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Editorial on the Research Topic

Pushing frontiers—imaging for photon science
s

1 Introduction

The dramatic improvement in photon sources such as Free Electron Lasers (FELs)
and Diffraction-Limited Storage Rings (DSLRs) over the last two decades has significantly
expanded the range of science that is possible at these facilities. In order to take full
advantage, detectors with similarly advanced capabilities are needed. Developing such
detectors, however, is extremely challenging; they typically take a decade to deploy and
often require several iterations, necessitating considerable resources. Their integration in
experiments is also not trivial. As a result, many experiments are still detector limited, as
described by Gruner et al.

Therefore, we have solicited papers on progress in this field. This editorial includes an
overview of key challenges reported by the authors and new technologies they described that
help overcome them. Of course, many other developments are underway; here, we largely
focus on those submitted by the authors.

2 Challenges for the future

The development of new detectors for photon science presents several challenges.
The first is to meet the well-documented [1, 2] performance increase of new FELs and
DLSRs. Second, photon science detectors must accommodate a wide range of experimental
operating modes (Gruner et al., Andresen et al., Armstrong et al.). Even within a single
facility, detectors supporting a variety of applications are required (Graafsma et al.).They are
also frequently adapted for experiments for which they were not originally optimized, and
are increasingly fitted with multiple sensor types to address the need for wider X-ray energy
ranges.Designingwith all these possible cases inmind is difficult and time-consuming—and
can lead to compromise solutions not optimised for any one experiment.

The range of requirements is not entirely open-ended, as some specifications have
practical limits, and advancements in radiation sources can even lead to detector
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consolidation. For instance, at higher photon energies, there is a
sensible limit to pixel size related to absorption length of secondary
particles (Frojdh et al.), and the increasing brilliance of DLSRs
requires event or frame rates comparable to the CW-pulse repetition
rates of future FELs, suggesting that similar detectorsmay be suitable
for both (Graafsma et al.). Despite this convergence in frame rate
requirements, however, specific needs do persist for much higher
frame rates (GHz) for burst imaging (Gruner et al.) and much
slower, low-noise imaging (sub-Hz) for RIXS (Andresen et al.).This,
and the fact that high repetition-rate CWoperation at some facilities
remains a long-term project, suggests requirements will remain
divergent at least in the near future.

The increase in performance of modern detectors also poses
challenges for downstream systems. Multi-megapixel detectors with
MHz frame rates generate vast quantities of data. This needs not
just to be captured but calibrated and stored for many years. The
calibration itself is amajor task, since for some detectors the number
of parameters can exceed 109 (Sztuk-Dambietz et al.).The associated
difficulty can be strongly impacted by decisions taken at the detector
development stage many years earlier (Pennicard et al.). The need
for reproducibility of calibrations years later further adds to the
complexity, since it must also be possible to apply more advanced
calibrations as the understanding of an installed detector improves
whilst still re-producing older results (Schmidt et al.).

A “gold standard” would be an integrating sensor with single-
photon resolution which could convert to photon counts and
compress to the Poisson limit for ultimate data reduction with zero
science loss (Frojdh et al., Pennicard et al.).

When addressing these challenges, it is crucial to identify the
primary bottleneck in the system, which could be anywhere from
sensor to data transfer. If this bottleneck cannot be mitigated,
optimizing other parts of the system for higher performance may
be inefficient or unnecessary.

3 New technologies

The need for detectors to span an energy regime from 101 to
105 eV pushes both hard and soft X-ray sensor developments. For
hard X-rays, in addition to GaAs, Ge, and CdTe, research into
the manufacture and use of CdZnTe has led to improved leakage
current and stability under high flux conditions (Collonge et al.),
making its use in detectors more viable, but much work remains to
be done. Other high-Z options, such as Perovskites, are also being
investigated, but are at an earlier stage (Fiederle et al.).

Similarly, in the soft X-ray regime, several useful technologies
exist. For monolithic systems such as the pnCCD (Ninkovic et al.),
backside-illuminated CCDs (Goldschmidt et al.) and CMOS
imagers (Andresen et al.), entrance window processing technologies
have been developed that make these devices sensitive down to
the double digit eV range with good efficiency and reasonable
signal-to-noise ratio (SNR) thanks to their relatively low noise.
High-quality entrance windows are key for any soft X-ray detector
(Lee et al.). For hybrid detector systems, typically with higher
noise due to the bump-bonding process, segmented LGAD sensors
(Vignali et al., Sikorski et al.) and DEPFETs (Ninkovic et al.)
provide good sensor options for the improvement of SNR in a
different manner.

Technical advances in the commercial semiconductor market
can also help improve performance. For example, CMOS technology
nodes of 180 nm and below are routinely used in photon science
ASICs. Their high transistor density allows much functionality to
be implemented on-chip. This has enabled several developments,
particularly in the high flux area. XIDER, CORDIA, andMatterhorn
all use different methods to overcome challenges associated with
the combined need for high frame or count rates and high dynamic
range (Collonge et al., Graafsma et al., Frojdh et al.).

Cutting-edge commercial designs and even other scientific fields
use much smaller nodes [3] than the 65 nm and 110 nm used
here. However, commercial effort focuses on reducing the cost
per transistor whereas for large area detector applications, the cost
per area is most important, and this tends to increase as the
node shrinks [4]. This may eventually limit what node is used
for large-area applications. In addition, while smaller nodes are
superior for digital circuitry, for analog circuits larger nodes have
advantages as well. Older nodes may continue to be employed, or
the use of chiplets to best match cost and performance may become
more common.

New CMOS functionalities beyond node size also allow
improved performance. However, these are sometimes not available
for small-batch developments. A prominent example is 3-D
integration, which has been commercially common for many years
but has only been sporadically employed for photon science.
Whether such technologies will permit higher-performing detectors
in the future will likely be a question of access.

Advances can also be made when commercial detector systems
in other fields turn out to be suitable for photon science use. In some
cases, in particular in terms of cost and time, these constitute a viable
or even better alternative to custom-developed systems.

Handling the vast amount of data produced bymodern detectors
is a particularly critical area, discussed in greater detail in the
next section.

4 Data reduction and processing

Data reduction and processing is a vast field which, even
10–15 years ago, was—at least in photon science—firmly linked to
“data analysis” which occurred long after data was first recorded.
Since then, source and detector advancements have resulted in a
paradigm change. Today, data reduction during or shortly after
detection is unavoidable to keep recorded data volumes manageable
(Sobolev et al., Pennicard et al.). Reducing stored data volumeswhile
maintaining science content may be ‘the’ key to future advances in
photon science experiments.This is not merely a technical problem,
but also has legal and social ramifications (Sobolev et al.).

Many in the photon science user community are reluctant to
reduce raw data before detailed inspection, and data reduction is
complicated by the vast range of experiments (Sobolev et al.). This
contrasts with fields such as particle physics, where in-detector
data reduction has been standard for decades (Pennicard et al.).
For photon science, technique-specific data reduction is needed,
and it is important to keep both reproducibility and improved data
processing in mind—i.e., it must remain possible to recreate results
from old processing tools even as improved tools allow better results
or systems are updated (Schmidt et al.).
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Data reduction can be carried out in the frontend ASIC itself
(see ‘on-chip reduction’ examples in Pennicard et al.). However,
most of the schemes submitted to this Research Topic take
place in the processing FPGA or further downstream. Promising
examples today often involve machine learning (ML) methods
(Lin et al.). However, these are sometimes not transparent—making
them difficult to understand and trust (Pennicard et al.). Partly as a
result, the majority of processing is still performed without machine
learning (Sztuk-Dambietz et al.), but it is clear that ML will become
increasingly common.

From a detector developers’ viewpoint, the key point to realize
is that the complexity of data processing and calibration depends
largely on the detector design (Pennicard et al.). ASIC design
decisions in particular, often among the first taken in the system
design, can have a significant impact on the complexity of later
data reduction processes. With ever-increasing raw data volumes, a
system that delivers the most science content per recorded Gigabyte
in a variety of scientific contexts is likely to become themost sought-
after. Furthermore, simplifying system integration is also critical,
and this is treated in the next section.

5 Operational complexities

Running full-scale imaging systems at photon science facilities
constitutes a challenge in itself. Partly, this is inherent in the
diverse user needs and facility parameters, but it also originates
in the imaging systems’ design. Prioritizing ease of operation,
maintenance, calibration, and data processing during the design
phase will significantly enhance user interest in the final system.

Anticipating and simplifying both assembly and disassembly of
the full-scale system is crucial, as the associated risk and time in
turn impacts decisions on replacement, refurbishment, or upgrades
(Sztuk-Dambietz et al.). A clear and fast route to (re-)calibration is
also critical in simplifying deployment and increasing adoption.

Even when designing individual components, one should keep
in mind the envisioned system scale and strive for simplicity.
Some detector systems have more than 109 calibration parameters,
resulting in obvious complications in terms of calibration, parameter
storage, and data correction. Multi-gain systems are a very good
way to address the need for high dynamic range. However, the
gain transition regions add significant complexity to calibration
(Sikorski et al., Sztuk-Dambietz et al.). A goal of next-generation
detectors should be to dramatically reduce these complexities to
enable simplified operation.

To a facility, complexity is not only related to operating one
imaging detector, but also to the range of systems in use. The more
common components, the easier to operate the entirety of systems
at a facility. Ideally, this means largely identical systems with, e.g.,
different geometric arrangements (AGIPD 1M vs. 4M (Graafsma
et al.)) or sensor type (hybrids mated to high-Z, Si, or LGADs for
instance (Graafsma et al., Hinger et al., Vignali et al., Collonge et al.)).
Even “just” shared control, DAQ, or cooling systems already reduce
operational complexity for the facility.

It is also important to note that the facility will choose the
pragmatic route to a functional user experiment—this might mean
running a well-integrated and stable detector outside its usual
envelope (Sikorski et al.), or using a stable or already-installed

imaging system over a fledgling, ultra-fragile one, trading stability
for maximized performance. For detector development, this means
that the simpler to use and optimize the system, the more likely it
will actually get used at its full potential.

The bottom line to keep inmind as an imaging system developer
is: “Data quality is the paramountmeasure of detector performance”
(Sztuk-Dambietz et al.)—and too-complex calibration or module
exchange can compromise this just as much as a noisy frontend.

6 Outlook

The development and optimization of imaging detectors for
photon science is a wide and vibrant field, and progress is being
made on many fronts—including many outside the scope of this
ResearchTopic. Exciting challenges remain, andnewones develop as
experiments as well as sources advance. The community as a whole
can look forward to the future, and the many exciting developments
yet to come.
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VeryFastCCD: a high frame rate
soft X-ray detector

Azriel Goldschmidt1, Carl Grace1, John Joseph1, Amanda Krieger1,
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Direct X-ray detection in silicon has been transformative for scattering
experiments in biology and materials science. While bump-bonded hybrid
pixels have been attractive for hard X-ray detection, the challenge for single
photon soft X-ray detection is sufficiently low noise. CCD structures on thick,
high-resistivity silicon have been successfully used as sensors over the range of
soft to hard X-rays at storage rings and FELs. The VeryFastCCD is a high frame rate,
column-parallel CCD sensor with 48 μm pixels. Combined with 256-channel
custom readout ASICs, frame rates of 5–10 kHz have been achieved with
readout noise as low as 20 e and full-well capacity >4 × 105 e/pixel. Thin
(10 nm and 100 nm) entrance window contact processes have also been
developed which provide >85% quantum efficiency for 285 eV X-rays. Systems
are currently being developed for several beamlines at the upgraded Advanced
Light Source.

KEYWORDS

soft X-ray detector, direct-detection CCD, readout ASIC, thin contacts, sensors

1 Introduction

The charge-coupled device [1] (CCD) has been a backbone of scientific imaging for
50 years. The CCD, together with a fiber-coupled phosphor, forms a detector that has been
used for decades in X-ray and electron microscopies: incident radiation creates optical
photons by ionization, which are transported by a fiber optic light guide onto a CCD.
Removing the phosphor and directly detecting X-rays in CCDs has proven over the last
~15 years to be attractive for storage ring and free electron laser X-ray light sources, since
compared to indirect detection in a phosphor, direct detection provides much better spatial
resolution (scintillation photons are emitted in all angles) along with higher detection
efficiency and signal/noise (since it takes 3.6 eV to create an e/h pair in silicon vs. 10s of eV to
create a scintillation photon).

Key considerations for direct X-ray detection in silicon are the thickness of the sensitive
volume and the amount of dead material in front of the sensitive volume. Since the X-ray
absorption length λ, in silicon is a strong function of energy–λ = 40 nm at 100 eV, λ = 130 μm
at 10 keV and λ = 23 mm at 100 keV–high efficiency X-ray detection is practical up to
~10 keV (100s of μm thick sensitive volume). To maintain high spatial resolution and charge
collection efficiency, a fully-depleted sensitive volume is desired (so that the ionization
charge is collected by drift to a collection diode rather than by diffusion into all angles). This
requires that the sensitive volume is of sufficiently high resistivity that it can be depleted by
the application of a substrate voltage below the breakdown voltage [2]. To apply the substrate
voltage, an entrance contact is required, and for operation to the lowest energies, the
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entrance contact must be thin enough that the incident X-rays are
not all absorbed in the contact.

Due to their lower noise compared to hybrid pixel detectors,
direct detection CCDs are particularly attractive for soft X-rays
(E<2 keV). CCDs are comparatively slow, however, since the CCD
structure is based on shifting charge from pixel-to-pixel–rather than
reading each pixel directly. In the simplest case, all pixels are
individually shifted and digitized through a single readout port.
It thus takes time tFRAME � N

f to read out N pixels at a readout
frequency f. As source brightness increases, less time is required to
collect the same number of photons. Similarly, tFRAME sets the
temporal resolution. For these reasons, reducing tFRAME is required
as sources improve, and it can be reduced by adding more readout
ports, so that tFRAME � N

fm for m ports. Direct X-ray detection
CCDs, on thick high-resistivity substrates, with large numbers of
readout ports have been developed: such as the pnCCD [3], the
FastCCD [4], and the MPCCD [5].

Our prior work is the FastCCD which is a >120 Hz frame rate,
megapixel CCD optimized for soft X-rays that has one readout port
for every 10 columns. Below we describe the VeryFastCCD, which is
the natural follow-on to the FastCCD as a general-purpose soft
X-ray scattering detector–increasing speed by having one readout
port for every column. Compared to the FastCCD, the
VeryFastCCD is much faster, with a 5 kHz frame rate for a
512 × 512 pixel sensor. As described below, through the use of a
multi-gain gated integrator, it is possible to tune the full-scale signal
vs. noise both by gain selection and variation of integrator timing.

2 CCD design

The metal-oxide-semiconductor (MOS) CCD structure consists
of polysilicon gates on a gate oxide above a silicon substrate. The
most common CCD pixel, as illustrated in Figure 1A, has three
separate gates (φ1, φ2,φ3). By manipulating the voltages on the gates,
charge can be stored (integrated) or shifted from pixel-to-pixel. The
simplest CCD detector, Figure 2A has a 2D array of imaging pixels
and a 1D array of pixels used as an output shift register. In operation
(1) an image is exposed, (2) the first row is shifted into the output
shift register via the Array Transfer Gate (ATG), (3) the output shift
register pixels individually shifted out and captured, (4) and the next
row is then transferred to the output shift register. In most CCDs, an
MOS source-follower is used to drive the signal off the sensor. An
Output Transfer Gate (TG), Figure 2B, collects the charge from the
output shift register, and pushes it over a barrier potential (OG) onto
the gate of the source-follower. The voltage on the gate is then
V � Q

CG
, where CG is the total capacitance of the source-follower gate.

A RESET transistor is used to remove charge from the previous
sample before the next sample is presented. The digitized pixel value
is thus the voltage difference between the RESET and SIGNAL levels.

To increase the frame rate of the CCD readout, additional
parallelism is used. The simplest is reading out from both sides
of the CCD: The 4-port CCD (Figure 2C) is a trivial modification of
the single port CCD (Figure 2A). Incorporating more output ports
becomes more challenging, since the output shift registers must be
modified in order to provide the space required for the output stage.
Numerous CCDs with more than 4 readout ports (Figure 2D) have
been produced: for example, the FastCCD has one port for every

10 columns. The VeryFastCCD is a fully-column-parallel CCD
(Figure 2E)—which means that every CCD column has a readout
port. Because there is not enough space for an output stage
(Figure 2B) for each column, the VeryFastCCD directly outputs a
charge rather than a voltage.

The FastCCD and VeryFastCCD are fabricated in the Dalsa
2.5 μm, triple poly, triple metal process1 on very high resistivity
n-type silicon with buried p channels, using a method developed at
LBNL(2). For CCDs operating at high speed, the long polysilicon
gates must be “metal strapped”—that is covered with metal lines,
which are ~1/1000 the resistivity of the polysilicon, and connected as
frequently as possible to the polysilicon. For the FastCCD, we chose
to use a single metal layer, and designed a 30 μm, 3-phase
(Figure 1A) pixel. For the VeryFastCCD, we chose to use 3 metal
layers. Since here a charge, rather than voltage, output, is used,
parasitic charge injection (through substrate or other capacitive
coupling to the output) can present large transients to any
downstream amplifier, and potentially saturate the amplifier
output. For this reason, we designed a 4-phase (Figure 1B) pixel
in order to minimize parasitic charge injection from the CCD clocks
since 4-phase clocking provides first order cancellation at each clock
transition (φ3 � −φ1 and φ4 � −φ2). The larger the pixel, the larger
the working distance between the sample and detector can be. The
power needed to clock the CCD, though, is proportional to area. To
balance the two the pixel size was set at 48 μm.

Since the CCDs are generally thick (100s of μm) to have good
X-ray absorption, they are “self-shielding” against radiation damage
when back-illuminated. Figure 3 shows the cumulative photon flux
per pixel to accumulate 1 MRad in the gate oxide for a 200 μm thick
sensor (the thickness of the VeryFastCCD). Measurements atDORIS

FIGURE 1
3- and 4-phase CCD pixels. Charge moves left-to-right or right-
to-left depending on the sequence of clocks, φ1-4.

1 https://www.teledynedalsa.com/en/products/foundry/ccd/
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with hard X-rays on the FastCCD indicate that 1 MRad will induce
sufficient leakage current to limit performance with 10 ms exposure
times. This suggests no radiation damage for soft X-ray storage ring
use, nor at FELs (under normal circumstances).

The VeryFastCCD uses all of the same sensor fabrication and
processing methods as the FastCCD. A fabricated wafer is shown in
Figure 4. Both 256 × 256 pixel and 512 × 512 devices are present. The
512 devices are arrayed in such a way that four of them can be diced
to create a 1024 × 1024 sensor with 90% fill factor.

2.1 Thin entrance windows

High efficiency detection of soft X-rays requires a back side
illuminated CCD with minimal dead material between the incident

X-ray and the active silicon. To deplete the thick active volume, a voltage
must be applied to the back (X-ray entrance) side of the CCD (VSUB in
Figure 1). A very thin contact layer is thus required. Soft X-ray detection
also requires very low noise, hence the contact must ensure minimal
leakage current.While Schottky barrier contacts exhibit a very thin dead
layer, they result in leakage currents that are high for soft X-ray
applications. An ohmic contact is thus preferred and used here.

The technique initially developed at LBNL for fabricating thick,
high resistivity CCDs is to use doped polysilicon to form the thin
X-ray entrance contact [6]. However, polysilicon deposition requires
temperatures that are too high to be compatible with aluminum
metallization. When this technique is used, wafers are (a) implanted
and gates formed at the factory (b) thinned and then the doped
polysilicon contact is deposited at LBNL (c) final metalization is
performed at LBNL. As the LBNL metal process has only one layer,
and larger-sized vias than the triple-metal Dalsa process, having a

FIGURE 2
CCD structures with increasing parallelism.

FIGURE 3
Calculated number of photons per VeryFastCCD pixel required
to deposit 1 MRad in the CCD gate oxide as a function of energy.

FIGURE 4
A 150 mm VeryFastCCD production wafer, containing 8 256 ×
256 and 8 512 × 512 CCDs. Four 512 × 512 CCDs can be diced out as a
single 1024 × 1024 CCD.
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low temperature process that can be performed on fully metallized
wafers (a) simplifies the CCD fabrication process since all of the
steps except the thin contact fabrication can first be performed at the
foundry (b) enables the use of more metal layers, which improves the
high-speed CCD clock distribution.

The thin X-ray entrance contact is then added to the device at LBNL
as the last processing step. To this end we have developed two low
temperature thin contact processes: (1) implantation followed by low
temperature annealing (~100 nm thick), and (2)molecular beam epitaxy
(MBE) (~10 nm thick). TheMBE contact has the added benefit of being
even thinner than the doped polysilicon contact (~30 nm thick).

The ion implanted contact generally finds use for applications in
which the energies of the incident photons are 500 eV or more. This
contact has the advantage of being relatively simple to fabricate. The
MBE contact is used to extend the reach to lower energies.

We have evaluated the quantum efficiency (QE) of both of these
types of contacts on numerous samples (CCDs and diodes) using the
metrology beamline2 (6.3.2) at the Advanced Light Source [7]. Figure 5
shows the averages of QE measurements for the two types of contacts.
Figure 6 shows the leakage current for the 10 nm contact on a 256 ×
256 VFCCD as a function of temperature, T. The temperature
dependence of the leakage current is modeled [8, 9] as
IL ∝Tne

−E/2kT, usually with n = 2, and effective energy E � Eg +
2Δ (Eg � E0 − αT is the temperature dependent bandgap of Silicon,
and Δ arises from the presence of a charge-generating trap). The curve
in Figure 6 is a fit to the model above, with Δ � 0.11 eV. The low value

of Δ, and of the overall leakage current, indicates that the MBE contact
does not add significant leakage current.

While the VeryFastCCD has a high frame rate, different
experimental conditions necessitate different exposure times. A key
system design parameter is the camera operating temperature, and
this is determined by the noise added by leakage current: that added
noise is proportional to

�������
ILT EXP

√
, where IL is the leakage current, and

T EXP is the total exposure time (which for a given row of pixels is the
total time that the row can collect leakage current: the image exposure
time plus the time needed to shift out the charge from that row).
Figure 7 shows noise contours of added noise due to the leakage
current shown in Figure 6 (in electrons, where 3.6 eV of absorbed
energy is required to create one electron/hole pair in silicon). For FEL

FIGURE 5
Quantum Efficiency for 10 and 100 nm contactsmeasured at ALS
Beamline 6.3.2. Shown are fits of the measurements. Energies of the
carbon, nitrogen and oxygen K-edges are highlighted.

FIGURE 6
Leakage current for 200 μm thick CCD with 10 nm contact as a
function of temperature. The points are measured values, and the
curve is a fit as described in the text.

FIGURE 7
Contour plots of added noise [e] as a function of temperature and
integration time.

2 https://cxro.lbl.gov/als632/
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applications, operation near room temperature is possible. For storage
ring applications, the operating temperature will depend on the
longest exposure time required, and the desired total noise, but
operation at −20 °C should cover most use cases.

3 Data acquisition

Data acquisition is illustrated in Figure 8. The CCD signal is read
out on two sides (Figure 2E), and the other two sides are used to provide
clocks. A 256-channel integrated circuit VASE2 has been developed to
read out the charge from the VeryFastCCD. (A prior version VASE1 is
described in [10] and was subsequently simplified for VASE2 by
removing a ΣΔ gain stage.). One VASE2 handles 256 CCD
channels. Each CCD output is wire-bonded to a VASE2 input.
Internally, VASE2 consists of 16 modules: each module has
16 front-end circuits and a 16:1 analog multiplexer. Each 8 of the

VASE2 outputs are input to a commercial 8-channel, 16-bit ADC (TI
ADS52J65). High-speed outputs from the ADCs are converted to
optical signals, driven off the camera via fiber-optic ribbons.

For a 256 × 256 pixel camera, 2 VASE2 and 4 ADCs are used; for
a 512 × 512 camera, 4 VASE2 and 8 ADCs are used, and this doubles
again for a 1024 × 1024 camera.

A single VASE2 front end is shown in Figure 9. Similar to the
FastCCD [11], the CCD signal is voltage-integrated, with a
programmable gain and analog inversion to allow correlated double
sampling (CDS). Unlike conventional CCDs, the VeryFastCCD signal is
charge: VASE2 thus incorporates a charge-sensitive amplifier (CSA)
with reset. As shown in Figure 10A, the RST switches are closed,
removing charge on capacitors CF and CINT. The RST switches are
then opened and switch INT is closed for time TINT, and the reset level
(VRST) is integrated on capacitors CINT. Switch INT is then opened, and
CCD charge is presented to the CSA. The CSA output is
VSIG � QCCD

CF
+ VRST. The INV signal inverts the CSA output, so that

FIGURE 8
VeryFastCCD system overview: 256 CCD outputs are processed by a single VASE ASIC, whose outputs are digitized by 16 ADCs. Output data are
transmitted over fiber optic ribbons.

FIGURE 9
VASE2 Front end, with charge-sensitive amplifier, programmable integrator and output sample/hold.

Frontiers in Physics frontiersin.org05

Goldschmidt et al. 10.3389/fphy.2023.1285350

13

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1285350


after the second integration the integrator output is
VINT � 1

RINTCINT
∫TINT

0
dt(QCCD

CF
+ VRST − VRST). CDS thus removes the

kTC noise associated with the CSA reset. Each front end contains
6 different values of RINT, allowing a factor of approximately 5 in gain
adjustment. Two versions of VASE2 were fabricated: a high gain (HG)
versionwithCF = 14.5 fF (including parasitic capacitance) and a low gain
(LG) versionwithCF = 44 fF. Further, as discussed below, additional gain
adjustment is possible by changing TINT.

The CCD row clocks and the VASE2 front end clocks (shown in
Figure 10A) both operate at frequency fCLK. The VASE2 back end
and ADC operates at 16xfCLK. As illustrated in Figure 10B, each
front end stores the value of VINT for CCD row N on a sample-and-
hold circuit when the SAMPLE command is issued. While the front
end proceeds to acquire the signal from CCD rowN+1, the 16 stored
values for row N are multiplexed and digitized.

All of the measurements described below were performed with
256 × 256 CCD cameras. All of the CCDs were 200 μm thick, and
operated at reverse bias of up to 80V. Several versions, equipped with
HG and LG VASE2 chips, along with both 10 nm and 100 nm
contacts have been tested. Cameras were also tested at the COSMIC
beamline3 at ALS [12], and the SXR beamline at LCLS I. The cameras

FIGURE 10
(A) VASE2 front-end timing (B) back-end timing.

FIGURE 11
CCD and VASE front end timing: VASE clocks run continuously whereas CCD clocks are paused during signal integration. The colored circles
represent pixel signals–as they are shifted by the CCD clocks and finally captured by the VASE SAMPLE signal.

FIGURE 12
Spectrum (red) from all pixels illuminated by a 55Fe source. The
blue curve shows a fit to the combined Kα/Kβ lines.

3 https://als.lbl.gov/beamlines/7-0-1-2/
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were operated at fCLK = 1.28 MHz, corresponding to up to
10,000 frames/s (equivalently 5,000 frames/s for a 512 × 512 device).

A timing diagram is shown in Figure 11. Clocks to the VASE2s
and ADCs are continuous. CCD clocks also operate at fCLK =
1.28 MHz. For storage ring applications, with signal integration
times ≫ 1 μs, the CCD clocks are paused for an integral number of

1.28 MHz cycles. An FPGA-based data acquisition constructs
images based on those ADC samples that are flagged as
corresponding to charge readout. The FPGA operates at 256 x
fCLK, and programs the position and duration of each clock
(CCD clocks, VASE clocks) using 8-bit registers to store values
for when they should turn on and off.

FIGURE 13
Maximum photon energy per pixel that can be recorded vs. Equivalent Noise Charge (ENC) for (A) VASE2 HG (B) VASE2 LG. The numbers in the
circles are the gain setting, with 0 being the highest gain and 5 being the lowest. For both (A,B) values are shown for the nominal TINT � 300ns VASE
integration time (solid circles) and for TINT � 140ns (open circles).

FIGURE 14
(A) 55Fe peak position as a function of integration time. The curve is a quadratic fit. (B)Noise relative to nominal integration time of 305 ns. The curve
is a fit to 1/ �����

TINT .
√
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4 Results

The digitized signal value is GADCVINT � GADCGINT
QCCD
CF

where
GADC is the number of ADU per volt for the ADC, GINT � TINT

RINTCINT
is

the integrator gain, giving a nominal conversion gain GADCGINT
1
CF

(ADU/e). The actual conversion gain for the HG and LG versions of
VASE2 at different gain settings was determined by illuminating the
CCD with a 55Fe source and constructing spectra of single pixels.
Figure 12 shows such a spectrum: the conversion gain is determined
from a combined Gaussian fit to the KαKβ lines.

Figure 13A shows the maximum photon energy deposited in a
pixel that can be recorded (before the ADC saturates) vs. the ENC
for different gain settings of the high gain version of VASE2.
Figure 13B shows the values for the low gain version of VASE2.
On a given gain range, the full-scale divided by the noise is
10–12 bits (larger as the gain is reduced).

The digitized noise is σ̂n[ADU] � GADC(GINTσFE ⊕ σBE) where
σFE [V] is the front-end noise (from the CSA and any added noise due
to leakage current), and σBE[V] is the back-end noise (from the
everything after the CSA and the ADC). The ADC noise is
4.7 ADU4. Keeping RST continuously asserted allows us to measure
σ̂BE � GADCσBE � 5.23 ± 0.01 ADU (independent of gain setting). The
VASE back end thus contributes the quadrature difference of 2.3 ADU.
The equivalent noise charge (ENC) is σ̂n divided by the conversion gain.
Operating the high gain VASE2 without a CCD gives an ENC of
14.0 ± 0.5 e on the highest gain settings, and 17.1 ± 0.5 e with a CCD,
so that the addition of theCCD increases the ENCby 9.8 e in quadrature.
Note that for an ideal integrator, the noise would be independent of
GINT. In VASE2, though, there are two competing effects: as the gain
decreases, the noise contribution fromRINT increases, while due to slight
high frequency peaking in the integrator frequency response, there is a
noise increase as the gain increases. This can be seen in the slight noise
increase for the highest gains in Figure 13A.

As described above, the VASE signal is proportional to integration
time. By reducing the integration time, a larger full scale signal can be
accommodated on a given gain range. Figure 14A shows the roughly
linear reduction in signal with integration time. Of course, decreasing
the integration time increases the noise bandwidth by 1/ ����

TINT
√ as seen

in Figure 14B. This can be seen in Figures 13A, Bwhich shows noise and
full scale for two different integration times. At 50% of the nominal
integration time, the maximum signal on the low gain
VASE2 corresponds to 4x105 e. Adjusting the integration time
provides additional flexibility in optimizing full scale signal with
noise, such as making the same kind of measurement at different
energies, or with large sample-to-sample variations.

5 Conclusion

The VeryFastCCD is the fully-column-parallel successor to the
FastCCD. Fabricated in the same CCD process, it has a 25 times
higher frame rate. With 10 nm and 100 nm entrance window
contacts, it has high quantum efficiency for soft and tender
X-rays. The custom readout circuit has programmable gains and

can also use integration time as a way to trade full-scale signal for
noise. Prototype versions have been tested at ALS and LCLS, and
systems for ALS are currently being prepared.
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A low noise CMOS camera system
for 2D resonant inelastic soft X-ray
scattering

Nord Andresen, Christos Bakalis, Peter Denes,
Azriel Goldschmidt*, Ian Johnson, John M. Joseph,
Armin Karcher, Amanda Krieger and Craig Tindall

Lawrence Berkeley National Laboratory, Engineering Division, Berkeley, CA, United States

Resonant Inelastic X-ray Scattering (RIXS) is a powerful spectroscopic technique
to study quantum properties of materials in the bulk. A novel variant of RIXS, called
2D RIXS, enables concurrent measurement of the scattered X-ray spectrum for a
wide range of input energies, improving on the typically low throughput of 1D
RIXS. In the soft X-ray domain, 2D RIXS demands an X-ray camera system with
small pixels, large area, high quantum efficiency and low noise to limit the false
detection rate in long duration exposures. We designed and implemented a
7.5 Megapixel back-illuminated CMOS detector with 5 μm pixels and high
quantum efficiency in the 200–1,000 eV X-ray energy range for the QERLIN
2D RIXS spectrometer at the Advanced Light Source. The QERLIN beamline and
detector are currently in commissioning. The camera noise from in-situ 3 s long
dark exposures is 7e− or less and the leakage current is 6.5 × 10−3 e−/(pixel · s). For
individual 500 eV X-rays, the expected efficiency is greater than 75% and the false
detection rate is ~1 × 10−5 per pixel.

KEYWORDS

RIXS, x-ray, CMOS sensor, spectrometer, back-illumination, low noise, synchrotron, light
source

1 Introduction

Resonant Inelastic X-ray Scattering (RIXS) is a technique useful to study quantum
properties of materials in the bulk [1]. In its simplest and most common implementation, a
focused monochromatic X-ray beam impinges on the material under study with an energy
very near a chosen element’s atomic electronic transition. When an atom of the specific
element in the sample absorbs a beam photon and de-excites through the same atomic
transition (resonant condition), the emitted outgoing photon can have the same energy as
the beam photons (elastic scattering) or slightly smaller energy (inelastic scattering). In the
inelastic case, the outgoing X-ray photon spectrum, which is intrinsically sharp because the
final state of the emitting system is the ground state of the atom, carries information about
the intrinsic excitations of the molecule/material in which the atom is embedded. In a typical
RIXS experiment a spectrometer collects a fraction of the outgoing photons and disperses
them by energy, with energy resolving gratings, and a camera captures the image at the end of
a long free-flight spectrometer arm to measure the photon-out spectrum.

The cross section for resonant inelastic scattering is small and so is the typical angular
acceptance of the spectrometers’ optics due to the mirrors’ dimensions. The dispersing
gratings have less than 5% efficiency. These three factors make RIXS, comparatively, a
photon-starved technique. Bright light sources, such as synchrotrons and free electron lasers,
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along with optimized optics designs and efficient X-ray detectors
help mitigate this limitation. Still, typical RIXS experiments require
exposure times of tens of minutes to obtain a spectrum for a single
beam energy value andmany such spectra, captured at varying beam
energies, are required to produce a full RIXS map.

The novel 2D RIXS concept [2] further addresses the
throughput of RIXS. In this variant of RIXS the input X-ray
beam is broad spectrum in order to measure the full range of
input energies of interest simultaneously. An optical element
disperses the input X-ray beam by energy in one dimension (e.g.,
y). This results in an illuminated segment of a line on the sample
such that adjacent points have slightly different X-ray energy
photons impinging on them. Like in normal 1D RIXS, optical
elements, in this case elliptic and hyperbolic mirrors, focus a
fraction of the outgoing scattered X-rays and a grating disperses
them in the orthogonal dimension (e.g., x) by their outgoing
energy. The mirrors and gratings are arranged such that the 2D
pixelated camera at the focal plane measures the full RIXS
map. The x-dimension of the image encodes the scattered,
outgoing, photon energy while the y-dimension encodes the
incoming photon energy. Figure 1 shows the 2D RIXS beam/
spectrometer/detection scheme.

The concept of 2D RIXS led to the design of the new QERLIN [3]
beamline at the Advanced Light Source (ALS) with a RIXS
spectrometer. The space-constrained 4.5 m photon flight path
length, the targeted spectrometer resolving power of λ/Δλ = 30,000,
and the 5–10 eV range of in/out photon energies around the atomic
excitation level, constrain the requirements for key dimensions of the
camera sensor. In particular, the sensor pixel needs to be 5 μm or less.
Furthermore, the requirements of a high quantum efficiency in the
200–1000 eV X-ray energies of interest and of the ability to detect
individual X-rays with a fake rate (false positives) negligible with respect
to the RIXS signal level constrain the sensor technology, sensor post-
processing, temperature of operation and electronic readout noise.

Because of the lack of commercially available cameras that could
fulfill all the requirements at the time when the QERLIN system was
developed, the design of the customQERLIN sensor and camera was
co-designed with the QERLIN beamline and the spectrometer. Very
recently, cameras with similar specification have become
commercially available [4].

In this paper, we describe the QERLIN camera system, including
the custom built sensor, readout electronics, camera/sensor cooling,
mechanical and vacuum components, data acquisition, and image
post-processing. We show the camera performance in bench-top
testing, including dark images and 5.9 keV soft X-rays response and
sensitivity results from a dedicated measurement at the ALS
metrology beamline with 500 and 900 eV X-rays.

At the time of this writing, the QERLIN spectrometer is being
commissioned and the camera has not yet seen first spectrometer
light. We show, however, the camera performance in dark images as
installed at the end of the spectrometer and measure the expected
fake rate as a function of X-ray energy based on the real dark images
and on the expected and partly characterized X-ray signal response.

2 CMOS sensor

2.1 Design

The QERLIN sensor consists of a 2,048 rows by 3,840 columns array
of 5 μm × 5 μm pixels that satisfies the spectrometer resolving power
requirements and in and out energy ranges given the 4.5 m longQERLIN
spectrometer arm and its optics. It is a thinned back-illuminated CMOS
Active Pixel Sensor with a 4T architecture [5]. As such, there are
4 transistors per pixel. Charge is collected in a pinned photodiode
structure in the pixel. A transfer gate moves the charge to the output
node (also referred to as the floating diffusion) which is previously cleared
by means of a reset transistor. A third transistor, in a source-follower

FIGURE 1
2D RIXS spectrometer scheme. Reproduced with permission from the Journal of Synchrotron Radiation. The monochromator that disperses the
incoming photon energies before impinging on the sample is not shown. An (x,y) point on the detector image encodes the impinging X-ray energy
(y-coordinate) and the scattered X-ray energy (x-coordinate), thus providing a full RIXS map in one exposure [3].
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configuration, outputs a voltage proportional to the collected charge. The
fourth transistor, in a switch configuration, selects the pixel for readout.

The QERLIN sensor is segmented into 16 regions of 2048 (rows)
by 240 (columns) pixels, where each region has an independent
analog output. The fourth in-pixel transistor selects the row, while
a multiplexer at the bottom of the columns selects the column to be
presented at the analog output for each channel. Externally provided
signals control in-chip logic that can a) turn on the transfer gate
transistors for all the pixels or only for the selected row b) reset the
floating diffusions for all the pixels or only for the selected row c) select
the next row d) select the next column and e) reset the digital logic to
select the first row and first column of each channel. The sensor logic
supports both global shutter and rolling shutter operation, the latter
by resetting the previous row’s pixels automatically.

Besides digital power, the sensor requires externally supplied DC
voltages, 1.8 V and 3.3 V, and bias currents for its operation: a reset
voltage, a pixel source follower voltage, rails for the transfer gate and
for the reset transistor gate, along with a voltage and two currents for
the bottom-of-column circuitry and a voltage for the output stage.

The QERLIN sensor has 16 analog outputs along the bottom
edge of the chip. Voltage supplies to power the bottom-of-column
(BOC) and for the output stage are also along the bottom side along
with bias currents for the BOC analog circuitry. On the top side there
are pads to supply the voltage for the sensor columns and the voltage
for pixel reset. On the left side are pads for LVDS clocks and for
other LVDS digital signals that control sensor timing and reset/
exposure/readout sequencing.

2.2 Fabrication and post-processing

Fabrication of the sensor was done using a UMC 180 nm CMOS
image sensor process. The starting material is a p-type silicon
substrate with a moderate resistivity (with type p-) epitaxial
(EPI) layer. The EPI layer, which functions as the sensitive
volume of the sensor, is 4 μm thick.

Soft X-rays in the 200–1,000 eV have attenuation lengths
in silicon from 63 nm to 2.7 μm. The passivation, metal and
oxide layers on the transistor-implanted/patterned side of the
sensor are several micrometers thick. Thus, illumination from the
non-patterned side, often referred to as back-illumination, is
required for efficient detection of X-rays in this energy range.
Furthermore, the silicon substrate material, where charge carriers
readily recombine, needs to be removed. This process, referred to as
thinning, exposes the sensitive EPI layer to the X-ray illumination.

In order to maintain the sensor’s mechanical rigidity, only the
imaging area of the QERLIN sensor was thinned to the EPI (by an
outside vendor) after dicing, leaving a full thickness frame around it.
The picture in Figure 2 shows the back side of the fully post-
processed QERLIN sensor.

The etched surface of the thinned sensor has a relatively high
number of microscopic defects left over from the etching process.
These defects produce an unacceptable level of thermally generated
leakage current. Therefore a high quality, p-type layer on the
entrance side of the device is needed to isolate these defects from
the electric field of the device and prevent them from injecting
current into the active volume of the detector. No explicit contact to
ground of the back surface is made but the conductive implanted
layer is effectively grounded on the edges of the sensor.

Since thinned devices cannot be further processed at the
foundry, it is necessary to have a contact fabrication process that
can be performed on fully metallized chips. This means that the
maximum processing temperature that can be used has to be low
enough to avoid damaging the aluminum metallization and the
interlevel dielectric layers (ILD). Temperatures that are too high can
alloy the metal with the underlying silicon or crack the ILD, either of
which will destroy the chip. The exact temperature at which this
happens is highly dependent on the particular foundry process used
to make the sensor.

For the QERLIN sensor, we chose to use a process that we have
developed to fabricate contacts at low temperatures. This process
uses ion implantation followed by annealing to electrically activate

FIGURE 2
Picture of back side of the thinned QERLIN sensor. A full thickness frame is left for rigidity and ease of handling.
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the dopant. This process produces high quality contacts that are
~100 nm thick. Contacts fabricated using this method effectively
suppress the leakage current to a level that is acceptable for this
application.

We have developed an additional contact fabrication process
based on molecular beam epitaxy (MBE) that produces high quality
contacts of 10 nm thickness or less. With such thin contacts the
efficiency at the low end of the soft X-ray energy range can be
increased four-fold. For instance, for 200 eV X-rays the attenuation
length in silicon is 63 nm and the 10 nm dead layer absorbs a very
small fraction of the photons. We plan to replace the sensor in the
QERLIN camera with an MBE contact device in the near future.

3 Camera system

3.1 Mechanical design and temperature
control

Even in a thinned detector, leakage current is significant at room
temperatures. Therefore, cooling the sensor is important. Cooling, in
turn, enables the long exposure times useful in a soft X-ray
spectrometer due to its low photon flux. In addition, long
exposure times (without saturation from X-ray signal or from
dark current) are desirable in order to increase the signal level
with a fixed readout noise contribution.

The thermal design has two main requirements: to cool the
sensor to a stable temperature between −20°C and −50°C and to
prevent the overheating (<60°C) of the in-vacuum electronics (pre-
amps, etc.). The sensor is glued to a silicon carbide (SiC) thermal-bus
with a thin film of thermally conducting epoxy around the non-
thinned frame of the sensor. Besides being a good thermal
conductor, SiC has a similar coefficient of thermal expansion to
the silicon sensor. The cold sides of the two three-stage solid-state
thermoelectric coolers (TECs) are glued to the SiC thermal-bus with
thermally conductive epoxy. The hot surface of the TECs is likewise

glued to a thick copper plate. When operating at full power, the
TECs dissipate about 45 W each and are the main thermal load on
the system. The picture in Figure 3 shows the sensor/SiC/TECs/
thick-copper-plate assembly. The picture shows the side of the
sensor where the wire bonds are made, while the X-rays impinge
from the bottom thinned-side. Two PT-100 thermistors monitor the
SiC/sensor cold temperature and the thick-copper-plate (near room)
temperature. The wires to power the TECs and to measure the PT-
100 resistances come out of the vacuum enclosure through a
dedicated 9-pin feedthrough.

FIGURE 3
The internal thermal/mechanical assembly: The 1.2 cm × 2.0 cm QERLIN sensor is in the center (soft X-rays entrance is from the bottom of the
image -the thinned back side of the sensor-), glued to a SiC which in turn is glued to the cold-end of 2 TECs.

FIGURE 4
In-vacuum electronics. While the sensor is operated at −50°C,
the in-vacuum electronics is thermally isolated from the cold side of
the TECs and is kept near room temperature.
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The in-vacuum electronics board is a flex-circuit board with
discrete components for pre-amplifiers, current sources, and voltage
sources for the sensor operation. The flex-circuit board is glued to a
backing of thin copper sheet. This sheet is mechanically attached and
thus thermally coupled to the externally cooled thick-copper-plate.
A thin Vespel frame around the sensor thermally isolates the flex-
circuit board from the SiC to minimize the heat load on the TEC’s
cold-side. Figure 4 shows the in-vacuum assembly right before wire-
bonding of the sensor.

The thick-copper-plate with the sensor assembly is sandwiched
between a clamping ring and the aluminum-body which, in turn, is
mated to a 2.5″ Conflat flange at the center of the main 8″ camera
vacuum flange. The aluminum-body accepts, from the air-side, a

tightly fitting stainless steel cold-probe. Coolant flows through the
internal manifold of this cold-probe to facilitate the room-
temperature cooling circuit. The nearly 100 W of power
dissipated in-vacuum is thus removed by the coolant loop of the
cold-probe and maintains the temperature of the thick-copper-plate
and electronics to less than 40°C and the QERLIN sensor (via the
TECs) near −50°C. Figure 5 shows the design of the thermal
components around the sensor and the in-vacuum electronics
and Figure 6 shows the fully assembled QERLIN camera
mounted on the main 8” flange. The rectangular cutout in the
thick-copper-plate is the entrance window for the X-rays from the
spectrometer to the back-side of the sensor. The sensor is recessed
with respect to the copper plate but this has no impact on the camera
X-ray acceptance because the incident rays are nearly perpendicular
to the sensor. The two circular openings, adjacent to the entrance-
window, contain reed-valves (movable flaps of polyamide film).
These reed-valves prevent a large pressure differential (during
system pump-down, venting and vacuum failures) between the
backside and the front-side of the highly fragile thinned sensor.
The sensor and reed-valves act as a vacuum barrier to isolate the
non-VHV (very-high-vacuum), internal camera components
operating at high-vacuum from the main system operating at VHV.

3.2 Readout system

The camera readout hardware is organized as follows: 1) the in-
vacuum flex board that connects to the main flange vacuum
feedthroughs with two 51-pin connectors, 2) an in-air electronics
box that connects to the air-side of those feedthroughs and delivers
digital data through an optical fiber and 3) a Linux server that
receives the digital data via a 10 GigE optical fiber network.

The in-vacuum flex board has single-ended preamplifiers and
single-ended-to-differential amplifiers for the 16 analog output

FIGURE 5
Details of the thermo-mechanical design of the QERLIN camera. X-rays come from the top side and the layers before the sensor have cut-outs.

FIGURE 6
Flange-mounted in-vacuum components of the QERLIN
camera. The rectangular opening in the copper plate is the entrance
port for the X-rays.
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channels of the QERLIN sensor. The 16 differential analog outputs
come out through one of the 51-pin feedthroughs. A single
adjustable voltage controls the offset level of all the sixteen
channels. Linear regulators on the board provide the DC voltages
required for the sensor operation. Three current mirror circuits
provide the DC currents needed and are powered with regulated
voltages. All digital control signals and clocks come through one of
the feedthrough interfaces as LVDS pairs. On the board, some of the
signals (e.g., two non-overlapping clocks) are just passed through to
the sensor, while others are converted to single-ended signals (like
the global reset) as required by the sensor design.

The in-air electronics box has a simple pass-through
motherboard, a power board, a transfer gate pulser board and
the main DAQ board (ADAQ). This ADAQ board has
16 channels of differential amplifiers, 4xQuad ADS5263 16-bit
ADC chips capable of 100 mega-sample per second per channel,
an Enclustra KX1-325 FPGA module and two 10GigE network
interfaces. The custom FPGA code orchestrates the sensor signaling,
through a set of 16 LVDS signals, and the output digitization. It
organizes the digital output as full physical image frames. It presents
the organized digitized data through the 10GigE network interface
as UDP packages. Control of the FPGADAQ cycle is through a set of
about 30 control registers that are accessible from the Linux server
through a dedicated network port opened by the FPGA on the
10GigE connection.

3.3 Readout modes

The QERLIN sensor supports both global shutter and rolling
shutter readout modes. In addition, the device provides a large
degree of operational flexibility because most of its control signals
are externally supplied. As discussed above, the 2D RIXS application
benefits from as low a noise figure as possible and the required and
desirable frame rate is from slow O(Hz) to very slow O (mHz). In
what follows we describe the default readout cycle for the QERLIN

camera with rolling shutter with pause, sample/reset averaging and
correlated double sampling. This readout cycle was used to take the
characterization data presented in the next sections. Figure 7 shows a
simplified timing diagram of the readout sequence.

A Digital Reset signal prepares the device for selection of the first
physical row of pixels. Then a Row Clock signal selects the next
(first) row. A Pulse Reset signal then resets the voltage on the output
node (floating diffusion) of all the pixels in that row. A Column
Clock signal then selects the next (first) column in the channel (or
super-column). Eight consecutive ADC samples (for the same reset
pixel) are acquired to be averaged in the FPGA to reduce the readout
thermal noise component. A new Column Clock signal then selects
the following column in the super-channel followed by the
corresponding 8-sample read. This is repeated until the averaged
reset samples from all 240 columns of the channel have been
acquired. Next, the charges stored in the pixels’ photodiodes of
the selected row are transferred to the output nodes. This is achieved
by issuing a Row Transfer signal. After the charge transfer is
completed the pixels are read out analogously to the reset read
sequence (i.e. 8 ADC samples per pixel that are then averaged). After
the readout of the entire row, a new Row Clock signal selects the next
row for corresponding reset/signal readout. While the next row is
being read out, the previous row is (automatically) fully reset by
having its transfer gate on while the reset is issued (thus resetting
both the output nodes and the photodiodes). After the last row of the
sensor is read out and reset, an arbitrary duration pause of all signals
extends the pixels’ integration time to the desired total frame
exposure time. At the pause’s end the cycle restarts with a new
Digital Reset signal. In this fashion, all the pixels in the sensor have
equal (although not fully contemporaneous) exposure time.

The entire cycle takes about 3.2 s when the pause between
frames is removed. With the ADCs clocked at 12.5 MHz the
ADC sampling (8 + 8 samples per pixel) takes only 0.6 s (80 ns
per sample × 240 columns per channel × 2048 rows × 16 samples per
pixel). The bulk of the additional time, 2 out of the remaining 2.4 s, is
used for the charge transfer operation between the photodiodes and

FIGURE 7
Simplified timing diagram of the default readout sequence.
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the output nodes which takes 950 μm (for each of the 2,048 rows).
Efficient charge transfer can be achieved in 10–100 ns. However, it
was found that, in order to obtain the best noise performance, a
pulse with a long decay time to turn off the transfer gate is needed.
This long and shaped pulse is provided by the transfer gate pulser
board in the in-air electronics box. We hypothesize that the
additional noise we observe when the transfer gate is abruptly
turned off, approximately 20e−, is due to a charge partition effect
[6, 7] by which a more or less constant charge from under the
switched-on transfer gate can end-up stochastically in the
photodiode or the floating diffusion as the transfer gate is
switched off.

3.4 Data acquisition system

A multi-threaded data acquisition software program runs on a
Linux server. It establishes a private network connection with the in-
air electronics through an optical fiber 10 GigE link. At startup it sets
up the parameters for the image frames’ acquisitions (readout mode,
internal/external trigger, exposure time, duration of the various
steps in the readout cycle, base ADC clock speed, etc.) by setting
the FPGA registers.

The FPGA logic supports all the readout modes of the sensor.
The logic is implemented in a Xilinx/AMD Kintex-7 FPGA that is
hosted by the Enclustra KX1-325 board. The FPGA implements a
10G UDP Ethernet interface with the back-end Linux-based server.
It also interfaces with the ADS5263 ADCs, and establishes a high-
speed link between them upon startup. A dedicated block
deserializes the digitized sensor data outputted by the ADCs, and
drives them to the back-end 10G Ethernet interface that in turn
forwards the data to the DAQ software server. The firmware also
supports different readout modes of the sensor, and can also
perform an on-the-fly rolling average pre-processing of the data
before shipping them to the DAQ server; it can also temporarily

store one single image frame to an external RAM module, and then
subtract its values from the next one that is acquired, thus
performing a correlated double-sampling to remove the reset
noise component. A block diagram of the FPGA firmware and its
surrounding hardware modules can be viewed in Figure 8.

In the software side, the main thread of the DAQ program listens
for UDP packages from the camera and accumulates entire frames in
a memory buffer. Each image frame consists of 2 × 2,048 × 3,840 16-
bit (unsigned) samples, or 30MBytes. The rows are interleaved such
that an entire row’s reset values (already 8x averaged) is followed by
the row’s signal values. Data flow control is achieved by verifying
that no consecutive data packet was missed and if packets are
missing a software buffer and sensor/FPGA-flow reset is issued.
In the default camera operation mode, with one frame every 3.2 s,
the data flow rate is less than 100 Mb/s and no network or computer
resources are significantly stressed.

Two additional threads move full buffers of frames to disk files
for offline analysis and to a ZMQ-protocol network queue for online
data monitoring.

3.5 Image processing

The first step of image processing is to de-interleave the Reset
and Signal data frames. Next, the correlated double sampling (CDS)
image is computed, simply by calculating Signal-Reset for each
frame. This step removes per-pixel and per-column readout
offsets. It also removes the kTC noise from the opening of the
in-pixel reset switch.

The next step is dark subtraction. The CDS images contain
contributions from leakage current accumulated in the photodiodes
during the exposure (readout time + pause) and from charge
injection from the transfer gate operation. A dark data set is used
to compute the per-pixel average (over multiple dark frames) of the
dark CDS which is then subtracted frame-by-frame from the CDS

FIGURE 8
FPGA firmware block diagram, depicted alongside its associated peripherals.
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(non-dark) frames. For data runs where the external illumination is
very sparse (such as the 55Fe 5.9 keV X-ray calibration data sets
described in the following section) the CDS dark image can be
obtained from the illuminated data set by computing the per-pixel
median over a set of CDS images. The per-pixel median is a very
good approximation to the most-probable-value in these very
sparsely illuminated images and is used for convenience.

4 Camera performance

4.1 Characterization with 5.9 keV X-rays
from 55Fe source

Measurements of the camera response to 5.9 keV X-rays from a
55Fe source provide information on the conversion factor from ADU
(arbitrary digital units) to ionization electrons, on the sensor
response uniformity and on the effective point spread function of
the camera.

The camera was first pumped to a 1 × 10−5 torr pressure and then
the TECs were turned on to maximum power until a stable
temperature of about −50°C was reached. A 12 mCi 55Fe source
was placed outside the vacuum enclosure in front of a thin
aluminized mylar window a few inches away from the back side
of the QERLIN sensor.

In evenly illuminated dark-subtracted CDS frames almost point-
like clusters of pixels from individual 5.9 keV X-rays are distributed
uniformly over the entire sensor area. Figure 9 shows a random
zoomed-in 100 × 100 pixel patch of an image. Typical 5.9 keV X-ray
depositions have 1–4 pixels with a significant fraction of the X-ray
induced charge depending on the exact location of the X-ray
absorption within the pixel. Based on the roughly approximated
experimental geometry, the source activity and the estimated X-ray
absorption between the source and the sensor surface, the estimated

impinging X-ray flux is ~0.006 X-rays per pixel per second. At this
X-ray energy only about 4.5% of those convert in the 2.5 micron
thick sensitive volume, therefore, for 3.6 s long exposures we expect
9.5 X-rays detected in a 100 × 100 pixel patch, in reasonable
agreement with our observations.

Figure 10 shows the single pixel value distribution (after CDS
and dark subtraction) from many frames. The Gaussian fitted peaks
near 3000 ADU are due to “single-pixel” energy depositions from
the Kα and Kβ lines of the 55Fe source. Their relative position
matches to better than 1% the nominal 5.88 keV 6.49 keV source
lines. These single-pixel depositions occur when the X-ray
conversion happens in a fully depleted part of the pixel volume
under the photodiode implant. The region below the peak in
Figure 10 but above the residual noise near zero is due to pixel
charge sharing from multi-pixel clusters. A calibration factor of
1.8 ADU/e− was deduced from the measured position of the single-
pixel Kα peak and the average deposited energy to produce an e-h
pair in silicon WSi = 3.6 eV.

Since a large fraction of the X-ray hits deposit their charge over
multiple pixels we perform a simple cluster analysis. Seed pixels are
identified as local maxima with values greater than 3*σn, where σn is
the standard deviation of the pixel values in dark images. For each
seed pixel the sum of the pixel values in the 3 × 3 region around the
seed is computed. Figure 11 shows the distribution of the 3 ×
3 cluster charge (now in a linear plot). The peaks near 3,000 and
3,300 are from 3 × 3 clusters seeded on “single-pixel” depositions.
The broader and much larger peak near 2,500 is from clusters with
shared charge. For these the charge collection is incomplete, leaving
about 15% of the charge unaccounted for. Larger cluster regions (5 ×
5, 7 × 7) do not recover the missing charge. On the other hand, the
spectrum of the 3 × 3 integrated signal is, as expected, much cleaner
with far fewer entries between the noise peak and the iron peaks than
the “single-pixel” distribution of Figure 10.

In order to study the camera response uniformity (excluding
quantum efficiency effects), we select all clusters with a 3 ×
3 integrated signal in a broad window around the peak (between

FIGURE 9
A random 100 × 100 pixel patch with several X-rays clusters. The
image contrast is set such that the brightest X-ray pixels are white and
it is not zero-suppressed.

FIGURE 10
Single-pixel-value distribution for dark subtracted CDS images
with 55Fe X-rays. The two peaks near 3,000 are due to the two X-ray
lines at 5.9 and 6.4 keV from the source. The fitted FWHMof the peaks
is 61 e, using the ADU to e− conversion derived from the peaks’
locations.
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2,000 and 3,500 ADU). We re-bin the sensor area into patches of
16 × 24 pixels (to ensure enough statistics in each bin) and calculate
the average value of the cluster charges. Figure 12 shows the sensor
response to 5.9 keV X-rays. Within the statistical limit of the
measurement the response is uniform. The dark corners are the
result of the absence of clusters in those regions because the thinning
process reached a slightly undersized region and the 5.9 keV X-rays
are fully absorbed in the thick substrate of the un-thinned frame.

4.2 Noise

4.2.1 Noise characterization
We took dark data using the standard detector configuration

(e.g., −50°C and 3.2 s/frame) with the QERLIN detector installed at
the end of the QERLIN spectrometer arm at the ALS. Figure 13
shows the residuals from the median subtracted CDS dark images.
The central component of the residuals distribution is well fitted to a

Gaussian (in the [−30,30] range) with 11.6 ADU sigma. Using the
conversion factor from the X-ray data this corresponds to 6.5 e−

noise. There is, however, a clear non-Gaussian tail to the noise
residuals. We fit these noise tails in the [100, 300] range to a single
exponential. Noise tails can be due to hot pixels with excess leakage
current or other electronics effects. A correlation study between the
dark current images (see next section) and noise images showed only
a 0.13 correlation (where 0 is no correlation and 1 is full correlation)
between those. This indicates that the bulk of the noise tail is not due
to high leakage hot pixels.

4.2.2 Dark current
Two dark data sets with per-frame exposure times of 50 s and

1,000 s were utilized to determine the dark current in standard
operating conditions (−50°C). For each data set we compute the
(per-pixel) median of the set of CDS frames. We then subtract pixel-
by-pixel the median image of the 50 s exposure from the median
image of the 1,000 s exposure. Figure 14 shows the pixel value

FIGURE 11
Distribution of the signal sum over 3 × 3 pixel clusters.

FIGURE 12
QERLIN camera response uniformity. The mean response is
2,650 ADU per X-ray and the RMS is 108 ADU. This corresponds to a
4% response uniformity (without any corrections to the data).

FIGURE 13
Noise residuals from a dark run (−50°C and 3.2 s exposure time).

FIGURE 14
Raw dark current signal contribution from 950 s supplementary
exposure. It corresponds to a very low 6.5 × 10−3 e−/(pixel · s) leakage.
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distribution of the difference image. The distribution has a mean of
11.2 ADU. Accounting for the additional exposure time this
corresponds to 6.5 × 10−3 e/(pixel · s). This very low leakage
component enables long up to 1,000 s exposure times without
significantly increasing the overall noise. The distribution has a
tail on the positive side due to ~0.1% of all pixels that have higher
dark current.

4.2.3 Fake hits
As described in the introduction, in the 2D RIXS application a

point in the image corresponds to an energy-in energy-out pair.
Some regions of 2D RIXS images may have very low photon flux but
still carry important information. For this reason, it is important to
have a fake hit rate negligible compared to the RIXS signal. A fake hit
is the measurement of localized pixel values consistent with the
signal expected from an individual X-ray detection in a region where
no X-ray hit.

We estimate the expected fake hit rate using the dark data runs
and the expected soft X-ray signal. To estimate the expected signal
from 200–1,000 eV soft X-rays we use themeasured detector response
to individual 5.9 keV 55Fe X-rays and linearly scale the charge
depositions by the X-ray energy. To find fake hits in the dark data
set we use a two-threshold method. The first threshold requires that a
local pixel maximum is greater than 3σ (like before, σ is obtained from
the fit to the [−30,30] region of the noise residuals). For each local
maximum, the sum of the four largest pixel values within a 3 × 3 pixel
region around the maximum is calculated (q4). The second threshold
is on the value of q4. The q4 threshold is scanned to compute, for each
q4 threshold value, the fake hit rate from the noise images and the soft
X-ray detection efficiency from the scaled 55Fe response. Figure 15
shows the calculated single X-ray detection efficiency versus the
corresponding measured fake hit rate (the number of fake hits per
image) as the q4 is varied and for multiple soft X-ray energies of
relevance in RIXS. For example, for individual 500 eV X-rays, one can

choose a threshold for which the expected efficiency is greater than
75% and the false detection rate is ~1 × 10−5 per pixel.

This calculation assumes no significant inefficiency from the
absorption of X-rays in the thin dead layer on the illuminated back-
side of the sensor. For 530 eV X-rays on a dead silicon layer of
120 nm this reduces the efficiency by 22%, while the reduction is
65% at 280 eV and just 5% at 930 eV. A future version of the sensor
with an MBE contact dead layer of less than 10 nm should show
efficiencies similar to those plotted.

To understand the effect of the expected fake hit rate, it is
useful to look at an example. Take the hardest case of 280 eV
X-rays (a sensor with an MBE contact is assumed): for a suitably
chosen threshold we expect >80% quantum efficiency and an
estimated 10,000 fake hits per image (see Figure 15), randomly
and uniformly distributed. On the other hand, the “true” signal
component over the entire image would have millions to 100s of
millions of X-ray hits. Thus the fake hits represent a small
contribution, between 0.01% and 1%. Additionally, in 2D
RIXS maps produced from series of 1D RIXS spectra, the
typical features span contiguous regions of many pixels,
typically 100s. As a consequence, the spatially uncorrelated
fake hits have the effect of marginally reducing the overall
signal-to-noise of those multi-pixel features by adding a dim
and spatially flat component.

4.3 Soft X-ray sensitivity and linearity

While most of the detector characterization was obtained from
dark images and 55Fe X-rays, the QERLIN camera was also installed
and briefly tested at the ALS 6.3.2 metrology beamline.
Unfortunately, the geometry of the setup was constrained and
the beam illuminated an area at the sensor’s edge, with partial
coverage. Given those circumstances, no reliable quantum efficiency

FIGURE 15
Calculated X-ray cluster detection efficiency vs. measured fake hit rate per image for various typical soft X-ray energies used in RIXS experiments.
The tradeoff is controlled with a threshold on q4 (see text). The efficiency calculation assumes a fully efficient (like from an MBE) back contact.
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measurement could be obtained from that data. However, selecting
the part of the images with a much dimmer beam halo we could
identify andmeasure individual well-isolated X-rays at the two beam
energies we used, 500 and 900 eV. From those, we verified the
camera response linearity to ~10% in the 500 eV–5.9 keV range.

5 Conclusion

At the time of this writing, the 2D RIXS QERLIN beam line and
spectrometer at ALS are being commissioned. The QERLIN camera
described in this article is installed and operational at the
spectrometer. The camera data acquisition is fully integrated with
the beam line and spectrometer controls. We demonstrated the
camera performance in dark images as installed and measured the
expected fake rate as a function of X-ray energy based on the real
dark images and the expected and partly characterized X-ray signal
response.
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X-ray sources continue to advance in both intensity and temporal domains,
thereby opening new ways to analyze the structure and properties of matter,
provided that the resultant x-ray images can be efficiently and quantitatively
recorded. In this perspective we focus on specific limitations of pixel area
x-ray detectors. Although pixel area x-ray detectors have also advanced in
recent years, many experiments are still detector limited. Specifically, there is
need for detectors that can acquire successive images at GHz rates; detectors that
can accuratelymeasure both single photon andmillions of photons per pixel in the
same image at frame rates of hundreds of kHz; and detectors that efficiently
capture images of very hard x-rays (20 keV to several hundred keV). The data
volumes and data rates of state-of-the-art detection exceeds most practical data
storage options and readout bandwidths, thereby necessitating on-line
processing of data prior to, or in lieu of full frame readouts.

KEYWORDS

wide dynamic range, online detector processing, synchrotron radiation, x-ray burst rate
detector, x-ray pixel array detectors

1 Introduction

X-ray analysis of matter has advanced greatly with the advent of brighter and more
intense synchrotron radiation (SR) sources. This has enabled the development and
application of techniques that were practically unfeasible only a decade or two ago.
Examples include the real-time monitoring of microstructural details during materials
synthesis (e.g., 3-D printing, thin film processing), nanometer-level ptychography of
complex non-periodic objects (e.g., bone, integrated circuits, alloys), rapid optimization
of the composition of multi-component thin-film catalysts, etc. In all these cases, improved
x-ray sources enable experiments by providing the required numbers of x-rays arriving at the
specimen with requisite time-structure, divergence, photon energies, and focal spot size.

However, getting x-rays to the sample is only part of the challenge: One must also
efficiently detect the x-rays emanating from the specimen. X-ray detection technology has
historically lagged source development and continues to constrain practical performance of
many experiments.

The purpose of this perspective is to draw attention to several detector limitations
presently constraining specimen analysis. It is impossible in a short Perspective to cover all
types of experiments done at SR sources, or on all types of detectors. The focus here will be on
“direct” (see below) detectors for very hard (>20 keV) x-ray diffraction experiments at both
storage ring and XFEL applications. The focus will also be limited to integrating pixel array
area detectors because photon-counting detectors cannot handle many x-rays/pixel/x-ray
pulse often encountered at modern storage rings and XFELs [1].
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2 Detector limitations: where are the
needs?

2.1 Burst rate imaging

Much of the Universe consists of “warm, dense matter” in stars
and planets where the densities are greater than Earth surface solids
and the constituent atoms or ions have eV-scale thermal energies.
Pulsed laser heating can produce transient warm, dense matter in
the lab but it quickly explodes; hence, a need to capture x-ray images
very quickly. SR sources can deliver sufficiently intense successive
x-ray pulses at very fast rates, thereby enabling study of warm, dense
matter dynamics. This requires “burst-rate detectors” [1] to record
successive diffraction patterns, or “frames” within the time envelope
of the event, typically in the ps to µs range. Other experiments
requiring burst-rate detection include analysis of shock waves and
study of crack propagation and materials failure under sudden
stress.

Burst-rate detectors may utilize either “direct” or “indirect”
detection of the results of x-ray absorption in a “sensor screen”.
In the former, x-rays absorbed in a sensor screen, such as a sheet of
appropriately biased semiconductor, produce electron-hole pairs.
This yields an electrical current that is directly processed by in-pixel
electronics. Indirect detectors use a sensor screen that produce other
types of quanta, such as visible light from a scintillator that is then
recorded by a camera. Attention in this short Perspective is confined
to direct detection.

State-of-the-art burst-rate detectors frame at nearly 1 GHz
[2–5], a rate that is too slow for processes occurring on ps time
scales but adequate for slower processes. A primary limitation is the
detector readout rate: Even at 10 MHz framing, a 1B/pixel full-frame
readout of, say, 105 pixels implies an off-detector data rate of 1012 B/
s; this is beyond current capabilities. In practice, a small number of
frames (~10) often suffices; hence, state-of-the art burst-rate imagers
store images in-pixel for later, much slower readout after the
experiment is over. Going beyond 10 MHz framing will require
new technology, e.g., faster in-pixel electronics and more intelligent
readout schemes. In most high-frame rate situations the images
consist of mostly null pixels. This is because even x-ray bursts
delivered to a sample from an XFEL tend to top out at ~1012 x-rays,
only a small fraction of which are scattered over the many pixels of
the detector. In-pixel electronics that reject null events from readout
(“sparsification”) can greatly reduce the required detector readout
rate, an approach typical of many high energy physics detectors.

2.2 Continuously framing, wide dynamic
range imaging with single x-ray sensitivity

Another class of experiments requires very many frames in
which the x-ray dose/pixel/frame may vary over 5 or more decades.
Examples include high spatial resolution ptychography of extended
objects (e.g., bone, integrated circuits, composites), dynamic SAXS,
and simultaneous collection of Bragg and diffuse scatter from labile
crystals. Often the weak parts of the image are photon starved,
thereby necessitating single x-ray detection sensitivity, even as the
low-Q diffraction receives many millions of x-rays/pixel/frame.
Note that most such experiments rarely require measurement of

the x-ray dose per pixel to better than a few tenths per cent accuracy.
This is fortunate because detector calibration errors and x-ray
Poisson noise would otherwise impose limitations. (Users are
often surprised to discover that practically all area detectors on
SR beamlines are not calibrated to better than 0.5% accuracy.)

Most fast, continuously framing cameras use a charge-to-voltage
converting amplifier to integrate the charges resulting from x-ray
absorption in the sensor screen. This amplifier operates between
fixed voltage limits, VSAT, of typically less than a few volts. All
amplifiers have some front-end noise, σIN. Robust single x-ray
detection requires that the signal, S, from a single x-ray be such
that S ≈ 5σIN. For a linear amplifier, the dynamic range, DR is then <
VSAT/S x-rays; this is typically in the range of 102–104 x-rays. Larger
values of DR could be obtained with an amplifier with a nonlinear
(e.g., logarithmic) response at the cost of complex calibration. A
detector with a high-gain linear amplifier can have an extended
dynamic range via implementation of electronics that remove fixed
quantities of charge from the feedback integration capacitor as the
signal accumulates. This dynamic integrator charge removal scheme
is the basis for the Mixed-Mode Pixel Array Detector (MM-PAD)
family [6–8]. Some examples of other detector efforts exploring high
sensitivity, wide dynamic range realm include JUNGFRAU [9],
AGIPD [10], CITIUS [11, 12], and CoRDIA [13].

2.3 High atomic weight (hi-Z) sensor screens

Sensors providing high quantum efficiencies for very hard X-rays
(>20 keV) are critically important to extend effective photon science
beyond the reach of existing silicon sensors. The development of silicon
x-ray sensors leveraged processes originally developed for the
microelectronics industry with modifications and customizations
required for the full silicon-thickness usage. However, high-quality,
hi-Z sensors have not had this luxury. The technical challenges of hi-
Z weight sensors are in several elements of sensor production, e.g.,
synthesis of crystals of sufficient size and quality, fabrication of pixelated
sensors with the required pitch, and the ad hoc processes for integration
and bonding tomultipixel ASICs. Hi-Z sensorsmust have not only good
energy resolution, temporal stability, homogeneity, carrier mobility (μ)
and lifetimes (τ), low lag and dark current but also equally important
must be readily available. Recently, the medical imaging industry has
turned its attention towards “direct” detection computed tomography
(CT) systems (e.g., photon counting CT and SPECT-CT imaging),
resulting in the availability of new hi-Z weight sensors.

One of the first hi-Z weight sensor material to be readily available
commercially for photon science applications is Cadmium Telluride
(CdTe) [14]. Currently, CdTe offers a compromise between
performance and availability while simultaneously providing some
degree of radiation protection to underlying electronics. CdTe is
arguably the predominate hard x-ray sensor used for commercial
high energy x-ray pixel array detectors. However, CdTe sensors are
prone to the buildup of excessive space-charge at relatively modest flux
available at storage rings and XFELs. Cadmium Zinc Telluride (CZT)
has been extensively used for low-flux spectroscopic applications.
Recently, so called ‘high-flux-capable’ grade CZT from Redlen [15]
appears to hold great promise, but the availability for photon science
applications has been challenging. This variant of CZT has been
designed with more nearly equal μτ-product for both holes and
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electrons compared to its low flux equivalent [16]. The resulting
material has shown stable performance at very high flux, even under
conditions observed at XFELs [17]. Gallium arsenide (GaAs) sensors
have also garnered attention for moderate hard x-ray energies. Unlike
CdTe or CZT, GaAs lacks a troublesome absorption edge above 20 keV.
A number of groups have examined the considerable promise of
chromium-compensated gallium arsenide (GaAs:Cr), though
obtaining material of sufficient and consistent quality, area and
thickness has been an issue [18–20]. There are currently two sources
providing GaAs:Cr for x-ray science detector applications [21, 22].
Besides availability, prominent problems with GaAs:Cr include lengthy
charge collection times and nonlinearities [18, 23]. Finally, new classes
of hi-Z materials such as perovskites (e.g., CsPbBr3) are being studied
for radiation detection [24, 25], but significant R&D will still be
required.

The sensor materials discussed above are generally single crystal
boules that are processed into thick (>0.5 mm) wafers. There is
another class of sensor materials that are grown using thin film
techniques (e.g., physical vapor deposition or molecular-beam
epitaxy (MBE)) for moderate x-ray energies. Amorphous
selenium (a-Se) sensor screens have been used by the medical
imaging industry for static applications, such as mammography.
Time-resolved, high-dynamic range imaging with a-Se sensors have
been hindered by flux-dependent afterglow issues [26, 27], but there
are applications in photon sciences requiring simultaneous high-
energy and high-spatial resolution at low-flux levels [28]. CdTe [29]
and GaAs [30] can also be grown using MBE deposition techniques;
these materials show promise for ultra-fast applications, e.g., [31].
Solution-processed perovskite thin films are being studied [32].

Finally, the collection rate of quanta resulting from the
absorption of x-rays is an important consideration for burst-
mode imaging approaching GHz frame rates. In direct detection
the thickness and carrier mobilities of the x-ray absorbing layer are
key parameters for both detector quantum efficiency and temporal
response. This is especially true for the hi-Z sensor screens required
for very hard x-rays. Si sensor screens thick enough to efficiently
absorb >20 keV x-rays require ~10s of ns to collect charge into the
input node of the collection electronics [33, 34]. Hi-Z
semiconductors with higher carrier mobilities than Si are known
[35] but few of these are available in the quality or size needed for
direct x-ray detection. This is yet another reason to continue to
develop new hi-Z sensors.

2.4 Continuous on-line image analysis

The combination of increases in detector frame rates and pixel
number, together with the evolution of multimodal and concurrent
techniques, challenge existing capabilities in data acquisition, online fast
feedback, and computing capacity. Currently, detectors and data
reduction methods are not tightly integrated. In addition, the
continued demand for faster detectors presents severe challenges of
limited data bandwidth off the detector front-end and of the deluge of
data that such new detectors will generate. The flood of data also limits
the ability of scientists to extract actionable insights to steer experiments.
It is estimated that the U.S. light sources will generate exabytes (EB) of
data over the next decade, requiring tens to 1,000 PFLOPS of peak on-
demand computing resources, and utilization of billions of core hours

per year [36]. Data loads of TB/s at LCLS-II, 1.3 EB per year at SPring-8
and similar loads at the European XFEL [36, 37] can only be managed
by the implementation of strategic data reductions as close as possible to
the signal generation point, i.e., edge processing. Light sources around
the world are developing strategies for data reduction at different stages
of the data flow. Several tradeoffs should be considered when choosing
how early data reduction can be implemented effectively.
Reconfigurable and flexible implementations can occur directly after
the first front-end readout functions or further downstream of the
detector [38, 39]. However, they require significant bandwidth and
massive parallelism for data streaming. On the other hand, specialized
hardware solutions offer the opportunity to send out only selected data
with optimal information content. Dedicated readout architectures can
be designed to optimize data quality and implement pre-processing, e.g.,
reconstruction of partial signals shared between pixels to improve either
position or energy resolution while reducing the number of pixels to be
recorded [40]. They can be specific to a typology of scientific data and
require advanced technologies to achieve suitable processing density
while maintaining reasonable power consumption.

A concern when implementing any type of reduction technique
is if important information is lost that might alter the result of an
experiment. Lossless data compression is an efficient and popular
option that can be achieved by zero suppression at the detector
readout level or at successive intermediate steps and offline (e.g.,
frame summing, Hcompress). The former requires dedicated
readout architectures that work only for some categories of
experiments. In some cases, selections of relevant regions of
interest are also possible via relatively simple hardware and
software options; this allows a focus on key information at the
timescale important for the phenomena being investigated.
Suppressing redundant information in the data stream may also
be achieved with the acceptance of some losses. Lossy compression is
very much experiment-specific and requires user involvement to
evaluate quality and value of the different implementations.

The use of artificial intelligence and/or machine learning
inspired data handling for on-line images analysis is becoming
very popular. Pattern identification and recognition can be a
powerful method to improve performance and efficiency. It
allows identification of the class of problems and associated
solutions, as has been studied for light source applications [41].
For example, online autonomous Bragg peak finders and analysis are
much sought after and new tools utilizing deep neural networks are
now becoming available [42, 43].

As mentioned earlier, on-detector electronics to reduce data flow
is very promising and is being explored in various fields [44]. At the
other end of the implementation space, predictive approaches are
also becoming very popular and can help optimize data flows (e.g.,
compression ratio and speed), but typically require careful
validation [45, 46].

3 Conclusion

Advances in pixel area x-ray detection will be needed to exploit
capabilities provided by the rapid advance of x-ray sources. New
technologies, materials, and concepts provide great opportunities for
advancement in the next decade. In this Perspective we noted some
of the challenges (i.e., frame rate, dynamic rate, high-energy sensors
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and on-line data analysis) and point to the current state-of-the-art.
There is much yet to be done.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

SG: Conceptualization, Writing–original draft, Writing–review
and editing. GC: Writing–original draft, Writing–review and
editing. AM: Writing–original draft, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. Detector
research by the authors is supported by the U.S. Department of

Energy, Office of Basic Energy Sciences. Detector research at Cornell
is supported by U.S. Dept. of Energy Grant DE-SC0021026 and
Argonne National Lab contract 2F-60279.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Graafsma H, Becker J, Gruner SM. Integrating hybrid area detectors for storage ring
and free-electron laser applications. In: Jaeschke E, Khan S, Schneider JR, Hastings JB,
editors. Synchrotron light sources and free-electron lasers: accelerator physics,
instrumentation and science applications. Cham: Springer International Publishing
(2018). p. 1–31.

2. Looker Q, Colombo AP, Kimmel M, Porter JL. X-ray characterization of the
Icarus ultrafast x-ray imager. Rev Scientific Instr (2020) 91(4):043502. doi:10.1063/
5.0004711

3. Hodge DS, Leong AFT, Pandolfi S, Kurzer-Ogul K, Montgomery DS, Aluie H, et al.
Multi-frame, ultrafast, x-ray microscope for imaging shockwave dynamics. Opt Express
(2022) 30(21):38405–22. doi:10.1364/oe.472275

4. Mendez J Radiographic detector development for DARHT and ASD scorpius (U). Los
alamos national laboratory (LANL). Los Alamos, NM (United States): OSTI (2019).
Report No.: LA-UR-19-23511. doi:10.2172/1508537

5. Garafalo AM, Carpenter A, Trosseille C, Funsten BT, Dean J, Benedetti L, et al.
Characterization suite of a 1 ns, multi-frame hybridized CMOS imager for the ultra-fast
x-ray imager program. In: Hard X-ray, gamma-ray, and neutron detector physics XXV.
San Diego, CA: Optics and Photonics (2023).

6. Tate MW, Chamberlain D, Green KS, Philipp HT, Purohit P, Strohman C, et al. A
medium-format, mixed-mode pixel array detector for kilohertz x-ray imaging. J Physics:
Conf Ser (2013) 425:062004. doi:10.1088/1742-6596/425/6/062004

7. Weiss JT, Shanks KS, Philipp HT, Becker J, Chamberlain D, Purohit P, et al. High
dynamic range X-ray detector pixel architectures utilizing charge removal. IEEE Trans
Nucl Sci (2017) 64(4):1101–7. doi:10.1109/tns.2017.2679540

8. Gadkari D, Shanks K, Hu H, Philipp H, Tate M, Thom-Levy J, et al.
Characterization of 128 × 128 MM-PAD-2.1 ASIC: a fast framing hard x-ray
detector with high dynamic range. JINST (2022) 17(03):P03003. doi:10.1088/1748-
0221/17/03/p03003

9. Leonarski F, Mozzanica A, Brückner M, Lopez-Cuenca C, Redford S, Sala L, et al.
JUNGFRAU detector for brighter x-ray sources: solutions for IT and data science
challenges in macromolecular crystallography. Struct Dyn (2020) 7(1):014305. doi:10.
1063/1.5143480

10. Klačková I, Sztuk-Dambietz J, Graafsma H, Hosseini-Saber S, Klyuev A, Laurus T,
et al. Five years operation experience with the AGIPD detectors at the European XFEL.
Proc SPIE, X-Ray Free-Electron Lasers. Adv Source Dev Instrumentation VI (2023)
12581:142–50. doi:10.1117/12.2666402

11. GrimesM, Pauwels K, Schulli TU,Martin T, Fajardo P, Douissard P-A, et al. Bragg
coherent diffraction imaging with the CITIUS charge-integrating detector. J Appl
Crystallogr (2023) 56(4):1032–7. doi:10.1107/s1600576723004314

12. Takahashi Y, Abe M, Uematsu H, Takazawa S, Sasaki Y, Ishiguro N, et al. High-
resolution and high-sensitivity X-ray ptychographic coherent diffraction imaging using

the CITIUS detector. J Synchrotron Radiat (2023) 30(5):989–94. doi:10.1107/
S1600577523004897

13. Marras A, Klujev A, Lange S, Laurus T, Pennicard D, Trunk U, et al. Development
of CoRDIA: an imaging detector for next-generation photon science X-ray sources.Nucl
Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment
(2023) 1047:167814. doi:10.1016/j.nima.2022.167814

14. Shiraki H, Funaki M, Ando Y, Kominami S, Amemiya K, Ohno R. Improvement
of the productivity in the THM growth of CdTe single crystal as nuclear radiation
detector. IEEE Trans Nucl Sci (2010) 57(1):395–9. doi:10.1109/tns.2009.2035316

15. Iniewski K. CZT sensors for Computed Tomography: from crystal growth to
image quality. J Instrumentation (2016) 11(12):C12034. doi:10.1088/1748-0221/11/12/
c12034

16. Thomas B, VealeM,WilsonM, Seller P, Schneider A, Iniewski K. Characterisation
of redlen high-flux CdZnTe. J Instrumentation (2017) 12(12):C12045. doi:10.1088/
1748-0221/12/12/c12045

17. Veale MC, Angelsen C, Booker P, Coughlan J, French M, Hardie A, et al.
Cadmium zinc telluride pixel detectors for high-intensity x-ray imaging at free electron
lasers. JPhysics D: Appl Phys (2018) 52(8):085106. doi:10.1088/1361-6463/aaf556

18. Becker J, Tate MW, Shanks KS, Philipp HT, Weiss JT, Purohit P, et al.
Characterization of chromium compensated GaAs as an x-ray sensor material for
charge-integrating pixel array detectors. JINST (2018) 13:P01007. doi:10.1088/1748-
0221/13/01/p01007

19. Greiffenberg D, Andrä M, Barten R, Bergamaschi A, Brückner M, Busca P, et al.
Characterization of chromium compensated gaas sensors with the charge-integrating
jungfrau readout chip by means of a highly collimated pencil beam. Sensors (2021)
21(4):1550. doi:10.3390/s21041550

20. Fiederle M, Procz S, Hamann E, Fauler A, Fröjdh C. Overview of GaAs und CdTe
pixel detectors using Medipix electronics. Cryst Res Tech (2020) 55(9):2000021. doi:10.
1002/crat.202000021

21. Tyazhev A, Budnitsky D, Koretskay O, Novikov V, Okaevich L, Potapov A, et al.
GaAs radiation imaging detectors with an active layer thickness up to 1 mm. Nucl Instr
Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment (2003)
509(1-3):34–9. doi:10.1016/s0168-9002(03)01545-6

22. Kalliopuska J. Chromium compensated gallium arsenide sensors evaluation using
Timepix1, Timepix3, Medipix3 and Timepix2 readout electronics. 24th international
workshop on radiaiton imaging detectors. Norway: Oslo Science Park (2023). https://
indico.cern.ch/event/1247911/contributions/5394505/2023.

23. Greiffenberg D.High-Z sensors for synchrotron sources and FELs ultrafast imaging
and tracking instrumentation, methods and applications conference (ULITIMA 2023).
Menlo Park, CA USA: SLAC (2023). https://indico.slac.stanford.edu/event/7076/book-
of-abstracts.pdf2023.

Frontiers in Physics frontiersin.org04

Gruner et al. 10.3389/fphy.2023.1285821

32

https://doi.org/10.1063/5.0004711
https://doi.org/10.1063/5.0004711
https://doi.org/10.1364/oe.472275
https://doi.org/10.2172/1508537
https://doi.org/10.1088/1742-6596/425/6/062004
https://doi.org/10.1109/tns.2017.2679540
https://doi.org/10.1088/1748-0221/17/03/p03003
https://doi.org/10.1088/1748-0221/17/03/p03003
https://doi.org/10.1063/1.5143480
https://doi.org/10.1063/1.5143480
https://doi.org/10.1117/12.2666402
https://doi.org/10.1107/s1600576723004314
https://doi.org/10.1107/S1600577523004897
https://doi.org/10.1107/S1600577523004897
https://doi.org/10.1016/j.nima.2022.167814
https://doi.org/10.1109/tns.2009.2035316
https://doi.org/10.1088/1748-0221/11/12/c12034
https://doi.org/10.1088/1748-0221/11/12/c12034
https://doi.org/10.1088/1748-0221/12/12/c12045
https://doi.org/10.1088/1748-0221/12/12/c12045
https://doi.org/10.1088/1361-6463/aaf556
https://doi.org/10.1088/1748-0221/13/01/p01007
https://doi.org/10.1088/1748-0221/13/01/p01007
https://doi.org/10.3390/s21041550
https://doi.org/10.1002/crat.202000021
https://doi.org/10.1002/crat.202000021
https://doi.org/10.1016/s0168-9002(03)01545-6
https://indico.cern.ch/event/1247911/contributions/5394505/2023
https://indico.cern.ch/event/1247911/contributions/5394505/2023
https://indico.slac.stanford.edu/event/7076/book-of-abstracts.pdf2023
https://indico.slac.stanford.edu/event/7076/book-of-abstracts.pdf2023
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1285821


24. Tsai H, Liu F, Shrestha S, Fernando K, Tretiak S, Scott B, et al. A sensitive and
robust thin-film x-ray detector using 2D layered perovskite diodes. Sci Adv (2020) 6(15):
eaay0815. doi:10.1126/sciadv.aay0815

25. Pan L, Pandey IR, Miceli A, Klepov VV, Chung DY, Kanatzidis MG. Perovskite
CsPbBr3 single-crystal detector operating at 1010 photons s−1 mm−2 for ultra-high flux
X-ray detection. Adv Opt Mater (2023) 11(7):2202946. doi:10.1002/adom.202202946

26. Scott CC, Farrier M, Li Y, Laxer S, Ravi P, Kenesei P, et al. High-energy
micrometre-scale pixel direct conversion X-ray detector. J Synchrotron Radiat
(2021) 28(4):1081–9. doi:10.1107/s1600577521004835

27. Han Z, Mukherjee A, Albert A, Rumaiz AK, Harding I, Tate MW, et al. High
spatial resolution direct conversion amorphous selenium X-ray detectors with
monolithically integrated CMOS readout. J Instrumentation (2023) 18(04):P04021.
doi:10.1088/1748-0221/18/04/p04021

28. Kisiel E, Poudyal I, Kenesei P, Engbretson M, Last A, Basak R, et al. Full-field
nanoscale X-ray diffraction-contrast imaging using direct detection (2022). Available at:
https://arxiv.org/abs/2212.07303.

29. Niraula M, Yasuda K, Watanabe A, Kai Y, Ichihashi H, Yamada W, et al. MOVPE
growth of CdTe on Si substrates for gamma ray detector fabrication. IEEE Trans Nucl
Sci (2009) 56(3):836–40. doi:10.1109/tns.2008.2010256

30. Looker Q, Wood MG, Lake PW, Kim JK, Serkland DK. GaAs x-ray detectors with
sub-nanosecond temporal response. Rev Scientific Instr (2019) 90(11):113505. doi:10.
1063/1.5127294

31. Looker Q, Wood MG, Miceli A, Niraula M, Yasuda K, Porter JL. Synchrotron
characterization of high-Z, current-mode x-ray detectors. Rev Scientific Instr (2020)
91(2):023509. doi:10.1063/1.5139403

32. Tsai H, Shrestha S, Pan L, Huang HH, Strzalka J, Williams D, et al. Quasi-2D
perovskite crystalline layers for printable direct conversion X-ray imaging. Adv Mater
(2022) 34(13):2106498. doi:10.1002/adma.202106498

33. Looker Q, Colombo AP, Porter JL. Detector thickness effects on nanosecond-
gated imager response. Rev Scientific Instr (2021) 92(5):053504. doi:10.1063/5.0048519

34. Parker S, Kok A, Kenney C, Jarron P, Hasi J, Despeisse M, et al. Increased speed:
3D silicon sensors; fast current amplifiers. IEEE Trans Nucl Sci (2011) 58(2):404–17.
doi:10.1109/tns.2011.2105889

35. Owens A, Peacock A. Compound semiconductor radiation detectors. Nucl Instr
Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment (2004)
531(1-2):18–37. doi:10.1016/j.nima.2004.05.071

36. Schwarz N, Campbell S, Hexemer A, Mehta A, Thayer J. Enabling scientific
discovery at next-generation light sources with advanced AI and HPC. In: Driving
scientific and engineering discoveries through the convergence of HPC. In: Big data and
AI: 17th smoky mountains computational sciences and engineering conference, SMC
2020. Oak Ridge, TN, USA: Springer (2020).

37. Ishikawa T Spring-8-ii conceptual design report 2014 (2014). Available at: http://
rsc.riken.jp/eng/pdf/SPring-8-II.pdf.

38. Kandel S, Zhou T, Babu AV, Di Z, Li X, Ma X, et al. Demonstration of an AI-
driven workflow for autonomous high-resolution scanning microscopy (2023).
Available at: https://arxiv.org/abs/2301.05286. doi:10.1038/s41467-023-40339-1

39. Babu AV, Zhou T, Kandel S, Bicer T, Liu Z, Judge W, et al. Deep learning at the
edge enables real-time streaming ptychographic imaging (2022). Available at: https://
arxiv.org/abs/2209.09408. doi:10.1038/s41467-023-41496-z

40. Otfinowski P, Deptuch GW, Maj P. Asynchronous approximation of a center of
gravity for pixel detectors’ readout circuits. IEEE J Solid-State Circuits (2018) 53(5):
1550–8. doi:10.1109/jssc.2018.2793530

41. Vescovi R, Chard R, Saint ND, Blaiszik B, Pruyne J, Bicer T, et al. Linking scientific
instruments and computation: patterns, technologies, and experiences. Patterns (2022)
3(10):100606. doi:10.1016/j.patter.2022.100606

42. Wang C, Li P-N, Thayer J, Yoon CH. PeakNet: Bragg peak finding in X-ray
crystallography experiments with U-Net (2023). Available at: https://arxiv.org/abs/
230315301.

43. Liu Z, Sharma H, Park J-S, Kenesei P, Miceli A, Almer J, et al. BraggNN: fast X-ray
Bragg peak analysis using deep learning. IUCrJ (2022) 9(1):104–13. doi:10.1107/
s2052252521011258

44. Carini G, Deptuch G, Dickinson J, Doering D, Dragone A, Fahim F, et al. Smart
sensors using artificial intelligence for on-detector electronics and ASICs (2022).
Available at: https://arxiv.org/abs/2204.13223.

45. Lotter W, Kreiman G, Cox D. Deep predictive coding networks for video
prediction and unsupervised learning (2016). Available at: https://arxiv.org/abs/1605.
08104.

46. Roy R, Sato K, Bhattachrya S, Fang X, Joti Y, Hatsui T, et al. Compression of
time evolutionary image data through predictive deep neural networks. In:
Proceedins of the 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid); May 2021; Melbourne, Australia (2021).
p. 41–50.

