection the OCT embedded
tissue blocks into appropriately sized sections for Visium Spatial
slides while keeping the samples frozen. Tissue sections were
10 µm thick each. Tissue sections were placed within the frames
of Capture Areas on Visium Spatial slides (10X Genomics).

Fixation, staining, and imaging
Tissue section slides were incubated 1 min at 37◦C then were

fixed in methanol at −20◦C for 30 min. For staining, the slides
were incubated in Hematoxylin for 7 min and in Bluing Buffer
for 2 min. Then, Eosin was added to the slides and incubated for
1 min. After each staining steps, slides were washed with DNase
and RNase free water. Stained tissue sections are imaged by the
microscope (Pannoramic MIDI, 3DHISTECH).

Tissue pre-permeabilization
Pre-permeabilization was performed to optimal the suitable

permeabilization time. Visium Spatial Tissue Optimization
Slides and Reagent Kits (10X Genomics) were used for
pre-permeabilization. The tissues were permeabilized in
Permeabilization Enzyme for varying amounts of time then the
Fluorescent RT Master Mix was added to the tissue sections.
For tissue removal, the tissue sections were incubated in Tissue
Removal Mix for 60 min at 56◦C. The best permeabilization time
was selected through the fluorescent microscope (Pannoramic
MIDI, 3DHISTECH).

Tissue permeabilization and spatial
transcriptomic sequencing

Tissue permeabilization and ST sequencing were performed
using Visium Spatial Gene Expression Slides and Reagent Kits.
The stained slides were incubated in RT Master Mix for 45 min
at 53◦C for reserve transcription after permeabilization for
appropriate time. Next, Second Strand Mix was added to the
tissue sections on the slide and incubated for 15 min at 65◦C
to initiate second strand synthesis. After transfer of cDNA
from the slides, barcoded-cDNA was purified and amplified.
The amplified barcoded cDNA was fragmented, A-tailed, ligated
with adaptors and index PCR amplified. The final libraries

were quantified using the Qubit High Sensitivity DNA assay
(Thermo Fisher Scientific, Waltham, MA, USA) and the size
distribution of the libraries were determined using a High
Sensitivity DNA chip on a Bioanalyzer 2200 (Agilent). All
libraries were sequenced by illumina sequencer (Illumina, San
Diego, CA, USA) on a 150 bp paired-end run.

Differentially expressed genes detected by
spatial transcriptomic analysis

We applied fastp with default parameter filtering the adaptor
sequence and removed the low-quality reads to achieve the
clean data (Chen et al., 2018). Then the feature-barcode
matrices were obtained by aligning reads to the mouse
genome using SpaceRanger v1.1.0. In order to minimize the
sample batch, we applied the down sample analysis among
samples sequenced according to the mapped barcoded reads
per spot of each sample and finally achieved the aggregated
matrix.

Seurat package (version: 3.2)1 was used for spot
normalization and regression. PCA was constructed based
on the scaled data with all high variable genes. Utilizing graph-
based cluster method, we acquired the unsupervised the cell
cluster result based the PCA top 10 principal and we calculated
the marker genes by FindAllMarkers function with Wilcoxon
rank sum test algorithm under following criteria: logFC > 0.25;
p-value < 0.05; min.pct > 0.1.

Process of spatial analysis of spatial
transcriptomics

Construction of spatial map
(a) Read a file with the.bz2 extension in the ST data folder

including the contents of gene expression and coordinate of each
individual spot (R Script 1).

(b) Export the data to a CSV file with columns of
Barcode ID, gene name, standardized expression level (named
as 1.csv), and another CSV file with x- and y-coordinate (named
2.csv) (R Script 1).

(c) Modify the coordinates in the 2.csv file. The value of
x-coordinate was plus 40,531,000 and the value of y-coordinate
is plus 3,460,000.

(d) Construct the spatial map using software Arcmap
10.8 (ESRI 2019. ArcGIS Desktop: Release 10.8. Redlands,
CA, USA: Environmental Systems Research Institute).
Create a new map document and choose the Add XY
Data; import the 2.csv; the coordinate system was using
CGCS2000_3_Degree_GK_Zone_40; export the spatial map
data to a file with extension.shp (named without.shp in
our experiment).

1 https://satijalab.org/seurat/
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Data pre-processing
(a) Spilt the 1.csv into files, each of which include one single

gene expression. The files are usually named as gene name like
A_AQP4.xlsx following the gene of Aqp4, a marker of astrocyte
cell. It should be added with “A_” before the gene name. It is
realized by R Script 2.

(b) Each excel filename is read by Python Script 1 to exclude
the potential errors.

(c) Create a new document in Arcmap 10.8 and import
all the excel files by Python Script 2. The document is named
and saved as T.gdb.

(d) Create another new map document named Joined.gdb.
Add T.gdb to without.shp. This adds the gene expression
information to spatial map. It was realized by Python Script 3.

Global Moran’s index calculation
(a) The global Moran’s I statistic is given as:

I =
n
S0

∑n
i=1

∑n
j=1 ωi,jZiZj∑n
i=1 Z

2
i

where Zi is the deviation of an attribute for feature I from its
mean (Xi-X̄), ωi,j is the spatial weight between feature i and j, n
is equal to the total number of features, and S0 is the aggregate
of all the spatial weights:

S0 =

n∑
i=1

n∑
j=1

ωi,j

The Zi-score for the statistic is computed as:

Zi =
I − E[I]
√

ν[I]

where:
E [I] =

−1
n− 1

ν [I] = E
[
I2]
− E[I]2

It was realized by Python Script 3.
(b) Extract the data of global Moran’s I, expected index,

variance, z-score and P-value of each gene into one excel file
(Python Script 4).

Local Moran’s I calculation
(a) The local Moran’s I statistic is given as:

Ii =
Xi − X̄
S2
i

n∑
j=1,j6=i

ωi,j(xj − X̄)

Where Xi is an attribute for feature i, X̄ is the mean of
the corresponding attribute, ωi,j is the spatial weight between
feature i and j, and:

Si =

∑n
j=1,j6=i ωi,j(xj − X̄)2

n− 1

With n equating to the total number of features.
The ZIi -score for the statistics are given as:

ZIi =
Ii − E[Ii]
√

ν[Ii]

where:

E [Ii] = −

∑n
j=1,j6=i ωi,j

n− 1

ν [Ii] = E
[
I2
i
]
− E[Ii]2

(b) The local Moran’s I of each spot is realized by Python
Script 5 using the files of Step “Construction of spatial map”
(d), Step “Data pre-processing” (c and d) (without.shp, T.gdb
and Joined.gdb).

(c) The information includes local Moran’s I, P-value, ZIi -
score and spatial cluster type (CO type).

Comparison between region of interest and
other regions

(a) Using the spatial map constructed in the Step
“Construction of spatial map,” the ROI is circulated. The spot
barcode in the ROI is obtained.

(b) The number of high-to-high (H-H) or low-to-low (L-L)
spots in the ROI is extracted and compare with other regions
using Chi-Squared Test. It is realized by R Script 3.

(c) Top 20 genes of each comparison are used
for bubble plot.

Visualization
(a) For any specific gene identified by the above analysis, add

the CSV file to spatial map.
(b) Run Hot Spot analysis by Arcmap 10.8.
(c) Use the Legend, and convert it into graphics.
(d) Export the figure.

Results

Flow of spatial analysis of spatial
transcriptomics method

As shown in Figure 1A, the spatial maps were constructed
based on the spot barcodes derived from the ST data.
The gene expression quantities were then connected to the
corresponding spots. Global Moran’s I was calculated to
determine whether it was clustered. If not, the gene was
aborted for further analysis. Next, the ROI was circled
in the ST maps and the spot barcodes of the ROI were
obtained. Then, local Moran’s I was used to determine
the CO type, which was group into five categories: non-
significant, H-H, L-L, high-to-low (H-L), and low-to-high (L-
H) spots (Figure 1B). The number of H-H and/or L-L spots
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FIGURE 1

Spatial analysis of spatial transcriptomics (saSpatial) flow chart. (A) Flow chart of saSpatial. (B) Spatial cluster type. ST, spatial transcriptomics;
ROI, region of interest; H-H, high-to-high; L-L, low-to-low; H-L, high-to-low; L-H, low-to-high.

were used for the following statistics. Finally, visualization
of DEGs was performed using Hot Spot analysis with
Arcmap 10.8.

Spatial autocorrelation patterns
revealed by global Moran’s I

Global Moran’s I measures the spatial autocorrelation based
on both the locations and the quantities of features. A value of 0
for Moran’s I indicated no autocorrelation. In the brain section,
no gene showed no autocorrelation. Z-score and P-value were
used to evaluate the significance of global Moran’s I (Figure 2).
Based on the global Moran’s I, z-score and P-value, the spatial
pattern were group into: clustered, random and dispersed
(Figure 2). If global Moran’s I was close to + 1 and z-score
was more than 1.65, the pattern was clustered, which means
elevated gene expression had similar elevation values close to
each other like Nrgn (Figure 2). If global Moran’s I was close to
−1 and z-score was less than −1.65, the pattern was dispersed,

which means dissimilar values were next to each other like a
checkerboard (Figure 2).

Differentially expressed genes of
different regions in normal brain
revealed by spatial analysis of spatial
transcriptomics

Spatial transcriptomic data of normal brain section
was obtained from the 10X Genomics dataset. The brain
hemisphere was divided into sensorimotor cortex, basal ganglia,
cingulate gyrus, entorhinal cortex, hippocampus, thalamus, and
hypothalamus (Figure 3A). The ratio of H-H spots in the
sensorimotor cortex was calculated and is shown in Figure 3E.
Then we determined the proportion of H-H spots (more than
50% in Figure 3E) in the other brain regions (Figure 3F). For
instance, Arpp19 mostly enriched in the sensorimotor cortex
while it also was found in the cingulate gyrus and entorhinal
cortex, which was verified in ST map (Figures 3B–D,F). DEGs
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FIGURE 2

Global Moran’s index revealing three spatial autocorrelation patterns. Clustered, z > 1.65 and P < 0.1; random, –1.65 < z < 1.65 and P > 0.1;
dispersed, z < –1.65 and P < 0.1. ST, spatial transcriptomic; CI, confidence interval.

in other brain regions were also identified and typical genes are
shown in Figure 3G. All these results indicated that saSpatial
was able to detect DEGs of ROI within a section.

Up-regulated differentially expressed
genes of ischemic penumbra and core

Spatial analysis of spatial transcriptomics was then applied
to determine the DEGs in the brain section from ischemic
stroke. Ischemic stroke was induced in a mouse model by
occlusion of the distal middle cerebral artery. MRI scanning
was performed 6 h after stroke onset to determine the ischemic
penumbra (mismatch of perfusion- and diffusion-weighted
imaging) and core. Penumbra has been defined as brain tissue
at a risk of infarction (Albers et al., 2018). The brains were then
harvested for ST sequencing. Ischemic core and penumbra and
the corresponding area in the normal brain section were marked
with reference to HE and MRI images (Figure 4B).

Considering numerous gene expressions were similar
in the ischemic penumbra and core, which was also
proved by the following data (Figure 4A), there were
three comparisons of the number of H-H spots: between
the ischemic penumbra or core and the corresponding
area in the normal brain sections; between the ischemic
penumbra or core and the normal region in the ischemic
stroke brain section; and between ischemic core and
penumbra (Figure 4A). Bubble plots of the top 20 DEGs
for each comparison identified by saSpatial are shown in
Figure 4A. For instance, Gm42418 was highly expressed
in the ischemic hemisphere while there was no significant
difference between ischemic ore and penumbra. In contrast,
Cdk5r2 was significantly increased in the ischemic core
but not in the penumbra (Figure 4C). Hence, Cdk5r2 but
not Gm42418 was a marker gene for ischemic core. As for
ischemic penumbra, saSpatial identified the up-regulated
DEGs like Hspa1a, which was like a thin loop around the core
(Figure 4C).
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FIGURE 3

Differentially expressed genes (DEGs) in the different brain regions. (A) Brain region. ROI indicates sensorimotor cortex. (B) Yellow area indicates
sensorimotor cortex in HE images. (C) Arpp19 of ST map. (D) Hotspot of Arpp19. (E) DEGs in the sensorimotor cortex. Ratio = The number of
H-H spots in sensorimotor cortex/The total number of spots in the section. (F) Septicity of DEGs in the sensorimotor cortex. Ratio = The
number of H-H spots in each region/The total number of H-H spots. (G) Marker genes of each brain region. ST, spatial transcriptomic.
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FIGURE 4

Upregulated DEGs revealed by saSpatial. (A) Bubble plots of top20 DEGs. P-values are indicated by circle size; scale adjacent to the plot. The
rate difference between stroke and NC group is indicated by color. NC, normal control. P, penumbra. (B) Ischemic brain area. Ischemic core
(red), penumbra (yellow), and normal area (green) in the sensorimotor cortex. (C) Typical DEGs of ischemic core and penumbra. N = 3. CI,
confidence interval.
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Down-regulated differentially
expressed genes of ischemic
penumbra and core

Substantial attention was paid to the up-regulated
expression, while expression of numerous genes were halted by

ischemia. In contrast to the up-regulated DEGs as described
above, the number of L-L spots was used for detection of
down-regulated DEGs. Bubble plots of the top 20 DEGs for each
comparison are shown in Figure 5A. There were a lot of genes
down-regulated in ischemic area while most of them showed
no significant differences between ischemic core and penumbra

FIGURE 5

Downregulated DEGs revealed by saSpatial. (A) Bubble plots of top20 DEGs. P-values are indicated by circle size; scale adjacent to the plot. The
rate difference are indicated by color. NC, normal control. P, penumbra. Typical DEGs of (B) ischemic core and (C) penumbra. N = 3. ST, spatial
transcriptomic; CI, confidence interval.
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FIGURE 6

Comparison between saSpatial and FindMarkers. (A) Venn map of ischemic core. (B) DEGs only found by saSpatial in the ischemic core.
(C) Venn map of penumbra. (D) DEGs only found by saSpatial in the penumbra. N = 3. CI, confidence interval.

such as Vps8 and Sparc (Figure 4A). For the ischemic core,
Lrrc77 was a marker gene (Figure 5B). As for the ischemic
penumbra, down-regulated DEGs like Prkcb were identified
(Figure 5C).

Comparation of spatial analysis of
spatial transcriptomics with
FindMarkers

Differentially expressed genes detected by saSpatial were
compared with that detected by FindMarkers (Figure 6). For

the ischemic core, FindMarkers found only 210 DEGs while

there were 1,021 DEGs identified by saSpatial (Figure 6A and

Supplementary Table 1). The majority of DEGs detected by

FindMarkers could be also found by saSpatial (Figure 6A) while

numerous genes like Itm2a, Foxp1,Cbln2,Mtus2,Nab2, andCnp

were not detected by FindMarkers (Figure 6B). For the ischemic

penumbra, FindMarkers can only find 44 DEGs and the majority

of DEGs were missed (Figure 6C). saSpatial found that there

were 497 potentially valuable DEGs in the ischemic penumbra

(Figure 6C) such as Gng13, Cyr61, Fosb, Gadd45g, S100b, and

Gadd45b, which were confirmed by ST maps (Figure 6D).
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Differentially expressed genes of
different cortical layers

The sensorimotor cortex is composed of six layers. DEGs in
each layer were revealed by saSpatial and the top 3 DEGs in each
layer are shown in Figure 7A. Layer V is the internal pyramidal
layer and contains large pyramidal neurons, the axons of which
form the corticospinal tract. saSpatial showed that Ighm was a
marker gene in Layer V (Figure 7B).

Differentially expressed genes of
different cortical layers in the ischemic
core

Different cortical layers responded differently to ischemic
insult. Six layers of ischemic core and that in the normal
brain section were marked with reference to the HE images
(Figure 8A). The fraction of DEGs in each layer is shown in
Figure 8B. The ST and Hotspot maps are shown in Figure 8C.

FIGURE 7

Differentially expressed genes (DEGs) in the cortex layers. (A) Top 3 DEGs in the layers. (B) Typical DEGs. ST, spatial transcriptomic.
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For example, Cbln4, which was not found in the normal brain,

was up-regulated in the ischemic core and enriched mainly in

the Layer III. Scn4b was up-regulated in the Layer V while it was

down-regulated in other layers (Figures 8B,C).

Discussion

In the present study, we developed a simple, reliable
and reproduceable method, named saSpatial, to detect the

FIGURE 8

Heterogenicity of DEGs within the ischemic cortex. (A) Six layers of cortex in the ischemic cortex. (B) Typical DEGs. (C) ST map and Hotspot of
typical DEGs. ST, spatial transcriptomic.
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DEGs in ST data. DEGs from different biological situations
within the same section or across the different sections
can be clearly detected by saSpatial. Heterogenicity of a
particular region can also be characterized by saSpatial. In
comparison to the traditional method, saSpatial was able to
detect more valuable DEGs.

Classical statistics-based methods such as FindMarkers
detected the DEGs only referred to the value of gene expression
(Dries et al., 2021). It neglects a basic fact that gene expression
of cells is effected by the other cells especially the nearby
ones. Several other methods such as SpatialDE have been
developed to explore the variable genes from the spatial context
while they failed to detect the DEGs of any specific ROI
(Svensson et al., 2018; Xu and McCord, 2021; Zhu et al., 2021).
Based on the spatial statistics, the CO types of any individual
spot included information about both the effect of spatial
location on gene expression and gene expression quantity. The
chi-squared test was used to compare the number of H-H or
L-L spots between the ROI and the other regions. This simple
approach provided a tool for analyzing the ST data to detect
the DEGs and characterize their heterogeneity within the ROI.
To the best of our knowledge, it was the first tool to detect
the DEGs in ST data with regard to location and value of gene
expression simultaneously. We then used this tool to investigate
the expression and distribution of genes in the normal and
ischemic stroke brain sections.

Firstly, we used saSpatial to detect the DEGs in different
regions of the normal brain section. Many previous studies
have used ST to characterize the genetic heterogeneity in
brain section. Usually, they used snRNA data to find the gene
expressions in certain regions and projected the findings onto
ST data like the multimodal intersection analysis (MIA) method
(Baccin et al., 2020; Moncada et al., 2020). In contrast, saSpatial
detected DEGs directly and quickly. In the present study,
saSpatial found various DEGs in the different brain regions, such
as Arpp19 for sensorimotor cortex and Cabp7 for hippocampus.

Then, saSpatial was used to detect the DEGs in the ischemic
brain. Ischemic stroke was one of the leading causes of mortality
and morbidity (Hankey, 2014). Ischemic insult resulted in
significant changes of gene expressions (Xu et al., 2017). In the
present study, saSpatial found various DEGs in the ischemic
brain area. Ischemic brain area was divided into ischemic core
and penumbra, of which DEGs was hard to distinguish. saSpatial
can successfully distinguish the DEGs in the ischemic core
and penumbra including the up- and down-regulated ones.
Furthermore, more DEGs were found by saSpatial than that by
FindMarkers.

Finally, saSpatial characterized heterogenicity of the gene
expressions in the normal and ischemic cortex. Cortex genetic
heterogenicity has been proved by many other studies (Stahl
et al., 2016). Cortex was made up of six layers, each of which was
a limited area like Layer I. How to identify the heterogenicity
within a small region in ST data remained challenge. We used

saSpatial and found that Cfh dominated in the Layer I and Ighm
was the marker gene of Layer V. As for the ischemic cortex,
Cbln4 was up-regulated in the ischemic core and enriched
mainly in the Layer III while Scn4b was up-regulated in the
Layer V and down-regulated in other layers.

Limitations

Spatial analysis of spatial transcriptomics was based on the
ST data. Hence, the resolution of saSpatial relied on the raw ST
data. A spot in ST data represented genes of an area including
about 10 cells. Thus, saSpatial cannot reveal the cellular types.
Secondly, CO types of spots mainly consider the effect of
adjacent spots while some genes were affected by remote ones.
Finally, the DEGs identified by saSpatial needs to be verified by
the additional biological experiment.

Conclusion

In conclusion, saSpatial was constructed based on local
Moran’s I and successfully detected the DEGs in ST data. It
would help the potential researchers to find more valuable DEGs
in the future study.
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Objectives: (1) To clarify the dynamic relationship between the expression of

myeloperoxidase (MPO) and microglial activation of intracerebral hemorrhage

(ICH), (2) to explore the effect of inhibition of MPO on microglial activation,

and (3) to observe the improvement in the neurobehavior of mice with

inhibition of MPO.

Methods: C57 BL/6 mice and CX3CR1 + /GFP mice were used to establish a

phosphate-buffered saline (PBS) group, an ICH group, and a 4-aminobenzoic

acid hydrazide (ABAH) group. Longa score, open field locomotion, hind-limb

clasping test, immunohistochemistry, immunofluorescence, blood routine

detection, and flow cytometry were used.

Results: The neurobehavior of the mice was significantly impaired following

ICH (P < 0.01); the expression of MPO was significantly increased following

ICH, and reached a peak value at 6 h post-injury (P < 0.001). Moreover, the

microglial activation increased significantly following ICH, and reached a peak

level at 24 h post-injury (P < 0.01). Following inhibition of MPO, the activation

of microglia in the ICH group decreased significantly (P < 0.001). Moreover,

the neurobehavior of the ICH group was significantly improved with MPO

inhibition (P < 0.05).

Conclusion: MPO may be an upstream molecule activated by microglia and

following inhibition of MPO can improve secondary injury resulting from ICH.

KEYWORDS

myeloperoxidase, intracerebral hemorrhage, microglia, activation, inhibition,
neurobehavior
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Introduction

Intracerebral hemorrhage (ICH) accounts for 10–15%
of all strokes and is characterized by high lethality and
disability. ICH damage to the brain consists of either
primary hematoma compression effects or secondary hematoma
breakdown products, both of which cause damage to the brain
parenchyma. The main factor leading to poor prognosis of
ICH is secondary brain injury. The mechanisms that cause
secondary injury to ICH are mainly inflammatory response,
local active oxygen free radical release, and apoptosis around
hematomas (Xi et al., 1999; Cherubini et al., 2000; Wang
et al., 2007). ICH results in neuronal cell death and the
release of factors such as damage-associated molecular patterns
(DAMPs) that induce localized inflammation in the injured
brain region. And such focal brain inflammation aggravates
secondary brain injury by exacerbating blood-brain barrier
breakdown, microvascular failure, brain edema, oxidative stress,
and by directly inducing neuronal cell death (Shi et al., 2019).
Therefore, the inflammatory response is currently considered to
be the key factor causing secondary brain injury following ICH
(Wang et al., 2007). Inflammatory responses include microglial
activation, leucocyte infiltration, enzyme activation, and release
of numerous mediators of injury, such as hemoglobin, iron,
reactive oxygen and nitrogen species (Garcia et al., 1994).

Following ICH, microglial cells, as important
neuroinflammatory effector cells, are the first non-neuronal
cells to generate an immune response to acute brain injury
(Walentynowicz et al., 2018). In vitro, activated microglia are
polarized, showing two polarizing phenotypes, “classically
activated” proinflammatory (M1) or “alternatively activated”
anti-inflammatory (M2) cells (Xiong et al., 2016). At present, it
is believed that when ICH occurs, microglia are activated and
the phenotype undergoes short-term dynamic changes (Wang
et al., 2013; Lee et al., 2016; Liu et al., 2021). The expression
of the M1 microglia in the early stage of ICH is much higher
than that of M2 microglia, showing a global pro-inflammatory
state (Lan et al., 2017). M1 macrophages are neurotoxic, and
M2 macrophages promote a regenerative growth response in
adult sensory axons (Kigerl et al., 2009). M1-type microglia are
produced and release a series of inflammatory mediators and
biologically active factors, such as TNF-α, IL-1β, IL-6, IL-8,
etc., lead to inflammation following ICH, and cause further
secondary damage. Therefore, microglia plays a key role in
the initial inflammatory response following ICH. Supportive
treatment is currently the main therapy for ICH (Thabet et al.,
2017). A recent study has shown that use of pinocembrin
(molecular formula: C15H12O4) to inhibit M1 microglia can
protect brain tissue following ICH (Lan et al., 2017). However,
the specific mechanism of microglial activation and polarization
in ICH is still unclear.

Myeloperoxidase (MPO) is a leukocyte enzyme secreted
by activated neutrophils, monocytes, and macrophages, and

it possesses peroxidase activity (Arnhold and Flemmig, 2010).
Experiments have shown that, in addition to being abundant
in neutrophils, MPO is also expressed in other myeloid cells,
such as microglia (Gray et al., 2008). In a mouse model of
ICH, bleeding causes upregulation of inflammatory factors in
the brain, a large number of blood myeloid cells are recruited
into the brain, and MPO is synthesized and released to evacuate
hematomas. On the other hand, the inflammatory network
regulated by MPO may trigger subsequent injury. Therefore,
MPO is considered to be a biomarker for the diagnosis and
prognosis of ICH (Wang et al., 2007). Studies have shown
that the classic MPO inhibitor, 4-aminobenzoic acid hydrazide
(ABAH), can inhibit MPO activity, increase the proliferation
of stroke neurons, and improve neurogenesis (Forghani et al.,
2015; Kim et al., 2016). Stefanova et al. (2012) found that
inhibition of MPO in PLP-a-SYN mice can inhibit microglial
cell activation and, at the same time as MPO peaks at 6 h, M1
microglial cells are also activated. From the results of previous
studies, it is not difficult to speculate that there may be some
connection between MPO and microglia in ICH. Therefore,
we hypothesized that the key target cells regulated by MPO
in ICH are microglial cells. The activating effect of MPO on
microglial cells was verified by experiments, and the effects and
mechanism of MPO on microglial cells in the early stage of ICH
were investigated. This could provide an endogenous treatment
strategy for clinically difficult ICH cases.

Materials and methods

Experimental animals

The C57BL/6 mice and CX3CR1 + /GFP mice used in
this experiment (had the same genetic background as C57BL/6
mice, including immune cells of myeloid origin, including
microglia in the central nervous system; expression of the green
fluorescent protein (GFP) gene was composed and provided by
the Medical Laboratory Animal Center of Lanzhou University)
were kept in a quiet environment, freely fed and watered, keep
the living environment of mice for 12 h each day and night.
Of these, 37 C57BL/6 mice were male, 8 weeks old, weighing
20 ± 2 g; 21 CX3CR1 + /GFP mice were all male, 8 weeks old,
weighing 20 ± 2 g. All animal experiments were approved by
the Medical Laboratory Animal Ethics Committee of Lanzhou
University Second Hospital. All animals were euthanized in
accordance with ethical animal laboratory practice.

Establishment of intracerebral
hemorrhage model

All experimental mice were placed in the experimental
environment for at least 2 weeks prior to experimentation
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in order to adapt the mice to the environment, allowing
the mice free access to food and water. The animals were
anesthetized by intraperitoneal injection with a 1% sodium
pentobarbital solution (50 mg/kg), and then venous blood
from the mice was added to an EP tube soaked with heparin
using the tail-capped blood collection method. The temperature
of the mice was maintained at 37 ◦C using a thermostatic
blanket. The individual mice were placed in a stereotactic
frame, the skin of the head was cut, and the scalp was
wiped with a hydrogen peroxide solution so that the skull
was fully exposed, and a skull hole (approximately 1 mm in
diameter) was drilled on the right side of the sagittal line. A 26-
gauge needle was inserted into the striatum on the right side
(coordinates: X = −2.0 mm; Y = −0.5 mm; Z = −3.5 mm),
and a micro-infusion pump was used, the ICH mice were
perfused with 10 µL of autologous blood, and the control
mice were perfused with ice-cold phosphate-buffered saline
(PBS; pH 7.4). The needle was removed, the drilled hole
was filled with bone wax, and the skin incision was sutured
with a No. 4 suture.

Behavioral experiments

Longa score: A score of 2–3 indicates that the model was
successfully created.

0 points: normal, no neurological deficits.
1 point: left forelimb cannot fully extend, mild neurological
deficit.
2 points: when walking, mice looped to the left, with
moderate neurological deficits.
3 points: when walking, mice collapsed to the left, with
severe neurological deficits.
4 points: mice cannot walk on their own, losing
consciousness.

Open field locomotion: We used opaque plastic to make
a cube box of dimensions 50 cm × 50 cm × 50 cm. The
bottom of the box and the inner walls were white. The
mouse was placed at a specific corner facing the central area
and timing was commenced. The mouse’s activities within
15 min were automatically recorded. The open field in the
video was divided into a central area and a surrounding
area by SMART v3.0. The central area accounted for 25%
of the total area, and the mouse’s movements were tracked
simultaneously. We observed the exercise distance, exercise
speed, rest time, and the time the mouse spent in the
central area in order to evaluate the exercise ability of the
mouse.

Hind-limb clasping test: The tail suspension of the mouse
was lifted, the movements of the hind limbs of the mouse within

15 s were recorded, and the hind-limb clasping and muscle
strength were observed.

Immunohistochemical and
immunofluorescence labeling

We first divided the mice into an ICH group and a PBS
group and observed iba1 antibody cells and MPO staining at 6,
12, and 24 h. Six C57 mice were used in each group. We then
used the CX3CR1 + /GFP mice for MPO immunofluorescence
with six mice per group. We used 40 µm-thick brain slices for
immunohistochemistry. For iba1 staining, we used the ABC
method. The antibodies were Rabbit anti iba1 (Solarbio Life
Sciences, Beijing, China, 1:600), Goat anti Rabbit (Solarbio,
1:300), and streptavidin–horseradish peroxidase conjugate
(STR-HRP). For MPO fluorescence staining, we used Rabbit
anti MPO (Solarbio, 1:600) and Goat anti Rabbit (Solarbio,
1:300). Following each antibody staining, the brain slices were
washed three times with PBST (PBS + Triton). Images of the
immunohistochemically labeled sections and the fluorescently
immunolabeled sections were obtained using an Olympus
CKX41 fluorescence inverted microscope (Olympus, Tokyo,
Japan). The images were captured in the FITC and TRITC
channels using Cell-P imaging software (Olympus). When the
two images were merged, the cells appeared yellow.

Blood routine detection

Before perfusion and taking of the brain slices, 1 ml of
blood was collected using the orbital sinus blood collection
method in an EP tube soaked with heparin. The EP tube was
placed in a routine blood testing machine, and the results were
recorded automatically.

Flow cytometry

The brain tissue was placed in pre-chilled flow cytometry
buffer [1% bovine serum albumin (BSA), 1 mM EDTA, pH
7.4, 0.1 M PBS, 50 U/ml DNAseI], the striatal area was gently
shaken three times, and the tissue was broken up and passed
twice through a 70 µm nylon filter in order to generate a single
cell suspension, and then the cells were centrifuged at 4 ◦C,
1,200 rev/min, the supernatant was discarded, flow buffer was
added, and the cells washed with 1 × flow cytobuffer, at 4 ◦C,
1,200 rev/min. After discarding the supernatant and transferring
the suspension to a flow tube, flow cytometry was performed.
The FITC channel was used for screening. The results were
analyzed using FlowJo software.1

1 https://www.flowjo.com
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Statistical analysis

All data were expressed as the mean ± standard error
on the mean (SEM). Comparison between two groups was
performed using the unpaired Student’s t-test. Comparison
between multiple groups was performed using one-way analysis
of variance (ANOVA) following the post-hoc test. P < 0.05 was
taken to be statistically significant. Prism 8 statistical graphing
software2 was employed, and FlowJo software was used for flow
cytometry analysis.

Results

Inhibition of myeloperoxidase activity
promotes recovery of motor function
following intracerebral hemorrhage

In order to explore whether the activity of MPO affects the
recovery of motor function following ICH, we injected ABAH
into the striatum (CPu) of mice in order to inhibit the activity
of MPO (Figure 1A). We used the Longa score, the open
field test, and the hind-limb clasping test to comprehensively
evaluate the motor behavior ability of the control, ICH, and
ABAH intervention groups, respectively, (ABAH-1/ABAH-2).
The Longa score showed that, compared with the PBS group,
the neurological deficits in the ICH group were more obvious,
and the neurological behavior of the ABAH group was improved
compared with that of the ICH group (Figure 1B). In order
to confirm that ABAH intervention improved neurological
function following ICH, we used the open field test to evaluate
the motor ability of experimental animals (Figures 1C,D). The
PBS, ICH, and ABAH-2 groups were tested at 24 h, and the
ABAH-1 group was tested at 6 h, because the ABAH-1 group was
given the first dose of ABAH before the model was established,
and the ABAH-2 group was given its dose after the behavior
of the ABAH-1 group was tested. The results showed that,
compared with the PBS group, the exercise time of the ICH
group was significantly reduced, while the difference between
the ABAH-1 group and the ICH group was not statistically
significant, but the exercise state of the ABAH-2 group was
significantly improved (Figure 1C). In the hind-limb clasping
experiment, we found that, compared with the PBS group,
the ICH and ABAH-1 groups had weaker hind-limb clasping
ability and more obvious symptoms of paralysis. The hind-limb
clasping ability of the ABAH-2 group was significantly improved
(Figure 1E).

In summary, we found that use of the MPO activity inhibitor
ABAH significantly improved motor ability following ICH.

2 https://www.graphpad.com

Intracerebral hemorrhage can induce
changes in the number and proportion
of inflammatory cells in peripheral
blood

Finally, we studied the changes in the number and
proportion of neutrophils and monocytes in the peripheral
blood of mice following ICH in order to evaluate the level of
inflammation-related cells activated following ICH. Cytological
examination of the peripheral blood of mice in each group
demonstrated that neutrophils and macrophages increased in
proportion and quantity following ICH (Figures 2A–D).

Inhibition of myeloperoxidase activity
reduced microglial proliferation
following intracerebral hemorrhage

In order to explore whether MPO activity affected changes
in microglia following ICH, we used flow cytometry to count the
microglia in the brains of mice 24 h after modeling. At the same
time, in order to compare the levels of microglia in the normal
physiological state, we specifically introduced a normal group as
a control. The results showed that the number of microglia in
the ICH group increased significantly, while those in the ABAH
group decreased significantly (Figures 3A–C).

Microglia and myeloperoxidase were
activated following intracerebral
hemorrhage

Next, we used immunohistochemical and
immunofluorescence techniques to detect microglia and
MPO activity following ICH. In order to better understand
the activation characteristics of microglia and MPO in the
pathophysiology of ICH, we selected three time points (6,
12, and 24 h post-injury) in order to locate and quantify the
expression of iba-1 and MPO in the mouse control group
and the ICH group. The results showed that microglia were
significantly activated in the ICH group compared with the
PBS group, and the most significant activation was found at
24 h (Figures 4A–C). In the immunofluorescence detection of
MPO, we found that the activity of MPO significantly increased
following ICH, but the activation peak of MPO appeared at 6 h
post-injury (Figures 4D–F). To further verify the relationship
between microglia and MPO activation following ICH, we
used a special CX3CR1 + /GFP gene-edited mouse, which
could specifically display microglia via GFP fluorescence.
Using immunofluorescence, we found that the expression of
GFP and MPO in the ICH group was significantly increased
compared with the other three groups, while the expression of
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FIGURE 1

Inhibition of myeloperoxidase (MPO) activity promotes recovery of motor function following intracerebral hemorrhaging (ICH). (A)
Establishment of intracerebral hemorrhage model; (B,C) Longa scores of PBS, ICH, and ABAH groups (*P < 0.05, **P < 0.01, n = 6 in each
group); open field locomotion in the PBS, ICH, and first and second ABAH treatment groups. The times of movement and rest of the mice in the
open field were recorded. The total time was 900 s (*P < 0.05, **P < 0.01, n = 6 in each group); (D) open field mode diagram; (E) hind-limb
clasping test in the PBS, ICH, and first and second ABAH treatment groups. The degrees of hind-limb opening and closing in mice were
observed.

GFP and MPO in the ABAH group was significantly reduced
compared with the ICH group (Figures 5A–C). The results of
the immunofluorescence determinations also showed that the
expressions of MPO and GFP were spatially overlapped.

Discussion

ICH is a serious central nervous system disease, accounting
for approximately 10–15% of all stroke cases, and its mortality

rate is as high as 30–67%. Therefore, ICH is one of the greatest
challenges for current neurosurgical diagnosis and treatments
(Li et al., 2020). Microglia are a special class of mononuclear
phagocytes, which play a very important role in the development
of the central nervous system and the occurrence, development,
and prognosis of central nervous system diseases (Uff et al.,
2022). Microglia, neutrophils, and macrophages in the blood
are the main executors of inflammatory response to ICH, and
inflammatory response is one of the main causes of poor
prognosis for ICH patients (Liu et al., 2022).
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FIGURE 2

ICH can induce changes in the number and proportion of inflammatory cells in peripheral blood. (A) Quantity of neutrophils in peripheral blood
(**P < 0.01, n = 18 in each group); (B) neutrophils/peripheral blood ratio (*P < 0.05, n = 18 in each group); (C) quantity of peripheral blood
mononuclear cells (*P < 0.05, n = 18 in each group); (D) ratio of mononuclear cells to peripheral blood (**P < 0.01, n = 18 in each group).

Existing studies of therapeutic strategies involving microglia
for ICH divide the latter into two main aspects: inhibiting
the proinflammatory activity of microglia/macrophages and
improving the regulatory properties of myeloid cells that
display potential repair and anti-inflammatory properties. The
former study subjects include Minocycline, complement 5a
receptor antagonist (C5aRA), recombinant C1q/TNF-related
protein 9 (rCTRP9), and the leukotriene B4 (LTB4) receptor
antagonist, Bortezomib (a proteasome inhibitor), Fingolimod,
etc. The study subjects of the latter aspect include Sphingosine-
1-phosphate receptor (S1PR) agonists, statins, cannabinoid
receptor-2 (CBR2) agonist, peroxisome proliferator-activated
receptor γ (PPAR γ) activators, mammalian target of rapamycin
(mTOR) inhibitors, Sinomenine, etc. Some of these medications
and methods still lack the experimental verification necessary
for their safe use in humans, but preclinical data support the
use of inactivating agents or inhibitors of proinflammatory
microglia/macrophages while enhancing the regulatory
phenotype as part of a therapeutic approach to improving
the prognosis of ICH (Wang, 2010; Shao et al., 2019;
Bai et al., 2020).

Therefore, clarifying the molecular mechanisms related to
the activation of microglia, neutrophils, and macrophages is
the key to developing new therapies for ICH in the future.
According to previous studies, MPO is an important regulatory
molecule in the development of ICH, which can participate

in the development and prognosis of stroke in various
ways. Therefore, MPO is expected to become an important
intervention target for ICH in the future (Wang et al., 2022). In
summary, we have reason to believe that MPO can participate
in the occurrence and development of ICH by changing the
activation state of microglia. However, the relationship between
MPO and microglial activation has not been experimentally
verified in ICH, so this hypothesis was investigated in our study.

First, after the MPO inhibitor ABAH was given to ICH
mice in vivo, the effects of MPO on ICH motor behavior were
verified by behavioral experiments such as Longa score, open
field test, and hind-limb clasping test. The experimental results
showed that ICH could cause severe neurological dysfunction
compared with the control group, which was highly consistent
with the clinical manifestations of ICH patients. However, it
was surprising that the MPO inhibitor ABAH improved motor
behavior effectively following ICH. This preliminary experiment
proved that the intervention of MPO activity is effective for the
recovery of motor function following ICH, and it also verified
our previous hypothesis that MPO can be used as a therapeutic
target for ICH. In order to further explore the changes in MPO
and microglia during the development of ICH, we analyzed
these changes in the time dimension. The results showed that
microglia were activated following ICH and peaked at 24 h. The
expression of MPO also increased following ICH, peaking at 6 h
following ICH. Because the peak of MPO expression appeared
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FIGURE 3

Inhibition of MPO activity reduces microglia proliferation following ICH. (A) Flow cytometry FITC channel, to detect the content of microglia in
the control, PBS, ICH, and ABAH groups (set the total number of living cells to 20,000, n = 1 in each group); (B) proportion of FITC in the
control, PBS, ICH, and ABAH groups; (C) number of FITC in the control, PBS, ICH, and ABAH groups.

earlier than the peak of microglial activation, we believe that
the high degree of expression of MPO is one of the causes
of microglial activation following ICH. To further verify the
relationship between microglia and MPO activation following
ICH, we used a special CX3CR1 + /GFP gene-edited mouse,
which could specifically display microglia via GFP fluorescence.

Using the immunofluorescence detection of gene-edited mouse
tissues, we found that the expression levels of GFP and MPO
in the ICH group were significantly higher than those in the
other three groups, while the expression levels of GFP and MPO
in the ABAH group were significantly lower than those in the
ICH group. At the same time, due to the consistency of GFP
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FIGURE 4

Microglia and MPO were activated following ICH. (A) Immunohistochemistry of the PBS and ICH groups at 6, 12, and 24 h post-injury. The
labeled molecule was iba1 (10×, 20×); (B) statistics of iba1 positive expression (**P < 0.01, n = 6 in each group); (C) immunohistochemistry of
iba1 in the PBS and ICH groups at 24 h post-injury (10×, 40×); (D) immunofluorescence of MPO in the PBS and ICH groups at 6, 12, and 24 h
post-injury (10×, 20×); (E) immunohistochemistry of MPO in the PBS and ICH groups at 6 h post-injury (10×, 40×); (F) statistics of MPO
molecular expression (**P < 0.01, ***P < 0.001, n = 6 in each group).

and MPO in terms of spatial expression, these experimental
results further proved that MPO is closely related to the
pathophysiological development of microglia following ICH.
Therefore, in order to verify whether MPO can affect the

activation of microglia following ICH, we used flow cytometry
to count the number of microglia in normal mice, ICH mice,
and mice treated with MPO inhibitor following ICH. The
results showed that, compared with the normal physiological
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FIGURE 5

Inhibition of MPO activity reduces microglial proliferation following ICH. (A) Immunofluorescence double staining was performed in the PBS,
ICH, and ABAH groups at 24 h post-injury. The labeled molecules were microglia and MPO; (B) microglia expression (***P < 0.001, n = 6 in
each group); (C) MPO expression (***P < 0.001, n = 6 in each group).

state, microglial cells proliferated significantly following ICH,
but the inhibition of MPO activity could significantly inhibit
this change. Therefore, based on the above experimental data,
we proved that ICH induced proliferation of microglia, and
this proliferation was closely related to MPO activity. At
the same time, due to the destruction of the blood-brain
barrier, neutrophils and macrophages in the blood entered the
central nervous system following ICH and participated in the

inflammatory response. Therefore, we performed peripheral
blood cytology tests on the ICH mice, and the results showed
that neutrophils and macrophages in the peripheral blood of
ICH mice increased in both proportion and quantity.

Our study, however, had certain limitations. We did
not validate the specific type of activated microglia in our
experiments, and we will continue to supplement our data
with this information in subsequent experiments. In addition,
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we did not verify the regulatory role of MPO activity
in microglia proliferation using in vitro experiments, nor
did we discuss the signal transduction mechanism in the
activation process. We plan to further clarify the specific
activation mechanism between MPO and microglia by means
of molecular and cellular experiments, clarify the interaction
between MPO and microglia, and find other possible targets for
additional MPO inhibitors.

In summary, our studies have shown that ICH can cause
a large degree of proliferation of microglia in the brain and
increase the number of neutrophils and macrophages in the
circulation. The increased MPO activity following ICH is closely
related to the proliferation of microglia, and so is expected to
become an important therapeutic target for ICH in the future.
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TJ-M2010-5, a novel CNS drug
candidate, attenuates acute
cerebral ischemia-reperfusion
injury through the MyD88/NF-κB
and ERK pathway

Zeyang Li1,2, Minghui Zhao1,2, Xiaoqian Zhang3, Yiran Lu4,
Yang Yang1,2, Yalong Xie1,2, Zhimiao Zou1,2, Liang Zhou1,2,
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Dunfeng Du1,2* and Ping Zhou1,2*
1Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 2Key Laboratory of Organ Transplantation, Ministry of
Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation,
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Background: Cerebral ischemia-reperfusion injury (CIRI) inevitably occurs after

vascular recanalization treatment for ischemic stroke. The accompanying

inflammatory cascades have a major impact on outcome and regeneration

after ischemic stroke. Evidences have demonstrated that TLR/MyD88/NF-κB
signaling contributes to CIRI. This study aimed to investigate the druggability of

MyD88 in the central nervous system (CNS) and the neuroprotective and anti-

neuroinflammatory effects of the MyD88 inhibitor TJ-M2010-5 on CIRI.

Methods: A middle cerebral artery occlusion (MCAO) model was used to

simulate CIRI in mice. BV-2 cells were stimulated with oxygen glucose

deprivation/reoxygenation (OGD/R) or lipopolysaccharide, and SH-SY5Y cells

were induced by OGD/R in vitro. Neurological deficit scores and cerebral

infarction volumes were evaluated. Immunofluorescence staining was

performed to measure neuronal damage and apoptosis in the brain. The

anti-neuroinflammatory effect of TJ-M2010-5 was evaluated by analyzing

the expression of inflammatory cytokines, activation of microglia, and

infiltration of peripheral myeloid cells. The expression of proteins of the

MyD88/NF-κB and ERK pathway was detected by Simple Western. The

concentrations of TJ-M2010-5 in the blood and brain were analyzed by

liquid chromatography-mass spectrometry.

Results: The cerebral infarction volume decreased in mice treated with TJ-

M2010-5, with the most prominent decrease being approximately 80% of the

original infarction volume. Neuronal loss and apoptosis were reduced following

TJ-M2010-5 treatment. TJ-M2010-5 inhibited the infiltration of peripheral

myeloid cells and the activation of microglia. TJ-M2010-5 also

downregulated the expression of inflammatory cytokines and inhibited the
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MyD88/NF-κB and ERK pathway. Furthermore, TJ-M2010-5 showed good

blood-brain barrier permeability and no neurotoxicity.

Conclusion: TJ-M2010-5 has an excellent therapeutic effect on CIRI as a novel

CNS drug candidate by inhibiting excessive neuroinflammatory responses.

KEYWORDS

TJ-M2010-5, drug, cerebral ischemia-reperfusion injury, neuroinflammation,
Myd88 inhibitor

Introduction

Stroke is an acute cerebrovascular disease in which focal

neurological loss suddenly occurs in the relevant parts of the

brain due to infarction or hemorrhage (Hankey, 2017). The most

common type of stroke is ischemic stroke, accounting for 70%–

80%. The cornerstone of effective ischemic stroke care continues

to be timely reperfusion treatment, either intravenous

recombinant tissue plasminogen activator (rtPA) and/or

mechanical thrombectomy (Prabhakaran et al., 2015).

Although clinical use of intravenous rtPA and/or mechanical

thrombectomy result in high reperfusion rates of acute cerebral

infarction, the benefits of reperfusion therapy are incomplete in

about half of the patients treated (Chamorro et al., 2021; van

Horn et al., 2021). When reperfusion occurs, a seemingly

paradoxical increased injury can occur, such as hemorrhagic

transformation, which limits the use of rtPA (Liu et al., 2017).

Evidence has shown that acute immune-inflammatory reactions

related to reperfusion can lead to secondary brain injury and

expand the scope of brain injury (Iadecola and Anrather, 2011;

He et al., 2021; Przykaza, 2021). Cerebral ischemia-reperfusion

injury (CIRI) inevitably occurs after cerebral infarction. CIRI

makes the original ischemic necrosis area more than double, and

a specific drug is lacking in clinical practice. Studies have shown

that myeloid differentiation factor 88 (MyD88) plays a vital role

in CIRI (Wang et al., 2011; Ma et al., 2020; Zhong et al., 2020; Qin

et al., 2022).

Following ischemic stroke, damaged neurons release damage

associated molecular patterns (DAMPs), such as high mobility

group box 1 (HMGB1) (Singh et al., 2016). DAMPs spread when

reperfusion and were sensed by toll-like receptor (TLR), leading

to a series of inflammatory cascade (Akira and Takeda, 2004;

Hanisch et al., 2008). MyD88 is an adaptor molecule linking TLR

or interleukin (IL) receptors signaling to the downstream

activation of nuclear factor-κB (NF-κB) (Janssens and Beyaert,

2002). TLRs identify DAMPs and activate MyD88/NF-κB and

ERK signaling, resulting in the expression of pro-inflammatory

factors (Li et al., 2018; Chen et al., 2020). Furthermore,

inflammatory factors enhance immune cell activation and

regulate the cell death of inflammatory tissues (Takeuchi and

Akira, 2010), which increases DAMPs, leading to the

inflammatory cascade and expanding the scope of damage

(Silvis et al., 2020). Blocking the TLR/MyD88/NF-κB signaling

can downregulate inflammatory responses and alleviate CIRI

(Gao et al., 2009; Bohacek et al., 2012; Wang et al., 2016).

By analyzing the structural domain of MyD88 and using

computer-aided systems such as drug design and virtual

screening, the small-molecule aminothiazole derivative

MyD88 inhibitor, TJ-M2010 series (WIPO Patent Application

Number: PCT/CN 2012/070811) has been innovatively

developed, which can specifically bind to the Toll/Interleukin-

1 receptor (TIR) domain of MyD88 and prevent

homodimerization of MyD88. TJ-M2010-5 (TJ-5), one of TJ-

M2010 series, has the best water solubility and bioavailability.

The chemical structure of TJ-5 (Figure 1A) and its interaction

with the MyD88 TIR domain have been described in a previous

study (Xie et al., 2016). Specifically, TJ-5 interacts with amino-

acid residues of αE, βD, βC, αA, DD loop, and EE loop of

MyD88 with a nonbond interaction and the energies (docking

score) is -883.298 kJ/mol (Xie et al., 2016). Our previous studies

have shown that TJ-5 can inhibit the activation of peripheral

innate immune cells such as macrophages and dendritic cells in

hepatic, myocardial, and renal ischemia-reperfusion (I/R) animal

models (Zhang et al., 2016; Miao et al., 2020; Zhou et al., 2022).

However, the druggability of MyD88 is still unknown, especially

in central nervous system (CNS) diseases. Due to the

requirement of CNS drugs to cross the blood-brain barrier

(BBB) and the frangibility of neurons to ischemia and

hypoxia, as well as the particularity of the central nervous

immune system (Banks, 2016), the effect and mechanism of

MyD88 inhibition against CIRI are not clear. Here, we focused on

the anti-neuroinflammatory effect of TJ-5. The neuroprotective

potential of TJ-5 as a CNS drug candidate for CIRI treatment was

evaluated.

Materials and methods

Animals and groups

Male C57BL/6 mice (Beijing Vital River Laboratory Animal

Technology Co. Ltd., Beijing, China) weighing 22–28 g and aged

8–10 weeks were used. All animal experiments were approved by

the Institutional Animal Care and Use Committee of Tongji

Hospital (Wuhan, China). All procedures were performed in

accordance with specific pathogen-free standards. Mice were
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FIGURE 1
Neuroprotective effect of TJ-5 treatment in CIRI mice. (A) The molecular structure of TJ-5. (B) Experimental timeline of TJ-5 treatment in CIRI
mice. (C–E) Representative TTC-stained slices at 24 h after reperfusion (scale bar = 5 mm) and statistical analysis of neurological deficit score and
infarct volume. Values aremean ± SEM and analyzed by two-way ANOVA. (*p < 0.05, **p < 0.01, ***p < 0.001). (F) Black boxed area illustrates cortical
region represented in the NeuN, TUNEL and Iba-1 images. White dashed line areas illustrate ischemic core (medial) and peri lesion (lateral)
regions. (G) Representative NeuN immunofluorescence staining image (scale bar = 50 μm). (H)NeuNprotein levels in the brain were analyzed. All the
experiments were repeated three times. Values are mean ± SEM. (**p < 0.01, ***p < 0.001).
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randomly divided into the following seven groups: sham, I/R,

vehicle (I/R + saline), I/R + TJ-5 (5 mg/kg), I/R + TJ-5

(10 mg/kg), I/R + TJ-5 (15 mg/kg), and I/R + edaravone

(3 mg/kg).

Cerebral ischemia-reperfusion injury
model

The mice were anesthetized with 1% pentobarbital sodium

solution via intraperitoneal injection, and the body temperature

was maintained at 37.0°C–37.5°C. The middle cerebral artery

occlusion (MCAO) model was established according to the

Longa method, as described previously (Longa et al., 1989). In

brief, the right carotid artery was carefully separated and exposed.

A silicon-coated embolic suture (Doccol, United States) was

inserted slowly from the external carotid artery (ECA) into

the internal carotid artery (ICA) until it reached the middle

cerebral artery (MCA). After 1 h of ischemia, the embolic suture

was withdrawn. The surgical procedure in the sham group was

the same as that in the I/R group, but the MCA was not

obstructed.

Neurological deficiency score

After 24 h of reperfusion, each group of mice was scored

blindly, according to the scoring system of the Longa method

(Longa et al., 1989). The score was 0 for no obvious neurological

deficit, one for inability to fully extend the left forelimb, two for

turning to the left, three for leaning to the left while walking, and

four for the inability to walk spontaneously and impaired

consciousness.

TTC staining

The mice were sacrificed 24 h after I/R. Mouse brains were

harvested for the measurement of cerebral infarct volume. The

brains were frozen at −80°C for 5 min and cut into five 2-mm

thick slices. The slices were then placed in a small dish, 2% 2,3,5-

triphenyltetrazolium chloride (TTC) solution (Sigma,

United States) was added, and 4% paraformaldehyde was used

for fixation. Images were captured using a digital camera. ImageJ

software was used to measure the volume of the brain infarction.

Cell culture and treatment

BV-2 microglial and SH-SY5Y cells were cultured as

previously described (Zhao et al., 2020). A lipopolysaccharide

(LPS)-stimulated BV-2 cell model was established to mimic

severe neuroinflammation induced by multiple inflammatory

mediators after reperfusion (Li et al., 2021). BV-2 cells were

pretreated with different concentrations of TJ-5 for 2 h before

LPS (1 μg/ml) stimulation (#L2880, Sigma, United States).

Twenty-4 hours later, BV-2 cells and the culture supernatants

were harvested for subsequent experiments. In addition, ST2825,

a recognized MyD88 inhibitor, was used as positive control

group.

The oxygen glucose deprivation/reoxygenation (OGD/R)-

induced SH-SY5Y cell model was established to mimic CIRI

as previously described (Dong et al., 2021). Briefly, SH-SY5Y cells

were cultured in glucose-free Dulbecco’s Modified Eagle

Medium, and the flasks were placed inside an incubator (1%

O2, 94% N2, 5% CO2) for 4 h. OGD cells were then incubated in

standard culture conditions with or without TJ-5 for 24 h of

reperfusion. OGD 4 h/R 24 h SH-SY5Y cells were harvested, and

the Annexin V/PI Apoptosis Kit (Multi- Science Biotech, China)

was used to detect apoptosis by flow cytometry.

CCK-8 assay

BV-2 and SH-SY5Y cells were seeded in a 96-well plate at a

density of 1 × 104 cells/well. Twenty-4 hours later, different

concentrations of TJ-5 (0, 1, 5, 10, 20, and 30 μM) were

added and co-cultured with cells for 24 h. Cell Counting Kit-8

(CCK8, Sigma, Shanghai, China) was used to measure cell

viability. Experiments were conducted according to the

manufacturer’s instructions. After incubation at 37°C for 2 h,

absorbance was measured at 450 nm using a microplate reader

(Synergy 2, BioTek Instruments, United States).

Immunofluorescence staining

As mentioned previously, immunofluorescence staining was

performed on paraffin-embedded brain slices (Ye et al., 2020).

After standard histological procedures, the slices were treated

with the TUNEL (terminal deoxynucleotidyl transferase dUTP

nick end labeling) reaction mixture to detect apoptosis according

to the manufacturer’s protocol (Roche, Germany). Furthermore,

the slices were used for immunofluorescence with rabbit anti-

NeuN antibody (1:300, CST) and rabbit anti-Iba-1 antibody (1:

500, CST). After incubating overnight at 4°C, goat anti-rabbit IgG

(1:1000) secondary antibodies were applied, and the brain slices

were incubated for 2 h at room temperature. Finally, the slices

were washed and labeled with 4′,6-diamidino-2-phenylindole for

10 min at room temperature. Images were captured using a

fluorescence microscope.

For BV-2 cells immunofluorescence staining, the cells were

fixed with 4% paraformaldehyde for 10 min and permeabilized

with 0.5% Triton X-100 for 10 min. After blocking with goat

serum, the cells were sequentially incubated with the primary

antibody, secondary antibody, and Hoechst in sequence. Images
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were captured using a confocal microscope. The fluorescence

intensity was analyzed using ImageJ software.

Quantitative real-time PCR

Total mRNA was extracted from the brain cortex using

TRIzol reagent and reverse-transcribed into cDNA using the

PrimeScript™ RT reagent kit (Takara, Japan), following the

manufacturer’s instructions. RT-qPCR was performed using

SYBR Green Real-time PCR Master Mix (Takara, Japan) with

the Step One System (Life Technologies). The results were

expressed as fold change from the untreated control and

analyzed using the 2−ΔΔCt method. The primers were as

follows (5′–3′): MyD88 forward: TTTATCTGCTACTGCCCC

AACG, reverse: GCGGCGACACCTTTTCTCA; TLR4 forward:

ATGCTGCAACTGATGTTCCTTC, reverse: GATGTTAGA

CCTTTCTTCCTCCC; GAPDH forward: TGTTCCTACCCC

CAATGTGTCC, reverse: GGAGTTGCTGTTGAAGTCGCAG;

TNF-α forward: ATGGCCTCCCTCTCATCAGT, reverse: TGG

TTTGCTACGACGTGGG; IL-6 forward: AGTGGCTAAGGA

CCAAGAC, reverse: ATAACGCACTAGGTTTGCCGA; iNOS

forward: ATTCACAGCTCATCCGGTACG, reverse: GGATCT

TGACCATCAGCTTGC; IL-1β forward: GCACTACAGGCT

CCGAGATGAA, reverse: GTCGTTGCTTGGTTCTCCTTGT.

Isolation of immune cells

After the mice were anesthetized, 0.9% saline was used for

transcardial perfusion. The right brain hemispheres were

homogenized in a 6-well plate using 2 ml Hank’s balanced salt

solution (HBSS, Solarbio) per well. Collagenase IV (1 mg/ml) was

added to remove myelin. The brain homogenate was filtered

through a 70 μm cell strainer and centrifuged at 300 g for 5 min at

4°C. Then, 2 ml of 30% Percoll (Sigma) were added to resuspend

the brain cell precipitate, and the resuspended cells were slowly

added to a 15 ml centrifuge tube containing 3 ml of 70% Percoll.

The intermediate layer cells were analyzed by flow cytometry

after density-gradient centrifugation.

Flow cytometry

Approximately 5 × 105 cells were suspended in 200 μL HBSS,

and anti-mouse CD16/CD32 (5 ng/μL) was used to block Fc

receptor binding. The cells were stained with allophycocyanin-

conjugated CD45 antibody (1 ng/μL), FITC-conjugated CD11b

antibody (1 ng/μL), and phycoerythrin-conjugated Ly6G

antibody (1 ng/μL) and incubated in the dark at 4°C for

30 min. Finally, the cells were washed with HBSS buffer,

resuspended in 200 μL of HBSS, and analyzed using a flow

cytometer (BD FACSCalibur).

Enzyme-linked immunosorbent assay

Enzyme-linked immunosorbent assay (ELISA) kits were used

to detect the levels of TNF-α, IL-1β, and IL-6 in the brain. Brain

tissue was homogenized in 1 ml of phosphate-buffered saline using

a tissue homogenizer. Then, the homogenates were centrifuged at

14,000 g for 10 min at 4 °C. The supernatant was immediately

transferred for measurement following the manufacturer’s

instructions. BV-2 cells were incubated with different

treatments and the supernatants were collected and measured.

Capillary electrophoresis immunoassay
(Simple Western)

Here, SimpleWestern, a novel immunoassay to detect proteins

in the brain, was used, as previously described (Kannan et al., 2018;

Nanki et al., 2018). Briefly, the prepared proteins were diluted to a

concentration of 0.5 mg/ml using a sample preparation kit

(Protein Simple, United States). Then, according to the

manufacturer’s instructions, the prepared reagents were added

to the detection plate sequentially for processing in an automated

capillary electrophoresis system (Simple Western system). The

primary antibodies recognized HMGB1, TLR4, MyD88, NeuN,

P-ERK, P-IκBα, IκBα, NF-κB p65 (CST, 1:50), Histone H3

(ABclonal, 1:50), and GAPDH (ABclonal, 1:1000). Compass for

SW software v4.0.0 (Protein Simple, United States) was used to

quantitatively analyze the signal intensity (area) of the protein.

Detection of drug concentration by liquid
chromatography-mass spectrometry

The mice were intravenously injected with 15 mg/kg TJ-5 at

the time of reperfusion 1 h after MCAO or Sham. The mice were

then anesthetized at 5 min, 10 min, 30 min, 1 h, and 2 h, or 6 h

post-dosing. Blood was collected to prepare serum samples, and

the ipsilateral ischemic hemisphere (IL brain), contralateral non-

ischemic hemisphere (CL brain), heart, and liver samples were

obtained after transcardial perfusion with 0.9% saline. Liquid

chromatography-mass spectrometry (LC-MS) was performed to

determine the concentration of TJ-5 in the samples. The time-

concentration curve, area under the curve (AUC), and

pharmacokinetic (PK) parameters of TJ-5 were analyzed using

the PKslover 2.0 PK software (Zhang et al., 2010). BBB

permeability was evaluated using the brain-to-serum partition

coefficient (Kp), which was calculated as AUCbrain/AUCserum.

Statistical analysis

All experimental data were statistically analyzed using the

professional analysis software GraphPad 8.0. The data obtained
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are expressed as mean ± standard error of the mean values

(SEM). Different groups were compared with a t-test or two-way

ANOVA, as appropriate. p < 0.05 was considered statistically

significant.

Results

TJ-5 improves neurological function and
reduces the infarct volume and neuronal
loss in cerebral ischemia-reperfusion
injury mice

To investigate the therapeutic effects of TJ-5 in cerebral

I/R-induced acute injury, TJ-5 or edaravone was injected

intravenously in the intervention groups at 1 h of ischemia, and

CIRI mice were evaluated after 24 h of reperfusion (Figure 1B).

The results showed that the neurological deficit score of the TJ-5

15 mg/kg group was significantly lower than that of the I/R group

(Figure 1C). The infarct volume was evaluated using TTC staining.

We found that TJ-5 significantly reduced the infarct volume,

especially in the cortex, with an increase in dosage (Figure 1D).

The percentage of infarct volume was 34.24% in the I/R group,

while that in the most effective TJ-5 15 mg/kg group was only

8.47%, a reduction of approximately 80%. Furthermore, compared

with 18.59% in the edaravone group, TJ-5 at 15 mg/kg achieved a

better effect (Figure 1E). Intravenous TJ-5 at 4 h reperfusion still

effectively reduced infarct volume (Supplemental Figure S1). We

used TJ-5 at 15 mg/kg in the I/R + TJ-5 group in subsequent trials

because of its superior effect. Immunofluorescence staining of

neuron-specific nuclear protein (NeuN) in the brain showed that

the number of neurons in the injured hemisphere in the I/R + TJ-5

group significantly increased compared to that in the vehicle group

(Figure 1G). TJ-5 attenuated this decrease in NeuN protein levels

(Figure 1H). Taken together, these data indicate that TJ-5 has

powerful neuroprotective effects and reduces neuronal loss caused

by CIRI.

TJ-5 inhibits apoptosis and alleviates the
excessive inflammatory response in CIRI
mice

To investigate the protective effects of TJ-5 on CIRI-induced

inflammatory responses, TUNEL fluorescence staining was used

to detect apoptosis. The scope of apoptosis in the whole brain and

the apoptotic cells in the ischemic penumbra of the cortex were

significantly reduced by treatment with TJ-5 (Figures 2A, B). The

mRNA expression and protein levels of TNF-α, IL-1β, and IL-6

in the brain were detected by RT-qPCR and ELISA, respectively.

The results showed that I/R injury significantly increased the

expression and production of inflammatory factors in the brain

tissue, whereas TJ-5 reduced the expression of TNF-α, IL-1β, and

IL-6 (Figures 2C, D). These results suggested that TJ-5 reduced

the extent of damage by inhibiting the neuroinflammatory

response and apoptosis.

TJ-5 inhibits activation of microglia and
infiltration of peripheral myeloid cells in
CIRI mice

We further explored howTJ-5 inhibited excessive inflammatory

responses at the cellular level. Microglia in the brain were labeled

with Iba-1, and the results indicated that the number of Iba-1

positive cells in the I/R group increased, while that in the I/R + TJ-5

group significantly decreased (Figure 3A). Flow cytometry results

showed that the proportions of CD11b+CD45hiLy6G+ neutrophils

(PMNs) and CD11b+CD45hiLy6G− mononuclear macrophages

(Mo/MΦ) increased, and the proportion of CD11b+CD45int

inactive microglia decreased in CIRI mice. TJ-5 attenuated this

proportional change and inhibited the activation and infiltration of

inflammatory cells (Figure 3B). Injecting TJ-5 at the time of

reperfusion reduced the number of brain-infiltrating

CD11b+CD45hi myeloid cells and increased the proportion of

inactive microglia (Figures 3C, D). Thus, TJ-5 inhibited both the

infiltration of myeloid cells and activation of microglia to alleviate

neuroinflammation in CIRI mice.

TJ-5 inhibits neuroinflammation via the
MyD88/NF-κB and ERK signaling pathway
in CIRI mice

MyD88/NF-κB and ERK signaling plays a vital role in

neuroinflammation induced by CIRI (Qin et al., 2022), and the

effect of TJ-5 on this pathway in CIRI mice needs to be identified.

The results showed that TJ-5 downregulated the expression of

HMGB1, TLR4, and MyD88 and inhibited the phosphorylation of

ERK in the ischemic hemisphere (Figures 4A–G). Phosphorylation

of inhibitor complex alpha (IκBα) and nuclear translocation ofNF-
κB p65, which lead to the excessive expression of pro-

inflammatory factors, were examined. The results indicated that

phosphorylation of IκBα and nuclear translocation of NF-κB
p65 was reduced by TJ-5 treatment in the ischemic hemisphere

(Figures 4H–K). Therefore, TJ-5 inhibits the MyD88/NF-κB and

ERK signaling pathway to alleviate neuroinflammation.

