
Edited by

Anup Das and Teresa Serrano-Gotarredona

Published in

Frontiers in Neuroscience

Spike-based learning
application for
neuromorphic
engineering

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/research-topics/46329/spike-based-learning-application-for-neuromorphic-engineering
https://www.frontiersin.org/research-topics/46329/spike-based-learning-application-for-neuromorphic-engineering
https://www.frontiersin.org/research-topics/46329/spike-based-learning-application-for-neuromorphic-engineering
https://www.frontiersin.org/research-topics/46329/spike-based-learning-application-for-neuromorphic-engineering

August 2024

Frontiers in Neuroscience frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is

a pioneering approach to the world of academia, radically improving the way

scholarly research is managed. The grand vision of Frontiers is a world where

all people have an equal opportunity to seek, share and generate knowledge.

Frontiers provides immediate and permanent online open access to all its

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review,

selection and dissemination processes in academic publishing. All Frontiers

journals are driven by researchers for researchers; therefore, they constitute

a service to the scholarly community. At the same time, the Frontiers journal

series operates on a revolutionary invention, the tiered publishing system,

initially addressing specific communities of scholars, and gradually climbing

up to broader public understanding, thus serving the interests of the lay

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include

some of the world’s best academicians. Research must be certified by peers

before entering a stream of knowledge that may eventually reach the public

- and shape society; therefore, Frontiers only applies the most rigorous

and unbiased reviews. Frontiers revolutionizes research publishing by freely

delivering the most outstanding research, evaluated with no bias from both

the academic and social point of view. By applying the most advanced

information technologies, Frontiers is catapulting scholarly publishing into

a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers

journals series: they are collections of at least ten articles, all centered

on a particular subject. With their unique mix of varied contributions from

Original Research to Review Articles, Frontiers Research Topics unify the

most influential researchers, the latest key findings and historical advances

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or

contribute to one as an author by contacting the Frontiers editorial office:

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual
articles in this ebook is the property
of their respective authors or their
respective institutions or funders.
The copyright in graphics and images
within each article may be subject
to copyright of other parties. In both
cases this is subject to a license
granted to Frontiers.

The compilation of articles constituting
this ebook is the property of Frontiers.

Each article within this ebook, and the
ebook itself, are published under the
most recent version of the Creative
Commons CC-BY licence. The version
current at the date of publication of
this ebook is CC-BY 4.0. If the CC-BY
licence is updated, the licence granted
by Frontiers is automatically updated
to the new version.

When exercising any right under
the CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or ebook, as applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of
others may be included in the CC-BY
licence, but this should be checked
before relying on the CC-BY licence
to reproduce those materials. Any
copyright notices relating to those
materials must be complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed
in any copy, derivative work or partial
copy which includes the elements
in question.

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers’ Conditions for Website Use
and Copyright Statement, and the
applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-8325-5318-3
DOI 10.3389/978-2-8325-5318-3

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

August 2024

Frontiers in Neuroscience 2 frontiersin.org

Spike-based learning application
for neuromorphic engineering

Topic editors

Anup Das — Drexel University, United States

Teresa Serrano-Gotarredona — Spanish National Research Council (CSIC), Spain

Citation

Das, A., Serrano-Gotarredona, T., eds. (2024). Spike-based learning application

for neuromorphic engineering. Lausanne: Frontiers Media SA.

doi: 10.3389/978-2-8325-5318-3

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-5318-3

August 2024

Frontiers in Neuroscience frontiersin.org3

05 Synthesizing Images From Spatio-Temporal Representations
Using Spike-Based Backpropagation
Deboleena Roy, Priyadarshini Panda and Kaushik Roy

16 Boosting Throughput and Efficiency of Hardware Spiking
Neural Accelerators Using Time Compression Supporting
Multiple Spike Codes
Changqing Xu, Wenrui Zhang, Yu Liu and Peng Li

32 Probabilistic Spike Propagation for Efficient Hardware
Implementation of Spiking Neural Networks
Abinand Nallathambi, Sanchari Sen, Anand Raghunathan and
Nitin Chandrachoodan

48 BlocTrain: Block-Wise Conditional Training and Inference for
Efficient Spike-Based Deep Learning
Gopalakrishnan Srinivasan and Kaushik Roy

65 Neuroevolution Guided Hybrid Spiking Neural Network
Training
Sen Lu and Abhronil Sengupta

76 Heterogeneous Ensemble-Based Spike-Driven Few-Shot
Online Learning
Shuangming Yang, Bernabe Linares-Barranco and Badong Chen

91 Presynaptic spike-driven plasticity based on eligibility trace
for on-chip learning system
Tian Gao, Bin Deng, Jiang Wang and Guosheng Yi

103 Trainable quantization for Speedy Spiking Neural Networks
Andrea Castagnetti, Alain Pegatoquet and Benoît Miramond

113 Boost event-driven tactile learning with location spiking
neurons
Peng Kang, Srutarshi Banerjee, Henry Chopp, Aggelos Katsaggelos
and Oliver Cossairt

132 Optical flow estimation from event-based cameras and
spiking neural networks
Javier Cuadrado, Ulysse Rançon, Benoit R. Cottereau,
Francisco Barranco and Timothée Masquelier

144 VTSNN: a virtual temporal spiking neural network
Xue-Rui Qiu, Zhao-Rui Wang, Zheng Luan, Rui-Jie Zhu, Xiao Wu,
Ma-Lu Zhang and Liang-Jian Deng

158 SENECA: building a fully digital neuromorphic processor,
design trade-offs and challenges
Guangzhi Tang, Kanishkan Vadivel, Yingfu Xu, Refik Bilgic,
Kevin Shidqi, Paul Detterer, Stefano Traferro, Mario Konijnenburg,
Manolis Sifalakis, Gert-Jan van Schaik and Amirreza Yousefzadeh

Table of
contents

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

August 2024

Frontiers in Neuroscience 4 frontiersin.org

178 Adaptive STDP-based on-chip spike pattern detection
Ashish Gautam and Takashi Kohno

193 Direct training high-performance spiking neural networks for
object recognition and detection
Hong Zhang, Yang Li, Bin He, Xiongfei Fan, Yue Wang and Yu Zhang

209 ALBSNN: ultra-low latency adaptive local binary spiking
neural network with accuracy loss estimator
Yijian Pei, Changqing Xu, Zili Wu, Yi Liu and Yintang Yang

221 Biologically plausible local synaptic learning rules robustly
implement deep supervised learning
Masataka Konishi, Kei M. Igarashi and Keiji Miura

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

ORIGINAL RESEARCH
published: 18 June 2019

doi: 10.3389/fnins.2019.00621

Frontiers in Neuroscience | www.frontiersin.org 1 June 2019 | Volume 13 | Article 621

Edited by:

Teresa Serrano-Gotarredona,

Spanish National Research Council

(CSIC), Spain

Reviewed by:

Guoqi Li,

Tsinghua University, China

Tielin Zhang,

Institute of Automation (CAS), China

Juan Pedro Dominguez-Morales,

Universidad de Sevilla, Spain

*Correspondence:

Deboleena Roy

roy77@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 18 November 2018

Accepted: 29 May 2019

Published: 18 June 2019

Citation:

Roy D, Panda P and Roy K (2019)

Synthesizing Images From

Spatio-Temporal Representations

Using Spike-Based Backpropagation.

Front. Neurosci. 13:621.

doi: 10.3389/fnins.2019.00621

Synthesizing Images From
Spatio-Temporal Representations
Using Spike-Based Backpropagation
Deboleena Roy*, Priyadarshini Panda and Kaushik Roy

Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States

Spiking neural networks (SNNs) offer a promising alternative to current artificial neural

networks to enable low-power event-driven neuromorphic hardware. Spike-based

neuromorphic applications require processing and extracting meaningful information

from spatio-temporal data, represented as series of spike trains over time. In this paper,

we propose a method to synthesize images from multiple modalities in a spike-based

environment. We use spiking auto-encoders to convert image and audio inputs into

compact spatio-temporal representations that is then decoded for image synthesis. For

this, we use a direct training algorithm that computes loss on the membrane potential of

the output layer and back-propagates it by using a sigmoid approximation of the neuron’s

activation function to enable differentiability. The spiking autoencoders are benchmarked

on MNIST and Fashion-MNIST and achieve very low reconstruction loss, comparable

to ANNs. Then, spiking autoencoders are trained to learn meaningful spatio-temporal

representations of the data, across the two modalities—audio and visual. We synthesize

images from audio in a spike-based environment by first generating, and then utilizing

such shared multi-modal spatio-temporal representations. Our audio to image synthesis

model is tested on the task of converting TI-46 digits audio samples to MNIST images.

We are able to synthesize images with high fidelity and the model achieves competitive

performance against ANNs.

Keywords: autoencoders, spiking neural networks, multimodal, audio to image conversion, backpropagataon

1. INTRODUCTION

In recent years, Artificial Neural Networks (ANNs) have become powerful computation tools
for complex tasks such as pattern recognition, classification and function estimation problems
(LeCun et al., 2015). They have an “activation” function in their compute unit, also know as
a neuron. These functions are mostly sigmoid, tanh, or ReLU (Nair and Hinton, 2010) and are
very different from a biological neuron. Spiking neural networks (SNNs), on the other hand,
are recognized as the “third generation of neural networks" (Maass, 1997), with their “spiking”
neuron model much closely mimicking a biological neuron. They have a more biologically
plausible architecture that can potentially achieve high computational power and efficient neural
implementation (Ghosh-Dastidar and Adeli, 2009; Maass, 2015).

For any neural network, the first step of learning is the ability to encode the input into
meaningful representations. Autoencoders are a class of neural networks that can learn efficient
data encodings in an unsupervised manner (Vincent et al., 2008). Their two-layer structure makes
them easy to train as well. Also, multiple autoencoders can be trained separately and then stacked

5

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00621
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00621&domain=pdf&date_stamp=2019-06-18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:roy77@purdue.edu
https://doi.org/10.3389/fnins.2019.00621
https://www.frontiersin.org/articles/10.3389/fnins.2019.00621/full
http://loop.frontiersin.org/people/417290/overview
http://loop.frontiersin.org/people/474514/overview
http://loop.frontiersin.org/people/502975/overview

Roy et al. Synthesizing Images From Spatio-Temporal Representations

to enhance functionality (Masci et al., 2011). In the domain of
SNNs as well, autoencoders provide an exciting opportunity for
implementing unsupervised feature learning (Panda and Roy,
2016). Hence, we use autoencoders to investigate how input spike
trains can be processed and encoded into meaningful hidden
representations in a spatio-temporal format of output spike trains
which can be used to recognize and regenerate the original input.

Generally, autoencoders are used to learn the hidden
representations of data belonging to onemodality only. However,
the information surrounding us presents itself in multiple
modalities—vision, audio, and touch. We learn to associate
sounds, visuals and other sensory stimuli to one another. For
example, an “apple” when shown as an image, or as text, or heard
as an audio, holds the same meaning for us. A better learning
system is one that is capable of learning shared representation of
multimodal data (Srivastava and Salakhutdinov, 2012). Wysoski
et al. (2010) proposed a bimodal SNN model that performs
person authentication using speech and visual (face) signals.
STDP-trained networks on bimodal data have exhibited better
performance (Rathi and Roy, 2018). In this work, we explore
the possibility of two sensory inputs—audio and visual, of the
same object, learning a shared representation using multiple
autoencoders, and then use this shared representation to
synthesize images from audio samples.

To enable the above discussed functionalities, we must look
at a way to train these spiking autoencoders. While several
prior works exist in training these networks, each comes with
its own advantages and drawbacks. One way to train spiking
autoencoders is by using Spike Timing Dependent Plasticity
(STDP) (Sjöström and Gerstner, 2010), an unsupervised local
learning rule based on spike timings, such as Burbank (2015) and
Tavanaei et al. (2018). However, STDP, being unsupervised and
localized, still fails to train SNNs to perform at par with ANNs.
Another approach is derived from ANN backpropagation; the
average firing rate of the output neurons is used to compute the
global loss (Bohte et al., 2002; Lee et al., 2016). Rate-coded loss
fails to include spatio-temporal information of the network, as
the network response is accumulated over time to compute the
loss. Wu et al. (2018b) applied backpropagation through time
(BPTT) (Werbos, 1990), while Jin et al. (2018) proposed a hybrid
backpropagation technique to incorporate the temporal effects.
Very recently Wu et al. (2018a) demonstrated direct training
of deep SNNs in a Pytorch based implementation framework.
However, it continues to be a challenge to accurately map the
time-dependent neuronal behavior with a time-averaged rate
coded loss function.

In a network trained for classification, an output layer neuron
competes with its neighbors for the highest firing rate, which
translates into the class label, thus making rate-coded loss a
requirement. However, the target for an autoencoder is very
different. The output neurons are trained to regenerate the input
neuron patterns. Hence, they provide us with an interesting
opportunity where one can choose not to use rate-coded loss.
Spiking neurons have an internal state, referred to as the
membrane potential (Vmem), that regulates the firing rate of
the neuron. The Vmem changes over time depending on the
input to the neuron, and whenever it exceeds a threshold, the

neuron generates a spike. Panda and Roy (2016) first presented
a backpropagation algorithm for spiking autoencoders that uses
Vmem of the output neurons to compute the loss of the network.
They proposed an approximate gradient descent based algorithm
to learn hierarchical representations in stacked convolutional
autoencoders. For training the autoencoders in this work, we
compute the loss of the network using Vmem of the output
neurons, and we incorporate BPTT (Werbos, 1990) by unrolling
the network over time to compute the gradients.

In this work, we demonstrate that in a spike-based
environment, inputs can be transformed into compressed spatio-
temporal spike maps, which can be then be utilized to reconstruct
the input later, or can be transferred across network models,
and data modalities. We train and test spiking autoencoders
on MNIST and Fashion-MNIST dataset. We also present an
audio-to-image synthesis framework, composed of multi-layered
fully-connected spiking neural networks. A spiking autoencoder
is used to generate compressed spatio-temporal spike maps of
images (MNIST). A spiking audiocoder then learns to map
audio samples to these compressed spike map representations,
which are then converted back to images with high fidelity
using the spiking autoencoder. To the best of our knowledge,
this is the first work to perform audio to image synthesis in a
spike-based environment.

The paper is organized in the following manner: In section
2, the neuron model, the network structure and notations
are introduced. The backpropagation algorithm is explained in
detail. This is followed by section 3 where the performance of
these spiking autoencoders is evaluated on MNIST (LeCun et al.,
1998) and Fashion-MNIST (Xiao et al., 2017) datasets. We then
setup our Audio to Image synthesis model and evaluate it for
converting TI-46 digits audio samples to MNIST images. Finally,
in section 4, we conclude the paper with discussion on this work
and its future prospects.

2. LEARNING SPATIO-TEMPORAL
REPRESENTATIONS USING SPIKING
AUTOENCODERS

In this section, we understand the spiking dynamics of
the autoencoder network and mathematically derive
the proposed training algorithm, a membrane-potential
based backpropagation.

2.1. Input Encoding and Neuron Model
A spiking neural network differs from a conventional ANN in
two main aspects—inputs and activation functions. For an image
classification task, for example, an ANN would typically take the
raw pixel values as input. However, in SNNs, inputs are binary
spike events that happen over time. There are several methods for
input encoding in SNNs currently in use, such as rate encoding,
rank order coding and temporal coding (Wu et al., 2007). One
of the most common methods is rate encoding, where each pixel
is mapped to a neuron that produces a Poisson spike train, and
its firing rate is proportional to the pixel value. In this work,
every pixel value of 0–255 is scaled to a value between [0, 1]

Frontiers in Neuroscience | www.frontiersin.org 2 June 2019 | Volume 13 | Article 6216

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 1 | The input image is converted into a spike map over time. At each time step neurons spike with a probability proportional to the corresponding pixel value

at their location. These spike maps, when summed over several time steps, reconstruct the original input.

and a corresponding Poisson spike train of fixed duration, with
a pre-set maximum firing rate, is generated (Figure 1).

The neuron model is that of a leaky integrate-and-fire (LIF)
neuron. The membrane potential (Vmem) is the internal state of
the neuron that gets updated at each time step based on the input
of the neuron, Z[t] (Equation 1).The output activation (A[t]) of
the neuron depends on whether Vmem reaches a threshold (Vth)
or not. At any time instant, the output of the neuron is 0 unless
the following condition is fulfilled,Vmem ≥ Vth (Equation 2). The
leak factor is determined by a constant α. After a neuron spikes,
it’s membrane potential is reset to 0. Figure 2B illustrates a typical
neuron’s behavior over time.

V[t]
mem = (1− α)V[t−1]

mem + Z[t] (1)

A[t] =

{

0, V
[t]
mem < Vth

1, V
[t]
mem ≥ Vth

(2)

The activation function (Equation 2), which is a clip function,
is non-differentiable with respect to Vmem, and hence we
cannot take its derivative during backpropagation. Several works
use various approximate pseudo-derivatives, such as piece-wise
linear (Esser et al., 2015), and exponential derivative (Shrestha
and Orchard, 2018). As mentioned in Shrestha and Orchard
(2018), the probability density function of the switching activity
of the neuron with respect to its membrane potential can be
used to approximate the clip function. It has been observed that
biological neurons are noisy and exhibit a probabilistic switching
behavior (Benayoun et al., 2010; Nessler et al., 2013), which
can be modeled as having a sigmoid-like characterstic (Sengupta
et al., 2016). Thus, for backpropagation, we approximate the clip
function (Equation 2) with a sigmoid which is centered around
Vth, and thereby, the derivative of A[t] is approximated as the

derivative of the sigmoid, (A
[t]
apx) (Equations 3, 4).

A
[t]
apx =

1

1+ exp(−(V
[t]
mem − Vth))

(3)

∂A[t]

∂V
[t]
mem

≈
∂A

[t]
apx

∂V
[t]
mem

=
exp(−(V

[t]
mem − Vth))

(1+ exp(−(V
[t]
mem − Vth)))2

(4)

2.2. Network Model
We define the autoencoder as a two layer fully connected feed-
forward network. To evaluate our proposed training algorithm,
we have used two datasets - MNIST (LeCun et al., 1998) and
Fashion MNIST (Xiao et al., 2017). The two datasets have the
same input size, a 28 × 28 gray-scale image. Hence, the input
and the output layers of their networks have 784 neurons each.
The number of layer(1) neurons is different for the two datasets.
The input neurons [layer(0)] are mapped to the image pixels in
a one-to-one manner and generate the Poisson spike trains. The
autoencoder trained on MNIST later used as one of the building
blocks of the audio-to-image synthesis network. The description
of the network and the notation used throughout the paper is
given in Figure 2A.

2.3. Backpropagation Using Membrane
Potential
In this work, loss is computed using the membrane potential of
output neurons at every time step and then it’s gradient with
respect to weights is backpropagated for weight update. The
input image is provided to the network as 784×1 binary vector

over T time steps, represented as X
(t)
spike

. At each time step the

desired membrane potential of the output layer is calculated
(Equation 5). The loss is the difference between the desired
membrane potential and the actual membrane potential of the
output neurons. Additionally a masking function is used that
helps us focus on specific neurons at a time. The mask used

here is bitwise XOR between expected spikes [X
[t]
spike

] and output

spikes [A(2)[t]] at a given time instant. The mask only preserves
the error of those neurons that either were supposed to spike
but did not spike, or were not supposed to spike, but spiked. It
sets the loss to be zero for all other neurons. We observed that
masking is essential for training in spiking autoencoder as shown
in Figure 4A

O[t] = Vth.
∗X

[t]
spike

(5)

mask = bitXOR(X
[t]
spike

,A(2)[t]) (6)

Frontiers in Neuroscience | www.frontiersin.org 3 June 2019 | Volume 13 | Article 6217

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 2 | The dynamics of a spiking neural network (SNN): (A) A two layer feed-forward SNN at any given arbitrary time instant. The input vector is mapped

one-to-one to the input neurons [layer(0)]. The input value governs the firing rate of the neuron, i.e., number of times the neuron output is 1 in a given duration. (B) A

leaky integrate and fire (LIF) neuron model with 3 synapses/weights at its input. The membrane potential of the neuron integrates over time (with leak). As soon as it

crosses Vth, the neuron output changes to 1, and Vmem is reset to 0. For taking derivative during backpropagation, a sigmoid approximation is used for the neuron

activation.

Error = E = mask.∗(O[t] − V(2)[t]
mem) (7)

Loss = L =
1

2
|E|2 (8)

The weight gradients, ∂L
∂W , are computed by back-propagating

loss in the two layer network as depicted in Figure 2A. We derive
the weight gradients below.

∂L

∂V
(2)[t]
mem

= −E (9)

From Equation (1),

∂V
(2)[t]
mem

∂W(2)
= (1− α)

∂V
(2)[t−1]
mem

∂W(2)
+

[

A(1)[t]
]T
. (10)

The derivative is dependent not only on the current input

[A(1)[t]], but also on the state from previous time step [V
(2)[t−1]
mem].

Next we apply chain rule on Equations (9–10),

∂L

∂W(2)
=

∂L

∂V
(2)[t]
mem

∂V
(2)[t]
mem

∂W(2)
= −E

[

(1−α)
∂V

(2)[t−1]
mem

∂W(2)
+

[

A(1)[t]
]T

]

,

(11)
from Equation (1),

∂V
(2)[t]
mem

∂Z(2)[t]
= I, (12)

from 9 and 12, we obtain the local error of layer(2) with respect to
the overall loss which is backpropagated to layer(1),

δ2 =
∂L

∂Z(2)[t]
= I(−E) = −E, (13)

next, the gradients for layer(1) are calculated,

∂Z(2)[t]

∂A(1)[t]
= W(2), (14)

from Equations (3–4),

∂A(1)[t]

∂V
(1)[t]
mem

≈
∂A

(1)[t]
apx

∂V
(1)[t]
mem

=
exp(−(V

(1)[t]
mem − Vth))

(1+ exp(−(V
(1)[t]
mem − Vth)))2

, (15)

from Equation (1),

∂V
(1)[t]
mem

∂W(1)
= (1− α)

∂V
(1)[t−1]
mem

∂W(1)
+

[

X
[t]
spike

]T
, (16)

from (13–16),

∂L

∂W(1)
=

∂L

∂V
(1)[t]
mem

∂V
(1)[t]
mem

∂W(1)
=

[

[

W(2)
]T

δ2 ◦
∂A(1)[t]

∂V
(1)[t]
mem

]

[

(1− α)
∂V

(1)[t−1]
mem

∂W(1)
+

[

X
[t]
spike

]T
]

. (17)

Thus, Equations (11) and (17) show how gradients of the loss
function with respect to weights are calculated. For weight
update, we use mini-batch gradient descent and a weight decay
value of 1e-5. We implement Adam optimization (Kingma and
Ba, 2014), but the first and second moments of the weight
gradients are averaged over time steps per batch (and not

averaged over batches). We store ∂V
(l)[t]
mem

∂W(l) of the current time step

for use in next time step. The initial condition is, ∂V
(l)[0]
mem

∂W(l) = 0. If a

Frontiers in Neuroscience | www.frontiersin.org 4 June 2019 | Volume 13 | Article 6218

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

neuron spikes, it’s membrane potential is reset and therefore we

reset ∂V
(l,m)[t]
mem

∂W(l) to 0 as well, where l is the layer number andm is the

neuron number.

3. EXPERIMENTS

3.1. Regenerative Learning With Spiking
Autoencoders
For MNIST, a 784-196-784 fully connected network is used. The
spiking autoencoder (AE-SNN) is trained for 1 epoch with a
batch size of 100, learning rate 5e-4, and a weight decay of 1e-
4. The threshold (Vth) is set to 1. We define two metrics for
network performance, Spike-MSE and MSE. Spike-MSE is the
mean square error between the input spike map and the output
spike map, both summed over the entire duration. MSE is the
mean square error between the input image and output spikemap
summed over the entire duration. Both, input image and output
map, are normalized, zero mean and unit variance, and then the
mean square error is computed. The duration of inference is kept
the same as the training duration of the network.

It is observed in Figure 3 that the leak coefficient plays
an important role in the performance of the network. While
a small leak coefficient improves performance, too high of a
leak degrades it greatly. We use Spike-MSE as the comparison
metric during training in Figure 3A, to observe how well the
autoencoder can recreate the input spike train. In Figure 3B, we
report two different MSEs, one computed against input spike
map (spikes) and the other compared firing rate to pixel values
(pixels), after normalizing both. For ’IF’ neuron (α = 0), the train
data performs worse than test data, implying underfitting. At α

set to 0.01 we find the network having comparable performance
between test and train datasets, indicating a good fit. At α = 0.1,
the Spike-MSE is lowest for both test and train data, however the
MSE is higher. While the network is able to faithfully reconstruct
the input spike pattern, the difference between Spike-MSE and
regular MSE is because of the difference in actual pixel intensity
and the converted spike maps generated by the poisson generator
at the input. On further increasing the leak, there is an overall
performance degradation on both test and train data. Thus, we
observe that leak coefficient needs to be fine-tuned for optimal
performance. Going forth, we set the leak coefficient at 0.1 for all
subsequent simulations, as it gave the lowest train and test data
MSE on direct comparison with input spike maps.

Figure 4A shows that using a mask function is essential for
training this type of network. Without a masking function the
training loss does not converge. This is because all of the 784
output neurons are being forced to have membrane potential
of 0 or Vth, resulting in a highly constrained optimization
space, and the network eventually fails to learn any meaningful
representations. In the absence of any masking function, the
sparsity of the error vector E was less than 5%, whereas, with
the mask, the average sparsity was close to 85%. This allows
the optimizer to train the critical neurons and synapses of
the network. The weight update mechanism learns to focus
on correcting the neurons that do not fire correctly, which

effectively reduces the number of learning variables, and results
in better optimization.

Another interesting observation was that increasing the
duration of the input spike train improves the performance as
shown in Figure 4B. However, it comes at the cost of increased
training time as backpropagation is done at each time step, as well
as increased inference time. We settle for an input time duration
of 15 as a trade-off betweenMSE and time taken to train and infer
for the next set of simulations.

We also study the impact of hidden layer size for the
reconstruction properties of the autoencoder. As shown in
Figure 7A, as we increase the size of the network, the
performance improves. However, this comes at the cost of
increased network size, longer training time and slower inference.
While one gets a good improvement when increasing hidden
layer size from 64 to 196, the benefit diminishes as we increase
the hidden layer size to 400 neurons. Thus for our comparison
with ANNs, we use the 784×196×784 network.

For comparison with ANNs, a network (AE-ANN) of same
size (784×196×784) is trained with SGD, both with and without
Adam optimizer (Kingma and Ba, 2014) on MNIST for 1 epoch
with a learning rate of 0.1, batch size of 100, and weight decay of
1e-4. When training the AE-SNN, the first and second moments
of the gradients are computed over sequential time steps within
a batch (and not across batches). Thus it is not analogous to the
AE-ANN trained with Adam, where the moments are computed
over batches. Hence, we compare our network with both variants
of the AE-ANNs, trained with and without Adam. The AE-SNN
achieves better performance than the AE-ANN trained without
Adam; however it lags behind the AE-ANN optimized with
Adam as shown in Figure 5A. Some of the reconstructed MNIST
images are depicted in Figure 5B. One important thing to note
is that the AE-SNN is trained at every time step, hence there
are 15× more backpropagation steps as compared to an AE-
ANN. However at every backpropagation step, the AE-SNN only
backpropagates the error vector of a single spike map, which is
very sparse, and carries less information than the error vector of
the AE-ANN.

Next, the spiking autoencoder is evaluated on the Fashion-
MNIST dataset (Xiao et al., 2017). It is similar to MNIST, and
comprises of 28×28 gray-scale images (60,000 training, 10,000
testing) of clothing items belonging to 10 distinct classes. We test
our algorithm on two network sizes: 784-512-784 (AE-SNN-512)
and 784-1024-784 (AE-SNN-1024). The AE-SNNs are compared
against AE-ANNs of the same sizes (AE-ANN-512, AE-ANN-
1024) in Figure 6A. For the AE-SNNs, the duration of input spike
train is 60, leak coefficient is 0.1, and learning rate is set at 5e-
4. The networks are trained for 1 epoch, with a batch size of
100. The longer the spike duration, the better would be the spike
image resolution. For a duration of 60 time steps, a neuron can
spike anywhere between zero to 60 times, thus allowing 61 gray-
scale levels. Some of the generated images by AE-SNN-1024 are
displayed in Figure 6B. The AE-ANNs are trained for 1 epoch,
batch size 100, learning rate 5e-3 and weight decay 1e-4.

For Fashion-MNIST, the AE-SNNs exhibited better
performance than AE-ANNs as shown in Figure 6A. We
varied the learning rate for AE-ANN, and the AE-SNN still

Frontiers in Neuroscience | www.frontiersin.org 5 June 2019 | Volume 13 | Article 6219

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 3 | The AE-SNN (784-196-784) is trained over MNIST (60,000 training samples, batch size = 100) for different leak coefficients (α). (A) spike-based MSE

(Mean Square Error) Reconstruction Loss per batch during training. (B) Average MSE over entire dataset after training.

FIGURE 4 | The AE-SNN (784-196-784) is trained over MNIST (60,000 training samples, batch size = 100) and we study the impact of (A) mask and (B) input spike

train duration on the Mean Square Error (MSE) Reconstruction Loss.

FIGURE 5 | AE-SNN trained on MNIST (training examples = 60,000, batch size = 100). (A) Spiking autoencoder (AE-SNN) vs. AE-ANNs (trained with/without Adam).

(B) Regenerated images from test set for AE-SNN (input spike duration = 15, leak = 0.1).

Frontiers in Neuroscience | www.frontiersin.org 6 June 2019 | Volume 13 | Article 62110

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 6 | AE-SNN trained on Fashion-MNIST (training examples = 60,000, batch size = 100) (A) AE-SNN [784×(512/1,024)×784] vs. AE-ANNs (trained

with/without Adam, lr = 5e-3). (B) Regenerated images from test set for AE-SNN-1024.

FIGURE 7 | (A) AE-SNN (784×H×784) trained on MNIST (training examples = 60,000, batch size = 100) for different hidden layer sizes = 64, 196, 400 (B) AE-ANN

[784×1,024×784] trained on Fashion-MNIST (training examples = 60,000, batch size = 100) with Adam optimization for various learning rates (lr). Baseline: AE-SNN

trained with input spike train duration of 60 time steps. (C) AE-SNN [784×1,024×784] trained on Fashion-MNIST (training examples = 60,000, batch size = 100) for

varying input time steps, T = 15, 30, 60. Baseline: AE-ANN trained using Adam with lr = 5e-3.

outperformed it’s ANN counterpart (Figure 7B). This is an
interesting observation, where the better performance comes at
the increased effort of per-batch training. Also it exhibits such
behavior on only this dataset, and not on MNIST (Figure 5A).
The spatio-temporal nature of training over each time step
could possibly train the network to learn the details in an
image better. Spiking Neural Networks have an inherent
sparsity in them which could possibly acts like a dropout
regularizer (Srivastava et al., 2014). Also, in case of AE-SNN,
the update is made at every time step (60 updates per batch),
in contrast to ANN where there is one update for one batch.
We evaluated AE-SNN for shorter time steps, and observe that
for smaller time steps (T = 5, 10), AE-SNN performs worse
than AE-ANN (Figure 7C). The impact of time steps is greater
for Fashion-MNIST, as compared to MNIST (Figure 4B), as
Fashion-MNIST data has more grayscale levels than the near-
binary MNIST data. We also observed that, for both datasets,
MNIST and Fashion-MNIST, the AE-SNN converges faster than
AE-ANNs trained without Adam, and converges at almost the
same time as an AE-ANN trained with Adam. The proposed
spike-based backpropagation algorithm is able to bring the

AE-SNN performance at par, and at times even better, than
AE-ANNs.

3.2. Audio to Image Synthesis Using
Spiking Auto-Encoders
3.2.1. Dataset

For the audio to image conversion task, we use two standard
datasets, the 0–9 digits subset of TI-46 speech corpus (Liberman
et al., 1993) for audio samples, and MNIST dataset (LeCun et al.,
1998) for images. The audio dataset has read utterances of 16
speakers for the 10 digits, with a total 4,136 audio samples. We
divide the audio samples into 3,500 train samples and 636 test
samples, maintaining an 85%/15% train/test ratio. For training,
we pair each audio sample with an image. We chose two ways of
preparing these pairs, as described below:

1. Dataset A: 10 unique images of the 10 digits is manually
selected (1 image per class) and audio samples are paired with
the image belonging to their respective classes (one-image-
per-audio-class). All audio samples of a class are paired with
the identical image of a digit belonging to that class.

Frontiers in Neuroscience | www.frontiersin.org 7 June 2019 | Volume 13 | Article 62111

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 8 | Audio to image synthesis model using an autoencoder trained on MNIST images, and an Audiocoder trained to convert TI-46 digits audio samples into

corresponding hidden state of the MNIST images.

FIGURE 9 | The performance of the audio to image synthesis model on the two datasets - A and B [Th = 10)] (A) Mean square error loss (test set) (B) Images

synthesized from different test audio samples (5 per class) for the two datasets A and B.

2. Dataset B: Each audio sample of the training set is paired with
a randomly selected image (of the same label) from theMNIST
dataset (one-image-per-audio-sample). Every audio sample is
paired with a unique image of the same class.

The testing set is same for both Dataset A and B, comprising
of 636 audio samples. All the audio clips were preprocessed
using Auditory Toolbox (Slaney, 1998). They were converted to
spectrograms having 39 frequency channels over 1,500 time steps.
The spectrogram is then converted into a 58,500×1 vector of
length 58,500. This vector is then mapped to the input neurons
(layer(0)) of the audiocoder, which then generate Poisson spike
trains over the given training interval.

3.2.2. Network Model

The principle of stacked autoencoders is used to perform audio-

to-image synthesis. An autoencoder is built of two sets of
weights; the layer(1) weights (W(1)) encodes the information

into a “hidden state” of a different dimension, and the second

layer (W(2)) decodes it back to it’s original representation. We
first train a spiking autoencoder on MNIST dataset. We use the

AE-SNN as trained in Figure 5A. Using layer(1) weights [W[1]]

of this AE-SNN, we generate “hidden-state” representations of
the images belonging to the training set of the multimodal
dataset. These hidden-state representations are spike trains of
a fixed duration. Then we construct an audiocoder: a two

Frontiers in Neuroscience | www.frontiersin.org 8 June 2019 | Volume 13 | Article 62112

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 10 | The audiocoder (AC-SNN/AC-ANN) is trained over Dataset A, while the autoencoder (AE-SNN/AE-ANN) is fixed. MSE is reported on the overall

audio-to-image synthesis model composed of AC-SNN/ANN and AE-SNN/ANN. (A) Reconstruction loss of the audio-to-image synthesis model for varying Th. (B)

Audiocoder performance AC-SNN (Th = 15) vs. AC-ANN (16 bit full precision). (C) Effect of training with reduced hidden state representation on AC-SNN and

AC-ANN models.

TABLE 1 | Summary of results obtained for the 3 tasks - autoencoder on MNIST, autoencoder on fashion-MNIST, and audio to image conversion (T = input

duration for SNN).

Dataset Network size Epochs T
Loss (MSE) (test)

SNN ANN ANN (with Adam)

MNIST 784-196-784 1 15 0.357 0.226 0.122

Fashion-MNIST
784-512-784 1 60 0.178 0.416 0.300

784-1,024-784 1 60 0.140 0.418 0.387

Audio-to-image A 58,500-2,048-196/196-784 20 30 0.254 0.408 0.144

Audio-to-image B 58,500-2,048-196/196-784 20 30 0.543 0.611 0.556

The lowest MSE is highlighted in bold

layer spiking network that converts spectrograms to this hidden
state representation. The audiocoder is trained with membrane
potential based backpropagation as described in section 2.3. The
generated representation, when fed to the “decoder” part of the
autoencoder, gives us the corresponding image. The network
model is illustrated in Figure 8.

3.2.3. Results

The MNIST autoencoder (AE-SNN) used for audio-to-image
synthesis task is trained using the following parameters: batch
size of 100, learning rate 5e-4, leak coefficient 0.1, weight decay
1e-4, input spike train duration 15, and number of epochs 1, as
used in section 3.1. We use Dataset A and Dataset B (as described
in section 3.2.1) to train and evaluate our audio-to-image
synthesis model. The images that were paired with the training
audio samples are converted to Poisson spike trains (duration 15
time steps) and fed to the AE-SNN, which generates a 196×15
corresponding bitmap as the output of layer(1) (Figure 2A). This
spatio temporal representation is then stored. Instead of storing
the entire duration of 15 time steps, one can choose to store a
subset, such as first 5 or 10 time steps. We use Th to denote the
saved hidden state’s duration.

This stored spike map serves as the target spike map for
training the audiocoder (AC-SNN), which is a 58,500 × 2,048 ×
196 fully connected network. The spectrogram (39 × 1,500) of
each audio sample was converted to 58,500 × 1 vector which is
mapped one-to-one to the input neurons [layer(0)]. These input
neurons then generate Poisson spike trains for 60 time steps. The
target map, of Th time steps, was shown repeatedly over this

duration. The audiocoder (AC-SNN) is trained over 20 epochs,
with a learning rate of 5e-5 and a leak coefficient of 0.1. Weight
decay is set at 1e-4 and the batch size is 50. Once trained, the
audiocoder is then merged with W(2) of AE-SNN to create the
audio-to-image synthesis model (Figure 8).

For Dataset A, we compare the images generated by audio
samples of a class against the MNIST image of that class to
compute the MSE. In case of Dataset B, each audio sample of
the train set is paired with an unique image. For calculating
training set MSE, we compare the paired image and the generated
image. For testing set, the generated image of an audio sample is
comparedwith all the training images having the same label in the
dataset, and the lowest MSE is recorded. The output spike map is
normalized and compared with the normalized MNIST images,
as was done previously. Our model gives lower MSE for Dataset
A compared to Dataset B (Figure 9A), as it is easier to learn just
one representative image for a class, than unique images for every
audio sample. The network trained with Dataset A generates very
good identical images for audio samples belonging to a class.
In comparison the network trained on Dataset B generates a
blurry image, thus indicating that it has learned to associate the
underlying shape and structure of the digits, but has not been able
to learn finer details better. This is because the network is trained
overmultiple different images of the same class, and it learns what
is common among them all. Figure 9B displays the generated
output spike map for the two models trained over Dataset A and
B for 50 different test audio samples (5 of each class).

The duration (Th) of stored “hidden state” spike train was
varied from 15 to 10, 5, 2, and 1. A spike map at a single time

Frontiers in Neuroscience | www.frontiersin.org 9 June 2019 | Volume 13 | Article 62113

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

step is a 1-bit representation. The AE-SNN compresses an 784×8
bit representation into 196×Th-bit representation. For Th = 15,
10, 5, 2, and 1, the compression is 2.1×, 3.2×, 6.4×, 16× and
32×, respectively. In Figure 10A we observe the reconstruction
loss (test set) over epochs for training using different lengths of
hidden state. Even when the AC-SNN is trained with a much
smaller “hidden state”, the AE-SNN is able to reconstruct the
images without much loss.

For comparison, we initialize an ANN audiocoder (AC-ANN)
of size 58,500× 2,048× 196. The AE-ANN trained over MNIST
in section 3.1 is used to convert the images of the multimodal
dataset (A/B) to 196×1 “hidden state” vectors. Each element
of this vector is 16 bit full precision number. In case of AE-
SNN, the “hidden state” is represented as a 196×Th bit map. For
comparison, we quantize the equivalent hidden state vector into
2Th levels. The AC-ANN is trained using these quantized hidden
state representations with the following learning parameters:
learning rate 1e-4, weight decay 1e-4, batch size 50, epochs
20. Once trained, the ANN audio-to-image synthesis model
is built by combining AC-ANN and layer(2) weights (W(2))
of AE-ANN. The AC-ANN is trained with/without Adam
optimizer, and is paired with the AE-ANN trained with/without
Adam optimizer, respectively. In Figure 10B, we see that our
spiking model achieves a performance in between the two
ANN models, a trend we have observed earlier while training
autoencoders on MNIST. In this case, the AC-SNN is trained
with Th as 15, while AC-ANNs are trained without any output
quantization; both are trained on Dataset A. In Figure 10C, we
observe the impact of quantization for the ANN model and
the corresponding impact of lower Th for SNN. For higher
hidden state bit precision, the ANN model outperforms the
SNN one. However for extreme quantization case, number
of bits = 2, and 1, the SNN performs better. This could
possibly be attributed to the temporal nature of SNN, where
the computation is event-driven and spread out over several
time steps.

Note, all simulations were performed using MATLAB,
which is a high level simulation environment. The
algorithm, however, is agnostic of implementation
environment from a functional point of view and can be
easily ported to more traditional ML frameworks such as
PyTorch or TensorFlow.

4. DISCUSSION AND CONCLUSION

In this work, we propose a method to synthesize images in
spike-based environment. In Table 1, we have summarized the
results of training autoencoders and audiocoders using our
own Vmem-based backpropagation method1,2. The proposed

1Table 1: Audio-to-Image A: SNN: Th = 15, ANN: no quantization for

hidden state.
2Table 1: Audio-to-Image B: SNN: Th = 10, ANN: no quantization for

hidden state.

algorithm brings SNN performance at par with ANNs for the
given tasks, thus depicting the effectiveness of the training
algorithm. We demonstrate that spiking autoencoders can be
used to generate reduced-duration spike maps (“hidden state”)
of an input spike train, which are a highly compressed version
of the input, and they can be utilized across applications. This
is also the first work to demonstrate audio to image synthesis in
spiking domain. While training these autoencoders, we made a
few important and interesting observations; the first one is the
importance of bit masking of the output layer. Trying to steer
the membrane potentials of all the neurons is extremely hard
to optimize, and selectively correcting only incorrectly spiked
neurons makes training easier. This could be applicable to any
spiking neural network with a large output layer. Second, while
the AE-SNN is trained with spike durations of 15 time steps,
we can use hidden state representations of much lower duration
to train our audiocoder with negligible loss in reconstruction
of images for the audio-to-image synthesis task. In this task,
the ANN model trained with Adam outperformed the SNN one
when trained with full precision “hidden state”. However, at
ultra-low precision, the hidden state loses it’s meaning in ANN
domain, but in SNN domain, the network can still learn from
it. This observation raises important questions on the ability
of SNNs to possibly compute with less data. While sparsity
during inference has always been an important aspect of SNNs,
this work suggests that sparsity during training can also be
potentially exploited by SNNs. We explored how SNNs can
be used to compress information into compact spatio-temporal
representations and then reconstruct that information back from
it. Another interesting observation is that we can potentially train
autoencoders and stack them to create deeper spiking networks
with greater functionalities. This could be an alternative approach
to training deep spiking networks. Thus, this work sheds light
on the interesting behavior of spiking neural networks, their
ability to generate compact spatio-temporal representations of
data, and offers a new training paradigm for learning meaningful
representations of complex data.

AUTHOR CONTRIBUTIONS

DR, PP, and KR conceived the idea and analyzed the results. DR
formulated the problem, performed the simulations and wrote
the paper.

FUNDING

This work was supported in part by the Center for Brain
Inspired Computing (C-BRIC), one of the six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored
by DARPA, the National Science Foundation, Intel Corporation,
the DoD Vannevar Bush Fellowship, and by the U.S. Army
Research Laboratory and the U.K. Ministry of Defense under
Agreement Number W911NF-16-3-0001.

Frontiers in Neuroscience | www.frontiersin.org 10 June 2019 | Volume 13 | Article 62114

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

REFERENCES

Benayoun, M., Cowan, J. D., van Drongelen, W., and Wallace, E. (2010).

Avalanches in a stochastic model of spiking neurons. PLoS Comput. Biol.

6:e1000846. doi: 10.1371/journal.pcbi.1000846

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing 48:17–37.

doi: 10.1016/S0925-2312(01)00658-0

Burbank, K. S. (2015). Mirrored stdp implements autoencoder learning

in a network of spiking neurons. PLoS Comput. Biol. 11:e1004566.

doi: 10.1371/journal.pcbi.1004566

Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S.

(2015). “Backpropagation for energy-efficient neuromorphic computing,” in

Advances in Neural Information Processing Systems (Montreal, QC: NIPS

Proceedings Neural Information Processing Systems Foundations, Inc.) 1117–

1125. Available online at: https://papers.nips.cc/paper/5862-backpropagation-

for-energy-efficient-neuromorphic-computing

Ghosh-Dastidar, S. and Adeli, H. (2009). Spiking neural networks. Int. J. Neural

Syst. 19:295–308. doi: 10.1142/S0129065709002002

Jin, Y., Li, P., and Zhang, W. (2018). Hybrid macro/micro level backpropagation

for training deep spiking neural networks. arXiv preprint arXiv:1805.07866.

Kingma, D. P. and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521:436–44.

doi: 10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86:2278–2324.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Liberman, M., Amsler, R., Church, K., Fox, E., Hafner, C., Klavans, J., et al. (1993).

Ti 46-word. Philadelphia, PA: Linguistic Data Consortium.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural

network models. Neural Netw. 10:1659–1671.

Maass, W. (2015). To spike or not to spike: that is the question. Proc. IEEE

103:2219–2224. doi: 10.1109/JPROC.2015.2496679

Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. (2011). “Stacked

convolutional auto-encoders for hierarchical feature extraction," in

International Conference on Artificial Neural Networks (Espoo: Springer),

52–59.

Nair, V. and Hinton, G. E. (2010). “Rectified linear units improve restricted

boltzmann machines,” in Proceedings of the 27th International Conference on

Machine Learning (ICML-10) (Haifa), 807–814.

Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computation

emerges in generic cortical microcircuits through spike-timing-dependent

plasticity. PLoS Comput. Biol. 9:e1003037. doi: 10.1371/journal.pcbi.10

03037

Panda, P. and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition,” in Neural Networks

(IJCNN), 2016 International Joint Conference on (IEEE) (Vancouver, BC)

299–306.

Rathi, N. and Roy, K. (2018). “Stdp-based unsupervised multimodal learning with

cross-modal processing in spiking neural network,” in IEEE Transactions on

Emerging Topics in Computational Intelligence . Available online at: https://

ieeexplore.ieee.org/abstract/document/8482490

Sengupta, A., Parsa, M., Han, B., and Roy, K. (2016). Probabilistic deep spiking

neural systems enabled by magnetic tunnel junction. IEEE Trans. Electron

Devices 63:2963–2970. doi: 10.1109/TED.2016.2568762

Shrestha, S. B. and Orchard, G. (2018). “Slayer: Spike layer error reassignment

in time,” in Advances in Neural Information Processing Systems (Montreal,

QC: NIPS Proceedings Neural Information Processing Systems Foundations,

Inc.), 1419–1428. Available online at: https://papers.nips.cc/paper/7415-slayer-

spike-layer-error-reassignment-in-time

Sjöström, J. and Gerstner, W. (2010). Spike-timing dependent plasticity.

Scholarpedia J. 5:1362. Available online at: http://www.scholarpedia.org/article/

Spike-timing_dependent_plasticity

Slaney, M. (1998). Auditory Toolbox. Interval Research Corporation, Technical

Report 10.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting.

J. Mach. Learn. Res. 15:1929–1958. Available online at: http://jmlr.org/papers/

v15/srivastava14a.html

Srivastava, N. and Salakhutdinov, R. (2012). “Learning representations for

multimodal data with deep belief nets,” in International Conference on Machine

Learning Workshop, Vol. 79 (Edinburgh).

Tavanaei, A., Masquelier, T., and Maida, A. (2018). Representation learning using

event-based stdp. Neural Net. 105, 294–303 Available online at: https://www.

sciencedirect.com/science/article/pii/S0893608018301801

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). “Extracting

and composing robust features with denoising autoencoders,” in Proceedings

of the 25th International Conference on Machine Learning (Helsinki: ACM),

1096–1103.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do

it. Proc. IEEE 78:1550–1560. doi: 10.1109/5.58337

Wu, Q., McGinnity, M., Maguire, L., Glackin, B., and Belatreche, A. (2007).

“Learning mechanisms in networks of spiking neurons,” in Trends in Neural

Computation, K. Chen and L. Wang (Berlin; Heidelberg: Springer), 171–197.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018a). Direct training for spiking

neural networks: faster, larger, better. arXiv preprint arXiv:1809.05793.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018b). Spatio-

temporal backpropagation for training high-performance spiking

neural networks. Front. Neurosci. 12:23. doi: 10.3389/fnins.2018.

00331

Wysoski, S. G., Benuskova, L., and Kasabov, N. (2010). Evolving spiking neural

networks for audiovisual information processing. Neural Netw. 23:819–835.

doi: 10.1016/j.neunet.2010.04.009

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Roy, Panda and Roy. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 June 2019 | Volume 13 | Article 62115

https://doi.org/10.1371/journal.pcbi.1000846
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1371/journal.pcbi.1004566
https://papers.nips.cc/paper/5862-backpropagation-for-energy-efficient-neuromorphic-computing
https://papers.nips.cc/paper/5862-backpropagation-for-energy-efficient-neuromorphic-computing
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1038/nature14539
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JPROC.2015.2496679
https://doi.org/10.1371/journal.pcbi.1003037
https://ieeexplore.ieee.org/abstract/document/8482490
https://ieeexplore.ieee.org/abstract/document/8482490
https://doi.org/10.1109/TED.2016.2568762
https://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time
https://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.sciencedirect.com/science/article/pii/S0893608018301801
https://www.sciencedirect.com/science/article/pii/S0893608018301801
https://doi.org/10.1109/5.58337
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1016/j.neunet.2010.04.009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 14 February 2020

doi: 10.3389/fnins.2020.00104

Frontiers in Neuroscience | www.frontiersin.org 1 February 2020 | Volume 14 | Article 104

Edited by:

Michael Pfeiffer,

Bosch Center for Artificial Intelligence,

Germany

Reviewed by:

Davide Zambrano,

École Polytechnique Fédérale de

Lausanne, Switzerland

Junxiu Liu,

Ulster University, United Kingdom

*Correspondence:

Peng Li

lip@ucsb.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 September 2019

Accepted: 27 January 2020

Published: 14 February 2020

Citation:

Xu C, Zhang W, Liu Y and Li P (2020)

Boosting Throughput and Efficiency of

Hardware Spiking Neural Accelerators

Using Time Compression Supporting

Multiple Spike Codes.

Front. Neurosci. 14:104.

doi: 10.3389/fnins.2020.00104

Boosting Throughput and Efficiency
of Hardware Spiking Neural
Accelerators Using Time
Compression Supporting Multiple
Spike Codes
Changqing Xu 1, Wenrui Zhang 2, Yu Liu 3 and Peng Li 2*

1 School of Microelectronics, Xidian University, Xi’an, China, 2Department of Electrical and Computer Engineering, University

of California, Santa Barbara, Santa Barbara, CA, United States, 3Department of Electrical and Computer Engineering, Texas

A&M University, College Station, TX, United States

Spiking neural networks (SNNs) are the third generation of neural networks and can

explore both rate and temporal coding for energy-efficient event-driven computation.

However, the decision accuracy of existing SNN designs is contingent upon processing

a large number of spikes over a long period. Nevertheless, the switching power of

SNN hardware accelerators is proportional to the number of spikes processed while

the length of spike trains limits throughput and static power efficiency. This paper

presents the first study on developing temporal compression to significantly boost

throughput and reduce energy dissipation of digital hardware SNN accelerators while

being applicable to multiple spike codes. The proposed compression architectures

consist of low-cost input spike compression units, novel input-and-output-weighted

spiking neurons, and reconfigurable time constant scaling to support large and flexible

time compression ratios. Our compression architectures can be transparently applied to

any given pre-designed SNNs employing either rate or temporal codes while incurring

minimal modification of the neural models, learning algorithms, and hardware design.

Using spiking speech and image recognition datasets, we demonstrate the feasibility

of supporting large time compression ratios of up to 16×, delivering up to 15.93×,

13.88×, and 86.21× improvements in throughput, energy dissipation, the tradeoffs

between hardware area, runtime, energy, and classification accuracy, respectively based

on different spike codes on a Xilinx Zynq-7000 FPGA. These results are achieved while

incurring little extra hardware overhead.

Keywords: time compression, spiking neural networks, input-output-weighted spiking neurons, time averaging,

liquid-state machine

1. INTRODUCTION

Spiking neural networks (SNNs) closely emulate the spiking behaviors of biological brains (Ponulak
and Kasinski, 2011). Moreover, the event-driven nature of SNNs offer potentials in achieving great
computational/energy efficiency on hardware neuromorphic computing systems (Furber et al.,
2014; Merolla et al., 2014). For instance, processing a single spike may only consume a few pJ of

16

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00104
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00104&domain=pdf&date_stamp=2020-02-14
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lip@ucsb.edu
https://doi.org/10.3389/fnins.2020.00104
https://www.frontiersin.org/articles/10.3389/fnins.2020.00104/full
http://loop.frontiersin.org/people/808399/overview
http://loop.frontiersin.org/people/601652/overview
http://loop.frontiersin.org/people/577111/overview

Xu et al. Time Compressed Spiking Neural Networks

energy on recent neuromorphic chips such as IBM’s TrueNorth
(Merolla et al., 2014) and Intel’s Loihi (Davies et al., 2018).

SNNs support various rate/temporal spike codes among which
rate coding using Poisson spike trains is popular. However,
in that case, the low-power advantage of SNNs may be offset
by long latency during which many spikes are processed for
ensuring decision accuracy (Kim et al., 2018; Park et al., 2019).
Various temporal codes have been attempted to improve the
efficiency of information representation (Thorpe, 1990; Thorpe
et al., 2001; Izhikevich, 2002; Kayser et al., 2009; Kim et al.,
2018). The time-to-first-spike coding encodes information using
arrival time of the first spike (Thorpe et al., 2001). Phase coding
(Kayser et al., 2009) encodes information in a spike by its
phase relative to a periodic reference signal (Kim et al., 2018).
For example, Kim et al. (2018) converts a pre-trained ANN to
an approximate SNN by exploring a phase coding method to
encode input spikes by the phase of a global reference clock
and achieves latency reduction over the rate coding for image
recognition.Other studied coding schemes include rank-order
coding (Thorpe, 1990) and resonant burst coding (Izhikevich,
2002). While the on-going neural coding work shows promises,
no coding is considered universally optimal thus far. The
achievable latency/spike reduction of a particular code can vary
widely with network structure and application. Furthermore,
software/hardware overheads of various codes are yet to be
fully evaluated.

Except for studying on various codes to attempt to improve
the efficiency of information representation, there are some
researches utilizing neural adaptation to achieves a high coding
efficiency. For example, Bohte (2012) proposed a multiplicative
Adaptive Spike Response Model which can achieve a high coding
efficiency and maintain the coding efficiency over changes in
the dynamic signal range of several orders of magnitude. In
Zambrano and Bohte (2016) and Zambrano et al. (2017), author
proposed an Adapting Spiking Neural Network (ASNN) based
on adaptive spiking neurons which can use an order ofmagnitude
fewer spikes to get a good performance. In Zambrano et al. (2019)
and O’Connor et al. (2017), they use the speed of adaptation and
the effective spike height to control the precision of the spike-
based neural coding. By utilizing neural adaptation, fire rate can
be reduced, effectively, which saves a large amount of energy.
Due to the fact that large numbers of neurons fire in irregular
bursts (Trappenberg, 2009), a spike traffic compression technique
is proposed to reduce traffic overhead and improving throughput
on the Network-on-Chip based Spiking neural Network (Carrillo
et al., 2012) The proposed compression technique can compress
spike events generated by different neural cells within the same
neuron facility into a single packet.

Rather than advocating a particular code, for the first time,
we focus on an orthogonal problem: temporal compression
applicable to any given SNN (accelerator) and spike code to
boost throughput and energy efficiency. We propose a general
compression technique that preserves both the spike count
and temporal characteristics of the original SNN with low
information loss, as shown in Figure 1. Unlike the work in
Zambrano and Bohte (2016), Zambrano et al. (2017), and
Carrillo et al. (2012), our work transparently compresses the

duration of the spike trains, hence classification latency, on
top of an existing rate/temporal code. More broadly, this work
extends the notion of weight/model pruning/compression of
DNN accelerators from the spatial domain to the temporal
domain. The proposed technique does not alter the given code
already put in place; it intends to further reduce latency via
time compression.

The contributions of this paper include: (1) the first general
time-compression technique transparently compressing spike
train duration of a given SNN and achieving large latency
reduction on top of the spike codes that come with the SNN,
(2) facilitating the proposed time compression by four key ideas:
spike train compression using a weighted representation, a new
family of input-output-weighted (IOW) spiking neural models
for processing time-compressed spike trains for multiple spike
codes, scaling of time constants defining neural, synaptic, and
learning dynamics, and low-cost support of flexible compression
ratios (powers of two or not) using time averaging, (3) low-
overhead hardware modifications of a given SNN accelerator
to operate it on a compressed time scale while preserving the
spike counts and temporal behaviors in inference and training,
(4) a time-compressed SNN (TC-SNN) accelerator architecture
and its programmable variant (PTC-SNN) operating on a wide
range of (programmable) compression ratios and achieving
significantly improved latency, energy efficiency, and tradeoffs
between latency/energy/classification accuracy.

We demonstrate the proposed TC-SNN and PTC-SNN
compression architectures by realizing several liquid-state
machine (LSM) spiking neural accelerators with a time
compression ratio up to 16:1 on a Xilinx Zynq-7000 FPGA.
Using the TI46 Speech Corpus (Liberman et al., 1991), the
CityScape image recognition dataset (Cordts et al., 2016), and
N-TIDIGITS18 dataset (Anumula et al., 2018), we demonstrate
the feasibility of supporting large time compression ratios of
up to 16×, delivering up to 15.93×, 13.88×, and 86.21×
improvements in throughput, energy dissipation, the tradeoffs
between hardware area, runtime, energy, and classification
accuracy, respectively based on various spike coding mechanisms
including burst coding (Park et al., 2019) on a Xilinx Zynq-
7000 FPGA. These results are achieved while incurring little extra
hardware overhead.

2. MATERIALS AND METHODS

2.1. Proposed Time-Compressed Neural
Computation
This work aims to enable time-compressed neural computation
that preserves the spike counts and temporal behaviors in
inference and training of a given SNN while significantly
improving latency, energy efficiency, and tradeoffs between
latency/energy/classification accuracy. We develop four
techniques for this objective: (1) spike train compression
using a weighted representation, (2) a new family of input-
output-weighted (IOW) spiking neural models processing
time-compressed spike trains for multiple spike codes, (3)
scaling of time constants of neural, synaptic, and learning

Frontiers in Neuroscience | www.frontiersin.org 2 February 2020 | Volume 14 | Article 10417

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 1 | Proposed general time compression for SNNs.

dynamics, and (4) low-cost support of flexible compression
ratios (powers of two or not) using time averaging.

2.1.1. Spike Train Compression in Weighted Form
We time-compress a given spiking neural network first by
shrinking the duration of the input spike trains. To support
large compression ratios hence significant latency reductions,
we represent the compressed input trains using an weighted
form. Typical binary spike trains with temporal sparsity may
be time-compressed into another binary spike train of a shorter
duration. However, as shown in Figure 2, the spike count
and temporal characteristics of the uncompressed train can
only be preserved under a small compression ratio bound by
the minimal interspike interval. More aggressive compression
would lead to merging multiple adjacent spikes into a single
spike, resulting in significant alterations of firing count and
temporally coded information. This severely limits the amount
of compression possible. Instead, we propose a new weighted
form for representing compressed spike trains, where multiple
adjacent binary spikes are compressed into a single weighted
spike with a weight value equal to the number of binary spikes
combined, allowing preservation of spike information even
under very large compression ratios (Figure 2). Compared to the
uncompressed spike train, the compressed spike train preserved
the information of spike count and its temporal resolution drops
to 1/γ , where γ is the compression ratio.

2.1.2. Input-Output-Weighted (IOW) Spiking Neurons
As such, each spiking neuron would process the received input
spike trains in the weighted form. Furthermore, as shown in
Figure 3, under large compression ratios themembrane potential
of a spiking neuron may rise high above the firing threshold
voltage within a single time step as a result of receiving input
spikes with large weights. In this case, outputting spike trains
in the standard binary form can lead to significant loss of
input information, translating into large performance loss as we
demonstrate in our experimental results. Instead, we propose
a new family of input-output-weighted (IOW) spiking neural
models which take the input spike trains in the weighted form
and produce the output spike train in the same weighted form,

where the multi-bit weight value of each output spike reflects
the amplitude of the membrane potential as a multiple of the
firing threshold. Spiking neuronal models such as the leaky
integrate-and-fire (LIF) model and other models supporting
various spike codes can be converted to their IOW counterpart
with streamlined low-overhead modification as detailed later.

2.1.3. Scaling of Time Constants of SNN Dynamics
The proposed compression is general in the sense that it intends
to preserve the spike counts and temporal behaviors in the neural
dynamics, synaptic responses, and dynamics employed in the
given SNN such that no substantial alterations are introduced
by compression other than that the time-compressed SNN just
effectively operates on a faster time scale. The dynamics of
the cell membrane is typically specified by a membrane time
constant τm, which controls the process of action potential
(spike) generation and influences the information processing
of each spiking neuron (Gerstner and Kistler, 2002). Synaptic
models also play an important role in an SNN and may be
specified by one or multiple time constants, translating received
spike inputs into a continuous synaptic current waveform based
on the dynamics of a particular order (Gerstner and Kistler,
2002). Finally, Spike traces or temporal variables filtered with
a specific time constant may be used to implement spike-
dependent learning rules (Thorpe et al., 2001; Zhang et al.,
2015).

Maintaining the key spiking/temporal characteristics in the
neural, synaptic, and learning processes is favorable because: (1)
the SNNs with time compression essentially attains pretty much
the same dynamic behavior like before such that the classification
performance would be also similar to the one under no time
compression, i.e., no large performance degradation is expected
when employing time compression; (2) the deployed learning
rules need no modification and the same rules can effectively
train the SNNs with time compression. Spike-dependent training
algorithms often make use of internal dynamics. For example,
the probabilistic spike-dependent learning rule (Zhang et al.,
2015) uses a first-order calcium dynamics to characterize the
time-averaged output firing rate. Attaining the above goal entails
proper scaling of the time constants associated with these

Frontiers in Neuroscience | www.frontiersin.org 3 February 2020 | Volume 14 | Article 10418

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 2 | Binary vs. (compressed) weighted spike trains.

FIGURE 3 | Binary vs. weighted output spikes.

processes as a function of the time compression ratio as shown
in Figure 4.

Without loss of generality, consider a decaying first order
dynamics ẋ(t) = −x(t)/τ with time constant τ . For digital
hardware implementation, forward Euler discretization may be
adopted to discretize the dynamics over time:

X(t + 1t) = X(t)
(

1− 1t
τ

)

= X(t)
(

1− 1
τnom

)

(1)

where 1t is the discretization time stepsize and τnom =

τ/1t is the normalized time constant used in digital hardware
implementation. Now denote the target time compression ratio
by γ (γ ≥ 1). The discretization stepsize with time compression
is: 1tc = γ1t, i.e., one time step of the time-compressed SNN
equals to γ time steps of the uncompressed SNN. Based on (1),

discretizing the first order dynamics with time compression for
one step gives:

X(t + 1tc) = X(t)

(

1−
1

τnom,c

)

= X(t)

(

1−
1

τnom

)γ

, (2)

where τnom,c is the normalized time constant with compression.
Linearly scaling τnom,c by τnom,c=

τnom
γ

is equivalent to: X(t +

1tc)≈X(t)
(

1− 1
τnom/γ

)

, which produces large errors when γ ≫

1. Instead, we get an accurate τnom,c value according to:
τnom,c = 1

1−
(

1− 1
τnom

)γ .

Frontiers in Neuroscience | www.frontiersin.org 4 February 2020 | Volume 14 | Article 10419

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 4 | Scaling of time constants of SNN dynamics.

2.1.4. Flexible Compression Ratios Using Time

Averaging
Digital multipliers and dividers are costly in area and power
dissipation. Normalized time constants in a digital SNN
hardware accelerator are typically set to a power of 2, i.e.,
τnom = 2K such that the dynamics can be efficiently implemented
by a shifter rather than expensive multipliers and dividers
(Zhang et al., 2015). However, it may be desirable to choose a
compression ratio and/or scale each time constant continuously
in a wide integer range, e.g., within {1, 2, 3, ..., 16}. In this case,
each scaled normalized time constant τnom,c may not be a power
of 2. For example, when τnom,c = 10, τnom,c is far away from its
two nearest powers of 2, namely 8 and 16. Setting τnom,c to either
of the two would lead to large errors.