Frontiers in Physics frontiersin.org05

Gruner et al. 10.3389/fphy.2023.1285821

33

https://doi.org/10.1126/sciadv.aay0815
https://doi.org/10.1002/adom.202202946
https://doi.org/10.1107/s1600577521004835
https://doi.org/10.1088/1748-0221/18/04/p04021
https://arxiv.org/abs/2212.07303
https://doi.org/10.1109/tns.2008.2010256
https://doi.org/10.1063/1.5127294
https://doi.org/10.1063/1.5127294
https://doi.org/10.1063/1.5139403
https://doi.org/10.1002/adma.202106498
https://doi.org/10.1063/5.0048519
https://doi.org/10.1109/tns.2011.2105889
https://doi.org/10.1016/j.nima.2004.05.071
http://rsc.riken.jp/eng/pdf/SPring-8-II.pdf
http://rsc.riken.jp/eng/pdf/SPring-8-II.pdf
https://arxiv.org/abs/2301.05286
https://doi.org/10.1038/s41467-023-40339-1
https://arxiv.org/abs/2209.09408
https://arxiv.org/abs/2209.09408
https://doi.org/10.1038/s41467-023-41496-z
https://doi.org/10.1109/jssc.2018.2793530
https://doi.org/10.1016/j.patter.2022.100606
https://arxiv.org/abs/230315301
https://arxiv.org/abs/230315301
https://doi.org/10.1107/s2052252521011258
https://doi.org/10.1107/s2052252521011258
https://arxiv.org/abs/2204.13223
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1605.08104
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1285821


First operation of the JUNGFRAU
detector in 16-memory cell mode
at European XFEL

Marcin Sikorski1*†, Marco Ramilli 1*†, Raphael de Wijn1,
Viktoria Hinger2, Aldo Mozzanica2, Bernd Schmitt2, Huijong Han1,
Richard Bean1, Johan Bielecki1, Gábor Bortel3, Thomas Dietze1,
Gyula Faigel3, Konstantin Kharitonov1, Chan Kim1,
Jayanath C. P. Koliyadu1, Faisal H. M. Koua1, Romain Letrun1,
Luis M. Lopez1, Nadja Reimers1, Adam Round1, Abhisakh Sarma1,
Tokushi Sato1, Miklós Tegze3 and Monica Turcato1

1European XFEL, Schenefeld, Germany, 2Paul Scherrer Institut, Villigen, Switzerland, 3Wigner Research
Centre for Physics, Institute for Solid State Physics and Optics, Budapest, Hungary

The JUNGFRAU detector is a well-established hybrid pixel detector developed at
the Paul Scherrer Institut (PSI) designed for free-electron laser (FEL) applications.
JUNGFRAU features a charge-integrating dynamic gain switching architecture,
with three different gain stages and 75 μm pixel pitch. It is widely used at the
European X-ray Free-Electron Laser (EuXFEL), a facility which produces high
brilliance X-ray pulses at MHz repetition rate in the form of bursts repeating at
10 Hz. In nominal configuration, the detector utilizes only a single memory cell
and supports data acquisition up to 2 kHz. This constrains the operation of the
detector to a 10 Hz frame rate when combined with the pulsed train structure of
the EuXFEL. When configured in so-called burst mode, the JUNGFRAU detector
can acquire a series of images into sixteen memory cells at a maximum rate of
around 150 kHz. This acquisition scheme is better suited for the time structure of
the X-rays as well as the pump laser pulses at the EuXFEL. To ensure confidence in
the use of the burst mode at EuXFEL, a wide range of measurements have been
performed to characterize the detector, especially to validate the detector
alibration procedures. In particular, by analyzing the detector response to
varying photon intensity (so called ‘intensity scan’), special attention was given
to the characterization of the transitions between gain stages. The detector was
operated in both dynamic gain switching and fixed gain modes. Results of these
measurements indicate difficulties in the characterization of the detector dynamic
gain switching response while operated in burstmode, while nomajor issues have
been found with fixed gain operation. Based on this outcome, fixed gain operation
mode with all the memory cells was used during two experiments at EuXFEL,
namely in serial femtosecond protein crystallography and Kossel lines
measurements. The positive outcome of these two experiments validates the
good results previously obtained, and opens the possibility for a wider usage of the
detector in burst operation mode, although compromises are needed on the
dynamic range.
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1 Introduction

The European X-ray Free-Electron Laser (EuXFEL) [4] generates
high brilliance X-ray pulses at megahertz repetition rate. The pulses are
grouped into bursts, also known as “trains,” occurring at a rate of 10 Hz.
Within each train, pulses are generated at an intra-burst frequency
reaching up to 4.5 MHz. The duration of a burst is approximately
0.6 ms, followed by a 99.4 ms gap period between subsequent pulse
trains. This unique time structure opens novel scientific opportunities
but also poses technological and engineering challenges, particularly in
the domain of X-ray detection. Three types of large, mega-pixel imaging
detectors, namely, AGIPD [5], LPD [6], and DSSC [7] were developed
explicitly for the EuXFEL to enable pulse-resolved measurements at
megahertz repetition rate. They are at present successfully used in
various types of scientific experiments and are critical components of
the scientific instruments at the facility. The detectors’ capability to
capture images at a repetition rate of 4.5 MHz also entails a series of
constraints, such as a relatively large pixel size (ranging from 200 to
500 μm), elaborate calibration procedures [6, 8, 9], large physical
dimensions, and extensive support infrastructure. Therefore, the
MHz detectors are frequently complemented by smaller pixelated
detectors, which offer smaller pixel size, lower noise, compact/
modular design, and well established calibration procedures. Among
those, the JUNGFRAU detector [1–3] is currently the most widely
deployed at EuXFEL. The pixel size of 75 μmcombined with a relatively
low noise (~80 ENC) and a dynamic range of 104 12 keV photons [3]
make the JUNGFRAU well suited for a wide range of scientific
applications, from protein crystallography [10] to spectroscopy [11].

As the JUNGFRAU was developed primarily for SwissFEL [12, 13]
and synchrotron applications, its compatibility with EuXFEL’s bunch
structure is not optimal. The JUNGFRAU detector has so far been
mostly operated at 10 Hz at EuXFEL across a number of instruments. In
many cases, the signal is integrated over multiple pulses per train.
Therefore, the benefit of the sub-microsecond temporal resolution
offered by the MHz intra-bunch repetition rate is lost. However, due
to the high signal-to-noise ratio of the detector at hard X-ray photon
energies (ranging between 6 keV and 20 keV), longer integration times
do not significantly compromise the performance.

Due to the detector’s architecture (see Section 2.1.2), the
15 additional memory cells open the possibility of a more effective
exploitation of the pulse-train structure. However, the relatively large
RC time characteristic of the pixel readout architecture limits the frame
rate in burst mode to a maximum of ~150 kHz; nevertheless its
implementation remains an attractive option. For example, operating
the detector in burst mode in pulse-resolved measurements such as
protein crystallography will increase data throughput 16-fold. In
addition, for experiments using low-viscosity buffer media it will
offer an attractive compromise between detector performance and
sample consumption. For many other types of experiments, it will
improve time resolution while maintaining all the advantages of the
JUNGFRAU detector.

The 16-memory-cell operation of the detector, however,
requires complete characterisation and calibration procedures to
be established and validated before it can be provided for user
operation.

In this work, the performance of the JUNGFRAU detector
operating in burst (16-cell) mode was studied for various detector
configurations and illumination levels. Special attentionwas given to the

transition regions between the high-, medium-, and low-gain stages.
Serial femtosecond crystallography data were collected using lysozyme
as a model system to enable statistical comparisons, operating the
detector in fixed medium gain. Additionally, single shot Kossel line
measurements were used to study the fast dynamics of single crystal
materials. The quality of the data collected in burstmode was validated
against literature data.

2 Materials and methods

2.1 The JUNGFRAU detector

JUNGFRAU is a hybrid pixel detector designed and produced at
Paul Scherrer Insitut (PSI), in Villigen (CH), consisting of pixelated
Application-Specific Integrated Circuits (ASICs) bump-bonded to a
semiconductor sensor (current versions use Si of 320 μm or 450 μm
thickness; high-Z materials such as GaAs and CdZnT are under
investigation).

Each ASIC is segmented into pixels of 75 μm pitch, each
featuring a charge-integrating Dynamic Gain Switching (DGS)
architecture, with a dynamic range on the order of 110 dB. Each
pixel has an array of 16 memory cells that can store the collected
analog signal before the readout. A matrix of 256 × 256 pixels
comprises a single ASIC. An array of 4 × 2 ASICs is bump-bonded to
a single monolithic silicon sensor, constituting a JUNGFRAU Front-
End Module (FEM) of 1,024 columns and 512 rows, for a total of
about 0.5 megapixels.

Each ASIC is divided into supercolumns of 64 columns ×
256 rows, whose pixel output signal is multiplexed to an
individual off-chip Analog-to-Digital Converter (ADC) for
digitization; the whole module is therefore read out by a total of
32 different ADCs.

The FEM is operated via a dedicated electronic component, the
JUNGFRAUMaster Control Board (MCB), equipped with a 40MHz
Field Programmable Gate Array (FPGA) actively controlling the
ASICs, and a small processor with embedded Linux Operating
System (OS) running a server allowing slow control of the module.

A third electronic component is necessary to deliver the external
Transistor-Transistor Logic (TTL) signal trigger to the
JUNGFRAU MCB.

Each JUNGFRAU module comprises a FEM coupled with a
JUNGFRAU MCB and operates individually, running on the clock
of its own FPGA; however, more modules can be simultaneously
controlled and configured, and their acquisition can be syncronized
with a common external trigger, allowing the operation of multi-
module configurations.

2.1.1 Dynamic gain switching (DGS)
In order to comply with the dynamic range requirements of a

FEL, the pixel architecture of the JUNGFRAU detector is designed
with a DGS mechanism: a pixel-wise threshold comparator
switches additional capacitors into the pre-amplifier feedback
loop if the signal rises above a certain value (set module-wise),
thus increasing the feedback capacitance and reducing the gain. In
the JUNGFRAU pixels, the Correlated Double Sampling (CDS)
stage (see Figure 1) is bypassed after gain switching, hence causing
a sign inversion of the signal curve slope.
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There are a total of three gains (respectively G0, G1, and G2) which
can be independently triggered in each pixel, with relative
amplification ratios:

R1 � G0
G1

~ 30 (1)

R2 � G1
G2

~ 20. (2)

During acquisition the integrated charge is temporarily stored in
dedicated capacitors (memory cells) and, during the readout
phase, the signal stored in each memory cell is multiplexed
image-wise to one of the 32 14-bit ADCs for digitization. The
state of the DGS mechanism is digitally recorded for each memory
cell by changing the value of two so-called gain bits (00, 01, and
11 for G0, G1, and G2, respectively): this value is then appended to
the ADC output.

Additionally, there is the possibility of turning the DGSmechanism
off, by fixing the value of the pre-amplifier feedback capacitance to the
one corresponding to G1 or G2. This operation mode is referred to as
fixed gainmode. When operating in fixed gain mode, the CDS stage is
not bypassed, therefore the gain conversion factor for G1fix andG2fix are
higher with respect to their DGS counterparts.

Since the detector was primarily designed for SwissFEL and
synchrotron applications [1, 13], the pixel architecture has not been
optimized for MHz-class frame-rate acquisition. Its most widely
employed and well-characterized operation mode is single cell
operation, where only one of the 16 available memory cells is
utilized: in this operation mode, a continuous frame rate of
~2 kHz can be achieved. This is sufficient to allow the detector to
acquire at least one image per EuXFEL train and to produce useful
scientific data [14–18]; however, the possibility of better exploiting
the EuXFEL pulse train structure is attractive for many experiments.

2.1.2 Sixteen memory cell operation
Due to the 15 additional memory cells available in each pixel, it

is possible to acquire up to 16 images in rapid succession and to read
them out at the end of each measurement cycle. This is the so-called
burst mode of operation, where pixels are operated differently from
the single cell mode:

• In single cell mode, one memory cell is continuously
connected to the memory cell bus. However, in burst mode
the capacitors are sequentially connected during the
acquisition phase and again during the readout;

• The reset of the pre-amplifier and the CDS is performed in the
short time between acquisitions instead of during the long
readout between trains.

The default memory cell used in single cell mode (cell 15) is the
first cell in the burst, which is then followed by the fifteen additional
cells. Both the exposure time and the dead time between two
consecutive exposures can be adjusted to experimental needs.
Frequently, in a similar way to single cell operation, the signal
from multiple X-ray pulses is detected within a single memory cell.
To allow sufficient time for the signal to settle after the reset
perturbation, photons should arrive around ~1 μs after the
opening of the integration gate, while, to avoid late gain
switching effects, they should not arrive later than ~2 μs before
the end of the integration gate. The shortest dead time between two
exposures is 2.1 μs, dictated by the time needed to reset the pre-
amplifier and CDS stage. Therefore, the maximum operational
acquisition rate of the JUNGFRAU in burst mode is around
150 kHz.

2.1.2.1 Calibration of the raw data
In principle, determination of the calibration constants in burst

mode should follow the same procedure as in single cell mode [19].
Below, we shortly outline the calibration strategy applied to data
collected in burst mode.

2.1.2.1.1 Pedestal evaluation. The detector is equipped with
two special operation modes, called forceswitchg1 and forceswitchg2,
which are used to estimate the pedestal value for the G1 and G2 gain
stages, respectively, by forcing the pre-amplifier to switch gain.
Although this procedure is used routinely for single cell
operation, validation is required for burst mode.

Preliminary tests of the forced gain switch of the detector
operated in burst mode, showed the presence of artefacts in the
resulting pedestal values due to the very high peak current

FIGURE 1
Schematics of the JUNGFRAU pixel architecture.
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consumption during high repetition forced gain switching. Since the
first memory cell connected to the bus was not yet affected, a
pedestal measurement procedure has been outlined:

1. G0 pedestal values are measured by acquiring dark images with
all the memory cells connected to the bus, and then calculating
the average for each cell;

2. For G1 and G2 the forced gain switch is used, but only data from
the firstmemory cell connected to the bus is used to calculate the
pedestal value; hence, to acquire valid data for all cells, the forced
switch gain measurement is repeated 16 times, each time
connecting a different memory cell as first.

One of the main goals of the present study is indeed to validate
this procedure.

2.1.2.1.2 Gain evaluation. Gain conversion maps for burst
mode must be re-evaluated with respect to the single-cell mode
for two main reasons:

1. The memory cells with index from 0 to 14 have, by design, a
smaller capacitance than memory cell 15 (the default cell), due to
space limitations in the pixel layout;

2. Memory cells are connected to the memory cell bus in turn
instead of having a constant connection. This implies that the
signal is smaller in burstmode than in single-cell mode. In fact, in
the latter case the voltage written on the Cmemorycell + Cbus

capacitance is directly presented to the pixel output voltage
buffer, while in the former case the charge on the Cmemorycell is
redistributed on the Cmemorycell + Cbus, thus lowering the voltage
at the pixel buffer input. This effect is illustrated in Figure 2.

In principle, the full calibration procedure outlined in [19]
should not need to be repeated for all memory cells in all gain

stages, as the gain ratios R1 and R2 do not depend on the individual
memory cell, but only on the pre-amplifier (see Figure 1). Therefore,
after having measured the gain G0 in burst mode for each memory
cell, the G1 and G2 values are calculated using the gain ratios
previously measured [19].

2.2 Dynamic range scan with EuXFEL beam

To validate the calibration strategies outlined in Sections
2.1.2.1.1 and 2.1.2.1.2, a JUNGFRAU detector was illuminated
with X-ray pulses of varying intensity (so called ‘intensity scan’)
to probe the detector response across at least the first two gain stages,
a measurement similar to those performed in [20]. Ideally, the
detector output (corrected for pedestal and gain for each memory
cell) should have a linear response as a function of the impinging
illumination, in particular:

• There should be no artifacts around the ‘gain switching region’
(GSR), i.e., the incoming photon flux range at which enough
signal is generated in order to cause the pre-amplifier to switch
gain;

• If gain calibration is correct, the slope of the corrected
response curve should be the same for each gain stage.

2.2.1 Experimental setup
The measurements described in this document were carried out

using the 4 megapixel JUNGFRAU detector (JF4M) installed at the
downstream interaction region (IRD) of the SPB/SFX scientific
instrument [21] at atmospheric pressure. The IRD is mainly used
for serial femtosecond crystallography (SFX) experiments, therefore
the detector and infrastructure design are optimised for these
demands. The JF4M detector is shown in Figure 3A. It consists
of eight 0.5 megapixel JUNGFRAU units arranged in two columns.

FIGURE 2
Ratio of G0 gains measured in burst and single memory cell configuration.
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For reference, individual modules are labelled JNGFR01 to
JNGFR08 (Figure 3A). At the beginning of each pulse train, the
eight modules receive the same trigger signal to synchronize the start
of their image acquisition to the EuXFEL light delivery. Typically,
the beam not diffracted by the sample passes through the gap
between the columns and interacts with the beam diagnostics
downstream of the detector. Both size and position of the gap
with respect to the primary X-ray beam are optimized by
adjusting the horizontal position of each detector half
independently.

During a typical SFX measurement, crystals are suspended in a
dedicated delivery buffer and injected into the interaction point in
the form of a jet. The interaction with the focused beam results in the
explosion of the jet. To protect the detector from debris created

during such explosions, kapton shields are installed in front of the
sensor. The position of the shield can be adjusted in both horizontal
and vertical directions. During the measurements reported here, the
shield was replaced by various masks to be able to select the size of
the exposed areas, referred to in the following sections as the
occupancy, as well as the level of illumination of individual
modules. For the measurements requiring flat-field-like
illumination from copper fluorescence, the mask shown in
Figure 3B was used. It consists of two vertical tantalum bars,
each 19 mm wide and 2 mm thick, which shadowed a large
fraction of each module. A typical image collected in such a
configuration is presented in Figure 3D. Pixels behind the bars
were used, mostly, to determine the baseline-shift corrections. The
JNGFR04 served as an incident intensity monitor. A stack of

FIGURE 3
(A) The four megapixel JUNGFRAU (JF4M) detector at the SPB/SFX instrument at EuXFEL. For reference, the individual modules were labelled as
JNGFR01 to JNGFR08. (B,C) Two types of masks used to characterize the burst mode. Position of the vertical tantalum bars and configuration of the
aluminium panels were adjusted between various measurement. (D,E): Example images acquired with both masks. Modules designated as the incident
intensity monitors are marked and labelled as “I0.”
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aluminum foils (not shown in the figure) was placed in front of it to
adjust the average intensity of photons per pixel to the desired levels.
The mask shown in Figure 3C was used to study the correlation
between the occupancy levels and performance of the JUNGFRAU

modules, especially across the transition regions. It consists of two
sets of panels with 1 mm and 8 mm holes. The position of the holes
with respect to ASICs was optimized by adjusting the position of
each detector half as well as the position of the mask itself. An
example image acquired with this mask is shown in Figure 3E.

In order to measure, in relative terms, the intensity of the
fluorescence signal on the detector, one of the eight modules was
used as an intensity (I0) monitor for each measurement. The module
was shielded with an aluminum foil so that the intensity of the
transmitted fluorescence photons reaching the module itself would
always be at a sufficiently low intensity to allow the module not to
switch gain but to remain in the independently calibrated G0 region;
the I0 value is then presented as the average number of photons per
pixel behind the foil. Consequently, the thickness of the aluminum
absorber has been changed to keep the overall maximum signal on
the I0 module at the same level, for each individual measurement. So
it is important to keep in mind that the I0 values frommeasurements
obtained in severely different illumination conditions cannot be
compared directly.

The data presented in this report was collected during multiple
experiments. The experimental setup during each session was
adjusted to accommodate the goals of the particular
measurements as well as the current configuration of the SPB/
SFX instrument but the core set of parameters was preserved
across all the activities. All data were acquired in the
transmission geometry using the fluorescence from a 5 μm-thick
copper foil. The size of the 9.3 keV beam at the interaction point was
set to approximately 400 × 400 μm2. The incident flux was tuned
with the help of diamond filters, providing up to 64 different
attenuation levels with the smallest step of 7%. Contamination
from the 9.3 keV air scattering at low angles was reduced by
placing a 15 μm-thick nickel foil downstream of the interaction
point. The sample-to-detector distance was adjusted for each type of
measurement between 120 and 500 mm to find the best compromise
between the flatness of the signal across the entire detector and the
maximum number of photons per pixel. For larger distances, an
additional He-filled pipe was installed to further suppress the air
scattering.

FIGURE 4
Examples of the intensity scans across (A) high tomedium and (B)
medium to low transition regions measured in the first image of the
burst. The response of the pixel in different gain stages have each been
fitted with linear functions, and fit results are shown in the plots.
In order to access both transition regions, the scanswere performed in
two different experimental arrangements. Therefore values of the
normalized I0 in the two plots should not be compared directly.

FIGURE 5
Average ‘gap’ value for a FEM vs. memory cell. Values are plotted as a function of the order in which images are stored during the burst, for different
occupancy levels. In (A) the values for the GSR betweenG0 and G1 are plotted, while (B) shows values for the gain switching region between G1 and G2. A
slight dependency on occupancy can be noted for the first GSR, while the effect is evident in the second GSR, where the absolute signal on the detector is
ten times higher.
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Prior to the intensity scans, the detector G0 stage was calibrated
using Cu Kα fluorescence photons at an intensity low enough so that
individual photons could be resolved; the gain conversion factors for

the G1 and G2 stages with respect to G0 were calculated for each
pixel and memory cell, with a procedure similar to what is described
in [19].

2.3 Experimental tests in burst mode

Based on the promising results obtained from the burst mode
characterization, the performance of the detector was validated
against data collected in single cell mode. Two experiments were
conducted, each utilizing the detector at very different photon
intensity levels and signal distribution across the sensors. For
reasons outlined in Section 3, the operation of the detector in
burst mode was restricted to the fixed G1 stage. The lack of
absolute gain calibration for this detector setting did not pose a
major problem for these measurements.

2.3.1 Serial femtosecond crystallography
In this section, we describe the SFX test experiment using the

JF4M detector in burst mode with the gain set to fixed medium
gain. One of the calibration samples used routinely at the SPB/
SFX instrument was chosen; crystals of the hen egg-white
lysozyme (HEWL) with a diameter of 2–3 μm. Crystals were
grown using the well-established protocol [22] and injected into
the interaction point beam as a liquid jet using a Gas Dynamic
Virtual Nozzle (GDVN) type B, as described in [23], with a
sample flow rate of 70 μL/min. To minimize the air scattering
background, the sample chamber enclosing the interaction point
was continuously flushed with helium. The crystals were exposed
to a 12.55 keV X-ray beam focused to a 3 μm spot. The detector
was positioned 118.3 mm downstream from the interaction
point. This configuration corresponded to the maximum
resolution of 1.6/1.5 Å at the edges/corner of the detector.
Both photon energy and sample-to-detector distance were
refined from the SFX data based on expected unit cell
parameters of the HEWL crystals.

FIGURE 6
The average value for a FEM for the ratio between the slope of the G1 and the G0 part of the intensity scan is displayed. The error bars indicate the
RMS of the distribution of values across the pixels.

FIGURE 7
In (A) the output of an intensity scan in fixed medium gain (fixG1)
is compared with a scan taken in the dynamic gain switching (DGS).
Both scans were carried out under the same experimental conditions.
The difference in slope of the lines is due to the intercalibration
factor RCDS. Impact of the occupancy level on the value of RCDS is
shown in (B).
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2.3.2 Kossel line measurement
When fluorescent radiation emitted by the atoms in a single crystal

is scattered by the crystal itself, intensity modulations, so-called Kossel
lines, can be observed in the diffraction intensity [24]. As the phase of
the structure factor is encoded in the profiles of those lines, and a single
image contains multiple lines, complex insight into the structure of the
illuminated crystal can be gained from the analysis of a single diffraction
pattern. Measurement of the Kossel lines can be a way to overcome
constraints faced by techniques relying on the accumulation of
thousands of images such as serial femtosecond crystallography [22]
or single particle imaging [25]. Access to such rich information about
the structural changes within a sample from a single pulse is critical for
pump-probe-type experiments, especially when the given pumped state
of the sample cannot be easily repeated thousands of times. The MHz
repetition rate of the EuXFEL enables the tracing of changes in sample
structure with sub-μs resolution. To support this type of measurement,
the detector needs to meet stringent conditions. First, it has to allow
measurements of the profiles of the Kossel lines with sufficient spatial
resolution on top of the fluorescent background. Second, it has to be fast
enough to take advantage of the MHz intra-bunch repetition rate. The
JUNGFRAU detector, operated in burst mode, has suitable
specifications for this use case, at least within the 150 kHz limit
highlighted before.

Proof-of-principle single-pulse Kossel line measurements were
recently conducted at the SPB/SFX instrument using the JF4M
detector. Here, the feasibility of the burst mode to measure

Kossel lines for one demonstration sample, a 100 μm thick Ge
crystal, is reported. The single crystal Ge wafer was illuminated
by a series of 16 pulse bursts of 11.5 keV beam focused down to
25 μm× 25 μm. For each burst, a fresh spot of the wafer was exposed.
The X-ray beam energy at the sample position was adjusted using
diamond foils to several μJ, which was sufficient to observe the
Kossel lines in several images before the radiation damage-induced
signal dominated in the recorded patterns. The alignment of the
wafer and the quality of its surface were monitored with the help of a
microscope, inline with the X-ray illumination. Data were acquired
in transmission geometry with the detector positioned 120 mm from
the interaction point. To reduce air scattering contamination, the
sample was encapsulated in a He-flushed chamber.

Based on measurements taken in the single memory cell
configuration, for which the absolute calibration was available,
the number of 9.25 keV fluorescent photons per pixel per pulse
ranged from 20/120 to 200/800 at the edges/center of the detector.
The exposure time was set to 20.12 μs to provide the desired time
resolution for this measurement.

3 Results

3.1 Intensity scan results

Various intensity scans were conducted in burst mode in both
DGS as well as in fixed gain. Results are summarized in the following
sections.

3.1.1 Gain switching region gap
It became immediately evident that the pedestal evaluation via

forced switching of the feedback capacitor of the pre-amplifier
shows substantial limitations in accuracy. This manifests itself as
a positive ‘gap’ in the GSR. It indicates that this method
underestimates the actual pedestal value after gain switching
occurs. An example of the intensity scan for a pixel of
JNGFR03 module is shown in Figure 4.

The value of this ‘gap’ can be estimated by calculating the
difference between the lowest value in G1 and the highest in G0:
the average ‘gap’ value per memory cell and per module shows a
clear incremental trend with the memory cell filling order. However,
when looking for dependencies of this value on the total occupancy
of the FEM, a minimal effect has been noted for the first GSR (see
Figure 5A), while the effect is evident when inspecting the GSR
between G1 and G2 (Figure 5B), where a strong dependency is
evident, on both occupancy and filling order of the memory cell.

3.1.2 Gain calibration
The results concerning the validation of the gain calibration are

presented in the subsequent paragraphs, for the DGS and the fixed
gain operation separately.

3.1.2.1 Lower gains in dynamic gain switching
The corrected output of the intensity scan as a function of I0 has

been fitted with linear functions for each pixel, cell and gain stage.
An example can be seen in Figure 4. As mentioned in Section
2.1.2.1.2, the ratio of the slopes of the G1 and the G0 parts of the
intensity scan, G1DGS and G0DGS, should be equal to 1. Instead, we

FIGURE 8
The RCDS factor for the first memory cell, obtained from a flat field
intensity scan of the JF4M is shown. The vertical dark stripes in the
image are the portions of the detector covered by tantalum bars and
mask holder. The module used for the incident intensity
normalization as well as part of the other module shadowed by the
aluminum foils (see the Section 2.2.1 for details) were alsomasked out.

Frontiers in Physics frontiersin.org08

Sikorski et al. 10.3389/fphy.2023.1303247

41

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1303247


found that, on average, it is substantially different from unity. The
values of the slope ratios of G1 and G0 on a module level show that
the gain conversion factor for medium gain in DGS mode is
overestimated by approximately 30% when we assume that gain
ratios calculated in single cell mode will hold true for all storage cells.
In Figure 6, the module average per memory cell is shown; the results
are plotted according to the order in which the memory cells are
filled during a burst. It can clearly be noted that not only is the ratio
substantially lower than unity, but there appears to be a decreasing
trend with filling order. No clear dependence on the FEM occupancy
appears from the data.

3.1.2.2 Fixed medium gain
Operation in burst mode in fixed medium gain (fixG1) presents

fewer calibration challenges. On top of the obvious absence of a GSR
with the resulting pedestal evaluation difficulties highlighted in the

previous paragraph, an absolute gain calibration is not necessary to
maintain a linear response across its entire dynamic range
(Figure 7A). Thus fixed gain setting appears to be a more
straightforward candidate for burst operation mode.

As mentioned in Section 2.1.1, the CDS stage is not bypassed in
fixed gain, hence the gain conversion factor calculated for G1 in DGS
does not provide a full correction. To test the possibility to cross-
calibrate the two factors (and hence measure the amplification
provided by the CDS stage), the intensity scans in fixG1 have
been corrected with the gain factor calculated for DGS. Data has
been fitted with linear functions and the intercalibration factor RCDS

was estimated using the formula:

RCDS � G1fix/G1DGS. (3)

The average values of RCDS as a function of the memory cell number
for various occupancy levels are plotted in Figure 7B. Results
indicate a weak dependence of the RCDS factor on the memory
cell, while the total amount of signal in the FEM has to be taken into
account when estimating the values of RCDS. At this point, it has to
be stressed that each occupancy level data set was collected for a
different module. To verify to what extent the observed trends can be
explained by the unique characteristics of the individual modules,
the intensity scans were repeated in the flat-field illumination
geometry using the mask shown in Figure 3B. As presented in
Figure 8, the values of the RCDS factor are similar across all the
modules and consistent with the lower occupancy level data
(Figure 7B).

3.2 First experiments

Due to the issues encountered in the characterization of the
operation of the JUNGFRAU detector in burstmode with DGS, and
the promising results during fixed gain operation, the experimental
tests of SFX and Kossel line measurement have been performed
without the DGS mechanism. These types of measurements
represent different regimes of detector operation. In the case of
SFX, diffracted photons are confined, mostly, to clusters of pixels.
The accumulated charge varies among the clusters by few orders of
magnitude. Resolving Kossel lines requires the detection of small
signals superimposed by a large, uniform background. In the
following sections, we show that burst mode operation in fixed
gain can be used in both scenarios.

3.2.1 Serial femtosecond crystallography
For this particular experiment, an exposure time of 12.7 μs and a

single X-ray pulse per frame were chosen. The accelerator was
configured to produce 24 fs electron bunches. Although all
16 memory cells were used only the first 8 memory cells were
illuminated by X-rays, due to the limited RF-window available for
this particular experiment. Diffraction patterns were processed with
the CrystFEL software [26] with PEAKFINDER8 and XGANDALF
used for peakfinding and indexing, respectively. The PHENIX
package [27] was then used to perform molecular replacement
(with PDB 6FTR as search model) and structure refinement.
Data from 97,128 bursts was acquired in two 10 min data sets. In
total, 18,420 crystals were identified with an indexing rate of 18.96%,

TABLE 1 SFX data and refinement statistics.

Parameter Value

Photon energy (eV) 12,550

X-ray focus, FWHM (μm) 3

Electron bunch length (fs) 24

Frame count 97,128

Indexed crystals 18,420

Indexing rate (%) 18.96

Space group P43212

Point group 4/mm

Cell dimensions (Å)

a 79.75

b 79.75

c 38.60

Resolution 17.91–1.55 (1.6–1.55)

Rsplit 10.72 (60.21)

CC1/2 98.14 (63.32)

SNR 6.84 (1.26)

Completeness 100 (100)

Multiplicity 241.7 (113.3)

No. reflections (R free set) 18,039 (902)

Rwork/Rfree 0.1808/0.1976

Bond length (Å) 0.005

Bond angle (°) 0.883

Ramachandran

favored/allowed/outlier 99.21/0.79/0.0

Average B-factor 22.53

Data were acquired in the fixed medium gain and using a single X-ray pulse per exposure.

Due to restrictions on the time window, only the first eight memory cells were illuminated.
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only counting the illuminated frames. The figures of merit showing
very good statistics and outcome of the structure refinement are
summarized in Table 1. The obtained electron density map at 1.55 Å
resolution appears free from local radiation damage as illustrated by
the well-defined disulfide bond areas and presented in Figure 9.
Distribution of the indexed frames across the illuminated memory
cells is shown in Figure 10. As desired, the indexed patterns are
uniformly distributed among the first eight cells, while no crystals
were identified in any of the “dark” cells, which indicates a lack of
cross-talk between the memory cells.

3.2.2 Kossel line measurement
Example data from a single 16-pulse burst showing the evolution of

the Kossel lines as function of the radiation dose are presented in
Figure 11. Despite the large intensity gradient in the collected images,
the Kossel lines can clearly be resolved on the single-pulse level. Visibility
of the lines increased as a function of the pulse number in the burst,
reflecting the change of the mesoscopic structure of the sample. With the
120mm sample-to-detector distance, the sensitive area of the detector
covered a sufficient fraction of the Kossel line pattern to solve the 3D
crystalline structure of the sample but the resolution of the fine structure
of the lines was limited. With increasing accumulated dose towards the
end of the burst, radiation damage of the wafer becomes evident, which is
reflected by the sharp Bragg peaks from polycrystalline Ge. For future
experiments, the quality of the data could be greatly improved by
thinning the sample, switching to the backscattering geometry, and
extending the sample-to-detector distance. However, the outcome of
this experiment proved the feasibility of pulse-resolved Kossel line
measurements at the European XFEL. Most importantly, it showed

that the JUNGFRAU detector operated in burst mode is a well-suited
tool to support such demanding measurements at kHz time-scales.

4 Discussion

These characterization results indicate that the operation of the
JUNGFRAU detector in burst mode with DGS requires a new
calibration procedure in order to properly correct the raw output
after gain switching:

• The current pedestal evaluation for the G1 and G2 gain stages
through forced gain switching does not produce predictive results;

FIGURE 9
The electron density maps around the four disulfide bonds area in the hen egg-white lysozyme. Regions around cysteines 6 and 127 (A), 64 and
80 (B), 30 and 115 (C), 76 and 94 (D) display continuous densities. The 2Fo-Fc map is shown in blue at 1σ using PyMOL version 2.3.0 (ref: The PyMOL
Molecular Graphics System, Version 2.3 Schroedinger, LLC).

FIGURE 10
Number of the indexed crystals per memory cell for the serial
femtoseconds crystallography data set form the hen egg-white
lysozyme collected in the burstmode and fixedmediumgain. Only the
first eight frames were illuminated and the rest was kept dark.
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• The gain ratios R1 and R2 estimated for single cell operation do
not accurately predict the gain conversion factors for lower
gain stages. These are overestimated by ~30%, with a
dependency on the order in which the memory cells are
filled. This indicates that we could experience one (or
more) of the following effects:

1. As well as the G0burst gain being lower than expected due to
the memory cell read/write operation, the feedback
capacitance of the pre-amplifier in G0burst is lower than
predicted. This could be due to additional parasitic
capacitances coming from the different way in which the
pixel is operated in burst mode.

2. It is not possible to completely preset the pre-amplifier charge in
between images during the burst, which will introduce inter-cell
mixing effectively resulting in a lower gain.

Dedicated measurements are planned to understand the issue in
detail.

Operation at photon fluxes so low that gain switching is not
triggered does not seem to present particular calibration issues.

Concerning fixed gain operation, no issue with the pedestal
evaluation has been noticed, while the issue of calculating the
intercalibration factors RCDS for each pixel and memory cell
remains unresolved. It is however worth stressing that in the

FIGURE 11
The Kossel lines measured for 100 μm thick Ge single crystal using the JUNGFRAU detector in fixed medium gain configuration. Photon energy of
the incident radiation was set to 11.5 keV. The sample was illuminated by a single X-ray pulse per each 20.12 μs exposure. Visibility of the lines improves
with increasing accumulated dose. Eventually, the polycrystalline Ge becomes well-pronounced.
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experimental tests conducted in fixed gain, the absence of an
absolute gain calibration did not impact the successful results, as
presented in Sections 3.2.1 and 3.2.2.

4.1 Prospects for calibration strategies

4.1.1 Pedestal calibration
At the moment two possible calibration strategies for pedestal

evaluation are being envisaged:

1. Gap correction: continue using the forced gain switch for pedestal
estimate and apply an additional correction for the ‘gap’;

2. Linear fit estimate: fit with a linear function the raw output of the
intensity scan, and use the linear function offset fit parameter as
an estimate of the pedestal, in a similar way to the closed loop
correction described in [20].

An example of the results obtained using linear fit estimates of offset
is shown in Figure 12. There, the same data are shown as in Figure 4A,
however they have been corrected with the results of the fit of the raw
output, and as a result the ‘gap’ is closed and the slopes align.

Since the re-calibration of the pedestal via an intensity scan is not
practical in many experimental situations, the calibration constants
produced via both the methods proposed above need to be tested for
their portability, their dependence on temperature and exposure time.
Results will be presented in subsequent communications.

4.1.2 Gain calibration
It is evident that burst operation mode in DGS requires a re-

calibration of the gain conversion factors R1 and R2, in order to
maintain a linear response through the whole dynamic range. For
this purpose, the method described in (19), must be applied to the
detector when operating in burst mode. In addition, the dynamic
range scans necessary to calculate R1 and R2 may also be employed to
extract information about the pedestal position for lower gain stages.

Concerning fixed gain operation, instead, the calculation of RCDS

is not fundamental to maintain a linear response, and it is useful only
if absolute gain calibration is needed. If this would be the case, the
intercalibration factor can be calculated using dynamic range scans
with photons, or external charge injection. Dependence of the RCDS

as function of occupancy levels or memory cell did not impact the
quality of the presented scientific data. Additional calibration of the
gains, may be required when the total signal within the images would
fluctuate by several orders of magnitude.

4.2 Experimental tests in fixed gain

The results obtained with the detector operated in burst mode
with fixed gain settings prove that the detector can produce
scientifically relevant results. At present this operation mode is
limited to cases where the absolute gain calibration is not critical
for the experimental outcome, but a seemingly straightforward gain
intercalibration presents a good prospect to further widen the range
of accessible experiments.

4.3 Conclusions

The calibration strategy proposed in Section 2.1.2.1 for the
JUNGFRAU DGS mechanism in burst operation mode has been
put to test extensively. Results indicate that forced gain switching
produces a largely underestimated evaluation of the pedestal for the
lower gains (G1 and G2), which results in strong artificial
discontinuities in the corrected data. Concerning the gain
calibration, the assumption that the ratio between feedback
capacitors estimated with the single cell calibration procedure
should remain valid leads to an overestimation of the actual gain
conversion factor.

Both these results indicate the need to re-think the calibration
procedure required for burst operation mode with DGS mechanism:
the possibility of using dynamic range scans as outlined in Section
4.1 seems promising, but the method needs to be validated and
tested most of all against the stability of its results. The outcome of
this study will be presented in future communications.

On the other hand, the operation in fixed gain seems not to
present major obstacles to its usage in experiments. Two separate
tests have been conducted, namely, protein crystallography and
Kossel line measurements. The results validated the data produced
by the JUNGFRAU detector in burst mode and showed benefits of
this mode in making better use of the EuXFEL pulse train structure,
although compromises are needed on the dynamic range.

Besides benefiting SFX, implementations of this fixed-gain
operation mode of JUNGFRAU will be relevant for many
experimental techniques utilized at the European XFEL. For

FIGURE 12
Examples of closed loop correction. In (A) the raw output for the
same pixel and memory cell shown inf Figure 4A is shown, while in (B)
the corrected output obtained using the results of the linear fits shown
in (A).
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example, ultrafast X-ray diffraction experiments, where the intensity
and position of a Bragg peak are monitored as a function of laser
excitation, will allow pulse-resolved measurements to be performed
at up to 16 pulses per train, providing better signal-to-noise ratio
and statistics on compatible samples. As the Bragg diffraction
intensity does not vary over several orders of magnitude between
pulses, these measurements do not necessarily require the DGS
capabilities for data collection. A similar method will also work for
time-resolved X-ray emission spectroscopy (XES) measurements,
where the per-pulse X-ray signals are often weak, allowing a fixed
gain mode to be defined for data collection. This approach will allow
XES measurements to take advantage of the excellent low noise
characteristics of the JUNGFRAU detector, while benefiting from
the pulse-resolved measurement capabilities. This latter ability will
allow interleaved laser excitation, where every second X-ray pulse in
the train is laser-excited, resulting in significant improvements in the
signal-to-noise ratio of laser ON - laser OFF differences due to the
better intra-train stability of the X-ray parameters compared to the
inter-train stability. Many pump-probe experiments require the
highest possible laser powers, which are often achieved at the
cost of repetition rates reduced to a few hundreds of kHz. In
those cases, the burst mode of JUNGFRAU becomes an attractive
option.
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X-ray detector requirements for
laser–plasma accelerators

Chris D. Armstrong1*, G. G. Scott1, S. Richards1, J. K. Patel1,
K. Fedorov1, R. J. Gray2, K. Welsby1† and P. P. Rajeev1

1Central Laser Facility, Rutherford Appleton Laboratory, Harwell, United Kingdom, 2Department of Physics
SUPA, University of Strathclyde, Glasgow, United Kingdom

Laser–plasma interactions (LPIs) are an emerging source of a range of energetic
radiation. LPI experiments drive ultra-short (< ps) and brilliant sources of X-rays
from keV to MeV energies. Designing detectors to maximise the sensitivity and
resolution achievable with these sources is paramount to optimising laser-driven
accelerators. In this article, we explore the key parameters associated with laser-
driven X-ray sources and the detector systems required to characterise them. We
present a concise approach to modelling the sensitivity and resolution for indirect
detector systems factoring in both the optical collection and the X-ray attenuation
within the scintillator.

KEYWORDS

laser–plasma interactions, bremsstrahlung, betatron, inverse Compton scattering, laser
wakefield, high-intensity laser, X-ray generation

1 Introduction

A unique aspect of high-intensity laser–plasma interactions (LPIs) is the ability to
generate broad ranges of energetic radiation by tuning the plasma and laser conditions.
The different radiation types share a common set of characteristics: they are of short
pulse (< ps) [1–3], emanate from a small source (100 nm–1 mm) [4–8], and can be tuned
by subtle variations in the laser parameters or target [9–13]. In general, when high-
intensity lasers are focussed on a target (either gas, liquid, or solid), atoms are ionised,
and the freed electrons are accelerated to high energies [14, 15]. These electrons continue
to radiate via one of the mechanisms described below or seed secondary reactions such as
collisional ionisation, prompting further emission. A schematic diagram of these
mechanisms is shown in Figure 1, with the expected photon emission characteristics
for a PW (30 J, 30 fs) laser system to establish a baseline—a full description of each
calculation is given in Supplementary Material. These energies and conditions are
considered to mirror the upcoming high-repetition laser facility EPAC at the Central
Laser Facility [16].

In laser wakefield acceleration, the laser is focussed onto a gas target at low
(~ 1018−19ne/cm3) [9] density, which ionizes the gas and forms a plasma channel. The
ponderomotive potential [14] of the laser drives electrons out of the focus and forms a
plasma “wake” behind the laser pulse. This displacement of electrons sets up a strong electric
field gradient, and electrons, injected into the wakefield, are accelerated to high energies. As
the electrons are accelerated, they oscillate within the channel due to the background positive
ion population and emit a synchrotron-like emission, betatron radiation [Figure 1A]
[17–21], which is near-collimated and emanates from a small source area. For narrow-
band X-ray emission, we can utilise inverse Compton scattering (ICS) (Figure 1B), where a
secondary laser irradiates the relativistic electron beam and laser photons interacting with
the electrons are upshifted by ~ 4γ2, where γ is the electron Lorentz factor [22–25]. By
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controlling the electron energies and focus of the scattering laser, the
resultant X-ray emission can have a narrow spectral distribution at
MeV energies and small divergence [23, 25–27]. Alternatively, the
electron population can be accelerated into a solid converter foil to
produce laser-wakefield bremsstrahlung (Figure 1C). This emission
can be tuned by varying the thickness and material of the converter
target [12, 28–30].

In laser–solid (overdense) interactions, the laser is again
focussed on the target where electrons are ionised from the
surface and accelerated up to MeV energies within the laser field
before being driven into the target. Electrons accelerated by this
mechanism generally have a broad Maxwell- or Boltzmann-like
distribution of energies, and when interacting with the solid target,
atoms produce a similarly broad distribution of laser–solid
bremsstrahlung (Figure 1D) extending up to the peak energies of
the electrons [4, 31–33]. The emission can be optimised by tuning
the target material and thickness [34], lateral dimensions [4], and
incident laser parameters [10, 33, 35]. The X-rays are typically more
divergent than the laser-wakefield mechanisms but can still emanate
from < 100-µm source sizes [4, 6, 10, 33].

This article outlines the primary approaches to spatially
resolving the emission from laser-driven sources, a brief
introduction to two distinct methods we can use to detect X-rays,
and then a discussion on how to apply these techniques to each of
the different sources discussed above. Here, we distinguish between
detectors (i.e., the sensor/substrate/scintillator that records the
incident X-ray radiation) and diagnostics which translate the
measured signal into a useful characteristic of the beam. As there
are numerous regimes laser-driven sources can produce, we consider
that no single solution/detector will suffice and, instead, describe the
necessary parameters across three case studies.

• High-resolution imaging with betatron radiation—3.1
• High-energy imaging with ICS and bremsstrahlung
radiation—3.2

• High instantaneous flux with direct or proximity-focussing
detectors—3.3

The expected photon parameters, where necessary, are taken
from the scaling shown in Figure 1.

2 X-ray imaging approaches for laser-
driven sources

With the adoption of higher-repetition high-power laser
facilities, there has been considerable effort by the community to
produce high-stability interactions. There are several recent
proposals using LPI as the initial accelerator for FELs [36], ion
beamlines [37], and compact ICS sources [26]. Maier et al.
demonstrated significant improvements in the stability of laser-
driven sources [38], and new facilities are being built and designed
with mechanical and machine stability in mind, including active
feedback to ensure long-term stability of the driving laser. However,
especially during commissioning of new facilities, detectors and
diagnostics need to be able to fully characterise the emission on a
single-shot basis and not integrate or scan, assuming that the
emission is constant. The requirement for single-shot acquisitions
limits what diagnostic techniques are possible; for example, super-
resolution methods [39] and single-event processing techniques [40]
are not possible. This requirement is, therefore, an important factor
in detector design for laser-driven sources.

2.1 Direct detection

Indirect and direct detection schemes are both useful in
laser–plasma interactions. For direct-detection schemes, electrons
within the substrate material are freed by incident radiation and
swept towards an electronic readout. The total charge is then

FIGURE 1
Schematic representation and example emission spectra for each X-ray generationmechanism by laser–plasma acceleration. (A) Betatron radiation,
(B) inverse Compton scattering, (C) LWFA bremsstrahlung, and (D) direct target bremsstrahlung. Details of the calculations for each spectrum are given in
the Supplementary Material. The three curves for each correspond to different laser–plasma conditions; in (A–C), these correspond to intensities and
plasma densities that drive 100 MeV, 1 GeV, and 10 GeV electron bunches, respectively; in (D), this corresponds only to the intensity with the
effective bremsstrahlung temperature scaling from 100 keV to 10 MeV. See Supplementary Material for further details.
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digitised by an ADC. High-grade Si, CdTe, and CZT semi-
conductors are often used for direct detection. Detectors based
on this mechanism have demonstrated sub-% energy resolution
[41], large area [42–44], and X-ray energies of up to MeV [45].
Typically, these devices are operated in an integrating mode where
the counts after the ADC correspond to an amount of charge
deposited in the pixel. This can be interpreted as either the
number of photons at a given energy or the energy of an
individual photon. With the latter mode, it is, therefore, possible
to retrieve spectroscopic information as well. Recent efforts with
direct-detector systems aimed to increase the full frame rate of the
camera beyondMHz repetition rates [46–48] for use in high average
brilliance facilities. As the pulse duration for high-intensity laser
sources is typically on the order of femto- to pico-seconds, increases
in the frame rate of the detector have a limited impact on reducing
the number of photons per frame. Instead, the area of the pixels must
be considered to control the chance of interactions per pulse, the
thickness of the substrate to tune the stopping power, and the full-
well capacity of the readout to maximise the total energy that can be
measured.

2.2 Indirect detection

In contrast to direct detection, indirect detection uses
scintillators to convert the X-ray radiation into optical light that
is then imaged with a standard optical camera and lens system. By
tuning the scintillator and the optical relay, we can optimise
detection as needed. The optical collector is either a lens or a
fibre-optic plate. For imaging, the typical lenses considered are
either microscope objectives or camera/machine vision lenses.
Both options are compound lenses with many elements to
correct aberrations or minimise distortion; however, the
microscope objectives are generally of high numerical aperture
with a magnification greater than unity, whereas machine vision
lenses are typically of lower numerical aperture and demagnify the
image onto the sensor. Critically, with either option, we must factor
in the distance to the scintillator, (do), and opening aperture, D, of
the optic to determine the effective numerical aperture (NA =D/2do)
of the system with the magnification (Mo) to determine what the
collection efficiency and resolution will be. There have been several
studies on the relationship between these parameters [32, 49, 50]; in
general, resolution and collection efficiency are inversely
proportional. The resolution limit in the optically limited regime
can be approximated as follows:

R μm[ ] �
�������������������������
p

NA
( )2

︸���︷︷���︸
Diffraction

+ qℓNA( )2︸���︷︷���︸
Defect of focus

+ 2dx
Mo

( )
2

︸���︷︷���︸
Sampling

√√√
, (1)

where p and q are fitting parameters determined by Koch et al.
[49] and ℓ is the thickness of the scintillator. Throughout this article,
we define the resolution as 90% of the integrated line-spread-
function to mirror the work by Koch et al. [49]. This is notably
larger than the full-width half-maximum, and so, features below the
limits given here could still be visible—albeit at a lower contrast. The
first term in Eq. 1 relates to the cumulative effects of diffraction and
spherical aberrations stemming from the scintillator–air interface,

and the second term is due to planes beyond the point of best focus
contributing. We include the third term factoring in the pixel size dx
and the optical magnificationMo to account for the limit in the low-
magnification domain. In addition, this relationship holds assuming
a pencil-like deposition throughout the scintillator. For the purposes
of this discussion, we omit effects due to non-uniform attenuation
throughout the scintillator [49] and large electron cascades with
high-energy incident X-rays [51]. Assuming that we have a relatively
thin (ℓ < λmfp) scintillator and a limited electron cloud radius, Eq. 1
sets the resolution at the detector plane, and so, by controlling the
geometric magnification, Mg, the system resolution, can exceed this
for samples or images. The signal detected in each pixel, however, is
dependent on the attenuation of the scintillator, the conversion
efficiency into optical photons κ, the collective power of the lens
system, and the magnified area of pixels:
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, (2)

where QE(λ) is the quantum efficiency of the chosen sensor at
the wavelength of emission, κ is the yield in photons per deposited
energy for the scintillator material, n is the refractive index of the
scintillator material (see Supplementary Material for collection
efficiency derivation), and G a linear gain term to convert the

FIGURE 2
(A–C) Numerical calculation of Eq. 1 for p = 0.7, q = 0.28 from
[49] for Mo = 0.1, 0.5, 5, respectively, and ℓ = 5–1025 μm. (D) Shows
the determination of Eq. 1 and Eq. 2 for many indirect system
configurations—the full dataset is included in Supplementary
Data. Regions are highlighted outlining different schemes of
detection, including microscope objectives and machine vision
lenses.
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number of photons to counts recorded by the sensor. This equation
is similar in form to that determined by Cardarelli et al. [32];
however, the F-stop terms they used are replaced by terms for
the effective numerical aperture and optical magnification directly.
Where the deposited energy per mm2 is dependent on both the
incident spectral shape, f(E), and the attenuation of the scintillator,
to a first order, this can be expressed using the Beer–Lambert model
for transmission as

Edep

mm2
� ∫

inf

0

f E( ) 1 − exp−ρℓσ E( )( )dE, (3)

where ρ is the density of the scintillator and σ is the attenuation cross
section. Eq. 1 and Eq. 2 are both dependent on the length of the
scintillator, ℓ, the numerical aperture of the lens system, and the
optical magnification, resulting in a complex trade off of parameters
between lens choices.

We demonstrate the calculation of both the signal and the
resolution at the plane from parameters for typical systems, using
both microscope objectives and camera lenses to image scintillators
of different thicknesses, as shown in Figures 2A–C; we set the pixel
size to 5 µm for each magnification and vary the numerical aperture
of the lens to demonstrate the scaling. It is clear from evaluating Eq.
1 that the magnification and pixel size act as a hard limit on the
resolution. When operating with high magnification, there becomes
a significant dependence on the thickness of the scintillator and
numerical aperture of the system. However, if we consider only the
numerical aperture of the system, a clearer picture emerges—with a
low numerical aperture; therefore, with a small angle being observed,
there is little dependence on scintillator thickness, whereas with a
high numerical aperture, the scintillator thickness becomes
paramount to the achieved resolution. Figure 2D summarises
how different commercially available optics vary in terms of
achievable resolution and expected signal. The full dataset used is
detailed in Supplementary Material. The data points assume a
Gaussian X-ray distribution with a 100-keV centre and a full-
width half-maximum of 40 keV.

3 Imaging case studies

In the following sections, we outline three distinct imaging
challenges with laser-driven sources where advancements in
detector characteristics would enhance the potential applications
of laser-driven sources.

3.1 Single-shot high-resolution imaging with
laser-driven betatron radiation

Laser-wakefield betatron sources have sub-micron source sizes
[8]; however, typically, the smallest resolvable element achieved in
experiments is much higher than this and is, instead, limited by the
detector [52]. To achieve a high resolution at the detector plane, the
best route is to use high-magnification objectives, as shown in
Figure 2D; however, this limits the expected signal due to
spreading over many pixels. Microscope objectives exhibit a
general scaling between the numerical aperture and optical

magnification of the form Mo ∝
���
NA

√
. Then, for a given spectral

distribution and scintillator material, we can express Eq. 1 and Eq. 2
as a function of the numerical aperture and scintillator thickness,
respectively. The result of these two functions is shown in Figures
3B,C, and a combination figure of merit, calculated as the signal per
pixel divided by the resolution limit, i.e., Eq. 2 divided by Eq. 1, is
shown in Figure 3A. The contours on the first panel demonstrate the
fundamental limits in resolving power for different numerical
apertures. Achieving a sub-micron resolution at the plane
requires both a high (NA> 0.7) numerical aperture and an
ultra-thin (ℓ < 5 µm) scintillator.

Betatron emission is divergent, albeit narrowly, (θ ≈mRad), and
so, the geometric magnification can increase the system resolution.
This is also true of conventional X-ray tube sources; however, as
their source area is typically large [53, 54] (excluding micro- and
nano-focus systems [55]), the resolution is fundamentally limited by
the extent of the source. The divergence of betatron emission
combined with a small source opens up additional pathways to
achieve sub-micron imaging, and we can look at the trade-offs
between different optical systems by considering how the resolution
and sensitivity vary as a function of each variable in 1–2.

Figure 4 shows the variation in the resolution and effective signal
due to several parameters—numerical aperture (green), optical
magnification (orange), geometric magnification (blue), and
scintillator length (pink)—for a selection of microscope

FIGURE 3
Figures of merit for the resolution and expected signal as a
function of scintillator thickness and numerical aperture calculated at
the plane (i.e., Mg = 1). (A) shows the signal per pixel divided by the
resolution limit, i.e., Eq. 2 divided by Eq. 1, to highlight the best
compromise between the signal and resolution; the solid curves over
the top are contours demonstrating the limits for the achieved
resolution. (B,C) show Eqs 1, 2 independently.
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objectives, fibre-optic plates (FOPs), and high numerical aperture
machine vision lenses. These three approaches represent distinct
options for optical imaging. Generally speaking, microscope
objectives have a numerical aperture between 0.1 and 0.5 and
high magnification, fibre-optic plates of a high numerical
aperture > 0.7 and ~ ×1 magnification, and machine vision
lenses have lower numerical aperture ~ 0.1 and typically
demagnify the image (Mo < 0.5). However, what is interesting
between these different approaches is how subtle changes in their
respective parameters can change the resultant system performance.
It is clear that the complex interplay between parameters makes it
challenging to identify the ideal candidate. In the inset plots of
Figure 4, we vary each parameter independently to demonstrate its
effect. The arrows indicate the direction of increasing value for each
parameter.

Interestingly, due to the difference in their initial values,
increasing the numerical aperture for the highlighted machine
vision lens results in a decrease in the expected resolution,
leading to a significant increase in the highlight microscope
objective. Conversely, if we consider increasing the thickness of
the scintillator, we would observe an increase in the signal with no
loss in resolution for the microscope objective, and yet, for the
machine vision lens example, we observe a decrease in the resolution
with minimal gains to the expected signal. Whilst these
contradictions make it difficult to identify a general pattern, we
note that the system resolution for the microscope objectives can be
matched using the machine vision lenses but with a much greater
signal. Since geometric magnification depends on the sample
position rather than just the detector position, we can design
systems to use lower optical magnification and increase the
system resolution by reducing the sample position. The signal
values are calculated assuming 7 × 1011 photons with a

divergence of 5 mRad and a critical energy of 50 keV—the
parameters given for the example distribution in Figure 1A. For
a single shot, it is clear that high-magnification objectives will result
in a low signal-to-noise ratio, and so, many shots would likely need
to be combined to achieve sufficient imaging quality.

In summary, to achieve a maximum signal with high-resolution
imaging with betatron radiation, the best approach is to use
relatively low optical magnification combined with high geometric
magnification and keep the detector plane at the smallest distance
from the source. In laser-wakefield acceleration (LWFA) experiments,
the highly relativistic electron bunch must be deflected prior to
interacting with the sample to minimise background contributions
or damage to the sample. In practice, this sets a lower limit on the
sample position (Z ≈ 1 m), and therefore, a compromise will need to
be sought for different experimental configurations. In addition,
objectives that exceed the Mo ∝

���
NA

√
scaling offer potential routes

to offset the losses in the signal due to magnification.

3.2 MeV imaging with ICS and laser-driven
bremsstrahlung

It is pertinent to consider at this point the extreme case, where
instead of a few hundred microns of the scintillator, we require
thousands to ensure sufficient stopping power. Laser-driven sources
can readily generate X-rays greater than 1 MeV via either inverse
Compton sources or bremsstrahlung processes with energies
extending up to 100 s of MeV for LWFA mechanisms. At these
energies, the dominant X-ray attenuation mechanisms are no longer
photo-electric absorption or scattering but nuclear and electronic-
pair production [56]. This significantly alters the effects on
resolution. No longer can we consider only the optical spreading

FIGURE 4
Expected signal (counts/px) and resolution (lp/mm) for microscope objectives, fibre-optic plates, and machine vision lenses, calculated by Eqs 1, 2.
The subplots demonstrate the variation in performance due to numerical aperture (green), opticalmagnification (orange), geometricmagnification (blue),
and scintillator length (pink).
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determined by Koch et al. [49] (Eq. 1); we must now also factor in
the lateral diffusion that occurs as the X-ray deposits energy through
a scintillator. Solving these additional factors requires in-depth
Monte Carlo simulations to be conducted. However, we can
determine some useful bounds from the aforementioned
equations. First, we consider that for a given energy, we can
calculate the required thickness, ℓ, as a function of the desired
absorption, i.e., ℓ = − log(T)/σρ. Second, we wish to calculate what
the intrinsic (i.e., PSF limited) resolution would be for that thickness
to inform how we select scintillator materials. The calculation of this
is shown in Figure 5 for a plastic scintillator (CHO, e.g., EJ260,
BC422q), YAG:Ce, BGO, and the high-Z and high-density GLO
scintillator [57]. For each material, the effective resolution limit
determined in Figure 5 could then be further refined byMonte Carlo
simulations adding a fourth term to Eq. 1 to account for the radial
spreading as the X-rays deposit their energy. The energy spreading
in materials is also dependent on the density and effective-z, and so,
whilst the scattering at higher energies will reduce the resolution,
this effect will be reduced with higher-density materials [58, 59].

This scaling with density and atomic number underlines why
research on the GLO scintillator is beneficial to high-energy X-ray
imaging; the higher density is intrinsically linked to the minimum
thickness and relative attenuation to high-energy X-rays.
Consequently, continued research and development into exotic
scintillators and their manufacture will greatly benefit radiography
with high-energy X-rays [60].

3.3 High instantaneous X-ray flux imaging

In the previous cases, we considered an optical system to image
the scintillation onto the sensor. However, the lens system
introduces significant losses in the collection efficiency, and by
switching to either direct detection, the sensor in contact with
the scintillator, or the proximity focussing of FOPs, we can
consider a far more efficient detection method for imaging the
X-rays. With the losses from the optical system minimised, the

detection efficiency can be calculated directly from NIST-XCOM
data tables [56] and the Beer–Lambert law [61]. Figure 6 shows that
the efficiency of stopping in the material can be up to 100% for
betatron-like energies (~50 keV) of X-rays for both scintillators (CsI
and YAG) and thick direct-detection sensors such as CZT. The
resolution for the direct detection is dependent on the pixel size and
on PSF of the incident photon energy, whereas the FOP method is
limited by the spreading in the scintillator, similar to Eq. 1.

One desired application for such a detector is to measure the
unattenuated beam in a single shot. The number of X-ray photons
arriving per pixel is dependent on the emitted number, the divergence
of the emission, and the solid angle subtended by each pixel. With

FIGURE 5
(A) Attenuation length for 10% absorption in each scintillator and (B) equivalent resolution limit for a scintillator of that length. Calculated via the NIST
data tables [56] as a function of incident X-ray energy.

FIGURE 6
Absorption fraction for scintillators and direct-detector
substrates, and the transparency of the line corresponds to the
thickness of the layer—the order of increasing opacity corresponds to
20, 70, 150, and 500 µm thickness, respectively. Calculated via
the NIST data tables [56] for (A) CSI, (B) YAG:Ce, (C) Si, and (D) CZT.
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these criteria and the photon distributions shown in Figure 1, we can
generate the plot shown in Figure 7, showing the effective number of
counts as a function of the incident photon intensity and the effective
signal (Eq. 2) of a given detector. Here, we express the y-axis as Kdx2/
z2, where K is the overall efficiency term from incident photons per
pixel to counts. Expressing Eq. 2 like this provides a clear route to
improving detector performance. Figure 7 shows the approximate
dynamic ranges for various detectors [42, 62–64] available that can
operate in the desired range; additionally, we include an “idealised”
detector that operates with a high dynamic range similar to the MM-
Pad diagnostics [64] but a pixel size of dx = 10 μm at a distance of z =
20 m and K = 10–4 [Counts/γx] to compensate. Additionally, we
include a dashed line at 1 count/px to indicate the relative threshold
for single-photon spectroscopy techniques. Current detector systems,
at reasonable distances (< 100 m), cannot operate in the single-photon
mode in the direct beam, leading to secondary scattering techniques to
utilise such detectors [65]. Reducing the pixel size can, in principle,
work; however, this approach is fundamentally limited since the
charge cloud, the energy deposition volume, and lateral diffusion
through the substrate will start to dominate as the pixel size is reduced.
Extending the propagation further might be possible in certain
facilities; however, it is impractical to consider kilometre-scale
propagation distances in the near future, and since the divergence
of betatron radiation is expected to drop with increasing electron
energy [17], this approach will rapidly become impractical. In
practice, to access the higher incident intensities, relatively
inefficient systems, where K ≪ 1, become the only realistic route
to ensure sufficient sampling of the directly emitted beam. This is not
to say thin scintillators and lossy lens systems are the only route to
achieve it as this would result in significant disparity between low- and
high-energy X-ray sensitivity. Instead, a high-attenuation substrate
paired with a variable gain register [66] would provide a more
appropriate solution for highly instantaneous flux environments.

4 Summary

Herein, we demonstrated, using analytical equations for
resolution (Eq. 1) and signal (Eq. 2), approaches to X-ray imaging
with laser-driven sources. The variety of X-ray energies and fluences
poses a challenge to detectors but provides an opportunity for a wide
variety of applications. Taking advantage of the diverging X-ray
emission and the proximity to the source location, we can exploit
geometric magnification to maximise the signal collected for a given
resolution.With improvements to scintillatormaterials, we can design
efficient scintillators for high-energy (> MeV) X-ray imaging while
maintaining a ~100-µm resolution as laser-driven source intensity
increases further, i.e., by increasing the total flux per pulse and
reducing the emission divergence.
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The past, current and planned future developments of X-ray imagers in the
Photon-Science Detector Group at DESY-Hamburg is presented. the X-ray
imagers are custom developed and tailored to the different X-ray sources in
Hamburg, including the storage ring PETRA III/IV; the VUV-soft X-ray free electron
laser FLASH, and the European Free-Electron Laser. Each source puts different
requirements on the X-ray detectors, which is described in detail, together with
the technical solutions implemented.

KEYWORDS

synchrotorn storage rings, free-electron lasers, X-ray imagers, integrating detectors,
time-stamping detectors

Introduction

The continuous exponential improvement in X-ray sources at synchrotron storage rings
[1, 2] and Free-Electron Lasers [3] means that significant improvements in X-ray imagers are
needed in order to maximize the scientific output, both in quality and quantity. Keeping up
with the increase in source brilliance by an order of magnitude every 3 years, is, however, a
major challenge. To put this into perspective, to develop a new detector from idea to
installation at the experimental station takes roughly 10 years when the concept is new. This
means that the source brilliance increases by 3 orders of magnitude during the development
time of the detector. In addition, the large variety of experimental techniques, especially at
storage rings [2], results in very diverse, and often conflicting detector requirements, so that
different detector systems need to be developed.

In Hamburg the situation is even more challenging due to very different photon sources.
PETRA III is a 6 GeV storage ring catering mainly to the medium to high photon energy
synchrotron community. This is very different to the FLASH facility, which is a 1.35 GeV
Free-Electron Laser using super conducting accelerator technology. It produces photons in
the VUV to soft X-ray regime in a burst mode operation. It produces pulse trains up to
800 micro-seconds long, with a train repetition frequency of 10 Hz and up to 500 pulses in
each train. The European X-ray Free-Electron Laser uses the same superconducting
accelerator technology as FLASH, but runs at 17 GeV and produces photons in the soft,
medium and hard X-ray regime. The pulse trains are 600 micro-seconds long, are repeated
with a 10 Hz frequency, and can contain up to 2,700 pulses.
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There are many fundamental differences between a storage ring
and a Free-Electron Laser, both from an experimental and a detector
point of view. Storage rings can often be regarded as continuous
sources and data is mostly collected with many consecutive pulses.
Free-Electron Lasers on the other hand are mostly used as pulsed
sources, where an image is recorded for every single pulse. This is
both useful, since single FEL pulses are often strong enough to
produce a statistically significant image, and also required, since a
single pulse often destroys the sample. This has many consequences
for the detectors at Free-Electron Lasers. First, the photon-counting
technique, widely applied at storage rings, cannot be used, since all
photons arrive at the same time, and charge integrating front-ends
are required instead. At storage rings, the desired dynamic range can
be obtained by either extended exposure times, or multiple
exposures. At Free-Electron Lasers, a single shot image has to be
able to cover the entire dynamic range. For Free-Electron Lasers
based on superconducting accelerators, frame rates of up to
4.5 MHz, corresponding to the pulse rate of the source, are
additionally required. Even though the time structure of the
European XFEL and FLASH are comparable, their photon
energies are so different that conceptually different detectors are
required.

In the following section we will present the detector systems that
we have developed specifically for the European XFEL and FLASH,
including ongoing improvements and additional systems under
construction. Based on these developments and other previous
projects, we are developing two new systems, CoRDIA and
TEMPUS, which are tailored for the upgraded source PETRA-IV.
The developments and current status will be presented in the
subsequent section. In the final section we will discuss the future
directions of our developments.

AGIPD detectors for the European XFEL

With the construction of the European X-ray Free-Electron
Laser, conceptually new X-ray imagers were required [4]. A few
of the most challenging requirements were that in a single shot the
entire dynamic range from single photons to more than 104 photons
per pixel had to be covered, with a frame rate of 4.5 MHz.
Additionally, as many frames as possible needed to be recorded
during the 600 micro-second long pulse trains. Following a call for
proposals three projects were selected; The Large Pixel Detector
(LPD) [5], the DePMOS Sensor with Signal Compression (DSSC)
[6], and the Adaptive Gain Integrating Pixel Detector, AGIPD [7].
Each system tackled the challenges with a different concept and
targeted different applications [4]. Here only the AGIPD system,
developed under the leadership of the DESY photon science detector
group, will be described. The LPD system was developed by the
Rutherford-Appleton Laboratory in the United Kingdom. The
DSSC system was developed by a larger consortium, initially
under the leadership of the Max-Planck Semiconductor
Laboratory in Munich, and later under the leadership of the
European XFEL itself.

The AGIPD system was developed by a consortium of DESY,
PSI, University of Hamburg and University of Bonn. The AGIPD
ASIC employs a charge integrating frontend with adaptive gain,
where every pixel automatically and autonomously adapts its gain to

the number of incoming photons [7]. Every pixel starts in high gain
mode, with a small feedback capacitor, allowing for single photons to
be distinguished from the noise. As soon as the voltage over the
feedback capacitor reaches a preset threshold, a second, larger,
feedback capacitor is added reducing the gain and extending the
dynamic range. For very strong signals a third, even larger, feedback
capacitor is added, resulting in a low gain and corresponding
dynamic range of 104 photons of 12 keV. At the end of the
integration time the final voltage over the feedback capacitors is
stored in an analog memory, together with the information of the
final gain setting, i.e., which feedback capacitors were used. In this
manner the required dynamic range is achieved. In pixel frame
storage allows for frame rates up to 4.5 MHz, compatible with the
highest pulse rate of the European XFEL. During the
99.4 millisecond interval between pulse trains, the analogue
memory is read out and digitized by external ADCs and the
digital information is transmitted over 10G links to the DAQ
system. The pixel concept is given in Figure 1. The main
parameters of the AGIPD readout ASIC are given in Table 1.

An additional complication for building the system was the
requirement of maximum flexibility. Two 1-million-pixel systems
operate in a moderate vacuum of ≈10−6 mbar and consist of four
individually movable quadrants that protrude into the sample
chamber. Figure 2 shows a picture of the systems in operation at
the MID and SPB/SFX instruments of the European XFEL.

The 1M-AGIPD systems have been in user operation at the SPB/
SFX and MID stations since 2017 and 2019 respectively, and
together produced the vast majority of the scientific user
publications of the European XFEL.

Since commissioning, various improvements have been made to
the system [8].

One improvement concerned the so-called late gain-switching.
Wrong signal values occur when a pixel changes its gain too close to
the end of the integration window, so that the output signal of the pre-
amp is not yet settled when it is stored into the storage cell matrix. The
proper solution to the problem is to block gain switching within the
last 40 ns of the integration window, but this would require a
significant redesign of the ASIC. Instead, two mitigation strategies
were implemented. For experiments that do not require single photon
sensitivity, automatic gain switching is disabled and the system is
operated in fixed medium gain. For experiments that do not require
the highest repetition rate of 4.5 MHz, extended integration times can
be used. Studies have shown that extending the integration time
reduces the occurrence of late gain switching in the transition region
by at least three orders of magnitude.

BothMID and SPB/SFX systems will undergo an upgrade, where
all the front-end modules will be replaced with new ones equipped
with AGIPD1.2 ASICs. This new version fixes an issue of poor gain
bit separation in the AGIPD1.1 ASICs, which resulted in an
ambiguity whether medium or low gain was used.

We are currently constructing two more AGIPD cameras for the
European XFEL. The first one is a 4 megapixel version for the Serial
Femto-second Crystallography (SFX) user consortium, which will
also be installed at the SPB/SFX instrument. This in-vacuum camera
consists of two-halves, which can move independently, by 400 mm
along the beam axis and ±15 mm perpendicular to it. The frontend
modules will be equipped with AGIPD1.2 ASICs and silicon sensors.
A CAD rendering of the 4M-AGIPD is given in Figure 3.
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FIGURE 1
Pixel concept of the AGIPD detector.

TABLE 1 Main parameters of the AGIPD readout ASIC.

Parameter Value Comment

Working principle Charge integrating Required for use at FELs

Adaptive gain 3 stages Gain adaptively selected per pixel by incoming signal

Frame rate 4.5 MHz XFEL bunch frequency

Number of frames 352 during burst 3520 per second

Pixel size 200 μm x 200 μm Dictated by number of frames to be stored during burst

Photon energy >6 keV 6 keV is 5s above noise

Noise 300 e- 1.2 keV in silicon

Dynamic Range 3x107 e- 10k photons at 12 keV in silicon

FIGURE 2
Picture of the 1-million-pixel AGIPD detector system in operation at the MID (left) and SPB/SFX (right) beamlines at the European XFEL.
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The second system is a 1 megapixel version with high-Z sensors
for the Helmholtz International Beamline for Extreme Fields
(HIBEF), which will be installed at the HED instrument. High-Z

sensor material is required for high photon-energies of up to 25 keV.
Since the original AGIPD is hole collecting an electron collecting
version of the AGIPDASIC had to be developed [9]. The camera will
initially be equipped with 500 μm silicon sensors and hole-collecting
AGIPD1.2 ASICs and will later be upgraded to front-end modules
with the electron collecting AGIPD1.3 ASICs and high-Z sensors.
The camera is in vacuum and can be moved along the beam over
550 mm. Special care was taken for electromagnetic compatibility
(EMC), required by the very high pulsed electro-magnetic fields in
the experiments. A CAD rendering of the system is given in Figure 4.

To enable the long in-vacuum travel ranges along the beam axis
of the two new cameras, the entire readout electronics were revised.
The core idea was to combine all the functionality previously
distributed over many different boards on a single readout board,
which is located directly behind the frontend module in vacuum.
This drastically increases modularity and improves reliability, which
was compromised by the large number of connectors in the first
generation systems.

A 0.5 megapixel prototype camera system based on the new
readout electronics, often reffered to as mini-half, is in operation at
HED instrument as part of the dDAC (dynamic Diamond Anvil
Cell) compression platform [10]. Numerous user experiments have
already been successfully completed with the prototype. Installation
and commissioning of both new AGIPD cameras, the AGIPD-4M
for the SFX user consortium and the AGIPD-1M for the HIBEF user
consortium, are planned for 2024.

PERCIVAL soft X-ray CMOS imagers for
FLASH

The Free-Electron Laser in Hamburg (FLASH) produces
photons in the XUV and soft X-ray range. Developing imagers
for soft X-rays is particularly hard, since in order to get the low-
energy photons into the sensitive volume of the sensor, entrance

FIGURE 3
CAD rendering of the AGIPD-4M system in vacuum for the SFX
user consortium at the European XFEL. (A) right half of the detector in
forward position; (B) left half of detector in retracted position; (C)
electrical feed-through connections for signal, power and
control; (D) cooling inlets and outlets for frontend modules and
readout boards; (E) translation stages.

FIGURE 4
CAD rendering of the AGIPD-1M system in vacuum for the HIBEF
user consortium at the European XFEL. (A) frontend modules in
forward position; (B) cooling inlets and outlets for frontend and
readout boards; (C) turbo pump; (D) translation stage.

FIGURE 5
Pixel concept of the PERCIVAL sensor. The standard CMOS 3T
pixel is enhanced by three switches and two capacitors. All three
switches are biased at ~0.7 V, enabling lateral overflow as the diode,
then C0, then C1 reach low voltages. While SW0 and SW1 enable
adding in more capacitance as needed, the third “AntiBlooming”
switch provides controlled overflow for even larger charges, a
preventive measure to avoid ‘blooming’ effects.
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windows and passivation layer thicknesses have to be kept to a
minimum. As for photons below 250 eV, attenuation lengths fall
significantly below 100 nm, the dead layer at the entrance should
be on the order of 10 nm or less. As each photon does not create
many electron-hole pairs (e.g., 69e-for 250 eV in Si), in addition
care must be taken to have favorable electric fields at the surface,
and the readout electronics must have low noise, preferably on
the order of 10–15 electrons or less to avoid false positives in a
megapixel-scale system. In order to meet the requirements for
imaging experiments at FLASH, a backside-illuminated CMOS
sensor, PERCIVAL, was custom designed by Rutherford
Appleton Laboratory. Like AGIPD, every pixel can adapt its
gain according to the incoming signal strength, using an in-
pixel lateral overflow that auto-selects the capacitance used
depending on the charge deposited in the pixel [11]. During
pixel readout, thresholding is used to determine which
capacitor(s) were needed and thus which gain was used, the
corresponding voltage level is digitized on-chip, and ADC output

and gain are transmitted via LVDS. The pixel concept is given in
Figure 5. The main parameters of the system are given in Table 2.

It is the combination of these features that makes Percival an
especially well-suited detector for soft X-ray scattering experiments.
Detailed description of the system and its performance can be found
in [11–18].

Even though the current first version of the sensor has a number
of shortcomings [16] it has been used in a number of proof-of-
principle user experiments, including Holography and XPCS of
magnetic skyrmions at Petra III’s soft X-ray beamline P04, and
single-shot Ptychography at FLASH. These exploratory experiments
showed the great potential of the large dynamic range and high
frame rates of Percival [18]. The shortcomings of the first version
sensor–crosstalk between ADC and digital control lines, and
insufficient ground connections for the pixel array that resulted
in uneven biasing–are understood and are corrected in a second
version of the sensor which was recently submitted to the foundry.
In addition, a more compact version of the camera head has been
designed; a CAD rendering is given in Figure 6.

New developments

Thanks to the technological developments in accelerator
technology, synchrotron storage rings world-wide are currently
being upgraded [19] giving 2 or more orders of magnitude
improvement in the horizontal emittance and overall source
brilliance. At DESY the plan is to upgrade the accelerator
PETRA III to PETRA IV, which will give an improvement of the
source brilliance by a factor 500 at 10 keV and a factor of 1,000 at
60 keV photon energies [2]. This creates many new scientific
possibilities, but also requires an upgrade of the current X-ray
imagers. Even though an increased source brilliance does not
always translate to the same increase in the number of photons
to be detected, it is clear that the X-ray imagers need to have both
higher flux handling capabilities (count rates), and higher frame
rates. As an example, there will be enough incident photons to
obtain statistically significant ptychographic images by raster
scanning entire microelectronic chips with more than 100 kHz
frame rates. This makes it possible, for example, to investigate a

TABLE 2 Main parameters of the Percival imager.

Parameter Value Comment

Frame rate 300 Hz 83 Hz in current version

Readout mode Rolling shutter

Pixel size 27 μm x 27 μm

Sensor size 1484 x 1408 pixels 4 cm x 4 cm, stitched monolithic

Main photon energy 250 eV–1 keV Photons below 100 eV can be detected, 250 eV is 4s above noise, higher energies can be detected with lower
quantum efficiency

Noise 14 e- In optimized very high gain mode

Dynamic range (“full
well”)

5.7 ke-/3,6 Me- per pixel per
frame

In very high gain/low gain mode. Corresponds to 1–50k photons @ 250 eV

Dead area in focal plane 0 Continuous sensitive area

FIGURE 6
CAD rendering of the compact Percival 2M backside-illuminated
CMOS camera. (A) CMOS sensor; (B) Low-Temperature Co-fired
Ceramic (LTCC) interface board; (C) connectors for signals, power and
control; (D) Peltier cooler (white layers); (E)water connection for
Peltier cooling.
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silicon chip for either defects or unwanted structures within a
reasonable period of days. Another example is 3D tomography of
batteries on millisecond timescales during charging and discharging,
in order to follow ongoing processes at the microscopic level. All
these and many more examples require X-ray imagers with a large
dynamic range and frame rates of more than 100 kHz.

As described above, the European XFEL operates in a burst
mode, where all X-ray pulses arrive in less than 1% of the time, the
remaining 99% of the time are needed for the superconducting
accelerator to cool down again. For many reasons this mode of
operation is not ideal for the experiments and more evenly
distributed pulses would be beneficial. Studies and developments
are underway for the accelerator to stretch the pulse trains, and
ultimately to distribute the pulses evenly over time, which is called
continuous wave or CW operation. From a detector point of view,
PETRA IV and a CW-XFEL would become more similar than
PETRA III and European XFEL are at the moment. However, a
100 kHz frame rate is not sufficient for a CW-XFEL operation,
where pulse frequencies of 1 MHz are expected. Since PETRA IV
will almost certainly be realized before an upgrade of the European
XFEL towards more CW operation, we have started the
development of an imager driven by the specifications of PETRA
IV. This development, CoRDIA, will be described in the next
section. PETRA IV will have a large variety of experiments and
techniques and not all needs will be covered by the capabilities of
CoRDIA. Specifically, there will be needs for photon counting based
systems, particularly in experiments with moderate X-ray flux but
extremely high time resolution requirements. For these applications
a system called TEMPUS is being developed, which is based on the
TimePix-4 readout chip and can operate in either photon counting
or time stamping modes. This system will be described in the
subsequent section.

The continuous readout digitizing imaging
array: CoRDIA

For the diffraction limited storage ring PETRA IV, a dedicated
development was started at DESY building on the successful
development of the AGIPD system. Some of the target
specifications are given in Table 3.

The CoRDIA (Continuous Readout Digitising Imager
Array) project is a collaboration between DESY and
University of Bonn. Like AGIPD, CoRDIA is a hybrid pixel
detector in which read-out ASICs will be bump bonded to the
semiconductor sensor. CoRDIA utilizes the same architecture
for the analogue front-end in the ASIC as AGIPD, a charge-
integrating pre-amplifier with adaptive gain. This allows for a
dynamic range from single up to thousands of photons. To
provide continuous operation without any dead time beyond the
reset phase of the front-end, the readout architecture had to be
developed from scratch. Compared to the systems developed for
the European XFEL, frame recording is slower by a factor of ≈30,
while readout frame rate needs to be faster by 2 orders of
magnitude. The latter rules out analogue signal transmission
due to the poor performance expected, while the input rate of
≈150 kHz conveniently allows for the digitization of multiple
pixels with a single ADC. In such a scenario, memory is only
needed on the level of a 2-stage S&H (sample and hold) per
pixel, in order to allow simultaneous frame recording and
digitization of the previous frame. As a benefit, pixel size can
be shrunk considerably.

An analog stage front-end (FE) is used to collect charge
generated by photons in a bump-bonded sensor. The FE circuit
is compatible with electron-collecting sensors, so that a p-doped
silicon sensor could be used for the main energy range (around
12 keV), while high-Z sensors could be used for harder X-ray
imaging. The circuit uses the same adaptive-gain approach as
AGIPD to modulate the signal amplification to the incoming
photon flux. The response of the analog circuit to a charge
injection, emulating photon fluxes of variable intensity (with
modulation of the gain), has been tested on a test chip, at a
frequency of 150k frame/s, i.e., exceeding our frame-rate
requirements [20].

While a new image is stored as an analog signal in one memory
circuits, the previous image stored in the other memory circuit is
retrieved, processed by a correlated-double-sampling (CDS) circuit,
and digitized. As soon as digital bits are produced by the ADC, they
are packaged, encoded, and transmitted off-chip by a high-speed
driver.

To reach a suitable trade-off between frame rate, layout size and
power dissipation, a successive approximation register (SAR) ADC

TABLE 3 Target specifications for CoRDIA.

Parameter Value Comment

Frame rate >135 kHz continuous Revolution frequency of PETRA IV

Readout dead time 0 sec Continuous RW

Reset blind time 0.6 msec 10% of integration time at highest frame rate

Pixel size 110 mm x 110 mm Compatible with 55 mm pitch of Medipix systems

Photon energy 0.5–150 keV Using different sensors

Noise 1 keV Giving single photon sensitivity

Dynamic range 5x103 photons/pixel/image 12 keV in silicon

Dead area in focal plane Minimal Using TSV technology
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was designed, capable of digitizing 11 bits at 2.5 MS/s while reaching
10 ENOBs (effective number of bits net resolution). While its layout
is reasonably compact, it is too large to fit within our target pixel
size (110 μm × 110 µm); on the other hand, the ADC sampling
speed is high enough that the signal from 16 FE circuits can
sequentially be processed by the same ADC without impairing
our frame rate requirements. We defined our basic structure as a
440 μm × 440 µm pixel block (“super pixel”), each including
16 analog FE circuits, a CDS and ADC circuit serving
sequentially the 16 pixels, and 1/128 of the digital readout
circuit.

Space has been reserved in the pixel block layout for through
silicon via (TSV) landing pads that could be used for vertical
integration as an alternative to traditional periphery wirebonding,
so that blind silicon areas could be minimized. The inputs of the FE
circuits are distributed evenly to pads on the “super pixel” surface,
allowing the ASIC to be bump-bonded to a 110 µm -pixel-pitch
sensor.

The readout circuit has been developed by NIKHEF, and
implements the physical layer defined in the IEEE 802.3ae
standard. The circuit consists of the Physical Coding Sublayer
(digital) part, preparing the data for high-speed throughput
(scrambling to ensure DC balance, and 64-to-66-bit encoding),
and fast driver (Gigabit Wire Transmitter) able to stream out data
at several GHz. The circuit has already been used in the
Timepix4 ASIC (discussed later) and has been successfully
tested by the Medipix4 collaboration [21] at 5.12 GHz. In our
architecture, each block of 2k pixels is streamed out by one such
circuits: since each pixel output is digitized with less than 16 bits,
the 5.12 GHz frequency is enough to cover our frame rate
requirements.

Several MPW prototypes have been designed and
manufactured in TSMC 65 nm technology, see Figure 7, to
validate the circuits described above as standalone blocks, up
to now confirming expected performances. We acknowledge
CERN and the RD53 collaboration for developing several IO
blocks that were used in the design of the MPWs. A further
ASIC prototype, embedding some of the blocks in a
“superpixel” layout, is currently under test. We aim at
developing the first version of the imager so that it will be
ready for the first experiments at the PETRA-IV upgraded ring,
expected in 2029.

The TimePix-4 based Edgeless Multi-
Purpose Sensor: TEMPUS

A large number of different experiments at PETRAIII have
benefited from the use of one of the detectors developed at
DESY, the LAMBDA detector [22]. Based on the
Medipix3 photon counting readout chip [23], it has become a
workhorse for many different experimental stations. The
combination of a small pixel size, of 55 μm, with relatively
high readout rates have made it attractive for X-ray imaging
at synchrotrons. Moreover, the use of high-Z sensors (mainly
CdTe and GaAs) and the option of tiling up several ASICs
covering a large area, has pushed the project to a full
commercialization of the detector by the DESY spin-off
company X-Spectrum GmbH [24].

In that context, a new readout chip has been recently
developed by the Medipix4 collaboration using 65 nm
technology, Timepix4 [21]. This chip, almost 4 times as large
as the previous generation while keeping the same 55 μm pixel
pitch, offers an array of 448 × 512 pixels. One crucial difference
with this new device is the combination of two distinct operation
modes, whose specifications can be found in Table 4. Firstly,
there is a Photon Counting mode, similar to the Medipix3, but it
improves frame rate up to 40 kfps, and maximum counting rates
by an order of magnitude compared to its predecessor. Secondly,
there is a time-stamping mode, where for each photon detected a
packet of data is sent out containing the pixel coordinates, a
timestamp and an energy measurement; this can provide
extremely high time resolution in experiments with moderate
fluxes. Compared to the previous generation, the
Timepix3 readout chip [25], the hit rate has been increased by
an order of magnitude and the time resolution can achieve a value
of 192 ps with suitable sensors.

To reach these high frame and event rates, the chip has 16 high
speed readout links developed by Nikhef; the design of these links is
being re-used in the CoRDIA detector. In the chip’s original
specifications, these were targeted at 5.12 Gbps, but during
development a 10.24 Gbit/s mode was also developed. Since this
speed has not yet been fully demonstrated, Table 4 conservatively
lists the frame and event rates with 5.12 Gbps readout, but the
readout system is designed to be compatible with 10.24 Gbps
readout.

FIGURE 7
MPWprototypes including standalone circuits for validation. From left to right: CoRDIA01 - front-end and CDS, HIS-ADC01 - SAR ADC, CoRDIA03 -
multi-gigabit transmitter, CoRDA02 “superpixel” layout including front-end, CDS and ADC.
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At DESY, the development of a readout system based on this
new ASIC has started: TEMPUS, the Timepix4-based Edgeless
Multi-Purpose Sensor. The initial system developed is a single-
chip system, consisting of a custom chip carrier board
connected to an off-the-shelf Xilinx evaluation board–see
Figure 8 left. The board has a Zynq system-on-chip,
incorporating a CPU for high-level control functions, and an
FPGA fabric for low-level interfacing with Timepix4. In
particular, this provides high-speed transceivers for receiving
the high amount of data from the chip and sending serialized
data out over 100 Gigabit Ethernet links. To send the data from
the Xilinx evaluation board to the outside world, an FMC +
FireFly daughter board with up to 6 Samtec FireFly links is used
to reach the 160 Gbps data bandwidth. To make effective use of
Timepix4, TEMPUS uses high-data-rate board designs and
firmware.

The chip can be configured for sending the data out using the
control link, as a debugging tool. This, although limited to a

much lower hit rate of ~5,000 hits/s, has already allowed us to
obtain a number of images of background radiation and
measurements of X-ray sources–see Figure 8 middle.
Operating in timestamping mode, Timepix4 offers nanosecond
timing while detecting X-rays with a silicon sensor.

There are a range of anticipated applications in photon
science. Photon counting detectors nowadays are widely-used
in X-ray diffraction experiments, and Timepix4’s high frame
rate in photon counting mode will enable higher-speed
measurements, for example, when rapidly raster-scanning
large samples. Time-stamping mode will enable much higher
time resolution in X-ray diffraction experiments with moderate
flux; for example, experiments such as XPCS and XCCA
studying dynamics of proteins in solution. Furthermore,
Timepix4 can potentially replace detectors such as delay
lines or APDs in experiments measuring emission of
photoelectrons or nuclear fluorescence from a sample excited
by an X-ray pulse.

TABLE 4 Timepix4 chip readout specifications.

Parameter Value

Sensitive area 6.94 cm2

Pixel size 55 x 55 μm2

Pixel arrangement 512 x 448

Photon Counting Mode Max count rate 2 x 106 hits/pixel/s

Max frame rate (@ 5.12 Gbps/link) 40 kfps @ 8-bits depth

Time-stamping Mode Chip readout rate (@ 5.12 Gbps/link) 1.24 x 109 events/s

Corresponding average pixel rate 5.4 kHz/pixel

Time resolution 192 ps

Energy resolution <1 keV

Readout bandwidth @ 10.24 Gbps/link ~163 Gbps

FIGURE 8
Left: The TEMPUS system, comprising the custom carrier board, the Xilinx evaluation board, and the FMC+ Firefly board;middle: acquisitionmade in
the time-stamping mode using a55Fe source and a DESY logo as target (the fuzzy edges are due in part to the logo itself, which was a printed metal
structure); right: future concept of a TEMPUS multi-chip system in collaboration with X-Spectrum.
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Finally, the Timepix4 chip has been designed to be fully TSV
compatible. As described in the next section, this technology
will allow powering, control and data read out from the back of
the chip, eliminating the use of wire-bonds. This 4-side buttable
chip will make it possible to build multi-chip systems with
reduced gaps between the ASICs, therefore minimizing the
dead area in the imaging plane. DESY, together with
X-Spectrum, has already started the development of a multi-
chip module–see Figure 8 right–which in turn can be tiled to
create multi-megapixel systems.

Near future developments

In addition to the above-described developments of new
systems, there are also a number of technological and
component developments in the DESY photon science
detector group. One of them is focused on high-Z sensors for
higher photon energies. This is a very important energy range for
PETRA and the European XFEL, both being high energy
machines. Over the past decades DESY together with partners
have successfully developed large area GaAs sensors with
acceptable quality [26]. We will continue these activities,
further improving the performance and contributing to
establish multiple suppliers. GaAs shows a number of
advantages over other high-Z sensor materials like Cd(Zn)Te,
one being the much shorter range of fluorescent photons
generated by the sensor itself. The shorter range leads to less
blurring and makes charge summing techniques more efficient
[27]. However, for photon energies above 50 keV the efficiency of
GaAs sensors drops to unacceptable levels, and higher Z sensors
are required. High-flux CdZnTe is the most promising material
also for experiments with high instantaneous intensities, e.g., at
the European XFEL [28]. We at DESY are participating in the
world-wide efforts to further improve the quality, availability and
size of this material.

At the other end of the energy spectrum, we are involved with
the development of inverted-Low Gain Avalanche Diodes
(i-LGADs) with thin entrance windows. The high energy physics
community has initiated the developments of LGADs mainly for
their timing performance. The photon science community is now
pushing the development of inverted LGADs in order to boost the
weak signals produced by low energy photons [29]. The enormous
advantage of such sensors becoming available is, that the entire
detection chain developed over many decades for the intermediate
photon energies can be used also for the low photon energies. Even
though imaging at DESY is mainly done in the medium X-ray
energy range, soft X-ray imaging, especially at FLASH, remains a
scientifically important area.

Another technological development that will bring significant
improvements to the X-ray imaging experiments is the use of
through silicon vias (TSVs). TSVs with redistribution layers will
almost completely eliminate the dead areas required for wire
bond connections in the imaging plane of large multi-module
imagers. This avoids the loss of important information, in
particular for non-repeatable scattering experiments. One
example is high pressure experiments on small unit cell
compounds using dynamic diamond anvil cells, where only a

few reflections are produced and some fall in the gap between
modules. At DESY we successfully developed TSV based modules
with the Medipix3 readout chip [30]. However, manufacturing
time was too long and the yield too low for it to be a viable option
to produce multi-module systems. One of the reasons was the
non-ideal layout of the metal stack in Medipix3; the TSV landing
pad consisted of a single layer with a mesh structure, and over-
etching could result in making contact with structures in the next
layer. In Timepix4 and other chips, multiple metal layers are used
for landing pads, to avoid this problem. Another reason was the
developmental nature of the chip processing we were using. TSV
technology has been around for a long time, but has not been
readily available to the scientific community. An important
reason is that the required volumes are often too small for
foundries to be interested. It is hoped that a concerted effort
by the larger photon science detector community might change
this situation.

Conclusion

Over last decades, a number of X-ray imagers have
successfully been custom developed by DESY for the different
photon sources operating in the Hamburg area. Due to the
continual improvement in source performance these systems
are continuously upgraded, and new system are developed. For
the future source PETRA IV, DESY is focusing its developments
on a high frame rate integrating imager, CORDIA, and a high
time resolution photon-counting imager TEMPUS.
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X-ray beam test of fabricated
photo-diodes for Pohang-
Accelerator-Laboratory X-ray
free-electron laser

S. C. Lee1, H. J. Hyun1*, J. M. Baek2†, S. M. Hwang1, H. Jang1,
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1XFEL Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology,
Pohang, Republic of Korea, 2Department of Physics, Kyungpook National University, Daegu, Republic of
Korea

The Pohang-Accelerator-Laboratory X-ray free-electron laser (PAL-XFEL) emits
intense, ultra-short X-ray pulses, enabling studies on ultra-small and -fast
dynamics in various fields. We designed and fabricated silicon p-intrinsic-n
photo-diodes (PDs) to detect strong X-ray pulses. Four types of PDs were
fabricated with different metal shapes on the P- and N-sides. The fabrication
process was split into two parts, based on the thickness of the Al metal and anti-
reflective coating (ARC) layers, to evaluate the fabrication process feasibility and
the detection performance. A beam test was performed with X-ray pulses at the
soft X-ray beamline of the PAL-XFEL using the proposed PDs and a commercial
PD. The test was designed to evaluate the effects of the metal and ARC layers and
compare the detection efficiency depending on the X-ray entrance side and signal
readout side. The waveforms were saved during the test and integrated to obtain
the charges. Thereafter, they were analyzed and normalized, and compared. This
paper presents the preparation, setup, and procedure of the beam test, and the
test results are described.

KEYWORDS

PIN photo-diode, fabrication, metal thickness, anti-reflective coating, signal readout,
X-ray beam test, Pohang-Accelerator-Laboratory X-ray free-electron laser (PAL-XFEL)

1 Introduction

The Pohang-Accelerator-Laboratory X-ray free-electron laser (PAL-XFEL) [1, 2] is a
scientific research facility that provides intense, ultra-short, and coherent X-ray pulses,
typically generated through self-amplified spontaneous emission (SASE) process [3, 4]. The
PAL-XFEL has recently begun offering hard X-ray self-seeded FELs [5] for specific
experiments that require a narrow bandwidth and high spectral brightness. The PAL-
XFEL comprises a hard X-ray (HX) beamline [6] and a soft X-ray (SX) beamline [7, 8]. The
HX and SX beamlines operates with photon energies in the ranges of 2–15 keV and
0.25–1.25 keV, respectively. The unique properties of XFEL beams enable the study of
ultra-small and -fast dynamics in various fields through pump-probe experiments [9].
Optical laser pump with wavelengths of 266, 400, or 800 nm and X-ray probe experiments
are commonly conducted at the PAL-XFEL.

The XFEL beam unpredictably fluctuates between pulses because of the SASE process;
thus, online photon diagnostics is essential. As representative online diagnostics devices, the
quadrant beam position monitor (QBPM) and gas monitor detector (GMD) are used at the
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FIGURE 1
(A) Simple schematics of four metal types; P- and N-side rings and whole metals and (B, C) cross-sectional views of their combinations; (i) PrNr, (ii)
PwNr, (iii) PrNw, and (iv) PwNwdepending on the existence of an ARC layer. In their schematics, sky blue represents the silicon substrate, green represents
the passivation layer of SiO2, gray represents the Al metal layer, and blue represents the ARC layer of Si3N4. Pr had the SiO2 layer, and Nr may or may not
have the Si3N4 layer depending on the ARC process. The implant region of Pw and Nw is covered by the Al metal layer.