Blood-brain barrier permeability and
pharmacokinetics of TJ-5

To investigate the blood-brain barrier permeability of TJ-5,

the concentration of TJ-5 in the IL and CL brains was measured

and compared with that in the serum, liver, and heart

(Figure 5A). The concentrations of TJ-5 in each tissue are
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FIGURE 2
Effect of TJ-5 treatment on the neuroinflammatory response and apoptosis in CIRI mice. Micewere injected intravenously with TJ-5 (15 mg/kg)
after 1 h ischemia. (A) Representative TUNEL staining image of whole brain slices (scale bar = 500 μm), white dashed line areas illustrate ischemic
core (medial) and peri lesion (lateral) regions; the range of apoptosis in the brain was reduced with TJ-5. (B) Representative TUNEL staining image of
cortex; the number of apoptotic cells were reducedwith TJ-5 treatment (scale bar = 50 μm). (C) TNF-α, IL-6, IL-1β, and iNOSmRNA expression
levels in the brain were downregulated with TJ-5 treatment. (D) The content of TNF-α, IL-6, and IL-1β in the brain were reducedwith TJ-5 treatment.
All the experiments were repeated three times. Values are mean ± SEM. (*p < 0.05, **p < 0.01).
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FIGURE 3
Effect of TJ-5 treatment on microglia and peripheral infiltrating myeloid cells in CIRI mice. Mice were injected intravenously with TJ-5
(15 mg/kg) after 1 h ischemia. (A) Representative Iba-1 staining image of the cortex (scale bar = 50 μm); the activated microglia were decreased with
TJ-5 treatment. (B) Immune cells were isolated from the ischemic brain hemisphere after 24 h reperfusion and were stained with CD45, CD11b, and
Ly6G. Plots identify CD11b+CD45hiLy6G− Mo/MΦ, CD11b+CD45int microglia and CD11b+CD45hiLy6G+ PMNs. (C) Percentage of brain-infiltrating
CD11b+CD45hi myeloid cells was statistically analyzed. (D) Percentages of PMNs, Mo/MΦ, and microglia in CD11b+CD45+ cells were statistically
analyzed. All the experiments were repeated three times. Values are mean ± SEM. (*p < 0.05, **p < 0.01, ***p < 0.001).
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summarized in Table 1 and the calculated PK parameters are

summarized in Table 2. The time-concentration curves of TJ-5 in

different tissues indicated that TJ-5 was eliminated according to

first-order kinetics and that TJ-5 was rapidly distributed from the

blood to the brain, heart, and liver after intravenous injection

(Figures 5B, C). The TJ-5 concentration ratio of brain tissue to

serum at each time point is shown (Figure 5D). It is well known

that intense neuroinflammation occurring during the acute phase

of cerebral ischemia is associated with BBB breakdown

(Candelario-Jalil et al., 2022). Interestingly, the concentrations

of TJ-5 in the Sham, IL and CL brains were similar, suggesting

that the BBB may have little effect on the diffusion of TJ-5 into

the brain. Thus, TJ-5 has good BBB permeability and can be

quickly distributed in parenchymal organs with a short half-life.

FIGURE 4
TJ-5 downregulates the MyD88/NF-κB and ERK signaling pathway in CIRI mice. (A,B) The mRNA levels of TLR4 and MyD88 in the brain were
detected. (C–G) HMGB1, TLR4, MyD88, and P-ERK protein levels in the brain were assessed and analyzed. (H–K) Cytoplasmic and nuclear proteins
were extracted from the brain to detect the NF-κB p65 protein levels and analyze phosphorylation of IκBα and NF-κB p65 nuclear translocation. All
the experiments were repeated three times. Values are mean ± SEM. (*p < 0.05, **p < 0.01).
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TJ-5 inhibits the activation of LPS- or
OGD/R-stimulated BV-2 cells and
apoptosis of OGD/R-induced SH-SY5Y
cells

The effects of TJ-5 on microglia and neurons were also

evaluated in vitro. The CCK-8 experiment confirmed that TJ-

5 did not affect the viability of BV-2 and SH-SY5Y cells at

concentrations below 20 μM (Figures 6A, B). Observation of cell

morphology under the microscope showed that after 24 h of LPS

stimulation, BV-2 cells became amoeba-like and showed more

protrusions, whereas the cells in the control group were spherical

with a small number of protrusions. The activation of BV-2 cells

was inhibited by TJ-5 intervention (Figure 6C). The levels of

TNF-α and IL-6 in the supernatants of LPS- or OGD/

R-stimulated BV-2 cells were markedly reduced by TJ-5

treatment (Figures 6D, E). In addition, an Annexin V/

propidium iodide flow cytometry assay indicated that TJ-5

significantly reduced apoptosis of OGD/R-induced SH-SY5Y

cells (Figures 6F, G). Meanwhile, ST2825 has the same anti-

FIGURE 5
Pharmacokinetic profile of TJ-5. The concentrations of TJ-5 were analyzed in the serum, Sham brain, IL brain, CL brain, liver, and heart at
specified time points after intravenous injection of TJ-5 at 15 mg/kg. (A) Experimental timeline of injection and detection. (B) The concentration-
time profiles of TJ-5 in the serum and brain. TJ-5 was quickly distributed into the brain after intravenous injection. (C) The concentration-time
profiles of TJ-5with expressed in logarithmic ordinate. Elimination of TJ-5 followed the first-order elimination kinetics. (D)Concentration ratios
of the brain to serum at 5 min, 10 min, 30 min, 1 h, 2 h, and 6 h. IL brain, ipsilateral ischemic hemisphere. CL brain, contralateral non-ischemic
hemisphere.

TABLE 1 Distribution of TJ-5 in tissues during the different time points (ng/ml or ng/g, mean ± SD).

Sample 5 min 10 min 30 min 1 h 2 h 6 h

Serum 1187.80 ± 208.63 979.85 ± 202.81 471.74 ± 151.14 284.90 ± 29.10 79.60 ± 26.93 2.08 ± 1.12

Sham brain 6232.40 ± 435.71 4902.53 ± 53.92 2725.04 ± 256.34 1575.86 ± 468.76 267.68 ± 6.25 18.74 ± 11.04

IL brain 6646.07 ± 590.77 5798.80 ± 29.80 2893.70 ± 611.00 1747.40 ± 163.95 327.29 ± 57.19 11.65 ± 6.43

CL brain 5877.53 ± 989.32 5364.30 ± 749.83 2480.87 ± 985.41 1662.40 ± 117.03 347.65 ± 55.25 10.43 ± 5.69

Heart 5914.10 ± 824.68 4591.93 ± 351.85 4729.27 ± 2061.45 1655.33 ± 335.19 684.13 ± 198.89 51.60 ± 11.87

Liver 7162.10 ± 593.97 5890.47 ± 528.302 4713.00 ± 1130.68 2961.40 ± 1031.41 750.37 ± 249.40 169.90 ± 36.06
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inflammatory effect. These results suggest that TJ-5 has anti-

neuroinflammatory and neuroprotective effects on microglia and

neurons, respectively.

TJ-5 inhibits NF-κB p65 protein nuclear
translocation in BV-2 cells

To further explore the effect of TJ-5 on the nuclear

translocation of NF-κB p65 protein in microglia, NF-κB
p65 protein in BV-2 cells was estimated by

immunofluorescence. First, p65 content in the nucleus was

observed at 6, 8, 12, and 24 h after LPS treatment. The results

showed that p65 nuclear translocation was most obviofter 12 h of

stimulation (Figure 7A). Subsequently, 12 h after stimulation was

selected as the observation time point. The results showed that

TJ-5 significantly prevented LPS-induced p65 nuclear

translocation, which is same as ST2825 (Figures 7B–D).

Therefore, the main mechanism by which TJ-5 inhibits

excessive microglial activation may be the inhibition of NF-κB
p65 nuclear translocation.

Discussion

TJ-5 is a novel MyD88 pharmacological inhibitor. In this

study, we evaluated the neuroprotective effects of TJ-5 in both

in vitro and in vivo models of cerebral ischemia-reperfusion

injury, explored its underlying mechanisms and investigated the

druggability of inhibition of MyD88 in the brain.

Ischemic stroke has become one of the most common causes

of disability and death worldwide (Virani et al., 2021).

Recanalization as soon as possible is the primary treatment

after ischemic stroke, but the ensuing reperfusion injury

aggravates the brain injury and expands the infarct size.

Unfortunately, there is currently a lack of specific treatment

options (Qin et al., 2022). The TLR/MyD88/NF-κB signaling

pathway has been found to be involved in the development of

neuroinflammation injury in CIRI (Mitsios et al., 2006; Chen

et al., 2022). MyD88 is a core transduction protein involved in

this signaling pathway (Kawai and Akira, 2010). Considering that

MyD88 activation may enhance neuroinflammation caused by

ischemic stroke, we hypothesized that TJ-5 might potently inhibit

neuroinflammation to protect against CIRI (Figures 8A, B). In

CIRI mice model, we compared the neuroprotective effects of

edaravone, a medicine currently used clinically for the treatment

of ischemic stroke (Li et al., 2021), and different concentrations of

TJ-5. We found that TJ-5 at 15 mg/kg was more effective, as the

infarction volume was reduced by approximately 80%, achieving

better neuroprotective effects than edaravone. Considering 3–4 h

reperfusion is a clinically relevant therapeutic window in case of

stroke, we performed and found that intravenous TJ-5 at 4 h

reperfusion remained effective in reducing infarct volume.

Meanwhile, TJ-5 reduced apoptosis of OGD/R-induced SH-

TABLE 2 PK parameters of TJ-5 in tissues of mice (mean ± SD).

Sample Pharmacokinetic parameters

Serum AUC0–6 h (ng/ml*h) 919.3 ± 82.24

t1/2(h) 0.38

Sham brain AUC0–6 h (ng/ml*h)a 4579 ± 275.7

t1/2(h) 0.65

Kp 4.98

IL brain AUC0–6 h (ng/ml*h)a 5136 ± 239.3

t1/2(h) 0.41

Kp 5.58

CL brain AUC0–6 h (ng/ml*h)a 4792 ± 352.8

t1/2(h) 0.41

Kp 5.21

Heart AUC0–6 h (ng/ml*h)a 6485 ± 768.9

t1/2(h) 0.67

Liver AUC0–6 h (ng/ml*h)a 8238 ± 852.1

t1/2(h) 0.70

aThe tissue density was assumed to be 1 g/ml. Kp: Brain-serum ratio was calculated by the mean of AUC0–6 h ratios. t1/2: elimination half-life.
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SY5Y cells with no neurotoxicity. Many studies have suggested

that the inflammatory response of the innate immune cell such as

Mo/MΦ, PMN and microglia is essential for CIRI (Petrovic-

Djergovic et al., 2016; Liu et al., 2019). Our findings proved that

TJ-5 reduced the infiltration ratio of peripheral myeloid cells in

the cerebral infarction area, increased the proportion of inactive

microglia, and decreased the expression levels of TNF-α, IL-1β,

and IL-6 in the infarction areas after 24 h of reperfusion,

suggesting that TJ-5 may interrupt the inflammatory cascade

and inhibit excessive neuroinflammation. Furthermore, we

found that TJ-5 caused a reduction in inflammation of LPS-

or OGD/R-stimulated BV-2 cells. These results indicate that TJ-5

has the potential to treat ischemic stroke and other CNS diseases

caused by neuroinflammation.

FIGURE 6
Effect of TJ-5 intervention on LPS or OGD/R-stimulated BV-2 cells and OGD/R-induced SH-SY5Y cells. BV-2 cells were pretreated with TJ-5
for 2 h before LPS or OGD/R stimulation for 24 h. SH-SY5Y cells were exposed toOGD for 4 h and then treated with TJ-5 during reperfusion for 24 h
MyD88 inhibitor ST2825 was used as positive drug. (A) Cell viability of BV-2 cells at 24 h after TJ-5 intervention. (B) Cell viability of SH-SY5Y cells at
24 h after TJ-5 intervention. (C) The morphology of BV-2 cells was observed under the microscope. TJ-5 inhibited the activation of LPS-
stimulated BV-2 cells (original magnification ×200). (D) TNF-α and IL-6 secretion in LPS-stimulated BV-2 cells was inhibited by TJ-5 intervention. (E)
TNF-α and IL-6 secretion in OGD/R-stimulated BV-2 cells was inhibited by TJ-5 intervention. (F,G) Apoptosis of OGD/R-induced SH-SY5Y cells
analyzed by flow cytometry. All the experiments were repeated three times. Values are mean ± SEM. (*p < 0.05, **p < 0.01).
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Mechanistically, we explored NF-κB and ERK signaling

pathway which were relevant to TLR4/MyD88 signaling and

ischemia stroke (Zhang et al., 2021). NF-κB p65 protein binds to

IκB protein and is present in the cytoplasm. IκB kinases (IKKs)

act immediately after TLR4/MyD88 signaling to phosphorylate

IκB and NF-κB p65, which results in the degradation of IκB and

nuclear translocation of NF-κB p65 (Karin and Ben-Neriah,

2000). Reducing NF-κB p65 activity is associated with

reduction in infarct volume after MCAO (Liu et al., 2018).

Our findings indicated that TJ-5 inhibited NF-κB
p65 signaling in the brains of CIRI mice and nuclear

translocation of NF-κB p65 in BV-2 cells. The inhibition of

P-ERK could produce a potential neuroprotective effect in

ischemic stroke (Zhang et al., 2021). Our data suggested TJ-5

treatment showed lower level of P-ERK when compared to

vehicle treatment. HMGB1, one of the major ligands for TLR,

are significantly elevated and closely associated with

neuroinflammation in CIRI (Singh et al., 2016). We found

that TJ-5 reduced the expression of HMGB1, suggesting that

the neuroinflammatory injury was alleviated. The results indicate

that TJ-5 exerts its anti-inflammatory effect through the MyD88/

NF-κB and ERK signaling pathway.

The BBB is an interface that controls the exchange of

substances between the CNS and blood, which makes it

difficult to develop drugs (Banks, 2016). Currently, many

drugs are unable to enter the CNS efficiently through the

BBB, which limits the development of therapies for CNS

diseases (Chiu et al., 2021; Liu et al., 2021). Microglia are

resident macrophages in the brain. The activation of microglia

in the CNS is an important factor contributing to the occurrence

and development of CIRI (Cheng et al., 2019; Shen et al., 2022).

In CIRI mice, activation of endogenous microglia and infiltration

of exogenous immune cells promote a cascade of inflammation in

the brain and increase the scope of injury. Inhibiting microglial

activation is the focus of research on drugs for treating ischemic

stroke (Ye et al., 2019; Wang et al., 2020). In CNS drug discovery,

FIGURE 7
(A) Immunofluorescence was used to determine the optimal observation time point for NF-κB p65 nuclear translocation in LPS-stimulated BV-
2 cells (scale bar = 50 μm). (B) After 12 h of LPS stimulation, immunofluorescence was used to analyze the effect of TJ-5 on NF-κB p65 nuclear
translocation in BV-2 cells (scale bar = 50 μm). (C) The mean fluorescence intensity (MFI) of NF-κB p65 in the nucleus was statistically analyzed. (D)
The distribution diagram of NF-κB p65 in cells was obtained by detecting fluorescence intensity (FI). All the experiments were repeated three
times. Values are mean ± SEM. (***p < 0.001).
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the BBB permeability of drugs is an essential factor, as it

determines whether drugs can directly affect microglia in the

brain. Therefore, the inhibitory effects of TJ-5 on microglial

activation and BBB permeability were examined in the present

study. Pharmacologic evidence demonstrates that TJ-5, a small-

molecule compound, can pass through the BBB and directly

inhibit the activation of microglia. Moreover, TJ-5 has a short

half-life, can only maintain effective concentration for about 6 h

with a single intravenous injection of near toxic dose, suggesting

that continuous low-dose intravenous infusion should be

considered. More PK data with the other dose regimens will

be performed in future clinical trials. The simultaneous

inhibition of peripheral myeloid cells and microglial activation

may be responsible for the excellent efficacy of TJ-5 for abating

the negative effect of CIRI. These results indicate that TJ-5 has

significant clinical application value in the treatment of CIRI and

suggest the druggability of inhibition of MyD88 in the brain.

This study affirms the potency of TJ-5 in treating CIRI, as it

demonstrates a better neuroprotective effect in the early stage of

cerebral I/R. Moreover, we verified that TJ-5 not only acts on

peripheral innate immune cells, but also directly on cells in the

brain, which may be an influential factor contributing to its

exceptional anti-neuroinflammatory and neuroprotective effects.

However, this study had some limitations. The inflammatory

response to CIRI is a “double-edged sword”. An excessive

inflammatory response causes the injury to expand, but the

inflammatory response also promotes the immune cells to

devour necrotic tissue, which can promote tissue repair

(Wyss-Coray and Mucke, 2002; Xue et al., 2021). TJ-5

regulates the neuroinflammatory response in CIRI and is

effective in the acute phase; however, its efficacy in the

chronic phase requires further investigation. One study

showed that a congenital deficit of MyD88 failed to reduce

cerebral infarct size in MyD88 knockout mice, but MyD88-

dependent signaling contributes to the inflammatory

responses induced by cerebral I/R (Ye et al., 2016). Why there

is the difference in efficacy between congenital defects and the

acquired short-term inhibition of MyD88? As the downstream of

MyD88, the different roles of NF-κB activity in the early and late

stages of ischemic stroke may be an explanation (Ridder and

Schwaninger, 2009). One report claims that the anti-apoptotic

properties of NF-κB may indeed have an effect at late stage of

transient cerebral ischemia (Duckworth et al., 2006). Nijboer

et al. (2008) found that inhibition of early NF-κB-activity by

intraperitoneal administration of the NF-κB inhibitor TAT-NBD

at 0/3 h has strong neuroprotection in neonatal hypoxia-

ischemia model, whereas inhibition of both early and late NF-

κB-activity at 0/6/12 h or only late NF-κB activity at 18/21 h

aggravated cerebral damage. They suggest that inhibition of early

NF-κB activity is neuroprotective only when late NF-κB activity

is maintained. Therefore, short-term inhibition of

MyD88 attenuates cerebral damage in ischemic stroke.

Considering the rapid diffusion of the drug and its short half-

life, the selection of the intensity and duration of intervention

with TJ-5 in this study has limitations. Taken together, for aseptic

inflammatory reactions like CIRI, it can be concluded that the

FIGURE 8
Schematic model of the present study. (A) The occurrence of reperfusion injury after vascular recanalization in ischemic stroke significantly
expands the final necrotic area. TJ-5 reduces the final necrotic area by reversing ischemia-reperfusion injury. (B) The activation of microglia and
infiltration of myeloid cells promote neuroinflammation and brain tissue injury after acute cerebral I/R. TJ-5 obstructs the vicious circle of
neuroinflammatory injury by inhibiting MyD88/NF-κB and ERK signaling pathway.
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key to the treatment of CIRI is to balance the regulation of the

immune system and minimize neuron loss. The anti-CIRI effect

of TJ-5 should be evaluated in clinical studies.

Conclusion

In summary, we confirmed that MyD88 inhibitor TJ-5 has an

impressive therapeutic effect during the acute phase of CIRI as an

emergency drug candidate by inhibiting neuroinflammation.

Moreover, we clarified for the first time that the druggability

of MyD88 in the CNS to TJ-5. We found TJ-5 can cross the BBB

to directly inhibit the activation of microglia with no

neurotoxicity. TJ-5 attenuates intense neuroinflammation via

the MyD88/NF-κB and ERK signaling pathway.
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Dobutamine promotes the
clearance of erythrocytes from the
brain to cervical lymph nodes after
subarachnoid hemorrhage in mice
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Background: Erythrocytes and their breakdown products in the subarachnoid space
(SAS) are themain contributors to the pathogenesis of subarachnoid hemorrhage (SAH).
Dobutamine is a potent β1-adrenoreceptor agonist that can increase cardiacoutput, thus
improving blood perfusion and arterial pulsation in the brain. In this study, we
investigated whether the administration of dobutamine promoted the clearance of
red blood cells (RBCs) and their degraded products via meningeal lymphatic vessels
(mLVs), thus alleviating neurological deficits in the early stage post-SAH.

Materials and methods: Experimental SAH was induced by injecting autologous
arterial blood into the prechiasmatic cistern in male C57BL/6 mice. Evans blue was
injected into the cisterna magna, and dobutamine was administered by inserting a
femoral venous catheter. RBCs in the deep cervical lymphatic nodes (dCLNs) were
evaluated by hematoxylin–eosin staining, and the hemoglobin content in dCLNs was
detected by Drabkin’s reagent. The accumulation of RBCs in the dura mater was
examined by immunofluorescence staining, neuronal death was evaluated by Nissl
staining, and apoptotic cell death was evaluated by TUNEL staining. The Morris water
maze test was used to examine the cognitive function of mice after SAH.

Results: RBCs appeared in dCLNs as early as 3 hpost-SAH, and thehemoglobin in dCLNs
peaked at 12 h after SAH. Dobutamine significantly promoted cerebrospinal fluid (CSF)
drainage from the SAS to dCLNs and obviously reduced the RBC residue inmLVs, leading
to a decrease in neuronal death and an improvement in cognitive function after SAH.

Conclusion: Dobutamine administration significantly promoted RBC drainage from
cerebrospinal fluid in the SAS via mLVs into dCLNs, ultimately relieving neuronal
death and improving cognitive function.

KEYWORDS

dobutamine, subarachnoid hemorrhage, cerebrospinal fluid, erythrocytes, cervical
lymphatic nodes
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1 Introduction

Subarachnoid hemorrhage (SAH), which is mainly caused by the
rupture of an intracranial aneurysm, accounts for 9.7% of all types of
strokes (Valery et al., 2021). The highmortality among young adults and
the cognitive impairments among survivors make SAH a tremendous
burden to society (Macdonald and Schweizer, 2017). Blood pours into
the subarachnoid space (SAS) through the ruptured aneurysms after
SAH, and the influx of red blood cells (RBCs) and degraded cell debris
result in early brain injury (within 72 h) and delayed cerebral ischemia
(days to weeks after SAH) (van Gijn et al., 2007).

Louveau and colleagues elaborated on the structural and functional
features of meningeal lymphatics in the duramater (Louveau et al., 2015).
Perisinusal lymphatic vessels express classical molecular hallmarks of
lymphatic endothelial cells (LECs), including lymphatic vessel endothelial
hyaluronan receptor 1 (Lyve-1), the main LEC transcription factor,
prospero homeobox 1 (PROX1), podoplanin, and the vascular
endothelial growth factor receptor 3 (VEGFR3). Macromolecules and
immune cells can drain from the SAS to the deep cervical lymphatic
nodes (dCLNs) via the meningeal lymph flow (Louveau et al., 2015).
Meningeal lymphatic vessels (mLVs) are located within dural folds
around the superior sagittal sinus (SSS), transverse sinus (TS),
petrosquamosal sinus (PSS), and sigmoid sinus (SS) (Figures 1A–C)
(Ahn et al., 2019). The dorsal mLVs run along the SSS and TS, with
smaller diameters and no lymphatic valves, making them
morphologically more similar to the initial lymphatic vessels (Louveau
et al., 2015). The clearance function of mLVs in various diseases has been
explored recently. It was reported that RBCs in the SAS could drain to the
dCLNs in the SAH mouse model, which could be inhibited by the
ablation of mLVs via the VEGFR3 tyrosine kinase inhibitor MAZ51 or
the photodynamic drug Visudyne (Chen et al., 2020). Further studies are
warranted to identify clinically available drugs targeted at mLVs.

Dobutamine is a synthetic catecholamine that functions as an
agonist of the β1 adrenergic receptor. This sympathomimetic agent has

inotropic efficacy that could immediately increase cardiac contractility
and output, thus improving blood perfusion and arterial pulsation in
the brain (Tuttle and Mills, 1975). Cerebral arterial pulsation is one of
the main driving forces of fluid exchange in the brain, which may
accelerate the clearance of deposited metabolic products (Iliff et al.,
2013).

In this study, we explored whether the enhancement of cerebral
arterial pulsatility by dobutamine could expedite the drainage of
accumulated erythrocytes in the SAS after SAH and whether mLVs
play a role in this clearance process. We anticipated that the reinforced
drainage function could alleviate the neurological deficits after SAH.

2 Materials and methods

2.1 Experimental design

Part 1: Mice were randomly divided into sham and SAH groups
(Figure 2A). The mice in the SAH group were executed 3 h, 6 h, 12 h,
24 h, 3 days, and 7 days after SAH. Cerebrospinal fluid (CSF) was
collected before themice were executed to count the RBCs. The dCLNs
and brain tissues were then isolated and collected for
hematoxylin–eosin staining (HE staining).

Part 2: Mice were randomly divided into a control group, Evans
blue group, Evans blue + saline group, and Evans blue + dobutamine
group. Evans blue was diluted using saline to 2.5%, which was injected
into the cisterna magna of mice at a dose of 50 μL, while the same
amount of saline was injected in the control group. The mice were
executed 12 h after the Evans blue injection. The dCLNs were then
isolated and collected to detect the Evans blue concentration.

Part 3: We randomly divided the mice into sham, SAH, SAH +
saline, ligation + SAH, SAH + dobutamine, and ligation + SAH +
dobutamine groups. The ligation procedure was conducted 1 week
before SAH. CSF was collected 12 h after SAH to count the RBCs

FIGURE 1
Diagram showing the location of mLVs. (A)Meningeal lymphatic vessels (mLVs) located around the superior sagittal sinus (SSS), transverse sinus (TS), etc.
(B,C) Vessels were located within dural folds (green) and were adjacent to the subarachnoid space.
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before the mice were executed. The brain tissue was isolated to
perform HE staining, and the dura mater was isolated and
collected for immunofluorescence staining. We then collected

dCLNs for HE staining and evaluation of the hemoglobin content.
Nissl staining, TUNEL staining, and the Morris water maze test were
processed 1 week after SAH.

FIGURE 2
Experimental design of the present study and gross appearances of the SAH model and dCLN drainage of Evans blue and erythrocytes. (A) We first
collected dCLNs from the sham and SAH groups for hematoxylin–eosin staining (HE staining). We then compared the Evans blue concentration of dCLNs
among the control, Evans blue, Evans blue + saline, and Evans blue + dobutamine groups. Finally, cerebrospinal fluid, brain tissue, duramater, and dCLNswere
isolated and collected for different analyses of the sham, SAH, SAH + saline, SAH + dobutamine, ligation + SAH, and ligation + SAH+ dobutamine groups.
(B)Gross appearances of the skull base in the sham group (upper left insert) and SAHmodel (lower left insert). The right panel shows the gross observation of
dCLNs after Evans blue staining (blue arrow) and RBC injection (red arrow).
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2.2 SAH model

In this study, adult male C57BL/6 mice were used (Model Animal
Research Center of Nanjing University, Nanjing, China) to establish the
SAHmodel. All of the procedures involving animals were approved by the
Institutional Animal Care and Use Committee of Jinling Hospital. The
mice were anesthetized with 2% isoflurane in 100% O2 and maintained
with 1% isoflurane. Then, an incisionwasmade to expose the skull. A burr
hole was drilled 4.5 mm anterior to the bregma. Then, a 27-gauge needle
was tilted at 45° to inject approximately 50 μL of autologous arterial blood
from the femoral artery into the prechiasmatic cistern in 30 s using a
syringe pump. The needle was maintained in this position for 3 min to
prevent CSF leakage and blood reflux. The burr hole was sealed with bone
wax, and the incision was sutured immediately. The mice in the sham
group underwent the same procedures as the experimental groups, except
for blood injection.

2.3 Dobutamine administration

A femoral venous catheter was inserted for systemic dobutamine
(40 μg/kg in saline, HY-15746, MCE) administration. The SAHmodel
was established 10 min after dobutamine administration for the first
time. The SAH + saline group was infused with saline, and
dobutamine was treated every 30 min for the next 3 h. Finally, the
mice were executed 12 h after SAH.

2.4 Ligation of dCLNs

The mice were shaved and cleaned with iodine before being
anesthetized with 2% isoflurane in 100% O2 and maintained with
1% isoflurane. Then, a midline incision was made 5 mm superior to
the clavicle. We retracted the sternocleidomastoid muscles to expose
the dCLNs on each side. Subsequently, 10–0 synthetic and non-
absorbable sutures were used to ligate afferent lymphatic vessels on
both sides. The other groups underwent the samemidline incision and
muscle retraction procedures.

2.5 HE staining

HE staining was used to depict the morphological characteristics of
dCLNs and SAS. After dissolving all of the wax away with xylene, the
tissues were passed through concentration gradient changes of alcohol
to remove the xylene before rinsing in water. Subsequently, the tissues
were stained with nuclear hematoxylin stain and then treated with a
weak alkaline solution to convert the hematoxylin to a dark blue color. A
weak acid alcohol was used to remove non-specific background staining
before applying the eosin counterstain. Subsequently, the tissues were
rinsed, dehydrated, cleared, and finally mounted.

2.6 Hemoglobin content detection

We isolated dCLNs 12 h after SAH and then ground dCLNs to the
homogenate. Subsequently, we used Drabkin’s reagent (Sigma,
United States, Cat# D5941) to detect the hemoglobin content of the
dCLN homogenate. The reagent consists of potassium ferricyanide,

potassium cyanide, and potassium dihydrogen phosphate. Potassium
ferricyanide oxidizes hemoglobin to methemoglobin and then to
cyanomethemoglobin, which could be detected at 530 nm.

2.7 Immunofluorescence staining

The dura mater of the mice was isolated and fixed with 4%
paraformaldehyde 12 h after SAH. The meninges were then
incubated with the primary antibodies against Lyve-1 (1:200,
ab14917, Abcam, Cambridge, MA, United States) and RBCs (1:200,
GTX01475, GeneTex, United States) overnight at 4°C. The appropriate
fluorescently labeled donkey anti-rabbit IgG antibody (1:200, A24221,
Abbkine, Wuhan, China) and goat anti-rat IgG antibody (1:200,
A23340, Abbkine, Wuhan, China) were added after washing twice
with phosphate-buffered saline (PBS) containing Tween 20 (10 min
each time). Subsequently, the dura was incubated with 4′,6-diamidino-
2-phenylindole (DAPI) solution (C1005, Beyotime, Nantong, China)
at room temperature for 4 min before sealing with the anti-
fluorescence quenching mounting solution. The fluorescent images
were obtained via confocal microscopy.

2.8 Nissl staining

Nissl staining was performed to detect neuronal death. Basic dyes
were used in Nissl staining to stain basophilic Nissl bodies and cell
nuclei. As neurons are active protein-synthesizing cells and the Nissl
body is an important site of protein synthesis, it was possible to evaluate
neuronal damage via the morphological changes in Nissl bodies. Under
normal conditions, neurons have multiple large Nissl bodies, which
indicates their strong protein synthesis abilities. Regarding neuronal
damage, the number of Nissl bodies decreases before they experience
lysis and may even disappear. Three fields (400X) were chosen
randomly from the temporal lobe, and the average number of
counted surviving neurons from 12 fields was calculated in each mouse.

2.9 Terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling (TUNEL
staining)

TUNEL staining is widely used for detecting apoptotic cell death.
When genomic DNA is broken, the exposed 3′-OH can be catalyzed
by terminal deoxynucleotidyl transferase (TdT) with fluorescein and
biotin-labeled dUTP. First, the deparaffinized brain sections were
incubated with proteinase K (20 μg/mL) for 30 min at 37°C before
washing three times with PBS for 10 min each time. Subsequently, 2%
hydrogen peroxide diluted in PBS was used at room temperature
before washing with PBS again. The brain sections were treated with
TdT buffer for 2 min before incubating in TdT and UTP for 1 h. Then,
the SSC buffer was used to rinse the sections twice for 5 min each time.
Horseradish peroxidase streptavidin was diluted in 0.1 M TRIS
pH 8.5 and 50 mM NaCl, and 4 mM MgC12 with 0.5% Tween
20 was then applied for 60 min at room temperature. Then, the
chromogen, amino-ethyl-carbazole (Vector Laboratories,
Peterborough, United Kingdom), was applied for 10 min before
further rinses. The TUNEL positivity was evaluated by two
observers who were blind to the grouping.
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2.10 Morris water maze test

The Morris water maze test, which includes a navigation training
trial and a probe trial, was used to detect the spatial learning and
memory ability of mice 1 week after SAH. A relatively small hidden
platform was placed in a fixed location. During the place navigation
test, mice were sent from different, random locations around the
perimeter of the tank, and the time they spent navigating a direct path
to the camouflaged platform on the first 4 days was recorded. On the
fifth day, the time spent in the target quadrant and the frequency of
crossing the platform location were documented after the platform
was withdrawn. The Morris water maze test data were collected by
ANY-maze software (TOPSCAN G3; ANY-MAZE 6.0).

2.11 Statistical analysis

All statistical analyses were conducted by GraphPad Prism
9.3.1 software, and the data were presented as the mean ± standard
deviation. We used one-way analysis of variance (ANOVA) to analyze
the statistical differences among three or more groups. Tukey’s post
hoc multiple comparison test was employed when a significant
difference was determined by ANOVA. The unpaired Student’s
t-test was used to compare the two groups. The chi-squared test
was used to compare the survival rate between two different SAH
models. A p-value <0.05 was considered significant.

3 Results

3.1 RBCs in the SAS drained by CSF
accumulated in dCLNs after SAH and the
hemoglobin content peaked at 12 h

The SAH model was successfully established in mice by injecting
autologous blood into the prechiasmatic cistern (Figure 2B). Then, the
dCLNs of mice were isolated at different times (3 h, 6 h, 12 h, 24 h,
3 days, and 7 days) after SAH (Figure 2A). The time-course
accumulation of RBCs in dCLNs was shown by HE staining.
Morphologically intact RBCs or degraded RBC debris was observed
in dCLNs as early as 3 h after SAH and gradually accumulated (Figures
3A–C), which confirmed the RBC drainage function of dCLNs after
SAH. To quantify the drainage of RBCs from SAS to dCLNs, we used
Drabkin’s reagent to detect the hemoglobin content of dCLNs. The
hemoglobin content increased significantly after SAH and peaked at
12 h (p < 0.001, sham vs. 12 h; Figure 3D). Additionally, the RBCs in
CSF were quantified to evaluate the dynamic change of RBC residue in
SAS (Figure 3E).

3.2 Dobutamine promoted the clearance of
Evans blue and RBCs from SAS to dCLNs

The brain and dCLNs were isolated 12 h after Evans blue was
injected into the cisterna magna to confirm the drainage function of
mLVs from CSF. The dCLN slices of the Evans blue group and the
Evans blue + saline group showed obviously deeper staining than the
control group (Figure 4B). The levels of Evans blue in dCLNs were
quantitatively analyzed and showed prominent differences (p < 0.001,

Con vs. EB; p < 0.001, Con vs. EB + saline; Figure 4C). Moreover,
dobutamine significantly accelerated the clearance of Evans blue in
CSF (p < 0.001, Figure 4C).

To further verify the facilitation role of dobutamine in the
clearance of RBCs, dobutamine was systemically administered to
SAH animals. Then, we collected CSF and isolated brain tissues
and dCLNs at 12 h after SAH. The brain slices showed obvious
RBC accumulation in the SAS of the SAH, the SAH + saline, the
ligation + SAH, and the ligation + SAH + dobutamine groups, whereas
the administration of dobutamine ameliorated this situation
(Figure 5A). The CSF RBC counts in different groups
demonstrated similar effects of dobutamine (Figure 5C). As for
dCLN staining, dobutamine administration increased the infused
RBCs in dCLNs (Figure 5B). Hemoglobin contents of the dCLNs
in the SAH and SAH + saline groups were dramatically increased
compared to that of the sham group (p < 0.001), and dobutamine
significantly increased the hemoglobin content of dCLNs (p < 0.001,
Figure 5D).

3.3 Dobutamine promoted the clearance of
RBCs after SAH by meningeal lymphatics

To further determine whether dobutamine could promote the
clearance of RBCs in the SAS by meningeal lymphatics, we isolated the
meninges 12 h after SAH. The anti-Ter-119 antibody was used to label
RBCs, and the anti-Lyve-1 antibody was used to visualize meningeal
lymphatics. Although no RBCs were observed entering or exiting the
meningeal lymphatics in the sham group, the RBCs in the SAH, SAH+
saline, ligation + SAH, and ligation + SAH + dobutamine groups
showed evident accumulation in the meningeal lymphatics (p < 0.001,
sham vs. SAH; p < 0.001, sham vs. SAH + saline; p < 0.001, sham vs. the
ligation + SAH group; p < 0.001, sham vs. the ligation + SAH +
dobutamine group; Figures 6A, B). The administration of dobutamine
significantly attenuated the accumulation of RBCs in meningeal
lymphatics (p < 0.01, SAH + saline vs. SAH + dobutamine;
Figures 6A, B).

3.4 Dobutamine alleviated neuronal damage
and improved cognitive function after SAH

Nissl staining was performed to assess the extent of neuronal
damage 1 week after SAH. Neurons in the SAH, SAH + saline, ligation
+ SAH, and ligation + SAH + dobutamine groups showed clearly
shrunken cell bodies and condensed nuclei, whereas the number of
surviving neurons was significantly declined, with the highest decline
in the ligation + SAH group (Figures 7A, B). Additionally, the
administration of dobutamine remarkably alleviated neuronal
damage after SAH (Figures 7A, B).

TUNEL staining was conducted to evaluate the apoptotic cell
death 1 week after SAH. The broken genomic DNA exposed 3′-OH,
which was catalyzed by TdT with fluorescein and biotin-labeled
dUTP. The fluorescence intensity in the ligation + SAH group was
the strongest, whereas that of the SAH and SAH + saline groups also
increased significantly compared to that of the sham group
(Supplementary Figure S1A, B). Comparatively, the SAH +
dobutamine group showed greatly alleviated cell death
(Supplementary Figure S1A, B).
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To measure the extent of cognitive function impairment, mice
from different groups underwent theMorris water maze test. The SAH
+ dobutamine group showed a significant decrease in escape latency
compared to the SAH, SAH + saline, ligation + SAH, and ligation +
SAH + dobutamine groups from days 2–4 (p = 0.0141, day 1; p =
0.0071, day 2; p = 0.0216, day 3; Figure 7D). Additionally, mice in the
SAH + dobutamine group tended to cross the platform more
frequently (p = 0.0401) and spend more time in the target
quadrant (p = 0.0276) after the administration of dobutamine
compared to those in the SAH + saline group (p < 0.01) (Figure 7E).

4 Discussion

SAH, as a type of severe life-threatening stroke, affects a younger
productive life than other subtypes of strokes. Even if the patient
survives, the neurological deficits result in a huge decrease in the
patient’s quality of life (Lawton and Vates, 2017). SAH resulting from
the rupture of an intracranial aneurysm accounts for approximately
80% of all types of SAH (Valery et al., 2021). The ruptured aneurysm
ejects RBCs into SAS, and then hemoglobin and its breakdown
products, which are directly neurotoxic and can trigger the release
of inflammation cytokines, which may contribute to the pathogenesis
of SAH, eventually causing neurological deficit (Lucke-Wold et al.,
2016). The concentrations of hemoglobin and its breakdown products,
such as heme and iron, in CSF are markedly increased after SAH
(Bulters et al., 2018). Hence, we attached great importance to

precipitating the clearance of RBCs and their degraded products to
alleviate neuronal damage in the early stage post-SAH.

Blood scavenging pathways in the central nervous system (CNS)
include erythrophagocytosis, haptoglobin binding, hemopexin
binding, and heme oxygenase (Bulters et al., 2018). Nevertheless,
these pathways could be easily saturated in the CNS, having many
specialized anatomical structures, such as the blood–brain barrier
(BBB), which limits solute drainage (Andersen et al., 2017). Therefore,
promoting the clearance of RBCs and breakdown products after SAH
is a promising therapy when classic blood scavenging pathways are
overwhelmed.

As the CNS lacks a classical lymphatic system, it was long
considered to undergo immune privilege (Ransohoff and
Engelhardt, 2012). The discovery of mLVs confirmed that the CNS
undergoes constant immune surveillance within the dura mater
(Aspelund et al., 2015). Lymph flow in the dura appears to start
from both eyes and track around the cribriform plate above the
olfactory bulb (Louveau et al., 2015). CSF in the SAS exchanged
with the interstitial fluid via the lymphatic system could be absorbed
by mLVs and then transported to deep dCLNs via the foramina at the
skull base (Aspelund et al., 2015).

Exogenous tracers and immune cells have been demonstrated to
be drained from the CSF by mLVs into the peripheral circulation
(Louveau et al., 2015; Da Mesquita et al., 2018a). Meningeal lymphatic
drainage has also been confirmed to play a key role in the
accumulation of β-amyloid16 (Da Mesquita et al., 2018b; Da
Mesquita et al., 2021). The diameters of mLVs were shown to

FIGURE 3
Time-course accumulation of RBCs in dCLNs after SAH. (A)Gross appearance of dCLNs after SAH at different times. (B)HE staining of dCLNs after SAH at
different times. The erythrocyte accumulation in dCLNs obviously increased 12 h after SAH. (C)Quantitative analysis of the RBC count in deep cervical lymph
nodes at different times (n = 6mice, **p < 0.01, and ***p < 0.001). (D)Hemoglobin content analysis of dCLNs after SAH at different times. Data are presented
as the mean ± SD (n = 6mice, *p < 0.05, **p < 0.01, and ***p < 0.001). (E)Quantitative analysis of the RBC count in cerebrospinal fluid at different times
(n = 6 mice and ***p < 0.001).
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increase 1 h after brain hemorrhage, indicating activation of blood
component drainage and clearance via meningeal lymphatics
(Semyachkina-Glushkovskaya et al., 2020). Chen et al. (2020)
demonstrated the drainage process from CSF to dCLNs after SAH,
and the ablation of mLVs obviously inhibited the drainage of RBCs.
Compared to other types of hemorrhagic strokes, RBCs accumulate in
the SAS after SAH, and the anatomical characteristics allow them easy
access to mLVs in the dura before subsequent drainage into dCLNs. In
this study, we confirmed the drainage function of mLVs to dCLNs by
injecting Evans blue and autologous blood into SAS. The time-course
accumulation of RBCs was shown byHE staining of dCLNs, combined
with the quantification of the RBC count in CSF and the content of
hemoglobin in CLNs (Figures 3A–E). We chose 12 h as the execution
and tissue harvest time because the changes in the hemoglobin content
of dCLNs were most evident at that time (Figures 3C–E).

On this basis, our further study focused on the β1-adrenoreceptor
agonist dobutamine, which is widely used as a potent positive
inotropic agonist due to its rapid action and short half-time (Levy
et al., 1999). Dobutamine could consistently increase heart output,
which was associated with the heart rate and the volume of blood
ejected with each beat by targeting cardiac β1 receptors (Annane et al.,

2018; King and Lowery, 2022). The blood perfusion in the brain is
higher than that in other peripheral vital organs to guarantee
neurotrophic effects (Sweeney et al., 2019). Additionally, the
vascular system in the adult brain includes more than 600 km of
blood vessels, making it the anatomic basis of exerting substantial
forces on intracranial structures surrounding the vessels (Rasmussen
et al., 2021). All the aforementioned phenomena have made
cardiovascular dynamics one of the major driving forces of
pumping CSF exchange and ensure that the brain parenchyma can
easily access the necessary nutrients and drain solutes in a timely
manner.

In this study, we explored the acceleration function of dobutamine
in brain fluid exchange. We observed an obvious promoting effect of
dobutamine on Evans blue clearance. The dobutamine-treated group
showed a significantly increased Evans blue concentration in dCLNs
(Figures 4A–C), which indicated that there was relatively less residual
dye in the brain.

Herein, we used the prechiasmatic cistern injection model of
SAH rather than the endovascular perforation model to control the
blood volume injected into the prechiasmatic cistern. Hence, we
could compare the RBC drainage without the bias of the amount of

FIGURE 4
Dobutamine promoted the drainage of Evans blue from SAS to dCLNs. (A) Gross appearance of dCLNs (upper) and the skull base views of the brains
(lower) in the control, Evan blue, Evans blue + saline, and Evans blue + dobutamine groups. (B) dCLN sections after Evans blue injection. (C) Quantitative
analysis of the concentration of Evans blue in dCLNs. Data are presented as the mean ± SD (n = 6 mice and **p < 0.01)
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blood ejected into SAS. Given that dobutamine can increase blood
pressure as a β1-adrenoreceptor agonist, we conducted the filament
perforation SAH model and the prechiasmatic cistern injection SAH
models before dobutamine administration to compare the mortality
caused by increased blood pressure (Supplementary Table S1). The
dobutamine-treated SAH animals appeared to have less RBC residue
in the SAS (Figure 5A) and more RBC accumulation in dCLNs

(Figure 5B). The quantitative analysis of RBC counts and the
hemoglobin content showed consistent results (Figures 5C, D).
We used an anti-Lyve-1 antibody targeting lymphatic endothelial
cells to visualize the morphology of meningeal lymphatics and an
anti-Ter-119 antibody, a lineage marker for erythroid cells from
early proerythroblast to mature RBC stages, to verify the RBC
drainage function of mLVs. We observed an apparently decreased

FIGURE 5
Dobutamine promoted the drainage of RBCs from SAS to dCLNs. (A) HE staining of RBC accumulation in the SAS in the sham, SAH, SAH + saline, SAH +
dobutamine, ligation + SAH, and ligation + SAH + dobutamine groups. (B) HE staining of dCLNs showed decreased RBC accumulation in dCLNs after
dobutamine administration. (C) Quantitative analysis of erythrocyte count in CSF. Data are presented as the mean ± SD (n = 6 mice, **p < 0.01, and ***p <
0.001). (D) Hemoglobin content of dCLNs after dobutamine administration was detected. Data are presented as the mean ± SD (n = 6 mice and
**p < 0.01).

FIGURE 6
Dobutamine promoted the drainage of RBCs from the SAS to dCLNs via mLVs. (A) Representative immunofluorescence staining of RBCs and mLVs in
different groups. (B)Quantitative analysis of the number of lymphatic erythrocytes per field in mLVs. Data are presented as the mean ± SD (n = 6 mice, **p <
0.01, and ***p < 0.001).
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FIGURE 7
Dobutamine alleviated neuronal damage and improved cognitive function after SAH. (A) Representative Nissl staining of the dobutamine-treated SAH
model. (B)Quantitative analysis of the morphologically normal neuron count. Data are presented as the mean ± SD (n = 3 mice, *p < 0.05, and ***p < 0.001).
(C) Representative swimming tracks of mice in the Morris water maze test. The green point indicates the starting point, and the blue point indicates the end
point. The small circle in the lower right quadrant shows the hidden platform. (D) Escape latencies in the first 4 days were recorded. Data are presented as
the mean ± SD (n = 4 mice, ***p < 0.001 when the SAH + saline group was compared to the sham group, #p < 0.05 when the SAH + dobutamine group was
compared to the SAH + saline group, ##p < 0.01 when the SAH + dobutamine group was compared to the SAH + saline group, and $$$ p < 0.001 when the
SAH groupwas compared to the ligation + SAH group). (E) Then, the time spent in the target quadrant was analyzed. Data are presented as themean ± SD (n =
4 mice, *p < 0.05, and **p < 0.01). (F) Frequency of mice platform crossing was recorded (n = 4 mice and *p < 0.05).
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RBC count in mLVs in the dobutamine-treated group, which
suggested that the administration of dobutamine reinforced the
brain fluid exchange, thus promoting RBC clearance from the
CSF to dCLNs via mLVs (Figures 6A, B). Nissl and TUNEL
staining also confirmed that dobutamine treatment could reduce
neuronal damage (Figures 7A, B; Supplementary Figure S1A, B).
This was consistent with the Morris water maze test results, which
demonstrated that the impaired learning and memory ability post-
SAH were obviously attenuated after dobutamine treatment
(Figures 7D–F).

Systemic dobutamine administration has been confirmed to
facilitate the paravascular influx of intracisternal injection of
subarachnoid CSF tracers (confirm, which further confirmed the
role of dobutamine in enhancing brain fluid exchange). The
lymphatic system was found to serve a lymphatic role in clearing
the extracellular metabolites of the brain parenchyma (Iliff et al., 2012;
Rangroo Thrane et al., 2013). The lymphatic system is a low-resistance
peri-arterial fluid flow pathway, which can be driven by the cardiac
pulse (Mestre et al., 2018). Paravascular influx promoted by systemic
dobutamine administration suggests that the cardiovascular pulse
plays a key role in pumping the supply of fresh CSF to the
lymphatic system (Mestre et al., 2018; Hablitz et al., 2020).
Dobutamine administration functioned in CSF perfusion in the
lymphatic system and the subsequent drainage to dCLNs, which
might assist with further understanding the relationship between
the lymphatic system and mLVs. Lymphatic inhibition was
observed after mLV ablation via the photodynamic drug
verteporfin (Aspelund et al., 2015; Louveau et al., 2015; Ahn et al.,
2019; Hauglund et al., 2020). Lymphatic efflux has also been confirmed
to present around the TS and straight sinus (Iliff et al., 2012; Rangroo
Thrane et al., 2013; Iliff et al., 2014). These findings suggest that the
lymphatic function may be directly linked to mLVs, or it might serve
as a sink for the perivenous efflux, draining CSF, and extracellular fluid
to dCLNs (Hauglund et al., 2020; Ringstad and Eide, 2020). However,
the specific anatomical connections between the lymphatic system and
mLVs were not fully demonstrated due to the current limitations to
the experimental technique, which should be explored in the future.
The clearance-promoting function of dobutamine could not only be
achieved by accelerating meningeal lymph flow but also enhances the
brain fluid exchange between CSF and interstitial fluid via the
glymphatic system, thus providing a possible therapy for other
types of hemorrhagic strokes, such as intracerebral hemorrhage.

In summary, dobutamine administration provides a promising
treatment for the early clearance of RBCs and its breakdown products,
such as hemoglobin, after SAH, which suggests that the changes in the
arterial pulsatility contribute to alleviating long-term complications,
such as cognitive impairment post-SAH.
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The primary mechanism for neuron death after an ischemic stroke is excitotoxic

injury. Excessive depolarization leads to NMDA-mediated calcium entry to the

neuron and, subsequently, cellular death. Therefore, the inhibition of the NMDA

channel has been proposed as a neuroprotective measure in ischemic stroke.

The high morbimortality associated with stroke warrants new therapies that can

improve the functional prognosis of patients. Memantine is a non-competitive NMDA

receptor antagonist which has gained attention as a potential drug for ischemic

stroke. Here we analyze the available preclinical and clinical evidence concerning the

use of memantine following an ischemic stroke. Preclinical evidence shows inhibition

of the excitotoxic cascade, as well as improved outcomes in terms of motor and

sensory function with the use of memantine. The available clinical trials of high-dose

memantine in patients poststroke have found that it can improve patients’ NIHSS and

Barthel index and help patients with poststroke aphasia and intracranial hemorrhage.

These results suggest that memantine has a clinically relevant neuroprotective effect;

however, small sample sizes and other study shortcomings limit the impact of these

findings. Even so, current studies show promising results that should serve as a basis

to promote future research to conclusively determine if memantine does improve

the outcomes of patients’ post-ischemic stroke. We anticipate that future trials will

fill current gaps in knowledge, and these latter results will broaden the therapeutic

arsenal for clinicians looking to improve the prognosis of patients poststroke.

KEYWORDS

memantine, acute stroke, ischemia-reperfusion, NMDA, dementia, neuroprotection

1. Introduction

Acute stroke is the acute onset of focal neurological findings in a vascular territory due to
underlying cerebrovascular disease (Katan and Luft, 2018). Acute stroke remains a significant
cause of morbidity and mortality worldwide, currently the second leading cause of death
worldwide, accounting for 6–7 million deaths in 2019 (Katan and Luft, 2018; Feigin et al., 2021).
Stroke can be classified etiologically into ischemic stroke, which accounts for 62 percent of
stroke cases; intracerebral hemorrhage, representing 28 percent; and subarachnoid hemorrhage,
representing 10 percent of all global incident cases of stroke (Krishnamurthi et al., 2013; Feigin
et al., 2021). Even though both ischemic and hemorrhagic are highly prevalent, ischemic stroke
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remains far more common, representing up to 87 percent of stroke
cases in the U.S. (Roger et al., 2011). The most common consequence
of a stroke is neurologic deficits. Stroke is a leading cause of
chronic disability worldwide, with up to 30% of stroke survivors
becoming permanently disabled. The most common disabilities
are hemiparesis, difficulty walking, aphasia, and depression (Roger
et al., 2011). Without medical intervention, it is estimated that
62% of stroke patients become dependent or die after 6 months
(Heller et al., 2000). Current best medical therapy results in
improved functionality, decreased recurrence, complications, and
mortality (Phipps and Cronin, 2020). In the last few decades,
stroke mortality has been consistently decreasing. According to the
CDC, from the year 2000 to 2015, the annual stroke death rate
decreased by 47.56% (Centers for Disease Control and Prevention
NC for HS, 2016), while the overall burden of disease in that
same period, measured by the World Health Organization in
Disability Adjusted Life Years (DALYs), just decreased 15.95%
(World Health Organization, 2022). An important cause of reduction
in morbimortality of stroke has been the advancement of medical
therapies available, that while having had a significant benefit on
mortality, also result in patients living for longer with disabilities,
which is reflected in the minor change in DALYs relative to mortality.
The data further emphasizes the drastic consequences of stroke-
related disabilities not only in the quality of lives of patients but
also in the burden of their caregivers. Hence the importance of
striving to keep improving the overall management of patients with
stroke.

The gold standard for reduction of mortality and morbidity in
ischemic stroke, the most common cause of stroke, is reperfusion
therapy, either through thrombolysis or thrombectomy, and despite
their benefits, in actual practice, only around 1–3% of stroke patients
receive reperfusion therapy (Fisher et al., 2005), and of those who
receive it, a majority are still left with disabling neurologic deficits
(Grefkes and Fink, 2020). Despite the significant advances made in
the treatment of acute stroke over the years, the available therapeutic
options for stroke patients are minimal, further emphasizing the
need for more research, focusing not only on the acute treatment
of stroke but also exploring the recovery options of patients after
suffering the acute event. It is crucial to comprehensively analyze any
potential therapeutic measure in an unbiased manner to determine
potential benefits in the prognosis and functionality of stroke
patients. The current search for therapies for ischemic stroke has
been based on modifying the natural timeline of events following a
stroke. This review aims to examine the currently available evidence
supporting the use of one of these potential therapies in ischemic
stroke, the drug memantine, presenting evidence supporting its
utility and its setbacks. There is solid preclinical evidence supporting
the use of memantine for ischemic stroke, yet clinical evidence
supporting this drug has been lacking (Seyedsaadat and Kallmes,
2018). In the last few years, there has been a growing amount
of evidence supporting the use of memantine in the setting of
ischemic stroke, which will be analyzed and presented throughout
this review.

2. Current stroke treatment

The reduction of mortality in stroke has been partly thanks to the
control of risk factors known to increase the risk of death in stroke.

The control of isolated systolic hypertension by antihypertensive
therapy has been shown in clinical trials to be an essential measure
associated with reductions in risk, incidence, and mortality of
stroke (Lackland et al., 2014). Atrial fibrillation is also a well-
documented risk factor for stroke and systemic embolism; warfarin
and oral anticoagulant, including the non-vitamin K antagonist oral
anticoagulants (NOAC) as factor Xa inhibitors and direct thrombin
inhibitors, are all effective in preventing atrial fibrillation-related
stroke; NOAC has been shown to correlate with a significantly
lower risk of intracranial hemorrhage than vitamin K antagonist in
patients with atrial fibrillation without prior intracranial hemorrhage
(Liu et al., 2022). Otherwise, observational studies demonstrated
that anticoagulation with vitamin K antagonists correlated with
a lower rate of ischemic stroke and no significantly increased
intracranial hemorrhage recurrence compared with antiplatelet
agents or no antithrombotic medication (Korompoki et al., 2017).
The most common side effects caused by the current standard
of care are bleeding complications, even more so with vitamin
K antagonists than with NOACs (Tsai et al., 2020). Current
lines of treatment are based on managing the vascular factors
that underlie ischemic stroke. However, there are currently no
therapies that act upon the cellular mechanism of neuron death
behind ischemic neurotoxicity (Grefkes and Fink, 2020; Matei et al.,
2021).

3. Role of NMDA in neuron death in
ischemic stroke

The current understanding of the cause of neuron death in
stroke is due to an excessive excitatory transmission in the setting of
ischemia, and one of the main drivers of these events is excitatory
cation channels. The NMDA (N-methyl-D-aspartate) ionotropic
receptor is a major mediator for excitatory transmission in our
brain (Rezvani, 2006). It is expressed in 80% of cortical neurons
and is involved in many physiological processes, such as memory
formation and synaptic long term-potentiation (Conti, 1997). The
NMDA receptor can induce metabolic and transcriptional changes in
neurons by regulating calcium entry following an excitatory stimulus
(Sossa et al., 2006). The NMDA channel becomes permeable to
calcium ions when a neuronal depolarization is coupled to glutamate
binding in its synapse. The latter phenomenon allows neurons to have
a graded response to stimulus, with an initial depolarization mediated
by other glutamatergic receptors, such as AMPA. When a neuron
is depolarized enough, the NMDA receptor allows for metabotropic
changes in a neuron mediated by increased calcium permeability
(Kandel et al., 2014).

This receptor can also become pathologically hyperactive when
an increased extracellular accumulation of glutamate occurs in
ischemic conditions (Zhou et al., 2013). The increased glutamate
release, coupled with an inability to repolarize neurons, results in an
excessive calcium entry through the hyperactive NMDA channel. The
high intracellular calcium concentration results in the activation of
various pathways, which results in neuronal death. In vitro studies
have identified that it is mainly through the NMDA channel that
calcium enters the neuron, increases reactive oxygen species (ROS)
production, increases mitochondrial membrane permeability, and
induces neuron death (Lai et al., 2014). The excessive glutamate
release and the increased calcium influx are the main drivers of
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excitotoxicity, which is thought to be the primary mechanism of
neuron death in the early stages of ischemic stroke (Zhou et al., 2013).

4. Pathophysiology of ischemic stroke

Understanding the events that follow an ischemic stroke allows
us to make sense of the current therapeutic endeavors to treat stroke
patients. The occlusion of a cerebral vessel can be of embolic or
thrombotic origin. In both cases, the resulting decrease in blood
flow will cause dysfunction of normal neuronal activity, followed
by ischemic injury and irreversible cell death (Moskowitz et al.,
2010). The neurons most proximal to the occluded vessel will die
most rapidly, thus forming an ischemic core. At the same time,
most distal to the occlusion, there will be an area of electrically and
functionally stunned neurons, called the penumbral zone (Şekerdağ
et al., 2018). These neurons can follow one of two paths: recover their
function through perfusion restoration, or die if the ischemia persists
(Moskowitz et al., 2010).

In neurons, the initial decrease in oxygen causes a reduction in
ATP concentration and hence a dysfunction of the Na, K-ATPase
(Moskowitz et al., 2010). The transmembrane electrical imbalance
results in neuronal depolarization, which subsequently impairs the
neuronal capacity to transmit action potentials (Campbell et al.,
2019). This causes a sizeable excitatory neurotransmitter release
(mainly glutamate) in the depolarized ischemic core, which causes
a wave of self-propagating electrical activity through the areas
surrounding the infarction zone (Moskowitz et al., 2010). The release
of glutamate, coupled with neuronal depolarization, results in the
opening of AMPA and NMDA cation channels, further worsening
the electrolyte imbalance and resulting in excitotoxic cell injury
(Pál et al., 2020). The unregulated entry of calcium through the
NMDA receptor activates intracellular proteases, endonucleases, and
lipases, among other enzymes that trigger apoptotic pathways and
result in cell death (Pál et al., 2020). This excitotoxic pathway
is the primary mechanism for cell death in the early stages of
stroke (Zhou et al., 2013). Ischemia by itself also causes an
increased free radical production, which results in cellular necrosis
and a disruption of the blood–brain barrier in the ischemic core
(Moskowitz et al., 2010). The neurons in the penumbra, which have
not undergone cell death, but have ceased electrical activity due to
the decreased blood flow, will remain at high risk for irreversible
injury (Moskowitz et al., 2010). These neurons initially survived
thanks to collateral blood flow, which allowed cells to maintain
more than 20 percent of baseline perfusion. Still, the continued
hypoperfusion and the subsequent neuroinflammatory response can
further hinder their viability (Moskowitz et al., 2010; Campbell et al.,
2019).

Microglial activation, which occurs the first hours following
ischemia, will create a proinflammatory environment by releasing
TNFα and IL1β (Moskowitz et al., 2010; Jayaraj et al., 2019).
Other inflammatory cells, such as neutrophils, monocytes, and IL-
17-producing lymphocytes, will also migrate and promote debris
cleanup (Moskowitz et al., 2010; Jayaraj et al., 2019). In the first
48–96 h after ischemia, astrocytes undergo reactive astrogliosis,
becoming hypertrophic and creating a glial scar (Campbell
et al., 2019). The coupling of the ongoing neuroinflammatory
response, and the antiproliferative effect of reactive astrocytes,
will induce the neurons in the penumbral zone to undergo

apoptosis and autophagy (Şekerdağ et al., 2018), which will be
most pronounced at the 3rd-day day post-ischemia (Angelo et al.,
2009). The viability of the penumbral neurons will depend on
their environment; in the days following a stroke, angiogenesis
will take part in increasing the perfusion of the peri-infarct
zone (Adamczak and Hoehn, 2015), and at the same time, there
will be a sizeable synaptic rewiring, which will be vital to the
process of stroke recovery (Hara, 2015). Current therapies for
acute stroke aim to increase the survivability and functionality
of the peri-infarct neurons; through reperfusion or experimental
methods, such as attenuation of the neuroinflammatory response;
and a blockade of proapoptotic second messengers (Liu et al.,
2010).

5. Blockage of NMDAR as a
neuroprotective mechanism

The inhibition of the main pathway of neuronal damage is
an attractive target for stroke treatment, but many inhibitors of
the excitotoxic cascade have not been successful in clinical trials.
Following the occlusion of a vessel, the ischemic changes in brain
tissue depend on the degree of hypoxia (Sodaei and Shahmaei, 2020).
The site which suffers the most significant decrease in blood flow is
the ischemic core, where neurons rapidly undergo cell death (Phan
et al., 2002). While in the penumbra, the reduction in blood flow
has caused the complete cessation of electrical activity but has not
induced the morphological changes of cell death (Phan et al., 2002).
The neurons in the penumbral zone will undergo excitotoxic neuron
death in the following 4–24 h unless perfusion improves (Li and
Wang, 2016; Fifield and Vanderluit, 2020). Despite the attractive
idea of inhibiting the excitotoxic cascade through the blockade
of the NMDA receptor, there have previously been many clinical
trials with NMDAR blockers that have failed to show improvement
in the morbidity or mortality of stroke patients. NMDA channel
blockers have been demonstrated to be neuroprotective in preclinical
models of ischemic stroke. However, these results have not been
able to be replicated in a clinical setting (Lai et al., 2014). The
reasons for the unsuccessful clinical transition of these NMDAR
antagonists are unclear. However, proposed reasons include, but are
not limited to, inappropriate dosage for neuroprotection, intolerable
side effects, administration out of their neuroprotective window,
poor experimental design, and variable patient populations, among
others (Lai et al., 2014). The pharmacodynamic differences between
NMDAR antagonists are partly responsible for the varying results in
clinical effectiveness, highlighting the importance of both efficacy and
tolerability.

6. Memantine

Memantine (3,5-dimethyltricyclo[3.3.1.13,7]decan-1amine or
3,5-dimethyladamantan-1-amine) is a primary aliphatic amine. It
is a member of the adamantanes, in the same class as amantadine
(Lee et al., 2016). Memantine is an N-methyl-D-aspartate (NMDA)
receptor antagonist. The FDA approved memantine in 2003 for its
use in moderate to severe Alzheimer’s disease. Continuous activation
of the NMDA receptors in the central nervous system caused by
glutamate is thought to be partially responsible for the symptoms of
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Alzheimer’s disease. The pharmacological effect of memantine occurs
via its activity as a non-competitive (open-channel) rapid off-rate
NMDA receptor antagonist, which prevents the action of glutamate
on its receptor. Memantine preferentially binds hyperactive NMDA
receptors without disrupting the normally functioning NMDA
cation channels (Chen and Lipton, 2006). This property allows it to
act mainly in pathologically depolarized brain regions that inhibit
calcium influx into cells, normally caused by chronic NMDA receptor
activation by glutamate. Despite these antagonist effects, memantine
has not been proven to prevent or delay neurodegeneration in
patients diagnosed with Alzheimer’s (Robinson et al., 2006). Due to
the unique kinetics of memantine, it has excellent clinical tolerability,
in contrast to other high-affinity NMDA channel blockers (Chen and
Lipton, 2006).

The interest in memantine for vascular diseases follows many
years of its use for dementia. Memantine has been shown to improve
behavioral disturbances (decreased aggression and liability), delays
cognitive decline, and improve overall mood when given at a dose
of 20 mg a day as monotherapy, or alongside a Cholinesterase
Inhibitor (rivastigmine, galantamine, or donepezil), in patients with
moderate to severe Alzheimer’s disease (Wilcock et al., 2008; Kishi
et al., 2017; McShane et al., 2019). Adverse effects are rare, with
a low rate of dizziness and headaches. Despite this, there are
no differences between rates of treatment discontinuation between
memantine and placebo groups (Kishi et al., 2017; McShane et al.,
2019). There is a lack of evidence to support the use of memantine
for mild Alzheimer’s disease, with reviews showing that it provides
no benefits in this group of patients (Schneider et al., 2011).
The mechanism through which memantine improves symptoms in
dementia is not fully understood, with current evidence supporting
that NMDA blockade decreases the progressive death of cholinergic
neurons. Through the reduction of oxidative stress, there is a
decrease in the expression of amyloid precursor protein and tau
proteins (Rogawski and Wenk, 2003; Dominguez et al., 2011).
Evidence supports the use of memantine in other neurodegenerative
diseases, such as vascular dementia, in which the NMDA blockade
in the setting of chronic cerebrovascular disease improves cognitive
function. The neuroprotective effect of memantine in the setting
of ischemia encouraged research in other vascular diseases, such
as stroke.

Memantine at high doses can reduce neuronal synaptic plasticity,
which is involved in learning and memory processes. At lower
concentrations, typically used in the clinical setting, memantine can
enhance neuronal synaptic plasticity in the brain, improve memory,
and act as a neuroprotectant against the destruction of neurons
caused by excitatory neurotransmitters (Rogawski and Wenk, 2003).
Memantine has a minimal activity for voltage-dependent K+,
Ca2+, and Na+ channels, benzodiazepines, dopamine, adrenergic,
histamine, GABA, and glycine receptors. This drug has shown
antagonist activity at the serotonin 5HT3 receptors. Memantine
does not affect the reversible acetylcholinesterase inhibition normally
caused by tacrine, galantamine, or donepezil (Kishi et al., 2017).

Memantine has a bioavailability close to 100%, reaching
Cmax within 3–8 h and a half-life between 60 and 70 h.
Memantine and its metabolites are mainly excreted via the kidneys,
contributing to tubular secretion. About 80% of the circulating
memantine dose is present in humans as the parent compound.
Memantine undergoes hydroxylation and oxidation, but CYP does
not catalyze these reactions, hence a low risk for drug interactions
(Noetzli and Eap, 2013).

7. Preclinical evidence of
neuroprotection by memantine

Preclinical studies have shown that memantine post-stroke
can decrease infarction size, increase peri-ischemic vascularity,
inhibit neuronal apoptosis in the penumbral zone, decrease brain
edema formation, and improve post-ischemic neurological function
(Figure 1; Görgülü et al., 2000; Culmsee et al., 2004; Chen
et al., 2017). Memantine has been proven to provide post-ischemic
neuroprotection via multiple mechanisms, including inhibition
of apoptosis (Tuo et al., 2021), NMDA inhibition mediated
excitotoxicity (Wu and Tymianski, 2018), preserving intracellular
ATP stores (Tuo et al., 2021), and increasing tissue concentration of
neuron-specific growth factors (Wang et al., 2017). The magnitude
of the benefit of memantine administration post-ischemia depends
on how early it is administered (Seyedsaadat and Kallmes, 2018).
It has also been shown that memantine can decrease the neuronal
death caused by reperfusion injury; during in vitro studies and a
preclinical model when co-administered with Recombinant Tissue
Plasminogen Activator (rtPA) (Montagne et al., 2012; Liu et al., 2018).
The preclinical models of the effects of memantine on ischemic
stroke are mainly murine and in vitro cell cultures, as summarized
in Supplementary Table 1.