We propose a novel time averaging approach to address
the above problem (Figure 5). For a given scaled normalized
τnom,c, we find its two adjacent powers of 2: 2K2 ≤ τnom,c ≤

2K1 . We decay the targeted first order dynamics by toggling its
scaled normalized time constant between two values: 2K2 and
2K1 . Since each of them is a power of two, the corresponding
decaying behavior can be efficiently realized using a shifter.
The usage frequencies of 2K2 and 2K1 are properly chosen
such the time-averaged time constant is equal to the desired
τnom,c. Figure 5 shows how the time-averaged (normalized)
time constant value of 5 is achieved by averaging between two
compression ratios 4 and 8.

2.2. Proposed Input-and-Output Weighted
(IOW) Spiking Neural Models
Any given spiking neural model can be converted into its input-
and-output (IOW) counterpart based on straightforward low-
overhead modifications. Without loss of generality, we consider
conversion of two models: the standard leaky integrate-and-fire
(LIF) neuron model, which has been widely used in many SNNs

including ones based on rating coding, and one of its variants
for supporting burst coding. The same approach can be taken to
convert other types of neuron models.

2.2.1. IOW Neurons Based on Standard LIF Model
The LIF model dynamics is Gerstner and Kistler (2002):

τm
du

dt
= −u(t)+ RI(t), (3)

where u(t) is the membrane potential, τm=RC is the membrane
time constant, and I(t) is the total received post-synaptic current
given by:

I(t) =
∑

i

wi

∑

f

α(t − t
(f)
i), (4)

where wi is the synaptic weight from the pre-synaptic neuron i,

α(t) =
q
τs
exp

(

− t
τs

)

H(t) for a first order synaptic model with

time constant τs, H(t) is the Heaviside step function, and q is
the total charge injected into the post-synaptic neuron through
a synapse of a weight of 1.

Once the membrane potential reaches the firing threshold uth,
an output spike is generated and the membrane potential is reset
according to:

lim
δ−>0;δ>0

u(t(f) + δ) = u(t(f))− uth, (5)

where t(f) is the firing time.
IOW LIF neurons shall process weighted input spikes because

of time compression with the modified synaptic input:

I(t) =
∑

i

wi

∑

f

ω
f

spike,i
α(t − t

(f)
i), (6)

where a weight ω
f

spike,i
is introduced for each input spike.

Frontiers in Neuroscience | www.frontiersin.org 5 February 2020 | Volume 14 | Article 10420

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 5 | Time-averaged time constants: the realized averaged time constant is 5.

IOW LIF neurons shall also generate weighted output spikes.
According to Figure 3, we introduce a set of firing thresholds
{uth, 2uth,...,nuth} with each being a multiple of the original
threshold uth. At each time step t, an output spike is generated
whenever the membrane potential reaches above any firing
threshold from the set and the weight of the output spike is
determined by the actual threshold crossed. For example, when
kuth ≤ u(t) < (k + 1)uth, the output spike weight is set to k.
Upon firing, the membrane potential is reset according to:

lim u(t(f) + δ)
δ−>0;δ>0

=

u(t(f))− uth, uth ≤ u(t(f)) < 2uth
u(t(f))− u2th, 2uth ≤ u(t(f)) < 3uth
... ...

u(t(f))− nuth, u(t
(f)) ≥ nuth

(7)

2.2.2. IOW Neurons Based on Bursting LIF Model
The LIF model for burst coding is also based on (3) (Park et al.,
2019). A bursting function gi(t) is introduced to implement the
bursting behavior per each presynaptic neuron i (Park et al.,
2019):

gi(t) =

{

βgi(t − 1t),
1,

if Ei(t − 1t) = 1
otherwise

(8)

where β is a burst constant, Ei(t − 1t) = 1 if the presynaptic
neuron i fired at the previous time step and otherwise Ei(t −
1t) = 0. We assume a zero-th order synaptic response
model. Per input spikes from the presynaptic neuron i, the
firing threshold voltage is modified from uth to gi(t)uth and the
corresponding reset characteristic of the membrane potential
after firing is:

lim
δ−>0;δ>0

u(t(f) + δ) = u(t(f))− gi(t
(f))uth. (9)

Furthermore, the total post-synaptic current is:

I(t) =
∑

i

wi

∑

f

gi(t)α(t − t
(f)
i). (10)

To implement the IOW version of the LIF model with burst
coding, we modify the burst function to:

gi(t) =

{

β
ωspike,i(t)g(t − 1t),

1,

if Ei(t − 1t) = 1
otherwise

(11)

Similar to the case of the IOW LIF model, we use a set of firing
thresholds to determine the weight of each output spike and
a behavior similar to (7) for reset. The only difference here is
that the adopted set of firing thresholds are gi(t)uth, 2gi(t)uth,
· · · ,ngi(t)uth.

2.3. Time-Compressed SNN Accelerator
Architectures
The proposed time compression technique can be employed to
support a fixed time compression ratio or user-programmable
time compression ratio, leading to the time-compressed SNN
(TC-SNN) and programmable time-compressed SNN (PTC-
SNN) architectures, respectively. We describe the more general
PTC-SNN architecture shown in Figure 6. It can be adopted
for any pre-designed SNN hardware accelerator for added
programmable time compression. PTC-SNN introduces three
streamlined additions and minor modifications to the embedded
SNN accelerator to enable application and coding independent
time compression.

For demonstration purpose, we show how an existing liquid
state machine (LSM) SNN accelerator (Wang et al., 2016) can be
re-designed to a TC-SNN and PTC-SNN. As shown in Figure 7A,
the architecture consists of an input layer, a reservoir layer and an
output layer. In the input layer, a set of input-spike compression
units (ISCUs), one for each input spike channel, are used to
convert the raw binary input spike trains into the more compact
weighted form with shortened time duration. A user-specified
command sets the time compression ratio of all ISCUs through
the Global Compression Controller. ISCUs compress the given
spike channels without assuming sparsity of the input spike trains
and can support large compression ratios. In the reservoir layer,
we introduce modest added hardware overhead to replace all
original silicon spiking neurons by their input-output-weighted
neuron elements (IOW-NEs) counterparts which is shown in

Frontiers in Neuroscience | www.frontiersin.org 6 February 2020 | Volume 14 | Article 10421

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 6 | Proposed time-compressed SNN architecture with programmable compression ratio (PTC-SNN). ISCU, input spike compression unit; SIPO, serial-in and

parallel-out; IOW-NE, input-output-weighted spiking neuron element; SP, synapse response; NE, regular binary-input-output neuron element; Vm, membrane

potential. The LUT enables programmable scaling of time constants of the neuron/synaptic models and the learning unit.

Figure 7C. The output layer is composed of output elements
(OEs) and all the OEs update the corresponding synaptic weights
in parallel. These plastic synaptic weights are stored in the
corresponding block RAMs (BRAMs). The external input spikes
are sent to their target IOW-NEs through a crossbar switching
interface. The spikes generated by the IOW-NEs are buffered in
a wide register. Then, the spikes in the register are sent to other
IOW-NEs through another crossbar switching interface. At the
same time, the spikes in the register are also sent to each OE in
the output layer as the reservoir response.We apply a biologically
plausible supervised learning rule, which is proposed in Zhang
et al. (2015), to realize supervised learning, a teacher signal is
used to modulate the firing activity of each OE and implement
a particular form of Hebbian learning. For the recognition phase,
if the fire count of the OE corresponding to a sample’s true class is
the most, this particular speech sample is successfully recognized.
Because the output spikes have weight, we use the sum of spike
multiply by spike weight as fire count. Finally, all time constants
in the SNN are scaled by the Global Compression Controller
according to a user-specified compression ratio command.

[Input Spike Compression Unit (ISCU)] Each input spike
channel is compressed by one low-cost ISCU according to the
user-specified compression ratio γ . When each uncompressed
spike input channel is fed by a single binary serial input,
a demultiplexer is utilized in the ISCU to perform the

reconfigurable serial-in and parallel-out (SIPO) operation to
convert the serial input into γ parallel outputs, as shown in
Figure 7B. If the input spike channel is supplied by parallel spike
data, the SIPO operation is skipped. In order to achieve real-time
input spike compression, the work frequency of the ISCU is γ

times that of reservoir layer and output layer. During each clock
cycle, the γ bits of the parallel outputs are added by an adder,
which effectively combines these spikes into a single weighted
spike with a weight value set by the output of the adder. No
spike count loss is resulted as the sum of spike weights is same
as the total number of binary spikes in the raw spike input train.
The global temporal spike distribution of the input spike train is
preserved up to the temporal resolution of the compressed spike
train. As shown in Figure 7B, when compression ratio is 4:1, the
first four serial input “1100” is converted to a parallel form. The
four parallel spikes "1100" are added by an adder and converted
into a single spike with weight “2”.

There is unavoidable loss of fine temporal resolution since
γ adjacent spikes in the raw input spike train are combined
into a single weighted spike. When the compression ratio is
low, this loss of temporal resolution may be negligible while
large latency and energy reduction can be achieved. As will
be demonstrated by our experimental studies, it is possible to
explore aggressively large input compression ratios, e.g., 16:1,
for huge latency and energy dissipation improvements. Under

Frontiers in Neuroscience | www.frontiersin.org 7 February 2020 | Volume 14 | Article 10422

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 7 | (A) Top-level block diagram of the proposed time-compressed liquid state machine (LSM) SNN accelerator with programmable compression ratio

(PTC-SNN), (B) ISCU with 4:1 time compression, (C) LIF IOW neuron: SU - synaptic unit, NU - neural unit, and (D) OE: P - Potentiation, D - Depression

(Wang et al., 2016).

this case, it is still possible to retain a decent classification
performance as the lost temporal resolution can be partially
compensated by training, which operates under the same time
compression ratio.

[Input-Output-Weighted (IOW) Neuron Elements] We
discuss efficient hardware realization of the IOW spiking neural
models (section 2.2). The IOW neuron element (IOW-NE) is
shown in Figure 7C, which consists of a synaptic unit (SU), a
neural unit (NU), and a time constant configuration module,
described later. SU realizes a discretized version of (6). As in
many practical implementations of hardware SNNs, each ωi is
constrained to be in the form of 2K . The product of ωspike,i · ωi is
efficiently realized by left shifting ωspike,ki by K bits. NU performs
membrane potential u(t) update based on discretization of (3)
and reset behavior (7). NU generates a weighted output spike
when u(t) is above certain threshold in the firing threshold
set uth, 2uth, · · · .

The design of IOW LIF neurons with burst coding is almost
identical to that of the IOW LIF neurons except for the following
differences. We add a LUT to store the set of firing thresholds
{gi(t)uth, 2gi(t)uth, · · · }, which are calculated based on (11).
Because gi(t)uth might not be in the form of 2K , a multiplier is
used to compute the product g(t) · uth · ωi · ωspike, i.

[Output Elements (OE)] In output elements (OE), we apply
the a biologically plausible supervised learning rule which is
proposed in Zhang et al. (2015). The similar functional blocks
(SU, NU) are used to calculate the state variables, and its
implementation is the same as the blocks in Figure 7C, except
that the internal fixed synaptic weight is replaced by a plastic
synaptic weight. The plastic synaptic weights are stored in a
BRAM updated by the biologically plausible learning rule (Zhang
et al., 2015). In the learning rule, the Calcium concentration C is
calculated by

C(t) = C(t − 1)−
C(t − 1)

τc
+ E(t) (12)

where E(t) is the spiking event at current time step and τc is the
time constant of calcium concentration. In our design, τc is in
the form of 2Kc . The weight of synapse between current output
neuron and the i-th reservoir neuron wi is updated by

{

wi = wi + 1w with P if Cθ < C < (Cθ + 1C)
wi = w′

i − 1w with P if (Cθ − 1C) < C < Cθ

(13)

where P, Cθ and 1C are the update probability, the Calcium
concentration threshold and margin width, respectively. In our

Frontiers in Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 10423

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

design, P is 2%,Cθ is 320 and1C is 192. According to Figure 7D,
besides the components for Vmem updating, each OE involves
additional logic to realize (12) and (13). Once a synaptic weight is
updated, it is written back to the BRAM. The update probability
in (13) is simply realized by a comparator and a random number
generator (RNG). To realize the spike-based supervised learning
rule, the teacher signal is used to add an additional injection into
each readout neuron to modulate the firing activity of each OE.

3. RESULTS

The proposed time-compressed SNN (TC-SNN) architecture
with a fixed compression ratio and the more general
programmable PTC-SNN architecture with user-programmable
compression ratio can be adopted to re-design any given digital
SNN accelerator to a time-compressed SNN accelerator with
low additional design overhead in a highly streamlined manner.
For demonstration purpose, we show how an existing liquid
state machine (LSM) SNN accelerator can be re-designed to a
TC-SNN and PTC-SNN on a Xilinx Zynq-7000 FPGA. The LSM
is a recurrent spiking neural network model. With its spatio-
temporal computing power, it has demonstrated promising
performances for various applications (Maass et al., 2002).
Based on the design of the Liquid State Machine based SNN
accelerator in Wang et al. (2016), we redesign and implement the
time-compressed Liquid State Machine based SNN on FPGA.

Three speech/image recognition datasets are adopted for
benchmarking. The first dataset is a subset of the TI46 speech
corpus (Liberman et al., 1991) and consists of 260 isolated
spoken English letters recorded by a single speaker. The time
domain speech examples are pre-processed by the Lyon’s passive
ear model (Lyon, 1982) and transformed to 78 channel spike
trains using the BSA spike encoding algorithm (Schrauwen and
Van Campenhout, 2003). The second one is the CityScape dataset
(Cordts et al., 2016) which contains 18 classes of 1,080 images
of semantic urban scenes taken in several European cities. Each
image is segmented and remapped into a size of 15 × 15, are
then converted to 225 Poisson spike trains with the mean firing
rate proportional to the corresponding pixel intensity. The third
one is a subset of N-TIDIGITS18 speech dataset (Anumula
et al., 2018) which is obtained by playing the audio files from
the TIDIGITS dataset to a CochleaAMS1b sensor. This dataset
contains 10 classes of single digits (the digits “0” to “9”). There
are 111 male and 114 female speakers in the dataset and 2,250
training and 2,250 testing examples. For the first two datasets,
we adopt 80% examples for training and the remaining 20% for
testing. The three datasets present two different types tasks, i.e.,
speech vs. image classification, and are based on three different
raw input encoding schemes, i.e., the BSA encoding, Poisson-
based rate coding, and CochleaAMS1b sensor based coding.
Therefore, they are well-suited for testing the generality of the
proposed time compression.

The baseline LSM FPGA accelerator (without compression)
we built in this paper is referred to Wang et al. (2016), which is
based on the standard LIF model, and consists of an input layer,
a recurrent reservoir, and a readout layer. The number of input

neurons is set by the number of the input spike trains, which
is 78, 225, and 64, respectively for the TI46 dataset, CityScape
dataset, and N-TIDIGITS18 dataset, respectively. The reservoir
has 135 neurons for the TI46 and CityScape datasets and 300
neurons for the N-TIDIGITS18 dataset, respectively. Each input
neuron is randomly connected to 16 reservoir neurons. The
connection probability among two reservoir neurons decays in
their Euclidean distance to mimic the connectivity of biological
brains (Maass et al., 2002). The number of the readout neurons
is 26, 18, and 10 for the TI46, CityScape, and N-TIDIGITS18
dataset, respectively. The reservoir neurons are fully connected
to the readout neurons. All readout synapses are plastic and
trained using the supervised spike-dependent training algorithm
in Zhang et al. (2015). The power consumption of various FPGA
accelerators is measured using the Xilinx Power Analyzer (XPA)
tool and their recognition performances are measured from
the FPGA board. The runtime is the time the proposed FPGA
accelerator takes to complete 1 training and testing epoch with
an operation frequency of 50 MHz.

3.1. Input Spike Train Compression
Figure 8 demonstrates how the proposed input spike
compression unit (ISCU) compresses one input spike train
of the spoken English letter “A” from the TI46 speech dataset
(Liberman et al., 1991). As in Figure 8, the inter-spike interval of
the raw input spike train can be as low as 0 so that any brute-force
time compression leads to loss of spikes and hence information
loss, jeopardizing classification accuracy. ISCU compresses the
raw spikes by converting them to the input-weighted (IW)
representation in which densely populated regions of the input
train are represented by spikes with a weight greater than one
without any spike loss. This makes it possible to dramatically
shrink the duration of the spike train while capturing the
global temporal distribution of the input spikes using the
spike weights. As demonstrated later, ISCU is able to compress
the raw input spike trains by large compression ratio while
retaining the essential input information necessary for accurate
pattern recognition.

3.2. Behavior of the Proposed IOW-LIF
Neurons
The proposed IOW-LIF neurons play the important role of
processing the input-weighted spike trains produced by ISCUs.
Except for time compression, the outputs of these IOW-LIF
neurons shall be identical or close to the standard LIF neurons
receiving the uncompressed spike inputs. We select a single
neuron at random from the reservoir of the LSM design for The
I46 dataset to observe its membrane potential and the output
spike train.

To ease the comparison, the membrane potential is not
reset by output firing in Figure 9. It can be seen that the
waveform of the membrane potential and output spike train
produced by the IOW-LIF neuron bear close resemblance to
those of the LIF neuron. It shall be noted that existence of
minor difference between the two neurons typically does not lead
to large recognition performance drop since such difference is

Frontiers in Neuroscience | www.frontiersin.org 9 February 2020 | Volume 14 | Article 10424

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 8 | Proposed input compression of a speech example. (A) No compression, (B) 2:1 compression, (C) 3:1 compression, (D) 4:1 compression, (E) 8:1

compression, and (F) 16:1 compression.

factored in during the training of the SNN, which is based on the
same time compression ratio.

3.3. Reservoir Responses of the LSMs
We plot the raster plots of the reservoir IOW-LIF neurons when
the input speech example is the letter “A” from the TI46 Speech
Corpus to examine the impact of time compression in Figure 10.
It is fascinating to observe that when the compression ratio is
between 2:1 to 4:1, the reservoir response in terms of both total
spike count and spatio-temporal spike distribution changes little
from the one without compression. When the compression ratio
increases to the very large values of 8:1 and 16:1, the total spike
count drops but the original spatio-temporal spike distribution is
still largely preserved. Since certain spike counts are converted
to firing spike weights by the IOW neurons, the information
of spike count will not be lost. This is consistent to the decent
recognition performance achieved at 8:1 and 16:1 compression
ratios presented next.

3.3.1. Performances of TC-SNNs With IOW LIF

Neurons
For the three datasets mentioned, we design a baseline LSM SNN

without time compression and five time-compressed SNNs (TC-

SNNs) with IOW LIF neurons referred to Wang et al. (2016)

and a fixed time compression ratio from 2:1 to 16:1, all clocked
at 50MHz.

For the TI46 speech dataset (Liberman et al., 1991), the
runtime and energy dissipation of each accelerator expended on
350 training epochs of a batch of 208 randomly selected examples
are measured. We compare the inference accuracy, hardware
overhead measured by FPGA lookup (LUT) and flip-flop (FF)
utilization, power, runtime, and energy of all six accelerators
in Table 1. For the inference accuracy, we measure the best
accuracy and average accuracy of multiple experiments with
different initial weights and the standard deviation (STD). The
same evaluation method is used hereinafter. To show the benefit
of producing weighted output spikes, we create a new input-
weighted (IW) LIF model which differs from the IOW LIF
model in that the IW model generates binary output spikes. We
redesign the five TC-SNN accelerators using IW LIF neurons
and compare them with their IOW counterparts in Table 1.
With large compression ratios the IOW accelerators significantly
outperform their IW counterparts on classification accuracy. For
example, the IOW accelerator improves accuracy from 69.23 to
80.77% with a compression ratio of 16:1.

Firstly, we compare the TC-SNN accelerators based on IW-
NEs and the TC-SNN accelerators based on IOW-NEs. As
Table 1 shows that TC-SNN accelerators based on IW-NEs
and TC-SNN accelerators based on IOW-NEs obtain the same
accuracy, when the compression ratio is small. However, the
accuracy of TC-SNN accelerators based on IW-NEs drop rapidly
when compression ratio is large, e.g., the accuracy is only 69.23%

Frontiers in Neuroscience | www.frontiersin.org 10 February 2020 | Volume 14 | Article 10425

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

FIGURE 9 | Comparison of LIF and IOW-LIF neurons. (A) No compression, (B) 2:1 compression, (C) 3:1 compression, (D) 4:1 compression, (E) 8:1 compression,

and (F) 16:1 compression.

FIGURE 10 | Reservoir response vs. compression ratio. (A) No compression, (B) 2:1 compression, (C) 3:1 compression, (D) 4:1 compression, (E) 8:1 compression,

and (F) 16:1 compression.

Frontiers in Neuroscience | www.frontiersin.org 11 February 2020 | Volume 14 | Article 10426

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

TABLE 1 | Comparison of the baseline and TC-SNN accelerators with IW/IOW LIF neurons based on TI46 Speech Corpus.

Compression

ratio

Neuron

model

Best

accuracy

Average

accuracy

(STD)

LUT FF Power

(W) @50

MHz

Runtime(s)

(normalized

runtime)

Runtime

speedup

Energy (J)

(normalized

energy)

Energy

reduction

ratio (%)

Normalized

ATEL

Baseline LIF 96.15%
95.58%

(0.89%)
57326 18200 0.073

1.991

(100%)
1.00x

0.145

(100%)
1.00x 100%

2:1 IW-LIF 96.15%
95.29%

(0.96%)
58497 18460 0.077

0.995

(49.97%)
2.00x

0.077

(52.71%)
1.88x 26.68%

2:1 IOW-LIF 96.15%
95.50%

(0.92%)
60096 18532 0.086

0.995

(49.97%)
2.00x

0.086

(58.87%)
1.69x 30.72%

3:1 IW-LIF 90.38%
89.81%

(0.89%)
58538 18549 0.079

0.663

(33.30%)
3.00x

0.052

(35.86%)
2.79x 30.46%

3:1 IOW-LIF 90.38%
89.94%

(0.81%)
60103 18625 0.088

0.663

(33.30%)
3.00x

0.058

(40.00%)
2.50x 34.78%

3:1
IW-LIF

(TATC)
92.31%

92.08%

(0.63%)
58762 18782 0.080

0.664

(33.35%)
3.00x

0.053

(36.55%)
2.74x 24.98%

3:1
IOW-LIF

(TATC)
92.31%

92.13%

(0.55%)
61162 18799 0.092

0.664

(33.35%)
3.00x

0.061

(42.03%)
2.38x 29.74%

4:1 IW-LIF 92.31%
91.46%

(0.96%)
58910 18753 0.081

0.499

(25.06%)
3.99x

0.036

(27.81%)
4.03x 14.31%

4:1 IOW-LIF 92.31%
91.58%

(0.80%)
61313 18923 0.095

0.499

(25.06%)
3.99x

0.047

(32.62%)
3.09x 17.40%

8:1 IW-LIF 80.77%
80.44%

(0.73%)
59210 19087 0.083

0.248

(12.46%)
8.03x

0.021

(14.16%)
6.90x 9.12%

8:1 IOW-LIF 86.54%
85.87%

(0.92%)
62548 19098 0.099

0.248

(12.46%)
8.03x

0.025

(16.89%)
5.80x 7.98%

16:1 IW-LIF 69.23%
68.50%

(0.94%)
59400 20000 0.117

0.125

(6.28%)
15.93x

0.015

(10.06%)
9.67x 5.28%

16:1 IOW-LIF 80.77%
80.17%

(0.89%)
65349 20808 0.134

0.125

(6.28%)
15.93x

0.017

(11.52%)
8.53x 4.12%

when compression ratio is 16:1. While the accuracy of TC-SNN
accelerators based on IOW-NEs still is 80.77%. This shows that
IOW-NEs can preserve the spike information, effectively, when
compression ratio is large.

Secondly, we compare the TC-SNN accelerators using Time
Averaging time compression(TATC) and without using time
average time compression, when compression ratio is 3:1. As
Table 1 shows that TC-SNN using TATC improve the accuracy
from 90.38 to 92.31%. Due to the introduction of time average,
hardware cost will increase a little. This shows that time average
time compression can improve the accuracy when compression
ratio is not a power of 2. We will apply time average time
compression in our experiments when the compression ratio is
not a power of 2.

The power/hardware overhead of the TC-SNN accelerators
with IOW LIF neurons only increases modestly with the
time compression ratio. For the TC-SNN accelerators, as the
compression ratio increase, the throughput steadily improves,
reducing the runtime and energy dissipation. Over a very wide
range of compression ratio, the runtime is linearly scaled with
the compression ratio while the energy is scaled almost linearly.
For example, 2:1 compression speeds up the runtime by 2×,
reduces the energy by 1.69×, retaining the same classification

accuracy of 96.15% without degradation. With 4:1 compression,
the runtime is sped up by 3.99×, the energy is reduced by
3.09×, and the classification accuracy is as high as 92.31%.
With a large 16:1 compression ratio, the runtime and energy are
reduced significantly by 15.93× and 8.53×, respectively, and the
accuracy is 80.77%.

To jointly evaluate the tradeoffs between hardware area,
runtime, energy, and loss of accuracy, we define a figure of
merit (FOM) ATEL as: ATEL = Area × Time × Energy × Loss,
where each metric is normalized with respect to the baseline (no
compression), and Loss = (100% - Classification Accuracy). Here
the hardware area is evaluated by Flop count + 2*LUT count
as suggested by Xilinx. Table 1 shows that as the compression
ratio increases from 1:1 to 16:1, the ATEL of the TC-SNNs with
IOW LIF neurons favorably drops from 100 to 4.12%, a nearly
25-fold reduction.

We evaluate the proposed architectures using the CityScape
image recognition dataset (Cordts et al., 2016) and N-
TIDIGITS18 dataset (Anumula et al., 2018) in a similar way.
The results for the CityScape dataset are reported in Table 2, for
which the runtime and energy dissipation of each accelerator are
measured for 350 training epochs of a batch of 864 randomly
selected examples. Since the proposed compression is application

Frontiers in Neuroscience | www.frontiersin.org 12 February 2020 | Volume 14 | Article 10427

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

TABLE 2 | Comparison of the baseline and TC-SNN accelerators with IOW LIF neurons based on the CityScape image dataset and the NTIDIGITS18 dataset.

Compression

ratio

Neuron

model

Best

accuracy

Average

accuracy

(STD)

LUT FF Power (W)

@50 MHz

Runtime(s)

(normalized

runtime)

Runtime

speedup

Energy (J)

(normalized

energy)

Energy

reduction

ratio (%)

Normalized

ATEL

CityScape image dataset

Baseline LIF 99.07%
98.94%

(0.31%)
57017 16373 0.074

1.497

(100%)
1.00x

0.111

(100%)
1.00x 100%

2:1 IOW-LIF 99.07%
98.75%

(0.36%)
58826 17294 0.078

0.749

(50.03%)
2.00x

0.058

(52.25%)
1.91x 27.31%

3:1 IOW-LIF 97.69%
97.53%

(0.30%)
58895 17506 0.088

0.499

(33.33%)
3.00x

0.044

(39.64%)
2.52x 34.05%

4:1 IOW-LIF 97.69%
97.39%

(0.39%)
59276 17374 0.082

0.375

(25.05%)
3.99x

0.031

27.93%)
3.58x 18.00%

8:1 IOW-LIF 95.37%
95.21%

(0.31%)
61254 19322 0.092

0.189

(12.63%)
7.92x

0.017

(15.32%)
6.53x 10.73%

16:1 IOW-LIF 94.91%
94.76%

(0.32%)
66350 21618 0.079

0.096

(6.41%)
15.59x

0.008

(7.21%)
13.88x 2.84%

NTIDIGITS18 dataset

Baseline LIF 83.63%
83.38%

(0.29%)
106263 25778 0.116W

424.61

(100%)
1.00x

49.255

(100%)
1.00x 100%

2:1 IWIO-LIF 82.82%
82.50%

(0.32%)
111688 26070 0.110W

212.31

(50.00%)
2.00x

23.354

(47.41%)
2.11x 26.04%

3:1 IWIO-LIF 82.22%
81.93%

(0.29%)
124756 28364 0.112W

141.50

(33.32%)
3.00x

15.848

(32.18%)
3.11x 13.58%

4:1 IWIO-LIF 81.91%
81.60%

(0.29%)
112224 26158 0.113W

106.87

(25.17%)
3.97x

12.076

(24.52%)
4.08x 7.17%

8:1 IWIO-LIF 80.91%
80.56%

(0.31%)
131614 28934 0.158W

53.61

(12.63%)
7.92x

8.470

(17.20%)
5.82x 3.10%

16:1 IWIO-LIF 74.54%
74.26%

(0.29%)
128094 34707 0.174W

27.17

(6.40%)
15.63x

4.728

(9.60%)
10.42x 1.16%

independent, the TC-SNN architectures can be applied to this
image recognition task without any modification. Large runtime
and energy reductions similar to the ones for the TI46 dataset
are achieved by the proposed time compression while the
degradation of classification accuracy is more graceful. The TC-
SNN with 8:1 compression reduces the runtime and energy
dissipation by 7.92× and 6.53×, respectively while the accuracy
only drops to 95.37%. The figure of merit ATEL improves from
100 to 2.84% (35× improvement) when the TC-SNN runs with
16:1 compression. The results on the N-TIDIGITS18 dataset
are in Table 2, for which the runtime and energy dissipation
of each accelerator are measured for 350 training epochs of a
batch of 2,250 training samples. Again, large runtime and energy
reductions are achieved by the proposed time compression. The
TC-SNN with 8:1 compression ratio reduces the runtime and
energy dissipation by 7.92× and 5.82×, respectively while the
accuracy only drop from 83.63 to 80.91%.

Clearly, the proposed compression architectures can linearly
scale the runtime, and hence dramatically reduce the decision
latency, and energy dissipation with acceptable accuracy
degradation at low compression ratios, e.g., up to 4:1. Applying
an aggressively large compression ratio can produce huge energy
and runtime reduction while the degraded performance may be

still acceptable for practical applications. The supported large
range of compression ratio offers the user great flexibility in
targeting an appropriate performance/overhead tradeoff for a
given application.

3.3.2. Performances of TC-SNNs With Bursting

Coding
We redesign our TC-SNN accelerators using bursting IOW
LIF models to support burst coding (Park et al., 2019) and
compare their performances with the baseline on the TI46
speech dataset and CityScape image dataset in Table 3. Once
again, the proposed time compression leads to large runtime
and energy reductions and the degradation of classification
accuracy is graceful. The additional hardware cost for
supporting bursting coding is somewhat increased but still
rather oderate.

3.3.3. Performances of Time Compressed Multi-Layer

Feedforward SNN With IOW LIF Neurons
To show the generality of our proposed method, we design
a pre-trained multi-layer feedforward SNN (196-100-100-10)
based on the design in Lee et al. (2019) as the baseline
and redesign the pre-trained multi-layer feedforward SNN

Frontiers in Neuroscience | www.frontiersin.org 13 February 2020 | Volume 14 | Article 10428

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

TABLE 3 | Comparison of the baseline and TC-SNN accelerators with burst coding on the TI46 Speech Corpus and on CityScape image dataset.

Compression

ratio

Neuron

model

Best

accuracy

Average

accuracy

(STD)

LUT FF Power (W)

@50

MHz

Runtime(s)

(normalized

runtime)

Runtime

speedup

Energy (J)

(normalized

energy)

Energy

reduction

ratio (%)

Normalized

ATEL

TI46 Speech Corpus dataset

Baseline LIF 98.08%
97.42%

(0.92%)
92052 62390 0.240W

2.527

(100%)
1.00x

0.606

(100%)
1.00x 100%

2:1 IOW-LIF 92.31%
91.83%

(0.84%)
107263 64845 0.163W

1.266

(50.10%)
2.00x

0.206

(33.99%)
2.94x 77.38%

3:1 IOW-LIF 92.31%
91.60%

(0.93%)
124881 67343 0.168W

0.946

(37.44%)
2.67x

0.158

(26.07%)
3.82x 50.55%

4:1 IOW-LIF 92.31%
90.56%

(1.57%)
102362 61332 0.172W

0.637

(25.21%)
3.97x

0.110

(18.15%)
5.54x 19.68%

8:1 IOW-LIF 88.46%
87.67%

(0.95%)
121183 64481 0.212W

0.318

(12.58%)
7.94x

0.067

(11.06%)
9.00x 10.47%

16:1 IOW-LIF 80.77%
79.85%

(0.97%)
132055 72508 0.289W

0.163

(6.45%)
15.50x

0.047

(7.76%)
12.87x 6.85%

CityScape image dataset

Baseline LIF 98.61%
98.42%

(0.32%)
92166 60721 0.242

1.899

(100%)
1.00x

0.460

(100%)
1..00x 100%

2:1 IOW-LIF 98.15%
97.58%

(0.49%)
106416 63765 0.156

0.950

(50.03%)
1.99x

0.148

(32.25%)
3.10x 24.18%

3:1 IOW-LIF 98.15%
96.80%

(0.65%)
123037 66208 0.191

0.633

(33.33%)
3.00x

0.121

(26.31%)
3.80x 14.87%

4:1 IOW-LIF 97.69%
95.83%

(1.52%)
100748 59941 0.163

0.476

(25.05%)
3.99x

0.078

(16.87%)
5.93x 7.54%

8:1 IOW-LIF 96.29%
95.03%

(0.57%)
120312 64863 0.209

0.239

(12.62%)
7.92x

0.050

(10.90%)
9.17x 4.56%

16:1 IOW-LIF 96.29%
94.89%

(1.25%)
133479 73476 0.241

0.122

(6.42%)
15.59x

0.029

(6.38%)
15.66x 1.50%

TABLE 4 | Comparison of the baseline and time compressed multi-layer feedforward SNN accelerators on the MNIST dataset.

Compression

ratio

Neuron

model

Accuracy LUT FF Power (W)

@50

MHz

Runtime(s)

(normalized

runtime)

Runtime

speedup

Energy (J)

(normalized

energy)

Energy

reduction

ratio (%)

Normalized

ATEL

baseline LIF 96.48% 34779 5910 0.376 32.23(100%) 1.00x 12.118(100%) 1.00x 100%

2:1 IOW-LIF 96.09% 38743 6084 0.391 16.35(50.73%) 1.97x 6.392(52.75%) 1.90x 67.48%

3:1 IOW-LIF 95.96% 44213 6227 0.399 10.88(33.76%) 2.96x 4.341(35.82%) 2.89x 54.72%

4:1 IOW-LIF 95.92% 46254 6260 0.416 8.23(25.53%) 3.91x 3.423(28.25%) 3.54x 47.42%

8:1 IOW-LIF 95.58% 47635 6134 0.440 4.18(12.97%) 7.71x 1.839(15.18%) 6.59x 29.97%

16:1 IOW-LIF 93.01% 47955 6140 0.477 2.16(6.70%) 14.92x 1.030(8.50%) 11.76x 28.96%

TABLE 5 | Performances of the reconfigurable PTC-SNN hardware accelerator on the TI46 Speech Corpus.

Compression ratio Best accuracy Average accuracy (STD) Power (W) @50 MHz Runtime(s) Energy (J) Normalized ATEL

Baseline 96.15% 95.58%(0.89%) 0.073 1.991 0.145 100%

2:1 96.15% 95.50%(0.92%) 0.151 0.995 0.130 57.64%

3:1 92.31% 89.94%(0.81%) 0.152 0.664 0.088 51.65%

4:1 92.31% 91.58%(0.80%) 0.155 0.499 0.067 29.87%

8:1 86.54% 85.87%(0.92%) 0.173 0.248 0.038 14.61%

16:1 80.77% 80.17%(0.89%) 0.194 0.125 0.022 6.05%

Frontiers in Neuroscience | www.frontiersin.org 14 February 2020 | Volume 14 | Article 10429

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

with time compression for the MNIST dataset (LeCun et al.,
1998). Each pixel value of the MNIST image is converted
into a spike train using Poisson sampling and the probability
of spike generation is proportional to the pixel intensity.
Due to the limited hardware resources available, we crop
each image to include only 14×14 pixels around the center
for FPGA evaluation. The spike-train level direct feedback
alignment (ST-DFA) algorithm, which is proposed in Lee
et al. (2019) , is used to pre-train the multi-layer SNN. The
experimental results are shown in Table 4. Compared to the
baseline, the pre-trained multi-layer feedforward SNN with 16:1
compression ratio reduces the runtime and energy dissipation
by 14.92× and 11.76×, respectively, while the accuracy only
drops from 96.48 to 93.01%. As the Table 4 is shown, the
additional hardware cost for supporting time compression
increases moderately.

3.3.4. Performances of PTC-SNNs With

Reconfigurable Compression Ratio
We also design a time-compressed SNN (PTC-SNN) accelerator
supporting programmable ratio ranging from 2:1 to 16:1 and
evaluate it using the TI46 dataset in Table 5. The LUT and FF
utilizations of PTC-SNN are 7,4742 and 2,1391, respectively.
The overall hardware area overhead stays constant with the
programmable compression ratio, which is only 12.78% more
than that of the TC-SNN accelerator with a fixed 16:1
compression ratio. Here the hardware area is also evaluated
by Flop count + 2*LUT count. The runtime and accuracy of
the PTC-SNN are identical to those of the corresponding TC-
SNN running on the same (fixed) compression ratio. The energy
overhead of the PTC-SNN is still near linearly scaled down by
the compression ratio albeit that it is somewhat greater than that
of the corresponding TC-SNN. And yet, the PT-SNN reduces the
energy dissipation and ATEL of the baseline by 6.59x and 16.53x,
respectively when running at 16:1 compression ratio.

4. DISCUSSION

SNNs can support a variety of rate and temporal spike codes
among which rate coding using Poisson spike trains has been
popular. However, in that case, the low-power advantage of SNNs
may be offset to certain extend by long latency during which
many spikes are processed for ensuring decision accuracy. This
work aims to boost the throughput and reduce energy dissipation
of SNN accelerators by temporal compression. We propose a
general compression technique that preserves both the spike
count and temporal characteristics of the original SNN with low
information loss. It transparently compresses duration of the
spike trains on top of an existing rate/temporal code to reduce
classification latency.

More specifically, the proposed temporal compression aims
to preserve the spike counts and temporal behaviors in the
neural dynamics, synaptic responses, and dynamics employed
in the given SNN such that no substantial alterations are
introduced by compression other than that the time-compressed
SNN just effectively operates on a faster time scale. However,
there are several challenges when we work toward achieving
the above goal. Firstly, we propose a new weighted form for
representing compressed spike trains, where multiple adjacent
binary spikes are compressed into a single weighted spike with
a weight value equal to the number of binary spikes combined,
allowing preservation of spike information even under very large
compression ratios. Furthermore, we proposed a new family of
input-output-weighted (IOW) spiking neural models which take
the input spike trains in the weighted form and produce the
output spike train in the same weighted form, where the multi-
bit weight value of each output spike reflects the amplitude of
the membrane potential as a multiple of the firing threshold.
Finally, we proposed a method to scale the time constant of SNN
dynamic to preserve the spike counts and temporal behaviors in
the neural dynamics.

In the experimental studies, we propose a general time
compression technique and two compression architectures,
namely TC-SNN and PTC-SNN, to significantly boost
the throughput and reduce energy dissipation of SNN
accelerators. Our experimental results show that the proposed
time compression architectures can support large time
compression ratios of up to 16×, delivering up to 15.93×,
13.88×, and 86.21× improvements in throughput, energy
dissipation, and a figure of merit (ATEL), respectively,
and be realized with modest additional hardware design
overhead on a Xilinx Zynq-7000 FPGA. Our future work will
explore the relationship between compression ratio and the
information loss. Based on the relationship between them,
we can further propose a method to tune the compression
ratio, automatically.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

CX and PL developed the theoretical approach for the proposed
time compression techniques and wrote the paper. CX and YL
implemented the FPGA spiking neural accelerators. CX and WZ
performed the simulation studies. CX performed this work at
the University of California, Santa Barbara while being a visiting
scholar from Xidian University.

REFERENCES

Anumula, J., Neil, D., Delbruck, T., and Liu, S.-C. (2018). Feature

representations for neuromorphic audio spike streams. Front. Neurosci.

12:23. doi: 10.3389/fnins.2018.00023

Bohte, S. M. (2012). “Efficient spike-coding with multiplicative adaptation in a

spike response model,” in Advances in Neural Information Processing Systems

(Lake Tahoe, NV), 1835–1843.

Carrillo, S., Harkin, J., McDaid, L. J., Morgan, F., Pande, S., Cawley, S., et al. (2012).

Scalable hierarchical network-on-chip architecture for spiking neural network

Frontiers in Neuroscience | www.frontiersin.org 15 February 2020 | Volume 14 | Article 10430

https://doi.org/10.3389/fnins.2018.00023
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. Time Compressed Spiking Neural Networks

hardware implementations. IEEE Trans. Parallel Distrib. Syst. 24, 2451–2461.

doi: 10.1109/TPDS.2012.289

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., et al.

(2016). “The cityscapes dataset for semantic urban scene understanding,” in

Proceedings of the IEEE CVPR (Las Vegas, NV), 3213–3223.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H.,

et al. (2018). Loihi: a neuromorphic manycore processor with on-

chip learning. IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.1121

30359

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The

spinnaker project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.

2304638

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge: Cambridge University Press.

Izhikevich, E. M. (2002). Resonance and selective communication via bursts

in neurons having subthreshold oscillations. Biosystems 67, 95–102.

doi: 10.1016/S0303-2647(02)00067-9

Kayser, C., Montemurro, M. A., Logothetis, N. K., and Panzeri, S. (2009).

Spike-phase coding boosts and stabilizes information carried by spatial and

temporal spike patterns. Neuron 61, 597–608. doi: 10.1016/j.neuron.2009.

01.008

Kim, J., Kim, H., Huh, S., Lee, J., and Choi, K. (2018). Deep neural

networks with weighted spikes. Neurocomputing 311, 373–386.

doi: 10.1016/j.neucom.2018.05.087

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Lee, J., Zhang, R., and Li, P. (2019). Spike-train level direct feedback alignment:

sidestepping backpropagation for on-chip training of spiking neural nets.

Front. Neurosci. 14:143. doi: 10.3389/fnins.2020.00143

Liberman, M., Amsler, R., Church, K., Fox, E., Hafner, C., Klavans, J., et al. (1991).

TI 46-word LDC93S9.

Lyon, R. (1982). “A computational model of filtering, detection, and compression

in the cochlea,” in ICASSP’82. IEEE ICASSP, Vol. 7 (Paris: IEEE), 1282–1285.

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing

without stable states: a new framework for neural computation based on

perturbations. Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760

407955

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

O’Connor, P., Gavves, E., and Welling, M. (2017). Temporally efficient deep

learning with spikes. arXiv preprint arXiv:1706.04159.

Park, S., Kim, S., Choe, H., and Yoon, S. (2019). “Fast and efficient information

transmission with burst spikes in deep spiking neural networks,” in 2019 56th

ACM/IEEE DAC (Las Vegas, NV: IEEE), 1–6.

Ponulak, F., and Kasinski, A. (2011). Introduction to spiking neural networks:

information processing, learning and applications. Acta Neurobiol. Exp. 71,

409–433.

Schrauwen, B., and Van Campenhout, J. (2003). “Bsa, a fast and accurate spike

train encoding scheme,” in Proceedings of IJCNN, 2003 (Portland, OR), Vol. 4,

2825–2830.

Thorpe, S., Delorme, A., and Van Rullen, R. (2001). Spike-based strategies for rapid

processing. Neural Netw. 14, 715–725. doi: 10.1016/S0893-6080(01)00083-1

Thorpe, S. J. (1990). “Spike arrival times: a highly efficient coding scheme for

neural networks,” in Parallel Processing in Neural Systems and Computers, eds

R. Eckmiller, G. Hartmann, and G. Hauske (Amsterdam: Elsevier), 91–94.

Trappenberg, T. (2009). Fundamentals of Computational Neuroscience. Oxford:

OUP.

Wang, Q., Li, Y., and Li, P. (2016). “Liquid state machine based pattern recognition

on fpga with firing-activity dependent power gating and approximate

computing,” in 2016 IEEE International Symposium on Circuits and Systems

(ISCAS) (Montreal, QC: IEEE), 361–364.

Zambrano, D., and Bohte, S. M. (2016). Fast and efficient asynchronous

neural computation with adapting spiking neural networks. arXiv preprint

arXiv:1609.02053.

Zambrano, D., Nusselder, R., Scholte, H. S., and Bohte, S. (2017). Efficient

computation in adaptive artificial spiking neural networks. arXiv [Preprint].

arXiv:1710.04838.

Zambrano, D., Nusselder, R., Scholte, H. S., and Bohté, S. M. (2019). Sparse

computation in adaptive spiking neural networks. Front. Neurosci. 12:987.

doi: 10.3389/fnins.2018.00987

Zhang, Y., Li, P., Jin, Y., and Choe, Y. (2015). A digital liquid state

machine with biologically inspired learning and its application to speech

recognition. IEEE Trans. Neural Netw. Learn. Syst. 26, 2635–2649.

doi: 10.1109/TNNLS.2015.2388544

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Xu, Zhang, Liu and Li. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 February 2020 | Volume 14 | Article 10431

https://doi.org/10.1109/TPDS.2012.289
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1016/S0303-2647(02)00067-9
https://doi.org/10.1016/j.neuron.2009.01.008
https://doi.org/10.1016/j.neucom.2018.05.087
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2020.00143
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1126/science.1254642
https://doi.org/10.1016/S0893-6080(01)00083-1
https://doi.org/10.3389/fnins.2018.00987
https://doi.org/10.1109/TNNLS.2015.2388544
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 15 July 2021

doi: 10.3389/fnins.2021.694402

Frontiers in Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 694402

Edited by:

Charlotte Frenkel,

ETH Zurich, Switzerland

Reviewed by:

Amirreza Yousefzadeh,

Imec, Netherlands

Hesham Mostafa,

Intel, United States

*Correspondence:

Abinand Nallathambi

ee16s032@ee.iitm.ac.in

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 13 April 2021

Accepted: 07 June 2021

Published: 15 July 2021

Citation:

Nallathambi A, Sen S, Raghunathan A

and Chandrachoodan N (2021)

Probabilistic Spike Propagation for

Efficient Hardware Implementation of

Spiking Neural Networks.

Front. Neurosci. 15:694402.

doi: 10.3389/fnins.2021.694402

Probabilistic Spike Propagation for
Efficient Hardware Implementation of
Spiking Neural Networks

Abinand Nallathambi 1*, Sanchari Sen 2, Anand Raghunathan 1,2 and

Nitin Chandrachoodan 1

1Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India, 2 School of Electrical and

Computer Engineering, Purdue University, West Lafayette, IN, United States

Spiking neural networks (SNNs) have gained considerable attention in recent years due

to their ability to model temporal event streams, be trained using unsupervised learning

rules, and be realized on low-power event-driven hardware. Notwithstanding the intrinsic

desirable attributes of SNNs, there is a need to further optimize their computational

efficiency to enable their deployment in highly resource-constrained systems. The

complexity of evaluating an SNN is strongly correlated to the spiking activity in the

network, and can be measured in terms of a fundamental unit of computation, viz. spike

propagation along a synapse from a single source neuron to a single target neuron. We

propose probabilistic spike propagation, an approach to optimize rate-coded SNNs by

interpreting synaptic weights as probabilities, and utilizing these probabilities to regulate

spike propagation. The approach results in 2.4–3.69× reduction in spikes propagated,

leading to reduced time and energy consumption. We propose Probabilistic Spiking

Neural Network Application Processor (P-SNNAP), a specialized SNN accelerator with

support for probabilistic spike propagation. Our evaluations across a suite of benchmark

SNNs demonstrate that probabilistic spike propagation results in 1.39–2× energy

reduction with simultaneous speedups of 1.16–1.62× compared to the traditional model

of SNN evaluation.

Keywords: spiking neural networks, hardware acceleration, energy efficiency, memory, probabilistic spike

propagation

1. INTRODUCTION

Spiking Neural Networks (SNNs), often referred to as the third generation of neural networks
(Maass, 1997), are attracting a lot of attention due to several desirable characteristics, including
their ability to model temporal event streams, the possibility of training them using unsupervised,
bio-inspired learning rules such as Spike Timing Dependent Plasticity (STDP) (Bi and Poo, 1998),
and the emergence of low-power SNN hardware platforms such as IBMTrueNorth (Akopyan et al.,
2015) and Intel Loihi (Davies et al., 2018).

SNNs represent information as discrete spike events and follow an event-driven model of
computation, where the work done (and hence, the time or energy consumed) is proportional
to the number of spike events. Further, they do not require multiplication to be performed when
processing a spike, offering the prospect of reduced hardware complexity compared to conventional
Artificial Neural Networks (ANNs). Due to these differences, SNNs are not well-suited to

32

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.694402
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.694402&domain=pdf&date_stamp=2021-07-15
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ee16s032@ee.iitm.ac.in
https://doi.org/10.3389/fnins.2021.694402
https://www.frontiersin.org/articles/10.3389/fnins.2021.694402/full

Nallathambi et al. Probabilistic Spike Propagation

commodity hardware platforms like graphics processing units
(GPUs). Further, in contrast to hardware accelerators for ANNs,
which usually focus on exploiting regular data parallelism,
hardware architectures for spiking networks (e.g., Furber et al.,
2014; Neil and Liu, 2014; Akopyan et al., 2015; Roy et al.,
2017) focus more on features that enable efficient event-
driven computation.

Despite being event driven, spiking networks still require
a large number of memory accesses (Neil and Liu, 2014).
When a neuron spikes, it is first necessary to identify its
fanout neurons, i.e., the connectivity information needs to be
fetched along with the weights of the corresponding synapses.
Finally, the membrane potentials of the fanout neurons impacted
by the spike are fetched and updated. Recent data (Pedram
et al., 2017) indicates that fetching data from memory is much
more expensive than arithmetic computations. Consequently,
developing techniques for reducing the number of memory
accesses in SNNs is critical for improving their energy-efficiency.

1.1. Probabilistic Spike Propagation
In this paper, we present a probabilistic method of spike
propagation that can significantly reduce the number of memory
accesses required for the evaluation of a rate-coded spiking neural
network, thus saving both run-time and energy. We realize the
proposed probabilistic spike propagation mechanism through
probabilistic synapses. Conventionally, the weight of a synapse
connecting two neurons in an SNN specifies the amount by which
the membrane potential of the postsynaptic neuron is increased
whenever the presynaptic neuron spikes. Alternatively, inspired
by the ideas in Seung (2003) and Kasabov (2010), we could view
this weight as a measure of how likely it is that a spike will
propagate across the synapse. A probabilistic synapse doesn’t
propagate all spikes generated by its presynaptic neuron to the
postsynaptic neuron. Instead, whenever a neuron spikes, only
a subset of its outgoing synapses with weights above a certain
randomly-chosen threshold propagate the spike. To minimize
the effect of this randomness on a network’s accuracy while
maximizing the time and energy savings, we develop techniques
that generate the random thresholds and perform the synaptic
updates in an optimized manner. To summarize, the specific
contributions of this work are as follows:

• We propose probabilistic spike propagation, an approach
to reduce the cost of spike propagation in rate-coded
SNNs. Probabilistic spike propagation reduces the number
of memory accesses and consequently reduces the time and
energy consumed in evaluating a spiking network.
• We propose techniques that allow probabilistic spike

propagation to be applied to existing SNNs and methods
to optimize the tradeoff between energy and accuracy
degradation.
• We evaluate the approach on a benchmark suite of six SNNs

across five image classification datasets and characterize its
performance. We also develop P-SNNAP, an SNN accelerator
enhanced to support probabilistic spike propagation, on
which we evaluate the reductions in energy consumption
and run-time.

The paper is organized as follows. First, we present a brief
overview of SNN preliminaries in section 2, and motivate the
need to optimize spike propagation. In section 3, we discuss the
key concepts of probabilistic spike propagation and in section
4, we present the P-SNNAP hardware architecture. We present
the results of evaluating the proposed approach in section 6. In
section 7, we present related efforts and highlight the unique
aspects of our work. Finally, section 8 concludes the paper.

2. SNN PRELIMINARIES

The evaluation of a spiking neural network involves three phases,
namely (a) spike injection, (b) spike generation, and (c) spike
propagation, as illustrated in Figure 1. Although the illustration
is for the case of a simple fully connected network here, the
algorithm remains unchanged for arbitrary connectivity patterns.
As shown in the figure, the connection between different neurons
is referred to as a synapse and the neurons on either side of the
connection are referred to as the presynaptic and postsynaptic
neuron, respectively.

A more detailed description of SNN evaluation is presented
in Algorithm 1. The first phase, spike injection, involves
introducing input spikes that initiate activity in the network.
These input spikes can be directly obtained from event-
based sensors, or can be generated from static inputs through
conversion methods. There have been numerous efforts in
developing neuromorphic or spiking sensors (Vanarse et al.,
2016) and spike based benchmark datasets (Orchard et al., 2015;
Hu et al., 2016; Rueckauer and Delbruck, 2016). In many of these
efforts, the inputs are presented as Poisson spike trains (Diehl
and Cook, 2015) or as analog stimuli directly applied to the
membrane potentials of input layer neurons (Rueckauer et al.,
2017).

The second phase, spike generation, is the process of
evaluating each neuron and, based on a mathematical model of
the neuron, determining whether it produces a spike. Neuron
models with varying levels of bio-fidelity have been proposed.
In this work, we use the Integrate-and-Fire (IF) neuron model
for illustration, but the approach is largely independent of
the underlying neuron model. The spike generation step, as
described inAlgorithm 1 (lines 8–15), typically involves fetching
the state variables of the neuron model from memory and
performing some arithmetic operations. In the case of the IF
model, the membrane potential vm is fetched and the bias is
added to it (line 10). Next, it is checked for firing by comparing
it with the threshold voltage vth (line 11). In case of firing,
the neuron ID is pushed into a spike queue (line 12), and the
membrane potential is reset and written back to thememory (line
13). If every neuron in the network is evaluated at every timestep,
the above process will involve at least one memory access
per neuron per timestep. Thus, the number of computations
and memory accesses performed during spike generation are
proportional to the number of neurons.

The final phase, spike propagation, as described in
Algorithm 1 (lines 16–23), is performed in the event of a
neuron spiking. For every spike in the queue, the postsynaptic

Frontiers in Neuroscience | www.frontiersin.org 2 July 2021 | Volume 15 | Article 69440233

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

FIGURE 1 | A generic structure of spiking neural networks.

Algorithm 1: SNN Evaluation Scheme

parameters: number of timesteps→ T
number of layers→ N

1 for t← 0 to T − 1 do
2 spikes = get_input_spikes(t) ⊲ injection
3 for layer ∈ net.layers do
4 propagate(layer, spikes) ⊲ propagation
5 spikes = eval_neurons(layer) ⊲ generation

6 end

7 end

8 Procedure eval_neurons
input : Layer to be evaluated L
output : Spikes generated S

9 for neuron ∈ L.neurons do
10 neuron.vm += b
11 if neuron.vm > vth then
12 push(S, n)
13 neuron.vm −= vth
14 end

15 end

16 Procedure propagate
input : Layer to be evaluated L

Spikes to be propagated S
17 for spike ∈ S do
18 pre = spike.presynaptic_neuron_ID
19 target_neurons = postsynaptic(L, pre)
20 for post ∈ target_neurons do
21 post.vm += weight(pre, post)
22 end

23 end

neurons connected to the spiking neuron are identified (line 19)
and all such neurons are updated with the respective synaptic
weights (line 21). This process is referred to as a synaptic update.
It involves fetching the synaptic weight and the state of the
postsynaptic neuron from memory, updating the state with

the weight, and writing the neuron state back to memory. This
amounts to at least two memory reads, one arithmetic operation
and one memory write per synapse per spike per timestep. The
total number of computations and memory accesses for the
propagation step is thus proportional to the amount of spiking
activity (number of spikes) and the number of synapses in the
network. Overall, as the number of synapses in a network far
outnumber neurons, the number of memory accesses associated
with the spike propagation step exceeds that of the other two
phases and it accounts for the dominant share of memory
accesses during SNN valuation.

In Figure 2, we show the fraction of energy consumed
by memory and compute operations during SNN
evaluation on three different hardware platforms, viz. IBM
TrueNorth (Akopyan et al., 2015), SNNAP (Sen et al., 2017), and
PEASE (Roy et al., 2017). It is observed that memory accounts
for the predominant portion of energy consumption in each of
these hardware platforms. Thus, techniques for improving the
energy efficiency of SNNs should focus on reducing memory
energy. Further, as discussed above, spike propagation requires
more memory accesses than the other phases in SNN evaluation.
Hence, to improve energy efficiency of SNN implementations, it
is imperative to develop better spike propagation techniques that
reduce memory accesses.

3. PROBABILISTIC SPIKE PROPAGATION

We propose a probabilistic approach to spike propagation
for reducing the number of memory accesses during SNN
evaluation, and consequently the total energy consumed. It can
be applied to existing spiking networks while causing minimal-
to-zero degradation in recognition accuracy. This section first
outlines the key concepts involved and subsequently describes the
proposed approach in detail.

3.1. Key Concepts
Consider two neurons (labeled i and j, respectively) in an SNN,
that are connected by a synapse. Neuron i is called presynaptic

Frontiers in Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 69440234

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

FIGURE 2 | Ratio of memory to compute energy on PEASE, TrueNorth, and SNNAP.

and neuron j postsynaptic if the output of i is used to drive the
membrane potential of j. The magnitude of the weight associated
with the synapse is wij, which we will assume (without loss of
generality) to be a real-valued number ∈ [0, 1]. This is a safe
assumption since the effects of the weights are evaluated relative
to a threshold value, and so it is possible to normalize all weights
to this range of magnitudes. Note that negative weights would
correspond to inhibitory synapses, which are modeled in exactly
the same way as excitatory synapses, and only the magnitude of
the weight matters for the discussion that follows.

The weight associated with the synaptic connection as well as
the spiking activity of neuron i dictate the amount of impact it
has on neuron j. We quantify this impact as the total potentiation
of a postsynaptic neuron due to a presynaptic neuron. Due
to the temporal nature of spiking neural networks, the total
potentiation should be measured after incorporating the spikes
from neuron i across all timesteps. Thus, considering a spiking
pattern of Si for neuron i and a synaptic weight of wij, the
total potentiation, Mij, of postsynaptic neuron j by neuron i at
time t is

Md
ij(t) = Ci(t)× wij (1)

where Ci(t) is the total number of times neuron i has spiked
until time t. We term this process of spike propagation as
deterministic, and denote it using the superscript d. It should
be noted here that Md

ij(t) is only the impact neuron i has on the

membrane potential of neuron j, while the spiking behavior of
neuron j itself depends on the neuron model and its potentiation
by other presynaptic neurons.

Instead of potentiating neuron j by wij every time neuron i
spikes, if we apply a weight of ŵij for a random subset of the
spikes, the total potentiation becomes

M
p
ij(t) = Ĉi(t)× ŵij (2)

Ŝi(t) is the random subset of spikes from neuron i that were
propagated to neuron j and Ĉi(t) is the number of spikes in Ŝi(t)
till time t. In other words, we propagate a spike from neuron i to
neuron j with a probability of pij, where

pij = lim
t→∞

Ĉi(t)

Ci(t)
(3)

We term this process of spike propagation as probabilistic, and
denote it by the superscript p.

FIGURE 3 | Illustration: Neurons 1 and 2 sending spikes to 3.

We can define the average potentiation of neuron j by neuron
i as follows:

Mij(t) =
Mij(t)

Ci(t)
(4)

It should be noted that the average potentiation is defined when
there is at least one spike from neuron i. For the deterministic
approach, the average potentiation is equal to the synaptic
weight itself.

Md
ij(t) = wij (5)

On the other hand, for the probabilistic approach corresponding
to Equation (3), the average potentiation is a limit.

lim
t→∞

M
p
ij(t) = pij × ŵij (6)

We hypothesize that, it is sufficient that the average potentiation
for probabilistic spike propagation tends toward the average
potentiation for the deterministic case, for the network to
achieve similar levels of accuracy with both the probabilistic
and deterministic approaches. This can be achieved by carefully
choosing values for pij and ŵijin the probabilistic approach. One
interesting choice is to set pij = wij and ŵij = 1, which is simply
an alternative interpretation of each weight as the probability of
spike propagation. We highlight the effects of such a probabilistic
approach through an example below.

Consider the connectivity pattern illustrated in Figure 3.
Neurons 1 and 2 are spiking sources, which are connected to
neuron 3 through synapses. The behavior of this simple network

Frontiers in Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 69440235

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

FIGURE 4 | Behavior of the network in Figure 3: (A) spike patterns of neurons 1 and 2; (B) membrane potential of neuron 3; (C) consequent spike pattern of neuron

3; (D,E) average potentiation of neuron 3, by neurons 1 and 2, respectively, with deterministic and probabilistic (pij = wij ;ŵij = 1) spike propagation.

with the deterministic and probabilistic spike propagation
approaches is visualized in Figure 4.

The spike patterns of neurons 1 and 2 are shown in Figure 4A.
The effects of these spikes on the instantaneous membrane
potential of neuron 3 for both the deterministic and probabilistic
approaches are shown in Figure 4B. The resulting output spike
pattern S3 for neuron 3 is shown in Figure 4C. As we can
see, the probabilistic spike propagation causes the behavior of
neuron 3 to slightly differ from that in the deterministic case,

but the average potentiations M13(t) and M23(t), which are in
shown in Figures 4D,E for the two synapses, respectively show
an interesting convergence.

Overall, when the spikes are propagated in a probabilistic
fashion, the instantaneous membrane potential of neuron 3 may
differ from that under deterministic propagation, but as more
and more spikes are generated by the presynaptic neuron, the
average potentiation for the probabilistic case converges to the
deterministic one, which is essentially the synaptic weight. We
introduced randomness into the process of spike propagation in a
network that is otherwise deterministic, and allowed the temporal
nature of the network to average it out.

The crux of our hypothesis is that even though the introduced
randomness alters the instantaneous state of the network, the
variations will average out over time and result in a network-level

equivalence with the deterministic evaluation scheme. In the
following subsections, we describe how to take advantage of this
randomness to develop efficient implementations of SNNs.

3.2. Accelerating Convergence
From Figure 4, we can infer that, given enough spikes, the
average probabilistic potentiation converges to the average
deterministic potentiation, which is the synaptic weight.

lim
Ci→∞

M
p
ij(t)→ wij (7)

Clearly, the number of spikes required for convergence is an
important issue to address. For better convergence, we would
need to process more spikes. The number of spikes is directly
related to the number of timesteps for which the network is
evaluated. Alternatively, probabilistic spike propagation can be
viewed as Monte Carlo sampling for approximating the value
of wij. The number of Bernoulli trials required, which in this
case is the number of spikes, for an approximation with low
relative error is inversely proportional to the probability of
success (Asmussen and Glynn, 2007).

As most weights in neural networks are observed to be small
in value, the probabilities of propagation is going to be small

Frontiers in Neuroscience | www.frontiersin.org 5 July 2021 | Volume 15 | Article 69440236

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

FIGURE 5 | Ratio of maximum to median outgoing weight.

for most synapses. And thus, the number of spikes required for
convergence of network behavior is going to be large, which
directly means that the probabilistic approach will require that
the networks be run for more timesteps. Thus, it is desirable
to drive up the probabilities of propagation, which will reduce
the required number of spikes and consequently bring down the
number of timesteps required to converge to the same levels of
network performance.

One solution is to let pij =
wij

wmax
i

and ŵij = wmax
i , where

wmax
i is the maximum weight of all the outgoing synapses of

neuron i. For most of the neurons, wmax
i is lower than 1, which

increases the probability of propagation.
However, the number of outgoing synapses per neuron in

modern networks could be in the thousands and, wmax
i , in

most cases, tends to be an outlier in the weight distribution.
In Figure 5, we see the ratio of wmax

i to the median outgoing

weight wmed
i for all the neurons in a layer of a fully connected

network trained on the MNIST classification task. We observe
that wmax

i is roughly around 5× wmed
i for most neurons, which

means half the outgoing synapses of these neurons in that layer
will have spike propagation probabilities of <0.2, which will
require a higher number of timesteps for the convergence of the
probabilistic approach.

In order to overcome this, we group outgoing synapses of a
neuron into synaptic clusters. Synaptic clusters are simply spatial
groupings of the outgoing synapses from a neuron. For each
synapse, we use the maximumweight of its corresponding cluster

as the normalizer, as pij =
wij

wmax
ib

and ŵij = wmax
ib

, where b is the

cluster to which the synapse between neurons i and j belongs.
This prevents the synaptic weights from getting dominated by
outlier maximum weights, increasing their spike propagation
probabilities and accelerating convergence.