FIGURE 2
Electrical characteristics of fabricated PDs. (A, C) Capacitances and (B, D) leakage currents of Sets A and B.
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HX and SX beamlines, respectively. The QBPM comprises four
photo-diodes (PDs) and a thin film in the beam path [10, 11]. The
operation of the GMD is based on the photo-ionization of noble
gases [12]. In addition, PDs are used in various ways at both
beamlines as destructive or non-destructive methods, including
beam alignment, beam size measurement, timing jitter
measurement, and scattering signal measurement (a method for
normalizing experimental data).

The PDs used at the PAL-XFEL are commercial, and it can be
challenging to optimize their specifications for various purposes and
obtain them on time owing to external factors, such as international
circumstances. Thus, we designed and fabricated PDs for strong
X-ray and optical laser detection at the foundries of institutes in
South Korea using an N-type silicon substrate with a thickness of
500 μm, diameter of 6 inches, and high resistivity (more than

5 kΩ·cm). We designed four types of p-intrinsic-n (PIN) PDs
depending on the metal structure on the P-side (junction side,
signal readout) and N-side (ohmic side, light entrance window).
The metal on each side was designed as a ring or whole shape and
labeled as Pr (P-side ring), Pw (P-side whole), Nr (N-side ring), or
Nw (N-side whole). Anti-reflective coating (ARC) was applied to the
N-side to reduce the reflection of visible light. A thick SiO2 layer was
deposited on the P-side to protect it from environmental
degradation. Figure 1 shows the different metal types used on the
P- and N-sides. The fabricated PDs have been previously
characterized [13] in terms of design, fabrication, electrical
characteristics, quantum efficiency, signal-to-noise ratio, and
energy resolution. The PDs were evaluated for the effects of
metal thickness and detection efficiency using an XFEL beam.
This paper presents the electrical characteristics of selected PDs

TABLE 1 Evaluating the effect of Al and ARC layers on the N-side. Set A comprised PwNr and PwNw structures, with cross-sectional views depicted in Figure 1B(ii),
Figure 1C(ii), Figure 1B(iv), and Figure 1C(iv), respectively. The fabrication parameters for the Al metal and ARC layers in Set A, as well as the target and measured
values are presented. Set A has light entrance on the N-side and signal readout on the P-side.

PD id PD type Cross-section view TiW metal (nm) Al metal (nm) ARC (nm)

A-1 PwNr Figure 1B(ii) - - -

A-2 PwNw Figure 1B(iv) 150 100 (92.4 ± 0.6) -

A-3 PwNw Figure 1B(iv) 150 200 (189.7 ± 1.3) -

A-4 PwNr Figure 1C(ii) - - 48.8 ± 2.0 (48.3 ± 0.5)

A-5 PwNw Figure 1C(iv) 150 400 (373.6 ± 3.0) 48.8 ± 2.0 (48.3 ± 0.5)

TABLE 2 Investigating the effect of light entrance and signal readout sides. Set B consisted of the HPK-PD and four fabricated PrNr type PDs, with cross-sectional
views depicted in Figure 1B(i). Definitions of light entrance and signal readout sides of Set B are presented.

PD id PD type Cross-section view Light-in Signal-out Conditions of both sides

B-1 HPK-PD N/A P-side P-side N/A

B-2 PrNr Figure 1B(i) P-side P-side No ARC layer on N-side and thick passivation layer on P-side

B-3 PrNr Figure 1B(i) P-side N-side

B-4 PrNr Figure 1B(i) N-side P-side

B-5 PrNr Figure 1B(i) N-side N-side

FIGURE 3
Layout of the experimental hall of the SX beamline.
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for an X-ray beam test and describes the test results depending on
themetal and readout types of the PDs, including the existence of the
ARC layer. The fabricated PDs were compared with a commercial
PD (S3590-09, Hamamatsu (HPK-PD) [14]).

2 Beam test with X-ray pulses

2.1 Purpose and preparation

The main purposes of the X-ray beam test with the fabricated
PDs were to evaluate the effect of the metal thickness and ARC layer
and compare the detection efficiencies of the fabricated PDs with
that of the HPK-PD, depending on the light entrance and signal
readout sides. Nine fabricated PDs were selected based on their

electrical test results and categorized into Sets A (A-1 to A-5) and B
(B-2 to B-5), to address the test objectives. The HPK-PD was
designated B-1. The capacitance and leakage current of the PDs
with good and similar electrical test results were measured using an
LCZ meter (4277A, HP) and a picoammeter (6487, Keithley)
(Figure 2). The measured capacitances at the full depletion
voltage of 125.6 ± 4.9 V correlated with the calculated bulk
capacitance of 20.7 ± 0.9 pF/cm2. The leakage currents of the
PDs except A-4 and A-5 were below 10 nA/cm2 at the full
depletion voltage. A printed circuit board (PCB) for detecting
high intensity beams in the photoconductive mode was used to
mount the PDs. The pads of the PCB were wire-bonded to the
electrodes of the PDs for signal readout and biasing.

Set A was used to evaluate the effects of the metal thickness and
ARC layer on the N-side. Set A PDs were the Pw type and shared a

FIGURE 4
Vacuum test chamber installed downstream of the RSXS endstation with PDs from Sets A and B assembled inside.

FIGURE 5
Signal waveforms of fabricated PDs in Set A under applied biases from 10 to 50 V for a photon energy of 900 eV.
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common light entrance and signal readout configuration (X-ray
entrance to the N-side and signal readout from the P-side). Table 1
lists the fabrication parameters of the metal and ARC layers of Set A.
A-1 was of the Nr type, with no metal or ARC layers on its N-side
(Figure 1B(ii)). A-2 and A-3 both had 150 nm-thick TiW layers and

Al layers of 100 and 200 nm, respectively, on their N-sides (Figure
1B(iv)). The average thickness of the ARC layer on A-4 (Figure
1C(ii)) and A-5 (Figure 1C(iv)) was 48.3 ± 0.5 nm, as measured at
five points on the wafer (top, bottom, left, right, and center). A-5 was
of the Nw type with a metal stack of 150 nm-thick TiW and 400 nm-

FIGURE 6
Signal charge, amplitude, and time of Set A at photon energies of 400, 500, 700, 900, and 1,100 eV.
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thick Al. The thicknesses of the Al layers were determined by
measuring the sheet resistance of the Al at five points on the
wafer, using the average sheet resistance and resistivity of Al
(2.735 × 10−8 Ω·m). Set B comprised the HPK-PD (B-1) and four
fabricated PrNr type PDs without metal or ARC layers (Figure

1B(i)), to examine the effects of the light entrance and signal readout
sides on charge collection and rising time. Table 2 defines the light
entrance and signal readout sides of each PD. B-1 and B-2 had the
light entrance and signal readout on the P-side, whereas B-3 had the
light entrance and signal readout on the P- and N-sides, respectively.

FIGURE 7
Normalized charge distributions as a function of applied bias depending on cuts applied, for A-1–A-5 (left to right) and 400–1,100 eV (top to
bottom).
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B-4 was the opposite of B-3, and B-5 had the light entrance and
signal readout on the N-side.

2.2 Setup and procedure

The X-ray beam test was performed at the SX beamline of the
PAL-XFEL. Figure 3 shows the layout of the experimental hall of the
SX beamline. A vacuum test chamber was installed between a
resonant soft X-ray scattering (RSXS) endstation and an X-ray
absorption and emission spectroscopy (XAS/XES) endstation. An
X-Ymanipulator was assembled on the test chamber, and Sets A and
B were assembled in a holder and successively tested. Charge signals
from the PDs were processed using a current amplifier (DHPCA-
100, FEMTO) and a digitizer (PXIe-5160, National Instruments)
synchronized with the PAL-XFEL event timing system. Figure 4
shows the vacuum test chamber installed on the SX beamline, with
the PDs. Prior to the data acquisition, the PD holder was aligned,
and the center position of each PD was recorded using the X-Y
manipulator.

Monochromatic photons with energies of 400, 500, 700, 900, and
1,100 eV were used. The size of the vertical exit slit was 0.1 mm,
except for 400 eV photons, which used a larger slit with a size of
0.2 or 0.25 mm. As a result of previous X-ray beam test, we decided
to apply the under-bias voltage which showed similar signal charge
compared to the full depletion or over-bias voltages [15]. Therefore,
at each energy, the reverse bias voltages of the fabricated PDs (HPK-
PD) were varied from 10 to 50 V (30 V), with steps of 10 V, applied
to the opposite side of the signal readout for Sets A and B. The
waveforms of all the PDs, as well as the waveforms of photo-ions and
photo-electrons from the GMD at the experimental hall (EH-GMD),
were saved for each setting. A total of 1,200 pulses were collected for
each setting at a repetition rate of 60 Hz. No attenuators were used,
and the X-ray photon flux was adjusted by changing the sizes of the
entrance and vertical exit slits for Set B at 900 eV.

The charges of the PDs and EH-GMD were obtained by
integrating the saved waveforms. The PD charges correlated
better with the EH-GMD photo-electron charges than the photo-
ion charges. Thus, the PD charges were normalized using the EH-
GMD photo-electron charges according to the following equation:

�Qnorm � 1
n
∑
n

i�1

qi PD( )
qi EH − GMD( ), (1)

where qi(PD) is the ith charge of the PD, qi(EH-GMD) is the ith
charge of the EH-GMDphoto-electrons, and n is the total number of
X-ray pulses.

2.3 Test results

2.3.1 Effects of metal and ARC layers
Figure 5 shows the averaged signal waveforms of the PDs in Set

A depending on applied bias voltages for 900 eV monochromatic
X-rays. The PDs in Set A exhibited similar waveform shapes. With
an increase in the bias voltages, the waveforms exhibited increasing
heights and rapidly rising times. However, the peak heights were
dependent on the thickness of the metal layer and the presence of an
ARC layer. Figure 6 shows the averaged charges, amplitudes, and
times as a function of bias voltages for Set A at each photon energy.
The charges were calculated by integrating the waveforms. The
amplitudes were the maximum heights of the waveforms, and the
times were those at which the waveforms reached their maximum
heights. The data from 1,200 pulses were averaged for each setting,
and the averages and standard deviations were plotted. The facts that
the charges were not affected by the bias voltage, the amplitudes
increased, and the times decreased as the bias voltage increased were
clearly shown over all photon energies. However, the charges varied
from A-1 to A-5. Contrary to expectations that the ARC layer of
Si3N4 would function as an attenuator, A-4 and A-5 with ARC layers

FIGURE 8
Signal waveforms of the HPK-PD (B-1) and fabricated PDs (B-2–B-5) with applied biases from 10 to 30 V or 50 V at 900 eV.

Frontiers in Physics frontiersin.org07

Lee et al. 10.3389/fphy.2023.1328639

74

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1328639


offered better responses than A-1 and A-2–3, respectively. This
suggested that the ARC layer, which had a medium refractive index,
played an anti-reflection role on the silicon and metal surfaces even
for X-rays. Thus, A-4 exhibited the largest charges and amplitudes at
all photon energies because of the absence of the metal layer and the

effect of the ARC layer. A-5, with the thickest metal layer, exhibited
slightly larger charges than A-2 and A-3, particularly at higher
photon energies, probably because metal attenuation decreased at
higher energies. The signal charges of A-1 and A-4 were sufficiently
large such that their rising times were unaffected by photon energy.

FIGURE 9
Signal charge, amplitude, and time of Set B at photon energies of 400, 500, 700, 900, and 1,100 eV.
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Contrarily, the signal charges of A-2, A-3, and A-5 were small at
400 and 500 eV because of their metal layers, resulting in short rising
times with large errors (Figure 6).

The PD charges were normalized to the charges of the EH-GMD
photo-electrons using Eq. (1) for each experimental parameter.
Considering that the PDs were always saturated at high incident
flux in the correlation plot between the PDs and EH-GMD photo-
electron charges, the normalized charges of the PDs were obtained
after the cuts were applied. The cuts were determined to be 2.0 ×
10−8 C and 3.0 × 10−8 C for 400 eV and the other energies,
respectively. Figure 7 shows the normalized charge distributions
as a function of bias voltages for each PD and photon energy, with
and without cuts applied. For A-1 and A-4, particularly at a photon
energy of 900 eV, which had the highest intensity, the signal charges
of the PDs were sufficiently large to be saturated. Thus, the
normalized charges significantly increased after the cuts were
applied. The detection efficiency of A-4 improved by 55.4%
(36.6%) over that of A-1 at 900 eV (on average for all the photon
energies). The large errors of 1,100 eV shown in Figure 7 were due to
the poor signal-to-noise ratio of the EH-GMD signal. To address this
challenge, the gain of the EH-GMD was increased at 1,100 eV for
Set B.

To examine the thickness of the Al metal layer, the ratios of the
normalized charges, �Qnorm_A−2/ �Qnorm_A−1, �Qnorm_A−3/ �Qnorm_A−1, and
�Qnorm_A−5/ �Qnorm_A−4, were calculated after applying cuts and
compared with theoretical values considering X-ray attenuation
in matter [16]. The obtained ratios were smaller than the
theoretical values at all energies. The ratios of the theoretical
values to the measured values ranged from 1.004 to 3.895 and
increased with a decrease in the photon energy. The observed
differences could have been due to a thicker TiW layer,
unexpected layers stacked during other fabrication processes,
such as SiO2 or reflections at the metal/silicon interfaces. The
thicknesses of TiW and SiO2 were calculated to be about 300 and
500 nm, respectively, considering the effect of single layer only.
X-ray reflection at the interface was observed for A-4.

2.3.2 Detection effects according to light incident
and signal readout surfaces

Figure 8 shows the averaged signal waveforms of Set B. B-1, B-2
and B-3, which used their P-side for light entrance, had similar sharp
rising shape of waveforms. Because B-3 used its N-side for reading
the signals, the waveforms were inverted. For the same reason, B-4
and B-5, which used their N-side for light entrance, showed the
similar gradual rising shape of waveforms with an opposite sign. B-1,
B-2, and B-4 read signals from the P-side, similar to Set A, and B-4
had the same light incident direction as Set A. Thus, their behavior
as a function of bias voltages was similar to Set A; increased heights
and shorter rising times were observed with an increase in the bias
voltage (Figure 9). B-3 and B-5 used their N-side to read the signals;
therefore, their waveforms were inverted. Additionally, the
waveforms of B-3 and B-5 appeared unaffected by changes in the
bias voltage, resulting in minimal change in amplitude and rising
time across all the photon energies (Figure 9). Technology CAD
(TCAD) simulation [17] was performed to understand the
difference in the signal readouts of the P- and N-sides. The
simulation revealed that the electric field on the P-side increased
and the depletion depth expanded as the bias voltage increased while
the electric field on the N-side remained constant (Figure 10). This
explains why the N-side signal readout exhibited different waveform
characteristics, in terms of the amplitudes, and rising time,
compared with the P-side signal readout.

Among Set B PDs, B-1 had the highest charges and amplitudes at all
photon energies. The rising times of B-2 were close to or shorter than
those of B-1 at photon energies below 700 eV, which were results of the
same cause for the shorter rising times of A-2, A-3, and A-5 within the
same energy range. A thick SiO2 passivation layer on the P-side
significantly attenuated the incident X-ray flux at a lower energy.
The charges of B-2 and B-3, which used the P-side for X-ray
entrance, were slightly lower than those of B-4 and B-5, which used
the N-side for light entrance, except at 1,100 eV. This was consistent
with the normalized charge distributions as a function of bias voltage
shown in Figure 11. The effect of the SiO2 was investigated by

FIGURE 10
TCAD simulation results of the electric field distribution of PDs with thicknesses of 300 and 500 μm.
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comparing the ratios of normalized charges �Qnorm_B−2(3)/ �Qnorm_B−4(5)
to the theoretical values of 1,350 nm-thick SiO2 [16] after the cuts
applied. The cut value for Set B was determined to be 3.0 × 10−8 C for
photon energies below 1,100 eV and 4.0 × 10−8 C for 1,100 eV.

Figure 12A shows the theoretical values and measurement results
(�Qnorm_B−2(3)/�Qnorm_B−4(5)), as a function of photon energy, with
cuts. Figure 12B shows the ratios of the measured values to the
theoretical values. Errors were calculated by error propagation using

FIGURE 11
Normalized charge distributions as a function of applied bias depending on whether cuts were applied or not, for B-1–B-5 (left to right) and
400–1,100 eV (top to bottom).
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the standard deviations of each normalized charge. The measured
values exceeded the theoretical values by a factor of more than 2,
indicating the anti-reflection effect of the SiO2 layer.

To compare the fabricated PD with commercial PD, we calculated
the ratios of normalized charges �Qnorm_B−2/ �Qnorm_B−1 and compared
with theoretical values of a 1,350 nm-thick SiO2 depending on the cuts
applied. Figure 13A shows the theoretical values and measurement
results (�Qnorm_B−2/ �Qnorm_B−1) as a function of photon energy, with and
without applied cuts. Figure 13B shows the ratios of themeasured values
to the theoretical values. The �Qnorm_B−2/�Qnorm_B−1 ratios at 900 and
1,100 eV correlated with the theoretical values obtained after cuts were
applied. Thus, the ratio of the measured to theoretical values were close
to one. A difference of 2.2σ in the maximum value was observed at
700 eV and below, suggesting a potential improvement in anti-
reflection effect compared to the commercial PD.

B-2 and B-4 had a higher amplitude and shorter rising time than
B-3 and B-5, respectively. This implied that reading signals from the
P-side was appropriate when fast reading was required in case of
partial depletion. At 900 eV, the rising times of B-1 to B-5 at
maximum bias voltage were 8.9 ± 0.3, 10.7 ± 1.0, 16.2 ± 0.8,
14.8 ± 0.4, and 20.5 ± 0.5 μs, respectively. B-1 and B-2, which
used the P-side for light-in and signal-out, had the best rising times,
and B-2 was comparable to B-1.

The incident flux was adjusted to three by changing the sizes of
the entrance slit and vertical exit slit at a photon energy of 900 eV. At
the standard slit setting, all the Set B PDs exhibited different
normalized charge distributions depending on whether or not
cuts were applied (Figure 11), although there were differences
between the PDs. The difference between the normalized charge
distributions depending on the existence of cuts for each PD
decreased as the incident flux decreased with smaller slit sizes. It
was within 1σ for B-1 and disappeared for B-2 to B-5 at the smallest
incident flux.

3 Conclusion

We designed and fabricated PDs for use as diagnostic devices at
the PAL-XFEL for detecting X-rays or optical lasers. The PDs were
manufactured with different Al metal thicknesses and ARC layers to
evaluate the feasibility of fabricating thin metal PDs and assess their
functionalities. The electrical characteristics, leakage current and
capacitance, of the fabricated PDs were measured, and nine PDs
with good electrical characteristics were selected for X-ray beam
testing. The X-ray beam test was performed at the soft X-ray
beamline of the PAL-XFEL with photon energies ranging from

FIGURE 12
(A) Ratios of normalized charge of B-2 (B-3) to that of B-4 (B-5) after cuts were applied and the theoretical values as a function of photon energy. (B)
Ratios of the measured to the theoretical values as a function of photon energy with cut.

FIGURE 13
(A) Ratios of normalized charge of B-2 to that of B-1 and the theoretical values as a function of photon energy. (B) Ratios of the measured to the
theoretical values as a function of photon energy, depending on whether cuts were applied or not.
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400 to 1,100 eV. The under-bias voltages were applied to the PDs,
and the PD charges obtained integrating waveforms were
normalized using EH-GMD charges. Due to saturation observed
in the PDs when exposed to unattenuated strong X-ray pulses,
the normalized charges were compared after applying cuts to the
data. The five PDs with different Al metal thickness and the
presence or absence of ARC layers on their N-side were initially
tested to evaluate the effect of the metal and ARC layers. The
temporal and amplitude characteristics of signal waveforms
were modulated by the bias voltage while maintaining a
constant normalized charge. The PDs with ARC layers
exhibited the better detection efficiency, and particularly the
PD with only ARC layer, indicating that the ARC reduced
reflection at the silicon surface, even for X-rays. When the
ARC and metal layers were present, the anti-reflection effect
was evident at photon energies above 700 eV and minimal at the
low energy of 500 eV. The estimated transmissions by the metal
layers were 1–4 times lower than the theoretical predictions, and
this discrepancy widened as the photon energy decreased. These
could have been due to the thickness of the TiW layer exceeding
the target thickness, unexpected additional layers stacked during
other fabrication processes, or reflections at the interfaces of the
metal and silicon layers. To investigate the effect of light
entrance and signal readout side configurations and compare
with a commercial PD, we assembled PDs onto the PCB in four
distinct arrangements. The signal waveforms exhibited varying
behavior depending on the signal readout side. For the P-side
signal-out configurations, the signal waveforms were affected by
the bias voltage, as the increasing bias voltage resulted in an
enhanced electric field and expanded depletion depth from the
P-side. The charge discrepancies between the N-side light-in and
the P-side light-in configurations were examined, taking into
account the 1,350 nm-thick SiO2 passivation layer on the P-side.
Interestingly, the SiO2 layer appeared to serve not only as an
attenuating layer but also as an anti-reflection layer, similar to
the Si3N4 ARC layer. The P-side light-in and signal-out PD
exhibited rapid signal rise times, comparable to the commercial
PD which was achieved the highest charge and amplitude values
across all photon energies. Accounting for the thick passivation
layer of the PD, the normalized charge ratios of the commercial
PD and the PD were consistent with the theoretical values at
900 and 1,100 eV. Moreover, the use of an optimized SiO2 layer
could potentially enhance the performance of the PD below
700 eV, surpassing that of the commercial PD. Based on the
beam test results, we will optimize PDs with different metal and
ARC layer parameters, and readout types for various detection
purposes.
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into user data

Philipp Schmidt*, Karim Ahmed, Cyril Danilevski, David Hammer,
Robert Rosca, Thomas Kluyver, Thomas Michelat, Egor Sobolev,
Luca Gelisio, Luis Maia, Maurizio Manetti, Janusz Malka,
Krzysztof Wrona, Jolanta Sztuk-Dambietz, Vratko Rovensky,
Marco Ramilli, Nuno Duarte, David Lomidze, Ibrahym Dourki,
Hazem Yousef, Björn Senfftleben, Olivier Meyer, Monica Turcato,
Steffen Hauf and Steve Aplin

European XFEL, Schenefeld, Germany

The European X-ray Free Electron Laser is a research facility located close to
Hamburg, offering X-ray pulses with ultra-high brilliance and femtosecond
duration at megahertz repetition rates. The detection systems necessary to
unlock the full scientific potential made possible by this machine poses
considerable challenges both in terms of data volume and rate, as well as the
interpretation of their recorded signal. To provide optimal data quality, expert and
detector-specific knowledge not easily accessible to external facility users is
essential, and its implementation must cope with the generated volumes. We
therefore aim to perform these preparatory processing steps and offer users a
dataset suitable for further analysis as the primary data product. This work
describes the machinery and workflows providing this data to users in an
automatic, configurable and reproducible manner, both online during the
experiment, and offline for scientific analysis afterward on the way to publication.

KEYWORDS

photon science, free electron laser, big data, data analysis, data quality, detector
correction, HPC

1 Introduction

The advent of X-ray free electron laser sources and in particular their recent advance into
data rates in the kHz regime continues to push the boundaries of data analysis techniques.
The European X-ray Free Electron Laser (European XFEL) [1, 2], in operation since 2017, is
such a facility located in the area of Hamburg, Germany. Its superconducting linear
accelerator produces electron bunches with an energy of up to 17.5 GeV in a unique
burst mode time structure as shown in Figure 1. The resulting X-ray pulses are arranged in
trains of up to 2,700 pulses, with trains arriving at a rate of 10 Hz. Within each train, the
pulses are separated by as little as 222 ns, which is equivalent to an intra-train repetition rate
of up to 4.5 MHz. They are currently delivered to three beamlines in parallel covering the soft
X-ray to hard X-ray photon energy regime. At each beamline, up to three instrument
endstations are installed spanning a large range of different experiment techniques.

This unique train-pulse time structure offers the benefit of high pulse energies and small
wavelengths at comparably high repetition rates, but incurs additional challenges in terms of
detector technologies able to keep up with this intra-pulse distance and duty cycle. These
challenges led to the development of multiple custom X-ray 2D imaging cameras—AGIPD
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[3], LPD [4], andDSSC [5]—capable of capturing up to 8,000 frames
per second at the pulse repetition rate of 4.5 MHz, by using large
memory cell arrays, while also being able to cover large dynamic
ranges of photon intensities. Achieving optimal data quality with
these detectors requires intimate technical knowledge and the sheer
data volume they produce means that processing must be highly
scalable. For users, this complexity can impose a high barrier of
entry to make use of their data and to achieve scientific results for
their proposals.

We are aware of the impact of this complexity on data analysis
for users, and aim to offer the data taken during a proposal in a form
useful in the scientific context of its experiment. This form of data we
call user data, and it is provided in the same data format alongside
the original raw data as it was acquired by detectors. What
constitutes user data can be highly variable from experiment to
experiment and depends on the technique, experimental conditions,
and of course detectors used. It may range from image corrections
per pixel, over clustering or integration of neighbouring intensities,
to event reconstruction across correlated signal sources. To this end,
established and essential data preparation steps are offered as a
service running on the facility infrastructure, where they can be
efficiently and reproducibly applied at scale. Data processing is
provided both for real time applications during an
experiment—delivering data streams at latencies of a few seconds
or less—as well as for exhaustive processing of data recorded to disk
with a focus on completeness, precision, and reproducibility, scaling
to up the petabyte regime for single experiments. Rather than
replacing the raw data product, however, these systems are
designed to maintain configurability and integrate into user
workflows with custom adaptions for each scientific application.
This article reports on the general infrastructure and systems
developed for this purpose as well as the specific detectors and
methods it was applied to over the past 6 years of facility operation.
Their impact on user experiments and the facility is discussed,
leading up to a comparison with the originally envisioned concept
and an outlook into upcoming developments.

2 Methods

Data processing at European XFEL is generally separated into
the two paradigms of online and offline. This separation is
reflected in the facility-side machinery and tools that
provide user data.

Online processing happens during the experiment on the
direct data streams from the detectors and other acquisition
devices, it is near real-time and provides immediate feedback
and monitoring to steer the experiment. Given these
requirements, and the key role online analysis plays in the
success of an experiment, its primary focus is low latency to
provide analysis results within a few seconds or less with high
reliability for the operator. To this end, it may only operate on a
relevant subset of data and employ less sophisticated algorithms
to guarantee a result at the highest possible throughput,
potentially at the cost of accuracy.

Offline processing on the other hand operates on data stored in
persistent files for deeper data exploration and analysis. This may
take place minutes to hours after acquisition to guide experimental
decisions and extend for months after the experiment is concluded
until a clear scientific picture emerges. Such analyses aim at
accuracy, completeness, and reproducibility and, as such, they are
generally more efficient at scales which enable the use of
computationally expensive methods.

Distinct solutions have been developed to optimally serve both
of these requirements, built around streams and files respectively,
with a common ecosystem for tracking metadata. Both operate on
the same input of raw data, but are strictly split on the volatility of
their results. Those obtained from online processing are generally
not stored to disk to prevent any compromise in data quality or
reproducibility, which may result from their a priori configuration
or performance requirements. Instead, any permanent results are
produced through the offline processing system to allow for
continuous tuning of parameters and behaviour for optimal and
traceable results.

FIGURE 1
The time structure of European XFEL consisting of pulse trains with up to 2,700 individual pulses at a train repetition rate of 10 Hz. Within one train,
the spacing between bunches is in the order of several hundred nanoseconds, while each bunch by itself has a length of typically less than 100 fs [1].
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2.1 Online data processing

Providing an interpretable result in near real-time during an
experiment is often essential to performing successful user
beamtimes in photon science, in particular, to make the most
efficient use of the short time allocated to each experiment. In
addition, it serves a monitoring role for the experimental hardware
and environment, helping to ensure safe and effective operation.

The facility-provided online processing system is integrated
into Karabo [6], a distributed control system developed at
European XFEL to address three main challenges: i) acquisition
and processing of the large data volumes generated at the facility,
ii) provision of global time synchronisation across most control
variables, and iii) the flexibility required to efficiently control both
static and highly dynamic setups in prototype and facility scale.
Physical hardware is represented by corresponding Karabo devices
written in C++ or Python, which may communicate with each
other via a central message broker and direct point-to-point
connections. Additional functionality can be provided in the
form of pure software devices, as is the case with the online
data processing system. The processing is performed in the
online computing cluster (ONC), which consists of dedicated
nodes for each of the three beamlines operating in parallel and
located physically close to their endstations. This is equipped with
datacenter-grade graphics processing units (GPUs), which can
accelerate the most demanding processing steps.

The topology for online image correction for the large-area
multi-module 2D imaging detectors is illustrated in Figure 2, as this
presents the most demanding application due to the high data rates
involved. A single Karabo endpoint device per physical detector
module feeds data to a single correction device which performs
processing per module. Multiple correction devices are grouped
together on a single computing node to balance bandwidth and
computing capabilities. From the correction devices, two separate
types of output streams are provided: preview output and full
data output.

The preview path is limited to at most a single frame per train via
configurable reduction methods and provides quick feedback with
minimal latency. It is geared for direct monitoring on screen and
includes assembly steps of the individual detector modules into their
physical geometry. The latency of the assembled preview—including
corrections as well as assembly—is typically a few hundred
milliseconds.

The full data path, on the other hand, delivers the complete data
stream and can be tuned to best match the experimental analysis
requirements to the available network performance. It may carry
only a few specific detector modules of interest or assemble entire
detector frames in a single stream, with modules grouped and
processed together on the same machine as required to make
optimal use of network bandwidth. The highest data rate among
the currently used detectors is 9 Gbits per second for a single module
and a total bandwidth of 140 Gbits per second for the entire
assembly consisting of 16 modules. This output path is generally
used for specialized real time analysis suites provided by facility
users, which are tailored for each instrument via interfaces into the
Karabo control system.

In addition to the built-in correction methods, custom
processing code may be injected into the high-performance paths
via so-called correction add-ons. In particular for implementations
running on GPUs, this may take advantage of data already being
present in device memory to perform further analysis after
corrections. It should be noted that to preserve the monitoring
aspect, the preview result always remains unchanged. An important
application of the correction add-on mechanism is for the purpose
of online data reduction. Anymetadata generated by correction add-
ons across all correction devices of a detector can be transported to a
central arbiter device ahead of the actual detector data, where further
custom code is executed in so-called reduction kernels. Here, the
final decision can be made as to which data to include in the data
stream available further downstream and make optimal use of the
available bandwidth by minimizing the amount of data to be
transferred and processed.

FIGURE 2
Data flows in the online processing pipeline for multi-module 2D pixel detectors with up to 16modules. Detector hardware sends raw data through
the data acquisition system (DAQ) to correction software devices. Each compute node typically hosts up to four correction devices called a group, each
processing the data of a single module. From the correction devices, the low-latency preview stream is limited to a single frame and provided for
immediate operator display. The full data stream for further downstream analysis can include additional metadata introduced by calibration add-ons
running in the correction device. This metadata across all modulesmay be used for data reduction decisions in an arbiter device. In each group, amatcher
aggregates the individual data streams taking this data reduction feedback into account.
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2.2 Offline data processing

Data saved to files constitutes the primary data product of
beamtimes with more than 100 PB generated since European
XFEL began user operation in 2017. It serves a critical role from
early data exploration for decision-making during the beamtime to
forming the basis of scientific publication. To address the FAIR [7]
data principles and commitments of the common framework for
scientific data management at photon and neutron facilities laid out
by the PaN-data Europe Strategic Working Group [8], raw data is
generally acquired via the facility data acquisition system (DAQ)
and stored in the HDF5 format [9].

The raw data is complemented by data processed by the facility
and saved in additional files alongside. This data is generated by a
dedicated system either automatically upon the end of acquisition,
or by explicit requests made through the data management portal for
European XFEL users (myMdC). The portal is implemented as a
web application and tracks all scientific data saved to disk with its
physical storage location and metadata such as samples, techniques,
and experiment types. Additionally, it includes administration of the
experimental team, the electronic logbook, as well as management of
digital object identifiers (DOIs) to the scientific data.

An overview of the service interactions and flows to generate this
facility-processed data is provided in Figure 3. The requests
triggered through myMdC are tracked and managed by the
calibration service and run on the offline computing cluster
Maxwell [10], which updates their status through the myMdC
interface. The actual processing code at the heart of this system
is implemented in Jupyter notebooks [11]. This allows the same code
to scale from processing entire beamtimes automatically to manual,

interactive execution on a selected subset of data for exploration or
development. Each notebook is identified by an action it performs
on data of a particular detector and is written in such a way to receive
input values using nbparameterise [12]. These specify the input
data and the intended output location, as well as any other
parameters in terms of format or scientific context. The xfel-

calibrate runtime is then used to divide the workload and run
several copies of the processing at once via the SLURM workload
scheduler [13], each copy running on a subset of the data, spread
across multiple compute nodes to maximise the efficient use of time
and resources. At the end, the executed notebooks are compiled into
a report documenting the processing, including plots intended for
diagnostics and to monitor data quality. Additional single notebooks
may be run before and after this central processing step to prepare
the environment or reduce the results further.

Next to the automatic processing steps performed on acquired
data, this system is also used to implement the characterization and
generate the necessary calibration data for some of the
aforementioned processing steps, e.g., image corrections. This
processing differs in the degree of automation and interactivity
depending on how often it has to be repeated and its robustness. The
calculation of gain factors to calibrate intensity in absolute units is
generally done by manual invocation of xfel-calibrate with
suitable parameters, often running the underlying processing
notebook manually first to exploring the parameter space. An
example of fully automated characterization is the determination
of baseline offsets from dark data, i.e., data in the absence of an
external stimulus on the detector. It is performed at least daily
during operation and triggered through the myMdC web
application.

FIGURE 3
Overview of the services involved in the facility processing system at European XFEL. Detector data sent to the data acquisition system (DAQ) is sent
as a stream to online processing systems and written to disk as raw data. For the files tracked by the myMdC application, requests can be sent to be
calibration service to perform offline processing. This configures and runs Jupyter notebooks on the Maxwell compute cluster, interacting with the
CalCat database to retrieve necessary calibration data or add new data after characterization. The resulting processed data is then stored and
accessible alongside the raw data.
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In both cases, the location of the generated calibration data is
centrally indexed in a database called the Calibration Catalogue
(CalCat). It is queryable by the detector identifier, the point in time
the characterization took place and the conditions the data is
applicable for, such as the sensor temperature, bias voltage or
integration time. This enables the retrieval of the most suitable
available calibration data anytime a given detector was used. Queries
to CalCat happen both during the experiment using the current
detector conditions, as well as for any data taken prior, with the
respective conditions at the time of measurement. The conditions
are described by key-value pairs, which are generally scalar numbers
and have been assigned an allowed deviation at characterization
time. Detectors are uniquely labelled throughout the facility by the
physical detector unit (PDU) identifier, which is independent of
their physical location at a particular experiment. This allows
calibration data to seamlessly follow a detector to wherever it is
used at a particular time, as long as calibration data does not depend
strongly on the environment. In the case of multi-module detectors,
each of these modules represents a single PDU to facilitate
maintenance or exchange of individual modules. The calibration
data stored in this database can be readily compared to past values
for the same conditions to allow for regular monitoring by experts.

An important aspect of facility-processed data is reproducibility,
which in this context denotes the ability to recreate the same output
given the same input at a later point in time. Reproducibility aims to
ensure a level of confidence in the scientific results derived from such
data. It also alleviates the need to archive processed data in the
longer term, as it can be recreated from archived raw data if needed.
Here, it is important to acknowledge that in general, running the
same arbitrary code irrespective of the software environment will
not result in an identical result. Both changes to configuration and
external services, e.g., calibration data received from CalCat, as well
as differences in the lower lying soft- and hardware can lead to a
numerically different result. Furthermore, as the processing code is
developed further, its application to previous data may yield a
different output than an earlier version.

For the offline processing system, reproducing an earlier result is
therefore considered a distinct action from reprocessing it. It is
implemented at the xfel-calibrate level, where for every
invocation a special metadata folder contains all necessary
parameters about the computation itself, the executed notebook
with concretized parameters, the software environment it ran in as
well as the captured responses from external services. A second
command xfel-calibrate-repeat then uses this metadata
directory to re-run the same code as before, with the same
parameters, in a similar Python software environment, with the
same external service responses. Some lower-level factors are not
tracked in this implementation, such as the type of CPUs running
the code or the compiler used for dependencies.

Essential for the data quality aspect of facility-provided
processing is the continuous verification of its results. On a
purely software engineering level, this is achieved by a wide
coverage of unit tests [14] to test components individually. These
tests are triggered automatically on every code change as part of a
continuous integration workflow. In addition, an end-to-end
approach from a scientific perspective is used, which processes
data taken during regular user operation and compares the
output against the expected result. For every supported

processing task, a collection of such reference data is curated
alongside the intended and verified product. As part of ongoing
improvements, this reference result is regularly replaced after
manual examination. The list of configurations is also extended
to cover significant or incompatible changes, e.g., a different data
structure on the detector side, to ensure that newer and enhanced
processing code also works on older data.

3 Results

The described machinery for facility-provided processing has
been used for a wide range of actions, chief among them
characterization and image corrections of the custom large-area
2D imaging detectors. Recently, this has been extended to special
operating modes for these as well as entirely different but essential
pre-processing steps for types of experiments not involving pixel-
based detectors (see below).

3.1 Supported detectors and actions

A primary data driver of several instruments at European XFEL
are the AGIPD, DSSC, and LPD detectors, which are developed
specifically to exploit the unique burst mode time structure. As such,
their uniqueness necessitated establishing new characterization and
correction methods, and we consider it critical to offer an
implementation ourselves. Common to all these systems, and a
particular challenge for any applied processing method, is their very
high data rate on the order of 100 Gbit/s for a Mpixel detector.

The Adaptive Gain Integrating Pixel Detector (AGIPD) [3] is a fast,
integrating detector in the hard X-ray regime with adaptive gain. It
offers single photon sensitivity at 12 keV and a dynamic range of up to
104 12 keV photons while being able to take up to 352 consecutive
images at the facility’s pulse repetition of 4.5 MHz. This image burst is
then read out at 10 Hz between pulse trains (compare Figure 1),
resulting in a total frame rate of up to 3,520 Hz. There are currently
two 1 MPixel installations consisting of 16 modules each in use at the
SPB/SFX [15] andMID [16] instruments, as well as another 0.5 MPixel
prototype system with 8 modules and an upgraded version of the
readout ASIC (application-specific integrated circuit) at the HED
instrument [17]. A rich set of image corrections is implemented for
this detector. First, the gain stage each pixel was recorded in is chosen
through a threshold procedure followed by offset subtraction. Both the
required threshold and offset values are inferred from dark image
characterization automatically performed during operation in regular
intervals. In certain scenarios, baseline shifts and commonmode effects,
both spatially per ASIC and temporally across multiple trains, can be
accounted for. Finally, gain calibration converts pixel amplitudes to
intensity in units of absolute energy. Several methods have been
established to obtain the necessary slope characterization data and
implemented as part of the facility-processing package, and are
generally invoked manually. A detailed description of this detector
and its calibration can be found in [18].

The Large Pixel Detector (LPD) [4] is another fast detector
system acquiring up to 512 images at 4.5 MHz in three parallel gain
stages. From these stages, an auto-gain mode can choose the optimal
signal to resolve up to 105 12 keV photons. A Mpixel installation
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with 16 modules is in use at the FXE hard X-ray instrument [19]
alongside several smaller single-module detectors called LPD Mini.
The image corrections consist of the basic steps of offset subtraction
based on automatically characterized dark images and subsequent
gain calibration by pre-determined slopes obtained by manual
analysis [20].

At the soft X-ray instruments SCS [21] and SQS [22], the
DEPFET Sensor with Signal Compression (DSSC) [5] is available.
This camera operates at a peak frame rate of 4.5 MHz and features
on-chip digitization of 1-Mpixel images for up to 800 images.
There are two versions of this camera, each employing different
sensor technologies. The first version, which uses MiniSSD
technology, has been in user operation since 2019. It offers
several gain configurations to accommodate a broad range of
soft X-ray photon energies. The camera exhibits a linear
intensity response and thus, only offset subtractions are
necessary before proceeding with further analysis. The second
version of the camera utilizes DEPFET sensors and is currently in
the commissioning phase. This technology offers superior noise
performance, with an equivalent noise charge averaging 16 el rms
[23]. It enables single-photon imaging capabilities down to a
photon energy of 0.25 keV, all while maintaining a dynamic
range of up to 104. However, its nonlinear response necessitates
additional correction steps to convert ADC counts into photon
energy. These are currently in development.

In addition to these large-area burst mode detectors, several
other X-ray pixel detectors are used across the instruments with
corresponding support for characterization and image corrections
provided by the facility. The JUNGFRAU [24], ePix100 [25] and
pnCCD [26] are 2D frame-based detectors known from other
facilities with robust and mature processing methods available in
literature and upon which dark image pedestal subtraction, common
mode, and gain calibrations are based. In the burst mode operation
at European XFEL, these detectors generally are unable to record the
intra-train pulses, hence they are only operated at the train
repetition rate of 10 Hz. The Gotthard-II [27] is a 1D strip
detector developed at the Paul Scherrer Institute for use at
European XFEL capable of matching the pulse repetition rate. It
is particularly suited to spectroscopic measurements. Here, the
corrections also include an essential linearization of the raw
output of the analog-to-digital converter (ADC) before
subtracting offset and calibrating intensity to absolute units.
Common to these detectors are considerably lower bandwidth
requirements either due to their operation at only the 10 Hz
train repetition rate or due to the smaller data volume of a
single frame.

A different set of processing actions is available for a detector
built on Timepix3 [28], a time-resolved and event-driven pixel read-
out chip. One such device is in use at the SQS instrument and is
primarily used for electron and ion spectroscopy. Rather than full
frames, it acquires individual time-over-threshold events for each of
its pixels. A time walk correction is offered alongside centroiding to
group neighbouring pixels illuminated at the same time into single
particle impacts, if applicable. The calibration data required for the
former correction process is currently acquired and prepared
manually in a similar fashion to gain calibrations for frame-based
detectors, but planned to be further automated in the future like dark
image characterization is.

The SQS instrument also employs time and position sensitive delay
line detectors [29] for charged particle and photon spectroscopy and
imaging techniques such as REMI (reaction microscope) [30, 31]. Here
the reconstruction process to assemble concrete particle impacts on the
detector is entirely implemented as part of the facility-based processing
systems, starting from digitized traces in the acquired raw data. After
common mode correction of the analog data and discrimination to
pulse arrival times, these digital signals on each channel are sorted into
tuples corresponding to the same detector hit. For optimal resolution
and reconstruction quality, further time sum and position correction on
the digital signals and sophisticated event sorting based on components
of the vendor-provided CoboldPC package can be included. In this
application, the output format involving time and position events differs
entirely from the initial input of analog voltage signals.

3.2 Special operating modes

In general, the core functionality of the implemented processing
actions aims to be generic and experiment-agnostic apart from
tuning parameters. Over the course of facility operation, however,
more and more toggle-able operation modes have been added to aid
users in data preparation procedures particular to their beamtime
or technique.

In the case of offline analysis, this allows us to automatically
enjoy the same benefits of reproducibility and scalability for these
steps. While these special operating modes are in most cases not
specific to a detector, their exclusive use at a particular instrument
typically ties them to one detector and is thus implemented as part of
its processing notebook.

One example of this is the generation of virtual CXI files for
serial femtosecond crystallography (SFX) experiments [32] with the
LPD detector after image corrections. The native data format of the
Coherent X-ray Imaging Data Bank [33] specifies a particular layout
of HDF5 files for SFX experiments, and analysis software developed
in this scientific community can often use these files directly. By
generating these files using HDF5 virtual datasets to refer to the
corrected result in European XFEL’s data format, this is possible
without the need for an additional full copy on disk while being
immediately available for users after acquisition and processing.

Another example influencing the actual data result is photonization
available for the AGIPD detector [34]. Under certain illumination
conditions commonly present at the MID instrument, pixel intensity
after gain calibration can be interpreted as singular photon events of a
particular photon energy and represented by an integer count.
Performing this operation during image corrections can be
implemented particularly efficiently for immediate analysis based off
it. Furthermore, it serves as a data reduction technique, as the resulting
integer representation is significantly more compressible, resulting in
space savings of up to 97% at a negligible runtime cost [35].

Some operating modes are exclusively for data reduction
purposes before processing takes place, e.g., limiting the trains or
frames within a train to be included in the result. Even in the case of
the AGIPD detector, different methods are employed depending on
the experimental environment. At the SPB and MID instruments,
the so called LitFrameFinder software automatically aligns the X-ray
pulse pattern with the detector frame pattern to discard any frames
in the processed data output not directly illuminated by X-rays. At
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the HED instrument, however, an optical chopper device is used to
pick out entire pulse trains irrespective of the actual pulse filling
pattern, and the processing result is thus reduced by exploiting this
pulse picker information.

In the context of online processing, themain goal of offering special
purpose analysis directly into the facility-provided processing system is
exploiting data locality, especially in the case of high-bandwidth data
accessed on GPUs. Currently, this is primarily done for real-time image
corrections of large-area detectors via the mechanism described in 2.1,
with the first implementations covering the computation of integrated
intensity, counting lit pixels, and performing peak-finding in the context
of SFX. Inmost other cases, special requirements in an online setting are
often not mature or standard enough to warrant an application within
these systems, and are left to more flexible online analysis solutions
developed in-house [36] or those from the corresponding scientific
communities.

3.3 Processing performance

For all detector implementations listed in 3.1, the online
image corrections performed in real-time are able to cope with
incoming data rates delivered as data streams. In the case of the
AGIPD, DSSC, and LPD large-area detectors however, certain
rate limitations still remain when actually moving the full data
through the network.

These occur in particular when all modules are desired on a single
online cluster machine, entirely exhausting its network links. A single
group of correction devices each processing a single module on the
other hand can generally be transported at full rate. For a given
experiment, the ideal distribution can therefore be chosen, e.g.,
concentrating modules critical for analysis in the same
group. Further optimizations are possible by reducing the precision,
e.g., to half-precision float16 per pixel as well as applying frame
selections. Statically frames can be selected either by skipping entire
trains or choosing fewer frames in each train, while calibration add-ons
allow dynamic frame selection based on user-implemented criteria.
Typically, up to 500 frames per second are currently achievable when
assembling all modules to full frames for a single destination.

The achievable performance for basic image corrections is generally
comparable on CPUs and GPUs when the total turnaround including
memory transfer costs is considered. Still, these devices can perform
these tasks more energy efficient and furthermore offer a surplus of
computing resources that can be exploited for analysis or transformation
steps These can be integrated much easier with the data already local in
device memory at that time. Currently it includes computational tasks
like peak finding and azimuthal integration described in 3.2 as well as
memory-intensive axis stacking and reordering when requested by
downstream user applications using this data. At the same time, the
CPUs remain available to perform processing tasks not well suited or not
yet implemented on GPU architectures.

To feed this to analysis suites running outside of Karabo, the
lightweight Karabo-bridge protocol is available (in the illustrations, each
“matcher” can have one or more bridge outputs), with Python [37] and
C++ [38] bindings for convenient integration with existing software.
This has been used, for example, to feed data to Hummingbird [39] or
OnDA [40], two packages in the field of X-ray imaging experiments
developed by the scientific community and widely used across facilities.

The offline processing system aims to operate as efficiently as
possible on data already fully present in files. Generally, these files are
grouped into datasets called runs, which contain all the data collected
during manually operated triggers. The data volume is automatically
split into independent parts to parallelize the work in multiple jobs
across the Maxwell computing cluster. The automatic creation of PDF
reports and capturing other metadata relevant to reproducibility
typically takes less than 1 minute in a trailing job after all processing
jobs have returned. The distribution of resources on the Maxwell
compute cluster prioritizes currently ongoing experiments to
guarantee near-immediate allocation of nodes without any delay. At
this time, swift access to processed results for interpretation is
particularly valuable to make optimal use of beamtime. After the
experiment has concluded, processing requests are queued with the
same priority as regular users andmay incur waiting times. On average,
this results in about 650 jobs per day but also peaked at 2,200 jobs over a
single day in the current year of operations. The per-week job statistics
for the current year of operations are visualized in Figure 4.

For image corrections and other automatic data pre-processing
tasks, each job is assigned a set of trains along file boundaries. The image
corrections for the large-area pixel detectors with burst mode generally
achieve on the order of 1,500–5,000 frames per second of a single
module in each job, compared to data acquisition rates of up to
3,520 frames per second in the case AGIPD, for example,. The pixel
detectors not operated in burst mode and hence acquired at 10 Hz
typically reach up to 140 frames per second. For the non-frame based
detectors performance depends significantly on the experimental event
rates, but train centroiding for Timepix is generally processed at least
with 60 Hz, while REMI reconstruction varies between 40 and 80 Hz.
By parallelization of larger datasets across multiple SLURM jobs, this
generally matches or exceeds real-time across all processing options
factoring in disk I/O and the constant costs of set-up and tear-down
cluster jobs and processes.

In the case of the automatic dark characterization of pixel detectors,
however, jobs are generally assigned all data belonging to a single
detector module, if applicable. For burst mode detectors, these generally
have runtimes of 10 min or less depending on the number of memory
cells and trains considered for statistics. The runtimes of characterizing
dark data of other detectors are negligible and complete within aminute
or less. The non-automatic characterization tasks for gain calibration
are not written with performance but completeness and traceability in
mind with runtimes on the order of hours, as they are only repeated a
few times per year.

For special circumstances where exceptionally fast file-based
feedback is required, the offline processing machinery is capable of
running on the online cluster usually reserved for streaming
applications. This can take advantage of extremely fast disk I/O and
avoid delays until data is accessible on theMaxwell compute cluster, but
is limited to a too small number of machines to warrant the same level
of parallelization. It is therefore typically restricted to cases with a high
level of data reduction, e.g., pulse on demand techniques, that can take
advantage of fast file-based data exploration. To this purpose, many of
the features geared towards reproducibility and data tracking can be
turned off to minimize run time to processing only. For example,
corrected data written to file for a single AGIPD train with 352 frames
can be made available within 30 s of acquisition.

The reproducibility of offline processing was confirmed for four
different detector types (AGIPD, LPD, JUNGFRAU and ePix100)
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using data from just after the reproducibility work was completed
for each detector. This data was 18 months old for AGIPD at the
time of testing, and 12 months for other detectors. In each case, the
code used in the previous processing ran successfully and produced
output data identical to the original results.

4 Discussion

4.1 Evolution of concept

Prior to facility operation and facing the challenges ahead, the
concept for such a system was already planned and described in
[41], with a particular focus on the AGIPD, DSSC and LPD
detectors. On a conceptual level, significant differences can be
found and discussed between the current implementation and the
original expectations in three areas: i) online analysis, ii) access to
raw data, and iii) configurability. This stems from experience
accumulated during operation and an increasing diversity of
scientific applications.

The online monitoring of experimental data was not expected to
deliver the full input rate, but rather a continuous and non-
guaranteed stream targeted at visual monitoring by operators.
While this is critical for monitoring from a technical and
detector operation perspective, the diversity of metrics significant
for online analysis from a user perspective has proven to be much
wider. Beyond immediate and in particular visual evaluation of
immediate detector signals, the near real-time evaluation of
technique-specific quantities based on as many detector frames as
possible can significantly enhance the efficiency of the running
experiment. For example, single particle imaging (SPI) [42]
typically suffers from very low hit rates for interaction of the

nanoscale targets with X-rays. An estimation of this rate during
the experiment is more robust with access to at least some data of
every acquired frame, rather than the entire data of a fraction of
frames. This is primarily addressed by a flexible topology of the data
stream to tailor any necessary compromise to each use case.

With the presence of a facility-provided processing system, no
direct access to raw data affected by these systems was foreseen to be
necessary by users. After calibrated files are produced by these systems,
it was to only serve as the main archival data product, to be used when
those files are no longer present in temporary storage. However, the
operational experience so far has shown that a single truth for
correction methods—particularly for this custom hardware, but also
generally for the plethora of different experiments—has not been found.
Established methods, like the aforementioned SFX, can almost
exclusively rely on the processed datasets already, but this is not
universal for other, often still developing, or novel techniques.
Access to raw data remains essential for users with different
requirements, either to expand on the processing methods already
offered by us or replace them entirely with custom implementations. To
this purpose, the utilized calibration data is available to users through
the CalCat database as well. The collaboration on user’s data treatment
methods in this way allows to continuously adapt any improvements to
the facility systems for the profit of all scientific users. Here, the
distinction between reproducing an earlier result and reprocessing
the same raw data was also underestimated, as it is possible that the
current implementation may be newer and improved, giving a
potentially better, yet different result. In the context of the scientific
method, however, the capability to obtain an equal result is as
essential as well.

To maximize the applicability to as many experiments as possible,
and enable user data to be the data product sufficient for scientific
analysis, processing cannot be limited to standardized blocks. The

FIGURE 4
Number of processing jobs executed per week on the Maxwell SLURM cluster as part of the offline processing systems during the operations in
2023. Characterization jobs evaluate detector performance and generate calibration data, such as noise and pixel offsets. Processing jobs then transform
experimental datasets, for example, by applying image corrections to 2D X-ray detector data. Documentation and metadata jobs run alongside all these
actions to compile PDF reports with their results and capture metadata important for reproducibility.
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emerging need for configurability covers immediate and often empiric
parameters for computations, the implementation of special operating
modes as discussed in 3.2, and tolerance to a constantly changing
environment without stable interfaces. Even in the originally envisioned
case of 2D imaging detectors, including such configurability in
fundamental steps, like image correction and gain calibration, allows
for greater adaptation to moving requirements. In contrast, limiting to
standard methods risks focusing on the needs of established
communities to the detriment of emerging fields. Instead, sensible
defaults can aim to making common use cases as efficient as possible
while leaving the option to expand for uncommon use cases as well.
Parameters may range from flags for which algorithms are applied to
tuneable numerical thresholds, but also includes technical
configuration, like pipeline topology, for efficient network usage as
described for 2.1. Whenever applicable, they are inferred from available
metadata and hardware conditions and configured automatically.What
remains may require manual tuning not just by operators and experts
on the facility-side, but users as well. In line with the previous area of
raw data access, this necessitates transparency and accessibility in this
process. Finally, reliable operation of all these steps relies on countless
implementation details of hard- and software upstream, which are
themselves a moving target as the facility develops.

4.2 User operation

The facility processing system as presented here is in a mature
and stable state for user operation at European XFEL. Since
inception, it has seen widespread use during experiments

performed at the facility illustrated in Figure 5 for 2022 and
2023. More than 90% of experiments across the hard X-ray
instruments—namely, FXE, SPB/SFX, MID, and HED—are
generating processed data as part of their data product over this
time period. In a sharp contrast, approximately half of all
experiments at SQS and only a single experiment at SCS took
advantage of this system. These soft X-ray instruments differ
significantly from the hard X-ray instruments in experimental
techniques and thus detection methods. As discussed previously
in 4.1, the standardized blocks focused originally around image
corrections for 2D pixel detectors were not flexible enough for, or
did not at all cover, the requirements and use cases of the soft X-ray
instruments. In total however, 75% of the user experiments
performed at European XFEL in 2022 or 2023 were assisted by
the presented system in its current state.

A significant impact of processed data being generated
seamlessly and automatically by facility systems has been
observed on the storage infrastructure. The data volume of the
large area detectors, like AGIPD, can effectively be doubled after
acquisition by having both copies of raw and processed data on
disk at the same time, culminating in single experiments
exceeding multiple petabytes in a single week. This has been
primarily mitigated by the introduction of reproducibility, which
allows to only keep processing results on storage when they are
actively in use for analysis, as they can be safely recreated after
deletion. In addition, it stimulated the development of data
reduction techniques that are applied during these processing
steps. As such reduced processed data is the result of the same still
unmodified raw data, these represented ideal opportunities for
research of such methods and their validation.

These systems are provided for and continuously monitored by
experts from the Data Analysis and Detector groups at European XFEL
with expertise in software development, data analysis and detector
characterization. These experts also provide 24/7 on-call support for
user experiments. The established testing infrastructure verifies that
expected data quality is preserved, and further quality improvements
are confirmed manually in dedicated commissioning campaigns.

4.3 Outlook

Driven by the evolution of the calibration and processing
concept offered by European XFEL as discussed in 4.1, further
improvements are in development. These focus on increasing the
flexibility and performance of both online and offline processing
with data reduction in mind throughout the entire process.

While the online processing pipelines are able to process the data
volume of all burst mode detectors at their full input rate, moving
this data across the network still imposes limitations. On the
technical side, Remote Direct Memory Access (RDMA)
technology will increase the achievable bandwidth in the near
future between DAQ and the processing infrastructure. This is
combined with expanding on the correction add-on mechanism
to exploit data being present in the memory of high-performance
GPUs to benefit custom user analysis as well. In fact, these devices
are increasingly used to accelerate time-consuming analysis tasks in
the analysis of X-ray experiments and enable their real-time
application, in particular for techniques based on machine

FIGURE 5
Ratio of user experiments of each instrument that generated data
using the facility processing system in 2022 and 2023. The total
number of experiments is shown above each bar.
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learning [43–46]. These capabilities are also the ideal place to apply
data reduction. As a result of the deep integration into the facility
systems at this point, these decisions can not only be used to alleviate
the bandwidth limitations in the online pipeline, but also reduce data
before it hits the file storage. This removes the need for additional
data reduction steps after writes have been performed.

For offline processing, the main focus is to use the existing scalable
machinery for a wider catalogue of generic analysis steps beyond the
facility-provided actions described in 3.1. Building on the first
experiences here in the form of the special operating modes, this
should expand to steps commonly re-implemented for many
experiments as these are often agnostic of the underlying detector,
such as azimuthal integration of detector frames for X-ray scattering
experiments. Apart from the potential for highly optimized
implementations, these can enjoy the same reproducibility
guarantees as the existing actions. In the second step of this process,
thismachinery can be opened up to users to run their own, fully custom,
analyses. The aim is for this to serve as a generic and accessible runtime
for automatic, configurable, dataset-based offline analysis. This provides
users instantly with a broad infrastructure related to managed code
execution, monitoring, and parallelization. Both of these goals are
contingent on further developments on the configurability and in
particular interfaces first, like in the form of the myMdC web
application. An important lesson already learned here for such an
automated system is to clearly document and communicate the
situations for which a particular analysis can be applied, for
example, the photonization of absolute energy scales currently
offered for the AGIPD detector. When the assumptions for such a
method are not met, perhaps unknowingly, their application can result
in a diminished data quality contrary to its intended purpose. Finally,
this extends to more support for interoperability with existing solutions
in the scientific community, for example, through the NeXus
data format [47].

4.4 Summary and conclusion

A comprehensive and scalable system for processing scientific
data has been developed at European XFEL. It aids users in essential
preparatory processing steps, which are increasingly challenging due
to high data rates and the use of custom detector technologies.
Experimental data is delivered to the majority of user groups in a
form suitable for further analysis at a constantly verified data quality.
Future developments are focused on more support for a wider range
of experimental techniques and integration of data reduction
techniques.
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Novel sensor developments for
photon science at the MPG
semiconductor laboratory

J. Ninkovic*, A. Bähr, R. H. Richter and J. Treis

Semiconductor Laboratory of the Max-Planck-Society, Munich, Germany

The world of photon science experiences significant advancements since the
advent of synchrotron light sources with unprecedented brilliance, intensity and
pulse repetition rates, with large implications on the detectors used for
instrumentation. Here, an overview about the work on this field carried out at
the semiconductor laboratory of the Max-Planck-Society (MPG HLL) is given.
Main challenges are high dynamic range to resolve faint features at the fringes of
scatter images as well as structures in bright peaks, and high bandwidth to fully
exploit the fast timing capability of the source. A newly developed device to
improve the signal-to-noise-ratio (SNR) at high bandwidths is the so-called
MARTHA (Monolithic Array of Reach-Through Avalanche Photodiodes)
structure, which integrates an array of APDs on a monolithic substrate. The
reach-through architecture assures near 100% fill factor and allows implementing
a thin entrancewindowwith optimized quantum efficiency for low energy X-rays.
The structures operate in proportional mode with adjustable gain, and can serve
as a drop-in replacement for PAD detectors in hybrid pixel systems. A more
sophisticated solution for low to medium frame rate applications with high
contrast requirement are pnCCDs with high dynamic range in the pixel area
featuring DEPFET based readout nodes with non-linear amplification (NLA). The
high dynamic rangemode has been demonstrated for pnCCDdevices with a pixel
size down to 75 μm2. Framerates of up to 1 kHz are possible for a 1 Megapixel
detector. Small size prototypes of these structures have recently been
manufactured. Modified DEPFET structures with build-in non-linear
amplification are also used to implement active pixel detectors optimized for
high dynamic range. Successfully prototyped for the DSSC sensors (DEPFET
Sensor with Signal Compression) at the XFEL, these structures are increasingly
being used in applications requiring high contrast and intensity, e.g., TEM imaging.
Charge handling capability and output characteristics can be tailored to the
requirements, as well as pixel geometry and size. The large intrinsic gain of the
DEPFET provides excellent SNR even at fast timing. Pixels can be read with a
speed of 100 ns, the resulting frame rate depends on the degree of readout
parallelization.
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1 Introduction

Many applications in photon science involve x-ray scattering
experiments using high intensity x-ray pulses. The images thus
generated are characterized by a distribution of high intensity,
small size spots or speckles, surrounded by “halo” regions with
an intensity rapidly declining with the distance from the
intensity peaks. In this context, intensity is usually measured
as number of photons with a fixed energy. Relevant information
about the scattering process is not only contained in the
distribution and size of the peaks, but also in the details and
shape of the intensity distribution within the halos down to their
fringe. Measurements at lower intensity, however, are often
limited by the suppression of low signal amplitudes, driven
by the necessity of noise discrimination. An ideal detector
system therefore needs to acquire the complete scattering
image, from the highest peak intensity to the faintest halo
regions, ideally down to single photons, and still maintain
robust noise suppression efficiency.

Key performance parameters of detector systems for photon
science instrumentation are the charge handling capacity (CHC)
of the detector resolution elements and the dynamic range of the
system. In this context, CHC is the maximum amount of signal
charge the system is able to handle per resolution element (pixel)
without loss or deterioration of information. High CHC is
required to suppress blooming or spillover effects
compromising the imaging performance up to the requested
maximum signal charge, so the scattering patterns can be
imaged correctly.

As imaging of both low and high intensity regions of the
image are equally important, an optimization of the dynamic
range needs to target both, the high and the low dynamic range
limit. Concerning the high dynamic range limit, the maximum
preamplifier output needs to fit the maximum required signal
charge. When optimizing the low end of the dynamic range, the
gain characteristics of the detector/preamplifier structure have to
be modified in order to push the low dynamic range limit to the
minimum value achievable for the given noise conditions. To
optimize both, the maximum dynamic range and its low range
detection limit, a system with multilinear or non-linear behavior
of the detector-preamplifier combo is superior compared to
conventional single gain approaches.

Another requirement arising from the high rate capability of
contemporary X-ray sources is the requested high readout speed.
The frame rates required for megapixel sized detector arrays range
from several kHz up to the MHz range. This brings about fast
detector readout, high bandwidth of the amplifiers, and fast
processing of the acquired data in the data acquisition backend.

Any optimization of a detector system for photon science
therefore needs to target the detector structure itself as well as
the respective readout electronics. Focus hereby lies on the
optimization of the dynamic range, the signal-to-noise ratio and
the increase of readout speed.

In the following, an overview about the work on this field carried
out at the semiconductor laboratory of the Max-Planck-Society
(MPG HLL) is given.

2 Gain characteristics of photon
science detectors

Photon science experiments, e.g., in X-ray scattering, use
photons of fixed energy to illuminate a scattering target. In the
following, the interrelation between signal, gain, noise, accuracy and
dynamic range of such a detector is outlined by means of a model for
an ideal detector. For the sake of simplicity, the model neglects the
effects of charge sharing between pixels, although in reality they
greatly influence the sensitivity for lower amplitudes.

2.1 Signal and detector model

Using the simplification mentioned above, the stimulus S
recorded by one image pixel consists of the individual,
statistically independent signal depositions of N photons:

S � ∑N

i�1Si

The experimental requirement states that each pixel is able to
record the signal from a maximum number ofNMax photons. For a
monoenergetic source, it can be stated that

S � ∑N

i�1Si � N · S0

where S0 is the average energy created by one photon. As the
individual photons are statistically independent, the uncertainty
of this energy deposition is ΔS � ��

N
√ · ΔS0, where ΔS0 is given by

the energy dependent Fano noise.
A system matched to the requirements has a maximum pixel

stimulus of SMax � NMax · S0. Sometimes, the values of SMax or
NMax are used synonymously to the term “dynamic range”. In the
context of photon science, however, also SMin � NMin · S0, is
relevant for the application, which is the minimum stimulus
distinguishable from noise. In this context, the quotient

RDyn � SMax

SMin
� NMax

NMin

is a useful definition for the dynamic range as relevant figure of
merit. The value of Nmax drives the instrument design in terms of
e.g., CHC and defines the high limit of the dynamic range, andNmin

is driven by the noise of the system and, indirectly, also by the value
of Nmax.

To understand the connection, an idealized model detector
system is considered, which converts the stimulus N to a signal
amplitude A from an amplitude range A ∈ [0, AMax] by using a gain
function A(N). From this, the uncertainty of the output amplitude
ΔAtot(N) of the detector can be calculated, taking into account the
uncertainty of the stimulus ΔS, the statistical fluctuation of the
number of quanta as defined by the Poisson statistics ΔN � ��

N
√

, and
the RMS noise of the output amplitude of the detector, ΔA, which,
for this model, is assumed to be constant. With ΔAtot(N), the value
for Nmin can be determined using ΔAtot(0) and an application-
specific noise discrimination factor n by requiring that
A(NMin)≥ n · ΔAtot(0), where values for n are typically
between 3 and 5.
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In the application, a calibration function is used to retrieve a
reconstructed value ~N from the measured value A(N) using
certain calibration coefficients, and with ΔAtot(N) one can
calculate Δ ~N, an estimate for the uncertainty of ~N. In the
following, the function Δ ~N(N), giving the uncertainty on the
measurement for each value of N, is referred to as accuracy
function. Δ ~N(N) describes, in the approximation outlined above,
the uncertainty on the retrieved number ~N(N) generated by the
detector from a stimulus of N photons. The accuracy function of
an ideal, noiseless detector would reproduce the Poisson limit
Δ ~N(N) � ��

N
√

assuming completely deterministic energy
deposition.

To define the actual gain function, the most straightforward
approach is that of a linear gain function of the form

A N( ) � g ·N · S0 + A0,with

g � AMax − A0( )
NMax · S0

being the optimal gain matched to the required dynamic range. In
this approach, A0 represents the offset, which is the actual zero
signal output of the amplifier at the time of measurement, and which
is variable with an RMS of ΔA. A0 is the mean value of the offset
distribution. The corresponding calibration function is

~N A( ) � 1
~g
· A N( ) − A0( )

with ~g being the measured gain coefficient. As expected, a nonzero
offset limits the dynamic range as it reduces the available signal
output swing.

The alternative approach investigated here is the square-root
shaped gain function of the form.

A(N) � ��������
q ·N · S0

√ + A0 with a quadratic gain coefficient

q � AMax − A0( )2
NMax · S0

which, in the following, is referred to as nonlinear gain function.
This approach is chosen as an educated guess, because higher gain
for lower amplitudes lifts the output signal above the noise threshold
for yet smaller input stimuli. Accordingly, this yields a second degree
polynomial without linear term for the calibration function:

~N A( ) � 1
~q
· A N( ) − A0( )2

with ~q being the gain coefficient retrieved by calibration.
Using these gain functions, expressions for the accuracy

functions, low energy limit, dynamic range and single photon
sensitivity limit were derived. Here, an ideal calibration
(i.e., ~q � q and ~g � g) was assumed for evaluation, although this
approach can also be used to determine the effect of
calibration errors.

2.2 Comparison

For the gain functions and conditions sketched above, the model
gives a set of relations describing the relevant performance
parameters of the model detector. Table 1 compares some of the
findings for the performance characteristics for the nonlinear and
linear gain function. For a more compact notation, the definitions in
the table use the term

ADNR � AMax − A0

ΔA

which corresponds to the ratio of the output dynamic range to the
noise of the preamplifier.

In comparison, it is obvious that, for common values of ADNR

and n, the accuracy function for the nonlinear approach is superior
for small signals. For equal ADNR and n, the low signal limit for the
nonlinear gain scales with the quotient n/ADNR compared to the
linear approach, and the dynamic range with the inverse ratio
ADNR/n.

For ADNR � 40, an upper end of the dynamic range of NMax �
100 and a noise discrimination threshold of n � 5, for instance, a
value of NMin � 12.5 is achieved for the linear case, while the
nonlinear case yields NMin � 1.6, and the dynamic range is 8 for
the linear case compared to 64 for the nonlinear case. The single
quantum sensitivity limit, giving a requirement on the minimum
ADNR to maintain Δ ~N(N)< 1, scales with the square root of NMax.
For the figures given above, theADNR for the linear case required for
single quantum sensitivity is 500, compared to only 50 for the
nonlinear case.

The better low signal performance is countered by an accuracy
worse compared to the linear gain function at higher stimuli.

TABLE 1 Comparison ofmodel output for relevant performance parameters
of the linear and nonlinear gain function. All parameters can be expressed
as algebraic expressions.

Linear case Nonlinear case

Gain function A(N) �
g ·N · S0 + A0

��������
q ·N · S0

√ + A0

Gain coefficient

g � AMax−A0
NMax ·S0 q � (AMax−A0)2

NMax ·S0

Calibration function ~N(A) �
1
~g·S0 · (A(N) − A0) 1

~q·S0 · (A(N) − A0)2

Accuracy function Δ~N(N) �

N ·
���������������������������
1
N · (1 + (ΔS0S0

)2) + (NMax
N )2 ·( 1

ADNR
)2

√
N ·

��������������������������
1
N · (1 + (ΔS0S0

)2) + 4·NMax
N · ( 1

ADNR
)2

√

Normalized signal to noise ratio SNRN(N) �

((ΔS0S0
)2 + 1 + NMax

2

N · ( 1
ADNR

)2)−(1 /2) ((ΔS0S0
)2 + 1 + 4 ·NMax · ( 1

ADNR
)2)−(1 /2)

Low energy limit NMin �
NMax · n

ADNR
NMax · ( n

ADNR
)2

Dynamic range RDyn �
ADNR
n (ADNR

n )2

Single quantum sensitivity limit SNRMax >

n ·NMax n · �����
NMax

√
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Figure 1A shows the comparison of the accuracy functions for a
maximum number NMax � 100 photons with an energy of 1 keV,
for an ADNR of 20 and 40, with linear and nonlinear gain. At low
stimuli, the term depending on ADNR causes a constant noise floor
value of Δ ~NMin � NMax/ADNR atN � 0 for the linear gain function,
while the corresponding term for the nonlinear gain converges to
zero. Above a “break-even” stimulus ofNBE � NMax/4, however, the
linear gain function becomes more accurate and converges towards
the Poisson limit.

The behavior scales accordingly for higher values of NMax, as
shown in the right panel of Figure 1. In this log/log plot, one can see
that, while the accuracy for the linear gain converges to the Poisson
limit, the discrepancy of the accuracy for the nonlinear gain function
is always higher than the ideal Poisson limit accuracy by the same
factor. This behavior can also be found in the expressions for the
normalized SNRN (see Table 1), being the actual SNR divided by the
theoretically optimal SNR of the Poisson limit:

SNRN � 1��
N

√ · SNR

Here, it turns out that the SNRN for the nonlinear gain is
constant wrt.N, while the SNRN for the linear gain shows a growth
towards its optimum value at NMax, showing an approximate

��
N

√
characteristics.

2.3 Discussion

Using the model system as an example, it has been motivated
that using a detector with a nonlinear gain function as described
above has advantages over a linear approach when used within the
context of photon counting applications. For low stimuli, the
uncertainty on the retrieved photon number converges to zero
for the nonlinear gain while the linear gain reaches a finite noise

floor level, which is due to the different scaling of the amplifier noise
contributions. Main advantage of the nonlinear gain is a
substantially increased dynamic range and improved low signal
detection limit, as can be taken from the left plot in Figure 1.

The advantage of the linear gain approach, in contrast, is the
higher accuracy for the largest part of the input stimulus range. In
addition, it should not be ignored, that a detector system
implementing a nonlinear gain also faces some practical
challenges. The idealized square root behavior is in practice
difficult to implement. Practical implementations therefore use
approximations of the ideal behavior. In addition, the optimized
behavior is valid only for a single target energy and intensity. When
these values change, deviations from the ideal behavior are to be
expected. Finally, the calibration of such a detector can be a
cumbersome task, given that imaging detectors for photon
science target a large sensitive region with many channels, and
needs to cover the complete dynamic range.

But if a large dynamic range is requested and both low and high
intensity features are to be acquired simultaneously, and the higher
inaccuracy for larger signals can be tolerated, a nonlinear gain is the
better solution. It is an extremely useful tool for the exploration of
large dynamic ranges.

3 Detectors for photon science
applications

The ideal gain function for applications limited by the counting
error follows a square-root behavior. To implement or mimic this
behavior, several approaches are commonly applied in state-of-the-
art photon science instrumentation.

At the time of writing, standard pad or pixel detectors based on
PIN diodes for conversion of the X-ray photons to signal charge are
widely used. This type of detector is technologically simple and easy

FIGURE 1
Accuracy functions for linear and nonlinear gain functions, for ADNR values of 20 and 40 (A). The stimulus consists of up to NMax � 100 photons with
an energy of 1 keV. For the energy deposition of the photons, the Fano noise is taken into account. Below the break-even stimulus of NBE � NMax/4, the
nonlinear gain produces much better results, as the linear gain function produces a constant noise floor. (B) shows the scaling behavior of the accuracy
functions with NMax, using 1 keV photons as stimulus, for an ADNR � 100. In addition, NMin is indicated by the dashed lines. For NMax � 100, the single
quantum sensitivity criterion is fulfilled.
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to manufacture with high yield. When applied in large scale systems,
integration is done using a hybrid pixel approach, in which front-
end ICs providing one preamplifier channel per pixel are bump-
bonded to the sensors, connecting preamplifier channel to its sensor
pixel with solder bumps.

In this detector architecture, the task of applying the nonlinear
gain is transferred to the front-end electronics, especially the
preamplifier. Different approaches exist for implementing or
approximating the requested shape of the gain function. The
multilinear approach approximates the optimum nonlinear gain
curve by a combination of multiple linear gains. One possibility to
implement multilinearity is to having several (typically three)
preamplifier channels per pixel operating in parallel and each
having a different gain—one for low, one for medium and one
for high intensities [1]. Depending on the actual stimulus, the
information of the channel with the gain fitting the stimulus
requirement in the best way is selected for data analysis.

A similar approximation can also be made using one single
preamplifier per channel only, if the preamplifier can adapt
automatically to the signal. Integrated, pixel-individual control
electronics adjusts the preamplifier gain dynamically as a
function of the signal level [2] by selecting one of three different
gain values. The internal control logic monitors the output signal
and switches the gain to the next higher value as soon as the
amplitude exceed a certain threshold. In these and similar
approaches, the design of the preamplifier determines the gain(s),
and the shape of the effective gain function. The lowest gain is
selected to meet the requirement on the upper limit of the dynamic
range, while the highest gain defines the lower dynamic range limit.

The problem with Pad detectors is that their pixel capacitance
is directly coupled to the pixel area, which, in combination with
the high preamplifier bandwidth required for fast readout, results
in relatively high noise figures, effectively limiting their low
energy performance. This problem can be mitigated if the
detector itself provides for a certain level of amplification, like
for instance by using avalanche multiplication. Classical APDs
however, suffer from homogeneity issues. The Monolithic Array
of Reach-THrough APD (MARTHA) structure, however, uses
avalanche multiplication for pushing the low energy dynamic
range limit while avoiding the weak points of the
classical approach.

3.1 MARTHA devices

MARTHA devices are based on the concept of Avalanche
PhotoDiodes (APDs). APDs provide inherent localized
amplification of the signal charge within the sensor, and the
amplification is achieved by avalanche multiplication of the
primary signal charge itself.

At the time of writing, APDs are applied in a large variety of
contexts, but many more potential applications could benefit from
their use. The main issue is here, that APD arrays show bad position
resolution and homogeneity of sensitivity over larger areas,
especially if benchmarked against what is possible for simple
photo diode arrays. Consequently, APDs play a comparably
minor role. Only small formats of 16 up to 64 pixels are
commercially available, and the smallest dead space gaps between

pixels are in the range of 40 µm [3]. Institutional R&D is ongoing for
several years to close the gap to the photo diode arrays.

For the fabrication of larger APD pixel or strip arrays one has to
overcome two critical obstacles. The first problem concerns the
homogeneity of the avalanche gain. The ionization rates in the
avalanche process depend on the electric field strength, which by
itself is determined by the actual doping profile in the implants
defining the potential in the multiplication region. Consequently,
any fluctuation in the doping process directly affects the magnitude
of the electric field. Fluctuations in implant energies results in depth
variations of the implants, affecting size and position of the
multiplication region, and fluctuations in the implanted dose will
directly modify the overall space charge. Both effects have an
exponential impact on the ionization rate, and thus the gain.
These gain fluctuations need to be minimized by careful
technological processing using highly specialized, well controlled
and monitored processes for all relevant implantations. The effect of
the yet remaining gain variations can be mitigated by operating the
APD arrays at a comparably low gain. In general, gain values of
20 and below are recommended to keep the effect of gain
fluctuations in a manageable range. This is a common approach,
for which the R&D activities are summarized under the name Low
Gain Avalanche Diodes (LGAD) development—see, for example,
references [4–6].

The second problem is the early breakdown at the edges of the
segmented n + diodes defining the pixel electrodes. This is caused by
the elevated field strength at convexly curved doping shapes as can
be found at the edges of the anode implants. To avoid the
breakdown, implanted guard ring structures are commonly
provided, which rigorously suppress avalanche processes at the
edges of the implants. The downside is that these arrays are
blind in the inter-pixel gap regions.

Concepts to suppress edge breakdown while maintaining high
detection efficiency in the gap region are currently in the focus of
research and development [7–10]. The Inverse LGAD (iLGAD) [7,
8] is the most fundamental approach to achieve a homogeneous
lateral electric field distribution. It uses a segmented p + cathode on a
p type substrate as pixel/strip read out structure. One global non-
structured n + anode and p type multiplication region on the
opposite side of the substrate covers the entire sensor array. The
pn-junction formed by the anode and the multiplication region,
however, must not touch the cutting edge, requiring more expensive
double sided processing, which is even more challenging in case
thinned substrates are used.

If operated as X-ray detector, photons have to enter on the non-
structured n-side. If a photon is absorbed in the multiplication
region, the photon generated charge experiences different
amplification, depending on the depth at which they are
absorbed. Although there are successful attempts to mitigate this
effect [8] it still compromises the detection efficiency especially for
low energy X-rays.

Another approach is to replace the implanted standard inter-
pixel guard structure by a trench isolation [9]. The blind inter-pixel
region can be drastically but not completely reduced to a level
sufficient for particle detection. For precise energy measurements or
photon counting, a homogeneous response is required.

In the Deep LGAD concept [10], the p-avalanche multiplication
structure is implanted before the growth of a thick, high resistive
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n-type epitaxial layer, which separates avalanche multiplication
from n + pixel implants located on top of the epitaxial layer.
Reported simulation results show a very good edge breakdown
suppression and a fairly homogeneous response behavior.
Problematic with this approach is that the pn-junction
between epitaxial layer and p-type bulk conceptually extends
to the cutting edge of the sensor, leading to significant leakage
current generation.

The MARTHA concept discussed here offers an alternative way
to completely suppress edge breakdown while providing a fairly
uniform signal response also in the inter-pixel gaps.

3.1.1 MARTHA concept
Figure 2 shows a cross section through two neighboring pixels

of the proposed MARTHA structure. For any photon detector,
optimum quantum efficiency can only be achieved without any

obstacles for the incident photons. For this purpose, a Reach
Through APD [11] is an ideal solution. It operates at full
depletion and provides a homogeneous photon entrance
window with 100% fill factor on the backside. The bulk acts as
drift region. If the bulk is p-doped, the structures can be
manufactured using single sided processing only, with guard
structures only on the n-side.

The pixel electrodes are formed by conventional n + anode
implants. An aluminum control grid over the complete array
provides flexibility in controlling the SiO2/Si interface potential
in the inter pixel gap regions. This additional electrode can later
be replaced by a proper surface implantation in a future
implementation. Key features of the MARTHA structure are the
global multiplication region (MR) and the field drop region (FDR),
which is located above the MR. The MR is defined by a p-type high
energy (HE) implant in a depth of several microns from the surface,
the FDR by a relatively deep-n implant below the anode implants.
Both implants are global and unstructured. In this way, MR and
pixel implants are vertically separated in a similar way as in the Deep
LGAD concept mentioned above, but the MARTHA approach has
the advantage that the required doping profiles can be confined to
the pixel region.

If the structure is fully depleted, theMR extends between theMR
HE implant and the FDR. The FDR is important for the mitigation
of the edge breakdown. Its main effect is to suppress the
aforementioned peaks in the field strength. Its effect can be
deduced from equivalence between the depleted implant dose
and the field strength, which can be concluded from the Poisson
equation. Accordingly, the absolute maximum electric field at a pn-
junction is

Emax| |� −qεDD � qεDA

withDD andDA being the corresponding depleted doping doses.
In the APD array, DA is composed of the dose of p-implantation
creating the high electric field within the MR, the dose
equivalent of the bulk concentration and the depleted
fraction of the cathode implant at the entrance window. DD,
in contrast, is the sum of the implantation dose for the FDR,
DFDR, and the depleted fraction of the anode implant for the
pixel contacts, with the latter contribution being omitted in the
gap region. Assuming separated vertical concentration profiles
for the n + anodes and the FDR, the electric field at the height of
their transition point can be calculated to be the maximum field
strength, scaled with the ratio of the depleted dose for the field
drop layer to the overall depleted acceptor dose:

Etp

∣∣∣∣ ∣∣∣∣ � Emax| | · DFDR

DA

whereDA is dominated by the implant in the MR. In effect, the field
drop layer does not avoid field peaks, but scales their amplitude
down to uncritical values, i.e., below the field strength threshold for
impact ionization. The ratio between FDR and MR implants were
optimized using 2D TCAD simulations [12]. The results show that a
FDR/MR dose ratio of about 2/3 is a good choice to keep the
remaining electric field peak at the n + pixel edge below the critical
value. Figure 3 shows TCAD 2D simulation results for the electric
field distribution between two adjacent pixels as shown in Figure 2,
with and without FDR. As the MR and FDR implants are

FIGURE 2
Cross section through two neighboring n + doped MARTHA
pixels. Shown is the region between the two pixel centers. Radiation
enters from the bottom side, and the aluminum contacts on the left
and the right serve as contact points for the preamplifier
electronics. The distance between the pixel centers is 50 µm.
Distances are not to scale. The x and y coordinates indicate the
directions relevant for Figure 4.
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unstructured within the APD array, a homogeneous field
distribution in horizontal direction is created, with slight
inhomogeneity at the transition between gap and pixel regions.
The statistical nature of the avalanche process effects an additional
noise contribution for the APDs. The Excess Noise Factor (ENF)
quantifies this contribution with respect to the shot noise of a
classical photo diode:

ENF � k ·M + 2 − 1
M

( ) · 1 − k( )

whereM is the gain and k is the ratio between the hole and electron
ionization rates, which, in silicon, decreases with decreasing electric
field [13]. The lower limit for the ENF of close to 2 can be obtained
by a very small k value, at the cost of a low gain valueM, as operation
at low electric field also reduces M.

This loss can, however, be compensated if the depth of the
multiplication region is increased, to that the gross charge
amplification remains the same. For this purpose, the
aforementioned HE implant is used to create a wide, vertically
extended MR below the newly introduced deep n-doped FDR.

FIGURE 3
Zoom into simulation of inter pixel electric field distributions (absolute values), without (A) andwith (B) field drop layer (FDR). The x and y coordinates
correspond to the lateral surface coordinate and the depth in the wafer as indicated in Figure 2. The inter-pixel gap is 3 µmwide.Without FDR, the electric
field peaks are prominent. A structure with FDR, in contrast, shows substantially smaller peaks, which are still visible, but suppressed to a large extend and
well below the critical value for avalanche generation.

FIGURE 4
Vertical doping profiles (A) and resulting absolute electric fields (B) in the various vertical zones. Two different cuts, one through the pixel center and
one through the inter-pixel gap are shown. Clearly visible are the near-homogeneous field in the multiplication region especially in the pixel center. The
field reduction in the inter-pixel gap is caused by the more negative surface potential, but its influence is mitigated by compensating effects.
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3.1.2 Simulation results
The simulation refers to two neighboring half strips including

the gap in between. Each half strip extends over 50 µm. Taking into
account the applied symmetric left/right Neumann boundary
conditions the simulation domain corresponds to a strip detector
array with 100 µm pitch. For this simulation, the gap between the
pixels was 3 µm wide. When investigating the region below the pixel
implants, the MR, between the MR implant and the FDR, shows a
parallel-plate capacitor like electric field distribution. Reason for this
is the very low doping concentration between FDR and the high-
energy MR implant, where almost no space charge is integrated.

Figure 4 shows vertical cross sections of doping profiles through
pixel and gap regions (left image) and the resulting electric fields
(right image) of the upper part of a 450 µm thick sensor,
determining the various regions of a MARTHA structure. The
doping profile of the HE implant used in the TCAD simulations
was measured by Secondary Ion Mass Spectroscopy (SIMS) on
structures from a wafer from the prototyping production.

In the inter-pixel region, however, a reduction of the electric
field in the MR can be observed, in the order of around some 10%,
which increases with decreasing depth. This field reduction is a
result of the potential at the SiO2/Si interface, which must be more
negative than the anode potentials in order to provide sufficient inter
strip/pixel isolation. But this electric field does not result in a

reduced avalanche generation in the gap region. Figure 5
shows the result of a charge generation scan simulation over
the horizontal coordinate, which was done to evaluate the sensor
response in the gap region. The simulation demonstrates that
almost no charge loss in the gap region occurs. About
800 electrons were injected in a depth of 448 µm below the
anode contact. In this simulation, the structure works with a
gain of about 14 in the preset bias conditions.

Two mechanisms help to compensate the effect of the reduced
electric field. At first, the negative gap potential creates an additional
drift field, diverting charge generated below the gap region towards
the n + doped anodes, where they are exposed to the nominal field
strength and experience the specified amplification. In addition, the
simulations suggest that a 2-D effect, already faintly visible in
Figure 3B, also helps to compensate the effect of the field
drop. A local field elevation appears on each side of the gap,
which is laterally displaced from the n + pixel edge by a few µm
towards the pixel center. Although the field elevation is of the order
of about only few percent, its magnitude is sufficient to affect the
amplification. Accordingly, the simulated response curves shown
in Figure 5 indicate a region with slightly elevated response
compared to the anode centers, at the order of up to 1%, in the
regions left and right of the pixel borders, showing a maximum at
about +/- 15 µm.

FIGURE 5
Simulation of signal charge response, to test charges generated at different horizontal positions x in a depth of 448 µm. The signal level detected by
the left anode is shown in blue, and the right anode signal is shown red. The sum of the signals is indicated by the yellow line. The simulation indicates that
the structure does not have insensitive regions in the inter-pixel region. Overall simulated signal injection was about 800 electrons, and the structure
operates at a gain of about 14.
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Similar simulations were made to study timing behavior and
signal formation inside a MARTHA structure. A test charge of
0.134 fC was generated close to the backside in a depth of 448 µm
beneath the left anode. Figure 6 shows the time dependence of signal
currents and their integrals, the amplified signal charge. The plot
compares the MARTHA pixel structure with standard pixel without
avalanche multiplication. The simulation reveals that the detection
of the full signal lasts longer in the MARTHA scenario, as the holes
generated in the multiplication layer have to drift a significant
distance towards the cathode until the full signal is established.
This is a feature common for all types of APDs.

Accordingly, the induction current on the right anode is more
pronounced compared to the situation at the standard diode. This is
because in the standard diode the current is induced by drifting
electrons according to the weighting field only, while for the
MARTHA structure the right anode additionally ‘sees’ the
induction current of generated holes drifting in the opposite
direction. It gradually disappears the more the holes approach
the cathode. Eventually the right anode net signal is zero in both
cases. In summary, the signal rise time is comparably fast, but the
simulations indicate that the detection of the full signal lasts longer
compared to a diode.

Conceptually, the MARTHA structures are suitable for both
X-ray and particle detection, but some optimization with respect to
the application is required. Common to both applications is the need
for high detection efficiency. MARTHA structures fulfill this
requirement, as they are backside illuminated structures with
high fill factor, and the FDR eliminates the need for insensitive
guard ring structures. Applying suitable antireflective coating (ARC)
on the backside entrance window to match the QE to the application
requirements allows for customization of the MARTHA structures
also for use with optical wavelengths.

Using MARTHA structures for the X-ray wavelength range
requires low noise operation for good energy resolution and
precise photon counting, especially when low photon energies are

used. In addition, an adaption of the substrate thickness is required.
To detect higher X-ray energies with acceptable QE, substrates with
a thickness at the order of 450 µm or higher are required. These
substrates are compatible with the HLL standard entrance window
technology, which provides for excellent quantum efficiency up to
an X-ray energy of 12 keV [14].

For applications in particle tracking, in contrast, thinned SOI
substrates are a suitable option as an effective way to reduce the
radiation length. Here, substrates with a thickness of 50 µm or less
are feasible.

The devices in the ongoing prototyping production were
optimized for X-ray detection. The structures are integrated
on highly resistive p-type float-zone wafers with standard
thickness of 450 µm. Reach through diodes need to be
operated in full depletion. The high-energy implant defining
the MR is applied to the area inside the pixel/strip array only,
and the implant is lithographically masked at the sensor edges.
This simplifies the design by avoiding interference with the guard
ring structure on the n-side.

Silicon wafers with this bulk thickness are suitable for X-rays in a
medium energy range up to 12 keV. Using a wide MR and a thick
wafer leads to a relatively high operation voltage. Four our chosen
parameters, depletion of the high field region and the thick wafer
needs about −140 V and −120 V, respectively. Adding a moderate
over-depletion voltage results in an operation voltage of
about −300 V. On the other hand, the electric field depends only
weakly on the backside voltage. Therefore, if the sensor is operating
with low gain only modest gain changes are to be expected, in case
the bias voltage fluctuates or the bulk doping shows variations.

For soft x-rays below 1 keV, thin entrance window implants with
minimum dead layer are required. These thin entrance windows
suppress the recombination of signal charge in the undepleted part
of the heavily p-doped cathode, so quantum efficiency and spectral
performance improve. The respective technology steps are
compatible to the MARTHA process.

FIGURE 6
Evolution of signal currents (A) and signal charge (B) in a MARTHA structure after generation of a test charge of 0.134 fC at the backside of the sensor
beneath the left anode. Generation depth is 448 µm. Solid lines represent the amplified currents and charges. For comparison, the same simulation was
performed on a standard PIN diode structure without avalanche generation (dashed lines).

Frontiers in Physics frontiersin.org09

Ninkovic et al. 10.3389/fphy.2024.1321164

101

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1321164


To summarize, MARTHA structures have the potential to
overcome the traditional limitations of APD arrays. In photon
science applications, their gain properties help to push the low
energy limit of the dynamic range. Concerning the high-energy limit
of the dynamic range, gain-reducing effects observed at higher
intensities [15] are subject of ongoing investigations. These could
also help to accommodate the requirements from the application.

In case minor modifications concerning biasing are adopted,
the devices can work together with most classical front-end
solutions forming a hybrid pixel assembly. If combined with
an advanced multilinear frontend, they can service the complete
dynamic range as requested by state-of-the-art photon science
experiments and provide for an attractive alternative to
traditional pad and pixel detectors especially for detecting low
energy X-rays.

Based on the abovementioned TCAD simulations, a generic
MARTHA technology plan was conceived and optimized. A first
prototyping production was finished recently at the MPG HLL; the
prototype detector structures await qualification measurements.

3.2 pnCCDs for high dynamic range

Pad or Pixel detectors in a hybrid pixel detector are an
appropriate solution if for instance extremely high framerates are
required, as they provide for the option of full parallel readout of the
complete detector. Disadvantages are high complexity of
integration, high power consumption, comparably large volumes
and the need for advanced mechanical and thermal interfaces, in
combination with a low energy threshold, which is comparably high.
In addition, the hybrid pixel approach demands similar pixel pitch
on sensor and front-end electronics. This brings about limitations in
terms of scalability of pixels sizes. In case resources are less abundant
and the experiment requires a more compact sensor system, a lower
system noise or smaller pixels are requested, and lower framerates
can be tolerated, pnCCDs can be an attractive alternative.

3.2.1 pnCCD structure
The pnCCDs have originally been developed as sensors for

imaging X-ray spectroscopy for the X-ray satellite mission XMM-
Newton [16, 17] and since then found application in a wide variety
of experiments in X-ray astrophysics as well as high luminosity
X-ray sources [18–21].

Figure 7 illustrates the structure of a pnCCD. The pnCCD
concept is based on sidewards depletion, and the devices are
manufactured in a double sided process. The backside provides a
homogeneous, unobstructed, ultra-thin entrance window for
radiation. Customization of the entrance window, e.g., by
deposition of anti-reflective coatings or light blocking filters is
possible if required by the application. On the frontside, a high-
energy (HE) n implant several micrometers below the surface
defines the potential minimum for electrons which forms the
transfer channel. In transfer direction, p + implants connected to
form a three-phase register structure define the CCD pixels. The
pixel size can be scaled between 36 µm up to 150 µm to match the
experimental requirements.

Perpendicular to the transfer direction, additional deep
implants, the n-type channel guide and the p type channel stop,
define the pixel structure. These implants create potential barriers
between the pixel columns, confining the signal charge to the pixel.
Utilizing a three phase clocking scheme, the charge is transferred
from pixel to pixel, and finally handed over to the n + readout anode.
The readout node is connected to the gate of the FirstFET, a low
noise n-channel jFET with an equivalent gate capacitance of
50–100 fF. It is typically read out in a source follower
configuration. With readout rates of 4 µs per line, an input
capacitance this low provides for noise figures of a few
electrons ENC.

A pixel of the pnCCD stores the signal charge below one of its
registers inside a potential pocket in the n-type HE implant, which
also serves as transfer channel. The register structure confines the
signal charge transversally, and lateral confinement is given by the
deep-n channel guide and deep-p channel stop implants. The depth
of this potential well defines the pixels CHC. A state-of-the-art
pnCCD, with a pixel size of 75 μm2, can store a few 100 ke-per pixel
in standard operating conditions [22].

Although this is sufficient for most spectroscopic applications,
the situation is different for ultra-luminous sources, as used for
scattering experiments. Here, certain regions on the sensor are
illuminated with high intensity, several thousand up to several
hundred thousand photons and more can be collected within a
single pixel. The amount of signal charge thus generated exceeds the
charge-handling capacity of a pnCCD in standard operating
conditions, leading to an overflow of the charge into neighboring
pixels, an effect observable as blooming or smearing in the recorded
images. Increasing the pixel CHC of a pnCCD is, however, possible
by optimizing the operating conditions.