This review mainly focuses on the effects of memantine
administered post-stroke. Still, various in vitro trials have given
us a more in-depth look into the molecular mechanisms of
neuroprotection. In vitro models of ischemia have identified a
dose-dependent neuroprotective effect following ischemia (Chen
et al., 2017), with no neuroprotection at low dosages (memantine
at 0.1 µM); and a significant attenuation of cell death following
hypoxia at higher concentrations (memantine at 10 and 50 µM)
(Seif el Nasr et al., 1990). The neuroprotective effects of memantine
in hypoxia models are augmented when coupled with other
therapies, such as memantine with an in vitro model of hypothermia
(Landucci et al., 2018).

7.1. Memantine post-ischemic use

Culmsee et al. (2004), in a mouse model, showed that
administering 20 mg/kg of memantine 5 min after stroke reduced
cortical infarction size by 10%, an effect that did not carry over when
administering memantine 30 min after stroke (Culmsee et al., 2004).
Even so, there is evidence that memantine can decrease infarction
volume when coupled with reperfusion (Kilic et al., 2013). The
administration of memantine can protect against the earliest effects
of NMDA-mediated excitotoxic neuronal death; this effect, however,
has repeatedly failed to carry over when administering memantine 2 h
after the onset of ischemia. The benefits after this time frame occur
mainly in motor, sensory, and behavioral function (Seyedsaadat and
Kallmes, 2018).

López-Valdés et al. (2014), showed that the administration of
memantine 2 h after stroke in a mice model for 28 days did not change
the volume of infarction but significantly increased forepaw sensory
perception (through sensory brain mapping) and motor function
(through motor cylinder test) when compared to a control. There
was also an increase in peri-infarct vascularity and decreased reactive
astrogliosis at 28 days post-stroke (López-Valdés et al., 2014), the
latter of which, studies have suggested, can reduce inflammation
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FIGURE 1

The effects of memantine on the pathophysiologic cascade of an ischemic stroke. The effects of memantine administration are marked through green
arrows. When a region of the brain suffers ischemia, the neurons initially depolarize. The wave of depolarizations triggers glutamate release, and
neuronal permeability to calcium increases due to the NMDA channel opening. Prolonged ischemia with increased intracellular calcium thus causes
excitotoxicity, with cellular death through necrosis and apoptosis. The main effect of memantine is through the blockade of the hyperactive NMDA
channels that drive excitotoxicity. Memantine given in these acute stages of ischemic stroke results in an inhibition of neuron death and causes a
reduction in stroke size. Tissue necrosis triggers inflammation, disrupts the blood–brain barrier (BBB) through endothelial damage, and activates both
microglia and astrocytes, causing brain edema. Memantine can reduce the activation of reactive cells, thus reducing peroxynitrite formation and MMP
release, consequently helping maintain the impermeability of the BBB. The preservation of BBB permeability results in an attenuated brain edema
formation. Following a stroke, in the subacute and chronic stages, there is a partial functional recovery mainly due to synaptic remodeling and
peri-infarct vasculogenesis. If memantine is given during these latter stages, there is an increase in the concentration of neuronal growth factors, along
with an improved capacity for synaptic remodeling. Memantine induces an increase in axonal sprouting, and an increase in peri-infarct vasculogenesis,
thus giving further support to the recovering neurons around the ischemic core. Through these mechanisms, memantine improves the functional
recovery that follows an ischemic stroke.

and promote functional recovery (Shen et al., 2021). Other studies
have found that starting memantine 2 h after a stroke can result
in a more significant improvement of neurological function at 72 h
post-stroke (Aluclu et al., 2014). At this time frame, memantine
use also provides a considerable mortality benefit (Kalemenev et al.,
2012). It is well established that following the initial deficits in
a stroke, patients tend to improve during the first few months,
resulting in a partial recovery (Grefkes and Fink, 2020). When
comparing neurological improvement post-stroke, it is noticeable
that the initiation of memantine, 3 h after stroke, has been shown
to enhance motor function when evaluated at 24 h post-stroke while

decreasing anxious behavior on the 7th day after ischemia (Babu and
Ramanathan, 2009).

In addition, a study by Wang et al. (2017), it was demonstrated
that the use of memantine at 20 mg/kg/day for 28 days, starting at
72 h after stroke, resulted in an improvement in motor coordination
(through Rotarod and tight rope tests), an increase in peri-infarct
vascularity, and decreased astrogliosis in mice (Wang et al., 2017).
The reduction of astrogliosis and other results that show a reduced
edema formation, demonstrated that memantine attenuates the
inflammatory response to stroke (Kilic et al., 2013). It was also
shown that the administration of memantine resulted in fibers
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from the contralesional corticospinal tract sprouting and decussating
toward various ipsilesional motor nuclei, showing improved post-
stroke brain plasticity. Functional motor improvement post-stroke
has been shown to occur partly thanks to the formation of new
tracts and synapses from neurons related to the infarcted territory
(Grefkes and Fink, 2020). In this study, memantine, beginning
at 72 h, did not decrease the cortical volume of infarction but
reduced the striatum’s secondary atrophy (Wang et al., 2017). Kim
et al. (2021), also reported that memantine did not reduce the
size of primary infarction but reduced secondary atrophy of the
ipsilesional thalamus. The secondary atrophy of a site, following its
disconnection from a territory that has suffered ischemia, is termed
“diaschisis” (Zhang et al., 2012). Secondary neurodegeneration has
been associated with limited recovery and the worst outcomes
post-stroke (Ni et al., 1998). The beneficial effects of memantine
administration are most significant when administered early, the
neuroprotective effect decreases as time goes on, yet there is still a
significant benefit if memantine is begun even at 72 h post-stroke
(Seyedsaadat and Kallmes, 2018).

7.2. Memantine on brain edema

The loss of integrity of the blood–brain barrier (BBB), and the
formation of brain edema from cytotoxic and vasogenic sources, are
critical pathologic events in stroke (Michinaga and Koyama, 2015).
The cerebral edema is initially cytotoxic due to transmembrane ion
imbalance of Sodium and Calcium. Still, after 4–6 h, there is an
increase in the permeability of the BBB, particularly in the areas
around the ischemic core. A loss of tight junction proteins causes
an increase in permeability, membrane damage by free radicals, and
enzymatic digestion of barrier proteins (particularly the MMP family
of enzymes), among others.

Memantine has been shown to reduce the formation of brain
edema and decrease the levels of inflammatory mediators that
increase BBB permeability (Görgülü et al., 2000). The earliest
evidence of how memantine can modify the development of edema
in stroke was developed by Görgülü et al. (2000). They showed that if
memantine was administered 15 min after the onset of ischemia, the
rat models developed less edema at the infarct periphery compared
to control (measured with cerebral water content), while also
decreasing BBB permeability (Görgülü et al., 2000). The decreased
peri-infarct edema was also coupled with a decreased infarct volume
and decreased post-stroke neurologic deficit. Kilic et al. (2013),
also demonstrated that memantine decreased BBB permeability
90 min after ischemic stroke when administered alongside melatonin.
By itself, memantine also decreases DNA fragmentation, and
neuroinflammatory response proteins at the ischemic core; p38,
MAPK, and p21 (Kilic et al., 2013). In vitro trials on brain endothelial
cells have also shown that following ischemia, memantine helps
maintain the impermeability of the endothelial monolayer, mainly
through the downregulation of proinflammatory cytokines (IL-1β

and TNFα) and by upregulation of the KLF2 transcription factor,
which maintains the integrity of BBB through increased synthesis
of occludin proteins between endothelial cells (Liu et al., 2018).
Following ischemia, the release of Matrix metalloproteinases (MMPs)
can acutely increase BBB permeability; Memantine has been found
to decrease the amounts of MMP2 and MMP9 (Chen et al., 2016;
Liu et al., 2018), preventing the breakdown of BBB collagen fibers,
and also decreasing the activation of microglia. Other models of

acquired brain injury have also found that memantine can ameliorate
the development of cerebral edema through decreased peroxynitrite
formation, increased occludin proteins, and decreased inflammatory
cytokines (Chen et al., 2021).

7.3. Memantine on neurotrophic actors

A growing topic of stroke research are neurotrophic factors, and
their effects on synaptic plasticity and post-stroke rehabilitation.
Neurotrophins, such as BDNF (brain derived neurotrophic
factor), NGF (nerve growth factor), GDNF (glial cell line-derived
neurotrophic factor), among others, are responsible for synapse
maturation, preservation of normal cognitive function, neurite
arborization, and overall neuronal maintenance (Liu et al., 2020).
Following a stroke, neurotrophins tend to decrease, in a manner
correlated with stroke severity (Chaturvedi et al., 2020). The role of
BDNF post-stroke has been of particular interest, having been shown
to attenuate stroke-induced apoptosis, improve synaptic remodeling,
stimulate neurogenesis, and improve post-stroke sensorimotor
recovery (Schäbitz et al., 2007; Liu et al., 2020). Considering all
of this, it is very interesting to analyze how memantine has been
shown to increase BDNF in the area surrounding an infarct zone
(Martínez-Coria et al., 2021); the rise in neurotrophins occurring
both in ipsilesional and contralesional zones of the brain (Wang et al.,
2017). These findings suggest that the neuroprotective properties of
memantine and its effects on post-stroke functional recovery are due,
in part, to increases in the endogenous synthesis of neurotrophic
factors.

7.4. Memantine on reperfusion injury

Reperfusion injury is an essential mechanism of neuron death in
both the natural history of stroke and after therapeutic reperfusion
(Nour et al., 2013). An in vitro study by Liu et al. (2018),
demonstrated that the use of memantine in a model of reperfusion
results in an inhibition of the release of cytotoxic cytokines (IL-1b and
TNF-a) and, at the same time, reducing both endothelial permeability
and, expression of matrix metalloproteinases (Liu et al., 2018). These
enzymes are involved in the neuroinflammatory response after stroke
(Rosell et al., 2005). The coupling of memantine with reperfusion has
been shown to decrease infarct size, improve neurological function,
and improve recovery at 1 week (Aluclu et al., 2014). It has also
been shown to improve safety and reduce neuronal death when co-
administered with rtPA up to 4 h after stroke (Montagne et al.,
2012). Reperfusion injury is an inevitable consequence of therapeutic
revascularization (Cowled and Fitridge, 2011), but these results open
the possibility of memantine as an adjunct drug to help ameliorate
neuron injury when used along rtPA.

7.5. Memantine effects at distinct dosages

The pharmacologic effects of memantine vary between dosages
and the time frame of the neurological insult in which it is
administered. The unique kinetic properties of memantine result
in the predominant blockade of pathologically overactive NMDA
channels (Lipton, 2006). Despite the preclinical and in vitro evidence

Frontiers in Neuroscience 06 frontiersin.org83

https://doi.org/10.3389/fnins.2023.1096372
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1096372 January 14, 2023 Time: 15:55 # 7

Pichardo-Rojas et al. 10.3389/fnins.2023.1096372

supporting its neuroprotective effect at dosages between 20 and
30 mg/kg/day following an ischemic event, it should be noted that
this dosage has also been documented to be neurotoxic in distinct
conditions. Trotman et al. (2015), described the dose-dependent
effects of memantine when given before an ischemic event, showing
that low-dose memantine (0.2 mg/kg/day) can significantly reduce
stroke volume and improve behavior scores, while on the contrary,
if memantine is administered at high dose (20 mg/kg) for 24 h
before ischemia, the size of ischemic injury is increased (Trotman
et al., 2015). These findings are consistent with Creeley et al. (2006),
who described how administering early memantine high dose can
result in neurological functional deficits (Creeley et al., 2006). Current
evidence suggests that the high-dose neurotoxic effects are not
NMDA mediated but could be due to the interaction of memantine
with other channels, such as serotonin 5-HT receptors (Reiser and
Koch, 1989; Trotman et al., 2015). This evidence supports the
idea that the inhibitory effect of memantine is potentiated when
administered for more extended periods and how this effect can
be deleterious at higher dosages (Bakiri et al., 2008). The non-
competitive binding to NMDA channels makes it so high doses
provide significant benefits in pathological conditions while also
having the potential to be neurotoxic in a dose-dependent manner
(Trotman et al., 2015).

8. Memantine’s clinical use in stroke?

Even though little evidence is available in the literature about the
impact of memantine and its specific use on stroke, some preliminary
studies have started to illuminate its potential use. It is not the first
time memantine has demonstrated some efficacy in vascular-related
brain diseases, such as Vascular Dementia. Since memantine has
been approved for moderate to severe cases of Alzheimer’s, many
patients with Vascular Dementia have been treated with memantine,
mainly because Alzheimer’s Disease cannot be ruled out and often
because both conditions are comorbid (Kapasi et al., 2017). Up
to date, two studies have compared memantine 20 mg/day vs.
placebo in patients with mild to moderate Vascular Dementia during
28 weeks (Orgogozo et al., 2002; Wilcock et al., 2002). Results showed
improved performance on cognitive scales but not on functional
outcomes, such as activities of daily living (Kavirajan and Schneider,
2007; McShane et al., 2019).

Even though Vascular Dementia and stroke are both vascular
diseases, their natural history of disease is different. This difference
brings up the question: ¿Can memantine have any clinical benefit in
patients with stroke?

Regarding patients with ischemic stroke, a small clinical trial
explored the short-term outcomes of 53 patients with mild-to-
moderate ischemic stroke. The control arm (29 patients) was
treated based on the standard care guidelines by the American
Heart Association and American Stroke Association (AHA/ASA)
and compared with patients who were additionally treated with
high-dose memantine (20 mg/kg three times a day) in the first
24 h after ischemic stroke disease onset, and for the following
5 days (24 patients). The outcome was measured by comparing
both groups’ changes in the National Institute of Health Stroke
Scale (NIHSS). The memantine-treated group showed a significant
improvement in the NIHSS (p = <0.05), hence suggesting a possible
improvement in neurologic function (Kafi et al., 2014). An additional

clinical trial done in 2020, that showed similar results has yet to
be published (Clinical Trials.gov Identifier: NCT02535611), while
another trial of memantine on stroke recovery is currently ongoing
(ClinicalTrials.gov Identifier: NCT02144584). Furthermore, another
interesting clinical trial also studied 77 patients with mild-to-
moderate ischemic stroke and randomized into the intervention (24
patients) or control group (29 patients). Both groups were treated
with standard care; the intervention group was additionally treated
with 20 mg memantine every 8 h for 5 days and 20 mg once daily
for the following 3 months. The measured outcomes were estimated
with serum concentrations of neuronal damage biomarkers, matrix
metalloproteinases (MMP)-2 and MMP 9; neurologic function was
evaluated with the NIHSS and Barthel Index (BI). Five days after the
intervention, results showed a significantly smaller increase in serum
MMP-9 in the intervention group (p = <0.05), but not in the MMP-
2 (p = >0.05). The memantine group also showed significant clinical
improvement, based on NIHSS (p = <0.05) and BI (p = <0.05) during
inpatient hospital care and the following days (Beladi Moghadam
et al., 2021). These findings suggest that memantine may improve
neurologic function and reduce brain damage by working as a
neuroprotective drug.

Aphasia is a loss of the capacity to produce or understand
language; cerebrovascular diseases most commonly cause it, and it
is also one of the most dreaded consequences of cerebral infarction.
Aphasia is a common complication of ischemic strokes, representing
up to 15–38 percent of said complications (Wade et al., 1986;
Pedersen et al., 1995; Berthier, 2005; Inatomi et al., 2008). Over the
years, an effort has been made to target language therapy techniques
that help the recovery of patients with aphasia, including constraint-
induced aphasia therapy (CIAT, a high-intensity therapy that mainly
focuses on restricting non-verbal communication) (Cherney et al.,
2008; Szaflarski et al., 2008). In a study of 27 patients with chronic
post-stroke aphasia, CIAT was beneficial when used alone and
combined with memantine 10 mg twice daily. The benefit of
memantine was enhanced when combined with CIAT (Berthier et al.,
2009).

Unfortunately, the evidence of the use of memantine in stroke
complications and recovery is minimal. Even though many questions
are yet to be answered, more research is needed to provide conclusive
evidence. There is currently one ongoing clinical trial exploring
if memantine can enhance stroke recovery (Clinical Trials.gov
Identifier: NCT02144584).

On the other hand, in an alternative randomized, double-blind
clinical trial, they compared the use of Memantine and Placebo on
the clinical outcome of 64 patients with Intracranial Hemorrhage
(ICH). This study assessed several neurological functional scales
on admission, on the seventh day, upon discharge, and 3 months
after the ICH onset; this was achieved by measuring the NIHSS, BI,
modified Rankin scale (mRs), and Glasgow Coma Scale (GCS). The
memantine group was treated with 10 mg/day in the first month
and 20 mg/day in the second and third months. Results showed a
significant increase of the mean in the BI and a decrease in the mRs in
the memantine-treated group compared to placebo; these results were
measured from admission time until the 3 months (P = <0.05). No
significant differences were demonstrated when analyzing mortality
rate, GCS, or NIHSS score (P = >0.05) (Bakhshayesh-Eghbali et al.,
2015). This further increases the potential therapeutic landscape
suggesting that the benefits of memantine may also extend to other
etiological types of stroke; however, further research needs to be
done before any conclusions can be drawn. Even though fascinating
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clinical evidence exists for memantine in vascular-related diseases,
evidence still needs to be compelling. Further research needs to be
done to discover if memantine can provide definitive clinical benefits
for patients in the future.

9. Discussion

A solid amount of preclinical evidence backs up memantine as
a neuroprotective agent in the setting of ischemic stroke. However,
these results have not been directly replicated in a clinical setting.
There have been few but significant clinical trials showing that
memantine can improve the prognosis of patients post-stroke, but
these trials have been limited by their small sample size. As an
inhibitor of the excitotoxic cascade, memantine has been found
to have excellent tolerability compared to other NMDA channel
blockers, with only 2% of patients having significant side effects
compared to placebo at the standard dose of 20 mg/day (Alva
and Cummings, 2008). Results from clinical trials using high-
dose memantine (60 mg/day) in the setting of mild to moderate
stroke (NIHSS <17) show a significant benefit in the neurological
function and measures of independence of patients post-stroke.
The most common side effects at these dosages were nausea, with
a 10–25% prevalence in intervention groups (Kafi et al., 2014;
Beladi Moghadam et al., 2021). These studies support high-dose
memantine as being safe and tolerable. While promising, the utility
of memantine as a neuroprotective agent in conditions other than
Alzheimer’s disease still requires further research. More extensive
clinical trials using the appropriate and effective dosages are needed
before determining if memantine improves the outcomes of patients
following an ischemic stroke.

10. Conclusion

Stroke is a main cause of morbimortality worldwide, and research
into therapies that can improve functionality and independence
post-stroke is of the utmost importance. The death of neurons in
an ischemic stroke is mainly driven by excitotoxicity, resulting in
an ischemic core and a penumbral zone with viable neurons. The
inhibition of the excitotoxic cascade through a blockade of the
NMDA channel can be achieved using memantine. This drug is
a well-studied neuroprotective agent for Alzheimer’s disease. The
use of memantine as a therapeutic agent in ischemic stroke has

been studied in various preclinical models and has shown consistent
benefits. The sooner memantine was administered, the greater the
benefit in preclinical experiments. On the other hand, the clinical
evidence on the use of memantine in ischemic stroke is scarce but
significant, showing an improvement in NIHSS and BI in patients
post-stroke. Current evidence should serve as the basis for future
large-scale studies to investigate if memantine indeed improves the
neurological function of patients post-stroke while determining the
appropriate dosage, administration route, treatment duration, and
the time window in which it could be effective.
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Analysis of risk factors and
treatment strategies for lumbar
cistern blockage after
craniocerebral surgery
Min Zheng†, Qilong Tian†, Xuejiao Wang†, Liqin Liu, Xiurui Deng,
Yan Qu* and Qing Cai*

Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China

Objective: Lumbar cistern blockage is a common complication of continuous

lumbar cistern drainage. This paper analyzes the risk factors for lumbar cistern

blockage drainage due to various causes and proposes a series of prevention and

intervention measures to reduce blockage or improve recanalization after blockage.

Methods: The clinical data of 637 patients with various lesions who underwent

lumbar cistern drainage in our hospital were retrospectively collected and analyzed.

Perioperative clinical and imaging data were assessed. Variates were analyzed using

univariate and multivariate logistic regression analyses.

Results: A total of 13.7% (87/637) of patients had lumbar cistern blockage. Multivariate

analysis revealed that drainage time (≥7 days), CSF volume <200 (mL/d), CSF leakage,

and abnormal CSF properties were predictors of lumbar cistern blockage. Reducing

the probability of lumbar cistern blockage can be achieved by repeatedly flushing,

increasing the drainage flow and shortening the drainage time. The recanalization

rate after blockage was 67.8% (59/87). After the drainage tube was removed, no

complications related to the drainage tube occurred during the 1-week follow-up.

Conclusion: Lumbar cistern blockage is the main reason for poor drainage.

Prevention or early intervention can effectively reduce the probability of blockage

and achieve the purpose of drainage of cerebrospinal fluid.

KEYWORDS

lumbar cistern drainage (LCD), lumbar cistern blockage, risk factors, treatment strategies,
surgery

Introduction

Lumbar cistern drainage (LCD) is used to treat intracranial infection, vasospasm after
hemorrhage, intractable intracranial hypertension after craniocerebral trauma, cerebrospinal
fluid leakage, and other related diseases (Wolf, 2015; Chen et al., 2017; Zwagerman et al., 2018;
Badhiwala et al., 2021). It is widely used in the field of neurosurgery because of its reliable
effect and obvious shortening of the course of disease. The premise for achieving therapeutic
effects of lumbar cistern drainage is to maximize the drainage volume of cerebrospinal fluid and
avoid complications such as headache and even cerebral herniation caused by excessive drainage
volume (Sugrue et al., 2009).
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The study confirmed that the drainage volume of cerebrospinal
fluid (250–300 ml/d) is safe and effective (Ma et al., 2021). Insufficient
drainage volume may affect the treatment effect and prolong the
hospital stay. The most important reason for insufficient drainage
is lumbar cistern blockage. After blockage, the cerebrospinal fluid
cannot be drained smoothly or cannot flow out, which increases the
treatment time. Replacing the lumbar cistern tube will increase cost
for patients, and even more seriously, it may lead to intracranial
infection and aggravate the condition of patients. Therefore, the goal
is to prevent lumbar cistern blockage or recanalization after blockage
to ensure continuous lumbar cistern drainage, and to avoid many
complications after lumbar cistern drainage.

Although lumbar cistern drainage is a common and minimally
invasive neurosurgery procedure, there is no systematic study on
the risk factors for lumbar cistern blockage, and there are few
reports on the methods of recanalization after blockage. This
paper retrospectively analyzed 637 patients who required lumbar
cisterna drainage after craniocerebral surgery for various reasons
in our department, determined the risk factors for lumbar cisterna
blockage and introduced the treatment experience of recanalization
after blockage to provide guidance and reference values for
clinical prediction.

TABLE 1 Demographic and clinical data.

Variable Value (%)

No. of patients 637

Sex

Female 329 (51.6%)

Male 308 (48.4%)

Age

<60 277 (43.5%)

≥60 360 (56.5%)

BMI

<24 230 (36.1%)

≥24 407 (63.9%)

Primary diagnosis

Traumatic brain injury 187 (29.4%)

Vascular hemorrhage 213 (33.4%)

Intracranial tumor 219 (34.4%)

Brain abscess 18 (2.8%)

Causes (LD)

Intracranial infection 307 (48.2%)

Intraventricular hemorrhage 149 (23.4%)

Subarachnoid hemorrhage 82 (12.9%)

Increased intracranial pressure 52 (8.2%)

CSF rhinorrhea/otorrhea 47 (7.3%)

Complications (LD) 175 (27.5%)

Drainage tube blockage 87 (13.7%)

CSF leakage (puncture point) 67 (10.5%)

Excessive drainage 17 (2.7%)

Drainage tube prolapse 4 (0.6%)

Materials and methods

Patient selection

A retrospective study was performed on 637 patients who
underwent lumbar drainage for various reasons in the Department of
Neurosurgery, Tangdu Hospital of the Air Force Medical University
(Xi’an, China) from July 2012 to November 2022. We collected
patient data from radiology systems and electronic medical records.
The criteria for inclusion were as follows: (1) Fisher grade 3 and

TABLE 2 Baseline characteristics of the patients.

Variable Overall Non-
blockage

Blockage P

(n = 637) (n = 550) (n = 87)

Sex 0.306

Female 308 (48.4%) 261 (47.5%) 47 (54.0%)

Male 329 (51.6%) 289 (52.5%) 40 (46.0%)

Age (years) 0.876

<60 277 (43.5%) 238 (43.3%) 39 (44.8%)

≥60 360 (56.5%) 312 (56.7%) 48 (55.2%)

BMI 0.057

<24 230 (36.1%) 207 (37.6%) 23 (26.4%)

≥24 407 (63.9%) 343 (62.4%) 64 (73.6%)

Drainage time (day) 0.015

<7 351 (55.1%) 314 (57.1%) 37 (42.5%)

≥7 286 (44.9%) 236 (42.9%) 50 (57.5%)

CSF volume (mL/d) <0.001

≥200 420 (65.9%) 392 (71.3%) 28 (32.2%)

<200 217 (34.1%) 158 (28.7%) 59 (67.8%)

CSF leakage (puncture point) 0.021

No 220 (34.5%) 200 (36.4%) 20 (23.0%)

Yes 417 (65.5%) 350 (63.6%) 67 (77.0%)

CSF properties 0.014

Normal 142 (22.3%) 132 (24.0%) 10 (11.5%)

Abnormal 495 (77.7%) 418 (76.0%) 77 (88.5%)

Causes 0.053

Others 179 (28.1%) 164 (29.8%) 15 (17.2%)

Infection 306 (48.0%) 258 (46.9%) 48 (55.2%)

Hemorrhage 152 (23.9%) 128 (23.3%) 24 (27.6%)

Lesion location 0.208

Supratentorial 457 (71.7%) 400 (72.7%) 57 (65.5%)

Subtentorial 180 (28.3%) 150 (27.3%) 30 (34.5%)

Position 0.748

Supine 301 (47.3%) 258 (46.9%) 43 (49.4%)

Lateral 336 (52.7%) 292 (53.1%) 44 (50.6%)

Manufacturers 0.391

Medtronic 389 (61.1%) 340 (61.8%) 49 (56.3%)

Branden 248 (38.9%) 210 (38.2%) 38 (43.7%)
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4 subarachnoid hemorrhage; (2) partial ventricular hemorrhage; (3)
antimicrobial therapy for central nervous system infections; and (4)
adjuvant treatment of cerebrospinal fluid leakage. Exclusion criteria
were as follows: (1) severe increase in intracranial pressure; (2)
puncture site lumbar deformity or bone destruction, resulting in
lumbar puncture or catheterization difficulty; (3) dying individuals
with severe systemic infections (e.g., severe sepsis), shock or on
the verge of shock, and unstable vital signs; (4) cerebrospinal fluid
circulatory pathway incomplete obstruction; and (5) patients with
restless or abnormal mental behavior who cannot cooperate with the
diagnosis and treatment. All the study procedures were approved by
the ethics committee of Tangdu Hospital and followed the guidelines
of the Helsinki Declaration.

Variables and data collection

All patient data were collected from the hospital electronic
medical records. Follow-up data were obtained via telephone
interviews. Clinical data, such as age, sex, BMI primary diagnosis,
causes of lumbar drainage, and complications of lumbar drainage,
were retrieved. Drainage time was classified as <7 days and
≥7 days. CSF volume was divided into ≥200 ml/d and <200 ml/d.
CSF properties were divided into normal and abnormal. Normal
CSF was defined as CSF protein levels between 120–800 mg/L,
colorless, and WBC of 0–50 × 106/L. Abnormal CSF was defined
as CSF protein ≥800 mg/L, turbid/bloody/yellow, and WBC
>50 × 106/L. The patient’s position after lumbar drainage is mainly
prone or supine. Drainage tube choice manufacturer was either
Medtronic or Branden.

Statistical analysis

The categorical variables were expressed in numbers
(percentages), and differences were evaluated using chi square
tests or Fisher’s exact tests, the statistical significance level was set
at p < 0.05. To detect risk factors associated with the incidence
of lumbar drainage blockage, a univariate regression analysis was

used. The risk factors with p < 0.05 in univariate logistic regression
analysis were selected for further multiple regression analysis. The
odds ratio (OR) and 95% confidence interval (CI) were calculated.
All statistical analyses were performed using R software version
4.0 (R Core Team, R Statistical Computing Foundation, Vienna,
Austria)1.

Results

Overview of lumbar drainage

This study analyzed the medical records of 637 patients who
underwent lumbar drainage at our institution. Table 1 shows
the clinical and demographic information of these patients. The
main reasons for lumbar drainage included intracranial infection
(48.2%, 307/637), intraventricular hemorrhage (23.4%, 149/637),
subarachnoid hemorrhage (12.9%, 82/637), increased intracranial
pressure (8.2%, 52/637) and CSF rhinorrhea/otorrhea (7.3%, 47/637).
Complications of lumbar drainage included drainage tube blockage
(13.7%, 87/637), CSF leakage (puncture point, 10.5%, 67/637),
excessive drainage (2.7%, 17/637) and drainage tube prolapse (0.6%,
4/637).

Among the 87 drainage tube blockage cases, drainage was
achieved in 59 cases after recanalization by reducing the drainage
height, adjusting the body position, repeatedly flushing with normal
saline, achieving suction under negative pressure and pulling out
part of the drainage tube, and the recanalization rate was 67.8%
(59/87). Thirteen patients underwent lumbar cistern drainage again.
Sixty-seven cases of cerebrospinal fluid leakage were combined
with drainage tube blockage, which was pressurized and sutured
through local wounds. After the drainage tube was opened, 54
cases had no cerebrospinal fluid leakage. The drainage tube was
removed, and the wound was sutured in 13 cases. Excessive drainage
(13 cases) is not the total amount of cerebrospinal fluid drained
daily, but there is no guarantee of a continuous average drainage

1 http://www.R-project.org/

TABLE 3 Clinical risk factors for prediction of drainage tube blockage.

Variable Univariable analysis Multivariable analysis

OR (95% CI) P OR (95% CI) P

Sex (female vs. male) 0.77 (0.49–1.21) 0.306

Age (years) (<60 vs. ≥60) 0.94 (0.60–1.49) 0.876

BMI (≥24 vs. <24) 1.67 (1.02–2.83) 0.057

Drainage time (day) (<7vs. ≥7) 1.79 (1.14–2.85) 0.015 1.92 (1.18–3.11) 0.008

CSF volume (mL/d) (≥200 vs. <200) 5.20 (3.22–8.57) <0.001 5.29 (3.23–8.69) <0.001

CSF leakage (puncture point) (no vs. yes) 1.90 (1.14–3.31) 0.021 1.96 (1.12–3.42) 0.016

CSF properties (normal vs. abnormal) 2.40 (1.26–5.08) 0.014 2.38 (1.17–4.87) 0.017

Causes (others vs. infection) 2.02 (1.12–3.85) 0.053

Causes (others vs. hemorrhage) 2.04 [1.03;4.14] 0.053

Lesion location (supratentorial vs. subtentorial) 1.41 (0.86–2.26) 0.208

Position (supine vs. lateral) 0.90 (0.57–1.43) 0.748

Manufacturers (Medtronic vs. Branden) 1.26 (0.79–1.98) 0.391
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FIGURE 1

(A) The routine puncture site of lumbar cistern is between L3–4 (purple arrow); (B) the length of the drainage tube in the spinal canal is about 20 cm
(purple arrow); (C) yellow, purulent cerebrospinal fluid flowing out of lumbar cistern canal; (D) intermittent bloody cerebrospinal fluid outflow at
puncture site.

volume of cerebrospinal fluid per hour (average drainage speed <10–
15 ml/h) (Nanidis et al., 2014). In some periods, the drainage speed of
cerebrospinal fluid is too fast, which leads to intracranial hypotension
symptoms (headache, occasional nausea, and vomiting) (Manley and
Dillon, 2000; Açikbaş et al., 2002). After clamping the drainage tube,
the patient improved after being placed in a supine position and
infusion of normal saline. Drainage tube prolapse (4 cases) occurs
when the drainage tube in the spinal canal is partially or completely
pulled out of the body. After removal of the lumbar drainage tube, the
patient was followed up for 1 week, and no symptoms related to the
drainage tube were found.

Predictors of lumbar drainage blockage

Lumbar drainage blockage was the most important complication
of lumbar drainage (13.7%, 87/637), and possible risk factors for
lumbar drainage blockage were analyzed.

Univariate analysis: The incidence of lumbar drainage
obstruction was higher in patients with drainage duration ≥7 days
than in patients with drainage duration <7 days (57.5 vs. 42.5%,
P = 0.015, OR 1.79, 95% CI 1.14–2.85). CSF volume <200 mL/d was
significantly more often associated with lumbar drainage blockage
than CSF volume ≥200 mL/d (67.8 vs. 32.2%, p < 0.001, OR 5.20,
95% CI 3.22–8.57). Patients undergoing CSF leakage had lumbar
drainage blockage significantly more often than those without
CSF leakage (77.0 vs. 23.0%, p = 0.021, OR 1.90, 95% CI 1.14–
3.31). Patients with abnormal CSF properties had lumbar drainage
blockage significantly more often than those with normal CSF
properties (88.5% vs. 11.5%, p = 0.014, OR 2.40, 95% CI 1.26–5.08)
(Table 2).

Multivariate analysis: we performed a multivariate logistic
regression analysis to identify potential predictors of lumbar drainage
blockage. Drainage time ≥7 days (p = 0.008, OR 1.92, 95% CI
1.18–3.11), CSF volume <200 mL/d (p < 0.001, OR 5.29, 95%

Frontiers in Neuroscience 04 frontiersin.org91

https://doi.org/10.3389/fnins.2023.1124395
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1124395 February 28, 2023 Time: 8:48 # 5

Zheng et al. 10.3389/fnins.2023.1124395

CI 3.23–8.69), CSF leakage (p = 0.016, OR 1.96, 95% CI 1.12–3.42),
and abnormal CSF properties (p = 0.017, OR 2.38, 95% CI 1.17–4.87)
were identified as independent and significant predictors of lumbar
drainage blockage (Table 3).

Discussion

Continuous drainage of cerebrospinal fluid from lumbar cistern
drainage is one of the most commonly used treatment techniques in
neurosurgery (Figures 1A, B). Its main purpose is to drain bloody
or contaminated cerebrospinal fluid outside the skull. It is also
sometimes used to monitor and control intracranial pressure and
promote wound healing of cerebrospinal fluid rhinorrhea/otorrhea.
Drainage tube blockage is a common complication of continuous
lumbar cistern drainage. Once the tube is blocked, the daily drainage
volume of cerebrospinal fluid decreases significantly or is completely
absent, which hinders the purpose of treatment. At the same
time, the existence of the drainage tube increases the possibility
of infection (Fried et al., 2016). We retrospectively analyzed the
risk factors for lumbar cistern blockage. (1) Cerebrospinal fluid
characteristics [infection (Figure 1C) or blood] are the main reason
for lumbar cistern blockage. The protein content in the infected
cerebrospinal fluid is increased, viscous infectious secretion can
be seen in the cerebrospinal fluid with the naked eye, and the
bloody cerebrospinal fluid is mixed with blood clots, a large
amount of hemoglobin and inflammatory factors after red blood
cell disintegration. These abnormal impurities are easily attached
to the inner wall of the drainage tube. With the accumulation of
impurities, the diameter of the drainage tube gradually narrows or
is even blocked completely. (2) The leakage of cerebrospinal fluid
at the lumbar cistern puncture point is an early sign of lumbar
cistern blockage, which indirectly indicates that the lumbar cistern is
blocked, leading to increased pressure in the spinal canal and forcing
cerebrospinal fluid to flow out of the puncture point (Figure 1D).
We compared BMI, and the thickness of subcutaneous fat at the
puncture point prevented cerebrospinal fluid leakage to some extent,
but there was no significant difference. The most fundamental reason
is that the drainage tube is blocked, which leads to an increase
in local cerebrospinal fluid accumulation in the spinal canal, and
when the pressure reaches a certain point, the cerebrospinal fluid
exudes from the puncture point. (3) Daily drainage volume: lumbar
cistern drainage can achieve maximum drainage while ensuring
safety. Studies have shown that continuous drainage of 200 ml
every day is safe (Wang et al., 2013), and some studies have
confirmed that the maximum drainage volume should not exceed
300 ml (Ma et al., 2021), and this needs to be comprehensively
evaluated according to the characteristics of individual conditions
and clinical manifestations. Ensuring continuous drainage can
reduce the probability of drainage blockage by continuously flushing
and pushing CSF, drainage wall-attached infectious substances,
blood clots, or proteins out. (4) As the duration of drainage
increased (≥7 days), the probability of drainage tube blockage
increased significantly, and the probability of infection caused by
catheterization also increased significantly.

The risk factors for drainage tube blockage are identified, and
corresponding disposal measures should be taken according to the
risk factors. In the case of infection or bloody cerebrospinal fluid,
clogging is prevented by prophylactic repeated extrusion of the

drainage tube or by injecting saline through a syringe and with
intermittent suction. Ensuring continuous drainage of 200 ml of
cerebrospinal fluid every day and a catheterization duration <7 days
can effectively avoid the possibility of cerebrospinal fluid leakage
and infection at the puncture point. If the tube is blocked for
unknown reasons, and to ensure safety, one should reduce the height
of the drainage tube (low intracranial pressure), adjust the body
position (the punctured intervertebral space is forced to compress the
drainage tube), pull out part of the drainage tube in the spinal canal
(the side hole of the drainage tube is adsorbed to the arachnoid), and
the drainage tube may recanalize.

Lumbar cisterna drainage is a routine operation in neurosurgery.
At the same time, it is also a double-edged sword that can be used
to shorten the recovery time of patients. If used improperly, it will
cause many adverse consequences. Therefore, after catheterization of
the lumbar cisterna, the daily drainage volume (200–300/ml/day) and
retention time (<7 days) should be maintained in strict accordance
with the guidelines or existing research conclusions. This should be
performed with a relatively sterile operation and careful disposal to
prevent lumbar cisterna blockage and ensure continuous drainage
and achieve the purpose of disease treatment.
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Interventional strategies for
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The microbiota-gut-brain axis connects the brain and the gut in a bidirectional

manner. The organism’s homeostasis is disrupted during an ischemic stroke

(IS). Cerebral ischemia affects the intestinal flora and microbiota metabolites.

Microbiome dysbiosis, on the other hand, exacerbates the severity of IS outcomes

by inducing systemic inflammation. Some studies have recently provided novel

insights into the pathogenesis, efficacy, prognosis, and treatment-related adverse

events of the gut microbiome in IS. In this review, we discussed the view that

the gut microbiome is of clinical value in personalized therapeutic regimens for

IS. Based on recent non-clinical and clinical studies on stroke, we discussed new

therapeutic strategies that might be developed by modulating gut bacterial flora.

These strategies include dietary intervention, fecal microbiota transplantation,

probiotics, antibiotics, traditional Chinese medication, and gut-derived stem cell

transplantation. Although the gut microbiota-targeted intervention is optimistic,

some issues need to be addressed before clinical translation. These issues include

a deeper understanding of the potential underlying mechanisms, conducting

larger longitudinal cohort studies on the gut microbiome and host responses with

multiple layers of data, developing standardized protocols for conducting and

reporting clinical analyses, and performing a clinical assessment of multiple large-

scale IS cohorts. In this review, we presented certain opportunities and challenges

that might be considered for developing effective strategies by manipulating the

gut microbiome to improve the treatment and prevention of ischemic stroke.

KEYWORDS

ischemic stroke, gutmicrobiome, fecal microbiota transplantation, probiotics, traditional
Chinese medication

Introduction

Stroke is a devastating cerebrovascular disease characterized by high morbidity,
disability, recurrence, and mortality. The data provided by the Global Burden of Disease
(GBD) 2019 suggested that stroke is the second most common reason for death and the
third leading reason for disability across the world. Also, the absolute number of first-ever
stroke and stroke-related deaths has increased considerably over the last decade (GBD 2019
Stroke Collaborators, 2021). China has a greater burden of stroke, considering that the
country has the highest prevalence of stroke in the world. Additionally, most of the years
of life lost and disability-adjusted life years among Chinese adults are because of stroke
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(Wu et al., 2019; Ma et al., 2021; Wang Y. J. et al., 2022). Stroke
can be broadly classified into ischemic and hemorrhagic stroke,
with ischemic stroke (IS) contributing to more than 70% of total
incidences of stroke worldwide (GBD 2016 Lifetime Risk of Stroke
Collaborators et al., 2018; Tuo et al., 2022). It primarily occurs due
to a cerebral arterial occlusion caused by a thrombus or embolus
(Tian et al., 2019; Mistry and Dumont, 2020). Besides damaging the
brain parenchyma surrounding the ischemic areas, IS also triggers
complex neuropathophysiological and neuropathological events
followed by neuroinflammation and immune response (Pluta et al.,
2021; Zhang S. R. et al., 2021). Many recent studies have suggested
that post-stroke immunosuppression and intestinal barrier damage
can increase the risk of opportunistic infections after IS, which can
seriously worsen the outcomes of IS (Ghelani et al., 2021). These
findings indicate that effective treatment of IS and the extension
of the therapeutic window are challenging, and new therapeutic
strategies need to be developed.

Recanalization and neuroprotection are the main approaches
for treating IS in the clinic. Performing intravenous/intra-
arterial thrombolysis and mechanical thrombectomy for effective
reperfusion following recanalization are necessary for a positive
prognosis of IS patients (Prabhakaran et al., 2015; Wu et al., 2019).
The Food and Drug Administration (FDA) has only approved
intravenous recombinant tissue plasminogen activator (IV rtPA)
for treating IS (National Institute of Neurological Disorders and
Stroke rt-Pa Stroke Study Group, 1995). Endovascular reperfusion
therapy can partially improve the overall likelihood of a good
IS outcome (Prabhakaran et al., 2015; Wu et al., 2019; Saver
and Adeoye, 2021). However, the overall safety and efficacy
are limited by a narrow treatment window (Yeo et al., 2013)
of 4.5 h from the onset of the symptoms, the challenges of
cerebral ischemia-reperfusion injury (Eltzschig and Eckle, 2011;
Sun et al., 2018), and the tendency of hemorrhagic transformation
(Gauberti et al., 2018) during the treatment course. Therefore,
many researchers are investigating novel approaches for treating
IS. In the past two decades, more than 1,000 potential neuro-
protectants have been found to attenuate ischemic brain injury
by promoting neuronal survival, neural plasticity, neurogenesis,
and synaptogenesis (Liberale et al., 2018; Shen et al., 2023).
However, the studies were mainly conducted on experimental IS
animal models, and only a few agents targeting these molecules
could be administered in the clinic (Gauberti et al., 2018; Gan
et al., 2020; Mani et al., 2023). Stem cell therapy and neural
progenitor cell transplantation therapy provide a regenerative
strategy for protecting neural tissue in the acute phase and the
replacement of lost tissues in the sub-acute or chronic phase of
IS (Wei et al., 2017; Yu et al., 2019). However, this technique
has numerous challenges, including identifying suitable neural
progenitors, low overall survival of the neurons, and insufficient
neuronal differentiation (Wei et al., 2017; Wang S. N. et al., 2020;
Mani et al., 2023). Thus, the technique needs to be further improved
before clinical application.

Along with the typical neurological deficit in the acute phase
(Powers, 2020), more than half of the patients with IS suffer
from gastrointestinal complications, including gut motility and
absorption dysfunction, intestinal bleeding, gut leakiness, and
enteropathogenic sepsis (Wen and Wong, 2017). After the concept
of the microbiota-gut-brain axis (MGBA) was proposed, many
studies confirmed the presence of a bidirectional MGBA and the

potential of microbiota-directed interventions to improve stroke
outcomes (Zhao et al., 2018). Detailed studies on the underlying
mechanisms might provide a theoretical basis for developing novel
interventions and therapeutic strategies for IS based on microbes
(Cryan et al., 2019). With the advancement of high-throughput and
“-omics” technologies, especially the integration of metagenomics
and metabolomics techniques, a strong correlation was found
between the gut microbiota and potential risk factors for the onset,
progression of pathological changes and the prognosis and recovery
of IS patients (Benakis et al., 2016; Nam, 2019; Pluta et al., 2021).
Several studies have shown that the gut microbiota and their
metabolites might play a dual role in IS (Peh et al., 2022). As
the gut microbiome is less diverse in IS patients, modulating the
composition of the gut microbiome might improve the prognosis
of IS patients. On the other hand, consuming foods rich in choline
and L-carnitine increases the occurrence of IS due to the generation
of trimethylamine-N-oxide. Meanwhile, consuming dietary fiber
improves the outcomes in IS patients due to the action of short-
chain fatty acid metabolites containing butyrate and propionate,
derived from gut microbes (Chen et al., 2019b; Battaglini et al.,
2020; Peh et al., 2022).

Several effective strategies have been proposed for treating
disorders related to gut microbiota in IS patients. The gut
microbiota can be modulated using two ways: (1) By identifying
keystone taxa in the gut microbiome and performing interventions;
(2) By altering the composition of the intestinal microbiota
by single or combined use of dietary interventions, antibiotics,
probiotics, fecal microbiota transplantation (FMT), or traditional
Chinese medication (TCM). Several studies have also suggested
that repairing the damaged intestinal mucosal barrier by gut-
derived stem cell transplantation might be a new treatment
strategy, which could prevent the occurrence of endotoxemia
and secondary infections. Therefore, in this review, we discussed
intestinal microbiota as an intervention technique for treating IS to
gain further insights into the emerging field of IS therapy.

Dietary interventions in IS

Diet directly affects the composition of the gut microbial
communities and the production of metabolites. Cellular stress
caused by unhealthy diets, such as a high intake of high-fat foods,
animal byproducts, and processed foods, may influence abnormal
lipid metabolism and cerebral small vessel disease, which can
trigger the neuroinflammatory process and, as a result, activate a
neurodegenerative cascade (Nassir et al., 2021; Flaig et al., 2023).
Foods high in choline and L-carnitine, such as red meat, can be
metabolized by intestinal microbiota to produce trimethylamine
N-oxide (TMAO), which has been shown in experimental and
clinical studies to promote the occurrence of atherosclerosis and
stroke (Koeth et al., 2013; Zhu et al., 2021). Reduced reverse
cholesterol transport induced by TMAO via gut flora-related
pathways is one possible mechanism (Zhu et al., 2021; Peh et al.,
2022). Meanwhile, the presence of specific bacterial species in
human feces has been linked to TMAO plasma concentration
and diet pattern (Peh et al., 2022). TMAO may also promote
platelet hyperreactivity and thrombosis by increasing Ca2+ release
from intracellular stores during submaximal agonist stimulus-
dependent platelet activation (Zhu et al., 2016). Clinical trials
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confirmed that plasma TMAO levels could independently predict
the risk of thrombosis, including heart attack and stroke (Tang
et al., 2013; Zhu et al., 2016; Wang M. et al., 2022). Furthermore,
TMAO-mediated pathogenesis is associated with the activation
of multiple inflammatory signaling pathways, which may result
in oxidative stress, mitochondrial dysfunction, neuronal aging,
synaptic compromise, and cognitive impairment (Praveenraj et al.,
2022).

Consumption of dietary fiber and polyphenols, on the other
hand, may improve stroke outcomes via gut flora-associated SCFAs
such as butyrate and propionate (Fraga et al., 2019; Peh et al.,
2022). Long-term consumption of short-term fermented soybeans
(chungkookjang) containing specific Bacillus species in animal
models of stroke could influence host metabolism, particularly
inflammation and insulin resistance, through regulation of
gut microbiota composition (increase in Lactobacillus, Bacillus,
and Akkermansia) and metabolites (increase in propionate and
butyrate), and further prevent neuronal cell death and memory
dysfunction from the artery occlusion (Zhang T. et al., 2021).
Nonetheless, the underlying mechanisms are unknown. In a
recent study, sodium butyrate was shown to reduce neuronal
apoptosis by activating PI3K/Akt via the G protein-coupled
receptor GPR41/Gβγ in a rat model (Zhou et al., 2021).

Collectively, dietary intervention may be an appealing and
valuable way to influence the course of IS.

Dietary patterns in the prevention of IS

Many studies have shown the importance of overall dietary
patterns in the prevention and reduction of the occurrence of
IS. Diet quality and unbalanced nutrition are risk factors that
strongly increase the chances of the incidence of a first-ever stroke
(O’Donnell et al., 2016), as well as the relapse of stroke and other
vascular events (Amarenco et al., 2016; Yusuf et al., 2020). A study
found that compared to not consuming vegetables, consuming
306–372 g of vegetables can reduce the risk of IS by 23.2%.
The results indicated that vegetable consumption could effectively
protect people from IS (Stanaway et al., 2022). Additionally, long-
term dietary habits and the intensity of systemic inflammation
were found to be strongly correlated, suggesting that the diet can
modulate carotid plaque vulnerability in IS patients (Peng et al.,
2020). In that study, Peng et al. (2020) calculated the dietary
inflammatory index (DII) of 32 food components with a detailed
questionnaire on food frequency. They found that IS patients
who consumed foods with lower anti-inflammatory properties,
including fruits, vegetables, and nuts, had a higher DII score and
were vulnerable to plaques.

In the IS population, evaluating whole dietary patterns is
more promising than evaluating individual nutrients or food
components. The EAT-Lancet Commission proposed an integrated
framework related to a health-reference diet based on a sustainable
food system to achieve better overall health outcomes and to
conform to food culture in most parts of the world. Individualizing
energy intake based on body size, body composition, and physical
activity levels was recommended (English et al., 2021; Wu and
Anderson, 2021). English et al. (2021) evaluated the information
related to the dietary patterns affecting primary and secondary

stroke prevention, and they recommended that the most effective
dietary strategies include following the Mediterranean diet, low
sodium intake, and intake of folic acid supplements in regions with
low folate. To address the complexities and the insufficient evidence
directly relevant to clinical implications, well-designed randomized
controlled trials need to be conducted based on appropriate dietary
interventions, especially for people who have suffered a stroke.

The effects of drinks have also been investigated. According to a
16-year follow-up study, drinking water with a high concentration
of calcium and magnesium (magnesium ≥10 mg/L or calcium
≥50 mg/L) is related to a lower risk of IS. The study also
showed that drinking water enriched with calcium and magnesium,
especially magnesium, can significantly reduce the risk of IS
in postmenopausal women (Helte et al., 2022). Coffee and tea
are extremely popular beverages globally and possess health
benefits. A large prospective cohort study conducted with 365,682
participants from the UK Biobank showed that drinking 2–3 cups
of coffee or tea per day decreased the risk of stroke by 32% during
the median follow-up of 11.4 years for new onset IS. People who
consumed both coffee and tea, particularly up to 3–6 cups daily, had
the lowest risk of IS and vascular dementia after a stroke (Zhang Y.
et al., 2021).

Dietary alteration accompanied by shifts
in the intestinal metabiome

The gut microbiota encodes many carbohydrate-active
enzymes. Dietary fiber and carbohydrates in the diet can be
fermented to produce short-chain fatty acids (SCFAs) through
these enzyme systems. Many studies have shown that SCFAs
can regulate immune responses, maintain gut barrier integrity,
suppress the activity of histone deacetylases, and block the
cascade of inflammatory reactions (Kasahara and Rey, 2019).
Sodium butyrate (NaB; an SCFA) is a histone deacetylase inhibitor
generated by butyrate-producing bacteria (BPB). NaB can cross
the blood-brain barrier (BBB) and lower oxidative stress in
the brain, subsequently increasing the expression level of the
neuroprotectant IGF-1 in peripheral tissues (Park and Sohrabji,
2016), reducing the expression of proinflammatory cytokines
in the serum (Wang H. et al., 2022), and ultimately effectively
decreasing brain injury after a stroke. Therefore, it can aid in
neurological recovery and treat cognitive impairment following
a stroke (Wang H. et al., 2022). Furthermore, when a moderate
amount of fiber, butyrate, or probiotic-producing butyrate is added
to the diet, the leaky gut can be repaired in IS patients (Boivin et al.,
2016), and the consolidated integrity of the epithelial barrier can
provide neuroprotection during stroke recovery. Also, consuming
fermented dairy foods, including cheese and yogurt, which contain
beneficial probiotics (Aryana and Olson, 2017), can help in the
prevention and treatment of IS (Zhang K. et al., 2020) by improving
the overall intestinal microbiota (Carr et al., 2021) after the living
microorganisms reach the intestine.

Additionally, moderate restriction in dietary proteins and
energy can provide neuroprotection by modulating the gut
microbiota. In the mouse model of middle cerebral artery
occlusion, the effects of a moderately low protein diet on decreasing
the cerebral infarction volume and restoring neuroplasticity
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were associated with higher antioxidant reactions, lower
neuroinflammation, and rebalanced commensal gut microbiota
in the post-acute phase (Silva de Carvalho et al., 2022). Calorie
restriction was also reported to enhance post-stroke rehabilitation,
which might correlate with the dramatically altered composition of
the gut microbiota and its metabolism, in which Bifidobacterium
was enriched (Huang et al., 2021). These findings might provide
novel strategies for stroke rehabilitation in the clinic based on diet
control and gut microbiota.

Enteral nutrition (EN) in IS

The stress status during the acute phase of stroke is
characterized by high decomposition and high metabolism. It can
trigger hyperglycemia, acidosis, hypoproteinemia, and negative
nitrogen balance, leading to serious malnutrition, weakening
the immune system, and increasing complications (Xu C. Y.
et al., 2021). Many studies have proposed the concepts of
immune and microecological nutrition, and the latter’s role was
found to be especially important. For stroke patients, early EN
combined with probiotics can help in improving the nutritional
status, reconstructing the gut microbiota, stabilizing intestinal
barrier function, improving immune tolerance, and decreasing
the complications of infection and nutritional diarrhea, thus,
facilitating a more effective therapeutic intervention (Xu and
Shao, 2015; Mao et al., 2022). Furthermore, systematic reviews
and meta-analyses of randomized controlled trials have confirmed
the efficacy of EN in IS patients (Chen et al., 2022; Savigamin
et al., 2022). On the other hand, additional high-quality and well-
designed randomized controlled trials are required to provide more
reasonable theoretical guidance for clinical practice (Chen et al.,
2022).

Administration of antibiotics in IS

Many studies have investigated the application of antibiotics
to prevent post-stroke infections and improve stroke outcomes.
According to some studies, post-stroke immunodepression and
stress can disrupt the intestinal epithelial barrier and facilitate
the spread of commensal bacteria from the host gut microbiota,
causing systemic infections (Kumar et al., 2010). Infections,
particularly pneumonia, commonly occur after a stroke and might
contribute to neurological deficits and an increase in the mortality
rate (Faura et al., 2021). Therefore, antibiotics are currently used in
clinical practice to prevent infections following stroke; a common
approach involves the use of broad-spectrum antimicrobial agents
or combinations (Westendorp et al., 2015, 2018). Antibiotics are
often administered for the early prevention and control of IS, and
for patients with severe IS, broad-spectrum antibiotics are usually
administered for 1 week (Meisel and Smith, 2015). However, the
safety and efficacy of prophylactic antibiotics used for treating IS
remain unclear. Besides their role in antimicrobial prophylaxis,
antibiotic intervention can also change the composition of the
intestinal microbiota and disturb the homeostasis of the microbiota
for several months or even years (Langdon et al., 2016; Rizzatti
et al., 2018). This might, in turn, increase the risk of infection,

particularly pneumonia, as the disturbance or even eradication of
the commensal bacterial communities might lead to the production
of bacterial fragments, which can act as toxins and co-stimulants
(Winek et al., 2016). Several studies have evaluated the necessity
of administering prophylactic antibiotics to IS patients in intensive
care units. Early prophylactic antibiotic treatment with ceftriaxone
(cephalosporin), levofloxacin (fluoroquinolone), penicillin, and
minocycline (tetracycline), most of which were prescribed within
24 h, could not reduce the occurrence of post-stroke pneumonia
or the mortality rate in a longer follow-up, despite decreasing
the incidence of urinary tract infections and other post-stroke
complications (Zheng et al., 2017; Rashid et al., 2020; Wang Q. et al.,
2022).

However, preventive antibiotic therapy at the onset of a
stroke is still important. For example, the prophylactic use of
antibiotics is highly efficient in specific subgroups of IS patients
(Vermeij et al., 2018). Liu C. et al. (2022) showed that broad-
spectrum antibiotics could decrease systemic and brain cytokine
levels, decrease infarct size and perilesional cortex apoptosis,
improve long-term behavioral recovery, and strongly affect the
gut microbiota in rats after cerebral ischemia. Their study showed
that antibiotic prophylaxis has neurorestorative benefits after
IS. Their findings indicated that oral administration of non-
absorbable antibiotics might strongly affect stroke pathophysiology
by altering commensal gut bacteria. Benakis et al. (2020) also
showed that a cocktail of antibiotics significantly decreased the
infarct volume of IS mice in the acute phase. In contrast, the
neuroprotective effect was abolished with the re-colonization
of a wild-type gut microbiota in the model mice. They also
discovered that antibiotic treatment with ampicillin or vancomycin
as monotherapy, rather than neomycin, was sufficient for
reducing infarct volume and improving sensory and motor
function 3 days after the stroke. Furthermore, specific microbial
populations, particularly Bacteroidetes S24.7, and microbial
metabolites primarily containing aromatic amino acids, exerted this
neuroprotective effect. These findings highlighted the preventive
effects on the short-term and long-term outcomes of IS patients
due to the targeted modification of the microbiome related to
specific microbial enzymatic pathways following the administration
of specific antibiotics.

However, further studies are needed to determine whether
the administration of antibiotics can improve the outcomes
of IS patients and whether antibiotics affect post-stroke
infections through the intestinal flora. Also, as non-infectious
inflammation comprises a significant portion of stroke-associated
pneumonia due to the risk factors of dysphagia and stroke-induced
immunodepression (Eltringham et al., 2020), combination therapy
using antibiotics and targeted immunomodulatory agents might
more effectively improve the prognosis of IS patients (Meisel and
Meisel, 2011; Meisel and Smith, 2015).

Probiotics and prebiotics in IS

According to the World Health Organization (WHO),
probiotics are live microbial food supplements or components
of bacteria that are beneficial to humans when administered
in adequate amounts (Hill et al., 2014). Several recent studies
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have shown the beneficial effects of specific probiotic strains or
a mixture of strains at particular life stages or disease stages.
Some studies investigated the mechanism of action of probiotics
in IS to elucidate how probiotics strengthen the gut epithelial
barrier function, inhibit pathogen adhesion to the intestinal wall by
adhering to the intestinal mucosa, suppress bacterial translocation,
produce bioactive compounds, including bacteriocins, organic
acids, vitamins, and neurotransmitters, reduce certain biomarkers
of oxidative stress and inflammatory cytokines, produce anti-
inflammatory compounds to modulate the immune system, and
upregulate the expression of opioid and cannabinoid receptors
in intestinal epithelial cells; thus, activating calcium-dependent
potassium channels in intestinal sensory neurons (Sánchez et al.,
2017; Martínez-Guardado et al., 2022). Additionally, SCFAs
produced by probiotics can counteract neuroinflammation after IS
(Sadler et al., 2020; Zhang W. et al., 2022) and help in repairing
cognitive dysfunction and brain injury. Probiotics can also improve
the negative emotions of IS patients, including anxiety and
depression, 3 months after stroke (Bailey and Cryan, 2017; Liu et al.,
2020). Probiotic treatment not only alters the microenvironment
to limit pathological progress but also plays a complementary
role by promoting the pharmaceutical management of calcium-
channel blockers and statins (Liu W. et al., 2022). Combinatorial
therapy with regenerative medicine, such as stem cell therapy,
has also been found by some researchers to increase the level of
the neurotrophic factor brain-derived neurotrophic factor (BDNF)
through symbiotic treatment to enhance neurogenesis and post-
stroke cognitive function. Therefore, this treatment strategy is
promising and warrants further investigation (Romo-Araiza et al.,
2018; Xu H. et al., 2021).

Lactobacillus and Bifidobacterium are probiotics that can
hinder the overgrowth of opportunistic pathogens and the
invasion of foreign pathogens, and thus, help in maintaining
the intestinal microecological balance, lowering the apoptosis of
intestinal epithelial cells due to pathogens, protecting the intestinal
mucosal barrier, and improving the intestinal and systemic immune
functions (Chen et al., 2022). Studies on rodent models have
shown the beneficial effects of probiotic strains such as Bacillus
licheniformis (Li Y. et al., 2021), Lactobacillus (Wanchao et al.,
2018), and Clostridium butyricum (Sun et al., 2016) on stroke.
The beneficial effects of prebiotics on IS have also been studied
extensively (Hill et al., 2014; Gibson et al., 2017). Lactulose is an
important prebiotic, which can elevate the levels of SCFAs in the
intestine and serum (Bothe et al., 2017; Chen X. et al., 2020),
aggravate post-stroke inflammation, and improve the functional
prognosis of stroke (Yuan et al., 2021). Some studies have also
shown that intragastric administration of indole-3-propionic acid
(IPA) to mice with middle cerebral artery occlusion (MCAO) can
restore the alterations in the structure of the gut microbiome
with elevated probiotics and reduce the number of harmful
bacteria, repair the integrity of the intestinal barrier, inhibit A1
reactive astrogliosis by regulating the activities of regulatory T
cells (Tregs)/Th17 cells in gut-associated lymphoid tissue, and
thus, efficiently alleviate the effects of neuritic impairment and
brain infarction (Xie Y. et al., 2022). Prebiotics like functional
barley can increase the number of butyrate-producing bacteria and
promote the production of intestinal butyrate (Akagawa et al.,
2021). Therefore, to better apply the synergistic and beneficial
effects of probiotics and prebiotics on therapy, “synbiotics,” which

is a mixture of active microorganisms (probiotics) and a matrix
(prebiotics), was developed (Swanson et al., 2020). Some studies
have also found that the effects of probiotics on the host are not
directly associated with the active microorganisms but instead are
indirectly mediated by the metabolites or bacterial components of
certain probiotics (Klemashevich et al., 2014; Salminen et al., 2021),
such as SCFAs, which are plant polysaccharide products that are
broken down by the gut microbiota (Fang et al., 2022). A study
found a synergistic effect between SCFA-producing bacteria and
inulin which can improve neurological deficit and behavioral
outcomes post-stroke (Lee et al., 2020).

Probiotics and prebiotics are the most extensively studied
biotherapeutic strategies to maintain and improve brain function
via the MGBA (Dinan et al., 2013; Cryan et al., 2019; Martínez-
Guardado et al., 2022). Probiotics and prebiotics are strong
candidates for treating and preventing IS as they can reshape the
gut microbiota, inhibit oxidative stress, and maintain the regular
pathways related to microbial metabolism and brain functions.
However, most findings and inferences in this field are based on
animal studies, and only a few probiotics and prebiotics have been
studied (Sarkar et al., 2016) in different combinations for their
commercial availability or other physiological beneficial effects,
but no study has investigated their specific properties related to
the modulation of the MGBA. Therefore, future studies should
focus on the mechanisms and targeted effects to improve the brain
function of specific probiotic strains and prebiotics.

Fecal microbiota transplantation
(FMT) in IS

Fecal microbiota transplantation is the most efficient
intervention to reconstruct the gut microbiota and might be
an effective therapeutic strategy for IS. A study found that FMT
attenuated cerebral ischemic injury and improved neurological
deficit in obese rats, which was probably mediated by the lowering
of oxidative stress and apoptosis in the brain (Xie T. et al.,
2022). FMT also ameliorated and/or protected transient MCAO
mice from transient cerebral ischemic injury (Benakis et al.,
2016). Lactobacillus helveticus and Lactobacillus brevis are the
most affected microbiota in ischemia and reperfusion brain
injury. Restoration of the L. helveticus and L. brevis colonies
had strong neuroprotective effects. It significantly alleviated the
accumulation of branched-chain amino acids (BCAAs), which
aggravated microglia-induced neuroinflammation through the
AKT/STAT3/NF-kB signaling pathway in the development of IS
(Shen et al., 2023). Additionally, as an aged biome can increase the
systemic proinflammatory cytokine levels (Spychala et al., 2018),
which in turn contributes to the pathogenesis of IS, replenishing
the gut microbiome with fresh microorganisms can reverse age-
related poor stroke recovery through host immunologic, microbial,
and metabolomic modulation.

As a key player in the MGBA, SCFAs can protect against
neurodegenerative diseases by regulating the release of hormones
and neurotransmitters mediated by G-protein-coupled receptors to
further regulate inflammation and the mood of the patient (Fang
et al., 2022). Among the known SCFAs, butyric acid showed the
highest negative correlation with IS. A recent study reported that
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FIGURE 1

Improving ischemic stroke outcomes (IS) with microbiota-gut-brain axis (MGBA)-based interventions. Microbiological interventions, including
dietary interventions, antibiotics, probiotics and prebiotics, fecal microbiota transplantation (FMT), traditional Chinese medicine (TCM), and intestinal
stem cell transplantation can improve MGBA by altering microbial communities. The gut microbiome is known to be highly involved in the
biosynthesis and release of various hormones, neurotransmitters, and numerous active metabolites and agents that may directly or indirectly
regulate MGBA via neurobiological networks, immunological processes, and/or microbial metabolic signaling pathways, thereby affecting brain
function and systemic inflammation. Modulation of gut microbiota composition and microbiota-derived metabolites may prevent infectious
complications and improve neurological outcomes in IS patients by increasing short-chain fatty acids (SCFAs) and neurochemicals, decreasing gut
permeability, reducing bacterial translocation, and alleviating immunosuppression.

administering butyrate decreased exacerbated cerebral infarction
in IS associated with type 2 diabetes. The mechanisms related
to this effect might include improvements in the functions of
the gut barrier and the blood-brain barrier and a decrease
in the serum levels of lipopolysaccharides (LPSs), LPS-binding
protein (LBP), and proinflammatory cytokines (Wang H. et al.,
2022). Interfering with the gut microbiota by transplanting fecal
bacteria rich in SCFAs and supplementing with butyric acid
could thus be an effective strategy for treating IS (Chen et al.,
2019b). In a study, the researchers performed direct enrichment of
selective SCFA-producing bacteria, which included Bifidobacterium
longum, Clostridium symbiosum, Faecalibacterium prausnitzii, and
Lactobacillus fermentum. The results showed that these SCFA-
producing bacteria alleviated post-stroke neurological deficits and
inflammation and increased the concentrations of SCFAs in the gut,
brain, and plasma of aged mice after a stroke (Lee et al., 2020).
These findings confirmed the effects of a more targeted and refined
microbiome therapy.