Figure 6 presents histograms for spike propagation
probabilities across synapses in the same layer as Figure 5.
B denotes the number of synaptic clusters in Figure 6. When the

FIGURE 6 | Effect of clustering on probabilities of propagation.

outgoing synapses of each neuron are grouped into eight clusters,
we see that the histogram is skewed toward higher probabilities,
unlike when there is no clustering (B = 1).

It is important to note that, for a given number of
timesteps, the probability of spike propagation controls a trade-
off relationship between cost and performance. The lower the
probability, the lower the number of synaptic updates and poorer
network performance. The higher the probability, the higher the
number of synaptic updates and better network performance.We
explore this trade-off in greater detail in section 6.

3.3. Realizing the Probabilistic Synapse
A probabilistic synapse can be realized by generating a uniformly
distributed random number rb ∈ [0,wmax

ib
] and comparing with

wij. The probability of success of this Bernoulli trial is

rb ∈ [0,wmax
ib

] −→ P(wij > rb) =
wij

wmax
ib

(8)

which is equal to the desired probability of propagation presented
in the previous discussion. Hence, the spike can be propagated on
every synapse that has a weight wij greater than rb.

While this implements the probabilistic synapse, it requires
fetching of the weight for each synapse from memory prior
to the decision of propagation. This can be cheaper than
the deterministic approach, as for the synapses that we don’t
propagate the spikes on, the post-synaptic neurons need not be
updated. It should be noted that this random skipping of synapses
can cause pipeline inefficiencies in a hardware implementation.
In the probabilistic spike propagation process described in
Algorithm 2, we overcome this limitation and show how to
reduce the memory accesses further. It involves a preprocessing
step of organizing synapses into multiple synaptic clusters and
sorting the synapses in each cluster by their weights. Along with
storing the weights of all the outgoing synapses in sorted order,
we also store their indices in rank order (line 5).

Frontiers in Neuroscience | www.frontiersin.org 6 July 2021 | Volume 15 | Article 69440237

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

Algorithm 2: Implementation of Probabilistic Spike
Prop.

input : neuron spiked−→ i
parameter: Layer being evaluated−→ L

number of synaptic clusters−→ B
1 for b← 1 to B do

2 number of outgoing synapses−→ Nmax
ib

3 rb = rand(0,wmax
ib

)

4 for k← 1 to Nmax
ib

do

5 h = ranked_indices[i, k] ⊲ Synapse of rank k
6 j = post_index(i, h)
7 if wij > rb then
8 L.neurons[j].vm += wmax

ib

9 else

10 break

11 end

12 end

13 end

Consider that neuron i has spiked. Assume that the weights
of the outgoing synapses of neuron i in synaptic cluster b are
ranked from 1 to Nmax

ib
(line 2). As described in Equation (8), for

each synaptic cluster, we generate one random number rb (line
3). Since the weights are stored in sorted order, every synaptic
update requires reading the index (line 5) and weight (line 7), but
as soon as the comparison fails for one synapse, all the remaining
synapses in the cluster can be skipped (line 10). The index j of
the postsynaptic neuron can be determined with the indices of
the presynaptic neuron and the synapse (line 6), based on the
underlying connectivity pattern.

3.3.1. Optimization: Determining the Termination

Point
We define the termination point of the spike propagation from
neuron i, tp ∈ [1,Nmax

ib
], as the number of synapses withwij > rb.

It is the rank of the smallest weight in the synaptic cluster that is
greater than rb. In the straightforward method of determining tp
described above, note that we need both the actual weight value
and the index of the target neuron, potentially requiring twice the
number of memory accesses.

An alternate approach is to use a cumulative histogram of the
outgoing weights of each neuron in each cluster, indicated by Cib .
The cumulative histogram is a discrete function that gives the
number of values below the input i.e., Cib (rb) gives the number of
outgoing synapses of neuron i in synaptic cluster b with weights
lesser than rb. Therefore, the termination point tp is essentially
Nmax
ib
− Cib (rb). Thus, by generating and storing a cumulative

histogram of the form shown in Figure 7 in a preprocessing step,
as shown in Algorithm 3, we can determine tp through a single
memory access (line 4). Consequently, we can perform synaptic
updates without fetching the synaptic weights.

Another way to look at this is as a way of discretizing the space
of random number generation for rb. For discrete values of rb,

FIGURE 7 | Cumulative histogram of a neuron.

Algorithm 3: Implementation of Probabilistic Spike
Prop.: tp using Cumulative Histogram

input : neuron spiked−→ i
parameter: Layer being evaluated−→ L

number of synaptic clusters−→ B
1 for b← 1 to B do

2 number of outgoing synapses−→ Nmax
ib

3 rb = rand(0,wmax
ib

)

4 tp = Nmax
ib
− Cib (rb) ⊲ Termination point from

cumulative histogram
5 for k← 1 to tp do
6 h = ranked_indices[i, k] ⊲ Synapse of rank k
7 j = post_index(i, h)
8 L.neurons[j].vm += wmax

ib

9 end

10 end

we can store the termination point tp directly and sample from
these points. The number of discrete points correspond to the
number of bins of the cumulative histogram and is a parameter
of concern. It controls the trade-off between memory overhead
and performance. The higher the number of bins, the better the
fidelity of the termination point. The lower the resolution, the
lower the memory overhead. In this work, we have implemented
this approach in the hardware architecture and have studied
its implications on accuracy and cost. The trade-off between
accuracy and memory overhead has been studied in section 6.

In summary, the proposed probabilistic spike propagation
approach reduces the number of synaptic updates,
and consequently the number of memory accesses in
SNNs by introducing randomness into the process of
spike propagation.

Frontiers in Neuroscience | www.frontiersin.org 7 July 2021 | Volume 15 | Article 69440238

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

FIGURE 8 | P-SNNAP accelerator architecture.

4. HARDWARE

To evaluate the system-level impact of probabilistic spike
propagation, we develop P-SNNAP, an SNN accelerator based
on SNNAP (Sen et al., 2017). The overall architecture is shown
in Figure 8 and the individual components are described in
detail below.

4.1. Overview
The P-SNNAP architecture consists of three different modules—
the Spike Neural Processing Element (SNPE), the Eval unit
and the global controller. It also contains three types of on-
chip memories—the spike memory, the weight memory, and the
state memory, for storing spikes, weights, and neuronal state
variables, respectively.

In a deterministic SNN evaluation, as performed in SNNAP,
the neurons in every layer are evaluated at each timestep before
moving on to the next timestep. However, it involves loading
the neuronal state variables and weights for each layer into
the on-chip memory repeatedly at every timestep. To avoid
these repeated off-chip memory accesses and increase the reuse
of loaded weight values, we evaluate one layer for the total
number of timesteps before moving on to the next layer. The
spikes generated at each timestep during the evaluation of one
layer are stored in the spike memory and subsequently fetched
during the evaluation of the next layer. Since a large number

of modern deep networks are strictly feed-forward, this layer-
wise evaluation scheme can be applied to reduce the required
buffering. Specifically, all networks evaluated as part of this work
are feed-forward networks. We note that this optimization is
orthogonal to our proposal and is applied to both deterministic
and probabilistic SNN evaluation.

4.1.1. Eval Unit
The Eval unit, similar to the Leak-and-Spike unit in SNNAP,
is the module that performs neuron evaluation. It fetches the
membrane potentials from the state memory, increments it
by the bias value and compares it with the threshold. If the
membrane potential exceeds the threshold, a spike is generated
and communicated to the controller. The updated membrane
potentials are written back to the state memory.

4.1.2. Controller
The Controller orchestrates the functioning of the accelerator. It
has two phases of operation—the first phase controls the SNPEs
and the second phase controls the Eval unit. For each timestep,
the controller goes through both phases. In the first phase, the
controller fetches the spikes generated by the previous layer
from the spike memory and sends them to the SNPEs. Once all
the spikes are sent and the SNPEs finish their operations, the
controller moves on to the second phase, in which the controller
receives spikes from the Eval unit as it evaluates all the neurons in

Frontiers in Neuroscience | www.frontiersin.org 8 July 2021 | Volume 15 | Article 69440239

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

FIGURE 9 | Timing diagrams illustrating the need for asynchronous spike serving for the probabilistic spike propagation. (A) Synchronous SNPE-deterministic spike

propagation, (B) Synchronous SNPE-probabilistic spike propagation, (C) Asynchronous SNPE-probabilistic spike propagation.

the layer and writes the spikes to the spike memory. Once all the
neurons of the current layer are evaluated, the current timestep is
completed and the controller moves on to the next timestep for
the layer.

4.1.3. SNPEs
Spike propagation is realized by an array of Spike Neural
Processing Elements (SNPEs). The propagation along different
outgoing synapses of neurons are parallelized and balanced
across the 16 lanes of the SNPE array. Each lane has an SNPE
coupled with two blocks of on-chip memory, one each for
membrane potentials and weights. When a layer is evaluated,
the controller fetches the spikes from the previous layer and
sends them to the SNPEs. On receiving a spike, an SNPE uses
the index of the spiking neuron to iterate through its outgoing
synpases. For each synapse, the SNPE calculates the index
of the post-synaptic neuron. This calculation depends on the
connectivity pattern of the layer being evaluated. Next, for each
post-synaptic neuron, its membrane potential and the weight of
the corresponding synapse are fetched. The membrane potential
is updated and written back.

4.1.3.1. Mapping Synaptic Clusters to Lanes
Both the lanes of SNPEs in the architecture and the synaptic
clusters in the probabilistic approach group outgoing synapses
of neurons. Despite the similarity, the grouping is done with
different goals. While deciding the number of lanes, the primary
concerns are inference speed and the required logic area and
size of the on-chip memories, at the hardware level. On the
other hand, while deciding the number of synaptic clusters, the
concerns are computational effort and accuracy.

When the number of synaptic clusters and lanes are chosen
to be equal, a simple direct mapping is possible—the outer loop
in Algorithm 3 is unrolled completely and each SNPE processes
one cluster. It is also possible for the number of clusters and lanes
to be different. When the number of synaptic clusters is less than
the number of lanes, multiple lanes operate on a single synaptic
cluster. When the number of synaptic clusters are more than the
number of lanes, each lane will have to process more than one
cluster, i.e., the outer loop in Algorithm 3 is unrolled partially
and each SNPE will process multiple clusters.

The weight memory in each SNPE lane stores all the
information required to perform probabilistic spike propagation,
including the discretized cumulative histograms for the

corresponding mapped synaptic clusters, the sorted synaptic
indices and the maximum weight values.

4.1.3.2. Asynchronous Spike Processing
In the deterministic propagation of spikes, since the outgoing
synapses of the spiked neuron are distributed equally among the
lanes, each lane ends up performing an equal number of synaptic
updates, which means that all the SNPEs take an equal amount
of time, as shown in Figure 9A. In contrast, in the probabilistic
propagation of spikes, even though the lanes have been assigned
an equal number of synapses, the termination point tp that each
lane comes up with is random and thus, they perform different
number of synaptic updates and end up taking unequal amounts
of time, as illustrated in Figure 9B. Before the controller can serve
the next spike, a number of SNPEs would have been idle. These
bubbles in the compute pattern in turn leads to under-utilization
of SNPEs and compute inefficiencies.

To address the aforementioned challenge, P-SNNAP
implements asynchronous spike processing. Each SNPE is
equipped with a queue as shown in Figure 8. The controller fills
up the queues with spikes. As soon as an SNPE has finished
propagating a spike, it can move on to the next spike from the
queue, as shown in Figure 9C. This allows the probabilistic
approach to be faster and have better compute utilization.

5. EXPERIMENTAL METHODOLOGY

In this section, we describe the experimental methodology and
benchmarks used to evaluate the proposed concepts.

5.1. Benchmarks
The benefits of the proposed approach have been studied across a
range of image classification networks trained onMNIST, SVHN,
CIFAR10, CIFAR100, and ImageNet datasets, as listed in Table 1.
The networks were trained as conventional analog (non-spiking)
deep networks using backpropagation and converted to spiking
networks using the Keras-based ANN-to-SNN conversion and
simulation framework developed by Rueckauer et al. (2017).

We refer to the deterministic evaluation of all synapses in a
network as the baseline (BSL) approach in section 6. On the other
hand, for the Probabilistic Spike Propagation (PSP) approach
in section 6, we empirically choose between deterministic or
probabilistic spike propagation at a layer-granularity for each
network in the benchmark suite, with the goal of iso-timesteps

Frontiers in Neuroscience | www.frontiersin.org 9 July 2021 | Volume 15 | Article 69440240

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

TABLE 1 | Benchmarks.

Network Neurons Synapses Params

MNIST-FCN 2 k 1.8 M 1.8 M

MNIST-CNN 112 k 51 M 786 k

SVHN-CNN 130 k 40.7 M 2.3 M

CIFAR10-AllConv 0.2 M 174.9 M 1.4 M

CIFAR100-VGG16 0.3 M 313 M 15 M

ImageNet-VGG16 15 M 15.5 B 138 M

operation. The probabilistic approach is beneficial only for layers
with large numbers of synaptic connections and high activity.
For instance, the CIFAR10-AllConv network in our benchmark
suite is the All-CNN-C network from Springenberg et al. (2014),
that was converted into a spiking network. In PSP, layers 2, 4,
5, and 7 of this network were evaluated with probabilistic spike
propagation, while the remaining layers were evaluated with
deterministic spike propagation. The savings achieved by this
configuration are reported in section 6.

5.2. P-SNNAP Details
The P-SNNAP engine was designed at the Register Transfer
Level and synthesized to the Nangate 15 nm technology using
Synopsys Design Compiler. CACTI (Thoziyoor et al., 2008) was
used to model the memory blocks. A simulator was implemented
in the dynamic, high level language Julia (Bezanson et al.,
2017) to simulate the proposed spike propagation methods
on P-SNNAP. The hardware simulator profiles the memory
accesses and number of cycles and uses the values obtained from
hardware synthesis and CACTI to estimate energy consumption.
The compute logic in P-SNNAP occupies a total area of
0.1 mm2. The compute power consumption is 28.6 mW. A
version of SNNAP without support for probabilistic spike
propagation was implemented to act as the baseline in our
comparisons. We observe that the probabilistic approach incurs
a compute logic area overhead of 12% and compute logic power
overhead of 23.5%. These hardware additions facilitate significant
improvements in time and energy consumed to evaluate SNNs, as
discussed in the following section.

In our implementation, the on-chipmemory in the accelerator
was sufficient to hold the largest layer in the suite of benchmarks.
The on-chip memory can be reduced if needed by employing the
layer-wise evaluation scheme at a finer granularity and dividing
layers into multiple blocks of neurons and evaluating one block
at a time. The memory overhead of the probabilistic approach is
due to the tables of cumulative histograms and these tables are
sparsely accessed at the rate of 1 read per lane per spike. Hence,
these cumulative histogram tables can reside in off-chip DRAM
and fetched on demand if on-chip memory is constrained.

6. RESULTS

In this section, we present results of our experiments that evaluate
the benefits of probabilistic spike propagation (PSP) in SNNs.

6.1. Accuracy vs. Synaptic Updates
In this subsection, we study the trade-off between classification
accuracy of a network and the number of synaptic updates
performed during its evaluation. Specifically, we record the
classification accuracy and number of synaptic updates (averaged
across all test inputs) at each timestep for both the deterministic
and probabilistic propagation schemes. The results for the
CIFAR10 all-convolutional network are presented in Figure 10.
We observe that, for both approaches, accuracy saturates with
increasing timesteps, and hence with increasing synaptic updates.
We also observe that the proposed probabilistic approach
requires significantly fewer synaptic updates than the baseline
to achieve roughly iso-accuracy. In Figure 11, we visualize the
accuracy degradation of PSP as a function of synaptic updates
(normalized to a fraction of the baseline) for the other networks
in the benchmark suite. The accuracy degradation and synaptic
update fraction were calculated with respect to the respective final
values of BSL. The final accuracy values of the BSL networks
are noted in the legend. PSP causes very minimal accuracy
degradations of <0.1% in the networks trained on the MNIST,
SVHN, CIFAR10, and CIFAR100 tasks. The ImageNet-VGG16
network was evaluated on subset of 1,000 images of the ImageNet
validation set and an accuracy degradation of 0.6% was observed.

6.2. Reductions in Synaptic Updates,
Energy, and Run-Time
The benefits of PSP in terms of the reduction in the number
of synaptic updates, total energy, and execution time on the P-
SNNAP architecture are presented in Figure 12. The BSL and
PSP cases were evaluated for iso-timesteps and the corresponding
number of synaptic updates, energy and execution time were
measured. We observe that PSP achieves 2.4–3.69× reduction
in average number of synaptic updates per inference across all
benchmarks. It should be noted that the reduction in synaptic
updates for a specific network depends on the distribution
of weights, which is why there is some variability across the
benchmark suite. These benefits translate to 1.39–2× reduction
in average total energy per inference. Clearly, the bulk of the
energy benefits can be attributed to the reduction in memory
accesses. As a result of the asynchronous spike serving, the
probabilistic spike propagation approach also achieves a 1.16–
1.62× speedup on the P-SNNAP architecture.

6.3. Number of Synaptic Clusters vs.
Accuracy
As discussed in section 3.2, increasing the number of synaptic
clusters causes the number of synapses affected by outlier weights
to go down, and their probabilities of propagation go up.

We observe that this improves the classification accuracy
for iso-synaptic updates. In the extreme case, with 1 synapse
per cluster, probabilistic propagation becomes identical to
the deterministic approach. This dictates that the trade-off
relationship between number of synaptic updates and accuracy
has a sweet spot on the possible number of synaptic clusters.

The all-convolutional CIFAR10 network has been studied to
explore this relationship in more detail. The network is evaluated

Frontiers in Neuroscience | www.frontiersin.org 10 July 2021 | Volume 15 | Article 69440241

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

FIGURE 10 | Accuracy vs. Synaptic updates: PSP performance in the CIFAR10-AllConv network.

with different number of synaptic clusters and the accuracy and
average number of synaptic updates per inference image are
measured. The contour plot in Figure 13 visualizes this surface.
Each line in the contour represents the accuracy degradation
for different number of synaptic clusters at a particular level of
computational effort, or, number of synaptic updates.We observe
that across our benchmark suite, the most favorable trade-off is
achieved when the number of synaptic clusters is set to 8 or 16.

It should be noted that this sweet spot is dependent, at a high
level, on the number of synapses per cluster, which is decided
by the size of the network. Ideally, the number of synaptic
clusters could be determined at a per-neuron granularity.
However, in this work, we have chosen it to be a network-level
hyperparameter to reduce the overall search space.

6.4. Resolution of the Cumulative
Histogram
The number of bins used in the cumulative histogram impacts
the fidelity of the random number rb, as it affects the value of the
termination point tp determined from the cumulative histogram.
Therefore, it directly affects the degradation in classification
accuracy. At the same time, reducing the number of bins reduces
the memory footprint. It should be noted that, the number of
accesses to determine tp is only one per lane per spike, irrelevant
of the number of bins used in the cumulative histogram.

We specifically study the effect of the number of bins on
the classification accuracy of CIFAR10 all-convolutional network.
Figure 14 plots the corresponding degradation in recognition

accuracy as a function of the number of bins. As expected, we
observe that the accuracy degradation reduces as the number of
bins is increased.

A cumulative histogram of 50 bins causes a memory overhead
of 23.7% in the CIFAR10-AllConv network. While this can be
considered to be significant, we note the following

• The memory overhead is much lower in larger models like
CIFAR100-VGG16 (10.9%) and ImageNet-VGG16 (1.1%).
• Although the memory footprint is larger, the total number of

memory accesses with PSP is substantially lower.

7. RELATED WORKS

The focus of this work is to improve the energy efficiency of
spiking neural networks by utilizing a probabilistic approach to
spike propagation for reducing the number of memory accesses.
It can be directly applied to pre-trained spiking networks,
without any structural or behavioral modifications. We now
relate this to previously proposed approaches for improving
SNN implementations and highlight the unique aspects of
our approach.

7.1. Custom Hardware Architectures
There have been several custom hardware accelerators
designed expressly to implement spiking networks (Neil
and Liu, 2014; Akopyan et al., 2015; Cheung et al., 2016;
Smaragdos et al., 2017; Davies et al., 2018). They employ

Frontiers in Neuroscience | www.frontiersin.org 11 July 2021 | Volume 15 | Article 69440242

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

FIGURE 11 | Accuracy degradation vs. synaptic updates for various benchmarks.

FIGURE 12 | Performance benefits of probabilistic spike propagation on P-SNNAP.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2021 | Volume 15 | Article 69440243

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

FIGURE 13 | Impact of varying the number of synaptic clusters for CIFAR10-AllConv.

FIGURE 14 | Optimal resolution of cumulative histogram for CIFAR10-AllConv.

Frontiers in Neuroscience | www.frontiersin.org 13 July 2021 | Volume 15 | Article 69440244

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

specialized compute and communication units to match the
computational and communication pattern in SNNs. Our
approach is complementary to such techniques, and can
potentially be realized on these hardware architectures with
some memory overheads.

7.2. Stochastic Techniques
Stochastic computation techniques apply randomness to the
process of computation itself (Shanbhag et al., 2010). Variants
of this approach have been applied to spiking neural networks
(Rosselló et al., 2012; Ahmed et al., 2016; Smithson et al., 2016).
These are mostly orthogonal to the ideas we discuss, since
a different (stochastic) hardware architecture for elementary
compute units can also be incorporated into our approach which
introduces randomness in the process of spike propagation.

7.3. Specialized Neuron Models and
Encoding Schemes
Ahmed et al. (2016) considered a probabilistic model of the
neuron itself, wherein the spike generation mechanism is
stochastic in nature but spike propagation is deterministic.
Bayesian spiking neurons (Deneve, 2008; Paulin and Van Schaik,
2014) apply probabilistic techniques for the neuron models to
perform Bayesian inference. The idea of interpreting synaptic
weights as probabilities of spike propagation has also been
explored in previous efforts (Seung, 2003; Kasabov, 2010; Neftci
et al., 2016). However, these works are primarily algorithmic
efforts focused on developing new functionality or new training
schemes and don’t leverage the randomness to improve energy
efficiency. We, on the other hand, demonstrate how randomness
can be introduced in the spike propagation of existing spiking
networks without changing their intrinsic spiking behavior,
while exploiting their time averaging capabilities. We further
develop techniques to leverage this randomness for improving
the energy efficiency of SNNs. Park et al. (2019) demonstrated
neural information coding schemes that improve the energy
efficiency of SNN evaluation. This is orthogonal to the direction
our work, which improves energy efficiency of existing rate
coding networks.

7.4. Pruning and Approximate Computing
Pruning is a technique used to reducememory footprint of neural
networks. Rathi et al. (2018) propose a pruning algorithm that
works in parallel with STDP SNN learning algorithm on shallow
networks. Kundu et al. (2021) propose a pruning algorithm
that compresses an ANN during training, converts the network
into an SNN, and then retrains the network using a surrogate-
gradient based supervised sparse learning. These works prune the
networks statically and result in a sparse network model. While
these sparse networks can be very lightweight, they lack memory
regularity. Developing hardware implementation for these sparse
and irregular networks is a niche of its own. Probabilistic spike
propagation can be viewed as a stochastic online pruning scheme.
Without requiring any retraining, or losing memory regularity,
probabilistic spike propagation is able to leverage temporality of
SNNs and dynamically reduce memory accesses.

Approximate computing is well-known in the area of signal
processing and neural network hardware, but has seen limited

application to spiking networks. One example is Sen et al. (2017),
where neurons are progressively trimmed from evaluation as
time progresses. Another is Krithivasan et al. (2019), where spike
propagations are reduced by dynamically bundling spike events
across time. Our approach is parallel to these, and could possibly
be combined to further reduce computations.

7.5. Emerging Technologies
Finally, there are approaches that rely on the use of new and
emerging technologies, such as spin-based computing (Sengupta
et al., 2016; Zhang et al., 2016; Srinivasan et al., 2017; Chen
et al., 2018; Sahu et al., 2018), photonics (De Lima et al., 2017;
Chakraborty et al., 2019; Xiang et al., 2019), andmemristors (Afifi
et al., 2009; Serrano-Gotarredona et al., 2013; Al-Shedivat
et al., 2015). These works develop hardware implementations
leveraging intrinsic characteristics of these technologies to exhibit
properties of spiking networks like leakage, stochasticity, or
learning. While this work is focused on the contemporary
generation of CMOS computing, our approaches should be
applicable to emerging computing technologies.

8. CONCLUSIONS

In this work, we introduce probabilistic spike propagation
as a new approach for improving the energy efficiency of
spiking neural networks. The proposed approach reduces the
number of memory accesses during the spike propagation
phase in SNNs by casting spike propagation as a probabilistic
process. We show that the temporal nature of SNNs allows the
network to regain any accuracy loss caused by this approach.
We successfully apply the technique on pre-trained spiking
networks without any network modifications or retraining and
demonstrate significant reductions in the number of synaptic
updates performed during evaluation whilemaintaining near iso-
accuracy performance levels. We further develop a new hardware
architecture, P-SNNAP, to realize probabilistic spike propagation
in hardware and show that the proposed approach achieves
considerable execution time and energy savings when compared
to deterministic spike propagation.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: http://yann.lecun.com/exdb/mnist/; http://ufldl.
stanford.edu/housenumbers/; https://www.cs.toronto.edu/~kriz/
cifar.html; http://www.image-net.org/.

AUTHOR CONTRIBUTIONS

AN implemented the experimental framework. All authors
contributed to the conception of the ideas, design of the
experiments, analysis of the results, and development of
the manuscript.

FUNDING

This work was partially supported by grants from Xilinx and
Center for Computational Brain Research, IIT Madras.

Frontiers in Neuroscience | www.frontiersin.org 14 July 2021 | Volume 15 | Article 69440245

http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://www.image-net.org/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

REFERENCES

Afifi, A., Ayatollahi, A., and Raissi, F. (2009). “Implementation of biologically

plausible spiking neural network models on the memristor crossbar-based

CMOS/nano circuits,” in 2009 European Conference on Circuit Theory and

Design (Antalya: IEEE), 563–566. doi: 10.1109/ECCTD.2009.5275035

Ahmed, K., Shrestha, A., Qiu, Q., andWu, Q. (2016). “Probabilistic inference using

stochastic spiking neural networks on a neurosynaptic processor,” in IJCNN ’16

(Vancouver, BC: IEEE), 4286–4293. doi: 10.1109/IJCNN.2016.7727759

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). TrueNorth: design and tool flow of a 65 mW 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Al-Shedivat, M., Naous, R., Cauwenberghs, G., and Salama, K. N. (2015).

Memristors empower spiking neurons with stochasticity. IEEE J. Emerg. Select.

Top. Circuits Syst. 5, 242–253. doi: 10.1109/JETCAS.2015.2435512

Asmussen, S., and Glynn, P. W. (2007). “Chapter 6,” in Stochastic Simulation:

Algorithms and Analysis, Vol. 57 (New York, NY: Springer Science & Business

Media), 158–205.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia:

a fresh approach to numerical computing. SIAM Rev. 59, 65–98.

doi: 10.1137/141000671

Bi, G.-Q. and Poo, M.-M. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

Chakraborty, I., Saha, G., and Roy, K. (2019). Photonic in-memory computing

primitive for spiking neural networks using phase-change materials. Phys. Rev.

Appl. 11:014063. doi: 10.1103/PhysRevApplied.11.014063

Chen, M.-C., Sengupta, A., and Roy, K. (2018). Magnetic skyrmion as a

spintronic deep learning spiking neuron processor. IEEE Trans. Magn. 54, 1–7.

doi: 10.1109/TMAG.2018.2845890

Cheung, K., Schultz, S. R., and Luk, W. (2016). NeuroFlow: a general purpose

spiking neural network simulation platform using customizable processors.

Front. Neurosci. 9:516. doi: 10.3389/fnins.2015.00516

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

De Lima, T. F., Shastri, B. J., Tait, A. N., Nahmias, M. A., and Prucnal, P.

R. (2017). Progress in neuromorphic photonics. Nanophotonics 6, 577–599.

doi: 10.1515/nanoph-2016-0139

Deneve, S. (2008). Bayesian spiking neurons I: inference. Neural Comput. 20,

91–117. doi: 10.1162/neco.2008.20.1.91

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Hu, Y., Liu, H., Pfeiffer, M., and Delbruck, T. (2016). DVS benchmark datasets

for object tracking, action recognition, and object recognition. Front. Neurosci.

10:405. doi: 10.3389/fnins.2016.00405

Kasabov, N. (2010). To spike or not to spike: a probabilistic spiking neuron model.

Neural Netw. 23, 16–19. doi: 10.1016/j.neunet.2009.08.010

Krithivasan, S., Sen, S., Venkataramani, S., and Raghunathan, A. (2019).

“Dynamic spike bundling for energy-efficient spiking neural networks,” in 2019

IEEE/ACM International Symposium on Low Power Electronics and Design

(ISLPED) (Lausanne: IEEE), 1–6. doi: 10.1109/ISLPED.2019.8824897

Kundu, S., Datta, G., Pedram, M., and Beerel, P. A. (2021). “Spike-thrift: towards

energy-efficient deep spiking neural networks by limiting spiking activity

via attention-guided compression,” in Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision (Waikoloa, HI), 3953–3962.

doi: 10.1109/WACV48630.2021.00400

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M., and Cauwenberghs, G.

(2016). Stochastic synapses enable efficient brain-inspired learning machines.

Front. Neurosci. 10:241. doi: 10.3389/fnins.2016.00241

Neil, D., and Liu, S.-C. (2014). Minitaur, an event-driven FPGA-

based spiking network accelerator. IEEE Trans. VLSI 22, 2621–2628.

doi: 10.1109/TVLSI.2013.2294916

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Park, S., Kim, S., Choe, H., and Yoon, S. (2019). “Fast and efficient information

transmission with burst spikes in deep spiking neural networks,” in 2019 56th

ACM/IEEE Design Automation Conference (DAC) (San Fransico, CA: IEEE),

1–6. doi: 10.1145/3316781.3317822

Paulin, M. G., and Van Schaik, A. (2014). Bayesian inference with spiking neurons.

arXiv [Preprint] arXiv: 1406.5115.

Pedram, A., Richardson, S., Horowitz, M., Galal, S., and Kvatinsky, S. (2017). Dark

memory and accelerator-rich system optimization in the dark silicon era. IEEE

Des. Test 34, 39–50. doi: 10.1109/MDAT.2016.2573586

Rathi, N., Panda, P., and Roy, K. (2018). Stdp-based pruning of connections

and weight quantization in spiking neural networks for energy-efficient

recognition. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38, 668–677.

doi: 10.1109/TCAD.2018.2819366

Rosselló, J. L., Canals, V., and Morro, A. (2012). “Probabilistic-based neural

network implementation,” in The 2012 International Joint Conference on Neural

Networks (IJCNN) (Brisbane, QLD), 1–7. doi: 10.1109/IJCNN.2012.6252807

Roy, A., Venkataramani, S., Gala, N., Sen, S., Veezhinathan, K., and Raghunathan,

A. (2017). “A programmable event-driven architecture for evaluating

spiking neural networks,” in 2017 IEEE/ACM International Symposium

on Low Power Electronics and Design (ISLPED) (Taipei: IEEE), 1–6.

doi: 10.1109/ISLPED.2017.8009176

Rueckauer, B., and Delbruck, T. (2016). Evaluation of event-based algorithms

for optical flow with ground-truth from inertial measurement sensor. Front.

Neurosci. 10:176. doi: 10.3389/fnins.2016.00176

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Sahu, U., Goyal, K., Saxena, U., Chavan, T., Ganguly, U., and Bhowmik, D.

(2018). “Skyrmionic implementation of spike time dependent plasticity (STDP)

enabled spiking neural network (SNN) under supervised learning scheme,”

in 2018 4th IEEE International Conference on Emerging Electronics (ICEE)

(Bengaluru: IEEE), 1–6. doi: 10.1109/ICEE44586.2018.8937850

Sen, S., Venkataramani, S., and Raghunathan, A. (2017). “Approximate

computing for spiking neural networks,” in Design, Automation & Test

in Europe Conference & Exhibition (DATE) (Lausanne: IEEE), 193–198.

doi: 10.23919/DATE.2017.7926981

Sengupta, A., Banerjee, A., and Roy, K. (2016). Hybrid spintronic-CMOS spiking

neural network with on-chip learning: devices, circuits, and systems. Phys. Rev.

Appl. 6:064003. doi: 10.1103/PhysRevApplied.6.064003

Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G.,

and Linares-Barranco, B. (2013). STDP and STDP variations with

memristors for spiking neuromorphic learning systems. Front. Neurosci.

7:2. doi: 10.3389/fnins.2013.00002

Seung, H. (2003). Learning in spiking neural networks by reinforcement

of stochastic synaptic transmission. Neuron 40, 1063–1073.

doi: 10.1016/S0896-6273(03)00761-X

Shanbhag, N. R., Abdallah, R. A., Kumar, R., and Jones, D. L. (2010). “Stochastic

computation,” in Proceedings of DAC ’10 (New York, NY: ACM Press), 859.

doi: 10.1145/1837274.1837491

Smaragdos, G., Chatzikonstantis, G., Kukreja, R., Sidiropoulos, H., Rodopoulos,

D., Sourdis, I., et al. (2017). BrainFrame: a node-level heterogeneous

accelerator platform for neuron simulations. J. Neural Eng. 14:066008.

doi: 10.1088/1741-2552/aa7fc5

Smithson, S. C., Boga, K., Ardakani, A., Meyer, B. H., and Gross, W. J. (2016).

“Stochastic computing can improve upon digital spiking neural networks,” in

2016 IEEE International Workshop on Signal Processing Systems (SiPS) (Dallas,

TX: IEEE), 309–314. doi: 10.1109/SiPS.2016.61

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving

for simplicity: the all convolutional net. arXiv [Preprint] arXiv:1412.6806.

Srinivasan, G., Sengupta, A., and Roy, K. (2017). “Magnetic tunnel junction

enabled all-spin stochastic spiking neural network,” in Proceedings of DATE

(Lausanne: IEEE), 530–535. doi: 10.23919/DATE.2017.7927045

Frontiers in Neuroscience | www.frontiersin.org 15 July 2021 | Volume 15 | Article 69440246

https://doi.org/10.1109/ECCTD.2009.5275035
https://doi.org/10.1109/IJCNN.2016.7727759
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JETCAS.2015.2435512
https://doi.org/10.1137/141000671
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1103/PhysRevApplied.11.014063
https://doi.org/10.1109/TMAG.2018.2845890
https://doi.org/10.3389/fnins.2015.00516
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1515/nanoph-2016-0139
https://doi.org/10.1162/neco.2008.20.1.91
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.3389/fnins.2016.00405
https://doi.org/10.1016/j.neunet.2009.08.010
https://doi.org/10.1109/ISLPED.2019.8824897
https://doi.org/10.1109/WACV48630.2021.00400
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.1109/TVLSI.2013.2294916
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1145/3316781.3317822
https://doi.org/10.1109/MDAT.2016.2573586
https://doi.org/10.1109/TCAD.2018.2819366
https://doi.org/10.1109/IJCNN.2012.6252807
https://doi.org/10.1109/ISLPED.2017.8009176
https://doi.org/10.3389/fnins.2016.00176
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/ICEE44586.2018.8937850
https://doi.org/10.23919/DATE.2017.7926981
https://doi.org/10.1103/PhysRevApplied.6.064003
https://doi.org/10.3389/fnins.2013.00002
https://doi.org/10.1016/S0896-6273(03)00761-X
https://doi.org/10.1145/1837274.1837491
https://doi.org/10.1088/1741-2552/aa7fc5
https://doi.org/10.1109/SiPS.2016.61
https://doi.org/10.23919/DATE.2017.7927045
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Nallathambi et al. Probabilistic Spike Propagation

Thoziyoor, S., Muralimanohar, N., Ahn, J. H., and Jouppi, N. P. (2008). Cacti 5.1.

Vanarse, A., Osseiran, A., and Rassau, A. (2016). A review of current neuromorphic

approaches for vision, auditory, and olfactory sensors. Front. Neurosci. 10:115.

doi: 10.3389/fnins.2016.00115

Xiang, S., Zhang, Y., Gong, J., Guo, X., Lin, L., and Hao, Y. (2019). STDP-based

unsupervised spike pattern learning in a photonic spiking neural network

with VCSELs and VCSOAs. IEEE J. Select. Top. Quant. Electron. 25, 1–9.

doi: 10.1109/JSTQE.2019.2911565

Zhang, D., Zeng, L., Zhang, Y., Zhao, W., and Klein, J. O. (2016).

“Stochastic spintronic device based synapses and spiking neurons

for neuromorphic computation,” in 2016 IEEE/ACM International

Symposium on Nanoscale Architectures (NANOARCH) (Beijing: IEEE),

173–178.

Conflict of Interest: SS was employed at IBM Thomas J. Watson Research Center.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Nallathambi, Sen, Raghunathan and Chandrachoodan. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 July 2021 | Volume 15 | Article 69440247

https://doi.org/10.3389/fnins.2016.00115
https://doi.org/10.1109/JSTQE.2019.2911565
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 29 October 2021

doi: 10.3389/fnins.2021.603433

Frontiers in Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 603433

Edited by:

Guoqi Li,

Tsinghua University, China

Reviewed by:

Peng Li,

Tianjin University, China

Jibin Wu,

Sea AI Lab, Singapore

*Correspondence:

Gopalakrishnan Srinivasan

srinivg@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 06 September 2020

Accepted: 23 July 2021

Published: 29 October 2021

Citation:

Srinivasan G and Roy K (2021)

BlocTrain: Block-Wise Conditional

Training and Inference for Efficient

Spike-Based Deep Learning.

Front. Neurosci. 15:603433.

doi: 10.3389/fnins.2021.603433

BlocTrain: Block-Wise Conditional
Training and Inference for Efficient
Spike-Based Deep Learning
Gopalakrishnan Srinivasan* and Kaushik Roy

Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States

Spiking neural networks (SNNs), with their inherent capability to learn sparse spike-based

input representations over time, offer a promising solution for enabling the next generation

of intelligent autonomous systems. Nevertheless, end-to-end training of deep SNNs

is both compute- and memory-intensive because of the need to backpropagate error

gradients through time. We propose BlocTrain, which is a scalable and complexity-aware

incremental algorithm for memory-efficient training of deep SNNs. We divide a deep

SNN into blocks, where each block consists of few convolutional layers followed by a

classifier. We train the blocks sequentially using local errors from the classifier. Once a

given block is trained, our algorithm dynamically figures out easy vs. hard classes using

the class-wise accuracy, and trains the deeper block only on the hard class inputs. In

addition, we also incorporate a hard class detector (HCD) per block that is used during

inference to exit early for the easy class inputs and activate the deeper blocks only

for the hard class inputs. We trained ResNet-9 SNN divided into three blocks, using

BlocTrain, on CIFAR-10 and obtained 86.4% accuracy, which is achieved with up to

2.95× lower memory requirement during the course of training, and 1.89× compute

efficiency per inference (due to early exit strategy) with 1.45×memory overhead (primarily

due to classifier weights) compared to end-to-end network. We also trained ResNet-11,

divided into four blocks, on CIFAR-100 and obtained 58.21% accuracy, which is one of

the first reported accuracy for SNN trained entirely with spike-based backpropagation

on CIFAR-100.

Keywords: deep SNNs, spike-based backpropagation, complexity-aware local training, greedy block-wise

training, fast inference

1. INTRODUCTION

Deep neural networks have achieved remarkable success and redefined the state-of-the-art
performance for a variety of artificial intelligence tasks including image recognition (He et al.,
2016), action recognition in videos (Simonyan and Zisserman, 2014a), and natural language
processing (Bahdanau et al., 2014; Sutskever et al., 2014), among other tasks. We refer to
modern deep neural networks as analog neural networks (ANNs) since they use artificial neurons
(sigmoid, ReLU, etc.) that produce real-valued activations. ANNs attain superhuman performance
by expending significant computational effort, which is believed to bemuch higher compared to the
human brain. The quest for improved computational efficiency has led to the emergence of a new
class of networks known as spiking neural networks (SNNs) (Maass, 1997), which are motivated

48

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.603433
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.603433&domain=pdf&date_stamp=2021-10-29
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:srinivg@purdue.edu
https://doi.org/10.3389/fnins.2021.603433
https://www.frontiersin.org/articles/10.3389/fnins.2021.603433/full

Srinivasan and Roy BlocTrain

by the sparse spike-based computation and communication
capability of the human brain. The salient aspect of SNN is its
ability to learn sparse spike-based input representations over
time, which can be used to obtain higher computational efficiency
during inference in specialized event-driven neuromorphic
hardware (Merolla et al., 2014; Davies et al., 2018; Blouw et al.,
2019).

Supervised training of SNNs is challenging and has attracted
significant research interest in recent years (Lee et al., 2016,
2020; Bellec et al., 2018; Jin et al., 2018; Shrestha and Orchard,
2018; Wu et al., 2018; Neftci et al., 2019; Thiele et al., 2020).
Error backpropagation algorithms, which are the workhorse
for training deep ANNs with millions of parameters, suffer
from scalability limitations when adapted for SNNs. It is well
known that end-to-end training of feed-forward ANNs, using
backpropagation, requires the activations of all the layers to be
stored in memory for computing the weight updates. SNNs, by
virtue of receiving input patterns converted to spike trains over
certain number of time-steps, require multiple forward passes
per input. As a result, spike-based backpropagation algorithms
need to integrate error gradients through time (Neftci et al.,
2019). The ensuing weight update computation requires the
spiking neuronal activation and state (also known as membrane
potential) to be stored across time-steps for the entire network.
SNNs are typically trained for hundreds of time-steps to
obtain high enough accuracy for visual image recognition tasks
(Lee et al., 2020). Hence, end-to-end training of SNN using
backpropagation through time (BPTT) requires much higher
memory footprint over that incurred for training similarly sized
ANN onGraphics Processing Units (GPUs) (Gruslys et al., 2016).

In this work, we propose input complexity driven block-wise
training algorithm, referred to as BlocTrain, for incrementally
training deep SNNs with reduced memory requirements
compared to that incurred for end-to-end training. We divide
a deep SNN into blocks, where each block consists of few
convolutional layers followed by a local auxiliary classifier, as
depicted in Figure 1. We train the blocks sequentially using
local losses from the respective auxiliary classifiers. For training
a particular block, we freeze the weights of the previously
trained blocks and update only the current block weights
using local losses from the auxiliary classifier. The proposed
algorithm precludes the need for end-to-end backpropagation,
thereby considerably reducing the memory requirements during
training, albeit with overhead incurred due to the addition of a
classifier per block. Next, we present a systematic methodology to
determine the optimal SNN depth for a given application based
on the target accuracy requirements. New blocks are added only
if the accuracy of prior blocks (obtained on the validation set)
is lower than the desired accuracy. Further, the newly appended
blocks are trained only on the “hard” classes as summarized
below. Once a particular block is trained, we subdivide the
classes into “easy” and “hard” groups based on the class-wise
accuracy on the validation set. We incorporate and train a HCD
in the following block to perform binary classification between
the “easy” and the “hard” class inputs. The next deeper block
is now trained only on the hard class instances, as illustrated
in Figure 1. Previous works on class complexity aware training

built hierarchical classifier models, where the initial layers classify
the inputs into coarse super-categories while the deeper layers
predict the finer classes, which require end-to-end training and
inference (Srivastava and Salakhutdinov, 2013; Yan et al., 2015;
Panda et al., 2017a). On the other hand, BlocTrain significantly
minimizes the training effort with increasing block depth due
to gradual reduction in the number of output classes. During
inference, we obtain improved computational efficiency by using
the HCD per block to terminate early for easy class inputs
and conditionally activate deeper blocks only for the hard class
inputs. The higher inference efficiency is achieved with increased
memory requirement owing to the use of nonlinear auxiliary
classifiers. We demonstrate the capability of BlocTrain to provide
improved accuracy as well as higher training (compute and
memory) and inference (compute) efficiency relative to end-
to-end approaches for deep SNNs on the CIFAR-10 and the
CIFAR-100 datasets. Note that BlocTrain, although demonstrated
in this work for SNNs, can be directly applied for ANNs to
achieve efficient conditional training and inference. Overall, the
key contributions of our work are as follows:

1. We propose a scalable training algorithm for deep SNNs,
where the block-wise training strategy can help alleviate the
larger memory requirement, which is bound by hardware
limitations, and gradient propagation issues incurred by end-
to-end training.

2. We present a systematic methodology to determine the
optimal network size (in terms of number of layers) for a given
dataset based on the accuracy requirements, since new layers
are added and trained sequentially until the desired accuracy
is achieved.

3. We improve the latency and compute efficiency during
inference, which is achieved by using the HCD to exit early
for the easy class instances and activate the deeper blocks only
for the hard class instances.

2. RELATED WORK

2.1. Local Training of Deep Neural Nets
Several approaches have been proposed to complement or
address the challenge of end-to-end training of deep networks.
Before the deep learning revolution (circa 2012), unsupervised
layer-wise pre-training based on local loss functions was used to
effectively initialize the weights of deep ANNs (stacked denoising
autoencoder, deep belief nets, etc.) (Ivakhnenko and Lapa, 1965;
Hinton and Salakhutdinov, 2006; Hinton et al., 2006; Bengio
et al., 2007; Vincent et al., 2008; Erhan et al., 2010; Belilovsky
et al., 2019). SNNs, on the contrary, have been pre-trained using
spiking autoencoders (Panda and Roy, 2016) as well as more
biologically plausible spike timing dependent plasticity (STDP)
based localized learning rules (Masquelier and Thorpe, 2007;
Diehl and Cook, 2015; Ferré et al., 2018; Kheradpisheh et al.,
2018; Mozafari et al., 2018; Srinivasan et al., 2018; Tavanaei et al.,
2018; Thiele et al., 2018; Lee et al., 2019; Srinivasan and Roy,
2019). Greedy layer-wise unsupervised training of SNNs has until
now been demonstrated only for shallow networks (≤ 5 layers),
yielding considerably lower than state-of-the-art accuracy on

Frontiers in Neuroscience | www.frontiersin.org 2 October 2021 | Volume 15 | Article 60343349

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 1 | Illustration of BlocTrain methodology for block-wise input complexity aware training of deep SNNs. The blocks are trained sequentially using local losses

from the respective classifiers. Each block Bi has a hard class detector that is trained to perform binary classification between the easy (Ei−1) and the hard class

instances (Hi−1), as determined from the preceding block. The next block Bi+1 is trained only on the hard class instances (Hi−1). This process is repeated for every

block, leading to fast learning with increasing block depth.

complex datasets, for instance, ∼71% on CIFAR-10 (Panda and
Roy, 2016; Ferré et al., 2018). Some works have also proposed
supervised pre-training of deep networks using losses generated
by auxiliary classifier per layer (Marquez et al., 2018). However,
pre-training is followed by end-to-end backpropagation to attain
improved accuracy and generalization for both ANNs (Erhan
et al., 2010; Dong et al., 2018) and SNNs (Lee et al., 2018).

Very few works use only the local losses generated by the
layer-wise auxiliary classifier to train deep nets (Kaiser et al.,
2018; Mostafa et al., 2018; Nøkland and Eidnes, 2019). Mostafa
et al. (2018) found that layer-wise training using only the
local discriminative loss caused the accuracy of a 10-layer deep
ANN to saturate after the sixth layer with an accuracy of
∼83%, which is lower than that (∼87%) achieved with end-to-
end error backpropagation on CIFAR-10. Nøkland and Eidnes
(2019) supplemented the local discriminative loss using similarity
matching loss to converge to the accuracy provided by end-
to-end backpropagation. Alternatively, Jaderberg et al. (2017)
proposed incorporating a decoupled neural network at every
layer (or every few layers) of the original deep ANN to produce
synthetic gradients that are trained to match the true gradients
obtained with global backpropagation.

2.2. Fast Inference for Deep Nets
Fast inference methods use auxiliary classifiers at various
intermediate layers of a deep network and terminate inference
sequentially at different classifiers based on the input complexity
(Panda et al., 2016, 2017b; Teerapittayanon et al., 2016; Huang
et al., 2018). The end-to-end network and classifiers can be either
trained independent of each other (Panda et al., 2016, 2017b)
or co-optimized to minimize the weighted cumulative loss of
all classifiers (Teerapittayanon et al., 2016; Huang et al., 2018).
Inference is terminated at the earlier classifiers for easy inputs
and the deeper classifiers for hard inputs, resulting in improved
latency and computational efficiency.

BlocTrain differs from prior works in the following respects:

1. We introduce auxiliary classifiers at the granularity of blocks
of convolutional layers and train the blocks sequentially using
only the local discriminative loss.

2. We train the deeper blocks only on hard classes, which are
automatically deduced by BlocTrain based on the class-wise
accuracy of the earlier blocks on the validation set.

3. BlocTrain leads to fast inference by detecting instances
belonging to easy or hard classes learnt during training. Prior
approaches classify the instances as easy or hard irrespective of
their class labels. Our inference method incurs lower training
effort with increasing block depth while the latter approach
requires all the blocks to be trained on the entire dataset.

3. SPIKE-BASED INPUT
REPRESENTATION, NEURONS, AND BPTT

The unique attributes of deep SNNs over ANNs are spike-
based input coding and neuronal nonlinearity, which facilitate
temporal information processing. For vision tasks, the input
pixels are converted to Poisson-distributed spike trains firing
at a rate proportional to the corresponding pixel intensities, as
described inHeeger (2000) and shown in Figure 2A. The number
of time-steps (latency) determine the training as well as inference
efficiency, and is in the order of few hundreds of time-steps (Jin
et al., 2018; Lee et al., 2020). At any given time, the weighted sum
of the input spikes gets integrated into the membrane potential
of “soft reset” leaky integrate and fire (LIF) neuron (Diehl et al.,
2016), whose dynamics are described by

ut+1 = αut +
∑

i wix
t
i − vst

st = 2(
ut

v
− 1)

(1)

where u is the membrane potential, superscript t indicates the
time-step, α is the rate of leak of membrane potential, wi and
xi are the weight and spike train of ith input neuron, v is the
firing threshold, s is the spike output, and 2 is the Heaviside step
function. The LIF neuron produces a spike when its membrane
potential exceeds the firing threshold. At the instant of a spike,
the membrane potential is “soft reset” by reducing its value
by an amount equal to the threshold voltage, as described
in Equation (1). The “soft reset” mechanism carries over the
residual potential above threshold at the firing instants to the
following time-step, thereby minimizing the information loss
during forward propagation.

Backpropagation is performed by unrolling the network and
integrating the losses over time as depicted in Figure 2B. The

Frontiers in Neuroscience | www.frontiersin.org 3 October 2021 | Volume 15 | Article 60343350

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 2 | (A) Spike-based input representation, and membrane potential dynamics, soft reset behavior, and piece-wise linear surrogate gradient for a leaky

integrate and fire (LIF) neuron. An LIF neuron integrates the weighted sum of input spikes (X t(i)) with the synaptic weights (wi) and emits a spike (st) when its membrane

potential (ut) exceeds the firing threshold (v). In the event of a spike, the membrane potential is reduced (or soft reset) by an amount equal to the firing threshold.

During backpropagation, the discontinuous Dirac delta gradient (∂st

∂ut
) is replaced by a continuous surrogate gradient approximation. (B) Illustration of backpropagation

through time for a spiking neuron, where in the output loss (∂L
∂st

) is accumulated over T simulation time-steps.

weight update (1wi) is computed as described by

1wi =
∑

t

∂L

∂wt
i

=
∑

t

∂L

∂st
∂st

∂ut
∂ut

∂wt
i

(2)

where L is the loss function [Mean Squared Error (MSE) loss,
cross-entropy loss, etc.] that measures the deviation of the actual
network output from the target (class label for image recognition
tasks). The partial derivative of the LIF neuron output with

respect to the membrane potential, ∂st

∂ut
, is the derivative of the

Heaviside function specified in Equation (1). The LIF output

derivative is described by the Dirac delta function, δ(u
t

v − 1),
which is not defined at the spiking instants (t ∈ N

+|ut = v)
and is zero elsewhere. The Dirac delta derivative is not suitable
for backpropagation since it precludes the effective backward
flow of error gradients. The discontinuous derivative is replaced
by a smooth function, known as surrogate gradient, around the
spiking instants (Bellec et al., 2018; Shrestha and Orchard, 2018;
Zenke and Ganguli, 2018; Roy et al., 2019). We use the piece-wise
linear surrogate gradient (Bellec et al., 2018), which is specified as

∂st

∂ut
≈ γ Max(0, 1− |

ut

v
− 1|) (3)

where γ (< 1) is the gradient dampening factor. The linear
surrogate gradient is maximum at the spiking instants and
linearly decreases elsewhere based on the absolute difference
between the membrane potential and threshold as depicted in
Figure 2A. We refer the readers to Neftci et al. (2019) for a survey
of surrogate gradient approximations proposed in literature.

4. BlocTrain TRAINING AND INFERENCE
ALGORITHM

4.1. Block-Wise Complexity-Aware Training
In this section, we describe the block-wise complexity-aware
incremental algorithm for memory-efficient training of deep

SNNs. We divide a deep spiking network into blocks, where
each block is composed of few convolutional and/ or pooling
layers followed by a classifier, as illustrated in Figure 1. We use
nonlinear classifiers, consisting of an additional hidden layer
before the final softmax layer. Hence, the location of the classifiers
needs to be chosen judiciously for achieving improved training
efficiency withminimal parameters overhead. Algorithm 1 details
the presented block-wise trainingmethodology.We train the first
block B1 on the entire training set using surrogate gradient-based
BPTT (Algorithm 2), which is discussed later in this section.
We then compute its class-wise accuracy on the validation set.
If the accuracy of a class is lower (higher) than a pre-determined
“hardness threshold,” the class is grouped as a hard (easy) class.
The following block B2 is trained on the easy and hard class
instances of B1 (entire training set) with frozen B1 weights. The
softmax units of B2 are trained with cross-entropy loss computed
using the class labels. In addition, we introduce an HCD, which
is a binary neuron with sigmoidal activation function. The HCD
unit is trained with sigmoid cross-entropy loss to perform binary
classification between the easy and the hard class inputs. We then
determine the class-wise accuracy of the combined (B1 + B2)
network using fast inference method (refer to Algorithm 3),
detailed in section 4.2. Based on the class-wise accuracy of B2,
we further divide the hard classes of B1 into finer easy and hard
classes. The next block B3 is then trained on the finer easy and
hard class instances of B2, which are basically the hard class
instances of B1. In general, a given block Bi is trained on the easy
and hard inputs of Bi−1 (same as the hard inputs of Bi−2) with
fixed B1 . . .Bi−1 weights, as described in Algorithm 1. BlocTrain
leads to higher compute and memory efficiency compared to
end-to-end methods. In addition, we also show (in section 5) that
residual connections between the blocks enable the deeper blocks
to learn better representations, leading to higher accuracy.

Next, we detail the surrogate gradient-based BPTT algorithm
used for training the SNN blocks. The convolutional and linear
layers of the SNN are followed by LIF nonlinearity, as described
in Algorithm 2. During forward pass, Heaviside step function is

Frontiers in Neuroscience | www.frontiersin.org 4 October 2021 | Volume 15 | Article 60343351

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

Algorithm 1: Block-wise training for SNN with N blocks B1
. . . BN , where block Bi has Li layers.

Input: Training data (Xtrain) and labels (Ytrain), Validation
data (Xval) and labels (Yval), #Output classes (Nclass),
#Time-steps (T), hardness threshold (Acchard−thresh)

Output: Trained weights for blocks B1 . . .BN , Easy and
hard class list (E0,H0) . . . (EN ,HN)

Initialize: Easy and hard class list for the training set
E0 = []
H0 = [0, 1, . . .Nclass−1]

for i = 1 to N do
// Load instances belonging to easy and hard classes of
Bi−1 to train Bi
X = Xtrain[Ei−1∪ Hi−1]

// Forward propagate until Bi−1 (refer to algorithm 2)
O0 = PoissonGenerator(X, T)
Ores0 = Zeros(size(O0))
for j = 1 to i−1 do

Oj, Oresj = Fwd(Bj, Lj,Oj−1,Oresj−1 ,T)

end

// Generate labels for the auxiliary classifier and the hard
class detector (HCD) in Bi
Y = Ytrain[Ei−1 ∪ Hi−1]
YHCD = {0 ∀Ytrain∈Ei−1, 1 ∀Ytrain∈Hi−1}

// Train Bi on the easy and the hard class instances of
Bi−1 (refer to
// algorithm 2 for spike-based backpropagation through
time or BPTT)
BPTT(Bi, Li,Oi−1,Oresi−1 ,T,Y ,YHCD)

// Populate easy and hard class list of Bi using the
class-wise accuracy
// on the validation set (refer to algorithm 3 for the fast
inference method)
Acc=FastInfer(i,B1 . . .Bi, L1 . . . Li, (E0,H0) . . .
(Ei−1,Hi−1),T,Xval,Yval)
for cls in Hi−1 do

if Acc[cls] ≤ Acchard−thresh then
Hi.append(cls)

else
Ei.append(cls)

end

end

end

applied to the LIF neuron membrane potentials for generating
spike inputs to the following layer at every time instant.
In addition, the membrane potentials and spiking activations
are stored for computing and backpropagating the surrogate
gradients during the BPTT phase. The average pooling layers,

Algorithm 2: Mini-batch (with batch_size) spike-based
backpropagation through time (BPTT).

Input: Block B, #Layers (L), Mini-batch spike-input (S0,
Sres0), #Time-steps (T), Labels for output classifier
(Y) and hard class detector (YHCD)

Output: Trained weights for BPTT (called in algorithm 1),
spike output (Sl, Sresl) for Fwd (called in algorithm
1) and FwdInfer (called in algorithm 3), Output
logits (UL,UHCD) for FwdInfer (called in algorithm
3)

Initialize: Model paramaters (superscript→t,
subscript→layer)
for l = 1 to L−1 do

U1
l
=Zeros(batch_size,B[l].size) // Initialize the

membrane potential
Vl = v ∈ R

+ // Initialize the layer-wise neuronal firing
threshold
InitializeWl, W

res
l

randomly // Initialize the layer
weights

end

Initialize U1
L , U

1
HCD, WL, WHCD for the output logits

// Spike-based forward propagation
for t = 1 to T−1 do

for l = 1 to L−1 do
if isInstance(B[l], [Conv, Linear]) then

St
l
= LinearGradient(

Ut
l

Vl
− 1)

Ut+1
l

=αUt
l
+WlS

t
l−1

+Wres
l
Stresl−1

−VlS
t
l

end

else if isInstance(B[l],AvgPool) then

St
l
= PassThroughGradient(

Ut
l

Vl
− 1)

Ut+1
l

= Ut
l
+ AvgPool(St

l−1
)− VlS

t
l

end

end

Ut+1
L = αUt

L +WLS
t
L−1

Ut+1
HCD = αUt

HCD +WHCDS
t
L−1

end

// Compute the (softmax and HCD) loss and the weight
updates
Lsmax = CrossEntropy(UT

L ,Y)
LHCD = SigmoidCrossEntropy(UT

HCD,YHCD)
L = Lsmax + LHCD
for l = 1 to L do

1Wl ∝
∑

t
∂L

∂Wt
l

end

on the contrary, are followed by integrate-and-fire nonlinearity
(α=1 in Equation 1). This is because the pooled neurons do
not encode complex temporal dynamics, and spike based on

Frontiers in Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 60343352

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

the average firing rate of the LIF neurons located past the
preceding convolutional layer. During the BPTT phase, the
output gradients are passed through the pooling layers. The
output layer, consisting of the softmax and the HCD units,
is not subjected to spike-based nonlinearity to enable precise
computation of the output loss directly using the membrane
potential of the output neurons. The final loss, which is the
sum total of the cross-entropy loss of the softmax units and
sigmoid cross-entropy loss of the binary HCD unit, is minimized
using BPTT.

4.2. Fast Inference With Early Exit
BlocTrain, on account of introducing intermediate classifiers
(or exit branches), leads to fast inference, with early exit,
for deep SNNs as described in Algorithm 3. The inference
is terminated at a given block Bi using the softmax and
hard class prediction probabilities as the confidence measure
for the classifier and the HCD, respectively. Note that the
softmax probabilities at Bi are obtained using the cumulative
sum of the corresponding logits with their counterparts in
the previous block Bi−1. We find that combining the classifier
outputs by summing up the respective logits improves the final
prediction accuracy since the blocks are trained independently.
Our method of combining the individual classifier outputs to
boost the final accuracy is similar to adaptive boosting (Freund
and Schapire, 1995), which combines multiple weak classifiers
into a strong one. Inference is terminated at Bi under the
following conditions.

1. if the classifier exhibits high confidence, that is, if the classifier
prediction probability is higher than a pre-determined
confidence threshold (θconf);

2. if the HCD is low in confidence, that is, if the HCD prediction
probability is lower than hard-class confidence threshold
(θhigh), in which case it is not favorable to activate the
subsequent block.

Additionally, if the prediction at Bi belongs to the hard class
list of Bi−1 while the HCD probability is much smaller than
easy-class detection threshold (θlow), the original prediction
is possibly a false positive for the predicted hard class. In
this case, the original prediction at Bi is refined by selecting
the one with maximum probability among the softmax units,
which belong exclusively to the easy class list of Bi−1.
Only in the event that the classifier is low in confidence
and the HCD is high in confidence, the next deeper block
Bi+1 is activated. This process is repeated for the all the
blocks sequentially beginning from the first block, leading
to improved computational efficiency during inference, with
memory overhead incurred due to the use of nonlinear
intermediate classifiers and for storing the binary spiking
activations to be fed to the following block. Higher the number
of instances classified at the early exit branches, larger is the
computational efficiency benefit with reduced memory overhead
compared to end-to-end inference.

Algorithm 3: Fast inference, with early exit, algorithm for
spiking neural networks (SNNs).

Input: #Blocks (N), Blocks B1 . . .BN , #Layers per block
(L1. . .LN), Easy and hard class list for each block
(E0,H0) . . . (EN−1,HN−1), #Time-steps T, Test data
(Xtest) and labels (Ytest)

Output: Class-wise validation or test accuracy (Acc)
Initialize: Confidence threshold for classifier (θconfi) and
HCD (θhighi , θlowi

) for i ∈ [1 . . .N]

for d = 1 to size(Ytest) do

O0 = PoissonGenerator(Xd, T)
Ores0 = Zeros(size(O0))

for i = 1 to N do
// Perform forward propagation for block Bi (refer to
Algorithm 2)
Oi,Oresi ,Ui,UHCDi = FwdInfer(Bi, Li,Oi−1,Oresi−1 ,T)

// Perform inference with the softmax and the HCD
probabilities
Probsmaxi = Softmax(Ui)
Probpredi , Predi = Max(Probsmaxi)
Probhardi = Sigmoid(UHCDi)

if Probpredi≥θconfi ‖ Probhardi<θhighi then
// Get the prediction from Bi either if classifieri is
// high in confidence or HCDi is low in confidence
Predd

final
=Predi // Pred ∈ Ei−1∪Hi−1

// If the prediction is a false positive for a hard
class, refine the
// prediction by picking the most probable among
the easy classes
if Predd

final
∈ Hi−1 && Probhardi<θlowi

then

Predd
final

=argmaxEi−1 (Probsmaxi)

end

Break // Terminate inference at Bi
else

Continue // Move forward to Bi+1

end

end

end

Acc = GetClassWiseAcc(Predfinal,Ytest)

5. RESULTS

5.1. Experimental Setup
We demonstrate the efficacy of BlocTrain for ResNet-9 (on
CIFAR-10), and ResNet-11 and VGG-16 (on CIFAR-100), which
are among the deepest models trained entirely using spike-based
BPTT algorithms (Lee et al., 2020). ResNet-9 (ResNet-11) is
divided into 3 (4) blocks as illustrated in Figure 3. The input

Frontiers in Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 60343353

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 3 | ResNet-11 spiking neural network (SNN), similar to the end-to-end topology presented in Lee et al. (2020), used to validate BlocTrain. The first 3 blocks

make up ResNet-9 SNN. Block1 is trained on all the classes (H0). Any other blocki is trained on the hard classes of blocki−2 (Hi−2), and has an additional hard class

detector (HCD) binary unit. The number of output feature maps, kernel size, stride, and spiking nonlinearity are specified for all the layers in each block of the ResNet

SNN analyzed in this work.

image pixels are normalized to zero mean and unit variance,
and mapped to Poisson spike trains firing at a maximum rate of
1,000 Hz over 100 time-steps. We generate positive or negative
spikes, based on the sign of the normalized pixel intensities, firing
at a rate proportional to the absolute value of the intensities as
described in Sengupta et al. (2019). For most experiments in
this work unless mentioned otherwise, the original CIFAR-10
or CIFAR-100 training set, consisting of 50,000 images, is split
into a training subset of 40,000 images and validation subset of
10,000 images. Training is performed on the training subset (for
125 epochs) using Adam optimizer (Kingma and Ba, 2014), with
mini-batch size of 64, and learning rate of 2e-4 for the first two
blocks and 1e-4 for the rest of the blocks as well as the baseline
end-to-end model. Once a given block is trained, the class-wise
accuracy on the validation subset is used to determine the easy
and the hard classes. The baseline model is obtained by removing
the local classifiers shown in Figure 3. The accuracy of the trained
models is reported on the test set of 10,000 images. The code
for SNN training and inference, using BlocTrain and end-to-end
method, is uploaded as Supplementary Material.