The standard operating conditions create the potential well
defining the pixel in a depth of several micrometer below the
surface, with the depth mainly being defined by the deep-n
transfer channel implant. A more negative backside voltage,
however, lowers the positive potential formed by this implant.
Below a certain voltage level, the vertical potential barrier is
overcome and the charge in the transfer channel is pushed closer
to the surface, into a secondary potential well formed by the channel

FIGURE 7
Structure of a pnCCD. A pnCCD is built by utilizing p + implants
forming the different registers and a deep-n implant forming the
transfer channel in several micrometers of depth. By clocking the
registers, the charge is transferred to the readout nodes. The
transfer direction, indicated by the arrows, is perpendicular to the p +
register implants (shown in red).
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guide implants. In effect, this increases the capacitance of the pixel
and allows storing more charge within it. A pnCCD with 75 μm2

pixels operated in this high dynamic range mode exhibits a pixel
CHC to up to 2 × 106 e− and more, without exhibiting bleeding
effects, which is sufficient for the use in photon science
experiments [22].

3.2.2 pnCCD readout
Conceptually, pnCCDs are charge integrating devices, which are

read out on demand. The image is generated by integrating signal
charge for a defined integration time. Afterwards, the charge is read
out by transferring it to the readout nodes.

A fundamental limitation of CCDs is that the charge needs to
be transferred serially to the readout anode for every pixel, which
puts up an intrinsic limit for the degree of readout parallelization.
Unlike many conventional CCDs, pnCCDs provide one readout
node per sensor column, and the front-end electronics processes
the information of all sensor columns in parallel, so that no
lateral transfer is required. This is referred to as full column-
parallel readout. By suitable segmentation and matching
interconnection of the register contacts, a split-frame readout
can be realized. For such a device, readout anodes and first FETs
are present on both edges of the CCD, to which the signal charge
from the adjacent half of the sensor pixels is transferred. In this
way, a two-fold column-parallel readout can be implemented,
effectively reducing the readout time by a factor of two. A higher
degree of parallelization cannot be realized on a monolithic
pnCCD device. Further topological modifications are possible
for pnCCDs, which, however, do not influence the readout speed.
A frame store area [23], for instance, is primarily introduced to
suppress so-called out-of-time events (OOTs), which are events
registered by the CCD during the readout phase of the image. Due
to the frame store area, OOTs can be suppressed to a large extend
at the cost of substantially larger device area and additional
transfer time, which slows down the readout. Therefore, a
frame store is mainly useful for improving the image quality
under continuous beam conditions with low to medium
beam intensity.

Once the charge is transferred to the readout anode, it causes a
voltage change at the gate of the FirstFET. In the classical JFET
configuration, the FirstFET of a pnCCD can only be operated in
source follower configuration for topological reasons. Here, constant
current bias is provided to each FirstFET, usually by a current source
integrated in the associated front-end channel. In first order
approximation, the additional charge on the FirstFET gate
increases the gate voltage by about:

∂VG ≈ ∂qsig
CG

, and the source follows this voltage step: ∂VS ≈
∂qsig
CG

.
This source voltage step is acquired by comparing the source

voltage level of the FirstFET. The baseline level before the transfer,
and the signal level after the transfer are acquired and subtracted
from each other. This technique is commonly referred to as
correlated double sampling (CDS), and requires a time-variant
preamplifier/shaper circuit. CDS provides superior 1/f noise
suppression.

Several readout ASICs are available that are capable to process
the signal of the FirstFETs via CDS, using either multi-correlated
double sampling or a trapezoidal weighting function for filtering [24,
25]. Readout rates down to 2 µs per column can be realized with

excellent noise properties and fano-limited energy resolution for
X-ray spectroscopy.

This excellent performance is also a consequence of the nature of
the pnCCD being a sidewards depleted device. The conceptually
small capacitance of the FirstFET Gate/readout anode increase the
signal voltage step, directly affecting the signal to noise ratio.

The FirstFET gate/readout anode contacts can be reset to a
defined voltage level using the so-called ResetFET It can be biased
statically, causing slow discharge from the readout anode to the
drain of the reset FET, keeping the readout anode voltage in a
dynamic equilibrium depending on the reset FET bias and the
amount of incoming charge. This mode works best for low to
medium occupancy, e.g., in spectroscopic applications.
Alternatively, the reset FET can be operated in pulsed mode,
resetting the readout anode contacts after a fixed number of
readout cycles. This mode is useful to restore defined biasing
conditions in operation modes with large quantities of signal
charge. In the most extreme cases, the readout anodes have to be
reset after each readout cycle.

Considering a CCD with nr rows, framerate ]f for these systems
is given by

1
]f
� nr · (trd + trst) for a standard mode CCD and 1

]f
� nr ·

(trd + tt + trst) for a framestore device, with trd being the readout
time for one row, trst the time required for resetting the readout
anode together with the gate of the FirstFET, and tt being the time
required for transferring the charge from one row to the next. At the
time of writing, near Fano-limited resolution can be achieved, using
dedicated preamplifiers implementing CDS, with readout times
between 2 and 4 µs. Transfer from pixel to pixel takes of the
order of 100 ns, which is also the time required for resetting the
readout anode.

In this way, a state-of-the-art column-parallel pnCCD can be
operated at framerates of between 480 Hz and 930 Hz for a standard
mode device or 460–890 Hz for a framestore device, assuming a
split-frame CCD topology with a 1 k × 1 k pixel large imaging area.
Accordingly, the readout of smaller sensors scales linearly
with their size.

Conventional large area pnCCD systems have successfully been
deployed to experiments at free electron lasers, namely, the CFEL-
ASG Multi-Purpose instrument (CAMP) [19] and the Laser
Applications in Material Processing (LAMP) [20] experiments at
the Free-electron LASer in Hamburg (FLASH), and the Linac
Coherent Light Source (LCLS), respectively. The concept for the
LAMP instrument is shown in Figure 8B, a photo of one pnCCD
module is shown in Figure 8A. The X-ray laser illuminates the
specimen, and the various CCD detectors record the speckle. The
image data is used to reconstruct the structure of the specimen [26].
The main challenge in this kind of experiment is the simultaneous
observation of large and small scattering angles that typically have
orders of magnitude difference in intensity. To resolve single
scattered photons, a sufficiently low noise is required, while high
numbers of photons demand a large charge handling capacity.

3.2.3 pnCCD gain
While the register structure of a pnCCD is capable of handling

several 106 e- within a single pixel, processing the charge puts up a
challenge for the following readout chain. At first, the input stage of
the preamplifier ASICs will face signal voltages of several volts, due
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to the small readout anode capacitance, so special precautions have
to be taken not only in order to be able to process the signal levels
correctly, but also to prevent damage to the preamplifiers. The
respective ASICs need to be furnished with a HV input stage, with
configurable attenuator circuitry if necessary.

What is more, the requirement to resolve single photons as well
as the extremely high signals in the peaks simultaneously cannot be
fulfilled by the conventional CCD readout systems applying
preamplifiers with linear gain. As discussed before, multi-linear
or non-linear amplification can optimize the system response for
photon counting applications. The JFET used for the conventional
pnCCD readout, however, is operated in a standard source follower
configuration, has a linear characteristic and does not support a
customized gain nonlinearity.

The nonlinear or multilinear gain could be integrated into the
readout amplifier, but at the time of writing, a pnCCD compatible
preamplifier solution implementing these features does not exist.
Current pnCCD preamplifiers are conceived for spectroscopy and
offer a number of different gain settings, but they can only be
operated with one specific gain setting at a time. Depending on the
gain setting, information from either high or low intensity features is
therefore lost. As a workaround, scattering images from the same

specimen are taken with several gain settings, and the data is
combined later on in the analysis. This pragmatic workaround is,
however, only suitable for specific types of application scenarios.

A customized preamplifier with the option of multilinear
amplification, which would be a new development, would be
useful for standard CCDs with a simple anode-based readout, but
would not necessarily be the optimum solution for the pnCCD. This
is because of the pnCCDs FirstFET, which is the first element in the
signal amplification chain. The gain nonlinearity is most effective if
it is applied as early in the signal processing as possible.

As shown in section 2, a linear gain function introduces a
constant offset to the accuracy function, while the accuracy
function for the nonlinear gain converges to zero for small
signals. In case of a linear amplifier (e.g., the FirstFET) as
primary and a nonlinear amplifier as secondary stage, the
FirstFET introduces an offset to the accuracy function, and the
secondary stage amplifies this offset with a gain corresponding to its
level. For a nonlinear first stage followed by a linear preamplifier,
however, the offset to the accuracy function is zero, and, although
the linear secondary stage introduces an offset on its own, this offset
is not amplified further, so that this configuration has better
accuracy at low signal levels.

FIGURE 8
Photo of a pnCCD module as used in the CAMP and LAMP experiments (A). The structure is a standard mode, split frame pnCCD. To cover a larger
solid angle, twomodules can be placed close to each other withminimumdead area. The hole in the central region allows the un-scattered primary beam
to pass. Setup of diffraction experiments at CAMP and LAMP using the pnCCD modules (B), using two planes of two pnCCD modules each. The setup
corresponds to the one reported in [26].
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Implementing the gain nonlinearity into the FirstFET will
therefore be superior compared to solutions based on nonlinear
or multilinear preamplifiers. An approach currently being
developed at the MPG HLL is the replacement of the
conventional FirstFET based on a JFET with DePFET based
end-of-column amplifiers for the readout of pnCCDs. Critical
issue here is the transfer of the signal charge from the transfer
channel of the column defined by the HE implant to the internal
gate of the DEPFET serving as EOC amplifier. In this process, all
charge needs to be transferred, even for very high signal levels,
without compromising the image information. Once this
process is complete, the device benefits from the unique
capabilities of the DEPFET.

As described below, DEPFET structures allow the
implementation of a customized non-linear amplification
already on sensor die level. A combination of a pnCCD pixel
array with an optimized pixel CHC for photon counting with
high dynamic range, and a DePFET based EOC amplifier with
customized nonlinear amplification is a useful detector device for
x-ray scattering imaging with high dynamic range. In addition, it
could also help to speed up pnCCD readout.

Although a source follower configuration for readout has some
benefits, e.g., its invariance against bias voltage settings and its
robustness against radiation-induced threshold voltage shifts, it
also puts a limitation on the readout speed. In the source follower
configuration, the load capacitance connected to the source node
needs to be recharged each time the source voltage changes. This
recharge process is driven by the gm of the FirstFET. Constraints
on geometry and capacitance of the readout anode entail certain
limitations concerning size and gate capacitance, and thus on the
gm of the FirstFET. The resulting settling time constants are
usually not significant when operating with spectroscopic
shaping times of several µs. The picture changes, however,
when the readout is to be sped up to the sub-µs range. Here,
the gm dominated settling time constants could bring about a
severe limitation to the readout speed. As explained below, a
DEPFET based EOC amplifier, in contrast, could be operated in
a drain readout configuration, where the potentials on all terminals
are kept constant by the front end circuit, eliminating the
dependence of the settling time on the gm of the EOC
amplifier. As a side effect, front-end circuitry designed for drain
readout eliminates the requirement for a HV input stage.

For photon science a large format pnCCD with a DePFET
based readout node, incorporating a non-linear signal response
would provide kHz readout rate and large sensitive area with
maximized dynamic range. A first small format prototype
combining a pnCCD with a DePFET based first amplifier has
recently been manufactured. The test system is under
construction.

3.3 DEPFETs for photon science application

As mentioned above, DEPFET [27] devices provide for a
different approach to create required nonlinear characteristics,
not in the preamplifiers, but in the sensor itself. This is the
principle of in-sensor signal compression. Although a more
sophisticated sensor is required, the design of the front-end

amplifiers can be simpler and less customization is required.
DEPFET devices can be used in multiple ways and in a variety of
contexts. As mentioned, they can be combined with a pnCCD
pixel structure replacing the traditional JFET based FirstFET,
adding gain customization and higher readout speed.

They can, however, also be used as building block of an active
pixel sensor (APS). The advantage here is a significantly higher
framerate, as a much higher degree of readout parallelization is
achieved in this way. One example is the so-called EDET sensor
using a 4-fold multiparallel readout to achieve a framerate of
80 kHz for a 1 MPixel array. The extreme case is the full
parallel readout using the DEPFET APS as basic cell of a hybrid
pixel detector, which has been realized for the so-called DSSC
(DEPFET Sensor with Signal Compression [34]).

FIGURE 9
Cross-cuts through simple DEPFET devices with linear (A) and
circular (B) transistor geometry. Basic structure is a PMOS transistor. A
space-charge region created by a deep-n implant below the PMOS
collects the bulk-generated signal charge. The charge in this
“internal gate” controls the PMOS current. The charge can be removed
using an additional NMOS, the so-called ClearFET. Both variants,
circular and linear, have been used for experiments, but the linear
variant has advantages in terms of scalability and high
integration density.
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3.3.1 The DEPFET detector/amplifier structure
The combined detector amplifier structure DEPFET [27]

(Depleted P-channel FET) has found application in a variety of
projects, ranging from high-energy physics [28, 29],
extraterrestrial physics [30, 31], planetology [32, 33], and
photon science [34]. A DEPFET structure essentially consists
of a PMOS transistor integrated on the surface of a fully
depleted, n-type silicon bulk. By means of sidewards
depletion, the potential minimum for electrons created in
this way is shifted towards the surface on which the PMOS
structure is located (see Figure 9). Using an additional n
implant, the potential minimum is further enforced and
confined to the region just below the PMOS gate. Bulk-
generated electrons will follow the drift field created by the
sidewards depletion, and will be collected in the potential
minimum beneath the PMOS gate. Here, their presence
modulates the PMOS current in the very same way as charge
on the external gate. Therefore, the potential minimum is
referred to as internal gate. The figure of merit for the
internal gate is the so-called charge transconductance, or
gq � ∂IDS/∂qint, describing the change of DEPFET drain
source current per change of charge in the internal gate.
Typical values here range between 300 pA/e− and 1 nA/e−
[35]. The PMOS current therefore is a measure for the
charge present in the internal gate.

The DEPFETs nature as sidewards depleted device brings about
additional benefits. DEPFETs have an extremely low internal gate
capacitance of only few fF, and therefore exhibit intrinsically high
signal to noise ratios. They have in common with pnCCDs that in
most cases they are illuminated from the backside, which allows for
100% fill factor and provides a certain degree of self-shielding,
especially against low-energy X-rays. In addition, the sensors can
be furnished with an entrance window configuration optimized for
the respective application, e.g., antireflective coating for QE
optimization for use in the optical wavelength, or thin entrance
window implants for good spectral performance even for the lowest
X-ray energies.

3.3.2 DEPFET clear
Conceptually, the DEPFET is a charge integrating type of

device. Without external influence, the internal gate will collect
all bulk-generated electrons, which continuously lower its
potential. To clear the internal gate of the collected charge
and to reset the DEPFET structure to a defined state, the
clearFET, a dedicated NMOS structure merged with the
PMOS, is used. The clearFET uses a separate cleargate contact
as gate and an implanted n + contact, the clear contact, as drain,
while the internal gate acts as source. In normal biasing
conditions (Clear OFF state), the clear contact is shielded
from the bulk and the internal gate by the barrier created by
the cleargate and an additional deep-p shielding implant. When
the internal gate keeps collecting charge, its potential will
eventually reach the potential of the barrier towards the clear.
This point defines the CHC of the DEPFET, as from now on,
excess charge will start leaking to the clear, and the potential of
the internal gate will remain constant.

By applying a positive voltage to the cleargate, the potential
barrier between internal gate and clear is lowered, and by setting the

clear to a positive voltage as well, electrons from the internal gate are
extracted by the clear. If clear and cleargate potentials are set
appropriately (Clear ON state), all collected charge is removed
from the internal gate.

During operation, clear pulses with a fixed frequency are applied
to the pixels. In the phase between the clear pulses, the DEPFETs
internal gate will integrate and store bulk-generated charge. Each
clear pulse will completely empty the internal gate, and the height of
the step produced by the clear pulse is used as a measure for the total
amount of charge collected in the internal gate during the charge
integration phase. This is done by comparing the signal levels of the
DEPFET in the (partially) filled state before the clear and the empty
state after the clear. The signal step is evaluated using CDS with
dedicated preamplifier/shaper ASICs. Sometimes, e.g., in cases
requiring extremely short readout times, no individual baseline,
only one pixel-individual reference value is measured for the
complete acquisition cycle. Thus, the same value is subtracted
from all full state signal levels, compromising the noise figure in
favor of the readout speed.

An important point to mention is that the DEPFET can be used
as an integrating type of detector using readout on demand. Its
internal gate can store charge regardless from the presence of a
transistor current. This allows the detector pixel to reside in a low
power biasing state, while all the pixels are still sensitive.

3.3.3 DEPFET readout
As mentioned before, the charge in the DEPFETs internal gate

influences the channel conductivity in the PMOS channel. To
evaluate the channel conductivity, two common methods are in
use. Like the FirstFET of a pnCCD it can be operated as a source
follower. Changes in the charge collected in the internal gate will
then be converted into a voltage step at the source of the DEPFET,
which, in first order approximation, is

∂VS ≈ − gq

gm
· ∂qint

as the external gate tries to keep the source voltage at the old level. To
circumvent the intrinsic limitations of the source follower, an
increasing number of applications use the so-called drain
readout, where the DEPFET is biased with constant potentials on
drain and source, and changes in the internal gate charge are
converted to a current step, which is evaluated by means of a
Trans-Impedance Amplifier (TIA):

∂IDS � gq · ∂qint
Main advantage of this approach is the higher speed. For the

source follower the source node has to be recharged to its new
potential during signal formation. In this process, the capacitance of
the source in combination with the gm of the DEPFET limits the rise
time of the source follower, especially as, to optimize the source
follower gain, the DEPFET was on purpose designed with a low gm.
This intrinsic speed limitation does not apply to the drain readout
case, as the potentials on the DEPFET drains are kept constant by
the TIA, and the achievable readout speed is higher. This is why
drain readout is used for most applications requiring higher readout
speeds. The design of the input stage of the TIA, however, must
assure stability even for the high load capacitance values
encountered for large matrix devices.

Frontiers in Physics frontiersin.org14

Ninkovic et al. 10.3389/fphy.2024.1321164

106

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1321164


3.3.4 DEPFET matrix operation
Due to their nature as sidewards depleted devices, DEPFETs can

be utilized as sensitive elements for pixels in a variety of detector
configurations, covering a wide range of pixel sizes from the mm
scale, e.g., if surrounded by driftrings, down to few tens of µm if
highly dense, coupled designs are chosen. They also provide for a
huge variety of options for in-pixel functionality, like electronic
shutters, multiple storages, repetitive sampling and many more [35,
36]. In the simplest configuration, however, the sensor surface is
subdivided in a rectangular array of pixels, each of which is
furnished with a DEPFET as central detector/amplifier element.

Conceptually, the DEPFET provides for a high degree of
flexibility concerning pixel interconnection and readout, as all
relevant terminals are individually accessible. Arbitrary patterns
of pixels could be flexibly addressed and read out on demand,
with a readout speed adapted to the respective signal. In practice,
however, only two different readout configurations have found their
way into application. The first approach is the fully parallel readout,
where all pixels are connected to the same control- and bias traces,
and all readout terminals are connected to their own individual
readout electronics channel. This approach has been implemented
for DEPFETs for the DSSC, and also for high-speed spectroscopy.
Fully parallel readout offers highest framerate and readout speed
capabilities, especially if combined with drain readout. This
approach is, however, also most challenging for large area
matrices due to, e.g., the required high integration density of the
readout electronics, fast timing requirements, and high demands on
the driver electronics for the control terminals.

The second approach is the so-called n-fold parallel readout,
where different subsets of pixels share their readout electronics, and
only one subset of pixels is read out at a time. A topologically simple
subdivision here, which is also the most widely used, is connecting
all pixels of one, or sometimes a number of n, rows to be read out in
parallel. The associated control electronics only needs to access all
pixels within a subset, but with the option to access all subsets
sequentially. This simplifies pixel interconnect on a matrix and a
much lower number of readout channels is required compared to the
fully parallel readout case. Consequently, the overall complexity and
integration density of such a system is substantially reduced
compared to a full parallel readout system. The readout of such a
system happens in a rolling-shutter mode, where the subsets,
typically rows or numbers of rows, are switched on and read out
sequentially, with the process starting over once all subsets have
been read. This mode also offers the feature to read subsets of the
matrix, windows or regions of interests (ROIs) with elevated frame
rate and time resolution, if the matrix control circuitry allows to
flexibly address the pixels to be read out.

3.3.5 DEPFETs with nonlinear amplification
It was stated above that the nonlinear characteristics needed to

match the accuracy of counting error can also be achieved by
modifying the response of the detector itself, rather than by
dedicated front-end electronics. The DEPFET structure is an
ideal platform for the implementation of such an approach due
to its operation principle. The DEPFETs gain characteristics can be
precisely modified using gq engineering.

The DEPFET translates the presence of signal charge in the
internal gate into a modulation of the PMOS current. The

mechanism here is that the charge carriers in the internal gate
induce mirror charge in the PMOS channel, which contribute to the
overall channel conductivity, in the same way as charge on the
external gate creates the channel in the first place. To achieve
maximum influence of charge in the internal gate, the design
must minimize stray capacitance towards adjacent electrodes
other than the PMOS channel. To achieve this, a weak deep-n
implant creates a space charge region, which confines the signal
charge in a certain depth and position right below the external gate.

Within a typical pixel environment, potential barriers from
source and drain and the potential barrier to the clear surround
the internal gate. The potential barrier to the clear usually defines the
pixels CHC, as charge starts leaking to the clear once the internal
gate becomes negative enough to allow electrons to overcome
this barrier.

The idea behind the technique of gq- engineering is to create
regions within the pixel area other than the clear allowing charge to
overflow to once the internal gate reaches a certain fill level. This
overflow must occur underneath a region with a potential more
positive than the clear barrier in order to prevent charge loss. For a
normal pixel layout, the region below the source, as the most positive
electrode nearby, is the obvious overflow target. There are various
ways to extend the internal gate to the overflow regions. One option,
first realized for the DEPFETs for DSSC [37, 38], uses additional
deep-n implants. In this variant, the first overflow region is created
by a second weak deep-n implant extending also below the source. It
needs to be noted that a slightly different source implantation, the
so-called pson, is used to define the source region wherever an
overflow region is implemented below. This is because the normal p
+ source implant would compensate large parts of the deep-n.

Once the threshold fill level is reached, charge will start to extend
to the overflow region, which will see a much higher parasitic
capacitance towards the source, so its influence on the PMOS
current will be much lower. The parameters of the deep-n
overflow implant, mainly dose and size, adjust both the fraction
of source area the overflow will extend to and the threshold value at
which the overflow will occur. In effect, these parameters determine
the onset point (commonly referred to as “kink”) and the effective gq

for charge in the overflow region. In the same way, even more
overflow regions can be added by means of even further deep-n
implants (see Figure 10).

In this way, a DEPFET device with graded internal gate is
generated, where different sections in the dynamic range show
different gq, each with its unique onset point. The actual
nonlinear characteristics depends on a large variety of input
parameters like requested primary gq, gain function shape,
overall dynamic range or requested pixel size. In addition, the
final gain function will smoothen out due to diffusion processes
in the semiconductor manufacturing process. Manufacturing
technology and actual pixel design are verified using best practice
design optimization methods, which utilize process simulations and
3D device simulations. The overflow regions also increase the CHC
of the sensor pixels.

An example of DEPFET characteristics with nonlinear gain
manufactured for the DSSC at the MPG HLL is shown in
Figure 11. The DSSC uses large modules with hexagonal
DEPFET pixels with circular geometry similar to Figure 9B. Gate
and source concentrically surround the drain, which is located in the
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center of the pixel, only sparing the clear region. Accordingly, the
various overflow regions extend concentrically underneath the
part of the source region defined by the pson. Outside the
overflow regions, the conventional p + implant in form of a
concentric ring reaching out to the first drift electrode defines the
source region. To fill the pixel area of 200 × 200 µm2, a drift
structure with two drift rings surrounds the DEPFET readout
node. The DEPFETs operate in pulsed clear operation mode,
where all pixels are read in parallel with an overall maximum
framerate of 5 MHz. The preamplifiers contact the sensor pixels
via bump bonding.

The hexagonal approach for DSSC works well, but is of limited
scalability, as far as pixel size is concerned. The smaller the pixel size,
the more difficult it gets to superimpose the various deep-n implants
underneath the limited source area. For smaller pixels, a different
approach providing for easier scalability has been developed [39,
40]. Here, the gq is engineered not by graded deep-n implantations
for the internal gate, but by the geometrical design of the source
implant itself. This type of layout was developed for the so-called
EDET project [41], and is based on heritage from the very compact
vertex detector designs for the pixel detector of the BELLE II silicon
vertex tracker. A layout example is shown in Figure 12A.

FIGURE 10
Principle of nonlinear response with a DEPFET device. Standard DEPFET Devices (A) have their internal gate underneath the external gate. Mirror
charge is induced only in the PMOS gate, and stray capacitance isminimized. For a DEPFETwith nonlinear response (B), dedicated overflow regions under
the source are created. Above a certain fill level, signal charge starts to spread underneath the source. Here, the parasitic induction to the source is much
larger, effecting a much lower gq than for the base charge. The overflow regions can be created using “graded” internal gate implantations. The
superposition of multiple deep-n implants creates an internal gate extending underneath the source in several steps. This creates fill level sections with
different gq each.

FIGURE 11
Implementation example for nonlinear characteristics. Inlay (B) shows the layout of nonlinear DEPFET pixels for DSSC in hexagonal geometry with
200 µm pixel size. Here, the graded internal gate potential is created by an overlay of three different deep-n implants. Inlay (A) shows a radial cut from the
center of the pixel to its circumference. The potential distribution in the pixel area is color-coded. The three overflow regions of the internal gate are
indicated by yellow to red colors, indicating the potential becomingmore negative for regions closer to the pixel center. Inlay (C) shows the resulting
gain curve is shown in blue. For comparison, the green curve shows the (linear) gain curve of a traditional spectroscopy grade DEPFET device.
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Unlike DSSC, the target application for the EDET detector is
not photon counting, but intensity measurement in the focal plane
of a TEM. Here, the transition of the TEM primary electrons
deposits the signal charge in the detector, and the intensity is
measured by counting the number of primaries. To avoid
compromising the spatial resolution by multiple scattering, the
detectors pixels are integrated on a thinned SOI substrate, with a
substrate thickness of only 50 to 30 µm. The target application uses
a primary electron energy of around 300 keV, depositing
8,000 electrons (MPV) each in the 50 µm thick substrate. To
achieve sufficient contrast, a pixel should be able to store the
signal charge of up to 100 primaries, which yields a pixel CHC
larger than 800 × 103 electrons. It needs to be noted that for this
application, the stimulus error ΔSo is of course given the quadratic
sum of the error on the energy deposition of the primaries in the
sensor and the corresponding Fano contribution. The error on the
energy deposition is much higher than for photons and can, due to
the thin substrates, be estimated in good approximation by the
noise RMS of a Vavilov distribution.

Due to the spatial constraints the design has to be more
compact compared to the circular DSSC sensor with its isolated
200 × 200 µm2 pixels. The basic building block of the EDET
sensors is a so-called couple of two pixels with linear geometry,
with 60 × 60 µm2 area each. The couple partners are rotated by
180° with respect to each other. The pixels within one couple
share source, clear, cleargate and gate contact, so the pixels have
to be read out in parallel. Each couple partner is read out via its
individual drain contact. The final matrix layout places couples
next to each other in a row, in such a way that they share the
common clear areas. Negatively biased p + regions, the so-called
drift electrodes, separate the different rows of couples and act as a
focusing implant for the bulk generated charge similar to the
driftrings for DSSC.

The main improvement compared to the DSSC technology is
that the geometry of the source electrode generates the nonlinear
gain. As for DSSC, two implants define the source area, the pson and
the p+. But as the p + compensates the deep-n in large parts, and the
pson does not, the overflow region extends only underneath the

FIGURE 12
Implementation examples for nonlinear characteristics. Inlay (A) shows the pixel design for the EDET DH80 k direct electron detector for TEM
imaging with 60 × 60 μm2 pixel size. Here, the graded potential was created by geometrically tailoring the p + implant for the source, which partially
compensates the deep-n for the internal gate. This has a similar effect on the internal gate as the graded deep-n approach, but is technologically simpler.
The layout generates the gain curves as shown in (B, C) for different operating conditions. The wedge shape on the right side of the source implant
creates the second kink, or overflow (OF). Inlay (B) shows the simulated performance curves, inlay (C) the performance as measured. The upper plot
shows the simulated performance curves, the lower one the performance as measured on prototype devices. The main features from the simulation can
be found in the measured performance curves as well, although the secondary kink seems to be at slightly lower charge values, and the difference
between secondary and tertiary gq appears to be smaller than expected. The blue curves correspond to simulated operating conditions after receiving
severe radiation damage and show th expected decrease in CHC. This effect can be mitigated by annealing.
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pson. Thus, the layout of the p + implant modifies both size and
potential of the overflow region underneath the pson. By modifying
the details of the p + shape, e.g., adding a wedge or curvature, the
effective gq of the overflow region can be modeled to achieve the
desired characteristics. In contrast to DSSC, only one deep-n implant
is required, which significantly reduces the degree of complexity for
the technology. Again, the actual design of the p + -shape is verified
using design optimization methods, process simulations and 3D
device simulations.

The CHC of the pixels has two limitations. As soon as the
overflow region of a pixel is filled to a level at which the potential of
the internal gate becomes more negative than the potential barrier to
the neighboring couple partner, charge will start to spill over to the
internal gate of the couple partner (primary CHC). The couple
partner will then start to see the charge injected into its neighbor.
This “couple spillover” will continue as long as the pixels have
different fill levels. Once the couple partner is filled up as well, the
couple will resume being filled up until the clear barrier is overcome
and charge loss occurs (secondary CHC). The layout of a pixel
couple is what is show in Figure 12, alongside with simulated and
measured performance curves. An initial CHC of 3 × 106 electrons

has been verified. CHC will suffer in the long run under irradiation
mainly due to cleargate voltage shifts, but this effect can be mitigated
by annealing. In addition, radiation hard oxides for the DEPFET
have been successfully prototyped.

For the intended application [41], direct bump-bonding of the
front end electronics on the sensitive area is not the preferred
solution, as the materials of the frond end ICs and the bumps
cause backscattering, which spoils the imaging performance.
Therefore, the signals are routed to the edge of the sensor die,
where the handle wafer below the thin sensor substrate has not been
removed, providing for a solid frame around the sensitive region.
This so-called service balcony integrates the complete front-end and
control electronics as well as passives for voltage decoupling,
forming a so-called all-silicon-module (ASM). The ASM
interfaces the peripheral readout electronics as well as the
thermomechanical support of the sensors. A photo of a quadrant
ASM is shown in Figure 13, alongside with an image taken with a
shadow mask ono the TEM using a prototype matrix.

The sensors are read out using readout-on-demand, reading a
total number of four pixel rows, i.e., two couple rows, in parallel with
an advanced timing of 100 ns per readout. In this way, a complete

FIGURE 13
(A) Photo of an EDET Quadrant matrix with 512 × 512 pixels of 60 × 60 × 60 μm2 size, integrated on an ASM together with passives and front end
electronics. (B) Example image taken with a prototype matrix on a TEM using a shadow mask.
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sensor matrix of 512 × 512 pixels can be read in 12.8 µs. The system
uses drain readout, using the so-called DCD-E IC as front-end, a
256 channel TIA/digitizer IC with a resolution of 8 bit. Each DCD
hands its digitized data over to one digital sequencer/buffer IC of type
DMC, which stores the data before it is transferred to the peripheral
data acquisition system using a 1.6 GHz AURORA link. In this way,
bursts of up to 50 images with maximum time resolution can be
acquired. Using selective readout of window ROIs, both (window)
framerate and number of images per burst increase by the same factor.

4 Summary

Three different approaches for dealing with the increasing
demands on photon science instrumentation, currently under
development at the MPG HLL were presented. Especially
challenging is meeting the requirements on dynamic range at low
and high end simultaneously. Optimum solutions here require
sophisticated front-end electronics and detector structures
capable of applying customized nonlinear gain characteristics.

The newly developed MARTHA structures, a new type of APD
arrays operated in low gain, overcome traditional drawbacks of APD
arrays and have the potential to increase the low energy detection
limit by applying avalanche multiplication. If combined with
multilinear front-end electronics, they could serve as drop-in
replacement for existing pad or pixel detector based solutions for
hybrid pixel detector systems.

New operation modes for pnCCDs allow to drastically increase
their CHC up to the point where they become interesting for high
contrast photon science measurement. They can offer a
technologically simple solution for covering large areas in
applications, where framerate is not the main driver. To
accommodate for the high dynamic range, DEPFET based EOC
amplifiers with nonlinear gain are used to customize the dynamic
range to the requirements. The use of DEPFET based EOCs here also
helps to increase readout speed of the CCDs.

Finally, DEPFET active pixel arrays offer the potential to
combine nonlinear gain, implemented in each pixel, with
multiple possible readout modes. Systems implementing full
parallel readout as well as four-fold multiparallel readout have
already been implemented. In addition to its potentially higher
readout speed, the DEPFET also offers higher flexibility in terms
of readout modes, e.g., reading of windows and ROIs, and pixel sizes.
In case of a one- or twofold multiparallel readout, however, a
pnCCD using the DEPFET only as EOC amplifier could be an

alternative, if no advanced readout modes and pixel sizes within a
certain range are requested.

Although not discussed in this paper, modularity is another
important prerequisite for photon science detectors. Many
experiments benefit from large solid angles, so assembling large
composite focal planes from multiple smaller detector modules with
minimum dead area is an important capability. Most hybrid pixel
detectors are build that way, but also pnCCDs and DEPFET pixel
arrays can be used for building highly integrated, compact, 4-side
buttable sensor tiles. The required advanced mechanical and
thermal support structures have been successfully prototyped.
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Single-photon counting
detectors for diffraction-limited
light sources

Erik Fröjdh*, Anna Bergamaschi and Bernd Schmitt

Paul Scherrer Institut, Villigen, Switzerland

When first introduced, single-photon counting detectors reshaped
crystallography at synchrotrons. Their fast readout speed enabled, for
example, shutter-less data collection and fine slicing of the rotation angle and
boosted the development of new experimental techniques like ptychography.
Under optimal conditions, single-photon counting detectors provide an
unlimited dynamic range with image noise only limited by the Poisson
statistics of the incoming photons. Counting the pulses from individual
photons, essentially what made the detectors so successful, also causes the
main drawback, which is the loss of efficiency at high photon fluxes due to pulse
pileup in the analog front end. To fully take advantage of diffraction-limited light
sources, the next-generation single-photon counters need to improve their
count rate capabilities in the same order of magnitude as the increased flux.
Moreover, fast frame rates (a few kHz) are required to cope with the shorter dwell
time achievable, thanks to the higher flux. Detector architecture with multiple
comparators and counters can open new possibilities for energy-resolved
imaging, while interpixel communication can overcome the issues arising
from charge sharing and reduce the loss of efficiency at the pixel corners.
Coupling single-photon counting detectors to high-Z sensors for hard X-ray
detection (>20 keV) and to low-gain avalanche diodes (LGADs) for soft X-rays is
also necessary to make use of the increased coherence of the new light sources
over the full radiation spectrum. In this paper, we present possible strategies to
improve the performance of single-photon counting detectors at the fourth-
generation synchrotron sources and compare them to charge
integrating detectors.

KEYWORDS

hybrid detectors, x-ray detectors, pixel detectors, single-photon counting, synchrotron

1 Introduction

The idea of hybrid pixel detectors originated around the end of 1980s from within the
particle physics community [1]. The first fully functional hybrid pixel detector was tested in
the Omega-Ion experiment (WA94) in 1991 [2], and larger installations soon followed [3;
4]. Scientists realized early that hybrid detectors also would be a good fit for X-ray imaging
[5; 6], and several groups [7; 8] including PSI Brönnimann et al. [9] started working on
dedicated detectors. The development of single-photon counting (SPC) hybrid pixel
detectors at PSI was motivated by the needs of diffraction applications at the Swiss
Light Source, and most of the know how came from working on the original pixel chip
for the CMS experiment at the LHC [10]. The PILATUS 1-M detector was the first large-
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area SPC detector dedicated to macromolecular crystallography
[11]. It comprised 18 multi-chip modules for a total of
288 readout chips covering 21 × 24 cm2.

Since their introduction, single-photon counting detectors have
transformed data collection at synchrotrons. Replacing slower and
less-sensitive detectors, they enable, for example, fine slicing of the
rotation angle and shutter-less data collection [12; 13; 14] and now
underpin many modern measurement techniques like ptychography
[15]. Currently, most scattering beamlines at synchrotrons rely on
SPC detectors like PILATUS [16; 17], EIGER [18; 19], XPAD3S [20],
UFXC32k [21; 22], MEDIPIX [23; 24; 25], and MYTHEN [26]. SPC
detectors can also be used for electron detection, for example, in low-
energy electron microscopy and photoemission electron
microscopy [27].

A pixel in a typical single-photon counting detector consists of a
charge-sensitive preamplifier, shaper, comparator, and counter.
When the analog signal exceeds a certain threshold, it is counted
as a photon. If the threshold is high enough compared to the
electronic noise (at least five times the RMS) and the photon
energy is similarly higher than the threshold, it is possible to
detect photons with a high efficiency and extremely good noise
rejection [28]. Given that when a photon is absorbed between two
pixels, its charge is shared between them, the threshold should be set
at half of the photon energy in order to maximize the number of
detected X-rays while avoiding double counts [16]. The electronic
noise defines the minimum detectable energy at about 10 times the
RMS of the electronic noise [26].

Another important parameter is the threshold dispersion,
i.e., the accuracy of tuning the threshold at the same energy level
for all the channels. Threshold equalization methods must be
implemented to compensate for mismatches between channels in
the analog chain, affecting mainly the gain and the baseline level.
Since the threshold is normally set as a voltage, the threshold
equalization circuitry is then implemented by adding an
additional trim threshold to the global threshold common to all
channels of the chip (or of the detector module). The trim digital-to-
analog converter (DAC) has a resolution ranging between 3 and
6 bits, and usually, the range of the voltage available for trimming
can be tuned by using an external voltage, as in [29]. Recently,
trimming architectures capable of tuning the gain and offset of the
analog chain by acting at the shaper level have been demonstrated by
[30]. Threshold equalization strategies can either be implemented by
optimizing the count dispersion using a flat illumination, as in [31],
or by equalizing the gain at a certain energy, as in [32]. The energy
resolution of the detector, i.e., the accuracy to define the threshold to
discriminate photons of different energies, is given by the quadratic
sum of the electronic noise and of the threshold dispersion [33]. This
can be exploited, for example, in the case of fluorescence radiation
emitted by the sample, which can be rejected by setting the threshold
between the main beam energy and the fluorescence line.

Since SPC detectors do not provide any information about the
energy of the photons, their performance is not ideal in case of a
polychromatic radiation spectrum. However, also in this case, by
assigning the same weight to each detected photon, their
performance outdoes charge-integrating detectors, where the
weight of the photons is proportional to their energy, resulting in
a reduction of the image contrast [34] or in stronger high harmonic
contamination in the case of diffraction applications.

The readout of the detector is completely digital, and it does not
add any noise to the data. Therefore, in ideal conditions, SPC
detectors provide noiseless data, where the image quality is only
limited by the Poisson fluctuations of the number of incident
photons. SPC detectors can provide perfect linearity and virtually
infinite dynamic range, only limited by the exposure time since it is
possible to sum frames without adding noise. Lower bit depths or
partial readout of the counters allow extremely high frame rates, for
example, 20 kfps for EIGER [35] and 56 kfps for UFXC32k [21],
while data compression can help achieve frame rates higher than
100 kHz [36]. A further improvement in speed can be achieved by
defining a region of interest [37].

Using an electronic shutter, SPC detectors can be gated with a
time resolution usually of a few tens of ns. This is of particular
interest for pump–probe experiments since the signal from multiple
probes can be accumulated at high frequencies without the need to

FIGURE 1
(A,B) Method to compare different strategies for mitigating the
pulse pileup: (C) normal counting (reference), (D) time-over-
threshold, (E) retriggering, and (F) pileup tracking. The x-axis refers to
time, while the y-axis represents the height of the analog signal.
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read out the detector in between the gates. With the hybrid fill
pattern of synchrotrons, it is possible to gate the isolated bunch and
obtain a time resolution limited by the duration of the bunch and by
its jitter [21; 38].

Despite their success, single-photon counters still suffer from
one major inherent weakness since the pulse processing front-end
makes them susceptible to a loss of efficiency due to the pileup
(Figure 1C). For this reason, SPC detectors require significant
improvements in order to best use the increased brilliance of the
fourth-generation synchrotron sources. In the following section, we
will discuss the main ideas behind the development of the next-
generation SPC detectors and look at their expected performance
compared to charge-integrating detectors, initially developed for
X-ray free-electron lasers (XFELs) but increasingly also used at
synchrotrons. We will investigate the count rate capability (i.e., the
linearity of the detector as a function of the number of photons per
second), the spatial resolution, and strategies for extending the
detectable energy range toward both lower- and higher-energy
photons using advanced sensors.

2 Discussion

The readout electronics of hybrid pixel detectors benefits from
the advances in CMOS technology. By exploiting more advanced,
smaller technology nodes with a higher transistor density, it is
possible to integrate more functionalities in the pixel and target
smaller pixel pitches, still with an acceptable power consumption.
Moreover, by implementing advanced logic on-chip, taking
advantage of the synthesized digital circuitry, the fully digital
data can be processed in hardware to reduce the data throughput
or speed up the readout.

In this section, we discuss the major trends in SPC detector
development toward diffraction-limited light sources, namely, the
possibility of having multiple comparators and counters per pixel
with independent thresholds and enabling signals; the development
of methods to reduce the loss of efficiency at high count rates; the
goal of achieving a high spatial resolution either using smaller pixels
or exploiting advanced inter-communication between pixels; and
the possibility to combine SPC detectors with novel sensor
technologies in order to cover an energy range spanning from
soft to hard X-rays. Finally, we compare SPC with charge-
integrating detectors, highlighting the strengths and weaknesses
of both readout modes, and discuss the challenge of handling the
data produced by fast large-area detectors.

2.1 Multiple comparators and counters

Thanks to the miniaturization of electronic components using
advanced CMOS technologies, several comparators, each with an
individual threshold, trimbits, and counter with independent gates
can be allocated in the same pixel. The comparators and counters
can be connected using the logic of varying complexity, and even
inter-pixel communication can be implemented. The independent
thresholds give access to different energy bins, the independent gates
to different time windows.

The main application exploiting the independent thresholds is
energy binning [39]. It can be used at polychromatic X-ray sources
and is exploited in clinical CT systems [40]. However, energy
binning can also be used at synchrotron beamlines for high
harmonic and fluorescence suppression or detection. As long as
the spectroscopic capabilities do not degrade at high fluxes, the
energy discrimination capabilities can be used to operate in the pink
beam mode, i.e., using a larger bandwidth without
monochromatizing optics, to isolate the full undulator harmonic.
The energy resolution depends not only on the noise and on the
threshold dispersion but also on charge sharing. Therefore, larger
pixel sizes and charge-sharing suppression methods (see section 2.3)
are an advantage for energy binning. The multiple thresholds can
also be exploited to improve the count rate capability, as described in
section 2.2.3. Complex digital circuitry and inter-pixel
communication can be used, for example, for interpolation to
achieve a sub-pixel resolution, as highlighted in section 2.3.

The independent gates enabling the counters can be used to
perform measurements in different time windows. Given that the
reaction being studied happens on the same time scale, or slower,
than the shortest gate that can be applied (normally tens of
nanoseconds), it is possible to probe at multiple times and thus
reduce the duration of the experiment proportionally to the number
of counters compared to a single probe. Moreover, it is possible to
acquire pumped and unpumped data alternating in time and,
therefore, correct for possible low-frequency drifts of the system
[41]. Ideally, a single comparator is connected to the multiple
independent counters to minimize mismatches between different
probes since the changes in the sample can be subtle (~1% or less).

FIGURE 2
Detected rate as a function of the photon rate for a single-
photon counting detector calculated using Eqs 1–4, covering the
different solutions described in section 2.2. The rate is expressed as
the reciprocal of the shaping time per pixel per second. The gray
and the blue secondary axes compare the performance in Mphotons/
pixel/s of SPC detectors with τ =150 ns and τ =30 ns, respectively.
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2.2 Count rate capability

Single-photon counting detectors present a paralyzable behavior
due to the pileup of the signal of photons arriving close to each other
in time. This means that after detecting a photon, the detector is
insensitive for a defined time (dead time), and a photon detected
during this interval will not be counted and will also restart the dead
time. As a consequence, with the increasing rate, the detector will
reach a saturation point where it will be incapable of recording any
event at all. To fully capitalize on the increased brilliance of the
fourth-generation light sources, count rate capabilities up to
100 Mphotons/pixel/second are required. In the following
section, we discuss and compare the new approaches that have
been proposed to extend the usability of SPC detectors at next-
generation synchrotron sources. They rely on the idea that when two
or more photons pile up, the analog signal has a larger amplitude
and longer duration. The working principle of various methods is
shown in Figure 1, while Figure 2 shows the comparison of their
performance in terms of count rate capability. The secondary axes
quantify the performance in terms of impinging photon rate for 150-
ns and 30-ns shaping times.

Usually, the count rate capability of an SPC detector is modeled
according to the parameter τ, which is proportional to the shaping
time of the analog chain. It scales inversely with the shaping time of
the analog signal, which is usually a compromise between the noise
and gain of the detector. Therefore, the count rate performance
tends to improve at high energies, where a lower gain can be used,
and a loss of signal due to ballistic deficit can also be afforded.
Another approach to obtain a fast shaping is active reset, as
demonstrated by [42]. Faster shaping time and active reset cause
a high power consumption, which is sometimes unacceptable for
large readout chips with tens of thousands of pixels. Current single-
photon counters exhibit a τ of 30–150 ns, which translates to
approximately 2–10 Mcounts/pixel/s. The KITE ASIC from
DECTRIS has been designed for electron microscopy with
extremely short signal pulses of 6 ns FWHM [36]. This is
possible thanks to the fast settings and low gain allowed by the
extremely large signal generated by high-energy electrons, as well as
the small size with no buttability, which allows high power
consumption and optimal power distribution.

It is important to highlight that the count rate capability of SPC
detectors depends on the photon distribution, i.e., on the filling
pattern of the light source [43]. The actual time structure varies
between synchrotrons and can, in many cases, be tuned, from a few
isolated bunches to the quasi continuous mode, in order to optimize
for certain experiments. Filling patterns with fewer bunches spaced
more than the shaping time of the analog signal usually allow better
performance, the rate correction present requires a simpler
calibration of the parameters, and the methods explained in the
following are more effective since they are less subjected to statistical
fluctuations in the photon time distribution. However, in this case,
the equations reported for the count rate corrections must be
modified due to the different photon distribution.

For modeling the count-rate corrections presented in this
section, a Poisson-like photon distribution is assumed, with no
charge sharing and τ-wide rectangular pulse shape, where τ

approximates the time-over-threshold of the analog pulse, as
shown in Figure 1B. For a simple SPC detector, the paralyzable

detector model applies for converting from the impinging photon
rate ϕ to the measured flux φ [44]:

φ � ϕe−ϕτ (1)

Despite being a simplified description of the pileup, this
approach allows to model analytically the corrections needed to
convert the detected signal into the impinging photon rate. The real
corrections will depend also on other factors, such as the fill pattern
of the photon source, charge sharing, and—in particular—on the
shape of the analog signal, which should be optimized depending on
the strategy chosen to improve the count rate capability.

2.2.1 Time-over-threshold
The time-over-threshold (ToT) readout measures the time

duration of the analog signal above the threshold by providing a
clock to each pixel and incrementing the counter while the signal is
above the threshold (Figure 1D). This method is usually applied to
measure the energy of the impinging particle, as in the TIMEPIX
detectors [45]. However, to improve the energy resolution, slow
shaping times are usually implemented, in contrast with the
requirements to obtain a high count rate capability in SPC
detectors. ToT, as a means to improve the count rate capability
at high fluxes, has been demonstrated with an improvement of a
factor 3–6, depending on the settings [46]. The count-rate correction
equation is expressed as follows:

φ � ϕ
1 − e−ϕτ

ϕτ
(2)

with little dependence on the frequency of the clock, as long as it is ≳
5τ−1. It is important to point out that in order to obtain the number
of photons, it is necessary to normalize the counter value by the
average number of counts per photon of that energy and threshold.
The main disadvantage of the ToT approach is the distribution of
the 10–100-MHz clock over the whole pixel matrix, which requires
power and can generate the digital-to-analog crosstalk, increasing
the noise. Optimized clock distribution solutions, such as the digital
delay-locked loop (dDLL) [47], can help overcome these
bottlenecks.

2.2.2 Retriggering
Retriggering was introduced using DECTRIS in the

PILATUS3 detector [17] as a measure to increase the count rate
capability and avoid the ambiguities of a paralyzable counter at
extremely high photon rates. As the name implies, retriggering
works by triggering an additional count after a certain time
delay. The delay is started on the crossing of the threshold which
gives retriggering a clear advantage over the non-synchronized ToT
clock. Retriggering relies on knowing the pulse width for a single
photon. The rate correction model is described in [48]:

φ � ϕ

e−ϕτ + ϕτr
(3)

where τr is the time after which the retrigger is evaluated and
an additional signal eventually generated. Ideally τr = τ, but τr
is usually larger to avoid double counts. The KITE ASIC
from DECTRIS has been designed for electron detection,
and it can support up to ~70 Mcounts/pixel/s with a 43-keV
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threshold for 200-keV electrons with a 10% loss of counting
efficiency compared to approximately 20 Mcounts/pixel/s
without retriggering [36].

2.2.3 Pileup tracking
Given a sufficient dynamic range of the front-end, another way

to mitigate the loss of efficiency is to use multiple thresholds to count
the pileup by placing the additional thresholds above the photon
energy (e.g., 1.3 and 1.7 x Ephoton, as shown in Figure 1F). This
method is known as the pileup trigger method [49; 50] or pileup
tracking [51]. Finding the right threshold depends on the analog
shape of the signal and sensor geometry (charge sharing). Ideally,
also, the higher thresholds are proportional to the energy, similar to
the one at half energy. The count rate correction model can be found
in [52]:

φ � ϕ∑
N

i�0
1 − e−ϕτ( )i (4)

where N is the number of comparators and counters. The
improvement in the count rate capability is very pronounced up
to three counters. For additional counters, however, there are
diminishing returns, and one also has to consider issues like
saturation of the preamplifier and available space in the pixel.
The plot shown in Figure 2 refers to three counters. With
MYTHEN3 we see an improvement of 4-6x in the count rate at
90% efficiency with three counters. For the new MATTERHORN
detector, which is currently at the prototyping stage at PSI, we plan
to use this approach with four counters.

2.3 Spatial resolution

Reducing the pixel size is an effective way to limit the incoming
photon rate per pixel and improve the spatial resolution but only up
to a certain extent. Single-photon counting detectors with relatively
large pixels show an ideal MTF [53], when operated with the
threshold at half the photon energy. As the pixel size shrinks, the
charge cloud, which—in a typical 300-μm-thick silicon sensor—is
on the order of 10–20 μm [54], becomes comparable to the pixel size,
leading to worse energy response and a loss of detection efficiency in
the corners of the pixel. Figure 3 shows a simulation of the energy
response and detection efficiency as a function of the interaction
position in the pixel for 25, 50, and 75 μm2 pixels performed using
GEANT4 [55] with custom drift-diffusion [56] implementation. As
the pixel size becomes smaller, the corner area, where the charge
generated by a photon is shared between four pixels, gets larger
relative to the rest of the pixel, and both energy response and
detection efficiency are degraded. Photons absorbed close to the
pixel corner, whose signal does not exceed the 50% energy threshold
in any of the four neighboring pixels, will not be detected. For pixels
smaller than 30–40 μm, it is not possible to work in the single-
photon counting mode without a solution to compensate for charge
sharing. Due to the absence of a threshold, charge-integrating
detectors do not suffer from the corner effect, giving a flat
response throughout the pixel [57].

For high-Z sensor materials (section 2.4.1), reducing the pixel
size is even more difficult since the often thicker sensors provide a
larger charge cloud, and in addition, X-ray fluorescence in the

FIGURE 3
Simulation of the detection efficiency and energy response for 25, 50, and 75 μm2 pixels. As the pixel size shrinks, the corner area gets larger (relative
to the rest of the pixel), and both the efficiency and energy response are deteriorated. Photon energy at 12 keV and threshold at 50%. Given the symmetry,
only one quarter of the pixel was simulated.

Frontiers in Physics frontiersin.org05

Fröjdh et al. 10.3389/fphy.2024.1304896

117

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1304896


material itself further spreads the charge. The fluorescence yield for
CdTe is above 80%, and the mean free paths of the characteristic
photons are 111 and 58 μm [58]. This leads to distortions in the
recorded energy spectrum and additional count rate load since, in
many cases, the fluorescence photon is counted separately. Using a
charge summing architecture, many of these disadvantages can be
overcome [59; 60] but at the cost of the count rate capability [61]. It
is possible to handle the corner effect digitally by using multiple
comparators and evaluating the coincidence between neighboring
pixels. This approach affects the count rate capability similarly to
charge summation, but it does not affect the performance of the
analog chain.

The best possible spatial resolution of hybrid detectors is
reached using a charge-integrating detector under sparse
illumination. In this case, charge sharing can be exploited to
interpolate between neighboring pixels, reaching a spatial
resolution in the micrometer range [62]. For single-photon
counting detectors, processing has to happen in the pixel (or
strip) since later, no energy information is available. With the
MYTHEN3 SPC microstrip detector, it has been demonstrated in
1D that it is possible to use the digital circuitry of a single-photon
counting detector with multiple comparators to obtain a spatial
resolution better than the physical strip pitch [63]. Similar
approaches for pixels are being evaluated, with the additional
challenge of a more complex 2D coincidence logic and the need
to use a very advanced technology node to shrink the whole circuitry
within the necessarily small pixel size [64].

2.4 Advanced sensors

The pulse processing front-end in single-photon counting is
more forgiving in terms of leakage current than a charge-integrating
front-end and allows the use of sensors with a high and/or variable
leakage current since the fluctuations are “filtered” out. This is
helpful for detection of both low- and high-energy photons since
low-gain avalanche diodes (LGADs) and many high-Z sensors
exhibit this behavior. However, to allow full flexibility on the

sensor choice, the analog chain of the SPC detector must be
designed to work both for hole collection, which is the standard
for silicon and inverse LGADs, and electron collection, which is
usually required for high-Z sensors and standard LGAD
technologies.

2.4.1 High-Z materials
Since silicon becomes almost transparent above 20 keV (see

Figure 4A), there is a strong need for sensor materials with higher
atomic numbers (i.e., high-Z sensor materials) and thus increased
photon cross section. Moving away from silicon, we are faced with
intrinsic problems like increased X-ray fluorescence yield and range
in the sensor material (Figures 4B,C) but also material defects
coming from the fact that it is harder to grow high-quality
crystals of compound semiconductors which additionally have
not benefited from the massive investment from the electronics
industry like silicon.

Over time, GaAs, CdTe, and CZT emerged as the most
promising materials, and specifically, CdTe is applicable both for
medical imaging [65; 66] and at synchrotrons (among others [67; 68;
69]). Larger-area detectors have also started to appear with, for
example, the 16-M CdTe EIGER2X from DECTRIS at the
P14 beamline at PETRA III. There was some interest in using
germanium for SPC detectors [70], but due to the small band
gap, they need to be cooled to ≲-100°C, complicating the
operation. As sensor materials have improved, the focus has
shifted from understanding defects like tellurium inclusions [71]
to optimizing for high flux and understanding dynamic effects [72;
73]. [74] and [75] offered a good overview of common sensor
materials and their use within the Medipix community. At PSI,
we have, for example, studied GaAs with JUNGFRAU, probing an
effective pixel size and understanding the negative signals observed
when used with charge-integrating detectors [76].

In terms of newmaterials, perovskites [77] have attracted a lot of
attention, showing a combination of high atomic number and good
mobility-lifetime product. The production cost could be orders of
magnitude lower than for CZT/CdTe due to cheap base material and
a simpler manufacturing procedure. Although some experiments

FIGURE 4
(A) X-ray absorption in 1-mm-thick sensors, data obtained from XCOM [100]. (B) Auger and K shell fluorescence yield data from [101]. (C)Mean free
path of Kα fluorescence photons calculated from XCOM data.
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have been done with photon counting [78], we are still far from
observing large-area perovskite detectors at synchrotrons. One
potential issue with the current materials is the relatively low
mobility [79], which could cause problems in terms of ballistic
deficit at the fast shaping times needed for high count rates.

Looking at high-Z sensor material from the perspective of the
readout ASIC, we observe a need for electron collection since most
high-Z sensor materials have better transport properties for
electrons than holes. Leakage current compensation is also
important, given the higher leakage currents in most materials,
for example, > 200 pA per 75 × 75 μm2 pixel at room temperature
using GaAs, as shown in [80]. The pixel size is also limited by the
long range of X-ray fluorescence in the sensor layer, for example,
110 μm in CdTe, requiring relatively large pixels even with interpixel
communication for an optimal response. If the pixel size goes much
below 75 μm, one has to consider events where the fluorescent
photon deposits the energy in a pixel that could be several pixels
away from the initial interaction.

2.4.2 LGADs
Soft X-ray detection using hybrid detector technology is

challenged by the shallow absorption and by the small charge
generated by low-energy photons, resulting in low quantum
efficiency and low signal-to-noise ratio, respectively. In particular,
while charge-integrating detectors can be used for soft X-ray
detection even without reaching single-photon resolution, SPC
detectors require a SNR ≳ 10 for single photons, and they are
consequently limited to energies above ~2 keV when using standard
silicon sensors [28]. The quantum efficiency below 2 keV can be
improved by optimizing the entrance window of the silicon sensor,
obtaining a performance comparable to state-of-the-art CCDs or
CMOS imagers [81].

The signal-to-noise ratio can be improved by exploiting the
internal amplification of LGAD sensors recently developed for high-
energy physics application. They consist of a silicon sensor with a
highly doped p-n junction, where charge carriers are multiplied by
impact ionization, thanks to the high electric field. The main goal in
particle physics is to use the fast avalanche to improve the timing
performance and use the time of arrival of the particle for 4D
tracking at high-luminosity colliders [82]. However, the
requirements for photon science require additional developments,
including small pixels ≲ 100 μm and full sensitivity at the entrance
window, in contrast to HEP detectors, with large pads and a thin
sensitive layer on a thick substrate. Various LGAD fabrication
technologies are described in detail in [83]. A few feasibility
studies have been dedicated to X-ray detection [84; 85; 51],
aimed at reducing the effective noise, thanks to the multiplication
gain, while maximizing the fill factor, which is limited in most
LGAD technologies due to the presence of regions without
multiplication between the pixels. The performance of LGAD
sensors combined with SPC readout electronics does not suffer
much from the high leakage current due to the internal
amplification, which, however, limits the maximum exposure
time acceptable for charge-integrating detectors with LGAD
sensors. Recently, the inverse LGAD sensors with optimized
entrance window developed by [86] have been combined with
the EIGER single-photon counting detector, allowing, for the first
time, a SPC pixel detector to reach energies below 1 keV. The low

noise and high dynamic range allowed achieving unprecedented
data quality in magnetic contrast soft X-ray ptychography, as
described by [87].

LGADs can also be exploited for tender and hard X-ray
detection to improve the count rate capability using a faster
shaping of the analog signal since gain is provided in the sensor,
and therefore, the signal can be sacrificed using fast analog settings
and accepting a more ballistic deficit.

2.5 Single-photon counting versus charge
integrating

With the introduction of charge-integrating detectors with
dynamic gain switching (like JUNGFRAU Mozzanica et al. [88]),
it is possible to measure with an electronic noise below the Poisson
limit from a single photon throughout the full dynamic range (104

12 keV photons/pixel). The maximum 2 kHz frame rate of
JUNGFRAU translates to a count rate capability of
approximately 20 Mphotons/pixel/s at 12 keV. Since it is an
integrating detector, the maximum supported flux scales inversely
with the photon energy, providing even higher numbers at lower
energies (e.g., 105 photons/pixel/frame and 200 Mphotons/pixel/s at
1.2 keV). Different from SPC detectors, JUNGFRAU is linear
throughout the dynamic range independent of the photon rate
(e.g., 40 Mphotons/pixel/s at 6 keV). [89] showed that data
quality remained high even at full beamline transmission
(thaumatin crystal at 6 keV) in contrast to previously published
results with an EIGER 1-M detector [14].

For a charge-integrating detector, the highest continuous flux is
determined by the dynamic range multiplied by the frame rate. We
are currently developing the second-generation JUNGFRAU
detector with a target frame rate of 10 kHz, which, given the
same dynamic range, could cope with 100 Mphotons/pixel/s at
12 keV. This would provide a solution for the most extreme
fluxes at the cost of dealing with 12.5 GB/s per 500 kpixel
module. However, since the performance of charge-integrating
detectors degrades above a few hundred microseconds integration
time (higher noise and lower dynamic range), longer exposure times
must be achieved by summing up multiple images, with a
consequent increase in the electronic noise, which scales with the
square root of the number of frames.

At the other extremes, charge-integrating detectors have their
place in photon-starved applications since with a low enough flux, it
is possible to measure the charge deposited per pixel per photon,
enabling both spectroscopic measurements and interpolation
(Bergamaschi et al. [90]). However, in this application, the
maximum supported flux is limited by the frame rate of the
detector, which is typically of the order of a few kHz with one
outstanding exception being the HEXITECMHz [91]. For the same
applications, the implementation of energy binning or a sub-pixel
resolution in a single-photon counting chip could increase the
maximum supported flux of up to three orders of magnitude
since it would be limited by the ~100 ns shaping time rather
than by the ~500 μs readout time [63].

An ideal detector should perform like a single-photon counter
under low illumination (noiseless, stable, and low frame rate
possible) but be capable of supporting high fluxes when
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necessary. Charge-integrating detectors with a single-photon
resolution converting the analog data to the number of photons
on-the-fly and summing up frames to achieve long exposure times
promise to achieve this goal, as shown in Leonarski et al. [92], but
compared to SPC detectors, they require more developments in
terms of chip design, firmware development, and data backend.
Moreover, the integration of the leakage current requires the
acquisition of frequent dark images to follow possible thermal
drifts and the effect of radiation damage, which are usually
filtered out in SPC detectors.

2.5.1 Mixed mode
An approach for obtaining ideal behavior from a large detector is

to equip the more illuminated area of the detector (e.g., the central
region for coherent scattering) with charge-integrating detector
modules and a high-performance data back-end system and
substitute single-photon counting modules in regions with lower
illumination, synchronizing the acquisition of all the modules. Some
challenges and artefacts might still arise when combining data from
such different detector systems.

Charge removal architectures are a hybrid between single-photon
counting and charge-integrating detectors [93; 94]. They have a fully
digital readout, and ideally, they can provide a high gain (and low
noise) on the whole virtually infinite dynamic range. High-flux
detection is possible, only limited by the speed of charge removal
(e.g., they are not usable at XFELs), while a slow frame rate readout is
still feasible, with the disadvantage of large pedestal corrections due to
the integration of the leakage current. Charge removal architectures
might suffer from high noise levels at high intensities due to charge
injection fluctuations during charge removal.

The possibility to statically configure the detector in the
counting or integrating mode depending on the application (or
on the illumination level) would add great flexibility, and users could
benefit from the advantages of two detector systems, without the
need to change the detector. This is possible by adding to the
feedback circuit of the preamplifier of a SPC detector a reset
switch. When the reset is open and the field-effect transistor
(FET) controlling the feedback resistor is active, the detector can
be operated in the SPC mode, feeding the preamplifier output to an
additional shaper and comparator [95]. When the FET of the
feedback resistor is off, the reset can be operated to integrate the
charge on the feedback capacitor during the given exposure time and
then sample on a storage capacitance. The comparator used in the
SPC mode could be used in order to implement dynamic gain
switching, while the shaper could be operated similar to the
preamplifier for correlated double sampling (CDS). Such an
architecture has been implemented and successfully tested in a
MYTHEN3 microstrip prototype and will be adapted to pixel
detectors. Ideally, the detector should dynamically adapt its
behavior depending on the illumination, similar to dynamic gain
switching, but this comes with additional challenges in the
conversion of the signal into number of photons.

2.6 More photons, more data

Single-photon counting detectors present some advantages from
the data handling point of view compared to charge-integrating

detectors since the detector readout already consists of the number
of detected photons, without the need for additional processing.
Moreover, the fully digital readout simplifies the data compression
(e.g., zero suppression), making it possible already on the readout
board or even on-chip.

Still, the higher frame rates driven by the increased brilliance
will be a huge challenge for the beam lines. Already the previous
generation detectors kicked off the “data deluge” [96], and with
new detectors coming out with unprecedented data rates like
MATTERHORN with 100 Gbit/s per 500k pixel module or
TIMEPIX4 [97] with 16 × 10 Gbit/s serializers per chip (448
Ã— 512 pixels) saving (or even receiving), all raw data on the
computing infrastructure will not be possible. The LEAPS1 data
strategy [98] outlines the importance of involving central IT
services to take some of the burden off experimental groups
which might not be used for large datasets, but with the
explosion of data, we believe that measures also need to be
taken to reduce data at the source.

We see two different approaches, of which one is to build a
custom receiving system using FPGAs and GPUs to perform local
processing like in [92] before streaming out the data, and the other is
to move data reduction onto the readout board or even into the
ASIC itself. Reducing the data closer to where it is produced has the
added benefit that it lowers the demands on subsequent network and
computing infrastructure at the cost of flexibility. For now, it
remains an open but highly important field, and we need to see
what works best in practice.

3 Conclusion

SPC detectors have been the most used position-sensitive
detectors at synchrotron facilities for more than a decade, but
the higher brilliance of the fourth-generation light sources
requires a new generation with improved performance. There
are several single-photon counting detectors under development
which will be used at diffraction-limited sources including
SPHIRD [94], MEDIPIX4 [99], and our own
MATTERHORN. All these projects aim to significantly
improve their count rate capability compared to existing
systems, and in section 2.2, we presented some of the
solutions which are being investigated to achieve this goal. Of
the compared methods, pileup tracking shows potential to give
the highest count rate, but one also has to consider other features
of the detector like calibration, correction of mismatches
between channels, spectral response, and radiation hardness.
Therefore, the best solution will be the one which provides the
most accurate data, something that could vary between
applications and facilities.

Additional features like the possibility of using multiple
comparators and counters and extending the usable energy range
from soft X-rays to high-energy photons will open new possibilities
for SPC detectors and can eventually pioneer novel experimental

1 League of European Accelerator based Photon Sources https://leaps-

initiative.eu/
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techniques. Despite not being the optimal solution for targeting
high-resolution imaging applications, SPC hybrid detectors with
intercommunication between pixels at the analog or at the digital
level can further push the spatial resolution or at least improve some
of the current flaws of SPC detectors with small pixels, like the
corner effect.

Despite the challenge brought by the increased flux, we think
that SPC detectors will have a bright future at diffraction-limited
light sources and remain the workhorse detector in the near to mid-
term future, thanks to their reliability and ease of use. For the highest
rate applications, charge-integrating detectors will complement
photon counting, until the mixed mode readout combining the
advantage of both architecture and other novel readout methods will
be available.
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New detectors in photon science experiments produce rapidly-growing volumes
of data. For detector developers, this poses two challenges; firstly, raw data
streams from detectors must be converted to meaningful images at ever-higher
rates, and secondly, there is an increasing need for data reduction relatively early
in the data processing chain. An overview of data correction and reduction is
presented, with an emphasis on how different data reduction methods apply to
different experiments in photon science. These methods can be implemented in
different hardware (e.g., CPU, GPU or FPGA) and in different stages of a detector’s
data acquisition chain; the strengths and weaknesses of these different
approaches are discussed.

KEYWORDS

photon science, detectors, X-rays, data processing, data reduction, hardware
acceleration, DAQ

1 Introduction

Developments in photon science sources and detectors have led to rapidly-growing data
rates and volumes [1]. For example, experiments at the recently-upgraded ESRF EBS can
potentially produce a total of a petabyte of data per day, and future detectors targeting frame
rates over 100 kHz will have data rates (for raw data) exceeding 1 Tbit/s [2].

These improvements not only allow a much higher throughput of experiments, but also
make newmeasurements feasible. For example, by focusing the beam and raster-scanning it
across a sample at high speed, essentially any X-ray technique can be used as a form of
microscopy, obtaining atomic-scale structure and chemical information about large
samples. But naturally, these increasing data rates pose a variety of challenges for data
storage and analysis. In particular, there is increasing demand for data reduction, to ensure
that the volume of data that needs to transferred and stored is not unfeasibly large. From the
perspective of detector developers, there are two key issues that need to be addressed.

Firstly, the raw data stream from a detector needs to be converted into meaningful
images, and this becomes increasingly challenging at high data rates. This conversion
process is detector-specific, so implementing it requires detailed knowledge of the detector’s
characteristics. At the same time, since the correction process is relatively fixed, there’s a lot
of potential to optimize it for performance. In addition, the complexity of this conversion
process depends on the detector design, so this is something that should be considered
during detector development.

Secondly, it can be beneficial to perform data reduction on-detector, or as part of the
detector’s DAQ system. For a variety of reasons, the useful information in a dataset can be
captured with a smaller number of bits than the original raw data size; for example, by
taking advantage of patterns or redundancy in the raw data, or by rejecting non-useful
images in the dataset. In the DAQ system, the data will typically pass through a series of
stages, as illustrated in Figure 1; firstly, from the ASIC or monolithic sensor to a custom
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board in the detector, then to a specialized DAQ PC (or similar
hardware), and finally to a more conventional computing
environment. By performing data reduction early on in this
chain, it is possible to reduce the bandwidth required by later
stages. Not only can this reduce the cost and complexity of later
stages (especially the cost of data storage), it can also potentially
enable the development of faster detectors by overcoming data
bandwidth bottlenecks. Performing this early data reduction
often ties together with the process of converting the raw data
stream to real images, since real images can be easier to compress.
Conversely, though, performing data reduction early in the chain
can be more challenging, since the hardware in these early stages
tends to offer less flexibility, and there are constraints on space and
power consumption within the detector.

This paper presents an overview of image correction and data
reduction in photon science, with a particular focus on how the
characteristics of different detectors and experiments affect the
choice of data reduction methods. Section 2 discusses algorithms
for converting raw data into corrected images. Section 3 addresses
algorithms for data compression, followed by other methods of data
reduction (e.g., rejecting bad images) in Section 4. Section 5 provides
an overview of standard data-processing hardware such as CPUs,
GPUs and FPGAs that can be built into detectors and DAQ systems.
Finally, Section 6 brings these elements together, by discussing how
data correction and reduction can be implemented at different stages
of a detector’s readout and processing chain, and the pros and cons
of different approaches.

2 Detector data correction

The raw data stream produced by a detector generally requires
processing in order to produce a meaningful image. The steps will of
course depend on the design; here, two common cases of photon
counting and integrating pixel detectors are considered. Although it
can be possible to compress data before all the corrections are
applied, corrected data can be more compressible—for example,
correcting pixel-to-pixel variations can result in a more
uniform image.

Firstly, we want the pixels in an image to follow a
straightforward ordering; typically this is row-by-row or column-
by-column, though some image formats represent images as a series
of blocks for performance reasons. However, data streams from
detectors often have a more complex ordering. One reason for this is

that data is typically read out from an ASIC or monolithic detector
in parallel across multiple readout signal lines which can result in
interleaving of data. In addition, in detectors composed of multiple
chips or modules, there may be gaps in the image, or some parts of
the detector may be rotated—this is illustrated for the AGIPD 1M
detector [3] in Figure 2. So, data reordering is a common first step.

In the case of photon counting detectors, the value read out from
each pixel is an integer that corresponds relatively directly to the
number of photons hitting the pixel. Nevertheless, at higher count
rates losses occur due pulse pileup, when photons hit a pixel in quick
succession and only one pulse is counted. So, pileup correction is
needed, where the hit rate in each pixel is calculated and a rate-
dependent multiplicative factor applied. Although there are two
well-known models for pileup—paralyzable and non-paralyzable—in
practice the behaviour of pixel detectors can be somewhere in-between,
and the pulsed structure of synchrotron sources can also affect the
probability of pileup [4]. In addition to this somemodern detectors have
additional pileup compensation, for example, by detecting longer pulses
that would indicate pileup [5]. So, the pileup correction model can vary
between different detectors.

In integrating detectors, each pixel’s amplifier produces an
analog value, which is then digitized. This digitized value then
needs to be converted to the energy deposited in the pixel. In
many detectors, this is a linear relationship. In experiments with
monochromatic beam, each photon will deposit the same amount of
energy in the sensor, so it is possible to calculate the corresponding
number of photons. The correction process typically consists of the
following steps [6, 7]:

• Baseline correction/dark subtraction. As part of the calibration
process, dark images are taken with no X-ray beam present
and averaged. Then, during image taking, this is subtracted
from each new image. This corrects for both pixel-to-pixel
variations in the amplifiers’ zero level, and also for the effects
of leakage current integrated during image taking. Since this
integrated leakage current can vary with factors like
integration time, operating temperature and radiation
damage in the sensor, new dark images often need to be
taken frequently, e.g., at the start of each experiment.

• Common-mode correction. In some detectors, there may be
image-to-image variation that is correlated between pixels, for
example, due to supply voltage fluctuations. One method for
correcting this is to have a small number of pixels that are
either masked from X-rays or unbonded, use these to measure

FIGURE 1
Illustration of typical elements in a detector’s DAQ chain.
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this common-mode noise in each image, and then subtract
this from all the pixels. Another related effect is crosstalk,
where pixels are affected by their neighbours; see for example,
Ref. [8] for a discussion of this.

• Gain correction. While integrating detectors are typically
designed to have a linear relationship between deposited
energy and amplifier voltage, the gain will vary from pixel
to pixel, and thus must be measured and corrected for by
multiplication.

• “Photonization”. If the incoming X-ray beam is
monochromatic, then the measured energy may then be
converted to an equivalent number of photons. Up to this
point, the correction process is typically performed with
floating point numbers, but as discussed later it can be
advantageous for compression to round this to an integer
number of photons (or alternatively fixed point).

In some integrating detectors designed for large dynamic range,
the response may not be a simple linear one. For example, in
dynamic gain switching detectors [3, 9] each pixel can adjust its
gain in response to the magnitude of the incoming signal, and the
output of each pixel consists of a digitized value plus information on
which gain setting was used. This increases the number of
calibration parameters needing to be measured and corrected,
since for each gain setting there will be distinct baseline and gain
corrections.

Furthermore, there are a variety of ways in which detectors may
deviate from the ideal response, and additional corrections may be
required. For example, the response of a detector may not be fully
linear, and more complex functions may be need to describe their
response. It is also common to treat malfunctioning pixels, for
example, by setting them to some special value.

An additional aspect of detector data processing is combining
the image data with metadata, i.e., contextual information about
images such as their format, detector type, and the experimental
conditions under which they were acquired. Some metadata may be
directly incorporated into the detector’s data stream. For example, in
Free Electron Laser (FEL) experiments the detector needs to be
synchronised with the X-ray bunches, and bunches can vary in their
characteristics, so each image will be accompanied by a bunch ID,
fed to the detector from the facility’s control system. Other metadata
may be added later. For example, the NeXuS data format [10] has
been adopted by many labs; this is based on the HDF5 format [11],
and specifies how metadata should be structured in experiments in
photon science and other fields.

3 Data compression and photon
science datasets

In general, data compression algorithms reduce the number of
bits needed to represent data, by encoding it in a way that takes

FIGURE 2
Module layout of the AGIPD 1M detector, which has a central hole for the beam, gaps betweenmodules, and different module orientations (with the
first pixel of each module indicated by a cross).
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advantage of patterns or redundancy in the data. These algorithms
can be subdivided into lossless compression [12], where the original
data can be reconstructed with no error, and lossy compression [13],
where there is some difference between the original and
reconstructed data. Currently, lossless compression is often
applied to photon science data before storage, whereas lossy
compression is uncommon, due to concerns about degrading or
biasing the results of later analysis. However, lossy compression can
achieve higher compression ratios.

The compressibility of an image naturally depends on its
content, and in photon science this can vary depending on both
the type of experiment and the detector characteristics. In particular,
since random noise will not have any particular redundancy or
pattern, the presence of noise in an image will reduce the amount of
compression that can be achieved with lossless algorithms.

Compared to typical visible light images, X-ray images from
pixel detectors can have distinctive features that affect their
compressibilty, as discussed further below. Firstly, individual
X-ray photons have much greater energy and thus can more
easily be discriminated with a suitable detector. Also, X-ray
diffraction patterns have characteristics that can make lossless
compression relatively efficient. However, imaging experiments
using scintillators and visible light cameras produce images more
akin to conventional visible light imaging, which do not losslessly
compress well.

3.1 Noise in X-ray images, and its effects on
compression

Random noise in an image can potentially come from different
sources; firstly, electronic noise introduced by the detector, and
secondly, inherent statistical variation in the experiment itself.

Any readout electronics will inevitably have electronic noise.
However, the signal seen by a detector consists of discrete X-ray
photons, and the inherent discreteness of our signal makes it
possible to reject the electronic noise, provided that it is small
enough to ensure that noise fluctuations are rarely mistaken for a
photon. In a silicon sensor without gain, ionizing radiation will
generate on average one electron-hole pair per 3.6 eV of energy
deposited, e.g., a 12 keV photon will generate approximately
3,300 electrons. In turn, if, for example, we assume the noise is
Gaussian with a standard deviation corresponding to 0.1 times the
photon energy (330 electrons here) then the probability of a pixel
having a noise fluctuation corresponding to 0.5 photons or more
would be approximately 1 in 1.7 million [14]. (Common noise
sources such as thermal and shot noise discussed below are
Gaussian, or approximately so, though other noise sources such
as fluctuations in supply voltage may not be.)

When using an integrating detector to detect monochromatic
X-rays, then it is possible to convert the integrated signal to an
equivalent number of photons in postprocessing as described above.
Given sufficiently low noise, this value can be quantized to the
nearest whole number of photons to eliminate electronic noise. In
photon counting detectors, a hit will be recorded in a pixel if the
pulse produced by the photon exceeds a user-defined threshold;
once again, if noise fluctuations exceeding the threshold are rare, we
will have effectively noise-free counting.

In both cases, the electronic noise in a pixel will be dependent on
the integration time for an image, or the shaping time in the case of a
photon-counting detector. There are two main competing effects
here. On the one hand, for longer timescales, the shot noise due to
fluctuations in leakage current will be larger. Conversely, to achieve
shorter integration times or shaping times, a higher amplifier
bandwidth is required, and this will increase the amount of
thermal noise detected [15]. Thermal noise is the noise associated
with random thermal motion of electrons, which is effectively
white noise.

In addition to electronic noise, however, the physics of photon
emission and interaction are inherently probabilistic, and so even if
an experiment were repeated under identical conditions there would
be statistical fluctuations in the number of photons impinging on
each pixel. These fluctuations follow Poisson statistics, and if the
expected number of photons arriving in a pixel during a
measurement is N, then the standard deviation of the
corresponding Poisson distribution will be

��
N

√
. On the one

hand, this can make it easier to develop “low noise” detectors;
provided the detector noise for a given photon flux is significantly
smaller than

��
N

√
, then it will have little effect on the final result.

However, this makes the data less compressible with lossless
algorithms, since random noise introduces variation in the image
that is not patterned or redundant. (As discussed later, quantizing
pixel values with a variable step size, increasing with

��
N

√
, can be a

way of achieving lossy compression.)

3.2 Applying lossless compression to
diffraction data

As noted above, data compression relies on patterns or
redundancy in data, and this will vary depending on the
experiment. Diffraction patterns differ from conventional images
in a variety of respects, with the pattern beingmathematically related
to the Fourier transform of the object. An example of a diffraction
pattern from macromolecular crystallography is shown in Figure 3.

Diffraction patterns tend to have various features that are
advantageous for lossless compression:

• Hybrid pixel detectors with sensitivity to single photons are
the technology of choice for these experiments, making the
measurement effectively free from electronic noise as
described above. (Detectors for X-ray diffraction require
high sensitivity, but pixel sizes in the range of 50–200 μm
are generally acceptable.)

• The intensity values measured in the detector typically have a
nonuniform distribution, with most pixels measuring
relatively low or even zero photons, and a small proportion
of pixels having higher values. This is partly because the
diffracted intensity drops rapidly at higher scattering
angles, and partly because of interference phenomena that
tend to produce high intensity in certain places, e.g., Bragg
spots or speckles, and low intensity elsewhere.

• Depending on the experiment, nearby pixels will often have
similar intensities; for example, in single-crystal diffraction
experiments with widely-spaced Bragg spots, the background
signal between the spots tends to be smoothly varying.
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• Combining these points, in images with fewer photons, there
can be patches in the image with many neighbouring zero-
value pixels.

Empirically, a range of lossless compression algorithms can
achieve good results with diffraction data, especially in high-
frame-rate measurements where the number of photons per
image will tend to be lower. Experiments applying the DEFLATE
[17] algorithm used in GZIP to datasets acquired with photon
counting detectors running at high speed showed compression
ratios of 19 for high-energy X-ray diffraction, 70 for
ptychography and 350 for XPCS experiments with dilute samples
(where most pixel values are zero) [18]. Experiments with the
Jungfrau integrating detector, applying different compression
algorithms to the same data, found that multiple compression
methods such as GZIP, LZ4 with a bitshuffle filter and Zstd gave
similar compression ratios to one another, but varied greatly in
speed, with GZIP being a factor of 10 slower [19].

3.2.1 Example—lossless compression with
DEFLATE (GZIP) and Bitshuffle/LZ4

As illustrative examples, we consider the DEFLATE algorithm
used in GZIP [20], and the Bitshuffle/LZ4 algorithm [21], firstly to
discuss how they take advantage of redundancy to compress
diffraction data, and secondly how algorithms with different
computational cost can achieve similar performance.

DEFLATE [17] consists of two stages. Firstly, the
LZ77 algorithm [22] is applied to the data. This searches for
recurring sequences of characters in a file (such as repeated
words or phrases in text, or long runs of the same character) and
encodes them efficiently, as follows: in the output, the first instance
of a sequence of characters is written in full, but then later instances
are replaced with special codes referring back to the previous
instance. In diffraction datasets, long recurring sequences of
characters are generally rare, but there is one big exception; long
runs of zeroes. So, the pattern-matching in LZ77 will efficiently
compress long runs of zeroes, but the computational work the

algorithm does to find more complex recurring sequences is
largely wasted.

Secondly, DEFLATE takes the output of the LZ77 stage, and
applies Huffman coding [23] to it. Normally, different characters in
a dataset (e.g., integers in image data) are all represented with the
same number of bits. Huffman coding looks at the frequencies of
different characters in the dataset, and produces a new coding
scheme that represents common characters with shorter
sequences of bits and rare ones with longer sequences. This is
analogous to Morse code, where the most common letter in
English, “E”, is represented by a single dot, whereas rare letters
have longer sequences. For diffraction data, this stage will achieve
compression due to the nonuniform statistics of pixel values, where
low pixel values are much more common than high ones.

As a contrasting example, the Bitshuffle LZ4 algorithm [21]
implicitly takes advantage of the knowledge that the higher bits of
pixel values are mostly zero and strongly correlated between
neighbouring pixels. In the first step, Bitshuffle, the bits in the
data stream are rearranged so that the first bit from every pixel are all
grouped together, then the second bit, etc. After this regrouping, the
result will often contain long runs of bytes with value zero, as
illustrated in Figure 4. The LZ4 algorithm, which is similar to LZ77,
will then efficiently encode these long runs of 0 bytes. As mentioned
above, this algorithm gives similar performance to GZIP for X-ray
diffraction data while being less computationally expensive.

3.3 Applying lossy compression to
imaging data

While lossless compression can achieve good compression ratios
for diffraction data, there is increasing demand for lossy data
compression. Firstly, data from some experiments such as
imaging do not losslessly compress well, due to noise, and
secondly, the increasing data volumes produced by new detectors
and experiments mean that higher compression ratios are desirable.
The key challenge of lossy compression is ensuring that the

FIGURE 3
A diffraction pattern from a thaumatin crystal, recorded with a Pilatus 1M detector, showing (A) the full detector and (B) a zoom-in of Bragg spots.
Reproduced from [16] with permission of the International Union of Crystallography.
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compression does not significantly change the final result of analysis.
This requires evaluating the results of the compression with a variety
of datasets, either by directly comparing the compressed and
uncompressed images with a metric of similarity, or by
performing the data analysis and applying some appropriate
metric of quality to the final result.

In X-ray imaging and tomography experiments, the detector
measures X-ray transmission through the sample, and perhaps also
additional effects such as enhancement of edges through phase
contrast. This means that most pixels will receive a reasonably
high X-ray flux, in contrast to X-ray diffraction where most
pixels see few or even zero photons. So, noise due to Poisson
statistics will be relatively high in most pixels. Likewise, a key
requirement for detectors in these experiments is a small effective
pixel size (particularly for micro- and nano-tomography), whereas
single photon sensitivity is less critical. To achieve this, a common
approach is to couple a thin or structured scintillator to a visible light
camera with small pixels such as a CMOS sensor or CCD [24].
Magnifying optics may be used to achieve a smaller effective pixel
size [25]. This means that the detector noise is also non-negligible.

Since an X-ray transmission image is a real-space image of an
object, and broadly resembles a conventional photograph (unlike a
diffraction pattern), widely-used lossy compression algorithms for
images can potentially be used for compression. In particular,
JPEG2000 [26] is already well-established in medical imaging, and
in tomography at synchrotrons it has been demonstrated to achieve a
factor of three to four compression without significantly affecting the
results of the reconstruction [27]. To test this, the reconstruction of the
object was performed both before and after compression, and the two
results compared using the Mean Structural Similarity Index Measure
(MSSIM) metric. A compression factor of six to eight was possible in
data with a high signal-to-noise ratio.

3.3.1 Example—lossy compression with JPEG2000
One common approach to both lossy and lossless compression is

apply a transform to the data that results in a sparse representation,
i.e., most of the resulting values are low or zero. (The choice of
transform naturally depends on the characteristics of the data.) The
sparse representation can then be compressed efficiently.

In the case of JPEG2000 [26], the Discrete Wavelet Transform [28]
is used; in effect, this transformation represents the image of a sum of
wave packets with different positions and spatial frequencies. This tends
to work well for real space images, which tend to consist of a

combination of localized objects and smooth gradients, which can
be found on different length scales. After applying the transform, the
resulting values are typically rounded off to some level of accuracy,
allowing for varying degrees of lossy compression. (By not applying this
rounding, lossless compression is also possible.) Then, these values are
encoded by a method called arithmetic coding, which is comparable to
Huffman coding; it achieves compression by taking advantage of the
nonuniform statistics of the transformed values, which in this case are
mostly small or zero.

JPEG2000 can be compared with the older JPEG standard,
where the transformation consists of splitting the image into 8 ×
8 blocks, and applying the Discrete Cosine Transform to each block,
thus taking advantage of the fact that images tend to be locally
smooth. This is computationally cheaper than most
JPEG2000 implementations, but one key drawback is that this
can lead to discontinuities between these 8 × 8 blocks after
compression. Additionally, JPEG is limited to 8-bit depth (per
colour channel) which is unsuitable for many applications,
whereas JPEG2000 allows different bit depths. Recently, a high-
throughput implementation of JPEG2000 has been developed,
HTJ2K [29], with similar speed performance to JPEG. (This is
compatible with the JPEG2000 standard but lacks certain features
that are not important to scientific applications.)

3.4 Novel methods for lossy compression

As mentioned previously, increasing data volumes mean there is
demand for achieving increasing compression, even for experiments
such as X-ray diffraction where lossless compression works
reasonably well. Naturally, this can be approached by testing a
variety of well-established lossy compression algorithms on data,
and experimenting with methods such as rounding the data to some
level of accuracy. However, there are also new lossy compression
methods being developed specifically for scientific data. One
particular point of contrast is that most image compression
algorithms focus on minimizing the perceptible difference to a
human viewer, whereas for scientific data other criteria can be
more important, such as imposing limits on the maximum error
allowed between original values and compressed values.

One simple example is quantizing X-ray data with a step size
smaller than the Poisson noise, which is proportional to

��
N

√
. For

ptychography, for example, it has been demonstrated that

FIGURE 4
Illustration of the Bitshuffle process, used in Bitshuffle/LZ4. This reorders the bits in the data stream so that the LZ4 compression stage can take
advantage of the fact that the upper bits in diffraction data are mostly zero, and strongly correlated between neighbouring pixels.. (Eight pixels with 8-bit
depth are shown here, but the procedure may be applied to different numberes of pixels and bits.)
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quantizing pixel values with a step size of 0.5 ×
��
N

√
[30] does not

degrade the quality of the reconstruction.
A more sophisticated example of error-bounded lossy

compression is the SZ algorithm [31], which is a method for
compressing a series of floating-point values. For each new
element in the series, the algorithm checks if its value can be
successfully “predicted” (within a specified margin of error) using
any one of three methods: directly taking the previous value; linear
extrapolation from the previous two values; or quadratically
extrapolating from the previous three values. If so, then the pixel
value is represented by a 2-bit code indicating the appropriate
prediction method. If not, then this “unpredictable” value needs
to be stored explicitly. This is illustrated in Figure 5. After the
algorithm runs, further compression is applied to the list of
unpredictable values.

Reference [32] reports on applying SZ to serial crystallography
data from LCLS, where the images consist of floating point values
obtained from an integrating detector. In this method, lossless
compression is applied to regions of interest consisting of Bragg
peaks detected in the image, while binning followed by lossy
compression is applied to the rest of the image, with the goal of
ensuring that any weak peaks that went undetected will still have
their intensities preserved sufficiently well. It is reported that when
using this strategy, using SZ for the lossy compression can achieve a
compression ratio of 190 while still achieving acceptable data
quality, whereas other lossy compression methods tested gave a
compression ratio of 35 at best.

4 Other forms of data reduction

The data compression methods discussed thus far work by
representing a given file using fewer bits; the original file can be
reconstructed from the compressed file, albeit with some inaccuracy
in the case of lossy compression. More broadly, though, there are
other methods of data reduction which rely on eliminating non-
useful data entirely, or which transform or process the data in a non-
recoverable way. These methods have the potential to greatly reduce

the amount of data needing to be stored, though of course it is crucial
to establish that these methods are reliable before putting them into
practice. In recent years, there has been increasing research into
using machine learning for both rejecting non-useful data and for
data processing. This includes supervised learning methods, where
an algorithm learns to perform a task using training data consisting
of inputs and the corresponding correct output, and unsupervised
learning methods, which can discover underlying patterns in data.

4.1 Data rejection/vetoing

In some experiments, a large fraction of the data collected does
not contain useful information. For example, in experiments at FELs
such as serial crystallography and single particle imaging, the sample
can consist of a liquid jet containing protein nanocrystals or objects
such as viruses passing through the path of the beam. However, only
a small fraction of X-ray pulses (in some cases, of order 1%) actually
hit a sample to produce an image containing a useful diffraction
pattern. So, in these kind of experiments, data volumes can be greatly
reduced by rejecting images where the beam did not hit the target.

A variety of methods have been developed for doing this. In
serial crystallography, images where the beam hit a crystal will
contain Bragg peaks, whereas miss images will only have scattering
from the liquid jet. So, a common approach is to search for Bragg
peaks in each image, and only accept images where the total number
of peaks exceeds some threshold value; this approach is used in
software such as Cheetah [33] and DIALS [34]. Since X-ray
diffraction intensity varies with scattering angle, these methods
often rely on estimating the background signal in the
surrounding area of the image when judging whether a peak is
present or not.

Machine learning techniques have also been applied to this task,
where supervised learning is used to distinguish between good and
bad images [35–38]. Supervised learning relies on having training
data consisting of input images and the corresponding correct
output. This data is used to train a model, such as a neural
network; after this, the model can be used to classify new images.
In some cases, the training data may consist of simulated data, or
images from experiments that have been classified as good or bad by
an expert. In this case, the appeal of machine learning is that it makes
it possible to distinguish between good and bad images in cases
where there is no known algorithm for doing so. Alternatively, the
training data may consist of known good and bad images from
previous experiments that have been classified by a pre-existing
algorithm. In this case, machine learning can potentially improve on
the algorithm by being less computationally intensive or by
requiring less fine-tuning of algorithm parameters.

As an example, one common approach to image classification is
deep learning using convolutional neural networks (CNNs) [39]. For
neural networks, the training process consists of feeding input
examples into the network, comparing the resulting outputs to
the expected correct outputs, and adjusting the network’s
parameters through a process called backpropagation in order to
improve the network’s performance. CNNs are a special type of
network suitable for large, structured inputs like images. As shown
in Figure 6, they have a series of convolutional layers; each layer
consists of an array of identical neurons, each looking at small patch

FIGURE 5
Illustration of the “predictive” approach used in SZ compression
of floating-point data. If the value of the next data point can be
extrapolated (within a user-defined margin of error) from previous
data points using one of 3 methods, the point is represented by a
2-bit code indicating the method, e.g., quadratic in this case.
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of the image. These layers learn to recognise progressively higher-
level features in the image. Finally, fully-connected layers of neurons
use these high-level features to classify the image. An example of
using CNNs to categorize images in serial crystallography found
in Ref. [36].

While machine learning is a rapidly-growing field with great
potential, these techniques also have limitations. Firstly, substantial
amounts of labelled training data are needed. Secondly, systematic
differences between training data and new data may result in a
failure to generalise to the new data; as a result, it is often necessary
to test and retrain models. Furthermore, even if a machine learning
algorithm works successfully, it is often not transparent how it
works, making it difficult to understand and trust.

The strategy of vetoing uninteresting data is already well-
established in particle physics collider experiments, where only a
tiny fraction of collisions will produce particles that are interesting to
the experimenter. The data from each collision is temporarily
buffered, a subset of this data is read out, and this is used to
make a decision on whether to read out the full event [40]. The
need for triggering has driven the development of real-time data
processing with short latencies [41] and the development of machine
learning methods [42]; photon science can potentially benefit from
this. However, compared to particle physics, vetoing in photon
science faces the challenge that there can be a lot of variation
between different beamlines and user experiments, and there is
generally less a priori knowledge or simulation of what interesting or
uninteresting data will look like.

4.2 Data reduction by processing

Often, the final result of data analysis is much more compact
than the original dataset; in determining a protein structure, for
example, the data may consist of tens of thousands of diffraction
images, while the resulting structure can be described as a list of
atomic positions in the molecule.

In some cases the full analysis of a dataset by the user may take
months or years, and a lot of this analysis is very experiment-
specific, so this is not suitable for achieving fast data reduction close
to the detector. Nevertheless, there can be initial processing steps
that are common to multiple experiments and which could be
applied quickly as part of the DAQ system.