These studies showed the beneficial effects of FMT on patients
with neurological disorders. However, almost all studies were
conducted on animal models. Additionally, one study conducted

with an animal model for stroke also recorded an increase in
mortality after FMT (Vendrik et al., 2020). As the beneficial effects
of FMT are not clear, whether positive findings from animal studies
can be verified in treating human diseases needs to be ascertained.
Large double-blinded randomized controlled trials need to be
conducted to further explain the impact of FMT in IS. In recent
years, many novel therapeutic strategies targeting specific bacteria
have been developed, such as phage therapeutics or multi-phage
cocktail therapy, cytokine modulators, and gene therapy. These
techniques are more applicable than FMT.

Traditional Chinese medicine (TCM)
in IS

Besides strategies directly modulating the intestinal microbiota,
drugs that influence the intestinal microbiota might be more
convenient in clinical practice. TCM emphasizes the holistic
concept, which is consistent with the modern view of the MGBA
in stroke. In China, since the Han Dynasty period, TCM practices
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TABLE 1 The summary of pharmacological effects of herbal ingredients
and natural products in IS based on the intestinal microbiota.

Natural products and
botanical herbal
components

Effects in IS based on
intestinal microbiota

Active ingredients of herbs

Anthraquinones (Guo Y. et al., 2021) Lactobacillus, Bifidobacterium↑
Escherichia coli, Enterococcus↓

Saponins

Astragaloside IV (Yin et al., 2020) Clostridium, Blautia, Bifidobacterium,
Holdemanella, Megamonas ↑

Ginsenosides (Chen H. et al., 2020) Lactobacillus helveticus↑

Panax notoginseng saponins (Li et al.,
2018)

Bifidobacterium longum↑

Herb pair

Chuanxiong-Pueraria (Chen et al., 2019a) Ruminococcaceae_UCG_004,
Ruminococcaceae_UCG_005,
Ruminococcaceae_NK4A214_group,
Lachnospiraceae_NK4B4_group,
Akkermansia, Alloprevotella,
Oscillospira, Megasphaera↑

TCM prescription

Angong Niuhuang Pill (Zhang H. et al.,
2022)

the family Prevotellaceae, the genus
Alloprevotella, the phylum
Bacteroidota↓
the family Lachnospiraceae, the
genera Lachnoclostridium, the phylum
Firmicutes, Enterorhabdus,
Colidextribacter, Roseburia,
Lachnospiraceae_UCG-006↑
prostaglandin I2 and uridine↑

Buyang Huanwu decoction (Liu W. et al.,
2022)

Lactobacilli, Bifidobacteria↑
Escherichia coli, Actinobacterium↓

Dihuang Yinzi (Wang X. et al., 2022) Firmicutes, Bacteroidetes,
Proteobacteria↑

Huangqi-Honghua (Wang K. et al., 2022) Ruminococcaceae, Bacteroides,
Phascolarctobacterium,
Desulfovibrionaceae↓
Blautia, Lachnospiraceae, Oscillibacter,
Bifidobacterium↑
bile acid receptor FXR activated

Huazhuo Jiedu Huoxue Tongluo
Prescription (Ni et al., 2022)

Firmicutes, Bacteroidetes, Lactobacillus,
Prevotella↑
Enterobacteriaceae, Clostridium,
Enterococcus↓

Tanhuo decoction (Guo Q. et al., 2021) Anaerostipes, Bifidobacterium, Blautia,
Coprococcus, Gemmiger, Ruminococcus,
Streptococcus↑
Lachnospira, Odoribacter, Eubacterium,
Phascolarctobacterium↓

Tong-Qiao-Huo-Xue Decoction (Zhang
F. et al., 2020)

Bacteroidetes, Isobacillus,
Bifidobacteria↑
intestinal barrier repaired

Xinglou Chengqi Decoction (Gao et al.,
2021)

Verrucomicrobia, Akkermansia↑
Paraprevotella, Roseburia, Streptophyta,
Enterococcu, Bacteroidetes↓
short chain fatty acids (SCFAs)↑

Zhilong Huoxue Tongyu capsule (Wang
R. et al., 2022)

Proteobacteria, Prevotella↑
Firmicutes, Bacteroidota, Lactobacillus↓

have been passed down and evolved over thousands of years,
and many classic and effective medicines have been developed
for treating IS (Sun et al., 2015). Recent studies have shown that
many TCM formulae and monomers exert therapeutic effects by
modulating the intestinal microbiota and improving the secretion
of gastrointestinal hormones (Zhai et al., 2023).

Traditional Chinese medicine can be used to effectively
modulate intestinal homeostasis based on the concept of
“homology of medicine and food” and the typical hepatoenteric
characteristics of the pharmacokinetic profiles. Terpenoids,
glycosides, flavonoids, steroids, polyphenols, and polysaccharides,
among other bioactive substances found in TCM, can play distinct
roles in multiple gut microbial metabolic pathways (Li X. et al.,
2021). These active ingredients in the gut can reshape the structure
of the intestinal microflora by increasing beneficial bacteria
and decreasing harmful bacteria, thereby facilitating metabolic
processes that reduce oxidative stress and inflammation after a
stroke (Wang Y. X. et al., 2021).

Here, we briefly summarized the pharmacological effects
of natural botanical active ingredients, TCM monomers, and
compounds in the pathological state of IS based on the intestinal
microbiota and their metabolites, as shown in Table 1. The
orally administered TCM primarily interacts with the intestinal
microbiota in three ways in IS patients. (1) TCM modulates gut
microbiota composition; (2) TCM regulates intestinal metabolites;
(3) Intestinal microbiota transforms the components of TCM and
improves their metabolism, absorption, and synergism. Specifically,
TCM can change the composition and structure of the gut
microbiota and affect the production of gut microbiota-associated
metabolites. Thus, it exerts anti-inflammatory, anti-oxidative, and
immune regulatory effects, which can improve the outcome of
IS. Additionally, the intestinal microbiota exerts strong effects on
the metabolism of TCM through oxidation, reduction, hydrolysis,
and hydroxylation reactions, which are important for improving
the absorption of TCM and exerting pharmacological effects
(Chen et al., 2016). These findings provide new information
that might help elucidate the mechanisms through which TCM
affects IS.

The benefits of TCM for treating IS based on gut microbiota
may be associated with reshaping the gut microenvironment,
weakening of bacterial flora translocation, and an increase in
probiotics to reduce cerebrovascular damage (Zhang H. Y. et al.,
2021). To develop more effective TCM for treating IS, novel gut
microbiota sequencing technologies must be used to investigate
the gut microbiota for more accurately and precisely assessing the
regulatory impact of TCM, as well as to establish more standardized
and unified stable IS animal models for determining TCM impact.
Furthermore, in various IS models, including rodents and large
mammals, the long-term protective effects of TCM on the brain
and survival rate and the mechanism of regulating intestinal
flora must be determined. Also, the current pharmacokinetics,
pharmacodynamics, and toxicological characteristics of TCM
require more attention.

Acupuncture treatment at different acupoints, such as Quchi
and Zusanli (Ke et al., 2022), is an efficient therapy for IS. It
is extensively practiced in China and has also been accepted in
other countries and regions in recent years. The mechanism of
action of acupuncture might be associated with its effects on
intestinal microecology and plasma metabolism. It might influence
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Turicibacter, isoflavones, phytoestrogen metabolites (Xian et al.,
2022), and IPA levels (Li et al., 2022). Additionally, the combination
of acupuncture and TCM might have synergistic effects, which
might further enhance the recovery of IS when administered
together.

Intestinal epithelial stem cell
transplants (gut-derived stem cells)
in IS

Several studies have shown an association between a leaky
gut and alterations in gut microbiota in patients with IS
(Huang and Xia, 2021; Zhang W. et al., 2022). The leaky
gut hypothesis suggests that the increase in gut permeability
might cause inflammatory cytokines and toxic gut metabolites to
pass through the compromised intestinal epithelial barrier. The
resultant endotoxemia and bacterial translocation can aggravate
gut hemorrhage, gut dysmotility, intestinal paralysis, bowel
incontinence, and even gut-origin sepsis, along with neurological
impairment and a series of secondary injuries after IS (Larochelle
et al., 2022; Zhang W. et al., 2022). Therefore, the intestinal
epithelium needs to be repaired for the recovery of the patient
after a stroke. Stem cell therapy and organoid techniques are novel
strategies for gut remediation (Shaker and Rubin, 2012). Mani et al.
(2023) showed that the gut is a critical therapeutic target for stroke.
They engrafted organoids containing intestinal epithelial stem
cells (IESCs) from young rats into older model rats that suffered
a stroke. They found that the transplanted IESCs incorporated
into the gut restored gut dysbiosis caused by the stroke and
decreased intestinal permeability, which reduced the circulating
levels of endotoxin LPS and the inflammatory cytokine IL-17A.
They also discovered that IESC transplantation improved stroke-
induced acute (4 day) sensory-motor disability as well as chronic
(30 day) cognitive-affective function. The findings emphasized the
importance of early intervention in the acute stage of stroke and
transplantation of IESCs from young people. However, no clinical
studies on the efficacy of gut-derived stem cells in the treatment
of IS have been reported in the literature to date. In the future,
it will be critical to investigate donor selection, the mechanisms
underlying cell engraftment, and regimens to maximize transplant
efficiency. Therefore, further investigation is needed to optimize the
transplantation time, dose, and route to apply gut stem cell therapy
in the clinic.

Summary

The gut shows an early response to stroke, and changes in the
gut occur simultaneously with stroke-induced hyperpermeability
of the BBB. After the concept of MGBA was proposed, several
studies showed the high clinical application value of the approaches
targeting intestinal microbiota in the treatment of IS. The gut
microbiota can influence the metabolic status of the body besides

exerting strong effects on blood pressure, blood glucose, and
atherosclerosis, all of which are risk factors for IS (Wang J. et al.,
2022). A detailed study of the physiological functions of the
gut microbiota and gut microbiota disorders associated with the
central nervous system might provide new ideas for preventing and
treating IS. Additionally, several studies have also investigated the
development of the dietary intervention, antibiotics, probiotics and
prebiotics, FMT, TCM, as well as gut-derived stem cells for the
microbiome-based treatment of IS (Figure 1). However, intestinal
microbiota-targeted treatment of IS needs further improvement.
Large-sample multicenter studies with long-term follow-up need
to be conducted to verify the benefits. Identifying specific species of
pathogenic bacteria, optimizing targeted regimens, and combining
therapies can greatly contribute to the advancements in treating IS.
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Research hotspots and frotiers of
stem cells in stroke: A bibliometric
analysis from 2004 to 2022
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Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical
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Background: Stroke is one of the leading causes of mortality and permanent
disability worldwide. However, the current stroke treatment has a limited effect.
Therefore, a new treatment is urgently needed. Stem cell therapy is a cutting-edge
treatment for stroke patients. This study aimed to gain better understanding of
global stem cell trends in stroke via a bibliometric analysis.

Methods:Weused theWeb of Science Core Collection to search pertinent articles
about stem cells in stroke published between 2004 and 2022. Analysis was
conducted using CiteSpace, VOSviewer, and the R package “bibliometrix” to
identify publication outputs, countries/regions, institutions, authors/co-cited
authors, journals/co-cited journals, co-cited references, and keywords.

Results: A total of 6,703 publications were included in the bibliometric analysis.
The total number of citations significantly and rapidly increased between
2004 and 2022, with the most pronounced growth pattern observed in the
period of 2008–2009. In terms of authoritarian countries, the USA had the
most publications among the countries. As for institutions and authors, the
most prolific institution was the University of South Florida, followed by
Oakland University and then Shanghai Jiao Tong University, and Chopp, M. and
Borlongan, Cesario V, had the most output among the authors. Regarding the
journals, Cell Transplantation had the highest publication, followed by Brain
Research. As for references, “Mesenchymal stem cells as trophic mediators”
was the most frequently cited (2,082), and the article entitled Neuronal
replacement from endogenous precursors in the adult brain after stroke had
the strongest burstiness (strength = 81.35). Emerging hot words in the past decade
included “adhesion molecule,” “mesenchymal stromal cell,” “extracellular vesicle,”
“pluripotent stem cells,” “signaling pathway,” “plasticity,” and “exosomes.”

Conclusion: Between 2004 and 2022, the terms “neurogenesis,” “angiogenesis,”
“mesenchymal stem cells,” “extracellular vesicle,” “exosomes,” “inflammation,” and
“oxidative stress” have emerged as the hot research areas for research on stem
cells in stroke. Although stem cells exert a number of positive effects, the main
mechanisms formitigating the damage caused by stroke are still unknown. Clinical
challenges may include complicating factors that can affect the efficacy of stem
cell therapy, which are worth a deep exploration.
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1 Introduction

Stroke is currently the third major cause of adult disability and
the second leading cause of mortality worldwide (Owolabi et al.,
2022). Following a stroke, the brain may be damaged by neuronal
apoptosis, oxidative stress, and cytotoxic cascade reactions
(Kuriakose and Xiao, 2020). Stem cell therapy, an emerging
treatment option for stroke, has the potential to improve
neurological outcomes and functions by promoting neurogenesis,
reducing oxidative stress, and decreasing cytotoxicity (Zhao et al.,
2022). At present, many stem cell types have been shown to be
effective in treating stroke, such as pluripotent stem cells (Duan
et al., 2021), neural stem cells (NSCs) (Zhang et al., 2017),
embryonic stem cells (Xia et al., 2021), and mesenchymal stem
cells (MSCs) (Bedini et al., 2018). In addition, many studies have
demonstrated the capacity of these stem cells for brain rewiring
(Pluchino and Peruzzotti-Jametti, 2013), neoangiogenesis (Nam
et al., 2015), inflammatory inhibition (He et al., 2021a), and
nerve regeneration (Ould-Brahim et al., 2018). Scholars have
published a plethora of basic research and clinical trials on stem
cell therapy in stroke, but new and comprehensive quantitative
evidence to support the direction and research hotspots in this field
is limited. Thus, it is necessary to review the development of research
on stem cells in stroke from 2004 to 2022 and to present an objective
analysis based on data from publications as a foundation for future
study.

Bibliometric analysis is a statistical method for forecasting
knowledge structure and hotspots within a certain field of study
through visual representations (Ninkov et al., 2022). By reading this
kind of study, readers may be able to obtain quantitative information
on how journals are distributed by nation, organization, author, and
journal in a specific field (Zhang L. et al., 2022). Bibliometric analysis
provides unambiguous insights into many medical areas (Kokol
et al., 2021). However, bibliometric studies conducted in the field of
stem cells in stroke are scarce. As a result of the dramatic increase in
stem cell research and publications over the past several years, the
necessity to integrate and renew research data in a bibliometric
analysis on stem cells in stroke has arisen.

As a response to the paucity of quantitative analysis of research
regarding stem cells in stroke, the present study acquired global
scientific research on stem cells in stroke between 2004 and
2022 with quantitative information on the publication outputs,
countries/regions, institutions, authors/co-cited authors, journals/
co-cited journals, co-cited and burst references, keywords, and burst
keywords. This study aimed to highlight hotspots for study in this
area by synthesizing research direction and emergent themes from
these investigations.

2 Methods

2.1 Search strategy and data acquisition

The Web of Science (WoS) contains 20,000 reputable academic
publications that span 250 different fields worldwide (Zhong and

Lin, 2022). Other academic researchers in the field of bibliography
have used the WoS as the most trustworthy data source for data
extraction in bibliometric analysis (Dong et al., 2022).

We conducted a comprehensive literature search using the
Web of Science Core Collection (WoSCC) database from
1 January 2004 to 11 August 2022. To obtain as
comprehensive and accurate results as possible, the search
strategies we used were TS=(stroke OR apoplexy OR
“cerebrovascular accident” OR “cerebral hemorrhage” OR
hematencephalic OR encephalorrhagia OR “cerebral
ischemia”) AND TS=(“Stem Cells” OR “Cell, Stem” OR “Cells,
Stem” OR “Stem Cell” OR “Progenitor Cells” OR “Cell,
Progenitor” OR “Cells, Progenitor” OR “Progenitor Cell” OR
“Mother Cells” OR “Cell, Mother” OR “Cells, Mother” OR
“Mother Cell” OR “Colony-Forming Unit” OR “Colony
Forming Unit” OR “Colony-Forming Units” OR “Colony
Forming Units”). Only articles and reviews were included.
Furthermore, letters, commentaries, meeting abstracts, and
other types of documents were excluded. Finally, 6,703 records
were included for analysis. The specific literature screening
process is presented in Figure 1.

2.2 Data analysis

The original data downloaded from the WoSCC were firstly
imported into Microsoft Excel 2016, and then two authors (QZh
and YZ) independently screened the final included articles and
collected all data from the final papers that were included, such as
titles, authors, keywords, institutions, countries/regions,
citations, journals, and publication dates. Subsequently, the
processed data was imported to VOSviewer (version 1.6.15),
CiteSpace (version 5.8), and R package “bibliometrix” for
bibliometric analysis.

CiteSpace is a bibliometric software that enables the analysis
and visualization of trends and patterns in a research area (Pan
et al., 2018; J; Zhang and Lin, 2022). It also creates a knowledge
map of connected fields, clearly presents the panoramic
information of a particular knowledge field, and identifies the
critical studies, hot research, tendency, and frontiers of a specific
scientific field using a variety of dynamic network analysis
techniques (Godfrey et al., 2018; Y; Chen, Lin, and Zhuang,
2022). CiteSpace was used in this study to conduct co-
occurrence and cluster analyses of authors, research
institutions, nations, and discipline features. The parameters
of CiteSpace were set as follows: in the Time Slicing column
time settings 2004.01–2022.08, each year is a time slice.

The Leiden University Center for Science and Technology
Studies (CWTS) created VOSviewer, a software for creating and
analyzing bibliometric networks (Netherlands). VOSviewer can
extract bibliographic networks (co-authorship, co-occurrence, and
citation-based) from bibliographic data (Lin, Chen, and Chen, 2020;
Moral-Muñoz et al., 2020; Luo and Lin, 2021). In this study, co-
occurrence and cluster analyses of authors, research institutions,
countries, and discipline features were conducted using CiteSpace.
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Bibliometrix (https://www.bibliometrix.org) is an open-source R
package developed by Dr. Massimo Aria and Corrado Cuccurullo
from Naples University in Italy. It is capable of conducting
comprehensive bibliometric and scientometric analyses (Moral-
Muñoz et al., 2020). In this study, bibliometrix was used to
create a global distribution network of articles on stem cells in
stroke and to analyze the thematic evolution of those publications
(Aria and Cuccurullo, 2017).

3 Results

3.1 Temporal trend of publication outputs

As can be seen from Figure 2, the histogram and curves exhibit
two trends: the total number of papers published and citations per
year. Both trends grow throughout time, illustrating the direction in
which research in this area is moving. The number of citations

FIGURE 1
Flow chart of the screening process for research on stem cells in stroke.

FIGURE 2
Trends of annual publications on research of stem cells in stroke. The data for 2022 is not complete.
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significantly and rapidly increased between 2004 and 2021,
suggesting that research on stem cells in stroke has attracted
interest. From 2004 to 2007, the number of literature grew
rapidly, and in 2009, it dramatically increased. However, the
number of articles remained relatively stable from 2010 to 2017.
The year 2020 had the most number of publications in recent years,
which peaked at 515. Although the data for 2022 have not yet been
completed, it is predicted that they will exhibit a moderate trend
compared with those in the previous year.

3.2 Contributions of countries/regions

As for the geographical distribution, 6,703 documents were
published from 94 different countries and regions; Table 1
presents the top 10 countries/regions in this category. As can be
seen from Figure 3B and Supplementary Figure S1, we also used
VOSviewer for the visual analysis of countries or regions. The USA
published the most papers (1,555papers, 25.61%), followed by China
(738 papers, 12.15%) and then Japan (714papers, 11.76%),
indicating that these three countries play a crucial role in this
field. The quantity and connections among publications in each
nation were then used to create a collaborative network (Figure 3A).
A country collaboration analysis was conducted on the 30 countries
with the highest number of publications in this area (Figure 3C).
According to the total link strength, the top five countries/regions
were the USA, China, Japan, Germany, and South Korea.

3.3 Contributions of institutions

In Table 2, the top 10 institutions with the highest productivity
are ranked by their productivity. China and the USA were the only
two countries where the highest productivity were located. The most
prolific institution was the University of South Florida
(164 publications, 2.70%), followed by the Oakland University
(151 publications, 2.49%) and then the Shanghai Jiao Tong
University (129 publications, 2.12%). The clustering analysis of

institutions is presented in Figure 4A. A tight and continuous
interaction between institutions can also be observed. Among
them, the institutions with more collaborations were Oakland
University, Henry Ford Hospital, and Henry Ford Health Science
Center, followed by Sapporo Medical University and Yale
University. In Figure 4B, we analyzed the data of articles
published in the last 5 years using VOSviewer. For instance,
Harvard University started research in the field earlier and had
published significantly more articles in the past than it had recently.
Contrarily, Capital Medical University entered the field later and has
recently published a higher number of articles. As can be seen from
the cluster analysis figure, the red and light blue circles indicate
mainly Chinese institutions. Combined with the visual timeline, it
can be seen that Chinese institutions are predominantly yellow,
indicating that they entered the field late or have recently published a
high number of articles.

Figure 4C presents the publication trend in this field by different
institutions over time. The University of South Florida accounted for
more than half publications from 2004 to 2006 and then gradually
declined; however, the University of South Florida remained in the
leading position, demonstrating the remarkable contributions of this
institution to this sector. The rest of the institutions exhibited an
upward trend in the publication quantity. Interestingly, Shanghai
Jiao Tong University has made the most significant progress. Since
2018, Shanghai Jiao Tong University has, unsurprisingly, ranked
first among the 10 institutions in terms of publication ratio. We also
used CiteSpace for the visual analysis of institution clusters and
marked them with keywords (Figure 4D). Consequently, the Johns
Hopkins University, Massachusetts General Hospital, and National
University of Singapore exhibited high centrality. The largest cluster
in Supplementary Figure S1 was designated “ischemic stroke”
(cluster #0), indicating that various institutions are most
concerned with this word. It was followed by “clinical trials”
(cluster #1), “primate” (cluster #2), and “extracellular matrix”
(cluster #3), respectively. Other important clusters were
“mesenchymal stem cell,” “neurological function,” and
“hypothermia.”

3.4 Authors and Co-cited authors

Approximately 174 writers contributed to a total of
6,703 articles. The most prolific author was Chopp, M. who
produced 160 articles (2.63%), closely followed by Borlongan,
Cesario, V who produced 143 publications (2.35%). Three
authors published 50 and more articles (Zhang Zheng Gang,
Yang Guo-Yuan, and Kokaia Zaal), and five authors published
40 and more articles (Hermann Dirk M. Chen Jieli, Lindvall Olle,
Sanberg P. R. and Kaneko Yuji) (Table 3). Information on co-
authors and co-cited authors was also analyzed using VOSviewer
(Figures 5A, B). Figure 5A shows that there are primarily two
research teams involved in author collaboration, led by Chopp,
M. and Borlongan, Cesario, V, who frequently and closely
collaborate with other authors. Co-cited authors are those who
have had two or more of their names concurrently mentioned in
one or more subsequent articles and who are therefore considered to
have a co-citation connection. A total of more than 1000 citations
have been received by the top six authors among the top 10 co-cited

TABLE 1 Top 10 countries/regions with highest publications on stem cells in
stroke.

Rank Countries/Regions Total link strength Count (%)

1 United States 1220 1555
(25.61%)

2 China 585 738 (12.15%)

3 Japan 497 714 (11.76%)

4 Germany 426 342 (5.63%)

5 South Korea 303 280 (4.61%)

6 England 271 271 (4.46%)

7 Canada 244 249 (4.10%)

8 Italy 243 224 (3.69%)

9 Spain 238 220 (3.62%)

10 Taiwan 216 216 (3.56%)
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writers (Table 3). The most frequently referenced author was Chen
Jl. (n = 2,214), followed by Jin, Kl (n = 1,473), Li, Y (n = 1,367),
Zhang, RI (n = 1,313), Borlongan, Cv (n = 1,144), and Avidsson, A
(n = 1,003).

3.5 Journals and Co-cited academic journals

We found that 252 journals published 6,703 papers regarding
stem cells in stroke. As can be seen from Table 4, it is clear that the
journal Cell Transplantation has the most papers (172, 2.83%),
followed by Brain Research (160, 2.63%). Among the top

10 journals, Stroke (10.17) has the greatest impact factor (IF).
The number of times the top 10 most co-cited journals are cited
determines their influence. As presented in Table 4, the publication
with the most citations is Stroke (19,776), indicating that it has a
significant impact in this category, followed by the Journal of
Neuroscience (14,061) and Proceedings of the National Academy
of Sciences of the United States of America (11,769).

Using VOSviewer, we conducted a visual analysis of the
published journals and obtained details about journal
collaboration through Figures 6A, B. We could see that the
journals of Stroke, Archives of Physical Medicine and
Rehabilitation, and Neurorehabilitation and Neural Repair had

FIGURE 3
(A) Country/region collaboration map. The Darker blues indicated higher collaboration rates, the wider the link line, the higher the rate of
collaboration between the two countries. (B) Distribution of countries/regions in the field of stem cells in stroke. The size of the circle represents the
number of articles issued by countries or regions, and the line means cooperation among countries or regions (C) Distribution and international
cooperation of countries that are involved in stem cells in stroke research. The thickness of the line reflects the frequency of the cooperation. The
thicker the line, the stronger the cooperation.
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TABLE 2 Top 10 institutions related to stem cells in stroke.

Rank Institution Count (%) Country Institution Total link strength

1 Univ S Florida 164 (2.70%) United States Oakland Univ 182

2 Oakland Univ 151 (2.49%) United States Henry Ford Hosp 133

3 Shanghai Jiao Tong Univ 129 (2.12%) China China Med Univ 114

4 Henry Ford Hosp 107 (1.76%) United States Harvard Univ 102

5 Fudan Univ 102 (1.68%) China Univ S Florida 101

6 China Med Univ 97 (1.60%) China Shanghai Jiao Tong Univ 91

7 Capital Med Univ 96 (1.58%) China Massachusetts Gen Hosp 88

8 Stanford Univ 91 (1.50%) United States Seoul Natl Univ 87

9 Sun Yat Sen Univ 85 (1.40%) China Univ Pittsburgh 79

10 Johns Hopkins Univ 79 (1.35%) United States Univ British Columbia 79

FIGURE 4
(A) Institutions clustering analysis. The node size signifies the number of publications of institutions, and the thickness of the line signifies the
strength of cooperation among institutions; node colors signify different clusters. (B) Timeline visualization of collaboration among institutions. The blue
to yellow gradient represents the number of articles published in the last 5 years as a percentage of the total number of articles published by the
organization (C) Trends of publications in this field by different institutions over time. Different colors represent different institutions, the high and
low positions represent the ranking of the institution’s publication quantity, and the width represents the proportion of the institution’s publication
quantity among the top 10 institutions’ publications of the year (D) Institutions related to stem cells in stroke. The larger the circle, the more articles the
institution posts. The purple circle represents centrality, and the line means cooperation among institutions.
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more times of co-citation and greater influence. We also conducted
comparative analysis of the journals’ popularity, as presented in
Figure 6C. Through this heat map, we can understand the change in
the research direction and emphasis in this field and grasp the
development trends. We found that in recent years, the popularity of
NEUROSURGERY, CURRENT NEUROVASCULAR RESEARCH,
and PANS had gradually decreased, whereas that of CELLS,
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, and
FRONTIERS IN CELLULAR NEUROSCIENCE had gradually
increased. One of the interesting things about STEM CELL
REVIEWS AND REPORTS is that its popularity had declined
year by year, but in the last 2 years, it had returned to its level in
2004. Furthermore, on the dual-map overlay of journal publishing
research (Figure 6D), we found four citation paths (colors orange,
pink, and green), demonstrating that the studies published in
molecular/biology/genetics journals and health/nursing/medicine
journals were mainly cited by the studies published in molecular/
biology/immunology, medicine/medical/clinical, and neurology/
sports/ophthalmology journals.

3.6 Co-cited reference and reference bursts

The top 15 documents that were cited the most often out of the
6703 retrieved are listed in Table 5.Mesenchymal stem cells as trophic
mediators was the most frequently cited (2,082), which is a review of
studies on the applications of adult marrow-derived MCSs. It was
followed by Concise review: Mesenchymal stem cells: Their
phenotype, differentiation capacity, immunological features, and
potential for homing (1,725) and then Adult mesenchymal stem
cells for tissue engineering versus regenerative medicine (1,378).

When two or more articles are simultaneously cited in the same
article, the relationship between the simultaneously cited articles is
referred to as co-citation. As presented in Figure 7A, we also used the
CiteSpace clustering function to create a visual map to cluster the co-
citation literature, and the collected literature was separated into
11 clusters via cluster analysis. Each cluster was intimately
connected to the others and worked together in specific areas.
The weighted mean silhouette and modularity Q were 0.8694 and

0.691, respectively, demonstrating the stability, believability, and
persuasiveness of the clustering structure. Figure 7A illustrates the
time dimension by the color of circle changing from purple to
yellow, which also shows the change in the direction and
concentration of the research. While the “hippocampus” cluster
had received more attention in the past, researchers recently turned
their attention to “exosomes,” “hydrogels,” and “ischemic stroke.”
The name of the biggest cluster was “subventricular zone” (cluster
#0), which was followed by “transplantation” (cluster #1), “ischemic
stroke” (cluster #2), and “hydrogel” (cluster #3). The
“hippocampus,” “neurogenesis,” “bone marrow stromal cells
(BMSCs),” and “exosomes” clusters were other significant groups
that may have represented a turning point in some sense.

As shown in Figure 7B, we created a visual map to cluster the
cited literature over the last 3 years and divided them into 21 clusters
through cluster analysis using CiteSpace. The weighted mean
silhouette and modularity Q were 0.8729 and 0.7518,
respectively, demonstrating the stability, believability, and
persuasiveness of the clustering structure. The Figure 7B can help
us get the latest research hotspots. The largest cluster was “cell
treatment” (cluster #0), which was followed by “exosomes” (cluster
#1), “biomaterials” (cluster #2), and “ischemic stroke” (cluster #3).
Additional significant clusters were “adult neurogenesis,”
“microglia,” “intracerebral hemorrhage,” and “pericytes.”
Combined with Figure 7A, the “hippocampus” cluster has
received more attention in the past, researchers have recently
turned their attention to “exosomes,” “hydrogels,” and “ischemic
stroke.” In Figure 7C, the top 25 references are listed in
chronological order, which have the greatest burst intensity.
References that receive several citations over a period of time are
known as “citation burst” references. We set the time period in
CiteSpace to 2004–2022 and still kept references with a burst
termination date of 2022. Neuronal replacement from endogenous
antecedents in the adult brain following stroke by Andreas et al. was
published in Nature Medicine in 2002, and it had the strongest
burstiness (strength = 81.35), occurring from 2004 to 2007
(Arvidsson et al., 2002). The advantages and disadvantages of the
top 25 articles with the strongest citation bursts are summarized in
Supplementary Table S1.

TABLE 3 Top 10 authors and co-cited authors related to stem cells in stroke.

Rank Author Count (%) Total link strength Author Co-citations Total link strength

1 Chopp, M. 160 (2.63%) 392 Chen, Jl 2214 36563

2 Borlongan, Cesario, V 143 (2.35%) 232 Jin, Kl 1473 29645

3 Zhang, Zheng Gang 57 (0.94%) 169 Li, Y 1367 22711

4 Yang, Guo-Yuan 52 (0.86%) 89 Zhang, Rl 1313 25956

5 Kokaia, Zaal 50 (0.82%) 77 Borlongan, Cv 1144 18474

6 Hermann, Dirk M. 45 (0.74%) 86 Arvidsson, A 1003 17582

7 Chen, Jieli 42 (0.69%) 148 Zhang, Zg 879 15015

8 Lindvall, Olle 42 (0.69%) 69 Parent, Jm 701 13781

9 Sanberg, P. R. 42 (0.69%) 64 Lindvall, O 646 10025

10 Kaneko, Yuji 40 (0.66%) 112 Savitz, Si 643 12778
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3.7 Key topics of research hotspots

The use of cluster analysis to cluster the included keywords and
summarize the study subjects might be helpful for relevant
researchers in identifying popular topics and assisting scholars in
better understanding current scientific concerns. We used
VOSviewer to cluster the keywords into eight, as presented in
Figure 8A: origin and behavior of stem cells (red),
pathophysiological process of stroke (green), treatment of stroke
and application of stem cells (purple), effects of stem cell therapy
after stroke (light blue), cells that make up the central nervous

system and the pathophysiological changes (orange), other diseases
associated with stem cell therapy (brown), exosomes and
mechanism of action (yellow), others (navy blue).

Meanwhile, we performed a series of keyword burst detections.
To evaluate the development of stem cells in stroke research,
researchers used a method named “keyword burst detection,”
which is the recognition of phrases that often occur in a certain
period of time. Table 6 demonstrates that terms with a high
frequency in this study, aside from “stroke” (1538), include
“ischemia” (801), “neurogenesis” (660), “brain ischemia” (553),
“mesenchymal stem cell” (549), and “neural stem” (541).

FIGURE 5
(A)Co-author related to stem cells in stroke. Each circle represents an author, the lines between the circles signify connections between the authors,
and the networks of connections in different colors signify cooperative clusters among different authors (B) Co-cited-author clustering analysis.
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Prominent keywords were further analyzed. The top 25 keywords
are listed Figure 8B in chronological order, which have the greatest
burst intensity. It can be seen from the figure that the keywords that
had exploded in the past 5 years mainly focused on “extracellular
vesicles,” “inflammation regulation,” and “regulation of extracellular
matrix.” A timeline analysis that visually depicts the research
hotspots and development paths of stem cells in stroke at various
stages from a temporal perspective is presented in Supplementary
Figure S2. The keywords that have received extensive attention in
this field appear early, for example, cerebral ischemia, regeneration,
NSC, endothelial progenitor cells, apoptosis, and cell therapy.
Emerging hot words in the past decade include adhesion
molecule, mesenchymal stromal cell, extracellular vesicle,
pluripotent stem cell, signaling pathway, plasticity, and exosomes.

4 Discussion

4.1 Global research trends of stem cells in
stroke

This study aimed to conduct a bibliometric analysis of the last
18 years’ worth of research on stem cells in stroke. The citation
count has been steadily increasing each year, with the
2008–2009 period showing the clearest growth pattern. Prior to
2008, an average of 150 papers per year were published in this field.
From 2009 to 2022, the number of publications gradually increased,
with an average of 350 papers published annually. The number of
articles published in 2020 peaked at 515. These findings indicated
that studies on stem cell therapy for stroke have gained increasing
attention from researchers from all over the world in recent years,
and the research area is currently in a steady developmental stage.

The top three authoritarian countries performing research on
stem cells in stroke are the USA, China, and Japan. Four European
nations, four Asian-Pacific nations, and two American nations make

up the top ten nations. Furthermore, among the top 10 research
institutions, five were American, and the remaining five were
Chinese. We observed a close coordination between four nations,
namely, Germany, Japan, China, and the United States. China also
actively works with Japan, Canada, and England. There are some
academic institutions that collaborate well with one another, such as
Shanghai Jiao Tong University, Capital Medical University, and
Harvard University. Although Oakland University ranked second in
terms of paper publications, it was found to have limited
collaborations with other universities. Such collaborations are
detrimental for these universities in terms of long-term scholarly
advancement. Consequently, it is indeed necessary that research
organizations from many nations work closely together and
communicate to collaboratively promote stem cell therapy for
stroke.

As for the journals, those listed in Table 4 may be the core
journals of the publication of research on stem cells in stroke. The
most widely followed journal in this field of study is Cell
Transplantation (IF = 4.139, Q3), with the majority of research
on stem cell therapy published in this journal. Stroke (IF = 10.17, Q1)
has the greatest IF, which also received the most citations
(19,776 times). According to the Journal Citation Reports
(2021 edition), five journals had IF values between 5 and 10
(Journal of Cerebral Blood Flow And Metabolism, International
Journal Of Molecular Sciences, Experimental Neurology, Stem Cell
Research and Therapy, and Neural Regeneration Research), four had
an IF value between 3 and 5 (Cell Transplantation, Brain Research,
Plos One, andNeuroscience), and no journal had an IF value below 3.
These results indicated that most studies were published in these
high-quality journals, and when researching on this topic, academics
should concentrate on the content published in these journals. Most
of the co-cited journals are high-impact Q1 journals, as can be seen
from the list of co-cited journals. These journals support the
investigation of stem cells in stroke and are undoubtedly of high
quality. Furthermore, current research on stem cells in stroke is

TABLE 4 Top 10 journals and co-cited journals related to stem cells in stroke.

Rank Journal Count
(%)

IF(JCR
2020)

JCR
Quartile

Co-cited-
journal

Citations IF(JCR
2020)

JCR
Quartile

1 Cell Transplantation 172 (2.83%) 4.139 Q3 Stroke 19776 10.17 Q1

2 Brain Research 160 (2.63%) 3.61 Q3 J Neurosci 14061 6.709 Q1

3 Stroke 158 (2.60%) 10.17 Q1 P Natl Acad
Sci Usa

11769 12.779 Q1

4 Plos One 147 (2.42%) 3.752 Q2 J Cerebr Blood
F Met

10862 6.96 Q1

5 Journal Of Cerebral Blood Flow And
Metabolism

137 (2.26%) 6.96 Q1 Brain Res 8227 3.61 Q3

6 Neural Regeneration Research 129 (2.12%) 6.058 Q2 Nature 7386 69.504 Q1

7 International Journal Of Molecular
Sciences

113 (1.86%) 6.208 Q1 Plos One 7295 3.752 Q2

8 Neuroscience 103 (1.70%) 3.708 Q3 Stem Cells 6787 5.845 Q1

9 Experimental Neurology 102 (1.68%) 5.62 Q2 Exp Neurol 6630 5.62 Q2

10 Stem Cell Research and Therapy 95 (1.56%) 8.098 Q1 Science 6519 63.798 Q1
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mostly published in journals pertaining to molecular biology,
immunology, and medicine, followed by journals about
neurology, sports, and ophthalmology. This indicates that basic
research still constitutes the focus of the research and that the
proportion of clinical studies is relatively low.

As for the authors, Chopp, M. (Oakland University, USA) is the
most prolific, followed by Borlongan, Cesario, V (Stanford
University, USA). They contributed to so many publications and
were leaders in this field. Before 2015, Professor Chopp, M. and his
team mainly focused on the role of stem cells in stroke, including
BMSCs, neural progenitor cells, and human umbilical cord blood
cells. In 2002, they found that after adult mouse suffered focal
cerebral ischemia, endothelial progenitor cells generated from bone
marrow contributed to brain neovascularization (Z. G. Zhang et al.,
2002). Then in 2006, they demonstrated that intracarotid
transplantation of BMSCs increased axon-myelin remodeling
following stroke (L.H. Shen et al., 2006). Their experimental
results in 2010 indicated that following a stroke in mice, MSC-
mediated enhanced tPA activation in astrocytes encouraged neurite

development (Xin et al., 2010). The next year, they published a study
on how the production of astrocytic endogenous glial cell-generated
neurotrophic factor was enhanced by BMSC implantation in the
ischemic boundary area following stroke in adult rats (Shen et al.,
2010). In the same year, they confirmed that the subventricular area
has more progenitor cells dividing than normal due to the human
umbilical cord tissue-derived cells (hUTCs) (Zhang et al., 2011) and
had a neurorestorative effect (Ding et al., 2013). They proposed that
the level of proinflammatory factors in the blood can be significantly
reduced after hUTC transplantation (Bae et al., 2012). Furthermore,
Chopp, M. discovered several chemicals that control stem cell
migration, differentiation, and proliferation, such as specific
miRNAs (X. S. Liu et al., 2013; Buller et al., 2012), atorvastatin
(R. L. Zhang et al., 2012; J; Chen et al., 2008), angiopoietin 2 (X. S.
Liu et al., 2009), and erythropoietin (L. Wang et al., 2008). These
findings provided a solid theoretical basis for the rapid development
of stem cells in stroke. Afterwards, Chopp, M. and his team shifted
the attention to MSC-derived exosomes and described how they
contribute to immunological reactivity, vascular remodeling, and

FIGURE 6
(A) Co-journal clustering analysis. Each circle represents a journal, the size of the circle depends on the strength of the connection, the number of
citations, and so on. And, the color of the circle on behalf of the cluster to which it belongs, different clusters are represented by different colors. (B) Co-
cited-journal clustering analysis (C) Journals heat map on stem cells in stroke. Each line was compared with each other. The value in the box is the
number of articles published in the journal divided by the number of articles published in the year, verbalizing the current year’s popularity of the
journal, The redder the color verbalizes the hotter journal in the year, so it was called the heat map (D) The dual-map overlay of journal publishing
research. Citing journals on the left and cited journals on the right, and the curve is the citation line, which completely shows the context of the citation,
the more papers the journal publishes, the longer the vertical axis of the ellipse; the more authors they are, the longer the horizontal axis of the ellipse.
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brain regeneration during stroke recovery. In addition, they
provided an overview of the potential and perspectives of stem
cells in the fields of stroke and regenerative medicine, the links
between stem cells and inflammatory factors for stroke
rehabilitation, and the prospects of exosomes in the field of
stroke. In the recent 2 years, Chopp et al. gradually focused on
and studied the application of extracellular vesicles in neurological
diseases, indicating that the extracellular vesicles may perhaps
become a new research hotspot in this field.

The most commonly co-cited author is Chen, Jl. (citation =
2,214), followed by Jin, K.L. (citation = 1,473), and Li, Y. (citation =
1,367). In 2006, Chen, Jl. investigated the effects of giving human

BMSCs (hBMSCs) intravenously after intracerebral hemorrhage
(ICH) in rats and found that doing so dramatically improves
neurological function (Seyfried et al., 2006). This paper provided
the basis for the clinical investigation of BMSCs in ICH. The next
year, Chen, Jl. demonstrated neurological recovery in rats
intravenously injected with hBMSCs 1 month following a stroke
(Shen et al., 2007b) and published the first 1-year follow-up report of
BMSC therapy in stroke rats (Shen et al., 2007a). This report proved
that BMSCs have an effect on scarring reduction and cell
proliferation increase. In 2013, Chen, Jl. concluded that while the
effect of multiple injections did not outperform single-injection
therapy in terms of functional outcomes and histological

TABLE 5 Top 15 co-cited references related to stem cells in stroke.

Rank Author Article title Source title Cited Year DOI

1 Caplan, AI, et al. Mesenchymal stem cells as trophic
mediators

JOURNAL OF CELLULAR
BIOCHEMISTRY

2082 2006 10.1002/jcb.20886

2 Chamberlain, G,
et al.

Concise review: Mesenchymal stem
cells: Their phenotype, differentiation
capacity, immunological features, and

potential for homing

STEM CELLS 1725 2007 10.1634/stemcells.2007-0197

3 Caplan, AI Adult mesenchymal stem cells for
tissue engineering versus regenerative

medicine

JOURNAL OF CELLULAR
PHYSIOLOGY

1378 2007 10.1002/jcp.21200

4 Moskowitz, MA,
et al.

The Science of Stroke: Mechanisms in
Search of Treatments

NEURON 1303 2010 10.1016/j.neuron.2010.07.002

5 Langhorne, P,
et al.

Stroke Care 2 Stroke rehabilitation LANCET 1290 2011 10.1016/S0140-6736 (11)60325-5

6 Schmidt-Lucke,
C, et al.

Reduced number of circulating
endothelial progenitor cells predicts
future cardiovascular events - Proof of
concept for the clinical importance of

endogenous vascular repair

CIRCULATION 915 2005 10.1161/
CIRCULATIONAHA.104.504,340

7 Imitola, J, et al. Directed migration of neural stem
cells to sites of CNS injury by the
stromal cell-derived factor 1 alpha/
CXC chemokine receptor 4 pathway

PROCEEDINGS OF THE NATIONAL
ACADEMY OF SCIENCES OF THE
UNITED STATES OF AMERICA

851 2004 10.1073/pnas.0408258102

8 Bang, OY, et al. Autologous mesenchymal stem cell
transplantation in stroke patients

ANNALS OF NEUROLOGY 838 2005 10.1002/ana.20501

9 Abrous, DN, et al. Adult neurogenesis: From precursors
to network and physiology

PHYSIOLOGICAL REVIEWS 750 2005 10.1152/physrev.00055.2003

10 Lalu, MM, et al. Safety of Cell Therapy with
Mesenchymal Stromal Cells

(SafeCell): A Systematic Review and
Meta-Analysis of Clinical Trials

PLOS ONE 728 2012 10.1371/journal.pone.0047559

11 Falk, E Pathogenesis of atherosclerosis JOURNAL OF THE AMERICAN
COLLEGE OF CARDIOLOGY

715 2006 10.1016/j.jacc. 2005.09.068

12 Dutta, P, et al. Myocardial infarction accelerates
atherosclerosis

NATURE 688 2012 10.1038/nature11260

13 Amariglio, N,
et al.

Donor-Derived Brain Tumor
Following Neural Stem Cell
Transplantation in an Ataxia

Telangiectasia Patient

PLOS MEDICINE 671 2009 10.1371/journal.pmed.1000029

14 Ohab, JJ, et al. A neurovascular niche for
neurogenesis after stroke

JOURNAL OF NEUROSCIENCE 661 2006 10.1523/JNEUROSCI.4323-06.2006

15 Lochhead, JJ, et al. Intranasal delivery of biologics to the
central nervous system

ADVANCED DRUG DELIVERY
REVIEWS

628 2012 10.1016/j.addr. 2011.11.002
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FIGURE 7
(A) Co-cited references related to stem cells in stroke. The circles represent the number of co-citations, the purple circle represents centrality, the
thickness of connection indicates the cooperation degree, and the purple to yellow gradient represents the time from the past to the present. (B) Cluster
view of references in stem cells in stroke research in recent 3 years. The larger the circle, the more times the corresponding paper has been cited in the
last 3 years (C) CiteSpace visualization map of top 25 references with the strongest citation bursts involved in stem cells in stroke. The blue line
represents the time interval. The blue line represents the time interval. The time in which a reference was found to have a burst is displayed by a red line,
indicating the first year and the last year of the duration of the burst.
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FIGURE 8
(A) Clustering of co-occurrence among keywords. The circles and labels in the figure constitute a unit, and the units of different colors constitute
different clusters (B) CiteSpace visualization map of top 25 keywords with the strongest citation bursts involved in stem cells in stroke.
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evaluations, it significantly improved long-term functional
outcomes following stroke (Shehadah et al., 2013). In 2014, in a
review article published in Progress in Neurobiology, Chen, Jl.
described the application of stem cells from various cell origins
in stroke as well as the restorative mechanisms, distribution
methods, and imaging methodologies, which also covered the
difficulties in stem cell therapy converting to clinical applications
(X. Liu et al., 2014). The aforementioned studies generally focus on
the mechanisms and therapeutic benefits of stem cell treatment for
stroke, indicating that the field is still in the development stage and
that additional basic and clinical translational research are still
required. Clearly, the achievements of Chen, Jl. have laid a
theoretical and experimental basis for research on stem cells in
stroke.

A reference is deemed to be co-cited if it is cited in a number of
different publications, in which case the co-cited references could be
viewed as the foundation of the field’s study. To determine the
research foundation for stem cells in stroke, we selected
15 references with the largest number of co-citations for this
bibliometric analysis. Among the top 15 co-cited publications,
two were written by Caplan et al., the first of which was the
most often mentioned study and was published in the Journal of
Cellular Biochemistry in 2006. This study firstly showed the trophic
of the MSC-secreted bioactive molecules and summarized the
application of the MSC trophic effect in injured tissues (Caplan
and Dennis, 2006). The biological mechanisms of the in vivo
functionality of MSCs during development and aging were
outlined in another study (Caplan, 2007). The second most co-
cited study was written by Chamberlain, G. et al., in 2011 and
published in STEM CELLS. Their discovery that the movement of
MSCs from the circulation into tissues may be facilitated by
chemokine receptors and adhesion molecules attracted interest in
terms of the function of stem cells in immunological regulation. Of
the top 15 co-cited references (Abrous, Koehl, and Le Moal, 2005;
Ohab et al., 2006), two were about the neural regeneration function
of stem cells, outlining the molecular mechanisms between stem
cells and neurogenesis and suggesting that stem cell therapy may be

a therapeutic strategy for nervous system diseases. Three references
(Schmidt-Lucke et al., 2005; Falk, 2006; Dutta et al., 2012)
demonstrated that stem cells can repair blood vessels and
promote neoangiogenesis. Overall, the biological function,
transplantation, components, and targeted delivery of stem cells
are the main subjects of discussion in the top 15 co-cited references,
which represent the research foundation of stem cells in stroke.

4.2 Hotspots and frontiers

Citation bursts refer to references that have received a lot of
recent citations from other scholars and highlight emerging themes
within a specific research field. In accordance with the key research
topics of the references with the strongest citation bursts
(Figure 7C), the potential mechanism of directed migration and
neurogenesis of NSCs as well as the therapeutic effects of stem cells
in stroke are currently the main areas of study for research on stem
cells in stroke. In addition to references with citation bursts,
keywords can facilitate swift capturing of the distribution and
development of hotspots in the realm of research on stem cells in
stroke. Combining the citation bursts and keywords, we prepare to
divide the hotspots and frontiers into two main research areas,
namely, the mechanistic research hotspots and the clinical research
hotspots, to discuss the distribution of their respective hot spots
according to Table 6 and Figures 8A, B.

4.3 The hotspot mechanisms of stem cells in
stroke

4.3.1 Stem cell and regeneration mechanism
As can be seen from Table 6, “neurogenesis,” “angiogenesis,”

and “neural stem cells” are currently the focus of research in stem
cell regeneration. Nerve and cerebrovascular regenerations are
essential for recovery from stroke (Zhang et al., 2022). In 1992,
Reynolds,Weiss, et al. isolated NSCs and fostered for the first time in

TABLE 6 Top 20 keywords related to stem cells in stroke.

Rank Keyword Occurrences Total link
strength

Rank Keyword Occurrences Total link
strength

1 stroke 1538 4098 11 transplant 306 934

2 ischemia 801 2025 12 inflammation 259 804

3 neurogenesis 660 1878 13 endothelial progenitor cells
(epcs)

204 436

4 brain ischemia 553 1381 14 apoptosis 191 554

5 mesenchymal stem cell 549 1307 15 stem cell 185 561

6 neural stem cell 541 1447 16 traumatic brain injury 161 490

7 stem cells 464 1351 17 neurodegenerative disorder 156 489

8 cell transplantation
therapy

461 1327 18 microglia 150 444

9 angiogenesis 387 1157 19 astrocytes 144 429

10 neuronal protection 382 1087 20 blood-brain barrier (BBB) 138 391
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the presence of epidermal growth factor, leading to large cell spheres
they called “neurospheres” (Reynolds and Weiss, 1992). The
discovery of NSCs provides a new promising therapy for nerve
and vascular regenerations in stroke. Neuronal and glial cells
originate from the common immature NSC, defined as self-
renewing and multipotent cells that can differentiate into
neurons, astrocytes, and oligodendrocytes (Reynolds and Weiss,
1992). NSCs were found to exist not only in the developing brain but
also in the mature mammalian brain. Many studies have
demonstrated that NSCs can replace lost neurons and restore
connectivity in neuronal circuits, contributing to improved
recovery from stroke and brain injury in rats (Daadi et al., 2009;
Yokobori et al., 2019; Abeysinghe et al., 2015; Hou et al., 2017; G;
Wang et al., 2020). Transplanted NSCs may prevent neuronal
apoptosis, exert immunomodulatory effects both inside and
outside the brain, and increase endogenous neuronal
regeneration and angiogenesis (G.-L. Zhang, Zhu, and Wang,
2019; Horie, Hiu, and Nagata, 2015). Numerous studies have
evaluated the therapeutic efficacy and safety of transplanted
exogenous NSCs in preclinical animals with cerebral ischemic
stroke (Daadi et al., 2009; Horie et al., 2011; Yokobori et al.,
2019). However, due to the limited regeneration capacity of
NSCs, the physiological environment is complex, which limits
their repair effect. The current alternative approach to the use of
NSCs is the use of inducible pluripotent stem cells or MSCs. Tobin
and colleagues reported that both activated and naive MSCs induced
complete behavioral recovery, reduced infarct volumes, and reduced
microglial activation and IL-1β, TNF-α, and IL-6 levels in treated
animals compared with vehicle-treated control stroke animals
(Tobin et al., 2020). The angiopoietin expression and blood
vessel density in ischemic brain tissue significantly increased after
MSC transplantation (Zhang et al., 2022). MSC transplantation can
promote neurogenesis mainly involving enhancement of
endogenous neural cell proliferation and protection of newly
grown cells from the pathogenic environment. A recent study
demonstrated that MSC spheroid-loaded collagen hydrogels
played a therapeutic role through three upregulated signals
related to cell communication and upregulated the PI3K-Akt
signaling pathway, which increased the expression of proteins
related to neurogenesis and neuroprotection (He et al., 2021b).
As MSCs can be used to promote the differentiation of NSCs
into neurons by the production of different classes of trophic
factors and anti-apoptotic molecules, future studies can focus on
the development of MSC cell therapies associated with NSCs to
facilitate nervous system recovery.

4.3.2 Antioxidant and anti-inflammatory
mechanism

Research on “oxidative stress” and “inflammation” have
gradually become popular in recent years, suggesting that
scholars have investigated stem cells into a deeper level.
“Oxidative stress” and “inflammation” were among the top
25 keywords from 2020 to 2022 with the most citation spikes.
Previous research demonstrated that oxidative stress and
inflammation are two of the initial steps in the chain of events
leading to cerebral ischemia injury, which disrupts various neuronal
circuits (Rana and Singh, 2018; Chen H. et al., 2020; Chen S. et al.,
2020). It has been commonly acknowledged that inflammation plays

a major role in the development and course of the disease, as well as
in recovery and wound healing following a stroke (Shekhar et al.,
2018). Meanwhile, the potential of antioxidant therapies for stroke is
suggested by the presence of induced oxidative modulatory pathway
in the development of stroke (Pradeep et al., 2012). In recent years, it
has been proven that stem cell therapy is a potentially successful
treatment for inhibiting inflammation and oxidative stress following
stroke (Lei et al., 2022). Researchers found that MSCs reduced the
level of cellular oxidative stress and elevated the intracellular calcium
and reactive oxygen species of neuronal cells when under stress from
cerebral ischemia (K.-H. Chen et al., 2016; Alhazzani et al., 2018). In
addition, emerging evidences have suggested that stem cells can
increase the effectiveness of mitochondrial transfer to improve
oxidative phosphorylation, lessen cellular oxidative stress levels
and subsequently the brain damage cascade caused on by
ischemic injury (Tseng et al., 2021; K; Liu et al., 2019). Based on
the foregoing discussion, by lowering the degree of oxidative stress
and transferring healthy mitochondria to damaged cells, stem cells
engage their antioxidant ability in ischemic stroke. As for the
inhibition of inflammation, recent research suggested that stem
cells can regulate immune cell infiltration and polarization in
ischemic brain to reduce neuroinflammation (Li et al., 2019;
Yang et al., 2020). Interestingly, many studies reported no
difference in or even worse efficacy of anti-inflammatory agents
for stroke (Iosif et al., 2008; Tobin et al., 2014). However, some
researchers used anti-inflammatory compounds to strengthen the
anti-inflammatory effects of MSCs. For instance, some investigators
found that MSCs from human umbilical cords that overexpress C–C
motif chemokine ligand two or MSCs that have been activated with
interferon-γ have a stronger anti-inflammatory ability in ischemic
stroke compared with naive MSCs (Lee et al., 2020; Tobin et al.,
2020). Collectively, oxidative stress and inflammation are both
mechanisms of the main occurrence and development of stroke.
Stem cells can fight oxidative damage, reduce inflammation, and
alleviate aggravation of stroke. However, the mechanisms involves
many pathophysiological processes and molecular pathways, which
are needed to figure out, including the phenomenon caused byMSCs
combined with anti-inflammatory agents, as described above.
Therefore, in an attempt to understand the underlying
mechanism, more research on mechanism is warranted.

4.3.3 Stem cells and extracellular vesicles
“Mesenchymal stem cells” are among the current study hotspots

in terms of stem cell type selection. Among several stem cell types,
MSCs have attracted the attention of numerous researchers. MSCs
can be simply extracted from the bone marrow (51%), umbilical
cord (17%), and adipose tissue (11%) (Kabat et al., 2020). MSC
therapy has been proven to reduce inflammation, encourage
neurogenesis, and inhibit angiogenesis and apoptosis to improve
neuronal defects, neural network reconstruction, and neurological
functions (Zhu et al., 2019). Cui J. et al. found that MSCs can reduce
neurological impairments and enhance axonal regeneration in rats
with stroke (Cui et al., 2017). Furthermore, MSCs exert angiogenic
effects based on secreted angiogenic factors by significantly
enhancing vitality, motility, and network formation (König et al.,
2015). The fact that neuroinflammation accelerated the
development of brain injury is widely accepted. The method for
controlling immune response may thereby decrease brain damage.
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Studies have demonstrated that stem cells can facilitate nerve repair
either by boosting the protective effects of anti-inflammatory
cytokines or performing immunomodulatory functions, such as
neutrophil and microglia regulation (Jingli et al., 2022). For
instance, following a stroke, MSCs can suppress microglial
activation by upregulating growth factors and hypoxia-inducible
factor-1-alpha while downregulating proinflammatory cytokines
and chemokines (Yan et al., 2013). Current studies have verified
that the neuroprotection of MSCs in stroke. Therefore, enhancing
the therapeutic benefits and immunomodulatory capabilities of
MSC may provide researchers with potential targets for their
future studies.

From the stem cell derivatives used in the treatment of stroke,
our data (Figure 8B) indicated that the latest research hotspots from
2019 to 2022 were “exosomes” and “extracellular vesicle.”
Extracellular vesicles, which can transport a variety of cargos,
including lipids, nucleic acids, and proteins, and are released
from the cell surface into body fluid, help cells communicate
with one another (Allan et al., 2020). One of the most currently
appealing subcategories of extracellular vesicles is exosome (Lawson
et al., 2016). In recent years, studies have suggested restrictions and
potential hazards with stem cell therapy, such as tumorigenicity and
the inability to successfully penetrate the blood-brain barrier (BBB)
(Lukomska et al., 2019). Researchers also found that the use of
exosomes generated from stem cells could be an alternative strategy
to stem cell (Venkat, Chopp, and Chen, 2018; Cai et al., 2020). The
nanoscale characteristics of exosomes allow themselves to efficiently
disperse throughout the body and pass across the BBB. Furthermore,
it can imitate the ability of stem cells and other supporting cells to
regenerate. Stem cells release exosomes to communicate with other
cells, when they detect alterations in the microenvironment, such as
“inflammation” or “oxidative stress.” Exosomes have been
demonstrated to be useful for the regulation of post-stroke
inflammation, neurovascular remodeling, angiogenesis,
neurogenesis, synaptic plasticity, and apoptosis and autophagy
control (Seyedaghamiri et al., 2022). According to some authors,
exosomes can be used as natural biomarkers to gage the seriousness
of clinical manifestations of neurological diseases (Hong et al.,
2019).

4.3.4 Clinical application prospect of stem cells in
stroke

Basic science and animal models have laid the groundwork
for advancing stem cell therapy for stroke in clinical setting. NSC
transplantation has been performed mainly as a treatment for
chronic phase of post-stroke. In a PISCES one clinical trial
(Kalladka et al., 2016), the NSC transplantation to the patients
within 6 months to 5 years after stroke showed that the
embedded delivery of the NSC line CTX0E03 was safe and
suggested improved neurological function. However, the study
was conducted on only 11 men; thus, further study is needed that
includes female patients and larger patient populations. In
another PISCES two study that included adults aged over
40 years with significant upper-limb motor deficit
2–13 months following ischemic stroke, 23 patients underwent
CTX cell transplantation, and their upper-limb functions
improved at 3, 6, and 12 months (Muir et al., 2020).
Subsequently, the PISCES-3 study recruited approximately

130 patients with moderate to severe functional disability
from 6 to 24 months after the stroke. The primary outcome
was an improvement in the modified Rankin scale (mRS)
score at 6 months following surgery (Wechsler et al., 2018).
However, due to the ethical issues related to the harvesting of
fetal NSCs, as well as the limited number of donors, very few trials
used NSCs. In addition, the clinical use of NSCs has several
disadvantages, such as immunogenicity and the possibility of
rejection of allogeneic human NSCs, which limits its application.

A large number of preclinical data have proven the feasibility
of MSCs in the treatment of stroke, and clinical administration of
stem cell therapy is expected. Most of the clinical trials have
evaluated the efficacy and safety of MSCs for the treatment of
stroke. MSCs, especially bone marrow-derived ones, are most
widely used in clinical trials. In a randomized study of 30 patients
with severe stroke, Bang et al. reported that MSCs improved the
mRS and Barthel index scores within 1 year following stroke and
exerted no adverse cell-related, serological, or imaging-defined
effects (Bang et al., 2005). Honmou et al. reported that there were
no major side events after the intravenous infusion of autologous
BMSCs expanded in human serum into 12 participants
36–133 days post-stroke (Honmou et al., 2011). Overwhelming
evidence supports the safety of the approach, although data on its
efficacy are scarce or indicate only a transient improvement
(Nistor-Cseppentö et al., 2022). Majority of the adverse events
in these clinical trials were minor (Kvistad et al., 2022). For
example, two minor side effects in a clinical trial (n = 57) using
MSCs to treat stroke may be linked to venous internal position
stimulation and urinary tract infection (Levy et al., 2019).
However, some animal studies have demonstrated that MSCs
may increase the risk of autoimmune disease and the onset of
tumors (Djouad et al., 2003). This prompted the researchers to
look for some countermeasures. Furthermore, most of the
relevant clinical trials included only a few patients (n < 100),
and large multicenter randomized controlled trials are absent;
thus, further research is warranted to determine the efficacy and
security of MSCs for stroke treatment and also to identify the
optimal cell concentration, time, patient selection criteria (age,
stroke subtype, and damage area), and combination therapy for
routine clinical uses.

Most of the studies on exosomes have focused on animal and
in vitro experiments. According to available information, a few
clinical studies have used exosomes for stroke treatment. As of
August 2022, only three clinical trials involving stroke patients were
available on the public clinical trial database (https://clinicaltrials.
gov/). One study evaluated improvement in patients suffering from
acute ischemic stroke who were administered with allogenic MSC-
derived exosomes. In a different study, the diagnostic value of blood
extracellular vesicles was investigated in stroke patients undergoing
rehabilitation. The final study aimed to determine how
acupuncture-induced exosomes may help treat post-stroke
dementia. In addition, a pilot randomized clinical trial suggested
that local injection of exosomes produced by allogenic placenta
MSCs is safe after a malignant middle cerebral artery infarction
(Dehghani et al., 2022). These data suggest that exosome therapy is a
novel promising strategy for stroke in clinical translational
application. In conclusion, although the therapeutic effect,
biosafety, kinetics, and biodistribution of exosomes still need to
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be thoroughly investigated, their capacity for regeneration and
repair provides new possibilities for the treatment of stroke.

4.3 Advantages and limitations

This study has several advantages. First, based on research
published from 2004 to 2022, this bibliometric analysis is the
first investigation of patterns and contentious topics relating to
stem cells in stroke. Second, we used three bibliometric methods
simultaneously for the survey and analysis in this study, which
significantly increased the likelihood that our data analysis process is
impartial; VOSviewer and CiteSpace were extensively used in this
study (C. Chen et al., 2012). This study also involved a thorough
analysis of the number and growth tendency of annual publications;
relationships among journals, authors, nations, and institutions; and
various references, citations, and keywords.

This study also has limitations that need to be acknowledged. First,
because this study only included articles in English, non-English writings
may have been underrepresented. Second, only data obtained from the
WoSCC database were used in this study; therefore, some pertinent
studies from other databases may have been missed. Furthermore,
insufficient data prevented full inclusion of articles in 2022.

5 Conclusion

This analysis may help researchers in identifying new trends and
research hotspots for stem cells in stroke in the period of 2004–2022.
The steadily increasing number of publications indicates that research
on stem cells in stroke is becoming more and more important to
academics worldwide. The top 3 countries with the most number of
publications were China, the USA, and Japan. The journal,
organization, and author with the most influence on were Cell
Transplantation, Florida State University, and Chopp, M.
respectively. The keywords that highlight recent hot topics about
research on stem cells in stroke were “neurogenesis,” “angiogenesis,”
“mesenchymal stem cells,” “oxidative stress,” “inflammation,”
“exosomes,” and “extracellular vesicles,” which will probably become
promising in the future. Notably, stem cells have numerous positive
effects, such as neuroprotection, enhanced angiogenesis and
neurogenesis, and diminished inflammatory and immunological
responses; however, the main mechanisms for mitigating the
damage caused by stroke are still unknown. Clinical challenges may
include complicating factors, such as the effect of age, stroke subtype,
and stroke severity, all of which can affect the efficacy of stem cell
therapy. In the future, to successfully create a therapeutic scheme, all of
complicating factors must be carefully taken into account.
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Studies on the neuroprotective effects of anesthetics were carried out more

than half a century ago. Subsequently, many cell and animal experiments

attempted to verify the findings. However, in clinical trials, the neuroprotective

effects of anesthetics were not observed. These contradictory results suggest

a mismatch between basic research and clinical trials. The Stroke Therapy

Academic Industry Roundtable X (STAIR) proposed that the emergence of

endovascular thrombectomy (EVT) would provide a proper platform to verify the

neuroprotective effects of anesthetics because the haemodynamics of patients

undergoing EVT is very close to the ischaemia–reperfusion model in basic

research. With the widespread use of EVT, it is necessary for us to re-examine

the neuroprotective effects of anesthetics to guide the use of anesthetics during

EVT because the choice of anesthesia is still based on team experience without

definite guidelines. In this paper, we describe the research status of anesthesia in

EVT and summarize the neuroprotective mechanisms of some anesthetics. Then,

we focus on the contradictory results between clinical trials and basic research

and discuss the causes. Finally, we provide an outlook on the neuroprotective

effects of anesthetics in the era of endovascular therapy.

KEYWORDS

neuroprotection, anesthetics, ischaemic stroke, endovascular procedures, therapy

Introduction

Stroke is the leading cause of disability and death worldwide. It can be classified
into haemorrhagic stroke and ischaemic stroke, the latter of which is characterized
by the sudden loss of blood flow to an area of the brain due to thrombosis or
thromboembolism (Campbell et al., 2019). A nationwide community-based study showed
that the incidence of acute ischaemic stroke (AIS) in all incident stroke cases was
as high as 70%, and the high incidence and disability rates of AIS have seriously
increased the socioeconomic and healthcare burdens (Gorelick, 2019; Wu S. et al., 2019).
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Nevertheless, only limited options for treatment are available at
present.

Intravenous recombinant tissue plasminogen activator (IV-
rtPA) was the only pharmacologic treatment approved by the
United States Food and Drug Administration (FDA) until
endovascular thrombectomy (EVT) emerged. IV-rtPA has played
an integral role in treating AIS in recent decades. However, the
multiple contraindications and narrow therapeutic window restrict
the application of IV-rtPA (Patel et al., 2020). In addition, rtPA has
a low recanalization rate (13–50%) in patients suffering from large
vessel occlusion (LVO) because of the unresponsiveness of large
thrombi to the enzyme (Saqqur et al., 2007).