5.2. ResNet-9 SNN on CIFAR-10
We trained the first block B1 of ResNet-9 SNN on the CIFAR-
10 training subset. The class-wise accuracy provided by B1 (on
the validation set) at the end of training is shown in Figure 4.
Based on the hard-class accuracy threshold (Acchard−thresh) of
95.5%, BlocTrain automatically categorized the original CIFAR-
10 classes into 7 easy (E1) and 3 hard classes (H1), as depicted
in Figure 4. We then trained the classifier of the next block B2
on all the 10 classes, and the binary HCD unit for distinguishing
between the easy (E1) and the hard groups (H1). Following
the training of B2, the last block B3 was trained on only the
3 hard classes of B1. We first present the training efficiency
benefits offered by BlocTrain and then discuss the inference
accuracy-efficiency trade-off.

The training efficiency of BlocTrain over end-to-end approach
is quantified using the memory requirement for performing
BPTT. For training a block Bi, BlocTrain requires only the
spiking activations and membrane potentials of Bi to be
stored across time-steps in addition to the weights of all the
blocks until Bi. Note that the classifier of previous blocks
are not necessary for training the current block, and hence,
they are ignored for estimating the memory requirement for
the current block. Also, the spiking activations, being binary,
consumes 32× smaller memory footprint than that for the
weights and membrane potentials. End-to-end method, on the
other hand, requires the weights, potentials, and activations of
the entire network for performing BPTT. Our analysis shows
that BlocTrain incurs 1.32×-2.95× lower memory requirement
relative to end-to-end BPTT. In addition, we also find that
the BlocTrain memory requirement decreases until B2 after
which it slightly increases, albeit much lower than end-to-
end BPTT. The higher memory requirement for B3 stems
from an increase in the block parameters as shown in
Figure 3. Finally, our experiments indicate that the training
time reduces with block depth beginning from B3. B2, on
account of being fed by B1 and trained on all the classes,
incurs slightly longer training time relative to B1. Overall,
ResNet-9 SNN trained using BlocTrain on a Nvidia GeForce
GTX GPU with 11178MiB memory capacity incurs 1.13×
slowdown in training time per epoch over end-to-end training
when the same mini-batch size is used for both methods.
Section 6.4.2 details the training time incurred by BlocTrain,
relative to end-to-end training, on different training hardware
configurations. Aside from memory efficiency, BlocTrain offers
the following benefits, as quantified and discussed in the
subsequent paragraphs.

1. BlocTrain leads to stable training convergence by
effectively circumventing the gradient propagation issues
plaguing end-to-end SNN training approaches, leading to
higher accuracy.

Frontiers in Neuroscience | www.frontiersin.org 7 October 2021 | Volume 15 | Article 60343354

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 4 | Algorithm to determine easy vs. hard classes based on the class-wise accuracy of ResNet9-block1 on the CIFAR-10 validation subset. If the class-wise

accuracy, Acccls−wise, is lesser (greater) than the hardness threshold, Acchard−thresh, the class is categorized as a hard (easy) class.

FIGURE 5 | (A) Test accuracy, (B) normalized training memory efficiency, and (C) normalized training time offered by BlocTrain over end-to-end training for ResNet-5

(Block1), ResNet-7 (Block1+2), and ResNet-9 (Block1+2+3) spiking neural networks (SNNs).

2. BlocTrain, by virtue of estimating the optimal SNN size
based on dataset complexity and using early exit inference
strategy, offers improved latency and computational efficiency
during inference.

ResNet-9 SNN (trained using BlocTrain) offered 86.4% test
accuracy when inference was performed, as described in
Algorithm 3, using the classifier confidence threshold (θconf) set
to unity. Next, in order to quantify the impact of inter-block
residual connections, we trained a VGG9-like network (ResNet-
9 in Figure 3 without residual connections) using BlocTrain.
The VGG9-like SNN provided lower accuracy of 85.5%, which
indicates that residual connections between the blocks enable the
deeper blocks to learn better high-level representations. The test
accuracy of 86.4% provided by ResNet-9 is roughly 1.5% higher
than that achieved with end-to-end network training (without
the intermediate classifiers). This is a counterintuitive, albeit
interesting, finding since end-to-end training of deep ANNs has
been shown to outperform local training using intermediate

classifiers (Marquez et al., 2018; Mostafa et al., 2018). For deep
SNNs, stable convergence of end-to-end training, by eliminating
the vanishing gradient phenomenon, largely depends on proper
layer-wise threshold initialization and choosing the “right”
surrogate gradient parameters. BlocTrain, by using divide-
and-conquer based incremental training method, effectively
circumvents the initialization dilemma by limiting the gradient
flow to few layers at any given time. In order to evaluate the
training convergence properties of BlocTrain with increasing
block depth relative to end-to-end training, we trained 3 different
networks, namely ResNet-5 (Block1), ResNet-7 (Block1+2), and
ResNet-9 (Block1+2+3). Note that we used the same parameters
for the thresholds and the surrogate gradients, as suggested
by Bellec et al. (2018) and Lee et al. (2020), respectively, for
BlocTrain as well as end-to-end training. Figure 5A indicates that
end-to-end training yields higher accuracy than BlocTrain for
Block1, which can be attributed to the fact that BlocTrain uses
a smaller training subset (refer to section 5.1), while end-to-end

Frontiers in Neuroscience | www.frontiersin.org 8 October 2021 | Volume 15 | Article 60343355

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

training uses the entire training set. However, as more blocks are
appended, BlocTrain offers superior accuracy than end-to-end
training despite using a smaller training subset. In fact, end-to-
end training causes slight accuracy degradation for Block1+2+3

compared to Block1+2 network, as depicted in Figure 5A. The
improved accuracy offered by BlocTrain is achieved with higher
memory efficiency, as illustrated in Figure 5B. Training time,
on the contrary, increases with block depth for BlocTrain over
end-to-end training when equivalent mini-batch size is used for
both approaches, as shown in Figure 5C. The increase in training
time is primarily caused by the need to performmultiple forward
passes for the earlier blocks to train deeper blocks. We refer the
readers to section 6.4.2 for comparative analysis of training time
under different mini-batch size considerations.

During inference, ResNet-9 offers 1.89× higher compute
efficiency over the baseline model due to early exit strategy.
The compute efficiency is estimated based on the number of
operations (in the convolutional and linear layers) per inference,
averaged over the test set. However, ResNet-9 also incurs
1.45× memory overhead to store and access the nonlinear
fully connected classifier parameters and block-wise spiking
activations per inference. Figure 6 indicates that as the classifier
confidence thresholds are relaxed to enable more instances
to exit at B1, the overall compute efficiency increases with
commensurate reduction in the memory overhead. We obtain
2.39× higher compute efficiency with 1.25× memory overhead
per inference relative to the baseline network with<0.5% drop in
accuracy, as shown in Figures 6A,B.

5.3. ResNet-11 SNN on CIFAR-100
In the previous section 5.2, we demonstrated that BlocTrain
could dynamically figure out the easy and the hard classes during
the course of training. However, in CIFAR-10, there was clear
separation between the easy and the hard classes. Hence, we could
not analyze what impact would different choices for hard classes
have on the training and the inference efficiency. We set forth
to answer this question for ResNet-11 on CIFAR-100. Once B1
(B2) was trained, we generated three different sets of hard classes
for B3 (B4) by setting the hardness threshold (Acchard−thresh in
Algorithm 1) to 90.5, 92, and 93%, respectively. Higher the
hardness threshold, larger is the number of hard classes for
the deeper layers, and vice versa, as shown in Figure 7A. For
instance, hardness threshold of 90.5% is relatively easy to satisfy
in the earlier blocks, resulting in fewer hard classes for the
deeper layers. On the other hand, a higher hardness threshold
of 93% leads to much more hard classes for the deeper layers.
The training effort for the deeper layers directly corresponds to
the chosen hardness threshold. Higher the hardness threshold,
longer is the training time for the deeper layers.

During inference (θconf set to 0.9999), we found that the
number of instances classified at B1 was the same for all the
three ResNet-11 models, which is expected since the HCD is only
pertinent beyond B1. Beginning from B2, the models with higher
hardness threshold of 92% and 93% were pushing more inputs to
the deeper layers, B3 and B4, while the one with lowest threshold
was classifying a larger fraction of the inputs at B2, as shown
in Figure 7B. As a result, ResNet-11 with hardness threshold

of 90.5% has the highest compute efficiency during inference
(1.78×) followed by the others, as depicted in Figure 7C. Also,
it has the lowest test accuracy (57.56%) relative to that (58.21%)
offered by ResNet-11 with the highest threshold, as shown in
Figure 7D. However, the accuracy increase is only 0.65%, which
indicates that the deeper layers could not significantly improve
the accuracy for the hard classes. This could be an artifact of
the CIFAR-100 dataset, which has only 500 instances per class.
Nevertheless, our analysis indicates that the test accuracy of
58.21%, offered by BlocTrain for ResNet-11 SNN on CIFAR-100,
is∼6% higher relative to that obtained with end-to-end training.
The superior accuracy offered by BlocTrain is a testament to its
ability to scale to deeper SNNs for complex datasets. Finally, we
note that ResNet-11 incurs >2× parameters overhead, as shown
in Figure 7C, due to the inclusion of four nonlinear classifiers.
The overhead can be reduced by merging the B1 and B2 classifiers
since >70% of the instances are classified at B2, and by using
linear classifiers.

5.4. VGG-16 SNN on CIFAR-100
In order to demonstrate the scalability of BlocTrain to
deeper SNNs, we trained VGG-16 architecture (Simonyan and
Zisserman, 2014b) divided into 4 blocks, as illustrated in
Figure 8. Each block is equipped with a simple linear classifier
without any hidden layers so as to reduce the parameter overhead
imposed by BlocTrain. In addition, the final block (Block4)
receives residual inputs from Block1 and Block2 for addressing
the issue of vanishing spikes to deeper blocks of a network.
Also, the firing threshold of the convolutional layers in Block4
needed to be tuned for ensuring efficient spike propagation
and gradient backpropagation. The firing threshold of the
remaining blocks is set to unity. Thus, BlocTrain offers a prior
to suitably initialize the firing threshold of deeper blocks. On the
contrary, threshold initialization remains a challenge for end-
to-end training methods. Too high a firing threshold leads to
vanishing spikes, thereby, necessitating longer simulation time-
steps to achieve competitive accuracy. Too low a threshold
causes exploding spikes, which could negatively impact training
convergence and accuracy. All the blocks are trained on the entire
CIFAR-100 training set. The test set is used to deduce the easy
and the hard classes post the training of each block. The first
two blocks are trained on all the CIFAR-100 classes, while Block3
and Block4 are trained on 87 and 75 hard classes, respectively, as
shown in Figure 9A. The test accuracy, depicted in Figure 9B,
increases until Block2 and nearly saturates for deeper blocks.
VGG-16 SNN achieves best test accuracy of 61.65%, where in
majority of inferences are terminated in the earlier blocks, as
shown in Figure 9C. We already demonstrated the ability of
BlocTrain to provide higher accuracy than end-to-end training,
in sections 5.2 and 5.3, when the same input coding, spiking
nonlinearity, and backpropagation algorithm (and the associated
hyperparameters) are used for both methods. Future works could
improve the accuracy of deeper blocks in large networks by
introducing additional diversity during the training of deeper
blocks. For large datasets, this can be achieved by partitioning
the dataset across the earlier and deeper blocks. In addition,

Frontiers in Neuroscience | www.frontiersin.org 9 October 2021 | Volume 15 | Article 60343356

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 6 | (A) Test accuracy, (B) computational efficiency in terms of the normalized number of synaptic operations and memory overhead per inference, and (C)

percentage of exiting inputs per block vs. classifier confidence thresholds (θconf) for ResNet-9 spiking neural network (SNN) on CIFAR-10.

neural architecture search (Elsken et al., 2019) could be used to
determine the optimal number of hard classes for deeper layers.

6. DISCUSSION

6.1. BlocTrain Hyperparameters Heuristics
In this section, we present the heuristics for setting the BlocTrain
hyperparameters, namely, the hard-class accuracy threshold, also
referred to as the class hardness threshold (Acchard−thresh in
Algorithm 1) and the softmax classifier confidence threshold
(θconf in Algorithm 3). The choice of these hyperparameters
directly impacts the trade-off amongmemory overhead, compute
efficiency, and test accuracy, as illustrated in Figures 6, 7.
Our experiments using ResNet-9 on CIFAR-10 (Figure 6) and
ResNet-11 on CIFAR-100 (Figure 7) establishes the following
key heuristics and trends on the hardness threshold. First, the
hardness threshold is experimentally found to be bounded within
the range [µacc−σacc, µacc+σacc], where µacc is the mean and

σacc is the standard deviation of the class-wise accuracies on
the validation set to obtain favorable trade-off among memory
overhead, compute efficiency, and test accuracy. Second, higher
the hardness threshold, larger is the memory overhead, lower
is the compute efficiency, and better is the test accuracy. For
ResNet-9 on CIFAR-10, we fixed the hardness threshold to 95.5%,
which is roughly equal to the experimental lower bound of
µacc−σacc, where µacc and σacc are 96.79 and 1.43%, respectively,
calculated using the class-wise accuracies reported in Figure 4.
For CIFAR-10, using the lower bound on the hardness threshold
provided favorable memory overhead-test accuracy trade-off
since there were only 10 classes with clear separation between the
easy and the hard classes, as illustrated in Figure 4.

On the other hand, for ResNet-11 on CIFAR-100, we
experimented with hardness thresholds of 90.5–93%, which is
roughly in the range of µacc to µacc+σacc. Setting the hardness
threshold closer to µacc categorized roughly 50 classes as hard
(refer to Figure 7A) based on the validation accuracy of the first

Frontiers in Neuroscience | www.frontiersin.org 10 October 2021 | Volume 15 | Article 60343357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 7 | (A) Number of output classes per block, (B) percentage of exiting inputs per block, (C) compute efficiency in terms of the normalized number of synaptic

operations and memory overhead per inference, and (D) test accuracy vs. hardness threshold (Acchard−thresh) for ResNet-11 spiking neural network (SNN) trained on

the CIFAR-100 dataset.

trained block in ResNet-11. Lowering the hardness threshold
any further would provide <50% of the total number of classes
for the deeper block. Hence, we did not investigate hardness
thresholds much lower than µacc. On the contrary, setting
the hardness threshold to 93% (∼µacc+σacc) categorized close
to 80 classes as hard, leading to higher memory overhead
and lower compute efficiency relative to that achieved with
hardness threshold of 92% (∼µacc + 0.5∗σacc). Hence, for any
network to be trained on a complex dataset such as CIFAR-
100 with a mix of easy and hard classes, setting the hardness
threshold closer to µacc + 0.5∗σacc should yield favorable
trade-offs among memory overhead, compute efficiency, and
accuracy. However, if all the class probabilities are similar
and the class-wise validation accuracies are high, it implies
that the dataset has mostly “easy” classes, and hence, the
hardness threshold can be set to the lower bound. On the other
hand, if the class probabilities are similar and the class-wise
validation accuracies are low, then the dataset has predominantly

“hard” classes, and hence, the hardness threshold could be
set closer to the upper bound. Thus, the hardness threshold,
per se, does not introduce additional complexity during the
training process. As far as the softmax classifier confidence
threshold (θconf) is concerned, we investigated values ranging

from ln(10−2) to ln(10−6) in logarithmic scale. Our experimental
results across the CIFAR-10 and the CIFAR-100 datasets
indicate that θconf of ln(10−3) or ln(10−4) yields favorable
compute efficiency-accuracy trade-off. Hence, the choice of θconf

should not require extensive experimentation to identify the
optimal threshold.

6.2. Blocking Strategy for Deeper SNNs
For the SNNs analyzed in this work, namely, ResNet-9 and
ResNet-11, we divided the network at the granularity of a
residual block and, consequently, inserted an auxiliary classifier
for every residual block. Much deeper networks such as VGG-
19 (Simonyan and Zisserman, 2014b) and ResNet-34 (He et al.,

Frontiers in Neuroscience | www.frontiersin.org 11 October 2021 | Volume 15 | Article 60343358

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 8 | Illustration of VGG-16 spiking neural network (SNN) divided into 4 blocks, where each block is trained sequentially using BlocTrain. The first block is

trained on all the H0 classes. Any subsequent block, Blocki , is trained on the hard classes of Blocki−2 (denoted by Hi−2 in the figure). The final block receives residual

connections from Block1 and Block2 to improve the training efficiency. The number of output feature maps and kernel size are specified for all the blocks. The stride is

set to unity unless explicitly mentioned otherwise.

FIGURE 9 | (A) Number of output classes, (B) test accuracy, and (C) percentage of exiting inputs vs. block depth for VGG-16 spiking neural network (SNN), trained

on the CIFAR-100 dataset.

2016) could be divided at the granularity of few VGG and
residual blocks, respectively, to minimize the overhead stemming
from the extra softmax layer while limiting the gradient flow
to a few layers for stable training using spike-based BPTT. A
more principled approach could be to take into account the
memory and computational cost of adding a classifier after
a certain block and the fraction of instances reaching the
block (obtained from the HCD of the prior classifier block)
for guiding the placement process as proposed in Panda et al.
(2017b). Such a principled methodology will help avoid inserting
too many classifiers, and at the same time help determine
the optimal network size for a given dataset based on the
accuracy requirements.

6.3. Comparison With Early Inference
The proposed BlocTrain method categorizes the classes as hard
or easy, and trains deeper blocks only on the hard class instances.
Inference is terminated at the earlier blocks for easy class
instances while the deeper blocks are activated only when hard

class instances are detected. It is important to note that BlocTrain
attributes uniform hardness (or significance) to all instances of
any given class. In practice, the hardness might not be uniform
across all instances of a class, as noted in prior works (Panda
et al., 2016; Teerapittayanon et al., 2016), which categorized
individual instance as hard or easy irrespective of the general
difficulty of the corresponding class. Therefore, we set forth
to compare the efficacy of BlocTrain with respect to baseline
method, designated as BlocTrain-base, wherein every block is
trained on all the classes. Inference is terminated at a particular
block based on the classifier confidence, that is, if the classifier
prediction probability is higher than a specified confidence
threshold (θconf). The BlocTrain-basemethod effectively classifies
easy instances, belonging to any class, at the earlier blocks and
activates the deeper blocks only for hard instances. For the
proposed BlocTrain method, the original CIFAR-10 or CIFAR-
100 dataset, containing 50,000 images, is split into training set of
40,000 images and validation set of 10,000 images. The validation
set is used to subdivide the classes into easy and hard groups, as

Frontiers in Neuroscience | www.frontiersin.org 12 October 2021 | Volume 15 | Article 60343359

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 10 | (A) Training time per epoch incurred by successive blocks of ResNet-9 spiking neural network (SNN), trained on CIFAR-10 using BlocTrain, wherein

deeper blocks are trained on hard classes, and BlocTrain-base, wherein deeper blocks are trained on all classes. (B) Training time per epoch incurred by successive

blocks of ResNet-11 SNN, trained using BlocTrain and BlocTrain-base methods, on the CIFAR-100 dataset. (C) Percentage of exiting inputs per block for ResNet-9

SNN, trained using BlocTrain and BlocTrain-base methods, on the CIFAR-10 dataset. (D) Percentage of exiting inputs per block for ResNet-11 SNN, trained using

BlocTrain and BlocTrain-base methods, on the CIFAR-100 dataset.

noted in section 5.1. On the contrary, the entire dataset is used
for BlocTrain-base since each of the blocks is trained on all the
classes. The classifier confidence threshold is set to unity for all
the blocks, which causes inference to be terminated at a given
block only if the prediction is obtained with 100% confidence.
Setting the confidence threshold to unity yields the best test
accuracy since it encourages more instances to be classified at the
deeper blocks.

We first present the training efficiency results followed by
inference accuracy-efficiency trade-off provided by BlocTrain
compared to the BlocTrain-base method. BlocTrain offers
reduced or comparable training time (or effort) with increasing
block depth. On the contrary, the training time increases
steadily with block depth for BlocTrain-base, as shown in
Figures 10A,B for ResNet-9 (on CIFAR-10) and ResNet-11 (on

CIFAR-100), respectively. BlocTrain-base incurs higher training
effort compared to BlocTrain due to the following couple of
reasons. First, BlocTrain-base uses the entire training dataset
while BlocTrain divides the original dataset into separate training
and validation sets. Second, BlocTrain-base trains every block
on all the class instances while BlocTrain uses only the hard
class instances for deeper blocks. Despite the higher training
effort, BlocTrain-base offers 88.31% test accuracy for ResNet-
9 SNN on CIFAR-10, which is higher than an accuracy
of 86.4% provided by BlocTrain. For ResNet-11 SNN on
CIFAR-100, BlocTrain-base offers 62.03% accuracy, which is
even higher compared to an accuracy of 58.33% provided by
BlocTrain. The higher accuracy provided by BlocTrain-base
can be attributed to the following factors. First, BlocTrain-
base uses the entire original dataset for training all the blocks.

Frontiers in Neuroscience | www.frontiersin.org 13 October 2021 | Volume 15 | Article 60343360

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

TABLE 1 | Accuracy of spiking neural network (SNN) trained using BlocTrain and end-to-end spike-based backpropagation through time (BPTT) methods, and

SNN/analog neural network (ANN) trained using only the local losses, on the CIFAR-10 dataset.

Model Training method Dataset size %Accuracy

CIFARNet w/ 7 layers (Wu et al., 2019) End-to-end STBP (Wu et al., 2018) 50,000 90.53

ResNet-9 (Lee et al., 2020) End-to-end Spike BP 50,000 90.35

SNN w/ 8 layers (Thiele et al., 2020) End-to-end ANN-based SpikeGrad 50,000 89.72

ResNet-11 (Ledinauskas et al., 2020) End-to-end Spike BP 50,000 90.2

VGG-16 (Rathi et al., 2020) ANN-SNN and end-to-end STDB 50,000 91.13

VGG-16 (Zhou et al., 2020) Direct end-to-end BP 50,000 92.68

SNN w/ 4 layers (Panda and Roy, 2016) Local AutoEncoder 50,000 70.16

ANN w/ 10 layers (Mostafa et al., 2018) Local training 50,000 ∼83

ResNet-9 (our work) BlocTrain 40,000 86.4

ResNet-9 (our work) BlocTrain-base 50,000 88.31

The bold values are used to highlight the results reported in this work over prior works.

TABLE 2 | Accuracy of spiking neural network (SNN) trained using BlocTrain and end-to-end spike-based backpropagation through time (BPTT) methods on the

CIFAR-100 dataset.

Model Training method Dataset size %Accuracy

SNN w/ 8 layers (Thiele et al., 2020) End-to-end ANN-based SpikeGrad 50,000 64.69

VGG-11 (Rathi et al., 2020) ANN-SNN and end-to-end STDB 50,000 67.87

ResNet-50 (Ledinauskas et al., 2020) End-to-end Spike BP 50,000 58.5

ResNet-11 (our work) BlocTrain 40,000 58.21

ResNet-11 (our work) BlocTrain-base 50,000 62.03

VGG-16 (our work) BlocTrain 50,000 61.65

The bold values are used to highlight the results reported in this work over prior works.

FIGURE 11 | (A) Normalized training time per epoch of ResNet-9 and ResNet-11, trained using BlocTrain, relative to end-to-end training on the (A) GeForce GTX

GPU and (B) GeForce RTX GPU.

Second, BlocTrain-base enables the harder instances in every
class to be executed at the deeper blocks, resulting in higher
accuracy. On the contrary, BlocTrain classifies both the easy
and the hard instances of an “easy” class in the earlier blocks,
leading to relatively inferior accuracy. The superior accuracy
offered by BlocTrain-base is obtained with 8.5% and 7.8% higher
computational effort (in terms of number of synaptic operations

per inference) for ResNet-9 (on CIFAR-10) and ResNet-11
(on CIFAR-100), respectively. This is because BlocTrain-base
classifies a larger fraction of hard instances at the ultimate
block, as shown in Figures 10C,D. In summary, BlocTrain-
base offers higher accuracy compared to BlocTrain, albeit,
with longer training time and higher computational effort
during inference.

Frontiers in Neuroscience | www.frontiersin.org 14 October 2021 | Volume 15 | Article 60343361

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

6.4. Comparison With End-to-End Training
6.4.1. Accuracy Comparison

Deep SNNs consisting of 7–11 layers, trained using end-
to-end spike-based backpropagation approaches, have been
shown to achieve >90% accuracy on CIFAR-10, as shown in
Table 1. These networks are trained end-to-end with different
surrogate gradient approximations, for the discontinuous spiking
nonlinearity, than the one used in this work. The various
surrogate gradient-based backpropagation approaches can be
readily integrated into BlocTrain to further improve its efficacy.
In the ANN domain, Mostafa et al. (2018) performed layer-
wise training of 10-layer deep ANN using only the local
discriminative loss and reported best accuracy of ∼83% on
CIFAR-10. BlocTrain, on account of block-wise rather than layer-
wise training, provides much higher accuracy on CIFAR-10.
On the other hand, very few works have reported CIFAR-100
accuracy for SNN trained entirely with spike-based BPTT, as
noted in Table 2. Thiele et al. (2020) reported 64.69% accuracy
for 8-layer deep SNN, wherein the training was performed on
an equivalent ANN using the proposed SpikeGrad algorithm.
Interestingly, Ledinauskas et al. (2020) trained ResNet-50 using
end-to-end spike-based backpropagation and obtained 58.5%
accuracy, which is comparable to that provided by ResNet-11 and
lower than that obtained with VGG-16, trained using BlocTrain.

Finally, we note that prior works have demonstrated much
deeper SNNs, with competitive accuracy, for CIFAR-10, CIFAR-
100, and ImageNet datasets, using either standalone ANN–SNN
conversion (Rueckauer et al., 2017; Sengupta et al., 2019; Han
and Roy, 2020; Han et al., 2020) or a combination of ANN–
SNN conversion and spike-based BPTT methods (Rathi et al.,
2020;Wu et al., 2020). The hybrid approach initializes the weights
and firing thresholds of the SNN using the trained weights of
the corresponding ANN, and then performs incremental spike-
based BPTT to fine-tune the SNN weights. Such a hybrid SNN
training methodology can be incorporated into BlocTrain to
achieve further improvements in accuracy on standard vision
datasets. However, the primary objective of our work is to
improve the training and inference capability of deep SNN for
event-driven spatiotemporal inputs, such as those produced by
dynamic vision sensors (Lichtsteiner et al., 2008), which could
potentially require exclusive spike-based training to precisely
learn the input temporal statistics. We demonstrated higher
accuracy using BlocTrain over end-to-end spike-based BPTT
methods on CIFAR-10 and CIFAR-100 data, mapped to spike
trains, which indicates the capability of BlocTrain to scale to deep
SNNs for complex event-based inputs.

6.4.2. Training Time Comparison

The training time incurred by BlocTrain, relative to end-
to-end training, depends on the training hardware memory
limitations. We evaluated the training time on two different GPU
configurations, namely, Nvidia GeForce GTX and RTX GPUs.
The GeForce GTX GPU, on account of higher memory capacity,
could sustain the same batch size of 64 for both BlocTrain and
end-to-end training methods. Figure 11A indicates that ResNet-
9 SNN and ResNet-11 SNN, trained using BlocTrain on the
GeForce GTX GPU, incurs 1.13× and 1.22× longer training

time, respectively, compared to end-to-end training. The longer
training time incurred by BlocTrain over end-to-end training,
when the same batch size is used for both the methods, can be
attributed to the following twofold reasons.

1. BlocTrain requires multiple forward passes per block during
training, as detailed below for ResNet-9 SNN, consisting of 3
blocks. Block1 incurs 3 separate forward passes for individually
training each of the blocks. The second block incurs 2 forward
passes to train Block2 and Block3. The third and final block
entails a single forward pass to train Block3. On the other hand,
end-to-end training incurs only a single forward pass for all
the blocks.

2. Each block in the original network has an additional nonlinear
classifier that needs to be trained.

Next, we evaluated the training times for BlocTrain and end-
to-end training on the GeForce RTX GPU, which has relatively
lower memory capacity. BlocTrain, by virtue of higher memory
efficiency, could be used to train both ResNet-9 and ResNet-
11 with a batch size of 64. End-to-end training, on account of
hardware memory limitation, necessitated the batch size to be
reduced to 60. Smaller batch size leads to higher number of
batches (or iterations) per training epoch. As a result, BlocTrain
incurs comparable training time for ResNet-9 and 0.85× shorter
training time for ResNet-11 SNN over end-to-end training. For
much deeper networks, the larger memory requirement needed
for end-to-end training could either preclude SNN training or
cause the batch size to be much smaller than that used for
BlocTrain, depending on the hardware memory limitations. In
the case that end-to-end training uses comparatively smaller
batch size, BlocTrain would be both training time and memory
efficient, as shown in Figure 11B.

7. CONCLUSION

End-to-end training of deep SNNs is memory-inefficient due to
the need to perform error BPTT. In this work, we presented
BlocTrain, which is a scalable block-wise training algorithm for
deep SNNs with reducedmemory requirements. During training,
BlocTrain dynamically categorized the classes into easy and hard
groups, and trained the deeper blocks only on the hard class
inputs. In addition, we introduced a hard class detector per block
to enable fast inference with early exit for the easy class inputs
and conditional activation of deeper blocks only for the hard
class inputs. Thus, BlocTrain provides a principled methodology
to determine the optimal network size (in terms of number of
layers) for a given task, depending on the accuracy requirements.
We demonstrated BlocTrain for deep SNNs trained using spike-
based BPTT, on the CIFAR-10 and the CIFAR-100 datasets, with
higher accuracy than end-to-end training method. Future works
could further improve the effectiveness of BlocTrain by using
more complex methods for determining the hard classes, such as
considering the false positives and negatives aside from the class-
wise accuracy. Also, the local discriminative loss, which is used to
separately train the individual blocks, could be augmented with
other local losses as proposed in Nøkland and Eidnes (2019).

Frontiers in Neuroscience | www.frontiersin.org 15 October 2021 | Volume 15 | Article 60343362

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

Finally, well-established methods like neural architecture search
could be used for selecting the BlocTrain hyperparameters such
as the hardness threshold.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.cs.toronto.edu/~kriz/cifar.html.

AUTHOR CONTRIBUTIONS

GS wrote the manuscript and performed the simulations. KR
helped with writing of the manuscript, developing the concepts,
and conceiving the experiments. Both authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported in part by the Center for Brain
Inspired Computing (C-BRIC), one of the six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored
by DARPA, by the Semiconductor Research Corporation,
the National Science Foundation, and the DoD Vannevar
Bush Fellowship.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.603433/full#supplementary-material

REFERENCES

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Belilovsky, E., Eickenberg, M., and Oyallon, E. (2019). “Greedy layerwise learning

can scale to imagenet,” in International Conference on Machine Learning (Long

Beach, CA), 583–593.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). “Long

short-term memory and learning-to-learn in networks of spiking neurons,” in

Advances in Neural Information Processing Systems (Montral, QC), 787–797.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). “Greedy layer-

wise training of deep networks,” in Advances in Neural Information Processing

Systems (Vancouver, BC), 153–160.

Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. (2019). “Benchmarking

keyword spotting efficiency on neuromorphic hardware,” in Proceedings of the

7th Annual Neuro-inspired Computational Elements Workshop (Albany, NY:

ACM).

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: A neuromorphic manycore processor with on-chip learning.

IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Pedroni, B. U., Cassidy, A., Merolla, P., Neftci, E., and Zarrella, G.

(2016). “Truehappiness: neuromorphic emotion recognition on truenorth,” in

2016 International Joint Conference on Neural Networks (IJCNN) (Vancouver,

BC: IEEE), 4278–4285.

Dong, L.-F., Gan, Y.-Z., Mao, X.-L., Yang, Y.-B., and Shen, C. (2018). “Learning

deep representations using convolutional auto-encoders with symmetric skip

connections,” in 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (Calgary, AB: IEEE), 3006–3010.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: a

survey. J. Mach. Learn. Res. 20, 1–21. doi: 10.1007/978-3-030-05318-5_11

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio,

S. (2010). Why does unsupervised pre-training help deep learning? J. Mach.

Learn. Res. 11, 625–660. Available online at: http://jmlr.org/papers/v11/

erhan10a.html

Ferré, P., Mamalet, F., and Thorpe, S. J. (2018). Unsupervised feature

learning with winner-takes-all based stdp. Front. Comput. Neurosci. 12:24.

doi: 10.3389/fncom.2018.00024

Freund, Y., and Schapire, R. E. (1995). “A desicion-theoretic generalization of

on-line learning and an application to boosting,” in European Conference on

Computational Learning Theory (Barcelona: Springer), 23–37.

Gruslys, A., Munos, R., Danihelka, I., Lanctot, M., and Graves, A. (2016).

“Memory-efficient backpropagation through time,” in Advances in Neural

Information Processing Systems (Barcelona), 4125–4133.

Han, B., and Roy, K. (2020). “Deep spiking neural network: energy efficiency

through time based coding,” in Proceedings of the European Conference on

Computer Vision (ECCV) (Glasgow, UK). Available online at: https://eccv2020.

eu/

Han, B., Srinivasan, G., and Roy, K. (2020). “Rmp-snn: Residual membrane

potential neuron for enabling deeper high-accuracy and low-latency spiking

neural network,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 13558–13567.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778.

Heeger, D. (2000). Poisson Model of Spike Generation. Stanford University

Handout. Available online at: https://www.cns.nyu.edu/~david/handouts/

poisson.pdf

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning

algorithm for deep belief nets. Neural Comput. 18, 1527–1554.

doi: 10.1162/neco.2006.18.7.1527

Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the dimensionality of

data with neural networks. Science 313, 504–507. doi: 10.1126/science.1127647

Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., and Weinberger, K.

(2018). “Multi-scale dense networks for resource efficient image classification,”

in International Conference on Learning Representations (Vancouver, BC).

Ivakhnenko, A. G., and Lapa, V. G. (1965). “Cybernetic predicting devices,” in

CCM Information Corporation (New York, NY: CCM Information Corp).

Available online at: https://www.worldcat.org/title/cybernetic-predicting-

devices/oclc/23815433

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver,

D., et al. (2017). “Decoupled neural interfaces using synthetic gradients,” in

Proceedings of the 34th International Conference on Machine Learning, Vol. 70,

(Sydney: JMLR. org.), 1627–1635.

Jin, Y., Zhang, W., and Li, P. (2018). “Hybrid macro/micro level backpropagation

for training deep spiking neural networks,” in Advances in Neural Information

Processing Systems (Montral, QC), 7005–7015.

Kaiser, J., Mostafa, H., and Neftci, E. (2018). Synaptic plasticity dynamics for deep

continuous local learning. arXiv preprint arXiv:1811.10766.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).

Stdp-based spiking deep convolutional neural networks for object recognition.

Neural Netw. 99:56–67. doi: 10.1016/j.neunet.2017.12.005

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Ledinauskas, E., Ruseckas, J., Juršėnas, A., and Buračas, G. (2020). Training deep

spiking neural networks. arXiv preprint arXiv:2006.04436.

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018). Training deep

spiking convolutional neural networks with stdp-based unsupervised

pre-training followed by supervised fine-tuning. Front. Neurosci. 12:435.

doi: 10.3389/fnins.2018.00435

Frontiers in Neuroscience | www.frontiersin.org 16 October 2021 | Volume 15 | Article 60343363

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.frontiersin.org/articles/10.3389/fnins.2021.603433/full#supplementary-material
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1007/978-3-030-05318-5_11
http://jmlr.org/papers/v11/erhan10a.html
http://jmlr.org/papers/v11/erhan10a.html
https://doi.org/10.3389/fncom.2018.00024
https://eccv2020.eu/
https://eccv2020.eu/
https://www.cns.nyu.edu/~david/handouts/poisson.pdf
https://www.cns.nyu.edu/~david/handouts/poisson.pdf
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1126/science.1127647
https://www.worldcat.org/title/cybernetic-predicting-devices/oclc/23815433
https://www.worldcat.org/title/cybernetic-predicting-devices/oclc/23815433
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.3389/fnins.2018.00435
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-

based backpropagation for training deep neural network architectures. Front.

Neurosci. 14:119. doi: 10.3389/fnins.2020.00119

Lee, C., Srinivasan, G., Panda, P., and Roy, K. (2019). Deep spiking convolutional

neural network trained with unsupervised spike timing dependent plasticity.

IEEE Trans. Cogn. Dev. Syst. 11, 384–394. doi: 10.1109/TCDS.2018.2833071

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120 db 15 µs

latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ.

43, 566–576. doi: 10.1109/JSSC.2007.914337

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Marquez, E. S., Hare, J. S., and Niranjan, M. (2018). Deep cascade

learning. IEEE Trans. Neural Netw. Learn. Syst. 29, 5475–5485.

doi: 10.1109/TNNLS.2018.2805098

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual

features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31.

doi: 10.1371/journal.pcbi.0030031

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mostafa, H., Ramesh, V., and Cauwenberghs, G. (2018). Deep supervised learning

using local errors. Front. Neurosci. 12:608. doi: 10.3389/fnins.2018.00608

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., and Masquelier,

T. (2018). Combining stdp and reward-modulated stdp in deep convolutional

spiking neural networks for digit recognition. arXiv preprint arXiv:1804.00227.

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in

spiking neural networks. arXiv preprint arXiv:1901.09948.

Nøkland, A., and Eidnes, L. H. (2019). Training neural networks with local error

signals. arXiv preprint arXiv:1901.06656.

Panda, P., Ankit, A., Wijesinghe, P., and Roy, K. (2017a). Falcon: feature

driven selective classification for energy-efficient image recognition.

IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 36, 2017–2029.

doi: 10.1109/TCAD.2017.2681075

Panda, P., and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition,” in 2016 International

Joint Conference on Neural Networks (IJCNN) (Vancouver, BC: IEEE),

299–306.

Panda, P., Sengupta, A., and Roy, K. (2016). “Conditional deep learning for energy-

efficient and enhanced pattern recognition,” in 2016 Design, Automation Test in

Europe Conference Exhibition (DATE) (Dresden: IEEE), 475–480.

Panda, P., Sengupta, A., and Roy, K. (2017b). Energy-efficient and improved image

recognition with conditional deep learning. ACM J. Emerg. Technol. Comput.

Syst. 13, 33. doi: 10.1145/3007192

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). “Enabling deep

spiking neural networks with hybrid conversion and spike timing dependent

backpropagation,” in International Conference on Learning Representations

2020 (Addis Ababa). Available online at: https://iclr.cc/Conferences/2020

Roy, D., Panda, P., and Roy, K. (2019). Synthesizing images from spatio-temporal

representations using spike-based backpropagation. Front. Neurosci. 13:621.

doi: 10.3389/fnins.2019.00621

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Fron. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: vgg and residual architectures. Front. Neurosci. 13:95.

doi: 10.3389/fnins.2019.00095

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment

in time,” in Advances in Neural Information Processing Systems (Montral, QC),

1412–1421.

Simonyan, K., and Zisserman, A. (2014a). “Two-stream convolutional networks

for action recognition in videos,” in Advances in Neural Information Processing

Systems (Montreal, QC), 568–576.

Simonyan, K., and Zisserman, A. (2014b). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556.

Srinivasan, G., Panda, P., and Roy, K. (2018). Stdp-based unsupervised feature

learning using convolution-over-time in spiking neural networks for energy-

efficient neuromorphic computing. ACM J. Emerg. Technol. Comput. Syst. 14,

44. doi: 10.1145/3266229

Srinivasan, G., and Roy, K. (2019). Restocnet: Residual stochastic binary

convolutional spiking neural network for memory-efficient neuromorphic

computing. Front. Neurosci. 13:189. doi: 10.3389/fnins.2019.00189

Srivastava, N., and Salakhutdinov, R. R. (2013). “Discriminative transfer learning

with tree-based priors,” in Advances in Neural Information Processing Systems

(Lake Tahoe), 2094–2102.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence learning

with neural networks,” in Advances in Neural Information Processing Systems

(Montreal, QC), 3104–3112.

Tavanaei, A., Kirby, Z., and Maida, A. S. (2018). “Training spiking convnets by

stdp and gradient descent,” in 2018 International Joint Conference on Neural

Networks (IJCNN) (Rio de Janeiro: IEEE), 1–8.

Teerapittayanon, S., McDanel, B., and Kung, H.-T. (2016). “Branchynet: Fast

inference via early exiting from deep neural networks,” in 2016 23rd

International Conference on Pattern Recognition (ICPR) (Cancun: IEEE),

2464–2469.

Thiele, J. C., Bichler, O., and Dupret, A. (2018). Event-based, timescale invariant

unsupervised online deep learning with stdp. Front. Comput. Neurosci. 12:46.

doi: 10.3389/fncom.2018.00046

Thiele, J. C., Bichler, O., and Dupret, A. (2020). “Spikegrad: an ann-equivalent

computation model for implementing backpropagation with spikes,” in

International Conference on Learning Representations (Addis Ababa). Available

online at: https://iclr.cc/Conferences/2020

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). “Extracting

and composing robust features with denoising autoencoders,” in Proceedings

of the 25th International Conference on Machine Learning (Helsinki: ACM),

1096–1103.

Wu, J., Xu, C., Zhou, D., Li, H., and Tan, K. C. (2020). Progressive tandem learning

for pattern recognition with deep spiking neural networks. arXiv preprint

arXiv:2007.01204.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct

training for spiking neural networks: faster, larger, better,” in Proc.

AAAI Conf. Artif. Intell. 33, 1311–1318. doi: 10.1609/aaai.v33i01.330

11311

Yan, Z., Zhang, H., Piramuthu, R., Jagadeesh, V., DeCoste, D., Di, W., et al. (2015).

“Hd-cnn: hierarchical deep convolutional neural networks for large scale visual

recognition,” in Proceedings of the IEEE International Conference on Computer

Vision (Santiago: IEEE), 2740–2748.

Zenke, F., and Ganguli, S. (2018). Superspike: supervised learning in

multilayer spiking neural networks. Neural Comput. 30, 1514–1541.

doi: 10.1162/neco_a_01086

Zhou, S., LI, X., Chen, Y., Chandrasekaran, S. T., and Sanyal, A. (2020). Temporal-

coded deep spiking neural network with easy training and robust performance.

arXiv preprint arXiv:1909.10837.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Srinivasan and Roy. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 October 2021 | Volume 15 | Article 60343364

https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1109/TCDS.2018.2833071
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/TNNLS.2018.2805098
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2018.00608
https://doi.org/10.1109/TCAD.2017.2681075
https://doi.org/10.1145/3007192
https://iclr.cc/Conferences/2020
https://doi.org/10.3389/fnins.2019.00621
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1145/3266229
https://doi.org/10.3389/fnins.2019.00189
https://doi.org/10.3389/fncom.2018.00046
https://iclr.cc/Conferences/2020
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1162/neco_a_01086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 25 April 2022

doi: 10.3389/fnins.2022.838523

Frontiers in Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 838523

Edited by:

Anup Das,

Drexel University, United States

Reviewed by:

Shruti R. Kulkarni,

Oak Ridge National Laboratory (DOE),

United States

Gourav Datta,

University of Southern California,

United States

Seongsik Park,

Korea Institute of Science and

Technology (KIST), South Korea

Dongcheng Zhao,

Institute of Automation (CAS), China

Timothée Masquelier,

Centre National de la Recherche

Scientifique (CNRS), France

*Correspondence:

Abhronil Sengupta

sengupta@psu.edu

Specialty section:

This article was submitted to

specialty of Frontiers in Neuroscience,

a section of the journal

Frontiers in Neuroscience

Received: 17 December 2021

Accepted: 11 March 2022

Published: 25 April 2022

Citation:

Lu S and Sengupta A (2022)

Neuroevolution Guided Hybrid Spiking

Neural Network Training.

Front. Neurosci. 16:838523.

doi: 10.3389/fnins.2022.838523

Neuroevolution Guided Hybrid
Spiking Neural Network Training
Sen Lu and Abhronil Sengupta*

School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States

Neuromorphic computing algorithms based on Spiking Neural Networks (SNNs) are

evolving to be a disruptive technology driving machine learning research. The overarching

goal of this work is to develop a structured algorithmic framework for SNN training

that optimizes unique SNN-specific properties like neuron spiking threshold using

neuroevolution as a feedback strategy. We provide extensive results for this hybrid

bio-inspired training strategy and show that such a feedback-based learning approach

leads to explainable neuromorphic systems that adapt to the specific underlying

application. Our analysis reveals 53.8, 28.8, and 28.2% latency improvement for the

neuroevolution-based SNN training strategy on CIFAR-10, CIFAR-100, and ImageNet

datasets, respectively in contrast to state-of-the-art conversion based approaches.

The proposed algorithm can be easily extended to other application domains like

image classification in presence of adversarial attacks where 43.2 and 27.9% latency

improvements were observed on CIFAR-10 and CIFAR-100 datasets, respectively.

Keywords: Spiking Neural Networks, neuroevolution, adversarial attack, neuromorphic computing, hybrid training

1. INTRODUCTION

Spiking Neural Network (SNN) based next-generation brain-inspired computational paradigms
are emerging to be a disruptive technology driving machine learning research due to its unique
temporal, event-driven behavior. SNN computing models are driven by the fact that biological
neurons process information temporally and the computation is triggered by sparse events or
spikes transmitted from fan-in neurons. Recent work has demonstrated that event-driven SNNs can
result in a significant reduction of power consumption and communication overhead in hardware
implementations of Artificial Intelligence (AI) platforms by exploiting “dynamic” sparsity in neural
activations (Merolla et al., 2014; Davies et al., 2018). In addition to event-driven computing in the
network itself, such a computing framework is an ideal fit for the emerging market of low-power,
low-latency event-driven sensors (Gallego et al., 2019) that capture spatio-temporal information in
the spiking domain. Such an end-to-end pipeline across the stack from sensors to the hardware and
computational primitives enables us to truly leverage advantages from event-driven computation
and communication.

While the true potential of SNNs is expected to be demonstrated on spatio-temporal
application drivers triggered by sparse events (Gallego et al., 2019; Mahapatra et al., 2020)
by leveraging its temporal processing capability (Shrestha and Orchard, 2018; Neftci et al.,
2019), significant research has been also performed to establish its near-term efficacy on
standard static recognition tasks (Rueckauer et al., 2017; Sengupta et al., 2019; Wu et al.,
2019; Lu and Sengupta, 2020; Rathi and Roy, 2020; Rathi et al., 2020; Deng and Gu,
2021), routinely performed by conventional deep learning methods [referred to as Analog
Neural Networks (ANNs) (Diehl et al., 2015), hereafter]. The vast majority of works in this
domain have focused on rate encoding frameworks (Diehl et al., 2015) where the operation

65

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.838523
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.838523&domain=pdf&date_stamp=2022-04-25
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sengupta@psu.edu
https://doi.org/10.3389/fnins.2022.838523
https://www.frontiersin.org/articles/10.3389/fnins.2022.838523/full

Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

of the ANN is distributed as binary information over time in
the SNN, resulting in a significant reduction of peak power
consumption (Singh et al., 2020). To achieve supervised SNN
training, two competing approaches are usually adopted:
(i) ANN-SNN conversion: In this scenario, an ANN is trained
with specific constraints (Diehl et al., 2015; Rueckauer et al.,
2017; Sengupta et al., 2019; Lu and Sengupta, 2020) and
subsequently converted to an SNN for event-driven inference
on neuromorphic hardware. The conversion process is enabled
by the equivalence of Rectified Linear Unit (ReLU) functionality
of ANN neurons to the operation of an Integrate-Fire (IF)
spiking neuron. The method takes advantage of standard ANN
backpropagation techniques like stochastic gradient descent but
is limited by the baseline ANN accuracy. Recent works have been
directed at minimizing the accuracy loss during the conversion
process (Lu and Sengupta, 2020; Deng and Gu, 2021) and
have reported competitive accuracies in large-scale machine
learning tasks.
(ii) Direct SNN training: Direct SNN training by adopting
backpropagation through time (BPTT) has also proven successful
recently, albeit in simpler image classification tasks. Gradient
descent is usually performed in SNNs by approximating the
spiking neuron operation by surrogate gradients to avoid the
discontinuity in the neuron transfer function due to discrete
spiking behavior (Shrestha andOrchard, 2018; Neftci et al., 2019).
While SNN training from scratch would probably benefit from
temporal processing in neuromorphic chips, current near-term
GPU-enabled training suffers from limited scalability due to
exploding memory requirements for BPTT.

Relative advantages and disadvantages of the two approaches
are still being explored. Initial work has suggested that direct
SNN training from scratch (Lee et al., 2020) or a hybrid method
of fine-tuning an ANN-SNN converted network for a few epochs
through BPTT (Rathi et al., 2020) can significantly reduce the
SNN inference latency. However, recent approaches have shown
that significant latency reduction can be also achieved through
simple design-time and run-time optimizations in the ANN-
SNN conversion process as well (Lu and Sengupta, 2020). This is
also intuitive since the application drivers for image classification
tasks are static and do not involve temporal information.
Also, gradient descent is utilized to minimize the classification
error in the rate encoding framework for both scenarios and
not the inference latency. The ANN-SNN conversion process
essentially abstracts the SNN operation in a time-averaged
fashion during the training process without exploiting precise
timing information for gradient descent.

This article is an attempt to develop a structured algorithmic
framework for the ANN-SNN conversion process. The key
parameter driving the event-driven temporal behavior of neurons
in the SNN is the neuron threshold. A higher neuron threshold
is useful for distinguishability of temporal evidence integration
(Sengupta et al., 2019) and therefore translates to higher
accuracy. A higher threshold also causes the neurons to
spike less frequently thereby increasing the spiking sparsity
at the cost of increased latency. Inference latency (impacting
delay) and sparsity of the spike train (impacting power)
are key metrics governing the energy efficiency (delay ×
power) of SNNs implemented on neuromorphic hardware.

Hence, we can abstract the SNN network performance
(accuracy/latency/power/energy) to be a function of the neuron
thresholds in each layer of the network. It is worth mentioning
here that all neurons in a particular layer have the same threshold
to ensure consistent rate encoded information in each layer.
Previous works have mainly optimized neuron thresholds to
maximize accuracy (Sengupta et al., 2019) or adopt a sub-optimal
heuristic choice for all thresholds in the network to reduce
inference latency with minimal accuracy drop (Lu and Sengupta,
2020). However, different layers’ thresholds of a network may
have varying non-linear impact on the SNN efficiency metric
and a holistic singular choice for the entire network may not be
optimal. Further, the thresholds may also need to be re-tuned for
different efficiency metrics of choice. Driven by this observation,
we propose a hybrid training framework where a converted SNN
is optimized in tandem with a neuroevolutionary algorithm.
Once an ANN with appropriate constraints for conversion
has been trained, we optimize the layerwise threshold using a
neuroevolutionary algorithm. Neuroevolution optimized neural
networks is a growing topic of interest (Stanley et al., 2019)
guided by the notion that biological brains are an outcome of
natural evolution. It is worth mentioning here that our proposal
is not specific to the optimizer.We chose evolutionary algorithms
due to their simple gradient-free operation, parallelizability, and
ability to outperform reinforcement learning algorithms at scale
(Such et al., 2017; Stanley et al., 2019). The neuroevolution
process considers a space of possible candidate solutions (defined
by a set of layerwise neuron thresholds) and evaluates a cost
function (latency, accuracy, among others) by evaluating the
candidate SNN on a subset of the training set through the
evolution generations. The additional computing overhead due
to the hybrid approach is therefore driven by relatively cheaper
SNN inference runs. The main contributions of the article can be
summarized as:

(i) We present a simple automated framework to optimize
an SNN by a hybrid training process that does not suffer from
computationally expensive operations like BPTT.

(ii) We evaluate our approach with regards to SNN
inference latency improvements on static image classification
tasks and adversarial attack scenarios (CIFAR-10, CIFAR-100,
and ImageNet datasets). The framework can be easily extended
to involve hardware aware constraints as well like peak power or
energy consumption in specific layers.

(iii) We present design insights to interpret the optimized
SNN thresholds. For image classification and adversarial attack
scenarios, we obtain an interpretable understanding of the need
for layerwise SNN optimization.

2. RELATED WORKS

Hybrid SNN training: Prior work has considered hybrid
SNN training approaches (Lee et al., 2018, 2020; Rathi and
Roy, 2020; Rathi et al., 2020). Relevant to our approach,
Rathi and Roy (2020) considered training an ANN-SNN
converted spiking network through BPTT for a few epochs
to improve on inference latency. However, during the second
stage of BPTT training, gradient descent was performed not
only on the weights, but also on the neuron thresholds

Frontiers in Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 83852366

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

and additional leak parameters that were introduced in this
second training stage. The requirement of joint optimization
of weights and thresholds may not be necessary since
the ratio of the two governs the spiking neuron behavior
(Sengupta et al., 2019). Further, optimization of additional
leak parameters adds to the computational burden of SNN
BPTT. It is also unclear whether the superior SNN performance
is attributed primarily to a fine-tuned optimized threshold
or whether time-based information in training also plays
a role.

In contrast, our algorithm adopts a simplistic approach of
fine-tuning only the SNN thresholds to optimize the metric of
choice using neuroevolutionary algorithms. Neuroevolutionary
algorithms are easily parallelizable and the search parameter
space in our scenario is bounded by the number of network
layers and hence is not computationally expensive. The
search process also involves evaluation of the cost function
which is equivalent to the relatively cheaper SNN inference
simulations and does not suffer from the explosive computational
requirements of BPTT. The work also aims to serve as a
benchmark for static image classification tasks to address the
question of whether BPTT training from scratch or fine-
tuning adds significantly to the training process. We provide
results to substantiate that conversion techniques might produce
competitive SNNs in application drivers not exploiting temporal
information.
Neuroevolution in SNN training: Evolutionary algorithms
have been used for training SNNs (Schuman et al., 2016,
2020; Elbrecht and Schuman, 2020) where the computational
unit (neuron/synapse) parameters and network architectures
have been optimized. A variety of techniques like EONS
(Schuman et al., 2020) and HyperNEAT (Elbrecht and Schuman,
2020) algorithms have been used to train the networks from
scratch. However, the techniques have been primarily evaluated
on simple machine learning tasks. Hence, the scalability
of the approaches remains unclear. Our work considers
a hybridized approach where a supervised conventional
SNN is optimized with a neuroevolutionary algorithm
depending on the cost function of choice (accuracy, latency,
among others), thereby leveraging the scalability of gradient
descent approaches.
Significance driven layerwise optimizations: There have been
a plethora of works recently in the deep learning community
on layerwise optimizations of different parameters based on
their significance to a relevant cost function. For instance,
bit widths of weights and activations per layer have been
optimized from computation requirement perspective (Garg
et al., 2019; Wang et al., 2019; Chakraborty et al., 2020a; Khan
et al., 2020; Panda, 2020). Distinct from prior methods, this
work explores significance-driven layerwise optimizations for
SNN training.

3. PRELIMINARIES

3.1. Spiking Neural Networks
Let us first consider the algorithmic formulation underpinning
ANN-SNN conversion (Rueckauer et al., 2017; Deng and Gu,

2021). In T timesteps, for an N-layer SNN converted by copying
the weights Wn from an ANN (where n ∈ N), suppose
that a particular neuron in the n-th layer at the t-th timestep
has membrane potential denoted by V t

n. When the membrane
potential is greater than the threshold Vthn, the neuron is reset
by subtracting Vthn from the potential. The membrane potential
dynamics of the subtractive IF neurons in response to the input
signal xtn for the n-th layer can be expressed as the following:

V t+1
n = V t

n +Wn ∗ x
t
n − Vthn ∗ 1V t

n>Vthn (1)

where, 1V t
n>Vthn is an indicator function defined as:

1V t
n>Vthn → {0, 1} =

{

1 if V t
n > Vthn

0 otherwise
(2)

As the neuron accumulates spikes over time, assuming V0
n = 0,

the membrane potential for a particular neuron of the n-th layer
can be expressed as:

VT
n =Wn ∗

T
∑

t=0

xtn − Vthn ∗

T
∑

t=0

1V t
n>Vthn (3)

In the rate encoding framework, the average magnitude of the

input spikes over T timesteps, x̂n =
∑T

t=0 x
t
n/T, represents the

equivalent SNN input activation for the n-th layer. Simplifying
Equation (3),

VT
n

T
=Wn ∗ x̂n −

Vthn

T
∗

T
∑

t=0

1V t
n>Vthn (4)

The average input spikes to the (n + 1)-th layer, x̂n+1, is the

summed indicator function
∑T

t=0 1V t
n>Vthn . Hence Equation (4)

can be rearranged as:

x̂n+1 =
Wn ∗ x̂n

Vthn/T
−

VT
n

Vthn
(5)

Assuming that the remaining VT
n will be less than the threshold

Vthn and will not result in a spike, the neuron transfer function
can be formulated with a clipping function as the following (Deng
and Gu, 2021):

x̂n+1 =
1

T
∗ clip

(⌊

Wn ∗ x̂n

Vthn/T

⌋

, 0,T

)

(6)

where, a clipping function clip(a, b, c) restricts the value a to
be minimally b or maximally c, and does not affect a’s value
when b ≤ a ≤ c. As shown in Equation (6), the output
of a layer is critically dependent on the threshold Vth of the
layer and is a bit discretized version of the ReLU functionality,
thereby enabling ANN-SNN conversion. It is worth mentioning
that this simplification of neuron transfer function may differ
slightly from the actual network simulation due to positive and
negative membrane potential cancelations (Deng and Gu, 2021)
or multiple neuron fan-in (Sengupta et al., 2019).

Frontiers in Neuroscience | www.frontiersin.org 3 April 2022 | Volume 16 | Article 83852367

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

3.2. Differential Evolution Algorithm
Differential Evolution (DE) is a parallel direct search method
that optimizes a solution iteratively through evolving candidate
solutions. Unlike other optimization techniques such as gradient
descent that requires the problem to be differentiable, DE can
be applied to noisy and discrete problems. DE starts with a
population P of initial candidate solutions (randomly initialized
or normally distributed around the preliminary solution). In each
iteration, the existing candidates are mutated and evaluated by
a cost function, and the best ones become members of the next
generation. The evolution of new solutions is achieved by two
operations, namely “mutation” and “crossover.”
(i) Mutation in DE algorithm refers to adding the weighted
difference between two candidates to the third. The mutation
process to obtain the i-th vector Evg+1 at generation g + 1 is
given by:

Evi,g+1 = Exr1,g +M × (Exr2,g − Exr3,g) (7)

where, Exr1,g is the r1-th vector of generation g, r1, r2, r3 ∈
{1, 2, .., P} are random indices in the population. M ∈ [0, 2] is
a real-valued hyper-parameter controlling the extent of mutation
in differential variation.
(ii) Crossover adds diversity by creating a trial vector Eui,g+1 with
problem dimension D at generation g + 1:

Eui,g+1 = [ui,g+1(1), ui,g+1(2), . . . , ui,g+1(D)] (8)

in which,

ui,g+1(j) =

{

vi,g+1(j) if [rand(j) ≤ C] or j = randInd(Evi,g+1)

xi,g(j) otherwise

(9)

where, j ∈ 1, 2, ...,D, ui,g+1(j) is the j-th element of the trial
vector Eui,g+1, rand(j) is a real-valued uniform random number
generator (RNG) outcome with the range [0, 1] evaluated at j-th
time; C is another real-valued hyper-parameter that controls the
extent of inheritance from the mutant vector Evi in the trial vector
Eui. randInd(Evi,g+1) randomly selects an index from the given
vector’s dimension 1, 2, ...,D and the condition after “or” enforces
that there is at least one element from Evi. The candidate solution
Eui,g+1 will be evaluated against Exi,g on the same cost function and
the one with the lower cost will be selected as the member of
(g + 1)-th generation. Considering that the DE solution takes G
generations to converge, the total number of function evaluations
(nfe) during the optimization process is therefore given by:

nfe = G× P (10)

In this work, we used the DE implementation by a Python-based
toolkit “SciPy” (Virtanen et al., 2020), which is based on the
algorithm outlined in Storn and Price (1997).

4. NEUROEVOLUTION GUIDED HYBRID
SNN TRAINING ALGORITHM

As discussed previously, our proposed neuroevolution optimized
SNN models are trained using a hybrid approach—(i) standard

ANN-SNN conversion (Lu and Sengupta, 2020) followed by
(ii) DE optimization of SNN neuron thresholds. The DE
optimization is driven by a cost-function evaluated on randomly
chosen subsets from the training set. The random shuffling of the
sub-dataset adds a regularization effect to the training process.
Next, we discuss our cost-function formulation for handling the
accuracy-latency tradeoff in standard image classification tasks.
We utilize a similar approach for adversarial attack scenarios on
the same dataset and show that the thresholds adapt to the new
cost-function, thereby showing the flexibility of the approach.
Finally, we also provide insights to explain the optimal threshold
choice. A detailed implementation of our proposed method is
shown in Algorithm 1.

4.1. Latency-Accuracy Tradeoff Driven
Optimization and Interpretibility
Our multi-objective DE cost-function consists of weighted
factors to optimize the latency of the SNN along with
the final accuracy. In particular, the latency is abstracted
by the timestep at which it reaches the highest gradient
in the accuracy-time variation function. The resulting costs
are scaled by hyperparameters (α,β , and γ) and then
linearly summed up. To summarize, the cost function is
as follows:

Cost = α × J + β × [1−max(∇)]+ γ × (1− Acc[T]) (11)

where, J is argmax
t
{∇Acc(t)}, the timestep at which the

SNN reaches the highest gradient in accuracy max(∇) with
respect to time. The maximal gradient magnitude is also
added to the cost function to guide solutions toward models
with sharper accuracy-timestep transitions such that latency
required to reach a specific accuracy is minimized. We
observed that this was critical to achieving the latency-accuracy
tradeoff. Finally, the cost function also includes Acc[T], the
final accuracy of the model at timestep T (a sufficiently
long time window for inference) where Acc[] is a function
of accuracy against time. It is worth reiterating here that
the accuracy is evaluated over randomly chosen subsets of
the training set for each candidate solution. The impact of
each individual component in the cost function is depicted
in Figure 1.

Figure 2A depicts the optimized threshold [expressed as a
percentile of the maximum ANN activation (Lu and Sengupta,
2020): higher percentile values translate to higher threshold]
as a function of layer number for a typical run. In order
to attain an understanding for the importance of layerwise
neuron threshold optimization, we hypothesized that this might
be correlated to the significance of a particular layer toward
its prediction capability. For this purpose, we used Principal
Component Analysis (PCA)—one of the prominent tools that
can be used to quantify a neural network layer’s significance
(Chakraborty et al., 2020b). In short, PCA can be thought of as
an orthogonal transformation that maps uncorrelated variables
in the input data points and forms a basis vector set that
maximizes the variance in different directions. Generally, neural
network models project the input into higher dimensions as

Frontiers in Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 83852368

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

Algorithm 1:DE guided hybrid SNN training algorithm.

1 Function CalculateCost(Acc[],α,β , γ):
Data:

Acc[t]: A list of size T, where t = {1, 2, ..., T}
α,β , γ ∈ R

Result: cost
33 ∇[]← ∂(Acc)

∂t // Gradient of accuracy function

55 cost← α × argmax
t
{∇[t]} + β × (1−max{∇})+

γ × (1− Acc[T])
77 return cost

8 Function

DE(SNN,Thresholds[],TH, std, P,M,C,G,α,β , γ):
Data:

SNN: Base SNN model
Thresholds[]: A 2D array of shape P ∗ N, where N is
the number of layers, P is the population size
TH: Base threshold values at 99.7 percentile
std: Desired standard deviation of the initial
population
M: Mutation factor
C: Crossover factor
G: Number of maximum generations
α,β , γ ∈ R: Scaling factors of the cost function
Result: bestThr: The thresholds with lowest evaluation

score
1010 Thresholds[]← Initialize(TH, P, std) s.t.