One example of this is azimuthal integration. In some X-ray
diffraction experiments, such as powder diffraction, the signal on the

detector has rotational symmetry, and so the data can be reduced to
a 1-D profile of X-ray intensity as a function of diffraction angle. For
a multi-megapixel-sized detector, this corresponds to a factor of
1,000 reduction in data size. Hardware-accelerated implementations
of azimuthal integration have been developed for GPUs [43], and
more recently for FPGAs [44]. Another example is the calculation of
autocorrelation functions in XPCS. In this technique, the dynamics
of fluids can be studied from the fluctuations in speckle patterns
produced by a coherent X-ray beam. Data processing consists first of
calculating a per-pixel-correlation function from a large stack of
images over time, and then averaging as a function of scattering
angle. FPGA implementations are discussed in Ref. [45].

This is also an area where there is the potential to use machine
learning. Firstly, data processing algorithms can be computationally
expensive and time-consuming, especially if they involve an iterative
reconstruction process. Supervised machine learning can potentially
find a computationally-cheaper way of doing this, using
experimental data and the results of the existing reconstruction
method as the training data. For example, a neural network has been
developed for extracting the structure of FEL pulses from gas-based
streaking detectors, which would normally require iteratively solving
a complex system of equations [46]. In this particular case, the
neural network was implemented in an FPGA, in order to achieve
low latency.

Additionally, unsupervised machine learning could potentially
be used to extract information from X-ray data. These methods
require training data, but unlike supervised learning only input data
is needed, not information on the “correct” output. For example,
variational autoencoders [47] learn to reduce complex data such as
images to a vector representing their key features. This approach has
been applied to X-ray diffraction patterns obtained from doped
crystals, and it was found that the features extracted by the
autoencoder could be used to determine the doping
concentration [48].

4.3 Connections between data reduction
and on-the-fly analysis

At light sources, there is a move towards performing on-the-fly
data analysis, where data from the experiment is streamed to a
computing cluster and analysed immediately [49]. This can provide
immediate feedback to the user to guide the experiment and make
data taking more efficient; for example, by allowing users to quickly

FIGURE 6
The structure of a Convolutional Neural Network (CNN) for image classification.
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identify the most useful samples to study, or regions of interest
within a sample that can be investigated in more detail [50].

If data reduction close to the detector involves performing
analysis steps on data (e.g., azimuthal integration) or makes the
data easier to process (e.g., making the dataset smaller by rejecting
bad data) then this synergises with on-the-fly data processing, by
reducing the workload on the computing cluster.

Typically, these sort of data reduction methods have the
drawback that if some or all of the original data is discarded,
then any errors in the processing cannot be corrected. For
example, performing azimuthal integration correctly requires
accurate calibration of the centre of the diffraction pattern and
any tilt of the detector relative to the beam.

However, since on-the-fly data analysis is useful to users, the
trustworthiness of these methods can be established in stages. For
example, as a first stage all the raw data may be saved to disk for
later analysis, with on-the-fly processing providing quick
feedback during the experiment. Once the reliability of the
automatic processing is better-established, raw data might
only be stored for a shorter time before deletion (or transfer
to cheaper storage such as tape) to give the opportunity for the
user to cross-check for correctness. Finally, once the on-the-fly
data processing is fully trusted, it may be possible to only save a
small fraction of the raw data for validation purposes.

5 Overview of data
processing hardware

“Off the shelf” data processing hardware such as CPUs, GPUs
and FPGAs play a key role in building data acquisition systems
for detectors. These components can be used in various places in
the detector and DAQ system, and in some cases a combination
of these can be used. For example, even custom hardware such as
a circuit board for detector control will likely incorporate a
microcontroller with a CPU, an FPGA, or a System-On-Chip
containing both of these.

Here, we give an overview of the distinctive features of CPUs,
GPUs and FPGAs for data processing. In particular, a major
aspect of high-performance computing is parallelization of work,
where a data processing task is divided between many processing
units, but how this is achieved varies between devices, which can
affect the best choice of hardware for the task. (How these
different types of hardware can be incorporated into a
detector system is discussed later, in Section 6.) As an
illustrative example [51], compares CPUs, GPUs and FPGAs
for image processing tasks. For all the tasks studied, either the
GPU, the FPGA or both offered around an order of magnitude
higher speed than CPU, but which one was better depended on
the task; for example, GPUs performed much better than FPGAs
for image filtering with small filter size, whereas FPGAs were
better for stereo vision.

In addition to these, a variety of new hardware accelerators
aimed at machine learning have been developed. These vary in
architecture, but some examples of these are discussed in Subsection
5.4. Lastly, in recent years there have also been efforts to incorporate
data processing directly into detector ASICs. This is discussed later
on, in 6.1, since this is detector-specific processing.

5.1 CPUs—central processing units

The architecture of a typical CPU [52] is shown in Figure 7. A
key feature of modern CPUs is that they’re designed to be able to run
many different programs in a way that appears simultaneous to the
user. Most modern CPUs are composed of a number of cores; for
example, CPUs in the high-end AMD EPYC series have from 32 to
128, though desktop PCs typically have 2–6. Each core has a control
unit, which is able to independently interpret a series of instructions
in software and execute them, along with an arithmetic unit for
performing operations on data, and cache memory for temporarily
storing data. Furthermore, CPUs cores can very rapidly switch
between executing different tasks, so even a single CPU core can
perform many tasks in a way that seems parallel to the user. In most
cases, the CPU will be running an operating system, which handles
the sharing of resources such as memory and peripherals between
the tasks in a convenient way for programmers. High performance
computing with CPUs generally involves parallelization of work
across multiple cores; in doing this, the different cores can operate
relatively independently. For illustration, a detailed example of
optimizing CPU code for the widely-used Fast Fourier Transform
algorithm can be found in Ref. [53], which compares three different
multithreaded packages for this.

Compared to GPUs and FPGAs, CPUs are generally the easiest
to use and program. Indeed, GPUs are virtually always used as
accelerator cards as part of a system with a CPU, and it is common
for systems based on FPGAs to make use of a CPU (e.g., as part of a
System On Chip). In addition, if a task is inherently sequential and
cannot be parallelized, then a CPU core may give better performance
than a GPU or FPGA. However, CPUs generally have much less
parallel processing power than GPUs or FPGAs.

5.2 GPUs—graphics processing units

GPUs are designed to allow massively parallel processing for
tasks such as graphics processing or general-purpose computing.
The basic units of GPUs are called CUDA cores (in NVIDIA GPUs)
or stream processors (in AMD GPUs). These are much more
numerous than CPU cores, numbering in the thousands,
allowing much greater parallelism and processing power.
However, rather than each core being able to independently
interpret a stream of instructions, these cores are organised into
blocks, with all the cores in a block simultaneously executing the
same instruction on different data elements - for example, applying
the same mathematical operation to different elements in an array
[54]. The structure of a typical GPU is shown in Figure 8.

GPU programming relies on specialized frameworks such as
CUDA [55], which was specifically developed for NVIDIA GPUs, or
OpenCL [56], an open framework supporting a range of devices that
also includes CPUs and FPGAs. GPUs are generally used as
accelerator cards in a system with a CPU, and these frameworks
firstly allow the CPU to control the GPU’s operation (by passing
data to and from it, and starting tasks) and secondly to program
functions that will run on the GPU. Typically, GPU code contains
additional instructions controlling how different GPU cores in a
block access data; e.g., when performing an operation on an array,
the first core in a block might perform operations on the first
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element, and so forth. This can be relatively easy to apply to a lot of
image processing tasks, where each processing step can be applied to
pixels relatively independently, but GPU implementation can be
more challenging for some compression algorithms that act
sequentially on data.

GPUs have been shown to perform well for many commonly-
used algorithms such as matrix multiplication and Fourier
transforms—for example, achieving an order of magnitude speed
improvement in performing a Fast Fourier Transform [57]. In
particular, GPUs are widely used for training and inference in
machine learning in photon science [58–60]. Some newer models

of GPU are specially optimized for machine learning applications
[61]. For example, neural network calculations typically consist of
multiplying and adding matrices, and new GPUs can have
specialised cores for this.

5.3 FPGAs—field programmable gate arrays

FPGAs are a type of highly configurable hardware. As shown in
Figure 9, within an FPGA there are many blocks providing
functionality such as combinatorial logic, digital signal processing

FIGURE 7
Example of a typical CPU’s architecture, showing a device with four cores and hyperthreading capability. Connections to other devices such asmain
memory (DDR4) and a GPU are also shown [52].

FIGURE 8
Architecture of an NVIDIA GPU (labelled “device”) connected to a PC (“host”). The basic processing units on the GPU are called threads, which are
organised into blocks; all the threads in a block will perform the same operation on different data in lockstep. In turn, a given task (kernel) will be
performed on a grid consisting of multiple blocks [54].
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and memory, with programmable interconnects between them [62].
While software for a GPU or CPU consists of a series of instructions
for the processor to follow, an FPGA’s firmware configures the
programmable interconnects to produce a circuit providing the
required functionality. The large number of blocks in an FPGA
can then provide highly parallel processing and high
throughput of data.

Traditionally, firmware is developed by using a hardware
description language to describe the required functionality; a
compiler then finds a suitable configuration of blocks and
interconnects to achieve this. While hardware description
languages differ substantially from conventional programming
languages, high-level-synthesis tools for FPGAs have been more
recently developed to make it possible to describe an algorithm with
a more conventional programming language such as C++, with
special directives in the code being used to indicate how parallelism
can be achieved with the FPGA.

A distinctive form of parallelism in FPGAs is pipelining. A series
of processing steps will often be implemented as a series of blocks
forming a pipeline, with data being passed along from one block to
another. This is analogous to a production line in a factory, where
each station carries out a particular fabrication step, and goods pass
from one station to another. As with the production line, at any
givenmoment there will be multiple data elements in different stages
of processing being worked on simultaneously. In turn, to make
algorithms run efficiently in an FPGA, they need to be designed to
make effective use of this pipeline parallelism. This means that
FPGAs tend to be better-suited to algorithms that operate on
relatively continuous streams of data, rather than algorithms that
rely on holding large amounts of data in memory and accessing
them in an arbitrary way. As well as achieving a high throughput,
algorithms on FPGA can give a reliably low latency, which can be
important in cases where fast feedback is required. However, it is
generally more challenging to program FPGAs than CPUs or GPUs.

In photon science, FPGAs have been used, for example, for
performing autocorrelation in XPCS experiments [45] and
azimuthal integration [44]. For machine learning, libraries are
becoming available to make it easier to perform inference with
neural networks on FPGAs [63]. Additionally, FPGA vendors have
developed devices aimed at machine learning [64]; provides an
evaluation of Xilinx’s Versal platform, which, for example,
includes “AI engines” for running neural networks.

5.4 AI accelerators

In recent years, a range of accelerators have been developed for
machine learning. Examples of these include Intelligence Processing
Units fromGraphcore, and the GroqChip fromGroq; an overview of
some of these can be found in Ref. [65].

While these have varied architectures, they typically have
certain features aimed at implementing neural networks
efficiently. A neuron’s output is a function of the weighted
sum of its inputs, so AI accelerators are designed to perform
many multiply-and-accumulate operations efficiently. They
typically have large amounts of on-chip memory, in order to
accommodate the high number of weights in a big neural
network. Additionally, these accelerators can use numerical
formats that are optimised for machine learning. For example,
BFLOAT16 [66] is a 16-bit floating point format which covers the
same range as standard IEEE 32-bit floating point but with lower
precision; this is still sufficient for many neural networks, but
makes calculations computationally cheaper.

These kinds of accelerator have recently been investigated for
photon science applications. For example, in Ref. [67] a neural
network for processing FEL pulse structure information from a
streaking detector was implemented both for NVidia A100 GPUs
and Graphcore IPUs. This was a convolutional network with
encoder and decoder stages that could be used both to denoise
the data and to extract latent features. Inference on the IPUs was
roughly an order of magnitude faster than on GPUs, and training
time was also significantly improved.

6 Data transfer and processing chains
in detectors

A typical detector and DAQ system consist of series of stages, as
illustrated previously in Figure 1. At each stage, data transfer is
needed, and we face a series of bottlenecks which can limit the
possible data rate. By doing data reduction earlier on in this chain,
the data transfer demands on later stages are reduced, and we can
take advantage of this to achieve higher detector speeds. Conversely,
the hardware used in earlier stages of this chain is typically more
“custom” or specialized, making the implementation of data
reduction more challenging, and typically there is also less
flexibility in these stages.

The stages in the readout and processing chain are as follows,
and the potential for data reduction at each stage will be discussed in
more detail in the following section.

• The readout chip (hybrid pixel) or monolithic sensor.

FIGURE 9
Illustration of the internal architecture of a Xilinx UltraScale FPGA.
The FPGA consists of an array of blocks such as I/O (input and output),
Combinatorial Logic Blocks, Digital Signal Processing and memory in
the form of SRAM, which can be flexibly configured [62].
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• Readout electronics within the detector itself, which typically
incorporate an FPGA, microcontroller or similar.

• Detector-specific data processing hardware. Typically, this
consists of one or more PCs, which can include peripherals
such as FPGAs or GPUs, but it is also possible to build more
specialized systems, such as crates of FPGA boards.

• Generic high-performance-computing hardware, typically in
the facility’s computing cluster.

Please note that this discussion focuses on data processing and
reduction “close to the detector”, rather than a facility’s full data
analysis and storage system. Further information on this broader
topic is available, for example, in publications on the newly-built
LCLS-II data system [68] and an overview of big data at
synchrotrons [69]. Furthermore, the level of data reduction
required depends strongly on the costs of data processing and
storage downstream. For example, for LCLS-II the goal is to
reduce the data volume by at least a factor of 10 for each experiment.

6.1 On-chip data reduction

The first data bottleneck encountered in the detector is
transferring data out of the hybrid pixel readout chip or
monolithic sensor. In a pixel detector, we have a 2D array of
pixels generating data, and within the chip it is possible to have
a high density of signal routing; it is common to have a data bus for
each pixel column. However, data output takes place across a limited
number of transceivers (for example, 16 for the recent
Timepix4 chip [70]), which are typically located at the periphery
of the chip. These transceivers usually connect to a circuit board via
wire bonds, though there is increasing effort in using Through
Silicon Vias—TSVs—for interconnect [71]. In turn, further
bottlenecks are faced in connecting these to the rest of the
readout system. Many X-ray experiments require large
continuous detector areas. Typically, these large detectors have a
modular design, with each module’s electronics placed behind it. In
this situation, achieving high detector frame rates requires building
readout electronics with high bandwidth per unit area; the
achievable bandwith per unit area then depends both on the
performance and physical size of PCB traces and other
components [72, 73]. So, performing on-chip data reduction can
make it possible to build faster detectors without being limited by
these bottlenecks.

Naturally, any circuitry for on-chip compression must be
designed to not occupy excessive amounts of space in the pixels
or periphery. Additionally, readout chips are developed in
technology scales that are relatively large compared to
commercial data processing hardware like GPUs and FPGAs, due
to the high cost of smaller nodes. Typically, rather than
implementing general-purpose processing logic into detector
chips, specific algorithms are implemented.

Reference [18] presents a design for on-chip data compression
for photon counting detectors, using techniques similar to those
discussed previously in Section 3. Firstly, within the pixels, count
values are encoded with a varying step size, with the step size getting
larger for larger pixel values such that the step does not exceed the��
N

√
Poisson noise. This is lossy compression, but the additional

noise introduced by this encoding should be less than the Poisson
noise. Then, in the chip’s periphery during readout, a lossless
compression scheme is applied that bit shuffles the data (much
as described for bitshuffle LZ4) then encodes runs of zeroes
efficiently. Applied to example datasets, this computationally-
cheap approach achieved a compression ratio of around 6 for
XRD data, compared to 19 obtained with GZIP.

More recently, lossy on-chip compression methods have been
developed using two different algorithms - principal components
analysis and an autoencoder [74]. The logic for doing this was
distributed throughout the chip, with the analog pixel circuitry
consisting of “islands” of 2 × 2 pixels. Applying these algorithms
to an image requires prior knowledge about the content of a typical
image; in the case of an autoencoder, which is a type of neural
network, the neural weights are learned from training data. In this
implementation, training was done using ptychography data, and
the resulting weights were hard-coded in the chip.

One important limitation of on-chip data compression is that in
a large tiled detector composed of multiple chips, the compressibility
of the data can vary a great deal between different chips. In X-ray
diffraction experiments in particular, the X-ray intensity close to the
beam is much higher than at large scattering angles, leading to less
compression. So, chips close to the beam may encounter data
bottlenecks even if a high overall level of compression is achieved
for the detector as a whole.

Another example of on-chip reduction is data vetoing by
rejecting bad images, as discussed previously. The Sparkpix-ED
chip is one of a family of chips with built-in data reduction
being developed by SLAC [75]. It is an integrating pixel detector
with two key features. Firstly, each pixel has built-in memory which
is used to store recent images. Secondly, there is summing circuitry
that can add together the signals in groups of 3 × 3 pixels, to produce
a low-resolution image with 1/9 of the size. During operation, each
time a new image is acquired the detector will store the full-
resolution image in memory and send out the low-resolution
image to the readout system. The readout system will then
analyse the low-resolution images to see if an interesting event
occurred (e.g., diffraction from a protein crystal in a serial
crystallography experiment). If so, the detector can be triggered
to read out the corresponding full-resolution image frommemory; if
not, the image will be discarded. A small prototype has
demonstrated reading out low-resolution images at 1 MHz frame
rate, and full-resolution images at 100 kHz.

6.2 On-detector processing and
compression

Data processing and compression can potentially be done within
the detector, before data is transferred to the control system
(typically over optical links). Once again, this can reduce the
bandwidth required for this data transfer.

Typically, on-detector electronics are needed both to control the
detector’s operation, and to perform serialization and encoding of
data into some standard format so that it can be sent efficiently back
to the control system and received using off-the-shelf hardware. (In
some cases, it is also necessary to interface to additional components
such as on-board ADCs.) One particular benefit of serialization is
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that individual transceivers on a readout chip typically run at a lower
data rate than can be achieved by modern optical links, so
serialization can allow these links to be used more efficiently; for
example, even the fastest on-chip transceivers typically do not have
data rates above 5 Gbit/s, whereas data sent using 100 Gigabit
Ethernet with QSFP28 transceivers consists of 4 channels with a data
rate of 25 Gbit/s each. These tasks of control and serialization are
typically implemented in an FPGA, or a System-On-Chip (SoC)
with an FPGA fabric. So, the most common approach to on-detector
data processing is to use the FPGA’s processing resources.

As discussed in more detail earlier, FPGAs can provide highly-
parallelized data processing, but firmware development can be
challenging and time consuming. So, detector-specific processing
routines that will always need to be performed on the data are better-
suited to FPGA implementation than ones that vary a lot between
experiments.

For example, FPGAs in the EIGER photon counting detector
perform count-rate correction and image summing [76]. Since the
counters in the pixel have a depth of 12 bits, this makes it possible for
the detector to acquire images with a depth of up to 32 bits by
acquiring a series of images and internally summing them, rather
than needing to transfer many 12-bit images to the DAQ system.

One drawback of on-detector processing is that if the FPGA is
used for control, serialization and data processing, then it can
become more difficult to change the data processing routines.
When FPGA firmware is compiled, the compiler will route
together blocks in the FPGA to produced the desired
functionality. So, changing the data processing routines can
change the routing of other functionality in the FPGA,
potentially affecting reliability. So, careful re-testing is required
after changing the data processing. This is another reason why
on-detector processing with FPGAs is mostly used for fixed,
detector-specific routines.

6.3 Data acquisition hardware such as PCs
with accelerator cards

Data sent out from a detector module will normally be received
by either one or more DAQ PCs, or more specialized hardware,
located either at the beamline or in the facility’s computing centre.
These parts of the DAQ system typically have a range of functions:

• Detector configuration and acquisition control, which requires
both monitoring the detector’s state and data output, and
receiving commands from the control system.

• Ensuring reliable data reception. It is common for a detector’s
output to be a continuous flow of data, transferred by a simple
protocol like UDP without the capability to re-send lost
packets [77], So the DAQ system is required to reliably
receive and buffer this data; this typically requires, for
example, having dedicated, high performance network or
receiver cards.

• Data correction and reduction.
• Transferring data to where it is needed, for example, the
facility’s storage system, online processing and/or a user
interface for feedback. This can include tasks like adding
metadata and file formatting.

Compared to detectors themselves, these systems tend to be built
with relatively off-the-shelf hardware components - for example,
standard network cards or accelerator cards. This use of off-the-shelf
hardware can reduce the costs of implementing data correction and
reduction. In addition, it can be easier to upgrade this hardware over
time to take advantage of improvements in technology. These DAQ
systems may do processing with conventional CPUs, hardware
accelerators such as GPUs and FPGAs, or a mixture of these.

One recent example of this approach is the Jungfraujoch
processing system, developed by PSI for the Jungfrau 4-
megapixel detector [78]. (A similar approach is taken by the
CITIUS detector [79].) The Jungfraujoch system is based on an
IBM IC922 server PC, equipped with accelerator cards, and can
handle 17 GB/s data when the detector is running at
2 kHz frame rate.

The Jungfraujoch server is shown in Figure 10 (reproduced from
[78] with permission of the International Union of Crystallography).
Firstly, it is equipped with two “smart network cards” from Alpha
Data, each with a Xilinx Virtex Ultrascale + FPGA and a 100 Gigabit
Ethernet network link. These receive data directly from the detector
over UDP. The FPGA then converts the raw data into images, as
described in Ref. [9]. Jungfrau is an integrating detector with gain
switching, so the raw data consists of ADC values, and the process of
converting this to either photons or energy values includes
subtracting the dark current and scaling by an appropriate gain
factor. The FPGA also performs the Bitshuffle algorithm, which is
the first step in Bitshuffle LZ4 compression described previously;
since this algorithm involves reordering bits in a data stream, this is
well-suited to implementation on FPGA. The FPGA is primarily
programmed by using High Level Synthesis (HLS) based on C++.

The data from each FPGA is transferred to the host server PC
using OpenCAPI interconnects, which both allows high speed data
transfer at 25 GB/s, and makes it simpler for the FPGA to access

FIGURE 10
A photograph of the IC922 server (IBM) used in Jungfraujoch,
showing the FPGA board used for data reception and processing, and
the OpenCAPI link allowing coherent access to the CPU’s memory.
Reproduced from [78] with permission of the International Union
of Crystallography.
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memory on the server. The CPU in the server performs the LZ4 part
of the Bitshuffle LZ4 lossless compression algorithm, then forwards
this data to the file system using ZeroMQ so it can be written to the
file system as an HDF5 file. There is also a GPU in the system that
can perform tasks such as spot finding in macromolecular
crystallography, and monitoring aspects of the detector’s
behaviour such as the dark current. (These tasks are well suited
to GPUs, since they involve performing operations on full images
in parallel.)

One promising technological development in this field is that
FPGA and GPU vendors are increasingly developing accelerator
cards with built-in network links for the datacenter market. For
example, Xilinx have the Alveo line of FPGA cards with two
100 Gigabit Ethernet links and optional high-bandwidth memory,
and likewise NVIDIA is currently developing GPU cards with
network links. So, this will increase the availability of powerful,
standardized hardware for building DAQ systems.

6.4 Computing clusters

Modern light sources are generally supported by large computer
clusters for data processing and large storage systems [68]. Data
from DAQ PCs or similar hardware at the beamlines can be
transferred to them over the facility’s network. Data processing
in computing clusters can be divided into online analysis, where the
data is transferred directly to the cluster to provide fast results to the
experiment, and offine analysis where data is read back from storage
for processing at a later point. (Naturally, there may not be a sharp
dividing line between these two approaches.) In addition to server
PCs with CPUs, computing clusters can also incorporate GPUs or
less commonly FPGAs.

In a computing cluster, there is generally a scheduling system
that controls how tasks are assigned to the computers. This has the
advantage of allowing sharing of resources between different
experiments and users according to needs, whereas dedicated
hardware installed at a beamline may be idle much of the time.
Computing clusters are also much better-suited to allowing users to
remotely access to their data and providing the software tools
required to analyse it. However, this flexibility in task scheduling
and usage can make it more difficult to ensure that we can reliably
receive and process images from the detector at the required rate;
this is one reason for having dedicated DAQ computers at the
beamline for receiving detector data.

7 Conclusion

The increasing data rates of detectors for photon science mean
there is a need for high-speed detector data correction, and
data reduction.

There are strong ties between these tasks. On the one hand, data
reduction can often yield better results on properly-corrected data, since
the correction process can reduce spurious variation in images (e.g.,
pixel-to-pixel variation in response) and make it easier to exploit
redundancy in the data. Conversely, after lossy data reduction it is
impossible to perfectly recover the original data, so it is crucial to ensure
that the quality of the data correction is as good as possible.

Both of these tasks can benefit from making better use of
hardware accelerators such as GPUs and FPGAs for highly
parallel processing. The increasing use of accelerators in other
areas, such as datacenters, means that we can take advantage of
improvements in both their hardware and in tools for programming
them. In particular, as FPGAs and GPUs with built-in network links
become available “off the shelf”, this increases the potential for
different labs to build their DAQ systems with compatible hardware,
and share the algorithms they develop. Although this paper
emphasizes data processing hardware, it is also important to note
that well-designed and coded algorithms can deliver much better
performance.

Data reduction is a growing field in photon science. To date, lossless
compression has mainly been used, since this ensures that there is no
loss in data quality, and in some experiments lossless methods can
achieve impressive compression ratios. However, lossless compression
is relatively ineffective for methods such as imaging, and as data
volumes increase there is demand for even greater data reduction in
diffraction experiments. So, there will be an increasing need for lossy
compression and othermethods of reduction. In doing so, it is crucial to
use appropriate metrics to test that the data reduction does not
significantly reduce the quality of the final analysis. By using well-
established methods of lossy compression, for example, image
compression with JPEG2000, it is easier to incorporate data
reduction into existing data analysis pipelines. However, novel
methods of data reduction tailored to photon science experiments
have the potential for better performance.

Data reduction can be incorporated into different stages of a
detector’s DAQ chain; generally, performing data reduction earlier
in the chain is more challenging and less flexible, but has the
advantage of reducing the bandwidth requirements of later
stages, and can enable greater detector performance by
overcoming bottlenecks in bandwidth. The development of on-
chip data reduction is a particularly exciting development for
enabling higher-speed detectors, though this would typically
require the development of different chips for different classes of
experiment. As the demand for data reduction increases, we can
expect detectors and experiments to incorporate a series of data
reduction steps, beginning with simpler or more generic reduction
early in the processing chain, and then more experiment-specific
data reduction taking place in computer clusters.
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Probing the potential of CdZnTe
for high-energy high-flux 2D
X-ray detection using the XIDer
incremental digital
integrating readout

Marin Collonge1,2, Oriane Baussens1, Paolo Busca1*,
Pablo Fajardo1, Peter Fischer2, Thierry Martin1, Michael Ritzert2,
Marie Ruat1, David Schimansky2 and Morag Williams1

1Detector and Electronics Group, European Synchrotron Radiation Facility, Grenoble, France, 2Institut für
Technische Informatik, Universität Heidelberg, Heidelberg, Germany

The latest synchrotron radiation sources have the capability to produce X-ray
beamswith a photon flux that can be up to three orders of magnitude higher than
previous-generation facilities, and that are not manageable by the currently
available 2D photon-counting pixel detectors. The construction of new
detectors that exceed the limitations of existing devices is a critical strategic
need. Developing such detectors is a challenge in terms of readout electronics as
well as sensor material, particularly in the case of devices intended to operate at
X-ray energies above 30 keV. The approach adopted at the ESRF to deal with this
major difficulty is twofold: the use of a novel semiconductor material with
improved electrical properties, high-flux CdZnTe, and the investigation of a
specific readout scheme, incremental digital integration, via the XIDer project
in collaboration with the University of Heidelberg. Incremental digital integration
is a method intended to be less sensitive to variations of the dark current than the
conventional charge integration readout. However, this readout scheme requires
that the leakage current from the sensor material stays below a certain threshold
to reduce the leakage contributions. This paper introduces the ESRF strategy and
few examples of the methods employed to evaluate the performance and
leakage current behavior of high-flux CdZnTe pixelated sensors. These
examples illustrate the first results obtained with this material under moderate
to very high X-ray irradiation fluxes of up to 1012 photons/mm2/s.
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X-ray hybrid pixel detectors, charge integrating detectors, high-Z sensors, CdZnTe, high
dynamic range, high-brilliance synchrotron beams
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1 Introduction

1.1 Exploiting 4th generation synchrotron
sources: limitations of current detectors

The proper exploitation of the latest generation of synchrotron
radiation storage rings presents non-trivial challenges. In addition to
the increased brilliance of these very low emittance accelerator-
based sources, the possibility of operating with reduced gap
undulators and the use of more efficient optics allow the delivery
of X-ray beams of unprecedented intensity [1]. The actual gain in
photon flux over previous sources is highly dependent on the
particular applications and experimental setups, but in many
cases can be as much as two to three orders of magnitude [2].
The photon fluxes are expected to increase further with the
development of optimized insertion devices and improved X-ray
optics. In this scenario, the construction of new X-ray detectors that
exceed the limits of current devices by several orders of magnitude is
a critical strategic need. In the case of the EBS (Extremely Brilliant
Source) [3], the new ESRF storage ring and the first fourth-
generation high-energy synchrotron facility in operation, the
monochromatic X-ray beams can reach 1016 photons per second.
In addition, the challenge of building a new generation of detectors is
further increased due to the need to cover a significant number of
applications with photon energies at or above 30 keV.

Themost suitable 2D detectors currently available for diffraction
and scattering experiments at the ESRF and other synchrotron
storage rings are hybrid pixel detectors, built with pixelated
semiconductor sensors, and operating in photon-counting mode
[4, 5]. Thanks to the direct conversion of X-rays into charge, these
devices provide the single-photon sensitivity required for photon-
counting operation. And the signal-processing scheme in a photon
counting device produces output data with extremely low readout
noise that can be negligible in most practical cases [6, 7]. Another,
less obvious, but extremely important feature of photon-counting
readout is the possibility of engineering signal-processing electronics
that are insensitive to fluctuations of the dark current generated in
the semiconductor sensor. This aspect, which is relevant for silicon-
based devices, becomes absolutely critical when it comes to high-
energy photon detectors built with pixelated compound
semiconductors. It has been instrumental in the successful
deployment of 2D photon-counting CdTe detectors at the ESRF,
as well as at a number of high-energy experimental stations at other
synchrotron radiation facilities [8–10].

However, although photon-counting hybrid pixel technology is
the current state of the art for 2D detection in a wide range of
synchrotron applications, the maximum photon flux per pixel is
limited by pulse pile-up [11]. When the average photon flux per
pixel approaches a certain X-ray hit rate, the pulse discrimination
circuitry begins to miss counts and the detector suffers from count
losses. In practice, with the most advanced current photon-counting
detectors, when the flux per pixel approaches few million photon
hits per second, the pile-up count losses exceed 10% of the average
incident hit rate [8, 12]. This is a major limitation of existing
detectors, which prevents the efficient use of new generation of
synchrotrons. Two different strategies are being investigated at the
ESRF and other facilities to overcome the above limitation: (i) the
design of new photon-counting detectors with one to two orders of

magnitude higher count rate capability, (ii) the implementation of
special charge-integrating detectors suitable for time-resolved
experiments and able to operate with continuous beams at high
photon energies at storage rings.

1.2 The need and challenge of building high-
energy charge-integrating detectors

It is possible to increase the count rate capabilities of photon-
counting detectors by developing faster front-end readout electronics
with pile-up compensation techniques or other strategies such as
reducing the pixel size to increase the number of counting channels
per pixel area [13–15]. However, the maximum achievable photon flux
with photon-counting devices would still not be sufficient for
applications dealing with very strong signals, such as those found in
many diffraction experiments in material science. In these experiments,
the samples under study are usuallymade of inorganicmaterials and the
diffraction signals at the detector can be very intense. The energy of the
X-ray photons must be high enough to penetrate and properly probe
the regions of the samples being investigated. This results in illuminated
sample volumes that are usually well above 100 µm in size, which are
significantly larger than in other types of diffraction or scattering
experiments with thin samples as it is the case, for instance, when
studying organic or biological materials. This circumstance strongly
influences the minimum required pixel size as, although the spatial
distribution of the measured pattern is dependent on the distance from
the sample to the active plane of the detector, the highest spatial
resolution of the pattern is limited, among other parameters, by the
size of the illuminated volume in the sample which is indeed the
effective diffracting source. This consideration is not applicable to
coherent scattering experiments, but it is fully valid for conventional
diffraction techniques such as single-crystal or powder diffraction and
has as a consequence that the required detector pixel size for this type of
experiments is not very small. In practice, in most material science
experiments, a pixel size in the range of 100 μm–200 µm is well adapted
to properly record the diffraction patterns that can be very intense,
reaching, or exceeding in some cases, 109 photons per second per pixel.

The photon statistics in experiments with such intense signals are
sufficient to investigate physical phenomena on the micro- and sub-
microsecond time scale, including irreversible processes. Such short
time domains, that were unattainable with the previous generation of
synchrotron sources, can be reached with detectors able to sample the
diffraction patterns at MHz rates while coping with the high incident
photon flux. This requirement corresponds quite closely to the
capabilities of the high dynamic range charge-integrating hybrid
pixel detectors developed over the last decade for free-electron
lasers [16, 17] and more recently for spectroscopy applications
[18]. These detectors are designed to operate by integrating the
charge coming from the pixelated sensors during a very short time
window for which the undesired signal component resulting from the
integration of the sensor leakage current is negligible. Although these
last generation X-ray integrating detectors are very well suited for very
intense single pulse measurements or short integration times, they do
not offer the versatility required for applications at storage rings, in
which the duration of the integration intervals, the acquisition duty
cycle and the operation conditions vary considerably from experiment
to experiment.
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Furthermore, the use of high-Z compound semiconductor
sensor materials, which is essential to ensure good absorption
efficiency above 30 keV, results in the degradation of the
performance of detector systems due to charge trapping and to
the associated polarization effects [19]. The polarization effects
correspond to over-time changes in the electric field distribution
in the sensor due to charge build-up. The build-up can be caused
both by the bias applied to the sensor and by high incident X-ray
doses. The bias-induced polarization effect specifically affects
Schottky devices by screening the electric field near the cathode
[20]. This not only results in a reduction of the charge collection
efficiency, but also in a reduction of the Schottky barrier height,
which causes the leakage current in the sensor to increase. Moreover,
the bias-induced polarization effect can take up to hours to stabilize,
which means that leakage current is unstable during that time. High
and unstable values of leakage current make it challenging to
implement an effective leakage current compensation scheme.
And without a proper compensation, the leakage current is
integrated along with the signal of interest. For intermediate or
long integration times, the leakage dominates the signal of interest,
thus degrading the dynamic range of the integrating system. As for
the irradiation-induced polarization, it affects both ohmic and
Schottky devices [21]. This effect depends on many factors,
including the energy and intensity of the X-ray beam, the sensor
type and the temperature. Like in the case of bias-induced
polarization, the charge build-up created can screen the electric
field in the sensor and hinder charge collection. Moreover, since in
this case the charge build-up is tied to the irradiation, stopping the
irradiation leads to the detrapping of the built-up charge. This
results in a residual current, the aftersignal, that decreases over
time with characteristic time constants linked to the traps levels
implicated in the initial build-up. This aftersignal component, also
referred to as “afterglow” or “lag” in the literature [22–24], is
particularly detrimental for applications requiring pulsed
irradiation. In the case of semiconductor compounds of the
CdTe family, the polarization effect is caused by the very poor
charge transport properties of holes and it makes conventional
charge-integration readout schemes inapplicable in practice.

1.3 An ESRF approach to mitigate the
leakage current contributions

As introduced in the previous section, a major challenge faced
when building high-energy charge-integrating detectors for storage
rings is finding a sufficiently effective method to reduce the
contributions of the leakage current from the sensor material.
The approach adopted follows two complementary paths. On the
one side, there is the use of a semiconductor material with improved
electrical properties and minimum leakage current variations: the so
called high-flux CdZnTe (HF-CZT) [25, 26]. On the other side, the
implementation of a specific readout scheme, the incremental digital
integration, which uses quantization in the signal conversion process
to partially cancel undesired contributions coming from the
integration of the sensor leakage current. The investigation of
incremental digital integration is a central part of the XIDer
project, a collaboration of the ESRF and the University of
Heidelberg, and has been described and discussed in previous

publications [27, 28]. The results presented in this work are
examples of the approach followed at ESRF for the evaluation of
the behavior of HF-CZT sensors at high X-ray incident fluxes with
both standalone discrete devices and with pixelated sensors
hybridized with XIDer readout ASICs.

2 Materials and methods

2.1 High-Z sensors and hybrids

HF-CZT material is a specific variant of CdZnTe, produced by
Redlen Technologies [29], that has the particularity of presenting
significantly enhanced hole transport properties compared to more
conventional spectroscopic CZT and to CdTe [25, 26]. Thanks to
this particularity, HF-CZT is much less subject to the build-up of
positive space charge in the sensor volume and therefore less
sensitive to both the bias-driven and radiation-driven polarization
phenomena. Previous work has shown that, at 20 keV, HF-CZT is
indeed more resilient than its standard counterpart, at least up to
1010 ph/mm2/s [30, 31]. Although the material used in this work was
grown by Redlen Technologies, the samples under study were
reprocessed by IMEM-CNR with their own contact technology and
diced to produce sensors with the desired size and electrode layout. All
the sensors are terminated with quasi-ohmic contacts at both sides and
have a continuous cathode and a structured anode. The anodes aremade
of sputtered platinum electrodes with layouts that include pixelated
structures surrounded by a full metal contact that is used as a guard ring.
For operation, the cathodes of the sensors are biased to negative voltages
while the guard rings are grounded and the pixel contacts at the anodes
are connected to the measurement devices.

This work presents results obtained with two types of HF-CZT
sensors: standalone samples measured with discrete readout
electronics, and devices that were hybridized with the XIDer
readout ASICs.

The standalone samples studied in this paper are 1.5 mm thick and
have a total external size, after reprocessing, of approximately 5 ×
5 mm2. The anode layout, as seen in Figure 1, includes two single pixels
and a 2 × 2 pixel matrix surrounded by the full guard ring contact. All
the pixels are 500 µm square. On the cathode side, sample 1 has a gold
electrode while sample 2 has a platinum electrode. These electrodes
were manufactured via electroless and sputtering processes,
respectively. The samples were mounted onto PCBs with
bicomponent epoxy glue and bonded using copper wires and
conductive silver epoxy (Figure 1). These samples were originally
part of a larger study, testing all possible electrode configurations
with gold and platinum [32]. In this previous study, it was found
that a platinum electrode is needed on the anode (Cd-face) to act as a
hole blocking layer, but that both gold and platinum act as electron
blocking layers on the cathode (Te-face). Essentially, both samples
discussed in the present study exhibited similar response under dark
conditions. In addition, the response of these samples under irradiation
has previously been published [31] for lower incident X-ray fluxes than
those presented in this paper. It was found that both samples gave
similar responses under irradiation.

In the current paper, all of the measurements presented were
performed, at room temperature, on the single pixels. During
measurements of each sample, they were placed in a custom-
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made metal box with a Kapton tape entrance window and their
cathodes were biased at −1000 V (6.7 kV/cm) using a high
voltage power supply ISEG SHQ 224. The current collected
by the single pixel was then measured using a picoammeter
Keithley 6,485.

The devices with integrated readout are assemblies built with small
HF-CZT pixelated sensors hybridized to XIDer readout ASICs. These
readout chips are designed in CMOS 65 nm TSMC technology and
implement the incremental digital integration readout [27, 28]. TheHF-
CZT sensors are 2 mm thick in this case and include two 4 × 4 pixel
minimatrices of 100 μm and 200 µm pitch, as shown in the picture at
the left of Figure 2. The cathode consists of a continuous platinum
contact. In the assemblies used for this work only the 200 µm
minimatrix was connected to the 16-channel readout ASIC. The
bonding was performed by Polymer Assembly Technology [33] by
applying a low-temperature flip-chip process with gold studs and
conductive epoxy [34]. The picture on the right shows one of the
hybridized assemblies mounted on the test PCB with the connection to
the top cathode electrode that, in operation, was biased at −1000 V.

For comparison purposes, the results obtained with the HF-CZT
hybrids are presented in the next section together with results
obtained with CdTe sensors from the company Acrorad [35].
These sensors are also terminated with ohmic platinum contacts,
at both the anode and the cathode, and have the same size and layout

that is depicted in Figure 2. However, as the CdTe sensors are 1 mm
thick, thinner than the HF-CZT devices, they were biased at a
proportionally lower voltage of −500 V to operate with a comparable
internal electric field.

Note that the electric fields used to characterize the standalone
samples (6.7 kV/cm) and the hybridized samples (5 kV/cm) are
different. This difference comes from the fact that the measurements
were planned separately for each type of samples. However, in both
cases, the electric field was chosen to ensure that the samples were
operated in full charge-collection regime. This regime occurs around
1 kV/cm for both CZT and CdTe samples.

2.2 Application of the incremental digital
integration readout

The basic principle of incremental digital integration is the
division of the total exposure time in a number N of
subintervals, subframes in the XIDer terminology, where for each
subframe the input signal in each pixel is integrated and digitized
[27]. The resulting pixel intensity is the sum of the N digital values
produced during the total integration time, an operation that is fully
performed by the pixel electronics in the readout chip. This scheme,
operating with very short subframes in the micro- or sub-

FIGURE 1
Standalone HF-CZT samples: Electrode layout and pictures of one of the samples mounted on the test PCB. [left] Pixelated anode layout. [center]
Top side of the test PCB. [right] Bottom side of the test PCB.

FIGURE 2
Hybridized HF-CZT devices: [left] 4 × 4 mm2 sensor before hybridization, showing the 100 μm and 200 µm pitch 16-pixel matrices designed to be
bonded to XIDer ASICs. [right] Picture of the 200 µm pitch sensor-ASIC assembly mounted on the test PCB.
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microsecond range, implements an in-pixel fast analog-to-digital
conversion with a certain level of rejection of the dark current
contribution. The rejection is effective if the total leakage charge
collected during each subframe is well below a certain threshold that,
in the case of the XIDer circuit implementation, is determined by the
resolution of the analog-to-digital converter (ADC). When working
with monochromatic radiation, the least significant bit of the ADC
in the pixel is typically set to the equivalent of one X-ray photon and
the threshold to 50% of that value. For example, with 30 keV
monochromatic irradiation, the discrimination threshold would
be set at an equivalent 15 keV, which in CdZnTe corresponds to
a constant 260 pA/pixel leakage current being integrated during a
2 µs window. The incremental digital integration readout then
behaves at low photon fluxes like a photon-counting readout,
and at higher photon fluxes, when quantization error becomes
negligible, digital integration is functionally equivalent to a
conventional charge-integrating scheme [36].

In the work presented in this paper, the XIDer readout ASIC
was used as a tool to investigate the variation of the leakage current
of the HF-CZT devices in the microsecond scale. For this purpose,
the devices were calibrated to operate with 30 keV photons, the
lowest photon energy they were designed to handle, and
configured to acquire single subframes. The calibration is an
important step which consists in trimming four adjustable
parameters of the internal circuitry of the ASIC on a per-pixel
basis. This includes the trimming of the quantization steps and the
discrimination thresholds with respect to the energy of the incident
photons in the pixel front-end electronics, for each of the two
pipelined stages, coarse and fine [28]. The calibration procedure
relies on the internal charge injection circuitry and each parameter
was trimmed by analyzing the effect of a sweep of their respective
DAC in the chip, under the injection of a specific amount of
charge, e.g., the charge equivalent to the integration of one 30 keV
photon. The equivalence between photon energy and injected
charge was derived from the theoretical sensor average ionizing
energy, 4.64 eV per electron-hole pair for CZT [37], and the
nominal values of the injection circuitry components.
Discussing the procedure in more detail is beyond the scope of
this paper but it is relevant to point out that, although the absolute
calibration accuracy is limited by the manufacturing tolerance of
the charge injection circuitry, it is possible and important to check
the consistency of the trimming of the four internal parameters in
each pixel. The proper relative matching of the pixel values can be
assessed by using the charge injector itself as any deviation in the
response of the front-end electronics reveals mismatches in the
calibration of the coarse and fine stages. For that purpose, any
arbitrary but controlled signal distribution can be injected into the
front-end to verify the correspondence of the data produced by the
ASIC. In the example below, a waveform generator was used to
inject a signal corresponding to a predefined number of 30 keV
photons with a superimposed Gaussian random component. For
each number of equivalent photons, a large number of subframes
was acquired, with the amplitude of the noise-like component
adjusted to make the injection approximately match the signal
distribution that would be produced by a Poissonian X-ray source
illuminating uniformly the device. Examples of retrieved
distributions of the acquired subframe values are shown in
Figure 3 as normalized histograms alongside their fits to

Gaussian functions plotted with dashed black lines.
Qualitatively, the Gaussian shapes of the input charge
distributions are properly retrieved by the front-end electronics,
and the resulting distributions closely match their respective
Gaussian fit, with no apparent defects. This is a neat indication
of the consistency in the calibration of the front-end.

2.3 Photocurrent generation by LED
illumination

The study of the response of semiconductor sensors to strong
irradiation transients in the microsecond regime requires a
readout system able to operate in such a time scale but also
the possibility of modulating the incident photon flux with very
short switching times, ideally shorter than the measurement
intervals. When using X-rays, the very intense photon fluxes
required for the measurements cannot be produced by
conventional laboratory sources and the only option is to use
pulsed beams from either X-ray free-electron lasers or from
synchrotron radiation storage rings operating in timing
modes. During the investigation of sensor response for the
XIDer project, the limited availability of suitable beamtime as
well as the lack of flexibility in selecting the time structure of the
irradiation patterns with synchrotron beams has motivated the
development of an alternative scheme to generate photocurrent
time patterns using visible light.

The scheme implemented is the use of a 730 nm LED device
mounted to produce a uniform illumination over the entire active
surface of the sensor, and whose intensity and temporal structure
can be modulated electronically. At this wavelength, the
transmission of the light through a 20 nm thick platinum contact
is close to 4% and the photon energy is above the bandgap of
detector grade CdZnTe (1.57 eV, 790 nm) [37]. Therefore, a small
but non-negligible part of the light can penetrate in the

FIGURE 3
Normalized distributions of the signals measured per subframe in
a calibrated front-end, obtained for different levels of charge injection
andwith the superimposed noise-like Gaussian component described
in the text. The plot shows five histograms obtained for an
average injection of about 20, 60, 100, 140 and 180 30 keV X-ray
photons alongside the fits of Gaussian probability density functions in
black dashed lines.
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semiconductor material through the thin cathode metal and
generate electron-hole pairs near the surface of the device, the
absorption length of 730 nm light in CdTe being approximately
0.5 µm [38]. These conditions differ from the photocurrent
generation by X-rays because of the different penetration depth.
However, given that, at 20 keV, the attenuation length in Cd(Zn)Te
is on the order of 80 μm, the absorption of X-rays in the low end of
the energy range of interest can still be considered rather superficial
when compared to the 1–2 mm thickness of the devices under study.
Moreover, other observations made by the authors during
preliminary measurements, although with not properly calibrated
devices, have shown that the high-Z sensors have a similar response
in stability measurements under LED illumination and under low-
energy X-ray irradiation, as well as similar aftersignal time
components. Those observations support our assumption that
730 nm LED illumination can appropriately emulate the
illumination by superficially-absorbed low-energy X-rays.

3 Results

3.1 Linearity and stability of the HF-CZT
standalone samples

The linearity and stability under quasi-static high-flux irradiation of
the two standalone HF-CZT samples were investigated at the
BM05 beamline of the ESRF. A multilayer monochromator was
used to produce a 20 keV monochromatic X-ray beam reaching a
maximum flux of 1012 ph/mm2/s on the samples. The beam was
collimated to match the pixel size (500 μm × 500 µm) and aligned
on one of the single pixels. Themeasurement consisted in subjecting the
samples to 2-min long X-ray irradiation cycles with a progressively
increasing maximum incident photon flux. A set of aluminum
attenuators with 191 thickness combinations in steps of 60 µm was
used to reduce the incident X-ray intensity and provide fast transitions
between flux values. The attenuators could be changed remotely using a
pneumatically-operated system with a response time of around 100 m.

The incident flux as a function of the number of filters was obtained
prior to measuring the samples from the photocurrent measured in a
500 µm thick silicon photodiode inserted in the beam path. The lowest
flux achievable with this setup, using 11.46 mm of aluminum, was 2.5 ×
107 ph/mm2/s (in orange in Figure 4), and it was taken as the reference
of the irradiation cycles. The samples were subjected to seven cycles
with flux values ranging from 6×107 to 6 × 1011 ph/mm2/s (1.5×107 to
1.5×1011 photons per pixel per second). Each cycle consisted of
1 minute of irradiation at a specific photon flux followed by
1 minute of irradiation at the low-level reference. During all the
sequence, the photocurrent collected by the irradiated pixel was
recorded every second using the picoammeter. As the irradiation
sequences and the photocurrent measurements were not
synchronized, there is usually one data point for each rising and
falling edge that was measured during the change of attenuators.
These data points are disregarded in the discussion. Figure 4A
shows the measured current obtained for both standalone samples.

The two standalone devices exhibit similar behavior under
cycled irradiation as well as an excellent linearity with the
incident X-ray flux. This is depicted in Figure 4B, where the
average measured intensity of the low-level reference and of each
of the higher intensity irradiation steps are displayed as a function of
the incident flux. In terms of stability, the rms variations of the
measured photocurrent did not exceed the 0.4% of the mean value
during the 1-min irradiation intervals, variations that are difficult to
fully dissociate from the fluctuations of the intensity of the incident
X-ray beam. Previous measurements, taken during longer intervals
of 10 min, and for fluxes up to 1010 ph/mm2/s, have shown variations
below 1 nA/mm2 rms [31].

3.2 Transient response of HF-CZT
standalone samples

The measurements in Figure 4A were not optimized to evaluate
the transient response because the low-level reference did not
correspond to the true dark current baseline and the recording

FIGURE 4
(A) Cycled irradiation of standalone HF-CZT samples for increasing incident X-ray fluxes. The measured current values are normalized by the pixel
area to be expressed in A/mm2. In grey, above each step, the corresponding incident X-ray flux in ph/mm2/s. In orange, the flux with highest beam
attenuation that was used as the low-level reference of the irradiation cycles (B) Response of the samples with respect to the incident X-ray flux. This
figure was produced with the data from (A). The dots correspond to the measured average intensity for the low-level reference and for each of the
higher irradiation steps. The dotted lines correspond to the linear regression of the data with the resulting R2 displayed in the legend.
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time resolution was limited to 1 s. However, these measurements
still provide some useful information about the transient responses.
Firstly, Figure 4A shows sharp rising edges for the pulses, regardless
of the incident X-ray flux. Secondly, the falling edges exhibit some
visible aftersignal, for instance after the last pulse of the sequence in
the case of sample 1. The decay of the measured current for each
sample is presented in more detail in Figure 5, in which the tails of
the falling edges for all the irradiation levels are superimposed.

The data shown in Figure 5 gives a first insight into the
aftersignal behavior of the sensors within the first 60 s after the
end of the irradiation cycles. The aftersignal amplitude at a given
time appears to increase with the incident X-ray intensity. In the case
of sample 1, this behavior is clearly visible above 6 × 109 ph/mm2/s.
In the case of sample 2, this behavior is only noticeable above 1 ×
1011 ph/mm2/s.

Before discussing these results further, another set of data,
measured 1 year before the data shown in Figure 5, will be
introduced to give more elements for the analysis. This older
dataset, that is already published [31], comes from a similar
measurement campaign, conducted with the same HF-CZT
samples, at the same X-ray energy of 20 keV. However, there
were some differences in the way the experiment was carried out.
Firstly, the irradiation times were longer, 10 and 20 min for sample
1 and sample 2 respectively. Secondly, the low level of the cycles
corresponded to the dark current baseline, which was about 100 pA/
mm2. This was feasible because the maximum flux used for those
measurements, 8 × 109 ph/mm2/s, was two orders of magnitude
lower than in the case of Figure 5, so that the strongest attenuation
(using 11.46 mm of aluminum) corresponded to dark conditions.
And finally, the photocurrent was sampled at a 4 Hz rate. In the
Supplementary Figure S1 displays the photocurrent and aftersignal
tails of both datasets side by side to facilitate the comparison
between the two.

The superimposed tails of the current decay of the samples
under cycled irradiation for the older dataset [31] are displayed in
Figure 6. All the aftersignal values in the plots of the figure are the

result of subtracting the dark current component from the
measured current.

The results of Figure 6 are similar for both samples. Aftersignal
tails are visible and the aftersignal amplitude at a given time
increases with the intensity of the preceding X-ray irradiation.
The aftersignal presents a fast component, that cannot be
measured with the low time resolution of this setup but is the
subject of the following section, and a slow component with a decay
time in the range of seconds. In order to illustrate the dependency of
the slow component of the aftersignal with the irradiation, Figure 7
presents the levels observed in Figure 6 for both samples as a
function of the photon flux. The values in Figure 7A are the
aftersignal levels obtained 1 s and 60 s after the end of the
irradiation cycle, while the chart in Figure 7B compares the
aftersignal 1 s after the end of the irradiation with the average
photocurrent measured during the irradiation interval.

The measured aftersignal tends to increase with the incident X-ray
flux. The aftersignal values at 1 s for sample 2 are consistently smaller
than for sample 1. However, this difference subsides, and is even
reversed, for longer times. Even if the aftersignal amplitude increases
with incident X-ray flux, the ratio between the aftersignal and the
photocurrent produced during the irradiation phase remains small.
After 1 s, this ratio is below 0.15%, even for the most intense irradiation
conditions. And, after 60 s, the ratio drops below 0.01%.

Going back to Figure 5, we observe much larger aftersignal
values for sample 1 than for sample 2. A possible explanation
could lie in the difference of cathode contacts. Even if both gold
and platinum act as electron blocking contacts, the Schottky
barriers might react differently to the density of charge created by
the irradiation near the cathode [21]. Following this line of
thought, a medium-flux irradiation could introduce the small
difference observed in the response of the samples in Figure 6 and
Figure 7, and a high-flux irradiation would amplify this difference
further, as observed in Figure 5. However, there is an alternative
explanation for the large difference observed between samples in
Figure 5, and it resides in the history of the samples. As

FIGURE 5
Zoomon the falling tails of the photocurrent steps presented in Figure 4A showing the aftersignal tails for sample 1 (left) and sample 2 (right). The flux
values in the legends are given in ph/mm2/s. The black horizontal line represents the low-level reference that corresponds to an incident flux of 2.5 ×
10+7 ph/mm2/s.
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mentioned above, the dataset used in Figure 6 was measured
1 year prior to the one used in Figure 5. During this time period,
sample 1 suffered an electrical breakdown on one of its corners.
This corner was sanded down to remove the damaged part.
Following this, the sensor remained functional but its
transient response might have been affected by the
introduction of new mechanically induced trapping centers. It
is worth noting, however, that the preservation of the
functionality of the sensor after such a crude removal of the
damaged area can be taken as a strong indication of the resilience
of the material.

To finish with, in Figure 5, no aftersignal is visible below 6 ×
109 ph/mm2/s in the case of sample 1, and below 1 × 1011 ph/mm2/s
in the case of sample 2. This is due to a combination of two factors.
Firstly, there is a significant difference between the transients
observed in Figure 5 and those observed in Figure 6. On the one
hand, in Figure 5, the transients correspond to the transition
between a trapping-detrapping equilibrium at high flux and a
trapping-detrapping equilibrium at a lower flux because, as
previously mentioned, the low-level reference is not the dark
current baseline. On the other hand, in Figure 6, the transients
correspond to the transition between a trapping-detrapping
equilibrium under high flux and the equilibrium under dark

conditions. This means that the trap states being emptied to
reach equilibrium might not be the same, or at least, the
concentration of traps emptied might not be the same. This
could explain the faster transient response observed in Figure 5
compared with Figure 6 at similar incident X-ray fluxes. Secondly,
because the low-level reference in Figure 5 is three orders of
magnitude higher than the dark current baseline, the lowest
picoammeter measurement range that could be used for the
current measurement was 20 nA. This measurement range has an
accuracy of 0.4%, so the smallest variations that could be recorded
were 3 × 10−10 A/mm2. This is too large to measure any of the
aftersignal responses observed in Figure 6.

3.3 Fast response of hybridized detectors

This section presents an example that illustrates the
implementation of the methods introduced in Section 2 and
their application to the evaluation of the fast components of
the photocurrent aftersignal transients of HF-CZT and CdTe
pixelated sensors. For this purpose, the following results were
obtained from 200 µm pixel pitch devices connected to XIDer
readout ASICs as described in 2.3 and the measurements were

FIGURE 6
Baseline corrected aftersignal tails of the photocurrent measured in the two standalone HF-CZT samples after the cycled irradiation sequences
described in [31] for different photon fluxes, in the legend, in ph/mm2/s. (C) and (D) are zoomed in plots of figure (A) and (B) respectively.
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performed by illuminating the assemblies with LED light
emulating low-energy X-rays as discussed in 2.4. As the XIDer
devices were carefully pre-calibrated to provide the value of the
integrated charge as an integer number of 30 keV equivalent
photons, the adopted approach is to express the LED
illumination also in the same units by assuming that under
continuous illumination conditions, the readout values
provided by XIDer are a good representation of the equivalent
incident flux. This assumption would not be fully valid to provide
accurate absolute flux values if the charge generation or the
collection efficiency in the sensors is not ideal, but it can be
taken as an adequate approximation to investigate the dynamic
performance of the leakage current and the aftersignal effects.
Therefore, despite the use of visible light, all intensity values for
both incident and measured intensities in this example are
referenced to 30 keV equivalent photons.

During the measurements, the assemblies were illuminated
with a periodic 5 Hz square waveform of 50% duty cycle that
corresponds to light pulses of 100 ms duration. The XIDer readout
was set to acquire single subframes with a repetition period of
2.8 µs. This value is somehow arbitrary for the purposes of these
measurement but it corresponds to the period of the orbit of the
ESRF storage ring and is one of the standard subframe times
foreseen for the regular final operation of XIDer at the ESRF. In the
conditions of these measurements, the effective integration
window within each 2.8 µs subframe period was of 1.97 µs,
followed by a dead time of 0.83 µs. The LED source was
independently characterized with a silicon photodiode to verify
the proper shape of the light waveform and that the light emission
fully decayed to zero in less than 1 µs at the falling edges of the
illumination cycles.

Figure 8 shows the falling edges of the sensor current measured
with the CdTe and HF-CZT assemblies under the pulsed
illumination, for several light intensities ranging from 20 to
530 equivalent 30 keV photons per pixel per subframe. For the
given pixel pitch and integration window, these values correspond to
fluxes from 3×108 to 7 × 109 ph/mm2/s. The figure shows the
response of one of the 200 µm pixels of each assembly once the

steady state has been reached after several cycles of pulsed
illumination. The plots present the pixel signal integrated for
each 2.8 µs subframe during the time interval immediately
following the falling edge of the incident illumination. They
illustrate the level and temporal evolution of the aftersignal from
the sensors. The vertical axis in the plot for the HF-CZT assembly
has been expanded to reveal the aftersignal decay, as the measured
values are between one and two orders of magnitude lower than in
the case of CdTe. Because the subframe acquisition was not
synchronized with the periodic 5 Hz illumination pulses, the first
subframe recorded after the initial signal drop is likely to include
partial illumination and should be disregarded.

The weaker HF-CZT aftersignals drop with a much smaller time
constant when compared to CdTe. After a few hundred
microseconds, the HF-CZT aftersignal integrated during one
subframe drops below the 15 keV equivalent photon preset
discrimination threshold, corresponding to half the least
significant bit photon level, resulting in an effective null readout
value. This coincidentally illustrates how the analog-to-digital
conversion in the XIDer readout can completely discard residual
signals by exploiting the intrinsic quantization of the X-ray
illumination. This is the key feature of the incremental digital
integration readout that makes possible in-pixel aggregation of
multiple subframes without accumulating leakage current and
similar undesired contributions, such the aftersignal, as long as
they remain below the discrimination threshold.

The variation with the intensity of the illumination and the
differences between sensor materials is more clearly appreciated in
Figure 9, which presents the aftersignal level measured 10 and 100 µs
after the end of the LED illumination pulses as a function of the
injected signal expressed as equivalent X-ray flux. For comparison
with the results in Figure 7, the measured aftersignal values in the
vertical axis have been converted into equivalent current density
units by using the pair creation energies tabulated in [13]. Please
note again that the electric fields used for the standalone samples and
the hybridized samples are different due to differences in thickness.
This has to be considered when comparing the results
from Figure 7, 9.

FIGURE 7
(A) Aftersignal, corrected by the dark current, measured 1 s and 60 s after the end of the irradiation cycles as a function of incident X-ray flux. (B)
Comparison of the aftersignal of the standalone samples measured 1 s after the irradiation was stopped, with the average photocurrent measured during
the irradiation.
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4 Summary and outlook

This paper introduces the strategy followed at the ESRF for the
development of 2D X-ray detectors suitable for experiments with the
high brilliance beams produced by the last generation of
synchrotron storage rings such as the ESRF-EBS source. The
most demanding applications require charge-integrating detectors
able to operate at high X-ray energies up to 100 keV and with photon
fluxes that may reach 1011 ph/mm2/s at the detector. A major
challenge for building such a type of detectors is the proper
management of the fluctuations and instabilities of the leakage
current from the compound semiconductor sensors required to
operate with high-energy X-rays. The presented approach is based
on the use of the incremental digital integration readout scheme that
is being developed within the XIDer project. This type of readout can
mitigate the impact of sensor leakage current variations, as long they
remain under certain limits [27, 28]. The availability of high-Z
sensors with good performance under intense photon fluxes and

with low leakage current is therefore essential, and today, high-flux
CZT is the only material candidate to fulfil those requirements.

The characterization of HF-CZT, in particular its ability to
operate with high X-ray fluxes and the behavior of the leakage
current is a crucial aspect. Understanding and quantifying the effects
of the irradiation on the sensor performance including effects such
as leakage or aftersignal variations are fundamental. The paper
presents examples of the work recently started at the ESRF with
HF-CZT sample sensors and some first promising results that
confirm the much better performance of this material with
respect to CdTe as it has already been observed under different
conditions in several other published works [26]. The examples also
illustrate how the XIDer readout can be used as a tool to evaluate the
leakage variations in the micro- and sub-microsecond time scale.
The results show good linearity and stability when the HF-CZT
sensors are irradiated under quasi-static conditions with very high
incident fluxes, well above 1011 ph/mm2/s, showing no apparent
drop in charge collection efficiency. The measurements also reveal
the presence of weak but observable aftersignal components, i.e., a
decaying residual current when the incident illumination on the
sensor is sharply stopped or attenuated.

Our study is at an early stage, the measurements with HF-CZT
have so far been performed at relatively lowX-ray energies (20 keV) or
with visible light illumination, conditions in which the charge carriers
are generated close to the surface of the devices. An important aspect
will be the investigation of the behavior of the HF-CZT sensors under
higher-energy irradiation, up to 100 keV, which penetrates deeper
into the material. A good understanding of all the dark or leakage
components, not just the aftersignal, is essential. Some preliminary
observations, still under investigation and that we plan to present in
future publications, suggest an increase of the sensor leakage current
that is induced by the irradiation itself, which adds to the generated
photocurrent. If this effect is confirmed, the aftersignal component
could be wholly or partly due to this additional leakage current
component rather than only to charge detrapping processes in the
sensor. Another important aspect that needs thorough study is the
impact of the bias voltage and the operating temperature. So far, all the
measurements have been carried out with HF-CZT sensors at room
temperature. With the present knowledge of the leakage and charge

FIGURE 8
Falling edges of the pulsed irradiation of hybridized HF-CZT and CdTe XIDer assemblies. On the left, aftersignal of CdTe assembly. On the right,
zoomed-in aftersignal of HF-CZT assembly. The incident flux in ph/mm2/s are presented in the legend.

FIGURE 9
Aftersignal of a 200 µm XIDer pixel as a function of the incident
X-ray flux, measured 10 µs and 100 µs after LED irradiation was
stopped, and expressed in equivalent current density units.
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transport processes in these devices, it is difficult to predict the
temperature dependence of the sensor response. However, it is not
excluded that one could find operating conditions with significantly
improved sensor performance.

Therefore, the deeper investigation of the HF-CZT sensors and a
better understanding of their electro-optical response under high
incident flux conditions is a key objective as it will have a decisive
impact on the final design, construction, and operation of charge-
integrating X-ray hybrid pixel detectors for high-energy applications
with intense photon beams. In a more general way, the
establishment by the detector community of a strong knowledge
base on materials suitable for high-energy X-rays and high-flux
applications is absolutely essential to overcome the challenges posed
by the latest generation of synchrotron radiation sources. We expect
that the ongoing work on the characterization of HF-CZT within the
XIDer project will contribute in this direction.
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Recent advances in image data proccesing through deep learning allow for new
optimization and performance-enhancement schemes for radiation detectors
and imaging hardware. This enables radiation experiments, which includes
photon sciences in synchrotron and X-ray free electron lasers as a subclass,
through data-endowed artificial intelligence. We give an overview of data
generation at photon sources, deep learning-based methods for image
processing tasks, and hardware solutions for deep learning acceleration. Most
existing deep learning approaches are trained offline, typically using large
amounts of computational resources. However, once trained, DNNs can
achieve fast inference speeds and can be deployed to edge devices. A new
trend is edge computingwith less energy consumption (hundreds of watts or less)
and real-time analysis potential. While popularly used for edge computing,
electronic-based hardware accelerators ranging from general purpose
processors such as central processing units (CPUs) to application-specific
integrated circuits (ASICs) are constantly reaching performance limits in
latency, energy consumption, and other physical constraints. These limits give
rise to next-generation analog neuromorhpic hardware platforms, such as optical
neural networks (ONNs), for high parallel, low latency, and low energy computing
to boost deep learning acceleration (LA-UR-23-32395).

KEYWORDS

neural networks, ONN, radiation detectors, radiographic imaging and tomography, AI,
edge computing

1 Introduction

X-rays produced by synchrotrons and free electron lasers (XFELs), together with high-
energy photons above 100 keV, which are often generated using high-current (kA) electron
accelerators and lately high-power lasers, are widely used as radiographic imaging and
tomography (RadIT) tools to examine material properties and their temporal evolution
[1–3]. Spatial resolution (δ) down to atomic dimensions is possible by using diffraction-
limited X-rays, δ ~ λ/2, corresponding to Abbe’s diffraction limit for X-ray wavelength λ

[4,5]. The overall object size that X-rays can probe readily reaches a length (L) greater than
1 mm, which is limited by the X-ray attenuation length and is X-ray energy dependent. In
room-temperature water, for example, L = 0.19, 1.2, 5.9, and 14.1 cm for 1/e-attenuation
length of 10 keV, 20 keV, 100 keV, and 1 MeV X-rays, respectively. The temporal resolution
has now approached a few femtoseconds by using XFELs, where an XFEL experiment can be
repeated for many hours in a pump-probe configuration [6,7]. In other words, the spatial
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dynamic range (i.e., for 10 keV X-rays, L ~ 1 mm) is 2L/λ > 107 and
temporal dynamic range is > 1018. Such ultra-wide-dynamic-range
abilities of X-ray and photon techniques to connect elementary
atomic and molecular processes, which are described by ultra fast
(sub-nanosecond) quantum physics, with emergent macroscopic
material properties and functions, which are usually treated
classically through continuum approximations, make them
extremely valuable in a wide range of applications. A few
applications include medicine (i.e., new drug discovery), high-
energy density battery development, and applications in materials
exposed to high-temperature, high radiation, and other harsh or
‘extreme’ conditions. Additional applications include the
optimization of chemical catalysis and the development of new
superconductors and other quantum materials for information
technology, accelerated computing, and artificial intelligence (AI).

The enormous spatial and temporal dynamic ranges give rise to
“big data” in X-ray imaging, tomography, and photon science.
Theoretically, 1 mm3 of water contains about 5.6 × 10−5 mol of
water molecules (N = 3.3 × 1019). If the position of every molecule
were recorded, the memory size would be N log2N (log2N is the bit
length for a binary data system) or 2.2 × 1021 bits. In experiments,
explosive data growth in X-ray and other forms of RadIT is built
upon steady progress for more than 120 years in X-ray and radiation
sources, detectors, computation, and lately data science. Figure 1
shows the evolution of the peak data rate due to the increasing X-ray
source brilliance over the years [8]. The fourth generation
synchrotrons such as APS-U [9] and PETRA IV [10] will have a
significant reduction in emittance and a brilliance increase by a
factor about 103 over the parameters of the third generation
synchrotrons such as APS and PETRA III. XFELs, which are
many of orders of magnitude brighter than synchrotrons, will
run at a higher repetition rate up to 1 MHz [11]. The original
LCLS, in comparison, operates at 120 Hz. However, the upgraded
LCLS-II greatly increased the repetition rate to 1 MHz. High-speed
detectors with frame rate frequencies above 1 MHz are
commercially available. The combination of high-repetition-rate
experiments with a mega-pixel and larger recording system leads
to high data rates, exceeding 1 TB/s (1 TB = 1012 bytes), as we discuss
further in Sec. 2.1.

Big data not only presents a significant challenge to data
handling in terms of computing speed, computing power, short-
and long-term computer memory, and computer energy
consumption, which all together is called “computational
resources”, but also offer a transformative approach to process
and interpret data, i.e., machine learning (ML) and AI through
data-enabled algorithms. Such algorithms, including deep learning
(DL) [12,13], are distinctive from traditional physics, statistical, and
other forward-model- or domain-knowledge-driven algorithms.
Traditional algorithms are based on the domain knowledge, such
as physics and statistics, and applicable to both small or large
ensembles of data. In contrast, data-driven models may only rely
on data explicitly for model training (tuning), model validation and
use, with no domain knowledge required. In practice, domain
knowledge always helps, partly due to the fact that some aspects
of data models, such as the model architecture and other hyper-
parameters, are chosen pragmatically and do not depend on the
data. The amount of data required for data model training depends
on the number of model parameters such as weights, activation
functions, the number of nodes, etc. It is not uncommon that a deep
neural network (DNN) may contain billions of tunable free
parameters, which require a commensurate amount of data for
training. Hybrid approaches to ML and AI [14,15], which merge
data and domain knowledge, are increasingly popular. Hybrid
models not only supplement data-driven models with domain
knowledge and reduce the amount of data required for training,
but also accelerate the computational speed of traditional forward
models by 10 tomore than 100 times by bypassing some detailed and
time-consuming computations [16–18].

We may differentiate two approaches to ML and AI by the
computational resources involved and how the resources are
distributed. In the centralized approach, data are collected from
distributed locations or different data acquisition instruments
through the internet. The data are then stored in a data center,
and processed by high-performance computers or mainframes.
Cloud computing and data centers are now widely used to
process ‘big data’ in industry, healthcare, and research
institutions. However, using cloud computing to process data
generated at the network edge is not always efficient. One
limiting factor is the limited network bandwidth for data
transportation due to increasing data generation rates. For
example, in 2017, CERN had to install a third 100 Gigabit per
second fiber optic line to increase their network capacity and
bandwidth [19]. Other factors include the scalability and privacy
issues of data transmission to the cloud [20]. Through the cloud
computing and data center approach, data generation and data
processing tasks can be separated, which can mitigate the
computation and data processing burden on people who generate
data. In the distributed or edge approach, ML and AI, together with
the computing hardware, are deployed at the individual device or
instrument level. Distributed computing now pairs with distributed
data. Through an internet of ML/AI-enhanced instruments, each
ML/AI-enhanced instrument can be optimized for a specific
purpose such as data reduction and real-time data processing.
Shown later in Table 1, detection cameras used at various
synchrotron and XFEL facilities can generate data at a rate of
> 1 GB/s and over > 12.5 GB/s for state-of-the-art cameras. This
results in high costs of memory storage as well as high energy costs

FIGURE 1
Peak data rate evolution of laboratory X-ray sources. Values are
obtained by converting the peak brilliance to bits by assuming 100%
detector efficiency and 1 photon = 1 bit.
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TABLE 1 A comparison of different camera data rates and specifications for individual integration modules for each detector. Additional details and
examples may be found in [1]. Note that this table tabulates select cameras to illustrate the data rates and their uses in light sources or X-raymeasurements.
The state of the art is > 10 Gpixel/s ( > 12.5 GB/s assuming 10-bit data) in continuous mode imaging. The burst mode imaging is > 1 Tpixel/s (> 1250 GB/s
assuming 10-bit data) [218].

Detector (camera) Facility (particle/
photon)

Det. Mode (Direct/
inDirect)

Array format (voxel size,
μm3/pixel size, μm2)

Frame-rate
(fps/Hz)

Data
bits

Data rate
(GB/s)

AGIPD [39] Eu-XFEL D 512 × 128a 16 k/6.5 Mb 14 1.85

(12.4 keV) (2002 × 500)

CS-PAD [219] LCLS D 194 × 370c 120 14 0.02

(8.3 keV) (1102 × 500)

DSSC [220] Eu-FXEL D 1024 × 1024 1–5 M 8 1050–5240

(0.5–20 keV) (204 × 236 × 450)

ePix100 [221] LCLS D 384 × 352d 120 14 0.03

(8.3 keV) (502 × 500) (≤240)

ePix10k LCLS D 384 × 352e 120 14 0.03

(8.3 keV) (1002 × 500) (≤103)

EIGER2 (Dectris) APS & others D 1028 × 512f 2.25 k 16 2.37

(752 × 450) (4.5 k) (8)

HEXITEC [222] DIAMOND D 802 6.3–8.9 k 14 0.07–0.1

(2–200 keV) (2502 × 1000g)

Icarus [223] NIF, Z D 1024 × 512 ≥ 250 Mh 10 163,840

(0.7–10 keV) (252 × 25)

(Advanced hCMOS Sys.)
JUNGFRAU [224]

SwissFEL/SLS D 1024 × 512i 2.2 k 16 2.31

(0.25 j-12 keV)

MM-PAD [225] CHESS D 1282 10 k/100 Mk 14 0.3–2867

(> 20 keV)l (1502 × 500)

SOPHIAS SACLA D 891 × 2157 60 12 0.17

(302 × 500)

HPV-X2 [226] APS & others inD 400 × 250 7.8 k/5 Mm 10 0.98–625

(Shimadzu) (10–40 keV) (322)

Kraken [227] NNSS inD 800 × 800 20 Mn 12 19,200

(302)

MX170-HS LCLS inD 38402 2.5o 16 0.07

(Rayonix) (8–12 keV) (442)

PI MAX 4 APS inD 10242 26p 16 0.05

(Teledyne) (10–40 keV) (12.82)

aAGIPD is deployed as mega-pixel/voxel cameras through tiling.
bBurst mode for 352 stored frames.
cCS-PAD is deployed as tiled 2, 8, and 32 modules with up to 2.3 M voxels.
dePix100 is deployed as tiled 4 modules with about 0.5 M voxels.
eePix10K replaces CS-PAD, and is deployed as a single, or tiled 16 modules with about 2.2 M voxels.
fEiger2 is deployed as a single, or tiled modules with more than 10 M voxels.
gAlso 2 mm CdZnTe.
hIn burst mode for 4 frames.
iArray size of individual modules. Multiple modules can be tiled to create larger detector configurations [228]. For example, the JUNGFRAU 4M consists of eight modules.
jCan resolve single photons down to 800 eV or lower by combining the readout chip with LGAD sensors [229].
kIn burst mode for 8 frames.
lWhen using 750 μm CdTe as sensor.
mIn burst mode for 128 stored frames; or 10 M Hz frame rate and 256 stored frames possible by reducing the number of pixels by half.
nIn burst mode for 8 frames. Read noise 157 e−, Full Well 4.0 × 105 e−. Buttable to larger array 2 × 2.
oHigher frame rate can be obtained through pixel binning, at 10 × 10 binning, the frame rate increases to 120 Hz.
pHigher frame rate can be obtained through pixel binning, at 4 × 4 binning, the frame rate increases to 95 Hz.
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for data transmission and memory access during data processing.
The large volumes, varieties, and generation rate of X-ray data
motivate automated processing and reduction in light sources, such
as synchrotrons and XFELs, to reduce the memory requirement,
minimize latency related to data transmission and processing, and
lower energy and power consumption. Later in the paper, Section 3.1
will discuss more details.

We will give an overview of DL methods for real-time radiation
image analysis as well as hardware solutions for DL acceleration at
the edge. We note that while not all scientific applications may
require real-time image analysis, it is possible to offload some
computing and preprocessing steps to an edge device. The edge
device can preprocess the acquired data in real-time before sending
the processed data to upstream processing centers for heavier
computations. This paper is organized as follows. In Section 2,
we discuss different radiation detectors and imaging devices, the
resulting big data generation at photon sources, and the motivations
for edge computing and DL. In Section 3, we present an overview of
popular neural network architectures and several image processing
tasks that have potential to be performed on edge devices. In
addition, we discuss examples of DL-based methods for each. In
Section 4, we present on overview of hardware solutions for DL
acceleration and recent works that have applied them for computing
at the edge. Lastly, Section 5 concludes this paper.

2 Experimental data generation at
photon sources

Data science at light sources is centered around scientific data
generation and processing. Scientific data at synchrotrons and XFEL
sources consist of experimental data, simulation and synthetic data,
and meta data, such as detector calibration data, material properties
of objects and sensors, and point spread functions of the detectors.
Methods (imaging modalities) and detectors to collect experimental
data are driven by the light sources, which continue to improve in
source brightness, repetition rate, source coherence, photon energy,
and spectral tunability. Computing hardware and algorithms are
used to process experimental data and for data visualization.
Computing hardware and algorithms are also used to simulate
the experiments and produce synthetic data as close to the
experimental data as possible for experimental data
interpretation. Diversity of the materials to be integrated and
imaged, together with the photon source and detector
improvement have demanded continued improvements in
computing hardware and algorithms towards real-time data
processing, reductions in data transmission over long distances,
and reducing data storage volumes.

2.1 Radiation detectors and imaging for
photon science

Complementary metal-oxide semiconductor (CMOS) pixelated
detectors, including hybrid CMOS, are now widely used for X-ray
photon science, replacing charge-coupled devices (CCDs) as the
primary digital imaging technology, see Figure 2. CMOS technology
is rapidly catching up to CCD cameras, with recent developments

such as Sony’s STARVIS which can offer better sensitivity than
traditional CCD sensors [21]. In addition, CMOS sensors are much
cheaper than CCD sensors, making them more cost efficient while
achieving matching performance. The latest trend is smart CMOS
technology to enable edge computing and neural networks on
CMOS sensors [22,23]; see Section 2.3 for more details.

CMOS sensors are used in many state-of-the-art radiation
applications. For example, CMOS-based back-thinned monolithic
active pixel sensors (MAPS) are the state-of-the-art detectors used
for cryo-electron microscopy applications. MAPS detectors are
CMOS sensors that combine the photodetectors and readout
electronics on the same silicon layer, while backthinning reduces
the electron scattering within pixels. MAPS detectors are also being
developed for high-energy physics [24], cryogenic electron
microscopy (cryo-EM), cryo-ptychography, integrated differential
phase contrast (iDPC), and liquid cell imaging applications [25].
Meanwhile, hybrid CMOS detectors such as the AGIPD, ePix, and
MM-PAD (see Table 1 for more detectors) are popularly used at
facilities for photon science applications. Hybrid detectors are
composed of a sensor array and pixel electronics readout layer
that are interconnected through bump bonding, while the sensor
frontend can be fabricated using different semiconductor materials.
The thickness and material properties of the sensor array is
dependent on the active absorbing layer design requirements and
given X-ray energy to obtain high quantum efficiency. For example,
high-Z sensors use materials with high atomic numbers such as
Gallium Arsenide (GaAs), Cadmium Telluride (CdTE) and
Cadmium Zinc Telluride (CZT) [26]. The hybrid design
architecture allows for independent optimization of the quantum
efficiency of the sensor array and pixel electronics functionality to
meet imaging and measurement performance requirements [27].
Currently, hybrid CMOS detectors are the most widely used image
sensors for high energy physics experiments [24]. Another family of
image sensor is called the low-gain avalanche detector (LGAD), a
silicon sensor fabricated on thin substrates to deliver fast signal
pulses to achieve enhanced time resolution [28], as well as to
increase the X-ray signal amplitudes and the signal-to-noise ratio
to achieve single photon resolution [29]. As a result, LGADs are
popularly used in experiments that require fast time resolution and
good spatial resolution such as 4D tracking [30] and for soft X-ray
applications in low energy diffraction, spectro-microscopy and
imaging experiments such as the resonant inelastic X-ray
scattering experiments [29]. In summary, radiation pixel
detectors aim to capture incident photons and convert the
accumulated charges in the pixel into an output image. We also
mention that CMOS image sensors, including hybrid CMOS, may
also be extended to neutron imaging by converting incident
neutrons to visible photons through neutron capture reactions [31].

The particle nature of photons motivates digitized detectors for
photon counting. Hybrid CMOS detectors are one of the most
popular detectors that use the photon counting mode of operation,
where individual photons are detected by tuning the discriminator
threshold and the energy value of each incident photon is recorded
as electronic signals. However, several factors complicate photon
counting implementation in high-luminosity X-ray sources. The
intensity of the sources can be too high to count individual photons
one by one. The amount of X-ray photon-induced charge in CMOS
detectors, which is the basis of X-ray photon counting, is not
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constant for the same X-ray energy. Furthermore, the detectors
suffer from a charge sharing issue when a photon interacts on the
border between neighboring pixels. The source energy is not
monochromatic, especially in imaging applications. Inelastic
scattering of mono-chromatic X-rays can result in a broad
distribution of X-ray photon energies after scattering by the
object. When an optical camera is used together with a X-ray
scintillator, the energy resolution of individual X-rays based on
the photon detection is worse than direct detection when the X-ray
directly deposits its energy in a silicon photo-diode. See Table 1 for a
comparison of different direct and indirect detection cameras and
their data rates. Note that Table 1 tabulates the specifications of
select cameras to illustrate their data rates as well as their uses in light
sources or X-ray measurements. To overcome the issue of the too
high photon flux rate, hybrid detectors are developed to operate
under a charge integration mode, where the signal intensity is
obtained by integrating over the exposure time. The current
generation of hybrid CMOS detectors are capable of different
modes of operation (i.e., photon counting and charge
integration) for direct photon detection [32].

2.2 Imaging modalities

X-ray microscopy uses X-ray lenses, zone plates, mirrors and
other optics to modulate the X-ray field to form images [33]. As the
X-ray intensities generated by synchrotrons and XFELs continue to
increase, the advances in computational imaging modalities and
lens-less X-ray modalities are increasingly used in synchrotrons and
XFELs. In some cases, lens-less modalities may be preferred to avoid
damages to X-ray lenses and mirrors. Lens-less modalities may also
avoid aberration, diffraction due to imperfect X-ray lens, defects in
zone plates, and other optics. The simplest lens-less X-ray imaging
setup is radiography or projection imaging, pioneered by Röntgen.
Röntgen’s lens-less radiographic imaging modality directly

measures attenuated X-ray intensity due to absorption.
Synchrotrons and XFELs also allow a growing number of phase
contrast imaging, see Ref. [1] and references therein. Other
modalities include in-line holography [34] and coherent
diffractive imaging [35]. Additional phase and intensity
modulation using pinholes, coded apertures, and kinoforms are
also possible. Combinatorial X-ray modalities have also been
introduced. For example, X-ray ptychography microscopy
combines raster scanning X-ray microscopy with coherent
diffraction imaging [36]. Compton scattering, usually ignored in
the synchrotron and XFEL setting, may offer some additional
information about the samples and potentially reduce the dose
required [37]. The versatility of modalities requires different off-
line and real-time data processing techniques. Background
reduction is a common issue for all X-ray modalities. Real-time
data processing, including energy-resolving detection, is highly
desirable to distinguish different sources of X-rays since the
detector pixel may simultaneously collect X-ray photons from
different sources of X-ray attenuation and scattering.

2.3 Real time in-pixel data-processing

When an X-ray photon is detected directly or indirectly through
the use of a scintillator, charge-hole pairs are created through photo-
to-electric conversion, or the photoelectric effect, within pixels of a
camera or a pixelated array. CCD cameras, CMOS cameras, and
LGAD arrays are now available for synchrotron and XFEL
applications. Unlike a CCD camera, a CMOS image sensor
collects charge and stores it in capacitors in pixels in parallel.
Parallel charge collection and capacitor voltage digitization,
which turns analog voltage signals into digitized signals, allow
CMOS image sensors to operate at a much higher frame rate
than CCDs. Charge and voltage amplification, in LGADs and
sometimes in CMOS image sensors, are also used to improve

FIGURE 2
Evolution of digital image sensor technology, which started with the introduction of the charge-coupled device (CCD) in the late 1960s. The latest
trend is smart multi-functional CMOS image sensors enabled by three-dimensional (3D) integration in fabrication, innovations in heterogeneous
materials and structures, neural networks, and edge computing.
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signal-to-noise ratio. Any source of charge or voltage modulation
not related to the photoelectric effect is a potential source of noise.
The photoelectric effect itself can lead to so-called Poisson noise due
to the probabilistic process of photo-to-electric conversion. Other
sources of noise include thermal noise or dark current, salt’n’pepper
noise (due to charge migration in and out of pixel defects and traps),
and readout noise.

Automated real-time in-pixel signal and data processing are
therefore required in CMOS and other pixelated array sensors for
noise rejection and noise reduction for charge and voltage
amplification controls, and for charge sharing corrections.
Figure 3 illustrates a generic approach on in-pixel neural network
processing for optimized and real-time data processing. Common
approaches process the data by transmitting it to a separate
processor and storing the data in memory. However, the data
transmission and memory access actions are known to be among
the most power hungry in imaging systems [38]. As a result, it is
desirable to optimize the end-to-end processes of sensing, data
transmission, and processing tasks. One solution is to utilize in-
pixel processing to directly extract features of the input pixels which
can significantly reduce system bandwidth and power consumption
of data transmission, memory management, and downstream data
processing. In recent years, a number of works have been proposed
to implement image sensors with in-pixel neural network
processing; see [22,23] and references therein. This motivates
real-time image processing for image sensors for various image
processing tasks including noise removal. If uncorrected, noise can
corrupt the image information and make it hard for post processing
or misleading for data interpretation. Charge and voltage
amplification may lead to nonlinear distortion between the X-ray
flux and voltage signal. When the X-ray flux is too high, the so-called
plasma effect may also need correction. Charge-sharing happens
when an X-ray photon arrives at a pixel border and the electron-hole
pairs created are spread across multiple neighboring pixels.

By using transistor circuits, correlated double sampling (CDS) is
an extremely successful example in noise reduction. Adaptive gain
control circuits have been implemented in the AGIPD high-speed
camera [39,40]. While real-time pixel-level signal processing by
novel transistor circuits is important, there is also room for novel
data-processing approaches that do not require hardware
modifications to the pixels. As a recent example [41], a physics-
informed neural network was demonstrated to improve spatial
resolution of neutron imaging. Other novel applications of neural
networks and their integration with hardware, see Figure 3, may
offer new possibilities in noise reduction and image corrections.
Integrated hardware and software (neutral networks are emphasized
here) approaches for optimal performance also need to take into
account of the complexity of the workflow [42–44], or
computational cost, power consumptions, constrained by the
frame rate and other metrics. For example, the computational
cost of an n × n matrix is O (n3) [45].

3 Deep learning for image processing

In recent years, deep learning (DL) has contributed significantly
to the progress in computer vision, especially in different areas of
image processing tasks including but not limited to image denoising,

segmentation, super-resolution, and classification. DL is a sub-field
of ML and AI that utilize neural networks (NNs) and their superior
nonlinear approximation capabilities to learn underlying structures
and patterns within high-dimensional data [12]. In other words, DL
aims to learn multiple levels of representation, corresponding to a
hierarchy of features or concepts, where higher-level features are
defined from lower-level ones and lower-level ones can help build up
higher-level features.

For DL algorithms to extract underlying features and to obtain
accurate predictions, it is important to understand the workflow of
the DL process. In general, the DL process can be broken into several
stages: i) data acquisition, ii) data preprocessing, iii) model training,
testing, and evaluation, iv) model deployment and monitoring
[46,47]. The first step to ML and DL problems is to collect large
amounts of data from sources including but not limited to sensors,
cameras, and databases. Next, the collected data needs to be
preprocessed into useful features as inputs into the DL model. At
a high level, the preprocessing step aims to prepare the raw data (e.g.,
data cleaning, outlier removal, data normalization, etc.) and to allow
data analysts to preform data exploration (i.e., identifying data
structure, relevance, type, and suitability). The preprocessed data
is split for model training, testing, and evaluation. The appropriate
DL training algorithm, model, and ML problem are dependent on
the nature of the application. The model is trained on the training
dataset to tune the model hyperparameters and is evaluated using
unseen data, also known as the test dataset. This process is reiterated
until a desired accuracy performance or stopping criteria has been
achieved. Last, the trained model is deployed and monitored for
further retraining and redeployment. See [46,48,49] for
comprehensive details on the basics of DL.

3.1 Centralized and decentralized learning

Recall that ML and AI, and thus DL, can be differentiated into
two approaches, namely, centralized and decentralized approaches.
In the centralized approach, the data collected from network edge
detectors are transmitted to and stored in a data center and then
processed by high-performance computers. Very large traditional,
ML, or hybrid algorithms can be deployed in the data center, which
also requires correspondingly large memory, energy and power
consumption. Estimated global data center electricity
consumption in 2022 was 240–340 TWh [50], or around 1%–
1.3% of global final electricity demand from data centers and
data transmission networks [51]. To put this value in a better
perspective, it is estimated that Bitcoin alone consumes around
125 TWh per year [52] and that the combination of Bitcoin and
Ethereum consumed around 190 TWh (0.81% of the world energy
consumption) in 2021 [53]. Furthermore, centralized approaches
and large ML models are commonly executed by a large team of
people. A Meta AI research team recently introduced the model
called Segment Anything Model (SAM) and a dataset of more than
1 billion masks on 11 Million images [54]. Nvidia unveiled Project
Clara at its recent GTC conference, showing early results using DL
post-processing to dramatically enhance existing, often grainy and
indistinct echocardiograms (sonograms of the heart). Clara
motivates acceleration in research being done on several fronts
that exploits explosive growth in DL computational capability to
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perform analysis that was previously impossible or far too costly.
One technique is called 3D volumetric segmentation that can
accurately measure the size of organs, tumors or fluids, such as
the volume of blood flowing through arteries and the heart. Nvidia
claims that a recent implementation, an algorithm called V-Net,
“would’ve needed a computer that cost $10 million and consumed
500 kW of power [15 years ago]. Today, it can run on a few Tesla
V100 GPUs” [55,56]. This claim accentuates the rapid
advancements made in the hardware industry to accommodate
DL computational requirements. For example, a work by [57]
implemented and trained V-Net for 48 h on a workstation
equipped with an NVIDIA GTX 1080 with 8 GB of video memory.

However, data processing using cloud computing and data
centers are inefficient due to factors including limited network
latency, scalability, and privacy [20]. To address these challenges,
edge computing, or the distributed approach, offloads computing
resources to the edge devices to improve network latency, to enable
real-time services, and to address data privacy challenges by directly
analyzing data generated by the source. In addition, edge computing
will help reduce the high costs of memory storage as well as high
energy costs for data transmission and memory access during data
processing. For example, CERN’s Large Hadron Collider (LHC) and
non-LHC experiments generate over 100 petabytes of data each year
and CERN’s main data center had an energy consumption of about
37 GWh over the year of 2021 [58]. Assuming that the average cost
of electricity is $0.15/kWh, then the cost of using 37 GWh is
$5.55 million. CERN’s new data center in Prévessin aims to have
a power usage effectiveness (PUE) below 1.1 (ideal PUE is 1.0), and
in future data centers, CERN aims to implement ML based
approaches to key computing tasks to help reduce the amount of
computing resources and energy consumption [58].

There are some other successes usingML and AI in areas such as
HEP experiments (i.e., Higgs boson discovery) and electron

microscopy. The discovery of the Higgs boson was a major
challenge in HEP and can be setup as a classification problem.
ManyMLmethods such as decision trees, logistic regression, and DL
algorithms have been applied to solve the signal separation problem
[59,60]. Meanwhile, ML and AI in electronmicroscopy are proposed
to enable autonomous experimentation. Specifically, the automation
of routine operations including but not limited to probe
conditioning, guided exploration of large images, optimized
spectroscopy measurements, and time-intensive and repetitive
operations [61]. Edge ML and edge AI have already attracted a
lot of attention in medicine. The fusion of DL and medical images
creates dramatic improvements [56]. The concept is similar to
techniques like high-dynamic range (HDR) photography, digital
remastering of recordings or even film colorization in that one or
more original sources of data are post-processed and enhanced to
bring out additional detail, remove noise or improve aesthetics.

3.2 Neural network architectures

This section provides an overview of different popular deep
neural network (DNN) architectures used for image processing
tasks. These widely used architectures include but are not limited
to convolutional neural networks (CNNs), long short-term memory
(LSTM), encoder-decoder networks, and generative adversarial
networks (GANs). Due to space limitations, other DNN
architectures such as transformers [62], restricted boltzamann
machines [63], and extreme learning [64] will not be covered here.

3.2.1 Convolutional neural networks (CNNs)
CNNs are one of the most widely used architectures in DL,

especially for image processing tasks, due to their inherent spatial
invariance property. The built-in convolutional layers allow the

FIGURE 3
A generic illustration of in-pixel neural network processing for optimized and real-time end-to-end data processing and reductions. The neural
network is directly implemented on the imaging sensor. For this specific example, the network illustrated is a fully connected neural network (FCNN). The
network takes in the sensor pixel values as inputs x (in pixels) then feeds the input into hidden layers zwith the number of neurons per layer denoted byM.
The processed pixels (out pixels) is the output of the neural network denoted by y.
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network to naturally reduce the high dimensionality of the input
data, i.e., images, without information loss. Figure 4A shows the
basic architecture of CNNs, which usually consists of 3 types of
layers: i) convolutional layers, ii) pooling layers, and iii) fully
connected layers. The convolutional layer uses various kernels to
convolve the entire input image, including intermediate feature
maps, and generate new feature maps. There are 3 major
advantages of the convolutional operation [65]: i) the number of
parameters is reduced by using weight sharing mechanisms, ii) the
correlation among neighboring pixels are easily learned through
local connectivity, and iii) the location of objects are fixed due to
spatial invariance. Generally following a convolutional layer, the
pooling layer is used to further reduce the dimensions of feature
maps and network parameters. The average pooling and max
pooling methods are commonly used, and their theoretical
performances have been evaluated by [66,67], where max pooling
is shown to achieve faster convergence and improved CNN
performance. Lastly, the fully connected layer follows the last
pooling or convolutional layer to convert the 2D feature maps
into a 1D vector for additional feature mapping, i.e., labels. A
few of the well known CNN models are the AlexNet [68], VGG
[69], GoogLeNet [70], and ResNet [71], where all the models were
top 3 finishers in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). Discussed later in Section 3.3, CNNs are
popularly used in many image processing tasks such as image
restoration (e.g., denoising, deblurring, and super resolution),
segmentation, classification, and 3D reconstruction. A few
examples from photon sciences include but are not limited to
denoising synchrotron computed tomography images, deblurring
neutron images, segmentation of inertial confinement fusion
radiographs, and 3D reconstruction of coherent diffraction imaging.