Advances in interventional neuroradiology promoted the
development of EVT. The publication of five clinical trials of EVT
in 2015 with positive findings launched a new era in AIS treatment.
EVT is beneficial to most patients with AIS caused by the occlusion
of the proximal anterior circulation (Goyal et al., 2016). Compared
with IV-rtPA, EVT has a broader application time window and
can be used in patients with contraindications to thrombolysis or
intracranial LVO.

Inevitably, EVT must be performed under anesthesia. Thus,
anesthetics are more widely available to patients with AIS than
ever before. The choice of anesthesia, however, is still based on
team experience without definite guidelines. Recently, the option
of general anesthesia (GA) and conscious sedation (CS) during
EVT was discussed in many multicentre randomized controlled
trials (RCTs) (Schonenberger et al., 2016; Simonsen et al., 2018;
Goldhoorn et al., 2020; Maurice et al., 2022), which indicated
that anesthetics may affect the outcomes of patients with EVT.
Moreover, a retrospective study preliminarily showed that propofol
anesthesia was related to improved functional independence
compared with inhalational GA [odds ratio (OR) = 2.65; 95%
confidence interval (CI), 1.14–6.22; p < 0.05] (Diprose et al., 2021).
These effects may be attributed to the haemodynamic effects of
anesthetic drugs or the neuroprotective properties of anesthetics
(Simonsen et al., 2022). Whether anesthetics have neuroprotective
effects will directly affect the selection of anesthesia for EVT
treatment. However, different results on the neuroprotective effects
of anesthetics have been shown in clinical trials and basic research.

In this paper, we describe the research status of anesthesia
in EVT in Part 1 and summarize the mechanisms related to the
neuroprotective effects of commonly used anesthetics in Part 2.
Then, we focus on the contradictory results between clinical trials
and basic research and discuss the causes of the heterogeneity in
Part 3. Finally, we provide a brief outlook on the neuroprotective
effects of anesthetics in the era of endovascular therapy.

Anesthetics may affect the
outcomes of EVT

With advances in stroke treatment, highly effective
thrombectomy devices are being used more widely for patients
with LVO (Wasselius et al., 2022). As a result, anesthetic drugs are
more widely available to stroke patients than ever before. However,
it remains unclear which type of anesthesia and what kind of
anesthetic drug used in EVT are better for reducing postoperative
complications and improving the prognosis.

General anesthesia or conscious
sedation

Thus far, the best anesthetic strategy during EVT is still a matter
of debate. GA and CS are the two main anesthetic methods used
in EVT. While allowing for immobility and airway control, GA
can delay endovascular treatments and may be associated with
hemodynamic instability. On the other hand, CS is faster and allows
for neurologic assessment during a procedure, but thrombectomy
can be less safe due to patient movement. As for which type of
an anesthesia is better for the prognosis of patients, the views are
constantly changing with the deepening of research. More than
10 years ago, a non-randomized retrospective study performed in
12 stroke centers in the United States demonstrated that GA was
related to poorer neurological outcomes after 3 months (OR = 2.33;
95% CI, 1.63–3.44; P < 0.0001) (Abou-Chebl et al., 2010). In
the same year, another study compared the safety and clinical
outcomes between GA with intubation and CS in a non-intubated
state (NIS). This study reported that a NIS was associated with
lower infarct volume (OR = 0.25, P = 0.004) and better clinical
outcomes (OR = 3.06, P = 0.042) (Jumaa et al., 2010). Although
the same conclusion was drawn in the subsequent meta-analysis,
the authors noted that patients receiving GA had higher average
National Institute of Health Stroke Scale (NIHSS) scores in the 6
studies included (Brinjikji et al., 2015). This finding means that
non-randomized retrospective studies have some methodological
limitations (Talke et al., 2014; van den Berg et al., 2015). The
stroke severity at baseline in the GA group and the CS group was
inevitably imbalanced because the anesthetic protocol was decided
by teams rather than by randomization (Albers et al., 2017). As a
result, the severity of stroke in the GA group would be more severe
than that in the CS group due to selection bias, which may have
prevented drawing correct conclusions (Brinjikji et al., 2015; van
den Berg et al., 2015).

Recently, a series of large-scale multicentre RCT studies on
this topic have been carried out (Goyal et al., 2016), and different
conclusions from previous retrospective studies have been drawn.
The authors found that the functional outcomes of patients
undergoing EVT after 3 months were similar in patients receiving
GA and those receiving CS (relative risk, 0.91; 95% CI, 0.69–
1.19), and even better recanalization was observed in the GA
group (Goyal et al., 2016). In a meta-analysis including 3 RCTs
[SIESTA (Schonenberger et al., 2016), ANSTROKE (Lowhagen
et al., 2017), and GOLIATH (Simonsen et al., 2018)] and 368
patients with AIS in the anterior circulation, the application of
GA during EVT was significantly associated with less disability on
the 90th day (OR = 1.58; 95% CI, 1.09–2.29; P = 0.02) than the
application of procedural sedation (Schonenberger et al., 2019).
This may be because GA provides a more comfortable environment
for the surgeon during EVT that will be safer and easier with a
motionless patient (Chen et al., 2009). Recently, Simonsen et al.
(2022) performed a mediator analysis to explore whether the
better outcome in patients receiving GA was mediated by better
recanalization and a higher reperfusion rate. Their meta-analysis
also included 3 RCTs and 368 patients [SIESTA (Schonenberger
et al., 2016), ANSTROKE (Lowhagen et al., 2017), and GOLIATH
(Simonsen et al., 2018)]. The mediator analysis demonstrated that
the indirect effect (i.e., better reperfusion) on outcome was small
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[risk difference (RD) = 0.03], and the direct effect of GA itself
on outcome was much more significant (RD = 0.12). Moreover,
they observed that even for non-reperfused patients, GA resulted
in a better outcome than CS (Simonsen et al., 2022). This finding
suggested the direct effects of GA, such as neuroprotection, as
the source of a better outcome. An RCT in patients undergoing
EVT where GA is induced by different anesthetic drugs could be
valuable.

Before a definite conclusion is drawn, either GA or CS seems
reasonable because GA and CS have their own advantages in
EVT (summarized in Table 1). The American Heart Association
and American Stroke Association guidelines advised selecting
an anesthesia technique during EVT according to clinical
characteristics, patient risk factors, and the technical performance
of the procedure rather than a fixed anesthesia technique
(Xie et al., 2016).

Different influences on haemodynamics

Improving collateral blood flow is a potential approach
to protect the penumbra before recanalization (ENOS Trial
Investigators, 2015; Savitz et al., 2019). Anesthetic agents can
directly affect vessels and endogenous regulatory mechanisms
(Nowak et al., 1984). Blood pressure reduction during EVT
could impair collateral perfusion (Froehler et al., 2012). At
present, there are no studies that have directly evaluated the
haemodynamic effects of different anesthetic drugs on patients
undergoing EVT. However, we can make some inferences from
past research. Therefore, here, we summarize the findings of some
past studies focusing on the effects of anesthetic drugs on cerebral
haemodynamics.

(1) It has been debated for many years whether ketamine can
be used as an anesthetic for neurologically compromised patients
(Gregers et al., 2020). Early studies in the 1970s and 1980s reported
that ketamine increased intracranial pressure (ICP), leading to a
reduction in cerebral blood flow (CBF) and oxygen supply (Evans
et al., 1971; List et al., 1972; Wyte et al., 1972; Nelson et al.,
1980). However, subsequent studies found that when combined
with propofol, ketamine (1.5, 3, and 5 mg.kg−1) could decrease
ICP in patients with traumatic brain injury (Albanese et al., 1997).
Subanaesthetic doses of ketamine increased regional cerebral blood
flow (rCBF) in the frontal cortex (25.4% increase from baseline,
P < 0.001) but did not change the regional metabolic rate of oxygen
(rCMRO2) (Langsjo et al., 2003). A recent meta-analysis including
11 studies with a total of 334 patients showed that there was no

TABLE 1 Comparison of the advantages of general anesthesia and
conscious sedation in EVT.

General anesthesia Conscious sedation

Improve procedural conditions
(Maurice et al., 2022)

Less haemodynamic instability (Davis
et al., 2012)

Facilitate airway management A shorter delay from arrival at the
neurointerventional suite to groin

puncture (Schonenberger et al., 2016)

Less pain, anxiety, and agitation and
low aspiration risk (Emiru et al., 2014)

Fewer ventilation-associated
complications (Takahashi et al., 2014)

evidence indicating that the application of ketamine worsened the
cerebral condition (Gregers et al., 2020). It is currently thought
that ketamine administration does not result in increased ICP
when used as a part of a typical modern anesthesia protocol,
and ketamine can be used safely in neurologically impaired
patients (Himmelseher and Durieux, 2005; Slupe and Kirsch, 2018).
However, no relevant studies have evaluated the safety of ketamine
in EVT.

(2) Hypotension is a common side effect of propofol. As a
result, the application of propofol in EVT necessitates higher
requirements for blood pressure control since a drop of more
than 40% in mean arterial blood pressure during EVT in GA
is an independent risk factor for poor neurological outcomes
(Lowhagen et al., 2015). Blood pressure is one of the determinants
of CBF. In a study where positron emission tomography (PET)
was used to quantify the effect of propofol on CBF and rCMRO2,
propofol reduced rCBF and rCMRO2 to approximately 60% of the
baseline at a concentration producing a bispectral index value of
40 (Slupe and Kirsch, 2018). Another similar study also showed
a roughly equal reduction in rCMRO2 and rCBF (Himmelseher
and Durieux, 2005), indicating that propofol could preserve the
regional ratio between rCBF and rCMRO2. Thus, propofol has
become an anesthetic in neurosurgical procedures (Gregers et al.,
2020), but the haemodynamics of propofol in EVT should be
further studied because haemodynamics do not change equally
across the whole brain during EVT. Previous study findings may
not apply to EVT.

(3) Volatile anesthetics such as sevoflurane and isoflurane have
an intrinsic cerebral vasodilatory effect (Matta et al., 1999) that
is related to the activation of adenosine triphosphate-sensitive
K+ channels (Iida et al., 1998). Unlike propofol, sevoflurane
and isoflurane at 1 minimum alveolar concentration (MAC) can
increase CBF but decrease CMRO2 (Oshima et al., 2003), and
this property may contribute partly to preventing postoperative
ischaemic stroke. A retrospective cohort study that included
314,932 patients undergoing GA showed that volatile anesthesia
was related to lower odds of postoperative ischaemic stroke
compared with total intravenous anesthesia by propofol (Raub
et al., 2021). However, in regard to application in EVT, the lesion
and CBF autoregulation caused by volatile anesthetics should be
considered. Autoregulation is a vasodilator reflex that maintains
CBF within the physiological range under normal circumstances
and helps build collateral blood supply around the ischaemic
core after stroke (Hoffmann et al., 2016). It was reported that
volatile anesthetics can impair autoregulation in rats and dogs
(Archer et al., 2017; Esposito et al., 2020) and have similar
effects in humans (Strebel et al., 1995; Goettel et al., 2016). It is
necessary to carry out further research on the effects of volatile
anesthetics.

Neuroprotection in EVT

During AIS, a sudden decrease in blood flow to the brain
area supplied by the blocked artery occurs, which is not uniform
across the whole ischaemic area. The ischaemic core is the area in
which < 20% of basal blood flow remains, and the penumbra is
defined as the area where approximately 40% of the basal blood
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flow is maintained by collateral circulation (Zhao et al., 1997). The
concept of neuroprotection involves preventing extraneuronal cell
death by protecting the salvageable penumbral region around the
ischaemic core after an ischaemic insult (Ginsberg, 2008). Although
decades of failures have been experienced in clinical trials on
neuroprotection, and none of the neuroprotective drugs have been
approved for treatment, numerous studies are still ongoing.

Endovascular thrombectomy within 24 h of symptom onset
could benefit patients with LVO (Berkhemer et al., 2015; Bracard
et al., 2016; Nogueira et al., 2018). However, nearly 50% of
patients may still undergo “futile recanalization” (Xu et al., 2020),
which means that the recanalization of the occluded vessel fails
to improve the neurological outcome (Nie et al., 2018). The
no-reflow phenomenon after EVT may be one of the causes
of futile recanalization. This phenomenon is defined as severe
tissue hypoperfusion despite timely recanalization of an occluded
artery, which may be due to abnormalities at the level of the
microvasculature. Microvascular obstruction from endothelial cell
swelling, pericyte contraction, luminal clogging with leukocytes
and microthrombi can impede the reperfusion after EVT because
EVT only clears blockages in large arteries (Nie et al., 2023).
In clinical studies, the incidence of the no-reflow phenomenon
after EVT has ranged from 25 to 38% (Ng et al., 2018; Rubiera
et al., 2020; Ter Schiphorst et al., 2021). Another important cause
of futile recanalization is cerebral ischaemia–reperfusion injury
(Stoll and Nieswandt, 2019). During reperfusion, reactive oxygen
species (ROS) are produced by the xanthine (XO) system, the
NADPH oxidase (NOX) system, and the mitochondrial enzymatic
system (Granger and Kvietys, 2015), leading to direct cellular
damage and indirect damage, such as inflammation. Moreover,
ROS can result in apoptosis and necrosis through lipid peroxidation
and DNA/RNA damage (Mizuma et al., 2018). A more detailed
mechanism is shown in Figure 1. Experimental studies showed
that transient middle cerebral artery occlusion (3-hour occlusion
and 3-hour reperfusion) in rats caused a larger infarct volume and
blood–brain barrier disruption than permanent middle cerebral
artery occlusion (6 h) (Yang and Betz, 1994). In clinical research,
a similar ischaemia–reperfusion injury was indirectly observed
in magnetic resonance imaging through a hyperintense acute
reperfusion marker (Warach and Latour, 2004), suggesting that
ischaemia–reperfusion injury also exists in humans. Therefore,
neuroprotective drugs are particularly needed in EVT.

According to the Stroke Therapy Academic Industry
Roundtable X (STAIR), in the current era of EVT, neuroprotective
agents need to work synergistically with endovascular therapy
to reduce ischaemia–reperfusion injury rather than work as
monotherapies (Savitz et al., 2019). Perhaps the treatment of stroke
is similar to precision surgery, which requires much cooperation.
Neuroprotection in the new era should be verified on the basis
of endovascular therapy. Therefore, many neuroprotective drugs
that failed in clinical trials are currently being revisited (Yang
et al., 2019). However, before that, anesthetics should be examined
first in EVT, since anesthetics will be confounding factors in the
validation of other drugs. For example, the neuroprotective effects
of a tested drug might be masked if anesthetics also act on the same
pathway.

The neuroprotective properties of
some anesthetic drugs in basic
research

Over the decades, accumulating evidence has displayed the
neuroprotective effects of anesthetic drugs involving multiple
mechanisms and pathways. Here, we have selected several
anesthetic drugs commonly used in clinical practice that have the
neuroprotective potential for a brief discussion. We focus more
on differences in the properties of different anesthetics and some
studies with contradictory findings that may explain why these
medicines “lose” their neuroprotective effects when used clinically.

Ketamine

Ketamine is a phenyl cyclohexylamine derivative that
consists of two optical enantiomers, (S)- and (R)- ketamine.
The anesthetic properties of ketamine are mainly attributed
to the direct inhibition of the N-methyl-D-aspartate receptors
(NMDARs). Other lower-affinity pharmacological targets of
ketamine include γ-aminobutyric acid (GABA) receptors,
dopamine receptors, serotonin opioid receptors, cholinergic
receptors, hyperpolarization-activated cyclic nucleotide-gated
channels, and so on (Paoletti et al., 2013). The mechanisms
of brain injury after stroke include excessive activation of
NMDARs, an imbalance in intracellular and extracellular calcium
concentrations, neuroinflammation, NO production, ROS
production, apoptosis, and so on (Campbell et al., 2019). Blocking
one of these mechanisms alone has only a limited effect. Studies
on ketamine have found that its neuroprotective mechanism also
involves multiple pathways and mechanisms.

N-methyl-D-aspartate receptors (NMDARs), ionotropic
glutamatergic receptors, are permeable to calcium ions (Ca2+).
These channels are blocked by magnesium at resting membrane
potentials. However, when they are depolarized, the magnesium
will be removed, and NMDAR conduction will be substantially
higher (Nowak et al., 1984). In pathological conditions such as
stroke, NMDAR overstimulation causes a series of Ca2+-dependent
cascades of events (shown in Figure 2), which ultimately lead to
neuronal demise. This process is excitotoxicity (Granzotto et al.,
2022). Ketamine is a non-competitive inhibitor of NMDARs, and
it can act on NMDARs in two ways. One is to block the open
channel directly; the other is to act on the binding site outside the
channel and indirectly affect NMDARs through an allosteric effect,
reducing the number and frequency of NMDAR openings (Orser
et al., 1997). In addition to the effects on NMDARs, ketamine
has also been reported to affect glutamate release. A recent study
showed that ketamine could reduce neuronal glutamate release by
stimulating presynaptic adenosine A1 receptors (Lazarevic et al.,
2021). However, other studies have demonstrated that ketamine
application increases synaptic glutamate release (Abdallah et al.,
2018; Lisek et al., 2017). This may be the result of differences in
experimental design as well as in measurement methods.

Spreading depolarization (SD) is a kind of pathological wave
that contributes to secondary lesions after stroke. The cumulative
effect of many SDs is the same as a single persistent depolarization,
leading to cell death and delayed lesions (Hartings et al., 2017).
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FIGURE 1

Pathological changes after endovascular thrombectomy (EVT).

It has been proven that ketamine can suppress SD in acute
brain injury (Carlson et al., 2018). In a retrospective international
multicentre analysis, the administration of ketamine was associated
with a reduction in spreading depolarizations (OR = 0.38; 95%
CI, 0.18–0.79; p = 0.01) (Hertle et al., 2012). Moreover, Reinhart
and Shuttleworth (2018) found that applying a lower concentration
of ketamine (30 µM, brain slice) does not completely prevent SD
but prevents its damaging consequences and retains the potential
protective effect of SD. This finding is consistent with the study
by Shu et al. (2012) in which they found that low-dose ketamine
(25 mg.kg−1, intraperitoneal injection in rats) has a smaller
infarct volume than high-dose ketamine (50 or 100 mg.kg−1,
intraperitoneal injection in rats) in the treatment of stroke.
However, there are also studies drawing contradictory conclusions.
Some studies have shown that higher doses (60 and 90 mg.kg−1,
intraperitoneal injection in rats) of ketamine improve neurological
outcomes, but low doses do not (Reeker et al., 2000; Proescholdt
et al., 2001). This difference may be associated with the different
properties of R-ketamine and S-ketamine. Studies on S-ketamine
tended to use high doses (Reeker et al., 2000; Proescholdt et al.,
2001), whereas R-ketamine showed neuroprotective effects at low
doses (Xiong et al., 2020). In an ongoing study in our laboratory,
S-ketamine also initially showed a dose-dependent effect. The
specific mechanism is being further studied.

Neuroinflammation and apoptosis are not only the result of
the loss of ion homeostasis caused by NMDAR overactivation
but also the cause of neuronal cell death. Ketamine has been
proven to inhibit neuroinflammation (Tanaka et al., 2013; Liu

et al., 2016; Wang et al., 2021) and apoptosis (Engelhard et al.,
2003; Shu et al., 2012; Qi et al., 2020). Inflammatory factors and
apoptosis-related molecules are dynamically changed in stroke
patients. They not only change with time but also change drastically
after recanalization in EVT. The timing and method of ketamine
administration can significantly impact the outcome. In mice,
applying ketamine by intraperitoneal injection immediately after
ischaemia onset could not remarkably induce a significant change
in infarct volume. However, injection immediately after the onset
of ischaemia–reperfusion significantly reduced infarct volume
(Xiao et al., 2012). Similarly, a preclinical study has shown that
ketamine dramatically reduced infarct volume when combined
with IV-rtPA. However, ketamine alone could not achieve this
effect (Gakuba et al., 2011), which might be related to the
upregulation of NMDARs after ischaemia–reperfusion (Sutcu et al.,
2005). Many studies have confirmed that NMDARs are related
to ischaemia–reperfusion injury, and antagonizing NMDARs can
reduce ischaemia–reperfusion injury (Kaur et al., 2016; Xie et al.,
2016; Singh et al., 2017). Using ketamine in combination with
IV-rtPA may be a promising way to extend the time window of
IV-rtPA. However, routine treatment with rtPA does not require
the use of ketamine. In regard to EVT, anesthetic drugs are
routinely used. If relevant studies could confirm that ketamine
can reduce ischaemia–reperfusion injury and prolong the time
window of EVT application, it will change the current situation
where anesthesia during EVT is based on the experience and
habits of anesthesiologists and lead to a better prognosis for
patients.
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FIGURE 2

Overview of the mechanisms of injury after stroke and the targets of anesthetics. KET, ketamine; Pro, propofol; Sevo, sevoflurane; Iso, isoflurane.

Propofol

Propofol is a widely used intravenous agent. Experimental
studies have shown that propofol might protect the brain from
ischaemic stroke (Bayona et al., 2004; Ulbrich et al., 2016; Wang
et al., 2016). When propofol is used as an anesthetic drug for
the induction and maintenance of anesthesia, it mainly acts by
activating γ-aminobutyric acid (GABAA) receptors (Walsh, 2018).
However, the function of GABAA receptors in neuroprotection is
complicated.

γ-aminobutyric acid (GABA) signaling has two forms. Tonic
GABA signaling is a form of extrasynaptic GABA receptor-
mediated inhibition. Reducing excessive GABA-mediated tonic
inhibition promoted the recovery of motor function after stroke
(Clarkson et al., 2010), indicating that excessive tonic inhibition is
detrimental to the recovery of function. One of the interpretations
was that the cortical hypometabolism caused by excessive astrocytic
GABA would prevent functional recovery (Nam et al., 2020). At
clinically relevant concentrations, propofol can affect extrasynaptic
GABA receptors, although the effect is small (Wakita et al., 2013).
Thus, propofol mainly affects the GABA receptors at the synapse
rather than the extrasynaptic GABA receptors, which mediate a
classic form of inhibition called phasic GABAergic inhibition. In
the acute phase of stroke, enhancing phasic GABAergic inhibition
can reduce excitotoxic neuron death (Lyden and Hedges, 1992;
Green et al., 2000). Similarly, motor function can be improved
when a GABA-positive allosteric modulator is used to enhance
phasic GABAergic signaling during the repair phase (Hiu et al.,

2016). However, due to the lack of direct evidence, further research
on whether propofol exerts neuroprotective effects by enhancing
phasic GABAergic signaling is needed.

Many studies have demonstrated the anti-apoptosis and anti-
inflammation characteristics of propofol (Kotani et al., 2008; Fan
et al., 2015; Peng et al., 2020; Qi et al., 2020). In addition to
these classic effects, propofol has several other properties. It has
a similar chemical structure to antioxidant substances such as
vitamin E. It was reported that propofol could scavenge ROS,
inhibit the generation of free radicals, and reduce lipid peroxidation
to protect the brain from oxidative injury (Cheng et al., 2002;
Kobayashi et al., 2008). Moreover, cell ferroptosis is one of the cell
death processes correlated with overwhelming lipid peroxidation
and cellular ROS. Recently, it was revealed that propofol may
help attenuate ferroptosis in HT-22 cells treated with a ferroptosis
activator (Erastin) (Xuan et al., 2022), providing a new therapeutic
method to treat cerebral ischaemia. However, when used in cancer
therapy, propofol appeared to enhance ferroptosis (Zhao and Chen,
2021; Zhao et al., 2022). Further study of the two opposing effects
of propofol on ferroptosis is needed. Parthanatos is another form
of programmed cell death induced by ROS. Zhong et al. (2018)
found that propofol could inhibit parthanatos by impeding calcium
release from the endoplasmic reticulum, ROS overproduction, and
mitochondrial swelling.

As mentioned earlier, the excitotoxicity caused by glutamate
and NMDARs has an essential impact on cerebral ischaemic injury.
Propofol could inhibit NMDARs in some studies (Wu et al.,
2018; Zhou et al., 2018), but the doses of propofol they used
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in their experiments exceeded clinically relevant concentrations.
Another study on the effects of propofol on NMDAR-mediated
calcium increase in neurons revealed that the overall effects of
propofol were minor when the propofol concentration was at
clinically relevant concentrations (Grasshoff and Gillessen, 2005).
Therefore, the neuroprotective effect of propofol may be partly
through the inhibition of NMDARs, but that is not the primary
mechanism. Moreover, propofol may prevent excitotoxicity in
other ways. Numerous studies have demonstrated that propofol
can reduce glutamate concentrations during cerebral ischaemia
by decreasing glutamate release (Ratnakumari and Hemmings,
1997; Lingamaneni et al., 2001) and increasing glutamate uptake

(Cai et al., 2011; Gong et al., 2016). However, the glutamate
concentration may not necessarily play a decisive role in the
neuroprotective effect of propofol. Yano et al. (2000) found that
propofol and Intralipid (a vehicle for propofol) could similarly
reduce glutamate increase in CA1. In contrast, propofol, but not
Intralipid, alleviated delayed CA1 neuron death when administered
intracerebroventricularly in a transient global forebrain ischaemic
model (Yano et al., 2000).

Hypothermia has been demonstrated to be an
effective way to alleviate the damage caused by stroke
(Gonzalez-Ibarra et al., 2011). When the ischaemic cascade is
activated, therapeutic hypothermia can alleviate central nervous

TABLE 2 Clinical studies on the neuroprotective effects of propofol, ketamine, sevoflurane and isoflurane.

References Research
type

Comparison of drug
treatment

Experimental subjects Outcomes

Bhutta et al., 2012 RCT (n = 24) Ketamine (2 mg.kg−1) vs. placebo
(saline)

Infants undergoing
cardiopulmonary surgery

No evidence for neuroprotection or
neurotoxicity.

Loo et al., 2012 RCT (n = 46) Ketamine (0.5 mg.kg−1) or placebo
(saline)

Patients undergoing
electroconvulsive therapy

Slight improvement in the first week of
treatment.

Nagels et al., 2004 RCT (n = 106) S (+)-ketamine (2.5 mg.kg−1) vs.
remifentanil

Patients undergoing open-heart
surgery

No greater neuroprotective effects than
with remifentanil.

Hudetz et al., 2009 RCT (n = 26) Ketamine (0.5 mg.kg−1) vs. placebo
(saline)

Patients undergoing open-heart
surgery

Ketamine attenuated POCD 1 week
after cardiac surgery.

Guo et al., 2019 RCT (n = 60) Propofol (1.2 µg.ml−1 , TCI, plasma
target concentration) vs. 0.5–2%
sevoflurane

Patients undergoing aneurysm
clipping

Propofol may protect the brain from
oxidative stress injury up to 7 days.

Tanguy et al., 2012 RCT (n = 59) Propofol (depending on the
procedure requirements) vs.
midazolam (depending on the
procedure requirements)

Patients with severe traumatic
brain injury

Results did not support a difference
between propofol and midazolam for
sedation in traumatic brain injury.

Kanbak et al., 2004 RCT (n = 20) Isoflurane (1 to 1.5% until CPB and
0.5 to 1% during CPB) vs. propofol
(6 mg.kg −1 .h−1 until CPB and
3 mg.kg−1 .h−1 during CPB)

Patients undergoing coronary
artery bypass grafting

Propofol appeared to offer no advantage
over isoflurane for cerebral protection
during cardiopulmonary bypass.

Schoen et al., 2011 RCT (n = 128) Propofol (3–5 mg.kg−1 .h−1) vs.
sevoflurane (0.6-1MAC)

Patients undergoing on-pump
cardiac surgery

Sevoflurane-based anesthesia was
associated with better short-term
postoperative cognitive performance
than propofol.

Mahajan et al., 2014 RCT (n = 66) Propofol (attain a burst suppression
ratio of 75± 5% in bispectral index
monitoring) vs. placebo (saline)

Patients undergoing temporary
clipping during intracranial
aneurysm surgery

Propofol did not offer any
neuroprotective effects on improving
postoperative cognition.

Roach et al., 1999 RCT (n = 225) Propofol (computer-assisted
continuous infusion titrated to
achieve EEG burst suppression) and
sufentanil (5 µg.kg−1) vs. sufentanil
(5 µg.kg−1)

Patients undergoing cardiac
valve replacement

Propofol did not significantly reduce the
incidence or severity of neurologic or
neuropsychologic dysfunction.

Wu B. et al., 2019 RCT (n = 80) Propofol (depending on the
procedure requirements) vs.
dexmedetomidine (depending on the
procedure requirements)

Patients undergoing
endovascular therapy

This study did not show any difference
between propofol and
dexmedetomidine in good outcomes or
in-hospital mortality.

Yoon et al., 2020 RCT (n = 152) Sevoflurane vs. no intervention Patients with moyamoya disease
undergoing revascularization
surgery

Sevoflurane postconditioning did not
reduce the incidence of SCH after
revascularization surgery in patients
with moyamoya disease.

Dabrowski et al.,
2012

Observational study
(n = 128)

Sevoflurane vs. isoflurane vs. control Patients undergoing coronary
artery bypass graft surgery

Isoflurane and sevoflurane reduced
brain injury markers such as plasma
matrix metalloproteinase-9 and glial
fibrillary acidic protein.

POCD, postoperative cognitive dysfunction; CPB, cardiopulmonary bypass.
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system hyperexcitability by reducing extracellular levels of
excitatory neurotransmitters such as dopamine and glutamate.
Hypothermia also protects the brain from ischaemic injury by
reducing cerebral blood flow, oxygen and glucose consumption,
and metabolic rate. The decrease in cerebral metabolic demands
results in slower enzyme activity, allowing Adenosine triphosphate
(ATP) stores to be preserved (Otto, 2015). When used in GA,
propofol can induce heat redistribution from the core to the
periphery by impairing thermoregulatory vasoconstriction and
preventing shivering (Noguchi et al., 2002). However, it is difficult
to quantify the extent to which the decrease in body temperature
caused by propofol plays a role in its neuroprotective effect. This
is because in basic experiments, we often use holding devices
to ensure that the body temperature of the animals is constant
and to prevent the neuroprotective effects of hypothermia from
interfering with the experiment. In the context of temperature
control, there are still basic research studies that confirm the
neuroprotective effect of propofol (Fan et al., 2022).

The neuroprotective effect of propofol involves multiple
mechanisms, but whether propofol can improve the long-term
prognosis of stroke is uncertain. A study found that using propofol
to treat cerebral ischaemia can significantly enhance the infarct
volume and motor function on the third day after treatment.
However, there was no difference in infarct volume on the 21st
day in the propofol group compared with the control group
(Bayona et al., 2004). In addition, in a preclinical trial of propofol
combined with IV-rtPA, propofol failed to reduce infarct size
after thrombolysis (Gakuba et al., 2011). Some clinical studies did
not support the neuroprotective effect of propofol (as shown in
Table 1). The reasons for this difference will be discussed in detail
in the second part.

Sevoflurane and isoflurane

Sevoflurane and isoflurane are both commonly used volatile
anesthetics for the induction and maintenance of GA. The targets
of these inhaled anesthetics include but are not limited to
GABARs, NMDARs, and TWIK-related K+ channels (TREK-1)
(Orser et al., 2019). As mentioned before, NMDARs play a vital
role in excitotoxicity. Although volatile anesthetics can protect
against excitotoxicity partly by inhibiting NMDARs, the efficiency
of volatile anesthetics is less than selective NMDAR antagonism
(Kudo et al., 2001). Thus, the neuroprotective effect of volatile
anesthetics partly contributes to NMDAR inhibition, but this is not
the main mechanism.

Some existing studies have indicated that sevoflurane and
isoflurane can reduce ischaemia and ischaemia–reperfusion injury
by affecting inflammatory and apoptotic processes (Bedirli et al.,
2012; Hwang et al., 2017; Zhang and Zhang, 2018; Yang et al.,
2022). A recent review of the neuroprotective mechanisms of
sevoflurane and isoflurane specifically summarized how they affect
classic inflammatory and apoptotic pathways (Neag et al., 2020).
However, not all reports about inhaled anesthetics are positive
(Zhang et al., 2016; Wu et al., 2020). Orset et al. (2007) developed
a mouse model of thromboembolic stroke that is closer to
the physiological situation than traditional stroke models. Then,
Gakuba et al. (2011) used this model to assess the different effects

of the combination of anesthetics and IV-rtPA on the infarct
volume. Unexpectedly, isoflurane and propofol failed to enhance
the benefits brought by rtPA-induced thrombolysis (Gakuba et al.,
2011). Moreover, sevoflurane applied in different models can even
have the opposite effect. When used in rats that were subjected
to brain hypoxia-ischaemia, sevoflurane could protect the brain
by inhibiting apoptosis (Ren et al., 2014). However, sevoflurane
showed neurotoxicity and tended to exacerbate apoptosis when rat
pups were exposed to it for as long as 4 h (Shan et al., 2018).

Therefore, it seems that simply evaluating whether a drug is
neuroprotective is unscientific. The protective effect is based on a
specific environment, and the application of the same medication
to different subjects at different doses can even produce opposite
effects. For example, the effects of anesthetic drugs on NMDARs,
GABARs, or some other receptors may be detrimental in some
patients but may reduce excitotoxicity in patients experiencing
cerebral ischaemia. The narrow concept of neuroprotection is based
on the condition of ischaemia, and it is a process that reduces
brain injury after the onset of stroke (Ginsberg, 2008). Therefore,
our clinical research on the neuroprotective effects of anesthetics
should be precisely linked to stroke. However, many clinical studies
in the past have used other diseases and surgeries to study the
neuroprotective effects of anesthetics (summarized in Table 2). Past
studies may not accurately evaluate the neuroprotective effect of
anesthetic drugs.

The considerable gap between
clinical trials and basic research

Patients undergoing endovascular therapy need GA or CS to
undergo the procedure. However, there are few guidelines to help
in the selection of anesthetic drugs. Although the findings from
many basic research studies support the neuroprotective effects of
anesthetics (Sanders et al., 2005), the results are ambiguous when
evaluating anesthetic neuroprotective effects in clinical trials. Here,
two authors independently searched PubMed and Medline for
randomized controlled trials published between 1 January 1995 and
1 September 2021, using the permutation and combination of the
keyword terms “neuroprotective,” “neuroprotection,” “ischaemia,”
“ketamine,” “propofol,” “sevoflurane,” and “isoflurane”; excluded
the studies that were not relevant to the theme of this paper after
discussion; and finally summarized the results in Table 2. We
can see in Table 2 that the conclusions of these clinical trials are
not unified, and some are even contradictory. Here, we discuss
why there is a considerable gap between clinical trials and basic
research.

Defects in basic research

According to the STAIR criteria (Fisher et al., 2009), a
large number of studies on neuroprotection seem to exhibit low
methodological quality. Here, we summarize some common defects
in research on the neuroprotective effects of anesthetics.

(1) Some basic research focuses more on infarct volume (Shu
et al., 2012; Xiong et al., 2020) than on subsequent outcome several
months later, which is commonly evaluated through the modified
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Rankin Scale (mRS) in clinical trials (Saver et al., 2021). The latest
STAIR trial advised that the main endpoints should include not
only infarct volume but also behavioral outcomes, gray versus white
matter protection, and the potential negative effects of the agent
tested (Savitz et al., 2019).

(2) Another problem is the incompatibility between the doses
of medicine used in basic research and those used in clinical
practice. Due to receptor affinity, some drugs that show significant
neuroprotective effects at concentrations higher than clinically
applied often fail to improve patient prognosis after entering
clinical studies (Muir, 2006; Morgan et al., 2012), and their clinical
application value is limited.

(3) Basic research studies pay more attention to whether an
anesthetic drug has a neuroprotective effect, so they tend to
determine the timing when the phenomenon is most obvious
through preliminary experiments and then proceed from there
(Zhou et al., 2013; Yang et al., 2018). However, clinical practice
has more demand for the time window of drug application since
patients suffering from stroke have a variable duration of ischaemia.
If the time window of a drug is very narrow or the time of
administration and the method of administration is unrealistic
(Saver et al., 2021), its clinical significance is still limited even if a
positive result is obtained.

(4) Transient middle cerebral occlusion (tMCAO) is the
most widely used model of stroke and has advantages in the
study of reperfusion injury. With the continuous development of
endovascular therapy, it is increasingly important to research how
to reduce ischaemia/reperfusion injury and promote prognosis.
However, there is still a large number of patients without
vessel recanalization (Yoshimura et al., 2014), which is closer
to permanent middle cerebral occlusion (pMCAO). When we
evaluate the neuroprotective effects of drugs, pMCAO should also
be taken into consideration (McBride and Zhang, 2017).

(5) Sex and age have long been neglected factors. A meta-
analysis including 80 publications compared the neuroprotective
effects of anesthetics in animals of different sexes and aged animals.
It showed neuroprotective effects in female and aged animals
(Archer et al., 2017). Although it was based on a post hoc analysis
and a small number of studies, this meta-analysis raised a thought-
provoking question: Are normal male animals appropriate animals
in which to simulate human stroke?

(6) Clinical trials mostly test neuroprotectants in active,
awake patients. In five large clinical trials of neuroprotectants
involving 9,560 patients, only 664 had suffered night-time strokes
(Esposito et al., 2020). However, rodent tests are always performed
during the day, when they are inactive. The opposite circadian
rhythm of rodents to that of humans impacts the effectiveness of
neuroprotectants, which may be one reason for translational failure
(Esposito et al., 2020; Boltze et al., 2021). Some moderate-quality
studies have shown that anesthetic drugs affect circadian rhythms
(Orts-Sebastian et al., 2019; Imai et al., 2020; Wang et al., 2020).
Therefore, the influence of circadian rhythm must be considered
for translational studies on anesthetic neuroprotection.

The transient effects of anesthetic drugs

Common anesthetic drugs such as propofol, ketamine,
and volatile anesthetics all have a short half-life in humans

(Freiermuth et al., 2016; Peltoniemi et al., 2016; Sahinovic et al.,
2018), which is an advantage in fast recovery after anesthesia.
However, in regard to neuroprotection, the transient effects
of anesthetic drugs may become a disadvantage because some
injurious factors can last for a long time. For example, the elevation
of excitatory amino acid (EAA) concentrations in MCAO lasts
only 1–2 h (Takagi et al., 1993; Baker et al., 1995); however,
in humans with AIS, glutamine increase may persist for 24 h
or longer (Bullock et al., 1995; Davalos et al., 1997). Moreover,
microglial cells, a type of immune cell in the brain, peak in
activity 2–3 days after injury (Barthels and Das, 2020), and they
can release variable inflammatory factors that lead to secondary
injury around the ischaemic core (Yenari et al., 2010). As a result,
the injurious factors are still in effect after the neuroprotective
effects of anesthetics have passed. In addition, the compensatory
function of patients is established within several months after
suffering a stroke. This may be the reason why the neuroprotective
effect of anesthetic drugs is not significant when we evaluate the
recovery of neurological function of patients after several months
in clinical studies. In the future, we may be able to introduce some
therapies suitable for long-term use to restrict damage-causing
factors. Electroacupuncture may be an option. Electroacupuncture,
an extension of traditional acupuncture, is used as a complementary
treatment with minimal side effects (Wei et al., 2016). Studies
have shown that electroacupuncture can attenuate inflammation
after ischaemic stroke by inhibiting the activation of microglia
(Liu et al., 2020), improving cerebral blood flow, and alleviating
neurological deficits (Zheng et al., 2016). As anesthetic drugs are
not suitable for prolonged use after EVT, electroacupuncture can
be used as an adjunctive technique to help reduce ischaemia–
reperfusion injury after recanalization and to promote functional
recovery. However, the reporting quality of randomized controlled
trials on electroacupuncture for stroke is generally moderate, and
further improvement is needed (Wei et al., 2016).

Heterogeneity in experimental subjects

In MCAO, a filament is sent into the middle cerebral
artery from the internal or external carotid arteries to mimic
stroke, and it allows reperfusion through the withdrawal of
the filament (Smith et al., 2015). This kind of reperfusion is
different from the pathophysiology of thrombolysis in human
stroke because the blood flow is restored promptly. Compared
with thrombolysis, MCAO more closely simulates the clinical
situation of mechanical thrombectomy (Sommer, 2017). However,
past clinical studies on the neuroprotective effects of anesthetic
agents were based neither on patients undergoing thrombolysis
nor on those undergoing mechanical thrombectomy. As shown in
Table 2, a large part of the past clinical research is based on other
operations or diseases that may cause cerebral ischaemia, such as
heart surgery and intracranial aneurysm surgery. These studies are
not sufficiently convincing to evaluate whether anesthetic drugs
have neuroprotective effects because most of these surgeries cause
only transient ischaemia and postoperative cognitive dysfunction,
which cannot cause large areas of brain tissue necroptosis such as
stroke.

In addition, stroke is a heterogeneous disease with diverse
additive risk factors (Caprio and Sorond, 2019). Although strict
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inclusion and exclusion criteria and grouping can reduce the effect
of patient heterogeneity, the heterogeneity of patients in clinical
studies is still more significant than that in animal models. The
emergence of EVT provides a good translational platform for drugs
that exhibit neuroprotective effects in the MCAO model. Among
patients undergoing EVT, we were able to screen out patients
with similar proximal intracranial artery occlusion by Computed
Tomography (CT) and angiography, in which the heterogeneity of
haemodynamics will be smaller and the haemodynamic changes
will be much closer to those of MCAO.

There are already large multicentre, double-blind, randomized
controlled trials of neuroprotective drugs in EVT patients (Hill
et al., 2020). In the future, more rigorous basic research and
clinical trials based on EVT will more rationally evaluate the
neuroprotective effects of anesthetics. Regardless of the outcome,
this research will provide more conclusive answers to decades-old
questions on the neuroprotective effects of anesthetics.

Conclusion

Anesthetics have great potential in neuroprotection, involving
various mechanisms such as excitotoxicity, SD, inflammation,
apoptosis, and ischaemia–reperfusion injury, but this has not been
clearly observed in previous clinical trials due to the mismatch
between basic research and clinical trials. The emergence of EVT
has brought new hope to the study of the neuroprotective effects
of anesthetics that once had been shelved. EVT might become a
bridge connecting basic and clinical research. Anesthetics have long
been confounding factors in translational stroke research. With
an increasing number of neuroprotective techniques coming into
clinical trials (Baker et al., 1995; Davalos et al., 1997; Sahinovic et al.,
2018), it is necessary to determine the effects of anesthetics during
EVT, and anesthetists also need a definitive study to guide clinical
anesthetic administration.
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Background: Patients who experienced an ischemic stroke are at risk for cognitive
impairment. Quantified Ginkgo biloba extract EGb 761

®
has been used to treat

cognitive dysfunction, functional impairment and neuropsychiatric symptoms in
mild cognitive impairment and dementia.

Objectives: To assess the cognitive-related effects of EGb 761
®
treatment in

patients after acute ischemic stroke, as well as the feasibility of patient selection
and outcome measures.

Methods:We conducted a randomized, multicentric, open-label trial at 7 centers
in China. Patients scoring 20 or lower on the National Institutes of Health Stroke
Scale were enrolled between 7 and 14 days after stroke onset and randomly
assigned to receive 240mg per day of EGb 761

®
or no additional therapy for

24 weeks in a 1:1 ratio. Both groups received standard treatments for the
prevention of recurrent stroke during the trial. General cognitive function and
a battery of cognitive tests for sub-domains were evaluated at 24 weeks. All
patients were monitored for adverse events.

Results: 201 patients ≥50 years old were included, with 100 assigned to the EGb
761

®
group and 101 to the reference group. The mean change from baseline on

the global cognitive function as assessed by the Montreal Cognitive Assessment
score was 2.92 in the EGb 761

®
group and 1.33 in the reference group (between-

group difference: 1.59 points; 95% confidence interval [CI], 0.51 to 2.67; p < 0.005).
For cognitive domains, EGb 761

®
showed greater effects on the Hopkins Verbal

Learning Test Total Recall (EGb 761
®
change 1.40 vs. reference −0.49) and Form

1 of the Shape Trail Test (EGb 761
®
change −38.2 vs. reference −15.6). Potentially

EGb 761
®
-related adverse events occurred in no more than 3% of patients.

Conclusion: Over the 24-week period, EGb 761
®
treatment improved overall

cognitive performance among patients with mild to moderate ischemic stroke.
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Our findings provide valuable recommendations for the design of future trials,
including the criteria for patient selection.

Clinical Trial Registration: www.isrctn.com, identifier ISRCTN11815543.

KEYWORDS

Ginkgo biloba extract, ischemic stroke, cognitive function, post-stroke recovery,
randomized trial

1 Introduction

Patients surviving stroke are experiencing cognitive
impairment faster than those of stroke-free controls and
several large population-based studies have reported
significant cognitive decline in long-term follow-up (Wang
et al., 2012; Levine et al., 2015; Zheng et al., 2019; Lo et al.,
2022). To date, the mechanisms, magnitude and predictors of
cognitive decline after stroke is still incompletely understood.
Clinical characteristics are a key determinant of the variability in
dementia incidence among post-stroke patients. The presence of
lesion burden, multiple acute infarcts and total infarct volume,
all have been shown to predict post-stroke cognitive impairment
independently from demographic and vascular risk factors
(Pendlebury and Rothwell, 2009; Pendlebury and Rothwell,
2019). There is also a stepwise association between the
manifestation of severe small vessel diseases (SVD) or
multiple lacunes and delayed-onset dementia after stroke
(Mok et al., 2016). Moreover, vascular factors contribute to
dementia through cerebral infarcts and white matter changes
(Pendlebury and Rothwell, 2019). In particular, Foster et al. have
provided clinicopathological evidence that pyramidal neuron
atrophy in the dorsolateral prefrontal cortex, rather than loss of
neuronal numbers, was associated with distinct cognitive
deterioration in post-stroke dementia and vascular dementia
(Foster et al., 2014). Similarly, neuropsychiatric symptoms
(NPS) such as depression, irritability, agitation, apathy and
anxiety have also been found in significant proportions (23%–

33%) of stroke patients (Angelelli et al., 2004; Zhang et al., 2013;
Karakus et al., 2017; Salinas et al., 2017; Villa et al., 2018). Acute
stroke treatment is typically followed by secondary prevention in
accordance with current guidelines (Wang et al., 2017). This
mainly consists of antithrombotic treatments (anti-platelet
drugs, anticoagulants), and management of risk factors (such
as hypertension, hyperlipidemia, metabolic syndrome or
diabetes mellitus). There are limited pharmacological
therapies to address subsequent cognitive impairment aside
from brain stimulation techniques and physical exercise
(Bordet et al., 2017), and little attention has been paid to
cholinesterase inhibitors and memantine. Only one
randomized controlled trial (RCT) showed the effectiveness of
Actovegin on cognitive outcomes in patients with mild-to-
moderate ischemic stroke (Guekht et al., 2017), highlighting
the need for more evidence from large prospective cohorts. Some
patients with post-stroke depression responded to selective
serotonin inhibitors, whereas treatments of other NPS
appears to be less straightforward (FOCUS Trial
Collaboration, 2019; Hankey, 2020; Lundström, 2020).

Ginkgo biloba extract EGb 761® is a standardized product
prepared to a ratio of 35–67:1 from dry extract from Ginkgo
biloba leaves to final extract, extraction solvent: acetone 60%
(weight/weight) (DeFeudis, 2003). It contains 22.0%–27.0%
ginkgo flavonoids calculated as ginkgo flavone glycosides and
5.0%–7.0% terpene lactones consisting of 2.8%–3.4% ginkgolides
A, B, C and 2.6%–3.2% bilobalide, 7% proanthocyanidins, certain
low-molecular-weight organic acids, and less than 5 ppm ginkgolic
acids (Müller et al., 2012). It is commercially available as tablets and
drops and freshly dissolved in growth medium (EGb 761® is a
registered trade mark of Dr. Willmar Schwabe GmbH & Co. KG,
Karlsruhe, Germany) (Koltermann et al., 2009). EGb 761® has been
proven to in clinical studies enhance perfusion and decrease blood
viscosity (Müller et al., 2012). Randomized, placebo-controlled
clinical trials have demonstrated that EGb 761® improved
cognitive performance and neuropsychiatric symptoms in
patients with age-associated mild impairment in cognitive
function, vascular dementia and Alzheimer’s disease (Gavrilova
et al., 2014; Li et al., 2018). Meanwhile, an injectable form of the
extract reduced the infarct size, neurological deficits, and further
restored motor function with mitochondrial dynamics in a rat
model of stroke (Li et al., 2018). These findings suggest that EGb
761® may have a role in the prevention and treatment of cognitive
impairment following stroke.

Since there is still a lack of effective drugs that can reliably
prevent or treat cognitive decline in this population, we designed this
pilot trial to assess whether EGb 761® 240 mg/day for 24 weeks
would confer cognitive benefits after an acute stroke; we also
planned to evaluate the effect of EGb 761@ in various cognitive
domains and on NPS, as well as obtain data which can inform the
process of designing a randomized controlled trial with oral EGb
761® treatment in post-stroke cognitive impairment.

2 Methods

2.1 Study design and setting

We conducted a parallel-group, randomized, multicentric,
open-label pilot trial at 7 centers of China in accordance with
international (International Conference on Harmonization,
ICH) and national guidelines for Good Clinical Practice and
applicable laws of the People’s Republic of China. Details around
the centers are described in the supplementary material
(Supplementary Table S1). It was approved by the ethics
committees of all participating clinical sites. Two amendments
to the protocol were also approved by all ethics committees.
Informed consent was obtained from all patients before
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enrolment in the trial. Clinical trials registration: study ID
ISRCTN11815543 on the ISRCTN registry.

2.2 Inclusion and exclusion criteria

Patients of both sexes, at least 50 years old, who had given
informed consent and scored no higher than 20 on the National
Institutes of Health Stroke Scale (NIHSS) were enrolled during
7–14 days after an acute stroke (Lyden, 2017). Their MRI scans
had to indicate acute ischemic cerebral infarction and rule out
signs of hemorrhage, tumor, normal pressure hydrocephalus or
other serious cerebral disorder. Lacunes, white matter
hyperintensities or mild atrophy, or combinations thereof
consistent with pre-dementia Alzheimer’s disease or
cerebrovascular disease were acceptable. Patients had to be
able to understand and respond to interview questions,
complete questionnaires and take part in neuropsychological
testing with the necessary language skills. Each patient needed
a regular contact person (e.g., partner, close relative, friend) who
was willing to accompany him/her to provide information about
the patient’s cognitive problems, functional abilities and
neuropsychiatric symptoms during the hospital visits.

Patients were excluded from the study if they had any type of
dementia or other major neurological disorder (e.g., Parkinson’s,
Huntington’s, Pick’s or Creutzfeldt-Jakob disease, seizure disorder),
psychiatric disorder (e.g., major depression, generalized anxiety
disorder), alcohol or substance abuse/addiction, severe and
uncontrolled cardiovascular disease, severe renal or hepatic
dysfunction, insufficiently controlled diabetes mellitus, clinically
significant thyroid dysfunction, vitamin B12 or folic acid deficiency,
HIV or syphilitic infection, active malignant disease or any
gastrointestinal disease with impaired absorption of orally
applied drugs. Moreover, other criteria for exclusion were long-
term hospitalization, aphasia, dysarthria, paresis of the dominant
upper extremity, severe and insufficiently corrected loss of vision or
hearing, severe language difficulties and any other disability that
could have prevented valid cognitive testing. Female patients of
childbearing potential and patients with known sensitivity to
Ginkgo biloba extract were also excluded. In addition, patients
who were taking psychoactive drugs (e.g., antidepressants,
neuroleptics), anticholinergic drugs, anti-epileptics, anti-
coagulants, anti-dementia drugs, cognition enhancers or
perfusion-enhancing agents were not allowed to take part in the
study.

2.3 Randomization and treatment

Randomization by means of a validated computer program
(SAS macro RANSCH) was performed by a member of the
biometrics department who was not otherwise involved in
conducting of the trial. Eligible patients were identified by the
clinician conducting the assessments. Randomization numbers
were allocated to the patients in the order of inclusion. To
minimize allocation bias, treatment information (EGb 761® or
reference group) was contained in sealed envelopes matched to
the randomization numbers.

All patients received standard treatment in accordance with current
guidelines for the prevention of stroke recurrence, including general
supportive care, antiplatelet drugs and treatment for acute
complications (Liu et al., 2020); nootropic agents were not allowed
for use in this trial. Patients randomized to EGb 761® treatment took
2 tablets at 40 mg EGb 761® three times a day, for a daily dose of 240 mg
in addition to standard treatment for a period of 24 weeks. Those
randomized to the reference group received standard treatment only.

2.4 Outcome measures

Cognitive assessments: the main interest of this study was the
change in cognitive status from baseline assessed by the validated
Beijing version of the Montreal Cognitive Assessment (MoCA) at
24 weeks. The MoCA assesses a number of sub-domains of
cognition (visuospatial/executive, naming, memory, attention,
language, abstraction, delayed recall, orientation) (Julayanont and
Nasreddine, 2017). Scores range from 0–30, with lower scores
indicating more severe impairment. One point is added for patients
who have less than 12 years of education. Cognitive impairment was
defined as MoCA <26 (Nasreddine et al., 2005). The cognitive domains
evaluated also included the changes in Hopkins Verbal Learning
Test–Revised (HVLT-R), a scale that measures verbal learning and
memory with lower scores indicating worse functioning (Shi et al.,
2012); the Shape Trail Test (STT), checking the set shifting of executive
function, with higher scores predicting worse ability (Zhao et al., 2013);
a category version of the Verbal Fluency Test (VFT), which assesses the
role of frontal lobe function by generating exemplars in the given
category within 1 min (Mok et al., 2004); the Digit Symbol Substitution
Test (DSST) of theWechsler Adult Intelligence Scale—Revised (WAIS-
R), a test for associative learning by correctly matching symbols to
numbers within limited time (Jaeger, 2018).

Clinical status was assessed using the following instruments: the
Neuropsychiatric Inventory (NPI), a multidimensional scale for the
assessment of neuropsychiatric symptoms, the total composite score
ranging from 0 to 144, where higher scores indicates greater
abnormalities (Wang et al., 2012); the Hospital Anxiety and
Depression scale (HADS), with higher scores indicating more
psychological distress (Leung et al., 1999); the Clinical Global
Impression of Change (CGI-C), targeting overall change in the
patients’ mental health within the context of clinical experience
(Busner and Targum, 2007); National Institutes of Health Stroke
Scale (NIHSS), a measure of patients’ neurological status as well as
stroke severity (Chalos et al., 2020); and incidence of recurrent stroke.
Safety outcomes included vital signs, physical examination, 12-lead
electrocardiograms, laboratory tests and recording of adverse events. All
efficacy and safety outcomes were documented at baseline, at week
12 and 24. The members of an independent clinical-event adjudication
committee confirmed all the assessments since theywere unaware of the
trial assignments.

2.5 Statistical analysis

Taking into account the exploratory nature of the trial, a sample size
of 200 patients (100 per treatment group, 1:1 randomization, assumed
drop-out rate of 10%) was chosen to achieve a statistical power of 80%
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to detect a minimum standardized difference of 0.5 within a two-group
multivariate repeated measures design for a two-sided test, three time
points, 3 variables at a descriptive significance of α = 0.05.

The outcome analyses were predefined using data from the full
analysis set (FAS) population. For comparisons within and between
treatment groups, two-sided p-values were calculated, applying the
t-test to quantitative variables (paired t-test for within-group
comparisons) and Fisher’s exact test to qualitative variables. Missing
values were replaced by the last observation carried forward method.
Statistical analysis was performed using SAS software, version 9.2 and
higher (SAS Institute Inc., Cary, NC, United States) and SPSS version
24.0 (SPSS Inc., Chicago, IL, United States, 2001).

3 Results

3.1 Characteristics of the study population

Between January 2014 and May 2016, 209 patients were
screened for the study. Two hundred one were enrolled and

underwent randomization along with standard treatment, with
100 to the EGb 761® group and 101 to the reference group (no
additional treatment). Figure 1 shows the patient flow chart.
Overall, 23 patients discontinued the trial. The full analysis set
(FAS) for the evaluation of treatment effects (EGb 761® group,
n = 97; reference group, n = 96) comprised all randomized
patients who had at least one cognitive test result or one NPS
rating after baseline and all patients randomized to receive EGb
761® who terminated the trial early due to lack of efficacy or an
adverse event for which a causal relationship with the study drug
could not be ruled out. All patients of the reference group (n =
101) and all patients of the EGb 761® group who took at least one
dose of the study drug (n = 99) were included in the safety
analysis (safety population, SAF).

Demographic characteristics and scales at baseline were similar
between two groups except for the Neuropsychiatric Inventory
(NPI) total score (Table 1). The numerically higher mean score
and the high standard deviation in the reference group were due to a
small number of outliers with high scores. The mild mean National
Institutes of Health Stroke Scale (NIHSS) score indicated minimal

FIGURE 1
Patients flow diagram.
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neurological deficits and those slight differences between groups did
not reach statistical significance.

3.2 Efficacy

A significant difference in total MoCA scores favoring EGb 761®

was observed at 24 weeks. The mean change from the baseline
MoCA rating at week 24 was 2.92 in the EGb 761® group and
1.33 in the reference group (drug-reference control difference:

1.59 points; 95% confidence interval [CI], 0.51 to 2.67; p < 0.001;
Table 2; Figure 2). For three sub-domains of the MoCA, scores of
delayed recall, orientation and language in the EGb 761® group at
24 weeks showed significantly larger improvements (delayed recall:
EGb 761® change 0.88 vs. reference 0.17, 95% CI, 0.31 to 1.10, p <
0.001; orientation: EGb 761® change 0.28 vs. reference −0.11, 95%
CI, 0.18 to 0.60, p < 0.001; language: EGb 761® change 0.45 vs.
reference 0.09, 95% CI, 0.06 to 0.66, p < 0.05).

Results involving the cognitive domains are presented in Table 2.
The change score of the Hopkins Verbal Learning Test (HVLT) and

TABLE 1 Characteristics of patients at baseline; n (%) or mean (SD); two-sided p-values of t-test (continuous variables) or Fisher’s exact test (categorical variables).

EGb 761® (n = 97) Standard treatment (n = 96) p-value

Female [n, %] 26 (26.8%) 20 (20.8%) 0.3988

Male [n, %] 71 (73.2%) 76 (79.2%)

Age (years) [mean, SD] 62.6 ± 8.3 64.1 ± 8.3 0.2026

NIHSS total score [mean, SD] 1.98 ± 2.22 2.18 ± 2.23 0.5384

MoCA total score [mean, SD] 23.02 ± 4.68 23.47 ± 4.26 0.4876

HVLT total recall [mean, SD] 16.53 ± 4.53 17.20 ± 5.64 0.3628

STT trail 1 [mean, SD] 121.5 ± 109.5 109.7 ± 67.28 0.3669

STT trail 2 [mean, SD] 234.8 ± 176.6 239.6 ± 196.0 0.8588

VFT [mean, SD] 12.91 ± 5.00 12.44 ± 4.22 0.4814

WAIS-R DSST [mean, SD] 25.58 ± 11.97 25.58 ± 12.97 0.9973

NPI total score [mean, SD] 4,90 ± 13,04 8,88 ± 54,83 0.4906

HADS-Anxiety [mean, SD] 4.79 ± 3.99 5.27 ± 3.98 0.4066

HADS-Depression [mean, SD] 4.92 ± 4.01 5.08 ± 4.01 0.7742

Abbreviations: NIHSS, national institutes of health stroke scale; MoCA,montreal cognitive assessment; HVLT, hopkins verbal learning test; STT, shape trail test; VFT, verbal fluency test;WAIS-

R, Wechsler Adult Intelligence Scale-Revised; DSST, digit symbol substitution test; NPI, neuropsychiatric inventory; HADS, hospital anxiety and depression scale; SD, standard deviation.

TABLE 2 Efficacy outcomes. Changes from baseline to 24 week in cognitive tests and neuropsychiatric rating scales. Data are n (%) and mean (SD).

EGb 761® (n = 97) [mean ± SD] Standard treatment (n = 96) [mean ± SD] p-value

MoCA total score 2.92 ± 3.90 1.33 ± 3.75 <0.005

MoCA delayed recall 0.88 ± 1.42 0.17 ± 1.39 <0.001

MoCA orientation 0.28 ± 0.75 −0.11 ± 0.75 <0.001

MoCA language 0.45 ± 1.05 0.09 ± 1.08 <0.05

HVLT total recall score 1.40 ± 5.47 −0.49 ± 5.20 <0.05

Shape trail test—trail 1 −38.2 ± 93.8 −15.6 ± 55.4 <0.05

Shape trail test—trail 2 −68.8 ± 174.5 −62.7 ± 174.9 n. s

Verbal fluency test 1.21 ± 6.14 −0.16 ± 4.29 n. s

WAIS-R DSST 7.22 ± 14.49 5.60 ± 14.36 n. s

HADS anxiety −1.79 ± 3.72 −1.45 ± 4.05 n. s

HADS depression −1.25 ± 4.74 −0.57 ± 4.17 n. s

NPI total score −3.98 ± 13.86 −6.59 ± 55.68 n. s
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FIGURE 2
Change in Montreal Cognitive Assessment (MoCA) scores over the course of the study (means, 95% confidence intervals, two-sided p-values of
t-test for between-group differences).

FIGURE 3
Clinical Global Impression of Change (CGI-C) at 24 weeks; p < 0.001 vs. standard (Fisher’s exact test two-sided).
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the Shape Trail Test—Trail 1 at week 24 revealed that the drug-
reference difference were 1.89 points (95% CI, 0.38 to 3.40; p < 0.05;
Table 2) and −22.6 points (95% CI, −44.31 to −0.89; p < 0.05;
Table 2). According to the clinicians’ global ratings (CGI-C), 80.2%
of the patients treated with EGb 761® improved much or very much
compared to their baseline condition (Figure 3) versus only 20.8% of
those who received standard treatment alone. The rate of recurrent
strokes was low; only one recurrent stroke was observed in one
patient of the EGb 761® group, and three recurrent strokes were
reported for two patients in the reference group. The analysis did not
find significant difference for the Shape Trail Test Trail 2 (STT-2),
the Verbal Fluency Test (VFT), the Digit Symbol Substitution Test
(DSST) of the Wechsler Adult Intelligence Scale-Revised (WAIS-R),
the Hospital Anxiety and Depression scale (HADS) and NPI in both
groups at week 24.

3.3 Safety

Overall, 10.5% of patients experienced at least one adverse event
during the 24-week randomized treatment period. The incidence of
adverse events was similar between the two groups.16 adverse events
were observed in 11 patients (11.1%) of the EGb 761® group, and
14 adverse events were reported for 10 patients (9.9%) of the
reference group. Most adverse events were mild and unlikely to
be related to EGb 761®. The most frequently reported adverse event
was nasopharyngitis, which was experienced by 3 patients (3%) in
each treatment group. Other adverse events occurred in no more
than 1% of patients in either group. Altogether, 5 serious adverse
events were reported: 2 events (cerebral infarction, chronic kidney
disease, one patient each) in the EGb 761® group and 3 events
(2 cerebral infarctions in one patient, lacunar infarction in one
patient) in the reference group. A causal relationship could not be
ruled out for three events: rash, dizziness (both possibly related) and
chronic kidney disease (relationship unlikely). There were no
clinically significant changes from baseline observed in vital
signs, biochemical markers or electrocardiography results in
either group.

4 Discussion

Considering the high incidence of stroke and the cognitive
decline experienced by survivors in the Chinese population, there
is a pressing need for novel interventions during the early post-
stroke stage (Rajan et al., 2014); however, only few drugs have
been dedicated to the topic. Our prospective randomized,
multicenter, open-label trial focused on the effects of Ginkgo
biloba extract EGb 761® vis-à-vis cognitive function in patients
after a recent mild-to-moderate ischemic stroke. The results
provide valuable insight into the optimal selection of patients,
efficacy measures and determining treatment duration for this
disorder. Our study had an exploratory design. Evidence of
previous trials has supported the use of EGb 761® in the
treatment of cognitive impairment (Gauthier and Schlaefke,
2014; Gavrilova et al., 2014). Thus we applied a cost-effective
attempt to repurpose EGb 761® at the same dose regimen to treat
cognitive change after stroke. We adopted a 6-month treatment

period because previous large-scale drug trials demonstrated that
this interval was sufficient to observe symptomatic benefits in
patients with vascular cognitive impairment (Ritter and Pillai,
2015).

We demonstrated that EGb 761® exhibited slight
improvements of cognitive performance, mainly documented
by a larger increase in MoCA scores in the treatment group
compared with the reference group. MoCA has been found
sensitive when it comes to identifying changes in cognitive
function, especially in executive deficits that add to the
outcome prediction of post-stroke cognitive impairment and
post-stroke dementia (Shopin et al., 2013; Dong et al., 2014;
Burton and Tyson, 2015; Ritter and Pillai, 2015; Tan et al., 2017).
In our study, we only enrolled patients with mild neurological
deficits because they had to be able to participate in functional
cognition evaluation: a ceiling effect can therefore not be ruled
out while explaining the similar high response in both groups
after 24 weeks. Nevertheless, the difference between drug and
reference treatment, although minor, stayed in line with the
typical results of other vascular cognitive impairment trials
(Guekht et al., 2017; Nijsse et al., 2017; Chabriat et al., 2020),
providing further evidence that the MoCA is a useful instrument
to assess cognitive outcomes after mild stroke. It is noteworthy
that both our trial and the findings from the previous study (Li
et al., 2017) have shown that Ginkgo biloba extract as an add-on
to the standard treatment promoted MoCA improvement at
6 months. Comparatively, our current research used lower
EGb 761® dosages (240 mg daily) compared to Li et al.
(450 mg daily). While several studies have indicated that EGb
761® may increase the risk of bleeding by inhibiting platelet
aggregation and platelet activating factor function (Kudolo
et al., 2002; Bent et al., 2005), our results supported that the
use of lower dosage of EGb 761® (240 mg/d) did show clinical
benefits in cognitive performance within a 24-week period and
alleviated the concern of bleeding in future study designs. A long-
term study lasting for 1–3 years would help to fully explore the
efficacy of EGb 761® in preventing post-stroke dementia.
Strengths of our study also included the exclusion of patients
who take antidementia drugs, psychoactive drugs and so forth
regularly to avoid possible confounding in the result of the trial
on the cognitive function.

In particular, the cognitive function of patients in the
reference group did improve to some extent at 24 weeks,
confirming the benefits of secondary prevention, including
risk-factor management. It has been postulated that risk-factor
management could restore cognitive performance and NPS.
Therefore, we recommend that future analyses also include
medical history, concomitant disease, as well as significant
laboratory values such as blood pressure, blood glucose, and
blood lipid during treatment. A trend towards a progress in
learning and memory along with executive functions was also
detected with the EGb 761® group versus control. Furthermore,
there is a marked and statistically significant difference in favor of
EGb 761® treatment in terms of the clinicians’ global judgment of
change on the patients’ overall condition. This may be somewhat
overestimated: if there is any doubt in an open-label study, it is
entirely possible that the better of two possible ratings was chosen
if a patient had more intensive treatments. Addressing additional
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aspects of quality of life or instrumental activities in further
studies may provide more insight. Other secondary outcomes
assessed did not achieve clinical significance and our analysis
demonstrated that EGb 761® did not improve psychological
outcomes by concomitant treatment in our pilot period. The
threefold higher number of recurrent strokes in the standard
treatment group might be a hint towards a preventive effect of
EGb 761® treatment. However, due to the very low rate of
recurrence, this data point has to be interpreted with caution.
In terms of safety, the application of EGb 761® was well tolerated,
which was in line with an established safety profile in the
treatment of dementia (Gauthier and Schlaefke, 2014;
Gavrilova et al., 2014) as well as a low incidence of adverse
events in this study population.