Thresholds[, n]← X ∼ N(TH[n], std2)
1212 Randomly select B samples from the training set and

create mini-dataset S
1414 Acc[]← 0 // length of T

1616 bestCost← 0, bestThr← φ

// Variables for tracking

17 for g ← 1 to G do

18 for p← 1 to P do
/* Generates new candidate thresholds

after applying Eqn. 7 - 9 */

19 NewThreshold[]←
Evolution(Thresholds[], p,M,C)
/* Initialize SNN with the new thresholds

for evaluation */

20 SNN.Update (Threshold)
21 for samplebatch in S do

/* SNN inference */

2323 Acc[]←SNN(samplebatch,T)

24 end

/* Apply Eqn. 11 */

2626 cost← CalculateCost(Acc[],α,β , γ)
27 if bestCost>cost then
28 bestCost← cost
29 bestThr← NewThreshold[]

30 end

31 end

32 return bestThr

FIGURE 1 | Impact of various components of the cost function on the

accuracy-latency tradeoff for VGG-15 model on CIFAR-100 dataset.

FIGURE 2 | The thresholds are expressed as the percentile of the maximum

ANN activations. Both the figures are plotting one of the best solutions in their

respective scenarios. (A) The optimized threshold shows a similar general

trend as the principal components. (B) Blue and red: layerwise ANS value (left

vertical axis) of the ANN and the converted + optimized SNN, respectively.

ANS is significantly reduced after optimization. Green: The optimized threshold

(right vertical axis) shows drastic reduction after layer 10 corresponding to the

layers where the ANS metric is significantly reduced.

layers get deeper with the goal of achieving linear separability
at the final output layer. Therefore, the calculation of the
Principal Components (PCs) of each layer’s feature map is
able to quantify the projective ability of each layer and thus
its significance.

We performed PCA on the feature maps before the non-
linear activation to examine the redundancy in every layer as the
dimension increases. To explain the first, say R%, of the variance
in the feature map of the layer, only a number of the PCs, denoted
by k, are needed. Given an activation map P with dimension
B × H × W × F, where B is the mini-batch size, H and W are
height and width of the filter, respectively, and F is the number of
filters, it is first flattened to 1D in the first three dimensions. This
makes the activationQ a 2D matrix with dimension K× F where
K = B×H×W. Singular value decomposition is applied toQT

Q

to obtain L eigenvectors vi and eigenvalues λi. The total variance
Pvar is given by:

Pvar =

L
∑

i=1

σ
2
ii (12)

Frontiers in Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 83852369

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

The significance of component λi would be simply λi
Pvar

. The
first k principal components explain variance of a threshold
value R:

R =

∑k
i=1 λ

2
i

∑L
i=1 λ

2
i

(13)

The ratioR is used as a threshold for the algorithm to calculate the
first k PCs and k suggests the number of significant components
required after removing the redundancy in Q. After obtaining k
PCs for every layer in the SNN to explain a fixed threshold of R%
variance (99.9% in our case), we interpreted a layer’s significance
to be proportional to the percentage increase in the number of
PCs in comparison to the previous layer, i.e., the layer contributes
significantly to the transformation of the input data provided
to it by the previous layer. The percentage layerwise changes
in PCs are plotted in Figure 2A, and interestingly the general
trend matches with the variation of layerwise optimized neuronal
thresholds. This is explainable since a higher spiking threshold
allows more time for evidence integration, thereby improving
SNN accuracy by ensuring more significant layers perform more
accurate computations.

4.2. Adversarial Attack Driven Optimization
and Interpretability
Next, we show that neuron threshold optimization is not
application agnostic, thereby requiring the need for a cross-
stack optimization. To substantiate our motivation, we consider
SNN adversarial attack scenarios. Adversarial attack in neural
networks refers to malicious attempts to mislead the model
prediction. Since neural networks are proven to be vulnerable in
such attacks (Madry et al., 2017), it becomes a non-trivial task
to optimize the model for adversarial scenarios. While there are
a plethora of adversarial attack algorithms (Chakraborty et al.,
2018), we used the vanilla version of the Fast Gradient Sign
Method (FGSM) attack as a proof of concept for our optimization
method’s adversarial robustness. Details in the adversarial setup
and implementation will be discussed in the next section.

We applied our neuroevolutionary guided SNN training
strategy in this case but optimized for adversarial accuracy-
latency tradeoff. Figure 2B depicts the optimized threshold
(expressed as a percentile of the maximum ANN activation) as
a function of layer number for a typical run. However, the trend
shows a slightly different distribution of thresholds as compared
to the normal accuracy scenario. We observe that the deeper
layers exhibit a similar downward trend of thresholds but this
occurs only after layer 10 in the adversarial scenario whereas
the network optimized for normal accuracy shows this trend
much before (explained by % changes in PCs, as discussed in the
previous subsection).

To explain this trend, we used Adversarial Noise Sensitivity
(ANS), Aδ , as a metric for measuring layerwise perturbation in
neural networks (Panda, 2020). It is defined as the error ratio
between a particular layer’s perturbed adversarial activation and
the unperturbed original activation and can be expressed by the

following equation:

Aδ,n =
||an

adv
− an||2

||an||2
(14)

where, an is the activation map of the n-th layer and the
subscript adv denotes the same activation with adversarial input.
In summary, the higher the ANS value of a particular layer, the
higher is the sensitivity to noise of that layer. In other words, the
layers with high ANS values will perform worse than the layers
with low ANS values under the same degree of adversarial attack.
In the SNN case, we use the cumulative spikes as the activation:

Aδ,n =
||

∑T
t=1 x

n
adv,t
−

∑T
t=1 x

n
t ||2

||
∑T

t=1 x
n
t ||2

(15)

where, xnt is the n-th layer’s spike at timestep t and adv still
denotes the adversarial version; T is the total duration of
inference. We can observe from Figure 2B that the highest ANS
values start from layer 10, which incidentally correlates with the
trend of layerwise optimized neural thresholds.

To understand the relationship between neuron threshold
and noise sensitivity, one needs to consider the activation
discretization caused by the firing threshold. As shown in
Equation (6), the output of a layer is critically dependent
on the threshold Vth of the layer and is a bit discretized
version of the ReLU functionality. Thus, the SNN neuron
activation representation can be considered to be discretized
due to the spiking behavior. When the threshold is lower in
the denominator of Equation (6), there will be more discrete
states and vice versa. Therefore lower firing threshold should
relate to layers with higher noise sensitivity since reduced
precision/discretization results in minimizing the adversarial
perturbation (Rakin et al., 2018; Sen et al., 2020). To summarize,
in adversarial scenarios, the optimal set of thresholds attributes
low thresholds to high ANS layers to increase discretization to
resist the effect of adversarial noise.

5. EXPERIMENTS AND RESULTS

5.1. Datasets and Implementation
We evaluated our proposal on the CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and the large-scale ImageNet (Deng
et al., 2009) dataset. CIFAR-10 and CIFAR-100 datasets consist
of 10 and 100 classes, respectively. They include 60,000 32 ×
32 colored images partitioned into 50,000 and 10,000 training
and testing images respectively. ImageNet 2012 is a much more
challenging dataset with 1,000 object categories that include 1.28
million images for training and 50,000 images for validation. The
ImageNet images are randomly cropped into 224 × 224 pixels
before being fed into the network. All images are normalized
with zero mean and unit variance and shuffled during the
training and DE optimization phase. The ANN models are
pretrained VGG15 architectures based on constraints described
in our prior work (Lu and Sengupta, 2020). All experiments are
conducted in “PyTorch” framework using “BindsNet” toolbox

Frontiers in Neuroscience | www.frontiersin.org 6 April 2022 | Volume 16 | Article 83852370

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

TABLE 1 | Algorithm hyperparameters for various datasets.

Dataset α β γ Initial Perc. std Population Size P No. of Generations G nfe Training Cost*

Image classification

CIFAR-10 1 10 500 99.7 0.15 25 25.9 647.5 38.85

CIFAR-100(VGG15) 1 40 20 99.7 0.15 25 26.55 663.75 39.825

CIFAR-100(VGG11) 0.7 60 200 99.7 0.13 35 7.8 312 16.38

ImageNet 1 70 110 99.8 0.13 20 6.08 121.66 0.475

Image classification with adversarial attack

CIFAR-10 1 2 60 99.7 0.25 25 21.94 548.5 13.2

CIFAR-100 1 2 60 99.7 0.25 25 24.22 605.5 14.5

*Training cost computed using Eqn. 17.

(Hazan et al., 2018) with the “SciPy” toolbox providing efficient
DE algorithm implementation.

For the adversarial attack scenario, we used FGSM as a white
box attack where the model parameters and network structure
are fully available to the attacker. It utilizes the gradient of
the original input and then perturbs it to create an adversarial
version that maximizes the loss. This perturbation process can be
summarized as:

X̂ = X + ǫ × sign[∇XL(w,X, y)] (16)

where, X̂ is the perturbed image, X is the original input image,
ǫ is the hyper-parameter to adjust the extent of perturbation,
∇XL(w,X, y) is the gradient of the loss L given model parameter
w, input X and label y, sign() operation provides the direction of
the gradient (in terms of “1”s and “−1”s). In our case, we adopted
ǫ = 8/255, commonly used in other works. Further details can
be found in Goodfellow et al. (2015).

5.2. Results
The specific hyperparameter settings for our algorithm are
specified in Table 1 for the various datasets and applications. For
the DE algorithm, we used a typical setting of the mutation rate
(M is a random number between 0.5 and 1.5) and crossover rate
(C = 0.7). It is worth reiterating here that only the training set
is utilized during the neuroevolutionary optimization process.
Considering that the DE algorithm is initialized with P particles
and takesG generations to converge (measured by averaging over
20 runs), the excess overhead of running our hybrid training
technique is tabulated as “Training Cost” in Table 1 and is
computed in terms of the training set size by:

Training Cost = (E× G× P)/Dtrain (17)

where, E is the total number of images used for cost function
evaluation per particle per generation and Dtrain is the total
number of images in the training set. Table 1 illustrates the
advantage of our proposed algorithm in terms of scalability.
The number of evaluation images required for the optimization
process is primarily determined by the dimensionality of the
optimization space rather than the size of the training set of
the dataset. Hence, the “Training Cost” reduces significantly for
complex datasets like ImageNet. This is in stark contrast to BPTT

guided hybrid training approaches where backpropagation based
gradient updates will require significantly large training datasets.

The performance of our proposed hybrid SNN training
technique for CIFAR-10, CIFAR-100, and ImageNet datasets
are depicted in Figure 3 including adversarial attack scenarios.
Significant latency improvement is consistently observed
in all cases in contrast to a uniform percentile-based
threshold optimization scheme. Iso-accuracy and iso-latency
improvements for latency and accuracy, respectively are also
provided. A detailed comparison of the performance of our
algorithm against prior work is provided in Tables 2, 3.

5.3. Comparison Against Backpropagation
Through Time (BPTT) Fine-Tuning
As mentioned before, our work is most relevant to hybrid SNN
training approaches where the network is fine-tuned using BPTT
after conversion (Rathi and Roy, 2020; Rathi et al., 2020). While
the computational overhead is significantly higher in BPTT
based approaches, another important difference between the two
approaches lies in the absence of any temporal information in our
neuroevolutionary optimization process. In order to benchmark
the performance of the two hybrid training techniques, we
performed BPTT fine-tuning from the same initialized converted
SNN model as used in our neuroevolutionary algorithm. For
BPTT, the network layers are unfolded at each timestep for IF
operations. The BPTT method uses surrogate gradient for IF
neurons (Bellec et al., 2018):

∂pti
∂V t

i

= γmax{0, 1− |Vi(t)|} (18)

where, p is the output spike train, Vi(t) is the normalized
membrane potential voltage of neuron i at timestep t. γ is a
hyper-parameter to dampen the error which is set to 0.15 in
our case. For our experiments, we used a pre-trained VGG15
model on CIFAR-10 dataset, initialized with 99.7 percentile
thresholds for the IF neuron layers. The BPTT algorithm was
run for 25 epochs and the network was unrolled over 70
timesteps. However, as shown in Figure 4, while the hybrid BPTT
training performed better than a simple conversion approach,
it was outperformed by our proposed hybrid neuroevolutionary
approach. While recent versions of hybrid BPTT training (Rathi
and Roy, 2020) have reported only 5 timesteps as SNN latency,

Frontiers in Neuroscience | www.frontiersin.org 7 April 2022 | Volume 16 | Article 83852371

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

FIGURE 3 | Accuracy vs. timesteps for neuroevolutionary optimized SNN against homogeneously normalized (using 99.7 percentile of maximum activation; Lu and

Sengupta, 2020) SNN on CIFAR-10 dataset. Iso-time and iso-accuracy comparison are denoted by dotted-red line and textboxes. (A) CIFAR-10, (B) CIFAR-10

Zoomed, (C) CIFAR-100, (D) CIFAR-100 Zoomed, (E) CIFAR-10 Adversarial, (F) CIFAR-100 Adversarial, (G) ImageNet, (H) ImageNet Zoomed.

TABLE 2 | Performance benchmarking of our proposal against prior works.

References Method Architecture SNN accuracy (%) Timesteps

CIFAR10

Hunsberger and Eliasmith (2015) ANN-SNN 2C, 2L 82.95 6, 000

Sengupta et al. (2019) ANN-SNN VGG16 91.55 2, 500

Kim et al. (2018) Phase-coding VGG16 91.2 1, 500

Park et al. (2019) Burst-coding VGG16 91.4 1, 125

Park et al. (2020) Time-Till-First-Spike VGG16 91.40 680

Rueckauer et al. (2017) ANN-SNN 4 Conv, 2 FC 90.85 400

Cao et al. (2015) ANN-SNN 3C,2L 77.43 400

Rathi et al. (2020) Hybrid VGG16 92.02 200

Lee et al. (2020) Backprop VGG9 90.45 100

Lu and Sengupta (2020) ANN-SNN VGG15 91.03 91

This work Neuroevolutionary SNNs VGG15 91.05 42

CIFAR100

Kim et al. (2018) Phase-coding VGG16 68.6 8, 950

Park et al. (2019) Burst-coding VGG16 68.77 3, 100

Han et al. (2020) ANN-SNN VGG16 70.09 768

Park et al. (2020) Time-Till-First-Spike VGG16 68.8 680

Rathi et al. (2020) Hybrid VGG11 67.87 125

Lu and Sengupta (2020) ANN-SNN VGG11 67.00 125

This work Neuroevolutionary SNNs VGG11 67.00 89

ImageNet

Sengupta et al. (2019) ANN-SNN VGG16 69.96 2, 500

Han et al. (2020) ANN-SNN VGG16 71.34 768

Rueckauer et al. (2017) ANN-SNN VGG16 49.61 400

Rathi et al. (2020) Hybrid VGG16 65.19 250

Lu and Sengupta (2020) ANN-SNN VGG15 67.40 103

This work Neuroevolutionary SNNs VGG15 67.40 74

Frontiers in Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 83852372

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

TABLE 3 | Performance benchmarking of our proposal against prior works for SNN adversarial attacks. All FGSM are white-box attacks and use ǫ = 8/255.

References Attack Method Architecture ANN (%) SNN (%) Timesteps

CIFAR10

Sharmin et al. (2020) FGSM Backprop ResNet20 1.8 3.8 200

Sharmin et al. (2020) FGSM Backprop VGG5 10.4 15.0 100

Sharmin et al. (2019) FGSM Backprop VGG9 61.7 51.6 70

Lu and Sengupta (2020) FGSM ANN-SNN VGG15 67.42 67.40 74

This work FGSM Neuroevolutionary SNNs VGG15 67.42 68.9 42

CIFAR100

Sharmin et al. (2020) FGSM Backprop VGG11 17.1 15.5 200

Lu and Sengupta (2020) FGSM ANN-SNN VGG15 30.54 31.11 61

This work FGSM Neuroevolutionary SNNs VGG15 30.54 33.1 44

FIGURE 4 | Performance of VGG15 model on the CIFAR-10 dataset based on

various training techniques—(blue) ANN-SNN conversion: 99.7 Percentile,

(orange) Hybrid neuroevolutionary approach: Optimized Thr., and (green)

BPTT: Hybrid training with backpropagation through time.

it is probably attributed to performing gradient descent on
additional introduced parameters like neuron leak. Further,
latency is re-defined to exclude intrinsic delay of an SNN where
the neuron in each layer spikes at the current timestep instead
of the next, and therefore eliminates the intrinsic layerwise SNN
delay. While this is a simple method to reduce SNN latency, it
may potentially have limitations in neuromorphic chip designs
in terms of spike routing or parallel spike processing capability.
It is worth mentioning here that additional optimizations like
learnable membrane time constants (Rathi and Roy, 2020; Fang
et al., 2021b), network architectures like Residual networks
(Fang et al., 2021a), conversion error calibration techniques
(Deng and Gu, 2021; Li et al., 2021), hybrid spike encoding
(Datta et al., 2021) are complementary to the current proposal
and can be augmented in the algorithm to further minimize
the inference latency. Tables 2, 3 therefore includes primarily
basic SNN architectures based on IF nodes without any
additional optimizations to substantiate the importance and
interpretability of the need for layerwise threshold optimization.
The dimensionality of the optimization algorithm can be easily
expanded to incorporate additional optimization parameters
like membrane potential leak, spike encoding rate, among
others.

To quantitatively substantiate the computational benefit
of our proposed hybrid neuroevolutionary training approach

FIGURE 5 | Memory usage and running time comparison of hybrid

neuroevolutionary and BPTT based approaches of VGG-15 model on

ImageNet dataset, with maximum batch-size (21, 2, 2, 1) for (5, 25, 50, 75)

timesteps, respectively. (A) Memory usage, (B) Expected running time.

against BPTT based methods, we also report the memory usage
and running time of the two methodologies on the ImageNet
dataset in Figure 5. The memory usage was profiled and the
extrapolated running time for our proposed neuroevolutionary
algorithm is calculated as:

Total Running Time = τ̄ × Training Cost ×
Dtrain

B
(19)

where, τ̄ is the average running time per batch (averaged over
20 batches), “Training Cost” is calculated from Equation (17)
and B is the batch-size. The average running time τ̄ is used
to minimize the fluctuations caused by external processes. The
“Training Cost” of BPTT was considered to be 20 epochs as
reported in prior literature (Rathi et al., 2020). It is worth
mentioning here that unlike our proposed algorithm, BPTT
is heavily memory-constrained for large scale datasets like
ImageNet even for 5 timesteps, as shown in Figure 5. Our
algorithms were run on Nvidia Tesla V100 16 GB GPUs where
we had to limit the batch-size for the BPTT based hybrid
training approach due to memory limit. The batch-sizes of
Figure 5 are chosen based on the maximum memory capacity
of the BPTT based approach and iso-batch-size comparison is
performed with the neuroevolutionary method. As illustrated
in the plot, the situation worsens significantly with increasing
timesteps due to drastic increase in gradient trace information.
As shown in Figure 5, our proposed neuroevolutionary method
requires 2.9× less memory and 42× less running time than

Frontiers in Neuroscience | www.frontiersin.org 9 April 2022 | Volume 16 | Article 83852373

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

BPTT based framework even for five timesteps used for SNN
simulation. It is worth mentioning here that iso-timestep based
comparison may not be valid for further optimized SNN
algorithms like BPTT with membrane potential leak (Rathi and
Roy, 2020; Fang et al., 2021b) and therefore require further
benchmarking.

6. CONCLUSIONS

In conclusion, the work explores a neuroevolution-based hybrid
SNN training strategy that optimizes SNN specific parameters
like neuron spiking threshold after the conversion process.
While significantly outperforming state-of-the-art approaches
in terms of accuracy-latency tradeoffs in image classification
tasks including adversarial attack scenarios, the work highlights
the need for significance-driven layerwise SNN optimization
schemes leading to explainable SNNs. We also highlight that
the work outperforms computationally expensive BPTT based
fine-tuning approaches since temporal information may not be
relevant in static image classification tasks. Future exploration
into application drivers with temporal information (Mahapatra
et al., 2020; Singh et al., 2021) or temporal spike encoding

schemes (Petro et al., 2020; Yang and Sengupta, 2020) is
expected to truly leverage the full potential of BPTT based SNN
training strategies.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AS developed the main concepts. SL performed all the
simulations. All authors assisted in the writing of the paper and
developing the concepts.

FUNDING

This work was supported in part by the National Science
Foundation grants CCF #1955815, BCS #2031632, and ECCS
#2028213 and by Oracle Cloud credits and related resources
provided by the Oracle for Research program.

REFERENCES

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). “Long

short-term memory and learning-to-learn in networks of spiking neurons,” in

NIPS’18 (Montréal; Red Hook, NY: Curran Associates Inc.).

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., and Mukhopadhyay, D.

(2018). Adversarial attacks and defences: a survey. arXiv [Preprint]. arXiv:

1810.00069. doi: 10.48550/arXiv.1810.00069

Chakraborty, I., Roy, D., Garg, I., Ankit, A., and Roy, K. (2020a). Constructing

energy-efficient mixed-precision neural networks through principal

component analysis for edge intelligence. Nat. Mach. Intell. 2, 43–55.

doi: 10.1038/s42256-019-0134-0

Chakraborty, I., Roy, D., Garg, I., Ankit, A., and Roy, K. (2020b). Constructing

energy-efficient mixed-precision neural networks through principal

component analysis for edge intelligence. Nat. Mach. Intell. 2, 1–13.

Datta, G., Kundu, S., and Beerel, P. A. (2021). “Training energy-efficient deep

spiking neural networks with single-spike hybrid input encoding,” in 2021

International Joint Conference on Neural Networks (IJCNN) (Shenzhen), 1–8.

doi: 10.1109/IJCNN52387.2021.9534306

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “ImageNet:

a large-scale hierarchical image database,” in IEEE Conference on Computer

Vision and Pattern Recognition, 248–255. doi: 10.1109/CVPR.2009.5206848

Deng, S., and Gu, S. (2021). “Optimal conversion of conventional artificial neural

networks to spiking neural networks,” in International Conference on Learning

Representations.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney), 1–8. doi: 10.1109/IJCNN.2015.7280696

Elbrecht, D., and Schuman, C. (2020). “Neuroevolution of spiking neural

networks using compositional pattern producing networks,” in International

Conference on Neuromorphic Systems 2020 (Oak Ridge, TN), 1–5.

doi: 10.1145/3407197.3407198

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and Tian, Y. (2021a).

“Deep residual learning in spiking neural networks,” in Advances in Neural

Information Processing Systems (New Orleans, LA), 34.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian,

Y. (2021b). “Incorporating learnable membrane time constant to

enhance learning of spiking neural networks,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision, 2661–2671.

doi: 10.1109/ICCV48922.2021.00266

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., et

al. (2019). Event-based vision: a survey. arXiv [Preprint]. arXiv: 1904.08405.

doi: 10.1109/TPAMI.2020.3008413

Garg, I., Panda, P., and Roy, K. (2019). A low effort approach to

structured CNN design using PCA. IEEE Access 8, 1347–1360.

doi: 10.1109/ACCESS.2019.2961960

Goodfellow, I., Shlens, J., and Szegedy, C. (2015). “Explaining and harnessing

adversarial examples,” in International Conference on Learning Representations

(San Diego, CA).

Han, B., Srinivasan, G., and Roy, K. (2020). RMP-SNN: Residual membrane

potential neuron for enabling deeper high-accuracy and low-latency

spiking neural network. arXiv:2003.01811. doi: 10.1109/CVPR42600.2020.

01357

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann, H. T.,

et al. (2018). BindsNET: a machine learning-oriented spiking neural networks

library in python. Front. Neuroinformatics 12:89. doi: 10.3389/fninf.2018.

00089

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with LIF neurons.

arXiv [Preprint]. arXiv: 1510.08829. Available online at: https://arxiv.org/pdf/

1510.08829.pdf

Khan, M. F. F., Kamani, M. M., Mahdavi, M., and Narayanan, V. (2020). “Learning

to quantize deep neural networks: a competitive-collaborative approach,” in

2020 57th ACM/IEEE Design Automation Conference (DAC) (San Francisco,

CA), 1–6. doi: 10.1109/DAC18072.2020.9218576

Kim, J., Kim, H., Huh, S., Lee, J., and Choi, K. (2018). Deep neural

networks with weighted spikes. Neurocomputing 311, 373–386.

doi: 10.1016/j.neucom.2018.05.087

Frontiers in Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 83852374

https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.48550/arXiv.1810.00069
https://doi.org/10.1038/s42256-019-0134-0
https://doi.org/10.1109/IJCNN52387.2021.9534306
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1145/3407197.3407198
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1109/ACCESS.2019.2961960
https://doi.org/10.1109/CVPR42600.2020.01357
https://doi.org/10.3389/fninf.2018.00089
https://arxiv.org/pdf/1510.08829.pdf
https://arxiv.org/pdf/1510.08829.pdf
https://doi.org/10.1109/DAC18072.2020.9218576
https://doi.org/10.1016/j.neucom.2018.05.087
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

Krizhevsky, A., and Hinton, G. (2009). Learning multiple layers of features from

tiny images. Available online at: https://www.cs.toronto.edu/~kriz/learning-

features-2009-TR.pdf

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018). Training deep

spiking convolutional neural networks with STDP-based unsupervised

pre-training followed by supervised fine-tuning. Front. Neurosci. 12:435.

doi: 10.3389/fnins.2018.00435

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-

based backpropagation for training deep neural network architectures. Front.

Neurosci. 14:119. doi: 10.3389/fnins.2020.00119

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021). “A free lunch from ANN:

towards efficient, accurate spiking neural networks calibration,” in International

Conference on Machine Learning, 6316–6325.

Lu, S., and Sengupta, A. (2020). Exploring the connection between binary and

spiking neural networks. Front. Neurosci. 14:535. doi: 10.3389/fnins.2020.00535

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2017). Towards

deep learning models resistant to adversarial attacks. arXiv [Preprint]. arXiv:

1706.06083. Available online at: https://arxiv.org/pdf/1706.06083.pdf

Mahapatra, K., Sengupta, A., and Chaudhuri, N. R. (2020). Power system

disturbance classification with online event-driven neuromorphic computing.

IEEE Trans. Smart Grid. 12, 2343–2354. doi: 10.1109/TSG.2020.3043782

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning

in spiking neural networks. IEEE Signal Process. Mag. 36, 61–63.

doi: 10.1109/MSP.2019.2931595

Panda, P. (2020). “QUANOS: adversarial noise sensitivity driven hybrid

quantization of neural networks,” in Proceedings of the ACM/IEEE International

Symposium on Low Power Electronics and Design (New York, NY), 187–192.

doi: 10.1145/3370748.3406585

Park, S., Kim, S., Choe, H., and Yoon, S. (2019). “Fast and efficient information

transmission with burst spikes in deep spiking neural networks,” in 2019

56th ACM/IEEE Design Automation Conference (DAC) (New York, NY), 1–6.

doi: 10.1145/3316781.3317822

Park, S., Kim, S., Na, B., and Yoon, S. (2020). “T2FSNN: deep spiking

neural networks with time-to-first-spike coding,” in 2020 57th ACM/IEEE

Design Automation Conference (DAC) (San Francisco, CA), 1–6.

doi: 10.1109/DAC18072.2020.9218689

Petro, B., Kasabov, N., and Kiss, R. M. (2020). Selection and optimization of

temporal spike encoding methods for spiking neural networks. IEEE Trans.

Neural Netw. Learn Syst. 31, 358–370. doi: 10.1109/TNNLS.2019.2906158

Rakin, A. S., Yi, J., Gong, B., and Fan, D. (2018). Defend deep neural networks

against adversarial examples via fixed and dynamic quantized activation

functions. arXiv [Preprint]. arXiv: 1807.06714. Available online at: https://arxiv.

org/pdf/1807.06714.pdf

Rathi, N., and Roy, K. (2020). DIET-SNN: Direct input encoding with leakage

and threshold optimization in deep spiking neural networks. arXiv [Preprint].

arXiv: 2008.03658. Available online at: https://arxiv.org/pdf/2008.03658.pdf

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). “Enabling deep

spiking neural networks with hybrid conversion and spike timing dependent

backpropagation,” in International Conference on Learning Representations.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.

00682

Schuman, C. D., Mitchell, J. P., Patton, R. M., Potok, T. E., and Plank, J. S.

(2020). “Evolutionary optimization for neuromorphic systems,” in Proceedings

of the Neuro-inspired Computational Elements Workshop (Heidelberg), 1–9.

doi: 10.1145/3381755.3381758

Schuman, C. D., Plank, J. S., Disney, A., and Reynolds, J. (2016). “An evolutionary

optimization framework for neural networks and neuromorphic architectures,”

in 2016 International Joint Conference on Neural Networks (IJCNN) (Vancouver,

BC), 145–154. doi: 10.1109/IJCNN.2016.7727192

Sen, S., Ravindran, B., and Raghunathan, A. (2020). EMPIR: Ensembles of mixed

precision deep networks for increased robustness against adversarial attacks.

arXiv [Preprint]. arXiv: 2004.10162. Available online at: https://arxiv.org/pdf/

2004.10162.pdf

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci.

13:95. doi: 10.3389/fnins.2019.00095

Sharmin, S., Panda, P., Sarwar, S. S., Lee, C., Ponghiran, W., and Roy, K. (2019). “A

comprehensive analysis on adversarial robustness of spiking neural networks,”

in 2019 International Joint Conference on Neural Networks (IJCNN) (Budapest),

1–8. doi: 10.1109/IJCNN.2019.8851732

Sharmin, S., Rathi, N., Panda, P., and Roy, K. (2020). “Inherent adversarial

robustness of deep spiking neural networks: effects of discrete input encoding

and non-linear activations,” in Computer Vision-ECCV 2020, eds A. Vedaldi, H.

Bischof, T. Brox, and J. M. Frahm (Cham: Springer International Publishing),

399–414. doi: 10.1007/978-3-030-58526-6_24

Shrestha, S. B., and Orchard, G. (2018). SLAYER: Spike layer error reassignment in

time. arXiv [Preprint]. arXiv: 1810.08646. Available online at: https://arxiv.org/

pdf/1810.08646.pdf

Singh, S., Sarma, A., Jao, N., Pattnaik, A., Lu, S., Yang, K., et al. (2020).

“NEBULA: a neuromorphic spin-based ultra-low power architecture for SNNs

and ANNs,” in 2020 ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA), 363–376. doi: 10.1109/ISCA45697.2020.00039

Singh, S., Sarma, A., Lu, S., Sengupta, A., Narayanan, V., and Das, C. R.

(2021). “Gesture-SNN: co-optimizing accuracy, latency and energy of

SNNs for neuromorphic vision sensors,” in 2021 IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED), 1–6.

doi: 10.1109/ISLPED52811.2021.9502506

Stanley, K. O., Clune, J., Lehman, J., and Miikkulainen, R. (2019). Designing

neural networks through neuroevolution. Nat. Mach. Intell. 1, 24–35.

doi: 10.1038/s42256-018-0006-z

Storn, R., and Price, K. (1997). Differential evolution-a simple and efficient

heuristic for global optimization over continuous spaces. J. Glob. Optim. 11,

341–359. doi: 10.1023/A:1008202821328

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and Clune, J.

(2017). Deep neuroevolution: Genetic algorithms are a competitive alternative

for training deep neural networks for reinforcement learning. arXiv [Preprint].

arXiv: 1712.06567. Available online at: https://arxiv.org/pdf/1712.06567.pdf

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,

D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in

python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. (2019). “HAQ: hardware-aware

automated quantization with mixed precision,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Long Beach, CA),

8612–8620. doi: 10.1109/CVPR.2019.00881

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct training

for spiking neural networks: faster, larger, better,” in Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 33 (Honolulu, HI), 1311–1318.

doi: 10.1609/aaai.v33i01.33011311

Yang, K., and Sengupta, A. (2020). Stochastic magnetoelectric neuron for temporal

information encoding. Appl. Phys. Lett. 116:043701. doi: 10.1063/1.5138951

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Lu and Sengupta. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 April 2022 | Volume 16 | Article 83852375

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.3389/fnins.2018.00435
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2020.00535
https://arxiv.org/pdf/1706.06083.pdf
https://doi.org/10.1109/TSG.2020.3043782
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1145/3370748.3406585
https://doi.org/10.1145/3316781.3317822
https://doi.org/10.1109/DAC18072.2020.9218689
https://doi.org/10.1109/TNNLS.2019.2906158
https://arxiv.org/pdf/1807.06714.pdf
https://arxiv.org/pdf/1807.06714.pdf
https://arxiv.org/pdf/2008.03658.pdf
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1145/3381755.3381758
https://doi.org/10.1109/IJCNN.2016.7727192
https://arxiv.org/pdf/2004.10162.pdf
https://arxiv.org/pdf/2004.10162.pdf
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/IJCNN.2019.8851732
https://doi.org/10.1007/978-3-030-58526-6_24
https://arxiv.org/pdf/1810.08646.pdf
https://arxiv.org/pdf/1810.08646.pdf
https://doi.org/10.1109/ISCA45697.2020.00039
https://doi.org/10.1109/ISLPED52811.2021.9502506
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1023/A:1008202821328
https://arxiv.org/pdf/1712.06567.pdf
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/CVPR.2019.00881
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1063/1.5138951
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 1

ORIGINAL RESEARCH
published: 09 May 2022

doi: 10.3389/fnins.2022.850932

Edited by:
Guoqi Li,

Tsinghua University, China

Reviewed by:
Priyadarshini Panda,

Yale University, United States
Lei Deng,

Tsinghua University, China

*Correspondence:
Shuangming Yang

yangshuangming@tju.edu.cn
Badong Chen

chenbd@mail.xjtu.edu.cn

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 08 January 2022
Accepted: 28 March 2022

Published: 09 May 2022

Citation:
Yang S, Linares-Barranco B and

Chen B (2022) Heterogeneous
Ensemble-Based Spike-Driven

Few-Shot Online Learning.
Front. Neurosci. 16:850932.

doi: 10.3389/fnins.2022.850932

Heterogeneous Ensemble-Based
Spike-Driven Few-Shot Online
Learning
Shuangming Yang1* , Bernabe Linares-Barranco2 and Badong Chen3*

1 School of Electrical and Information Engineering, Tianjin University, Tianjin, China, 2 Microelectronics Institute of Seville,
Seville, Spain, 3 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, China

Spiking neural networks (SNNs) are regarded as a promising candidate to deal with
the major challenges of current machine learning techniques, including the high energy
consumption induced by deep neural networks. However, there is still a great gap
between SNNs and the few-shot learning performance of artificial neural networks.
Importantly, existing spike-based few-shot learning models do not target robust learning
based on spatiotemporal dynamics and superior machine learning theory. In this
paper, we propose a novel spike-based framework with the entropy theory, namely,
heterogeneous ensemble-based spike-driven few-shot online learning (HESFOL). The
proposed HESFOL model uses the entropy theory to establish the gradient-based few-
shot learning scheme in a recurrent SNN architecture. We examine the performance of
the HESFOL model based on the few-shot classification tasks using spiking patterns
and the Omniglot data set, as well as the few-shot motor control task using an end-
effector. Experimental results show that the proposed HESFOL scheme can effectively
improve the accuracy and robustness of spike-driven few-shot learning performance.
More importantly, the proposed HESFOL model emphasizes the application of modern
entropy-based machine learning methods in state-of-the-art spike-driven learning
algorithms. Therefore, our study provides new perspectives for further integration of
advanced entropy theory in machine learning to improve the learning performance
of SNNs, which could be of great merit to applied developments with spike-based
neuromorphic systems.

Keywords: spiking neural network, few-shot learning, entropy-based learning, spike-driven learning, brain-
inspired intelligence

INTRODUCTION

The human brain has the advantages of imagination, lifelong learning, and learning based on the
interaction with the environment. Especially, the human brain can learn a new concept from a
small number of examples and has the strong generalization capability, which outperforms current
machine intelligence (Goelet et al., 1986). Some extraordinary capabilities exist in the human
brain. For example, when giving a reference example, the brain can be easily generalized to new
examples or create a new example. It is necessary and meaningful to develop a novel brain-inspired
framework to break the current bottleneck of machine intelligence based on brain processing and
learning mechanism.

Frontiers in Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 85093276

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.850932
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.850932
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.850932&domain=pdf&date_stamp=2022-05-09
https://www.frontiersin.org/articles/10.3389/fnins.2022.850932/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 2

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

A spiking neural network (SNN) is the third generation
of an artificial neural network (ANN), which is based on the
underlying mechanism of the biological brain (Falez et al.,
2019; Paredes-Vallés et al., 2019). It has the advantages of
rich spatiotemporal dynamical characteristics, large diversities
of the neural encoding mechanism, and low-power event-based
computation (Yang et al., 2021a,b). It is critical and meaningful
for artificial general intelligence (AGI), and is essential for high-
efficiency edge computing devices with low power consumption
and real-time processing capability (Pei et al., 2019).

In recent years, along with the development of computing
devices, deep learning with a large amount of labeled data
obtains successful and significant achievements in the fields
of computer vision and natural language processing (Strack,
2019; Zou et al., 2019; Tolkach et al., 2020). The capability
of deep learning has been stronger than that of human in
some certain fields. For example, the classification accuracy
of ResNet is significantly higher than that of human on the
ImageNet data set, and AlphaGo performs better than the
human champion at playing chess (Singh et al., 2017; Lu et al.,
2018). However, current machine learning algorithms depend
highly on a large amount of labeled data. In some practical
applications, the cost of data labeling is expensive. For example,
it requires experienced doctors to spend a large amount of time
to label the images in detail. Therefore, it is vital to investigate
the few-shot learning method, which has higher generalization
capability based on a small limited amount of labeled data.
Using machine learning models, such as support vector machine
(SVM) or convolution neural networks (CNNs), it is difficult
to realize the few-shot learning capability because the lack of
enough training data will cause the overfitting problem. SNN-
based few-shot learning is a novel perspective for few-shot
learning tasks, which is a promising approach to solve this
kind of problem.

The learning capability of current SNN models still suffers
from their robust adaptation to the environment with non-
Gaussian noise, which severely limits the application of spike-
driven models in real-world problems. Correntropy is a kind
of non-linear local similarity measure in kernel space, which
is closely related to the cross-information potential (CIP) in
information-theoretic learning (ITL) (Chen et al., 2018). The
main advantages of correntropy include two aspects. The
first aspect is that it has the local property of providing
an effective mechanism to weaken the influence of outliers
and non-Gaussian noise. Another major advantage is that it
introduces a novel measure method in sample space. If the
samples are close to each other, the measurement is similar
to the L2 norm. If the samples separate from each other, the
measurement is similar to the L1 norm. When the samples are
far away from each other, the measurement finally approaches
the L0 norm. Due to its robustness to outliers and non-
Gaussian noise, the correntropy theory has been widely applied
in various fields, including signal processing and machine
learning (Du et al., 2018; Luo X. et al., 2018; Chen et al.,
2019a).

In recent years, some novel entropy-based learning principles
have been proposed for robust learning, such as the maximum

mixture correntropy criterion (MMCC) (Wang et al., 2021).
Previous studies have revealed that MMCC is a better selection
than current optimization criteria, including the minimum mean
square error (MMSE) criterion (Chen et al., 2019b). The MMSE
criterion depends on the assumption that the data are noise-
free or obey the Gaussian distribution. Once the assumption is
not satisfied, such as the data disturbed by heavy-tailed noise,
the performance of current machine learning algorithms may
be severely reduced. Therefore, this work proposes to adopt the
MMCC as the optimization criterion to rederive a novel spike-
driven few-shot online learning (SFOL) model, resulting in a
heterogeneous ensemble-based SFOL (HESFOL). The proposed
model can perform robust few-shot online learning for sequential
data. The paper is organized as follows: Section “Introduction”
describes the preliminaries of this study, including SNN and
entropy-based learning theory. The proposed HESFOL model is
introduced and explained in Section “Materials and Methods.”
Section “Results” presents the experimental results. And finally,
the discussions and conclusions are proposed in Sections
“Discussion” and “Conclusion,” respectively.

BACKGROUND

This study focuses on the two major broad areas of research,
which are few-shot learning based on meta-learning method, and
the entropy-based methods for machine learning. In this section,
the related work in these two fields are covered and summarized.

Few-Shot Learning Model Based on a
Meta-Learning Framework
Few-shot learning based on the meta-learning method majorly
uses the idea of learning-to-learn to realize the ambition.
For example, meta-learning with augmented memory neural
networks can solve the problem of how to quickly encode the vital
information of new tasks by introducing an additional memory
module (Santoro et al., 2016; Wang Y. et al., 2020). Model-
agnostic meta-learning aims to learn a good initialization for the
model, so that it can achieve good classification performance
with only one or several gradient updates when facing a new
task. Specifically, MAML introduces a new gradient, i.e., the
two-order gradient, to find the most sensitive direction of the
gradient change for fast learning of the new task. Gidaris et al.
(2019) simultaneously identified the training category and the
new category, and presented a dynamic network to generate
the corresponding classification weight for the new category
by designing a weight generator (meta-learner) based on the
attention mechanism. Sun et al. (2019) presented a meta-transfer
learning method, which pre-trains a feature extractor on the
auxiliary data set and then fine tunes a learner based on a small
amount of training data from the new tasks. Although there are
a series of previous works to solve the few-shot learning problem
using the meta-learner, there is no effective work based on SNN
model to realize the few-shot learning performance by combining
the brain mechanism with the machine learning theory, such as
entropy learning theory.

Frontiers in Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 85093277

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 3

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

Information-Theoretic Learning
The information-theoretic learning approach has been widely
applied to improve the performance of machine learning
algorithms in recent years. Zadeh and Schmid (2020) presented
an alternative loss derived from a negative log-likelihood loss
that results in much better calibrated prediction rules. Zhang
et al. (2020) presented to learn saliency prediction from a
single noisy labeling based on entropy theory. To optimize the
performance of current learning algorithms, researchers have
focused on the correntropy-based method. Zheng Y. et al. (2020)
presented a mixture correntropy-based kernel-based extreme
learning machine (MC-KELM) to improve the robustness of
KELM, which adopts the recently proposed MMCC as the
optimization criterion, instead of using the MMSE criterion.
Heravi and Hodtani (2018) presented a group of novel robust
information theoretic backpropagation (BP) methods, such as
correntropy-based conjugate gradient BP (CCG-BP). Xing et al.
(2019) presented a novel correntropy-based multiview subspace
clustering (CMVSC) method to efficiently learn the structure
of the representation matrix from each view and make use of
the extra information embedded in multiple views. Ensemble
algorithms can also be used for improving the robustness of
learning tasks, such as clustering. Bootstrap AGGregratING
(Bagging) algorithms were proposed to improve the classification
by combining the classification of randomly generated data
sets (Fischer and Buhmann, 2003). Bagging is a successful
example of an independent ensemble classifier to train the model
independently and then combine the outputs for the final verdict.
Although there are a number of studies on correntropy-based
machine learning, there still lacks an efficient and effective way
to adopt the entropy theory in the application of spike-based
machine learning. Therefore, this study aims at presenting an
optimized entropy-based spike-driven few-shot learning with
ensemble loss functions for robust few-shot learning.

MATERIALS AND METHODS

Proposed Ensemble Loss
In this study, a novel objective function is proposed, which is
the combination of single losses and integrates the proposed
objective function into the spike-driven few-shot learning model.
First, a mathematical explanation of the meaning of the proposed
loss function is given to clarify the importance of the loss
function. Let ŷ represents the estimated label of a true label
ŷ. A loss function L(y,ŷ) represents a positive function, which
indicates the difference between ŷ and y. Several types of loss
functions are combined with trainable weights. Let

{
Lj
(
y, ŷ

)}K
j=1

represents K single loss functions. The aim is to find the best
weights {λ1, λ2,., λK} to combine K basis loss function for
the generation of the best application-oriented loss function.
A further constraint is added to avoid values close to 0 for all the
weights. The proposed ensemble loss function is expressed as

L =
K∑
i=1

λiLi
(
y, ŷ

)
,

K∑
i=1

λi = 1. (1)

The optimization with N training samples can be expressed as

minimize
w,λ

∑N
i=1
∑N

j=1 λ2
j Lj
(
yi, ŷi

)
s.t.

∑K
j=1 λ2

j = 1
. (2)

Then, the constraint is incorporated as a regularization term
according to the concept of Augmented Lagrangian. The
modified objective function based on Augmented Lagrangian is
described as

minimize
w,λ

N∑
i=1

N∑
j=1

λ2
j Lj
(
yi, ŷi

)
+ η1

 K∑
j=1

λ2
j − 1

+

η2

 K∑
j=1

λ2
j − 1

2

. (3)

First and second terms of the objective function induce the
values of λ2

i to approach 0 but the third term satisfied
∑K

j=1 λ2
j =

1. The overall training process is described in Algorithm 1.

Algorithm 1: Pseudo-code of the whole training process for the proposed
method.

Input:

The training set T, parameters λi (Weights associated with each loss function), η1,
η2 (Lagrangian weights), σ (Correntropy kernel bandwith), and m [maximum
number of iterations (epochs)]

Base loss functions {Lj (Xi ,yi)}4 j=1, K=4 (MMCC, Cross-entropy, MMSE based on
firing rate, MMSE based on membrane potential)

Output:

Parameter W, λ1, λ2, λ3, λ 4

1: Initiate Ensemble Loss Function using {Lj (Xi ,yi)}4 j=1 and random λ1, λ2,λ3,λ4

2: Initialize parameters W ˜N(0,6) and t = 0

3: while not converged do

4: Select a mini-batch of training samples {Xi , yi}i=1
N from training set T.

5: Perform a forward path, calculate the loss and regularization term:
N∑

i=1

K=4∑
j=1

λ2
j Lj(yi , ŷi) + η1

(K=4∑
j=1

λ2
j −1

)
+ η

(K=4∑
j=1

λ2
j −1

)
6: Perform a backward propagation by the BPTT algorithm

7: Update W,λ1, λ2, λ3, λ4 by gradient descent algorithm.

8: t←t+1

return {W(t), λ1(t), λ2(t), λ3(t), λ4(t)}

Mixture Maximum Correntropy Criterion
The correntropy has been widely used in various kinds of fields,
such as machine learning and signal processing, which is defined
as

Vσ (X,Y) = E
[
kσ (X,Y)

]
=

∫ ∫
kσ

(
x, y

)
fXY

(
x, y

)
dxdy (4)

where X and Y represent the stochastic variables, and E[.]
represents the expectation operator. The function kσ (.,.)
represents the kernel function with kernel width σ, and

Frontiers in Neuroscience | www.frontiersin.org 3 May 2022 | Volume 16 | Article 85093278

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 4

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

fXY (.,.) represents the joint probability density function (PDF).
In practical engineering projects, PDF is usually unknown.
Therefore, the sample estimator can be defined by finite usable
samples as

V̂σ (X,Y) =
1
N

N∑
i=1

kσ

(
xi − yi

)
. (5)

The radial basis function is usually selected as the function of
correntropy, which can be formulated as

V̂σ (X,Y) =
1
N

N∑
i=1

kσ

(
xi − yi

)
=

1
N

N∑
i=1

exp
(
−
||xi − yi||2

2σ2

)
.

(6)
As a local similarity measurement, the correntropy can effectively
inhibit the influence of the outlier and the non-Gaussian
distribution. Only if the variables X = Y, the correntropy reaches
the maximum value, which is defined as maximum correntropy
criterion (MCC). It can be used as the optimization criterion and
robust loss function.

Therefore, this study uses a mixture correntropy, which can be
described as

Vσ (X,Y) = E

[S∑
s=1

λsGσs (X,Y)

]
. (7)

where {Gσs (., .)}
S
s=1 are S different Gaussian kernels based on

each kernel size σs. {λs}
S
s=1 are S mixture parameters satisfying

0 ≤ λs ≤ 1 and
∑S

s=1 λs = 1. In this paper, S is selected to be
2. Thus, the sample estimator of mixture correntropy can be
expressed as

V̂σ (X,Y) = 1
N
∑N

i=1
[
λGσ1

(
xj, yj

)
+ (1− λ)Gσ2

(
xj, yj

)]
=

1
N
∑N

i=1

[
λ exp

(
−
||xi−yi||2

2σ2
1

)
+ (1− λ) exp

(
−
||xi−yi||2

2σ2
2

)] .
(8)

An unknown parameter can be estimated by maximizing
the mixture correntropy between the desired signals and the
estimated values. More details on the MMCC can be found in
Zheng Y. et al. (2020). The curve of influence functions of MCC
and MMSE are shown in Figure 1. In this figure, the x-axis e
represents the estimated error between the actual output and its
corresponding estimate. The influence function9(e) is calculated
as follows:

9 (e) =
∂Gσ (e)
∂e

= −
e
σ2 exp

(
−

e2

2σ2

)
(9)

where Gσ (·) represents the Gaussian kernel and σ is the size
of the Gaussian kernel. It is shown that the influence function
of MMSE increases linearly with the amplitude of the estimated
error, while MCC is constrained to larger errors. Since larger
errors are induced by outliers, MCC is useful to deal with the
robust learning problem.

Cross-Entropy Loss Function
The cross-entropy loss function is also regarded as log loss and
is the most commonly used loss function for back propagation. It

FIGURE 1 | Influence functions based on the minimum mean square error
(MMSE) or maximum correntropy criterion (MCC).

also increases as the predicted probability deviates from the actual
label, which can be expressed as follows:

Lce
(
ŷi, yi

)
= −

∑
i

yi log
(
ŷi
)
. (10)

In this study, a label ln is used for each image, which assumes a
value of 1 only for images that belong to the same class as the
image in the test phase and assumes a value of 0 otherwise. Then,
the formulation can be described as

EC =
5∑

n=1

−ln log σ
(
y20+20·n)

−
(
1− ln

)
log

(
1− σ20+20·n)

(11)
where the output of the SNN model only counts after all the
images are fully presented.

Regularization by Minimum Mean Square
Error
To obtain a sparse firing regime, additional terms are added
for the regularization of spiking activities. Two types of
regularization methods are employed, including firing rate
regularization and voltage range regularization. Firstly, to keep
the average firing rate fj for all neurons j close to a predefined
target firing rate f target , a term is added, which is defined as

λf Erate = λf
∑
j

(
fj − ftarget

)2 (12)

where fj is computed as the average spike count, which is
expressed as

fj =
1

NbatchT

Nbatch∑
n=1

T∑
t=1

z(n,t)j (13)

where z(n,t)j indicates the neural spikes in a particular batch with
n, and T represents the total duration on a particular task. In
addition, the factor λf represents a hyperparameter that scales
the importance of firing rate regularization.

Besides, to encourage the membrane potential to remain in
a particular range, the membrane potential values are penalized,

Frontiers in Neuroscience | www.frontiersin.org 4 May 2022 | Volume 16 | Article 85093279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 5

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

FIGURE 2 | Schematic block figure of the proposed heterogeneous ensemble-based spike-driven few-shot learning (HESFOL) model.

which are defined as

V̂R

(
v(n,t)j ,A(n,t)j

)
=

λv

NT

N∑
i=1

T∑
t=1

∑
j

(
max

(
0, v(n,t)j − A(n,t)j

)2

+max
(

0,−v(n,t)j − vth
)2
)

(14)

where an index n is used to indicate each batch. The variables
vjt and ajt represent the membrane potential and the adaptive
firing threshold, respectively. The resultant threshold voltage is
Aj(t). The factor λv represents a hyperparameter that scales the
importance of the resulting membrane potential regularization.

Network Architecture of the Proposed
Heterogeneous Ensemble-Based
Spike-Driven Few-Shot Online Learning
Model
In this study, the proposed HESFOL model contains a SFOL
model with spiking neurons along with the ensemble loss
function for back propagation. The proposed learning method
is shown in Figure 2, where the ensemble loss function is
represented by the dashed box. The combination of the loss
function is based on Equations (1)–(3), which contains MMCC,
cross-entropy loss function, and the two types of MMSE.
Assume that in a multi-class data set X, xi∈RK represents the
k-dimensional input. y∈{0,1}C represents the one-shot encoding
of the label. Figure 2 depicts the proposed HESFOL model,

extended with our ensemble loss function for the few-shot
learning problem. In the backward step, the gradients of the
proposed loss function flow back through the networks and
weights. The weights are updated in the opposite direction of
the gradient because the weights are determined and adjusted to
decrease the loss value.

Two-Compartment Spiking Neuron
Model With Adaptation Mechanism
This study uses a two-compartment spiking neuron model
for robust learning. Previous research has demonstrated that
spike-driven learning with dendritic processing can fasten the
convergence speed and reduce the number of spikes (Yang
et al., 2021a). Therefore, a spiking and dendrite neuron model is
proposed in this study. The soma compartment has two variables,
which are the membrane potential vjt and the adaptive firing
threshold ajt . The resulting threshold voltage Aj(t) increase along
with each output spike and decays to the baseline threshold vth
based on an adaptation time constant τa. Specifically, the soma
compartment can be formulated as

zj (t) = H
(
vj (t)− Aj (t)

)
(15)

Aj (t) = λaj (t)+ vth (16)

aj (t) = µaj (t − 1)+ zj (t − 1) (17)

Frontiers in Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 85093280

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 6

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

where µ = e−1t/τa . The factor λ represents the impact of
threshold adaptation. The discretion form of the spiking soma
and dendrite models can be formulated as

τ
Vi(N+1)−Vi(N)

1T = −Vi (N)+
gb
gl

(
Vb
i (N)− Vi (N)

)
+
∑

i6=jW
rec
ji zi (N − D)

(18)

Vb
i (N) =

m∑
j=1

Wijs
input
j (N)+ bi (19)

where gl and gb represent the leak conductance and the
basal dendrite conductance, respectively, and 1T represents the
integration step. Wji

rec represents the synaptic weight from the
neuron i to the neuron j in the recurrent architecture, and D
represents the transmission delay of recurrent spikes accordingly.
The parameter τ = Cm/gl represents a time constant, where Cm
represents the membrane capacitance. The variable zi represents
the output spikes of the ith spiking neuron. The variables Vi
and Vi

b represent the membrane potentials of soma and basal
dendrite of the ith neuron, respectively. The term Wij represents
the synaptic weights in the input layer, and the constant bi is
defined as a bias term. The variable sinput is calculated based on
the following equation:

sinputj (t) =
∑
k

κ
(
t − tinputjk

)
(20)

where tjkinput represents the kth spiking time of the input neuron
j, and the response kernel is expressed as follows:

κ (t) =
(
e−t/τL − e−t/τs

)
2(t)

/
(τL − τs) (21)

where τL and τs represent long and short time constant, and 2
represents the Heaviside step function.

Spike-Driven Online Learning Model
In the proposed HESFOL model, a regular leaky integrate-and-
fire (LIF) neuron model is used, which is modeled based on the
membrane potential vj(t) at time t. The membrane potential can
integrate the input current and decay to a resting potential based
on its membrane time constant τm. Each time vj(t) reaches the
threshold, the neuron generates a spike as zj(t) = 1. The regular
spiking neuron model can be expressed as

zj (t) = H
(
vj (t)− Aj (t)

)
(22)

Aj (t) = λaj (t)+ vth (23)

where Wji
rec represents the synaptic weight from the neuron i to

the neuron j, and Wji
in represents the weight of input component

xi(t) for the neuron j. The factor describes the decay speed of
the membrane potential, and H and d represent the Heaviside
step function and the transmission delay of recurrent spikes,
respectively. A refractory period trefrac is used to set zj(t) = 0 after
a neural spike. The outputs from the proposed HESFOL model

are constructed by a weighted sum of low-pass filtered spikes,
which is defined as

yk (t) = (1− ν)
∑
t′≤t

∑
j

ν
(
t − t′

)
Wout

kj zj
(
t′
)
+ boutk (24)

where Wkj
out , bkout , ν = e−1t/τout , and τout are the

readout time constants.
In the proposed HESFOL model, an associated eligibility

trace is considered at each synapse, which is the key concept of
the e-prop algorithm. The eligibility trace eji(t) represents the
influence of the weight Wji on the spiking activities of the neuron
j at time t, but requires taking into account dependencies that do
not involve other neurons besides i and j. Eligibility traces exist
separately for input and recurrent synapses. The variable hj(t)
represents the hidden variables for a neuron j at time t. Then, the
dynamics of the eligibility trace is defined as follows:

eji (t) =
∂zj (t)
∂hj (t)

· εji (t) (25)

εji (t) =
∂hj (t)

∂hj (t − 1)
· εji (t − 1)+

∂hj (t)
∂Wji

(26)

The eligibility vector Eji(t) means that the quantity is propagated
forward in time along with the computation of the proposed
HESFOL model. The term ∂zj(t)

∂hj(t)
cannot be calculated directly

because the relationship between zj(t) and hj(t) contains the
non-differentiable Heaviside function. Therefore, the derivative
in Equation (22) is replaced with a pseudo derivative that is
described as

9j (t) = 0.3 ·max
(

0, 1−
∣∣∣∣vth − vj (t)

vth

∣∣∣∣) . (27)

The vector of hidden variables hj(t) is defined by hj(t) = vj(t),
and the eligibility traces applied in the LIF dynamics can be
formulated as

eji (t) = ψj (t) · z̄i
(
t − d

)
(28)

where z̄i (t) =
∑

t′≤t α
t−t′zt

′

i is defined as the low-pass filtered
presynaptic spiking activities of the neuron i. In addition, the
vector of hidden variables of a neuron, hj(t), also contains the
variable of the firing threshold hj(t) = [vj(t), aj(t)]. For the
adaptive LIF (ALIF) neuron model, the eligibility trace eji(t) is
defined as

eji (t) = 9j (t)
(
z̄i
(
t − d

)
− βεa,ji (t)

)
, (29)

εa,ji (t) =
(
ρ− β ·9j (t − 1)

)
εa,ji (t − 1)

+9j (t − 1) z̄i
(
t − d − 1

) . (30)

To realize the plasticity of the proposed HESFOL model, the
derivative of the Heaviside function ∂H(vj(t)−vth)

∂vj(t) is replaced with
a pseudo derivative in the backward pass, which is formulated as

9j (t) = 0.3 ·max
(

0, 1−
∣∣∣∣vth − vj (t)

vth

∣∣∣∣) . (31)

Frontiers in Neuroscience | www.frontiersin.org 6 May 2022 | Volume 16 | Article 85093281

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 7

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

In addition, the derivative of the Heaviside function
∂H(vj(t)−Aj(t))

∂vj(t) is replaced by the formula as

9j (t) = 0.3 ·max
(

0, 1−
∣∣∣∣Aj (t)− vj (t)

vth

∣∣∣∣) (32)

where the actual update to the initial synaptic weight Winit of the
proposed HESFOL model is realized by the application of Adam
with a learning rate η rate.

RESULTS

Details of the Heterogeneous
Ensemble-Based Spike-Driven Few-Shot
Online Learning Architecture
As shown in Figure 3, the overall architecture of the proposed
HESFOL model contains two parts, which are the SFOL model
and the ensemble loss. The SFOL model is inspired by the
neural mechanism underlying the human brain, which is based
on the interaction between the hippocampus and the prefrontal
cortex (PFC). Therefore, there are two modules in the SFOL
model, which are hippocampus-inspired SNN (HSNN) and the
PFC-inspired SNN (PSNN). The external inputs are summed
and integrated into the membrane potentials of neurons in
HSNN and PSNN modules. The HSNN readout is composed
of the weighted low-pass filtered spike trains of neurons in the
HSNN module. Suppose there exists an infinitely large family
F of possibly relevant learning tasks C. The HSNN module
learns a particular tasks C from F based on the learning signals
provided by the PSNN module. Each time HSNN receives
the new C tasks from the family F, the synaptic weight is
updated. The learning performance of HSNN on the task C is
evaluated based on the loss function. After the first phase of
learning, the parameters are fixed between HSNN and PSNN
modules, and new C tasks from the family F are selected
to evaluate the HSNN learning performance. The encoding
module of the SFOL model uses the processing mechanism
of the visual pathway, so there is a visual-pathway-inspired
neural network (VNN) based on the 2D ConvNet. The images
are input into the VNN in a pixel array manner for input
encoding. The 2D ConvNet consists of three layers, which
is based on the non-spiking McCulloch–Pitts neuron model.
HSNN contains 180 two-compartment LIF (TLIF) neurons
and 260 conventional LIF neurons. The learning signals can
be only transmitted from PSNN to HSNN in the first phase.
To realize the outer loop optimization, the ensemble loss is
employed in the BPTT algorithm, which contains the loss
functions of the MMCC, MMSE, and cross-entropy loss. The
values of the hyperparameters used in the HESFOL model are
listed in Table 1.

Few-Shot Learning Performance on
Spike Patterns With Non-Gaussian Noise
In the first task, spiking patterns with the non-Gaussian noise
are used to test the few-shot learning capability of the proposed

FIGURE 3 | An overview of the proposed HESFOL framework. We employ 2D
convolution for the ConvNet, which is considered as a visual-pathway-inspired
neural network (VNN). In addition, two subnetworks are realized, which are
hippocampus-inspired SNN (HSNN) and PFC-inspired SNN (PSNN). The
learning signals are transmitted from PSNN to HSNN.

TABLE 1 | Hyperparameter list used in the heterogeneous ensemble-based
spike-driven few-shot online learning (HESFOL) architecture.

Parameters Description Values

τm Timing constant of membrane 15 ms

τout Timing constant of readout neurons 10 ms

d Synaptic transmission delay 1 ms

trefrac Refractory period duration 5 ms

ftarget Target firing rate 20 Hz

ηout Learning rate of outer loop 2 × 10−3

λf Spike rate regularization 1.0

vth Threshold 1.0

λv Voltage regularization 10−2

timg Number of time steps per image 20 ms

τa Adaptation timing constant 200 ms

η Learning rate 1.915 × 10−3

NHSNN Network size of HSNN 447

qada Neuron fractions using adaptation 40.5%

β Impact of threshold adaptation 0.4902

Nbatch Batch size for outer loop optimization 285

NPSNN Network size of the PSNN 239

τLS Timing constant learning signals of readouts 10 ms

ftarPSNN Target firing rate for PSNN 20 Hz

HESFOL model. A spatiotemporal spike pattern classification
task is considered, where each pattern is generated with
the firing frequency ranging from 2 to 50 Hz. Indeed, the

Frontiers in Neuroscience | www.frontiersin.org 7 May 2022 | Volume 16 | Article 85093282

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 8

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

FIGURE 4 | Comparison of the few-shot learning performance with
non-Gaussian noise between the HESFOL model and the other models.
(A) Few-shot learning accuracy with Poisson noise. (B) Few-shot learning
accuracy with random deletion noise.

spike patterns describe the spatiotemporal dynamics of the
neural population, in which the firing frequency and precise
timing of spiking neurons contain the rich information of
an external input of the environment. The spike patterns of
each category are instantiated by adding the non-Gaussian
noise to the corresponding template, which contains the
Poisson noise and the spiking deletion noise. We first
generate 1,000 spike pattern templates based on certain
spiking neurons. Then, we generate 25 spike patterns for each
template by randomly marking a uniform distribution of the
neural firing rate. Therefore, we build a few-shot learning
data set of the spike patterns with 1,000 classes and 25
samples for each class.

Two types of non-Gaussian noise are considered in few-
shot learning in the spiking patterns classification task. In
the first type, new noisy spatiotemporal pattern samples are
generated by adding Poisson noise to the templates with the
standard deviation (SD) of σnoise. In the second type, random
deletion noise is added to the templates to generate new noisy
spiking pattern samples, where each spike is randomly deleted
according to a probability of Pdel. As shown in Figure 4,
our proposed HESFOL model achieves remarkable performance
in various noisy situations, highlighting the advantages of
our heterogeneous ensemble-based approach. Among all the
presented learning loss functions, the loss function with MMCC,
MMSE, and cross-entropy loss is the best to realize the highest
robustness to tolerate noise.

FIGURE 5 | Images with non-Gaussian salt-and-pepper noise in the Omniglot
data set using signal-noise rate of 1, 0.9, 0.7, and 0.5.

Few-Shot Learning Performance With
Non-Gaussian Noise
In this study, we test our HESFOL model using the Omniglot data
set. The Omniglot data set contains a total of 1,623 classes and
32,460 images, and each class contains 20 images. The data set is
split up into 964 training classes and 659 classes. There are two
phases in the test, which means a sequence of images in which
one image of the same class exactly appears in phase #2 as the
one shown in phase #1. The 2D CNN with 15,488 neurons is
organized into three layers, which contain 16, 32, and 64 filters,
respectively. The kernel size used in the convolutional filters is
3× 3. The average pooling layers and batch normalization layers
are also used for optimization improvement in the HESFOL
model. Salt-and-pepper noise is added to the Omniglot images
by randomly flipping 15% of the images, which is a kind of non-
Gaussian noise. Figure 5 shows the images in the Omniglot data
set that are contaminated by the non-Gaussian salt-and-pepper
noise. The loss value of the ensemble evolves with an iteration,
which is shown in Figure 6. This reveals that the loss value of the
proposed HESFOL model reduces to a stationary level of about
0.2 quickly within 1,000 iterations.