3.2.2 Long short-term memory (LSTM)
LSTMs [72] are a special type of recurrent neural network

(RNN) that is commonly used to process sequential datasets,
such as audio recordings, videos, and time-series data. Figure 4B

shows the basic structure of a LSTM block, which consists of 3 gates
(the forget gate ft, the input gate it, and output gate ot), as well as the
candidate memory (new information) ~Ct, that regulate the stored
memory and information flow within the block. Note that the
subscript t denotes the variable state at time t. In summary, the
forget gate decides what information to remove from the cell state,
the input gate decides what information to update in the cell state by
selecting the candidate memory values, and the output gate decides
what information to output in the current cell state. The multiple
gate architecture of LSTMs is specifically designed to capture long-
term dependencies in the data as well as to avoid the vanishing
gradient problem of vanilla RNNs [72]. The vanishing gradient
problem in RNNs results from the backpropagation of gradients
through time, which can result in very small gradient values and
short-term memory behaviors. Meanwhile, the gating mechanisms
of LSTMs control the flow of gradients through time during
backpropagation, and thus effectively addresses the vanishing
gradient problem and allows the network to learn long-term
memory behaviors. Other LSTM architectures are derived from
the basic architecture in Figure 4B such as LSTM without a forget
gate, LSTM with peephole connections, the gated recurrent unit
(GRU), and other variants [72]. Due to their ability to process
sequential data, LSTMs can be used to process time-series
experimental data such as videos, where video-based processing
techniques can be applied.

3.2.3 Encoder-decoders
Encoder-decoder neural networks, also known as sequence-to-

sequence networks, are a type of network that learns to map the
input domain to a desired output domain [13]. As shown in
Figure 4C, the network consists of two main components: an
encoder network which uses an encoder function h = f(x) to
compress the input x into a latent-space representation h, and a
decoder network y = g(h) that produces a reconstruction y from h.
The latent-space representation h prioritizes learning the important
aspects of the input xwhich are useful in reconstructing the output y.

FIGURE 4
Basic neural network architectures for (A) CNNs, (B) LSTMs, (C) encoder-decoders, and (D) GANs.
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A special case of encoder-decoder models, autoencoders are
networks in which the input and output domains are the same.
These networks are popularly used in DL applications involving
sequence-to-sequence modeling such as natural language processing
[73], image captioning [74], and speech recognition [75]. In image
processing, encoder-decoder networks are popularly used for image
denoising, segmentation, compression, and 3D reconstruction. For
example, one popular encoder-decoder model for image
segmentation is U-Net [76]. Discussed later in Section 3.3, U-Net
is used for image segmentation of inertial confinement fusion images
and modified versions of the U-Net architecture are used in many
works for image processing tasks. A few examples include but are
not limited to the denoising and super resolution of synchrotron and
X-ray computed tomography images.

3.2.4 Generative adversarial networks (GANs)
GANs [77] are increasingly popular DL frameworks for

generative AI models. Classical GANs consist of 2 different
networks, a generator and a discriminator, as shown in
Figure 4D. The generator network G aims to generate data G(z)
that is indistinguishable from the real data by learning a mapping
from an input noise distribution z to a target distribution y of the real
data. Meanwhile, the discriminator networkD takes as input the real
and generated data, and aims to correctly classify them as “real” or
“fake” (generated). The GAN learning objective takes on a game-
theoretic approach as a two player minimax game between G and D.
Let L denote the loss function and the GAN objective as
minG maxD L(G,D). Intuitively, D aims to minimize its own
classification error, which maximizes L(G,D). Meanwhile, G
aims to maximize the classification error of D, which minimizes
L(G,D). This adversarial loss function allows both models to be
trained simultaneously and in competition with each other. Other
GAN architectures are derived from the basic architecture in
Figure 4D such as conditional GANs, GANs with inference
models, and adversarial autoencoders [78]. Similar to CNNs,
GANs are popularly used in many image processing tasks such
as image restoration, compression, and 3D reconstruction. For
example, a GAN-based image denoising method was proposed to
denoise low-dose X-ray computed tomography images. In addition,
GANs can be used to generate synthetic data similar to experimental
data. A recent work [79] uses a GAN-based model to generate
synthetic inertial confinement fusion radiographs.

3.3 Image processing techniques

This section provides an overview of several image processing
tasks that have potential to be performed on edge devices. In
addition, this section surveys different works that have applied
the DL-based image processing techniques to radiographic image
processing.

3.3.1 Restoration
Image restoration is the process of adjusting the quality of digital

images such that the enhanced image can facilitate further image
analysis. Common enhancement operations include histogram-
based equalization, brightness, and contrast adjustment. However,
these operations are very elemental and advanced operations are

necessary to further improve the perceptual quality. These advanced
operations include image denoising, deblurring, and super-
resolution (SR); see [80–83] for examples of images before and
after processing.

3.3.1.1 Denoising
One of the fundamental challenges in image processing, image

denoising aims to estimate the ground-truth image by suppressing
internal and external noise factors such as sensor and environmental
noise, as discussed in Section 2.3. Sources of noise include but are
not limited to Poisson noise due to photo-electric conversion,
camera thermal noise or dark current, salt’n’pepper noise, camera
readout noise, and shot noise for low-dose X-ray imaging
conditions. Conventional methods including but not limited to
adaptive nonlinear filters, Markov random field (MRF), and
weighed nuclear norm minimization (WNNM), have achieved
good performance in image denoising [84], however, they suffer
from several drawbacks [85]. Two major drawbacks are the need to
manually set parameters as the proposed methods are non-convex
and the high computational cost for the optimization problem for
the test phase. To overcome these challenges, DL methods are
applied for image denoising problems to learn the underlying
noise distribution. Various neural network architectures, such as
CNNs, encoder-decoders, and GANs, have been proposed for image
denoising in recent years; see [84] for details.

An example application that uses image denoising is in X-ray
computed tomography (CT). X-ray CT imaging is a common
noninvasive imaging technique that allows for reconstructing the
internal structure of objects by using 3D reconstruction from 2D
projection images; see Section 3.3.6 on 3D reconstruction. The
spatial resolution of XFEL-based and synchrotron-based X-ray
CT images can range from tens of microns to a few nanometers,
while higher resolutions can be obtained by using higher radiation
doses. However, some experiments may require short exposure
times or low radiation dosage to avoid damaging the sample. The
low-dose image conditions results in noisy 2D projection images,
which in turn impacts the quality of the 3D reconstructed image. To
address this issue [86], developed a GAN-based image denoising
method called TomoGAN. TomoGAN is a conditional GAN model
where the generator G conditionally uses the noisy reconstruction as
input and outputs enhanced (denoised) reconstructions.
Furthermore, the generator network architecture adopts a
modified U-Net [76] architecture, popularly used for image
segmentation. Meanwhile, the discriminator D is trained to
classify reconstructions of the enhanced reconstructions and
reconstructions of normal dose projections [86]. Evaluates the
effectiveness of TomoGAN on two experimental (shale sample)
datasets. TomoGAN outperforms conventional methods in noise
reduction and reports a higher structural similarity (SSIM) value. In
addition, TomoGAN is demonstrated to be robust to images with
dynamic features from faster experiments, e.g., collecting fewer
projections and/or using shorter exposure times.

Denoising has also been applied to synchrotron radiation CT
(SR-CT) in a recent work by [87], which developed a CNN-based
image denoising method called Sparse2Noise. Similar to the
previous work for TomoGAN, this work presents a low-dose
imaging strategy and utilizes paired normal-flux CT images
(sparse-view) and low-flux CT image (full-view) to train
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Sparse2Noise. In addition, Sparse2Noise also adopts a modified
U-Net architecture for its performance of removing image
degradation factors such as noise and ring artifacts. The
Sparse2Noise network takes as input the normal-flux CT images
into the modified U-Net architecture and outputs the enhanced
image. During training, the network is trained in a supervised
fashion using the low-flux CT images. The loss function to
update the network weights is defined to minimize the difference
between the enhanced image and the reconstructed low-flux CT
image [87]. Evaluates the effectiveness of Sparse2Noise on one
simulated and two experimental datasets. Furthermore,
Sparse2Noise is compared to simultaneous iterative
reconstruction technique (SIRT), unsupervised deep imaging
prior (DIP), and supervised training algorithms Noise2Inverse
[88] and Noise2Noise [89]. For the simulated dataset,
Sparse2Noise outperforms all methods by achieving the highest
SSIM and peak signal to noise ratio (PSNR) values, and in terms of
removing image degradation factors such as noise and ring artifacts.
For the experimental datasets, Sparse2Noise also achieves the best
performance in terms of noise and ring artifact removal. Most
importantly, however, Sparse2Noise can achieve excellent
performance for low-dose experiments (0.5 Gy per scan).

3.3.1.2 Deblurring
Image deblurring aims to recover a sharp image from a blurred

image by suppressing blur factors such as lack of focus, camera
shake, and target motion. Some blur factors are application specific
such as multiple Coulomb scattering and chromatic aberration in
proton radiography [90]. A blurred image can be modeled
mathematically as B = K*I + N, where B denotes the blurred
image, K the blur kernel, I the sharp image, N the additive noise,
and * the convolution operation. The blur kernel K is typically
modeled as a convolution of blur kernels that are spatially invariant
or varying [82]. Conventional methods aim to solve the inverse
filtering problem to estimate K, however, this is an ill-posed problem
as the sharp image I needs to be estimated as well. To address this
issue, prior-based optimization approaches, also known as
maximum a posteriori (MAP)-based approaches, have been
proposed to define priors for K and I [91]. While these
approaches are shown to achieve good results for image
deblurring, deep learning approaches can further improve the
accuracy of the blur kernel estimation or even skip the kernel
estimation process altogether by using end-to-end methods.
Various neural network architectures, such as CNNs, LSTMs,
and GANs, have been proposed for image deblurring; see [82,91]
for details.

One example application that uses image deblurring is in
neutron imaging restoration (NIR), a non-destructive imaging
method. However, the neutron images suffer from noise and blur
artifacts due to the neutron source and the digital image system. The
low quality of raw neutron images limits their applications in
research, and thus image denoising and deblurring techniques are
necessary to produce sharp images. To address these issues [92],
proposes a fast and lightweight neural network called DAUNet.
DAUNet consists of three main blocks: a feature extraction block
(FEB), multiple cascaded attention U-Net blocks (AUB), and a
reconstruction block (RB). First, DAUNet takes as input a
degraded neutron image and feeds it into the FEB to extract

important underlying features. Next, the AUB inputs the
extracted feature maps into a modified U-Net with an attention
mechanism, which allows U-Net to focus on harder to address
features such as texture and structure information, and outputs a
restored image. Last, the RB block outputs the enhanced image by
reconstructing the restored image. To evaluate DAUNet, its
performance is compared with several popular DNN image
restoration methods such as DnCNN [93] and RDUNet [94].
Due to the lack of available neutron imaging datasets, the
networks are trained on X-ray images that are similar to the
neutron imaging principle; specifically, the X-ray images are
obtained from the SIXray dataset [95], where 4699 and
23 images are used as the training and test set respectively. In
addition, seven clean neutron images are added to the test set.
Results show that DAUNet can effectively improve the image quality
by removing noise and blurring artifacts, while achieving quality
close to the large network with faster running times and a smaller
number of network parameters.

3.3.1.3 Super-resolution (SR)
Image SR is the process of reconstructing high-resolution images

from low-resolution images. It has been widely applied in many real-
world applications, especially in medical imaging [96] and
surveillance [97], where the spatial resolution of captured images
are not sufficient due to limitations such as hardware and imaging
conditions. A variety of DL-based methods for SR have been
explored, ranging from CNN-based methods (e.g., SRCNN [98])
to more recent GAN-based methods (e.g., SRGAN [99]). In addition
to utilizing different neural network architectures, DL-based SR
algorithms also differ in other major aspects such as their loss
functions and training approaches [83,100]. These differences result
from various factors that contribute to the degradation of image
quality including but not limited to blurring, sensor noise, and
compression artifacts. Intuitively, one can think of the low-
resolution image as the output of a degradation function with an
input high-quality image. In the most general case, the degradation
function is unknown and an approximate mapping is learned
through deep learning. These degradation factors influence the
design of loss function, and thus training approaches. A detailed
discussion of the various loss functions, SR network architectures,
and learning frameworks is out of scope for this paper; however, see
[100] for details.

An example application that applies super resolution is for X-ray
CT imaging. As mentioned earlier, CT imaging has many factors
that impact the resulting image quality such as radiation dose and
slice thickness. In addition, 3D image reconstruction may require
heavy computational power due to the number of slices or
projection views taken, where thicker slices results in lower
image resolution, and slower operational speed, which increases
with the number of slices. To address this issue, it is desirable to
obtain higher-resolution (thin-slice) images from low-resolution
(thick-slice) ones [101]. Develops an end-to-end super-resolution
method based on a modified U-Net. The network takes as input the
low-resolution image and outputs the high-resolution one. The
network is trained on slices of brain CT images obtained from a
65 clinical positron emission tomography (PET)/CT studies for
Parkinson’s disease. The low-resolution images are generated as
the moving average of five high resolution slices and the
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ground-truth image is taken as the middle slice. The performance of
the proposed method is compared with the Richardson-Lucy (RL)
deblurring algorithm using the PSNR and normalized root mean
square error (NRMSE) metrics. The results show that the proposed
method achieves the highest PSNR and lowest NRMSE values
compared to the RL algorithm. In addition, the noise level of the
enhanced images are reported to be lower than that of the
ground-truth.

Super resolution has also been applied to transmission and
cryogenic electron microscopy (cryo-EM) imaging applications
for sub-pixel electron event localization [25,102]. In transmission
electron microscopy, electron events are captured using pixelated
detectors as a 2D projection track of the energy deposition [102].
Conventional reconstruction methods, such as the weighted
centroid method and the furthest away method (FAM), require
an event analysis procedure to extract electron track events.
However, these classical algorithms are unable to separate
overlapping electron event tracks, and do not take into
consideration the statistical behavior of the electron movement
and energy deposition. To address this issue [102], used a
U-Net-based CNN to learn a mapping from input electron track
image to an output probability map that indicates the probability of
the point of entry for each pixel. The network is trained using a
labeled dataset generated through Monte Carlo simulations, and
tested on simulated data and experimental data from a pnCCD
[103]. The performance of the proposed CNN model is compared
with FAM. The results show that the proposed method achieves
superior localization performance compared to FAM by reducing
the distribution spread of the Euclidean distance on the simulated
dataset, while achieving a modulation transfer function closer to the
ground truth on the experimental dataset. For cryo-EM, a CNN
model was applied in a similar manner for electron event
localization, but with a slightly different dataset. Cyro-EM
experiments popularly use MAPS detectors to directly detect
electron events, where each captured electron results in a pixel
cluster on the captured image. In [25], a CNN model is designed to
output a sub-pixel incident position given an input pixel cluster
image and the corresponding time over threshold values.

3.3.2 Segmentation
Image segmentation is the process which segments an image or

video frames into multiple regions or clusters, where each pixel can
be represented by a mask or be assigned a class [104]. This task is
essential in a broad range of computer vision problems, especially
for visual understanding systems. A few applications that utilize
image segmentation include but are not limited to medical imaging
for organ and tumor localization [105], autonomous vehicles for
surface and object detection, and video footage for object and people
detection and tracking [106]. Numerous techniques for image
segmentation have been proposed throughout the years, ranging
from early techniques based on region splitting or merging such as
thresholding and clustering algorithms, to newer algorithms based
on active contours and level sets such as graph cuts and Markov
random fields [104,107]. Although these conventional methods have
achieved acceptable performance for some applications, image
segmentation still remains a challenging task due to various
image degradation factors such as noise, blur, and contrast. To
address these issue, numerous deep learning methods have been

developed and have been shown to achieve remarkable performance.
This is due to the powerful feature learning capabilities of DNNs,
which allows DNNs to have reduced sensitivity to image
degradation factors compared to the conventional methods.
Popular neural network architectures used for DL-based
segmentation includes CNNs, encoder-decoder models, and
multiscale architectures; see [107] for details. Two popular DNN
architectures used for image segmentation problems are U-Net [76]
and SegNet [106]; see [107] for examples of images before and after
processing.

Image segmentation is an important step in analyzing X-ray
radiographs from, for example, inertial confinement fusion (ICF)
experiments [79]. ICF experiments typically use single or double
shell targets which are imploded as the laser energy or laser-induced
X-rays rapidly compress the target surface. X-ray and neutron
radiographs of the target provide insight to the shape of target shells
during the implosion. Contour extraction methods are used to extract
the shell shape to conduct shot diagnostics such as quantifying the
implosion and kinetic energy, identifying shell shape asymmetries, and
determining instability information [79]. Uses U-Net [76], a CNN
architecture for image segmentation, to output a binary masked image
of the outer shell in ICF images. The shell contour is then extracted from
the masked image using edge detection and shape extraction methods.
Due to the limited number of actual ICF images, a synthetic dataset
consisting of 2000 experimental-like radiographs is used to train the
U-Net. In addition, the synthetic dataset provides ground-truth ICF
image-mask pairs, which are required to train U-Net. The trained
U-Net is tested on experimental images and has successfully extracted
the binary mask of high-signal-to-noise ratio ICF images as shown
in Figure 5.

Another example of X-ray image segmentation is for the
Magnetized Linear Inertial Fusion (MagLIF) experiments at Sandia
National Laboratory’s Z-facility [108]. The MagLIF experiments
compresses a cylindrical beryllium tube, also known as a liner, filled
with pure deuterium fuel using a very large electric current on the order
ofO (20MA). Before compression, the deuterium fuel is pre-heated and
an axially oriented magnetic field is applied. The electric current causes
the liner to implode and compresses the deuterium fuel in a quasi-
adiabatic implosion. The magnetic field flux is also compressed which
aids in the trapping of charged fusion particles at stagnation. X-ray
radiographs are taken during the implosion process for diagnostics and
to analyze the resulting plasma conditions and liner shape. To better
analyze the implosion, a CNN model is proposed to segment the
captured X-ray images into fuel strand and background. The CNN is
trained using synthetically generated and augmented dataset of
10,000 X-ray images and their corresponding binary masks. The
trained CNN is tested on experimental images where the results
generally demonstrate excellent fuel-background segmentation
performance. The worst segmentation performance is due to factors
such as excessive background noise and X-ray image plate damage.

3.3.3 Image classification and object detection
Image classification, a fundamental problem in computer vision,

aims to assign labels or categories to images or specific regions in
images. It is known to form the basis of other computer vision tasks
including segmentation and object detection. Traditional
approaches to solve the classification problem typically use a two
stage approach, where handcrafted features extracted from the
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image are used to train a classifier. The traditional approaches suffer
from low classification accuracy due to the heavy dependence on the
design of the handcrafted features. DL approaches can easily
overcome this challenge by exploiting neural network layers for
automated feature extraction, transformation, and pattern analysis.
CNNs are the most popular neural network architecture used for
image classification [109,110] due to their capability of reducing the
high dimensionality of images without information loss, as discussed
in Section 3.2.1. In addition, recall in Section 3.2.1, the CNN
architectures AlexNet, VGG, GoogLeNet, and ResNet were top
3 finishers in the ILSVRC. The ILSVRC is an annual software
contest where algorithms compete to correctly classify images in
the ImageNet database.

Object detection builds upon image classification by estimating
the location of the object in an input image in addition to classifying
the object. As a result, the workflow for traditional detection
algorithms can be broken down into informative region selection,
feature extraction, and classification. For informative region
selection, a multiscale sliding window (bounding box) is used to
scan the image to determine regions of interest. Feature extraction is
used on the selected region, which is then used for object
classification. However, traditional methods are time consuming
and robust algorithms are difficult to design. For example, a large
number of candidate sliding windows need to be considered or the
algorithm may return bad regions of interest. In addition, the
imaging conditions can vary significantly due to factors such as
lighting conditions, backgrounds, and distortion effects. Again, DL
algorithms can overcome these challenges due to their capability of
learning complex features using robust training algorithms
[111–113]. Popular DL object detection models are Fast R-CNN
[114,115] which jointly optimizes the classification and bounding
box regression tasks, You Only Look Once (YOLO) [116] which uses
a fixed-grid regression, and Single Shot MultiBox Detector (SSD)
[117] which improves upon YOLO using multi-reference and multi-
resolution techniques.

3.3.4 Compression
Image compression is the process of reducing the file size, in

bytes, without reducing the quality of the image below a threshold.
This process is important in order to save memory storage space and
to reduce the memory bandwidth to transmit data, especially for
running image processing algorithms on edge devices. The
fundamental principle of compression is to reduce spatial and
visual redundancies in images, by exploiting inter-pixel, psycho-
visual, and coding redundancies. Conventional methods commonly
leverage various quantization and entropy coding techniques [118].
Popularly used conventional methods for lossy and lossless
compression includes but are not limited to JPEG [119],
JPEG2000, wavelet, and PNG. While conventional methods are
widely used for both image and video compression, their
performance is not the most optimal for all types of image and
video applications. DL approaches can achieve improved
compression results due to several factors. DNNs can learn non-
linear mappings to capture the compression process as well as
extract the important underlying features of the image through
dimensionality reduction. For example, an encoder network or CNN
can extract important features into a latent feature space for compact
representation. In addition, DNNs can implement direct end-to-end
methods using networks such as encoder-decoders to directly obtain
the compressed image from an input sharp image. Furthermore,
once a DNN is trained, the inference time is much faster. For DL-
based image compression methods, the most commonly used neural
network architectures are CNNs, encoder-decoders, and
GANs [118].

3.3.5 Sparse sampling
A closely related process to image compression is sparse

sampling. While compression aims to reduce the file size, sparse
sampling, also known as compressed sensing (CS), aims to efficiently
acquire and reconstruct a signal by solving underdetermined linear
systems. It has been shown in CS theory that a signal can be

FIGURE 5
Results of image segmentation using U-Net on experimental ICF images (A) and the corresponding output masks (B). Reproduced with permission
from [79].
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recovered from sampling fewer measurements than required by the
Niquist-Shannon sampling theorem [120]. As a result, both memory
storage space and data transmission bandwidth can be reduced. In
conventional methods, CS algorithms need to overcome two main
challenges: the design of the sampling and reconstruction matrices.
Numerous methods have been proposed including but no limited to
random and binary sampling matrices and reconstruction methods
using convex-optimization and greedy algorithms [121]. However,
these conventional methods suffer from long computational times
or low quality reconstruction. DL approaches allow for fast inference
(reconstruction) times for a trained network, as well as learning non-
linear functions for higher quality signal reconstruction [121,122];
see [123] for examples of images before and after processing.

Neural network (NN) models that learn to invert X-ray data
have also been shown to significantly reduce the sampling
requirements faced by traditional iterative approaches. For
example, in ptychography, traditional iterative phase retrieval
methods require at least 50% overlap between adjacent scan
positions to successfully reconstruct sample images as required
by Nyquist-Shannon sampling. In contrast, Figure 6B shows
image reconstructions obtained from PtychoNN when sampled at
25× less than required for conventional phase retrieval methods
[124]. Figure 6A shows the probe positions and intensities, there is
minimal overlap between probes. Through use of inductive bias
provided through online training of the network [125], PtychoNN is
able to reproduce most of the features seen in the sample even when
provided extremely sparse data. Figure 6C shows the same region
reconstructed using an oversampled dataset and traditional iterative
phase retrieval. Furthermore [125], demonstrated live inference
performance during a real experiment using an edge device and
running the detector at its maximum frame rate of 2 kHz.

In the previous example, DL is used to reduce sampling
requirements but not to alter the sampling strategy. In other
words, the scan proceeds using a conventional acquisition
strategy, but using fewer points along that trajectory than
traditionally required. In contrast, active learning approaches are
being developed that use data-driven priors to direct the acquisition
strategy. Typically, this is treated as a Bayesian optimization (BO)
problem using Gaussian processes (GPs). This method has been
applied to a variety of characterization modalities including
scanning probe microscopy [126], X-ray scattering [127], and
neutron characterization [128]. A downside to such approaches is
that the computational complexity typically increases as O(N3) with
the action space [129], making real-time decision a challenge. To
address these scaling limitations which are critical especially in fast
scanning instruments, recent work has demonstrated the use of pre-
trained NNs to make such control decisions [130,131]. Figure 7
shows the workflow and results from the Fast Autonomous
Scanning Toolkit applied to a scanning diffraction X-ray
microscopy measurement of a WSe2 sample. Starting from some
quasi-random initial measurements, FAST generates an estimate of
the sample morphology, predicts the next batch of 50 points to
sample from, triggers acquisition on the instrument, analyzes the
image after the next set of points has been acquired and continues
the process until the improvement in sample image is minimal.
Figures 7B, A, C, and E show the predicted image after 5%, 15%, and
20% sampling while Figure 7 B, D, and F shows the points
preferentially selected by the AI. The AI has learned to prioritize

acquisition where the expected information gain is maximum, e.g.,
around contrast features on the sample.

3.3.6 3D reconstruction
Image-based 3D reconstruction is the process of inferring a 3D

structure from a single or multiple 2D images, and is a common
topic in the fields of computer vision, medical imaging, and virtual
reality. This problem is well known to be an ill-posed inverse
problem. Conventional methods attempt to formulate a
mathematical formula for the 3D to 2D projection process, use
prior models, 2D annotations, and other techniques [132,133]. In
addition, high quality reconstruction typically requires 2D
projections from multiple views or angles, which may be difficult
to calibrate (i.e., cameras) or time consuming to obtain (i.e., CT)
depending on the application. DL techniques and the increasing
availability of large datasets motivates new advances in 3D
reconstruction by address challenges found in conventional
methods. The popular networks used for image-based 3D
reconstruction are CNNs, encoder-decoder, and GAN models
[132]; see [132] for examples on 2D to 3D reconstruction.

X-ray phase information is now available for 3D reconstruction
in the state-of-the-art X-ray sources such as synchrotrons and
XFELs. In contrast to iterative phase retrieval methods that
incorporate NNs through a DIP or other means, single-shot
phase retrieval NNs provide sample images from a single pass
through a trained NN. The inference time on a trained NN is
minimal and such methods are hundreds of times faster than
conventional phase retrieval [134,135]. Figures 8A, B compare
AutoPhaseNN and traditional phase retrieval for 3D coherent
image reconstruction, respectively [136]. AutoPhaseNN is trained
to invert 3D coherently scattered data into sample image in a single
shot. Once trained AutoPhaseNN is > 100 × faster that iterative
phase retrieval with some reduction in accuracy. The prediction
from AutoPhaseNN can also be used to seed phase retrieval,
i.e., provide an initial estimate which can be refined by a few
iterations of phase retrieval. This combined approach of NN +
phase retrieval is shown to be both faster and more accurate than
iterative phase retrieval.

A recent work by Scheinker and Pokharel [137] developed an
adaptive CNN-based 3D reconstruction method for coherent
diffraction imaging (CDI), a non-destructive X-ray imaging
technique that provides 3D measurements of electron density
with nanometer resolution. The CDI detectors record only the
intensity of the complex diffraction pattern of the incident object.
However, all phase information is lost in this detection method, and
thus results in an ill-posed inverse Fourier transform problem to
obtain the 3D electron density. Conventional methods encounter
many challenges including expert knowledge, sensitivity to small
variations, and heavy computation requirements. While DL
methods currently cannot completely substitute conventional
methods, they can speed up the 3D reconstruction speed given
an initial guess, and can be fine-tuned using conventional methods
to achieve better performances. For CDI 3D reconstruction,
Scheinker and Pokharel [137] proposes a 3D CNN architecture
with model-independent adaptive feedback agents. The network
takes in 3D diffracted intensities as inputs and outputs a vector of
spherical harmonic coefficients, which describe the surface of the 3D
incident object. The adaptive feedback agents take as input the
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spherical harmonics to adaptively adjust the intensities, positions,
and decay rates of a collection of radial basis functions. The 3DCNN
is trained using a synthetic dataset consisting of 500,000 training set

of 49 sampling coefficients as well as the spherical surface and
volume of each in order to perform a 3D Fourier transform. An
additional 100 random 3D shapes and their corresponding 3D

FIGURE 6
Sparse-sampled single-shot ptychography reconstruction using PtychoNN. (A) Scanning probe positions with minimal overlap. (B) Single-shot
PtychoNN predictions on 25 × sub-sampled data compared to (C) ePIE reconstruction of the full resolution dataset.

FIGURE 7
FAST framework for autonomous experimentation. (A) shows theworkflow that enables real-time steering of scanningmicroscopy experiments. (B)
shows reconstructed images at 5%, 15% and 20% sampling along with the corresponding locations from which they were sampled. In addition, the full-
grid pointwise scan and corresponding points sampled between 15% and 20% is also shown. Reproduced with permission from [131].
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Fourier transforms are used to test the adaptive model-independent
feedback algorithm, with the CNN output as its initial guess. Last,
the robustness of the trained 3DCNN is tested on the experimental
data of a 3D grain from a polycrystalline copper sample measured
using high-energy diffraction microscopy. Results show that the
3DCNN provides an initial guess that captures the average size and a
rough estimate of the shape of the grain. The adaptive feedback
algorithm uses the 3DCNN initial guess to fine-tune the harmonic
coefficients to match and converge the generated and measured
diffraction patterns of the grain.

4 Hardware solutions for deep learning

DNNs have been implemented for many imaging processing
tasks ranging from enhancement to generation as discussed above.
To achieve good performance, these algorithms use very deep
networks which can be very computationally intensive during
training and inference in their own ways. During training, DNNs
are fed large amounts of data and a large number of computations
must be performed to update network weights to achieve accurate
predictions. For example, AlexNet [68] took five to 6 days to train on
two NVIDIA GTX 580 graphical processing units. As a result,
powerful computing hardware is needed to accelerate DNN
training. Meanwhile, during inference, larger networks require
more computing power and memory storage space, and thus
results in higher energy consumption and latency to obtain
predictions in real-time. For very large networks such as
AlexNet, a single forward pass may require millions of multiply
and accumulate (MAC) operations, thus making DNNs both
computationally and energy costly. For real-time data processing
in imaging devices, DNN algorithms need to be executed with low

latency, limited energy, and other design constraints. Hence, there is
a need to develop cost and energy efficient hardware solutions for
DL applications.

Interestingly, neural network algorithms are known to have at
least two types of inherent parallelism, namely, model and data
parallelism [138]. Model parallelism refers to the partitioning of the
neural network weights for MAC operations for parallel execution as
there are no data dependencies. Data parallelism refers to processing
the data samples in batches rather than a single sample at a time.
Hardware accelerators can exploit these characteristics by
implementing parallel computing paradigms. This section
presents different hardware accelerators used for DL applications.
Note that the best hardware solution is dependent on the application
and corresponding design requirements. For example, edge
computing devices such as cameras and sensors may require
small chip area with limited power consumption.

4.1 Electronic-based accelerators

The electronic-based hardware solutions for DL are broad,
ranging from general purpose processors such as central
processing units (CPUs) and graphical processing units (GPUs),
field-programmable gate arrays (FPGAs), to application-specific
integrated circuits (ASICs). The circuit architecture design
typically follows either temporal or spatial architectures [139] as
shown in Figures 9A, D. The architectures are similar in using
multiple processing elements (PEs) for parallel computing, however,
there are differences in control, memory, and communication. The
temporal architecture features a centralized control for simple PEs,
consisting of only arithmetic logic units (ALUs), which can only
access data from the centralized memory. Meanwhile, the spatial

FIGURE 8
Comparison of 3D sample images obtained by (A) phase retrieval, (B) AutoPhaseNN, and (C) AutoPhaseNN + phase retrieval. Reproduced with
permission from [136].
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architecture features a decentralized control scheme with complex
PEs, where each unit can have its own local memory or register file
(RF), ALU, and control logic. The decentralized control scheme
forms interconnections between neighboring PEs to exchange data
directly, allowing for dataflow processing techniques.

4.1.1 Temporal architectures: CPUs and GPUs
CPUs and GPUs are general purpose processors that typically

adopt the temporal architecture as shown in Figures 9B, C. Modern
CPUs can be realized as vector processors, which adopt the single-
instruction multiple-data (SIMD) model to process a single
instruction on multiple ALUs simultaneously. In addition, CPUs
are optimized for instruction-level parallelism in order to accelerate
the execution time of serial algorithms and programs. Meanwhile,
modern GPUs adopt the single-instruction multiple threads (SIMT)
model to process a single instruction across multiple threads or
cores. Different from CPUs, GPUs are made up of more specialized,
parallel, and smaller cores than CPUs to efficiently process vector
data with high performance and reduced latency. As a result, GPU
optimization relies on software defined parallelism rather than
instruction-level parallelism [140]. Both the SIMD and SIMT
execution models for CPUs and GPUs, respectively, allow for
parallel MAC operations for accelerated computations.

Nonetheless, CPUs are not the most used processor for DNN
training and inference. Compared to GPUs, CPUs have a limited
number of cores, and thus a limited number of parallel executions.
For example, one of Intel’s server-grade CPUs is the Intel Xeon
Platinum 8280 processor which can have up to 28 cores, 56 threads,
131.12 GB/s maximum memory bandwidth, and 2190 Giga-floating
point operations per second (GFLOPS) for single-precision compute
power. In addition, AMD’s server-grade EPYC 9645 features
96 cores, 192 threads, and a memory bandwidth of 460.8 GB/s.
In comparison, NVIDIA’s GeForce RTX 2080 Ti is a desktop-grade
GPU with 4352 CUDA cores, 616.0 GB/s memory bandwidth, and
13450 GFLOPS single-precision compute power. Furthermore, a
recently released NVIDIA RTX 4090 desktop-grade GPU features
16,834 CUDA cores, 1008 GB/s memory bandwidth, and
82.85 TFLOPS single-precision compute power. Therefore, GPUs
outperform CPUs in terms of parallel computing.

For DL at the edge, the hardware industry has developed
embedded platforms for AI. One popular platform is the
NVIDIA Jetson for next-generation embedded computing. The
Jetson processor features a heterogeneous CPU-GPU architecture
[141] where the CPU accelerates the serial instructions and the GPU
accelerates the parallel neural network computation. Furthermore,
the Jetson is designed with a small form factor, size, and power
consumption. A broad survey by [142] presents different works
using the Jetson platform for DL applications such as medical,
robotics, and speech recognition. Several surveyed works have
used the Jetson platform to implement imaging processing tasks
including segmentation, object detection, and classification.

Also using the NVIDIA Jetson platform, a work by [143]
investigates the performance of the Jetson TX2 for edge
deployment for TomoGAN [86], an image denoising technique
using generative adversarial networks (GANs) for low-dose X-ray
images. The training and testing datasets consist of 1024 pairs of
images of size 1024 × 1024 with each image pair consisting of a noisy
image and its corresponding ground truth. The pre-trained

TomoGAN network is deployed and tested on the Jetson
TX2 and a laptop with an Intel Core i7-6700HQ CPU @2.60GHz
with 32GB RAM. The laptop CPU achieves an average inference
performance of 1.537 s per image, while the TX2 achieves an
inference performance of 0.88 s per image, approximately 1.7×
faster than the laptop CPU.

A recent work by [144] investigates the classification accuracy of
tuberculosis detection from chest X-ray images using MobileNet
[145], ShuffleNet [146], SqueezeNet [147], and their proposed
E-TBNet. In addition, they further investigate the inference time
during testing of each network on the NVIDIA Jetson Xavier and a
laptop with Intel Core i5-9600KF CPU and NVIDIA Titan V GPU.
The dataset consists of 800 chest X-ray images scaled to size 512 ×
512 × 3. The MobileNet network achieves the highest accuracy at
90% while their proposed E-TBNet achieves 85%. However, the
inference time for E-TBNet is the fastest for all investigated networks
with an inference time of 0.3 m and 3 m per image when deployed
on the laptop with Titian GPU and Jetson Xavier, respectively. The
slowest reported inference time for the Jetson Xavier is 6 m per
image for the ShuffleNet. Although the inference time for the Xavier
is an order of magnitude slower, classification inference can be
achieved in real-time with smaller hardware footprint for edge
deployment.

4.1.2 Spatial architectures: FPGAs and ASICs
Field-programmable gate arrays (FPGAs) and application-

specific integrated circuits (ASICs) typically adopt the spatial
architecture as shown in Figures 9E, F. FPGAs and ASICs are
specialized hardware that are tailored for specific applications
due to their design process. FPGAs can be configured to perform
any function as it is made up of programmable logic modules and
interconnecting switches as shown in Figure 9E. The FPGA software
is used to directly build the logic and data flow directly into the chip
architecture. On the other hand, ASICs are designed and optimized
for a single application, and cannot be reconfigured. Nonetheless,
the spatial architecture of FPGAs and ASICs makes them well suited
for neural network computations as the mathematical operations of
each layer are fixed and known a priori. As a result, FPGAs and
ASICs can attain highly optimized performance.

As shown in Figure 9D, the spatial architecture consists of an
array of PEs interconnected with a Network-on-Chip (NoC) design,
allowing for custom data flow schemes. Although not shown in
Figure 9D, the memory hierarchy consists of three levels. The lowest
level consists of the RF in each PE, which is used to locally store data
for inter-PE data movement or local accumulation operations. The
middle level consists of a global buffer (GB) that holds the neural
network weights and inputs to feed the PEs. The highest level is the
off-chip memory, usually a DRAM, to store the weights and
activations of the whole network. MAC operations need to be
performed on large data sets. Hence, the major bottleneck is the
high latency and energy costs of DRAM accesses. A comparison
between DianNao and Cambricon-X, two CNN accelerators, show
that DRAM accesses consume more that 80% of the total energy
consumption [148]. In addition [149], reports that the energy cost of
DRAM access is approximately 200× more than a RF access.
Therefore, energy efficiency can be greatly improved through the
reduction of DRAM accesses, commonly done by exploiting the idea
of data reuse.
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The focus of data reuse is to utilize the data already stored in RFs
and the GB as often as possible. This gives rise to the investigations
of efficient data flow paradigms in both the spatial and temporal
operations of PEs. For example, in fully connected layers, the input
reuse scheme is popular since the input vector is dot multiplied by
each row of the weight matrix to compute the layer output. For
convolutional layers, the weight reuse scheme is popular as the
weight kernel matrix is used for multiple subsets of the input feature
map. In addition for convolutional layers, convolutional reuse can
be applied by exploiting the overlapping region of the sliding
window of kernel weights and the input feature map. Additional
data reuse schemes are the weight stationary, output stationary, row
stationary, and no local reuse schemes. A detailed discussion of the
data reuse schemes is out of scope for this paper. However, for a
comprehensive review, see details in [139,150,151]. In summary,
optimizing the data flow is crucial for FPGAs and ASICs to attain
high energy efficiency.

Nonetheless, it is important to note the challenges faced by
FPGAs, and in turn ASICs, have in implementing DL networks. A
few challenges include but are not limited to memory storage
requirements, memory bandwidth, and large computational
requirements on the order of Giga-operations per second
(GOPS). For example, AlexNet requires 250 MB of memory with
32-bit representation to store 60 million model parameters and
1.5 GOPS for each input image [152], while VGG has 138 million
model parameters and requires 30 GOPS per image [153].
Commercial FPGAs do not have enough memory storage space
and thus requires external memory to store model parameters,
which needs to be transmitted to the FPGA during computation.
One way to address this issue, is to compress the neural network by
reducing its size through methods such as compression and
quantization [154,155]. For example, SqueezeNet [147] can be
thought of a compressed AlexNet with 50× fewer model

parameters and < 0.5 MB model size. On the other hand,
quantization reduces the number of data bits or transforms
floating point data to fixed point data to reduce the
computational burden. As a result, FPGA-based implementation
of DL models will suffer a degree of accuracy loss.

The energy efficiency and massive parallelism of FPGA and
ASIC-based accelerators make them desirable for edge computing. A
recent work [156] develops a lightweight CNN architecture called
SparkNet for image classification tasks. SparkNet features
approximately 3× less parameters compared with the SqueezeNet,
and approximately 150× less parameters than AlexNet. In addition,
a comprehensive design is presented to map all layers of the network
onto an Intel Arria 10 GX1150 FPGA platform with each layer
mapped to a its own hardware unit to achieve simultaneously
pipelined work, increasing throughput. SparkNet is tested on
4 benchmark image classification datasets, i.e., MINIST, CIFAR-
10, CIFAR-100 and SVHN. The performance and average time for
the Intel FPGA, NVIDIA Titan X GPU, and Intel Xeon E5 CPU to
process 10,000 32 × 32 × 3 is reported. The FPGA-based accelerator
achieves a processing time of 11.18 µs, which is 41× and 9× faster
than the CPU and GPU, respectively. Furthermore, the FPGA
average power consumption is 7.58 W with a performance of
337.2 Giga operations per second (GOP/s), making the FPGA
more energy and computationally efficient compared to the CPU
(95 W, 8.2 GOP/s) and GPU (250 W, 39.4 GOP/s).

Another recent work [157] uses FGPAs to deploy MobileNet for
face recognition in a video-based face tracking system. The work
further integrates the FPGA with CPUs and GPUs to build a
heterogeneous system with a delay-aware energy-efficient
scheduling algorithm to achieve reduced execution time, latency,
and energy cost. The face tracking experiment is run using an Intel
Gold 5118 CPU, NVIDIA Tesla P100 GPU, and the Intel Arria
10 GX 900 and Intel Stratix 10 GX1100 FGPAs. The reported

FIGURE 9
Basic models of the (A) temporal, (B) CPU, (C) GPU, (D) spatial, (E) FPGA, and (F) ASIC architectures.
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experimental results evaluate the computing speed and power
efficiency of the FPGA-based accelerator compared to the CPU
and GPU, as well as the efficiency of the combined detection system
with CPU/GPU/FPGA. The FPGA accelerators achieve a
computational speed that is approximate to or better than the
GPU, while achieving superior power efficiency in GOP/s/W.
The difference in performance of the FPGAs is due to their
hardware specifications, where the hardware richer Intel Stratix
will out perform the Intel Arria. Lastly, the experimental results
report that the CPU/GPU/FPGA system can achieve optimal
performance in comparison to using only one or a combination
of two different accelerators. This is due to the energy efficient
scheduling algorithm to optimally pipeline tasks to the different
accelerators. The idea of utilizing a heterogeneous system and
scheduling algorithm to improve computational and energy
efficiency can be explored to address challenges of edge computing.

The Google Edge Tensor Processing Unit (TPU) platform [158]
is a general purpose ASIC designed and built by Google for inference
at the edge. One example product is the Dual Edge TPU which
features an area footprint of 22 × 30 mm2, peak perfrmance of
8 trillion operations per second (TOPS), and power consumption of
2 TOPS/W. Other hardware options are available for ASIC
prototyping and deployment for edge devices. A survey by [159]
presents works that use the Edge TPU platform for DL applications
such as image classification, object detection, and image
segmentation.

The previously discussed work [143], which deployed
TomoGAN on the NVIDIA Jetson platform for X-ray image
denoising, also deployed it on the Edge TPU. The work presents
a quantized model of TomoGAN to address limitations of the Edge
TPU, such as output size. A fine tuning model is also presented to
improve the output quality of the quantized model. The Edge TPU’s
average inference time is 0.554 s per image, which is faster than the
Jetson TX2 inference time of 0.88 s per image. In addition, the power
consumption is reduced to 2 W compared to Jetson TX2’s 7.5 W.

In addition, there is interest in the development of software and
firmware for modular and scalable implementation of energy
efficient algorithms on FPGA platforms. One such example is for
high-speed readout systems for pixel detectors. Oak Ridge National
Laboratory (ORNL), through the support of the Department of
Energy (DOE) in High Energy Physics (HEP) and Nuclear Physics
(NP), is leading the design of a new generic readout system for pixel
detectors based on the successful first-generation system, the
CARIBOu 2.0 [160]. The CARIBOu 2.0 system, shown in
Figure 10, will be the proposed architecture for the platform. The
concept of the system is to provide a generic framework for the
readout of ASIC detectors for research and development and
scalable to larger detector arrays. CARIBou 2.0 shares knowledge
and code to provide the community with a convenient platform that
maximizes reusability and minimizes overhead when developing
such systems. ORNL will initially implement the readout firmware
and software specific to the Timepix4 or to commercial CMOS
image sensors, SMALLGAD, Photon-to-Digital Converters (PDCs),
and the interconnect for the assemblies. The hardware platform is
based on Xilinx Ultrascale + FPGA, that provides resources for CPU
and FPGA side data processing at high speed. Using the resources of
this modern FPGA, software and firmware will be developed to
flexibly implement data processing and reduction, edge computing,

by using conventional andML algorithms running in the FPGA. For
larger data rates, firmware will be developed to move the data to a
FELIX card, which can handle up to 24 CARIBOu 2.0 systems and
transmit data via a high-speed network interface to a data center or
process them locally via GPU and CPU in the FELIX host machine.
As a result, the system can be scaled up to the readout of large smart
sensor stack arrays.

Furthermore, as advancements in ASIC technology have
enabled greater integration of digital functionalities for scientific
applications, there has been growing interest in incorporating
compression capabilities directly within ASIC detectors to
enhance data processing speed. ASIC architectures capable of
frame rates approaching 1 MHz have been designed, providing a
viable solution for enhancing the speed of various diffraction
techniques employed at X-ray light sources, including those
relying on coherent imaging methodologies like ptychography
[161]. Developing ASIC compression strategies that exploit the
structure in detector data enables high compression performance
while requiring lower computational complexity than commonly
used lossless compression methods like LZ4 [161].

4.1.3 Summary and limitations
We have presented an overview of 4 different electronic-based

accelerators and a few works applying them to DL applications at the
edge. Figure 11A shows that there is a clear trade-off between
programmability and efficiency. To attain higher performance
and power efficiency, FPGAs and ASICs require more design
complexity to optimize data flow, while ASICs need further
hardware optimization. Correspondingly, the time-to-market
increases with design complexity. DL algorithms can be deployed

FIGURE 10
Scalable CARIBOu architecture for data readout. Adopted from
[160] with permission.
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at the edge using these existing electronic-based hardware
accelerators.

However, in recent years, these electronic-based accelerators are
constantly reaching performance limits in latency, energy
consumption, high interconnect cost, excessive heat, and other
physical constraints [162]. Figure 11B illustrates the past 50 years
of CPU trends in regards to the number of transistors, single-thread
performance, frequency, typical power consumption, and number of
cores. The trends show that the number of transistors and
correspondingly the power consumption continues to grow.
Furthermore, the trends indicate that CPU clock frequency has
plateaued since around 2005 while single-thread performance and
number of cores are slowly tapering. On the other hand, GPU
performance has not been limited and is the most popularly used
hardware for deep learning training. The single-precision
computational throughput of GPUs continues to grow [163];
summarizes the increasing peak performance trends of Nvidia
GPUs in GFLOPS from 2006 to 2018. As a result of the high
computational speeds, GPUs consume more power [163]. Shows
that the power consumption of GPUs increases with the
computational throughput in GFLOPS and [164] shows that
GPUs have higher computational speed than FGPAs and ASICs
at the cost of higher power consumption. Meanwhile, FPGAs and
ASICs can achieve good computational performance with lower
energy consumption at the cost of design time to develop data flow
algorithms and to optimize hardware.

In addition to the hardware performances, the unit prices of each
hardware should also be taken into consideration. Recall in Section
4.1.1 we compared the parallel computing performance between
server-grade CPUs (Intel Xeon Platinum 8280 and AMD EPYC
9645) and desktop-grade GPUs (NVIDIA RTX 2080 and 4090),
where the GPUs outperform CPUs due to the higher number of
computing cores. Not only can desktop GPUs perform better than
server-grade CPUs, they are also more price efficient. The NVIDIA
RTX 2080 and 4090 have starting prices around $1,000 and $1,600,
respectively, while the Xeon Platinum 8280 and AMD EPYC
9645 cost over $5,000. The unit prices of FPGAs can vary from as
low as a few USD to thousands of USD depending on various factors
such as the manufacturer, the number of units, the number of
configurable logic blocks, the number of input/output connections,
and the amount of available RAM [165]. On the other hand, the unit
prices of custom designedASICs can be lower than that of FPGAs, but
only when purchased in large quantities [166]. The starting cost of
ASICs is easily over $1,000 as it suffers from very high non-recurring
engineering (NRE) costs [167], while FPGAs have no NRE costs.
Nonetheless, Google offers prototyping products using the Edge TPU
starting at $60.

At any rate, electronic accelerators are traditionally designed to
follow von Neumann architecture where the processor and memory
units are connected by buses [168], which inherently increases data
transfer and power consumption during computation [148].
Demonstrates that more than 75% of the energy utilized by
processors comes from DRAM accesses. These limits in
electronic based computing gives rise to a shift in focus to analog
neuromorphic computing and non-von Neumann architectures
such as optical neural networks and bio-inspired spiking neural
networks for high-speed, energy-efficient, and parallel
computing [169,170].

4.2 Neuromorphic hardware outlook

This section presents two emerging neuromorphic hardware
solutions, namely, optical neural networks (ONNs) and spiking
neural networks (SNNs), as promising architectures for highly
energy efficient and parallel processing.

4.2.1 Optical neural networks
ONNs have emerged as a promising avenue for achieving high-

performance and energy-efficient computing, given their compute-
in-light speed, ultra-high parallelism, and near-zero computation
energy [171–174]. Series of photonic tensor cores (PTCs) are
designed to enhance the execution of linear matrix operations,
the fundamental operations in AI and signal processing, with
coherent photonic integrated circuits [171,175], micro-ring
resonators [176], photonic phase-change materials [177–179],
and diffractive optics [180–182].

Comparing metal wire connections, optical signals modulated at
different wavelengths, can be concurrently processed using
wavelength-division multiplexing (WDM) within the waveguide
and photonic tensor cores [175,183]. Besides, waveguides are free
from inductance, which means frequency-dependent signal
distortions are negligible for the extended connections in neural
interconnects. Hence, given the extensive parallel signal fan-out and
fan-in requirements in neural networks, the physical
implementation based on PTCs offers distinct advantages. On the
basis of the linear optical computing paradigms, ONNs have been
constructed for various machine learning tasks such as image
classification [182,184,185], vowel recognition [171], and edge
detection [186]. Photonic computing methods [187] also feature
great potential for supporting advanced Transformer models.
Furthermore, ONNs holds significant promise for real-time
image processing, where they process image signals directly in
light fields, as opposed to after digitalization [188–191]. For
instance, recent advancements include the proposal of an image
sensor with an ONN encoder [188], which filters relevant
information within a scene using an energy-efficient ONN
decoder before detection by image sensors.

Despite their advantages, PTCs face significant challenges
related to cross-domain signal conversion energy overhead,
specifically in analog-to-digital (A/D) and digital-to-analog (D/A)
conversion. Moreover, the physical layout constraints of PTCs,
manufacturing complexities, and elevated costs have made
scalability a primary obstacle in the broad adoption of ONNs.
For example, Mach-Zehnder interferometer (MZI)-based PTCs
[171] require O (m2 + n2) bulky MZIs and approximately ~ (m +
n) cascaded MZIs within a single optical path to implement an n-
input, m-output layer. Current state-of-art ONNs therefore employ
time-division multiplexing with WDM, trading bandwidth and chip
complexity.

Efficient analog-to-digital conversion solution [192] and various
hardware-software co-design methodologies [186] have been
investigated to reduce signal conversion overhead by reducing
precision and energy per conversion. In pursuit of enhancing the
scalability and efficiency of ONNs, researchers have delved into
innovative optimizations at both the architecture and device levels.
One noteworthy approach at the architecture level is the
introduction of optical subspace neural networks (OSNNs),
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which make a trade-off between weight representation universality
and the reduction of optical component usage, area costs, and energy
consumption. For example, a butterfly-style OSNN as shown in
Figure 12A, which achieved a remarkable reduction of 7 times in
trainable optical components compared to GEMM-based ONNs,
was reported and demonstrated a measured accuracy of 94.16% in
image recognition tasks [184]. Without sacrificing much model
expressiveness, OSNNs can reduce footprints, often ranging from
one to several orders of magnitude less than previous MZI-based
ONN [171].

At the device level, employing compact custom-designed PTCs,
such as multi-operand optical neurons (MOON) [185,193,194], enables
the consolidation of matrix operations into arrays of optical
components. Figures 12B, C shows a customized multi-operand
MZI-based and microring resonator-based PTCs, respectively.
Instead of performing a single math operation (e.g., scalar product)
per device, MOON fuses a tensor operation in the single device.
Crucially, this approach retains the capability to represent general
matrices while still maintaining an exceptionally compact layout, in
contrast to prior compact tensor designs like star couplers and
metasurfaces [195]. One specific achievement in MOON is the
development of multi-operand MZI-based (MOMZI) ONN [194],
which has realized a two-orders-of-magnitude reduction in
propagation loss, delay, and total footprint without losing matrix
expressivity. The customized ONN demonstrated an 85.89%
measured accuracy in the street view house number (SVHN)
recognition dataset with 4-bit control precision. The combined
progress in architecture, device design, and optimization techniques
is pivotal in advancing the capabilities of ONNs, making themselves
efficient, scalable, and practical for AI applications.

4.2.2 Spiking neural networks
In addition to photonic neuromorphic computing, extensive

research has been done for other neuromorphic computing
architectures. Due to the bottleneck seen in von Neumann
architectures, these computing paradigms aim to greatly reduce
data movement between memory and PEs to attain high energy
efficiency and parallel processing. Taking a unique approach to
improve energy efficiency, neuromorphic computing architectures

are inspired by the human brain’s neurons and synapses. The
human brain is extremely energy efficient, where in terms of
computing terminology, it is estimated to have a computing
power of 1 exaFLOPS while only consuming 20 W. In recent
years, there is a rise in interest to explore brain-inspired neural
network computing architectures, better known as SNNs [196,197].

SNNs are a special type of artificial neural network (ANN) that
closely mimics biological neural networks. While ANNs are
traditionally modeled after the brain, there are still many
fundamental differences between them such as neuron computation
and learning rules. In addition, one major difference is the propagation
of information between neurons. Biological neurons, shown in
Figure 13A, transmit information to downstream neurons using a
spike train of signals, or a time-series of delta functions. The
individual spikes (delta functions) are known to be sparse in time
and have high information content. Therefore, SNNs are designed to
convey information by utilizing the spike timings and spike rates
[198,199] as shown in Figure 13C. Furthermore, the advantages of
the spiking event sparsity can be exploited in special hardware to reduce
energy consumption while maintaining the transmission of high
information content [200].

The hardware industry as well as academia are striving to develop
unique solutions for neuromorphic computing chips. Intel’s Loihi [201]
features 128 neuromorphic cores with 1024 spiking neural units per
core. A recent work [202] surveys different works that utilize Loihi as a
computing platform for applications such as event-based sensing and
perception, odor recognition, closed-loop control for robotics, and
simultaneous localization and mapping. For medical image analysis
[203], uses Loihi to implement a SNN for brain cancer MRI image
classification. IBM developed TrueNorth [204], a neurmorphic chip
featuring 4096 neuromorphic cores, 1 million spiking neurons and
256 million synapses. A work by [205] uses the TrueNorth computing
platform to detect and count cars from input images by mapping
CNNs, such as AlexNet and VGG-16, onto TrueNorth. A few other
well-known SNN hardwares are Neurogrid [206], BrainScaleS [207],
and SpiNNaker [208], which all adopt different solutions to emulate
spiking neurons. For a comprehensive review, see details in [209,210].

Due to its low power consumption, SNN hardware is a potential
platform for edge computing. A work by [211] presents preliminary

FIGURE 11
(A) Summary of electronic-based hardware comparison. (B) 50 years of CPU processor trend data from [217].
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results for implementing SNN on a mixed analog digital memresistive
hardware for classifying neutrino scattering data collected at Fermi
National Accelerator Laboratory using the MINERvA detector [212].
Two different SNNs, the neuroscience-inspired dynamic architecture
(NIDA) [213] and a memresistive dynamic adaptive neural network
array (mrDANNA) [214], were trained and tested on the MINERvA
dataset’s X view. The training and testing datasets consisted of
10,000 and 90,000 synthetic instances, respectively, generated by a
Monte Carlo generator. The NIDA network was trained on the Oak
Ridge Leadership Computing Facility’s Titan using 10,000 computing
nodes, and achieved a classification accuracy of 79.11% on the training
set. Meanwhile, the mrDANNAwas trained on a desktop and achieved
a classification accuracy of 76.14% and 73.59% on the training and
combined training and testing dataset, respectively. Both networks can
attain an accuracy close to the state-of-art CNN accuracy of 80.42%
while using far less neurons and synapses. In addition, the energy
consumption was computed for the mrDANNA network and is
estimated to be 1.66 μJ per calculation. Although there is an accuracy
drop using the smaller SNN networks, the energy consumption per
calculation is very small, and thus can be deployed in edge devices.

A recent work (R [215]) implemented an SNN algorithm for
filtering data from edge electronics in high energy collider
experiments conducted at the High Luminosity Large Hadron
Collider (HL-LHC), in order to reduce large data transfer rate or
bandwidth (on the order of a few petabytes per second) to
downstream electronics. In collider experiments, the collision events
of charged particles with energy greater than 2 GeV is of significant
interest. However, the high energy charged particles only comprise of
approximately 10% of all recorded collision events. Therefore, filtering
out low energy particle track clusters will greatly reduce data collection
rate at edge devices. A synthetic dataset is used to train and test the SNN.

The full synthetic dataset consists of 4 million charged particle
interactions in a silicon pixel sensor. The training dataset is limited
to the particle interactions in a 13 × 21 pixel sub-region of the silicon
sensor, with binary classification labels indicating high or low energy.
The SNN is realized on Caspian [216], a neuromorphic development
platform, and achieved a signal classification accuracy of 91.89%, very
close to a prototyped full-precisionDNN accuracy of 94.8%. In addition
to accuracy, the SNN achieves good performance using nearly half of
the number of DNNparameters. The reduced size and improved power
efficiency of the SNNmodel makes it a good candidate for deployment
on edge devices which have limited memory and power constraints.

5 Summary

Experimental data generation at photon sources are rapidly
increasing due to the advancements in light sources, detectors, and
more efficient methods or modalities to collect data. As tabulated in
Table 1, detectors can achieve frame-rates on the order of thousands
and millions of frames per second in continuous and burst mode,
respectively. Each frame can consist of thousands tomillions of pixels,
depending on the size of the pixel array format, with at least 10-bit
data resolution. As a result, the detectors can achieve data rates over
1 GB/s in continuous mode, and orders of magnitude higher data rate
in burst mode. Specifically, the state-of-the-art detectors with a 10-bit
data format have demonstrated a data rate above 12.5 GB/s in
continuous mode and 1.25 TB/s in burst mode. The high data rate
is very costly in terms of data storage and transmission over long
distances. These issues motivates the use of edge computing on
detectors for real-time data processing and for reducing data
transmission latency and storage volumes.

FIGURE 12
Integrated photonic chips for optical neural networks. (A) a butterfly-style PTCs to reduce the opitcal components from an architecture level [184].
(B,C) are customizedmulti-operandMZI-based andmicroring resonator-based PTCs, respectively, which improve scalability and efficiency at the device
level [185,193,194].
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Deep learning approaches have achieved significant progress in
image processing tasks including but not limited to restoration,
segmentation, compression, and 3D reconstruction. Their superior
nonlinear approximation capabilities allow them to learn complex
underlying structures and patterns in high dimensional data. The
state-of-the-art methods for each image processing task achieve
superior performance compared to conventional methods, while also
overcoming the issues of conventional methods such as computational
burdens associated with explicit programming for each data processing
steps. Furthermore, once trained, deep learning methods can achieve
very fast inference speeds for real-time computation.

While deep learning approaches are widely used for many
applications, they require deep networks to achieve good
performance, and thus require heavy computational power and
high energy consumption. This is critical hurdle for edge
computing devices which have design constraints such as latency
and energy. To address this issue, hardware accelerators now exist
that leverage the model and data parallelism characteristics of neural
network algorithms to implement parallel computing paradigms.
Electronic-based hardware accelerators such as CPUs, GPUs,
FPGAs, and ASICs are popularly used platforms for deep
learning. However, the electronic-based solutions are constantly
reaching performance limitations in clock speed, energy
consumption, and other physical constraints. This gives rise to
research in analog neuromorphic computing paradigms such as
ONNs and SNNs to achieve high-speed, energy-efficient, and high-
parallel computing, with significant potential for radiation detection
and applications in photon science. Nonetheless, note that the power
constraint can be alleviated if the experimental space can
accommodate the installation of larger processing centers such as
workstations or servers, as well as the necessary data transmission
networks. Furthermore, a larger processing center allows for the
deployment of heavier DL models with improved accuracy for
experiments that do not necessarily require real-time processing.
To help alleviate data transmission, it is possible to offload simple
computing and preprocessing steps to downstream edge devices.
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The European X-ray Free Electron Laser (European XFEL) is a cutting-edge user
facility that generates per second up to 27,000 ultra-short, spatially coherent
X-ray pulses within an energy range of 0.26 to more than 20 keV. Specialized
instrumentation, including various 2D X-ray detectors capable of handling the
unique time structure of the beam, is required. The one-megapixel AGIPD
(AGIPD1M) detectors, developed for the European XFEL by the AGIPD
Consortium, are the primary detectors used for user experiments at the SPB/
SFX and MID instruments. The first AGIPD1M detector was installed at SPB/SFX
when the facility began operation in 2017, and the second onewas installed at MID
in November 2018. The AGIPD detector systems require a dedicated
infrastructure, well-defined safety systems, and high-level control procedures
to ensure stable and safe operation. As of now, the AGIPD1M detectors installed at
the SPB/SFX and MID experimental end stations are fully integrated into the
European XFEL environment, including mechanical integration, vacuum, power,
control, data acquisition, and data processing systems. Specific high-level
procedures allow facilitated detector control, and dedicated interlock systems
based on Programmable Logic Controllers ensure detector safety in case of
power, vacuum, or cooling failure. The first 6 years of operation have clearly
demonstrated that the AGIPD1M detectors provide high-quality scientific results.
The collected data, along with additional dedicated studies, have also enabled the
identification and quantification of issues related to detector performance,
ensuring stable operation. Characterization and calibration of detectors are
among the most critical and challenging aspects of operation due to their
complex nature. A methodology has been developed to enable detector
characterization and data correction, both in near real-time (online) and offline
mode. The calibration process optimizes detector performance and ensures the
highest quality of experimental results. Overall, the experience gained from
integrating and operating the AGIPD detectors at the European XFEL, along
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with the developed methodology for detector characterization and calibration,
provides valuable insights for the development of next-generation detectors for
Free Electron Laser X-ray sources.

KEYWORDS

MHz X-ray detectors, 2D detectors, FEL instrumentation, calibration, adaptive gain

1 Introduction

This paper examines the integration, functioning,
characterization, and calibration of the first generation of AGIPD
detectors, and discusses how these findings can be used to shape the
development of new detectors for the European XFEL.

1.1 Overview of European XFEL facility

The European X-ray Free Electron Laser (European XFEL) [1, 2]
is an international user research facility located in the Hamburg area
that started operation in 2017. It currently features three free-
electron laser x-ray sources, providing spatially coherent X-rays
for seven experimental stations [3–8] in the energy range of
approximately 260 eV to 25 keV. The sources can deliver up to
2,700 pulses with a repetition rate of up to 4.5 MHz in 10 equidistant
X-ray pulse trains per second.

Various important scientific applications at the European XFEL,
such as serial crystallography, single particle and material science
experiments, require specific detectors that can cope with the MHz
repetition rate of the machine and the unique time structure of the
European XFEL, as well as a wide dynamic range of up to 104

photon/pixel/pulse whilst at the same time providing single-photon
sensitivity at the same energy [9]. In order to address these
challenges, three detector consortia successfully developed 2D
area detectors for the European XFEL. Out of these, two have
focused on detectors optimized for the hard X-ray energy range,
delivering optimal performance at photon energies exceeding
10 keV: the Large Pixel Detector (LPD) [10] and the Adaptive
Gain Integrating Pixel Detector (AGIPD) [11]. The DEPFET
Sensor with Signal Compression (DSSC) [12] is designed for
experiments utilizing lower-energy X-rays, down to a
few hundred eV.

1.2 The AGIPD detectors for the
European XFEL

The AGIPD detector [13], was developed for the European
XFEL by an international consortium led by DESY, in collaboration
with partners from renowned international institutions, including
the Paul Scherrer Institute, University of Bonn, and Hamburg
University. It features a classical hybrid pixel array with readout
ASICs bump-bonded to a 500 μm thick silicon sensor [14]. The
ASIC [15, 16] is designed using 130 nm CMOS technology and
employs an adaptive gain switching technique to cover a wide
dynamic range: from single photon to 104 photons per pixel per
pulse at E = 10 keV. To achieve such a high dynamic range, each
pixel utilizes a charge-sensitive preamplifier with three gain settings

that dynamically switch during the charge integration process. A
comparator monitors the preamplifier’s output voltage, which
corresponds to the detected charge level. The preamplifier starts
with its highest gain, and when the output voltage reaches the
threshold, the comparator triggers gain switching by introducing an
additional capacitor into the preamplifier’s feedback loop. This
results in a lower gain setting and higher noise. By progressively
adding a maximum of two more capacitors to the initial one, the
system allows for three gain settings: high (HG), medium (MG), and
low (LG) gain. It also utilizes analog memory storage cells to store
recorded images during the 0.6 ms duration of the pulse train. These
images are subsequently read out and digitized during the 99.4 ms
interval between pulse trains arriving at 10 Hz as it is shown in
Figure 1D. The analog memory comprises two types of storage cells,
one for amplitude values and the other for encoded gain settings. It is
designed to store 352 images, equivalent to 352 samples per pixel,
each pixel having a size of 200 μm × 200 μm. The storage cell matrix
consists of 11 rows and 32 columns and occupies approximately 80%
of the pixel area. Therefore, the number of storage cells is a
compromise between the size of the pixels and the number of
X-ray pulses that AGIPD can record. To optimize the use of this
limited storage depth by overwriting unwanted images, the memory
operates in random access mode. Furthermore, both the sensor and
the ASIC components of the detector are optimized to withstand
exposure to X-ray radiation [17].

Each ASIC is composed of a matrix of 64 × 64 pixels; 16 ASICs
are bump-bonded to a 512 × 128 pixel silicon sensor, forming the
sensitive hybrid assembly unit of the AGIPD detector. This hybrid
assembly is then glued to the Low Temperature Co-fired Ceramic
(LTCC) board, which is thermally and mechanically connected to
the copper interposer, forming the fundamental detector unit - the
Front-End Module (FEM). The FEM is connected by means of 500-
pin SAMTEC connector to the back-end electronics. A photograph
of the edge of a Front-End Module is shown in Figure 1C.

The one-megapixel detector consists of 16 FEMs, grouped into
four independently moving quadrants, and is designed to operate in
a vacuum environment. Figure 1A shows the CAD model of the
AGIPD1M detector with cuts to reveal the arrangement of the
electronics both inside and outside the vacuum vessel. From a
control point of view, the AGIPD1M detector forms two
electronically independent halves (called “wings”). The back-end
electronics of each half consist of the ADC boards and the control
and data IO board of each module (one set each per module,
8 modules per wing); a vacuum backplane board, which acts as a
vacuum barrier and routes signals in and out of the vacuum vessel; a
micro controller board for slow control; and a master FPGA board.
These boards are located outside the vacuum chamber in a thermally
sealed, water-cooled housing. The two master FPGA boards, one for
each side, provide the interface to the European XFEL timing system
and control the detector FEMs. Another part of the back-end are the
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boards located in vacuum, they provide power to ASICs and IO
signal connectivity between the FEM and the backplane. More
details can be found in [11].

Two 1 Megapixel AGIPD detectors are used as primary
detectors for experiments at the Single Particles, Clusters, and
Biomolecules and Serial Femtosecond Crystallography (SPB/SFX)
[3] and Material Imaging and Dynamics (MID) [5] instruments of
the European XFEL. The SPB/SFX AGIPD1M system has been
installed since the start of operation in 2017, while the MID
AGIPD1M followed in November 2018. Both AGIPD1M
detectors at the European XFEL are based on the same hardware
and firmware, currently using the AGIPD 1.1 ASIC version [16].

It should be mentioned that the second generation of the AGIPD
detector is under development and is already in use at the European

XFEL as the AGIPD500K prototype, which was installed in
September 2020 at the HED Instrument [18]. The AGIPD500K
comprises eight modules and is operated in air. This second-
generation AGIPD features a new version of electronic boards,
new back-end electronics architecture, and uses the new
AGIPD1.2 ASIC version [19]. Unlike the AGIPD1M systems,
which used complex configurations of several boards with a
single function on each, as shown in Figure 1B, the new, more
compact readout board incorporates a streamlined design that
houses both the analog-to-digital converter (ADC) and a new
FPGA, along with all-optical communication via multi-fiber Gbit
transceivers. Despite being a prototype, the AGIPD500K detector at
HED has been employed in a number of successful user experiments
[20, 21] and more are planned.

FIGURE 1
(A)CADmodel of the AGIPD1M detector with sections cut away to reveal the arrangement of the electronics, both inside and outside of the vacuum
vessel (B) The electronics of a single detector module. (C) A photograph of the edge of a Front-End Module (FEM) including annotations of the main
components. Figures are sourced from [11]. (D) Pulse structure of the European XFEL and its impact on the requirements for detector data collection.
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2 Detector integration and
infrastructure

The complexity of integrating a detector into an instrument and
the amount of infrastructure required to operate it are illustrated in
Figure 2A. The mechanical integration of the detector as well as
necessary infrastructure (i.e., cooling, vacuum and powering) was
carefully considered to match each instrument’s requests.
Furthermore, the detectors have been integrated into the

European XFEL control and data acquisition system from a
software perspective. The framework of the User Facility
generates additional constraints in terms of operability: the
detectors are used continuously during long periods (up to 6 days
in a row) and run by various teams. Those constraints imply to make
the detector setup reliable, secure (interlock systems), maintainable
(access to the consumable components) and easy to operate (specific
control interfaces), Before being placed at the instrument, the
detector was installed in the laboratory for comprehensive

FIGURE 2
(A) Schematic overview of the required infrastructure for AGIPD detector integration. (B) Close-up image of AGIPD1M installation at SPB,
showcasing the Front-End Modules (FEMs) in detail. (C) Back view of AGIPD1M installation at SPB, featuring the detector with all cables and pipes
connected to the vessel. (D) AGIPD1M installation at MID, with a focus on the drag chain in the foreground, highlighting the detector cables.
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testing. This enabled the identification and solving of initial
problems and a more efficient installation in the instrument.

2.1 Mechanical integration into the
instrument

Both AGIPD1M detectors were required to operate in a vacuum
environment. These considerations also factored in the impact of
vacuum forces and aimed to ensure the isolation of the detector
vacuum from the instrument sample chamber, minimizing the need
for frequent system rewarming. Given the multitude of cables
required for power, cooling, motors, data acquisition (DAQ), and
control, comprehensive support structures were essential.
Additionally, accessibility to the Front-End Modules (FEMs)
needed to be as straightforward as possible.

Preparation for the mechanical integration of the detector into
the beamline began in parallel with detector development. This dual-
track approach required adjustments on both fronts to meet the
instrument requirements and the needs of the detector development
team. The outcome of this integration process is illustrated in
Figures 2B–D.

In the current installations, it is relatively straightforward to
access the front of the detector, where the FEMs are installed, and
this process typically takes only a few hours to 1 day. This is the
result of a design decision, since the FEMs are the detector
components deemed by far most likely to experience
damage–from radiation, by cooling and vacuum accidents, and
due to mechanical mishaps. However, gaining access to the rear
of the detector poses a significant challenge in terms of both time
and the increased risk of damaging critical detector or beamline
components. If access to the vacuum boards within the vacuum
vessel becomes necessary - for maintenance, repairs or replacements
due to malfunctions - a considerable effort is required to access and
then open the rear flange of the detector.

2.2 Power system

The AGIPD1M detector electronics is powered by a set of
WIENER [22] power supplies, which include Low-Voltage (LV)
and High-Current MVP8016 and MVP8008 MPOD multichannel
power supplies, providing 16V/5A and 8V/8A power output,
respectively. The sensor bias voltage (ranging from 300 to 500 V)
is supplied by a High-Voltage (HV) and Low-Current ISEG unit.
These power modules are installed and controlled via MPOD crates.

The assignment of MPOD voltage channels (including LV
sense) to the detector-head input connectors and cables is carried
out near the terminal block, often referred to as patch-panel.
Moreover, the terminal block serves the purpose of connecting
interlock signals from the power supplies to a PLC
(Programmable Logic Controller) and establishing connections
for relevant interlock lines between the detector head and the PLC.

In particular, there are no internal DC/DC converters
implemented at the detector level in the first generation systems.
Instead, each detector board and sensor receive dedicated power
from an external power supply. It is worth mentioning that no
operational or stability problems have been observed with this

power system. The MPOD high-precision supplies meet the
electrical requirements (voltage, current, and interlock
functionality) of the detectors and can handle the lengths of the
cables (30–40 m) used, which is significant. This approach has
certain limitations, mainly due to the large number of cables
(>100) required to operate AGIPD1M, including 56 power
cables, 20 control cables, 16 data cables, and 16 cooling pipes.
The thickness of the power cables ranges from 1.5 to 2 cm each,
while the cooling lines are composed of pipes ranging from 2 to
more than 10 cm in diameter. Therefore, effective cable
management and mechanical support are essential when moving
the detector within the hutches, as shown in Figure 2D. A more
compact design, such as the implementation of DC/DC converters
and the reduction of the distance between the detector and dedicated
power supplies, would enhance the flexibility of the system and
reduce the risk of damaging the detector or power cables
during movement.

2.3 Cooling system

The AGIPD1M systems require two cooling circuits: one for the
electronics located outside vacuum (with a power consumption of
more than 2 kW) and another for the electronics in vacuum (with a
power consumption of less than 0.5 kW). For cooling the detector
components outside vacuum, we employ a water-based cooling
system utilizing commercially available dedicated chillers. No
issues have been observed with the cooling of electronics outside
vacuum, and the monitored temperatures on the electronic boards
remain consistently below 40°C.

Cooling the in-vacuum part of the detector presents considerably
greater challenges. In-vacuum electronics are cooled using a customized
Julabo water-cooled chiller with silicone oil serving as coolant. The
chiller is located in the experiment rack room and requires long
(30–40 m) well-insulated cooling pipes to deliver the coolant to the
detector cooling blocks. It is essential to note that silicone oil can be
difficult to clean and poses a potential hazard to other components of
the beamline if it leaks. Fortunately, over the years, no evidence of
silicone oil leakage in vacuum has emerged. However, there have been
some leaks in the cooling system, particularly in the oil distribution
between the chiller and the detector.

The temperature difference between the coolant in the chiller
(−32°C) and the temperature of the detector cooling blocks, when no
power is applied to the detector head, exceeds 5°C. When the ASICs
are active, the temperature of the cooling blocks increases further to
above −24°C. FEM temperature measurements, obtained using
PT100 sensors installed on the back side of the LTCC board,
indicate temperature values ranging from −3°C to +15°C. These
readings suggest that the cooling efficiency is limited and that the
target temperature (−20°C) cannot be achieved. The gradient
between the coolant temperature at the chiller and the attained
temperatures on the FEMs is quite substantial, reaching up to 50°C,
as illustrated in Figure 3C. The primary cause of the thermal
gradient is the limited heat transfer efficiency from the ASICs,
which are the main source of heat (approximately 30–40 W per
module), in the FEM assembly to the cooling block. The current
design, as illustrated in Figure 1C, includes several stacked thermal
interfaces, resulting in multiple layers of thermal resistances.
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Additionally, a large 500-pin connector on the back of the LTCC
board hinders heat transfer efficiency, especially in the vacuum
environment. Lowering the temperature of the coolant is not
feasible, as it can lead to overcooling and malfunction of certain
components of the electronic boards installed in the vacuum vessel.
Nevertheless, the temperature of the FEMs stabilizes after several
minutes and remains constant without fluctuations that could
impact the detector characteristics (i.e., the temperature change
over time remains below 1°C).

To address this problem in the next-generation of detectors, a
dedicated R&D program has been initiated. The goal is to explore
more efficient cooling methods, such as micro-channel cooling [23],
to enhance overall cooling performance. The advantage of this

cooling method lies in the positioning of micro-channels directly
under the readout ASICs, optimizing heat dissipation.

2.4 Interlock system for detector protection

The interlock system for the AGIPD1M detectors is based
mainly on programmable logic controllers (PLCs) [24]. These
PLCs monitor the vacuum quality and cooling efficiency, reading
out temperatures of the detector cooling blocks; pressure values
from the sensors installed at the detector vessel and in the connected
sample chamber; chiller conditions; and internal detector conditions
evaluated by the detector slow-control board, such as hardware

FIGURE 3
(A) Primary AGIPD1M control panel. (B) Illustration of an online-corrected image displayed in the Karabo GUI. (C) Real-time control and monitoring
of in-vacuum cooling through the control system, providing temperature information for the cooling blocks and Front-End Modules (FEMs).
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conditions and temperatures of the FEMs. If necessary, the PLCs
take appropriate actions. The interlock logic implemented for the
AGIPD1M detectors is shown in Table 1.

Over several years of practical experience, this system has
proven to be highly effective in protecting the detector against
unexpected failures, such as pump or chiller failures, power
outages, or inadvertent cooling shutdowns. This level of
protection is absolutely indispensable for smooth detector
operation within a user facility like the European XFEL. Ideally,
the detector system has to possess self-protective capabilities.

Another category of incidents refers to radiation damage resulting
from the primary or scattered/diffracted beam. Such incidents can
occur, and components primarily affected by radiation, such as ASICs
and sensors, should be explicitly designed to be radiation-hard, as
protecting them from such events is generally challenging. In most
cases, radiation damage is caused by high-intensity X-ray radiation
generated in a single shot, which leaves no time to react. However, there
is a class of incidents that can be prevented or significantly minimized.
An example is the formation of ice on the sample injection nozzle. This
can bemonitored, and if ice is observed, the beammust be attenuated or
the shutter must be closed. Such a protection system has recently been
developed and is planned to be used at the SPB/SFX instrument.

2.5 Control and monitoring system
for AGIPD1M

The control system for the AGIPD1M detector, together with its
associated infrastructure including power supplies, cooling and
interlock systems, has been integrated into the European XFEL
control framework known as Karabo [25]. Its core relies on
transparently distributable servers, offering functionality through
pluggable “devices”. These devices can function as control interfaces
for tasks such as motor control or detector control, monitoring
interfaces for measurements such as pressure readings, or
computational devices for data processing.

Karabo also supports complex procedures, such as detector startup,
by employing “middle-layer devices”. These devices do not directly
interact with hardware but instead coordinate with other control
devices, consolidate incoming data, and execute the necessary steps.
These high-level interfaces enable detector operators, including
instrument scientists, to efficiently manage these systems
independently. In addition, they serve as a second-level safety
mechanism which will not allow to perform actions that can be
dangerous for the detector hardware (i.e., powering the detector
when the temperatures or pressure are not in the expected range).
These interfaces facilitate various tasks, including power management,
configuration adjustments, and the efficient acquisition of calibration

data needed for the production of calibration constants used for raw
data corrections. As an example, Figure 3A displays the AGIPD main
control panel, while Figure 3B presents an online-corrected image.

Interactivity is provided through either a command line
interface (CLI) using IPython with automatic command
completion or a PyQt-based graphical user interface (GUI). The
GUI consolidates parameters, control and data flows, state
information, and error feedback, enabling the creation of
complex control and processing configurations, including data
analysis pipelines such as the data correction pipeline.

Any newly developed operational features undergo rigorous
integration and testing procedures before being deployed for user
operations. Consequently, the control system for the AGIPD1M
detectors demonstrates impressive stability and is free of significant
issues or instabilities.

2.6 Data collection and storage
infrastructure

Acquiring meaningful data from the detector requires precise
synchronization with the European XFEL beam, a feature
accomplished through the Clock and Control (C&C) system [26].
This system plays a crucial role in ensuring synchronization by
providing essential components such as clocks, bunch, and train-
related information. Importantly, the C&C system can also issue
veto signals to discard undesirable bunches, although it is pertinent
to mention that AGIPD currently does not employ this functionality.
The information from the C&C system is first received by the
AGIPD1M Master FPGA (MFPGA), and then is distributed to all
detector modules. Following this, raw data from the detector, including
the train Id information, is transmitted via the UDP protocol to the
European XFEL Data Acquisition PC Layer and written in HDF5 data
format [27]. Initially, this data is storedwithin the onlineGPFS (General
Parallel File System) [28] cluster, while the metadata is concurrently
made accessible through the metadata cataloguemyMdC [29]. myMdC
offers the ability to evaluate the data before copying it from the online
cluster to the offline GPFS cluster. Moreover, in addition to the raw
data, the corrected data, referred to as “processed data,” is also retained.

3 Data quality: characterization and
calibration

3.1 Calibration strategy

Accurate calibration and comprehensive characterization of
detectors are critical aspects to ensure the successful operation of

TABLE 1 Interlock triggers and actions.

Input Interlock trigger Interlock action

Vacuum status Pressure p > 10–3 mbar or pump failure Warm up detector to room temperature, Switch off HV, Close relevant valves

Cooling blocks temperature Temperature T > 0°C Switch off power for components in vacuum (HV, ASICs, vacuum boards)

Electronics temperature (outside vacuum) Temperature T > 35°C Switch off power for all components (except MicroController)

MicroController signal (2nd level interlock) FEM Temperature > 50°C Switch off power for all components (except MicroController)
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instruments employing these detectors. Equally important is the
development of user-friendly procedures and tools that facilitate
recalibration during the operational phase. In this section, the
general concept of AGIPD calibration, shown in Figure 4, is
explored, and a more detailed explanation of the calibration
process is provided.

To fully calibrate the AGIPD detector, three distinct data sets
are required:

1. Dark data (without any external stimulus) to determine offset
and noise values for each gain setting and two thresholds for
gain encoding.

2. Dynamic range scan of available gain settings with internal
calibration sources to provide ratios between different gain
settings as well as offsets for each gain.

3. Low-intensity fluorescence data are used to determine the
absolute gain value.

All three gain settings, as illustrated in Figure 4A, require
characterization for each memory cell within each pixel. This
characterization involves 11 parameters, including:

1. Three offsets, one for each gain setting.
2. Two thresholds for gain setting encoding.
3. One absolute gain value.
4. Two gain ratios: HG/MG and HG/LG.
5. Three bad pixel maps for each gain setting using information

from the data sets mentioned above, and it is kept as a 32 bit mask
to prevent the source of the bad pixel from being lost.

This results in more than 4 × 109 unique parameter values for an
AGIPD1M detector. The calibration constant values strongly
depend on the operating mode, including also factors such as
acquisition rate, the number of memory cells used, and
integration time. Therefore, each operational scenario requires
dedicated calibration data collection and analysis to derive
calibration constants tailored to that specific operating mode.
The constants are generated using a dedicated calibration
software, which is run on the Maxwell - HPC cluster [30] at
DESY. Table 2 shows the estimated time needed for the
collection and processing of the calibration data to obtain a
complete set of calibration constants for the AGIPD1M detector
and one operation mode. It also includes how frequently the

FIGURE 4
(A) Visualization of AGIPD’s dynamic range, showcasing three adaptive gain settings: High Gain (HG), MediumGain, and LowGain (LG). (B) Flowchart
illustrating AGIPD’s calibration strategy.
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constants are generated for each of the operation modes. Multiple
detector operation modes were implemented to enhance detector
performance for specific types of experiments and address observed
problems, as detailed in Section 4.

The generated constants are injected into the calibration
database [31] and automatically retrieved to correct the raw data
[32]. It is quite a challenging process because of the amount of data
that has to be collected and processed to generate the full set of
calibration constants. Another challenge is caused by detector
artifacts, which require additional data treatment, as described in
more detail in Section 4.2.

3.2 Detector baseline

The detector baseline (offset) is defined as a dark signal
measured in the absence of external stimuli, such as X-ray
photons. In the ideal scenario, the baseline measured under well-
defined conditions (e.g., temperature, readout speed, integration
time) should enable the subtraction of signals not originating from
incoming photons. It should also be independent of the intensity
value and remain stable over time.

The dark data is acquired using a dedicated configuration,
which allows the detector to be forced into Medium or Low gain
settings. The collected data is then processed, and the new
versions of constants (offsets and noise maps) that are
generated can be used for data correction. The offset O) is
calculated as the median of the dark signal (Ds) over a certain
number of trains t) for a given gain setting (gs: 0-HG, 1-MG, 2-
LG), pixel (x, y) and memory cell c). The noise N is calculated as
the standard deviation σ of the dark signal (Ox,y,c �
median(Ds)t,Nx,y,c � σ(Ds)t).

The calibration constants from dark data are generated on a
regular basis (i.e., at least once a day during user experiments). To
ensure the frequent generation of the constants, the acquisition and
processing of dark data is automated, facilitating the task for the
beamline operator.

3.3 Gain setting identification

As mentioned in Section 1.2, the beam’s time structure at the
European XFEL does not allow for a continuous readout of single
frames during pulse trains. Therefore, each frame in the train, up
to a maximum of 352, must be stored in pixel and is read out in
the 99.4 ms gap between pulse trains. Since both the information

regarding the pulse height of the charge-integrated signal and the
gain status are essential for extracting incident X-ray intensities
on the detector, each AGIPD pixel has two storage cell matrices,
each consisting of 352 capacitors. One matrix stores analog
information about the height of the X-ray signal, and the
second one stores the signal related to the gain setting
(i.e., V = 0.7 V for HG, 1 V for MG and 1.5 V for LG) that is
being used (Ig).

The dark data is used not only for noise and offset
determination, but also for generation of constants that are
needed for the identification of gain settings, so-called thresholds.
Analog gain levels (Gi) for each gain setting (where i = HG, MG, and
LG) are calculated as the median of the dark gain signal (median
(Dgs)) over a certain number of trains t) for a given gain setting (gs:
0-HG, 1-MG, 2-LG), pixel (x, y) and memory cell c). The noise
associated with the gain level is quantified as the standard deviation
of σGi of the dark gain signal. It is essential that the signal level
indicating the gain setting is clearly distinguishable from the analog
gain signal noise, ideally surpassing a limit of at least 5 standard
deviations (σGi) for different gain settings. To encode the gain
setting, the gain signal (Ig) of each pixel and memory cell is
evaluated against two defined thresholds, T0 and T1, which
categorize the pixel as follows:

• High gain if Ig ≤ T0

• Medium gain if T0 < Ig ≤ T1

• Low gain if Ig > T1

Where the thresholds T0 and T1 are determined as the mean
value between individual analog gain levels (Gi), that is, T0 �
GHG+GMG

2 and T1 � GMG+GLG
2 .

The original idea was to use two thresholds per chip (64 ×
64 pixels) since the three gain values were expected to be well-
separated and have similar values for each pixel and memory cell.
A study [16] carried out on a single AGIPD1.1 ASIC in a
dedicated test system showed that up to 0.5% of pixels can
have an incorrect gain assignment if only two threshold values
are applied per chip. Analysis of data collected with the full-scale
system (AGIPD1M at the European XFEL) revealed that applying
‘sanity cuts’ to filter out outlier values of analog gain
(i.e., selecting gain values within ±5 standard deviations from
the average gain value for all pixels and memory cells) resulted in
the removal of at least 0.5% of the pixels. Analog gain values for
medium and low gain in a single ASIC overlap, as shown in
Figure 5A. Therefore, using only two thresholds per chip is not
feasible if we want to maintain a sufficiently low probability of

TABLE 2 Summary of data collection and processing times and sizes, as well as frequency of generation for one complete set of calibration constants for the
AGIPD1M detector at the European XFEL. The presented values are based on the operation mode with all memory cells and do not include preparatory time
required for the measurements.

Data type Data size (TB) Measurement time (mins) Data processing time (mins) Frequency

Dark Data 2.2 5 ~ 10 at least once per shift

Dynamic Range Scan - Pulsed Capacitor 8.2 20 ~ 100 6 months

Dynamic Range Scan - Current Source 21 65 ~ 180 6 months

Fluorescence Data 15–20 25–30 up to 720 6–12 months
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‘false’ encoding (preferably below 0.1%). Studies show that the
gain separation MG-LG strongly decreases for pixels close to the
chip periphery (Figure 5B) and exhibits a strong temperature
dependency, pointing towards a leakage current. Another
observed issue, as shown in Figure 5C, is that the difference in
the gain level value for medium and low gain degrades along the
memory cell’s number in the read-out sequence, and it is not
always possible to determine if the signal is collected at medium
or low gain.

The observed effect is caused by a bug in the chip design, which,
during the data readout of the 352 image and 352 gain memory cells,
results in a partial discharge of the gain signal in a particular gain
memory cell if the encoded gain level stored in that cell
corresponded to LG. As gain cells are read out sequentially from
cell0 to cell351, the cells that are read out later have already been
deprived of a significant amount of charge if they are in LG, causing
their voltage levels to reduce to levels encoding MG. Therefore, for
cells read out later, no MG-LG distinction would be possible
anymore, even if individual thresholds are applied to each
memory cell in each pixel. A new version 1.2 of the AGIPD
ASIC mitigates this issue (Figure 5D). However, both AGIPD1M
systems at the European XFEL are currently equipped with the
AGIPD1.1 ASIC version. Therefore, low gain is not used for
scientific analyses and is still not fully characterized. The
installation of FEMs equipped with AGIPD1.2 ASICs is planned
in the near future.

3.4 Dynamic range

To establish a relationship between different gain settings and
effectively calibrate the entire gain of the detector, it is essential to
perform an intensity scan throughout the entire dynamic range of
the detector. However, using the European XFEL beam, conducting
a comprehensive intensity scan for every memory in every pixel
within the entire dynamic range proved to be unfeasible. Therefore,
X-ray photons are exclusively used to determine absolute gain
factors in HG, as is elaborated in Section 3.5.

To perform a dynamic range scan of the detector, we rely on the
available internal “on-chip” calibration sources. Alternative methods, as
described in [33], such as dynamic range scans with sensor backside
pulsing, IR pulsed laser, pulsed monoenergetic proton beams, or LED
light, are not viable for the full-scale AGIPD1M system for several
reasons. Primary factors include the need for specialized installations
and interfaces to the ASICs, which are absent in AGIPD1M and would
require a complete disassembly of the detector to execute the scan. Some
of these methods are suited only for single-pixel scans, for example, the
laser and pulsed monoenergetic proton beam, which are not applicable
to the detectormodule or system. Therefore, in our specific case, we rely
on the internal calibration sources implemented at the ASIC level.

The AGIPD detector provides two options for injecting test
charges into pixels. One approach for scanning the dynamic range
involves employing the Pulsed Capacitor (PC), a circuity
implemented at the input of the preamplifier of each pixel, which

FIGURE 5
(A) An example of analog gain signal (Ig) values for each pixel andmemory cell in a single AGIPD1.1 ASIC. (B) Average separation betweenMG and LG
across all memory cells in a FEM equipped with AGIPD1.1 ASICs. Separation is defined in units of analog gain level noise values (σGi). (C) Average analog
gain levels (Gi) and the corresponding thresholds across all pixels as a function of memory cell for AGIPD1.1 FEM. (D) Average analog gain levels (Gi) and
the corresponding thresholds across all pixels as a function of memory cell for AGIPD1.2 FEM.
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allows for applying voltage steps to a capacitor to introduce a
defined, albeit small, charge. The second approach utilizes an on-
chip current source (CS), which permits the injection of a constant
current into the preamplifier’s input. By increasing the integration
time, the amount of charge injected will increase in proportion,
allowing for a thorough scan of the detector’s dynamic range. The
current source implemented on the AGIPD ASIC is programmable,
allowing its current value to be tailored to specific ASIC instances to
encompass the entire dynamic range.

At the European XFEL, we primarily utilize the PC source for
calibration purposes. The CS source is also implemented, and the first set
of calibration constants has been generated. However, the application of
LG in the current version of AGIPD1M is restricted due to the issue
mentioned in Section 3.3. Consequently, the full characterization and
validation of this internal calibration source remains a work in progress.
To prepare the calibration, we first scan the dynamic range by injecting
test charges into the pixels. The calibration process then involves two
steps. First, we subtract offsets derived from the dark data from the scan
data. Next, we model the data distribution using a fitting method to
determine the relationship between different gain settings. An example
of a dynamic range scan with Pulsed Capacitor is shown in Figure 6A.

For the initial part of the distribution, a linear function is fitted to
the data, allowing us to establish the gain slope and offset for high gain
settings, expressed as y =mx + l. For the subsequent regions, we employ
a composite function: y =A ·e−(x−O)/C +mx + l, which enables us to cover
both the transition region and the medium gain slope and offset.
However, due to the inherent challenges posed by the transition region
between high and medium gain settings, as discussed in more detail in

Section 4.2.2, and the difficulty in reliably applying these models for the
correction of detector data (since distinguishing between pixels in the
transition region and valid MG values can be challenging), we opted to
exclude from the analysis the scan intensities corresponding to the
transition region. Instead, we fit only the linear part of this function to
generate the calibration constants. The results of the analysis are
presented in Figures 6B, C. In Figure 6B, the gain ratio values for all
pixels in a single AGIPD FEM module are shown as a function of
memory cell index. Figure 6C shows the average gain ratio (HG/MG)
map for AGIPD1M at SPB/SFX, computed across all memory cells.

The procedure for obtaining calibration constants from the
dynamic range scan data collected with CS is similar. In this
case, we fit three linear functions to each gain region and derive
the gain setting ratio from the slopes of the fit.

It is important to note that while both sources are valuable tools,
they do come with limitations: the PC source can cover only HG and
a relatively small part of MG, typically around 10%, primarily up to a
few hundred 10 keV photons. On the other hand, CS spans all gain
settings, but is not compatible with the European XFEL timing. In
both cases, certain artifacts may be visible in the data that are not
always reproducible when collecting X-rays.

3.5 Absolute gain conversion factors from
low intensity fluorescence data

The absolute calibration in the high gain (HG) region,
quantified in terms of the conversion factor ADU/keV, is

FIGURE 6
(A)Dynamic range scan example using the Pulsed Capacitor (PC). The blue region corresponds to the high gain setting, red represents the transition
region between the high and medium gain, and green represents the medium gain region. (B) High gain to medium gain ratio values for all pixels of a
single module, plotted as a function of the memory cell index. (C) High gain to medium gain ratio map for AGIPD1M, averaged across all memory cells.
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executed using low-intensity, flat-field fluorescence photon data.
These measurements are conducted right at the beamline,
eliminating the need to disassemble the detector system from
the instrument. Typically, a copper (Cu) foil serves as the
medium for these measurements, although at higher energies,
such as with Yttrium Y), the measurements are adapted
accordingly. To prevent rapid degradation of the material
under the intense XFEL beam, the X-ray beam size on the foil
is intentionally defocused to approximately 100 μm × 100 μm.
Additionally, the intensity of the incident X-ray beam is finely
tuned to yield a detectable signal of around half a photon per
pixel per pulse. The distance between the detector and the
interaction point is adjusted to ensure uniform illumination of
the entire detector simultaneously. This uniformity can be
achieved at distances on the order of 100 cm and beyond.