The findings above were not representative of patients with
more severe stroke sequelae due to our restrictive inclusion
criteria. Indeed, patients tend to develop focal neurologic
symptoms like aphasia or paralysis after a stroke. Despite a
higher risk of post-stroke cognitive deterioration, these
patients are not likely to be enrolled due to several reasons:
they may not able to understand and complete the cognitive
assessments; they could also be hospitalized in a long-term care,
which may not allow sufficient time for them to be identified and
enrolled; they are also likely to comorbid other serious medical
conditions that are inappropriate for clinical trials. These factors
limit the generalizability of study population, making it
challenging to gain valid evidence towards the effects of EGb
761® on patients with severe cognitive impairment. As expected,
most patients enrolled in our groups had only mild neurological
deficits as well as mild cognitive decline. Considering the slow
nature of cognition-associated decline after stroke, the cognitive
state of those patients might stay normal or stable during a 24-
week follow up (an interval which might only represent the early
warning stage of post-stroke cognitive impairment). In general,
pharmacological intervention at the early stage of associated
diseases is more effective in preserving cognitive function than
delayed treatment (Lissek and Suchan, 2021; Marcolini et al.,
2022). Ginkgo biloba extract contains several compounds that
have been shown to improve blood flow to the brain, reduce
oxidative stress and enhance the activity of neurotransmitters
such as acetylcholine, which is important for learning and
memory (Ahlemeyer and Krieglstein, 2003). Therefore, the
neuroprotective effects of EGb 761® could produce a modest
yet consistent benefit in slowing or halting the progression of
cognitive decline, rather than reversing it once it has already
developed into dementia.

Moreover, it is noteworthy that most adopted cognitive tests in
current vascular dementia trials have much in common with the
assessment tools in patients with Alzheimer’s disease (AD). These
traditional screening measures seem general but presumably lack
sensitivity in detecting the early subtle changes in cognition after
stroke. Indeed, those insufficient evaluations of AD-related
abnormalities might also confound our results, since vascular and
degenerative factors always interact and exacerbate cognitive
deterioration together in the long term (Korczyn, 2002). Thus
more attention is needed to develop more specific cognitive tests
for assessments after stroke, taking into account the fact that
cognitive injuries vary, depending on different ischemic types

including stroke location, volume, number of incidents and
severity (Kalaria et al., 2016).

Additional limitations of our study include the open-label
design and the lack of placebo, which has the potential of bias and
would have made the study not feasible, especially in clinical
event reporting and ascertainment. However, given the highly
objective nature of cognitive tests, it is unlikely that the
performance of our outcome measures of main interest were
adversely affected. Another limitation might be the absence of
biomarker evaluation related to cognitive status, which could
help the assessment of cognitive function. In addition, we
acknowledge the lack of diet regulation among the
participants and this variability could have influenced the
post-stroke recovery as well as the pharmacokinetics of the
drug, potentially impacting the study outcomes. Moreover, the
duration of our study—only 24 weeks—may have been too short
to reveal the potential of EGb 761® in attenuating the decline in
cognitive function, since cognitive deficits in patients after stroke
tend to develop slowly. Larger samples and longer follow-up for
1–3 years might be required in future studies for major post-
stroke cognitive impairment to manifest. In conclusion, evidence
from our trial suggests that EGb 761® 240 mg/d showed clinical
benefits in cognitive functioning of patients compared with
standard care after a mild-to-moderate ischemic stroke. Future
randomized controlled trials with a larger sample size and higher
statistical power may help further establish the inclusion criteria
and treatment duration; they can also further validate the effects
of EGb 761® in patients with a broader range of severity of
cognitive impairment.
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Both thrombolytic and endovascular therapies are optimal treatment options

for patients with acute ischemic stroke, but only less than half of these

patients can benefit from these treatments. Traditional Chinese medicine has a

long history of successfully managing ischemic stroke using both herbal and

physical therapeutics. Among herbal recipes, Sanhua decoction (SHD) is one

of the classical prescriptions for ischemic stroke. The present review aimed to

summarize evidence from both clinical and basic research to demonstrate its

efficacy in managing ischemic stroke and the potential mechanisms underlying

its therapeutic effects, which will provide evidence on the therapeutic effect of

this herbal recipe and guide future studies on this recipe. SHD is composed

of four herbs, Rheum palmatum L. [Polygonaceae], Magnolia officinalis Rehder

& E.H.Wilson [Magnoliaceae], Citrus × aurantium L. [Rutaceae], Hansenia

weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov [Apiaceae]. We found that

the majority of clinical studies on SHD are case reports and they showed positive

therapeutic effect of SHD on both acute and chronic ischemic stroke. There are

over 40 bioactive compounds identified in SHD, but few experimental studies

have examined their individual molecular mechanisms. As an extract of SHD, it

improves neurological functions through suppressing inflammation, protecting

the blood brain barrier from degradation, restoring the number of neural stem

cells, inhibiting apoptosis and brain edema, scavenging oxygen free radicals, and

regulating the brain-gut axis. These will lay the theoretical foundation for future

studies on this prescription and its clinical application. Future research may need

to confirm its clinical efficacy in large-scale clinical trials and to disentangle its

bioactive compounds and their potential mechanisms.

KEYWORDS

Sanhua decoction, ischemic stroke, composition analysis, pharmacological analysis,
clinical efficacy
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Introduction

Ischemic stroke is the most common cerebrovascular disease
in clinical practice. Its incidence is steadily increasing with the
improvement of modern living standards and the acceleration
of the pace of life (Wang et al., 2019), and its onset of age is
getting younger (Hankey, 2017). Hemiplegia, slurred speech, loss
of consciousness, are the major manifestations (Zhang and Wu,
2017). Stroke remains one of the leading causes of death worldwide,
with a high incidence, a high morbidity rate, and a high recurrence
rate (Wang et al., 2019), especially in China where stroke is the
leading cause of adult disability and death (Gbd 2016 Headache
Collaborators, 2018). It poses heavy medical and financial burden
to patients and their families, as well as the society (Wang W. et al.,
2017; Pandian et al., 2018).

Studies have shown that stroke has complex etiologies and
pathogenic mechanisms. Western medicine remains the first choice
of treatments. Tissue derived plasminogen activator (tPA) is the
only drug approved by FDA. It has an ideal time window of
4.5 h after symptom onset before starting intravenous infusion
(Rangaraju et al., 2015). Emerging studies also support the use of
endovascular thrombectomy. A few randomized clinical trials have
extended the time window of endovascular thrombectomy from 6
to 24 h with the guidance of imaging results (Fransen et al., 2014;
Pirson et al., 2021). However, the reality is that a decent proportion
of ischemic stroke patients do not reach the hospital within the time
window and others do not meet the criteria for thrombolysis or
thrombectomy though they arrive at the hospital within the time
window. These patients will be managed with secondary prevention
measures leaving them with disabilities of various extents. Even in
China where Traditional Chinese Medicine (TCM) was developed,
few people received TCM therapies in the emergency room. One
of the hurdles for the wide application of TCM therapies is that
the therapeutic mechanisms of these herbal recipes or physical
therapies are unclear though they have been empirically used for
thousands of years. However, a large proportion of patients prefer
to receive TCM therapies at the sequelae stage when western
medicines have limited effects on their conditions.

Traditional Chinese Medicine has a long history of managing
stroke with herbs or physical therapies, either to treat ischemic
or hemorrhagic stroke (Li et al., 2016; Seto et al., 2016). Many
literatures show that TCM treatment can prevent the exacerbation
of this condition, significantly improve clinical outcomes of
patients by promoting their functional recovery (Li et al., 2016;
Seto et al., 2016; Bi, 2022). Recent studies have found that the
addition of TCM recipes to conventional medicine at the acute
stage of ischemic stroke displays superiority to pure conventional
medicine, and the incidence of adverse events is low (Liu and
Xiong, 2013). More importantly, many patients may have missed
the time window for intravenous thrombolysis or endovascular
thrombectomy, and they have no better options to choose but
secondary prevention measures. In this particular respect, TCM
treatments have displayed advantages over conventional medicines.
Therefore, there is a surge of both clinical and basic research on
the therapeutic effect and their underlying mechanisms of TCM
recipes. Findings from these studies will demonstrate both clinical
and mechanistic evidence of these recipes on ischemic stroke, and
promote their use both in China and other countries (Zhang, 2019).

TCM understanding of ischemic
stroke

According to the TCM theory, ischemic stroke is closely
related to accumulation of internal injury, deficiency of Qi (a
form of energy which waxes and wanes in the body depending
on health) and blood, excessive fatigue and lack of rest, emotional
disturbance, unhealthy dieting habit, and obesity (Wang Y. et al.,
2017). Pathogenic mechanisms mainly include external wind, extra
heat, phlegm, blood stasis, and deficiency of Qi and blood (Si et al.,
2019), which are closely related to the climate, emotional response,
pressure, and other factors in daily life (Duan, 2017). These
pathological factors contribute to the imbalance of Yin and Yang,
dysfunction of Zang (solid organs) and Fu (hollow organs like guts,
stomach), altered homeostasis of Qi and blood. As a result, ischemic
stroke occurs (Li et al., 2019). Treatment of ischemic stroke should
also be tailored based on the etiologies and pathogenic mechanisms
of patients. Commonly used treatments mainly include nourishing
Yin to expel the wind, clearing extra heat to protect the liver,
invigorating Qi, improving blood circulation, cleansing blood
stasis, dissipating extra heat and phlegm in internal organs, and
restoring the consciousness (Li, 2018; Zhao and Zhou, 2021).

Composition and application of
Sanhua decoction

Sanhua decoction (SHD) first appeared in the book named “Su
Wen Bing Ji Qi Yi Bao Ming Ji” (literally translated into Su Wen—
collection of experience on how to live longer by understanding
the pathogenic mechanisms and Qi) written by Liu (2007). He
pointed out that ischemic stroke can be the result of dysfunction
of a variety of organs. If it is due to the dysfunction of Fu
(hollow organs), it is very likely to manifest with symptoms of
both Fu and Zang (solid organs), like stasis of Qi and loss of
consciousness. Treatments should aim to recanalize Fu (hollow
organs) or to restore the consciousness (Chen et al., 2021). SHD
is a representative prescription for stroke that recanalizes Fu. It has
the effect of harmonizing Qi, blood, and body fluid, cleansing stasis
in Fu through which the environment and the internal organs are
connected (Zhao and Jie, 2016; Wang Y. et al., 2020).

Sanhua decoction is composed of four herbs, Rheum palmatum
L. [Polygonaceae], Citrus × aurantium L. [Rutaceae], Magnolia
officinalis Rehder & E.H.Wilson [Magnoliaceae], and Hansenia
weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov
[Apiaceae]. It is used for treating apoplexy of six meridians
(Dong and Fang, 2005; Gong, 2007). These four herbs have been
recorded in ancient books to effectively treat stroke (Song et al.,
2016). “Yi Xue Wen Dui” (literally translated to Questions and
Answers in Medicine) recorded that SHD is composed of Xiao
Chengqi decoction and Qiang Huo [Hansenia weberbaueriana
(Fedde ex H.Wolff) Pimenov & Kljuykov [Apiaceae]] (Gao,
1959). It is interpreted that Rheum palmatum L. [Polygonaceae]
is the king herb, responsible for purging heat and the bowel;
Citrus × aurantium L. [Rutaceae] is the minister herb, removing
Qi stasis and retention of food in the bowel in addition to
dissolving phlegm. These two herbs, when used together, can
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effectively eliminate extra heat, remove Qi stasis, and expel
the retained food in the bowel. As a result, the gastrointestinal
system is well-restored. Magnolia officinalis Rehder & E.H.Wilson
[Magnoliaceae] is the assistant herb, specialized in removing Qi
stasis and distention, and assists the other two herbs to recanalize
the gastrointestinal system. These three herbs from Xiao Chengqi
decoction are used for conditions manifesting with regurgitation
of the gastrointestinal system. Hansenia weberbaueriana (Fedde
ex H.Wolff) Pimenov & Kljuykov [Apiaceae] is the envoy herb,
responsible for dispelling cold and wind, eliminating extra water,
and ameliorating pain (Song et al., 2016). The combined use of
these four herbs recanalizes meridians, purges Fu (hollow organs),
tonifies Qi and blood, removes stasis, and restores the function of
the brain and other organs (Fan et al., 2012b; Wang and Xie, 2013).

To search for studies on SHD, 4 English databases including
PubMed, Web of Science, EMBASE, Cochrane Central Register
of Controlled Trials, four Chinese databases including the
Chinese National Knowledge Infrastructure, Wanfang Database,
Chongqing VIP Database, and the Chinese Biomedical Database,
and two clinical trial registration websites-the International Clinical
Trials Registry Platform and the Chinese Clinical Trial Registry
were searched up to March 30, 2022. Studies including randomized
controlled trials, case control studies, reviews, or systematic reviews
were included for analysis. Discrete searching strategies were
used, including: “Sanhua decoction” or “Sanhua Tang” and “acute
ischemic stroke” or “acute cerebral infarction” or “apoplexy” or
“stroke” or “ischemic attack.” No language restriction was used.
We found 5 articles from Pubmed, 7 from Web of Science, 0 from
Cochrane database, 7 from EMBASE, 29 from CNKI, 34 from
Wanfang Database, 10 from VIP Database, and 25 from Chinese
Biomedical Database. Two out of seven articles written in English
are published in Chinese but their titles are translated into English.
Articles from four Chinese databases are overlapping with each
other. In total, the number of articles directly related to SHD is 34,
and partially related to SHD is 37. The latter includes studies on
one herb or single or multiple bioactive compounds. Among these
34 articles, 12 are clinical studies.

Clinical studies on Sanhua
decoction

Sanhua decoction has a wide range of clinical applications.
Many clinical studies have found that it has significant therapeutic
effects on stroke without apparent adverse reactions.

Though there is a lack of randomized controlled trials on
this herbal recipe, a number of Chinese studies did report its
efficacy in managing ischemic stroke. It was reported that the
efficacy of this recipe alone ranged from 83 to 95% for acute stroke
patients compared with conventional western medicines excluding
tPA and endovascular thrombectomy (Li and Dou, 2008; Yang
et al., 2009; Liu, 2011; Wang C. et al., 2017). When SHD was
used along with conventional western medicines, the therapeutic
effect was even more significant (88.46 vs. 61.54%) (Wang, 2015).
Among the patients, not only their NIHSS was improved, but
also their Barthel indices (Yang et al., 2009; Liu, 2011). Apart
from this, SHD significantly improved rheological parameters,
including the decreased viscosity of the blood, decreased levels of

fibrinogen, hematocrit (Yang et al., 2009), and TXB2 (Wang C.
et al., 2017) when used in combination with conventional western
medicines. In the meantime, plasma AT-III and 6-keto-PGF1α

were increased after SHD treatment (Wang C. et al., 2017). In
the largest cohort of 120 stroke patients, 60 received modified
SHD. It was shown that neurological functions of 28 patients were
completely restored, 20 significantly improved, 9 improved, and
3 unchanged. In comparison, the conventional western medicine
group had 23 completely restored, 19 significantly improved, 8
improved, 10 unchanged. The difference between these two groups
was statistically significant (Li and Dou, 2008), demonstrating the
effectiveness of SHD in managing ischemic stroke.

In addition, SHD was found to be effective for chronic ischemic
stroke patients with sequelae. Zhu and Guo (2000) reported that
it improved neurological functions of ischemic stroke patients and
prevented the recurrence of stroke after optimizing the dosage of
the four herbs of SHD.

Apart from clinical studies using the standard SHD, a couple
of studies modified this recipe based on patients’ conditions
and also found that the modified recipes were also effective for
ischemic stroke patients (Duan, 2005; Meng and Liu, 2007). For
example, when Conioselinum anthriscoides ‘Chuanxiong’, Angelica
sinensis (Oliv.) Diels [Apiaceae], Acorus calamus var. angustatus
Besser [Acoraceae], and Asarum sieboldii Miq. [Aristolochiaceae]
were added to the recipe, over 90% of patients with ischemic
stroke showed improvement in their neurological functions (Meng
and Liu, 2007). Similarly, another study added Neolitsea cassia
(L.) Kosterm, Pueraria montana var. lobata (Willd.) Maesen &
S.M.Almeida ex Sanjappa & Predeep [Fabaceae], Mitragyna inermis
(Willd.) Kuntze [Rubiaceae], Lycopus virginicus L. [Lamiaceae], and
Tragia involucrata L. [Euphorbiaceae] to the recipe, and 84.7% of
the patients showed improvement in their neurological functions
(Duan, 2005). There are other reports on the clinical use of SHD,
but the number of patients was so small that they were not stated
in this review. One example is the case report by Zhang and Ren
(2002), where intractable hiccup due to stroke was alleviated by
SHD.

Formula analysis of SHD

Rheum palmatum L. [Polygonaceae]

This herb is a commonly used one in TCM. It tastes bitter and
has a cooling effect, specifically entering the spleen, stomach, large
intestine, liver, and the pericardium meridians (Chen et al., 2019). It
is known to remove bowel stagnation, clear extra water in the body,
purge extra heat, cool the blood, clear blood stasis, and to detoxify
toxins (Chinese Pharmacopoeia Commission, 2015). To be specific,
this herb has a variety of pharmacological effects. It can regulate the
function of the gastrointestinal system through anti-inflammatory
and cholagogic effects, and increasing pancreatic secretion. It
can also protect the cardiovascular system through regulating
the metabolism of blood lipids, inhibiting the pathogenesis of
atherosclerosis (Chen et al., 2019; Liu et al., 2020), scavenging
free radicals (Heo et al., 2010; Song, 2019), and regulating the
hemopoietic system. It improves the renal function, presenting with
anti-inflammatory, antibacterial, antiviral, and anti-tumor effects
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(Du et al., 2018; Jin et al., 2020). In the central nervous system, it
inhibits the production of nitric oxide and nitrosation or oxidation
of proteins (Zhao et al., 2018), as well as the aggregation of platelets
(Nemmar et al., 2015). As a result, it is empirically used to treat
ischemic stroke.

Magnolia officinalis Rehder & E.H.Wilson
[Magnoliaceae]

This herb has been used in China for over 2,000 years.
It is warm and bitter in nature, spicy in taste, and enters
the spleen, stomach, lung, and the intestine meridians (Chinese
Pharmacopoeia Commission, 2015). It mainly removes Qi stasis
and stagnation, clears extra water and dispels distention, suppresses
regurgitation, and pacifies asthma (Wei et al., 2019).

It is known for a number of therapeutic effects on the digestive,
nervous, cardiovascular, and respiratory systems. It inhibits
leukocyte infiltration to the brain under ischemia, production of
free radicals (Liou et al., 2003) and TXB2 (Yu et al., 2016b),
suppresses brain edema (Nemmar et al., 2015), and increases the
content of dopamine, serotonin, 5-HIAA in the brain (Yang et al.,
2017). Consequently, the cerebral blood flow is increased (Yu et al.,
2016a), brain edema attenuated, and oxidative stress relieved. In
addition, it has anti-inflammatory, analgesic, anti-bacterial, anti-
tumor effects (Tan et al., 2020).

Citrus × aurantium L. [Rutaceae]

This herb has a long history of clinical use. It first appeared in
“Shen Nong Ben Cao Jing.” It tastes bitter, spicy, sour, and is slightly
cold in nature. It enters the spleen and the stomach meridians.
It is known to remove Qi stasis and bowel stagnation, to dissolve
phlegm, and to ameliorate paralysis of internal organs (Heo et al.,
2010). It is mainly used to treat bowel stagnation, distention and
pain, diarrhea with tenesmus, constipation, phlegm stagnation, Qi
stasis, and other conditions (Zhang et al., 2015).

Pharmacologically, this herb improves the function of the
gastrointestinal tract, and exerts anti-tumor, anti-oxidation, anti-
bacterial, and anti-inflammatory effects (Qu et al., 2017). In the
central nervous system, it can ameliorate neuronal apoptosis
and oxidative stress induced by the ischemia and reperfusion
injury (Wang et al., 2017a), attenuate mitochondrial dysfunction
(Wang et al., 2017b). It also suppresses levels of nucleotide-
binding oligomerization domain 2 (NOD2), receptor-interacting
serine/threonine kinase (RIP2), nuclear transcription factor-
kappa B (NF-kB), matrix metalloproteinase-9 (MMP-9) and up-
regulates claudin-5, and minimizes the infarct volume and edema.
Consequently, neurological functions are improved (Bai et al., 2014;
Wang K. et al., 2020).

Hansenia weberbaueriana (Fedde ex
H.Wolff) Pimenov & Kljuykov [Apiaceae]

This herb was recorded in “Lei Gong Pao Zhi Yao Xing
Jie” (literally translated to analysis of herb processing and
pharmacological effects) (Li, 1998). It has a Yang nature with a light

smell and spicy and bitter taste, and can tonify and dissipate Qi,
expel the cold through the skin. It enters the bladder and the kidney
meridians, dispelling the cold and the wind from the skin, removing
extra water in the body, recanalizing the merians, and exerting an
analgesic effect (Shi and Shi, 2017).

Pharmacological studies have shown that this herb possesses
anti-inflammatory, antipyretic, antioxidant, antibacterial, analgesic
(Guo et al., 2019), and anti-hypoxia effects (Li et al., 2015). In the
central nervous system, it has been shown to reduce viscosity of
the plasma, and to inhibit platelet aggregation and thrombosis (Lv
et al., 1981; Zhang et al., 1996). Therefore, it is widely used to treat
cardiovascular, cerebrovascular, gynecological, and gastrointestinal
diseases (Yang et al., 2022b).

Dosage of Sanhua decoction and
possible bioactive compounds

The dose of each herb in SHD was clearly recorded in the
book named “Su Wen Bing Ji Qi Yi Bao Ming Ji” by Liu (2007).
Converted to current units, the dose of each herb equals to 30.5 g.
They are boiled in 2,831.4 ml water and only half of the water is
retained after being boiled twice. This water extract will be drunk
within a day. Changes of the patients’ conditions will be closely
monitored and drinking of SHD is ceased if diarrhea occurs (Zhang
X. et al., 2022). Though this herbal recipe has been empirically
used in clinical practice for centuries, no human pharmacokinetic
research has been conducted. Little information is available to
characterize this herbal recipe in this respect.

Possible bioactive compounds

With the assistance of the rat middle cerebral artery
occlusion (MCAO) model and the network pharmacology
technique, correlations between active compounds, compound
targets and signaling pathways were described. These targets
or compounds were tested in vivo for verification, aiming
to reveal the therapeutic mechanisms of SHD in managing
ischemic stroke. Forty active compounds and 47 direct target
genes were identified, indicating that this herbal recipe plays
a pharmacological role in the treatment of ischemic stroke
through multiple targets. Among the purified compounds,
emodin anthrone, isopropamidine, and scopoletin were identified
as key bioactive compounds. Numerous targets, including
interleukin-6 (IL-6), amyloid precursor protein (APP), protein
kinase B (AKT1), and vascular endothelial growth factor A
(VEGFA) were considered to be major targets (Yang et al., 2022b).
Multiple signaling pathways including endocrine resistance,
estrogen, tumor necrosis factor (TNF), advanced glycation
endproducts/receptor for advanced glycation endproducts
(AGEs/RAGE), and microRNAs were regulated by SHD. As a
result, ischemic injury and inflammatory reactions were attenuated
(YingHuang et al., 2022).

In another study, 78 shared targets by ischemic stroke and
SHD were identified through the network pharmacology technique.
Based on these targets, 9 compounds targeting over 10 target genes
were identified and they might be the key bioactive molecules
of SHD. These included apigenin, luteolin, nobiletin, naringenin,
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FIGURE 1

Pictures of four herbs constituting Sanhua decoction (SHD), searching strategies for articles on SHD and bioactive compounds identified from SHD,
molecular mechanisms underlying their therapeutic effect on ischemic stroke. Both English and Chinese databases were searched for publications
on SHD. Bioactive compounds were summarized from network pharmacology studies. These compounds can improve neurological functions of
ischemic stroke patients through suppressing neuroinflammation, ameliorating, or preventing the degradation of the blood brain barrier, protecting
neural stem cells and reducing apoptosis, preventing or mitigating brain edema, removing oxygen free radicals, and regulating brain-gut axis.

β-sitosterol, emodin, tetra-methoxylluteolin, isosinensetin, and
tangeretin (Zhang W. et al., 2022). In another study, phenethyl
ferulic acid ester and (-)-bornyl ferulic acid ester were found to
be the active compounds which can inhibit platelet aggregation
(Zhang and Shen, 2008).

A similar study found that SHD had 24 key bioactive
compounds for stroke and some of them showed potential to
become medicines, including hesperidin, cedar acid, houpulin
M, 6′-O-methylhonokiol, isomagnolol, syringaldehyde, and
vanillic acid. These compounds mainly interact with 19 targets
including APP, heat shock protein 90 alpha (HSP90AA1),

recombinant mothers against decapentaplegic homolog 4
(SMAD4), argininosuccinate synthase 1 (ASS1), elastin (ELN),
general transcription factor II-I (GTF2I), LIM domain kinase 1
(LIMK1), transducin (beta)-like 2 (TBL2), Von Hippel-Lindau
(VHL), nuclear transcription factor-kappa B 2 (NFKB2), Jagged
1 (JAG1), Nuclear Receptor Subfamily 3 Group C Member 1
(NR3C1), tumor protein P53 (TP53), and MLX interacting protein-
like (MLXIPL), etc. Seven core signaling pathways were identified
and they were dominantly related to the anti-inflammatory effect
of SHD, such as the interleukin-4 (IL-4) and interleukin-13 (IL-13)
mediated signaling pathways (Yang et al., 2022a).
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Aloe-emodin, rhein, emodin, chrysophanol, and physcion are
in the same category of rhubarb aglycone. They were shown to
improve neurological functions of MCAO rats through attenuating
neuronal apoptosis, scavenging free radicals, suppressing
nitric oxide mediated cytotoxicity and neuroinflammation, as
well as preventing platelet aggregation (Li et al., 2003, 2005;
Guan et al., 2014).

Pharmacological mechanisms of
SHD in treating ischemic stroke

Studies have found that SHD is an effective therapy for
acute ischemic stroke without apparent adverse reactions (Yang
et al., 2009; Liu, 2011). However, mechanisms underlying the
therapeutic effect of SHD are still unclear. A summary of the known
mechanisms was listed below.

The anti-inflammatory effect of SHD

After cerebral infarction, a large amount of proinflammatory
cytokines are released, among which IL-6 and TNF-α are the
major players. They are used as biomarkers for the recurrence
of vascular events (Boehme et al., 2016). IL-6 induces brain
injury and hippocampal neuronal necrosis through activating the
N-methyl-D-aspartate (NMDA) receptor and up-regulating the
c-Jun N-terminal kinase (JNK) (Armstead et al., 2019). SHD
can significantly attenuate swelling, degeneration, and necrosis of
neural cell, as well as infiltration of inflammatory cells caused
by cerebral ischemia, and can significantly reduce the expression
of interleukin-1β (IL-1β) and intercellular adhesion molecule 1
(ICAM-1) (Wu et al., 2009; Fan, 2010; Fan et al., 2011). Emodin
is likely to be the bioactive compound for this effect as it was
shown to downregulate NF-κB and ICAM1 in MCAO rats (Wu
et al., 2009). In network pharmacology studies stated above, IL-
6, TNF-α, NF-κB, AGEs/RAGE, and other targets were identified,
suggesting that SHD may target these genes or their proteins to take
the therapeutic effect (Yang et al., 2022b; Zhang W. et al., 2022;
Zhang X. et al., 2022). In addition, another study reported seven
major signaling pathways targeted by SHD, including the NF-κB
mediated signaling pathway where TNF receptor associated factor
6 (TRAF6) is involved, the NF-κB signaling pathway activated
through TGF-beta activated kinase 1 (TAK1) phosphorylation and
the Ikappa B kinases (IKKS), IL-4, and IL-13 mediated signaling
pathways (Yang et al., 2022a). In another network pharmacology
study, the targets of emodin were estimated, which included
caspase 3, prostaglandin-endoperoxide synthase 1 (PTGS1), TNF,
matrix metalloproteinase 9 (MMP9), protein kinase C epsilon
(PRKCE), prostaglandin-endoperoxide synthase 2 (PTGS2), tumor
protein 53 (TP53). Among them, caspase 3, PTGS1, TNF, and
MMP9 are associated with inflammation (Jia et al., 2021). In vivo
experiments also confirmed the decreased expression of IL-6 and
TNF-α in one of these studies (Zhang W. et al., 2022). Fu et al.
(2020) reported that SHD significantly improved neurological
functions and reduced the expression of p-tau. The latter is a
pathogenic protein involved in neurodegeneration, and triggers
neuroinflammation in Alzheimer’s disease models. In another study

on dogs with global ischemia-reperfusion injury, honokiol has
been shown to attenuate the increased level of thromboxane B2
(TXB2), but it has no impact on the level of endothelin and
NO. Surprisingly, whether neurological functions were improved
by this compound was not reported in this study (Yu et al.,
2016b). Another study used model rats of the ischemia-reperfusion
injury and rats with spontaneous hypertension which are prone to
develop stroke. They found that honokiol significantly increased
the production and release of NO by endothelial cells, which
mediates the dilation of blood vessels (Liu et al., 2016). Whether
other bioactive compounds have the same effect is unknown.

Inhibition of degradation of the
blood brain barrier

Destruction of the blood-brain barrier (BBB) plays an
important role in the occurrence and development of neurological
dysfunction in ischemic stroke (Yang et al., 2019; Li et al., 2022). Fan
(2010) showed that SHD could significantly reduce cerebral edema,
increase the expression of zonula occludin-1 (ZO-1) in rats with the
cerebral ischemia-reperfusion injury, and significantly reduce the
content of S100β protein in the serum of these rats. When BBB is
open or broken, S100β protein can reach the peripheral blood. This
protein protects BBB in rats with the cerebral ischemia-reperfusion
injury, which may be achieved by up-regulating the expression of
ZO-1 protein, a linker protein between transmembrane proteins
and cytoskeleton proteins (Li et al., 2022).

Matrix metalloproteinases (MMPs) are involved in neuronal
injury after cerebral ischemia (Cuadrado et al., 2009; Fan et al.,
2012a). Fan (2010) showed that SHD could significantly ameliorate
neurological deficits of rats with the cerebral ischemia-reperfusion
injury and attenuate the swelling, degeneration, and necrosis of
neural cells. The level of MMP-9 mRNA and MMP-9 protein
was also significantly reduced. Wang et al. not only found the
decreased expression of MMP-9 in MCAO rats, but also decreased
expression of nucleotide oligomerization domain-like receptors 2
(NOD2), receptor-interacting protein 2 (RIP2), and NF-κB, which
are all regulators of the expression of proinflammatory genes, after
pretreatment with naringenin. In addition, naringenin upregulated
the expression of claudin-5 and consequently decreased the
permeability of the BBB (Bai et al., 2014). Another study showed
that SHD can upregulate the expression of krüppel-like factor 2
(KLF2), suppress the expression of thrombomodulin and eNOS,
sustaining the integrity of the endothelial cells and maintaining
their physiological functions (Wang et al., 2022).

Whether other compounds identified in SHD can protect the
integrity of the BBB still needs investigation.

Protection of neural stem cells and
inhibition of apoptosis

Two studies reported the therapeutic effect of SHD in the
rat model of the ischemia-reperfusion injury and found that this
herbal recipe restored the number of endogenous neural stem
cells. Not only BrdU positive and doublecortin positive cells, but
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also BrdU positive and GFAP positive cells were increased. Stem
cell migration and differentiation was promoted by SHD, which
was closely related to the improvement of neurological functions
(Li, 2015; Fu et al., 2020). However, which bioactive compounds
impart this effect is unknown. Phytochemicals are recognized
by their multi-target characters (Khan et al., 2020). One herb
contains thousands of chemicals and a number of them can protect
or augment neurogenesis in the brain, like Egb761 (a chemical
present in ginkgo) and resveratrol (present in grape products)
(Jahan et al., 2018). Another study on bone marrow derived stem
cells found that rhubarb aglycone, a bioactive compound from
Rhubarb, increased the level of nerve growth factor (NGF) and
glial derived neurotrophic factor (GDNF) after transplanting the
stem cells to the brain of MCAO model rats (Li et al., 2008).
This suggests that rhubarb aglycone might have positive effect on
neural stem cells. The PI3K-Akt pathway is an important one
in the development of ischemic brain injury (Samakova et al.,
2019). It regulates many cellular functions, such as cell survival,
autophagy, protein synthesis, and glycolysis (Xie et al., 2019).
Phosphorylation of Akt increases the level of an anti-apoptotic
protein B-cell lymphoma 2 (Bcl2). Recent studies reported that
Akt phosphorylation enhanced nuclear translocation of the nuclear
factor E2-related factor 2 (Nrf2), and phosphorylation of the
cyclic adenosine monophosphate response element binding protein
(CREB), a survival regulatory protein, and protected against
cerebral ischemia (Zhang et al., 2018, Zhang X. et al., 2022). A study
on the rhubarb extract showed that it significantly attenuated the
increase in apoptosis, caspase-3, BCL2-associated X (Bax) in the
MCAO model and increased the level of Bcl-2, suggesting that this
extract might take effect through inhibiting the apoptosis pathway
(Tang et al., 2020). In a study by Wang et al. (2017a), naringenin was
found to prevent neuronal apoptosis and to suppress translocation
of Nrf2 from the cytoplasm to the nucleus in MCAO model rats
(Wang et al., 2017a). Whether other compounds are able to protect
neurons from apoptosis still needs further investigation.

Inhibition of brain edema

Aquaporin 4 (AQP4) is a functional regulator of astrocytes
and a common water-conducting membrane integrin channel
in the brain. Through regulating the inflow and clearance of
cerebral water, AQP4 is involved in the development of cerebral
edema and pathogenesis of various neurological conditions
(Suzuki et al., 2020). In the study by Lu et al. (2015) SHD
significantly alleviated neurological deficits after the cerebral
ischemia/reperfusion injury and reduced the expression of AQP4.
Through injecting lentivirus-mediated AQP4-siRNA into the
ventricle of rats before inducing MCAO, decreased expression
of AQP4 in the ipsilateral hippocampus and attenuated cerebral
edema was found after modeling MCAO. Therefore, SHD can
reduce the water content of the brain and effectively ameliorate the
permeability of BBB.

Sodium channels are key to control the transmission of
electrical signals in the nervous system, and its abnormality
contributes to the development of cerebral infarction. In a study
by Dai et al. (2011), they found that SHD significantly reduced the
volume of cerebral infarction in rats and increased the expression

of Nav1.1 mRNA. The latter resulted in reduce sodium influx and
protection of neurons. Neuroinflammation is often accompanied
by infiltration of inflammatory cells from the blood and increased
levels of proinflammatory cytokines. The latter can injure the
endothelial cells and activate microglia as well as astrocytes through
multiple signaling pathways. One of the consequences is brain
edema. Therefore, bioactive compounds present in SHD that
attenuate inflammation may alleviate brain edema as well (Wu
et al., 2009; Fan, 2010; Bai et al., 2014; Yu et al., 2016b).

Scavenging oxygen free radicals

Reactive oxygen species (ROS) are important players in
the development of ischemic stroke, especially during the
ischemia-reperfusion injury. Therefore, scavenging or neutralizing
ROS is one of the potential therapies for ischemic stroke. In
the body, the superoxide dismuatase (SOD) is a cytoplasmic
antioxidant enzyme that catalyzes the reaction with free radicals
and scavenges them. SHD was reported to increase the content
of SOD in rats with the cerebral ischemia-reperfusion injury
when administered intragastrically. In the meantime, the content
of malonaldehyde (MDA), a product of lipid peroxidation,
was significantly decreased (Tang et al., 2008), indicating
that SHD takes its effect partially through suppressing lipid
peroxidation and accelerating the scavenging of ROS. In
another study, honokiol, a compound present in Magnolia
officinalis, was found to protect the brain tissue during the
ischemia-perfusion injury through suppressing neutrophil
infiltration and lipid peroxidation evidenced by the reduced
level of MDA (Liou et al., 2003). Naringenin significantly
decreased the production of ROS through activating the
Nrf2/antioxidant response element signaling pathway (Wang
et al., 2017b). Whether other compounds have this effect is still
unknown.

Potential involvement of the
microbiota-brain-gut axis

The microbiota-brain-gut axis has been widely acknowledged
to be involved in a large variety of disorders. Emerging studies have
shown that the brain regulates the digestive system through not
only the sympathetic, parasympathetic nervous system, but also
through the hypothalamus-pituitary-adrenal gland axis as well as
the endocrine system. Vice versa, the gut impacts the brain not
only through neural transmission via the vagus nerve to upper
brain regions, but also through diverse signals, including intestinal
peptides like cholecystokinin and vasoactive intestinal peptide,
small molecular weight compounds like dopamine, serotonin, and
metabolites of bacteria in the gut. Both the nervous, endocrine,
and immune systems are involved in this regulation. The detailed
molecular mechanisms of these neural pathways, compounds,
and immune cells as well as mediators in the pathogenesis of
neurological conditions have been comprehensively reviewed by

Frontiers in Neuroscience 07 frontiersin.org156

https://doi.org/10.3389/fnins.2023.1149833
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1149833 April 7, 2023 Time: 17:30 # 8

Zheng et al. 10.3389/fnins.2023.1149833

many researchers (Cryan et al., 2019; Agirman et al., 2021; Socała
et al., 2021; Barrio et al., 2022).

In TCM, 6 Yang meridians are traveling through the brain,
indicating their involvement in the pathogenesis of brain diseases.
Among these six meridians, the colon meridian is responsible
for the expelling of the remaining substance after absorption in
the digestive system. The normal function of the colon meridian
ensures that the brain receives supply of nutrients and essential
molecules from the digestive system. When stroke occurs, the colon
will be impacted more or less. One of the eight therapeutic strategies
in TCM is catharsis. SHD, a recipe containing rheum palmatum,
can recanalize the gut through purging the digestive tract. This
not only removes the food residue retained in the gut, but also
attenuates inflammation, and improves neural functions (Liu et al.,
2005). It is reasonable to expect that the purge of the digestive tract
will significantly alter the composition of the microbiota in it and
subsequently the metabolites of bacteria, the interaction between
bacteria and the gut epithelial cells. Eventually, neurological
functions will be altered. However, few studies have examined this
type of molecular mechanisms underlying the therapeutic effect of
SHD. In the ischemia rat model, Fan et al. found that intragastric
administration of SHD in aged rats increased the activities of
Na+-K+- and Ca2+-ATPases (Fan et al., 2009), protecting the
gastrointestinal tissue from injury caused by acute stroke. In
another study, anthraquinone glycoside, a compound identified in
rheum palmatum, was found to alleviate the ischemia-reperfusion
injury and to increase the activity of SOD. In the meantime,
Escherichia coli and enterococci were suppressed, lactobacillus and
bifidobacterial were increased (Yu et al., 2019). In the thesis of Li
(2012), it was found that citrus aurantium significantly attenuated
inflammation in the mucosa of the stomach due to acute ischemic
stroke, which might be related to reduced levels of gastrin, motilin,
and vasoactive intestinal peptide. In the same model, suspension
of citrus aurantium was shown to ameliorate inflammation in
both the stomach and the small intestine, with even better results
when nimodipine was used together. The expression of substance P
(SP), connexin 43 (Cx43), C-kit in the stomach and the intestine
was decreased along with a reduced number of interstitial Cajal
cells, suspension of citrus aurantium plus nimodipine significantly
reversed these changes, indicating that citrus aurantium is able to
protect the mucosa of the digestive tract and restore its functions
after ischemic stroke (Qiu, 2014). It is possible that SHD might take
its therapeutic effect partially through regulating the brain-gut axis.

Conclusion and outlook

The present review summarized evidence supporting the
therapeutic effect of SHD in managing ischemic stroke and its
potential therapeutic mechanisms (Figure 1). There are a few
possibilities to explain the potential advantages of SHD over
western medicines in managing ischemic stroke patients. Firstly,
SHD can be used beyond the time window for intravenous
thrombolysis or endovascular thrombectomy, even at the chronic
stage of ischemic stroke. This might be related to the anti-
inflammatory, anti-apoptosis and other therapeutic mechanisms
listed above. It is widely acknowledged that free radical scavengers
like edaravone can effectively attenuate neurological deficits. The

bioactive compounds isolated from SHD like naringenin and
honokiol might have similar effects at the acute stage of ischemic
stroke. Secondly, SHD contains multiple bioactive compounds
which are targeting multiple pathways that are responsible for
pathological changes after ischemic stroke. The synergistic effect of
these compounds may augment their individual therapeutic effect.
For example, the anti-inflammatory and free radical scavenging
effects of SHD may more significantly alleviate brain edema than
suppressing neuroinflammation alone or scavenging free radicals
alone. This might be confirmed by applying different combinations
of bioactive compounds to ischemic stroke models and even
through randomized clinical trials. Thirdly, no specific medications
have been developed so far to treat ischemic stroke and this is due to
the lack of insight into the pathogenesis or mechanisms of ischemic
stroke. There might be potential mechanisms that we have not
discovered yet. SHD or other herbal recipes might have compounds
that can target these mechanisms.

It is found from clinical practice that the therapeutic effect
of TCM treatment based on syndrome differentiation is often
better than that of Western medicine, and the incidence of adverse
reactions is lower. The combination of SHD with conventional
Western medicine in the treatment of stroke can effectively
improve clinical efficacy, and is of great significance to ensure
the long-term quality of life of patients. However, strict attention
should be paid to drug interactions when Chinese and western
drugs are used together. At present, large-scale, multi-center
randomized, double-blind, controlled clinical trials on SHD are
still lacking. In the future, it is necessary to reinforce the training
of research design and clinical research capabilities of traditional
Chinese medicine researchers, constantly explore opportunities to
integrate Chinese and western medicine in managing a variety of
medical conditions. The aim is to accelerate the recovery of these
patients and to improve their quality of life.
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Postoperative cerebral
hemorrhage death in a patient
with secondary
hyperparathyroidism: a report of
one case and literature review
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Secondary Hyperparathyroidism (SHPT) is a common complication of end-stage

renal disease (ESRD), and parathyroid surgery (PTX) is an e�ective way to treat

patients with severe SHPT. ESRD has multiple associations with cerebrovascular

diseases. For example, the incidence of stroke in patients with ESRD is 10 times

higher than that in the general population, the risk of death after acute stroke

is three times higher, and the risk of hemorrhagic stroke is significantly higher.

High/low serum calcium, high PTH, low serum sodium, high white blood cell

count, previous occurrences of cerebrovascular events, polycystic kidney disease

(as a primary disease), and the use of anticoagulants are independent risk factors

for hemorrhagic stroke in hemodialysis patients with uremia. The risk of stroke in

patients who undergo PTX decreases significantly in the second year of follow-up

and persist thereafter. However, studies on the risk of perioperative stroke in SHPT

patients are limited. After undergoing PTX, the PTH levels in SHPT patients drop

suddenly, they undergo physiological changes, bone mineralization increases,

and calcium in the blood gets redistributed, often accompanied by severe

hypocalcemia. Serum calcium might influence the occurrence and development

of hemorrhagic stroke at various stages. To prevent bleeding from the operated

area, the use of anticoagulants after surgery is reduced in some cases, which often

decreases the frequency of dialysis and increases the quantity of fluid in the body.

An increase in the variation in blood pressure, instability of cerebral perfusion,

and extensive intracranial calcification during dialysis promote hemorrhagic

stroke, but these clinical problems have not received enough attention. In this

study, we reported the death of an SHPT patient who su�ered a perioperative

intracerebral hemorrhage. Based on this case, we discussed the high-risk factors

for perioperative hemorrhagic stroke in patients who undergo PTX. Our findings

might help in the identification and early prevention of the risk of profuse bleeding

in patients and provide reference for the safe performance of such operations.

KEYWORDS

secondary hyperparathyroidism, end-stage renal disease, hemorrhagic stroke,

parathyroid surgery, perioperative management
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1. Introduction

Stroke is the main cause of disability and death in hemodialysis

(HD) patients. The chances of stroke are several times higher in

HD patients than that in the general population, especially because

cerebral hemorrhage has a huge impact on patient outcomes (Kelly

et al., 2021). Secondary hyperparathyroidism (SHPT) is a common

and serious complication in patients with chronic renal failure,

and parathyroidectomy is the main way of treating SHPT patients

who are refractory to medical treatment (Lau et al., 2018; Choi

et al., 2021). Various dialysis methods, comorbidities, and drugs

can affect platelet aggregation and/or coagulation cascade and,

thus, affect the homeostasis of bleeding and hemostasis. The level

of serum calcium, high PTH, low serum sodium, high leukocyte

count, and a history of cerebrovascular events are important factors

that influence hemorrhagic stroke in patients with hemodialysis.

Several clinical studies have investigated the pathogenesis of CKD-

MBD stroke, along with its prevention and treatment (Xiao et al.,

2017; Yang et al., 2022). After undergoing PTX due to PTH, SHPT

patients experience many physiological changes. The perioperative

usually strictly control fluid intake because the changes in calcium

homeostasis, dialysis, and the effect of multiple factors, such

as antihypertensive drugs, blood pressure fluctuations, vascular

tone, blood-brain barrier changes, and the risk of hemorrhagic

stroke, might increase (Wakasugi et al., 2015). Few studies have

investigated the prevention and treatment of perioperative stroke

in patients after PTX. In this study, we reported the death of a

patient due to cerebral hemorrhage after she underwent PTX. We

analyzed the cause to provide a reference for increasing the safety of

such surgeries. We present the following case following the CARE

reporting checklist.

2. Case description

In 2020, a patient with SHPT expired due to cerebral

hemorrhage after parathyroid surgery in our unit. The details

regarding this case are as follows and Figure 1 is showcasing a

timeline with relevant data from the episode of care. The patient

was a 51-year-old female who was admitted to the hospital with

uremic dialysis for 9 years and elevated parathyroid hormone

for more than 5 years. She was suffering from hypertension for

more than 10 years, epilepsy for more than 9 years, and cerebral

infarction for more than 2 years. She was taking various oral

medications. On admission, the patient suffered from bone pain in

extremities with limited mobility and pruritus all over the skin, and

no other uncomfortable physical symptoms. During admission, she

was diagnosed with secondary hyperparathyroidism, the uremic

phase of chronic renal failure, renal anemia, renal hypertension,

and sequelae of cerebral infarction. After admission, a thyroid

ultrasound examination showed posterior nodules in both lobes

of the thyroid gland, which were considered to be of parathyroid

origin. Re-examination showed the following: PTH: 2,405 pg/mL;

Ca: 2.672 mmol/L; P: 1.6 mmol/L; WBC: 4.07 x 109/L; HB: 132

g/L. Total parathyroidectomy was performed on July 7, 2020,

and postoperative pathology showed (upper right, lower right,

upper left, and lower left) parathyroid nodular hyperplasia. PTH

decreased to 565.6 pg/L on intraoperative examination, and blood

calcium and phosphorus decreased to the normal range on the

first day after surgery. The clinical symptoms of the patients, such

as bone pain with limited mobility and skin pruritus, improved

significantly after surgery. On the morning of July 12, 2020,

the patient suddenly became unconscious (deep coma with a

GCS score of 3). She was unresponsive to calls and vomited a

large quantity of watery material. Her pupillary reflex to light

was poor, and emergency cranial CT showed left basal ganglia

hemorrhage with a break in the ventricular system; multiple

lacunar cerebral infarcts, and ischemic focus. The neurosurgeon

evaluated the intracranial hemorrhage by CT imaging at about

75ml. The patient was transferred to the intensive care unit, where

she was treated for dehydration and intracranial pressure and

was administered anti-infectives and continuous renal replacement

therapy (CRRT), followed by intracranial hematoma drainage

and lateral ventriculotomy (hematoma drainage 50ml). Cranial

CT reexamination showed the area of high density in basal

ganglia was reduced. Re-examination showed the following: WBC:

13.99 x 109/L; PLT: 124 x 109/L; D-dimer: 1.00 mg/L; Ca: 1.87

mmol/L; P: 0.60 mmol/L. The patient was resuscitated twice

during hospitalization (continuous infusion of norepinephrine

and vasopressin by intravenous pump) and was in a deep coma,

mechanically ventilated (respirator: SIMV mode, VT 480ml, PEEP

4 cmH2O), and without spontaneous respiration. The patient’s

family refused to continue using the ventilator and stopped

further treatment.

3. Discussion

Secondary hyperparathyroidism is a common complication of

end-stage renal disease (ESRD). Such patients mostly have multiple

comorbidities. The overall mortality rate of patients with renal

diseases, such as uremia, is 15–20% per year. Cerebral hemorrhage

is ∼3.8 times more common in ESRD patients than in the general

population (Thome et al., 2019). According to the US Renal Data

System, 3.1% of dialysis patients died of a stroke in 2011 (Collins

et al., 2012). With the advancements in hemodialysis technology,

the survival time of uremic patients has increased substantially.

However, the incidence of SHPT is increasing, and more patients

are opting for parathyroidectomy. According to the latest edition

of the AAES guidelines (2022), PTX can reduce cardiovascular

and all-cause mortality in patients with SHPT. The benefits of

surgery significantly exceed the drawbacks in patients who do not

respond to medication and have significant symptoms (Dream

et al., 2022). To prevent perioperative cerebral hemorrhage or

reduce its severity, a comprehensive understanding of the risk

factors for cerebral hemorrhage in HD patients with modifiable

factors is necessary.

3.1. Risk factors for concurrent cerebral
hemorrhage

The risk of perioperative cerebral hemorrhage increases due to

the application of anticoagulants such as heparin during dialysis,

making this treatment method life-threatening. Hyperlipidemia,

hypertension, diabetes mellitus, age on dialysis, and mean arterial
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FIGURE 1

The timeline of case details.

pressure are high-risk factors for the development of complications

of cerebral hemorrhage (Lau et al., 2018). Patients with a

history of combined hyperlipidemia, hypertension, and diabetes

mellitus may have atherosclerosis of intracranial vessels, which

in turn might increase the fragility of intracranial vessel walls.

Patients with advanced uremia may have increased blood volume

and extracellular fluid and increased renin-angiotensin activity,

resulting in water and sodium retention. This can cause an

increase in mean arterial pressure, progressive aggravation of

atherosclerosis, and an increase in vascular fragility. Sharp blood

pressure fluctuations might cause dysregulation of the autonomic

nervous system, which can lead to arterial and microaneurysm

rupture and affect prognosis (Xiao et al., 2017; Yang et al., 2022).

Several studies have investigated blood pressure control after

CH; however, data on blood pressure before CH are limited,

particularly on the increase in blood pressure before CH. Age on

dialysis is strongly associated with the development of cerebral

hemorrhage; the longer the age on dialysis, the higher the frequency

of dialysis, which in turn gradually decreases the functions of the

patient’s organs (Kitamura et al., 2020). Administering exogenous

anticoagulants causes fibrinogen to bind to platelets in the body,

which can stimulate the production of platelet antibodies, induce

thrombocytopenia, and cause bleeding. The greater the cerebral

hemorrhage, the worse the prognosis. Brain tissue edema is more

pronounced, and intracranial pressure is higher in patients on

maintenance dialysis for uremia, and the prognosis is extremely

poor if the volume of cerebral hemorrhage is >30mL (Kitamura

et al., 2019). Additionally, a decrease in hemoglobin and albumin

levels increases hemorrhage and affects prognosis. The changes in

hemoglobin levels after cerebral hemorrhagemight be related to the

higher incidence of hematoma enlargement in the early stages of a

cerebral hemorrhage. Conversely, hemoglobin levels might reflect

the severity and prognosis of a cerebral hemorrhage. A decrease in

albumin levels can lower the resistance of the body, increase the

risk of infection, and thus, aggravate the disease. Hypoproteinemia

can decrease the plasma colloid osmotic pressure, promote the

retention of a large quantity of fluid in the interstitial space,

decrease the effective circulating blood volume, and decrease the

perfusion of vital tissues and organs surrounding the site of

intracranial hemorrhage, leading to a poor prognosis (Xiao et al.,

2017; Kitamura et al., 2019; Yang et al., 2022). Additionally, high

serum calcium, low serum sodium, high leukocyte count, a history

of cerebrovascular diseases, primary polycystic kidney disease,

and daily application of warfarin are independent risk factors for

cerebral hemorrhage in uremic patients on regular hemodialysis.

Serum calcium can play multiple roles in each stage of

the occurrence and progression of cerebral hemorrhage, as

high blood calcium levels in patients with SHPT cause severe

calcification of the vascular wall and trigger cerebral hemorrhage

through several mechanisms (Xiao et al., 2017). Hypocalcemia

is also associated with cerebral hemorrhage. Kitamura et al.

showed that asymptomatic blood pressure increased in HD

patients before cerebral hemorrhage; this increase in blood

pressure was associated with frequent occurrences of lower serum

calcium levels, but the exact mechanism of this phenomenon

is unknown (Dandapat et al., 2019; Kitamura et al., 2020).

In the perioperative period of parathyroidectomy (PTX), the

patient is in a state of “calcium starvation” due to a sudden

drop in PTH and an increase in skeletal mineralization (Liu

et al., 2020), which leads to fluctuations in blood pressure

due to sudden changes in multiple factors in the internal

environment; these changes might promote cerebral hemorrhage.

In patients with hemorrhagic stroke, moderate-to-severe CKD

is associated with a 2.3-fold increase in the hematoma volume

and a poor prognosis (Molshatzki et al., 2011; Nayak-Rao and

Shenoy, 2017). Postoperative hypocalcemia should be aggressively

treated by administering calcium supplements via oral and

intravenous modalities.
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3.2. Prevention and management of a
cerebral hemorrhage in the perioperative
period of parathyroid surgery

The hypercoagulable state of the blood in patients with

SHPT increases the risk of hemorrhage. Before patients undergo

surgery, cerebral hemorrhage and bleeding at the operative

site should be prevented to reduce the risk of perioperative

bleeding. Due to the multifactorial nature of cerebral hemorrhage,

prevention and treatment options might include one or a

combination of the following: dialysis, erythropoietin, cold

precipitation, anticoagulation, antihypertensive drugs, and

postsurgical correction of hypocalcemia (Hedges et al., 2007).

Patients should be examined as comprehensively as possible

after admission. Besides the examinations related to the surgical

area, examination of the cardiac, cerebral, and pulmonary

conditions should be conducted to exclude contraindications to

surgery. Preoperative precise localization is needed to decrease the

operating time and the discomfort to the patient. Those receiving

low-molecular heparin can be switched to heparin-free dialysis

within 24 h before the operation. In recent years, the administration

of sodium citrate as an anticoagulant in hemodialysis for patients

with uremic cerebral hemorrhage has shown significant advantages.

Through extracorporeal local anticoagulation without aggravating

bleeding, it can ensure adequate hemodialysis, replenish blood

sodium, reduce cerebral edema, promote hemorrhage absorption,

and also reduce blood calcium due to the physical and chemical

properties of sodium citrate. This can further reduce blood pressure

and reduce inflammation and oxidative stress (Xun et al., 2021).

The treatment can also be switched to anticoagulant dialysis

with sodium citrate within 24 h before and after the operation.

Hypertension in HD patients can prevent the risk of death, but the

optimal predialysis blood pressure range remains undetermined.

The risk of a new onset of cerebrovascular and arteriovenous fistula

infarction increases with a decrease in blood pressure during the

perioperative period. Additionally, the risk of cerebral hemorrhage

decreases with better perioperative blood pressure control to reduce

blood pressure fluctuations. According to the 2022 edition of

the Expert Consensus, perioperative blood pressure should be

regulated at a level of <180/100 mmHg (Dream et al., 2022). Since

PTX was introduced in our hospital in 2010, only this patient died

due to a postoperative cerebral hemorrhage. Although the risk of

a cerebral hemorrhage is high, surgery can largely relieve clinical

symptoms and improve the quality of life of the patients. Most

patients benefit from surgery, and the incidences of patients with

SHPT opting for surgery have increased.

3.3. Treatment and prognosis of a
concurrent cerebral hemorrhage

If a cerebral hemorrhage occurs, treatment options and

prognosis depend on several factors. For example, the treatment

of patients with cerebral hemorrhage in uremia is divided into

conservative medical treatment and surgical treatment. Surgery

is the primary method for treating cerebral hemorrhage and

is also the best option for patients on hemodialysis. However,

the choice of surgical treatment and the type of procedure

used remains undetermined. In most studies, mortality and

disability rates after surgical treatment of cerebral hemorrhage

were similar to those of patients treated non-surgically. Kim et al.

(2013) reported three deaths in six surgically treated patients,

and the other three were severely disabled. Therefore, patients

with the uremic syndrome should be informed of the risks

and adverse effects of surgery by neurosurgeons. (1) Surgery

might be considered for patients with hemorrhage >35mL in

the basal ganglia or 50–60mL in the cerebral lobes, but only

for those who are stable and have no significant increase in

hematoma on cranial CT reexamination; (2) surgery is generally

not considered for patients with excessive hemorrhage (e.g.,

>100mL) or patients>70 years; (3) preoperative and postoperative

treatment should include active dialysis and preoperative or

intraoperative transfusion of plasma, cold precipitation, or platelets

to improve coagulation. Mannitol is a volumetric dehydrating

agent that increases blood volume and relies on renal excretion.

It can easily cross the fragile blood-brain barrier into the

brain parenchyma and aggravate brain edema. To reduce

intracranial pressure, glycerol fructose or albumin can be used

instead of mannitol. In our study, the patient was a middle-

aged female who had a combination of hypertension, cerebral

infarction, and various underlying diseases. This led to a poor

prognosis and increased the risk of death after the onset of a

cerebral hemorrhage.

The reason for this is that ESRD is closely related to the

occurrence of a cerebral hemorrhage in the perioperative period

in patients with SHPT. Before patients with SHPT undergo

surgery, surgeons should perform preoperative preparations and

risk assessment predictions. The patients and their families

should be informed of their condition and the risks and

complications of surgery. In case of complications of a cerebral

hemorrhage, timely diagnosis of the patients and early selection

of appropriate treatment modalities might decrease their mortality

and disability rate.
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Long non-coding RNAs in 
intracerebral hemorrhage
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Intracerebral hemorrhage (ICH), a subtype of stroke, can lead to long-term 
disability and is one of the leading causes of death. Unfortunately, the effectiveness 
of pharmacological therapy for ICH is still uncertain. Long non-coding RNA 
(lncRNA) was defined as an RNA molecule that consists of more than 200 nt 
without translational activity. As a vital class of diverse molecules, lncRNAs are 
involved in developmental and pathological processes and have been attractive 
for decades. LncRNAs have also become potential targets for therapies, as they 
were massively identified and profiled. In particular, emerging evidence has 
revealed the critical role of lncRNAs in ICH while attempts were made to treat 
ICH via regulating lncRNAs. But the latest evidence remains to be summarized. 
Thus, in this review, we will summarize the recent advances in lncRNA in ICH, 
highlighting the regulatory role of lncRNAs and their potential as therapeutic 
targets.

KEYWORDS

intracerebral hemorrhage, long non-coding RNA, pathology, therapeutic target, 
hemorrhagic stroke

1. Introduction

Intracerebral hemorrhage (ICH), a subtype of stroke, refers to the spontaneous rupture of 
injured small arteries or arterioles, leading to blood accumulation in cerebral parenchymal 
(Steiner et al., 2014; Gross et al., 2019). Although ICH counts for a smaller portion of all types 
of strokes (9–27%; Feigin et al., 2009; Sacco et al., 2009; Steiner et al., 2014), the global burden 
of ICH is higher than that of ischemic stroke (Krishnamurthi et al., 2013). A meta-analysis of 
nine studies showed that the mortality rate could be as high as 35.3% 3 months after ICH onset 
(Pinho et al., 2019).

Acute interventions for ICH, including medical therapies and minimally invasive surgery 
are likely to improve acute outcomes. Besides, sustained blood pressure control and optimized 
antithrombotic therapy are regarded as essential preventive strategies for improving longer-term 
outcomes in ICH (Hostettler et al., 2019). A better understanding of how the pathological 
mechanisms drive neurological injury in individuals is urgently required in order to develop 
therapies for acute and secondary progressive stages of ICH. Research on long non-coding RNA 
(lncRNA) has been attractive for decades. Up to now, a variety of lncRNAs have been proven to 
be involved in cerebral development and diseases, such as degeneration diseases of the central 
nerve system (Scheele et al., 2007; Chiba et al., 2009; Lagier-Tourenne et al., 2012; Ciarlo et al., 
2013) and stroke (both ischemic and hemorrhagic stroke; Zhang and Wang, 2019). With the 
gain- and loss-of function methods, the functions of lncRNAs in ICH were further studied.

In this regard, it is crucial to reveal the current knowledge about the roles of lncRNAs in 
ICH. Therefore, we will briefly review the involvement of lncRNAs in the ICH-caused damages 
and their potential to be therapeutic targets and biomarkers will be discussed. The searching 
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strategies used in this article are summarized in Supplementary  
material.

2. The pathogenesis of acute and 
secondary insults after ICH

Quickly after vessel rupture, blood accumulates in the cerebral 
parenchymal, causing intracranial pressure elevation, perilesional 
edema, and structural damage, which may lead to brain hernia and 
can be fatal (Wilkinson et al., 2018). Mostly, bleeding stops shortly 
after ICH, but 14–22% of ICH patients may experience hematoma 
expansion in 6–24 h after ICH onset, which causes more severe 
structural damage and neurological deterioration, and leads to worse 
outcomes (Kazui et al., 1996, 1997; Fujii et al., 1998).

After the primary mechanical injury, complicated pathological 
responses will be triggered. The over-activated microglia release several 
cytokines and contributes to inflammation, blood brain barrier (BBB) 
breakdown, and edema in turn (Taylor and Sansing, 2013). 
Components of the complement system can pass through the damaged 
BBB and form membrane attack complex, enhancing the BBB injury 
and neurological damage (Xi et  al., 2006). Heme and iron will 
be released during the erythrocyte elimination process (Wagner et al., 
2003). The debris of blood enhances the production of free radicals and 
contributes to neurological injury, inflammation, BBB damage, and 
edema (Garton et  al., 2016; Yang et  al., 2016). Also, excitotoxicity 
molecules, such as glutamate was shown to anticipate in brain injury 
after intracerebral hemorrhage (Sharp et al., 2008). Although lots of 
efforts were made, the full picture of the ICH damage mechanisms, 
especially of the secondary injury, remains to be further explored.

After the acute stage, microglia polarize toward M2-like 
microglial, contributing to hematoma clearance (Lan et al., 2017). The 
hematoma breaks down with the invasion of macrophages and 
microvessel formation. The hemosiderin-stained scar, a cavity 
containing blood surrounded by fibrous tissue, and eventually gliosis 
will ultimately form (Fewel et  al., 2003). And neuronal plasticity 
allows the brain to cope better with the indirect effects of brain 
damage resulting from ICH (Keep et al., 2012).

3. Insights into biological roles of 
lncRNAs in ICH

3.1. Introduction to lncRNA

Long non-coding RNA is commonly defined as an RNA molecule 
that consists of more than 200 nt without translational activity 
(Ponting et al., 2009; Nagano and Fraser, 2011). There are at least 
170,000 lncRNAs found in humans and more than 130,000 lncRNAs 
identified in mice (Zhao et  al., 2021). In accordance with the 
relationships between lncRNAs and their regulated genes, lncRNAs 
were classified as sense lncRNA, antisense lncRNA, intronic lncRNA, 
intergenic lncRNA, enhancer lncRNA, and circular lncRNA (Uchida 
and Dimmeler, 2015).

Long non-coding RNAs were long regarded as transcriptional 
garbage or transcriptional noise. Studies on lncRNA H19 and lncRNA 
Xist have initially revealed the biological functions of lncRNAs 
(Brannan et al., 1990; Wilusz et al., 2009; Gendrel and Heard, 2014). 

Briefly, lncRNAs can interact with proteins, DNA and RNA transcripts 
to control alternative splicing, chromosome remodeling, nuclear 
import and mRNA decay, and lncRNAs participate in almost every 
aspect of gene expression programs (Schmitz et al., 2010; Grote et al., 
2013; Khorkova et al., 2015; Isoda et al., 2017).

In recent years, lncRNAs have been characterized are implicated 
in diverse diseases, including cardiovascular diseases (Uchida and 
Dimmeler, 2015), neurodegeneration diseases, ischemic stroke, and 
traumatic brain injury (Riva et al., 2016; Zhang and Wang, 2019; Ren 
et al., 2020).

3.2. LncRNAs play versatile roles in 
pathological processes underlying ICH

Several studies using high-throughput RNA-seq technique were 
conducted on mice or rat ICH model, and human samples. In a 
collagenase-induced mice ICH model, 31 lncRNAs were found to 
differentially express 24 h after modeling (Hanjin et  al., 2018). And 
another study carried out on a similar model showed 625 dysregulated 
lncRNAs 21 days after ICH onset (Cao et al., 2020). A similar dynamic 
change of lncRNAs was observed in rats. Kim et al. (2019) found there 
were 83, 289, and 401 lncRNAs significantly upregulated and 52, 459, and 
786 lncRNAs significantly downregulated 1, 3, and 7 days after 
collagenase-induced ICH modeling, respectively. These studies revealed 
the extensive involvement and the dynamic changes of lncRNAs in ICH.

RNA-sequencing data from GSE24265 (containing four human 
patients’ RNA-seq data) were re-analyzed by Liu et al. (2021) and Yang 
et  al. (2022). Liu et  al. (2021) predicted that nine lncRNAs were 
associated with MAPK1 and may contribute to the progression of 
ferroptosis after ICH. Yang et al. (2022) found six hub lncRNAs and 
constructed the potential ceRNA network. In the peripheral blood of 
ICH patients, 211 lncRNAs dysregulated and were classified into16 
lncRNA modules by weighted gene co-expression network analysis 
and some immune-related lncRNAs were also identified by using 
ceRNA network (Hao et al., 2022).

These studies supported the advantages of high-throughput 
techniques in the discovery, functional prediction, and key regulator 
identification of lncRNAs. However, the exact functions of dysregulated 
lncRNAs detected by RNA-seq remain to be explored and validated. And 
the different characteristics of lncRNA dysregulation between species, 
modeling methods and the less conserved characters of lncRNAs 
(Sharma and Carninci, 2020) require further study and more careful 
interpretation from preclinical study results.