The values 0 and 1 are used to encode phases #1 and #2,
respectively, which are included in the input signal. Images from
the Omniglot data set are presented to the VNN using the
28 × 28 grayscale pixels of arrays. A single output is used to
determine in phase #2 whether the presented image belongs to the
same class as that in phase #1. Spike-based learning is employed

Frontiers in Neuroscience | www.frontiersin.org 8 May 2022 | Volume 16 | Article 85093283

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 9

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

FIGURE 6 | The evolution of the loss value based on the ensemble loss along
with the iteration.

by the HESFOL model, and PSNN receives both the spiking
activities from HSNN and the input information with phase
ID. The learning signals are transmitted from PSNN to HSNN
only in the first phase. Figure 7 shows the spiking activities
of the proposed HESFOL model during the few-shot learning
task on the Omniglot data set. This reveals that the sparse
spiking activities of the HSNN and PSNN subsystems occur in
the few-shot learning task. The ensemble loss, which contains
MMCC, cross-entropy loss function, and two types of MMSE, can
successfully solve the few-shot learning problem with the images
with non-Gaussian noise.

Few-Shot Learning Performance on
Manipulator Control
We further demonstrate the few-shot learning capability for
manipulator control. The manipulator uses the end-effector of
a two-joint arm for a generic motor control task to trace a
target trajectory in Euclidean coordinates (x, y), as shown in
Figure 8. In the motor control task, the proposed HESFOL model
can learn to reproduce a particular randomly generated target
movement with the actual movement of the arm end-effector.
The learning task is divided into two trails, which contains a
training and a testing trial. In the training trial, PSNN receives the
target movement in Euclidean coordinates, and PSNN outputs
the learning signals for the HSNN module. After the testing trial,
the weight update is applied to HSNN. In the testing trial, HSNN
is tested to reproduce the previously given target movement of
the arm end-effector without receiving the target trajectory. The
input of HSNN is the same across all trials and is given by a clock-
like input signal. The output of HSNN is the motor commands
for angular velocities of the joints 8̇t

=
(
φ̇t

1, φ̇
t
2
)
. As shown in

Figure 9, the trajectory generated by HSNN as solid lines during
both the training and testing trial. HSNN can regenerate the
target movement based on biologically realistic sparse spiking
activities after PSNN send learning signals to HSNN during the
training trial. Figure 9 also shows the learning signals and the
spiking activities of the proposed HESFOL model. The mean
square error between the target and actual movement in the

FIGURE 7 | One sample trial for the few-shot learning on the Omniglot data
set using the HESFOL model. (A) Output of the readout neuron. (B) Spiking
activities of neurons in the HSNN module. (C) Spiking activities of neurons in
the PSNN module. (D) Learning signals of PSNN for HSNN neurons.

FIGURE 8 | Few-shot motor control of the end-effector of a two-joint robotic
arm.

testing trial is shown in Figure 10. The result reveals that the
HESFOL model with the ensemble loss performs better than
the model with just one or less types of loss functions. This
reveals that the proposed HESFOL provides a new point of view
for efficient motor control and learning underlying the neural
mechanism of the human brain.

Effects of the Ensemble Parameters on
Learning Performance
In this study, we further explore how each of the base loss
functions in the ensemble loss of the proposed HESFOL model

Frontiers in Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 85093284

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 10

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

FIGURE 9 | Few-shot motor control performance of the proposed HESFOL
model. It shows the one-shot learning of a new end-effector movement in
500 ms. It reveals control performance and spiking activities before and after
training. (A1) Position in the x-direction based on HESFOL control before
training and the target position in the x-direction. (A2) Position in the
x-direction based on HESFOL control after training and the target position in
the x-direction. (B1) Position in the y-direction based on HESFOL control
before training and the target position in the y-direction. (B2) Position in the
y-direction based on HESFOL control after training and the target position in
the y-direction. (C1) Motor command in the form of joint angular velocity and
target angular velocity in the x-direction before training. (C2) Motor command
in the form of joint angular velocity and target angular velocity in the
x-direction after training. (D1) Motor command in the form of joint angular
velocity and target angular velocity in the y-direction before training. (D2)
Motor command in the form of joint angular velocity and target angular
velocity in the y-direction after training. (E1) Spiking activities of HSNN before
training. (E2) Spiking activities of HSNN after training. (F1) Spiking activities of
PSNN. (F2) Learning signals generated by PSNN for HSNN.

contribute to the ensemble loss function in Table 2. We test
the effects of the ensemble parameters on the few-shot learning
performance on different types of data sets, including spiking
patterns and the Omniglot data set. Overall, the cross-entropy
loss has the largest weights for both the data sets, which means
that the cross-entropy contributes the most to form the ensemble
loss function of the proposed HESFOL model.

In terms of the correntropy loss function, the weight value
of 0.1 tends to be a suitable loss function in a very noisy
environment, especially in the presence of outliers. The proposed
SNN architecture realizes the few-shot learning tasks by back
propagating the gradient of the loss and it is likely to suffer from
the problem of gradient vanishing. Thus, a loss function that
highlights the error can outperform the MMCC loss function.

FIGURE 10 | Control performance based on the mean square error of original
and HESFOL models.

Therefore, the weight of the cross-entropy loss function is
larger than the others in the ensemble loss function of the
proposed HESFOL model.

Comparison With the Other Models on
Few-Shot Learning Performance
To evaluate the few-shot learning performance more directly,
we compare the HESFOL model with other models, including
ANNs and SNNs. Jiang et al. (2021) proposed a novel SNN
model with a long short-term memory (LSTM) unit for few-
shot learning, called the multi-timescale optimization (MTSO)
model. As the proposed HESFOL model has not used model
augmentation to achieve the best accuracy, a fair comparison
is conducted with the other models without augmentation and
fine tuning. The MTSO model without augmentation can achieve
95.8% accuracy. In terms of ANN models, the MANN presented
by Santoro et al. (2016) achieved 82.8% accuracy on the Omniglot
data set. The learning accuracy of CNN presented by Jiang
et al. (2021) only reached 92.1%, while the spiking CNN with
L1 regularization for sparsity obtained 92.8% learning accuracy
on Omniglot. The Siamese Net can get 96.7% accuracy with
augmentation (Koch et al., 2015). The proposed HESFOL model
achieved 93.1% accuracy on the Omniglot data set with non-
Gaussian noise, which shows a comparative performance on the
few-shot learning task. Although its learning accuracy is slightly
lower than that of the Siamese Net, the HESFOL model uses a
spike-based paradigm, which means that it owns the advantage
of low power consumption and high biological plausibility. In
addition, the HESFOL model is 2.7% lower than the MTSO, but
the HESFOL model uses non-Gaussian noisy data to evaluate,
other than the pure data set used by the MTSO model. This
demonstrates that the proposed HESFOL model can achieve high
robustness of few-shot learning without losing much accuracy.
As the proposed HESFOL uses a simple spike-based few-shot
learning framework, more complicated data set is not the aim of
this study. However, we will conduct on more complicated data
set in the future work. It should be noted that the major ambition
is to present a robust spike-based few-shot learning framework
based on the ITL theory.

Frontiers in Neuroscience | www.frontiersin.org 10 May 2022 | Volume 16 | Article 85093285

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 11

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

TABLE 2 | Test accuracies (%) of different ensemble parameter settings in the Omniglot data set.

Groups Loss Values Omniglot accuracy Groups Loss Values Omniglot accuracy

Group 1 MMCC 0.1 90.6% Group 5 MMCC 0.1 90.6%

Cross 0.9 Cross 0.9

Rate 0.5 Rate 0.5

Vol 0.5 Vol 0.5

Group 2 MMCC 0.1 90.6% Group 6 MMCC 0.2 93.1%

Cross 1.3 Cross 0.8

Rate 0.3 Rate 0.5

Vol 0.3 Vol 0.5

Group 3 MMCC 0.1 92.2% Group 7 MMCC 0.2 90.6%

Cross 1.0 Cross 1.3

Rate 0.45 Rate 0.25

Vol 0.45 Vol 0.25

Group 4 MMCC 0.1 91.4% Group 8 MMCC 0.2 89.8%

Cross 0.7 Cross 0.6

Rate 0.6 Rate 0.6

Vol 0.6 Vol 0.6

The bolded values are the optimal configuration.

Effects of the Critical Parameters of the
Heterogeneous Ensemble-Based
Spike-Driven Few-Shot Online Learning
Model on Learning Performance
In addition, we further explore the critical parameter of the
proposed HESFOL model on the few-shot learning performance.
Three critical parameters are selected, which are the timing
constant of membrane τm, timing constant of readout neurons
τout , and membrane potential threshold vth. We select the
Omniglot data set to test the learning performance of the
HESFOL model. As shown in Figure 11, learning accuracy is
demonstrated by changing parameters. Figure 11A reveals that
the highest learning accuracy can be obtained when τm = 15
and τout = 1 0. In addition, Figure 11B shows that τout = 10
and vth = 1.0 can result in the highest learning accuracy. It
also suggests the preferred parameter values for neural dynamics
when realizing the classification tasks to test the few-shot learning
performance. As the proposed HESFOL model realizes the few-
shot learning capability based on the meta-learning scheme, it
also implies that the SNN model with this set of parameter values
has the highest LSTM performance to store a priori experience
for the current learning task.

DISCUSSION

Theoretical Analysis
The major components of a learning model are the loss function,
which demonstrates the influence of samples on the model
training. The loss function gives each sample a value, which
demonstrates the participation level of each sample in the
learning problem. For example, if the loss function assigns
an outlier sample a large value, this outlier may generate a
negative impact on the model parameters. If the 0–1 loss function

penalizes all samples that are classified incorrectly with the
value 1, this can be considered as robustness. A robust learning
machine requires that outliers do not influence the system
performance too much. The ultimate goal of a learning approach
is to own the capability to classify unseen data. Therefore, the
classifier should have robustness to data disturbance. A more

FIGURE 11 | (A) The effects of timing constant of membrane τm and timing
constant of readout neurons τout on learning accuracy. (B) The effects of
membrane potential threshold vth and timing constant of readout neuorns
τout on learning accuracy.

Frontiers in Neuroscience | www.frontiersin.org 11 May 2022 | Volume 16 | Article 85093286

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 12

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

FIGURE 12 | The loss function curve of MMCC along with the errors.

difficult situation exists in the noisy environment, where the
outlier will damage the training or testing data. To deal with the
noisy environment, an efficient approach is to use a robust loss
function. If there exists a constant k and samples with ei > k
do not be set with a large value by the loss function, where ei
represents the error of the ith sample, this loss function can be
regarded as robust. Despite some learning classifiers can classify
the training data with high performance, it cannot estimate the
unknown data. Therefore, although the training error is low,
it will induce high generation error. This failure is due to the
overfitting problem, which means that the classifier matches the
training data and loses the generalization capability. A better
generalization solution is to use a loss function to realize a more
general classifier.

If an error value is expected to be minimized, the loss
function will generate a more generalized classifier with an
enhanced margin. If a classifier has an enhanced margin, the
performance will be improved to deal with unseen data with
better generalization. An enhanced classifier can be realized
when the correct samples close to the classification line are
penalized, and the loss function can be regarded as margin
enhancing. As each loss function has its own advantages and
disadvantages, there is no comprehensive loss function to work
well in all situations. Therefore, this research proposes the use
of an ensemble of loss in the SNN model. As correntropy is
a bounded function, it is less sensitive to outliers. The kernel
size limit the influence of each independent sample on the total
result, which can reduce the effects of non-Gaussian noise in
the environment on learning performance. Figure 12 further
presents the loss function of MMCC. It shows that MMCC is a
measure to evaluate the local similarity of samples and present a
unique mixed norm feature, which is specifically summarized as
follows:

1. MMCC shows the characteristics of the L2 norm when the
error is close to 0;

2. The MMCC loss function shows the characteristics of the L1
norm when the error increases from 0;

3. The MMCC loss function demonstrates the characteristics of
the L0 norm when the error is particularly large.

Therefore, MMCC is sensitive to elements with high local
similarity in the sample, but not to the two elements with
large difference. Due to these characteristics, MMCC can
effectively reduce the impact the non-Gaussian noise on
learning tasks, inducing more robust spike-driven few-shot
learning performance.

In addition, spiked dendrites in the HESFOL model also
enhance the robustness of few-shot learning. It has been proven
in some previous studies (Yang et al., 2021a). This is because
the non-linear computation of spiked dendrites can inhibit the
disturbance of input noise and in the transmission pathway,
thus improving the learning performance. In addition, as
spiked dendrites can solve the credit assignment problem and
distinguish the information flow in feedforward and recurrent
pathways, the learning performance, including robustness, can be
further enhanced.

Power Efficiency Based on the
Heterogeneous Ensemble-Based
Spike-Driven Few-Shot Online Learning
Model
Previous research has revealed that the lowest energy
consumption of a synaptic operation is about 20 pJ in the
state-of-the-art neuromorphic system (Merolla et al., 2014; Qiao
et al., 2015). The proposed HESFOL model will cost around
60 spikes in HSNN and around 70 spikes in PSNN on the
classification task using the Omniglot data set. Therefore, single
spike classification using the proposed HESFOL will cost 2.6 pJ
in such a neuromorphic system, which outperforms the current
work based on digital neuromorphic hardware (≈2 µJ) (Esser
et al., 2016) and potentially 50,000 more power efficient than
current graphics processing unit (GPU) platforms (Rodrigues
et al., 2018). Our previous work has shown that the classification
task using an improved DEP-based SNN model induces about
1,011 SynOps to obtain the highest classification accuracy (Yang
et al., 2021a). Therefore, the proposed HESFOL model can
reduce 87.14% of the totally induced spikes, i.e., the power
consumption, in comparison with the state-of-the-art SNN
model. The reasons for the low-power consumption by the
proposed HESFOL model can be divided into three aspects.
Firstly, the ensemble entropy theory is used, which can fasten
the learning speed to reach the maximum learning accuracy.
It is useful to reduce the power consumption cost during
learning. Secondly, a few-shot learning procedure is used in the
classification task, which will shorten the overall learning process
and potentially reduce power consumption. Thirdly, spiked
dendrites are used in the spike-driven learning task, which can
further cut down the required spikes due to their non-linear
information processing capability. Therefore, the proposed
HESFOL model cannot only improve the learning accuracy and

Frontiers in Neuroscience | www.frontiersin.org 12 May 2022 | Volume 16 | Article 85093287

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 13

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

robustness of SNN models, but also further cut down the power
efficiency of neuromorphic hardware.

Comparison With Spiking Neural
Networks of Liquid State Machines and
Future Work
Previously, Roy et al. (2019) presented a good overview of
recent SNN training techniques in the context of reservoirs or
liquid state machines (LSMs) whose architectures are similar
to the proposed HESFOL framework. LSMs use unstructured,
randomly connected recurrent networks paired with a simple
linear readout. As shown in Table 3, such frameworks with
spiking dynamics have shown a surprising degree of success for
a variety of sequential recognition tasks (Panda and Roy, 2017;
Soures and Kudithipudi, 2019; Wijesinghe et al., 2019). Soures
and Kudithipudi (2019) presented a deep LSM with an STDP
learning rule for video activity recognition. Wijesinghe et al.
(2019) presented the ensemble approach for LSM to enhance
class discrimination, leading to better accuracy in speech and
image recognition tasks compared to a single large liquid. Wang J.
et al. (2020) proposed a novel LSM model for sitting posture
recognition. Luo S. et al. (2018) presented two different methods
to improve LSM for real-time pattern classification from the
perspectives of spatial integration and temporal integration. We
introduce LSM as a model for an automatic feature extraction
and prediction from raw electroencephalography (EEG) with a
potential extension to a wider range of applications. Al Zoubi
et al. (2018) introduced LSM as a model for an automatic
feature extraction and prediction from raw EEG with a potential
extension to a wider range of applications. Although these works
presented different strategies for sequential recognition tasks,
none of them have successfully solved the few-shot learning
problem. This study firstly proposed a unified framework for the
simultaneous realization of robust image classification and few-
shot learning performance, which is superior to representative
LSM models based on the recurrent architecture.

For deep SNN training, the ANN–SNN conversion requires
less GPU computing than supervised training with surrogate
gradients. Meanwhile, it has yielded the best performance on
large-scale networks and data sets among the methodologies. For
example, Ding et al. (2021) proposed a rate-norm layer to replace
the ReLU activation function in source ANN training, enabling
direct conversion from a trained ANN to an SNN. Zheng H. et al.
(2020) also proposed a threshold-dependent batch normalization

(tdBN) method based on the emerging spatiotemporal BP,
enabling direct training of a very deep SNN and efficient
implementation of its inference in neuromorphic hardware.
These works have successfully realized pattern recognition
functions on more complicated data set than the data set used
in this research, and have achieved high performance on these
tasks, such as classification on dynamic vision sensor- (DVS-
) CIFAR10. However, none of these research have solved the
few-shot learning problems, and learning robustness is also not
focused and referred in these studies. In contrast, the proposed
HESFOL model presented a robust few-shot learning framework
with ITL approach, which is meaningful for combining the
machine learning approach with brain-inspired SNN paradigms.
On the other hand, future work will try to apply the ANN–
SNN conversion technique in few-shot learning algorithms based
on ANN models, and it will be further combined with the ITL
method that is used and plays a major part in the robust few-shot
learning performance of the HESFOL model.

One of the critical issues is to present efficient training
algorithms for SNN models to deal with complicated data set for
more realistic applications. Shallow SNNs can be trained based
on surrogate gradient descent, but they can only achieve high
performance on simple data sets, such as MNIST. In fact, the
discrepancy between a forward spike activation function and a
backward surrogate gradient function during training limits the
learning capability of deep SNNs. There are a series of studies
in which SNN has shown to be trained from scratch using the
surrogate gradient descent approach. For example, Kim and
Panda (2020) proposed a technique called Batchnorm through
time (BNTT) for training SNNs that dynamically changes the
parameters and has an implicit effect as a dynamic threshold.
They also proposed a spike activation lift training approach,
which is essentially a threshold fine-tuning or initialization step
before the actual training (Kim et al., 2021a,b). These two
models can train SNN models with deep layers, and they are
tested on complicated data sets, such as DVS, CIFAR100, and
Tiny ImageNet. They demonstrate high performance on deep
SNN models, which can be scaled for more realistic application.
Therefore, in the next step, the proposed HESFOL model will be
combined with the BNTT algorithm for deep network training.
For example, the proposed ITL approach will be added to the
current BNTT framework to explore the learning robustness or
efficiency, and the HESFOL model can be used in the modeling
of a single layer in a deep SNN architecture. Thanks to the
spiking dendrites of the HESFOL model, it can naturally solve the

TABLE 3 | Comparison with the representative liquid state machine (LSM) models with the recurrent architecture.

Research Application Robustness Few-shot learning

Soures and Kudithipudi, 2019 Video activity recognition No No

Wijesinghe et al., 2019 Image/speech recognition No No

Wang J. et al., 2020 Sitting posture recognition No No

Luo S. et al., 2018 Pattern classification No No

Al Zoubi et al., 2018 Emotion recognition No No

Panda and Roy, 2017 Visual recognition Yes No

HESFOL Image classification Yes Yes

Frontiers in Neuroscience | www.frontiersin.org 13 May 2022 | Volume 16 | Article 85093288

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 14

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

credit assignment problem between feedforward and feedback
pathways. It is meaningful for application in more complicated
tasks and practical situations.

Another future work is to apply the proposed HESFOL model
in tasks beyond recognition experiments. Previous research
has presented a series of possibilities for SNNs to target
complicated tasks other than visual recognition. For example,
Kim and Panda (2021) presented a visual explanation technique
to analyze and explain the internal spiking behavior of deep
temporal SNNs to make SNNs ubiquitous. Kim et al. (2021a)
explored the applications of SNN beyond classification and
presented semantic segmentation networks configured with
spiking neurons. Venkatesha et al. (2021) designed a federated
learning method to train decentralized and privacy-preserving
SNNs. In addition, Kim et al. (2021b) proposed PrivateSNN,
which aims to build low-power SNNs from a pre-trained ANN
model without leaking sensitive information contained in a
data set. All these studies inspire the HESFOL model toward
applications in other fields, such as federated learning and
privacy preservation.

CONCLUSION

In this work, we first introduced an entropy-based scheme
for SNNs to realize robust few-shot learning performance. We
developed a novel spike-based framework with the entropy
theory, namely, the HESFOL model, to implement the gradient-
based few-shot learning scheme in a recurrent SNN architecture.
Several types of tasks are employed to test the few-shot
learning performance, including the accuracy and robustness
of learning. Experimental results based on spiking patterns, the
Omniglot data set, and the motor control task reveal that the
proposed HESFOL model can improve the learning accuracy and
robustness of the spike-driven few-shot learning performance.

The proposed framework offers a novel insight to improve the
spike-based machine learning performance based on the entropy
theory, which is meaningful for the fast development of brain-
inspired intelligence and neuromorphic computing. It can be
applied to the unmanned system, neuro-robotic control, as well
as edge computing in the Internet-of-Things (IoT).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

SY developed and tested algorithms, and wrote this manuscript
with contributions from BL-B and BC. BL-B and BC
conceptualized the problem and the technical framework.
All authors contributed to the article and approved the
submitted version.

FUNDING

This study was funded partly by the National Natural
Science Foundation of China (Grant Nos. 62006170, 62088102,
and U21A20485) and partly by China Postdoctoral Science
Foundation (Grant Nos. 2020M680885 and 2021T140510).

ACKNOWLEDGMENTS

All authors would like to thank the editor and reviewer for their
comments on this manuscript.

REFERENCES
Al Zoubi, O., Awad, M., and Kasabov, N. K. (2018). Anytime multipurpose

emotion recognition from EEG data using a Liquid State Machine
based framework. Artif. Intell. Med. 86, 1–8. doi: 10.1016/j.artmed.2018.
01.001

Chen, B., Wang, X., Lu, N., Wang, S., Cao, J., and Qin, J. (2018). Mixture
correntropy for robust learning. Pattern Recognit. 79, 318–327. doi: 10.1016/j.
patcog.2018.02.010

Chen, B. D., Wang, X., Li, Y., and Principe, J. C. (2019a). Maximum correntropy
criterion with variable center. IEEE Signal Process. Lett. 26, 1212–1216. doi:
10.1109/lsp.2019.2925692

Chen, B. D., Xing, L., Zhao, H., Du, S., and Principe, J. C. (2019b). Effects of outliers
on the maximum correntropy estimation: a robustness analysis. IEEE Trans.
Syst. Man Cybern. Syst. 51, 4007–4012. doi: 10.1109/tsmc.2019.2931403

Ding, J., Yu, Z., Tian, Y., and Huang, T. (2021). Optimal ann-snn conversion for
fast and accurate inference in deep spiking neural networks. arXiv [Preprint]
doi: 10.48550/arXiv.2105.11654

Du, B., Tang, X., Wang, Z., Zhang, L., and Tao, D. (2018). Robust graph-based
semisupervised learning for noisy labeled data via maximum correntropy
criterion. IEEE Trans. Cybern. 49, 1440–1453. doi: 10.1109/TCYB.2018.280
4326

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,
Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-
efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–
11446. doi: 10.1073/pnas.1604850113

Falez, P., Tirilly, P., Bilasco, I. M., Devienne, P., and Boulet, P. (2019). “Multi-
layered spiking neural network with target timestamp threshold adaptation and
stdp,” in Proceedings of the 2019 IEEE International Joint Conference on Neural
Networks (IJCNN), Washington, DC, 1–8.

Fischer, B., and Buhmann, J. M. (2003). Bagging for path-based clustering. IEEE
Trans. Pattern Anal. Mach. Intell. 25, 1411–1415. doi: 10.1109/tpami.2003.
1240115

Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., and Cord, M. (2019).
“Boosting few-shot visual learning with self-supervision,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, Washington, DC,
8059–8068.

Goelet, P., Castellucci, V. F., Schacher, S., and Kandel, E. R. (1986). The long and
the short of long–term memory—a molecular framework. Nature 322, 419–422.
doi: 10.1038/322419a0

Heravi, A. R., and Hodtani, G. A. (2018). A new correntropy-based conjugate
gradient backpropagation algorithm for improving training in neural networks.
IEEE Trans. Neural Netw. Learn. Syst. 29, 6252–6263. doi: 10.1109/TNNLS.
2018.2827778

Frontiers in Neuroscience | www.frontiersin.org 14 May 2022 | Volume 16 | Article 85093289

https://doi.org/10.1016/j.artmed.2018.01.001
https://doi.org/10.1016/j.artmed.2018.01.001
https://doi.org/10.1016/j.patcog.2018.02.010
https://doi.org/10.1016/j.patcog.2018.02.010
https://doi.org/10.1109/lsp.2019.2925692
https://doi.org/10.1109/lsp.2019.2925692
https://doi.org/10.1109/tsmc.2019.2931403
https://doi.org/10.48550/arXiv.2105.11654
https://doi.org/10.1109/TCYB.2018.2804326
https://doi.org/10.1109/TCYB.2018.2804326
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/tpami.2003.1240115
https://doi.org/10.1109/tpami.2003.1240115
https://doi.org/10.1038/322419a0
https://doi.org/10.1109/TNNLS.2018.2827778
https://doi.org/10.1109/TNNLS.2018.2827778
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-16-850932 May 3, 2022 Time: 17:46 # 15

Yang et al. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

Jiang, R., Zhang, J., Yan, R., and Tang, H. (2021). Few-shot learning in spiking
neural networks by multi-timescale optimization. Neural Comp. 33, 2439–2472.
doi: 10.1162/neco_a_01423

Kim, Y., Chough, J., and Panda, P. (2021a). Beyond classification: directly training
spiking neural networks for semantic segmentation. arXiv [Preprint] doi: 10.
48550/arXiv.2110.07742

Kim, Y., Venkatesha, Y., and Panda, P. (2021b). Privatesnn: fully privacy-
preserving spiking neural networks. arXiv [Preprint]

Kim, Y., and Panda, P. (2020). Revisiting batch normalization for training low-
latency deep spiking neural networks from scratch. Front. Neurosci. 15:773954.
doi: 10.3389/fnins.2021.773954

Kim, Y., and Panda, P. (2021). Visual explanations from spiking neural networks
using inter-spike intervals. Sci. Rep. 11:19037. doi: 10.1038/s41598-021-98448-
0

Koch, G., Zemel, R., and Salakhutdinov, R. (2015). “Siamese neural networks for
one-shot image recognition,” in Proceedings of the International Conference on
Machine Learning, Vol. 2, Atlanta, GA.

Lu, Z., Jiang, X., and Kot, A. (2018). Deep coupled resnet for low-resolution
face recognition. IEEE Signal Process. Lett. 25, 526–530. doi: 10.1109/lsp.2018.
2810121

Luo, S., Guan, H., Li, X., Xue, F., and Zhou, H. (2018). “Improving liquid
state machine in temporal pattern classification,” in Proceedings of the
15th International Conference on Control, Automation, Robotics and Vision
(ICARCV), Singapore, 88–91. doi: 10.3389/fnins.2018.00524

Luo, X., Sun, J., Wang, L., Wang, W., Zhao, W., Wu, J., et al. (2018). Short-term
wind speed forecasting via stacked extreme learning machine with generalized
correntropy. IEEE Trans. Ind. Inform. 14, 4963–4971. doi: 10.1109/tii.2018.
2854549

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,
F., et al. (2014). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 668–673. doi: 10.1126/
science.1254642

Panda, P., and Roy, K. (2017). Learning to generate sequences with combination
of Hebbian and non-Hebbian plasticity in recurrent spiking neural networks.
Front. Neurosci. 11:693. doi: 10.3389/fnins.2017.00693

Paredes-Vallés, F., Scheper, K. Y. W., and de Croon, G. C. H. E. (2019).
Unsupervised learning of a hierarchical spiking neural network for optical flow
estimation: from events to global motion perception. IEEE Trans. Pattern Anal.
Mach. Intell. 42, 2051–2064. doi: 10.1109/TPAMI.2019.2903179

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid Tianjic chip architecture. Nature 572,
106–111. doi: 10.1038/s41586-019-1424-8

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D.,
et al. (2015). A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141. doi: 10.
3389/fnins.2015.00141

Rodrigues, C. F., Riley, G., and Luján, M. (2018). “SyNERGY: an energy
measurement and prediction framework for convolutional neural networks
on Jetson TX1,” in Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA). The Steering
Committee of The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), Washington, DC, 375–382.

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine
intelligence with neuromorphic computing. Nature 575, 607–617. doi: 10.1038/
s41586-019-1677-2

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016).
“Meta-learning with memory-augmented neural networks,” in Proceedings of
the 33rd International Conference on Machine Learning, Vol. 48, New York NY,
1842–1850.

Singh, S., Okun, A., and Jackson, A. (2017). Learning to play go from scratch.
Nature 550, 336–337. doi: 10.1038/550336a

Soures, N., and Kudithipudi, D. (2019). Deep liquid state machines with neural
plasticity for video activity recognition. Front. Neurosci. 13:686. doi: 10.3389/
fnins.2019.00686

Strack, R. (2019). Deep learning in imaging. Nat. Methods 16:17.

Sun, Q., Liu, Y., Chua, T. S., and Schiele, B. (2019). “Meta-transfer learning for few-
shot learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, (Piscataway, NJ: IEEE), 403–412.

Tolkach, Y., Dohmgörgen, T., Toma, M., and Kristiansen, G. (2020). High-
accuracy prostate cancer pathology using deep learning. Nat. Mach. Intell. 2,
411–418. doi: 10.1038/s42256-020-0200-7

Venkatesha, Y., Kim, Y., Tassiulas, L., and Panda, P. (2021). Federated learning
with spiking neural networks. IEEE Trans. Signal Process. 69, 6183–6194. doi:
10.1109/tsp.2021.3121632

Wang, J., Hafidh, B., Dong, H., and El Saddik, A. (2020). Sitting posture recognition
using a spiking neural network. IEEE Sens. J. 21, 1779–1786. doi: 10.1109/jsen.
2020.3016611

Wang, T., Cao, J., Dai, H., Lei, B., and Zeng, H. (2021). Robust
maximum mixture correntropy criterion based one-class classification
algorithm. IEEE Intell. Syst. 2021:1. doi: 10.1109/mis.2021.31
22958

Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. (2020). Generalizing from a few
examples: a survey on few-shot learning. ACM Comput. Surv. 53, 1–34. doi:
10.1145/3386252

Wijesinghe, P., Srinivasan, G., Panda, P., and Roy, K. (2019). Analysis of
liquid ensembles for enhancing the performance and accuracy of liquid state
machines. Front. Neurosci. 13:504. doi: 10.3389/fnins.2019.00504

Xing, L., Chen, B., Du, S., Gu, Y., and Zheng, N. (2019). Correntropy-based
multiview subspace clustering. IEEE Trans. Cybern. 51, 3298–3311. doi: 10.
1109/TCYB.2019.2952398

Yang, S., Gao, T., Wang, J., Deng, B., Lansdell, B., and Linares-Barranco, B. (2021a).
Efficient spike-driven learning with dendritic event-based processing. Front.
Neurosci. 15:601109. doi: 10.3389/FNINS.2021.601109

Yang, S., Wang, J., Deng, B., Azghadim, M. R., and Linares-Barranco, B. (2021b).
Neuromorphic context-dependent learning framework with fault-tolerant spike
routing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–15. doi: 10.1109/TNNLS.
2021.3084250

Zadeh, S. G., and Schmid, M. (2020). Bias in cross-entropy-based training of
deep survival networks. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3126–3137.
doi: 10.1109/TPAMI.2020.2979450

Zhang, J., Dai, Y., Zhang, T., Harandi, M., Barnes, N., and Hartley, R. (2020).
Learning saliency from single noisy labelling: a robust model fitting perspective.
IEEE Trans. Pattern Anal. Mach. Intell. 43, 2866–2873. doi: 10.1109/TPAMI.
2020.3046486

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2020). Going deeper with directly-
trained larger spiking neural networks. arXiv [Preprint] doi: 10.48550/arXiv.
2011.05280

Zheng, Y., Chen, B., Wang, S., Wang, W., and Qin, W. (2020). Mixture
correntropy-based kernel extreme learning machines. IEEE Trans. Neural Netw.
Learn. Syst. 33, 811–825. doi: 10.1109/TNNLS.2020.3029198

Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., and Telenti, A. (2019).
A primer on deep learning in genomics. Nat. Genet. 51, 12–18. doi: 10.1038/
s41588-018-0295-5

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yang, Linares-Barranco and Chen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 May 2022 | Volume 16 | Article 85093290

https://doi.org/10.1162/neco_a_01423
https://doi.org/10.48550/arXiv.2110.07742
https://doi.org/10.48550/arXiv.2110.07742
https://doi.org/10.3389/fnins.2021.773954
https://doi.org/10.1038/s41598-021-98448-0
https://doi.org/10.1038/s41598-021-98448-0
https://doi.org/10.1109/lsp.2018.2810121
https://doi.org/10.1109/lsp.2018.2810121
https://doi.org/10.3389/fnins.2018.00524
https://doi.org/10.1109/tii.2018.2854549
https://doi.org/10.1109/tii.2018.2854549
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2017.00693
https://doi.org/10.1109/TPAMI.2019.2903179
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/550336a
https://doi.org/10.3389/fnins.2019.00686
https://doi.org/10.3389/fnins.2019.00686
https://doi.org/10.1038/s42256-020-0200-7
https://doi.org/10.1109/tsp.2021.3121632
https://doi.org/10.1109/tsp.2021.3121632
https://doi.org/10.1109/jsen.2020.3016611
https://doi.org/10.1109/jsen.2020.3016611
https://doi.org/10.1109/mis.2021.3122958
https://doi.org/10.1109/mis.2021.3122958
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252
https://doi.org/10.3389/fnins.2019.00504
https://doi.org/10.1109/TCYB.2019.2952398
https://doi.org/10.1109/TCYB.2019.2952398
https://doi.org/10.3389/FNINS.2021.601109
https://doi.org/10.1109/TNNLS.2021.3084250
https://doi.org/10.1109/TNNLS.2021.3084250
https://doi.org/10.1109/TPAMI.2020.2979450
https://doi.org/10.1109/TPAMI.2020.3046486
https://doi.org/10.1109/TPAMI.2020.3046486
https://doi.org/10.48550/arXiv.2011.05280
https://doi.org/10.48550/arXiv.2011.05280
https://doi.org/10.1109/TNNLS.2020.3029198
https://doi.org/10.1038/s41588-018-0295-5
https://doi.org/10.1038/s41588-018-0295-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-17-1107089 February 18, 2023 Time: 13:53 # 1

TYPE Original Research
PUBLISHED 23 February 2023
DOI 10.3389/fnins.2023.1107089

OPEN ACCESS

EDITED BY

Teresa Serrano-Gotarredona,
Spanish National Research Council (CSIC),
Spain

REVIEWED BY

Liang-Jian Deng,
University of Electronic Science
and Technology of China, China
Hongwei Mo,
Harbin Engineering University, China

*CORRESPONDENCE

Guosheng Yi
guoshengyi@tju.edu.cn

SPECIALTY SECTION

This article was submitted to
Neuromorphic Engineering,
a section of the journal
Frontiers in Neuroscience

RECEIVED 24 November 2022
ACCEPTED 08 February 2023
PUBLISHED 23 February 2023

CITATION

Gao T, Deng B, Wang J and Yi G (2023)
Presynaptic spike-driven plasticity based on
eligibility trace for on-chip learning system.
Front. Neurosci. 17:1107089.
doi: 10.3389/fnins.2023.1107089

COPYRIGHT

© 2023 Gao, Deng, Wang and Yi. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Presynaptic spike-driven plasticity
based on eligibility trace for
on-chip learning system
Tian Gao, Bin Deng, Jiang Wang and Guosheng Yi*

School of Electrical and Information Engineering, Tianjin University, Tianjin, China

Introduction: Recurrent spiking neural network (RSNN) performs excellently in

spatio-temporal learning with backpropagation through time (BPTT) algorithm.

But the requirement of computation and memory in BPTT makes it hard to realize

an on-chip learning system based on RSNN. In this paper, we aim to realize a

high-efficient RSNN learning system on field programmable gate array (FPGA).

Methods: A presynaptic spike-driven plasticity architecture based on eligibility

trace is implemented to reduce the resource consumption. The RSNN with

leaky integrate-and-fire (LIF) and adaptive LIF (ALIF) models is implemented on

FPGA based on presynaptic spike-driven architecture. In this architecture, the

eligibility trace gated by a learning signal is used to optimize synaptic weights

without unfolding the network through time. When a presynaptic spike occurs,

the eligibility trace is calculated based on its latest timestamp and drives synapses

to update their weights. Only the latest timestamps of presynaptic spikes are

required to be stored in buffers to calculate eligibility traces.

Results: We show the implementation of this architecture on FPGA and test it with

two experiments. With the presynaptic spike-driven architecture, the resource

consumptions, including look-up tables (LUTs) and registers, and dynamic power

consumption of synaptic modules in the on-chip learning system are greatly

reduced. The experiment results and compilation results show that the buffer size

of the on-chip learning system is reduced and the RSNNs implemented on FPGA

exhibit high efficiency in resources and energy while accurately solving tasks.

Discussion: This study provides a solution to the problem of data congestion in

the buffer of large-scale learning systems.

KEYWORDS

spiking neural network, adaptive LIF model, eligibility trace, presynaptic spike-driven,
on-chip learning system

Introduction

Supervised learning is a training method for neural networks widely used in the fields
of pattern recognition (Schwenker and Trentin, 2014), image processing (Aljuaid and
Anwar, 2022), and semantic segmentation (Zhou et al., 2022), which is generally realized
on the graphics processing unit (GPU) and the central processing unit (CPU). Due to
the frequent data transmission between memories and process units, the GPU and the
CPU are difficult to solve problems, such as high energy consumption and high demand
for hardware specifications. A series of hardware systems have been proposed to train
neural networks more efficiently, which presents as low-power dissipation and less hardware

Frontiers in Neuroscience 01 frontiersin.org91

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1107089
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1107089&domain=pdf&date_stamp=2023-02-23
https://doi.org/10.3389/fnins.2023.1107089
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1107089/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 2

Gao et al. 10.3389/fnins.2023.1107089

resource utilization (Dundar et al., 2017; Kriegeskorte and Mok,
2017; Davies et al., 2018). In these neuromorphic systems, spiking
neural networks (SNNs) are considered to be more suitable for
digital circuits (Painkras et al., 2013; Merolla et al., 2014; Lechner
et al., 2020). It is necessary to train the neural networks on
neuromorphic hardware systems in a quick and energy-saving
way for the applications in the terminal or edge equipment (Chu
et al., 2015; Kornijcuk and Jeong, 2019; Shama et al., 2020). As
an important type of SNNs, recurrent spiking neural networks
(RSNNs) are considered difficult to be trained on chips because
of the large number of parameters and complex dynamics. While
training the RSNN, the network is usually unfolded through time,
which makes a challenge for digital circuits. A typical example
is the backpropagation through time (BPTT) algorithm, which is
thought as a common learning algorithm used to train RSNNs
(Werbos, 1990; Manneschi and Vasilaki, 2020). Although it has
been proved to perform excellently in the fields including speech
recognition (Ahmad et al., 2004; Tang and Glass, 2018) and
phoneme recognition (Hermans et al., 2015), the full-time storage
for variables and backpropagation through a long period of time are
so luxury for on-chip memories. The complex gradients of RSNNs
and the huge requirement for memories make it difficult to realize
a learning system for RSNNs.

To solve this problem, a series of algorithms and architectures
based on surrogate-gradients are proposed to train RSNNs on
circuits in a hardware-friendly way. Zhang and Li (2019) optimize
the computation of gradients without unfolding the network
through time and performing backpropagation time point by time
point, which relies on the architecture driven by time. Compared
with the backpropagation on spike-train level, the local synaptic
plasticity is expected to apply on RSNNs, which consumes fewer
computations and memories (Larsen and Sjöström, 2015; Kaiser
et al., 2020). Bellec et al. (2019, 2020) propose the eligibility
backpropagation (e-prop) algorithm to replace unfolding the
RSNN through time by the surrogate-gradient based on eligibility
traces, which is known as the fading memory of events (Liu
et al., 2020; Kalhor et al., 2021). Benefit from the local learning in
synapses, the e-prop algorithm is considered suitable for mapping
to the circuits like field programmable gate array (FPGA). However,
the buffer size is related to the length of trace, which is used to
cache the fading memory of events in the time window (Fieres
et al., 2008; Millner et al., 2010; Benjamin et al., 2014). It results
in that the requirement of buffer size is not only linearly related
to the size of neuron array, but also exponentially related to
dynamic network activity. This problem is widespread in time-
driven architectures (Moore et al., 2012; Pani et al., 2017). Park
and Jung (2020) propose a presynaptic spike-driven spike timing-
dependent plasticity (STDP) learning rule in the address domain.
This method provides a way to trace spike trains based on
timestamps and synaptic update rates in a STDP time window,
instead of storing the complex relationship between presynaptic
and postsynaptic spikes. Inspired by this, the presynaptic spike is
possible used to trigger calculations of eligibility traces based on
timestamps. In this way, the buffer size can be reduced and the
learning system works with less on-chip memory consumption.

In this study, we aim to realize a high-efficient RSNN
learning system on FPGA. We implement the RSNN based on
the presynaptic spike-driven architecture to optimize synaptic
modules. When a presynaptic spike occurs, it activates the

synaptic module to search the eligibility trace value based on
the latest timestamp. Based on this architecture, the buffer size
of the on-chip learning system is reduced. We show this high-
efficient implementation and test it on two experiments. The
classification and synthesis results confirm that the RSNN reaches
a satisfactory accuracy and efficiency in resources and energy
consumption. This architecture provides a solution for the large
amounts of data transferred and stored in the buffers of large-scale
neuromorphic systems.

Materials and methods

The RSNNs tend to have inferior short-term memory
capabilities, which leads to weaker learning abilities in sequential
tasks. Bellec et al. (2018) use the RSNN with the leaky integrate-
and-fire (LIF) and adaptive leaky integrate-and-fire (ALIF)
models to enhance the short-term memory, which improves the
performance of RSNNs in sequential tests. In this study, we
implement the RSNN proposed by Bellec et al. (2018) on FPGA as
an on-chip learning system. Considering that the synaptic modules
of the ALIF models implemented on FPGA require more logic
elements than LIF models, we find a balance between the accuracy
and resource consumptions by changing the ratio of the numbers
of two models. Further, the RSNN includes the inhibitory and
excitatory neurons, which limits the synaptic weights to (−1, 0]
and [0, 1) to match the input range of the multipliers in synaptic
modules. In the implementation of the RSNNs on FPGA, the
presynaptic spike-driven architecture is applied to the synaptic
modules, which contributes to the reduction of buffer size. With
this architecture, a high-efficient on-chip learning system based on
the RSNN is realized on FPGA.

ALIF model with SFA mechanism

In the ALIF model, spike-frequency adaptation (SFA) based on
the dynamic threshold is applied to the LIF model (Benda and Herz,
2003; Wang et al., 2003; Bellec et al., 2018, 2020; Salaj et al., 2021).
The membrane potential of LIF models is calculated as:

vt
j = αvt−1t

j +

∑
i

WIn
ji xt−d

i +

∑
i

WRec
ji zt−d

i − zt−1t
j vthr (1)

α = e−1t/τv (2)

where vj
t is membrane potential of the jth neuron in hidden layer at

time t, α is the attenuation constant of membrane potential, Wji
In is

input synaptic weight from the ith neuron in input layer to the jth
neuron in hidden layer, xi

t−d is input spike from the ith neuron in
input layer at time t–d, Wji

Rec is recurrent synaptic weight from the
ith neuron in hidden layer to the jth neuron in hidden layer, zi

t−d

is the spike output by the ith neuron in hidden layer at time t–d,
zj

t−1t is the spike output by the jth neuron in hidden layer at time
t–1t, d is the transmission delay, vthr is the threshold voltage, 1t is
the timestep, and τv is the time constant of membrane potential.
If the membrane potential reaches the threshold, the LIF model
generates a spike and then enters a refractory period.

Frontiers in Neuroscience 02 frontiersin.org92

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 3

Gao et al. 10.3389/fnins.2023.1107089

The dynamics of membrane potential in ALIF models are
similar to LIF models. The ALIF model has another state variable
besides the membrane potential. The basic threshold voltage of
ALIF models is equal to the threshold voltage of LIF models. With
continuous activated by input currents, the threshold voltage of
ALIF models increases rapidly. If the membrane potential of ALIF
model is below the threshold for a long time, the threshold voltage
gradually decreases to the basic value. The dynamic threshold
voltage is described as:

Bt
j = bbase

+ βbt
j (3)

bt
j = ρbt−1t

j + (1− ρ)zt−1t
j (4)

ρ = e−1t/τa (5)

zt
j = H(vt

j) (6)

where B is the threshold voltage, bbase is the basic value, β is the
scaling factor, ρ is the attenuation constant of threshold voltage, τa
is the time constant of dynamic threshold voltage, and H(x) is the
Heaviside function.

Eligibility trace in synapses

The eligibility trace is a temporary trace of events generated
by neurons. It combines the gradient at present and in the
past to update synaptic weights and reduce the gradient of
RSNNs (Sutton and Barto, 2014). Compared with BPTT algorithm,
which has performed excellently in RNNs, the eligibility trace
allows neurons to store local gradients instead of backpropagating
through time and area. Because spikes are differentiable impulse
signals, the pseudo-derivative function is used to described the
derivative of spikes. The pseudo-derivative function is calculated
as (Bellec et al., 2018):

dz
dv
= γ max

{
0, 1−

∣∣∣∣∣v− bbase

bbase

∣∣∣∣∣
}

(7)

where ϒ is the pseudo-derivative of amplitude. When the neuron
is in refractory period, the pseudo-derivative is set to 0. For ALIF
model, the derivative of Heaviside function is defined as:

dz
dv
= γ max

{
0, 1−

∣∣∣∣v− B
bbase

∣∣∣∣} (8)

The eligibility trace is based on the presynaptic neuron. An
internal variable vector ht

∈ R is assumed as the states of dynamics
in models. The eligibility trace is defined as following:

et
ji =

dzt
j

dht
j
εt

ji (9)

εt
ji =

∂ht
j

∂ht−1
j

εt−1
ji +

∂ht
j

∂Wji
(10)

In the LIF model, hj
t is a one-dimension vector, which includes

the membrane potential vj
t . The eligibility trace in LIF models is

calculated as:

et
ji =

dzt
j

dvt
j
z̄t−d

i (11)

z̄t
i =

∑
t−d≤t′≤t

αt−t′zt′
i (12)

where eji
t is the eligibility trace of synapse from the ith neuron to

the jth neuron, and αt−t ′ is the attenuation constant of membrane
potential that decays over time. For input synaptic weights WIn, the
output of neurons z is replaced by inputs x.

In the ALIF model, hj
t consists two dimensions, i.e., the

membrane potential vj
t and the dynamic threshold voltage Bt . The

derivative of hj
t is a 2× 2 matrix described as:

dht
j

dht−1
j
=

∂vt

j

∂vt−1
j

∂vt
j

∂bt−1
j

∂bt
j

∂vt−1
j

∂bt
j

∂bt−1
j

 =

α 0

β
dzt−1

j

dvt−1
j

ρ− β
dzt−1

j

dvt−1
j

 (13)

The eligibility trace in ALIF models is calculated as:

et
ji =

dzt
j

dvt
j
(z̄t−d

i − βεt
ji) (14)

εt
ji =

(
ρ− β

dzt−1
j

dvt−1
j

)
εt−1

ji +
dzt−1

j

dvt−1
j

z̄t−d−1
i (15)

Synaptic plasticity

In this study, the RSNN is composed of ALIF and LIF
models. Connections between neurons are sparsely with a constant
connection probability 60%. The filtered and weighted outputs of
the RSNN are used as predictions, which are described as:

yt
j = (1− λ)

∑
t−d≤t′≤t

∑
i

λt−t′WOut
ji zt′

i + bOut
j (16)

λ = e−1t/τout (17)

where y is the output of RSNN, λ is the attenuation constant of
outputs, λt−t ′ is the attenuation constant that decays over time,
Wji

Out is output synaptic weight from the ith neuron in hidden
layer to the jth neuron in output layer, bj

Out is output bias of the jth
output node, and τout is the time constant of outputs. The SoftMax
function is used to activate the predictions. The output node with
the maximum value is the predicted label.

During the training period, the gradient is divided into two
parts: the eligibility trace and the learning signal (Bellec et al., 2020).
As described before, the eligibility trace updates synaptic weights
towards historical gradients. A learning signal guides the RSNN
to minimize errors between predicted targets and real targets. The
learning signal contains errors based on the loss function, which is
used to evaluate the performance of RSNNs defined as:

Lt
i =

∑
j

WBack
ij (Y t

j − Y∗tj) (18)

where Li
t is the learning signal of the ith neuron in the hidden layer

at time t, Wji
Back is feedback synaptic weights from the jth neuron

in output layer to the ith neuron in hidden layer, Yj
t is predicted

target of the jth output node at time t, and Yj
∗t is real target of the

Frontiers in Neuroscience 03 frontiersin.org93

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 4

Gao et al. 10.3389/fnins.2023.1107089

jth output node at time t. Gradients of input and recurrent synaptic
weights are defined as:

dE
dWji

=

∑
t1

dE
dht1

j

∂ht1
j

∂Wji
(19)

∂ht
j

∂Wji
:=

∂zt
j

∂ht
j

∑
t1≤t

∂ht
j

∂ht−1
j

∂ht−1
j

∂ht−2
j

. . .
∂ht1

j

∂Wji
=

∂zt
j

∂ht
j
εt

ji = et
ji (20)

dE
dzt

i
=
∑

j WBack
ij (Y t

j − Y∗tj)
(21)

The eligibility trace is restricted in a short time window and
recurrent synaptic weights are updated as:

WRec
ji =WRec

ji − η
∑

t
Lt

j ē
t
ji (22)

ēt
ji =

∑
t−d≤t′≤t

λt−t′et′
ji (23)

where η is the learning rate. The input synaptic weight Wji
In is

updated same as Wji
Rec. The output weight Wji

Out is updated by
the gradient descent algorithm. The cross entropy is used as the loss
function. Output synaptic weights are updated as:

WOut
ji =WOut

ji − η
∑

t−d≤t′≤t

λt−t′zt′
i (Y t′

j − Y∗t
′

j) (24)

All parameters mentioned in this study are shown in Table 1
(Bellec et al., 2018). Different from BPTT algorithm, the synaptic

plasticity used in this study only needs errors at present time.
In contrast, synaptic weights are generally optimized at the
end of training in BPTT algorithm. State variables during the
entire training period are stored for gradients calculation. The
requirement of on-chip memory is very luxury for FPGA.
Figure 1A shows the data flow of the eligibility trace. It does not
need to wait and store latent variables in the RSNN until the end
of training. At each timestep, the eligibility trace is calculated and
applied to gradients. Figure 1B shows the data flow of learning
signals. The learning signal is corresponding to errors between
predicted targets and real targets. At the end of training, synaptic
weights are updated with the combination of eligibility trace and
learning signal. With the eligibility trace gated by learning signal,
the RSNN learns in a hardware-friendly way.

Architecture overview

The RSNN used in this study is implemented on Altera Stratix
V Advanced Systems Development Kit with Stratix V GX FPGA
as an on-chip learning system. Figure 2 overviews the architecture
of the RSNN, which is composed of a controller, memories for
inputs, computing units and the synaptic plasticity block. The
controller contains a counter used as system clock. At the beginning
of training, the reset port is set to 1 and transmitted to all modules
in the system. Then the enable port is set to 1 and the reset port
is set to 0. The RSNN begins to receive inputs from memories
and outputs predicted targets. The RSNN implemented on FPGA
contains 8 input nodes, 4 LIF and 6 ALIF models in the hidden
layer and 5 output nodes. In the input layer, the first 2 nodes are

TABLE 1 Parameter values used in the RSNN.

Symbol Value Symbol Value Symbol Value Symbol Value Symbol Value

1t 1 bbase 0.01 d 5 β 1.8 Ref 5

η 0.01 τm 20 ϒ 0.3 τa 500 τout 20

FIGURE 1

Data flow in gradient computation. (A) Eligibility trace. (B) Learning signal.

Frontiers in Neuroscience 04 frontiersin.org94

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 5

Gao et al. 10.3389/fnins.2023.1107089

TABLE 2 Energy and area consumption of data operations.

Operations Energy (pJ) Area (µm2) Operations Energy (pJ) Area (µm2)

8-bit fixed Add 0.03 36 32-bit fixed Add 0.1 137

8-bit fixed Mult 0.2 282 32-bit fixed Mult 3.1 3,495

16-bit floating Add 0.4 1,360 32-bit floating Add 0.9 4,184

16-bit floating Mult 1.1 1,640 32-bit floating Mult 3.7 7,700

FIGURE 2

Overview of the RSNN architecture implemented on FPGA.

applied as inhibitory and others are excitatory. In the hidden layer,
the first 3 LIF models are inhibitory and others are excitatory. If
presynaptic neurons are inhibitory, the synaptic weights are clipped
in (−1, 0). In a similar way, the synaptic weights are clipped in (0, 1)
when presynaptic neurons are excitatory. A buffer is implemented
on FPGA to delay outputs of neurons. When the counter reaches
the number of inputs, the enable port of neurons is set to 0 and the
update enable is set to 1. Then, the synaptic weights are updated.

The learning system is implemented based on 24-bit fixed-point
data, considering the accuracy and consumption of computing
resources. The energy and resource consumption of operations
based on different data are shown in Table 2 (Horowitz, 2014).
It shows that operations of fixed-point data cost fewer energy
and area than floating point data. A multiplier for 16-bit floating
data requires 2 DSP blocks or 51 look-up tables (LUTs) and 95
flip-flops (FFs) with a maximum working frequency of 219MHz.
But a multiplier for 16-bit fixed-point data only requires 1 DSP
block with a maximum working frequency of 300MHz. The 24-bit
fixed-point used in this study is described as:

(−1)sign
× (integer + fraction/216) (25)

where the 0-15th bits are the fraction part of data, the 16–22nd bits
are the integer part of data and the 23rd bit is the sign of data.

ALIF model implementation

Figure 3 shows the architecture of LIF and ALIF models
implemented on FPGA. In Figure 3A, a 24-bit shift register and

a 1-bit shift register are implemented in a LIF model as synaptic
delay. When the clock increases 1, data is shifted in registers and a
new spike is output. The MUX module is used as a selector, which
has three input ports and an output port. When the Sel. is 0, data in
the first input port is chosen to be output. When the Sel. is 1, which
means that the model is in the refractory period, 0 is chosen to
be output. Figure 3B shows the architecture of dynamic threshold
voltage. In the ALIF model, Vthr in Figure 3A is replaced by Bt .

Operations of fixed-point data reduce energy and resource
consumptions with a little bit loss in accuracy. Figure 4A shows the
membrane potential of ALIF models simulated on a computer and
implemented on FPGA. Figure 4B shows the dynamic threshold
voltage of ALIF models with devices. Error evaluation is applied
to ALIF model with four criteria, including mean absolute error
(MAE), minimum root-mean-square error (RMSE), correlation
coefficient (CORR) and R-square (R2) described as:

MAE =
1
N

N∑
i=1

|Xsof (i)− Xhar(i)| (26)

RMSE =

√√√√ 1
N

N∑
i=1

(Xsof (i)− Xhar(i))2 (27)

CORR =
cov(Xsof , Xhar)

σ(Xsof)σ(Xhar)
(28)

R2
= 1−

∑N
I=1(Xsof (i)− Xhar(i))2∑N

I=1(X̄sof − Xsof (i))2
(29)

Frontiers in Neuroscience 05 frontiersin.org95

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 6

Gao et al. 10.3389/fnins.2023.1107089

FIGURE 3

Architecture of neuron models implemented on FPGA. (A) LIF model. (B) Dynamic threshold in ALIF model.

FIGURE 4

Responses of ALIF model implemented on FPGA and simulated with MATLAB with the same inputs. (A) Membrane potential. (B) Threshold voltage.

where Xsof and Xhar are results of simulation with MATLAB and
implementation on FPGA, N is the number of data for error
evaluation, and X̄sof is the mean value of Xsof , CORR is the ratio
of covariance to two data sets computed as:

cov(Xsof , Xhar) =

N∑
i=1

(Xsof (i)− X̄sof)(Xhar(i)− X̄har) (30)

σ(x) =

√√√√ N∑
i=1

(x(i)− x̄)2 (31)

where X̄har is the mean value of Xhar . Results of error evaluation are
shown in Table 3.

Presynaptic spike-driven plasticity

The synaptic module based on eligibility trace is implemented
on FPGA to train the RSNN. The learning rule is composed
of three factors: presynaptic activities, postsynaptic activities and
errors. Errors and the postsynaptic activities are instantaneous
information. Presynaptic activities are stored in the buffer, which
requires a lot of registers. The presynaptic spike-driven architecture
is used to reduce the registers in buffers. Different with buffers used

for inputs, a counter with a FF and a MUX selector is implemented
as the buffer of synaptic module. In this way, hundreds of synaptic
modules require fewer resources.

Figure 5 shows the architecture of synaptic module
implemented on FPGA. The pseudo-derivative of Heaviside
function is limited to 0–0.3 as shown in Figure 5A. The eligibility
traces of LIF and ALIF models use Shift MUL modules as
multipliers and driven by presynaptic spikes as shown in
Figures 5B, C. Because the refractory period is equal to the
time window of eligibility traces, there is at most one spike in 5
timesteps. The FF is activated when a presynaptic spike arrives.
If the number in counter reaches 5 (the length of time window),
the counter is reset to 0. At each timestep, the counter outputs
the number to the MUX selector. Then, the MUX selector outputs
the constant data in input ports according to the three-bit selector
signal in the Sel. port. In Figure 5B, shift and addition operations
are used to replace multiplication between a constant and a
variable. Besides, the synaptic module consists of the Shift MUL

TABLE 3 Error evaluation results.

MAE RMSE R2 CORR

Membrane potential 9.1667× 10−5 1.1723× 10−4 0.9995 0.9999

Dynamic threshold 2.3894× 10−4 3.0328× 10−4 0.9930 0.9999

Frontiers in Neuroscience 06 frontiersin.org96

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 7

Gao et al. 10.3389/fnins.2023.1107089

FIGURE 5

The architecture of synaptic module implemented on FPGA. (A) Pseudo-derivative of Heaviside function. (B) Eligibility trace of LIF model.
(C) Eligibility trace of ALIF model.

module, which is used as a multiplier between two variables.
The “Input a” of Shift MUL is expected to be 0-1 which matches
the scale of inputs. The 16–23rd bits of “Input a” are dropped
and the 0-15th bits are split to 16 MUX selectors as control
signals in Sel. ports. “Input b” is input to 16 shifters and shifted
right from 1 to 16 bits. The first input port of MUX selectors
is set to 0. When the Sel. port is 0, the MUX selector outputs
0. The second input port of MUX selectors is corresponding to
the split data of “Input a.” If the 0th bit of “Input a” is input to
the MUX selector, the “Input b” is input to this selector after
shifted right 16 bits. If the 15th bit of “Input a” is input to the
MUX selector, the “Input b” is input to this selector after shifted
right 1 bit. When the Sel. port is 1, the MUX selector outputs
the number in the second input port. If the synaptic weight
in the module is positive, it is clipped in (0, 1). If the synaptic
weight in the module is negative, it is clipped in (−1, 0). Besides,
presynaptic spike-driven plasticity module, a regular synaptic
module is designed based on shift registers as buffers to compare
with the module based on presynaptic spike-driven architecture.
The resource utilizations of these two modules are shown in
Table 4. In the regular synaptic module, five 24-bit registers are
used to store the attenuated spikes. This buffer requires times
of resources of the buffer that is based on five single-bit LUTs
and a selector. The presynaptic spike-driven plasticity module
requires less resources on FPGA than the regular module. It
reduces 38.9% LUTs, 49.5% registers, and 34.8% dynamic power

consumptions. For an on-chip learning system implemented
on FPGA, there are hundreds or thousands of synapses in
RSNN. It greatly contributes to the high-efficient performance of
learning system.

Classifier implementation

When the last pixel is input to the RSNN, output nodes
are activated by SoftMax function, which is used as a classifier.
The SoftMax function reduces the complexity of gradients of the
output weights. It normalizes the outputs of RSNN and then maps
them to the possibility of predicted labels. The output node with
the maximum probability becomes the prediction of RSNN. The
SoftMax function is described as:

Si =
ei∑
j ej (32)

TABLE 4 Resource utilization of synaptic plasticity.

LUTs Registers Dynamic
power
(mW)

Static
power
(mW)

Spike-driven 1976 229 54.96 902.55

Regular 3232 453 84.26 903

Frontiers in Neuroscience 07 frontiersin.org97

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 8

Gao et al. 10.3389/fnins.2023.1107089

FIGURE 6

The architecture of classifier implemented on FPGA. (A) SoftMax function. (B) Exponent module. (C) Reciprocal module based on Newton-Raphson.

FIGURE 7

Pseudocode of initial approximate reciprocal value in the reciprocal module.

Figure 6A shows the architecture of SoftMax function. It is
mainly composed of the exponent module and the reciprocal
module. Ten exponent (EXP) modules are implemented to
calculate the exponents of outputs of RSNN. A parallel adder is
used to sum outputs of EXP modules and transmit the result
to the reciprocal module. Exponent results are multiplied with
the reciprocal and become the probabilities of predicted labels.
In Figure 6B, values 1/7, 1/6, . . ., 1 are stored in 7 24-bit
registers. Once the adder and multipliers in the EXP module finish
operations, the constant address of registers is shifted right 1.
When the 7th value is input to the multiplier, the EXP module
outputs the exponent result. Figure 6C shows the architecture of
reciprocal module. The reciprocal module is designed based on
Newton-Raphson (NR) method. The approximate reciprocal value
is obtained by three cycles of calculation. The key problem of
the implementation of Newton-Raphson method is how to get
an accurate initial approximate reciprocal value. In this study, an
architecture based on shift operation is proposed to find the initial
approximate reciprocal value. The pseudocode of this method
is shown in Figure 7. When a data is input to the reciprocal
module, the highest bit with value 1 of the input data determines

the shift operations. When data below this bit in the integer
part are “1, . . ., 1,” the initial approximate reciprocal value is
the same as the input data. If the data is between 1.5 and 2,
the initial approximate reciprocal value is set to 1/2. If the data
is smaller than 1.5, the initial approximate reciprocal value is
set to 1. Since exponents are positive, the sign bit is set to 0.
The same error evaluation is applied to the exponent module
and reciprocal module. Figure 8A shows the exponent operation
simulated in MATLAB and implemented on FPGA. Figure 8B
shows the reciprocal module evaluation in the same way. The
evaluation results are shown in Table 5.

Results

Results of experiments

Before implementing the RSNN on FPGA, we first test it on
the computer based on the restricted e-prop algorithm and BPTT
algorithm to confirm it converge to a similar loss value. We limit
the RSNN to 8-10-5 nodes in view of the resources on FPGA.

Frontiers in Neuroscience 08 frontiersin.org98

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 9

Gao et al. 10.3389/fnins.2023.1107089

FIGURE 8

Results of exponent and reciprocal modules simulated in MATLAB
and implemented on FPGA. (A) The exponent module on FPGA and
EXP function in MATLAB. (B) The reciprocal module on FPGA and
1/x function in MATLAB.

Accordingly, the MNIST dataset is divided into two parts. One
includes images of number 0–4, and the other one is composed
of images of number 5–9. The RSNN is trained on Xeon(R) Silver
4114 CPU for 100 epochs. We show the loss values of RSNNs at
each epoch in Figure 9. In Figure 9A, the loss of network trained
by BPTT algorithm based on 0-4 images decreases rapidly in the
first 20 epochs. After 20 epochs, it enters a steady period. The loss
of RSNN based on the e-prop algorithm decreases slower than the
loss of BPTT algorithm. Trained after 40 epochs, the loss gradually
stabilizes at a level slightly higher than the BPTT algorithm.
Although it converges more slowly, it reaches a stable result with
such a small size. In Figure 9B, the loss values of two RSNNs
exhibit the same trend as in Figure 9A. The results of loss values
in the training process show that the e-prop algorithm have similar
convergence to the BPTT algorithm in such small-scale RSNNs.