The collected data (approximately 15,000 events for each
memory cell in every pixel) after offset subtraction is used to
determine the absolute gain factors. This determination is made
by evaluating the separation between the photon peak positions,
including the 0-photon (noise) peak. The position of these peaks is
derived by fitting a multi-Gaussian function to the single-photon
spectral distributions collected for each memory cell within each
pixel, as shown in Figure 7A. This process involves performing a
total of 352 million fits for AGIPD1M. Figure 7B shows the absolute
gain factors for high gain as a function of the memory cell index for
one of the FEM modules installed in AGIPD1M at SPB/SFX.
Additionally, an example of an absolute gain map for high gain,
averaged across all memory cells in a pixel, is presented in Figure 7C.

The absolute gain values, in conjunction with the gain ratios
obtained from the dynamic range scans described in Section 3.4,
provide a comprehensive calibration of the detector gain.

3.6 Bad pixels determination

The accurate identification and classification of all detector
channels, in this case pixels, is essential for any scientific analysis.
This process involves recognizing and documenting information
regarding pixels that do not perform optimally. The primary
objective of this identification is to facilitate the exclusion of
problematic pixels from the analysis. This information is
encapsulated within what is commonly referred to as a “bad
pixel mask”.

Problematic pixels can exhibit various issues. Some may be non-
functional, a condition commonly referred to as “dead pixels.”
Others may not respond to X-ray stimuli, exhibit excessive noise,
or display parameter values outside the expected range.

The identification of these problematic pixels is based on the
evaluation of calibration constants derived from the calibration data
mentioned above and provided to users with the corrected data.

1. As an initial step, detection of abnormal or “dead” pixels involves
evaluation of the offset and noise values derived from dark data.
A pixel is flagged as “bad” if one of these values exceeds or falls
below predefined thresholds. Two threshold settings are
available: one establishing absolute limits for noise and offset
values and the other determined by the standard deviation
calculated from mean offset and noise values across all
memory cells and pixels. Typically, pixels with values
exceeding ±5 standard deviations from the mean are classified
as “bad pixels.” These threshold settings are adjustable, allowing
for more leniency or stringency depending on the specific
requirements of the scientific analysis. For example, when
dealing with sparse XPCS data, a more conservative definition

FIGURE 7
(A) An example of low-intensity Cu fluorescence (Eγ= 8.05 keV) spectrum for single pixel andmemory cell. Multi-Gaussian functionwas fitted to the
data. (B) Absolute gain values of high gain setting as a function of memory cell index for one of FEMs installed in AGIPD1M detector at SPB/SFX. (C)
Absolute gain map of high gain setting for AGIPD1M installed at SPB/SFX, averaged across all memory cells.
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of “bad pixels” may be necessary to minimize the detection of
“false positive” single photons.

2. Identifying pixels that might exhibit normal behavior in high gain
but struggle to transition to medium or low gain settings is the
next step. To recognize these problematic pixels, internal charge
injection data is used. Pixels are classified as ‘bad’ if their gain
ratios exceed or fall below predefined thresholds, which are
determined in the same manner as for offset and noise values
derived from dark data.

3. The final refinement of problematic pixel detection is achieved
using data obtained with X-rays. These data allow for the
identification of pixels that are insensitive to X-rays and pixels
with abnormal absolute gain values that exceed predefined
thresholds, which are defined in the same manner as
previously described for other calibration constants.

4 Operational aspects–performance
and reliability of AGIPD detectors

4.1 Scientific outcome

The AGIPD detector is used in different kinds of experiments.
The following sections give an overview of the main experimental
techniques used with AGIPD and highlight some of the
published results.

4.1.1 Serial femtosecond crystallography
High peak brilliance, combined with the MHz repetition rate of

X-ray pulses, makes the European XFEL exceptionally attractive for
serial femtosecond crystallography (SFX), a method routinely used
to study both the structure and dynamics of proteins at room
temperature [34]. SFX employs the “diffract before destruction”
principle. This means that, due to the short duration of the incident
X-ray pulses, a diffraction signal is collected before the sample is
obliterated by the X-rays. The SPB/SFX instrument at the European
XFEL is purpose-built to facilitate these SFX-type measurements.
The AGIPD1M detector is an integral component of the in-vacuum
interaction region at SPB/SFX and among its crucial attributes for
SFX are the high dynamic range and MHz acquisition rate. In a
typical experiment, sub-micron crystals suspended in a low-viscosity
buffer medium are injected into the X-ray beam in the form of a
liquid jet. Resolving a protein structure requires around ten
thousand randomly oriented diffraction patterns. Taking into
account an average crystal hit rate of approximately 1%, this
requires the collection of approximately a million images in the
shortest possible time frame. The high repetition rate of X-ray pulses
at the European XFEL allows the recording of diffraction data more
than an order of magnitude faster than previously achievable [35].
The most common configurations are 3,510 images per second at a
detector acquisition rate of 1.13 MHz or approximately 2000 images
per second at a detector acquisition rate of 0.56 MHz. The reason for
collecting fewer images at 0.56 MHz compared to 1.13 MHz is due to
the constraints on the number of pulses available from the XFEL
accelerator at this repetition rate. Specifically, the RF window is
limited to a maximum duration of 600 µs, and these pulses are
distributed among three beamlines simultaneously. An example of
an experimental setup used for SFX is provided in Figure 8A, while

Figure 8B presents a single-crystal diffraction image captured with
the AGIPD1M [37]. Multiple experiments have convincingly
demonstrated that data recorded with the AGIPD1M and
calibrated with the European XFEL calibration routine yield
high-quality results [36, 41, 42].

4.1.2 Single particle imaging
Single particle imaging (SPI) is a technique oriented towards

resolving the structure of individual particles or molecules based on
a multitude of interactions between X-ray pulses and the sample.
The underlying principle of this experiment is illustrated in
Figure 8C. The SPI technique uses high repetition-rate X-ray
pulses provided by the European XFEL to capture 2D diffraction
patterns from a repeatable sample in random orientations. It relies
on statistical sampling to gather diffraction patterns, which are
subsequently analytically combined to reconstruct the 3D
electron density of the sample. In the case of SPI, low noise and
the capability to resolve a single photon are among the key
requirements for the detector. In practice, tens of thousands of
good quality patterns are necessary to complete the measurement.
During SPI experiments, the AGIPD1M typically operates at its
highest frame rate. For investigations involving weakly scattering
samples, AGIPD offers the flexibility to adjust the gain of the
Correlated Double Sampling (CDS) stage [15] of the pixels. This
adjustment enhances single-photon resolution at the cost of reduced
dynamic range.

The AGIPD1M detector has demonstrated performance,
allowing the successful execution of single particle imaging
experiments at SPB/SFX. Detailed results from a study on gold
nanoparticles are presented in [38], while the findings of studies
involving Iridium Chloride (IrCl3) and Mimivirus are presented in
[39]. Examples of scattering patterns from these experiments are
shown in Figure 8D.

4.1.3 X-ray photon correlation spectroscopy
X-ray Photon Correlation Spectroscopy (XPCS) is a technique

used to investigate the dynamics and kinetics in hard and soft
condensed matter samples. At synchrotrons, it conventionally
enables the probing of dynamics at timescales ranging from
milliseconds to hours. However, the MHz repetition rate of the
European XFEL and the AGIPD detector permits exploration of
structural dynamics at much shorter timescales, in the sub-
microsecond range. This is particularly relevant since sub-
microsecond and microsecond timescales are natural for the
diffusion of biophysical systems and nanoparticles in their
aqueous environments [40]. An illustration of an XPCS
experiment and the average scattering intensity obtained from
the analysis of the data collected with the AGIPD1M detector are
shown in Figures 8E, F respectively.

XPCS exploits the coherence of the XFEL beam, by recording
speckle patterns of typically non-crystalline samples, which encode
the spatial arrangement of the scatterer. The dynamics can be
obtained from a series of such speckle patterns by calculating the
temporal auto-correlation function. The AGIPD was designed
primarily for experiments such as imaging or femtosecond
crystallography. However, it can also be utilized for X-ray Photon
Correlation Spectroscopy (XPCS) under certain conditions. One
main challenge is to detect the speckle pattern with sufficient spatial
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FIGURE 8
(A) Experimental setup for SFXmeasurements (originally published in [36]). (B) Example serial crystallography data taken using AGIPD1M during early
user experiments at SPB/SFX. Note the well-defined Bragg peaks that span a large fraction of the detector dynamic range (published in [37]). (C)
Experimental setup for SPI experiments (originally published [38]). (D) Examples of scattering patterns from IrCl3 and Mimivirus recorded by AGIPD1M
(originally published in [39]). (E) Experimental setup for XPCS experiments published in [40]). (F) Example of the mean scattering intensity of an
aqueous silica nanoparticle solution recorded by AGIPD1M (originally published in [5]).
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resolution. The speckle visibility (or speckle contrast in XPCS
experiments) is diminished if the pixel size of the detector is
large compared to the speckle size, with an optimum Signal-to-
Noise ratio if both quantities are equal. In user experiments probing
nanometer length scales in small-angle (SAXS) configuration this
criterion can readily be achieved by sufficient focusing of the X-ray
beam. Several user publications have used this configuration
successfully and it is offered as standard configuration at the
MID instrument [5]. Early exploratory studies [5, 43–45] were
built on a previous experiment at SPB/SFX [40], and have since
been followed by more application-oriented experiments on protein
aggregation and diffusion [46], functional nanoparticle self-
assembly, or temperature-jump swelling-deswelling kinetics of
PNIPAM nanogels [47].

Extending these measurements to atomic length scales in wide-
angle (WAXS) geometry has proven to be more challenging. The
finite longitudinal coherence length leads to a further reduction of
speckle contrast in addition to the one due to the large detector
pixels. Additionally, the scattering intensity at larger angles is
typically much reduced, making it comparable to the inherent
noise level of the detector. To accommodate the sources of noise
in AGIPD that can negatively impact XPCS data analysis even at
higher intensities, a special data treatment had to be developed, as
reported later in 4.3. This has proven to work well for most of the
XPCS experiments in SAXS geometry; however, for WAXS
experiments the noise characteristics at lower intensities as well
as the large pixel size at smaller speckle contrasts remain
challenging.

4.2 Performance challenges and continuous
improvements

The data obtained with all AGIPD detectors installed at the
European XFEL have been used to generate a considerable amount
of scientific output. More than 20 publications have been produced
on the basis of the data collected with these detectors. The
experience with the commissioning, calibration and operation of
the AGIPD has allowed us to identify several shortcomings that
affected the quality of the data. The European XFEL and AGIPD
Consortium have made a significant effort to understand the
behavior of the detector and to successfully improve its
performance. This involved hardware enhancements,
optimization of detector configurations, and software data
processing that are described in the following sections.

4.2.1 Baseline shift dependence of incoming X-ray
intensities

It was observed that certain pixels in the images exhibit negative
intensity values, and this effect becomes more pronounced as the
overall intensity in this FEM module increases. To quantify this
effect, a ‘mask’ was installed in front of the AGIPD1M detector at
SPB/SFX, shadowing some parts of all FEMs, and an intensity scan
was performed. An example image is shown in Figure 9A. This data
was further analyzed and yielded the following observation: the
common baseline signal of a module shifts to lower values, and the
shift is linearly proportional to the incoming X-ray intensity causing
a ≈20% decrease in the level of measured photon signal.

The issue is caused by the depletion of the sensor, which then
also acts as a capacitance, and the resistor connecting it to the high-
voltage (HV) input, in this case exacerbated by the parallel
capacitances of a Pi-filter. The purpose of a resistor at this point
is to limit the current, once the HV has to be turned off. This current
limitation also affects sensor signals: Once the sensor absorbs
X-rays, it cannot be re-charged immediately due to the finite
RC − time constant, and in turn the high voltage drops by a
finite amount, registered as a shifted baseline.

These resistors were exchanged on all AGIPD1M vacuum
boards, leading to a reduction in the baseline shift to <2% of the
deposited signal. The baseline shift before and after hardware
modification is plotted as a function of the integrated intensity in
Figure 9B. This effect is most pronounced for pixels in high gain as
the aforementioned resistors are in series with the input impedance
of the preamplifier. Since the latter is reduced by switching to MG or
LG, the RC − time constant is further lowered, and consequently the
baseline shift is further suppressed.

4.2.2 Gain continuity close to the transition region
In scattering experiments, the presence of randomly fluctuating

pixels exhibiting unusually high signal values, commonly referred to
as “snowy pixels”, was observed. These snowy pixels tend to
manifest when incident X-ray intensities approach the transition
region between high and medium gain stages. Although the gain
setting of these pixels is classified as medium gain based on their
analog gain signals, a closer examination reveals that the signal levels
of these pixels do not align with expected intensities. They appear to
exhibit values that are inadequately low for high gain and excessively
high in medium gain settings. An example of snowy pixels is shown
in Figure 10A. These pixels, depending on context, may look like
valid events, e.g., in a Bragg peak, and actually disturb analysis.

The appearance of “snowy pixels” within the detector can be
attributed to a late gain switching effect. In the AGIPD system, a
voltage representing the collected charge is written to the analog
memory at the end of the integration time. However, when gain
switching occurs too close to the end of this period, the CDS stage,
which has the lowest bandwidth in the ASIC, does not have enough
time to settle, resulting in an excessively high stored voltage. Late
gain switching can be influenced by several factors. One is the
relatively short integration time, despite the XFEL pulses being
extremely short, i.e., tens of fs. The charge collection time for the
sensor is several tens of nanoseconds, and the profile of this charge
collection approximates a falling exponential curve. Consequently,
the tail of the signal charge may overlap with the end of the
integration time, potentially causing incomplete stabilization of
the signal before integration is completed, as illustrated in
Figure 10C. Furthermore, noise can be a contributing factor, as
random noise can trigger gain switching for signals near the
threshold. Additionally, the leakage current becomes relevant for
signal levels close to the threshold, which eventually leads to
gain switching.

To mitigate the issue of “snowy pixels,” two potential solutions
have been identified that do not require a re-design of the ASIC.
Both solutions aim to optimize the detector configuration to
enhance the quality of output data for specific experimental
methods. In situations where ensuring single-photon sensitivity is
crucial while maintaining a high dynamic range, and considering
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that most experiments at SPB/SFX and MID typically involve pulses
at repetition rates below 4.5 MHz (i.e., 2.25 MHz or lower),
extending the integration time is an option to consider. In this
mode, the pulse is recorded at the beginning of the integration
window and the window itself is prolonged. Operation of the
detector with an extended integration time results in a substantial
reduction in snowy pixels, reducing their occurrence from around
10% to below 0.01% for transition region intensities. This
improvement was verified through a dedicated measurement at
the SPB/SFX instrument, specifically with water jet scattering and
two integration times of 120 ns and 200 ns. A comparison of the
results is shown in Figures 10A, B, which highlights the significant
improvement in data quality when integrating over 200 ns. On the
other hand, if single-photon sensitivity is not required, the AGIPD
can be operated in a fixed medium gain mode, where the detector
gain is set to a predefined value (i.e., medium gain), and dynamic
gain switching is disabled. This approach prevents transitions
between gain stages. However, it is not suitable for low-intensity
data that require single-photon sensitivity, as it leads to increased
noise from approximately 1.3 keV to more than 40 keV.

4.3 Dealing with very sparse data

In experiments with low photon intensities, particularly when
dealing with sparse data (i.e., below 0.1 photon per pixel per pulse),
a special operation mode is implemented to minimize noise and
increase the single-photon sensitivity. This mode effectively reduces
noise levels from 1.3 keV to approximately 0.9 keV, resulting in a
narrower dynamic range limited to only a few tens of photons. This
operation mode has become the standard mode of choice of SPI 4.1.2,
XPCS 4.1.3, or fluorescence correlation imaging [48].

In addition to the standard correction using calibration constants,
specific common-mode corrections are additionally applied. Common-
mode noise denotes a type of signal variation that affects groups of read-
out channels in a synchronized manner. It can arise from various
sources, including common electromagnetic interference or voltage
fluctuations. Common-mode noise not only contributes to overall noise
levels, but can also potentially introduce artificial hit patterns. The
extent of its impact varies depending on specific detector components,
such as ASICs, and the surrounding environmental conditions. The
precise spectrum of common-mode noise is typically not known in
advance. In certain cases, the contribution of common-mode noise can
be estimated either on a per-image basis or for groups of read-out
channels. This process involves subtracting the offset from the raw
signals, excluding the channels with the actual signal, and computing
the average signal observed on these channels. This calculated average
signal provides a reasonable estimate of the contribution of common-
mode noise, which can then be subtracted from the signals.

For the AGIPD1M detectors, two sources of common-mode noise
have been identified: one at the ASIC level and another along the
memory cell rows (due to the cells being grouped into 11 × 32 matrices,
as described in Section 1.2). Correcting for common-mode noise
significantly improves data quality, especially when dealing with
sparse intensities, as demonstrated in Figure 11. However, it is
essential to note that common-mode corrections may not fully
address all issues related to offset instabilities. In specific instances, it
has been observed that a small fraction of pixels (less than 0.01%)
experience “jumps” in offsets within blocks of 32 storage cells, but for
several consecutive trains. While the magnitude of these “jumps” is
typically on the order of a single photon, synchronous jumping of
several storage cells in one pixel can introduce significant artifacts in
correlation analyses, such as XPCS where different storage cells are
correlated with each other. To address these issues, a tailored correction

FIGURE 9
(A) A single image illuminated with high-intensity Cu fluorescence photons after offset subtraction. The three areas in purple color represent the part
of the module covered with Ta stripes. The histogram illustrates the shift of the noise peak toward negative values resulting from the baseline shift. (B)
Baseline shift value as a function of the integrated signal in FEM, normalized to the number of pixels, before modification of the vacuum board hardware
(depicted in blue) and after modification of the hardware (depicted in orange). Linear functions were fitted to each dataset to quantify the baseline
shift effect before and after hardware modification, resulting in an order of magnitude reduction of the effect.
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approach becomes necessary as part of data analysis. As an example, the
corrections tomitigate the ‘jumping’ pixel issue were developed byMID
and the XPCS user community and were successfully used during data
analysis [5, 43]. This method involves calculating not only the temporal
autocorrelation function within one train (along the storage cell
dimension) but also cross-correlation terms involving data from
different trains. Since the measured speckle pattern should be
uncorrelated from train to train, the resulting correlation matrices
should primarily contain terms originating from jumping-pixel
contributions. This approach has been shown to mitigate this

artifact down to low intensities of 10–2 − 10–1 photons per pixel per
pulse, but was not sufficient to correct XPCS data at even lower
intensities.

4.4 Performance degradation due to
radiation damage

The AGIPD1M detectors at European XFEL are at risk of
radiation damage due to the intense X-ray beams used in the

FIGURE 10
(A) Image of a water jet ring collected with the AGIPD1M detector at SPB/SFXwith a 120 ns integration time. Snowy pixels are identified as those with
unexpected high-intensity values. (B) Image of a water jet ring taken with the AGIPD1M detector using a 200 ns integration time. The presence of snowy
pixels is to a large extent suppressed. (C) Illustration of the late gain switching mechanism (left plot) and intensity scans for a single pixel (right plot),
including the transition region between high and medium gain visible for the integration time of 120 ns.
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experiments. This damage can result in a decrease in detector
performance over time, leading to issues such as changes in
offset, increased noise, or reduced capacity to detect photons.
Notably, the impact of radiation damage is more pronounced in
the detector’s electronic components, particularly the ASICs, than in
its sensor.

Despite safety measures, accidents can occur, such as the
exposure of the detector to the direct X-ray beam or to
exceptionally intense X-ray diffraction signal during experiments.
In the case of the AGIPD1M detector used in serial femtosecond
crystallography, such intense diffraction signals that exceed the
detector’s radiation damage threshold can occur when ice, which
can form at the nozzle of the sample injection system, is hit by the
X-ray beam. As mentioned in Section 2.4, this can result in
permanent damage to specific regions of the detector.

Furthermore, exposure of the AGIPD1M detector to high-
energy X-rays above 20 keV, for which the 500 μm silicon sensor
is almost transparent, can lead to ASIC damage occurring more
frequently than when the detector is used in its optimal energy range
of 8–12 keV.

In instances of radiation damage, it becomes necessary to re-
calibrate the affected portions of the AGIPD1M detector. When
damaged pixels are critical for scientific analysis, it may be necessary
to replace the entire FEM for optimal performance restoration.
Examples of radiation damage are shown in Figure 12.

4.5 Data volume

The AGIPD detectors at the European XFEL are among the
most frequently used MHz detectors at the facility, contributing to
more than 80% of the total raw data. This significant contribution is
mainly attributed to the detectors’MHz operation. Furthermore, the
unique design of the AGIPD detectors, which incorporates analog
gain information alongside the images, significantly increases the
data volume. The gain encoding process, due to the reasons
discussed in Section 3.3, is performed “offline” and not in the
detector back-end electronics, involving FPGAs as
originally planned.

The data recorded at the European XFEL continues to
accumulate rapidly and is approaching the 100 petabyte mark,
necessitating a robust data volume management and data
reduction strategy. To address this challenge of data volume, the
European XFEL has devised a comprehensive strategy [49]. This
approach encompasses early data reduction planning within the
Data Management Plan (DMP), the development of operation-
specific and technique-specific data reduction methods, enabling
real-time data reduction for new experiments, and facilitating
retroactive data reduction for previously collected data in
collaboration with users. It also underscores the importance of
integrating data reduction capabilities closer to the detector head,
including within the ASIC or detector back-end electronics, as a
critical consideration for the design of future detectors.

FIGURE 11
(A) Example of common mode corrections effect on low-
intensity data: mean intensity over 100 trains without common mode
corrections (a) and with common mode corrections (b). (B) The two-
time correlation function: (a) basic background subtraction; (b)
including common mode corrections (originally published in [43].

FIGURE 12
(A) Radiation damage resulting from an excessively intense X-ray
diffraction signal (signal above the detector saturation point) from a
powder sample. Entire ASICs are affected, although the signal was
focused only on the sharp ring visible in the picture. (B) Radiation
damage caused by exposure to a high-intensity X-ray diffraction signal
generated by a 20 keV beam on a diamond anvil cell.
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5 Insights for next-generation detector
development

Over years of operation, the AGIPD detectors have consistently
demonstrated their ability to deliver high-quality scientific results, as
discussed in Section 4.1. Concurrently, data collection and dedicated
studies have brought to light challenges that impact detector
performance and scientific measurements. These challenges,
although demanding, have provided invaluable experience and
insights. This knowledge will be instrumental in shaping future
detector projects for the European XFEL, offering valuable lessons
that extend beyond the facility itself.

5.1 Effective scheduling and collaboration

Accurate project scheduling in research and development can
present significant challenges. In 2006, the European XFEL issued a
call for proposals to develop a MHz 2D Imaging Detector, leading to
three projects, one of which was AGIPD. The first AGIPD1M
detector became operational in mid-2017. Comparable timelines
were observed in other detector projects at the European XFEL,
including LPD and DSSC. Therefore, prudent planning that involves
contingencies and realistic expectations regarding the development
timeline, potentially spanning around a decade, is advisable.

Early collaboration with instrument experts, detector end users,
and system integration, control, and data acquisition teams is of
paramount importance. This collaboration helps ensure
harmonious alignment of scientific and technical requirements,
covering aspects such as infrastructure and control systems,
between the detector developers and the ultimate users.

5.2 Detector system integration
and operation

During the integration of detectors, such as AGIPD1M, a
complex process unfolds, with a strong emphasis on convenience
and ease of operation. Considerations in designing the detector’s
mechanical interfaces to the rest of the instrument, as well as
detector internal/external components, should ensure accessibility
to cables, connectors, and internal detector components, simplifying
replacement and repair processes. In particular, components
exposed to X-rays are susceptible to damage, underscoring the
importance of spare parts availability and straightforward repair
procedures.

To streamline integration, efforts to simplify the power supply
system and optimize the power consumption of the detector can
significantly reduce complexity. This includes minimizing the
number and thickness of power cables, enhancing the flexibility
of the system, and mitigating the risk of potential damage during
detector movement. Although this aspect has been partially
addressed in the design of new-generation AGIPD detectors,
more work can be done.

Efforts to reduce power consumption can also positively affect
detector cooling requirements, as discussed in Section 2.3. Achieving
optimal temperatures for detector components within a vacuum
environment remains a challenge. Future detector developments

should consider careful optimization of cooling system design,
electronics design, and power dissipation to ensure
desirable outcomes.

Furthermore, optimizing the design of electronic boards is
essential to maximize the active area of the detector that relates
to the entire system, particularly in instruments with limited space.

It should be noted that the adoption of a modular system with
minimal critical components for the entire detector assembly can
prove beneficial. If such functionality is necessary, the components
should ideally be located outside the detector assembly vessel. This
approach enables efficient component replacement in a short time
frame, typically minutes to hours, without extensive effort. In the
case of AGIPD1M detectors, composed of two electronically
independent halves, the control of each half is managed through
the master FPGA. However, this concept presents some
disadvantages, such as the loss of half of the detector’s
functionality in the case of a board failure. The design of the
next-generation of AGIPD detectors, which addresses these
concerns through redesigned back electronics, is promising.

Another vital but often overlooked aspect is the detector safety
system. The interlock system developed for the AGIPD1M detectors
effectively protects them against unexpected failures (e.g., vacuum or
cooling failure) and potential human errors. Over years of operation
at the European XFEL, this system has prevented more than ten
accidents, including damage fromwater condensation on electronics
due to vacuum failure or component overheating due to cooling
issues. However, as mentioned in Section 2.4, the AGIPD1M
interlock system relies on external PLC-based interlocks that
monitor temperature and pressure sensors within the detector
vessel and act accordingly. This increases the infrastructure of
the detector, requiring a more self-protecting system. Therefore,
ensuring detector safety must begin at the design level,
implementing a simple, reliable and ideally self-protecting system
to minimize the risk of detector damage.

However, there are cases where protection is not always feasible,
as exemplified by radiation damage, discussed in Section 4.4.
Therefore, the mitigation of radiation damage in the ASIC is a
critical aspect of future detector development for high-intensity
X-ray sources.

Finally, the significance of data quality cannot be overstated in
determining the performance of the detector. Achieving high-
quality data is highly dependent on the precise calibration and
characterization of the detectors. This process is not a one-time
activity, but must be conducted regularly, even during user
experiments, to address incidents that may impact data quality.
The utilization of internal calibration sources, such as the Pulsed
Capacitor (PC) and Current Source (CS), facilitates routine dynamic
range scans. Nevertheless, it is worth noting that both sources
possess limitations, as discussed in Section 3.4. Therefore,
prioritizing the development of a reliable, “in-situ” calibration
mechanism, particularly at the ASIC level, becomes imperative
for the progression of future detector generations.

5.3 Testing the system under real conditions

Comprehensive testing of a detector system can only be achieved
under actual operational conditions. This necessitates evaluating the
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detector at its full size, within the final installation infrastructure,
and, in our case, in the presence of the European XFEL beam. The
absence of the beam during the detector’s development phase left
certain features unidentified and unaddressed until the detector was
fully assembled and installed. Consequently, it is advisable for any
new detector project to test its prototype under conditions that
closely resemble the final operational environment, with a focus on
considering scalability from the project’s inception.

When delving into particulars of the chip design, several key
observations were brought to light that could be beneficial for
forthcoming development projects.

1. Data quality is influenced by the utilization of an analog memory
matrix for storing image data on pixel before it can be transferred
from the detector head. Challenges are posed by variations in
offset and gain, which depend on the index (position) of the
memory cell in the pixel and the leakage into neighboring
memory cells that leads to the issue of gain encoding as
described in Section 3.3. To enhance data quality, the
requirement of generating calibration constants for each
memory cell in the pixel should be reconsidered. In the next-
generation of detectors, it is proposed that exploration of options
such as digital storage cells or alternatives to existing storage cells
be undertaken, with the potential to enable real-time data transfer
from Front-End Modules (FEMs).

2. The achievement of a high dynamic range through an adaptive
gain mechanism is accompanied by challenges related to
linearity and data quality, particularly in the transition
region between gain settings. Comparable issues have been
noted in other detectors that employ adaptive gain
mechanisms, such as JUNGFRAU [50]. To address these
concerns, the exploration of alternative implementations
and solutions aimed at realizing a high dynamic range or a
more robust design of the adaptive gain switching mechanism,
preventing the aforementioned “late gain switching” and
avoiding the transition region between different gain
settings, is deemed to be imperative. This is of paramount
importance, as the dynamic range remains a critical parameter
to be realized in the next-generation of detectors.

6 Conclusion and outlook

The AGIPD detector systems deployed at the European XFEL
instruments have demonstrated their reliability and made a
significant contribution to the generation of valuable scientific
data, as evidenced by numerous scientific publications. This
underscores their ability to support experiments with specific
demands, provided that their characteristics and limitations are
well understood.

A commitment to continuous improvement and development in
the operation of the AGIPD detectors has resulted in substantial
benefits, leveraging the expertise of detector specialists and beamline
instrument scientists with a range of backgrounds. Through
hardware optimization, enhanced detector characterization, and
advanced data processing techniques, we have effectively
accommodated diverse experiment requests and acquired reliable
scientific data. Regular maintenance, updates, and innovative data

processing have collectively increased the quality of AGIPD-
generated data.

However, it is essential to acknowledge that AGIPD
optimization remains an ongoing process. Collaborative efforts
that draw upon the expertise of individuals with diverse
backgrounds remain essential components in optimizing detector
performance and addressing observed issues.

Looking ahead, the second generation of AGIPD detectors,
slated for installation in 2024 at the HED instrument (one-
megapixel system) and the SPB/SFX instrument (four-megapixel
system), represents a significant step forward. A prototype of the
new detectors is already in use at HED, with the first results from
user experiments already published. Although certain challenges
discussed in this publication have been addressed in the second-
generation AGIPD, not all have been resolved. As emphasized in this
paper, the redesign of key detector components, such as the ASIC, is
essential to effectively address these challenges.

The operational insights gained from AGIPD detectors will play
a valuable role in shaping the future of the detector development
program at the European XFEL. The integration of the initial
detector generation into the European XFEL instruments was a
formidable undertaking, revealing infrastructure challenges for
integration and operation. To address these challenges, we
emphasize the need for more compact and efficient power and
cooling designs with standardized interfaces.

Our experiences underscore the importance of ease of operation
and reliability, accessible detector components for maintenance and
replacement, and the critical role of hardware interlocks, including
the consideration of self-protecting detectors. Furthermore, the
management of the substantial volume of generated data requires
early design-level data reduction strategies.

Data quality remains the paramount measure of detector
performance, highlighting the necessity of evaluating methods to
achieve high dynamic range, exploring alternative solutions for
storing data at pixel level instead of relying on analog memory
cells, and designing calibration-friendly systems with reliable in-situ
calibration sources.

Although the scientific requirements for the initial years of
instrument operation are met by current detectors to the largest
extent, plans for the next-generation of detectors are well underway.
The demand for smaller pixel sizes, extended dynamic range, and
the ability to operate at MHz rates while recording even more pulses
per second are the primary driving factors behind the search for
innovative technological solutions. Transitioning from 130 to 65 or
28 nm CMOS technology and exploring three-dimensional
integrated electronic circuits may offer promising avenues for
addressing these challenges. Additionally, the development of
edgeless sensors holds potential for minimizing inactive detector
areas. Furthermore, the imperative of maintaining high quantum
efficiency, even at energies exceeding 20 keV, motivates the
exploration of materials with atomic numbers higher than those
of silicon.

With the prospect of developing novel detectors for the post-
2030 European XFEL operation, the insights and experiences gained
from the AGIPD detector operation, in conjunction with the ever-
evolving scientific requirements, constitute indispensable
foundations for shaping the future of detector technology for the
European XFEL.
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The European XFEL is a megahertz repetition-rate facility producing extremely
bright and coherent pulses of a few tens of femtoseconds duration. The amount
of data generated in the context of user experiments can exceed hundreds of
gigabits per second, resulting in tens of petabytes stored every year. These rates
and volumes pose significant challenges both for facilities and users thereof. In
fact, if unaddressed, extraction and interpretation of scientific content will be
hindered, and investment and operational costs will quickly become
unsustainable. In this article, we outline challenges and solutions in
data reduction.

KEYWORDS

data reduction, photon science, X-ray free electron laser, data management, high-
repetition rate, big data

1 Introduction

Scientific ambition pushes the progress of modern X-ray light sources. As a result of the
steady evolution in accelerator and detector technology, as well as increased levels of
automation and improved quasi-real-time feedback, the amount of experimental data
produced by photon sources is increasing at unprecedented rates [1, 2]. In particular, the
continuous development and improvement of X-ray imaging detectors (see, e.g., [3], and
references therein) is instrumental to enable the scientific exploitation of the exceptional
brightness characteristic of fourth-generation light sources [4] and X-ray free electron lasers
(XFELs) (see, e.g., [5, 6]). State-of-the-art pixelated X-ray detectors, custom-made or
commercially available, can routinely collect hundreds to a few thousands images per
second [3, 7–14]. Among modern facilities, the European XFEL is a MHz-repetition-rate
X-ray free electron laser providing extremely bright, spatially coherent pulses, which are
characterized by a temporal duration of tens of femtoseconds or less [15, 16]. The facility
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operates in a so-called “burst mode,” delivering 10 Hz trains of up to
2,700 X-ray pulses. The intra-pulse separation can be as low as
222 ns, equivalent to a repetition rate of 4.5 MHz.

The detector data rates at the European XFEL can exceed one
hundred gigabits per second, resulting in the production of
several petabytes of data for a single experiment with a typical
duration of two to 6 days. The MHz-capable detectors at the
European XFEL are the DEPFET Sensor with Signal Compression
(DSSC) [12], the Adaptive Gain Integrating Pixel Detector
(AGIPD) [10, 11], and the Large Pixel Detector (LPD) [8, 9],
each of which has up to 1024 × 1024 pixels. When integrated into
our infrastructure, the maximum data rates are 134 Gbit/s,
118 Gbit/s, and 86 Gbit/s, respectively. Additionally, digitizers’
data rates can approach several gigabits per second, and multiple
of these devices may be employed during a single experiment. As
a result, the volume of scientific data collected during user
experiments has steadily increased since operation began in
2017. This is illustrated by Figure 1, where the total amount
of raw data (its precise definition is given in Section 2.1)—about
100 PiB as of today—is shown as a function of time. Apart from a
deceleration caused by a reduced number of experiments during
the most acute phase of the COVID-19 pandemic, the rate of data
collection is ever-growing. This can be explained by the
asynchronous start of the seven scientific instruments, as
highlighted in Figure 1, as well as the continuous
enhancement in operational efficiency—from accelerator and
instrument performances to data systems reliability, from
procedure optimisation and automation to advances in sample
delivery. While operational efficiency cannot increase
indefinitely, future facility upgrades will inevitably result in
higher data throughput. In the short term, for example, an
AGIPD of 3.7Mpx, with a theoretical data rate approaching
half a terabit per second will be installed. In the medium

term, upgrades of the accelerator will increase its duty factor,
and in turn the number of X-ray pulses delivered each second [16,
17]. Additionally, the current scientific data policy1 defines that
scientific data at European XFEL shall be curated for at least
five years although striving for ten.

Storage systems are expensive and limited in lifetime, they
consume electric energy, increase CO2 emissions, and require
dedicated personnel for their maintenance and operation. The
resulting non-negligible economical and environmental footprint
must be urgently addressed. This means that, altogether, a
continuous expansion of the storage system is not sustainable.

While storage-related issues are the most evident, the enormous
data rates and volumes pose other challenges, both from a technical
and a scientific point of view. In fact, the complex solutions required
to handle the enormous data rates often necessitate using leading-
edge technology. This is expensive and requires deep expert
knowledge to keep the systems stable. In operation, these systems
may be prone to instabilities—like the degradation of their
performances—which in turn, could potentially disrupt data
acquisition and near real-time monitoring of the experiments.
The data coming from the MHz-capable detectors is not trivial
to interpret, and the European XFEL has been developing the so-
called correction pipeline to transform it into physics content [18].
This pipeline is typically triggered automatically as soon as data is
collected, and results in additional data transfer, processing, and
storage requirements. As exemplified by the correction pipeline, the
analysis of large amounts of data typically requires software that can
exploit multiple computational nodes, and cope with latencies
inherent to ingesting data at high rates. Accordingly, distilling
scientific content can be considerably more challenging with a
larger data volume, and can be potentially compromised if data
is not pre-processed by specialized tools developed by experts. More
complex analysis methods, in turn, increase latency, which is
particularly detrimental when using analysis results to steer the
running experiments. The additional complexity can even represent
an insurmountable barrier for inexperienced users, which makes the
facility less accessible to test new scientific methodologies and ideas.

The only solution to the aforementioned issues is to reduce the
amount of data, while maximizing its scientific value. Generally,
several reduction operations can be performed during processing
and evaluation of collected data. These are either data
selections—rarely the entirety of collected data is used—or data
transformations, e.g., dimensionality reduction through integration
along some variable.

While the previous discussion revolved around the use case of
the European XFEL, the issues encountered are by no means specific
to our facility. Large-scale high-energy particle physics facilities, for
instance, have embedded their data reduction strategy as part of
their original technical design decades ago (see, for example, Refs.
[19–21]). Additionally, most of the modern X-ray photon sources
are exploring and developing data reduction strategies [22], also
owing to initiatives of policymakers such as European Union’s

FIGURE 1
The blue line shows the total amount of data collected (raw data)
in pebibytes (PiB) at European XFEL as a function of time since the
beginning of operation. The orange, green and red lines show the
subset of data produced by the AGIPD, LPD and DSSC detectors,
respectively. The black arrows indicate the start of instrument
operations, blue arrows show the installation of megahertz imaging
detectors, the gray span corresponds to reduced operation due to the
COVID-19 pandemic. The labels of imaging detectors are suffixed
either by 1M or 500K, which indicates the approximate number
of pixels.

1 Scientific Data Policy of the European X-Ray Free-Electron Laser Facility

GmbH (Version 1). European XFEL, Schenefeld, Germany (2017). doi:

10.22003/XFEL.EU-TR-2017-003.
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Horizon 2020 LEAPS-INNOV, and the results of individual research
groups [23–30]. Topics explored vary from lossless and lossy
compression [31] to artificial intelligence [25, 26, 32, 33], from
dedicated hardware solutions to FAIR data [34].

Even though the benefits are clear to both facilities and users,
several open questions and challenges remain from a technical,
scientific, and social point of view. Overall, the risk of data reduction
introducing bias in the results must be minimized, and the ratio of
scientific content over collected data maximized. That is, only the
data contributing to the answer of a specific scientific question
should ideally be curated. Scientists must be given control of the
reduction pipeline, including access to detailed validation metrics.

Reducing data is not avoidable anymore at the European XFEL.
It is our duty to provide tools that enable users to perform data
reduction, thereby maximizing the scientific outcome of the
experiments and minimizing the pressure on our infrastructure.
These tools need to be as transparent and automated as possible, and
their output must be corroborated through extensive validation. We
finally aim at providing extensive and reliable information to
support users’ decisions during and after experiments.

This manuscript aims to serve as an entry-point for our users as
it reports on developed solutions, future plans, as well as strategies
for data reduction and curation at the European XFEL. It
furthermore details challenges and opportunities intrinsic to data
reduction. Further documentation and continuously updated
information are, and will be, made available in Ref. [35]. In
Section 2, we provide an overview of the data infrastructure of
the European XFEL, and its upgrade to enable integration of data
reduction techniques. In Section 3, we present and discuss selected
data reduction workflows, and their applications to data reduction.
In Section 4, the current state and future plans are discussed.

2 Methods

We define data reduction as the act of applying selection and
transformation techniques to experimental data with the goal of
maximizing the density of scientific content. Different quality
criteria or filtering of particular event types can potentially be used
to distinguish valuable and disposable data. An example of a quality
criterion is the X-ray pulse energy being measured above a given
threshold, while a possible event type includes the identification of
photons scattered by a sample. Similarly, interesting detector regions
can be identified, and data outside these regions can be ignored.
Possible data transformations include dimensionality reduction,
change of representation, compression, and additional data analysis
methods. Dimensionality reduction may be achieved by discarding a
portion of the parameter space, or by integrating data along certain
variables. Common operations include binning, averaging of several
data sets, or integration of images along, e.g., the azimuthal angle.

Different experimental techniques leverage various sets of
physical observables, which are analysed according to the
scientific goal of the experiment. European XFEL offers a wide
spectrum of such techniques, hence requiring a flexible choice of the
data reduction method. We refer to such data reduction methods as
technique-specific. In contrast, operation-specificmethods depend on
particular experiment modalities, e.g., a specific detector
configuration.

Examples of technique-specific data reduction can be found in
serial femtosecond crystallography (SFX) [36, 37] and single particle
imaging (SPI) [36, 38], where a significant fraction of the collected
data does not capture a scattering event. The procedure of
identifying whether or not the X-ray beam scattered off the
sample is referred to as hit finding, and can be an important
trigger for selecting data. Another example of a
technique-specific data reduction method is found in small- and
wide-angle X-ray scattering experiments [39], where rotation
invariant scattering data can be azimuthally integrated and
reduced to a one-dimensional curve. Likewise, in X-ray photon
correlation spectroscopy (XPCS) [40, 41] and X-ray cross-
correlation analysis (XCCA) [42], the 2D detector data may be
reduced to intensity-intensity correlation functions.

Technique-specific methods are often more challenging, as they
rely on a proper selection and configuration of the analysis pipeline.
Facility users are often the most experienced with the latter task,
driving the scientific analysis for a given experiment. Thus, we aim at
offering full control over the reduction pipeline, alongside detailed
metrics to continuously monitor the reduction outcome.

Finally, it is worth mentioning that data reduction can be
implemented at different stages of the experiment, that is, during
the data acquisition (online) or after data have been stored to disk
(offline), implying different requirements and limitations. Decisions
can either be automatic and irreversible, or manual and assisted
through detailed event-based annotation.

2.1 Overview of the data infrastructure at the
European XFEL

The European XFEL’s storage and computing systems [43] are
separated into online and offline storage and processing
infrastructure (see Figure 2). The online storage is a performant
cache capable of ingesting scientific data produced during
experiments. In order to be able to effectively steer and control
experiments, the online computing cluster is used to process data
streams provided during data acquisition, and with minimal latency.
After collection, data identified as potentially interesting in the data
management portal myMdC [44] is copied from the online storage
to a second high-performance layer, implemented using the IBM
Elastic Storage System building blocks and presented as a unified
IBM Spectrum Scale (a.k.a. GPFS) filesystem [45]. Here, file-based
processing is performed using the offline computing cluster Maxwell
[46]. This storage system is used during the experiment up to a few
months after it. The third layer is mass storage based on the
middleware system dCache [47], which extends the capacity of
the high-performance system. Both the high-performance and
mass storage systems together are often referred to as offline
storage. The last layer is the tape archive, which provides
resources for long-term data preservation.

The supervisory control and data acquisition (SCADA) system
Karabo [48, 49], which is developed in-house, plays a key role in
data ingestion, and experiment and beamline control. Karabo
implements an event-driven paradigm, built around a central
message broker. Functionalities—either hardware integration or
high-level procedures—can be easily added to the core system via
plugins called devices. Devices can access any information in the
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distributed Karabo system, e.g., control parameters or detector
readings, which can be readily used also for data
reduction purposes.

The data acquisition (DAQ) system is also implemented in
Karabo [50, 51]. It aggregates data from any selected device in the
distributed Karabo system, including area detectors, and matches
the data by event (train) index, before storing it on the disk. This
data is termed raw data. In addition, the DAQ outputs and
streams the data online for monitoring purposes. Data
acquisition and recording are implemented in so-called data
aggregators.

On the online cluster, the monitoring data stream from the
DAQ is sent to the online correction pipeline [18]. The latter,
also implemented in Karabo, transforms raw into usable data
with latencies up to a few seconds. The correction pipeline can
be extended through computational kernels—say, custom
data analysis procedures—implemented as add-ons. For big
area detectors, consisting of multiple sensor modules,
processed data is aggregated and dispatched for further
online processing.

After raw data stored on the online cluster is copied to the offline
cluster, the offline correction pipeline produces a corrected copy of
this data, which is stored as so-called corrected data. This typically
doubles the volume of data collected from area detectors in the
context of an experiment. However, the lifetime of processed data
can be arbitrarily short, as it can be reproduced from the
corresponding raw dataset at any point in time.

2.2 Data reduction points in the data system
and associated risks

Data reduction can be applied at different points in the data
system (see Figure 2), with different implications. In particular, the
earlier and closer the point to the source of the data, the higher the
impact on the system.

As previously introduced, the DAQ defines which raw data
will be stored or transferred to the correction pipeline. Therefore,
any reduction at the DAQ-level is irreversible and can hence only
be applied when the associated risk is minimal. Furthermore, at
this stage, it is difficult to include complex processing of detector
data, due to the strict latency requirements, and the dependencies
on the scientific methodology or detailed data analysis, which are
difficult to automate. Therefore, decisions are only based on
operating conditions that are readily available in the Karabo
environment. Any reduction at the DAQ level maximizes the
impact on the downstream data system. As of today, this point is
used solely to filter detector frames not exposed to X-rays (see
Section 3.1.1), but other reduction techniques will be
implemented, including module or region of interest selection
or gain bit suppression.

The next reduction point is at the output of the online
correction pipeline. Here, the data has been modified for the
benefit of downstream online analysis tools, which receive
filtered or pre-processed and simplified data. Owing to this,
data reduction at this point can decrease feedback latency,

FIGURE 2
Simplified schematic of the European XFEL data acquisition and processing. Cylinders represent data storage elements. Processes above the dashed
blue line are part of the online infrastructure. After the raw data is stored, it is copied to the offline Maxwell cluster, at which point the offline correction
pipeline transforms raw data into corrected data, both of which are made available as part of the offline infrastructure. The online infrastructure is
implemented in the Karabo framework, in which fast detector data is fed to the data acquisition system, that aggregates data from several sources.
The online correction pipeline not only corrects data for online inspection: it also contains an arbiter, which decides which data to store, based on the
configured data reduction methods. In this schematic, red circles represent data reduction points.
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thereby enhancing response times in experiment steering.
Additionally, the load on the network and computing
infrastructure decreases. Examples of add-ons implemented
within the correction pipeline include a peak-finding
algorithm (for SFX), a lit-pixel counter (mainly for SPI) and a
per-detector-module estimator of average intensity. These cover
typical imaging- and event-based experimental techniques. We
foresee that our users will be able to fully exploit this reduction
point by contributing additional data processing code in the
future. Decision criteria at this stage are potentially much more
complex than the ones at the DAQ-level, and might require some
degree of parameter tuning either by experts or algorithms as the
experiment progresses. The time budget for these optimizations,
however, is extremely limited owing to the ephemeral nature of
data streams. That is, decisions must be taken before the next data
batch. Therefore, there is a certain risk of biasing the downstream
analysis due to inaccurate data reduction, with consequences on
experiment steering and, thus, experiment outcome. In the
future, the filtering applied at this point will also be fed back
into the DAQ, which can either annotate or reduce raw data
before storage. The latter case is more risky, as data is irreversibly
discarded. Furthermore, the tuned configuration parameters will
be stored such that they can be later considered as part of offline
correction, or retroactively by users.

Further downstream, the next data reduction point is at the
end of the offline correction pipeline. In this case, only processed
data is affected, while raw data remains unaffected. As the former
can be fully reproduced (see Ref. [18]) from the latter, this is a
minimal risk data reduction. However, similar to its online
counterpart, reduction can bias analysis, thus affecting the
quality of the extracted scientific content. At this point, further
reduction decisions can be taken that will be applied to the
processed data immediately, or can be used to either annotate
or reduce stored raw data as well.

Finally, data reduction methods can be applied to offline raw or
processed data retroactively by users of the facility or sophisticated
algorithms. The reduced data sets can be produced (i) by a tool
provided by the European XFEL, (ii) by one of the said tools taking
into account decisions derived from user input (e.g., list of hits for
SFX or SPI experiments), or (iii) by user tools (perhaps to be
integrated into our data system for the benefit of a larger
community), provided the data format is compatible with
the EuXFEL’s .3

To facilitate the reduction of existing data and ensure its
compatibility with the facility’s data format, the exdf-tools

package [52] has been developed. This is implemented via small
plugins which allow for the usage of several data reduction
operations, such as removing a train or pulse for specific sources
and keys. All such operations may be collected and applied while
rewriting the input data into new files, and serve as a detailed record
of how the data was modified.

3 Results

Below, selected examples of data reduction methods
implemented at the European XFEL are introduced, and their
impact is discussed. First, operation-specific methods are
presented. As is evident from Figure 1, to date, AGIPD detectors
have produced the majority of data. Therefore, developing methods
specific to this detector has been of the highest priority. In the second
part of this section, technique-specific methods are discussed.

3.1 Operation-specific methods

Below, we describe the operation-specific methods currently
implemented at European XFEL. As mentioned previously,
operation-specific methods are technique-independent and
related to instrument operation itself. As ideally, no analysis is
required to decide on the data, these methods are robust, low risk,
and the feedback latency is compatible with online requirements. All
methods except for the module selection are fully automated.

3.1.1 Lit frames selection
Fast area detectors collect data frames in batch mode upon

triggering at 10 Hz. Within such a batch, called a train, X-ray pulses
can be delivered in arbitrary patterns, according to experimental
conditions and requirements. For instance, the intra-train repetition
rate can be lowered so as to allow the sample delivery system to
replenish the interaction region before the next pulse. In other cases,
a complex pulse pattern can be used to probe particular sample
dynamics. As a result, some detector images might be recorded in
absence of X-rays, and therefore are called dark frames. Megahertz
imaging detectors at European XFEL were designed to implement
veto mechanisms to reuse memory cells and avoid recording
dark frames.

However, given the complexity of current detectors, vetoing
might potentially affect data quality or complicate operation. This is
particularly true for the AGIPD, which requires an individual set of
calibration constants for different veto patterns. Covering all
possibilities in calibration is infeasible, and thus, the AGIPD is
usually operated with a fixed veto pattern, rather than one that acts
on the dynamic changes in the X-ray pulse pattern. To mitigate this,
we have implemented a Karabo device which aggregates relevant
accelerator and AGIPD settings and annotates collected data
accordingly. This information can be used to select data at any
reduction point. This is a low risk method, and its reduction factor is
the ratio of selected and collected frames.

The selection of lit-frames is routinely applied as part of the
offline correction pipeline to the corrected data at the MID [53] and
SPB/SFX [54] scientific instruments. Furthermore, this method has
been applied at the DAQ reduction point, so far for testing proposes.
Owing to the application of this method, in 2023 the storage of
0.65 PiB of raw data and 1.7 PiB of processed data has been avoided
(see Table 1). In the latter case, the corresponding raw data can also
be retroactively reduced.

3.1.2 Gain data suppression or compression
X-ray detectors at the European XFEL use different mechanisms

to increase the dynamic range of the detected signal so as to extend

2 Scientific Data Policy of the European X-Ray Free-Electron Laser Facility

GmbH (Version 2). European XFEL, Schenefeld, Germany (2025). doi:

10.22003/XFEL.EU-TR-2025-001.
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their ability to acquire a trustworthy and physically meaningful
signal. Among them, the AGIPD uses an adaptive gain method: it
stores two 16-bit integers for every pixel, one for the signal
amplitude and one encoding the gain stage, which identifies the
amplification factor. Under certain illumination conditions,
achieved typically during XPCS or SPI experiments, a single gain
stage is used. Furthermore, for some experimental techniques,
pinning the gain stage is desirable so as to achieve a simpler
detector response. In such cases, the gain information could be
substituted without risk by a fixed value for the entire data
acquisition period.

The reduction factor corresponding to the suppression of the
gain data is two. The method is currently available for retroactive
reduction. To avoid anymodification of the data format, we exploit a
HDF5 [55] feature which allows to keep the original raw data
dimensions without allocating storage for the gain information.
An implementation compatible with the online correction pipeline
is also being developed.

In 2023, 1.2 PiB of data has been collected with fixed (medium)
gain at the SPB/SFX scientific instrument, and 3.1 PiB with special
settings useful to amplify low-intensity signal at the MID
instrument. Retroactive suppression of the gain data therefore
will allow to release 2.2 PiB of storage (see Table 1).

Complementary to this strategy, we are evaluating the
replacement of a 16-bit gain signal with a unique integer
representing the gain stage. Ideally such a step would not
represent a loss of data. However, the impact of noise in the
original gain signal may lead to a data quality loss, especially
when close to a gain transition. Therefore we are currently
evaluating that impact and establishing contingencies. For
AGIPD, the original 16-bit values are converted into three

possible values. Accordingly, the expected benefit from a lossless
compression of the gain information, even when using a standard
algorithm such as Deflate [56], is sizeable.

3.1.3 Train selection
In some cases, it may be meaningful to select a subset of the

trains to record. This is particularly relevant to the HED scientific
instrument [57], where a shutter wheel is used to mechanically filter
X-rays and illuminate the sample only with a specific pulse train. An
incorrect selection poses a large risk of losing the relevant data. Thus,
the DAQ stores several adjacent trains in addition to the selected
one. This allows for validation of the train selection reduction
method, and minimizes the risk of data loss in case of an
incorrect setting. The information on selected trains is available
in Karabo, which controls the wheel, and can be readily exploited by
the offline correction pipeline upon validation, or retroactively. In
the future, we aim to incorporate this reduction method at the
DAQ level.

The reduction factor equals the ratio of DAQ-acquired and
selected trains, and, depending on the DAQ settings and the applied
procedure, it can be of the order of hundreds. In 2023, 0.6 PiB of
data, including disposable trains, has been collected at the HED
scientific instrument. The train selection method has been applied to
these data at the offline correction pipeline stage, reducing it by a
factor of 19 (see Table 1). We plan to retrospectively reduce the
corresponding raw data as well.

3.1.4 Module and region-of-interest selection
For certain experiments, the relevant signal is confined to a well-

defined region-of-interest (ROI) on the detector. Most European
XFEL X-ray imaging detectors are modular, and therefore, only a

TABLE 1 Examples of application of reduction methods to AGIPD data.

Reduction method Type Instrument Since Experiments Original data size, PiB Reduction factor

Applied reductions (avoided storage of 7.4 PiB)

Lit-frame selection raw SPB/SFX 1 month 2 0.88 3.8

corr SPB/SFX 3 months 12 3.8 1.2

MID 1 year 10 5.8 2.5

Conversion to ph. and compression corr MID 1 year 10 5.8 17

Train selection corr HED 1 year 4 0.52 19

Candidate to retroactive reduction (17 PiB expected to be freed)

Lit-frame selection raw SPB/SFX 1 year 27 9 1.11

MID 2 years 23 14 1.9

Gain information suppression raw SPB/SFX 1 year 5 1.2 2

MID 2 years 12 7.4 2

Train selection raw HED 1 year 4 0.52 19

Module selection raw MID 2 years 5 2.3 5

SPI hit finding raw SPB/SFX 2 years 4 5.5 19

The table reports the reductionmethod (“Reductionmethod”); the type of data, that is “raw” or “corr” for raw and corrected data, respectively (“Type”); the scientific instrument (“Instrument”);

the time period the reduction has been applied (“Since”); the number of experiments that have been reduced (“Experiments”); the unreduced data volume (“Original data size”); the average

reduction factor (“Reduction factor”).
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few modules may intersect with the ROI. For technical reasons, the
data from each module is saved in a different file. Hence, it is
straightforward to select only files corresponding to the relevant
modules to obtain a significant reduction of offline data.

Bragg coherent diffraction imaging (BCDI) is one of the
experimental techniques that can benefit from this reduction
method. Since 2022, five BCDI experiments were performed at
the MID scientific instrument, and for half of them only one
detector module (out of sixteen) contained data of interest. By
retroactively removing data corresponding to the other modules,
the initial volume can be reduced from 2.3 PiB to 0.46 PiB, that is a
reduction factor of five (see Table 1).

At the time of writing, this method can be employed by
manually selecting relevant modules using the DAQ interface. In
the near future, a graphical user interface will be available to
configure the DAQ and perform validation by monitoring the
signal on the entire detector.

The reduction factor equals the ratio of the total number of
detector modules to the number of selected modules. In the future,
the possibility of storing defined regions of interest within modules
will also be exploited.

3.2 Technique-specific methods

Technique-specific methods require processing of collected
data, which typically involves fine tuning of certain analysis
parameters so as to ensure accurate results. As such,
associated risks of discarding meaningful data are generally
higher compared to operation-specific methods, and present
challenges for automation. Furthermore, appropriate pre-
processing of the data—e.g., handling of detector artifacts such
as pixels with erroneous readings (perhaps damaged), or
accurately mapping data according to the physical detector

layout—as well as extensive validation are required. For
several experimental techniques, the scientific community has
developed specialized methods and software tools, which can
provide feedback on data content and quality. These may need to
be integrated into the European XFEL computing and control
environments to fully leverage data reduction opportunities
through automation and implementation of fast feedback loops.

3.2.1 Effective compression by decreasing entropy:
conversion to integer photon counts and down-
sampling of collected intensities

The effectiveness of compressionmethods increases with a lower
Shannon entropy of collected data [58]. To reduce entropy, we have
evaluated the application of physics-motivated techniques to
compress detected intensities. The risk associated to these is
particularly low if analysis techniques rely on a sizable ensemble
of individual measurements.

In some cases, it may be advantageous to convert measured
intensities into the absolute number of photons and represent
them as integers. This applies to experiments where the scattering
signal is rather weak, such as SPI and XPCS, or the strong signal is
localized and the background is sparse and weak, such as BCDI.
Through this quantization procedure the entropy may be
significantly reduced and detector images become extremely
compressible with lossless methods. We use the Deflate
algorithm as implemented in the HDF5 library, making access
to data transparent to users.

In particular, at the MID scientific instrument the combination
of selection of lit-frames, conversion to integer photon counts and
compression is routinely applied at the offline correction reduction
point. Owing to this, 5.7 PiB of processed data were not stored in
2023, corresponding to an overall reduction factor of approximately
42 (see Table 1). Figure 3 illustrates the effect of applying the above-
mentioned reduction chain to a Bragg XPCS experiment. Here the
overall reduction factor was 97. In the figure, the reduced size of
AGIPD corrected data is shown as a function of its original size.
Each point refers to the data set of an individual measurement, a so-
called run. Points are colored depending on the number of X-ray
pulses utilized for the measurment, and each dashed gray line,
shown to guide the eye, is an isoline indicating the same
reduction factor.

The position of each point is given by the combined effect of
selecting lit-frames, converting intensities to an integer number of
photons and, finally, compressing this data. The average reduction
factor due to conversion to integer photon counts followed by
compression, shown as the purple line, corresponds to 38. This
value depends on illumination conditions, which, in this
experiment, are similar for most data sets. Additionally, the lit-
frames selection contributes, with a reduction factor equal to the
ratio between total number of collected frames to X-ray pulses,
varying between 1.76 and 352.

For experiment techniques exploiting a large intensity range,
such as SFX, rounding to a given number of significant bits reduces
the distribution of pixel values [24], and Shannon entropy
accordingly. This also makes images more compressible with
lossless methods. The quality of the final result depends on the
rounding settings, which have to be balanced with respect to the
potential for desired reduction.

FIGURE 3
Reduced size of AGIPD corrected data versus its original size. Lit-
frame selection, conversion to integer photon counts and
compression are applied during offline correction. Each dot
corresponds to one data set. Its color identifies a different
number of X-ray pulses utilized: blue – 1 pulse, orange – 10 pulses,
green – 50 pulses, red – 200 pulses. The dashed gray isolines refer to
different reduction factors and are shown to guide the eye. The purple
line corresponds to the average effect of conversion to integer photon
counts followed by compression.
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This method is typically reliable upon validation, which can be
based, for example, on comparing subsets of results, and its
reliability increases with the number of repetitions of a certain
measurement. The risk of using such methods is mitigated by
applying them only to the corrected data.

Both methods discussed are available for offline usage.
Conversion to integer photon counts and subsequent
compression is integrated into the offline correction pipeline and
used in operations.

3.2.2 Azimuthal integration of rotation invariant
data: small- and wide-angle scattering

The first processing step of rotation invariant data is typically the
azimuthal integration of detector frames. The transformation of
two-dimensional images into one-dimensional radial profiles is an
operation which scales with the square-root of the number of pixels,
and thus yields a reduction factor of about 1,000 for
megapixel images.

Proof-of-principle automatic azimuthal integration after
detector data correction has already been employed at European
XFEL. The automated pipeline processes frames in batch mode and
can exploit the pyFAI library [59]. We are further improving it by
enabling parallel data reads from disk, and signal integration in
parallel on GPUs. The pipeline output can replace processed data
containing corresponding two-dimensional images. Furthermore,
we are developing an azimuthal integrator add-on for the online
correction pipeline.

Current research in validation includes a reliable and automatic
correction for potential displacements of the X-ray beam during
data collection. In fact, several experimental techniques require a
precise estimation of the X-ray axis. Its erroneous assessment
degrades the quality of azimuthally integrated data, for example,
as the integration axis does not coincide with the X-ray axis, which is
a symmetry one.

3.2.3 Hit finding: serial femtosecond
crystallography and single particle imaging

For experimental techniques like SFX and SPI, the X-ray beam
interacts with the sample with a certain probability, known as the hit
rate. In fact, “hits” and “non-hits” are defined as detector frames
either containing signal scattered from the sample, or only
background photons. The number of hits compared to the total
amount of delivered pulses, the hit rate, is typically rather modest, of
the order of 0.1%–10%, depending on the sample and the injection
method. As a result, a considerable amount of detector images have
to be acquired during the experiment for successful data analysis,
and the potential for data reduction by discarding all non-hits is
significant.

The first step of the SFX data analysis pipeline consists of the
identification of Bragg peaks in a detector frame. If the number of
peaks exceeds a user-defined threshold, that frame is considered to
be a hit. If the next step of the analysis pipeline, indexing, is
considered as well, the reduction factor can be potentially
increased further at the cost of higher complexity. Different
software tools provided by the scientific community implement
such complete analysis pipelines [60, 61] (a description can be
found, e.g., in [62] and references therein). Among these, we
have integrated the CrystFEL suite [60] into the European XFEL

infrastructure. We provide the latter through the EXtra-Xwiz tool
[62, 63], so as to abstract certain complications specific to our data
structure and computing environment.

When processing SPI data, the number of pixels on a detector
frame characterized by a signal intensity above a certain
threshold is initially evaluated. Hits satisfy the condition that
the number of such lit pixels exceeds another threshold. Also in
this case, data analysis tools provided by scientific
communities exist [64].

Strategies for validation of the hit finding output include the
(graphical) provision of key indicators. These can be statistical
views – such as mean, variance, or detected outliers – of retained
and discarded data, or more sophisticated feedback calculated at
different stages of the data analysis pipelines. For example, a pseudo-
powder diffraction pattern can be calculated from SFX data as the
sum of extracted Bragg peaks, and relates to the crystalline structure
of the sample. Similarly, cell parameters or quality metrics can be
extracted at the indexing step.

At the time of writing, hit finders for SFX and SPI experiments
are implemented as add-ons in the online correction pipeline, with
reduction decisions taken at the arbiter (cfr. Figure 2). These have
been tested in production, and satisfy the stringent latency
requirements of online analysis. Furthermore, implementations
for the offline correction pipeline are in progress, and
information on hits produced by diverse tools can be used to
retroactively reduce data. Certain SPI experiments have been
already identified for retroactive data reduction, corresponding to
a raw data volume of 5.5 PiB and with hit rates ranging between 0.1%
and 13.5% (see Table 1). Therefore, in this case the average reduction
factor is roughly 19 or lower, depending on the need for non-hits
which can be used for background estimation. Corrected data can be
reduced with the same ratio or better, if conversion to integer photon
counts and compression are further applied.

While in this section we present examples of binary
classification, concepts introduced here can be extended to more
complicated use cases and generalized as data clustering.

3.2.4 Physics reconstruction: reaction microscopy
Reaction microscopy (REMI) [65], also called cold target recoil

ion momentum spectroscopy (COLTRIMS), is a momentum
imaging technique employed at the SQS scientific instrument
[66]. Up to two delay line detectors placed on opposite sides at
the end of time-of-flight spectrometers are used to record the
kinetic energy and momentum of electrons and ions in
coincidence, potentially allowing for a full reconstruction of the
scattering process in the molecular frame of reference. On the
detector side, the raw data consists of digitized voltage levels
acquired at gigahertz sample rates across multiple channels
reaching rates up to 4 Gbit/s. From a scientific perspective, only
the correlated pairs of position and time for each particle impact
are relevant. These have a much lower bandwidth on the order of a
few Mbit/s.

An automated reconstruction process from raw data to detector
hits is available via the facility offline correction pipeline and allows
for efficient data reduction by a factor of approximately 1,000.
Validation is provided in the form of reports, which contain
statistics and document signal correlations to allow for rapid
assessments of reconstruction quality.
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3.2.5 Correlation functions: X-ray photon
correlation spectroscopy

X-ray photon correlation spectroscopy (XPCS) [40, 41] is a
technique used to measure the dynamics of a sample on various time
scales. Most XPCS experiments at European XFEL measure
dynamics on a timescale of microseconds. Central to the data
analysis for XPCS is the calculation of two-time correlation
functions (TTCFs). For microsecond XPCS, calculating the
TTCF’s requires correlating regions of the detector across pulses
within a single train.

A library to streamline and optimize the analysis of XPCS data
[67] is being developed at the European XFEL. This approach
reduces the data that users need to deal with from (on average)
1 TB of detector data to approximately 1 GB of TTCF data, that is a
factor of 1,000.

4 Discussion

Although the data reduction activities at the European XFEL
are still at their infancy, several methods and strategies have been
identified and integrated as part of the data acquisition and
analysis systems. Consequently, an initial portfolio of tools has
been made available to users of the facility. By routinely applying
low-risk methods to processed data, we have already avoided the
storage of approximately 7 PiB of data in 2023, thereby reducing
the expected volume of processed data to about 70%.
Furthermore, the same tools can be applied retroactively with
minimal risk, potentially making approximately 17 PiB of
additional storage available. An overview of applying the
discussed reduction methods to selected AGIPD data is shown
in Table 1.

Risks have been assessed for each considered method to ensure
minimal impact on the scientific activities, as reiterated throughout
this paper (see in particular, Section 2.2). Data reduction is
intrinsically associated to the risk of compromising scientific
throughput, as a consequence of discarding valuable and non-
redundant information, or of applying inaccurate
transformations, for example, due to unreliable parameters.
Additionally, an incorrect application of data reduction methods
to the online data stream would lead to degraded online analysis
feedback. Consequently, the experiment steering quality and the
beamtime efficiency are compromised. At the other end of the
spectrum, if raw data are erroneously reduced, scientific content
is potentially irremediably destroyed.

To mitigate risks, and in addition to extensive user support,
we aim to provide our users with information which is as
complete and reliable as possible. This includes the production
of extensive quality and validation metrics, transparent and
comprehensive documentation of the reduction workflow
(including any parameter involved), powerful interfaces, as
well as various statistics on data usage, which will support
user decisions. To be effective, validation metrics must be
interpretable, and offer feedback on the effect of any
parameter involved. Validation is particularly critical when
technique-specific methods are used, as they rely on data
assessment and might require tuning. At the time of writing,
we offer an initial set of metrics for certain reduction techniques,

both in the form of online feedback, and offline reports. These
include, for example, time-averaged online views of retained and
discarded data, or monitoring of the signal on the entire detector
when only a region of interest is selected.

Additionally, we systematically organize workshops, in which
presentations and tutorials are shown to aid users even before they
access the facility. Invaluable user feedback is also obtained at such
meetings, and helps us adapt to the user needs and address their
concerns. This integrates with the extensive documentation and
training material that will be made available.

A complementary strategy to reduce risks relies on the
development of sophisticated algorithms to decide on
reduction methods. Such algorithms work with a clear
optimization strategy and with several interpretable metrics
embedded in them, to allow for monitoring and control.
Although this leads to a more abstract decision process, the
availability of meaningful validation systems empowers users
to disengage such methods or reconfigure them as required.
An example of such an automated process under development,
is an application based on mathematical modeling of the
parameter optimization procedure for SFX data analysis [68].
This method empowers users by providing high-quality
information on collected data, aiding them in steering the
experiment, and preventing accordingly the acquisition of
low-quality data. Another procedure under development
includes the clustering of data as it arrives in the data stream,
which allows users to rapidly assess similarities in the data
collected, discover patterns and establish low-quality data.

In addition to the technical and scientific aspects of data
reduction, another essential enabling step is a corresponding legal
framework, which establishes a contract between all parties and
defines their responsibilities in this process. The scientific data
policy of the European XFEL has undergone a major upgrade to
provision this. The upgrade process involved all the stakeholders
inside the facility, including groups responsible for data management
and analysis, legal specialists, instrument scientists, as well as external
advisory committees, and users of the European XFEL. The latter have
either been approached individually, or through dedicated events in
the context of European XFEL user meetings.

This inclusive process has contributed to assess and address the
sociological aspect intrinsic in the paradigm of data reduction. This
is overall a new paradigm in photon science, and as such concerns
might originate both from (i) the risk of scientific data loss, and (ii)
the burden associated to selection of viable data reduction methods,
the decision process itself, as well as further analysis downstream of
the reduced data sets. Mitigation strategies for the former have
already been discussed: we are convinced that, in addition to
involving users early on in the process, these strategies will
increase users’ confidence when applying reduction methods. For
the latter, we aim at providing simple interfaces to aid in the decision
process, as well as software allowing users to transparently access
any kind of data produced at the facility. Furthermore, to support
and advise on reduction opportunities as well as to train on available
methods and tools we provide, we will take advantage of internal
experts as contacts. Overall, users will be assisted in data reduction
activities with the provision of tools, information and expertise.

Another measure to increase user involvement in the data
reduction process has been the establishment of a data
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management plan. Such a data management plan, required by the
updated scientific data policy3 for each user proposal, would contain a
detailed overview of the reduction solutions applicable to the data
collected, formalize requirements and document decisions. This
procedure establishes a clear bidirectional communication pathway
between the users and the facility from proposal acceptance onward,
with the aim of increasing users’ trust in the data reduction processes.

To summarize, our aim is to empower users to extract valuable
scientific content from collected data. Data reduction is in the users’
benefit: for instance, it allows them to achieve a faster turnaround
when analysing the experiment’s result and to simplify their analysis
methodology. Importantly, users shall be responsible for selecting
methods and reduction points, balancing risks and benefits, or the
retroactive reduction of collected data, such that within a defined
amount of time (six months at the time of writing) the size of their
data is within the constraints defined by the facility (up-to-date
information is available in Ref. [69]).

5 Conclusion

Reducing collected data to its scientific content brings significant
advantages to users, the environment, and facilities. For users, the
scientific outcome of the experiment is potentially improved due to
better decision making, as well as simpler and more effective data
analysis. The environment benefits from a decreased energy
footprint in processing and storing the data, and in turn facilities
profit from the reduced initial investment and operation costs,
therefore improving operational sustainability.

To support this effort, we have developed an initial portfolio of
data reduction methods. A few of these have been deployed and are
already routinely used in operation at the European XFEL. We show
that, by applying these, we avoided storage of about one third of the
expected volume of processed data in 2023. Additionally, we have
started developing technique-specific methods, some of which have
been already employed for online data analysis and reduction. In
parallel, the data system has been upgraded to include reduction
points, and technique-specific data reduction methods have been
investigated. To further develop and validate effective solutions for the
latter, the considerable domain knowledge of our users is required.

Data reduction activities are a clear priority of European XFEL.
Their development involves a multitude of actors, inside and outside
the facility, which exemplifies the need for the diverse expertise
intrinsic to data reduction.

Our strategy to maximize the impact of reduction activities is
founded on increasing this synergy between facility experts and users.
The deep understanding of infrastructure, software practices, detection
systems, and methodologies that facility staff can provide needs to be
paired with the knowledge of the scientific domain users bring in.
Facility-side we aim at offering information, interpretable metrics,
efficient interfaces and expertise that support our users in making
effective decisions on the data reduction strategy for their experiments.

To conclude, in this paper we report on our vision for data
reduction at the European XFEL, as well as selected preliminary
results. We are convinced that the collaboration and co-design of
reduction tools with our users will simultaneously ensure excellent
scientific results and a sustainable operation. On this note, our early
experience with users that volunteered to apply reduction methods at

the European XFEL resulted in critical feedback that is contributing to
shape ideas and develop tools. The systematic implementation of
streamlined data reduction methods as part of the data acquisition,
analysis and storage can result in a paradigm shift in photon science
concerning data handling and processing.
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Due to their high frame rates and dynamic range, large area coverage, and high
signal-to-noise ratio, hybrid silicon pixel detectors are an established standard for
photon science applications at X-ray energies between 2 keV and 20 keV. These
properties alsomake hybrid detectors interesting for experiments with soft X-rays
between 200 eV and 2 keV. In this energy range, however, standard hybrid
detectors are limited by the quantum efficiency of the sensor and the noise of
the readout electronics. These limitations can be overcome by utilizing inverse
Low-Gain Avalanche Diode (iLGAD) sensors with an optimized X-ray entrance
window. We have developed and characterized a prototype soft X-ray iLGAD
sensor bonded to the charge integrating 75 µm pixel JUNGFRAU chip. Cooled
to −22°C, the systemmultiplication factor of the signal generated by an impinging
photon is ≥ 11.With this gain, the effective equivalent noise charge of the system is
≤5.5 electrons root-mean-square at a 5 µs integration time. We show that by
cooling the system below −50°C, single photon resolution at 200 eV becomes
feasible with a signal-to-noise ratio better than 5.

KEYWORDS

hybrid detector, instrumentation for FEL, synchrotron radiation, LGAD, X-ray detector,
low noise detector

1 Introduction

Photon science at soft X-ray energies (~200 eV–2 keV) at Synchrotron Radiation (SR)
sources and Free-Electron Lasers (FELs) fosters a diverse spectrum of research. Experiments
exploit the presence of the K and L-edges of light elements and 3d transition metals to study,
for example, photosynthetic water splitting [1] and fundamental excitations that govern
phenomena such as magnetic ordering [2] and high-temperature superconductivity [3] in
correlated materials. For organic samples, experimental techniques that access the energy
range between the carbon and oxygen K-edges, the so-called “water-window” (277–525 eV),
are particularly relevant. However, while the technological capabilities of next-generation
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X-ray sources are evolving at a rapid pace, detector systems are
struggling to match the needs of experimental stations operating in
the soft X-ray domain.

For many applications in the range of hard X-rays between
~ 2–20 keV, silicon hybrid detectors are the state-of-the-art. The
high data quality and count rates of single photon counting systems
such as PILATUS [4] and EIGER [5] allowed unprecedented
advancements in terms of throughput and sensitivity for
experiments at SR facilities. Charge integrating hybrid detectors
that implement dynamic gain switching on the pixel level such as
AGIPD [6], ePIX [7], and JUNGFRAU [8], on the other hand,
provide the high sensitivity and dynamic range necessary for FEL-
based diffraction, spectroscopy, and imaging experiments.

In the soft X-ray range, it has thus far been difficult to exploit
hybrid detector technology. The reasons for this are twofold. First,
because of the shallow absorption depth of low-energy X-ray
photons, a significant percentage of photons are absorbed in the
non-sensitive entrance window of the sensor, and the such generated
charge does not contribute to the signal. Second, if a soft X-ray
photon passes through the entrance window and generates a charge
in the sensitive detector volume, the resulting signal is small
compared to the electronic noise of the detector. As a result, a
single photon cannot be discriminated from the noise floor.

Instead of standard hybrid detectors, scientists mainly use
Charge Coupled Device (CCD) cameras [9–11] and CMOS image
sensors [12–14] for soft X-ray detection. These systems can provide
low noise (i.e., better than two electrons r.m.s. [15]) and high spatial
resolution (down to 5 μm pixel size [16]) but are limited in terms of
available detector area and frame rate capabilities. With the DSSC
imager [17, 18], on the other hand, a system based on hybrid
technology exists for the soft X-ray range. The detector is
tailored to the high-rate bunch structure of EuXFEL but is
limited in terms of spatial resolution. In light of the trend toward
ultra-fast, high-throughput experiments at next-generation X-ray
sources, the need for soft X-ray detector systems that match the
sensitivity, spatial resolution, frame rate, dynamic range, and
available detection area of hard X-ray hybrid detectors becomes
especially apparent.

The recent development of inverse Low-Gain Avalanche Diode
(iLGAD) sensors optimized for soft X-rays [19] opens the prospect
for high-resolution hybrid detectors operating in this energy range.
This approach addresses the two limitations of current hybrid
technology. A thin entrance window maximizes the number of
low-energy photons reaching the sensitive sensor volume, and
the intrinsic gain of the iLGAD amplifies the signal of soft X-ray
photons, allowing discrimination from the electronic noise floor of
the hybrid detector.

In this work, we assess the capabilities of a soft X-ray hybrid
detector based on the charge-integrating JUNGFRAU readout
chip. Owing to their low noise and high dynamic range,
JUNGFRAU systems are in operation at many facilities around
the world, supporting a large variety of applications at FELs and
high-flux SR experiments. Consequently, a soft X-ray version of the
detector is of particular interest for applications at next-generation
high-brilliance coherent light sources and high-rate FEL facilities.
We present performance studies of a first JUNGFRAU-iLGAD
prototype. The detector response to low-energy photons was
investigated using X-ray fluorescence measurements with

different metal targets. Taking these results as a baseline, we
discuss the prospects of JUNGFRAU-iLGAD systems for soft
X-ray applications.

2 Materials and methods

2.1 The JUNGFRAU detector

The hybrid silicon pixel detector JUNGFRAU [8] was primarily
designed for the high-flux, pulsed conditions at FELs but has since
extended its use also to SR sources [20, 21]. The readout chip
provides a maximum frame rate of 2.2 kHz for continuous image
readout and combines a charge-integrating architecture with three
linear, dynamically switching gains per pixel. One chip comprises
256 × 256 pixels with a pixel size of 75 × 75 μm2. A JUNGFRAU
detector equipped with standard sensors and version 1.0 of the
readout chip resolves single photons down to ~ 1.5 keV with an
average noise level of 52 electrons (e−) Equivalent Noise Charge
(ENC) at a 5 µs integration time in low-noise high-gain mode
(HG0). This corresponds to a Signal-to-Noise Ratio (SNR) of
~ 8 at 1.5 keV. The noise level stays well below the Poisson limit
over the full dynamic range of 104 photons at 12 keV [8].

The most recent version of the readout chip, labelled
JUNGFRAU 1.1, includes additional measures to reduce the
noise to facilitate soft X-ray detection [22]. It achieves an average
noise of 34 e− r.m.s. in HG0 at a 5 µs integration time [22]–a 35%
reduction compared to version 1.0.

2.2 Inverse Low Gain Avalanche
Diodes (iLGADs)

LGAD sensors [23] were initially developed for applications in
high energy particle tracking that require precision timing in the
range of ~ 10 ps. The sensors include an additional implant of high
doping concentration (~1016–1017 cm-3) below each sensor
electrode. The resulting high electric field across the p-n junction
promotes charge multiplication, amplifying the signal of an
incoming particle or photon by a factor of 5–20 and generating
an output signal proportional to the energy deposited in the sensor.
This intrinsic signal amplification in the gain layer improves the
SNR compared to a sensor without amplification.

However, standard LGADs for high energy physics cannot be
used for photon science applications. This is due to two main
reasons. To achieve better temporal resolution, the active sensors
are usually thin (i.e., typically 50 µm) and therefore require a non-
active carrier substrate on the back, which would block X-rays.
Moreover, the fill factor of standard LGADs is less than 100% [24]
because of the edge termination required to prevent premature
voltage breakdown [25].

To make LGAD sensors suitable for soft X-ray detection, a
number of design differences are required with respect to
conventional LGADs for high energy physics. Inverse LGAD
(iLGAD) sensors developed for soft X-rays [19] (Figure 1) are
275 µm thick and do not require any carrier substrate. They
feature an optimized thin entrance window to improve the
quantum efficiency at low photon energies. The entrance window
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includes a surface passivation with thin SiO2 and Si3N4 layers [26].
Moreover, the gain layer is continuous and located at the back of the
sensor where X-ray photons enter (i.e., “inverse” to the conventional
LGAD design, where the gain layer is segmented and located on the
pixelated side of the sensor). In contrast to the conventional LGAD
design, the inverse design provides a 100% fill factor and, with
sufficiently small pixels, interpolation is possible, enabling a spatial
resolution on the order of a micron [27]. This is required for several
applications, including Resonant Inelastic X-ray Scattering (RIXS)
experiments [28] at FELs and SR sources.

Because the gain layer of the iLGAD is located at the entrance
window side, the multiplication factor depends on the photon
absorption depth. This is illustrated in Figure 1. If a photon is
absorbed before the gain layer, holes drift through the gain layer and
initiate charge multiplication. In contrast, if the photon is absorbed
beyond the gain layer, the multiplication is initiated by electrons. For
photons absorbed within the gain layer, both electrons and holes
initiate multiplication. The multiplication factors for electrons and
holes differ depending on the gain layer design [29]. The first iLGAD
R&D batch devised by the Paul Scherrer Institute (PSI) in
collaboration with Fondazione Bruno Kessler (FBK, Trento, Italy)
contains iLGADs with optimized thin entrance window and
different gain layer designs labelled “standard,” “shallow,” and
“ultra-shallow.” For the “standard” gain layer design1 investigated

in this work, the hole multiplication factor is about 25% of the
electron multiplication factor, as has been shown with simulations
[19] and also reported in [29] with measurements. As a consequence
of this design, hole multiplication is the dominant effect for photons
with energies below about 500 eV.

2.2.1 JUNGFRAU-iLGAD prototype
For this work, we characterized the performance of a

JUNGFRAU-iLGAD prototype. The iLGAD sensor was
fabricated by FBK as part of the first iLGAD R&D batch
targeting iLGADs for soft X-ray detection, devised in
collaboration with PSI. The total size of the sensor is 2 × 2 cm2.
It is made up of 75 × 75 μm2 pixels arranged in the standard 256 ×
256 JUNGFRAU ASIC grid. On all sides of the grid, nine pixels are
connected to the surrounding guard ring to collect the leakage
current from the guard ring at the back and from the scribeline
of the sensor (see Figure 1). This results in a total number of 238 ×
238 active pixels. For the present study, a sensor with standard gain
layer configuration was chosen because this design maximises the
iLGAD multiplication factor. The sensor was bonded to a
JUNGFRAU 1.1 readout chip (Figure 2). The quantum efficiency
of the investigated iLGAD sensor and its gain layer design have been
measured and reported by Liguori et al. [29].

2.3 Characterization measurements

The sensor-chip assembly was operated at a sensor bias
voltage of 200 V and illuminated with fluorescence photons at
a lab-based X-ray source. Four different secondary metal targets

FIGURE 1
Schematic cross section of the edge of an iLGAD sensor and readout ASIC with indicated electric field lines. In the central region of the device (1),
generated charge carriers travel through the gain layer and the pixels measure the amplified signal. In the border region (2), the generated charge carriers
travel through the Junction Termination Extension (JTE) and, consequently, the pixels in this region measure the non-amplified signal. At the edge of the
sensor, in region (3), the Current Collection Ring (CCR) or guard ring collects the generated charge carriers. The insert on the right shows the
qualitative behaviour of the iLGAD multiplication factor as a function of the photon absorption depth, illustrating regions of hole-initiated and electron-
initiated multiplication.

1 The standard variation of the gain layer features a doping profile similar to

that of LGADs used for high energy particle physics, which is not

specifically optimized for soft X-ray detection.
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were used to produce the fluorescence photons, namely,
aluminium (Kα: 1.5 keV), titanium (Kα: 4.5 keV), chromium
(Kα: 5.4 keV), and iron (Kα: 6.4 keV). These targets were
chosen based on availability and considering the limitations of
the lab-based setup to produce sufficient photon fluxes at lower
energies. With this setup, the photon occupancy per single frame
was at a level of 0.5%–4% for the investigated energies between
1.5 and 6.4 keV. The temperature of the system was regulated by
means of a chiller connected to the front-end module with liquid
coolant. The JUNGFRAU-iLGAD module was placed in a
vacuum chamber flushed with nitrogen to a constant pressure
of 10 mbar to prevent condensation at low temperatures and to
minimize scattering and absorption of low-energy fluorescence
photons before reaching the sensor.

Fluorescence spectra with a minimum of 10,000 images per
acquisition point were taken for each metal target at eight chiller
temperatures between −22°C and 15°C and at five different
integration times between 5 µs and 100 µs. Datasets at a 10 µs
integration time were acquired with higher statistics of
> 200,000 images per temperature point. For each
configuration, 1,000 dark images were acquired ahead of
illumination with X-rays. The dark images are used to
determine the signal offset (pedestal) and noise of each pixel.
To account for the fact that the charge of a photon hit can be shared
between neighboring pixels, the data were analysed using the
cluster finding algorithm detailed in [30]. For all cases, the total
charge generated by a photon hit is contained within a cluster of 2 ×
2 pixels. Consequently, for the following analyses, we use the 2 × 2
clustered spectra.

3 Results

3.1 Gain

The signal response of each detector pixel to a photon hit of a
given energy (i.e., the total gain gtot of that particular pixel) is
determined by two components: the conversion gain of the
JUNGFRAU readout electronics gJF and the multiplication factor
M of the iLGAD. From these two components, gtot is given as (Eq. 1)

gtot � gJF × M. (1)

We can determine the total gain of each pixel from a Gaussian fit
to the measured spectra of the respective metal Kα-line as (Eq. 2)

gtot �
μKα

EKα

. (2)

Here, μKα
refers to the mean of the Gaussian in ADC units (ADU),

and EKα is the nominal energy of the Kα-line. The pixel-wise
calibrated fluorescence spectra obtained with the JUNGFRAU-
iLGAD prototype are shown in Figure 3.

For the JUNGFRAU-iLGAD, we can separate the two
components of the total gain by comparing the signal spectra of
the pixels bordering the guard ring with the spectra of the central
pixels. Because the gain layer terminates at the pixels next to the
guard ring (see Figure 1), charge carriers generated in that region do
not travel through the gain layer and the pixels detect the non-
amplified signal.

Figure 4 illustrates the difference between the non-amplified
spectrum of the border pixels and the amplified spectra of the
central pixels at different temperatures. From the border pixel
spectrum, we can calculate the conversion gain gJF of the

FIGURE 2
2 × 2 cm2 iLGAD sensor bonded to a JUNGFRAU 1.1 readout chip.

FIGURE 3
Energy calibrated fluorescence spectra (2 × 2 clusters) of four
different metal targets (Al-Kα: 1.5 keV, Ti-Kα: 4.5 keV, Cr-Kα: 5.4 keV,
Fe-Kα: 6.4 keV) acquired with the JUNGFRAU-iLGAD prototype
at −22°C and 10µs integration time. The energy calibration is
performed on the pixel level with the Al-Kα peak as absolute reference
point. The plot shows cumulative spectra across a region of 80 ×
50 pixels.
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JUNGFRAU readout electronics without iLGAD multiplication
equivalent to Eq. 2 from a Gaussian fit to the signal peak. We
chose the Fe-Kα peak as reference for the gain calculation because
at this energy the separation of the signal peak from the noise is
sufficiently high also for the non-amplified border pixel spectra at
all temperatures. However, where gain calculation using the lower
energy peaks as reference is possible, the obtained values agree
within statistical uncertainties. Across all border pixels, the such
calculated conversion gain is constant with an average value of
gJF = 146.4 ± 1.3 ADU/keV for all investigated temperatures. The
typical variations of the conversion gain across the full area of a
JUNGFRAU module, found from measurements with standard
silicon sensors, are in the range of 3.5% [31]. These pixel-to-pixel

variations cannot be accounted for in the separation of
conversion gain and iLGAD multiplication factor performed
in this work.

To determine the iLGAD multiplication factor M, we compare
the Fe-Kα peak positions of the border pixel spectrum and the signal
spectra for each central pixel. From these measurements,M is given
as (Eq. 3)

M � μcentral
μ̂border

, (3)

where μcentral is the per-pixel amplified peak position and μ̂border is
the position of the non-amplified peak in the cumulative border
pixel spectrum. The value of M varies across the area of the iLGAD
(Figure 5A). In particular, we can identify two domains where the
average values of M differ by about 10% (Figure 5B) with an
approximate symmetry along one sensor diagonal. The dispersion
of this distribution is much larger than the 3.5% variation of the
JUNGFRAU conversion gain measured for standard sensors, and
the magnitude of the difference between domains is too large to be
congruent with temperature variations across the sensor.
Consequently, we attribute the variations of M to variations in
the doping composition of the gain layer.

The temperature trend of the multiplication factor is shown in
Figure 6. We model the temperature dependency of M using a
customized program that solves the one-dimensional Poisson
equation, incorporating the doping profiles of the n+ layer, the
gain layer, and the doping concentration of the silicon bulk.
Boundary conditions are set at 0 and 200 V, representing the bias
voltages applied to the iLGAD sensor. This simulation determines
the electric field distribution within the sensor, particularly in the
charge multiplication layer. Subsequently, the multiplication
factor M, initiated by electrons traveling through the gain
layer, is calculated at various temperatures. The calculation
utilizes the impact-ionization coefficient for electrons and
holes, which are functions of the electric field distribution,
employing the Okuto-Crowell model with the optimized

FIGURE 4
Clustered spectra of the Ti Kα-line (4.5 keV) in raw ADC units
(ADU) measured with the JUNGFRAU-iLGAD prototype at a 10 µs
integration time, with a noise cut-off at 5 × r.m.s. noise. Cumulative
spectrum of the border region of the sensor (948 pixels) with the
non-amplified signal at −22°C (black full circles) compared to the
cumulative spectra across a region of 80 × 50 central pixels at varying
temperatures, illustrating the temperature dependency of the
multiplication factor.

FIGURE 5
Variation of the iLGADmultiplication factorM across the 2 × 2 cm2 sensor areameasured at −22°C and a 10 µs integration time using the Fe-Kα line as
absolute reference. (A) Pixelmap ofM. White regions indicate non-functional pixels (i.e., guard ring pixels, saturated, and dead pixels). The vertical artifacts
are due to variations of the conversion gain of the chip. (B) Value distribution across all pixels, showing two different M domains.
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parameters extracted by Currás Rivera and Moll [32]. The doping
profile of the gain layer is obtained through Silvaco2 process
simulation, and its integrated dose is tuned until the simulatedM
aligns with the measurement results. The data points shown in
Figure 6 correspond to the mean values ofM within two different
Regions Of Interest (ROI) of 11 × 11 pixels. We chose these small
ROI to confine the modelling of M to regions with an
approximately uniform distribution. In the simulation, we
model the gain variations observed in the measurements by
incorporating a difference of 1.25% integrated dose in the gain
layer for the two ROI. The depth profile of the gain layer used in
the simulation is the same for both ROI.

3.2 Leakage current

The leakage current of the iLGAD sensor represents an important
contribution to the overall detector noise. Because of the presence of
the gain layer, the leakage current is also multiplied. Moreover, in a
charge integrating hybrid detector such as JUNGFRAU, in addition to
the photon signal, the leakage current is integrated. Consequently, the
SNR decreases with increasing integration time. Particularly for SR
applications, which operate at long integration times to maximize the
duty cycle of the detector, the leakage current becomes a performance
limiting factor.

We determine the leakage current from dark images acquired at
different temperatures and integration times. For each pixel, at each
temperature, we fit a linear function to the average dark signal of

1,000 images as a function of integration time. The leakage current
per pixel is then calculated from the slope of the fit for each
individual pixel and the conversion gain of the JUNGFRAU
electronics gJF from Eq. 4:

I A( ) � slope ADU/ns( )
gJF ADU/keV( ) ×

1000 eV/keV( )
3.6 eV

× q0 × 109 ns/s( ). (4)

Here, 3.6 eV is the average energy required to produce an electron-
hole pair in silicon and q0 is the elementary charge.

Figure 7 shows the temperature dependency of the leakage current
for the same two ROI used in Section 3.1 and the average across the full
sensor area. At 15°C, the average leakage current per pixel is 134 ±
18 pA and decreases to 5 ± 1 pA at −22°C. We note that the average
leakage current across the full sensor area is higher than for both
investigated ROI for most temperatures. This effect is due to the impact
of hot pixels on the full-sensor average and is mitigated at lower
temperatures. Plotted on a logarithmic scale, the leakage current
displays a linear dependency on 1/T. For a temperature difference
of ~ 20°C, the leakage current changes by one order of magnitude.
When lowering the operating temperature, the hybrid detectors using
iLGAD sensors benefit from the lower leakage current and,
consequently, lower noise and increased gain and, thus, a better
SNR. Furthermore, we find that decreasing the operating
temperature of the detector improves the pixel yield. For the
investigated prototype, the average amount of non-functional pixels
is 1.5% at 15°C decreasing to 0.8% at −22°C.

3.3 Effective detector noise

From the pedestal fluctuations σ for each pixel, we calculate the
effective Equivalent Noise Charge (ENCeff) in e− as (Eq. 5)

FIGURE 6
iLGADmultiplication factorM as a function of temperature. Comparison ofmeasured values and simulation. The insert shows the linear behaviour of
1 − 1

M. The measured data points correspond to the mean values of M within two 11 × 11 pixel ROI (xmin, ymin, xmax, ymax). Error bars represent the 1σ
dispersion across all pixels of the ROI. For most data points, the dispersion is smaller than the plotted marker size.

2 https://silvaco.com/tcad
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ENCeff e−( ) � σ ADU( )
gtot ADU/keV( ) ×

1000 eV/keV( )
3.6 eV

. (5)

We show the average ENCeff as a function of temperature for
different integration times in Figure 8A and the corresponding
average SNR for isolated 1 keV photons in Figure 8B. Both
quantities follow an exponential trend as a function of
temperature. At a 5 µs integration time and a temperature of
−22°C, the JUNGFRAU-iLGAD system achieves an ENCeff of
5.5 ± 0.7 e− r.m.s., which corresponds to an SNR of 51 for single
1 keV photons when using single-pixel clusters. This becomes
25.5 for 2 × 2 clusters as the total noise of a cluster of N pixels
scales with

��
N

√
.

Figures 8C, D show the exponential trends extrapolated to lower
temperatures. From this extrapolation, it can be estimated that in
order to achieve an ENCeff ~ 1 e− r.m.s. at a 5 µs integration time, the
system will need to be cooled to at least −60°C. At this low
temperature, the influence of the shot noise diminishes because
the leakage current is reduced strongly. As a consequence, the
system noise at −60°C will be dominated by the ASIC noise, and
the ENCeff will be determined by the magnitude of the iLGAD gain.
While the noise of the JUNGFRAU ASIC at such low temperatures
needs to be verified experimentally, in a first, worst-case
approximation, we can assume that it remains constant at the
value of 34 e− r.m.s. stated in [22]. Hence, with an iLGAD
multiplication factor of M ~ 34, an ENCeff ~ 1 e− r.m.s. would be
feasible. If the trend ofM shown in Figure 6 is extrapolated to lower
temperatures, a valueM > 30 is realistic below ~ −60°C for the high-
gain ROI. To verify this estimation, direct measurements of the noise
of the JUNGFRAU-iLGAD system will need to be performed at
lower temperatures.