Long non-coding RNA H19 (also known as H19 imprinted 
maternally expressed transcript) was one of the earliest identified 
lncRNAs (Brannan et al., 1990). H19 was observed to be one of the most 
stable lncRNAs in the gray matter of human brain and was extensively 
studied in the development and diseases of the central nerve system, 
including ischemic stroke, glioma, pituitary adenoma, neuroblastoma, 
degeneration, and trauma (Zhong et al., 2021). Recently, the role of H19 in 
ICH was extensively studied. In Kim’s study, lncRNA H19 was the most 
upregulated lncRNA from day 1 through day 7 after ICH both in the ICH 
model induced by collagenase or autologous blood (Kim et al., 2019). 
Further bioinformatic analysis predicted that H19 was associated with 
type I  interferon signaling pathway. Following this study, Chen and 
colleagues further studied the roles of H19 in ICH. After confirming the 
high expression level of H19 in the ICH cell model, Chen B. et al. (2021) 
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demonstrated that H19 targeted miR-106b-5p and thus regulated ACSL4, 
enhancing ferroptosis in brain microvascular endothelial cells (BMVECs) 
under oxygen and glucose deprivation hemin-treated (OGD/H-treated) 
condition, as validated by RNA pull-down and luciferase reporter gene 
assays. In ICH rat model induced by type IV collagenase, NF-κBp65 and 
IKKβ expression were significantly lower and IκBα was significantly 
higher in the sh-H19 group when compared with ICH model group, 
indicating that H19 may be associated with NF-κB pathway. Mao et al. 
(2022) also found that elevated level of H19 expression was associated 
with the levels of TNF-α, IL-6, IL-1β, ROS, and MDA, showing that H19 
was also associated with inflammation and oxidative stress. Also, H19 was 
found to be associated with the risk of symptomatic ICH in ischemic 
stroke patients after recombinant tissue plasminogen activator treatment 
(Han et al., 2022). Collectively, H19 could interact with miRNA and was 
demonstrated to be associated with NF-κB pathway, inflammation, free 
radical production and cell death after ICH.

The lncRNA FOXF1 adjacent non-coding developmental 
regulatory RNA (FENDRR) increased in C57BL/6 mice with 
hypertensive ICH (Dong et al., 2018) and was demonstrated to target 
miR-126 by RNA immunoprecipitation and RNA pull-down. Via 
targeting miR-126, FENDRR regulated VEGFA and thus contributed 
to the apoptosis of human brain microvascular endothelial cells. 
Importantly, it was demonstrated that VEGFA was important in the 
activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B 
(AKT; Ruan and Kazlauskas, 2012).

Xie et al. found that MEG3 elevated in collagenase-induced ICH 
rat brain tissues. The interaction of MEG3 and miR-181b was validated 
by Starbase analysis and dual-luciferase reporter assay. And they 
proved the interaction of MEG3 and miR-181b was associated with 
the activity of PI3K/AKT pathway. In this study, upregulation of 
MEG3 was associated with the release of inflammatory cytokines and 
oxidative stress, contributing to brain edema, neuronal apoptosis, and 
increased caspase3 activity, which can be  reversed by miR-181b 
inhibition (Xie B. et al., 2021). More importantly, the relationship of 
MEG3 and miR-181b was confirmed in patients with severe ICH. The 
upregulation of MEG3 and the downregulation of miR-181b were also 
observed in serum from ICH patients (Wang H. et al., 2022).

Similarly, lncRNA FGD5-AS1 was also found to regulate PI3K/
AKT pathway in collagenase-induced C57BL/6 mice ICH model, 
although via targeting miR6838-5p/VEGFA axis, which was validated 
by luciferase reporter gene and pull-down assays. The interaction 
between FGD5-AS1 and miR6836-5p led to inhibited cell 
proliferation, increased pro-inflammatory factors, and injured 
BBB. The proinflammatory effects of FGD5-AS1 were also verified in 
BMVECs. This study also detected the upregulation of FGD5-AS1 in 
the serum of ICH patients (Jiang et al., 2022).

GAS5, an extensively studied lncRNA in ischemic stroke, also 
played important roles in ICH. Wang and colleagues found that 
FoxO1 could enhance the expression of GAS5 by binding to its 
promoter. GAS5 bond miR-378a-5p and upregulated the expression 
of Hspa5, which caused a significant elevation of pro-inflammatory 
factors, brain edema and neurological injury (Wang B. et al., 2022). 
And FoxO1 was demonstrated to be a major PI3K-AKT downstream 
effector (Xing et al., 2018).

Chen and colleagues established the ICH model in mice by 
collagenase injection and in the cellular inflammation model by treating 
microglia with lipopolysaccharide. After sequencing RNAs obtained from 
mice, they found the expression of NONMMUT023599.2 was 

significantly upregulated. Thus, NONMMUT023599.2 knocking down 
was conducted in both ICH mice and cellular inflammation model, which 
strongly downregulated the expression of TRIF, p65 phosphorylation and 
the secretion of TNF-α and IL-1β, indicating the regulatory potential of 
NONMMUT023599.2  in NF-κB pathway. The elevation of miR-709, 
which was previously predicted to be the target of NONMMUT023599.2, 
was also observed. Authors concluded that elevated levels of 
NONMMUT023599.2 targeted miR-709, regulated NF-κB pathway, 
enhanced inflammatory cytokine secretion (such as TNF-α and IL-1β) 
and thus worsened the outcome after ICH in mice (Chen et al., 2020).

Nuclear factor-k-gene binding interacting lncRNA (NKILA) was 
first identified in breast cancer. NKILA binds to NF-κB/IκB, masks 
the phosphorylation motifs of IκB, and thereby inhibits IKK-induced 
IκB phosphorylation and NF-κB activation. The interaction of 
NKILA and NF-κB pathway signaling molecules prevented the over-
activation of NF-κB pathway (Liu et al., 2015). Zhang et al. also 
proved that NKILA got involved in the pathological changes after 
ICH on a collagenase-induced rat model (Jia et al., 2018). NKILA 
was downregulated in the collagenase-induced rat ICH model. 
Interestingly, further inhibition of NKILA by siRNA activated 
NF-κB pathway, reduced endoplasmic reticulum stress, neuron 
autophagy and neurological deficits, but exacerbated brain edema, 
neuronal cell apoptosis, BBB breakdown, and promoted 
inflammatory cytokines release.

The c-Jun N-terminal kinase (JNK) signaling pathway also 
regulates both physiological and pathological processes, such as 
neurodegenerative diseases, and inflammatory diseases. Dual 
specificity phosphatases (DUSPs) were found to regulate the JNK 
pathway by dephosphorylating their substrates, e.g., DUSP6 binds to 
JNK2/3 and thus inhibits JNK phosphorylation (Ha et  al., 2019). 
LncRNA TCONS_00145741 could disrupt the interaction between 
DUSP6 and JNK and stabilize JNK phosphorylation, which suppressed 
M2 differentiation of microglia after ICH (Wu et al., 2021).

Other studies also pointed out the important roles of some lncRNAs 
in ICH, although, lack specific targets. Zhang et al. found that SNHG3 
expression was significantly induced both in OGD/H-treated BMVECs 
and in the collagenase-induced rat ICH model. The overexpression of 
SNHG3 upregulated TWEAK and its receptor Fn14, activating the 
downstream neuroinflammatory pathway STAT3 and enhancing the 
expression of matrix metallopeptidase 2/9, causing dysfunction of 
cerebral microvascular cells after ICH (Zhang et  al., 2019). In the 
autologous blood injection ICH mice model, BLNC1 was upregulated in 
perihematomal edema, hematoma and microvessel. The elevation of 
BLNC1 enhanced the apoptosis of BMVECs, potentially by activating 
PPAR-γ/SIRT6/FoxO3 pathway (Xie L. et al., 2021).

The current knowledge about lncRNAs in ICH-induced secondary 
injury was summarized in Figure  1. The studies included in this 
section and the locations of the corresponding lncRNAs are 
summarized in Table 1. Although many of the lncRNAs were studied 
in mice or rats, most of them were named in their original articles 
with capital letters, so we named them with capital letters.

3.3. LncRNAs are implicated as diagnose 
markers and therapeutic targets for ICH

The pathological process of ICH is complicated, thus if the 
treatment targets versatile regulators, the outcomes of ICH might 
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be improved. Therefore, lncRNAs were capable to be the targets. This 
assumption was proven right, as knockdown of H19  in ICH rats 
significantly reduced inflammatory response, oxidative injury, and 
improved neurological function (Mao et al., 2022). Several drugs were 
proved to alleviate ICH-induced injury via regulating lncRNAs. After 
treating ICH rats with Buyang Huanwu decoction, the traditional 
Chinese formula, Cui et al. found 18 lncRNAs related to ICH were 
regulated (Cui et al., 2018). Paeonol, a natural product derived from 
Paeonia Suffruticosa Andr., was found to inhibit ferroptosis by 
regulating lncRNA HOTAIR/UPFI/ACSL4 axis and thus inhibit the 
progression of ICH (Jin et al., 2021). These two studies showed that 
lncRNAs involved in ICH could be  regulated by drugs, and the 
regulation of lncRNAs ameliorated ICH-induced damage. More 
importantly, the results of Cui’s study indicated that numerous 
lncRNAs can be  regulated simultaneously and contributed to 
better outcomes.

Although we now know that lncRNAs may control the secondary 
injury in ICH, the specific targets were not extensively studied. 
lncRNAs can interact with several types of macromolecules, but only 
limited miRNAs and signaling molecules as targets were further 
analyzed and validated, while some studies even lacked the 
validation of targets and numerous lncRNAs were not studied. 
Lacking specific targets impede drug R&D, even when the 

transcriptomics data provide hints (Dugger et al., 2018). Identifying 
the targets and validating the exact functions of lncRNAs in ICH 
remain attractive and important for drug R&D. Also, efforts were 
made to use CRISPR/Cas9, siRNAs, etc. to treat diseases by targeting 
lncRNAs. Viral, liposomes and exosomes might be used to deliver 
lncRNAs to peri-hematoma tissue (Chen Y. et al., 2021). However, 
stable targeting delivery systems are still lacking. Although most 
pharmaceutical research is still far from clinical translation, these 
studies are creative, attractive and have the potential to be beneficial 
for ICH treatment.

As mentioned above, after ICH onset, lncRNAs dysregulated not 
only in brain tissue, but also in the circulation system, such as MEG3 
and FGD5-AS1 (Hao et al., 2022; Jiang et al., 2022; Wang H. et al., 
2022). Also, the association between H19 and the risk of symptomatic 
ICH in ischemic stroke patients treated with recombinant tissue 
plasminogen activator was established (Han et al., 2022). The presence 
of dysregulated lncRNAs in serum, which were also associated with 
ICH, provided an easier sampling routine and opportunities to use 
lncRNAs as biomarkers in diagnosing ICH.

On the other hand, the opposite treatments between ischemic 
stroke and ICH and the nature of rapid pathological changes of both 
ischemic stroke and ICH require accurate and quick differential 
diagnosis between these two diseases. With technique development, 

FIGURE 1

Current knowledge about long non-coding RNAs (lncRNAs) in intracerebral hemorrhage (ICH)-induced secondary injury. Solid lines indicate direct 
interaction, while dashed lines indicate unknown or indirect regulation. The lncRNAs are marked in green, orange, blue, and purple to indicate their 
regulation of (or modulation by) the PI3L/AKT pathway, JNK pathway, NF-κB pathway, and other pathways, respectively. The lncRNAs in the same gray 
box share the similar action mechanisms, such as interacting with miRNAs or proteins. FENDRR, FGD5-AS1, GAS5, NONMMUT023599.2, and H19 were 
reported to interact with miRNAs, while TCONS_00145741 and NKILA were reported to interact with proteins that contributed to pathological changes 
after the onset of ICH.
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RNA identification and quantification can be much faster (Carter 
et al., 2021), which aids the diagnosis and saves time when deciding 

on proper treatments, especially in rural hospitals (Kamtchum-
Tatuene and Jickling, 2019).

TABLE 1 Summary of studies concerning lncRNAs in ICH.

lncRNA Location* Target Subject Modeling 
method/

Study design

Main finding Author and 
publishing year

H19 11p15.5 Unknown SD rat cICH and bICH H19 was the most upregulated lncRNA 

and was associated with type 

I interferon signaling pathway.

Kim et al. (2019)

miR-106b-

5p

BMVEC OGD/H-treated H19 targeted miR-106b-5p and thus 

regulated ACSL4, contributing to 

ferroptosis.

Chen Y. et al. (2021)

Unknown SD rat cICH H19 may be associated with NF-κB 

pathway.

Mao et al. (2022)

Unknown Human Cohort study H19 was associated with the risk of 

symptomatic ICH in ischemic stroke 

patients after recombinant tissue 

plasminogen activator treatment.

Han et al. (2022)

FENDRR 16q24.1 miR-126 C57BL/6 

mice

hICH FENDRR contributed to the apoptosis 

of BMVEC.

Dong et al. (2018)

MEG3 14q32.2 miR-181b SD rat cICH MEG3 was associated with the release 

of inflammatory cytokines and 

oxidative stress.

Xie B. et al. (2021)

Unknown Human Cross-sectional 

study

The upregulation of MEG3 and the 

downregulation of miR-181b were also 

observed in serum from ICH patients.

Wang H. et al. (2022)

FGD5-AS1 3p25.1 miR6838-

5p

1. C57BL/6 

mice

1. cICH 1. The interaction between FGD5-AS1 

and miR6836-5p led to inhibited cell 

proliferation, increased pro-

inflammatory factors and injured BBB. 

2. The upregulation of FGD5-AS1 was 

observed in the serum of ICH patients.

Jiang et al. (2022)

2. human 2. cross-sectional 

study

GAS5 1q25.1 miR-378a-

5p

C57BL/6 

mice

bICH GAS5 contributed to the significant 

elevation of pro-inflammatory factors, 

brain edema and neurological injury.

Wang B. et al. (2022)

NONMMUT023599.2 15qD1 miR-709 C57BL/6 

mice

cICH NONMMUT023599.2 regulated NF-κB 

pathway.

Chen et al. (2020)

NKILA 20q13.31 IκB SD rat cICH Inhibition of NKILA after ICH 

activated NF-κB pathway, reduced 

neurological deficits, although 

exacerbated brain edema and BBB 

breakdown.

Jia et al. (2018)

TCONS_00145741 Not reported DUSP6 and 

JNK

C57BL/6 

mice

bICH TCONS_00145741 stabilized JNK 

phosphorylation and suppressed M2 

differentiation of microglia after ICH.

Wu et al. (2021)

SNHG3 1p35.3 Unknown SD rat cICH SNHG3 upregulated TWEAK and its 

receptor Fn14, which were associated 

with neuroinflammatory pathway 

STAT3.

Zhang et al. (2019)

BLNC1 Not reported Unknown C57BL/6 

mice

bICH After ICH, Blnc1 activated PPAR-γ/

SIRT6/FoxO3 pathway and enhanced 

the apoptosis of BMVEC.

Xie L. et al. (2021)

BMVEC, brain microvascular endothelial cells; bICH, autologous blood-induced intracerebral hemorrhage; cICH, collagenase-induced intracerebral hemorrhage; hICH, hypertensive 
hypertension; OGD/H-treated, oxygen and glucose deprivation hemin-treated; and SD rat, sprague dawley rat. *In human chromosome.
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Although previous studies demonstrated that mRNAs may 
have the potential to be biomarkers for the diagnosis and the 
differentially diagnose of ICH (Stamova et al., 2019), we still lack 
knowledge about the sensitivity, specificity, and the value of 
lncRNA for ICH therapy. Opportunities lie ahead, but studies are 
still needed.

4. Conclusion

Previous studies profiled the multi-functional roles of lncRNAs in 
ICH. lncRNAs are involved in ICH-induced secondary injury, such as 
inflammatory response, oxidative stress and cell death, etc., via 
targeting miRNAs or signaling molecules. We are at the infant stage 
and this field remains attractive. More studies could be conducted to 
validate the targets of lncRNAs, evaluate the value of lncRNAs as risk 
prediction for ICH, and develop drugs or special delivery systems to 
treat ICH by targeting lncRNAs.
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Aims: As the impact of inclisiran in stroke prevention in atherosclerotic
cardiovascular disease (ASCVD) patients or those at high risk of ASCVD is still
unclear, we conducted a systematic review and meta-analysis of randomized
controlled trials (RCT) to quantify the effectiveness of inclisiran in stroke
prevention in these patients.

Methods: Literature research was conducted in four electronic databases
(PubMed, EMBASE, Web of Science, CENTRAL) and two clinical trials registers
(ClinicalTrials.gov, WHO ICTRP) from the inception of the study to 17 October
2022, and was updated by the end of the study on 5 January 2023. Two authors
independently screened the studies, extracted the data, and assessed the bias. The
risk of bias was assessed using the Cochrane risk-of-bias tool for randomized trials
(RoB 2). The intervention effect was estimated by calculating risk ratio (RR),
weighted mean difference (WMD), and 95% confidence interval (CI) with R 4.0.
5. Sensitivity analysis by changing meta-analysis model was also performed to test
the robustness of the pooled results. If this was not possible, a descriptive analysis
was conducted.

Results: Four RCTs (n = 3,713 patients) were rated as high-risk bias. Meta-analysis
of three RCTs (ORION-9, ORION-10, and ORION-11) showed that inclisiran
reduced myocardial infarction (MI) risk by 32% (RR = 0.68, 95%CI = 0.48–0.96)
but did not reduce stroke (RR = 0.92, 95%CI = 0.54–1.58) and major
cardiovascular events (MACE) (RR = 0.81, 95%CI = 0.65–1.02) risk. Sensitivity
analysis results were stable. Safety was similar to the placebo group but had
frequent injection-site reactions (RR = 6.56, 95%CI = 3.83–11.25), which were
predominantlymild ormoderate. A descriptive analysis of one RCT (ORION-5) was
conducted due to different study designs, and suggested that inclisiran might be
given semiannually from the beginning.

Conclusion: Inclisiran is not beneficial for stroke or MACE prevention in ASCVD or
patients at high risk of ASCVD but is associated with the reduction of MI. Given the
limited number and quality of the available studies and the lack of a standardized
definition for cardiovascular events, further studies are essential for confirming the
results.
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1 Introduction

Stroke is a neurological disease in which brain tissue is damaged
due to the sudden rupture of a blood vessel or a blood vessel
embolism, which can lead to sudden death (Kuriakose and Xiao,
2020) and can also generate depression (Medeiros et al., 2020) and
dementia (Pasi et al., 2012). Stroke is characterized by high
incidence, high disability, high recurrence, high death, and high
burden. According to the statistics, in 2021, stroke remained the
second-leading cause of death and the third-leading cause of death
and disability combined in the world. Atherosclerotic cardiovascular
disease (ASCVD) refers to the accumulation of plaque in the artery,
with a risk of bleeding within the plaque, necrotic core rich in lipids,
and fibrous cap rupture (Deng et al., 2020), which can lead to the
occurrence of acute coronary syndrome, angina pectoris, stroke,
transient ischemic attack (TIA), and peripheral artery disease
(Rogers and Baker, 2020). The risk of stroke is further increased
when patients have GBD 2019 Stroke Collaborators. (2021), so it is
particularly important to prevent the occurrence of stroke in
ASCVD and in patients at high risk of ASCVD. Lipid, especially
low-density lipoprotein cholesterol (LDL-C), is the most prominent
risk factor for ASCVD (Khatana et al., 2020). Lipid detection in
stroke patients showed that the levels of total cholesterol (TC),
triglyceride (TG), LDL-C, apolipoprotein A (Apo A), apolipoprotein
B (Apo B), apolipoprotein E (Apo E), and lipoprotein a (Lp [a]) were
significantly higher, while high-density lipoprotein cholesterol
(HDL-C) was significantly lower (Yuan et al., 2015). Moreover,
low HDL-C (<0.90 mmol/L) and high TG (>2.30 mmol/L) were
associated with a two-fold increased risk of death in stroke
(Kuriakose and Xiao, 2020). The LDL-C level was positively
correlated with the occurrence of ischemic stroke (Holmes et al.,
2018) and associated with long-term post-stroke mortality (Xing
et al., 2016). Therefore, lipid-regulating therapy may play a key role
in stroke prevention, especially for patients with ASCVD or at high
risk of ASCVD.

Currently, statins are recommended as the first choice to reduce
LDL-C in patients with increased risk of stroke in stroke prevention
guidelines (Amarenco et al., 2004), and the benefits of more
intensive LDL-C-lowering statin-based therapies for recurrent
stroke risk reduction might be more favorable than the less
intensive LDL-C-lowering statin-based therapies (Lee et al.,
2022). The preventive effect of non-statin drugs, such as
ezetimibe and proprotein convertase subtilisin/kexin type 9
(PCSK9) inhibitors, on stroke also produced significant benefits
in studies (Hackam and Hegele, 2022), and compared to low-risk
populations, the effect was only seen in high-risk ASCVD
populations who had received a maximum tolerated dose of
statins or who were intolerant to statins (Khan et al., 2022).
Statins combined with ezetimibe or PCSK9 monoclonal antibody
could reduce the risk of stroke by 26% (Khan et al., 2022). A
2021 guideline for the prevention of stroke in patients with
stroke and TIA (Kleindorfer et al., 2021) recommended that for
patients with a very high risk of stroke who have been treated with
the combination of a maximum tolerated dose of statins and
ezetimibe but whose LDL-C level is still not up to the standard,

PCSK9 monoclonal antibody is a feasible therapy to prevent
cardiovascular events (CVEs). However, for some patients, even
after treatment with the previously mentioned drugs, the lipid level
still fails to reach the standard. Furthermore, as a disease requiring
long-term drugs for prevention, the incidence of stroke is higher in
low and middle-income countries, and one-third of patients
discontinue the use of one or more prevention drugs
approximately 1 year after stroke (2021). Therefore, the
development of a new mechanism for lipid-regulating treatments
with better economic effectiveness and compliance is of great
significance.

The degradation of LDL-C requires the action of LDL receptor
(LDL-R) in the liver, and PCSK9 can compete with LDL-C, bind,
and cause the LDL-R to be degraded by lysosomes (Moustafa and
Testai, 2021). This process reduces the density of LDL-R on the cell
surface and increases the LDL-C level. Therefore, inhibiting the
synthesis of PCSK9 is an important mechanism in the development
of lipid-regulating drugs. PCSK9 monoclonal antibodies were
designed to reduce LDL-C by preventing the combination of and
interaction between PCSK9 and LDL-R (Go and Mani, 2012). Over
the past few decades, the birth of ribonucleic acid (RNA)
interference (RNAi)-based therapeutics has ushered in a new era
of drug development (Gangopadhyay and Gore, 2022). Inclisiran,
the first small interfering RNA (siRNA) drug in the cardiovascular
field and a new PCSK9 inhibitor, is an example of nucleic acid
therapeutics.

Inclisiran consists of a passenger strand and a guide strand,
with a triantennary N-acetylgalactosamine (tri-GalNAc)
conjugated to the end. As an established liver targeting
technique, the tri-GalNAc can specifically bind to the
asialoglycoprotein receptor, which is only highly expressed in
the liver (Springer and Dowdy, 2018). In this way, after inclisiran
is specifically introduced into liver cells, with the assistance of the
passenger strand, the guide strand identifies the information of
PCSK9 message RNA (mRNA) and forms RNA-induced
silencing complexes (RISC) with some enzymes inside the cell.
RISC performs the cleavage and degradation of PCSK9 mRNA to
block the synthesis of PCSK9 and reduce the LDL-C level
(Fitzgerald et al., 2017; Khvorova, 2017).

Inclisiran has now been proven to have effective and long-lasting
effects, with a single subcutaneous injection reducing the LDL-C
level for 6 months. Compared with PCSK9 monoclonal antibodies,
inclisiran is closer to the source of dyslipidemia, and the
administration schedule (twice a year) also allows healthcare
providers to manage ASCVD patients during their regular visits
and improve compliance (Soffer et al., 2022).

Inclisiran has been shown to have a strong and consistent lipid-
lowering effect in some randomized controlled trials (RCT). RNAi
therapy may be used if statins are not effective in reducing lipid
levels or are intolerant. Therefore, inclisiran may be of great
significance in stroke prevention. However, the efficacy and
safety of inclisiran in stroke prevention in ASCVD or ASCVD
high-risk patients remain unclear. Therefore, we conducted a
systematic review and meta-analysis of the available evidence
from RCTs to quantify the effectiveness of inclisiran in the
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prevention of the risk of stroke in patients with ASCVD or at high
risk of ASCVD.

2 Methods

This study was reported according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
2020 statement (Page et al., 2021) (the PRISMA 2020 checklist is
shown in Supplementary Table S1) (Shamseer et al., 2015). We have
registered this study in the International Prospective Register of
Systematic Reviews (PROSPERO) (registration number:
CRD42022374280).

2.1 Literature search and inclusion criteria

The databases Pubmed, Embase, the Cochrane Central Register
of Controlled Trials (CENTRAL), and Web of Science were
researched from the study’s inception to 17 October 2022 for
potentially relevant studies, without language restrictions, using
the search terms: exposure (Cardiovascular Diseases or Heart
Disease Risk Factors or stroke or Cerebrovascular Disorders or
Ischemic Attack), intervention (Inclisiran or ALN-60212 or ALN-
PCS or ALN-PCSsc), and study (randomized controlled trial or
controlled clinical trial or randomized). We also searched two
clinical trials registers, ClinicalTrials.gov (https://ClinicalTrials.
gov/) and WHO ICTRP (https://trialsearch.who.int/), for RCTs
using the search terms: intervention (ALN-PCSsc or ALN-60212
or PCSK9si KJX-839 or inclisiran or small interfering RNA or RNAi
or siRNA or RNA, Small Interfering) and filters (with results). By the
end of the study (5 January 2023) and the revision of the study
(6 March 2023), we retrieved and updated the inclusions. The
complete search terms and records are provided in
Supplementary Table S2. Additionally, we manually examined
the reference lists of retrieved studies to identify additional
relevant literature.

The studies were included if they met the following criteria: (1)
the enrolled patients suffered from ASCVD or were at high risk of
ASCVD (Supplementary Table S3); (2) the intervention was
inclisiran used alone or in combination with other lipid-
regulating drugs. The duration of inclisiran treatment met the
current standard administration: 300 mg dosage of inclisiran
sodium or 284 mg dosage of inclisiran administered as a single
subcutaneous injection initially, then again at 3 months, and then
every 6 months, all subjects receiving at least three doses; (3) the
control group was given a placebo or other drugs; (4) the outcomes
include at least one of the following: stroke, cerebrovascular disease,
major adverse cardiovascular events (MACE), all-cause mortality,
change in serum LDL-C, PCSK9, and other lipid parameters (TG,
TC, HDL-C, et al.) from baseline to the last available follow-up,
adverse events (AE), treatment-emergent adverse events (TEAE),
TEAE leading to discontinuation of treatment, and serious adverse
events (SAE) (the definition of SAE is shown in Supplementary
Table S4 and is consistent with the Good Clinical Practice Guideline
of International Conference on Harmonization); (5) the study was
designed as an RCT. Studies were excluded if they met one of the
following criteria: (1) the results were not yet available or the full text

could not be accessed; (2) the articles were conference articles,
letters, qualitative studies, reviews, commentaries, pilot studies, or
protocols.

All titles and abstracts of the studies were downloaded and
imported into Endnote X9. Study selection was independently
conducted by two review authors (ML and YL) after deleting the
duplications by automatic tool and by humans. The irrelevant
studies were excluded by screening the titles and abstracts first
and then reviewing the full text of each literature to select the
included studies in conformity with the eligibility criteria. If there
were discrepancies in any details of the literature, the third reviewer
(XX) made the necessary decisions after discussion.

2.2 Data extraction and outcome
assessments

Two authors (ML and YL) independently extracted data from
eligible studies using a data extraction form set in advance. The
contents of the data extraction form included author, published year,
name of RCT, data source (from literature or clinical trials registers),
ClinicalTrials.gov Identifier, study design, duration of follow-up,
participants (sample size, diagnosis, background therapy),
intervention group (age, sex, sample size, baseline LDL-C mg/
dL), control group (age, sex, sample size, baseline LDL-C mg/dL),
outcomes (primary endpoints, key secondary endpoints,
prespecified exploratory endpoints, safety).

The primary outcomes of our study were the occurrence of
stroke or cerebrovascular disease and MACE. The secondary
outcomes were all-cause mortality, change in serum LDL-C and
PCSK9 levels from baseline to the last available follow-up, change
from baseline in other lipid parameters, and TEAEs, TEAE leading
to discontinuation of treatment, and SAEs.

The primary outcomes were defined using the standardized
Medical Dictionary for Regulatory Activities (MedDRA) queries
(SMQs) from MedDRA version v20.1. Stroke and cerebrovascular
disease were defined as central nervous system vascular conditions
(SMQ), which can also be subdivided into “ischaemic central
nervous system vascular conditions (SMQ),” “hemorrhagic
central nervous system vascular conditions (SMQ),” and “central
nervous system vascular disorders, not specified as hemorrhagic or
ischaemic (SMQ).” MACE was defined as the composite of
“cardiovascular cause death,” “myocardial infarction (MI),”
“stroke,” “cardiac arrest,” and “cardiac failure.” The included
SMQ and preferred term (PT) for each outcome can be found in
Supplementary Table S4.

2.3 Risk of bias

The risk of bias in each included study was also independently
assessed by two authors (ML and YL) using the Cochrane risk-of-
bias tool for randomized trials (RoB 2) recommended in the
Cochrane, 2022. The discrepancies were resolved by the third
author (XX). RoB 2 is structured into a fixed set of domains of
bias, focusing on different aspects of trial design, conduct, and
reporting. It includes five domains: “bias arising from the
randomization process,” “bias due to deviations from intended
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interventions,” “bias due to missing outcome data,” “bias in
measurement of the outcome,” and “bias in selection of the
reported result.” Each domain has a series of signaling questions
that need to be judged and responded to objectively by the authors
based on the actual content of the studies. There are five response
options in each domain: “Yes (Y),” “Probably yes (PY),” “Probably
no (PN),” “No (N),” and “No information (NI).” Once the signaling
questions are answered, a risk-of-bias judgment can be reached and
one of three levels can be assigned to each domain: “Low risk of
bias,” “Some concerns,” or “High risk of bias.”

2.4 Data synthesis and analysis

The heterogeneity tests and meta-analysis were conducted with
the “meta-package” of R statistical language version 4.0.5.
Heterogeneity between studies was assessed using the I2 statistic
and Cochran’s Q test, with I2 >50% and p-value < 0.10 considered as
having high heterogeneity. If high heterogeneity was present
between studies, we used a random-effects model or provided a
narrative overview. If heterogeneity was not identified, we computed
pooled estimates of the treatment effect for each outcome under a
fixed-effect model. For dichotomous outcome measures (such as
cardiovascular outcomes), we calculated a pooled estimate of the
treatment effect for each outcome across trials using the risk ratio
(RR) and 95% confidence intervals (CI) according to the Mantel-

Haenszel method. For continuous outcomes (such as LDL-C and
PCSK9 levels), we used the weighted mean difference (WMD) with
95%CI. The overlap of intervention effects was shown using a forest
plot, and differences with p values of <0.05 were considered
statistically significant. In addition, we conducted a sensitivity
analysis by changing pooled model to test the robustness and
reliability of the pooled results. If the number of included studies
was ≥10, a funnel plot or an Egger’s test was used to assess
publication bias (2016; Riley et al., 2019), otherwise, it was
regarded as the existence of publication bias.

3 Results

3.1 Study selection

In the initial search, 1,767 and 34 records were retrieved from
four electronic databases and two clinical trial registers, respectively.
After removing 334 records using the automatic tool andmanual de-
duplication, 1,418 records were excluded according to the review of
the titles, abstracts, and interventions. Subsequently, 44 records
from databases and 5 records from registers underwent full-text
review. Finally, three studies, ORION-9 (Raal et al., 2020), ORION-
10 (Ray et al., 2020), and ORION-11 (Ray et al., 2020), were eligible
for data extraction and quantitative analysis. The search and
selection processes are shown in Figure 1. At the end of the

FIGURE 1
PRISMA flowchart.
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TABLE 1 The characteristics of included studiesa.

Author/
Published
year/Name

ClinicalTrials.gov
Identifier (NCT

number)

Study
design

Locations Duration
of follow-

up
(months)

Participants Intervention group

Sample
size (N)

Diagnosis Background
therapy

White
people
(N)

Age,
mean
(SD)

(years)

Male/
Female

Sample
size (N)

Treatment Baseline
LDL-C,
mean
(SD),
mg/dL

Raal et al. (2020)
ORION-9

NCT03397121 RCT
(DB, PC)

United States,
Canada, Europe,
South Africa

18 482 HeFH Maximally
tolerated statin
with/without
other LLT

453 54.4
(12.48)

112/130 242 Inclisiran
300 mg at day
1, day 90, then
every 6 months

151.4 (50.4)

Ray et al. (2020)
ORION-10

NCT03399370 RCT
(DB, PC)

United States 18 1561 ASCVD 1311 66.4 (8.9) 535/246 781 Inclisiran
300 mg at day
1, day 90, then
every 6 months

104.5 (39.6)

Ray et al. (2020)
ORION-11

NCT03400800 RCT
(DB, PC)

Europe, South
Africa

18 1617 ASCVD or an
ASCVD risk
equivalent

1587 64.8 (8.3) 579/231 810 Inclisiran
300 mg at day
1, day 90, then
every 6 months

107.2 (41.8)

2022 ORION-5 NCT03851705 Part1:
RCT

(DB, PC)

Hong Kong,
Israel, Russian
Federation,
Serbia, South
Africa, Taiwan,
Turkey, Ukraine

Part 1: 6 Part
2: 18

Part 1:
53 Part
2: 47

FoFH 48 Unclear Total:
14/23

Part 1:
34 Part
2: 29

Part 1:
Inclisiran

300 mg at day
1, day 90

Unclear

Part
2: OL

Part 2:
Inclisiran

300 mg at day
270, day 450,
and day 630

Author/
Published
year/Name

Control group Outcomes

Age,
mean
(SD)

(years)

Male/
Female

Sample
size (N)

Treatment Baseline LDL-
C, mean (SD),

mg/dL

Primary endpoints Key secondary
endpoints

Prespecified
exploratory endpoints

Safety

Raal et al. (2020)
ORION-9

55.0 (11.81) 115/125 240 0.9% NaCl on day 1,
day 90, then every

6 months

154.7 (58.0) Percentage change in LDL-
C from baseline to day

510 and the time-adjusted
percentage change in LDL-
C from baseline between

day 90 and day 540

Absolute change from
baseline to day 510 and time-
adjusted absolute change
from baseline between day
90 and day 540 in LDL-C;

Percentage change in
PCSK9, TC, Apo B, Non-
HDL-C from baseline to

day 510

Proportion of patients who
met the lipid targets for their
level of cardiovascular risk and

the treatment response
according to the underlying

genotype of FH

Frequent AEs, Serious AEs,
Other cardiovascular AEs
(Prespecified exploratory
cardiovascular event, Fatal
or nonfatal MI, Fatal or
nonfatal stroke), Protocol-

defined injection-site
reaction, Laboratory results

et al

Ray et al. (2020)
ORION-10

65.7 (8.9) 548/232 780 0.9% NaCl on day 1,
day 90, then every

6 months

104.8 (37.0) MedDRA defined
cardiovascular basket of non-
adjudicated terms, including

(Continued on following page)
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TABLE 1 (Continued) The characteristics of included studiesa.

Author/
Published
year/Name

Control group Outcomes

Age,
mean
(SD)

(years)

Male/
Female

Sample
size (N)

Treatment Baseline LDL-
C, mean (SD),

mg/dL

Primary endpoints Key secondary
endpoints

Prespecified
exploratory endpoints

Safety

those classified within cardiac
death, and any signs or

symptoms of cardiac arrest,
nonfatal MI, or stroke

Ray et al. (2020)
ORION-11

64.8 (8.7) 581/226 807 0.9% NaCl on day 1,
day 90, then every

6 months

103.7 (36.4)

2022 ORION-5 Unclear Total: 8/11 Part 1:
19 Part 2: 18

Part 1: 0.9% NaCl on
day 1, day 90;

Unclear Percentage change in LDL-
C from baseline to day 150

Percentage change and
absolute change in LDL-C,
PCSK9, TC, Apo B, Non-
HDL-C, HDL-C, VLDL-C,
Apo-A1, Lp(a), hsCRP from
baseline to day 90, 150, 180,
330, 450, 510, 630, 690, and

720; Individual
responsiveness of subjects

(Number of subjects
reaching on treatment LDL-
C of <25 mg/dL, <50 mg/

dL, <70 mg/dL,
and <100 mg/dL up to Day
180 and 720); Proportional
responsiveness (Number of
participants in each group
who attain global lipid

targets for their indication)
et al

Unclear All-Cause Mortality,
Serious AEs, Other (Not
include serious) AEs

Part 2: Inclisiran
300 mg on day 270,
day 450, and day 630

aIn Table 1, RCT, randomized controlled trial; DB, double-blind; PC, placebo-controlled; OL, open-label; N, number; FH, familial hypercholesterolemia; HeFH, heterozygous FH; ASCVD, atherosclerotic cardiovascular disease; FoFH, homozygous FH; LLT, lipid-

lowering therapy; SD, standard deviation; LDL-C, low-density lipoprotein cholesterol; PCSK9, proprotein convertase subtilisin/kexin type 9; TC, total cholesterol; Apo B, Apolipoprotein B; HDL-C, high-density lipoprotein cholesterol; Non-HDL-C, Non-HDL

cholesterol; VLDL-C, Very-Low-Density Lipoprotein Cholesterol; Apo-A1, Apolipoprotein A-1; Lp(a) Lipoprotein(a); hsCRP, High-Sensitivity C-Reactive Protein; AEs, adverse events; MI, myocardial infarction.
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study on 5 January 2023, we searched the clinical registers again and
found that a new RCT meeting the criteria, ORION-5, was included
in our review. Additionally, we searched all databases again when we
revised this study (6March 2023), and no new RCTs were found that
met the criteria.

3.2 Characteristics of included studies

The characteristics of the studies are reported in Table 1. Except
for part 2 in ORION-5, the studies were double-blind, randomized,
placebo-controlled international multicenter clinical trials
conducted in many different countries or sites, and the outcomes
were published between 2020 and 2022. In total, data from
3,713 patients were included. All included subjects were
aged >18 years and were mainly middle-aged and elderly. The
subjects were predominantly White (>80%). Patients in four
studies had histories of disease involving diagnoses of
heterozygous familial hypercholesterolemia (HeFH), ASCVD,
ASCVD or an ASCVD risk equivalent, and homozygous familial

hypercholesterolemia (HoFH), respectively, and their history of
treatment involved the maximally tolerated statin with or without
other lipid-lowering therapy. Interventions in ORION9 (Raal et al.,
2020), ORION-10 (Ray et al., 2020), and ORION-11 (Ray et al.,
2020) were inclisiran 300 mg on day 1 and day 90, then every
6 months, with an 18-month follow-up period. ORION-5 consisted
of two parts. Part 1 was a 6-month double-blind period in which
subjects were randomized to receive either inclisiran 300 mg or a
placebo on day 1 and day 90. Part 2 was an 18-month open-label
follow-up period, and all subjects from part 1, including the
experimental group and control group received inclisiran 300 mg
on day 180 and then every 6 months. Outcomes mainly included
efficacy and safety outcomes. The efficacy outcomes mainly included
the changes in LDL-C and other lipid levels and PCSK9 levels.
ORION-9 (Raal et al., 2020), ORION-10 (Ray et al., 2020), and
ORION-11 (Ray et al., 2020) also included exploratory
cardiovascular outcomes. According to the different
interventions, a meta-analysis was conducted in ORION-9,
ORION-10, and ORION-11, and a descriptive analysis was
conducted in ORION-5.

FIGURE 2
Risk of bias summary: (A) “traffic light” plots of the domains; (B) Weighted bar plots of the distribution of risk.
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3.3 Risk of bias

According to RoB 2, the included RCTs all showed a high overall
risk of bias. The assessment in each domain and the summary of the
risk of bias are presented in Figure 2.

More specifically, three RCTs [ORION-9 (Raal et al., 2020),
ORION-10 (Ray et al., 2020), and ORION-11 (Ray et al., 2020)] and
part 1 of ORION-5 were all double-blind, randomized, placebo-
controlled trials. Researchers clearly described their randomization
method and allocation concealment: randomization was conducted
via an automated interactive response technology to assign subjects
to investigational products. Study medication was blinded before
distribution to the site. Each investigational product vial contained a
yellow shroud to blind it. Four studies (Raal et al., 2020; Ray et al.,
2020) did not mark out the differences between the patients at
baseline, and intent-to-treat (ITT) analysis was used to conduct the
analysis. Although part 2 in ORION-5 was an open-label follow-up
period, the subjects were the continuation in part 1, and the
treatment of the intervention group and control group were the
same, so we considered that even if part 2 did not use blinding, the
bias in the outcomes would be negligible. Therefore, they were rated
as having a low risk of bias in the randomization process and
deviations from intended interventions. In the assessment of bias
due to missing outcome data, two studies (Raal et al., 2020; Ray et al.,
2020) were rated as low risk because the data missing rate was less
than 5% and the number of dichotomous outcome events was
significantly greater than the missing data. The remaining two
studies (Ray et al., 2020) were rated as being of some concern or
being at high risk of bias because they did not meet the above
conditions and the reason for missing data in the intervention and
control groups did not match. In addition, four studies (Raal et al.,
2020; Ray et al., 2020) were rated as having a high risk of outcome
measurement bias because they did not describe the blinding to
outcome assessors, and as they were all international multicenter
clinical trial studies, the subjective judgment of different outcome
assessors might lead to bias. Finally, three studies (Raal et al., 2020;
Ray et al., 2020) were rated as having a high risk of bias in the
selection of the reported result because the supplementary appendix
indicated that several analysis techniques were utilized to assess the
efficacy of inclisiran. Treatments were compared utilizing two-
sample t-tests, analysis of covariance models (ANCOVA), and
mixed models for repeated measures. However, only ANCOVA
results were reported. One study was rated as having a low risk due
to the match of outcomes reported and the statistical methods they
published.

Generally, the overall risk of bias in included studies was
assessed as a high risk of bias.

3.4 Meta-analysis results

3.4.1 Primary outcomes
We extracted data on stroke and MACE from safety reports.

Since the intervention method of ORION-5 was different from
others, we only conducted a meta-analysis on the data of
ORION-9 (Raal et al., 2020), ORION-10 (Ray et al., 2020), and
ORION-11 (Ray et al., 2020), and a descriptive analysis was
conducted for ORION-5, 2023. The safety population in three

studies included a total of 3,655 patients [inclisiran (n = 1,833);
placebo (n = 1,822)].

Events of stroke were reported in all three studies. Stroke
occurred in 25 (1.3%) patients in the experimental group and 37
(1.5%) patients in the control group. Due to a low level of
heterogeneity (I2 = 35% < 50%, p = 0.22 > 0.10), we used the
common-effect model to pool and analyze the data. The results
showed that inclisiran did not reduce the risk of stroke (RR = 0.92,
95%CI = 0.54–1.58, p = 0.76) (Figure 3A). The pooled RR of
ischaemic stroke and hemorrhagic stroke were 1.33 (95%CI =
0.72–2.34, p = 0.36) and 0.62 (95%CI = 0.23–1.63, p = 0.33),
respectively. Sensitivity analysis showed that using the random-
effect model did not reverse the pooled results, indicating that the
results were stable (Supplementary Figure S1).

We conducted a meta-analysis of MACE and its subdivided
components. MACE occurred in a total of 131 (7.10%) patients in
the experimental group and 160 (8.8%) patients in the control
group. As there was a low level of heterogeneity (I2 = 2% < 50%,
p = 0.36 > 0.10), the data were pooled using a common-effect model
and showed that inclisiran intervention did not significantly reduce
the risk of MACE (RR = 0.81, 95%CI = 0.65–1.02, p = 0.07)
(Figure 3B). Sensitivity analysis showed stability due to the
consistent result after changing to the random-effect model.

In the component events of MACE, 17 (0.93%) and 15 (0.82%)
patients in the experimental group and control group had CVE
death, 52 (2.80%) and 76 (4.20%) patients hadMI, 25 (1.30%) and 37
(1.50%) patients had stroke, 6 (0.33%) and 1 (0.05%) patient had
cardiac arrest, and 31 (1.70%) and 41 (2.30%) patients had heart
failure, respectively. In these events, the heterogeneity of the studies
was low, so the common-effect model was used for analysis. Overall,
inclisiran was a protective factor for MI, reducing the risk of MI by
32% (RR = 0.68, 95%CI = 0.48–0.96, p = 0.03) (Figure 3C), but had
no significant effect on other events. Sensitivity analysis showed the
results were stable in all events. The pooled results and sensitivity
analysis of other events are displayed in Supplementary Figure S1.

In general, our study indicates that inclisiran has no significant
effect on stroke or MACE but can reduce the risk of MI by 32%.

3.4.2 Secondary outcomes
Inclisiran has significant lipid-lowering effects. In particular, it

reduced the percentage change and absolute change of LDL-C by
approximately 50% and 50 mg/dL. It also has a significant benefit in
reducing PCSK9, TC, Apo B, and Non-HDL-C levels. The pooled
effects of inclisiran on blood lipid and PCSK9 levels are shown in
Table 2.

The safety populations were 1,833 in the inclisiran group and
1,822 in the placebo group. We performed a meta-analysis of TEAE,
SAE, injection-site reaction, and some laboratory results in two
groups. The pooled results showed that the inclisiran group had
more significant injection-site reactions (n = 99) than the placebo
group (n = 15) (RR = 6.56, 95%CI = 3.83–11.25), but they were
mainly mild or moderate. There was no significant difference in
other outcomes. The pooled results of safety outcomes are
summarized in Table 3.

3.4.3 Descriptive analysis of ORION-5
ORION-5 was a two-part multicenter study to evaluate the

safety, tolerability, and efficacy of inclisiran in subjects with
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HoFH. Subjects were randomized 2:1 to inclisiran: placebo. A total
of 56 adults were enrolled, 34 being female (60.70%) and 48 being
White (85.70%). There were 37 patients in the experimental group
(34 completed part 1, 29 completed part 2) and 19 patients in the
control group (all completed part 1, 18 completed part 2).

All subjects randomized into the study comprised the ITT
population for outcomes analysis. The primary outcome was a
percentage change in LDL-C from baseline to day 150; the result
was 0.70 (95%CI = −14.03–15.44) in the inclisiran group and
2.39 (95%CI = −19.98–24.75) in the placebo group, with a mean
difference of −1.68 (95%CI = −29.19–25.83, p = 0.98). The
secondary outcomes included absolute and percentage
changes of lipids (LDL-C, TC, HDL-C, etc.) and PCSK9
levels at follow-up time points. The results from Part 1
demonstrated that, other than significant differences
observed in both the percentage change and absolute change
of PCSK9 between the two groups, no significant differences in
blood lipid. In part 2, only mean and standard deviation were
reported, so we conducted an independent samples t-test and
showed no significant differences (p > 0.05) in all lipid and
PCSK9 levels.

In terms of safety conditions, for part 1, two SAEs (5.41%) and
12 other AEs (32.43%) occurred in the inclisiran group, and one SAE
(5.26%) and six other AEs (31.58%) occurred in the placebo
group. In part 2, 11 (20.75%) SAEs and 29 (54.72%) other AEs
occurred, with one (1.89%) stroke and cerebrovascular accident
event (carotid arteriosclerosis) and five (9.40%) MACE (angina
unstable, carotid arteriosclerosis, cardiac failure, pulmonary
edema, and sudden cardiac death). In addition, three subjects
died in part 2.

4 Discussion

This systematic review and meta-analysis of 3,713 patients with
ASCVD or at high risk of ASCVD showed that for those with a
background of treatment with a maximum tolerated dose of statins
or other lipid-regulation therapy, using inclisiran over 18 months
can significantly reduce lipid and PCSK9 levels, with a 50%
reduction in LDL-C and an 80% reduction in PCSK9.
Nevertheless, the research findings revealed that while inclisiran
was able to reduce the risk of MI by 32%, it did not demonstrate a

FIGURE 3
Forest plot of the effect of inclisiran in stroke, MACE, and MI, pooled using common-effects meta-analysis: (A) effect on stroke; (B) effect on MACE;
(C) effect onMI. Overall, three studies were included in this meta-analysis. Themaroon diamond represents the pooled difference using a random effects
model for each subgroup and for the total. Heterogeneity of outcomes is represented by I2 values (%) with p values reported for the χ2 test for
heterogeneity. The gray diamond represents the result of changing pooled model used for sensitive analysis. MACEmajor cardiovascular events, MI
myocardial infarction, RR risk ratio, CI confidence interval.
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significant correlation with the occurrence of stroke (be it
compound stroke, ischaemic stroke, or hemorrhagic stroke) and
MACE.

In addition, compared with the placebo, inclisiran did not
increase the overall occurrence of AEs but caused higher
injection-site reactions. Most of the injection-site reactions
were mild and moderate, and no severe and sustained
reactions occurred.

Another study (Ray et al., 2022) also conducted a meta-analysis
of the same trials but came to a different conclusion. Inclisiran was
found to reduce the risk of MACE by 26% (relative risk [OR] = 0.74,
95%CI = 0.88–0.94) but was not associated with the occurrence risk
of stroke (OR = 0.80, 95%CI = 0.50–1.27) and MI (OR = 0.86, 95%
CI = 0.41–1.81). Through comparison, we found that the main
reason was that the definitions of CVEs were different. Their
definitions of stroke, MACE, and MI events are attached to
Supplementary Table S5.

MACE, a common endpoint in cardiovascular studies, is a
composite of clinical events, usually including endpoints
reflecting safety and efficacy, which can reduce or eliminate the
multiplicity problem of testing multiple endpoints. Additionally,
accumulating evidence from individual endpoints to a composite
endpoint can improve study power and reduce study size and trial
duration (Huque et al., 2011). Due to the individual outcomes used
to make this endpoint vary between studies, there was no standard
definition of MACE. Therefore, the difference in the MACE
definition among the studies and the unclear and incomplete
reports make it impossible to compare, replicate, and summarize
the study results (Bosco et al., 2021). Studies have shown that
different definitions of MACE might lead to opposite results and
conclusions (Kip et al., 2008). In addition, there was some variation
in stroke from the statistic results of the most commonly used
components of MACE, possibly due to differences in the definition

of stroke, especially whether acute ischemic stroke with TIA,
cerebral hemorrhage, or subarachnoid hemorrhage was included
(Bosco et al., 2021).

In our study, we used SMQs to define CVEs. MedDRA is a
medical dictionary for regulatory activities developed by The
International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use. SMQs are
formed by defining clusters of MedDRA terms that are highly
relevant to medical conditions (Bill et al., 2012). Studies have
confirmed that in the identification process of adverse events,
SMQs can achieve higher sensitivity compared to PT and high-
level term (HLT) (Pearson et al., 2009), so we adopted SMQs for the
definition of CVEs. In addition, unlike the K et al. study, we analyzed
both the overall event and its components. For example, stroke
contains both hemorrhagic and ischemic events. Although it is still
controversial whether lipid-regulating drugs cause hemorrhagic
events, if inclisiran can reduce the occurrence of ischemic events
and increase the occurrence of hemorrhagic events by lowering
lipids, then mixing two events with opposite outcomes might have
slashed the significance of the results. With that in mind, it makes
sense that such effects could be avoided by analyzing and reporting
hemorrhagic and ischemic events separately.

Nevertheless, even though the definitions of CVEs differed, the
study by K et al. (Ray et al., 2022) and our study both show that
inclisiran does not appear to contribute to the prevention of stroke.

A meta-analysis of other lipid-regulating treatments (non-
inclisiran) (Lee et al., 2022) suggests that compared with less
intensive LDL-C-lowering statin-based therapies (final mean
LDL-C level = 119 mg/dL), more intensive therapies (final mean
LDL-C level = 79 mg/dL) might be more favorable for stroke
prevention (RR = 8.1% vs. 9.3%), especially for patients with
evidence of atherosclerosis. In addition, lowering the LDL-C level
was found to increase the risk of hemorrhagic stroke (RR = 1.46, 95%

TABLE 2 Pooled effect of secondary outcomesa.

Secondary outcomes Heterogeneity (I2,
p-value)

Statistical
model

WMD (95%CI)

Percentage Change in LDL-C From Baseline to Day 510 (%) I2 = 72%, p = 0.03 REM −53.98
(−58.30, −49.65)

Time-adjusted Percentage Change in LDL-C From Baseline After Day 90 and up to Day
540 (%)

I2 = 88%, p < 0.01 REM −49.29
(−54.52, −44.07)

Absolute Change in LDL-C From Baseline to Day 510 (mg/dL) I2 = 86%, p < 0.01 REM −57.63
(−67.41, −47.86)

Time-adjusted Absolute Change in LDL-C From Baseline After Day 90 and up to Day
540 (mg/dL)

I2 = 89%, p < 0.01 REM −54.52
(−62.09, −46.95)

Percentage Change in PCSK9 From Baseline to Day 510 I2 = 0%, p = 0.41 CEM −79.67
(−81.89, −77.45)

Percentage Change in TC From Baseline to Day 510 I2 = 60%, p = 0.08 REM −31.50
(−33.76, −29.23)

Percent Change in Apo B From Baseline to Day 510 I2 = 81%, p < 0.01 REM −39.57
(−43.46, −35.69)

Percentage Change in Non-HDL-C From Baseline to Day 510 I2 = 61%, p = 0.08 REM −44.63
(−47.71, −41.54)

aIn Table 2, REM, random effect model; CEM, common effect model; WMD, weighted mean difference; CI, confidence interval; LDL-C, low-density lipoprotein cholesterol; PCSK9, proprotein

convertase subtilisin/kexin type 9; TC, total cholesterol; Apo B, Apolipoprotein B; Non-HDL-C, non-high-density lipoprotein cholesterol.
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CI = 1.11–1.91). The mean follow-up duration of RCTs in this study
was 4 years, while in our study, it was 1.5 years. Subgroup analysis of
study duration based on the risk of compound stroke in the above
study suggested there was no significant difference between the
study durations of <3 years (RR = 0.92, 95%CI = 0.73–1.16)
and ≥3 years (RR = 0.87, 95%CI = 0.79–0.96). Another study
(Koskinas et al., 2018) found that compared to its significant
LDL-C reduction, the reduction in the risk of CVEs with
PCSK9 inhibitor treatment was within the expectations but
increased after using Kaplan-Meier curves to extend the follow-
up duration to be consistent with other RCTs. Since stroke is a
chronic condition and prolonged follow-up duration may result in
more cases and affect the outcome, we continue to believe that the
length of follow-up influences outcomes. However, in the absence of
long-term outcome data of inclisiran, this is merely a hypothesis.
ORION-4, 2023 and VICTORION-2P, 2023 PREVENT were two
large ongoing randomized, double-blind, placebo-controlled studies
that investigated the impact of inclisiran on patients with ASCVD.
They each expected to enroll 15,000 subjects with a follow-up

duration of ≥5 years. Ischemic stroke was one of the primary
outcomes. A larger number of subjects, longer follow-up
duration, and more specific cardiovascular efficacy outcomes
may clarify the association of inclisiran with stroke in ASCVD
patients.

For hemorrhagic stroke, although the latest American College of
Cardiology/American Heart Association guideline on the
management of blood cholesterol (Grundy et al., 2019) states that
it is not a statin-related AE, given conflicting literature data, the risk
of hemorrhagic stroke might vary due to different lipid-regulating
therapies (such as statins and PCSK9 inhibitors) or ethnicities (the
association between lower LDL-C and a higher incidence of
hemorrhagic stroke appears to be stronger in Asian people), it is
unclear whether lower LDL-C is associated with a higher incidence
of hemorrhagic stroke (Karagiannis et al., 2021).

ORION-5 indicated that compared with patients who were given the
first twodoses at a 3-month interval and then all further doses at 6-month
intervals, there was no significant difference in the reduction of blood
lipid and PCSK9 levels in those who were initially given inclisiran every

TABLE 3 Pooled effect of safety outcomesa.

No. of patients Inclisiran (n = 1833) Placebo (n = 1822) Risk ratio (95%CI) p-Value

TEAE

Patients with≥1 TEAE 1430 1409 1.01 (0.97–1.05) 0.62

Patients with≥1 TEAE leading to discontinuation of trial
intervention

45 35 1.28 (0.83–1.98) 0.27

SAE

Patients with≥1 SAE 383 401 0.95 (0.84–1.08) 0.41

All-Cause Mortality 27 27 0.99 (0.59–1.69) 0.98

Cancer-related death 4 6 0.66 (0.19–2.34) 0.52

Cardiovascular cause 17 15 1.13 (0.56–2.25) 0.74

New worsening or compound cancer 44 49 0.89 (0.60–1.30) 0.58

Protocol-defined injection-site reaction

Any event* 99 15 6.56 (3.83–11.25) <0.001
Mild* 73 14 5.18 (2.94–9.15) <0.001
Moderate* 26 1 25.84 (3.51–190.24) 0.001

Severe 0 0 - -

Persistent 0 0 - -

Laboratory results

Liver function

Alanine aminotransferase >3× ULN 7 5 1.39 (0.44–4.37) 0.57

Aspartate aminotransferase >3× ULN 8 10 0.80 (0.32–2.01) 0.63

Alkaline phosphatase >3× ULN 8 5 1.59 (0.52–4.85) 0.42

Bilirubin >2× ULN 14 14 0.99 (0.48–2.08) 0.99

Kidney function

Creatinine >2 mg/dL 36 42 0.85 (0.55–1.32) 0.48

Muscle

Creatine kinase >5× ULN 24 22 1.08 (0.61–1.93) 0.78

Hematology

Platelet count <75,000 per mm3 1 2 0.50 (0.05–5.48) 0.57

*Has significant difference (p < 0.05).
aIn Table 3, TEAE, treatment-emergent adverse event; SAE, serious adverse event; ULN, upper limits of normal; CI, confidence interval.
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6months. This suggests that inclisiranmight be given semiannually from
the beginning, rather than at 3-month intervals for the first and second
doses. Further research is expected to verify this hypothesis.

We acknowledge that our study has some limitations. Firstly, the
number and quality of the included studies were limited. All the included
studies were assessed as having a high risk of bias, mainly because of
detection bias and incomplete data reports. In addition, publication bias
existed because of the small number of included trials, all of which were
funded by medicine companies. Secondly, subgroup analysis was not
conducted because the characteristics of included studieswere similar and
the data were insufficient in the number of CVEs in different populations.
The countries and regions distribution (Table 1) of included clinical trials
were different, and the impact was not explored in our study due to the
limited data. Thirdly, the change in the definition of disease, such as
stroke orMI, may impact the data, and the detection of stroke orMImay
become more sensitive with the progression of time due to increased
incidence. We cannot exclude the effects of definition and duration.
Fourthly, we only updated the included studies at the end of the study;
therefore, some studies published after this analysis might not be
analyzed. Finally, as inclisiran is a new drug, there are few clinical
studies and post-marketing studies with published results, so it is an
objective fact that there is publication bias in this study. However,
inclisiran has been approved by the European Union and FDA for
the treatment of adults with HeFH or clinical ASCVD who require
additional lowering of LDL-C and has already been used in the clinical
setting. Clinical trials in other populations are also being steadily
registered and are underway. As the results of clinical trials, post-
marketing monitoring, and real-world studies are published, the
efficacy and safety of inclisiran for specific populations will become
clearer.Wewill continue to followup and actively update the outcomes of
the systematic review. We look forward to more updated and high-
quality studies with larger samples in the future to validate the results and
reach more convincing conclusions.

5 Conclusion

Lipid regulation is important for the prevention of stroke and
cerebrovascular events in patients with ASCVD or at high risk of
ASCVD. As a novel lipid-regulating drug, inclisiran has a significant
effect in lowering blood lipids and PCSK9 levels. Our systematic review
and meta-analysis showed that in patients with a history of treatment
with a maximum tolerated dose of statins or other lipid-regulation
therapy, using inclisiran is not beneficial for the prevention of stroke
or cerebrovascular disease and MACE but is associated with a reduced
risk of MI. However, due to the insufficient quantity and quality of
literature and the non-standard definition of CVEs, further studies are
expected to provide more details.
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Due to its high mortality, incidence and disability rates, ischemic stroke poses
heavy economic burdens to families and society. Zuogui Pill (ZGP) is a classic
Chinese medicine for tonifying the kidney, which is effective for the recovery of
neurological function after ischemic stroke. However, Zuogui Pill has not been
evaluated for its potential effects on ischemic strokes. Using network
pharmacology, the research aimed to explore the mechanisms of Zuogui
Pill on ischemic stroke, which were further validated in SH-SY5Y cells
injured by oxygen and glucose deprivation/reperfusion (OGD/R). Network
analysis of Zuogui Pill identified 86 active ingredients and 107 compound-
related targets correlated with ischemic stroke. Additionally, 11 core active
compounds were obtained, such as Quercetin, beta sitosterol, and
stigmasterol. Most of the compounds have been proven to have
pharmacological activities. Based on pathway enrichment studies, Zuogui
Pill may exert neuroprotection through MAPK signaling, PI3K-Akt signaling
and apoptosis, as well as enhance neurite outgrowth and axonal regeneration
effect via mTOR signaling, p53 signaling and Wnt signaling pathways. In vitro
experiment, the viability of ischemic neuron treated with Zuogui Pill was
increased, and the ability of neurite outgrowth was significantly improved.
Western blot assays shown that the pro-neurite outgrowth effect of Zuogui Pill
on ischemic stroke may be relate to PTEN/mTOR signal pathway. The results of
the study provided new insights into Zuogui Pill’s molecular mechanism in
treatment of ischemic stroke, as well as clinical references for its use.

KEYWORDS

zuogui pill, ischemic stroke, network pharmacology, neurite outgrowth, SH-SY5Y cells

Introduction

Chinese adults suffer from ischemic stroke most often, which leads to death and
disability (Sun et al., 2021). It is estimated that approximately 13.7 million people suffer
from stroke each year globally, and about 87% are related to ischemia (Saini et al., 2021).
In acute ischemic stroke patients within the time window, intravenous thrombolysis and
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intravascular therapy are the most effective treatment measures
(Suzuki et al., 2021). However, fewer than 5% of the patients were
able to undergo effective thrombolysis and thrombectomy
limited by the relatively short treatment time window (Saini
et al., 2021). The majority of survivors suffer from serious
neurological deficit symptoms, which severely impair their
quality of life and burden society as a whole. In addition to
vascular recanalization and neuroprotective strategies in the
acute phase (Paul and Candelario-Jalil, 2021), neuronal
regeneration and axonal repair run through the whole process
of ischemic stroke, and play an even more important role during
the recovery process. The prognosis of ischemic stroke can be
significantly improved by promoting axonal sprouting, forming
new collateral and synapse of damaged neurons, and
reconstructing neural networks (Regenhardt et al., 2020;
Takase and Regenhardt, 2021). However, no effective drug
existed to promote nerve regeneration. The development of
novel, safe and efficient medications for the regeneration and
remodeling of ischemic stroke is highly required.

Traditional Chinese medicine categorizes ischemic stroke
as “stroke” (Yu et al., 2016). The main pathogenesis is
deficiency of yin and essence of the liver and kidney. On
this basis, wind, fire, phlegm, Qi and blood and other
pathological products cause cerebrovascular obstruction and
brain marrow damage (Yu et al., 2016). Tonifying the kidney to
generate the marrow, and filling the brain with marrow can
promote the repair of the brain marrow and the recovery of
neurological function (Hu et al., 2012; Luo et al., 2020). Zuogui
pill (ZGP) is a traditional medicine prescription for tonifying
kidneys and yins. Zhang Jingyue, a physician during the Ming
Dynasty, created it to nourish the kidney, fill the essence,
nourish the kidney and generate marrow (Chen et al., 2010).
In the previous clinical and experimental studies, ZGP has
shown definited effects on ischemic stroke (Li et al., 2019; Liu
et al., 2022). The research about the mechanism of ZGP showed
that it has the effects of protecting brain cells (Liu et al., 2022),
promoting nerve regeneration and remodeling after ischemic
stroke (Wang et al., 2011). However, there is still not a clear
understanding of the material basis of ZGP and the potential
molecular mechanisms that underlie its ability to promote
neural regeneration and functional recovery.

The technology of network pharmacology focuses on the
relationship between drug molecules, action mechanisms, and
disease targets based on the construction of biological
networks (Wang et al., 2021). Integrity and systematicity
are key characteristics of this technology, which are in sync
with traditional Chinese medicine’s holistic approach and
personalized treatment based on symptoms (Jiao et al.,
2021). Therefore, it is widely used to predict the correlation
between the pharmacodynamic components and the action
mechanism of complex Traditional Chinese medicine (Wang
et al., 2021; Yang et al., 2022). The study explored ZGP’s
mechanism in multi-target, multi-channel treatment of
ischemic stroke using the network pharmacology method.
Additionally, part of the mechanism was confirmed by
in vitro experiments, which provided a biological basis for
treating ischemic stroke with “Bushen Shengsui” Chinese
medicine.

Materials and methods

Database construction of ZGP

Compounds in ZGP (Rehmannia glutinosa, Yam, Cornus
officinalis, Achyranthes bidentata, Medlar, Dodder, Tortoise
shell glue, Antler glue) were search in TCMSP (http://lsp.nwu.
edu.cn/tcmsp.php) and BATMAN-TCM (http://bionet.ncpsb.
org/batman-tcm/). The rate and degree of drug absorption in
the body is referred to as oral bioavailability (OB). A
compound’s drug-likeness (DL) is defined as its similarity to
a known drug. For the purpose of screening potential
compounds, the active components with OB ≥ 30% and
DL ≥ 0.18 were chosen. Figure 1 depicts the procedure for
elucidating the ZGP mechanism.

Prediction of compound targets for ZGP

Search compound targets through TCMSP database, screen
and eliminate the duplicate targets. The gene names and UniProt
numbers of each target were converted into target abbreviations
using the UniProt database (http://www.uniprot.org/uniprot/).
Get rid of targets that are repetitive, not human or standard.
Cytoscape 3.8 software was used to import the ZGP’s primary
active components and their targets to create a “Component-
Target” network diagram. The targets and chemical components
that were represented by the nodes in the network diagram.
Interactions were represented by the edges. The degrees reflected
the number of edges that combined a node, and function and
degree values were positively associated. The information
regarding degree centrality (DC), medium centrality (BC), and
near centrality (CC) was obtained by evaluating the topological
properties with the “CytoNCA” function.

Targets of ZGP against ischemic stroke
prediction

By utilizing the phrase “ischemic stroke,” disease targets were
found in the TTD database (http://db.idrblab.net/ttd/), DisGeNET
database (https://www.disgenet.org), GeneCards database (https://
www.genecards.org), and OMIM database (http://omim.org/). With
UniProt, duplicate targets were eliminated. The targets of the active
ZGP components were compared to the targets of ischemic stroke by
using the Venny platform (http://bioinfogp.cnb.csic.es/Tools/
Venny/), and the targets of ZGP for treating ischemic stroke
were determined.