After simulations on the computer, we implement this RSNN
on Stratix V GX FPGA using Quartus Prime software. There are 8
input nodes, 10 neuron modules in the hidden layer and 5 output
nodes in the RSNN. The input layer consists of 2 inhibitory and
6 excitatory LIF nodes, and the hidden layer includes 3 inhibitory
LIF nodes, 1 excitatory LIF node and 6 excitatory ALIF nodes.
Inhibitory models are coupled with inhibitory synaptic weights,
which are limited to (−1, 0). Excitatory models are coupled with
excitatory synaptic weights, which are limited to (0, 1). Synaptic
modules are placed in each connection between neuron modules.
We start tests with a spatio-temporal spike patterns classification
task (Mohemmed et al., 2012). Spike trains with five spike patterns
are presented sequentially to the RSNN. Each pattern is given by
8 random spike trains with a certain frequency distribution, which
continues 900 timesteps. The RSNN is expected to map these input
patterns to specific targets. We set three groups of τv and τa of
ALIF models to explore how the dynamics in threshold voltage
contributes to the learning ability. With τv = 20 and τa = 20, the
membrane potential and dynamic threshold are in the same time
scale. The threshold voltage decreases rapidly with the membrane
potential after a spike generation in the ALIF model. Considering

TABLE 5 Error evaluation results.

MAE RMSE R2 CORR

Exponent 0.0155 0.0412 0.9999 1.0000

Reciprocal 2.9869× 10−4 9.7972× 10−4 0.9999 1.0000

that neurons in the RSNN are activated sparsely, the threshold
voltage decreases to the base value before the next activation, which
means that ALIF models present no improvement in short-term
memory. In Figure 10A, the RSNN with this group of τv and τa
reaches an accuracy of 1 after trained 300 epochs. With τv = 40 and
τa = 100, the membrane potential and dynamic threshold are in a
similar time scale. The RSNN learns faster than the former network,
but still requires at least 300 epochs to reach an accuracy of 1. With
τv = 20 and τa = 500, the threshold voltage is at a much larger time-
scale than the membrane potential. The slowly changing threshold
enriches the inherent dynamics of ALIF models. As a result, the
RSNN is stabilized at an accuracy of 1 trained after 100 epochs.
The dynamic threshold voltage in a large time-scale makes up for
inferior short-term memory capabilities in RSNNs.

Finally, we test the performance of RSNNs based on MNIST
dataset. Since the RSNN implemented on FPGA only consists of 23
nodes and 180 synapses, the dataset is divided into two parts. One
set includes images of number 0-4 and another one includes images
of number 5–9. The pixels in each image are presented sequentially
to input nodes, which have uniform increasing thresholds from
0.125 to 1. When the gray value of pixel is higher than the
threshold, the input node generates a spike. Benefit from the
reconfigurable neuron and synaptic modules in the learning system,
the module types can be easily switched between LIF and ALIF
neuron modules. Thus, we compare the classification accuracy
of two RSNNs in Figure 10B. One RSNN only includes LIF
models and another RSNN consists of LIF and ALIF models. The
classification accuracy of the RSNN with LIF and ALIF models for
each number in the 0–4 MNIST dataset is 97.9, 96.7, 82.6, 72.3, and
91.1%, respectively, which is 88, 81, 84.6, 79.1, and 88.7% in the
5–9 MNIST dataset. The total accuracy of the tests on these two
datasets is 88.7 and 84.4%. In contrast, the accuracy of the RSNN
with only LIF models for each number in the 0–4 MNIST dataset
is 43.1, 54.3, 66, 26.1, and 44.6%, which is 62.5, 79.7, 48.3, 76.9, and
73.1% in the 5–9 MNIST dataset. The total accuracy of the tests
is 49.2 and 67.6%, which is much lower than the RSNN with LIF
and ALIF models. This comparison further confirms that the ALIF
models greatly contribute to computational power of the RSNNs.

Hardware consumption evaluation

The experiment results show that the learning system solves
tasks accurately. A hardware consumption evaluation is then
performed on the system to test the hardware efficiency. We
measure the hardware consumption in FPGA in terms of LUTs,
registers and power. In order to illustrate the advantages of the
presynaptic spike-driven architecture, we compare the compilation
results of our implementation of the RSNN with previous works
based on other architectures. In Table 6, we show the resource
utilization and power cost of three networks implemented on
FPGA. The first implementation by Vo (2017) is a SNN trained
by BP algorithm. Vo (2017) uses the pre-backpropagation block
and backpropagation block to calculate errors and update synaptic
weights in SNNs. The second one is a SNN implemented based on a
clock-driven architecture proposed by Pani et al. (2017). The clock
drives all neural models and synaptic modules to be updated at
every simulation step, regardless of the spiking activity. Note that all

Frontiers in Neuroscience 09 frontiersin.org99

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 10

Gao et al. 10.3389/fnins.2023.1107089

FIGURE 9

Loss value of RSNN based on BPTT and eligibility trace. (A) Half of the dataset consists of number 0–4 images. (B) Another half of the dataset
consists of number 5–9 images.

results are normalized to the same network scale and the resource
utilization does not include the external memories in this table. The
LUTs utilization of our learning system is reduced to half of the
implementation by Vo (2017). A more significant difference is in
the usage of registers. Implementations by Vo (2017) and Pani et al.
(2017) consume almost the same number of registers/slices because
of the similar architecture they apply to SNNs. Only 18,081 registers
are used in our architecture, which is almost 1/7 of theirs. This
result suggests that our architecture performs excellent in resource
utilization, especially in registers. Besides the resource utilizations,
we also show the power cost in Table 6, which is estimated by
the PowerPlay Power Analyzer Tool in Quartus Prime software.
Although the static power consumption is different between FPGA
development boards, our learning system consumes about 3.3W
power less than the system proposed by Pani et al. (2017), which
indicates that our learning system works at a low power level.

Discussion

In this study, we use the restricted e-prop algorithm to train
RSNNs, which updates the synaptic weights by surrogate gradients.
This surrogate gradient is based on eligibility traces. Different
from the global gradients backpropagated from the top layer, the
eligibility trace represents the events of neurons, which means it is
only related to a local spike. Based on this algorithm, we apply a

FIGURE 10

(A) Results of the learning system presented by five classes of spike
patterns. The first number in the legend is τv. The second number in
the legend is τa. (B) Results of the learning system with two kinds of
neuron models and with only LIF model based on MNIST dataset.

presynaptic spike-driven architecture to the RSNN and implement
it on FPGA. When a spike from presynaptic neuron arrives at the
buffer, it activates this module to search the value of eligibility trace
in a LUT. A learning signal from output layer is also used to guide
the behaviors of neurons, which provides the global gradient to gate
the eligibility trace.

Besides the spike-driven architecture, the time-driven
architecture is also used to implement the RSNNs on FPGA.
We compare the presynaptic spike-driven architecture with
implementations by Vo (2017) and Pani et al. (2017) to illustrate
the mechanisms of these two architectures, and discuss the possible
sources of high resource and power consumptions of their works.
The earlier studies generally focus on improving the throughput of
systems to optimize accelerators. Vo (2017) uses backpropagation
(BP) algorithm to train a small SNN on FPGA. Although the
implementation presents satisfactory accuracy in test, a large
amount of on-chip memories are used to store variables over time.
The same problem exists in the clock-driven architecture proposed
by Pani et al. (2017). The clock drives all neural models and
synaptic modules to be updated at every simulation step, regardless
of the spiking activity. As a results, many invalid activities and
variables occupy the memories and computing resources. Even
the neuron is in the refractory period, its output is also stored
and the synaptic module is updated. In contrast, the synaptic
modules in this study are activated sparsely and the activities of
neurons are limited to timestamps. This intermittent activation
mode makes the RSNN work in a lower energy manner than
previous works. The power consumption in Table 6 suggests the
high power-efficiency of our learning system.

In recent years, many event-driven/spike-driven architectures
are proposed for implementations of SNNs on FPGA. Compared
with time-driven/clock-driven architecture, spikes occupy a smaller

TABLE 6 Resource and power utilization of implementations for
networks.

LUTs Registers/
Slices

Power
(W)

Platform

Vo (2017) 253,727 134,467 – Spartan-3

Pani et al. (2017) 160,667 139,443 8.5 Virtex-6

This study 121,855 18,081 5.183 Stratix V GX

Frontiers in Neuroscience 10 frontiersin.org100

https://doi.org/10.3389/fnins.2023.1107089
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 11

Gao et al. 10.3389/fnins.2023.1107089

bit width in the data transmission and storage between modules
(Moore et al., 2012; Pani et al., 2017). This is reflected in the
utilization of registers in Table 6. Sankaran et al. (2022) use
the single spike control BPTT algorithm to train the RSNN and
implement this on FPGA based on the event-driven architecture.
This architecture depends on the number of spikes instead of spike-
time information and weight values stored on on-chip memories.
But it relies on the request-acknowledge cycles between layers to
allow the layer’s time execution. The request-acknowledge cycles
access information in each layer frequently. High-throughput data
transmission and power consumption are both challenges in this
architecture. Park and Jung (2020) use the latest timestamp and
the synaptic modification rate to trace the exponential decay STDP
function (Sim et al., 2019). This architecture converts the complex
relationship between activities in pre and postsynaptic neurons to
the timestamps in the address domain. It greatly contributes to
the reduction of buffer size. Inspired by this, we use timestamps
to represent traces of spikes instead of entire eligibility traces.
The spike is simultaneously used as an enable signal for synaptic
modules, which prevents all modules in RSNNs from updating at
every time step. Only those synaptic modules that receive spikes
are driven to be updated, which reduces the inefficient works. We
confirm that the combination of eligibility traces and presynaptic
spike-driven architecture can reduce the buffer size of synaptic
modules, which leads to the reduction of resource utilization of the
entire learning system.

Conclusion

In this study, we realize a high-efficient RSNN learning system
on FPGA with excellent software-to-hardware reproduction.
This architecture is based on the spikes generated by RSNNs,
which is compatible with FPGA. Meanwhile, it provides flexible
reconfigurability for modifying the network connectivity, model
types and other parameters. We provide several modules that
simplify computation, such as the Shift MUL module and SoftMax
module. We perform two inference applications to test the RSNNs
implemented on FPGA, which are the spike patterns classification
and the MNIST handwriting digits classification. In the former
test, we implement ALIF models with three groups of parameters
and explore how dynamics in threshold voltage contributes to the
learning ability. In the latter test, we implement two RSNNs with
different neuron modules and further confirm the contributions
of ALIF models to the computational power of RSNNs. The
compilation results and power estimation of RSNNs on FPGA
show that the requirements of LUTs, registers and dynamic power

consumptions of synaptic modules are respectively reduced by
38.9, 49.5, and 34.8%. The presynaptic spike-driven architecture
contributes to reduce the resource utilization of the entire on-chip
learning system while accurately solving the tasks, as the buffer
size for caching events is greatly reduced. This architecture for
RSNNs provides an alternative way for realizing the large-scale
neuromorphic learning systems, as the transmission and storage
of data on chips greatly limit the scale of systems (Li et al., 2015;
Que et al., 2022). The spike-driven architecture may offer a solution
for these problems.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: http://yann.lecun.com/exdb/mnist/.

Author contributions

All authors contributed to the different phases of the research
and to the writing of this manuscript.

Funding

This work was supported by the National Natural Science
Foundation of China (grant nos. 62071324 and 62006170).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahmad, A. M., Ismail, S., and Samaon, D. F. (2004). “Recurrent neural network with
back propagation through time for speech recognition,” in Proceedings of the IEEE
international symposium on communications and information technology, Sapporo.
doi: 10.1109/ISCIT.2004.1412458

Aljuaid, A., and Anwar, M. (2022). Survey of supervised learning for medical image
processing. SN Comput. Sci. 3:292. doi: 10.1007/s42979-022-01166-1

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018).
“Long short-term memory and learning-to-learn in networks of spiking neurons,” in

Proceedings of the neural information processing systems (NeurIPS), Montréal, Canada.
doi: 10.5555/3326943.3327017

Bellec, G., Scherr, F., Hajek, E., Salaj, D., Subramoney, A., Legenstein, R., et al.
(2019). “Eligibility traces provide a data-inspired alternative to back propagation
through time,” in Proceedings of the neural information processing systems (NeurIPS),
Vancouver, Canada.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R.,
et al. (2020). A solution to the learning dilemma for recurrent networks

Frontiers in Neuroscience 11 frontiersin.org101

https://doi.org/10.3389/fnins.2023.1107089
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/ISCIT.2004.1412458
https://doi.org/10.1007/s42979-022-01166-1
https://doi.org/10.5555/3326943.3327017
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

fnins-17-1107089 February 18, 2023 Time: 13:53 # 12

Gao et al. 10.3389/fnins.2023.1107089

of spiking neurons. Nat. Commun. 11:3625. doi: 10.1038/s41467-020-17
236-y

Benda, J., and Herz, A. V. M. (2003). A universal model for spike-frequency
adaptation. Neural Comput. 15, 2523–2564. doi: 10.1162/089976603322385063

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R.,
Bussat, J. M., et al. (2014). Neurogrid: A mixed-analog-digital multichip system for
large-scale neural simulations. Proc. IEEE 102, 699–716. doi: 10.1109/JPROC.2014.
2313565

Chu, M., Kim, B., Park, S., Hwang, H., Jeon, M., Lee, B. H., et al. (2015).
Neuromorphic hardware system for visual pattern recognition with memristor array
and CMOS neuron. IEEE Trans. Ind. Electron. 62, 2410–2419. doi: 10.1109/TIE.2014.
2356439

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Dundar, A., Jin, J., Martini, B., and Culurciello, E. (2017). Embedded streaming deep
neural networks accelerator with applications. IEEE Trans. Neural Netw. Learn. Syst.
28, 1572–1583. doi: 10.1109/TNNLS.2016.2545298

Fieres, J., Schemmel, J., and Meier, K. (2008). “Realizing biological spiking
network models in a configurable wafer-scale hardware system,” in Proceedings
of the IEEE international joint conference on neural networks (IEEE world
congress on computational intelligence), Hong Kong. doi: 10.1109/IJCNN.2008.463
3916

Hermans, M., Dambre, J., and Bienstman, P. (2015). Optoelectronic systems trained
with backpropagation through time. IEEE Trans. Neural Netw. Learn. Syst. 26, 1545–
1550. doi: 10.1109/TNNLS.2014.2344002

Horowitz, M. (2014). “1.1 Computing’s energy problem (and what we can do about
it),” in Proceedings of the IEEE international solid-state circuits conference digest of
technical papers (ISSCC), San Francisco, CA. doi: 10.1109/ISSCC.2014.6757323

Kaiser, J., Mostafa, H., and Neftci, E. (2020). Synaptic plasticity dynamics for deep
continuous local learning (DECOLLE). Front. Neurosci. 14:424. doi: 10.3389/fnins.
2020.00424

Kalhor, E., Noori, A., and Noori, G. (2021). Cancer cells population control in a
delayed-model of a leukemic patient using the combination of the eligibility traces
algorithm and neural networks. Int. J. Mach. Learn. Cybern. 12, 1973–1992. doi:
10.1007/s13042-021-01287-8

Kornijcuk, V., and Jeong, D. S. (2019). Recent progress in real-time adaptable
digital neuromorphic hardware. Adv. Intell. Syst. 1:1900030. doi: 10.1002/aisy.2019
00030

Kriegeskorte, N., and Mok, R. M. (2017). Building machines that adapt and compute
like brains. Behav. Brain Sci. 40:269. doi: 10.1017/S0140525X17000188

Larsen, R. S., and Sjöström, P. J. (2015). Synapse-type-specific plasticity in local
circuits. Curr. Opin. Neurobiol. 35, 127–135. doi: 10.1016/j.conb.2015.08.001

Lechner, M., Hasani, R., Amini, A., Henzinger, T. A., Rus, D., and Grosu, R. (2020).
Neural circuit policies enabling auditable autonomy. Nat. Mach. Intell. 2, 642–652.
doi: 10.1038/s42256-020-00237-3

Li, S., Wu, C., Li, H., Li, B., Wang, Y., and Qiu, Q. (2015). “FPGA
acceleration of recurrent neural network based language model,” in Proceedings of the
annual international symposium on field-programmable custom computing machines,
Vancouver, BC. doi: 10.1109/FCCM.2015.50

Liu, B., Ye, X., Zhou, C., Liu, Y., Zhang, Q., and Dong, F. (2020). “The improved
algorithm of deep Q-learning network based on eligibility trace,” in Proceedings of
the international conference on control, automation and robotics (ICCAR), Singapore.
doi: 10.1109/ICCAR49639.2020.9108040

Manneschi, L., and Vasilaki, E. (2020). An alternative to backpropagation
through time. Nat. Mach. Intell. 2, 155–156. doi: 10.1038/s42256-020-
0162-9

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,
Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 668–673. doi: 10.1126/science.
1254642

Millner, S., Grübl, A., Meier, K., Schemmel, J., and Schwartz, M. O. (2010). A VLSI
implementation of the adaptive exponential integrate-and-fire neuron model. Adv.
Neural Inf. Process. Syst. 2, 1642–1650. doi: 10.5555/2997046.2997079

Mohemmed, A., Schliebs, S., Matsuda, S., and Kasabov, N. (2012). SPAN: Spike
pattern association neuron for learning spatio-temporal spike patterns. Int. J. Neural
Syst. 22, 1659–1685. doi: 10.1142/S0129065712500128

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, A. T., and Mujumdar, A. (2012).
“Bluehive – A field-programable custom computing machine for extreme-scale real-
time neural network simulation,” in Proceedings of the international symposium on
field-programmable custom computing machines, Toronto, ON. doi: 10.1109/FCCM.
2012.32

Painkras, E., Plana, L. A., Garside, J., Temple, S., Galluppi, F., Patterson, C.,
et al. (2013). SpiNNaker: A 1-w 18-core system-on-chip for massively-parallel neural
network simulation. IEEE J. Solid State Circuits 48, 1943–1953. doi: 10.1109/JSSC.2013.
2259038

Pani, D., Meloni, P., Tuveri, G., Palumbo, F., Massobrio, P., and Raffo, L. (2017).
An FPGA platform for real-time simulation of spiking neuronal networks. Front.
Neurosci. 11:90. doi: 10.3389/fnins.2017.00090

Park, J., and Jung, S. D. (2020). Presynaptic spike-driven spike timing-dependent
plasticity with address event representation for large-scale neuromorphic systems.
IEEE Trans. Circuits Syst. I 67, 1936–1947. doi: 10.1109/TCSI.2020.2966884

Que, Z., Nakahara, H., Nurvitadhi, E., Boutros, A., Fan, H., Zeng, C., et al. (2022).
Recurrent neural networks with column-wise matrix–vector multiplication on FPGAs.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 30, 227–237. doi: 10.1109/TVLSI.
2021.3135353

Salaj, D., Subramoney, A., Kraisnikovic, C., Bellec, G., Legenstein, R., and Maass,
W. (2021). Spike frequency adaptation supports network computations on emporally
dispersed information. ELife 10:e65459. doi: 10.7554/eLife.65459

Sankaran, A., Detterer, P., Kannan, K., Alachiotis, N., and Corradi, F. (2022). “An
event-driven recurrent spiking neural network architecture for efficient inference
on FPGA,” in Proceedings of the international conference on neuromorphic systems,
Knoxville, TN, United States. doi: 10.1145/3546790.3546802

Schwenker, F., and Trentin, E. (2014). Partially supervised learning for pattern
recognition. Pattern Recognit. Lett. 37, 1–3. doi: 10.1016/j.patrec.2013.10.014

Shama, F., Haghiri, S., and Imani, M. A. (2020). FPGA realization of Hodgkin-
Huxley neuronal model. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1059–1068. doi:
10.1109/TNSRE.2020.2980475

Sim, J., Joo, S., and Jung, S. O. (2019). “Comparative analysis of digital STDP
learning circuits designed using counter and shift register,” in Proceedings of the
international technical conference on circuits/systems, computers and communications
(ITC-CSCC), JeJu. doi: 10.1109/ITC-CSCC.2019.8793424

Sutton, R. S., and Barto, A. G. (2014). Reinforcement learning an introduction second
edition. Cambridge, MA: MIT Press.

Tang, H., and Glass, J. (2018). “On training recurrent networks with truncated
backpropagation through time in speech recognition,” in Proceedings of the IEEE
spoken language technology workshop, Cambridge, MA. doi: 10.1109/SLT.2018.
8639517

Vo, H. M. (2017). “Implementing the on-chip backpropagation learning algorithm
on FPGA architecture,” in Proceedings of the international conference on system science
& engineering, Ho Chi Minh City. doi: 10.1007/s11265-005-4961-3

Wang, X., Liu, Y., Sanchez-Vives, M. V., and McCormick, D. A. (2003).
Adaptation and temporal decorrelation by single neurons in the primary visual cortex.
J. Neurophysiol. 89, 3279–3293. doi: 10.1152/jn.00242.2003

Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it.
Proc. IEEE. 78, 1550–1560. doi: 10.1109/5.58337

Zhang, W., and Li, P. (2019). “Spike-train level backpropagation for training deep
recurrent spiking neural networks,” in Proceedings of the neural information processing
systems (NeurIPS), Vancouver, Canada. doi: 10.5555/3454287.3454988

Zhou, Y., Ren, Y., Xu, E., Liu, S., and Zhou, L. (2022). Supervised semantic
segmentation based on deep learning: a survey. Multimedia Tools Appl. 81, 29283–
29304. doi: 10.1007/s11042-022-12842-y

Frontiers in Neuroscience 12 frontiersin.org102

https://doi.org/10.3389/fnins.2023.1107089
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1162/089976603322385063
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/TIE.2014.2356439
https://doi.org/10.1109/TIE.2014.2356439
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/TNNLS.2016.2545298
https://doi.org/10.1109/IJCNN.2008.4633916
https://doi.org/10.1109/IJCNN.2008.4633916
https://doi.org/10.1109/TNNLS.2014.2344002
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.1007/s13042-021-01287-8
https://doi.org/10.1007/s13042-021-01287-8
https://doi.org/10.1002/aisy.201900030
https://doi.org/10.1002/aisy.201900030
https://doi.org/10.1017/S0140525X17000188
https://doi.org/10.1016/j.conb.2015.08.001
https://doi.org/10.1038/s42256-020-00237-3
https://doi.org/10.1109/FCCM.2015.50
https://doi.org/10.1109/ICCAR49639.2020.9108040
https://doi.org/10.1038/s42256-020-0162-9
https://doi.org/10.1038/s42256-020-0162-9
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.5555/2997046.2997079
https://doi.org/10.1142/S0129065712500128
https://doi.org/10.1109/FCCM.2012.32
https://doi.org/10.1109/FCCM.2012.32
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.3389/fnins.2017.00090
https://doi.org/10.1109/TCSI.2020.2966884
https://doi.org/10.1109/TVLSI.2021.3135353
https://doi.org/10.1109/TVLSI.2021.3135353
https://doi.org/10.7554/eLife.65459
https://doi.org/10.1145/3546790.3546802
https://doi.org/10.1016/j.patrec.2013.10.014
https://doi.org/10.1109/TNSRE.2020.2980475
https://doi.org/10.1109/TNSRE.2020.2980475
https://doi.org/10.1109/ITC-CSCC.2019.8793424
https://doi.org/10.1109/SLT.2018.8639517
https://doi.org/10.1109/SLT.2018.8639517
https://doi.org/10.1007/s11265-005-4961-3
https://doi.org/10.1152/jn.00242.2003
https://doi.org/10.1109/5.58337
https://doi.org/10.5555/3454287.3454988
https://doi.org/10.1007/s11042-022-12842-y
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

TYPE Original Research

PUBLISHED 03 March 2023

DOI 10.3389/fnins.2023.1154241

OPEN ACCESS

EDITED BY

Teresa Serrano-Gotarredona,

Spanish National Research Council

(CSIC), Spain

REVIEWED BY

Chen Li,

King’s College London, United Kingdom

Sashmita Panda,

Indian Institute of Technology Kharagpur, India

*CORRESPONDENCE

Andrea Castagnetti

andrea.castagnetti@univ-cotedazur.fr

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 30 January 2023

ACCEPTED 14 February 2023

PUBLISHED 03 March 2023

CITATION

Castagnetti A, Pegatoquet A and Miramond B

(2023) Trainable quantization for Speedy Spiking

Neural Networks. Front. Neurosci. 17:1154241.

doi: 10.3389/fnins.2023.1154241

COPYRIGHT

© 2023 Castagnetti, Pegatoquet and

Miramond. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Trainable quantization for Speedy
Spiking Neural Networks

Andrea Castagnetti*, Alain Pegatoquet and Benoît Miramond

LEAT, Université Côte d’Azur, CNRS, Sophia Antipolis, France

Spiking neural networks are considered as the third generation of Artificial

Neural Networks. SNNs perform computation using neurons and synapses that

communicate using binary and asynchronous signals known as spikes. They have

attracted significant research interest over the last years since their computing

paradigm allows theoretically sparse and low-power operations. This hypothetical

gain, used from the beginning of the neuromorphic research, was however

limited by three main factors: the absence of an e�cient learning rule competing

with the one of classical deep learning, the lack of mature learning framework,

and an important data processing latency finally generating energy overhead.

While the first two limitations have recently been addressed in the literature,

the major problem of latency is not solved yet. Indeed, information is not

exchanged instantaneously between spiking neurons but gradually builds up over

time as spikes are generated and propagated through the network. This paper

focuses on quantization error, one of the main consequence of the SNN discrete

representation of information. We argue that the quantization error is the main

source of accuracy drop between ANN and SNN. In this article we propose an

in-depth characterization of SNN quantization noise. We then propose a end-to-

end direct learning approach based on a new trainable spiking neural model. This

model allows adapting the threshold of neurons during training and implements

e�cient quantization strategies. This novel approach better explains the global

behavior of SNNs and minimizes the quantization noise during training. The

resulting SNN can be trained over a limited amount of timesteps, reducing latency,

while beating state of the art accuracy and preserving high sparsity on the main

datasets considered in the neuromorphic community.

KEYWORDS

Spiking Neural Networks, quantization error, low latency, sparsity, direct training

1. Introduction

The field of neuromorphic engineering, especially Spiking neural networks (SNNs),

is emerging as a new paradigm for the design of low-power and real-time information

processing hardware (Abderrahmane et al., 2020). The spike information coding used by

SNNs enables sparse and event-based computation through the network. The combination

of these properties may lead to more energy efficient hardware implementations of neural

networks, allowing state-of-the-art AI algorithms to be executed on mobile platforms with a

reduced power budget (Mendez et al., 2022). However, to achieve these energy gains while

simultaneously reaching the level of performance of Artificial Neural Networks (ANNs),

SNNs must be able to encode analog data with high precision using very compact codes, i.e.,

spike trains. The encoding precision in SNN is directly related to the latency of the network.

Increasing the conversion time, thus generating more spikes, lowers the quantization errors

Frontiers inNeuroscience 01 frontiersin.org103

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1154241
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1154241&domain=pdf&date_stamp=2023-03-03
mailto:andrea.castagnetti@univ-cotedazur.fr
https://doi.org/10.3389/fnins.2023.1154241
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1154241/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1154241

and improves performance at the cost of energy overhead. The

trade-off between conversion time, i.e., latency, and performance,

is an increasingly active area of research (Li et al., 2021, 2022)

and the main subject of this paper. Training methods for low

latency and high precision SNN can be divided in two categories:

ANN-SNN conversion and direct training. ANN-SNN conversion

generally lead to SNN with no accuracy degradation. However, this

comes at the cost of increasing latency. At the opposite, direct

training methods feature low latency, but suffered from accuracy

degradation, especially on deep neural networks such as ResNet

(Fang et al., 2021; Li et al., 2022).

In this paper, we propose a direct training method that

can achieve both low latency and high precision thanks to

Adaptive Threshold Integrate and Fire (ATIF) neurons. ATIF direct

training minimizes accuracy loss compared to ANN by applying

a novel trainable quantization scheme. By efficiently compressing

information we can achieve high accuracy with few timesteps even

for deep networks.

The main contributions of our work are listed below:

• Quantization noise in SNN: Spiking neurons quantize

information by converting their analog inputs into sequences

of spikes. We characterize the quantization error and its

relationship to the different parameters of a spiking neuron.

• Information compression through trainable quantization:

We propose a learning approach that reduces quantization

error by adapting the neuron’s parameters during training and

using a new neural model called ATIF.

• Low latency and sparse SNN: We validate our approach

on different image and audio classification problems, thus

defining new state of the art results in terms of accuracy and

latency. Moreover we show that these performance can be

achieved with a significant level of sparsity. Specifically, we

achieve 94.65% accuracy on CIFAR-10, and 94.31% on Google

Speech Commands with less than one spike per neuron.

2. State of the art

In the last few years, the development of SNN has been driven

by the need of matching the performance of the ANN on complex

image processing tasks. Early works focused on unsupervised

or semi-supervised learning algorithms based on spike timing

dependent plasticity (STDP) (Diehl and Cook, 2015; Srinivasan

et al., 2018). However, networks trained with STDP yield in general

to considerable lower accuracy than ANN or SNN trained with

backpropagation.

To take advantage of better performance provided by

supervised learning, several methods have been developed

to convert ANNs, trained using standard schemes like

backpropagation, into SNNs for event-driven inference (Diehl

et al., 2015; Rueckauer et al., 2017). The ANN-SNN conversion

is based on the idea that firing rates of spiking neurons should

match the activations of analog neurons. Early demonstration on

complex dataset like Imagenet or CIFAR-10 showed that SNNs

almost match the accuracy of ANN but at the cost of a higher

latency. As an example, Sengupta et al. (2019) was able to achieve

competitive results on CIFAR-10 with a latency of 2,500 timesteps.

Han et al. (2020) proposed a conversion-based training using

soft-reset spiking neurons. The Integrate and Fire (IF) with soft-

reset neuron implements a uniform quantization scheme between

its analog input and its spiking output, thus leading to a reduced

quantization error compared to hard-reset neurons. Moreover, to

ensure that spiking neurons operate in the linear regime the authors

proposed a technique to balance the firing threshold (Vth). With the

proposed model, the authors were able to achieve an accuracy of

60.30% with a latency of 32 timesteps on CIFAR-10 using a VGG-

16 network. In our work, we also use the IF with soft-reset neuron

model to take advantage of its uniform quantization.

Ding et al. (2021) applied a clipped ReLU during ANN training

to better emulate the behavior of spiking neurons. The clipping

point, which is the equivalent to the firing threshold of a spiking

neuron, is trained layer-wise. After conversion, the authors obtain

an accuracy of 85.40% with a latency of 32 timesteps on CIFAR-10

using a VGG-16 network.

Previous works have shown that threshold balancing clearly

helps reducing the quantization error, thus decreasing the accuracy

loss of SNNs. However, they fail to convert an ANN into an

SNN within extremely low time steps, where quantization errors

are higher. To overcome this issue, Li et al. (2021) proposed a

post-training calibration pipeline that fine-tunes, layer-by-layer,

the network parameters, including weights, bias and membrane

potentials, therefore minimizing the local conversion error (i.e.,

quantization error). An accuracy of 86.57% at 4 timesteps was then

obtained on CIFAR-10 using a VGG-16 network.

The authors of Li et al. (2022) went one step beyond by

proposing to convert a quantized ANN to an SNN. They use

a quantization-aware-training method called Learned step size

quantization (LSQ) (Esser et al., 2020) to train a quantized ANN. In

order to transfer the weights from the quantized ANN to the SNN,

the spiking neuron model was modified to match the response

curve of the quantized ReLU. However, for this method to be

effective, the proposed spiking neuron must be able to generate

spikes with negative polarity, which is not biologically plausible.

With the previous conversion method, an accuracy of 92.64% at

4 timesteps was obtained on CIFAR-10 using a VGG-16 network.

Beyond the excellent accuracy score, the authors of Li et al. (2022)

have shown that there is an equivalence between quantized ANN

and SNNs. Moreover, to obtain state of the art results, quantization

aware training must be used to jointly optimize accuracy and

quantization error.

Another method to obtain low latency SNNs is to train the

spiking network directly by surrogate gradients (Neftci et al.,

2019). Here, a surrogate function is used, during gradient back-

propagation, to replace the binary non-linearity of spiking neurons.

This allows gradient flowing thus making back-propagation

possible in the spiking domain. Direct training can optimize at

the same time, the network accuracy and the quantization error

introduced by the spiking neurons. It can therefore be considered

as a spiking-specific form of quantization aware training.

Rathi and Roy (2021) use direct learning to fine tune network

parameters transferred from an ANN. They are able to achieve an

accuracy of 92.70% at 5 timesteps on CIFAR-10 with VGG-16.

Frontiers inNeuroscience 02 frontiersin.org104

https://doi.org/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1154241

The authors of Fang et al. (2021) used direct learning to

train ResNet without any previous conversion from ANN. They

proposed SEW-ResNet, a spiking adaptation of ResNet that

overcomes the vanishing/exploding gradient problem that occurs

with directly trained spiking deep residual networks. They achieved

an accuracy of 67.04% at 4 timesteps on Imagenet with a ResNet34.

Their results show that it is possible to train deep spiking neural

networks and obtain very competitive results on complex datasets.

Finally, in our work we make use of computationally efficient

spiking neuron models that approximate the behavior observed

in real neurons. In these models the action potentials, i.e., the

spikes, are approximated using binary pulses of infinitesimally

short duration. However, recent studies have shown that biological

neurons can generate several spiking dynamics and they can fire

spikes of different amplitudes and duration (Chakraborty et al.,

2022). Moreover, in contrast to the structure of the human cortex

(Panda et al., 2021), we only consider networks composed of layers

of neurons with identical characteristics. The integrate-and-fire

model used in this paper does take into account only a limited set

of features of the biological neuron. However, it is compact and

computationally efficient, thus well-suited for SNNs in the context

of the machine learning tasks that we target in our work.

In this paper we propose to use direct learning to jointly

optimize the network and the spiking neurons parameters.

Moreover, we show that it is possible to reach or outperform state of

the art results without using any non-biologically plausible artifacts,

like negative polarity or non-binary spiking signals. All the results

presented in this Section will be summarized in Tables 1, 2 in

Section 4.

3. Methods

3.1. Spike based information compression

Considering an n-layer fully connected or convolutional ANN,

the output of the layer l can be described as:

yl = h(xl W l + bl), l ∈ [1, n] (1)

Where, xl, W l, bl are the input activation, the weights and the

bias of the layer l, respectively. Moreover, h(·) denotes the ReLU

activation function. In SNNs the activation function is replaced

with a spiking neuron, whose role is to implement the ReLU non-

linearity (max(0, x)) and discretize its input signal into spikes. Here,

we use the Integrate-and-Fire (IF) neuron model with soft-reset

that can be described, at each timestep t, by the following equations:

Hl(t) = V l(t − 1)+ il(t) (2)

il(t) = zl−1(t)W l + bl (3)

zl(t) = 2(Hl(t)− Vth) (4)

V l(t) = Hl(t) (1− zl(t))+ (Hl(t)− Vth) z
l(t) (5)

Where,Hl(t) andV l(t) represents the membrane potential after

the input integration and after the reset operation that follows the

spike emission at time t, respectively. The spiking output at time t

is represented by zl(t). Here, we stress the fact that zl(t) can only

have binary values. The input of the spiking neuron, il(t), can be

expressed as the product of the weights with the binary signal,

i.e., the spikes, generated by the preceding layer plus a constant

bias. As can be seen from Equations (2) and (3), the product can

be replaced with an addition of the weights with the membrane

potential whenever zl−1(t) = 1. Moreover, the bias is added to the

membrane potential at each timestep regardless the value of zl−1(t).

Equations (4) and (5) describe the generation of a spike and the

soft-reset operation, respectively. The function 2(·) represents the

Heaviside step function.

The SNN forward operation described by the previous

equations, is repeated through T timesteps. The output of the

spiking layer l can be decoded as follows:

yls =
1

T

T
∑

t=1

zl(t) (6)

Equation (6) defines the decoding scheme for a rate-coded

network. In this scheme, the information is coded by the number

of spikes generated by a spiking neuron over a fixed length of

time T, i.e., the firing-rate. Since a spiking neuron generates spikes

proportionally to its input current, the time average described in

Equation (6) will converge to yl, when T → ∞. Moreover, the time

integration of zl(t) which is a binary variable, leads to a quantization

of the decoded output yls. Using the preceding equations, it is

possible to show that the quantization function of a IF with soft-

reset spiking neuron can be expressed in the following closed

form:

T
∑

t=1

z(t) = min

{

T,

∑T
t=1(z

l−1(t)W l)+ b T

Vth

}

(7)

The numerator of Equation (7),
∑T

t=1(z
l−1(t)W l) + b T,

represents the integral of the input current, noted in the following

il, overT timesteps. Figure 1 shows the effect of the different neuron

parameters on the quantization function.

As we can observe, by varying the neuron parameters we

can modify the quantization curve. For example, the rational

behind threshold balancing is to adapt the quantization range,

by modifying Vth to match the input distribution as shown in

Figure 1B. We can also observe that the quantization function

has exactly T + 1 uniform quantization intervals. We therefore

expect a lower quantization noise by increasing the latency of

the network, that is T. However, increasing the latency hinders

the computational efficiency of SNNs. So, in order to efficiently

compress information with spiking neurons and maintain, at the

same time, their computational efficiency we have to reduce the

quantization noise without increasing T. This can be achieved by

optimizing the quantization function of spiking neurons to better

match the input distribution of il as we will see in the next sections.

3.2. Quantization error analysis

Here, we characterize the quantization noise introduced by the

spiking neurons. The effect of the neuron parameters and the input

distribution on the quantization process are first studied. Let us

consider an analog signal x and its quantized version x̂. We define

the quantization noise introduced during the conversion process

Frontiers inNeuroscience 03 frontiersin.org105

https://doi.org/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1154241

FIGURE 1

E�ect of the neuron parameters on the quantization function. (A)

Quantization functions for three di�erent bias values (T = 8,

Vth = 1.0, b = [0.25, 0,−0.25]). Adding a bias moves the curve in the

horizontal direction. (B) Quantization functions for three di�erent

threshold values (T = 8, Vth = [0.75, 1.0, 1.25], b = 0). Modifying Vth

changes the slope of the curve. The maximum value of the output

rate (1.) is reached when il = Vth.

using the Signal-to-Quantization-Noise-Ratio (SQNR) defined

below:

SQNR(x) = 10 log10

(

E[x2]

E[(x− x̂)2]

)

(8)

In ANNs the ReLU activation function does not introduce any

quantization noise. So, if we consider that x is the input of a

ReLU, then y = ReLU(x) = x when x ≥ 0. At the opposite

in SNNs, the input current of a spiking neuron is quantized as

shown in Equation (7). If we define x = il as the input of

the neuron, the decoded spiking output ys = IF(x) = x̂ is

the quantized representation of its input. This process is shown

in Figure 2.

From Figure 2B, we can observe that when the input of the

neuron is lower than Vth, the quantization error is bounded. At the

opposite, when x > Vth, the quantization error can grow without

any bounds. To minimize the quantization error within a uniform

FIGURE 2

Comparison between a ReLU activation and an IF spiking neuron.

(A) Quantization function of an IF with soft-reset (T = 8, Vth = 1.0).

We can observe that the output of the neuron saturates when the

input equals Vth. (B) The quantization error is bounded when x ≤ Vth.

The bounded error is called granular error. When the neuron

saturates, that is when x > Vth, the error is unbounded and is called

overload error.

quantization scheme it is thus necessary to set the saturation point,

that is Vth, to balance these two sources of error. To do so, we

must know the probability density function (PDF) of the input,

then optimize Vth to reduce the quantization noise, as we will see

in the next section.

3.3. PDF-optimized quantization for spiking
neurons

Let us consider an IF spiking neuron described by the Equations

(2)–(4). In this paper, the surrogate gradient method is used to

compute the derivative of the Heaviside step function during error

back-propagation, that is 2
′(x) = σ

′(x). Where, σ (x) denotes

the surrogate function, i.e., an approximation of the step function.

Throughout our paper, we use the sigmoid (σ (x) = 1
1+e−x) as

surrogate function.

Frontiers inNeuroscience 04 frontiersin.org106

https://doi.org/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1154241

Let Vth be a trainable parameter of the spiking neuron , i and

z its input and output, respectively. Let us call ∂L
∂z the upstream

gradient to the neuron. The downstream gradient with respect to

Vth can then be computed using the chain rule by multiplying the

upstream gradient by the local gradient with respect to Vth. For the

sake of notation simplicity we define q = (H(t)−Vth), the input of

the Heaviside step function. We can then compute the downstream

gradient as follows:

∂L

∂Vth
=

∂L

∂z
·
∂z

∂q
·

∂q

∂Vth
(9)

Using Equation (4) and the derivative of the surrogate function

we can compute the gradient of z with respect to q as follows:

∂z

∂q
= σ

′(q) (10)

Then, from the definition of q we can determine:

∂q

∂Vth
= −1 (11)

Finally, by replacing Equations (10) and (11) into Equation (9)

we obtain the approximation of the downstream gradient:

∂L

∂Vth
= −

∂L

∂z
· σ ′(q) (12)

The neuron output, denoted ŷ, is computed by decoding the

spiking sequence after T timesteps. We would like to find the value

of Vth that minimizes the quantization error of the neuron. To do

so, we analyze the optimization process for a single spiking neuron

whose input current i follows a Gaussian distribution with zero

mean, i ∼ N (0, σ
2). We first compare trainable and fixed Vth

neurons with a fixed number of timesteps T = 4. The loss function

is defined as the RMS error between the input and the output of the

neuron:

L(i, ŷ) = E[(i− ŷ)2] (13)

As we can observe from Equation (13), by minimizing the loss

function we maximize the SQNR for a given input distribution. We

simulated the above optimization problem for both an IF neuron

with a fixed Vth = 1 and an IF neuron with its threshold modified

during the learning process. At each iteration, an input i is drawn

from a Gaussian distribution with σ = 0.1. The neuron then

converts the input into spikes, that are finally decoded to obtain the

estimate ŷ. Once the loss is computed with Equations (13), the error

is back-propagated andVth (the only neuron parameter), is updated

using standard gradient-based optimization (Adam optimizer, lr =

10−3). In the following this model is denoted as ATIF-u.

The threshold voltage is initialized to the value 1 for all neurons.

The resulting SQNR is shown in Figure 3A. As it can be observed,

the SQNR at the beginning of the optimization process is the same

for both neurons models. While the quantization error does not

vary for the model with a fixed Vth, optimizing Vth can increase

by more than 10 dB the SQNR compared to a fixed Vth model,

for the same amount of timesteps (T = 4). From Figure 3B, we

can observe that the gain in SQNR is obtained by decreasing Vth,

FIGURE 3

Learning the Vth of a spiking neuron. (A) SQNR of an IF with

soft-reset with both trainable and fixed Vth. Since Vth is modified to

match the input distribution the SQNR increases during the

optimization process. To obtain a similar SQNR with a fixed Vth we

must use five times more timesteps. (B) Vth decreases during the

optimization process and approaches the standard deviation of the

input, σi.

thus moving the quantization intervals near the region where most

of the input values fall, in our case [0, 2 σi]. By optimizing the

quantization function of the spiking neuron we have then been able

to significantly decrease the quantization error without increasing

the timesteps. As an example, to obtain the same SQNRwith a fixed

Vth, we should have used five times more timesteps, that is T = 20,

as it can be observed from Figure 3A.

Frontiers inNeuroscience 05 frontiersin.org107

https://doi.org/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1154241

FIGURE 4

Non-uniform quantization scheme. The solid curve shows an

example of a non-uniform quantizer where steps have di�erent

sizes. The dotted curve shows the uniform quantizer where all the

steps have the same size Vth/T. As we can observe, in the

non-uniform quantization scheme the parameter p1 defines the

clipping point of the quantization function, like Vth does in the case

of an IF neuron. In this example T = 4 timesteps.

We have obtained the previous results by assuming that the

input of the neurons is normally distributed, which is a reasonable

hypothesis for SNN and ANN in general. However, similar results

and conclusions can be obtained for different type of distributions.

The optimization procedure described above, that can be integrated

into a Quantization-aware-training framework for SNN, is similar

to some extent to what LSQ (Esser et al., 2020) did for quantized

ANNs. That is, a uniform quantization scheme is tuned to match

the input distribution of the neurons.We can indeed further reduce

the quantization error, beyond what is possible with a uniform

quantization scheme, by modifying the size of the quantization

steps, thus making the quantizer non-uniform. We propose, in the

next section, a modified spiking neuron model able to implement

this quantization strategy.

3.4. PDF-optimized non-uniform
quantization for spiking neurons

In the uniform quantization scheme described in the previous

section, the size of each quantization step is equal to Vth/T, as can

be observed from Figures 1, 2. Since Vth is constant and does not

vary during time, the number of spikes generated by the neuron

only depends on the input amplitude.

Figure 4 shows an example of a non-uniform quantization

scheme. We can obtain this scheme by modifying the spiking

neuron, precisely, we letVth change during time. Let us start with an

example where T = 4. In this case, we would like to obtain exactly

four values of Vth(t) = [Vp1 ,Vp2 ,Vp3 ,Vp4]. In the first interval,

that is when i ≥ p4, the neuron outputs only one spike at the last

timestep. Let us denote this particular output with the following

FIGURE 5

Non-uniform quantization spiking neuron. The non-uniform

quantization scheme provides an increase of almost 3 dB compared

to the uniform quantization scheme on a gaussian distributed input

with σ = 0.1. In this example T = 4 timesteps.

notation: z(t) = [0001]. We can compute the threshold of the last

timestep (Vp4) as follows:

Vp4 = p4 T (14)

By setting Vth(t = 4) = Vp4 we constrain the neuron to

generate a spike at the last timestep whenever an input of amplitude

p4 is presented at the neuron input during T timesteps. We have

thus set the quantization step at the value i = p4. Let us now

consider the quantization step at value p1. When the input i ≥

p1, the neuron has to output the maximum rate, that is z(t) =

[1111]. This condition allows us to define the threshold for the first

timestep as follows:

Vp1 = p1 (15)

Following the same reasoning, when p3 ≤ i ≤ p2 the neuron

generates a spikes in the last two timesteps, that is z(t) = [0011].

This condition can be written as follows:

{

(T − 1) p3 ≥ Vp3 , t = T − 1

(T − 1) p3 − Vp3 + p3 = Vp4 , t = T
(16)

The first equation in 16 describes the state of the membrane

potential of the neuron at timestep T − 1. We set the neuron

threshold at the penultimate timestep to be equal to Vp3 to make

the neuron fire. Following a spike emission at timestep T − 1, the

membrane potential is soft-reset, then the input p3 is accumulated

at timestep T as shown in the second equation in 16. The equation

system shown in 16 has the following solution:

Vp3 = T (p3 − p4) (17)

Frontiers inNeuroscience 06 frontiersin.org108

https://doi.org/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1154241

In the same way, when p2 ≤ i ≤ p1, the neuron will output

the following sequence z(t) = [0111] then the following three

conditions are met:

(T − 2) p2 ≥ Vp2 , t = T − 2

(T − 2) p2 − Vp2 + p2 ≥ Vp3 , t = T − 1

(T − 2) p2 − Vp2 + p2 − Vp3 + p2 = Vp4 , t = T

(18)

Which leads us to the following solution:

Vp2 = (T − 1) p2 − T (p3 − p4) (19)

In the following this model is denoted as ATIF-nu. We have

simulated the proposed neuron model for a gaussian distributed

input with σ = 0.1. The model has T trainable parameters, namely

[p1, . . . , pT]. The thresholds are then computed using Equation (15)

to Equation (19), for the case T = 4. We use the same optimization

procedure and loss described in Section 3.3. The simulation results

are shown in Figure 5 along with the uniform quantization neuron

with trainable Vth.

As it can be observed, using a non-uniform quantization

scheme can increase the SQNR by almost 3dB compared to the

uniform case, without increasing the number of timesteps. This

gain comes from the fact that using non-uniform quantization

steps, we can better approximate the input data in regions that

have more probability mass. As the input of neurons in SNNs can

often be modeled as gaussian sources peaked near zero, we expect

that a non-uniform quantization scheme can help improving the

performance of SNNs as we will see in the next section.

4. Experiments and results

4.1. Experimental setup

We trained both VGG-16 and ResNet-18 models using direct

training on two different image classification problems with

increasing complexity: CIFAR-10, CIFAR-100. We trained both

networks with the neuron models described in Sections 3.3 and

3.4. In our setup, the threshold of neurons are trained layer-wise,

so that all the spiking neurons of a given layer share the same

Vth. For each model and dataset, we also trained a formal version

of the network, where spiking neuron are replaced with ReLU

activation to compare SNN with a full precision ANN. Both SNN

and ANN were trained using stochastic gradient descent (SGD),

with a learning rate of 8 · 10−2. The learning rate is exponentially

decayed with a factor of 0.9 each 30 epochs. Each network is trained

for 900 epochs. In SNNs, the input is analog coded (Rueckauer

et al., 2017), that is the spiking neurons of the first layer receive a

constant input current. We use data augmentation (random resize

and horizontal flip) as well as mixup with α = 1.

TABLE 1 Benchmark results on CIFAR-10/100 datasets.

Method Architecture ACC (ANN) ACC (SNN) Latency θ

CIFAR-10

RMP (Han et al., 2020)⋆
VGG-16 93.63 60.3 32 -

ResNet-20 91.47 91.36 2048 -

ACP (Li et al., 2021)⋆
VGG-16 95.6 86.57 4 -

ResNet-20 96.72 84.70 4 -

QFFS (Li et al., 2022)⋆
VGG-16 92.44 (2/3 bits) 92.64 4 -

ResNet-18 93.12 (2/3 bits) 93.14 4 -

ATIF-u†
VGG-16 95.6 92.51 4 0.111

ResNet-18 95.96 93.84 4 0.113

ATIF-nu†
VGG-16 95.6 93.13 4 0.129

ResNet-18 95.96 94.65 4 0.148

CIFAR-100

RMP* (Han et al., 2020)⋆
VGG-16 71.22 63.76 128 -

ResNet-20 68.72 67.82 2048 -

ACP* (Li et al., 2021)⋆
VGG-16 77.93 55.60 4 -

ResNet-20 81.51 54.96 4 -

ATIF-u†
VGG-16 74.47 66.54 4 0.159

ResNet-18 74.35 71.42 4 0.192

ATIF-nu†
VGG-16 74.47 66.92 4 0.167

ResNet-18 74.35 70.83 4 0.191

Benchmark results on CIFAR-10/100 datasets. Best accuracy results for both ResNet and VGG-16 networks are highlighted in bold. Symbol ⋆ denotes ANN-to-SNN conversion methods while

† denotes surrogate gradient learning, i.e., direct training methods.

Frontiers inNeuroscience 07 frontiersin.org109

https://doi.org/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1154241

TABLE 2 Benchmark results on Google Speech Commands V2 dataset (35 classes).

Method Architecture ACC (ANN) ACC (SNN) Latency θ

Recurrent (Cramer et al., 2022)† RSNN - 50.9 200 -

E2E (Yang et al., 2022)⋆ ResNet-8 - 92.9 32 -

ATIF-u† ResNet-18 94.46 94.31 4 0.12

ATIF-nu† ResNet-18 94.46 94.29 4 0.12

Best accuracy results are highlighted in bold. Symbol ⋆ denotes ANN-to-SNN conversion methods while † denotes surrogate gradient learning, i.e., direct training methods.

TABLE 3 The impact of Vth on the accuracy and the sparsity of the SNN.

Quantizer Vth ACC
(SNN)

Latency θ Spikes/neuron

Uniform Fixed 89.68 4 0.17 0.68

ATIF-u Trainable 93.84 4 0.113 0.452

ATIF-nu Trainable 94.65 4 0.148 0.592

Results are given for a ResNet-18 network on the CIFAR-10 dataset.

In addition to the image classifications problems described

above, we also carried out experiments on a keyword spotting

(KWS) dataset. In an automatic speech recognition system, KWS

consists in detecting a relatively small set of predefined keywords.

We used Google Speech Commands (GSC) (Warden, 2018) V2,

a dataset of audio signals sampled at 16 kHz composed of 1-s

recordings of 35 spoken keywords. Raw audio signals are pre-

processed to extract Mel Frequency Cepstral Coefficients (MFCC).

We used 10 MFC Coefficients, FFT of size 1024, a window size

of 640 with a hop of 320, and a padding of 320 on both sides.

The pre-processing generates a 48 × 10 coefficients matrix that

is subsequently processed by the neural networks. We trained a

Resnet-18 network using the same training configuration used for

CIFAR-10/100 except for the learning rate and the number of

epochs. The learning rate is initialized at 10−3 and exponentially

decayed with a factor of 0.1 each 20 epochs. Finally, each network

is trained for 80 epochs. We used PyTorch and the SpikingJelly

(Fang et al., 2020) framework for simulating SNNs. In the following

sections, we report the accuracy as well as the latency and the

sparsity of the SNN. We measured the sparsity of our networks,

that we call θ , by counting the average number of spikes generated

by the spiking neurons during the inference. The sparsity of a tensor

of size (m, n) is computed as follows:

θ =

T
∑

t=1

n
∑

i=0

m
∑

j=0

zi,j(t)

n×m× T
(20)

To report a single global sparsity, we average the sparsity of

each tensor in the SNNs. Moreover, the sparsity is averaged over

the entire test set that is composed of 10K images in the case of

CIFAR-10. The θ parametersmeasure the average activity of spiking

neurons. A low value means low activity and therefore a potential

increase in energy efficiency of the network when deployed on a

neuromorphic dedicated circuit (Lemaire et al., 2022).

4.2. Experimental results on CIFAR-10/100

Benchmark results on CIFAR-10/100 datasets are shown in

Table 1. Our models perform consistently better than recent state

of the art ANN-SNN conversion methods on both datasets. As an

example, we improve the top-1 accuracy of ResNet-18 on CIFAR-10

by 1.5% with respect to QFFS (Li et al., 2022). Experimental results

also show that our quantization approaches outperform previous

methods regardless of the network architecture. As an example,

we improve the top-1 accuracy on CIFAR-10 for both ResNet-18

and VGG-16 architectures. The non-uniform quantization scheme

provides the best accuracy scores in 3 out of four configurations,

while the uniform scheme provides a slightly better accuracy

score on ResNet-18 and CIFAR-100. It is worth noting that, these

improvements are obtained using only 4 timesteps. So, we are able

to improve the classification accuracy without degrading the SNN

latency compared to current state of the art methods. Besides the

latency, the sparsity parameter also has a strong impact on the

SNN efficiency. The amount of operations executed during SNN

inference is indeed related to the average firing rate of the neurons

(Lemaire et al., 2022). The sparsity parameter, θ , shows that our

networks are able to classify images using on average less than

one spike per neuron. As an example, for VGG-16 with a uniform

quantization scheme, each neuron generates on average 0.111 ×

4 = 0.44 spikes. It can also be observed that the non-uniform

quantization scheme generates more spikes on average than the

uniform quantizer. Since more quantization steps are allocated on

the region of the input where data appears more frequently, i.e.,

where the PDF has higher probability mass, the generation of spikes

increases accordingly.

4.3. Experimental results on Google Speech
Commands

The experimental results on the Google Speech Commands

dataset are shown in Table 2. We compared both our quantization

Frontiers inNeuroscience 08 frontiersin.org110

https://doi.org/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1154241

schemes, ATIF-u and ATIF-nu, with two recently published SNNs.

The first network, called Recurrent (Cramer et al., 2022), is a single

layer recurrent-SNN composed of 128 Leaky-Integrate-and-Fire

(LIF) neurons and trained using surrogate gradient and BPTT.

E2E is based on a ResNet-8 architecture with IF spiking neurons

and is trained using ANN-SNN conversion. Notably, neither

networks use threshold balancing tomitigate the quantization error

introduced by the spiking neurons. As we can observe from Table 2,

Recurrent SNN proposed in Cramer et al. (2022), which features a

very simple architecture, is not able to match current state of the art

results on this particular task even with a latency of 200 timesteps.

At the opposite E2E reaches an accuracy score of 92.9% using 32

timesteps. This accuracy score, which is closer to the state of the

art, is nevertheless obtained at the cost of a high latency. At the

opposite, our models can consistently outperform recent state of

the art SNNs both in terms of accuracy and latency. As an example,

we obtain an accuracy of 94.31%, which is only 0.15% below the

accuracy of the full-precision ANN using only 4 timesteps. These

results confirm the importance of adopting a quantization-aware-

training strategy, i.e., direct learning, but also to jointly optimize

the spiking neurons parameters, to reduce quantization noise, as

our ATIF models do.

4.4. Ablation studies

We decompose the effects of our methods using an ablation

study on the CIFAR-10 dataset. Three ResNet-18 networks are

trained with different spiking neuron models. The baseline

corresponds to a network with IF soft-reset spiking neurons, where

all neurons share a fixed Vth = 1. We compare this network with

both uniform and non-uniform quantization schemes described

in Sections 3.3 and 3.4, respectively. In those schemes Vth is a

trainable parameter: it is trained layer-wise for each network. All

three networks are trained using surrogate gradient learning and

use the same training setup described in Section 4.1.

As shown on Table 3, a significant accuracy improvement can

be obtained by optimizing the Vth of spiking neurons during

training. As an example, comparing the uniform and fixed

threshold quantization scheme with the trainable one we can

observe that the accuracy increases by 4.16%. We can also observe,

that we achieve an accuracy improvement without increasing

neither the latency nor the number of the generated spikes. By

using a trainable Vth scheme, the sparsity can be further reduced,

so that we can improve at the same time the performance and

the computational efficiency of the network. Finally, using a

nonuniform quantization scheme provides a further improvement

of 0.81% on the accuracy. However using this scheme, neurons

generate slightly more spikes than the uniform quantizer with

trainable Vth.

5. Discussion and further
improvements

In this paper, we have approached the problem of SNNs latency

using tools and metrics available within the data compression

and information theory domains. We have shown that the source

of accuracy degradation between ANN and SNN resides in the

quantization error caused by the discretization of the information

exchanged by neurons. By leveraging the techniques used in data

compression, i.e., scalar quantization, we show that we can improve

the performance of spiking neurons. Moreover, by improving the

signal-to-quantization-noise ratio of the neurons we show that we

can significantly boost the accuracy of the SNNs overall. Finally,

our results are obtained without compromising the efficiency of

the resulting SNNs. We are able to approach the performance of

full precision ANNs (1.31% difference in the case of ResNet-18 on

CIFAR-10 and 0.15% difference onGSC) using only 4 timesteps and

0.5 spikes/neuron on average.

The SNNs presented in this paper are rate-coded networks. Rate

coding have long been considered as an inefficient coding scheme,

mainly because of the huge number of required timesteps on

early works (Sengupta et al., 2019) to approach ANNs accuracies.

However, this inefficiency is not intrinsically related to the rate

coding mechanism but rather to the quantization scheme used

to encode information. Moreover, the methodology that we have

used in our analysis can also be applied to other types of coding

mechanisms, such as time-coded networks.

While most of the works in the literature still use conversion

techniques, our SNNs were trained using a direct learning scheme.

With direct learning, time is taken into account during the training

process. We can therefore optimize the dynamic behavior of the

network. This has some advantages over conversion schemes. For

example, Li et al. (2022) identify a source of quantization error,

called occasional noise, produced by the oscillation of the input

current of the neurons. They reduce the impact of this noise source

by introducing a mechanism to generate spikes with negative

polarity. This phenomenon is not relevant when the network is

trained in the spike domain. Quantization errors caused by the

dynamic behavior of the network are taken into account and

minimized during the training process. Therefore, we do not need

to introduce non-biological plausible mechanisms in our networks.

One of the main drawbacks of the proposed method is the

complexity and the memory budget required by the direct learning

with surrogate gradient during training. Since each forward and

backward pass must be repeated T times to compute the gradients,

the training procedure is slower compared to the ANN-SNN

conversion where only the ANN is trained, then the weights and

biases are transferred to the SNN. Moreover, since direct learning

uses back propagation though time (BPTT) it is prone to the

vanishing and the exploding gradient problems. If the latter could

be mitigated using, for example, gradient clipping the former is

more difficult to deal with. With vanishing gradients the learning

process of the SNNs slow down. Therefore, to avoid underfit, SNNs

training requires a relative large number of epochs and generally a

higher learning rate compared to ANNs.

The time dimension is a fundamental part of the SNNs

paradigm. SNNs are therefore well-suited to process spatio-

temporal information. Therefore, another interesting future

direction could be the extension of our work for the case of

SNNs processing time varying signals. Our analysis of quantization

must be revisited since the input current of the neuron cannot be

Frontiers inNeuroscience 09 frontiersin.org111

https://doi.org/10.3389/fnins.2023.1154241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1154241

considered constant anymore. Finally, we only considered SNNs

were weights, biases and neuronal parameters are coded using full-

precision representations, e.g., floating point. To obtain full benefits

from the low-complexity computational model of the SNNs on

neuromorphic hardware the memory footprint of the model must

also be considered. In this case it could be possible to integrate

a quantization-aware-training procedure, e.g., LSQ, during SNN

training to quantize the network parameters using low-precision

representations.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://www.cs.toronto.edu/kriz/cifar.html,

https://www.tensorflow.org/datasets/catalog/speech_commands.

Author contributions

AC developed the methods, under the supervision of AP and

BM. All authors contributed to the article and approved the

submitted version.

Funding

This work has been supported by the French government

through 3IA Côte d’Azur Institute, reference ANR-19-P3IA-0002.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abderrahmane, N., Lemaire, E., andMiramond, B. (2020). Design space exploration
of hardware spiking neurons for embedded artificial intelligence. Neural Netw. 121,
366–386. doi: 10.1016/j.neunet.2019.09.024

Chakraborty, A., Panda, S., and Chakrabarti, S. (2022). “Action potential parameters
and spiking behavior of cortical neurons: a statistical analysis for designing spiking
neural networks,” in IEEE Transactions on Cognitive and Developmental Systems.

Cramer, B., Stradmann, Y., Schemmel, J., and Zenke, F. (2022). The Heidelberg
spiking data sets for the systematic evaluation of spiking neural networks. IEEE Trans.
Neural Netw. Learn. Syst. 33, 2744–2757. doi: 10.1109/TNNLS.2020.3044364

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99.
doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015).
“Fast-classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN), 1–8.

Ding, J., Yu, Z., Tian, Y., and Huang, T. (2021). “Optimal ANN-SNN conversion
for fast and accurate inference in deep spiking neural networks,” in Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, 2328–2336 (Montreal,
QC: International Joint Conferences on Artificial Intelligence Organization).

Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha,
D. S. (2020). Learned step size quantization. arXiv preprint arXiv:1902.08153.
doi: 10.48550/arXiv.1902.08153

Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., et al. (2020). Spikingjelly.
Available online at: https://github.com/fangwei123456/spikingjelly (accessed February
06, 2023).

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and Tian, Y. (2021). “Deep
residual learning in spiking neural networks,” in Advances in Neural Information
Processing Systems, eds A. Beygelzimer, Y. Dauphin, P. Liang, and J.WortmanVaughan.
Vol. 34 (Curran Associates, Inc.), 21056–21069. Available online at: https://openreview.
net/forum?id=6OoCDvFV4m

Han, B., Srinivasan, G., and Roy, K. (2020). “RMP-SNN: residual membrane
potential neuron for enabling deeper high-accuracy and low-latency spiking neural
network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Lemaire, E., Cordone, L., Castagnetti, A., Novac, P.-E., Courtois, J., and Miramond,
B. (2022). An analytical estimation of spiking neural networks energy efficiency. arXiv
preprint arXiv:2210.13107. doi: 10.48550/arXiv.2210.13107

Li, C., Ma, L., and Furber, S. (2022). Quantization framework for fast spiking neural
networks. Front. Neurosci. 16, 918793. doi: 10.3389/fnins.2022.918793

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021). “A free lunch from ANN:
towards efficient, accurate spiking neural networks calibration,” in Proceedings of the
38th International Conference on Machine Learning, eds M. Meila and T. Zhang
(PMLR), 6316–6325.

Mendez, J., Bierzynski, K., Cuéllar, M., and Morales, D. P. (2022). Edge intelligence:
concepts, architectures, applications and future directions. ACM Trans. Embedded
Comput. Syst. 21, 1–41. doi: 10.1145/3486674

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning
in spiking neural networks: bringing the power of gradient-based optimization to
spiking neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.
2931595

Panda, S., Hore, A., Chakraborty, A., and Chakrabarti, S. (2021). “Statistical
description of electrophysiological features of neurons across layers of human
cortex,” in 2021 Advanced Communication Technologies and Signal Processing (ACTS)
(Rourkela: IEEE), 1–5.