Because of the dependency of the iLGAD multiplication
factor on the photon absorption depth, the values stated above

for the ENCeff are only valid for photon energies for which
electron-initiated multiplication dominates. For the standard
gain layer design and normal photon incidence angle, electron
multiplication dominates at energies > 500 eV. At lower
photon energies, hole multiplication becomes important and
M reduces by about a factor four [29]. For 200 eV photons at
−22°C, the SNR becomes 1.25 with clustering and 2.5 without.
According to the extrapolation of the SNR for 1 keV photons
shown in Figure 8D, we estimate that a SNR > 5 for 2 × 2
clustered data can be obtained at 200 eV with the investigated
iLGAD sensor at a 5 μs integration time by cooling
below ~ −50°C.

4 Discussion

The characterization results of the JUNGFRAU-iLGAD
prototype demonstrate that this technology will enable hybrid
detectors to advance into the soft X-ray domain. The present
study constitutes the first characterization of a JUNGFRAU
system employing iLGAD technology. It adds to previous
investigations, which demonstrated the capabilities of the
combination of an iLGAD sensor with the charge integrating,
small pixel pitch MÖNCH chip [19]. With the sensor cooled to
−22°C, this soft X-ray version of JUNGFRAU achieves an
effective noise of 5.5 ± 0.7 e− r.m.s. at a 5 µs integration time,
which constitutes an improvement by a factor ~ 7 compared to
the currently available best version of JUNGFRAU with standard
silicon sensors. Achieving an SNR > 5 for photon energies below
500 eV, for which hole-initiated multiplication dominates, will be
possible by cooling the sensor to lower temperatures and
exploiting the increase in multiplication factor with decreasing
temperature.

FIGURE 7
Leakage current of the JUNGFRAU-iLGAD as a function of the reciprocal of the temperature. Comparison of measured values and exponential fit.
The measured data points correspond to the mean values within two 11 × 11 pixel ROI (xmin, ymin, xmax, ymax) and across the full sensor area. Error bars
represent the 1σ dispersion across all pixels of the respective ROI.
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The present study also shows that iLGAD technology for soft
X-ray applications can benefit from further optimization,
particularly process improvements targeting a reduction of the
leakage current, an increased uniformity of the gain layer, an
increase of the pixel yield, and the improvement of the SNR at
low photon energies (i.e., employing a shallow gain layer design to
reduce the influence of hole-initiated multiplication). These
optimizations will be addressed in future iLGAD R&D batches
developed by the collaboration between PSI and FBK.

A JUNGFRAU-iLGAD system for soft X-rays opens
possibilities for many photon science applications at FEL and
SR sources alike. The 2.2 kHz frame rate of JUNGFRAU
constitutes a more than thousandfold increase in speed
compared to commercial CCD cameras for soft X-rays and at
least a factor of 20 improvement compared to standard CMOS
image sensors. The capability of JUNGFRAU 1.0 to acquire
bursts of up to 16 images with an effective frame rate of
~ 150 kHz, opens further possibilities for high-rate
applications with soft X-rays at next-generation FEL facilities
[33]. Furthermore, with an area of 4 × 8 cm2 for a 500 k pixel
module, a JUNGFRAU system provides an active area that is
eight times larger than standard CCD and CMOS devices. This
can be further extended by tiling together multiple modules in

customizable configurations. Especially for photon-starved
spectroscopic techniques such as RIXS, a hybrid detector
with high frame rate and large area would provide a
significant improvement of the ratio between measurement
time and acquired statistics. Additionally, the charge
integrating architecture means charge sharing between
neighboring pixels can be utilized to perform position
interpolation, improving the spatial resolution of the
detector beyond the pixel size. With the 25 µm pitch
MÖNCH chip, for instance, spatial resolution in the micron
range has been demonstrated in the hard X-ray domain [27, 34].
Based on these results, we note that an iLGAD hybrid detector
based on the MÖNCH chip or an adapted version of
JUNGFRAU with smaller pitch in one dimension would open
further possibilities for spectroscopic techniques such as RIXS,
soft X-ray spectro-ptychography, and soft or tender X-ray full
field imaging techniques that rely on high spatial resolution.
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FIGURE 8
(A, C) Average effective ENC of the JUNGFRAU-iLGAD and (B, D) average SNR for 1 keV photons as a function of temperature for different
integration times. Error bars represent the 1σ distribution across pixels. Panels (C) and (D) show the trends extrapolated to lower temperatures.
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Low gain avalanche diodes for
photon science applications

Matteo Centis Vignali* and Giovanni Paternoster*

Fondazione Bruno Kessler, Center for Sensors and Devices, Trento, Italy

Low Gain Avalanche Diodes (LGADs) are silicon sensors designed to achieve an
internal gain in the order of 10 through the impact ionization process. The
development of LGADs was pushed forward by their application in High
Energy Physics (HEP) experiments, where they will be employed to provide
measurements of the time of arrival of minimum ionizing particles with a
resolution of around 30 ps. The initial technological implementation of the
sensors constrains their minimum channel size to be larger than 1 mm2, in
order to reduce inefficiencies due to the segmentation of the gain structure.
The gain of the sensors is kept in the order of 10 to limit the sensor shot noise and
their power consumption. In photon science, the gain provided by the sensor can
boost the signal-to-noise ratio of the detector system, effectively reducing the
x-ray energy threshold of photon counting detectors and the minimum x-ray
energy where single photon resolution is achieved in charge integrating
detectors. This can improve the hybrid pixel and strip detectors for soft and
tender x-rays by simply changing the sensor element of the detector system.
Photon science applications in the soft and tender energy range require
improvements over the LGADs developed for HEP, in particular the presence
of a thin entrance window to provide a satisfactory quantum efficiency and
channel size with a pitch of less than 100 μm. In this review, the fundamental
aspects of the LGAD technology are presented, discussing also the ongoing and
future developments that are of interest for photon science applications.

KEYWORDS

LGAD, photon science, soft and tender x-rays, hybrid silicon detectors,
synchrotron radiation

1 Introduction

Photon science experiments at the soft and tender x-rays energies in the region of
200–2000 eV allow for a wide variety of research topics and applications. A few
examples are.

• Pharmaceutical industry: crystallography of proteins not containing
heavy elements [1].

• Life science: high resolution microscopy and ptychography for cells and tissues with
high contrast in the “water window” [2].

• New magnetic materials for data storage, energy production, and automotive:
ptychography and diffraction for nm-scale spatial resolution [3, 4].

• High-Tc superconductors for energy transport: resonant x-ray diffraction [5].
• Microelectronics manufacturing: mask inspection using extreme ultraviolet light [6].

To enable these lines of research, x-ray detectors must provide: high spatial resolution,
high frame rate, good quantum efficiency (QE), large area, and dynamic range. Different
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detector technologies are employed for soft and tender x-ray
measurements, like avalanche photodiodes (APDs), silicon drift
detectors (SDDs), charge-coupled devices (CCDs), and CMOS
sensors. These detectors have drawbacks that limit their
applications. APDs offer very coarse segmentation, resulting in
poor spatial resolution. SDDs showed excellent QE and rate
capability, but their spatial resolution is limited. CCDs offer a
better spatial resolution, however, they are limited in dynamic
range and rate capability, with long readout times preventing
their application in scanning measurements like ptychography.
The available systems based on CMOS sensors are limited in size
by the yield of the thinning and doping steps necessary to create an
entrance window for the x-rays.

Currently available hybrid pixel and strip detectors excel in spatial
resolution, frame rate, sensitive area, and dynamic range, making them
an ideal starting point for the development of x-ray detectors. Hybrid
detectors consist of a semiconductor sensor connected to readout
Application Specific Integrated Circuits (ASICs), allowing for the
separate optimization of the two components, and redtherefore the
enhancement of the detector system for a certain application’s energy
range, by changing the sensor being readout by the ASIC (e.g., using
CdTe sensors for hard x-rays). Examples representing the state-of-the-
art in hybrid pixel and strip detectors for photon science at
synchrotrons and free electron lasers can be found in [7–12]. The
performance of these detectors is showcased by their spatial resolution
of 1–2 μm reached by interpolation with a 25 × 25 μm2 pixel sensor
[13], their module area of up to 32 cm2 where several ASICs are bonded
to a single sensor [8, 9], their dynamic range of 104 12 keV photons [9],
and their frame rate ranging between 2.4 kHz and 4.5 MHz [9, 11, 14].

Currently, hybrid detectors are limited to operate at energies
above 2000 eV, due to their QE and signal-to-noise ratio (SNR). The
SNR affects the detectors in different ways depending on their readout
electronics. Photon counting detectors use a discriminator circuit with
a set threshold in each pixel or strip, each time the sensor shows a
signal above threshold one x-ray is counted. The threshold value of
these detectors is determined by the electronics noise, whose typical
value is 80–200 electrons [7, 8, 12]. The threshold is typically set to
5 times the noise level, corresponding to photon energies of
1440–3600 eV when silicon is used as sensor medium. X-ray
energies below this threshold are not detected. Charge integrating
detectors integrate the current measured by each pixel or strip during
a frame. For these detectors the SNR determines how many photons
or which photon energy is necessary to produce ameasurable signal. A
SNR of about 5 is necessary to achieve a sensitivity to single photons.
With a noise of about 35–50 electrons [9, 10], single-photon
sensitivity can be achieved for 630–900 eV x-rays using standard
silicon sensors. The application of both photon counting and
integrating detectors could be limited by their QE for soft and
tender x-rays. A low QE limits the sensitivity of the detectors,
requiring longer measurement times or higher intensity beams. To
extend the operating range of hybrid detectors to lower energies, an
increase in QE and system SNR is necessary.

The QE of the sensors can be improved by creating a thin
entrance window (TEW) structure that minimizes the inactive layers
that passivate the sensor surface, allowing the x-rays to reach the
sensitive volume of the sensor and at the same time preserving the
ionization generated in the sensor by reducing as much as possible
all recombination mechanisms.

The SNR of the detector system can be improved by using
sensors with charge multiplication like Low Gain Avalanche Diodes
(LGADs). LGADs are silicon sensors with an internal gain in the
order of 10 obtained via the impact ionization process. The
development of LGADs was pushed forward by their application
in High Energy Physics (HEP) experiments, where they will be
employed to provide measurements of the time of arrival of
minimum ionizing particles with a resolution of around 30 ps
[15, 16]. This performance is achieved by the combination of the
internal gain with silicon substrates with an active thickness of about
50 μm. The initial technological implementation of the sensors
constrains their minimum channel size to be larger than 1 mm2,
in order to reduce inefficiencies due to the segmentation of the gain
structure. Subsequent improvements of the sensors addressed this
problem, relying on different strategies. The gain of the sensors is
kept in the order of 10 to limit the sensor shot noise and their power
consumption. Recently, the use of LGADs was investigated in other
fields than HEP such as beam monitoring for hadron therapy,
astroparticle physics experiments, and photon science [17–20].

This paper provides a review of the current development of
LGAD sensors for photon science applications and offers some
considerations for the possible developments of the sensors to better
suit the needs of this application field. Current and proposed LGAD
technologies are presented in Section 2, being followed by a review of
the results obtained in the characterization of LGADs using x-rays in
Section 3. As the improvement in the QE of these sensors relies on
the development of a TEW, the main considerations for the
realization of this component are summarized in Section 4. The
theory describing the gain and noise properties of the sensors due to
charge multiplication is outlined in Section 5. This theoretical frame
is used in Section 6 to motivate general considerations on possible
approaches to realize LGAD sensors for photon science. A
comparison of sensor structures, both existing and proposed, for
their fitness in photon science applications is given in Section 7.
Finally a summary is provided in Section 8.

2 LGAD technologies

Over the past decade, LGADs have witnessed significant
technological advancements driven by three pivotal objectives
identified as crucial by the HEP detector community. These
objectives encompass the improvement of the sensor’s spatial
resolution and fill factor (FF), the enhancement of time
resolution in minimum ionizing particle (MIP) detection, and the
elevation of radiation hardness beyond 1015 neq/cm2 (where neq
denotes 1-MeV-neutron-equivalent). To achieve these objectives,
various LGAD technologies and design variations have been
proposed. This section provides a brief overview and discussion
of the current state-of-the-art technology for LGADs and their
principal variations, emphasizing their envisioned application in
photon science.

2.1 Standard LGAD

A schematic representation of the fundamental structure of an
LGAD is depicted in Figure 1. The multiplication junction follows a
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reach-through scheme, typical of APDs and SPADs, denoted as n+-
p−-p+-p−. This scheme is obtained by incorporating two doping
profiles on a p− substrate: firstly, a shallow n+ doping using Arsenic
or Phosphorous, and secondly, a deeper p-type doping (also named
“gain implant”), typically achieved with Boron. Upon depletion, the
electric field in the region between these two doped areas locally
increases to values exceeding the impact-ionization threshold
(approximately 2 · 105 Vcm−1), enabling the mechanism
responsible for charge multiplication.

The region with the high electric field, where the impact
ionization happens, is indicated as “multiplication region” or
“gain layer”. The doping profiles of the multiplying junction are
typically fabricated using ion implantation, even if other approaches,
such as dopant diffusion by solid or gaseous sources and doping
during epitaxial growth, are possible. The Boron doping profile
typically peaks at 1–1.5 μm for the front surface, resulting in a
multiplication region extending from a few hundred nanometers
from the surface up to the falling edge of the Boron implant at about
1.5–2 μm. A review of LGADs fabrication technologies is
available in [21].

The first prototypes of LGADs were manufactured by the Centro
Nacional de Microelectronica (IMB-CNM, Barcelona, Spain) in
2013 [16]. Since then, the technology has undergone further
developments and has reached a good technology readiness level
within the CERN RD50 collaboration1. Currently, many research
facilities around the world are involved in LGADmanufacturing and
R&D, such as: Fondazione Bruno Kessler (FBK, Trento, Italy),
Brookhaven National Laboratory (BNL, Upton, United States)
IMB-CNM, Hamamatsu (Japan), IHEP-NDL (Beijng, China),
USTC-IME (China), Micron (Lancing, United Kingdom),

Teledyne e2v (Chelmsford, United Kingdom), SINTEF MiNaLab
(Oslo, Norway).

The first LGADs were manufactured on approximately 300 μm
thick p-type Float-zone (FZ) wafers by IMB-CNM and FBK [16, 22].
The early devices showcased the potential for signal multiplication
of around 10 but the temporal resolution remained constrained,
typically in the range of 100 ps. To further improve the time
resolution in MIP detection, a new generation of LGADs was
then produced on thinner substrates of 45–60 μm [23–25].

The advantage of using thin substrates originates from the
peculiar shape of the signal generated by a MIP in LGADs: it has
a rise time that is as long as the drift time of an electron traversing
the entire sensor thickness. Therefore thinner substrates originate
signal waveforms with a higher steepness. A detailed discussion of
the signal shape for an LGAD is reported in [15]. Considering the
voltage waveform after the amplifier stage, the signal steepness or
“slew-rate” is indicated as dV

dt , and can be expressed as:

dV

dt
∝

G

d
(1)

where d is the depleted (or “active”) sensor thickness and G
represents the gain. This equation is only valid under the
assumption of a uniform charge generation throughout the
sensor thickness, and considering an ideal pad geometry
(neglecting the border effects). Reducing the sensor’s active
thickness improves the slew-rate but increases the junction
capacitance, negatively affecting the time resolution. The optimal
balance between these factors depends on the specific application
and the readout electronics being used.

A similar trade-off can be found for the gain: a high gain value
increases the signal slew-rate but a too high gain is detrimental to the
SNR, due to higher shot noise. In addition, increasing the sensor
gain by adjusting the operating voltage also results in increased
current and bias voltage, leading to higher power consumption. An
alternative approach is to increase the doping level of the gain

FIGURE 1
Schematic cross-section of the LGAD multiplication junction (A) and representation of the doping profiles and electric field as a function of the
depth (B). The plotted values are only representative of the technology and do not refer to any specific device.

1 RD50 - Radiation hard semiconductor devices for very high luminosity

colliders. cern.ch/rd50.
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implant, which allows for high gain at lower bias voltage, thereby
limiting power consumption. However, this solution may not always
be practical as it could prevent the electron velocity from saturating
throughout the entire depleted volume, which can be detrimental to
time resolution [15]. In HEP timing applications, experimental
results and simulations indicate that a thickness of ~ 50 micron
combined with a gain of ~ 10 provides optimum performance for
channel dimensions of the order of ~ 1mm2 [15]. Such thin LGADs,
optimized for timing applications are also known as “Ultra Fast
Silicon Detectors” (UFSD) and have been demonstrated to reach
time resolution as low as 30 ps and 40 ps, before and after irradiation
up to a fluence of 1015 neq/cm2, respectively [23, 24].

In a silicon processing clean room, ~ 50 μm thick substrates
cannot be directly handled, and they need to be attached to a thick
supporting layer. Typically the thin active silicon can be either an
epitaxial layer grown over a thick low-resistivity wafer, or a thin FZ-
wafer, wafer-bonded to a low-resistivity handle wafer. In both cases,
the handle wafer acts as the back anode contact and the processing
takes place on the front side only. Due to the low resistivity substrate
on the backside of the wafer and the presence of read-out pads on the
front side, thin LGADs designed for HEP applications, are not
suitable for detecting photons or low-penetrating particles and
x-rays. For these applications, a full-depleted bulk silicon
substrate is required. In this approach, a p+ implant and a thin
passivation layer can be fabricated on the backside, serving as an
entrance window for low-penetrating particles and soft x-rays.

2.1.1 LGAD segmentation
The initial strategy for creating segmented LGADs adopted the

same segmentation scheme employed in standard n-i-p diode
arrays. This approach entails the segmentation of the entire n+-
p−-p+-p− multiplying junction, with the addition of an extra p-type
region referred to as a “p-stop” between the pixels to ensure full
electrical isolation, as illustrated in Figure 2. However, the
segmentation of a sensor with internal multiplication presents
additional challenges compared to conventional p-i-n diodes.
Indeed, to avoid undesired high-electric field regions at the
termination edge of the gain layer, an additional n-type region
known as Junction Termination Extension (JTE) is typically

included. The JTE controls the n+ curvature and reduces the
electric field at the pixel border. The gain layer is removed in the
JTE and p-stop regions and also indented from the JTE edge to
prevent premature breakdown at the pixel edge (edge-breakdown).
These termination structures use some of the sensor’s area and, as a
consequence, introduce an inter-pixel region where the gain is
suppressed [26]. This is the so-called no-gain region, defined as
the distance between two adjacent gain implant regions. In standard
LGADs, the no-gain region is typically in the range 50–100 μm,
depending on the fabrication technology and device design. The
presence of such a no-gain region reduces the fill factor (FF) of the
pixel (FF = pixel area with signal multiplication/total pixel area).

In current HEP experiments, where the required pixel size is
typically around 1 mm2, the FF loss is almost negligible. However, in
photon science applications, where a pixel size in the range of
25–100 μm is usually required, the wide inter-pixel region makes
the standard LGAD technology inadequate.

2.2 Capacitively coupled LGAD (AC-LGAD)

The first technological solution proposed to overcome the
segmentation issues in LGADs was the capacitively coupled
LGAD (AC-LGAD) [27, 28]. In this architecture, the multiplying
junction (both n+ and p+ layers) is not patterned and covers the full
sensor area, without any interruption. The read-out is kept on the
same side of the multiplication region and the sensor segmentation
is achieved via metal pads AC-coupled to the n+ layer via a thin
dielectric film (about 100 nm thick). The n+ layer is then connected
to the ground at the sensor periphery, where the JTE is present as in
the case of standard LGAD. A sketch is shown in Figure 3. In this
scheme, thanks to the uniform multiplication region across the
sensor, a 100% fill factor is achieved with uniformmultiplication and
no dead areas, independently of the channel segmentation.

Signal formation in an AC-LGAD differs significantly from the
one of a standard LGAD [29]. In AC-LGADs, the signal at the
readout pads is primarily induced during the charge propagation
along the n+ layer, before discharging to the ground. The resulting
signal is bipolar, with a zero net integral. The positive lobe is

FIGURE 2
Schematic cross-section of a standard LGAD and magnitude of the electric field inside the sensor. Yellow represents dielectrics and black the
metallization. The readout side is on top, and the x-rays enter from the bottom. The entrance window was added for the application of these sensors to
x-ray detection.
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generated during the current lateral spread along the lossy
transmission line composed of the n+ layer, the bulk, and the
AC-pads. The negative lobe accounts for the AC-pad discharge,
with an RC constant that depends on the read-out input resistance,
the n+ sheet resistance and its capacitances towards the sensor
backside and the metal pads.

In AC-LGADs, the signal could propagate in the n+ layer for
hundreds of microns before being completely collected by the pick-
up electrodes, as a consequence, a certain amount of cross-talk exists
among adjacent pixels. Signal-sharing among pixels can be used to
enhance spatial resolution by interpolating signals from neighboring
pixels. This resistive read-out method was first investigated by INFN
and the University of Turin for AC-LGADs, which they called
Resistive Silicon Detectors (RSD) [28]. They demonstrated that
RSDs can detect MIPs with a similar temporal resolution of
standard LGADs (approximately ~ 30 ps) and with a spatial
resolution as low as 5% of the metal pads pitch, which usually
ranges from 100 μm to 500 μm [30]. Notably, AC-LGADs (RSD)
exhibit a spatial resolution surpassing that obtained in the absence of
charge sharing between pixels (quoted as pitch/

��
12

√
). These results

pave the way for the realization of a detector that offers high
temporal and spatial resolution, while also requiring fewer
channels in the read-out electronics.

AC-LGAD detectors have been manufactured by various
research facilities, primarily on thin epitaxial silicon substrates
(approximately 50 μm) for HEP tracking. However, a prototype
on a thick FZ silicon substrate was presented in [22]. If produced on
thick FZ silicon wafers using a double-sided manufacturing process
(see Figure 3) this device becomes capable of detecting photons and
particles entering from the sensor backside. Here, a p+ implant and a
thin passivation layer can be implemented, forming an
entrance window.

Despite the promising attributes, such as fine segmentation and
a 100% fill factor, which make AC-LGADs appealing for photon
science applications, their use in this field is now hampered by the
peculiar shape of the produced signals: the fast and bipolar signals
are not compatible with charge-integrating electronics or with the
current single-photon counting front-end used in photon science, as
the long integration time would produce zero-net-charge signals.

Some authors suggested that this effect can be attenuated in single-
photon counting detectors by making the n+ layer float through a
large value resistor connected between ground and the n+ contact
[27]. Electrons collected at the n+ layer will then discharge with a
long time constant, producing a signal with negligible opposite
polarity pulse amplitude. In conclusion, to fully exploit this
technology in photon science applications, significant
modifications of the read-out electronics or optimization of the
sensor output are required.

2.3 DC-coupled resistive silicon detectors
(DC-RSD)

A further development, exploiting the resistive readout
employed in AC-LGADs led to the proposal of DC-coupled
resistive silicon detectors (DC-RSD) by INFN and the University
of Turin [31]. Similar to AC-LGADs, the multiplying junction in
DC-RSD is not patterned and extends to the entire sensor area.
However, in DC-RSD, the metal pads are directly connected to the
n+ layer via ohmic contacts (refer to Figure 4). Electrical isolation
among different channels is achieved by designing an n+ layer with
sufficiently high sheet resistance and optimizing the inter-pads
distance accordingly. The motivation behind the development of
DC-RSD lies in two main objectives: 1) restricting the spread of
signals beyond the nearest pads to enhance spatial resolution, and 2)
generating unipolar signals instead of the bipolar signals produced
by AC-LGADs. DC-RSD can be also produced using a double-sided
process, allowing for the incorporation of an entrance window on
the backside for applications involving photon and x-ray imaging.
While this technology promises to address some of the limitations
associated with AC-LGADs, its development is still ongoing, and
experimental validation is still needed.

2.4 Inverted LGAD (iLGAD)

An alternative approach aimed at achieving high spatial
resolution using a structure based on LGADs is known as the

FIGURE 3
Schematic cross-section of an AC coupled LGAD and magnitude of the electric field inside the sensor. Yellow represents dielectrics and black the
metallization. The readout side is on top, and the x-rays enter from the bottom. The entrance window was added for the application of these sensors to
x-ray detection.
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inverted LGAD (iLGAD) [32]. Originally proposed in [33] and
previously referred to as double-sided LGADs, this design
features a multiplication junction formed by a uniquely
unpatterned region covering the entire sensor, ensuring a
100% fill factor, while the read-out segmentation is provided
by the collecting electrodes on the opposite side (ohmic or read-
out side), without compromising the gain uniformity along the
sensor (refer to Figure 5).

To ensure full electrical isolation among the read-out
channels, the device must operate in full depletion.
Additionally, as a full double-sided process is required to
define both surfaces of the wafer, the latter must be
approximately 200–300 μm thick. Unfortunately, such a high
active thickness compromises the timing capability of iLGAD
(see Eq. 1), making this technology less appealing in HEP
applications where fast timing is crucial. However, due to its
exceptional segmentation capabilities, iLGAD is valuable for
applications where the timing information is not critical. It
stands out as the predominant LGAD technology for these
applications, as discussed in Section 3.

2.4.1 n-type iLGAD
In iLGADs, the integration of the read-out on the opposite side of

the sensor necessitates placing the entrance window for photons and
x-rays on the gain side. This feature introduces a dependence of the
multiplication on the particle interaction point. In p-type LGADs, the
multiplication process for low-energy particles, interacting close to the
surface (in the superficial neutral region) is initiated by holes traveling
through the gain layer. For particles interacting deeper in the substrate,
the multiplication is electron-initiated. The latter process produces
signals with both higher gain and SNR, as discussed in Section 5.

To address this limitation and enhance the efficiency of detecting
low-energy photons and particles, iLGADs on n-type substrates have
also been proposed in [35], and experimentally fabricated by IMB-
CNM [36]. This sensor was named proton Low Gain Avalanche
Detectors (pLGAD) and features inverted doping compared to
traditional iLGAD (as represented in Figure 6). Such a sensor was
also provided with a thin surface passivation layer and an entrance
window optimized for the detection of particles with a low penetrating
depth (15 keV protons in this specific case, which have a maximum
range in silicon of 300 nm). In such a detector, only signals created

FIGURE 4
Schematic cross-section of DC-RSD and magnitude of the electric field inside the sensor. Yellow represents dielectrics and black the metallization.
The readout side is on top, and the x-rays enter from the bottom. The entrance windowwas added for the application of these sensors to x-ray detection.

FIGURE 5
Schematic cross-section of a double-sided (inverted) LGAD and magnitude of the electric field inside the sensor. Yellow represents dielectrics and
black the metallization. The readout side is on top, and the x-rays enter from the bottom. Figure originally published in [34].
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close to the entrance window are amplified with high gain (a gain of
around 18 was reported). A new advancement in fabricating n-type
i-LGADs for soft x-ray detection was also recently presented at a
conference [37]. The work reported on the first LGAD prototypes
equipped with a thin entrance window for photons with energy as low
as 250 eV. The initial characterization showed a gain of about 7 when
illuminated with 470 nm light, that corresponds to an attenuation
length of 0.56 μm in Silicon. The gain drops to 1.4 when illuminated
with 940 nm photons, which interact deeper in the substrate
(attenuation length equal to 54.6 μm) and generate hole-initiated
multiplications.

The mentioned results make the n-type i-LGAD unfit for HEP
applications but perfectly suited for low-energy physics experiments.

2.5 Trench-isolated LGAD (TI-LGAD)

An alternative technological approach to achieve fine
segmentation in LGADs involves the use of narrow and shallow

trenches to isolate the pixels, as represented in Figure 7. This
technology is based on etching a pattern of trenches into the
silicon substrate, which are then filled with dielectric materials,
such as silicon dioxide. The trenches, approximately 1 μm wide,
replace all the structures at the pixel border region, such as p-stop
and JTE, while maintaining the same multiplying junction scheme
(n+-p−-p+-p−) as standard LGADs. This design offers a clear
advantage in terms of reducing the no-gain width between
adjacent pixels, overcoming the technological limitations of the
standard approach.

Thanks to the trench isolation technology, the nominal no-gain
width can be reduced to less than 5 μm, compared to the usual few
tens of microns in standard LGADs, achieving an outstanding 80%
fill factor for a 50 μm pitch sensor. TI-LGADs were proposed and
initially produced by FBK based on thin epitaxial wafers [26], with a
first characterization reporting an effective no-gain distance between
pixels as low as 2 μm [38].

TI-LGAD sensors manufactured with a double-sided process
hold promise for soft x-rays detection. They can provide a

FIGURE 6
Schematic cross-section of a n-bulk inverted LGAD andmagnitude of the electric field inside the sensor. Yellow represents dielectrics and black the
metallization. The readout side is on top, and the x-rays enter from the bottom.

FIGURE 7
Schematic cross-section of a trench isolated LGAD and magnitude of the electric field inside the sensor. Yellow represents dielectrics and black the
metallization. The readout side is on top, and the x-rays enter from the bottom. The entrance window was added for the application of these sensors to
x-rays detection.
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reasonably high fill factor, small pixels down to 25 μm, and
simultaneously offer the possibility to integrate an entrance
window on the sensor backside. As of now, no experimental
prototypes made on FZ thick substrates are available.
Additionally, using a thicker active layer (e.g., 300 μm) necessary
for a fully double-sided process could potentially be detrimental to
the no-gain width. This effect is attributed to the peculiar shape of
the electric field at the pixel periphery, as discussed in [26].

2.6 Deep-junction LGAD (DJ-LGAD)

Another promising LGAD technology, the deep-junction LGAD
(DJ-LGAD), has been introduced and pioneered by the University of
California, Santa Cruz [39]. A cross-sectional representation of the
device is depicted in Figure 8. In this design, the multiplying
junction forms a uniform area of n+ and p+ gain implants
spanning the entire sensor area. Unlike other LGAD
technologies, the multiplying junction is not superficial but is
buried a few microns below the surface, where n+ DC-coupled
electrodes are positioned.

The bulk of the sensor comprises high-resistivity p-type silicon,
and above the buried junction, a several-micron-thick layer of high-
resistivity n-type material, referred to as the “isolation layer,” is
present. At the operational bias voltage, both the n-type epi and
p-type bulk regions are depleted. However, the multiplication region
is confined between the buried n+ and p+ gain layers while elsewhere
the electric fields are well below the threshold for impact ionization.
The lateral termination of the multiplication structure can be
realized by extending the n+ gain layer to be close to a grounded
guard ring while the p+ gain layer is a few μm narrower than the n+

layer, as suggested in [39]. Below the junction, the thicker layer of
high-resistivity p-type material serves as the charge generation
medium for detecting charged particles, x-rays, or heavy ions. An
optical window can be included on the p-type side of the sensor,
along with the back bias electrode.

Particles interacting in the n-type isolation layer undergo holes-
initiated multiplication and do not experience significant
multiplication. Conversely, electrons drifting from the p-type

bulk are multiplied in the gain layer and then drifted to be
collected by the n+ electrodes at the top surface. Proper tuning of
the n− and p-type regions allows for optimization of both noise and
energy sensitivity for specific applications.

The unique design of this detector introduces some fabrication
complexity and new challenges, primarily due to the necessity to
manufacture the buried junction several microns into the substrate.
One approach involves using a substrate with the two n- and p-type
high-resistivity regions, obtained, for example, through a double
epitaxy process or wafer-to-wafer direct bonding. High-energy ion
implantation is then employed to place the two gain doping profiles
at the n-p interface. However, this technique has intrinsic limitations
due to the maximum achievable energy of standard ion-
implantation equipment (a few MeV), restricting the junction
depth to 4–5microns from the sensor surface.

An alternative method involves implanting the two gain
layers on two different wafers, which are then wafer-bonded
together. The wafer carrying the n+ gain layer is subsequently
thinned down to a few microns, and its surface is processed to
allocate the electrode structures. Another approach includes
using a p-type substrate where both the two gain implants are
done close to the surface, followed by the growth of the high-
resistivity n-type layer by epitaxy.

Several institutes and research facilities are conducting R&D
activities to produce first prototypes of DJ-LGADs, but preliminary
results are not yet published, with only partial results presented in
workshops [40].

3 Review of recent results from LGADs
for X-ray detection

In the past few years LGAD sensors were tested as x-ray
detectors, this section summarizes the results obtained in these
studies proceeding in chronological order.

The very first measurements showed that LGAD sensors could
be used as x-ray detectors using standard LGADs with a pad
geometry of 5 × 5 mm2 and a thickness of 200 μm. These sensors
demonstrated the detection of x-rays down to the energy of Mo

FIGURE 8
Schematic cross-section of a deep junction LGAD and magnitude of the electric field inside the sensor. Yellow represents dielectrics and black the
metallization. The readout side is on top, and the x-rays enter from the bottom. The entrance window was added for the application of these sensors to
x-rays detection.
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fluorescence (17.5 keV), with the lowest detectable energy being
limited by the sensor capacitance [19].

The first tests with tender x-rays were done using standard
LGADs developed for high energy physics, featuring an active
thickness around 50 μm and a low resistivity substrate with a
thickness in the order of 500 μm. The low resistivity substrate
does not allow for a backside illumination of the sensors with
soft x-rays, making it favourable to test them with the x-rays
impinging on the front side of the sensors where a few μm of
dielectrics and metal are usually present. Using a bunched x-ray
beam with a repetition rate of 500 MHz, the detection of 6 keV
photons was demonstrated using a sensor with pad geometry of
~ 1 × 1mm2. The same setup was able to distinguish the individual
x-ray bunches, putting a lower limit to the rate capability of these
sensors optimized for minimum ionizing particle timing [20]. In
addition, an energy resolution between 8 and 15%was demonstrated
for x-ray energies between 6 and 16 keV with the better resolution
being achieved for the higher energy x-rays [20]. While the results
presented so far used discrete component amplifiers and
oscilloscopes to readout and digitize the sensors signal, the next
step was to use readout ASICs developed for photon science.

Standard LGAD 5 mm long strip sensors with a pitch of 150 μm
and active thickness of 50 μm were connected to both charge
integrating [41, 42] and photon counting [43] readout
electronics. The larger channel capacitance of the LGAD sensor
(due to its strip geometry and thickness) compared to a standard
silicon sensor resulted in increased noise and is detrimental to the
energy resolution. Despite this effect, photons with energy of 2.1 keV
were detected with the photon counting electronics, showing an
improvement with respect to the 8.5 keV energy threshold achieved
with a standard silicon sensor with the same electronics settings
[44]. The energy resolution using the photon counting electronics
was 0.31 keV for 2.1 keV x-rays, and the charge integrating
electronics showed a resolution of 0.41 keV for 8.05 keV x-rays,
with the latter figure representing a factor 2.7 improvement
compared with a standard silicon strip sensor read out by the
same charge integrating electronics [44]. The ASICs combined
with a standard LGAD strip sensor resulted also in an improved
energy resolution compared to the previous result obtained with
standard LGADs read out using discrete component electronics. A
dependence of the energy resolution on the x-ray energy is observed
also in this study. Furthermore it is shown that there is an optimal
operating voltage that gives the best resolution due to the rise of shot
noise when further increasing the gain of the LGAD sensor [44].
The noise of the readout system when expressed in x-ray energy
(keV equivalent) is shown to decrease with the LGAD operating
voltage. This is due to the sensor gain that changes the conversion
between collected charge and x-ray energy [44]. The results shown
in [44] also highlight two main drawbacks of standard LGADs
optimized for timing: the aforementioned channel capacitance with
typical values around 3 pF) and the fill factor of these sensors that
strongly limit their use in synchrotron radiation applications. The
use of iLGADs can improve both aspects, lowering the channel
capacitance and providing a 100% fill factor. A thin entrance
window applied to these sensors would then allow for an
improved quantum efficiency for soft x-rays.

These sensors were fabricated and considerations for their
design, together with a first characterization, are shown in [45].

A 1 × 1 cm2 iLGAD pixel sensor with 25 μm pitch and 275 μm
thickness was bonded to a charge integrating readout electronics
[10]. The sensor leakage current and its noise were improved by
cooling the sensor-ASIC assembly, resulting also in an increase of
the sensor’s gain [45].

Due to x-ray interactions, the use of iLGADs for synchrotron
light applications causes the silicon dioxide to acquire a positive
charge, that over time can impact the sensor performance. The effect
of this type of radiation damage was explored for iLGADs and a
modification of the sensor periphery resulted in an improved
radiation hardness for x-rays [46].

The characterization of standard LGADs continues in parallel to
iLGAD development. Standard LGAD pad sensors with an area of
1.3 × 1.3 mm2 and thickness of 20 and 50 μm were characterized
using a 500 MHz bunched x-ray beam with energy between 5 and
70 keV [47]. The sensors were read out using discrete components
electronics. The x-ray bunches could be resolved, maintaining the
earlier result of the same group [20]. In this study the timing
performance of the sensors was studied more accurately, showing a
time resolution between 50 and 200 ps for LGADs and of ~80 ps for
a 50 μm thick silicon sensor with the same pad geometry. The 20 μm
thick LGAD performed better than the 50 μm thick ones, with the
latter having a time resolution worse than 100 ps. The LGAD timing
performance is significantly worse than what is observed for
minimum ionizing particles (MIPs), usually around 30 ps. This is
explained considering the shape of the deposited ionization cloud in
the sensor: a cylinder along the whole sensor thickness for aMIP and
a point-like distribution for x-rays. The shape of the ionization cloud
together with the signal formation mechanism in LGADs and
sensors without gain account for the different performance with
the two particle types and the better resolution of a sensor without
gain compared to an LGAD of the same thickness [47]. The effect of
the different shapes of the ionization cloud for MIPs and x-rays also
resulted in a reduction of the sensor gain for the latter [47]. A
dependence of the sensor gain on the density of the ionization cloud
reaching the gain layer was also studied in the detection of MIPs
[48]. Both studies reach the shared conclusion that too high charge
density, resulting from the multiplication, can lower the electric field
in the gain layer, self-quenching the multiplication process. The
energy resolution of the LGADs was studied and found to be
between 6% and 20% depending on the bias voltage [47]. The
sensors also show a worse resolution at higher operating voltages as
shown in [44]. The linearity in the energy response of these LGAD
pads was found to be better than 4% [47]. In the same study AC-
LGAD strip sensors with a strip length of 5 and 10 mmwere exposed
to the same x-ray beam and demonstrated an energy resolution
between 12% and 21% [47].

The last sensor characterization study to be mentioned in this
section features the same 275 μm thick iLGADs used in [45] but
with pad geometry. In the study the photocurrent generated by
monochromatic x-rays with energies from 200 to 1000 eV was
measured. The gain as a function of photon energy of iLGADs
was measured, and their quantum efficiency (QE) was estimated
using sensors without gain with the same TEW as the iLGADs [49].
The QE measurement of the sensors without gain shows a QE
between 55% and 65% for 250 eV photons. Using the dependence of
the QE on x-ray energy, the main parameters of the TEW were
extracted, showing that the main source of inefficiency are the
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dielectric layers used on the TEW, while the charge collection
efficiency is close to unity [49]. The gain of the iLGAD shows a
dependency on the photon energy, with higher gains being achieved
at higher energies. This is explained by the distribution of the x-ray
interaction positions relative to the multiplication structure [49].
The dependence of gain on x-ray energy is exploited to infer the gain
as a function of the position of the x-ray interaction within the
sensor. Different multiplication structures were studied, whose
multiplication regions were placed at different depths in the
sensors. The gain for electrons (holes) entering the multiplication
structure Mn (Mp) was determined and it is shown that a thinner
multiplication structure has a largerMp/Mn ratio than a broader one
[49]. The effect of the depth of interaction of the x-ray photons
relative to the multiplication structure and the ratio betweenMn and
Mp are discussed in Section 6.

The characterization work done on LGADs using x-rays and the
fabrication of sensors dedicated to photon science is a sign of interest
in this technology. The performances of the sensors and the level of
detail reached in their characterization are steadily evolving. These
sensors are close to being employed in measurements at synchrotron
light sources instead of being brought to the beamlines to be
characterized. The first use of LGAD sensors for photon science
measurements is mentioned in a conference [50] and documented
in an article preprint [51] where an iLGAD pixel sensor was used in
ptychography measurements with soft x-rays.

4 Thin entrance window for soft X-rays

Detecting soft and tender x-rays in the energy range of 200 eV to
2 keV presents new challenges, particularly in achieving high
quantum efficiency. In hybrid silicon detectors, x-rays enter the
sensors from the side opposite to the collecting junction where the
read-out electronics is located. Similarly, in CMOS sensors, the
wafer is thinned from the backside to approach the active volume of
the sensor. In both cases, an entrance window must be designed and
incorporated into the sensor backside to facilitate proper x-ray
transmission and the collection of photogenerated charge in the
sensor medium. The entrance window comprises two distinct
regions: 1) an insensitive layer made of dielectric material or
metal, deposited onto the silicon surface, and 2) a highly doped
silicon layer (typically of the same sign as the substrate if the
entrance window is opposite to the junction).

The QE for soft x-rays interacting closely to the surface may be
affected by three loss mechanisms: 1) the absorption of photons in
the insensitive layer; 2) the recombination of charge carriers
generated by x-rays at the silicon surface, or 3) the loss of charge
carriers in the neutral highly doped region via trap-assisted or Auger
recombination. In simpler designs, the entrance window is typically
made of a thin metal layer (usually aluminum), connected to a
highly doped region. However, this design significantly affects QE at
low energies due to absorption in themetal and recombination at the
silicon-metal interface, where the surface recombination velocity
(SRV) approaches the saturation value (approximately 106 cm/s). A
more efficient approach involves using a thin layer of dielectric
material to passivate the silicon surface and reduce SRV. Materials
like thermal silicon dioxide can provide good surface passivation
with SRV as low as 10 cm/s. Excellent alternatives are hydrogenated

silicon nitride (deposited by Plasma Enhanced Chemical Vapor
Deposition - PECVD) [52] and aluminum oxide (deposited using
Atomic Layer Deposition - ALD) [53]. Nevertheless, it is crucial to
maintain the film thickness as low as possible due to the attenuation
length of soft x-rays in the mentioned materials, which is
comparable to that of Silicon (Figure 9).

Manufacturing of thin entrance windows (TEW) for soft x-rays
poses challenges due to the strong dependencies of doping
concentration profile, surface passivation, and carrier lifetime on
specific fabrication processes. While it is difficult to provide a
universal set of parameters, a well-passivated silicon surface via a
dielectric thin-film coupled to a shallow and steep doping profile
with a surface concentration in the order of 1019 atoms/cm3

promises good QE for energies down to 250 eV [56]. Only a few
studies systematically investigated TEW for soft x-rays. One recent
study investigated the manufacturing of TEW on n-type silicon
sensors by using low-energy Arsenic ion implantation or
Phosphorous diffusion, and a thin dielectric layer as passivation
material. Using LED light they estimated a QE around 50% at
276 eV for wafers fabricated using As ion implantation annealed at
high temperatures, and equal to 70% by using Phosphorous
diffusion [57]. Another study on back-side illuminated CMOS
sensors reported a remarkable QE above 90% in the 100–1000 eV
range, corresponding to an equivalent 5 nm dead-layer [58]. This
result was obtained on CMOS x-rays sensors back-thinned down to
9.5 μm, and doped with low-energy ion implantation.

As discussed in this paper, the integration of a TEW into LGADs
can occur on either the gain side or the bulk side, depending on the
specific technology. For AC-LGADs, DC-RSDs, TI-LGADs, and DJ-
LGADs, the TEW can be placed on the back side, opposite to the
gain, following a similar approach used in standard silicon sensors.
For iLGADs, where the TEW is positioned on themultiplication side
of the sensors, certain constraints in tuning the doping profile and in
the thermal budget have to be considered to preserve the
multiplication junction functionality. One of the first studies that
investigated the QE on a p-type iLGAD, reported a QE around 60%
and 90% at 250 eV and 500 eV, respectively, with charge collection
efficiency close to 1 in the full investigated energy range [49]. The
encouraging outcomes suggest that incorporating an effective TEW
in an iLGAD structure is viable, as the QE appears to be only limited
by absorption in the dielectric material, and potential enhancement
may be achieved by further reducing the thickness of this insensitive
layer. Other studies have successfully demonstrated the integration
of a TEW on n-type iLGAD using a 4 nm thick layer of aluminum
oxide and 15 nm of aluminum, but no characterization with soft
x-rays has been reported [36].

Recent advancements in microfabrication technologies
suggested novel techniques for manufacturing TEW for low-
energy particles or ultraviolet (UV) light. For instance, using low-
energy (5 keV) Arsenic implantations followed by low-temperature
(500°C) microwave annealing has been proposed to achieve unitary
internal QE at 200 eV [56]. Other advanced techniques, such as
plasma immersion ion implantation (PIII) followed by laser
annealing, have already proven their effectiveness in detectors for
UV light [59]. Compared to conventional ion implantation, PIII can
implant at energies below 0.2 keV and when coupled with laser
annealing it allows for obtaining a very shallow junction with an
abrupt profile, by limiting the dopant diffusion. Alternative
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technologies to ion implantation have also been proposed: Pure-B
deposition has been demonstrated able to produce shallow junctions
for UV light detection below 220 nm [60], while superlattice-doping
via Molecular Beam Epitaxy (MBE) reached record QE at deep and
far UV wavelengths [61].

5 Theory summary of signal and noise
of LGAD sensors

This section presents a summary of the theory used to describe
the signal and noise properties of the multiplication structure of
LGADs. The main references for this section use the local theory of
impact ionization developed for avalanche photodiodes [62, 63]. A
more accurate description takes into account the space needed by
the charge carriers to reach the energy necessary for impact
ionization (non-local impact ionization theory) [64, 65]. An
example of the considerations presented below applied to APDs
for light detection can be found in [66].

The multiplication structure of an LGAD can be represented as
shown in Figure 10 where the multiplication of charge carriers
happens in a region between 0 and w. In this region the ionization
coefficients, denoted as α for electrons and β for holes, are larger
than 0. The ionization coefficients are functions of the electric field
and therefore of the position in the multiplication region. The
currents traversing the system are In and Ip for electrons and
holes respectively (the figure reports the direction of motion of
the charge carriers). A generation rate g(x) due to thermal effects or
particle interaction is considered in the multiplication region. This
general representation was used in [62] to derive expressions for
gain and noise of avalanche photodiodes. This section summarizes
the relevant elements for LGAD sensors. The multiplication factor
M(x) is the average total number of electron-hole pairs that are

generated in the multiplication region as a result of one initial pair
being generated at a position x. The multiplication factor takes the
form (Eq. 2)

M x( ) � exp −∫w

x
α − β dx′[ ]

1 − ∫w

0
α exp −∫w

x′α − β dx″[ ] dx′ (2)

Neglecting trapping and recombination effects, the multiplication
factor varies as a function of x only in the multiplication region,
remaining constant outside. For a given electric field, in silicon, β <
α [67] resulting in a lower gain for holes entering in the gain region
when compared to electrons (M(0) < M(w)). The gain of electrons
and holes entering the multiplication structure is represented in the
following by Mn = M(w) and Mp = M(0), respectively.

Considering the currents Ip(0) and In(w) being the result of
thermal generation of charge carriers in the sensor, the total dark
current of the device can be expressed as (Eq. 3)

I � Ip 0( )Mp + In w( )Mn + ∫
w

0
gMdx (3)

The multiplication affects the noise of the sensor by increasing its
leakage current and due to the fluctuations of the multiplication for
each charge carrier traversing the multiplication region. This in
particular affects the shot noise of the sensor. For a readout
bandwidth B, the current fluctuations due to shot noise are
σ i �

���
ϕB

√
, with the noise spectral density ϕ expressed in units

[ϕ] = A2/Hz. In [62] the shot noise spectral density takes the form

ϕ � 2qe 2 Ip 0( )M2
p + In w( )M2

n + ∫
w

0
gM2 dx[ ] + I 2∫

w

0
αM2 dx −M2

n[ ]{ }
(4)

where qe is the elementary charge. In LGAD sensors the width of the
multiplication region is smaller than the active thickness of the

FIGURE 9
Attenuation length as a function of x-ray energy for Silicon and materials commonly used in the realization of entrance windows for x-rays. Data
from [54], that is based on [55].
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sensor, representing at most a few percent of it. Assuming that
generation effects related to the electric field in the multiplication
region (e.g., trap assisted tunneling and field-enhanced emission) do
not play a major role, the current generated in the multiplication
region can be neglected in comparison to the current generated in
the rest of the sensor volume. Disregarding the current generated in
the multiplication region (g = 0) the shot noise spectral density can
be expressed as ϕ � 2qeIp(0)M2

pFp + 2qeIn(w)M2
nFn where Fn, Fp

are the excess noise factors for electrons and holes entering the
multiplication structure, respectively. These represent the
fluctuations of the multiplication and increase the noise
compared to what is expected by Poisson statistics only.
According to [62] the excess noise factors are given by

Fn � 2 + 1
Mn

2∫
w

0
αM2 dx −M2

n[ ]

Fp � 2 + 1
Mp

2∫
w

0
αM2 dx −M2

n[ ]
(5)

As in siliconMn >Mp, the holes excess noise factor is larger than the
electrons one (Fp > Fn). The excess noise factors do not depend only
on the values of gain at the edges of the multiplication structure, but
are sensitive to the shape of the electric field in the multiplication
region. In the approximation β = kα with k being constant, it is
possible to show that the excess noise factors can be reduced if the
multiplication of holes is kept at a minimum (k ≪ 1) [62] and it is
shown experimentally in [66]. If the gain for holes entering the
multiplication region is not important for x-ray detection, reaching a
given electrons gainMn with a broader multiplication region results
in lower excess noise factor values.

The shot noise can be expressed in units of electrons using a time
constant τ related to the bandwidth of the readout electronics τ = 1/
(2B), taking the form

σe � σ i
τ

qe
A3 (6)

where A3 accounts for the effect of the readout electronics,
considering that electronics with the same bandwidth can result
in different values of σe depending on their delta-pulse response
function [68]. The A3 parameter can assume values between 0.5 and

a few units [68], however, for the sake of simplicity, A3 is set to 1 in
the rest of this section. τ is also related to the time response of the
readout electronics and is usually referred to as shaping time. Using
Eq. 6 with A3 = 1, the shot noise becomes (Eq. 7)

σe �
�����������������
NnM

2
nFn +NpM

2
pFp

√
(7)

where Nn, Np are the number of electrons and holes entering the
multiplication region in a time τ, respectively. For an equal current
value of electrons and holes entering the multiplication region (Nn =
Np), the contribution to the shot noise is larger for the electrons as
Mn > Mp, so that M2

nFn >M2
pFp (see Eq. 5).

The excess noise factor affects also the signal through its
multiplication. An x-ray photon of a given energy creates an
average of Nx electron-hole pairs in the sensor, these undergo
multiplication resulting in a signal S = NxM, where the value of
M depends on the absorption position of the x-ray. The variance of
the signal due to the multiplication of its charge carriers is given by
[63] as (Eq. 8)

σ2
SM � NxM

2 Fsi + F − 1( ) (8)
where Fsi is the Fano factor of silicon, and F is the excess noise
factor at the absorption position of the x-ray. Eq. 5 shows the
excess noise factors to be used if the x-ray interaction results in
the injection of electrons or holes at the edges of the
multiplication structure. If the x-ray interacts in the
multiplication region at a position x, considering a point-like
ionization distribution resulting from the interaction, the excess
noise factor can be extracted from Eq. 4 similarly as done for Fn,
Fp by imposing g = g(x′)δ(x′ − x) (where x′ is the integration
variable). The excess noise factor for 0 < x < w is (Eq. 9)

F x( ) � 2 + 1
M x( ) 2∫

w

0
αM2 dx −M2

n[ ] (9)

By including all noise contributions other than the shot noise
(e.g., thermal noise, readout electronics noise, etc.) in a term σ0, the
total variance of the signal can be expressed as (Eq. 10)

σ2S � NxM
2 Fsi + F − 1( ) + σ2e + σ20 (10)

FIGURE 10
Geometry used in [61] to describe themultiplication region of LGADs. The electric field is high enough to result inmultiplication between 0 andw. In
the same area a generation rate g due to thermal effects or particle interaction is considered. Ip, In are the holes and electrons currents in the device,
respectively. Note that the arrows below the currents Ip, In represent the direction of movement of the respective charge carriers.
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The quantity
������
σ2e + σ20

√
represents the noise of the detector system

when no x-ray interactions are present.
It is interesting to compare the signal-to-noise ratio (SNR) of a

sensor with gain to the one of a sensor without gain (M = 1, F = 1). In
the case of a sensor with gain, the SNR depends on the absorption
position of the x-ray. For an x-ray being absorbed at a position x the
SNR takes the form

S

σS
�

Nx/
������������������
NxFSi +Nn +Np + σ2

0

√
No gain

Nx/
������������������������������������������������
Nx FSi + F x( ) − 1( ) +NnFn

M2
n

M2 x( ) +NpFp

M2
p

M2 x( ) +
σ2
0

M2 x( )

√
Gain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(11)

It is worth noting that the SNR of the sensor without gain is always
better than the one with gain in case σ0 = 0, that is if the only noise
source is shot noise. In case σ0 > 0, the sensor with gain reduces this
term by the square of the gain at the absorption position of the x-ray.
As in silicon the gain for electrons entering the multiplication region
is higher than for holes (M(w) >M(0)), it is advantageous to have a
sensor geometry where the x-rays absorption happens at x > w
resulting in the electrons generated by the x-ray interaction entering
the multiplication region.

The conclusions that can be drawn by this summary are that, in
order to achieve the best SNR, it is convenient to have the x-rays
interactions in a position where the resulting electrons enter the
multiplication region as they have a larger gain and lower excess
noise factor compared to holes. At the same time, to reduce the shot
noise, it is convenient that the thermal generation current from the
sensor bulk results in holes entering the multiplication region as
M2

pFp <M2
nFn. These conditions however can not be always fulfilled

due to constraints in the sensor fabrication or the necessity to have a
large enough thickness of silicon for the x-rays to interact. Different
approaches to realize an LGAD sensor for x-rays are discussed
in Section 6.

6 Technological approaches to LGADs
for photon science

LGADs for x-ray detection can be realized in different ways, with
different LGAD technologies being detailed in Section 2. In general,
the multiplication structure can be placed on either the entrance
window side of the sensor, on the segmented readout side, deep
(more than a couple of μm) below the sensor surface. This section
describes these technological choices and their impact on the
performance and manufacturing of the sensors.

6.1 Gain structure on the readout side

In soft and tender x-ray detection, when dealing with a sensor
thickness of approximately 200 μm or more, positioning the
multiplication structure on the readout side of the sensor and
allowing x-rays to enter from the opposite side leads to all x-ray
interactions occurring in the bulk. As a result, the charge carriers
undergo multiplication with a single average value of gain (M is
either Mn or Mp). The polarity of the sensors bulk is usually chosen
so that electrons enter the gain layer. This results in a larger value of
gain for the charge carriers generated in the bulk, whether they result

from an x-ray interaction or thermal generation. This configuration
results in a better SNR compared to the choice of having holes from
the bulk entering the multiplication region. This can be seen by
comparing at the terms under the square root in Eq. 11 for a sensor
with gain and imposingM(x) =Mn, F(x) = Fn,Np = 0 for the case of a
p-type bulk andM(x) =Mp, F(x) = Fp,Nn = 0 for an n-type bulk, with
the same generation current so that Nn, Np assume the same value
when they are not 0. As the charge carriers entering from the readout
side are considered to be negligible compared to the ones coming
from the bulk Nn, Np can be set to 0 depending on the bulk polarity.
If electrons from the bulk are multiplied, the realization of a given
gain would favour a multiplication structure as broad as possible
while maintaining a bulk thick enough to absorb the x-rays. This
reduces the electric field in the multiplication region and in turn the
multiplication of holes, resulting in a reduction of the excess noise
factors and an improved SNR.

Placing the multiplication structure on the readout side poses
the challenge of the segmentation of the gain layer in order to
achieve channel segmentation. This can result in volumes in the
sensor where the charge carriers from an x-ray interaction do not
undergo charge multiplication. This is the case for standard and
trench isolated LGADS. In the case of standard LGADs, the
segmentation of the gain layer is not suitable for reaching the
pitch needed by pixel or strip detectors for synchrotron radiation
experiments as their fill factor would be too poor. Trench isolated
LGADs might fulfill the requirements, however their performance
regarding the fill factor is not yet demonstrated on substrates of a
suitable thickness. The resistivity of the most superficial doped layer
of the multiplication region are exploited by AC coupled LGADs
and the proposed DC-RSD to achieve channel segmentation without
interrupting the gain layer. These sensors feature a continuous gain
structure for the whole active area, avoiding regions where the
charge carriers from x-ray interactions do not undergo
multiplication.

Placing the multiplication structure close to the sensors surface
allows to use dopant diffusion or ion implantation to realize the
sensors, without the necessity of less common fabrication
techniques. A further advantage of this approach is that the
TEW can be developed and fabricated almost independently
from the multiplication region allowing for an optimization of
these components with less constraints.

6.2 Gain structure on entrance window side

Placing themultiplication structure on the entrance window side
of the sensor allows to achieve channel segmentation while avoiding
to interrupt the multiplication structure. This avoids regions where
the charge carriers from x-ray interactions do not reach the
multiplication region. Inverted LGADs follow this design, and
these are the only LGAD sensor type so far specifically developed
for soft and tender x-ray detection [45]. With an absorption length
spanning between ~ 100 nm and ~ 10 μm, x-rays in this energy
region interact on both sides of the multiplication region when this is
placed on the entrance window side of the sensor. This results in a
spectrum of signals even for a single x-ray energy. These spectra are
sensitive to the depth and width of the multiplication region,
allowing for an optimization of these parameters. To look at a
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possible optimization, two multiplication structures are considered
in this subsection. A deep and broad multiplication structure with a
high field region between 0.2 and 1 μm in the silicon, and a shallow
and narrow structure presenting high field between 0.1 and 0.5 μm
from the silicon surface. Both structures have a gain for electrons
entering the multiplication region of Mn = 10. The gain for holes
entering the multiplication region varies between the two designs, as
a narrower multiplication structure requires a higher electric field to
maintain the same gain for electrons. The gain for holes entering the
multiplication region is Mp = 3 for the broad region and Mp = 6 for
the narrow region. The gain and depth values chosen for these
examples (as well as the M(x) used later) do not come from an
existing or proposed design and are arbitrary. They are however
realistic as they fall in the region of possible values for an LGAD
gain structure.

In the top row of Figure 11 the multiplication structures are
applied to an iLGAD with p-type bulk (see Figure 5). The red line
represents M(x) and is referred to the left vertical scale, and the
shaded area represents the high field region. Given the polarity of the
bulk, the x-ray interactions taking place to the right of the
multiplication structure result in electrons entering the high field
region. The two colored lines represent the intensity of x-rays of two
different energies (350 and 700 eV) and are referred to the vertical
scale on the right. The entrance window is placed to the left of the
multiplication structure, with the silicon starting at 0 and the bulk

extending for ~ 200 μm to the right. The resulting signal spectra for
the considered x-ray energies are shown in the bottom plots of
Figure 11. The spectra are derived by considering the distribution of
interaction depths for the different x-ray energies and the
consequent gain value. The signal is convoluted with a 100 e−

noise, representing the total noise of the detector. This is again a
value in the range of noises of readout electronics for synchrotron
light applications [7, 8, 12]. The statistical fluctuations of the gain
and creation of electrons hole pairs by the x-ray interaction are
disregarded (F = 1, FSi = 0). The area of the spectra is the same for all
plots. Each spectra presents two peaks with different signal values for
a given x-ray energy. These are the result of the x-ray interactions
resulting in a gain ofMp orMn for the charge carriers, with the peak
at higher values being the one from electrons entering the gain
region. The bottom left plot of Figure 11 shows the spectra for the
deep and broad multiplication structure. The 350 eV spectrum for
this structure is dominated by events where holes enter the
multiplication region forming a peak at about 290 e−, while the
700 eV spectrum is dominated by events with electrons entering the
gain structure with a peak at about 1940 e−. Looking at the spectra
obtained from the shallow and narrow multiplication structure,
bottom right plot of Figure 11, the effect of the different gain
structure become evident. The higher value of Mp for the
narrower structure results in a shift of the peak from events
where the holes enter the multiplication region, making the

FIGURE 11
(A)Multiplication and x-ray intensity as a function of depth in silicon for iLGAD sensors. (Left) Deeper and broader gain region. (Right) Shallower and
narrower gain region. The shaded area represents the high field region of the sensor. The intensity of 350 and 700 eV x-rays as a function of depth is also
shown, and is referred to the right vertical scale. (B) The resulting signal spectra for 350 and 700 eV x-rays. The signal is convoluted with a 100e− noise.
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overall spectrum for each energy narrower. The narrower high field
region also results in fewer interactions that receive values of gain
betweenMp andMn. In addition, as the high field region is closer to
the sensor surface, the fraction of events withMn gain increases. The
shallow and narrow multiplication structure results in improved
spectra for a p-bulk iLGAD when compared to the deep and broad
one. An element that is not evaluated in this example is the increased
excess noise factor expected for a narrower gain structure that
achieves the same Mn of a broader one. This affects both the
fluctuation of the signal and shot noise, decreasing the sensor
SNR. As the excess noise factor depends on the details of the
electric field distribution in the gain layer no general conclusions
can be drawn. The features of the spectra described in these
examples are documented in presentations at conferences [69, 70].

It is interesting to see the effect of applying the multiplication
structures described above to a n-bulk iLGAD sensor (see Figure 6).
The results can be seen in Figure 12, where the same quantities as
Figure 11 are shown, with the difference that the bulk to the right of
the multiplication structure is n-type, resulting in the holes from the
bulk entering themultiplication region. The only effect of the change
in bulk polarity for this example is which side of the multiplication
region reaches a gainMn orMp. The areas of the spectra in Figure 12
are the same as in Figure 11, allowing for a direct comparison. The
spectrum of 350 eV x-rays for the deep and broad multiplication

structure (bottom left of Figure 12) is now dominated by events with
Mn gain, while the 700 eV x-rays spectrum is similar to the one
calculated for the same multiplication structure and p-bulk iLGAD.
The shallow and narrow gain structure on a n-bulk iLGAD results in
the spectra in the bottom right plot of Figure 12. For this structure
the 700 eV x-ray spectrum is narrower, mainly as a result of the
higher Mp of this structure. The 350 eV x-ray spectrum sees a
reduction of the peak of events with Mn gain as the
multiplication structure is closer to the silicon surface. In the
case of the n-bulk iLGAD the deeper multiplication structure
shows a better performance than the shallower one. Compared to
the p-bulk iLGAD, the n-bulk iLGAD is a more suitable sensor for
the lower energies of soft x-rays, while the p-bulk iLGAD performs
better with higher energy x-rays. To better see the effect, Figure 13
shows the fraction of interactions resulting in Mp or Mn gain for a
n-bulk iLGAD with a deep and broad multiplication structure and
the same quantities for a p-bulk iLGADwith the narrow and shallow
structure.The n-bulk iLGAD provides a gain of Mn predominantly
to lower energy x-rays compared to the p-bulk iLGAD. However, if
the gain for holes entering the multiplication structure is high
enough, the SNR for the higher energy x-rays might be sufficient
for detection as they create a larger number of charge carriers in their
interaction with the silicon bulk. The n-bulk iLGAD, for low energy
x-rays, can fulfill the conditions derived from the theory of

FIGURE 12
(A) Multiplication and x-ray intensity as a function of depth in silicon for n-bulk iLGAD sensors. (Left) Deeper and broader gain region. (Right)
Shallower and narrower gain region. The shaded area represents the high field region of the sensor. The intensity of 350 and 700 eV x-rays as a function of
depth is also shown, and is referred to the right vertical scale. (B) The resulting signal spectra for 350 and 700 eV x-rays. The signal is convoluted with a
100e− noise.
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multiplication: a signal where the electrons enter the gain region and
noise dominated by holes entering the gain region.

Placing the gain structure on the entrance window side of the
sensor is the only strategy used so far for LGAD sensors dedicated to
photon science applications, with the available sensors having a
p-type bulk. N-bulk iLGADs were fabricated with the aim of
detecting low-energy charged particles and have not yet been
characterized using x-rays. The choice of the bulk polarity allows
to choose which energy region receives the higher gain values. As a
drawback, these sensors will produce a spectrum with two peaks for
most x-ray energies, complicating the interpretation of
measurements acquired with charge integrating or spectrally-
discriminating ASICs.

Regarding the fabrication of these sensors, their complexity is
increased with respect to sensors with the gain structure on the
readout side. Both sides of the sensor require the realization of
complex structures to allow for a fine-enough segmentation on the
readout side and the gain structure coupled with the TEW on the
opposite side. As the gain structure is close to the TEW, the
optimization of these two components is entangled. Despite their
complexity, common fabrication techniques can be used to realize
these sensors as their components are placed close to the
sensor surfaces.

6.3 Deep gain structure

Placing the gain structure a few μm or further from the readout
side of the sensor allows for a continuous structure and a fine
segmentation of the readout channels without areas where the
charge carriers from the x-ray interactions do not receive

multiplication. If the gain structure is close to the readout side,
almost all of the soft and tender x-ray interactions will result in
electrons entering the multiplication region. A multiplication
structure placed a few μm from entrance window of the sensor
would result in part of the events where the holes enter the
multiplication region receiving a lower gain. This is similar to the
situation detailed in the previous sub section. The distance of the
multiplication structure from the entrance window of the sensor
determines which is the fraction of events resulting receiving Mn or
Mp gain. This is shown in Figure 14 for a 1 μm wide gain region
placed at different depths in the sensor.

The dark current in a sensor with a deep gain structure results in
both holes (from the n-type region) and electrons (from the p-type
bulk) entering the multiplication region. Assuming the same
generation rate for both the p- and n-type regions, placing the
multiplication structure closer to the readout side increases the
fraction of electrons from the dark current entering the
multiplication region, and results in a higher noise compared to
the same multiplication structure placed closer to the entrance
window side of the sensor.

As the fraction of events receiving Mn gain favours a gain
structure closer to the readout side and the noise favours a
multiplication structure closer to the entrance window, an
optimization of the position of the multiplication region is
possible if a particular energy of x-rays is targeted for detection.

The realization of a deep gain structure requires methods not
often employed in sensor fabrication. In case the structure is placed a
few μm from one of the sensor surfaces, high energy ion
implantation or epitaxial growth of silicon can be used. In the
case of deeper structure, this can be realized through wafer-to-wafer
bonding and eventual thinning of one of the starting wafers to

FIGURE 13
Fraction of events that results in the electrons (full lines) or holes (dashed lines) entering the multiplication region as a function of the x-ray energy.
The iLGAD refers to the shallow and narrow multiplication structure shown in Figure 11 top right. The n-bulk iLGAD refers to the deep and broad
multiplication structure shown in Figure 12 top left.
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achieve the desired position in the sensor. The wafer bonding and
epitaxy procedures result in different silicon substrates being placed
on either side of the multiplication structure, this can influence the
optimization discussed above as the substrates can have different
dark current generation rates.

7 Comparison of possible sensor
structures

In this section different LGAD technologies are compared in their
possible application in photon science. For this comparison it is assumed
that all the sensor technologies are produced on thick-enough substrates
and are equipped with a thin entrance window for soft x-rays. A few
figures of merit are summarized in Table 1 and described below.

7.1 Collected charge

The sign of collected charge might constraint the ASIC that can
be connected to the sensor as some ASICs are optimized for either
electrons or hole collection.

7.2 Signal

The sensor signal can either be uni- or bi-polar, the only sensor
type with bipolar signals is the AC-LGAD. The AC-coupling of the
channels renders impossible the use of these sensors with charge
integrating electronics. The readout of AC-LGADs using photon
counting ASICs is constraint by the time scale of the development of
the bipolar signal: if the signals present both its positive and negative

lobe within the integration time constant of the ASIC amplifier, then
the signal registered by the electronics might be too small to cross the
set threshold. These considerations might render AC-LGADs
incompatible with the available ASICs developed for photon science.

7.3 Gain structure side

The side where the gain structure is placed, together with the
sensor polarity, has interesting implications for the signals produced
by the sensors, as shown in Section 6.

7.4 Fill factor

The fill factor of the sensors is qualitatively categorized. The standard
LGAD technology does not allow for the channel segmentation
necessary for photon science applications, while TI-LGADs might
achieve a sufficient fill factor assuming that the performances
obtained on ~ 50 μm substrates hold true also for thicker substrates.
The remaining sensor technologies are more promising in this regard.

7.5 Charge sharing

The charge sharing is classified in a qualitative manner. Standard
LGADs and TI-LGADs sensors often do not offer this feature that is
used to improve the position resolution of the sensors through
interpolation. The other considered technologies feature charge
sharing, with the AC-LGADs and DC-RSD having a resistive
sharing mechanism instead of a charge sharing driven by charge
carrier diffusion.

FIGURE 14
Fraction of events that results in the electrons (full lines) or holes (dashed lines) entering the multiplication region as a function of the x-ray energy.
For DJ-LGADs with their multiplication structure at different depths (measured from the entrance window) in silicon.
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7.6 Constant gain

The constant gain refers to the sensors response to monochromatic
x-rays, as discussed in Section 6 the point of interaction of the x-ray
photons can impact the gain for each event. All sensor technologies are
expected to provide a constant gain for soft and tender x-rays with the
exception of iLGADs and n-bulk iLGADs.

7.7 Fabrication complexity

The fabrication complexity qualitatively ranks the sensor
technologies. All LGAD sensors are going to have a more complex
fabrication process than standard silicon sensors due to the gain implant
and the gain termination structure (junction termination extension). The
fabrication complexity can have consequences on the cost of the sensors
and their yield. Due to the presence of a thin entrance window all sensors
require a double sided fabrication process with lithography operations
performed on both sides of the silicon wafer. For sake of comparison, the
standard and AC-coupled LGADs are assigned a “low” complexity as
they present, in principle, the easiest production path. The TI-LGADs
together with DC-RSD are assigned a “medium” complexity as the
former require the etching and filling of trenches in the silicon, and the
latter (yet to be produced) seem to require a precise control of the
resistance between channels. The iLGADs of both bulk polarities and the
DJ-LGADs are rankedwith a “high” fabrication complexity. The iLGADs
foresee complex structures on both sensor sides, with the realization of
the TEW being entangled with the multiplication structure. The DJ-
LGADs require fabrication processes that are not usually employed in
standard silicon sensors in order to place themultiplication structure at a
depth of more than a couple of μm in the sensor bulk.

7.8 Demonstrated

All sensor technologies considered in the paper have been
demonstrated with sensors either produced for high energy

physics or photon science, with the exception of DC-RSD that
have not yet been produced. The AC-coupled and TI-LGADs
were produced so far on thin (45–60 μm) substrates and their
performance is yet to be characterized on thicker substrates. Only
a few DJ-LGAD sensors have been produced, so this technology is
not considered to be at the same level as others.

7.9 Integrated with TEW

For soft and tender x-ray detection the integration of a TEW
with the sensor is necessary. So far only iLGADs of both bulk
polarity have been produced with an integrated TEW.

7.10 “Large” sensors

The last figure of merit is the possibility to produce “large”
sensors, with a dimension of about 4 × 4 cm2 or larger. The
possibility of covering a sufficient area is fundamental in order to
obtain all the necessary data from measurements at synchrotron
light sources, providing a large enough acceptance without gaps in
the sensitive surface of the sensors. The distance between the sample
being studied and the sensor is also important in order to exploit the
“lever arm” so that the relevant features projected on the sensor
appear far enough from each other to be resolved by the sensor. In
this context a sensor with a too-small area will need to be placed
either too close to the sample for this separation to be present or will
not cover enough of the solid angle to collect all the needed
information. In this section, the considered limit in realizing
large sensors is given by the lithographic technology necessary to
realize the sensors. TI-LGADs require the fabrication of trenches
with a width of less than 1 μm, a feature size that is only possible with
projection lithography. This lithography technique allows to expose
only a part of the silicon wafer, limiting the size of a device obtained
with a single exposure. A large device could be divided in smaller
exposure areas that fit the exposure area and be composed in

TABLE 1 Comparison of different LGAD technologies for their application in photon science.

Standard AC-coupled Trench isolated Inverted N-bulk inverted Deep junction DC-RSD

Collected Charge e− e− e− h+ e− e− e−

Signal Unipolar Bipolar Unipolar Unipolar Unipolar Unipolar Unipolar

Gain Structure Side Readout Readout Readout TEW TEW Deep in the bulk Readout

Fill Factor Low 100% Medium 100% 100% 100% 100%

Charge Sharing No Yes (resistive) No Yes Yes Yes Yes
(resistive)

Constant Gain Yes Yes Yes No No Yes Yes

Fabrication Complexity Low Low Medium High High High Medium

Demonstrated Yes Yes† Yes† Yes Yes Yes† No

Integrated with TEW No No No Yes Yes No No

“Large” Sensors+ Yes Yes Maybe Yes Yes Yes Maybe

+ “Large” sensors are in the order of 4 × 4 cm2 or larger.
† The sensor technology was either demonstrated on thin (45–60 μm) substrates or with a few prototypes.
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multiple exposures (the so-called stitching method). This path could
be taken to produce “large” sensors requiring projection lithography.
These considerations hold true also for the foreseen DC-RSD where
the contact between the metallization and the n+ layer might require
the use of projection lithography.

Looking at the sensor performances, the most promising sensor
technologies for photon science applications seem to be iLGADs of
both bulk polarities and DJ-LGADs. The favoured bulk polarity of
iLGADs depends on the energy of the x-rays to be measured. DJ-
LGADs would be more versatile, with a single technology covering a
larger energy range, but this technology is less mature. Finally, DC-
RSDs could be an interesting technology for photon science
applications, however these sensors have yet to be produced.

8 Summary

Photon science measurement in the 200–2000 eV energy region
can be applied to a wide variety of research topics. The currently
available hybrid detectors find a limited use in this energy region due
to their quantum efficiency and signal-to-noise ratio. LGAD sensors
feature internal charge multiplication, providing a possible
improvement of the signal-to-noise ratio of the detector system.
Different LGAD technologies are available, and are described in this
paper. A summary of the results obtained through with different
LGAD technologies in x-ray detection is provided. The quantum
efficiency of the sensors can be improved by the use of a thin
entrance window, and the most relevant aspect of this component
are described. A summary of the theory describing charge
multiplication in LGADs is given and is used in the discussion of
the features obtained by placing the LGAD multiplication structure
in different parts of the sensor. Finally, the sensor technologies are
compared using figures of merit relevant for their application in
photon science measurements. The most promising technologies
seem to be iLGADs of both bulk polarities, DJ-LGADs, and DC-
RSD. These show different technological maturity, with DC-RSD
not having been proven yet. The characterization work done on
LGADs using x-rays and the fabrication of sensors dedicated to
photon science is a sign of interest in this technology. The
performances of the sensors and the level of detail reached in
their characterization are steadily evolving. These sensors are
close to being employed in measurements at synchrotron light

sources as opposed to being brought to the beamlines to be
characterized.
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Perspective of perovskite-based
X-ray hybrid pixel array detectors

Michael Fiederle1,2* and Tilo Baumbach2

1Materials Research Center FMF, Albert-Ludwigs-University Freiburg, Freiburg, Germany, 2Institute for
Photon Science and Synchrotron Radiation IPS, Karlsruhe Institute of Technology, Karlsruhe, Germany

Compound semiconductors are playing a major role in the production of X-ray
pixel detectors for the application in laboratories and beamlines at photon
sources. The performance of these detectors has constantly been improved
for the last decades but experiments are still limited by the properties of the
detectormaterial, especially under high flux illumination. The fast development of
perovskite crystals opens the possibility for new materials to be used as highly
efficient X-ray pixel detectors. The published data until now, of the transport
properties, demonstrate the large potential of perovskite semiconductors. The
achieved values are comparable with the ones of CdTe-based detectors. This
paper presents potential perovskite-based detector materials and compares their
performance with the state-of-the-art CdTe-based detectors. The perspectives
of perovskite semiconductors are promising for the production of large area
X-ray detectors but still some challenges remain.

KEYWORDS

X-ray detectors, high-Z semiconductors, perovskites, pixel detectors, synchrotron detectors

1 Introduction

During recent years the use of Hybrid Pixel Array Detectors (HPAD) has become a
standard for photon detection at synchrotron storage ring and free-electron sources for
certain applications like X-ray diffraction of crystalline materials and Non-Destructive
Testing by Computed Tomography. It is generally accepted that photon counting detectors
offer a large improvement over current detectors based on CCD cameras. Examples are the
Pilatus [1], the Medipix [2] and the XPAD [3] detectors, which have been developed in
various places in Europe.

Several research projects have investigated the possibilities of achieving highly efficient
detector materials and thus successfully developed the technology for their use at photon
sources. In this context, a large number of semiconductors have been investigated as
possible sensor materials in the last 30 years, such as PbO [4], HgI2 [5], TlBr [6], GaAs [7]
and Cd-based semiconductors like CdTe, Cd (Te,Se) and (Cd,Zn) Te (CZT) [8].

The common feature of these detector-materials is the dependence of the detection
efficiency on the thickness of the sensor. X- and gamma-ray detectors are bulk devices in
contrast to most electronic semiconductor devices. The need for a high detection efficiency
defines the requirements for the material properties.

• High-Z for efficient absorption of X- and gamma-rays, especially at high photon
energies >20 keV.

• High resistivity ρ for low leakage current (ρ > 108 Ω cm)
• High mobility-lifetime product μτ of both charge carrier types for an optimum mean
free path length (μτ > 10–3 cm2 V−1)

• High mobility at least of one charge carrier for prompt signal formation
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• Homogeneous distribution of electronic material properties
on a micrometer scale for active detector areas with
several cm2.

• High structural quality given by single crystalline material.
• Low defect concentration.
• Reliable contact and interconnection technology to produce
hybrid pixel detectors on a micrometer scale.

• Reliable production sources and availability at a
reasonable cost

So far only the Cd-based semiconductor materials fit all
requirements and yield the correct performance. Thus, the
detector systems using CdTe and CZT currently define the
standards regarding noise (leakage current), efficiency (mobility
lifetime products μτe and μτh), spatial resolution (pixel pitch)
and homogeneity (defect concentrations). Since 2021 Computed
Tomography systems using CdTe detectors have been installed in
clinics for the application in human medicine [9].

An overview about CdTe-based pixel detectors is shown in [10]
and by Gruner et al. for general perspectives for hard X-ray pixel
detectors [11].

There is a growing need for large area, highly effective X-ray
pixel detectors. The application of X-ray Diffraction at higher X-ray
energies at light sources as well as Computed Tomography need
effective pixel detectors with several cm2 active area. For instance,
reducing radiation dose for operators and patients is only possible if
high-Z detectors are available. This leads to enhanced diagnostics
information in the medical field and applications in inspection and
analysis. The commercial use of highly effective X-ray pixel detectors
is still limited by the costs and availability of the semiconductor
materials. Novel, radical production techniques have to be
considered to use the advantages of semiconductor X-ray sensors.
Fast deposition techniques used in the development of flat panel
detectors could be one possibility if the required material quality can
be obtained for a new semiconductor material.

Yet, up to now, the production of large area sensors based on
highly efficient semiconductors has been limited. These limitations
are related to the growth and fabrication processes. The production
of CdTe-based semiconductors is very complex. The materials are
usually produced by melt growth techniques with temperatures
above 1,100°C including toxic gases and solutions. This
complexity generates a limitation in the production of the
material and of the devices. Therefore, alternative materials
are required.

Beyond these semiconductors a new class of materials are now in
the focus of scientific research, namely, the perovskite materials. The
term perovskite refers to a type of mineral structure that has a
specific crystallographic arrangement. The crystal structure
following the formula ABX3, where A and B are positively
charged ions and X is a negatively charged ion. The name
“perovskite” originates from the mineral calcium titanate
(CaTiO3), which was first discovered in the Ural Mountains of
Russia and named after the Russian mineralogist Lev Perovski.

This material class already yields a breakthrough for the
application in photovoltaic cells. The perovskite films have
pushed the photovoltaics market level up by combining low-cost
production with high efficiency, thus exceeding the performance of
silicon-based cells and achieving a similar performance within a few

years instead of decades [12]. Perovskites represent a class of
materials offering tailored performance in different fields of
application.

Perovskite films can be simply produced through wet chemistry
and show excellent charge transport properties with mobility-
lifetime products (μτ) better than 10−4 cm2/V. The requirements
for X-ray detectors, for example, the high μτ and homogeneous
material properties are similar to the photovoltaic cells, adding high
absorption and required thickness. Recent publications already
demonstrated the possibility to use perovskite for the
development of X-ray detectors [13–15].

The published data of the perovskite materials [16] showed
remarkable results similar to the performance of state-of-the-art of
detector material such as CdTe. Using the right class of perovskites
can lead to non-toxic detectors with high absorption efficiency for
X-ray energies up to 120 keV. This will open the opportunity to
produce large area detector systems with high efficiency and low
costs with increased sustainability.

An overview of a selection of available perovskite detectors is
given in the next paragraph. This will be followed by the detailed
presentation of the most promising materials. The discussion will
compare the performance of the selected perovskite crystals with the
state-of-the-art of CdTe and CZT based pixel X-ray detectors. A
summary and perspective of the new class of materials in the field of
X- and gamma-ray detectors shall finalize the paper.

2 Overview of X-ray detectors based on
perovskites

Perovskites represent a class of materials containing insulators
and semiconductors. This paper concentrates only on the perovskite
semiconductors due to their capability of direct detection of X-rays.
Subdivisions are organic, e.g., Methylammonium Lead Iodide
MAPbI3 and Methylammonium Lead Bromide MAPbBr3, as well
as inorganic materials, like CsPbBr3 or Cs2AgBiBr6. Latest review
articles [17]; [15, 18]; provide a nearly complete list of perovskite
materials working either as scintillator materials or semiconductors.

The sensitivity is given by Kasap (2000) [19]. The X-ray
sensitivity S of the detector is defined as the charge Q released
per unit area A per unit exposure of radiation X: S = Q/AX. The
Schubweg limited X-ray sensitivity S is proportional to Φ given by:

Φ � 5.45 · 1013 · q
αair/ρair ·Wpair

· αen

α

Where Wpair is the pair creation energy, q the elementary charge,
αair/ρair is the mass energy-absorption coefficient of air. α, αen are the
mass energy-absorption coefficient and linear attenuation
coefficient of the semidocutor material, respectively.

References of the table [20–31]:
In Table 1 a selection of perovskite semiconductors is presented

showing important material properties for X-ray detectors. Part of
the data are taken from Lin, C.-F. et al. [15]. From Table 1 three
materials have been selected representing the best compromise
between material properties and available size and thickness of
detector materials. These materials are the organic based
perovskites MAPbI3 or MAPbBr3, the single crystalline material
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CsPbBr3 and the lead-free semiconductors CsAgBiBr6. The
presented perovskite crystals have two different structural
appearances either thin films or bulk crystals.

Methylammonium lead perovskites, often referred to as
MAPbX3 (X stands for a halide such as iodine, bromine, or
chlorine), are a class of hybrid organic-inorganic materials that
have gained significant attention in the field of photovoltaics,
particularly in the development of solar cells.

The ABX3 perovskite crystals can be purely inorganic or
hybrid-organic materials. The melting point are higher for the
inorganic crystals, e.g., CsPbBr3 has a melting point of 567°C [32].

These perovskite materials have the chemical formula
CH3NH3PbX3, where the methylammonium (MA) cation
occupies the A-site, lead (Pb) occupies the B-site, and the halide
(X) ions occupy the X-site in the perovskite crystal structure. The
MAPbI3 is the most investigated perovskite semiconductor with
applications in photovoltaic cells as well as in X-ray detectors. The
production of areas up to 20 × 20 mm2 and with thickness up to
1 mm of thin films and bulk crystals is quite simple and the achieved
transport properties fit the defined requirements for X-ray detectors.

The material properties of the crystals given in Table 1
demonstrate the high potential for successful X-ray detection in

TABLE 1 Comparison of material properties of selected perovskite crystals.

Crystal
structure

Materials Crystal
type

Growth
method

Thickness
(mm)

Electric
field E (V
mm-1)

Product of
mobility-
lifetime µƬ
(cm2·V−1)

Sensitivity S
(µC·Gyair

−1·cm-2)
Ref.

ABX3 (Organic) DMAMAPbI3 Single
crystals

ITC 1.2 ± 0.04 NA 7.2 × 10−3 1.18 × 104 [20]

GAMAPbI3 Single
crystals

ITC 1.2 ± 0.04 NA 1.3 × 10−2 2.31 × 104 [20]

MAPbBr3 Single
crystals

ITC NA 0.83 4.1 × 10−2 259.9 [21]

MA0.6Cs0.4PbBr3 Single
crystals

Solution 2 NA 4.64 × 102 2017 [22]

FAPbBr3 Single
crystals

Solution 1 225 1.56 × 10−4 21,386 [23]

ABX3

(Inorganic)
CsPbBr3 Single

crystals
Solution 1 20 (2.5 ± 0.2) x 10−3 1,256 [23]

CsPbBr3 Quasi-
monocrystal

Hot pressing 0.24 4.2 1.32 × 10−2 55,684 [26]

CsPbBr3 Single
crystals

Melt
(Bridgman)

2 100 8.2 × 10−3 n.a [23]

1D CsPbI3 Polycrystals Solution NA NA 3.63 × 10−3 2,370 [27]

A2B2X6 Cs2AgBiBr6 Single
crystals

Solution 2 NA NA 105 [28]

Cs2AgBiBr6 Single
crystals

Solution 2 25 NA 105 [29]

Large area
process

MAPbI3 Polycrystals Doctor blade
coating

0.83 10–240 1.0 × 10−4 3.8 × 103 [30]

CsPbI2Br Polycrystals ALS process 0.04 125 NA (mobility =
1.14 cm2/Vs)

148,000 [31]

TABLE 2 Compares the material properties of CdTe and CdZnTe with the most promising perovskite material CsPbBr3.

Crystal Growth
method

Density
(g/cm)

Band
gap
(eV)

Resistivity
(Ωcm)

Pair
creation
energy
(eV)

μeτe
(cm2/
V)

μe

(cm2/
Vs)

μhτh
(cm2/
V)

μh

(cm2/
Vs)

Energy
resolution
@662 keV
(percent)

CdTe [65] THM 5.85 1.44 109 4.43 10–3 800 10–4 80 0.5

CdZnTe
[65]

THM 5.78 1.57 1010 4.64 10–1 1,000 10–5 60 0.5

CsPbBr3
16 [66]

Bridgman 4.73 2.23 1010 6.61 10–4 22 10–3 22 5.5
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terms of the requirements listed above. The typical thickness is
around 1 mm. The absorption efficiency can be calculated using
the average Z number of the material and thickness [33]. The
efficiency is close to 90 percent for absorbing 50 keV photons
with a thickness of 1 mm for CsPbBr3 [34]. The MA-based
perovskites yield an almost identical efficiency at 90 percent for
50 keV photons [18].

The resistivity of the intentionally undoped semiconductors is
higher than 109 Ωcm, resulting in a low leakage current for applied
electrical voltages up to 200 V. The most important properties are the
values for the product of lifetime andmobility of the charge carriers. The
multiplication of the μτ with the applied electrical field yields the mean
free path length and is directly correlated with the charge collection
efficiency of the detector material. The perovskite reach μτ-products of
6 × 10−2 cm2V−1, which corresponds to a mean free path length of 12 cm
for an electric field of 200 V/mm. The importance of this material
property becomes apparent in comparison with conventional X-ray
detector semiconductors like GaAs and CdTe. In the review article [35]
the transport properties are compared to results fromCdTe crystals. This
comparison shows a value of 10−3 cm2/V for CdTe and several data
points higher than 10−3 cm2/V for MAPI and Cs2AgBiBr6.

The crystals of these selected perovskites were produced by
deposition techniques, solution growth processes as well as by melt
growth method known as the Bridgman method [36]. The inverse
temperature crystallization (ITC) is a solution-based process
working at moderate temperature below 350°C.

In semiconductor growth, the Bridgman method is a technique
used to produce high-quality single-crystal semiconductor
materials. The drawback of the Bridgman method is the high
growth temperature above the melting point of the material. This
generates additional defects in the semiconductor.

The next paragraphs will compare perovskite crystals CsPbBr3
with state-of-the-art pixel detectors based on CdTe and CZT. In the
last years remarkable results have been presented for CsPbBr3
regarding efficiency, size of detectors, and energy resolution -
and therefore CsPbBr3 appears to hold the most promise for
application in HPADs.

3 Comparison of perovskite-based
X-ray detectors with state-of-the-art
pixel detector materials

Several crystals of the perovskites fulfil the requirements for a
semiconductor X-ray detector given in the first section of this paper.
Several classical semiconductors fulfil these requirements as well,
however, only CdTe-based materials CdTe and (Cd,Zn)Te CZT
demonstrated the capability for the use as a HPAD [10]. The data are
presented in Table 2.

The density, the bandgap, the resistivity, and the μτ-products of
CsPbBr3 are comparable to the ones of CdTe and CZT. The mobility
values in the table are lower and this has a strong influence on the
signal formation. Consequently, the signal formation leads to a poor
energy resolution. The mobilities are strongly correlated with the
quality and purity of the material. Less concentration of structural
defects and impurities will improve the mobilities. Z. Zhang and B.
Saparov [37] collected the data of the mobilities of different
perovskite crystals. Values above 100 cm2/Vs have been achieved.

However, the performance of CsPbBr3 is quite promising taking
into account the few years of research applied in the field of
perovskite materials. Purification processes and advanced
preparation of precursor materials have just been started.

The first published paper about CdTe was in 1955 [38]. It has
taken over 60 years for this material to be successfully applied as a
HPAD in Human Computed Tomography scanners, in laboratories
and beamlines [9–11]. These applications usually use pixel pitches
between 50 μm and 250 µm. This implies homogeneous properties
on the micrometer scale for active detector areas with several cm2,
regarding the specified requirements from the introduction.

The success of CdTe-based detectors is controlling the
concentration of structural defects and impurities. In CdTe and
CZT the concentration of deep levels is relatively high. It is a very
complex balance of shallow and deep levels required to obtain the
high values for the μτ-products for both carrier polarities [39]. In the
last decades the purification of the material and the reduction of
defect concentrations are continuously improving. Nonetheless,
they are still high compared to silicon but in orders of
magnitude, lower than in other compound semiconductors. The
concentration of the defects has a strong influence on the μτ-
products for electrons and holes, respectively. Defects are
electronically active and act as traps for charge carriers. They can
be classified by cross sections and relaxation times.

The application for X-ray detection in modern storage rings and
XFELs [40] or in Computed Tomography [41] place significantly
higher demands on the material and the available technologies. One
common feature is the high photon flux. In Human CT the dose rate
is 6 × 108 photons/mm2s. Latest publications identified a balance
between the μτ-products of electrons and holes as a mandatory
requirement for the applications under high photon fluxes [42]. A
comparison with photon fluxes from 8 × 107 photons/mm2s up to
1 × 1010 photons/mm2s given in [43] discussed the effect of after-
glow with different types of materials and configurations with CdTe
ohmic and Schottky contacts, GaAs, latest “high flux CZT” by
Redlen and silicon p-i-n structure. In the latter device no
polarization effect is visible due to very small concentration of
deep levels. The edge-on geometry has been applied to increase
the absorption length up to 11.4 mm and maximize the
efficiency [44].

High flux applications [16] and the influence of deep levels are
part of the actual research of perovskite semiconductors. At the
moment the database of deep levels is small but further
improvements of the electronic properties are the next logical
steps. This leads to more research in the involved defects. Several
papers have been published analysing the nature and influence of
deep levels in perovskites:

• Thin film and bulk material are characterized by Deep Level
Transient Spectroscopy DLTS as well as by Photo Induced
Current Transient Spectroscopy PICTS to determine the
influence on the passivation of solar cells [46] and for
optoelectronic devices [47,48].

• The role of impurities is the subject of the analysis as well as
the identification of native defects in publications [45,49,50].

• In Figure 1 native defects and hydrogen related deep levels are
summarized with their possible levels of ionization. Figure 1
was originally published in [49].
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4 Discussion of the perspective of
perovskite-based X-ray detectors

The improvement of solar cells is the main goal in the research of
photo voltaic. Perovskite crystals have minimalised this
breakthrough down to a few years instead of decades compared
to the research of silicon-based cells in the last 50 years [12]. It can be
expected that the development of X-ray detectors using perovskite
semiconductors will follow a similar fast track:

The perovskite crystals are not like conventional
semiconductors [51]. The remarkable data concerning the
transport properties of perovskite semiconductors (see Table 1)
were obtained without any additional modifications or purification
procedures. The defect densities in all of these crystals are above
1013 cm-3, not counting dislocation densities [52]. Theoretical
studies like in [53] and experimental data provided in [54]
describe a “self-regulation” phenomenon. Siekmann et al. [55], as
well as Brandt et al. [56], use the term “defect tolerance” to explain
the excellent transport properties. The phenomenon of this “defect
tolerance” is described as the higher energetically probability of the
formation of structural defects into shallow levels instead of deep
levels [57, 58]. This notion is mainly used to explain the excellent
performance of halide perovskites in optoelectronic applications.
One paper [59] identified the formation of antisite defects in CsPbI3.
These deep levels were not effective nonradiative recombination
centers. The negative influence on the transport properties were
neglectable. A recent view by X. Wang et al. [60] summarizes the
formation of intraband levels by extrinsic interstitials and vacancies
and an electrical behavior of shallow levels.

In the perovskite semiconductors the influence of structural
defects and impurities is small. It should be easier to improve the
transport properties. The concentration of defects must not be
reduced like in CdTe or GaAs semiconductors.

A similar situation is known by the performance of GaN-based
LEDs. In GaN the dislocation density is typically above 107 1/ cm2 and
the material can be used for application as a LED [61]. In GaAs the
dislocation density has to be lower than 104 1/cm2 for a working LED.

The measurement of dislocation density is a suitable analysis of
defect concentration in a semiconductor. Dislocations are structural
defects and can mostly be correlated with grain boundaries and
impurities. The dislocation density is a measure of the number of
dislocations in a unit volume of a crystalline material. It means the
total length of all dislocation lines per unit of volume in a crystalline
solid. The dislocations can be visualized by chemical etching. A
count of the number of etch pits per unit area on the etched surface
defines the dislocation density.

The actual research community is still focused on the development
of materials. Several presentations of pixel detectors are quite convincing
but the level of the device technology is still in development [62].

The experience in the research of CdTe-based detectors will be
very useful to shorten the duration to develop the perovskite crystals.
The process of crystal growth and material improvement have to be
finalized before the development of technology. The concept of
doping and controlling of shallow and deep levels can be applied to
perovskite materials to face the challenges like the ion migration and
stability of contacts. These issues are strongly correlated to the
quality of the material. For example, the ion migration was
successfully inhibited by co-doping of extrinsic interstitials [63]
and by using chenodeoxycholic acid additive [23].

Future research of perovskite-based X-ray pixel detectors should
be focused on the development of the material. Reduction of
impurities and defects will increase the mobilities. Higher
mobilities will yield increased μ-τ-products, and thus we expect
significantly improved energy resolution to be achievable with better
quality crystals. This will solve most of the described challenges and
will open new technologies for the production of large area pixel

FIGURE 1
Thermodynamic charge state transition levels [45].
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detectors. It would be possible to use the advantages of high-Z
semiconductors with reasonable costs.
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