Construction of drug-component-target-
disease network

Each drug and drug active ingredient of ZGP was defined as
“drug-component network” in Excel file format. The drug active
ingredient and active ingredient target were defined as “component-
target network” in Excel file format, and the disease and disease
potential target were defined as “disease-target network” in Excel file
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format. The above three files were imported into Cytoscape
3.8 software, and “drug-component-target-disease network” of
ZGP was obtained by using merge function of the software. The
“CytoNCA” function was used to analyze the topological properties.

Analysis of the protein-protein interaction
(PPI) network

For the purpose of PPI analysis, the common targets of ZGP and
ischemic stroke were imported into the STRING database (version
11.0, https://string-db.org/). For the PPI network construction, the
interacting proteins with a high confidence score of ≥0.700 were
chosen. Cytoscape 3.8 was used to import the aforementioned data,
create a target PPI network diagram, and screen the core network. In
order to identify potential hub targets, the “CytoNCA” function was
utilized to examine the topological properties.

GO and KEGG enrichment analysis

For further analysis, the intersection targets were uploaded to
the OmicShare analysis platform. OmicShare was used to analyze
gene ontology (GO) data, the Kyoto Encyclopedia of Genes and
Genomics (KEGG) pathway. The biological process (BP), the
cellular component (CC), and the molecular function (MF) are all
included in the GO enrichment analysis. By setting the p-value,
the GO enrichment results were obtained, and the top
20 categories were chosen for visualization. The KEGG
pathway interaction network was established for the
enrichment results of KEGG pathways, and its topological
properties were analyzed by using the function of “CytoNCA”
to uncover the potential key pathways.

Molecular docking analysis

Molecular docking aims to simulate the docking between small
molecule ligands and large molecule proteins, and the docking
results are evaluated by binding energy (affinity). Lower binding
energy indicates better molecular docking binding effect. The 3D
structure of the compounds were obtained from TCMSP database
(http://tcmspw.com/tcmsp.php), and the structure of target proteins
were obtained from RCSB PDB (https://www.rcsb.org/). AutoDock
Tools 1.5.6 was applied to perform molecular docking and predict
the binding energy of compounds and proteins. Finally, PyMOL
software was used to visualize the optimal docking results.

Chemicals and reagents for
pharmacological verification

One prescription of ZGP comprises Rehmannia glutinosa 24 g,
Fried yam 12 g, Lycium barbarum 12 g, Cornus officinalis 12 g, Sichuan
Achyranthes 9 g, Dodder seed 12 g, Antler gum 12 g, and Tortoiseshell
gum 12 g. The ratio of these herbs was 8:4:4:4:3:4:4:4. All of these
ingredients were acquired fromChina and obtained from the pharmacy
of Jiangsu Province Hospital of Chinese Medicine. The Chinese
Pharmacopoeia 2015 was employed to verify the ZGP. A voucher
specimen (2021–0527) was placed at the Central Laboratory of Jiangsu
Province Hospital of Chinese Medicine. The detailed approaches for
preparing and quality assurance of ZGP were as follows: A total of
10 prescriptions of ZGP (1050 g) were prepared, mixtures of
components in ZGP were soaked with 1000 mL water for 30 min,
then decocted twice for 30 min. The liquid was decocted twice,
collected, concentrated to a density of about 1.3, and dried under
vacuum at 60°C. Finally, the extract was crushed to obtain ZGP-dried
powder (362 g). The powder was preserved in aliquots at −20°C and

FIGURE 1
The work procedure to explain the mechanism of ZGP.
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TABLE 1 The active components of ZGP.

Mol ID Molecule name OB
(%)

DL Source

MOL000098 quercetin 46.4 0.275 CHUANNIUXI, GOUQIZI, TUSIZI

MOL000184 NSC63551 39.3 0.759 TUSIZI

MOL000310 Denudatin B 61.5 0.378 SHANYAO

MOL000322 Kadsurenone 54.7 0.378 SHANYAO

MOL000354 isorhamnetin 49.6 0.306 TUSIZI

MOL000358 beta-sitosterol 36.9 0.751 SHANZHUYU, CHUANNIUXI,
GOUQIZI, TUSIZI

MOL000359 sitosterol 36.9 0.751 SHUDIHUANG, SHANZHUYU

MOL000422 kaempferol 41.9 0.241 TUSIZI

MOL000449 Stigmasterol 43.8 0.757 SHUDIHUANG, SHANZHUYU,
SHANYAO, GOUQIZI

MOL000546 diosgenin 80.9 0.810 SHANYAO

MOL000554 gallic acid-3-O-(6′-O-galloyl)-glucoside 30.3 0.675 SHANZHUYU

MOL000953 CLR 37.9 0.677 SHANYAO, GOUQIZI, TUSIZI

MOL001323 Sitosterol alpha1 43.3 0.784 GOUQIZI

MOL001494 Mandenol 42.0 0.193 SHANZHUYU, GOUQIZI

MOL001495 Ethyl linolenate 46.1 0.197 SHANZHUYU, GOUQIZI

MOL001558 sesamin 56.5 0.827 TUSIZI

MOL001559 piperlonguminine 30.7 0.180 SHANYAO

MOL001736 (−)-taxifolin 60.5 0.273 SHANYAO

MOL001771 poriferast-5-en-3beta-ol 36.9 0.750 SHANZHUYU

MOL001979 LAN 42.1 0.748 GOUQIZI

MOL002320 Gamma-Sitosterol 36.9 0.750 GOUQIZI

MOL002773 Beta-Carotene 37.2 0.580 GOUQIZI

MOL002879 Diop 43.6 0.392 SHANZHUYU

MOL002883 Ethyl oleate (NF) 32.4 0.191 SHANZHUYU

MOL003137 Leucanthoside 32.1 0.781 SHANZHUYU

MOL003578 Cycloartenol 38.7 0.781 GOUQIZI

MOL005043 campest-5-en-3beta-ol 37.6 0.715 TUSIZI

MOL005360 malkangunin 57.7 0.626 SHANZHUYU

MOL005406 atropine 46.0 0.193 GOUQIZI

MOL005429 hancinol 64.0 0.373 SHANYAO

MOL005430 hancinone C 59.0 0.390 SHANYAO

MOL005435 24-Methylcholest-5-enyl-3belta-O-glucopyranoside_qt 37.6 0.717 SHANYAO

MOL005438 campesterol 37.6 0.715 SHANYAO, GOUQIZI, TUSIZI

MOL005440 Isofucosterol 43.8 0.758 SHANYAO, TUSIZI

MOL005458 Dioscoreside C_qt 36.4 0.871 SHANYAO

MOL005461 Doradexanthin 38.2 0.537 SHANYAO

MOL005463 Methylcimicifugoside_qt 31.7 0.237 SHANYAO

(Continued on following page)
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TABLE 1 (Continued) The active components of ZGP.

Mol ID Molecule name OB
(%)

DL Source

MOL005465 AIDS180907 45.3 0.773 SHANYAO

MOL005481 2,6,10,14,18-pentamethylicosa-2,6,10,14,18-pentaene 33.4 0.240 SHANZHUYU

MOL005486 3,4-Dehydrolycopen-16-aL 46.6 0.491 SHANZHUYU

MOL005489 3,6-Digalloylglucose 31.4 0.663 SHANZHUYU

MOL005503 Cornudentanone 39.7 0.327 SHANZHUYU

MOL005530 Hydroxygenkwanin 36.5 0.272 SHANZHUYU

MOL005531 Telocinobufagin 70.0 0.793 SHANZHUYU

MOL005552 gemin D 68.8 0.561 SHANZHUYU

MOL005557 lanosta-8,24-dien-3-ol,3-acetate 44.3 0.824 SHANZHUYU

MOL005944 matrine 63.8 0.249 TUSIZI

MOL006209 cyanin 47.4 0.759 GOUQIZI

MOL006649 sophranol 55.4 0.282 TUSIZI

MOL007449 24-methylidenelophenol 44.2 0.753 GOUQIZI

MOL008173 daucosterol_qt 36.9 0.753 GOUQIZI

MOL008400 glycitein 50.5 0.238 GOUQIZI

MOL008457 Tetrahydroalstonine 32.4 0.813 SHANZHUYU

MOL009604 14b-pregnane 34.8 0.337 GOUQIZI

MOL009612 (24R)-4alpha-Methyl-24-ethylcholesta-7,25-dien-3beta-ylacetate 46.4 0.840 GOUQIZI

MOL009615 24-Methylenecycloartan-3beta,21-diol 37.3 0.798 GOUQIZI

MOL009617 24-ethylcholest-22-enol 37.1 0.751 GOUQIZI

MOL009618 24-ethylcholesta-5,22-dienol 43.8 0.756 GOUQIZI

MOL009620 24-methyl-31-norlanost-9 (11)-enol 38.0 0.751 GOUQIZI

MOL009621 24-methylenelanost-8-enol 42.4 0.768 GOUQIZI

MOL009622 Fucosterol 43.8 0.757 GOUQIZI

MOL009631 31-Norcyclolaudenol 38.7 0.814 GOUQIZI

MOL009633 31-norlanost-9 (11)-enol 38.4 0.725 GOUQIZI

MOL009634 31-norlanosterol 42.2 0.730 GOUQIZI

MOL009635 4,24-methyllophenol 37.8 0.750 GOUQIZI

MOL009639 Lophenol 38.1 0.714 GOUQIZI

MOL009640 4alpha,14alpha,24-trimethylcholesta-8,24-dienol 38.9 0.758 GOUQIZI

MOL009641 4alpha,24-dimethylcholesta-7,24-dienol 42.7 0.753 GOUQIZI

MOL009642 4alpha-methyl-24-ethylcholesta-7,24-dienol 42.3 0.783 GOUQIZI

MOL009644 6-Fluoroindole-7-Dehydrocholesterol 43.7 0.722 GOUQIZI

MOL009646 7-O-Methylluteolin-6-C-beta-glucoside_qt 40.8 0.305 GOUQIZI

MOL009650 Atropine 42.2 0.193 GOUQIZI

MOL009651 Cryptoxanthin monoepoxide 47.0 0.561 GOUQIZI

MOL009653 Cycloeucalenol 39.7 0.794 GOUQIZI

MOL009656 (E,E)-1-ethyl octadeca-3,13-dienoate 42.0 0.194 GOUQIZI

(Continued on following page)
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TABLE 1 (Continued) The active components of ZGP.

Mol ID Molecule name OB
(%)

DL Source

MOL009660 methyl (1R,4aS,7R,7aS)-4a,7-dihydroxy-7-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxy-1,5,6,7a-tetrahydrocyclopenta [d]pyran-4-carboxylate

39.4 0.466 GOUQIZI

MOL009662 Lantadene A 38.7 0.574 GOUQIZI

MOL009664 Physalin A 91.7 0.272 GOUQIZI

MOL009665 Physcion-8-O-beta-D-gentiobioside 43.9 0.624 GOUQIZI

MOL009677 lanost-8-en-3beta-ol 34.2 0.740 GOUQIZI

MOL009678 lanost-8-enol 34.2 0.742 GOUQIZI

MOL009681 Obtusifoliol 42.6 0.757 GOUQIZI

MOL010234 delta-Carotene 31.8 0.546 GOUQIZI

MOL012286 Betavulgarin 68.7 0.394 CHUANNIUXI

MOL012298 Rubrosterone 32.7 0.466 CHUANNIUXI

MOL012888 Citrostadienol 43.3 0.790 GOUQIZI

FIGURE 2
The compound-target network and analysis of ZGP. (A) Upset plot; (B) The potential targets are depicted by the yellow rectangles, the herbs by the
green rectangles, the compounds by the green ellipses, and ZGP by the blue triangle.
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dissolved in a cell culture medium to create working solutions for
bioassays. SH-SY5Y human neuroblastoma cells were supplied by the
Chinese Academy of Sciences Stem Cell Bank. All-trans-retinoic acid

(RA) was purchased from SIGMA (Unite State). Brain-derived
neurotrophic factor (MCE, Unite State). The anti- GAP43, p-S6,
mTOR, PTEN, and GAPDH were purchased from CST (Unite State).

FIGURE 3
Venn diagram. The intersection of the potential ZGP targets and ischemic stroke targets.

FIGURE 4
Drug component target disease network of ZGP. Network of the targets shared by ZGP and ischemic stroke. The ischemic stroke is represented by
the red diamond, the potential targets are represented by the yellow rectangles, the herbs are represented by the green rectangles, and the compounds
are represented by the green ellipses.
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Cell culture and treatment

The Chinese Academy of Sciences Stem Cell Bank supplied
the SH-SY5Y human neuroblastoma cells. In DMEM-F12, SH-
SY5Y cells were treated with 10% FBS, 100 U/mL penicillin,
and 100 mg/mL streptomycin and cultivated at 37°C in a 5%
CO2 environment. SH-SY5Y cells were cultivated in 6 cm
culture plates at a density of 1.5×106 and separated into control
and all-trans-retinoic acid (RA) induction cohort. The control
cohort was cultured normally, while the RA induction cohort was
treated with 5 μmol/L RA to induce cells differentiation into
mature neurons (Jahn et al., 2017). The culture medium was
changed once a day for three consecutive days. Then, oxygen-
glucose deprivation/reoxygenation (OGD/R) procedure was
used to treat the differentiated SH-SY5Y cells to mimic cerebral
ischemia reperfusion injury in vitro (Zhi et al., 2020; Sun
et al., 2022). The differentiated SH-SY5Y cells induced by RA
were maintained in glucose-free EBSS (Early’s Balanced Salt
Solution) medium and kept in a three-gas incubator (O2
1%, CO2 5%, N2 94%) for 4 h. Subsequently, the cells were
relocated to a normal culture medium and preserved in a
normal incubator for the following experiments. ZGP was
dissolved in normal culture medium and prepared into
working solution with a series of concentrations (0.14–5.12 mg/
mL). The cells were divided into the following cohorts
for different experimental purposes: normal control (NC),

FIGURE 5
ZGP PPI networks in ischemic stroke treatment. Proteins are signified by network nodes; The targets’ abbreviations are written beside the nodes, and
the straight lines represent their connections. The correlation is greater the darker the color.

TABLE 2 Core targets in the PPI network.

Name Target DC BC CC

AKT1 RAC-alpha serine/threonine-protein
kinase

41 1113.8 0.4948

JUN Transcription factor AP-1 36 987.1 0.5134

IL6 Interleukin-6 32 635.5 0.4706

CASP3 Caspase-3 28 463.5 0.4660

IL1B Interleukin-1 beta 28 501.8 0.4528

MAPK1 Mitogen-activated protein kinase 1 25 833.1 0.4848

MYC Myc proto-oncogene protein 21 374.0 0.4305

MMP9 Matrix metalloproteinase-9 21 498.7 0.4593

PTGS2 Prostaglandin G/H synthase 2 17 562.5 0.4305

CAV1 Caveolin-1 17 446.6 0.3967

RUNX2 Runt-related transcription factor 2 16 245.2 0.4192

CRP C-reactive protein 15 276.0 0.3887

GSK3B Glycogen synthase kinase-3 beta 13 213.1 0.4085

MMP2 72 kDa type IV collagenase 13 223.8 0.4211

APP Amyloid beta A4 protein 13 922.9 0.4156

F2 Prothrombin 12 830.8 0.4229
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differentiated SH-SY5Y cells induced by RA (RA), oxygen-glucose
deprivation/reoxygenation (OGD), OGD + ZGP. To detect the
impacts of ZGP on cell viability, the cells were treated with ZGP for

24 h. To observe the impacts of ZGP on neurite outgrowth and
expression of target protein, the cells were supplemented with
them for 72 h.

FIGURE 6
The findings of GO enrichment analysis. (A) On top of each bar was the number of genes in each category. The corresponding biological process
(BP), cellular component (CC), and molecular function (MF) are represented by the colors red, green, and blue. (B) The top 20 of biological process. (C)
The top 20 of cellular component. (D) The top 20 of molecular function.
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Cell viability assay

The viability of the cells was determined with the help of the
CCK-8 test. In 96-well plates, the differentiated SH-SY5Y cells
were seeded at a density of 3 × 104 cells per well in 100 μL of

media. The cells were distributed into four cohorts: normal
control (NC), differentiated SH-SY5Y cells induced by RA
(RA), oxygen-glucose deprivation/reoxygenation (OGD), OGD
+ ZGP. For the ZGP cohorts, the cells were supplemented with
ZGP at a density from 0.14 to 5.12 mg/mL for 24 h. The cells

FIGURE 7
Results of KEGG enrichment analysis. On top of each bar was the number of genes in each category.
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received 10 μL of CCK-8 reagent after undergoing a variety of
treatments, and the optical density (OD) was measured at 490 nm
after an additional 4 h of cultivation. Cell viability was obtained

by calculating the ratio of OD value of each cohort to that of
control cohort (Cell viability = OD value of all cohorts/OD value
of the NC cohort ×100%).

FIGURE 8
KEGG pathway interaction network. (A) Pathways are represented by network nodes; The annotates of the pathways are written on the nodes.
Associations between the pathways are represented by straight lines. The correlation is stronger when the hue is darker. (B) Ischemic stroke-related key
pathways.
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Neurite outgrowth analysis

The SH-SY5Y cells were seeded at a density of 5 ×105 cells per well
in 500 μL of media in 24-well plates. After inducing differentiation by
ATRA and undergoing OGD/R injury, the cells were divided into the
following groups: normal control (Control), oxygen-glucose
deprivation/reoxygenation (OGD), OGD + ZGP (0.16, 0.32,
0.64 mg/mL). A treatment with 50 ng/mL of brain-derived
neurotrophic factor (BDNF) was used as positive controls for
neurite outgrowth (Dedoni et al., 2012; Agapouda et al., 2022). After
being treated with different methods for 72h, the growth status of cell
neurites was analyzed by measuring the length of neurites. The images
of cells and neurites were obtained using a ZEISS LSM-710 Confocal
Microscope (ZEISS Microsystems, Germany). Six high-power fields
(40×) were detected from each well of different cohorts. The length of
10 neurites wasmeasured per visual field using the ImageJ software, and
the quantitative analysis was performed using Prism 9.0 software.

Western blot analysis

For Western blotting, the protein was extracted from cells to detect
the target protein expression. After being treated with different

methods, the cells were retrieved and extracted protein with RIPA
lysate. The BCA method was used to determine the protein
concentration. Conditions for SDS-PAGE gel electrophoresis: 80 V
for 30 min and 120 V for 60 min. Conditions for membrane
conversion: 250 mA of constant current for 90 min, completed on
ice, and sealed for 1 hour at room temperature (25°C) with skimmed
milk powder. A primary rabbit anti-GAP43 (1:1000), rabbit anti-p-S6
(1:1000), mouse anti-mTOR (1:5000), GAPDH (1:20,000), and rabbit
anti-PTEN (1:2000) were used to preserve the membranes overnight at
4°C. After being treated with secondary goat anti-rabbit IgG (1:5000) or
goat anti-mouse IgG (1:2000) antibodies for 1 hour and
electrochemiluminescence (ECL) reagents for 30 s to 2 minutes, the
membranes were exposed to Kodak film (Japan). The IOD proportion
was measured and evaluated employing the ImageJ program to display
the data.

Statistical analysis

For statistical analysis, the software SPSS26.0 and Graphpad
Prism 8 were utilized. All data were tested for normality using the
Shapiro-Wilk test. Normally distributed parameters were expressed
as mean±S.D. The one-way ANOVA and the Tukey multiple
comparisons test were used to identify group differences. LSD-t
test was used for pairwise comparison. The statistical significance
was described as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Results

ZGP active components screening

Eighty-six active components of ZGP were retrieved from the
TCMSP and TCMID databases in accordance with the two screening
criteria of OB value (≥30%) and DL index (≥0.18). These components
include 2 components in SDH (Rehmannia glutinosa), 16 components
in SY(Fried yam), 20 components in SZY(Cornus officinalis),
4 components in CNX (Sichuan Achyranthes), 48 components in
GQ (Lycium barbarum), and 12 components in TSZ (Dodder seed).
The six main components in GBJ (Tortoiseshell gum) and the two
main components in CNX (Sichuan Achyranthes) were removed
because they did not meet the screening requirements. The most
important ZGP active components were shown in Table 1.

ZGP active component-target gene
interaction network

TCMSP and PubChem gathered the 86 active components for
target gene prediction. SDH (29), SY (121), SZY (112), CNX (182),
GQZ (311), and TSZ (286) were among the 1041 predicted targets
that were discovered. 207 relevant human gene targets were found
after eliminating gene targets for other species and duplicate values.
The relationship between drug composition and target was shown in
Figure 2A. An herb-constituent-target network of ZGP was
developed with the use of Cycloscape 3.7.1 program to make
clear the relationships among the herbs. The outcomes are
introduced in Figure 2B. The “CytoNCA” function was used to

TABLE 3 21 key pathways related to ischemic stroke in KEGG pathway
interaction network.

ID Pathway DC BC CC

ko04010 MAPK signaling pathway 82 7167.5 0.6682

ko04151 PI3K-Akt signaling pathway 62 3451.7 0.6067

ko04210 Apoptosis 62 4839.3 0.6092

ko04115 p53 signaling pathway 34 1012.0 0.5124

ko04620 Toll-like receptor signaling pathway 32 1111.0 0.5124

ko04630 Jak-STAT signaling pathway 31 612.5 0.5179

ko04064 NF-kappa B signaling pathway 28 654.7 0.4849

ko04150 mTOR signaling pathway 24 386.4 0.4770

ko04310 Wnt signaling pathway 18 250.0 0.4531

ko05200 Pathways in cancer 15 296.6 0.4817

ko04910 Insulin signaling pathway 15 375.0 0.4739

ko04660 T cell receptor signaling pathway 15 323.9 0.4517

ko04140 Autophagy - animal 14 433.3 0.4421

ko04659 Th17 cell differentiation 10 219.0 0.4421

ko04024 cAMP signaling pathway 10 259.8 0.4448

ko05215 Prostate cancer 9 717.0 0.4708

ko05418 Fluid shear stress and atherosclerosis 6 236.4 0.4545

ko01522 Endocrine resistance 6 345.3 0.4574

ko04917 Prolactin signaling pathway 6 634.1 0.4367

ko05230 Central carbon metabolism in cancer 6 444.7 0.4315

ko05146 Amoebiasis 6 290.1 0.4155
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sort out the core components whose DC, BC, and CC were higher
than the average during the topological properties analysis. Degree
and intermediate centrality analyses yielded eleven core active

compounds, including quercetin (MOL000098), beta sitosterol
(MOL000358), stigmasterol (MOL000449), kaempferol
(MOL000422), isorhamnetin (MOL000354), tetrahydroalstone

FIGURE 9
Molecular Docking Results. (A) The affinity of optimal docking results; (B) The visualization of optimal docking results (Middle: mTOR protein and its
docking pocket. From left to right, top to bottom: Quercetin, beta-sitosterol, stigmasterol, kaempferol, isorhamnetin, tetrahydroalstonine, kadsurenone,
sesamin, atropine, glyctein and diosgenin).
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(MOL008457), kadsurenone (MOL000322), sesamin (MOL001558),
atropine (MOL009650), glyctein (MOL008400) and diosgenin
(MOL000546).

Potential therapeutic targets of ZGP for
ischemic stroke

We continued to investigate their potential therapeutic targets
after clarifying the key compounds of ZGP. 1020 ischemic stroke-
related targets were gathered from the TTD, OMIM, GeneCards, and
DisGeNet databases after duplicates were removed. The overlapping
targets of ZGP-related targets and ischemic stroke-related targets were
regarded as potential therapeutic targets for ZGP anti-ischemic stroke.
Screening drug component targets and ischemic stroke targets yielded
103 intersection targets, as depicted in Figure 3.

Construction of drug component target
disease network

The disease-component-target network was set up in view of the
strength of the 103 shared targets recognized as both potential ZGP
targets and ischemic stroke targets. Figure 4 shows the 173 nodes
and 720 edges in this interaction network. Quercetin, β-sitosterol,
Stigmasterol, Kaempferol, and Isorhamnetin have been related with
more than 15 genes among the compounds that can interact with
targets related to ischemic stroke. In addition, more than ten
components were linked to the genes encoding PTGS2, NR3C2,
PTGS1, SCN5A, ADRB2, PPARG, DPP4, and F2. The
comprehensive regulation features of multi-components and
multi-targets were demonstrated by means of the disease-
compound-target network.

PPI network construction

The PPI relationships of 103 target genes were obtained using the
STRING platform to make clear the potential mechanism by which
ZGP benefits ischemic stroke. The outcomes are depicted in Figure 5.
The PPI network had 475 edges and 97 nodes. The “CytoNCA”
function was used to analyze the topological properties and select the
key targets whose DC, BC, and CC were higher than the average.
Table 2 displays a total of 16 key targets that have been obtained.

Analysis of GO and KEGG enrichment

We inserted the aforementioned targets into the OmicShare
evaluation platform for GO and KEGG enrichment analyses in
order to gain a deeper comprehension of the achievable
pharmacological activity of ZGP in the treatment of ischemic stroke.
3569 biological processes (BPs), 228 cellular components (CCs), and
350 molecular functions (MFs) were among the 4147 GO terms we
obtained (Figure 6A). Figures 6B–D depict the top 20 BP, CC, and MF
categories. The targets had the highest GO enrichment in the following
biological process ontologies: response to an organic substance, cellular
response to a chemical stimulus, and oxygen-containing compound.
Membrane raft, membrane microdomain, membrane region,
endomembrane system, and cytoplasmic part were among the most
highly enriched cellular component ontologies. ZGP’s synergistic effects
covered binding of enzymes, identical protein, signaling receptors, and
other molecular functions. 149 signaling pathways have been
recognized via enrichment and screening of KEGG pathways (p <
0.05) (Figure 7). The KEGG pathway interaction network was
established for the enrichment results of KEGG pathways
(Figure 8A), and 21 key pathways related to ischemic stroke
through using the “CytoNCA” function to analyze its topological

FIGURE 10
Impacts of ZGP on cell viability. The CCK-8 test was used to determine the cell viability, which was expressed as the OD value. (A) The cytotoxic
effects of ZGPwith different concentrations on differentiated SH-SY5Y cells. (B) ZGP increased the cell viability of differentiated SH-SY5Y cells after OGD/
R. Each point denotesmean ± SD (n = 6). *p < 0.05, compared with OGD cohort; **p < 0.01, compared with OGD cohort; ****p < 0.0001, comparedwith
RA cohort.
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properties (Figure 8B; Table 3). The main signaling pathway included
MAPK, PI3K-Akt, Apoptosis, p53, Toll-like receptor, Jak-STAT, NF-
kappa B, mTOR, and Wnt signaling pathway.

Molecular docking

Eleven active compounds (Quercetin, beta-sitosterol, stigmasterol,
kaempferol, isorhamnetin, tetrahydroalstonine, kadsurenone, sesamin,
atropine, glyctein and diosgenin) were obtained by network
pharmacological analysis as the core active compounds of ZGP in
the treatment of ischemic stroke. Take mTOR as the potential target.

Through docking simulations, the results were shown in Figure 9A.
The molecular-docking results suggested that the core active
compounds of ZGP had good inter binding with mTOR. Detailed
information about the optimal docking modes of the active
compounds with mTOR were shown in Figure 9B.

ZGP increased the cell viability of
differentiated SH-SY5Y cells after OGD/R

The relative cell viability was evaluated using the CCK-8 test. SH-
SY5Y cells were induced to differentiate into mature neurons by ATRA.

FIGURE 11
Effects of ZGP on neurite outgrowth. Illustrativemicrophotographs ofmorphological characteristics (A) and quantitativemeasurement outcomes of
neurites length (B) of the normal control, differentiated SH-SY5Y cells between the OGD and ZGP cohorts 3 days after treatment; When compared to the
OGD cohort, the cohorts with various concentrations of ZGP (0.16 mg/mL, 0.32 mg/mL, 0.64 mg/mL) had significantly longer neurites; each point
represents mean ± SD (n = 3). ****p < 0.0001, compared with OGD cohort; scale bars: 100 μm.
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First, we evaluated ZGP’s cytotoxic effects on differentiated SH-SY5Y
cells. ZGP was applied to differentiated SH-SY5Y cells at varying
concentrations (0.14–5.12 mg/mL) over 24 h; the highest nontoxic

concentration was 1.28 mg/mL (Figure 10A). The concentration
range at 0.16 mg/mL, 0.32 mg/mL, and 0.64 mg/mL, which
demonstrated the best activity, was chosen for the future testing.

FIGURE 12
Effect of ZGP on GAP43, PTEN, mTOR, and p-S6 proteins expression. The differentiated SH-SY5Y cells were planted in 100-mm dishes and
supplementedwith various concentrations of ZGP (0.16 mg/mL, 0.32 mg/mL, 0.64 mg/mL) for 72 h; (A) the levels ofGAP43, PTEN,mTOR, and p-S6proteins
expression were identified by Western blotting; (B) the expression of the GAP43, PTEN, mTOR, and p-S6 proteins in cells was quantified by normalizing to
GAPDH; The data are shown as the means ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, compared with OGD cohort.
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Differentiated SH-SY5Y cells were treated by OGD for 4 h. The cells
were supplemented with ZGP at a concentration of 0.16 mg/mL,
0.32 mg/mL, and 0.64 mg/mL for 24 h. The ZGP cohorts had higher
cell viability than the OGD cohort, and the difference between the ZGP
cohorts (0.16 mg/mL, 0.32 mg/mL and 0.64 mg/mL) and the OGD
cohort were statistically significant (p < 0.05, p < 0.05 and p < 0.01,
respectively) (Figure 10B). These results demonstrated that differentiated
SH-SY5Y cells were protected from OGD/R damage by ZGP.

ZGP promoted neurite outgrowth of
differentiated SH-SY5Y cells after OGD/R

The neurite alteration of neural cells was observed 3 days after
treatment to determine the effect of ZGP on the neurite outgrowth
of differentiated SH-SY5Y cells. Positive control was BDNF with
50 ng/mL, which is known to induce neurite outgrowth and
promote synaptic plasticity. As depicted in Figure 11A, the cell
morphology in the normal control group was irregular
quadrilateral and elliptical, and the neurites were very short. In
the ATRA induced group, the neurites of cells were much longer
than those of immature cells, and the length of axons of some
differentiated cells could reach 100–120 μm. The number of cells in
the OGD cohort decreased, the cell body became flat, and the axons
shortened compared with the ATRA induced group (Figure 11A).
The OGD cohort’s neurites were drastically shorter than those of
the ATRA-induced group (p < 0.0001). As was to be expected,
BDNF significantly improved the morphology of damaged cells
and prolonged neurites growth. Meanwhile, the length of neurites
was significantly longer after supplementation with various
concentrations of ZGP (0.16, 0.32, 0.64 mg/mL) compared to
that in the OGD cohort (p < 0.0001, p < 0.0001, p < 0.0001)
(Figure 11B). When compared to the OGD cohort, the impact of
ZGP on neurite outgrowth was comparable to that of the positive
control BDNF. The result suggested that ZGP reversed the damage
to differentiated SH-SY5Y cells induced by OGD/R and promoted
neurite or axon outgrowth.

ZGP regulated GAP43 and PTEN/mTOR/
p-S6 signaling pathway proteins expression

Based on the results of GO and KEGG enrichment analysis, we
selected the mTOR signal pathway protein and its negative
regulatory factor PTEN protein for Western blot detection to
verify the mechanism of ZGP promoting neurite growth. The
expression of axon growth marker protein GAP43 in induced
SH-SY5Y cells decreased after OGD/R (p < 0.0001), but
gradually increased with the increase of ZGP concentration
(Figure 12A). We observed statistically significant differences in
0.16 mg/mL (p < 0.01), 0.32 mg/mL (p < 0.0001) and 0.64 mg/mL
cohort (p < 0.0001) compared to that in OGD cohort (Figure 12B).
The expression of mTOR and p-S6 also had similar changes with
GAP43 in various concentrations of ZGP (0.16 mg/mL, 0.32 mg/
mL, 0.64 mg/mL) cohorts, which increased dramatically compared
with the OGD cohort (p < 0.05–0.0001). Compared to the OGD
cohort, PTEN protein expression was significantly downregulated in
the ZGP cohorts at various concentrations (0.16 mg/mL, 0.32 mg/

mL, 0.64 mg/mL) (p < 0.01, p < 0.01, p < 0.0001). These findings
suggest that ZGP increased the expression of the axon-related
protein GAP43 and promoted the growth of neuronal axons.
ZGP’s mechanism may involve increasing mTOR and p-S6
protein expression while decreasing that of the negative regulator
PTEN protein.

Discussion

The incidence of ischemic strokes in China has increased by
86.0% since 1990, with 3.94 million new cases annually (Ma et al.,
2021). Researchers have demonstrated that ZGP can significantly
improve the neurological function of patients or mice who have
suffered an ischemic stroke in clinical trials and basic experiments
(Li et al., 2019; Liu et al., 2022). The total effective rate of ZGP for
stroke patients was 92.0% (Chen et al., 2015). Using network
pharmacology methods and a series of experiments, we
determined the efficacy and molecular mechanisms of ZGP on
ischemic stroke.

There were 86 active ingredients and 207 compound-related
targets verified in ZGP in this study, and 1020 targets related to
ischemic stroke were confirmed in the database. A total of 107 of
these targets were related to ischemic strokes and ZGP. Additionally,
11 core active compounds (Quercetin, beta sitosterol, stigmasterol,
kaempferol, isorhamnetin, tetrahydroalstone, kadsurenone,
sesamin, atropine, glyctein and diosgenin) were obtained by
network pharmacological analysis. Quercetin exerts
neuroprotection for acute ischemic stroke by improving
neurological function score (NFS), reducing infarct volume, and
protecting blood brain barrier (BBB) integrity (Guo et al., 2022).
There are several mechanisms by which quercetin protects the brain
from damage, namely antioxidant, anti-inflammatory, anti-
apoptosis, and the ability to resist calcium overload (Wang et al.,
2020). Moreover, Quercetin might upregulate expression of GAP43,
promote neurite outgrowth and regeneration of DRGs neurons and
PC12 cells (Chen et al., 2015; Katebi et al., 2019), enhance the
proliferation and migration of Schwann cells, improve locomotor
function recovery, axonal regeneration and energy metabolism after
spinal cord injury (SCI) (Wang et al., 2020). As naturally occurring
sterol compounds, beta-sitosterol and stigmasterol play an
important in cholesterol homeostasis, antioxidation activity, anti-
inflammation activity, and nervous system development (Gao et al.,
2021). There is evidence that stigmasterol protects against ischemic
and reperfusion injury through its actions on AMPK/mTOR and
JNK signaling pathways, which reduce oxidative stress and
inactivate autophagy (Sun et al., 2019). The genes involved in the
formation of neurites and synaptic transmission could be
upregulated by stigmastero (Haque et al., 2018). It has been
demonstrated that Stigmasterol modulated both pre-and post-
synaptic events after ischemic and reperfusion, especially by
attenuating GluN2B-mediated excitotoxicity and oxidative stress,
and inducing mitophagy (Haque et al., 2021). β-sitosterol and
stigmastero were also found to have neurite outgrowth-
promoting activity in PC12 cells, which was induced by
enhancing NGF and neurofilament expression (Koga et al., 2020).
In addition to its anti-inflammatory and antioxidant properties, a
flavonoid known as kaempferol has antibacterial and antiviral
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properties as well (Silva Dos Santos et al., 2021). Kaempferol has
been found to exhibit neuroprotective properties during cerebral
ischemia. It can prevent cell death, oxidative stress, mitochondrial
malfunction, and apoptosis that are caused by oxygen-glucose
deprivation (OGD) (Wang et al., 2020). Kaempferol improved
neurological impairments in cerebral ischemia reperfusion rats by
reducing neuroinflammation and blood brain barrier dysfunction;
the NF-B pathway was involved in this process (Li et al., 2019).
Through increasing the levels of brain-derived neurotrophic factor
(BDNF), kaempferol is also crucial for memory, neuronal plasticity,
and the development of new neural networks (Yan et al., 2019).
Isorhamnolicin has the effect of promoting neurite outgrowth and
may drive PC12 cells to differentiate into neural cells (Xu et al.,
2012). It was discovered that administering isorhamnetin to
experimental ischemic mice decreased infarct volume and
caspase-3 activity, reduced cerebral edema, protected blood-brain
barrier, and accelerated the recovery of neurological function (Zhao
et al., 2016). Sesamin is a lignan that has the ability to delay aging,
resist oxidation and apoptosis, regulate oxidative stress, and
diminish inflammatory response (Rao et al., 2018). Due to its
extensive spectrum of pharmacological effects and therapeutic
qualities, diosgenin, a well-known steroidal sapogenin, has been
utilized for the treatment of neurological illnesses such
cerebrovascular disease, Parkinson’s disease, Alzheimer’s disease,
and brain damage (Cai et al., 2020). Enhanced expression of nerve
growth factor (NGF) was related to greater neurite outgrowth,
repaired damaged axons, restored ultrastructural alterations, and
neuronal regeneration in a diabetic mice model (Kang et al., 2011).
According to these studies, ZGP’s primary ingredients are useful for
treating ischemic stroke since they not only protect the brain from
damage but also encourage nerve regeneration and repair. The active
ingredient-target network diagram demonstrates ZGP’s multiple
constituents and multiple targets. PPI system analysis identified a
total of 16 critical targets genes, with AKT1, JUN, IL6, and
CASP3 placing at the top of the list. Serine/threonine protein
kinase known as AKT1 is involved in a variety of physiological
and pathological processes, including cell differentiation, apoptosis,
inflammation, and metabolism following ischemia (Zhao et al.,
2016; Samakova et al., 2019). Activated AKT1 triggers a series of
signal cascade reactions, which can reduce the death of brain cells,
promote the growth of neural cells and vascular endothelial cells,
enhance the regeneration and repair of nerve tissue and vessels, and
improve neural function after cerebral ischemia (Huang et al., 2021;
Wang et al., 2021). Researches show that the expression of Jun gene
is related to nerve regeneration, participate in the processes of
neurovascular remodeling and recovery after cerebral ischemia
(Murata et al., 2012). Whether in peripheral nerve tissue or
central nerve tissue, the expression of Jun gene is induced after
nerve injured. The higher the expression level and the longer the
expression duration of Jun gene, the stronger the ability of nerve
regeneration (Jessen and Mirsky, 2016). L6, an vital inflammatory
cytokine, has many biological functions, which include regulating
immune responses and inflammation (Lasek-Bal et al., 2019). After
cerebral ischemia, the damaged brain tissue produces immune
response and activates inflammatory cells. IL-6 is secreted to
participate in secondary brain injury, increases infarct size and
worsens clinical outcomes (Zhang et al., 2019). A key member of
the Caspase family, Caspase-3 is the “molecular switch” that controls

apoptosis in cells (Asadi et al., 2022). Caspase-3 protein expression
significantly increased in the ischemic area of the brain, according to
studies. The recovery of neural function and the survival of neural
and vascular cells can both be enchanced by inhibiting Caspase-3
protein expression (Wesley et al., 2021).

To gain a deeper comprehension of the target genes’ interaction
and action pathways, GO and KEGG pathway analyses were utilized.
The following biological processes (BPs) were found to be strongly
related with target genes through GO analysis: response to an organic
substance, cellular response to a chemical stimulus, and oxygen-
containing compound. Membrane raft, membrane microdomain,
membrane region, endomembrane system, and cytoplasmic part
were the most highly enriched CCs ontologies. Enzyme binding,
identical protein binding, signaling receptor binding, and various
other molecular functions were included in the enriched MF
ontologies. The MAPK, PI3K-Akt, apoptosis, p53, Toll-like
receptor, Jak-STAT, NF-kappa B, mTOR, and Wnt signaling
pathways were the primary focus of the KEGG pathway analysis.
The results shown that ZGP may act on multiple signal pathways.

The mitogen-activated protein kinase (MAPK) and PI3K/Akt
pathways play a significant role in the activation of a number of
critical signal transduction pathways in response to stress (Zheng
et al., 2020; Liu et al., 2021). They not only participate in the
regulation of apoptosis and inflammatory response after cerebral
ischemia, but also mediates the proliferation, differentiation, and
growth of neurons (Kong et al., 2016; Jayaraj et al., 2019). PI3K/Akt
signal pathway is the most effective anti apoptotic pathway after the
activation by granulocyte and macrophage stimulator, p-Akt can
inhibit the expression of downstream apoptotic factors NF- κ B,
regulates cell metabolism, proliferation, apoptosis and migration
(Zhu et al., 2018). The JAK/STAT signaling pathway plays a major
role in the process of apoptosis following ischemia reperfusion
injury, which is abnormally activated to accelerate neuronal
apoptosis and aggravate brain injury (Wu et al., 2018).

mTOR, p53, and Wnt signaling pathways are all associated with
nerve regeneration and repair after ischemic brain injury. mTOR is a
key signal pathway regulating the intrinsic growth ability of neurite
outgrowth and axonal regeneration (Park et al., 2008; Bei et al., 2016; Liu
et al., 2017; Zhang et al., 2022). The phosphorylation expression level of
its downstream protein p-S6 can indirectly characterize the activity of
mTOR ((Ma et al., 2021; Li et al., 2022). The ability to regenerate after
ischemic brain injury is closely related to the enhancement of mTOR/
p-S6 activity, which increases the expression of growth associated
protein-43 (GAP-43) (Li et al., 2022). According to another
research, the PI3K/Akt signaling pathway is also essential for axonal
regeneration, which is accomplished via activatingmTOR. (Wang et al.,
2019). Meanwhile, phosphatase and tensin homology (PTEN) is an
important molecular target to inhibit the internal growth ability of
neurons (Liu et al., 2010). It steadily increases in expression as the
nervous system develops and matures, suppresses the mTOR pathway
of cellular internal growth, and dramatically lowers the capacity of
mature axons to sprout and regenerate (Hausott et al., 2022). Inhibiting
PTEN expression to reactivate mTOR pathway can promote significant
sprouting, regeneration and functional recovery of optic nerve axons
and CST axons after cerebral ischemia (He and Jin, 2016). The role of
tumor suppressor p53 in regulating neurite outgrowth and axonal
regeneration has been confirmed over the past decade (Di Giovanni
and Rathore, 2012). As a highly conserved signal pathway in
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multicellular eukaryotes, Wnt protein family is crucial to neuronal
differentiation, neuronal survival, axonal regeneration after ischemic
stroke and other aspects at the early stage of nervous system
development (Garcia et al., 2018).

From the above results, we can see that ZGP not only has anti-
apoptosis and neuroprotective effects on ischemic stroke, but also can
promote neurite outgrowth and axonal regeneration after cerebral
ischemia. Our in vitro experiments in this study demonstrated that
ZGP protected ischemic neurons by increasing the cell viability of
differentiated SH-SY5Y cells following OGD/R. Several other
investigations have revealed that the mechanism behind ZGP’s
protective impact on ischemic stroke is related to inhibit oxidative
stress and inflammatory reaction and regulate PI3K/Akt pathway (Liu
et al., 2017; Liu et al., 2021; Liu et al., 2022). However, the effect and
mechanism of ZGP on neurite growth and regeneration have not been
experimentally verified. In current research, we targeted on the effect of
ZGP on neurite growth and regeneration in hypoxic-ischemic neurons,
and verified its mechanism. As we expected, ZGP reversed the damage to
differentiated SH-SY5Y cells induced by OGD/R and promoted neurite
and axon outgrowth obviously. Our previous research results and those of
other scholars confirmed that PTEN/mTORare the key signal pathway to
control neurite and axon remodeling after nerve injury (Park et al., 2008;
Liu et al., 2017). We verified that ZGP promotes neurite growth and
regeneration through the PTEN/mTOR signaling pathway. The fact that
ZGP increased GAP43, mTOR, and p-S6 expression and decreased
PTEN expression indicates that the PTEN/mTOR signal pathway was
connected to ZGP’s role in promoting neurite regeneration and
outgrowth.

In conclusion, this research is the first time to use multiple network
models to study the mechanism of ZGP on ischemic stroke, and provide
new insights for the role of ZGP in ischemic stroke treatment. Network
analysis of ZGP identified 86 active ingredients and 107 compound-
related targets correlated with ischemic stroke. Additionally, 11 core
active compounds were obtained, such as Quercetin, beta sitosterol, and
stigmasterol. Most of the compounds have been proved to have
pharmacological activities. Pathway enrichment demonstrated that
ZGP may exert neuroprotective effect through MAPK, PI3K-Akt
signaling pathway, and exert promoting neurite outgrowth and axonal
regeneration effect via mTOR, p53 and Wnt signaling pathway. In vitro
experiment, ZGP treatment greatly boosted the survivability of ischemic
neurons and enhanced their capacity for neurite outgrowth.Western blot
assays shown that the pro-neurite outgrowth effect of ZGP on ischemic
stroke may be relate to PTEN/mTOR signal pathway. All of the findings
offered fresh explanations for the molecular basis of ZGP and served as a
guide for its use in clinical settings. However, due to the limited database
of traditional Chinesemedicine andmany network prediction results, the
experimental verification is not comprehensive. Future research will still
need to evaluate the therapeutic effects of ZGP in vivo and its potential
mechanisms for ischemic stroke treatment.
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Mechanical thrombectomy with 
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better functional outcomes for 
AIS-LVO: a meta-analysis
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Background: Several clinical trials have shown that intra-arterial thrombolysis 
using alteplase during mechanical thrombectomy (MT) has a better outcome 
than MT alone in ischemic stroke management. We performed the current meta-
analysis to estimate the efficacy and safety of MT with intra-arterial alteplase 
therapy.

Methods: The MEDLINE, Embase, Cochrane Library, and ClinicalTrials.gov 
databases were searched up to Mar. 2022 to identify the clinical trials that 
compared MT alone versus MT with intra-arterial alteplase therapy. STATA 16.0 
was used for statistical analysis. The odds ratios (ORs) and 95% confidence 
intervals (95%CIs) were calculated with a random effect model.

Results: Seven studies involving 1,083 participants were included. The primary 
outcomes were better functional outcomes, defined as a modified Rankin Scale 
(mRS) score between 0 and 2 at 90  days, and successful recanalization, defined 
as a modified thrombolysis in cerebral infarction (mTICI) score  ≥  2b. Compared 
to MT alone, MT with intra-arterial alteplase did not lead to higher mTICI scores 
(OR 1.58, 95%CI 0.94 to 2.67, p = 0.085, I2 = 16.8%) but did lead to better mRS (OR 
1.37, 95%CI 1.01 to 1.86, p = 0.044). There was no increase in mortality or bleeding 
events in the overall or subgroup analyses.

Conclusion: MT with intra-arterial alteplase did not improve the recanalization 
rate but provided better functional outcomes. The intervention did not increase 
adverse effects in any subgroup at the same time.

Clinical trial registration: http://inplasy.com, identifier INPLASY202240027.

KEYWORDS

intra-arterial thrombolysis, alteplase, mechanical thrombectomy, acute ischemic stroke, 
functional outcomes after acute stroke

Introduction

Acute ischemic stroke (AIS) is the leading cause of mortality and disability worldwide. AIS 
caused by large vessel obstruction (AIS-LVO) has a worse prognosis. Current evidence-based 
treatment options include intravenous thrombolysis (IVT) and mechanical thrombectomy 
(MT); however, these approaches still have several limitations (Ospel et al., 2020).
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Intravenous alteplase has been showen substantially improved the 
outcomes of AIS patients and had become the first-line therapy for 
patients having AIS (Hacke et al., 2008). But the narrow time window 
of 4.5 h and several contradictions limited the recanalization efficacy 
of IVT for AIS-LVO (Bhatia et al., 2010).

MT has become the standard care for AIS with definitive efficacy 
and good safety (Powers et al., 2019). Intra-arterial thrombolysis (IAT) 
emerged initially in the PROACT trials (Prolyse in Acute Cerebral 
Thromboembolism) (del Zoppo et  al., 1998). The Multicenter 
Randomized Clinical trial of Endovascular treatment for Acute ischemic 
stroke in the Netherlands (MR CLEAN) proved that intra-arterial 
therapy is effective and safe for AIS that is caused by proximal intracranial 
occlusion of the anterior circulation within 6 h after stroke onset 
(Berkhemer et al., 2015). The Interventional Management of Stroke 
(IMS) trials yielded promising outcomes in phase I and II studies but the 
phase III randomized clinical trial (RCT) came out with negative results 
(Investigators IS, 2004; Investigators IIT, 2007; Broderick et al., 2013). 
However, the role of IAT evolved from a primary therapy to adjunct or 
rescue therapy to mechanical thrombolysis.

It is necessary to evaluate the efficacy and safety of IVT, MT, IAT, 
and the combination of these therapies. A previous network meta-
analysis comparing MT alone, IAT alone, MT + IVT, and IAT + IVT 
concluded that MT + IVT seemed to be the most effective strategy 
without increasing adverse effects (Hui et al., 2020). The efficacy of 
MT + IAT remained unclear. Another meta-analysis based on 
observational studies evaluating all modalities of MT and all categories 
of thrombolytics supported the potential role of IAT as an adjunct to 
MT (Chen et al., 2021).

Thrombolytic pharmaceuticals include urokinase, recombinant 
tissue plasminogen activator (rtPA, also named alteplase), and 
glycoprotein IIb/IIIa inhibitors, among which alteplase is the most 
well studied. Alteplase was first introduced in IVT and showed 
substantial improvement in outcomes.

Previous data comparing MT with intra-arterial alteplase and MT 
alone were mainly derived from observational studies. The two most 
commonly used efficacy outcomes were functional outcomes assessed 
by modified Rankin Scale (mRS) and recanalization assessed by 
modified Thrombolysis In Cerebral Infarction (mTICI) scale. The 
mRS scores were similar between the two groups or better in MT + IA 
tPA group. Recanalization showed heterogeneity in different studies. 
Heiferman et al. (2017) reported that MT with IA-tPA had a lower rate 
of mTICI = 2b but a higher rate of mTICI = 3. Anadani et al. (2019) 
also found a higher complete recanalization rate, while other studies 
showed no significant difference between the two groups. Consistently, 
these studies did not find an increase in adverse effects. Recently, a 
randomized controlled trial published the results of intra-arterial 
alteplase following successful MT (Renú et al., 2022). It concluded that 
intra-arterial alteplase as an adjunct therapy to MT resulted in a 
greater likelihood of excellent neurological outcomes at 90 days. 
We performed the current meta-analysis to estimate the efficacy and 
safety of MT with intra-arterial alteplase. We  performed further 
subgroup analysis to investigate the potential value in specific patients.

Methods

Before the project started, we designed the protocol following the 
PRISMA guidelines (Page et al., 2021). We have submitted our study 
protocol to the INPLASY register (No. INPLASY202240027).

Eligibility and exclusion criteria

Eligibility Criteria: (i) participants: patients with AIS-LVO, (ii) 
intervention: MT with intra-arterial alteplase, (iii) Control: MT alone 
or MT with placebo, and (iv) outcomes: efficacy outcomes including 
the mRS and mTICI; safety outcomes including hemorrhage 
transformation and mortality. Included studies were not requested to 
have all the outcome data.

Exclusion Criteria: (i) study type: case reports or case series and 
(ii) active control (i.e., that is known to be an effective treatment as 
opposed to a placebo).

Search strategy and information sources

Two independent investigators (XYY and ZLW) systematically 
searched the MEDLINE, EMBASE, Cochrane Library, and 
ClinicalTrial.gov databases, up to Mar. 2022 to identify relevant 
studies. “Alteplase”, “recombinant tissue plasminogen activator”, 
“mechanical thrombectomy” and “stroke” were used as search 
keywords. The detailed search strategies are presented in the 
Supplementary Table S1.

Study selection and data collection

Two reviewers independently screened and evaluated all study 
records from the database search according to the eligibility criteria 
listed above. A third reviewer who did not participate in the process 
of data collection was consulted to resolve disagreements. The two 
reviewers extracted the following data using a standardized form: 
baseline information, inclusion and exclusion criteria, efficacy and 
safety outcome results, and conclusions.

Risk of bias

Two reviewers assessed the risk of bias using the methodological 
index for nonrandomized studies (MINORS) tool. Disagreements 
between the two reviewers were resolved by consulting a third 
reviewer, Each study was checked with the 12-item MINORS scale to 
obtain a total score that represents the quality of the study. The RCT 
was assessed with Cochrane Collaboration risk of bias tool, which 
included the following domain: selection bias, performance bias, 
detection bias, attrition bias, reporting bias, and other potential biases. 
Each domain was classified as “low,” “high” or “unclear.”

Statistical analysis

We used STATA 16.0 for data analysis. Statistical heterogeneity 
was estimated via the I2 statistic. All analyses used a random effect 
model. Heterogeneity was classified as low heterogeneity 
(I2 < 30%),moderate heterogeneity (30% <I2 <50%),substantial 
heterogeneity (I2 of 50% or more). Odds ratios (ORs) and 95% 
confidence interval (95% CI) were used for dichotomous variables and 
were presented with a Forest plot. All statistical tests were 2-tailed and 
significance was set at p < 0.05. Sensitivity analysis was used to explore 
the stability of the pooled results.
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Outcome of interest

Efficacy outcomes included functional outcomes assessed at 
3 months by the and modified Rankin Scale (mRS) and recanalization 
assessed by the modified Thrombolysis In Cerebral Infarction (mTICI) 
scale. The good functional outcome was set as mRS 0 to 2. The 
successful recanalization was defined as mTICI≥2b.

Safety outcomes were assessed by determining the rate of adverse 
effects, including mortality, symptomatic intracerebral hemorrhage 
(sICH), parenchymal hemorrhage type 2 (PH-2), and any hemorrhage.

Subgroup analysis

We performed subgroup analysis according to the baseline 
characteristics such as age, NIHSS score, and the timing of intra-
arterial alteplase administration. We set two subgroup marks: (i) age 
above or below 70 years old and (ii) IAT as adjunct or rescue 
therapy to MT.

Results

Baseline characteristics

We identified 2,136 references from the database searches. A total 
of 529 duplicates were removed. Irrelevant records were excluded after 
screening. Eligible articles were further assessed and seven studies 
(Lin et al., 2009; Heiferman et al., 2017; Yi et al., 2018; Anadani et al., 
2019; Zaidi et al., 2019, 2021; Renú et al., 2022) were included in our 
final analysis (Figure 1). A total of 1,083 participants were pooled. The 
characteristics of each included study are listed in Table 1.

Efficacy outcomes

We combined data for the outcome of recanalization using OR 
with random effects model. Compared to MT alone, MT with intra-
arterial alteplase did not show higher recanalization rate (OR 1.58, 
95%CI 0.94–2.67, p = 0.085, I2 = 16.8%) but yielded better functional 
outcome of mRS 0 to 2 (OR 1.37 95%CI 1.01–1.86, p = 0.044, I2 = 0.0%) 
(Figure 2).

Subgroup analysis did not yield any positive result. The Forrest 
plot of each subgroup was presented in Supplementary Figure S1.

Safety outcomes

Among the four analyzed indicators of adverse effects, we did not 
observe significant differences between the two groups (Figure 3). The 
administration of intra-arterial alteplase during MT did not increase 
the risk of mortality or hemorrhage. The results were as follows: 
mortality rate (OR 0.70, 95%CI 0.49–1.01, p = 0.055, I2 = 0.0%), sICH 
(OR 0.71, 95%CI 0.21–2.38, p = 0.584, I2 = 23.7%), PH-2 (OR 0.78, 
95%CI 0.34–1.17, p = 0.550, I2 = 0.4%), and any hemorrhage (OR 1.00, 
95%CI 0.65–1.53, p = 0.998, I2 = 0.0%). Subgroup analysis also revealed 
negative results (Table 2). The analysis of sICH patients aged>70 years 
old showed a higher level of heterogeneity (I2 = 55.3%). We performed 

a sensitivity analysis and the results are shown in 
Supplementary Figure S2.

Risk of bias

We included three retrospective studies, three prospective studies, 
and one RCT in this meta-analysis. The risk of bias in observational 
studies is listed in Table 3. The total points ranged from 17 to 20. The 
RCT (Renú et  al., 2022) was categorized as “low risk of bias” for 
each domain.

Discussion

We pooled 1,083 participants from seven studies in our meta-
analysis to estimate the safety and efficacy of intra-arterial alteplase 
during MT. The results suggested that compared to MT alone, MT 
with intra-arterial alteplase led to better functional outcomes but did 
not improve recanalization. Further more, there was no increase in 
adverse effects. Overall, intra-arterial alteplase showed good efficacy 
and safety outcomes.

The efficacy outcomes were assessed by widely used tools, the 
mRS was used to assess functional outcome and the mTICI was used 
to assess recanalization. The MT with intra-arterial alteplase group did 
not show a higher successful recanalization rate but did show a higher 
rate of good functional outcomes. This phenomenon might 
be explained by the limitations of the mTICI scale. The reperfusion 
rate is typically calculated by the operator at the end of the procedure, 
which could be influenced by experience. Patients might benefit from 
intra-arterial thrombolysis owing to the better reperfusion that is not 
reflected in mTICI score. The most recent TICI (expanded TICI, 
eTICI) was published in 2019. The expanded TICI scale divided 
reperfusion extent into 7 grades. It provided cut-off points by 
demonstrating excellent reliability for distinguishing eTICI 2b50 and 
2b67. The efficacy of eTICI was examined using a large multinational 
dataset (Liebeskind et al., 2019). Renú et al. (2022) utilized the recent 
iteration to obtain a more objective reperfusion assessment.

The most important safety concern about the addition of intra-
arterial alteplase to MT might be  the potential hemorrhagic 
transformation, especially intracerebral hemorrhage. The hemorrhagic 
risk was estimated by the rate of hemorrhage events such as sICH, 
PH-2, and any hemorrhage in most studies. Our results did not show 
any significant difference in these hemorrhagic indices, nor did the 
subgroup analysis. The results are somewhat unexpected but not 
unreasonable. Thrombolytic agents truly have a direct effect on 
hemorrhage tendency, but the mechanisms of ICH secondary to intra-
arterial revascularization therapies in AIS are complex. The blood–
brain barrier damage triggered by ischemia is another pivotal process 
(Mokin et al., 2012). The risk of hemorrhage and the benefit of timely 
reperfusion need equilibrium. Another meta-analysis comparing MT 
with adjunctive intra-arterial thrombolysis also obtained similar 
results that sICH rates were not increased (Diprose et  al., 2021). 
However, the included studies used different classification systems of 
sICH that might cause heterogeneity and bias. The results also showed 
no difference in mortality between the two groups. MT with IAT 
tended to decrease mortality compared to MT alone.

Our study is the first meta-analysis that focused on the 
combination of specific intra-arterial thrombolytic alteplase and MT 
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by incorporating the data from the most recent RCT. The results and 
conclusions are consistent with the outcomes of the RCT and most 
previous studies. The level of heterogeneity was low in the majority of 
outcomes analyzed herein. The subgroup analysis of sICH in age>70 
showed substantial heterogeneity. But only two studies, Zaidi et al. 
(2019) and Renú et al. (2022), were included in this subgroup. Zaidi 
et al. (2019) was a retrospective study while Renú et al. (2022) was the 
most updated RCT, which might cause heterogeneity.

The CHOICE trial (Chemical Optimization of Cerebral 
Embolectomy) was the first RCT to publish the outcomes of intra-
arterial alteplase following successful MT. The RCT differs from the 
previous observational studies because it used successful 
recanalization as an indicator of eligibility for intra-arterial alteplase 
administration. It also used the most updated expanded Thrombolysis 
In Cerebral Infarction (eTICI) index to assess recanalization. 
Therefore, the RCT could not be  included in the analysis of 
recanalization herein. Another regretful thing is that CHOICE trial 

was terminated early and did not reach its expected recruitment target 
due to the COVID-19 pandemic. The most updated RCT had a 
relatively small sample size and thus weighted less heavily in this 
meta-analysis.

Previous RCTs about intra-arterial therapy, such as PROACT and 
MR CLEAN, are not included in our meta-analysis due to different 
study designs. A more recent observational study of MR CLEAN 
Registry analyzed the participants receiving IA thrombolytics 
following EVT and showed neutral results (Collette et al., 2023). This 
study got similar rate of favorable outcome (defined as mRS 0–2) 
between the groups with or withour IA thrombolytics and found less 
reperfusion rate in patients treated with IA thrombolytics, which are 
inverse to our results. But the neutral results about sICH are consistent 
with us.

There are some other limitations in our meta-analysis. A certain 
percentage of participants received IVT, the impact of which could not 
be ignored, but we could not perform a subgroup analysis of these 

FIGURE 1

The study search, selection, and inclusion process.
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TABLE 1 Baseline characteristics of included studies.

Trials Study 
type

Country/
Center

Period Timing 
of IAT to 
MT

Group No. of 
participants

Age 
[Mean 
(SD)/

Median 
(IQR)， 
years]

Sex 
[Male, 
n (%)]

NIHSS 
[Mean 
(SD)/

Median 
(IQR)， 
years]

Lin et al. 

(2009)
Retrospective USA

1998 to 

2008
Before

MT + IAT 40 68 (13) 19 (47.5%) 17 (6–25)

MT alone 18 71 (13) 10 (55.6%) 18 (10–29)

Heiferman 

et al. (2017)
Prospective USA

Jan 2015 to 

Mar 2016
Adjunct

MT + IAT 28 67 (56–74) 10 (36%) 20 (15–25)

MT alone 12 69 (63–78) 5 (42%) 18 (14–22)

Anadani et al. 

(2019)
Retrospective USA

Nov 2014 

to Jan 2018
Rescue

MT + IAT 419 66.1 (15) 34 (50.7%) 15.2 (7.6)

MT alone 67 68.2 (14.2) 205 

(48.9%)

15.9 (7.4)

Yi et al. (2018) Retrospective China
2015 to 

2017
Adjunct

MT + IAT 37 66 (13) 17 (45.9%) 18 (11–23)

MT alone 56 65 (11) 30 (53.6%) 18 (10–28)

Zaidi et al. 

(2019)
Retrospective

24 sites in the 

USA

Mar 2012 

to Feb 2013
Rescue

MT + IAT 37 70.7 (15.4) 21 (56.8%) 17.5 (14–22)

MT alone 44 69.1 (17.8) 22 (50%) 19 (13–21)

Zaidi et al. 

(2021)
Prospective

55 centers in 

the USA

Aug 2014 

to Jun 2016
Rescue

MT + IAT 129 68 (15.2) 69 (53.5%) 17.0 ± 5.5

MT alone 83 65.9 (15.3) 53 (63.9%) 17.6 ± 5.7

Renú et al. 

(2022)
RCT

7 centers in 

Spain

Dec 2018 to 

May 2021
Adjunct

MT + IAT 61 73 (71–76) 33 (54%) 14 (8–20)

MT + placebo 52 73 (69–77) 28 (54%) 14 (10–20)

FIGURE 2

The pooled OR and 95%CI of efficacy outcomes. The diamond indicates the estimated OR and 95%CI and the square indicated the weight of each 
study.
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subsets due to the lack of data. The occlusion location of vessels and 
the door-to-needle time or onset-to-recanalization time might also 
influence the outcomes, but fewer studies have reported detailed data 
on the specific patients’ prognoses.

IAT had potential efficacy as adjunctive therapy to MT and 
could not be  discarded. The evaluation of other currently used 
thrombolytics such as urokinase and tirofiban is also necessary. But 
present data about intra-arterial thrombolysis for AIS management 

FIGURE 3

The pooled OR and 95%CI of safety outcomes. The diamond indicates the estimated OR and 95%CI and the square indicated the weight of each study.

TABLE 2 The results of subgroup analysis.

Efficacy outcomes Safety outcomes

Good functional 
outcome

Recanalization Mortality sICH

OR (95%CI) p value OR (95%CI) p value OR (95%CI) p value OR (95%CI) p value

Age

  Age>70 1.221 (0.642, 

2.320)

0.543 NA NA 0.728 (0.351, 

1.511)

0.394 0.840 (0.072, 

9.768)

0.889

  Age<70 1.466 (0.942, 

2.282)

0.090 1.457 (0.693, 

3.063)

0.322 0.692 (0.455, 

1.053)

0.085 0.448 (0.101, 

1.996)

0.292

IAT as adjunct or rescue therapy to MT

  Adjunct 1.650 (0.808, 

3.368)

0.169 2.458 (0.603, 

10.014)

0.209 0.532 (0.234, 

1.209)

0.132 0.229 (0.051, 

1.019)

0.053

  Rescue 1.284 (0.896, 

1.840)

0.173 1.436 (0.725, 

2.844)

0.299 0.762 (0.493, 

1.176)

0.219 2.242 (0.582, 

8.639)

0.241

213

https://doi.org/10.3389/fnins.2023.1137543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnins.2023.1137543

Frontiers in Neuroscience 07 frontiersin.org

were still mainly derived from observational studies. More RCTs are 
needed to obtain higher-quality evidence for the administration of 
intra-arterial thrombolysis. We are looking forward to the results 
from ongoing research, for example, the TECNO trial 
(NCT05499832) aiming at assessing safety and efficacy of intra-
arterial Tenecteplase for noncomplete reperfusion of 
intracranial occlusions.

Conclusion

Compared to MT alone, MT with intra-arterial alteplase did not 
improve the recanalization rate but provided better functional 
outcomes. The intervention did not increase hemorrhage or mortality 
risk. Thus, MT with intra-arterial alteplase could be  a potential 
therapy for AIS-LVO.
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TABLE 3 A summary table for risk of bias item assessed by MINORS scale of each study.

Item Lin et al. 
(2009)

Heiferman et al. 
(2017)

Anadani et al. 
(2019)

Yi et al. 
(2018)

Zaidi et al. 
(2019)

Zaidi et al. 
(2021)

1. A clearly stated aim 2 2 2 2 2 2

2. Inclusion of 

consecutive patients

2 2 2 2 2 2

3. Prospective collection 

of data

0 2 2 0 0 2

4. Endpoints appropriate 

to the aim of the study

2 2 2 2 2 2

5. Unbiased assessment 

of the study endpoint

1 0 0 0 0 0

6. Follow-up period 

appropriate to the aim of 

the study

2 2 2 2 2 2

7. Loss to follow up less 

than 5%

2 2 2 2 1 1

8. Prospective 

calculation of the study 

size

0 0 0 0 0 0

9. An adequate control 

group

2 2 2 2 2 2

10. Contemporary 

groups

2 2 2 2 2 2

11. Baseline equivalence 

of groups

2 2 2 2 2 2

12. Adequate statistical 

analysis

2 2 2 2 2 2

13. Total points 19 20 20 18 17 19

The items are scored 0 (not reported), 1 (reported but inadequate), or 2 (reported and adequate). The global ideal scores are 16 for non-comparative studies and 24 for comparative studies.
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AIS Acute ischemic stroke

CHOICE Chemical Optimization of Cerebral Embolectomy

IAT Intra-arterial thrombolysis

IMS Interventional Management of Stroke

IVT Intravenous thrombolysis

LVO Large vessel occlusion

MINORS Methodological index for non-randomized studies

MR CLEAN Multicenter Randomized Clinical trial of Endovascular 

treatment for Acute ischemic stroke in the Netherlands

mRS modified Rankin Scale

mTICI modified Thrombolysis In Cerebral Infarction

MT Mechanical thrombectomy

NIHSS National Institute of Health stroke scale

PH-2 Parenchymal hemorrhage type 2

PROACT Pyrolyse in Acute Cerebral Thromboembolism

RCT Randomized clinical trial

rtPA Recombinant tissue plasminogen activator

sICH Symptomatic intracerebral hemorrhage
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