Rathi, N., and Roy, K. (2021). DIET-SNN: a low-latency spiking neural network
with direct input encoding and leakage and threshold optimization. IEEE Trans. Neural
Netw. Learn. Syst. 1–9. doi: 10.1109/TNNLS.2021.3111897

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017).
Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.
00682

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95.
doi: 10.3389/fnins.2019.00095

Srinivasan, G., Panda, P., and Roy, K. (2018). STDP-based unsupervised feature
learning using convolution-over-time in spiking neural networks for energy-
efficient neuromorphic computing. J. Emerg. Technol. Comput. Syst. 14, 44:1–44:12.
doi: 10.1145/3266229

Warden, P. (2018). Speech commands: a dataset for limited-vocabulary
speech recognition. arXiv preprint arXiv:1804.03209. doi: 10.48550/arXiv.1804.
03209

Yang, Q., Liu, Q., and Li, H. (2022). “Deep residual spiking neural network
for keyword spotting in low-resource settings,” in Interspeech 2022 (ISCA),
3023–3027.

Frontiers inNeuroscience 10 frontiersin.org112

https://doi.org/10.3389/fnins.2023.1154241
https://www.cs.toronto.edu/kriz/cifar.html
https://www.tensorflow.org/datasets/catalog/speech_commands
https://doi.org/10.1016/j.neunet.2019.09.024
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.48550/arXiv.1902.08153
https://github.com/fangwei123456/spikingjelly
https://openreview.net/forum?id=6OoCDvFV4m
https://openreview.net/forum?id=6OoCDvFV4m
https://doi.org/10.48550/arXiv.2210.13107
https://doi.org/10.3389/fnins.2022.918793
https://doi.org/10.1145/3486674
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1145/3266229
https://doi.org/10.48550/arXiv.1804.03209
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 21 April 2023

DOI 10.3389/fnins.2023.1127537

OPEN ACCESS

EDITED BY

Anup Das,

Drexel University, United States

REVIEWED BY

Hongwei Tan,

Aalto University, Finland

Maryam Parsa,

George Mason University, United States

*CORRESPONDENCE

Peng Kang

pengkang2022@u.northwestern.edu

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 19 December 2022

ACCEPTED 28 March 2023

PUBLISHED 21 April 2023

CITATION

Kang P, Banerjee S, Chopp H, Katsaggelos A

and Cossairt O (2023) Boost event-driven

tactile learning with location spiking neurons.

Front. Neurosci. 17:1127537.

doi: 10.3389/fnins.2023.1127537

COPYRIGHT

© 2023 Kang, Banerjee, Chopp, Katsaggelos

and Cossairt. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Boost event-driven tactile
learning with location spiking
neurons

Peng Kang1*, Srutarshi Banerjee2, Henry Chopp2,

Aggelos Katsaggelos2 and Oliver Cossairt1

1Department of Computer Science, Northwestern University, Evanston, IL, United States, 2Department of

Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States

Tactile sensing is essential for a variety of daily tasks. Inspired by the event-

driven nature and sparse spiking communication of the biological systems,

recent advances in event-driven tactile sensors and Spiking Neural Networks

(SNNs) spur the research in related fields. However, SNN-enabled event-driven

tactile learning is still in its infancy due to the limited representation abilities of

existing spiking neurons and high spatio-temporal complexity in the event-driven

tactile data. In this paper, to improve the representation capability of existing

spiking neurons, we propose a novel neuron model called “location spiking

neuron,” which enables us to extract features of event-based data in a novel

way. Specifically, based on the classical Time Spike Response Model (TSRM), we

develop the Location Spike Response Model (LSRM). In addition, based on the

most commonly-used Time Leaky Integrate-and-Fire (TLIF) model, we develop

the Location Leaky Integrate-and-Fire (LLIF) model. Moreover, to demonstrate the

representation e�ectiveness of our proposed neurons and capture the complex

spatio-temporal dependencies in the event-driven tactile data, we exploit the

location spiking neurons to propose two hybrid models for event-driven tactile

learning. Specifically, the first hybrid model combines a fully-connected SNN with

TSRM neurons and a fully-connected SNN with LSRM neurons. And the second

hybrid model fuses the spatial spiking graph neural network with TLIF neurons

and the temporal spiking graph neural network with LLIF neurons. Extensive

experiments demonstrate the significant improvements of our models over the

state-of-the-art methods on event-driven tactile learning, including event-driven

tactile object recognition and event-driven slip detection. Moreover, compared

to the counterpart artificial neural networks (ANNs), our SNN models are 10× to

100× energy-e�cient, which shows the superior energy e�ciency of our models

and may bring new opportunities to the spike-based learning community and

neuromorphic engineering. Finally, we thoroughly examine the advantages and

limitations of various spiking neurons and discuss the broad applicability and

potential impact of this work on other spike-based learning applications.

KEYWORDS

Spiking Neural Networks, spiking neuron models, location spiking neurons, event-

driven tactile learning, event-driven tactile object recognition, event-driven tactile slip

detection, robotic manipulation

Frontiers inNeuroscience 01 frontiersin.org113

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1127537
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1127537&domain=pdf&date_stamp=2023-04-21
mailto:pengkang2022@u.northwestern.edu
https://doi.org/10.3389/fnins.2023.1127537
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1127537/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

1. Introduction

With the prevalence of artificial intelligence, computers today

have demonstrated extraordinary abilities in visual and auditory

perceptions. Although these perceptions are essential sensory

modalities, they may fail to complete tasks in certain situations

where tactile perception can help. For example, the visual sensory

modality can fail to distinguish objects with similar visual

features in less-favorable environments, such as dim-lit or in

the presence of occlusions. In such cases, tactile sensing can

provide meaningful information like texture, pressure, roughness,

or friction and maintain performance. Overall, tactile perception

is a vital sensing modality that enables humans to gain perceptual

judgment on the surrounding environment and conduct stable

movements (Taunyazov et al., 2020).

With the recent advances in material science and Artificial

Neural Networks (ANNs), research on tactile perception has

begun to soar, including tactile object recognition (Soh and

Demiris, 2014; Kappassov et al., 2015; Sanchez et al., 2018), slip

detection (Calandra et al., 2018), and texture recognition (Baishya

and Bäuml, 2016; Taunyazov et al., 2019). Unfortunately, although

ANNs demonstrate promising performance on the tactile learning

tasks, they are usually power-hungry compared to human brains

that require far less energy to perform the tactile perception

robustly (Li et al., 2016; Strubell et al., 2019).

Inspired by biological systems, research on event-driven

perception has started to gain momentum, and several

asynchronous event-based sensors have been proposed,

including event cameras (Gallego et al., 2020) and event-based

tactile sensors (Taunyazoz et al., 2020). In contrast to standard

synchronous sensors, such event-based sensors can achieve higher

energy efficiency, better scalability, and lower latency. However,

due to the high sparsity and complexity of event-driven data,

learning with these sensors is still in its infancy (Pfeiffer and Pfeil,

2018). Recently, several works (Gu et al., 2020; Taunyazov et al.,

2020; Taunyazoz et al., 2020) utilized Spiking Neural Networks

[SNNs; Pfeiffer and Pfeil (2018); Shrestha and Orchard (2018); Xu

et al. (2021)] to tackle event-driven tactile learning. Unlike ANNs,

which require expensive transformations from asynchronous

discrete events to synchronous real-valued frames, SNNs can

process event-based sensor data directly. Moreover, unlike ANNs

that employ artificial neurons (Maas et al., 2013; Clevert et al.,

2015; Xu et al., 2015) and conduct real-valued computations,

SNNs adopt spiking neurons (Gerstner, 1995; Abbott, 1999;

Gerstner and Kistler, 2002) and utilize binary 0–1 spikes to

process information. This difference reduces the mathematical

dot-product operations in ANNs to less computationally expensive

summation operations in SNNs (Roy et al., 2019). Due to the

advantages of SNNs, these works are always energy-efficient

and suitable for power-constrained devices. However, due to

the limited representative abilities of existing spiking neuron

models and high spatio-temporal complexity in the event-based

tactile data (Taunyazoz et al., 2020), these works still cannot

sufficiently capture spatio-temporal dependencies and thus hinder

the performance of event-driven tactile learning.

In this paper, to address the problems mentioned above,

we make several contributions that boost event-driven tactile

learning, including event-driven tactile object recognition

and event-driven slip detection. We summarize a list of

acronyms and notations in Table 1. Please refer to it during

the reading.

First, to enable richer representative abilities of existing spiking

neurons, we propose a novel neuron model called “location

spiking neuron.” Unlike existing spiking neuron models that

update their membrane potentials based on time steps (Roy

et al., 2019), location spiking neurons update their membrane

potentials based on locations. Specifically, based on the Time

Spike Response Model [TSRM; Gerstner (1995)], we develop the

“Location Spike Response Model (LSRM).” Moreover, to make

the location spiking neurons more applicable to a wide range of

applications, we develop the “Location Leaky Integrate-and-Fire

(LLIF)” model based on the most commonly-used Time Leaky

Integrate-and-Fire (TLIF) model (Abbott, 1999). Please note that

TSRM and TLIF are the classical Spike Response Model (SRM)

and Leaky Integrate-and-Fire (LIF) in the literature. We add the

character “T (Time)” to highlight their differences from LSRM

and LLIF. These location spiking neurons enable the extraction

of feature representations of event-based data in a novel way.

Previously, SNNs adopted temporal recurrent neuronal dynamics

to extract features from the event-based data. With location

spiking neurons, we can build SNNs that employ spatial recurrent

neuronal dynamics to extract features from the event-based data.

We believe location spiking neuronmodels can have a broad impact

on the SNN community and spur the research on spike-based

learning from event sensors like NeuTouch (Taunyazoz et al., 2020),

Dynamic Audio Sensors (Anumula et al., 2018), or Dynamic Vision

Sensors (Gallego et al., 2020).

Next, we investigate the representation effectiveness of location

spiking neurons and propose two models for event-driven

tactile learning. Specifically, to capture the complex spatio-

temporal dependencies in the event-driven tactile data, the

first model combines a fully-connected (FC) SNN with TSRM

neurons and a fully-connected (FC) SNN with LSRM neurons,

henceforth referred to as the Hybrid_SRM_FC. To capture

more spatio-temporal topology knowledge in the event-driven

tactile data, the second model fuses the spatial spiking graph

neural network (GNN) with TLIF neurons and temporal spiking

graph neural network (GNN) with LLIF neurons, henceforth

referred to as the Hybrid_LIF_GNN. To be more specific,

the Hybrid_LIF_GNN first constructs tactile spatial graphs and

tactile temporal graphs based on taxel locations and event

time sequences, respectively. Then, it utilizes the spatial spiking

graph neural network with TLIF neurons and the temporal

spiking graph neural network with LLIF neurons to extract

features of these graphs. Finally, it fuses the spiking tactile

features from the two networks and provides the final tactile

learning prediction. Besides the novel model construction, we

also specify the location orders to enable the spatial recurrent

neuronal dynamics of location spiking neurons in event-driven

tactile learning. In addition, we explore the robustness of

location orders on event-driven tactile learning. Moreover, we

design new loss functions involved with locations and utilize

the backpropagation methods to optimize the proposed models.

Furthermore, we develop the timestep-wise inference algorithms

Frontiers inNeuroscience 02 frontiersin.org114

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

TABLE 1 List of acronyms and notations in the paper.

TSRM Time Spike Response Model

LSRM Location Spike Response Model

TLIF Time Leaky Integrate-and-Fire

LLIF Location Leaky Integrate-and-Fire

Hybrid_SRM_FC The hybrid model that combines a fully-connected SNN with TSRM neurons and

a fully-connected SNN with LSRM neurons

Hybrid_LIF_GNN The hybrid model that fuses the spatial spiking graph neural network with TLIF

neurons and temporal spiking graph neural network with LLIF neurons

ν ν = t for existing spiking neurons and ν = l for location spiking neurons

ui(ν) The membrane potential of neuron i at ν

ηi(·) The refractory kernel of neuron i

ǫij(·) The incoming spike response kernel between neurons i and j

Ŵi The set of presynaptic neurons of neuron i

wij The connection strength between neurons i and j

xj(ν) The presynaptic input from pre-neuron j at ν

I(ν) The weighted summation of the presynaptic inputs at ν

τ The time constant of TLIF neurons

α The decay factor of TLIF neurons

τ
′ The location constant of LLIF neurons

β The location decay factor of LLIF neurons

uth The firing thresholds of neurons

N The number of taxels of NeuTouch

T The number of total time length of event sequences

K The number of classes for the tasks

Xin The event-based tactile input

X′in The transposed event-based tactile input

O1 Output spikes from the SNN with existing spiking neurons

oi(t) The output spiking state of existing spiking neuron i at time t

O2 Output spikes from the SNN with location spiking neurons

oi(l) The output spiking state of location spiking neuron i at location l

O Output spikes from the Hybrid_SRM_FC

Gs(t) The tactile spatial graph at time t

Gt(n) The tactile temporal graph of taxel n

O′1 The predicted label vector of the spatial spiking graph neural network

O′2 The predicted label vector of the temporal spiking graph neural network

O′ The predicted label vector of the Hybrid_LIF_GNN

for the two models to show their applicability to the spike-based

temporal data.

Lastly, we conduct experiments on three challenging event-

driven tactile learning tasks. Specifically, the first task requires

models to determine the type of objects being handled. The

second task requires models to determine the type of containers

being handled and the amount of liquid held within, which

is more challenging than the first task. And the third task

asks models to accurately detect the rotational slip (“stable” or

“rotate”) within 0.15 s. Extensive experimental results demonstrate

the significant improvements of our models over the state-of-

the-art methods on event-driven tactile learning. Moreover, the

Frontiers inNeuroscience 03 frontiersin.org115

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

experiments show that existing spiking neurons are better at

capturing spatial dependencies, while location spiking neurons

are better at modeling mid-and-long temporal dependencies.

Furthermore, compared to the counterpart ANNs, our models are

10× to 100× energy-efficient, which shows the superior energy

efficiency of our models and may bring new opportunities to

neuromorphic engineering.

Portions of this work “Event-Driven Tactile Learning with

Location Spiking Neurons (Kang et al., 2022)” were accepted by

IJCNN 2022 and an oral presentation was given at the IEEE

WCCI 2022. In the conference paper, we proposed location

spiking neurons and demonstrated the dynamics of LSRM

neurons. By exploiting the LSRM neurons, we developed the

model Hybrid_SRM_FC for event-driven tactile learning and

experimental results on benchmark datasets demonstrated the

extraordinary performance and high energy efficiency of the

Hybrid_SRM_FC and LSRM neurons. We highlight the additional

contributions in this paper below.

• To make the location spiking neurons user-friendly in various

spike-based learning frameworks, we expand the idea of

location spiking neurons to the most commonly-used TLIF

neurons and propose the LLIF neurons. Specifically, the

LLIF neurons update their membrane potentials based on

locations and enable the models to extract features with spatial

recurrent neuronal dynamics. We can incorporate the LLIF

neurons into popular spike-based learning frameworks like

STBP (Wu et al., 2018) and tap their feature representation

potential. We believe such neuron models can have a broad

impact on the SNN community and spur the research on

spike-based learning.

• To demonstrate the advantage of LLIF neurons and further

boost the event-based tactile learning performance, we

build the Hybrid_LIF_GNN, which fuses the spatial spiking

graph neural network with TLIF neurons and the temporal

spiking graph neural network with LLIF neurons. The

model extracts features from tactile spatial graphs and

tactile temporal graphs concurrently. To the best of our

knowledge, this is the first work to construct tactile

temporal graphs based on event sequences and build a

temporal spiking graph neural network for event-driven

tactile learning.

• We further include more data, experiments, and

interpretation to demonstrate the effectiveness and

energy efficiency of the proposed neurons and models.

Extensive experiments on real-world datasets show that the

Hybrid_LIF_GNN significantly outperforms the state-of-

the-art methods for event-driven tactile learning, including

the Hybrid_SRM_FC (Kang et al., 2022). Moreover, the

computational cost evaluation demonstrates the high-

efficiency benefits of the Hybrid_LIF_GNN and LLIF

neurons, which may unlock their potential on neuromorphic

hardware. The source code is available at: https://github.com/

pkang2017/TactileLSN.

• We thoroughly discuss the advantages and limitations of

existing spiking neurons and location spiking neurons.

Moreover, we provide preliminary results on event-

driven audio learning and discuss the broad applicability

and potential impact of this work on other spike-based

learning applications.

The rest of the paper is organized as follows. In Section 2, we

provide an overview of related work on SNNs and event-driven

tactile sensing and learning. In Section 3, we start by introducing

notations for existing spiking neurons and extend them to the

specific location spiking neurons. We then propose various models

with location spiking neurons for event-driven tactile learning.

Last, we provide implementation details and algorithms related to

the proposedmodels. In Section 4, we demonstrate the effectiveness

and energy efficiency of ourmodels on benchmark datasets. Finally,

we discuss and conclude in Section 5.

2. Related work

In the following, we provide a brief overview of related work on

SNNs and event-driven tactile sensing and learning.

2.1. Spiking Neural Networks (SNNs)

With the prevalence of Artificial Neural Networks (ANNs),

computers today have demonstrated extraordinary abilities in

many cognition tasks. However, ANNs only imitate brain structures

in several ways, including vast connectivity and structural and

functional organizational hierarchy (Roy et al., 2019). The brain has

more information processing mechanisms like the neuronal and

synaptic functionality (Felleman and Van Essen, 1991; Bullmore

and Sporns, 2012). Moreover, ANNs are much more energy-

consuming than human brains. To integrate more brain-like

characteristics andmake artificial intelligence models more energy-

efficient, researchers propose Spiking Neural Networks (SNNs),

which can be executed on power-efficient neuromorphic processors

like TrueNorth (Merolla et al., 2014) and Loihi (Davies et al., 2021).

Similar to ANNs, SNNs can adopt general network topologies like

convolutional layers and fully-connected layers, but use different

neuron models (Gerstner and Kistler, 2002), such as the Time

Leaky Integrate-and-Fire (TLIF) model (Abbott, 1999) and the

Time Spike Response Model [TSRM; Gerstner (1995)]. Due to

the non-differentiability of these spiking neuron models, it still

remains challenging to train SNNs. Nevertheless, several solutions

have been proposed, such as converting the trained ANNs to

SNNs (Cao et al., 2015; Sengupta et al., 2019) and approximating

the derivative of the spike function (Wu et al., 2018; Cheng

et al., 2020). In this work, we propose location spiking neurons

to enhance the representative abilities of existing spiking neurons.

These location spiking neurons maintain the spiking characteristic

but employ the spatial recurrent neuronal dynamics, which enable

us to build energy-efficient SNNs and extract features of event-

based data in a novel way. Moreover, based on the optimization

methods for SNNs with existing spiking neurons, we design new

loss functions for SNNs with location spiking neurons and utilize

the backpropagation methods with surrogate gradients to optimize

the proposed models.

Frontiers inNeuroscience 04 frontiersin.org116

https://doi.org/10.3389/fnins.2023.1127537
https://github.com/pkang2017/TactileLSN
https://github.com/pkang2017/TactileLSN
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

2.2. Event-driven tactile sensing and
learning

With the prevalence of material science and robotics, several

tactile sensors have been developed, including non-event-based

tactile sensors like the iCub RoboSkin (Schmitz et al., 2010) and

the SynTouch BioTac (Fishel and Loeb, 2012) and event-driven

tactile sensors like the NeuTouch (Taunyazoz et al., 2020) and

the NUSkin (Taunyazov et al., 2021). In this paper, we focus on

event-driven tactile learning with SNNs. Since the development

of event-driven tactile sensors is still in its infancy (Gu et al.,

2020), little prior work exists on learning event-based tactile

data with SNNs. The work (Taunyazov et al., 2020) employed

a neural coding scheme to convert raw tactile data from non-

event-based tactile sensors into event-based spike trains. It then

utilized an SNN to process the spike trains and classify textures.

A recent work (Taunyazoz et al., 2020) released the first publicly-

available event-driven visual-tactile dataset collected by NeuTouch

and proposed an SNN based on SLAYER (Shrestha and Orchard,

2018) to solve the event-driven tactile learning. Moreover, to

naturally capture the spatial topological relations and structural

knowledge in the event-based tactile data, a very recent work (Gu

et al., 2020) utilized the spiking graph neural network (Xu et al.,

2021) to process the event-based tactile data and conduct the

tactile object recognition. In this paper, different from previous

works building SNNs with spiking neurons that employ the

temporal recurrent neuronal dynamics, we construct SNNs with

location spiking neurons to capture the complex spatio-temporal

dependencies in the event-based tactile data and improve event-

driven tactile learning.

3. Methods

In this section, we first demonstrate the spatial recurrent

neuronal dynamics of location spiking neurons by introducing

notations for the existing spiking neurons and extending them to

the location spiking neurons. We then introduce two models with

location spiking neurons for event-driven tactile learning. Last,

we provide implementation details and algorithms related to the

proposed models.

3.1. Existing spiking neuron models vs.
location spiking neuron models

Spiking neuron models are mathematical descriptions of

specific cells in the nervous system. They are the basic building

blocks of SNNs. In this section, we first introduce the mechanisms

of existing spiking neuronmodels – the TSRM (Gerstner, 1995) and

the TLIF (Abbott, 1999). To enrich their representative abilities, we

transform them into location spiking neuron models – the LSRM

and the LLIF.

In the TSRM, the temporal recurrent neuronal dynamics of

neuron i are described by its membrane potential ui(t). When ui(t)

exceeds a predefined threshold uth at the firing time t
(f)
i , the neuron

i will generate a spike. The set of all firing times of neuron i is

denoted by

Fi = {t
(f)
i ; 1 ≤ f ≤ n} = {t|ui(t) = uth}, (1)

where t
(n)
i is the most recent spike time t

(f)
i < t. The value of ui(t)

is governed by two different spike response processes:

ui(t) =
∑

t
(f)
i ∈Fi

ηi(t − t
(f)
i)+

∑

j∈Ŵi

∑

t
(f)
j ∈Fj

wijxj(t
(f)
j)ǫij(t − t

(f)
j), (2)

where Ŵi is the set of presynaptic neurons of neuron i and xj(t
(f)
j) =

1 is the presynaptic spike at time t
(f)
j . ηi(t) is the refractory kernel,

which describes the response of neuron i to its own spikes at time

t. ǫij(t) is the incoming spike response kernel, which models the

neuron i’s response to the presynaptic spikes from neuron j at

time t. wij accounts for the connection strength between neuron

i and neuron j and scales the incoming spike response. Figure 1A of

ν = t visualizes the refractory dynamics of the TSRM neuron i and

Figure 1B of ν = t visualizes the incoming spike dynamics of the

TSRM neuron i.

Without loss of generality, such temporal recurrent neuronal

dynamics also apply to other spiking neuron models, such as the

TLIF, which is a special case of the TSRM (Maass and Bishop,

2001). Since the TLIF model is computationally tractable and

maintains biological fidelity to a certain degree, it becomes themost

commonly-used spiking neuronmodel and there are many popular

SNN frameworks powered with it (Wu et al., 2018). The dynamics

of the TLIF neuron i are governed by

τ
dui(t)

dt
= −ui(t)+ I(t), (3)

where ui(t) represents the internal membrane potential of the

neuron i at time t, τ is a time constant, and I(t) signifies the

presynaptic input obtained by the combined action of synaptic

weights and pre-neuronal activities. To better understand the

membrane potential update of TLIF neurons, the Euler method is

used to transform the first-order differential equation of Equation 3

into a recursive expression:

ui(t) = (1−
dt

τ
)ui(t − 1)+

dt

τ

∑

j

wijxj(t), (4)

where
∑

j wijxj(t) is the weighted summation of the inputs from

pre-neurons at the current time step. Equation 4 can be further

simplified as:

ui(t) = αui(t − 1)+
∑

j

w′ijxj(t), (5)

where α = 1 − dt
τ
can be considered a decay factor, and w′ij is the

weight incorporating the scaling effect of dt
τ
. When ui(t) exceeds a

certain threshold uth, the neuron emits a spike, resets its membrane

potential to ureset , and then accumulates ui(t) again in subsequent

time steps. Figure 1C of ν = t visualizes the temporal dynamics of

a TLIF neuron i.

From the above descriptions, we find that existing spiking

neuron models have explicit temporal recurrence but do not

Frontiers inNeuroscience 05 frontiersin.org117

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

FIGURE 1

Recurrent neuronal dynamic mechanisms for the existing spiking neurons of ν = t and location spiking neurons of ν = l. Unlike existing spiking

neuron models that update their membrane potentials based on time steps ν = t, location spiking neurons update their membrane potentials based

on locations ν = l. (A) The refractory dynamics of a TSRM neuron i or an LSRM neuron i. Immediately after firing an output spike at ν(f)
i
, the value of

ui(ν) is lowered or reset by adding a negative contribution ηi(·). The kernel ηi(·) vanishes for ν < ν
(f)
i

and decays to zero for ν →∞. (B) The incoming

spike dynamics of a TSRM neuron i or an LSRM neuron i. A presynaptic spike at ν(f)
j

increases the value of ui(ν) for ν ≥ ν
(f)
j

by an amount of

wijxj(ν
(f)
j
)ǫij(ν − ν

(f)
j
). The kernel ǫij(·) vanishes for ν < ν

(f)
j
. “<” and “≥” indicate the location order when ν = l. (C) The recurrent neuronal dynamics of a

TLIF neuron i or an LLIF neuron i. The neuron i takes as input binary spikes and outputs binary spikes. xj represents the input signal to the neuron i from

neuron j, ui is the neuron’s membrane potential, and oi is the neuron’s output. An output spike will be emitted from the neuron when its membrane

potential surpasses the firing threshold uth, after which the membrane potential will be reset to ureset. This figure is adapted from Kang et al. (2022).

possess explicit spatial recurrence, which, to some extent, limits

their representative abilities.

To enrich the representative abilities of existing spiking neuron

models, we propose location spiking neurons, which adopt the

spatial recurrent neuronal dynamics and update their membrane

potentials based on locations.1 These neurons exploit explicit

spatial recurrence. Specifically, the spatial recurrent neuronal

dynamics of the LSRM neuron i are described by its location

membrane potential ui(l). When ui(l) exceeds a predefined

threshold uth at the firing location l
(f)
i , the neuron i will generate

a spike. The set of all firing locations of neuron i is denoted by

Gi = {l
(f)
i ; 1 ≤ f ≤ n} = {l|ui(l) = uth}, (6)

where l
(n)
i is the nearest firing location l

(f)
i < l. “<” indicates

the location order, which is manually set and will be discussed in

Section 3.3. The value of ui(l) is governed by two different spike

response processes:

ui(l) =
∑

l
(f)
i ∈Gi

ηi(l− l
(f)
i)+

∑

j∈Ŵi

∑

l
(f)
j ∈Gj

wijxj(l
(f)
j)ǫij(l− l

(f)
j), (7)

where Ŵi is the set of presynaptic neurons of neuron i and xj(l
(f)
j) =

1 is the presynaptic spike at location l
(f)
j . ηi(l) is the refractory

kernel, which describes the response of neuron i to its own spikes

at location l. ǫij(l) is the incoming spike response kernel, which

models the neuron i’s response to the presynaptic spikes from

neuron j at location l. Figure 1A of ν = l visualizes the refractory

dynamics of the LSRM neuron i and Figure 1B of ν = l visualizes

the incoming spike dynamics of the LSRM neuron i. The threshold

uth of LSRM neurons can be different from that of TSRM neurons,

while we set the same for simplicity. In Section 3.2.1, we will apply

1 Locations could refer to pixel or patch locations for images or taxel

locations for tactile sensors.

the LSRM neurons to event-driven tactile learning and show how

the proposed neurons enable feature extraction in a novel way.

To make the location spiking neurons user-friendly and

compatible with various spike-based learning frameworks, we

expand the idea of location spiking neurons to themost commonly-

used TLIF neurons and propose the LLIF neurons. Different from

the temporal dynamics shown in Equation 3, the LLIF neuron i

employs the spatial dynamics:

τ
′ dui(l)

dl
= −ui(l)+ I(l), (8)

where ui(l) represents the internal membrane potential of an LLIF

neuron i at location l, τ ′ is a location constant, and I(l) represents

the presynaptic input. We use the Euler method again to transform

the first-order differential equation of Equation 8 into a recursive

expression:

ui(l) = (1−
dl

τ ′
)ui(lprev)+

dl

τ ′

∑

j

wijxj(l), (9)

where
∑

j wijxj(l) is the weighted summation of the inputs from

pre-neurons at the current location. Equation 9 can be further

simplified as:

ui(l) = βui(lprev)+
∑

j

w′ijxj(l), (10)

where β = 1 − dl
τ ′

can be considered a location decay factor,

and w′ij is the weight incorporating the scaling effect of dl
τ ′
. When

ui(l) exceeds a certain threshold uth, the neuron emits a spike,

resets its membrane potential to ureset , and then accumulates ui(l)

again at subsequent locations. uth and ureset of LLIF neurons can

be different from those of TLIF neurons, while we set the same

for simplicity. Figure 1C of ν = l visualizes the spatial recurrent

neuronal dynamics of an LLIF neuron i. To enable the dynamics

of LLIF neurons, we still need to specify the location order like the

Frontiers inNeuroscience 06 frontiersin.org118

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

LSRM neurons. In Section 3.2.2, we will demonstrate how the LLIF

neurons can be incorporated into the popular spike-based learning

framework and further boost the performance of event-driven

tactile learning.

3.2. Event-driven tactile learning with
location spiking neurons

To investigate the representation effectiveness of location

spiking neurons and boost the event-driven tactile learning

performance, we propose two models with location spiking

neurons, which capture complex spatio-temporal dependencies in

the event-based tactile data. In this paper, we focus on processing

the data collected by NeuTouch (Taunyazoz et al., 2020), a

biologically-inspired event-driven fingertip tactile sensor with 39

taxels arranged spatially in a radial fashion (see Figure 2).

3.2.1. Event-driven tactile learning with the LSRM
neurons

In this section, we introduce event-driven tactile learning with

the LSRM neurons. Specifically, we propose the Hybrid_SRM_FC

to capture the complex spatio-temporal dependencies in the event-

driven tactile data.

Figure 2 presents the network structure of the

Hybrid_SRM_FC. From the figure, we can see that the model

has two components, including the fully-connected SNN with

TSRM neurons and the fully-connected SNN with LSRM neurons.

Specifically, the fully-connected SNN with TSRM neurons

employs the temporal recurrent neuronal dynamics to extract

spiking feature representations from the event-based tactile data

Xin ∈ R
N×T , where N is the total number of taxels and T is the

total time length of event sequences. The fully-connected SNNwith

LSRM neurons utilizes the spatial recurrent neuronal dynamics to

extract spiking feature representations from the event-based tactile

data X′in ∈ R
T×N , where X′in is transposed from Xin. The spiking

representations from two networks are then concatenated to yield

the final task-specific output.

To be more specific, the top part of Figure 2 shows the network

structure of fully-connected SNN with TSRM neurons. It employs

two spiking fully-connected layers with TSRM neurons to process

Xin and generate the spiking representations O1 ∈ R
K×T , where

K is the output dimension determined by the task. The membrane

potential ui(t), the output spiking state oi(t), and the set of all firing

times Fi of TSRM neuron i in these layers are decided by:

ui(t) =
∑

t
(f)
i ∈Fi

η(t − t
(f)
i)+

∑

j∈Ŵi

∑

t
(f)
j ∈Fj

wijoj(t
(f)
j)ǫ(t − t

(f)
j)

︸ ︷︷ ︸

capture spatial dependencies

,

oi(t) =

{

1 if ui(t) ≥ uth;

0 otherwise,

Fi =

{

Fi ∪ t if oi(t) = 1;

Fi otherwise,

(11)

where wij are the trainable parameters, η(t) and ǫ(t) model the

temporal recurrent neuronal dynamics of TSRM neurons, Ŵi is

the set of presynaptic TSRM neurons spanning over the spatial

domain, which is utilized to capture the spatial dependencies in the

event-based tactile data.

Moreover, the bottom part of Figure 2 shows the network

structure of fully-connected SNN with LSRM neurons. It employs

two spiking fully-connected layers with LSRM neurons to process

X′in and generate the spiking representations O2 ∈ R
K×N , where

K is the output dimension decided by the task. The membrane

FIGURE 2

The network structure of the Hybrid_SRM_FC. (The Upper Panel) The SNN with TSRM neurons processes the input spikes Xin and adopts the

temporal recurrent neuronal dynamics (shown with red dashed arrows) of TSRM neurons to extract features from the data, where SFc is the spiking

fully-connected layer with TSRM neurons. (The Lower Panel) The SNN with LSRM neurons processes the transposed input spikes X′
in
and employs

the spatial recurrent neuronal dynamics (shown with purple dashed arrows) of LSRM neurons to extract features from the data, where SFc-location is

the spiking fully-connected layer with LSRM neurons. Finally, the spiking representations from two networks are concatenated to yield the final

predicted label. (32) and (20) represent the sizes of fully-connected layers, where we assume the number of classes (K) is 20. This figure is adapted

from Kang et al. (2022).

Frontiers inNeuroscience 07 frontiersin.org119

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

potential ui(l), the output spiking state oi(l), and the set of all firing

locations Gi of LSRM neuron i in these layers are decided by:

ui(l) =
∑

l
(f)
i ∈Gi

η(l− l
(f)
i)+

∑

j∈Ŵ′i

∑

l
(f)
j ∈Gj

wijoj(l
(f)
j)ǫ(l− l

(f)
j)

︸ ︷︷ ︸

model temporal dependencies

,

oi(l) =

{

1 if ui(l) ≥ uth;

0 otherwise,

Gi =

{

Gi ∪ l if oi(l) = 1;

Gi otherwise,

(12)

where wij are the trainable connection weights, η(l) and ǫ(l)

determine the spatial recurrent neuronal dynamics of LSRM

neurons, Ŵ′i is the set of presynaptic LSRM neurons spanning over

the temporal domain, which is utilized to model the temporal

dependencies in the event-based tactile data. Such location spiking

neurons tap the representative potential and enable us to capture

features in this novel way.

Lastly, we concatenate the spiking representations of O1 and

O2 along the last dimension and obtain the final output spike train

O ∈ R
K×(T+N). The predicted label is associated with the neuron

k ∈ K with the largest number of spikes in the domain of T + N.

3.2.2. Event-driven tactile learning with the LLIF
Neurons

In this section, to demonstrate the usability of location

spiking neurons and further boost the event-driven tactile

learning performance, we utilize the LLIF neurons to propose

the Hybrid_LIF_GNN, which fuses spatial and temporal spiking

graph neural networks and captures complex spatio-temporal

dependencies in the event-based tactile data.

3.2.2.1. Tactile graph construction

Given event-based tactile inputs Xin ∈ R
N×T , we construct

tactile spatial graphs and tactile temporal graphs as illustrated in

Figure 3.

The tactile spatial graphGs(t) = (V t ,Et) at time step t explicitly

captures the spatial structural information in the data, while the

tactile temporal graph Gt(n) = (Vn,En) for a specific taxel n

explicitly models the temporal dependency in the data. V t =

{vtn|n = 1, ...,N} andVn = {v
t
n|t = 1, ...,T} represent nodes ofGs(t)

and Gt(n), respectively, and the attribute of vtn is the event feature

of the n-th taxel at time step t. Et = {eti,j|i, j = 1, ...,N} represents

the edges of Gs(t), where e
t
i,j ∈ {0, 1} indicates whether the nodes

vti , v
t
j are connected (denoted as 1) or disconnected (denoted as

0). Et is formed by the Minimum Spanning Tree (MST) algorithm,

where the Euclidean distance between taxels d(vti , v
t
j) = ‖(x, y)vti

−

(x, y)vtj
‖2 is used to determine whether the edges are in the MST.

Since the 2D coordinates (x, y) of taxels do not change with time, Et

remains the same throughout time. Moreover, the adjacency matrix

of Et is symmetric (i.e., the edges are indirect) as we assume the

mutual spatial dependency in the data. En = {e
p,q
n |p, q = 1, ...,T}

represents the edges of Gt(n), where e
p,q
n ∈ {0, 1} and each edge

is direct. Based on different temporal dependency assumptions, we

propose two kinds of tactile temporal graphs shown in Figure 3B.

One is sparse since we assume the current state only directly

impacts the nearest future state. While the other is dense since we

assume the current state has a broad impact on the future states. En
remains the same for all N taxels.

3.2.2.2. Hybrid_LIF_GNN

To process the data from tactile graphs and capture the complex

spatio-temporal dependencies in the event-based tactile data, we

propose the Hybrid_LIF_GNN (see Figure 4), which fuses spatial

and temporal spiking graph neural networks. Specifically, we adopt

the spatial spiking graph neural network with TLIF neurons (Gu

et al., 2020), which is a spike-based tactile learning framework

powered by STBP (Wu et al., 2018). It uses temporal recurrent

FIGURE 3

(A) The tactile spatial graph Gs at time step t generated by the Minimum Spanning Tree (MST) algorithm (Gu et al., 2020). Each circle represents a taxel

of NeuTouch. (B) Based on event sequences, we propose two di�erent tactile temporal graphs Gt for a specific taxel n = 1: the above one is the

sparse tactile temporal graph, while the below one is the dense tactile temporal graph.

Frontiers inNeuroscience 08 frontiersin.org120

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

FIGURE 4

The structure of the Hybrid_LIF_GNN, where “SSG” is the spatial spiking graph layer, “SSFC” is the spatial spiking fully-connected layer, “TSG” is the

temporal spiking graph layer, and “TSFC” is the temporal spiking fully-connected layer. The spatial spiking graph neural network processes the T

tactile spatial graphs and adopts the temporal recurrent neuronal dynamics (shown with red arrows) of TLIF neurons to extract features. The

temporal spiking graph neural network processes the N tactile temporal graphs and employs the spatial recurrent neuronal dynamics (shown with

purple arrows) of LLIF neurons to extract features. Finally, the model fuses the predictions from two networks and obtains the final predicted label. (3,

64) represents the hop size and the filter size of spiking graph layers. (128), (256), and (10) represent the sizes of fully-connected layers, where we

assume the number of classes (K) is 10.

neuronal dynamics to capture the spatial structure information

from the tactile spatial graphs. Inspired by this model, we develop

the temporal spiking graph neural network with LLIF neurons,

which is also powered by STBP. Our temporal spiking graph neural

network utilizes spatial recurrent neuronal dynamics to extract

the temporal dependencies in the tactile temporal graphs. Finally,

we fuse the spiking features from two networks and obtain the

final prediction.

To be more specific, the spatial spiking graph neural network

takes as input tactile spatial graphs, and it has one spatial

spiking graph layer and three spatial spiking fully-connected layers,

where TLIF neurons that employ the temporal recurrent neuronal

dynamics are the basic building blocks. On the other hand, the

temporal spiking graph neural network takes as input tactile

temporal graphs, and it has one temporal spiking graph layer and

three temporal spiking fully-connected layers, where LLIF neurons

that possess the spatial recurrent neuronal dynamics are the basic

building blocks.

Based on Equation 5, the membrane potential ui(t) and output

spiking state oi(t) of TLIF neuron i in the spatial spiking graph layer

are decided by:

ui(t) = αui(t − 1)(1− oi(t − 1))+ I(t),

oi(t) =

{

1 if ui(t) ≥ uth;

0 otherwise,

(13)

where I(t) = GNN(Gs(t)) is to capture the spatial structural

information. The membrane potential ui(t) and output spiking

state oi(t) of TLIF neuron i in spatial spiking fully-connected layers

are also decided by Equation 13, where I(t) = FC(Pre(t)) and Pre(t)

is the previous layer’s output at time step t.

Based on Equation 10, the membrane potential ui(l) and output

spiking state oi(l) of LLIF neuron i in the temporal spiking graph

layer are decided by:

ui(l) = βui(lprev)(1− oi(lprev))+ I(l),

oi(l) =

{

1 if ui(l) ≥ uth;

0 otherwise,

(14)

where I(l) = GNN(Gt(l)) is to model the temporal dependencies

in the data. The membrane potential ui(l) and output spiking state

oi(l) of LLIF neuron i in temporal spiking fully-connected layers are

also decided by Equation 14, where I(l) = FC(Pre(l)) and Pre(l) is

the previous layer’s output at location l. l is the taxel n ∈ N in event-

driven tactile learning. To fairly compare with other baselines, we

use TAGConv (Du et al., 2017) as GNN in this paper.

The spatial spiking graph neural network finally outputs the

spiking feature O1 ∈ R
K×T and predicts the label vector O′1 ∈ R

K

by averaging O1 over the time window T,

O′1 =
1

T

T
∑

t

O1(t), (15)

where O1(t) ∈ R
K . The temporal spiking graph neural network

finally outputs the spiking features O2 ∈ R
K×N and predicts the

label vector O′2 ∈ R
K by averaging O2 over the spatial domain N,

O′2 =
1

N

N
∑

l

O2(l), (16)

where O2(l) ∈ R
K . To fuse the predictions from these two

networks, we take the mean or element-wise max of these two

label vectors O′1 and O′2 and obtain the final predicted label vector

O′ ∈ R
K . The predicted label is associated with the neuron with the

largest value.

Frontiers inNeuroscience 09 frontiersin.org121

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

3.3. Implementations

In this section, we first introduce the location orders to

enable the spatial recurrent neuronal dynamics of location spiking

neurons. Then, we present the implementation details and

timestep-wise inference algorithms for the proposed models.

3.3.1. Location orders
To enable the spatial recurrent neuronal dynamics of location

spiking neurons, we need to manually set the location orders of

location spiking neurons. Specifically, we propose four kinds of

location orders for event-driven tactile learning and explore their

robustness on the event-driven tactile tasks. As shown in Figure 5,

three location orders are designed based on the major fingerprint

patterns of humans – arch, whorl, and loop. And one location order

randomly traverses all the taxels. Four concrete examples are shown

below. Each number in the brackets represents the taxel index.

• An example for the arch-like location order: [11, 25, 35, 4, 18,

30, 7, 2, 20, 37, 29, 12, 9, 33, 23, 16, 1, 6, 15, 21, 27, 34, 39, 24,

17, 10, 31, 38, 28, 14, 3, 22, 32, 8, 19, 36, 5, 13, 26]

• An example for the whorl-like location order: [21, 15, 16, 23,

27, 24, 17, 6, 9, 12, 20, 29, 33, 34, 31, 28, 22, 14, 10, 1, 2, 7, 18,

30, 37, 39, 38, 32, 19, 8, 3, 4, 11, 25, 35, 36, 26, 13, 5]

• An example for the loop-like location order: [1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]

• An example for the random location order: [4, 7, 12, 9, 2, 1, 6,

15, 10, 3, 5, 8, 14, 17, 21, 22, 13, 26, 19, 24, 27, 28, 32, 36, 38,

31, 34, 39, 37, 33, 23, 29, 30, 35, 25, 11, 18, 20, 16].

3.3.2. Hybrid_SRM_FC
Similar to the spike-count loss of prior works (Shrestha and

Orchard, 2018; Taunyazoz et al., 2020), we propose a location

spike-count loss to optimize the SNN with LSRM neurons:

LLSRM =
1

2

K
∑

k=0

(

N
∑

l=0

ok(l)−

N
∑

l=0

ôk(l)

)2

, (17)

which captures the difference between the observed output spike

count
∑N

l=0 ok(l) and the desired spike count
∑N

l=0 ôk(l) across

the K neurons. Moreover, to optimize the Hybrid_SRM_FC, we

develop a weighted spike-count loss:

L1 =
1

2

K
∑

k=0

((

T
∑

t=0

ok(t)+ λ

N
∑

l=0

ok(l)

)

−

T+N
∑

c=0

ôk(c)

)2

, (18)

which first balances the contributions from two SNNs and then

captures the difference between the observed balanced output

spike count
∑T

t=0 ok(t)+ λ
∑N

l=0 ok(l) and the desired spike count
∑T+N

c=0 ôk(c) across the K output neurons. For both LLSRM and

L1, the desired spike counts have to be specified for the correct

and incorrect classes and are task-dependent hyperparameters.

We set these hyperparameters as in Taunyazoz et al. (2020).

To overcome the non-differentiability of spikes and apply the

backpropagation algorithm, we use the approximate gradient

proposed in SLAYER (Shrestha and Orchard, 2018). Moreover,

based on the SLAYER’s weight update in the temporal domain,

we can derive the weight update for the SNNs with LSRM

neurons in the spatial domain. Please check more details in our

Github repository.

To demonstrate the applicability of our model to the spike-

based temporal data, we propose the timestep-wise inference

algorithm of the Hybrid_SRM_FC, which is shown in Algorithm 1.

The corresponding timestep-wise training algorithm can be derived

by incorporating the weighted spike-count loss.

3.3.3. Hybrid_LIF_GNN
To train the Hybrid_LIF_GNN, we define the loss function that

captures the mean squared error between the ground truth label

FIGURE 5

Location orders. (A) Arch-like location order. (B) Whorl-like location order. (C) Loop-like location order. (D) Random location order.

Frontiers inNeuroscience 10 frontiersin.org122

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

Input: event-based tactile inputs Xin ∈ R
N×T, N

taxels, and the total time length T.

Output: timestep-wise predictions of O1, O2, and O.

1: for t← 1 to T do

2: obtain X ∈ R
N×t

3: obtain X̄′ = concatenate(X′, 0) ∈ R
T×N, where X′ ∈ R

t×N,

and 0 ∈ R
(T−t)×N

4: O1(t) = 0 ∈ R
K×t, O2(t) = 0 ∈ R

K×N

5: O(t) = 0 ∈ R
K×(t+N)

6: O1(t) = SNN_TSRM(X) ⊲ SNN_TSRM for the

fully-connected SNN with TSRM neurons

7: O2(t) = SNN_LSRM(X̄′) ⊲ SNN_LSRM for the

fully-connected SNN with LSRM neurons

8: O(t) = concatenate(O1(t),O2(t))

9: end for

Algorithm 1. Timestep-wise inference algorithm of the Hybrid_SRM_FC,

adopted from Kang et al. (2022).

Input: event-based tactile inputs Xin ∈ R
N×T, N

taxels, and the total time length T

Output: timestep-wise label vectors of O′1, O′2, and O′

1: for t← 1 to T do

2: form t tactile spatial graphs Gs with X ∈ R
N×t

3: obtain X̄′ = concatenate(X′, 0) ∈ R
T×N, where X′ ∈ R

t×N,

and 0 ∈ R
(T−t)×N

4: form N tactile temporal graphs Gt with X̄′

5: O′1(t),O
′
2(t),O

′(t) = 0 ∈ R
K

6: for i← 1 to t do

7: O′1(t) += SSGNN(Gs(i)) ⊲ SSGNN for the spatial

spiking graph neural network

8: end for

9: O′1(t) /= t

10: for j← 1 to N do

11: O′2(t) += TSGNN(Gt(j)) ⊲ TSGNN for the temporal

spiking graph neural network

12: end for

13: O′2(t) /= N

14: O′(t) = mean(O′1(t),O
′
2(t)) ⊲ max can be used

15: end for

Algorithm 2. Timestep-wise inference algorithm of the Hybrid_LIF_GNN.

vector y and the final predicted label vector O′.

L2 = ‖y− O′‖2. (19)

We utilize the spatio-temporal backpropagation (Wu et al.,

2018) to derive the weight update for the SNNs with LLIF

neurons. Moreover, to overcome the non-differentiability

of spikes, we use the rectangular function (Wu et al.,

2018) to approximate the derivative of the spike function

(Heaviside function) in Equations 13, 14. Please check

more implementation details in our Github repository.

Algorithm 2 presents the timestep-wise inference algorithm of the

Hybrid_LIF_GNN.

4. Experiments

We extensively evaluate our proposed models and demonstrate

their effectiveness and efficiency on event-driven tactile learning,

including event-driven tactile object recognition and event-driven

slip detection. Specifically, we first conduct experiments on

the Hybrid_SRM_FC to show that location spiking neurons

can improve event-driven tactile learning. Then, we utilize the

experiments on the Hybrid_LIF_GNN to show that location

spiking neurons are user-friendly and can be incorporated into

more powerful spike-based learning frameworks to further

boost event-driven tactile learning. The source code and

experimental configuration details are available at: https://

github.com/pkang2017/TactileLSN.

4.1. Hybrid_SRM_FC

In this section, we first introduce the datasets and models

for the experiments. Next, to show the effectiveness of the

Hybrid_SRM_FC, we extensively evaluate it on the benchmark

datasets and compare it with state-of-the-art models. Finally, we

demonstrate the superior energy efficiency of the Hybrid_SRM_FC

over the counterpart ANNs and show the high-efficiency benefit

of LSRM neurons. We implement our models using slayerPytorch2

and employ RMSProp with the l2 regularization to optimize them.

4.1.1. Datasets
We use the datasets collected by NeuTouch (Taunyazoz

et al., 2020), including “Objects-v1” and “Containers-v1” for

event-driven tactile object recognition and “Slip Detection” for

event-driven slip detection. Unlike “Objects-v1” which only

requires models to determine the type of objects being handled,

“Containers-v1” asks models about the type of containers being

handled and the amount of liquid (0, 25, 50, 75, and 100%)

held within. Thus, “Containers-v1” is more challenging for event-

driven tactile object recognition. Moreover, the task of event-

driven slip detection is also challenging since it requires models

to detect the rotational slip within a short time, like 0.15 s for

“Slip detection.” We provide more details about the datasets in

the Supplementary material. Following the experimental setting

of Taunyazoz et al. (2020), we split the data into a training set (80%)

and a testing set (20%), repeat each experiment for five rounds, and

report the average accuracy.

4.1.2. Comparing models
We compare our model with the state-of-the-art SNNmethods

for event-driven tactile learning, including Tactile-SNN (Taunyazoz

et al., 2020) and TactileSGNet (Gu et al., 2020). Tactile-SNN

employs TSRM neurons as the building blocks, and the network

structure of Tactile-SNN is the same as the fully-connected

SNN with TSRM neurons in the Hybrid_SRM_FC. TactileSGNet

2 https://github.com/bamsumit/slayerPytorch

Frontiers inNeuroscience 11 frontiersin.org123

https://doi.org/10.3389/fnins.2023.1127537
https://github.com/pkang2017/TactileLSN
https://github.com/pkang2017/TactileLSN
https://github.com/bamsumit/slayerPytorch
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

TABLE 2 Accuracies on benchmark datasets for the Hybrid_SRM_FC.

Method Type Objects-v1 Containers-v1 Slip detection

Tactile-SNN (Taunyazoz et al., 2020) SNN 0.75 0.57∗ 0.82∗

TactileSGNet (Gu et al., 2020) SNN 0.79 0.58 0.97

GRU-MLP (Taunyazoz et al., 2020) ANN 0.72 0.46∗ 0.87∗

CNN-3D (Taunyazoz et al., 2020) ANN 0.90 0.67∗ 0.44∗

Hybrid_SRM_FC SNN 0.91 0.86 1.0

∗These values come from Taunyazoz et al. (2020). The best performance is in bold.

TABLE 3 Ablation studies on the Hybrid_SRM_FC.

Method Type Objects-v1 Containers-v1 Slip detection

Tactile-SNN (Taunyazoz et al., 2020) SNN 0.75 0.57 0.82

Location Tactile-SNN SNN 0.89 0.88 0.82

Hybrid_SRM_FC λ = 1 SNN 0.91 0.86 1.0

Hybrid_SRM_FC λ = 0.5 SNN 0.92 0.89 0.98

Hybrid_SRM_FC-loop SNN 0.91 0.86 1.0

Hybrid_SRM_FC-arch SNN 0.91 0.86 0.99

Hybrid_SRM_FC-whorl SNN 0.92 0.86 0.98

Hybrid_SRM_FC-random SNN 0.91 0.86 0.99

utilizes TLIF neurons as the building blocks and the network

structure of TactileSGNet is the same as the spatial spiking graph

neural network in the Hybrid_LIF_GNN. As in Taunyazoz et al.

(2020), we also compare our model against conventional deep

learning, specifically Gated Recurrent Units [GRUs; Cho et al.

(2014)] withMulti-layer Perceptrons (MLPs) and 3D convolutional

neural networks [3D_CNN; Gandarias et al. (2019)]. The network

structure of GRU-MLP is Input-GRU-MLP, where MLP is only

utilized at the final time step. And the network structure of CNN-

3D is Input-3D_CNN1-3D_CNN2-FC, where FC is for the fully-

connected layer.

4.1.3. Basic performance
Table 2 presents the test accuracies on the three datasets. We

observe that the Hybrid_SRM_FC significantly outperforms the

state-of-the-art SNNs. The reason why our model is superior to

other SNNs could be 2-fold: (1) different from state-of-the-art

SNNs that only extract features with existing spiking neurons, our

model employs an SNNwith location spiking neurons that enhance

the representative ability and enable the model to extract features

in a novel way; (2) our model fuses the SNN with TSRM neurons

and the SNN with LSRM neurons to better capture complex spatio-

temporal dependencies in the data. We also compare our model

with ANNs, which provide fair comparison baselines for fully

ANN architectures since they employ similar lightsome network

architectures as ours. From Table 2, we find out that our model

outperforms the counterpart ANNs on the three tasks, which might

be because our model is more compatible with event-based tactile

data and better maintains the sparsity to prevent overfitting.

4.1.4. Ablation studies
To examine the effectiveness of each component in the

proposed model and validate the representation ability of location

spiking neurons on event-driven tactile learning, we separately

train the SNN with TSRM neurons (which is exactly Tactile-SNN)

and the SNN with LSRM neurons (which is referred to as Location

Tactile-SNN). From Table 3, we surprisingly find out that Location

Tactile-SNN significantly surpasses Tactile-SNN on the datasets for

event-driven tactile object recognition and provides comparable

performance on event-driven slip detection. The reason for this

could be 2-fold: (1) the time durations of event-driven tactile object

recognition datasets are longer than that of “Slip detection,” and

Location Tactile-SNN with LSRM neurons is good at capturing

the mid-and-long term dependencies in these object recognition

datasets; (2) like Tactile-SNN, Location Tactile-SNN with LSRM

neurons can still capture the spatial dependencies in the event-

driven tactile data ("Slip detection") due to the spatial recurrent

neuronal dynamics of location spiking neurons. Moreover, we

examine the sensitivity of λ in Equation 18 and the robustness

of location orders. From Table 3, we notice the results of related

models are close, proving that the λ tuning and location orders do

not significantly impact task performance.

4.1.5. Timestep-wise inference
We evaluate the timestep-wise inference performance of

the Hybrid_SRM_FC and validate the contributions of the two

components in it. Moreover, we propose a time-weighted

Hybrid_SRM_FC to better balance the two components’

contributions and achieve better overall performance.

Figures 6A–C show the timestep-wise inference accuracies of

Frontiers inNeuroscience 12 frontiersin.org124

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

FIGURE 6

The timestep-wise inference (Algorithm 1) for the SNN with TSRM neurons (SNN_TSRM), the SNN with LSRM neurons (SNN_LSRM), the

Hybrid_SRM_FC, and the time-weighted Hybrid_SRM_FC on (A) “Objects-v1,” (B) “Slip Detection,” and (C) “Containers-v1.” Please note that we use

the same event sequences as Taunyazoz et al. (2020) and the first spike occurs at around 2.0 s for “Objects-v1” and “Containers-v1.” From the figure,

we can see that the models with location spiking neurons have not reached the saturated levels while the blue line (the models with only traditional

spiking neurons) has already reached the saturated levels. This demonstrates the potential of location spiking neurons and the models with location

spiking neurons could provide the better performance by increasing the time on these tasks.

the SNN with TSRM neurons, the SNN with LSRM neurons, the

Hybrid_SRM_FC, and the time-weighted Hybrid_SRM_FC on

the three datasets. Specifically, the output of the time-weighted

Hybrid_SRM_FC at time t is

Otw(t) = concatenate((1− ω) ∗ O1(t),ω ∗ O2(t)),

ω =
1

1+ e−ψ∗(
t
T−1)

,
(20)

where the hyperparameter ψ balances the contributions of the

two components in the hybrid model and T is the total time

length. From the figures, we can see that the SNN with TSRM

neurons has good “early” accuracies on the three tasks since it well

captures the spatial dependencies with the help of Equation 11.

However, its accuracies do not improve too much at the later stage

since it does not sufficiently capture the temporal dependencies. In

contrast, the SNN with LSRM neurons has fair “early” accuracies,

while its accuracies jump a lot at the later stage since it models

the temporal dependencies in Equation 12. The Hybrid_SRM_FC

adopts the advantages of these two components and extracts spatio-

temporal features from various views, which enables it to have a

better overall performance. Furthermore, after employing the time-

weighted output and shifting more weights to the SNN with TSRM

neurons at the early stage, the time-weighted Hybrid_SRM_FC can

have a good “early” accuracy as well as an excellent “final” accuracy.

4.1.6. Energy e�ciency
To further analyze the benefits of the proposed model and

location spiking neurons, we estimate the gain in computational

costs compared to fully ANN architectures. Typically, the number

of synaptic operations is used as a metric for benchmarking the

computational energy of SNN models (Lee et al., 2020; Xu et al.,

2021). In addition, we can estimate the total energy consumption

of a model based on CMOS technology (Horowitz, 2014).

Different from ANNs that always conduct real-valued matrix-

vector multiplication operations without considering the sparsity

of inputs, SNNs carry out event-based computations only at the

arrival of input spikes. Hence, we first measure the mean spiking

rate of layer l in our proposed model. Specifically, the mean spiking

rate of the layer l in the SNN with existing spiking neurons is given

by:

F
(l)
1 =

1

T

∑

t∈T

#spikes of layer l at time t

#neurons of layer l
, (21)

where T is the total time length. And the mean spiking rate of the

layer l in the SNN with location spiking neurons is given by:

F
(l)
2 =

1

N

∑

n∈N

#spikes of layer l at location n

#neurons of layer l
, (22)

where N is the total number of locations. We show the

mean spiking rates of Hybrid_SRM_FC layers in the

Supplementary material. With the mean spiking rates, we can

estimate the number of synaptic operations in the SNNs. Given M

is the number of neurons, C is the number of synaptic connections

per neuron, and F indicates the mean spiking rate, the number of

synaptic operations at each time or location in layer l is calculated

asM(l)×C(l)×F(l), where F(l) is F
(l)
1 or F

(l)
2 . Thus, the total number

of synaptic operations in our hybrid model is calculated by:

OPHybrid =
∑

l

M(l)×C(l)×F
(l)
1 ×T+

∑

l′

M(l′)×C(l′)×F
(l′)
2 ×N,

(23)

where l is the spiking layer with existing spiking neurons and l′

is the spiking layer with location spiking neurons. Generally, the

total number of synaptic operations in the ANNs is
∑

l M
(l) × C(l).

Based on these, we estimate the number of synaptic operations in

the Hybrid_SRM_FC and ANNs like the GRU-MLP and CNN-3D.

As shown in Table 4, all the SNNs achieve far fewer operations than

ANNs on the three datasets.

Moreover, due to the binary nature of spikes, SNNs perform

only accumulation (AC) per synaptic operation, while ANNs

perform the multiply-accumulate (MAC) computations since

the operations are real-valued. In general, AC computation is

considered to be significantly more energy-efficient than MAC. For

Frontiers inNeuroscience 13 frontiersin.org125

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

TABLE 4 The number of synaptic operations (#op, ×106) and the compute-energy benefit (the compute-energy of ANNs / the compute-energy of

SNNs, 45 nm) on benchmark datasets for the Hybrid_SRM_FC.

Method Type Objects-v1 Containers-v1 Slip detection

#op GRU-MLP ANN 5.89 5.89 2.72

#op CNN-3D ANN 4.17 4.07 1.75

#op SNN with TSRM neurons SNN 0.31 0.42 0.022

Compute-energy benefit 68.60–96.90× 49.42–71.52× 405.68–630.55×

#op SNN with LSRM neurons SNN 0.29 0.41 0.023

Compute-energy benefit 73.33–103.58× 50.63–73.27× 388.04–603.13×

#opHybrid_SRM_FC SNN 0.60 0.83 0.045

Compute-energy benefit 35.45–50.07× 25.01–36.19× 198.33–308.27×

example, an AC is reported to be 5.1× more energy-efficient than

a MAC in the case of 32-bit floating-point numbers [45 nm CMOS

process; Horowitz (2014)]. Based on this principle, we obtain the

computational energy benefits of SNNs over ANNs in Table 4.

From the table, we can see that the SNN models are 10× to 100×

more energy-efficient than ANNs and the location spiking neurons

(LSRM neurons) have the similar energy efficiency compared to

existing spiking neurons (TSRM neurons).

These results are consistent with the fact that the sparse

spike communication and event-driven computation underlie the

efficiency advantage of SNNs and demonstrate the potential of our

model and location spiking neurons on neuromorphic hardware.

4.2. Hybrid_LIF_GNN

In this section, to show the usability of location spiking neurons

and further boost event-driven tactile learning, we conduct a series

of experiments with the Hybrid_LIF_GNN, which is powered by

the popular spike-based learning framework – STBP (Wu et al.,

2018). Specifically, we first compare our model with the state-

of-the-art models with TLIF neurons and GNN structures. Then,

we conduct several ablation studies to examine the effectiveness

of some designs in the Hybrid_LIF_GNN. Next, we demonstrate

the superior energy efficiency of our model over the counterpart

Graph Neural Networks (GNNs) and show the high-efficiency

benefits of location spiking neurons. Finally, we compare with the

Hybrid_SRM_FC on the same benchmark datasets to validate the

superiority of the Hybrid_LIF_GNN.3

4.2.1. Datasets
To fairly compare with other published models with TLIF

neurons (Gu et al., 2020), we evaluate the Hybrid_LIF_GNN

on “Objects-v0” and “Containers-v0.” These two datasets are

the initial versions of “Objects-v1” and “Containers-v1.” We

demonstrate their differences in the Supplementary material. To

show the superiority of the Hybrid_LIF_GNN on event-driven

tactile learning, we compare it with the Hybrid_SRM_FC on

“Objects-v1,” “Containers-v1,” and “Slip detection.” During the

3 In this section, to be consistent with Gu et al. (2020), we use accuracies

(%).

experiments, we split the data into a training set (80%) and a

testing set (20%) with an equal class distribution. We repeat each

experiment for five rounds and report the average accuracy.

4.2.2. Comparing models
We compare the Hybrid_LIF_GNN with the state-of-the-art

methods with TLIF neurons and GNN structures (Gu et al.,

2020) on event-based tactile object recognition. Specifically, we

compare the TactileSGNet series. The general network structure

is the same as the spatial spiking graph neural network, which is

Input-Spiking TAGConv-Spiking FC1-Spiking FC2-Spiking FC3.

The other models in the series are obtained by substituting the

Spiking TAGConv layer:

• TactileSGNet-MLP, which uses the Spiking FC layer with TLIF

neurons to process the input. The network structure is Input-

Spiking FC0-Spiking FC1-Spiking FC2-Spiking FC3.

• TactileSGNet-CNN, which takes the network structure of

Input-Spiking CNN-Spiking FC1-Spiking FC2-Spiking FC3.

The tactile input is organized in a grid structure according to

the spatial distribution of taxels, and the Spiking CNN with

TLIF neurons is utilized to extract features from this grid.

• TactileSGNet-GCN, where the graph convolutional network

(GCN) is used as the GNN in Equation 13. The network

structure is Input-Spiking GCN-Spiking FC1-Spiking FC2-

Spiking FC3.

Moreover, we also compare the Hybrid_LIF_GNN against fully

GNNs. Specifically, the GNNs have the same network structures

as the Hybrid_LIF_GNN, including one recurrent TAGConv-FC1-

FC2-FC3 for T tactile spatial graphs, one recurrent TAGConv-FC1-

FC2-FC3 for N tactile temporal graphs, and one fusion module

to fuse the predictions from two branches. The major difference

between our model and GNNs is that GNNs employ artificial

neurons and adopt different activation functions in Equations 13,

14 while our model utilizes the spiking neurons and takes the

Heaviside function as the activation function.

4.2.3. Basic performance
We report the test accuracies on the two event-driven tactile

object recognition datasets in Table 5. From this table, we can

Frontiers inNeuroscience 14 frontiersin.org126

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

TABLE 5 Accuracies (%) on datasets for the Hybrid_LIF_GNN.

Method Type Objects-v0 Containers-v0

TactileSGNet-MLP (Gu et al., 2020) SNN 85.97∗ 58.83∗

TactileSGNet-CNN (Gu et al., 2020) SNN 88.40∗ 60.17∗

TactileSGNet-GCN (Gu et al., 2020) SNN 85.14∗ 58.83∗

TactileSGNet-TAGConv (Gu et al., 2020) SNN 89.44∗ 64.17*

Recurrent GNN-linear GNN 92.36 70.67

Recurrent GNN-elu GNN 91.11 74.67

Recurrent GNN-LeakyRelu GNN 89.31 73.00

Hybrid_LIF_GNN-sparse-mean SNN 93.33 79.33

Hybrid_LIF_GNN-dense-mean SNN 92.50 78.67

Hybrid_LIF_GNN-sparse-max SNN 85.56 77.00

Hybrid_LIF_GNN-dense-max SNN 85.14 76.00

∗These values come from Gu et al. (2020). All the Hybrid_LIF_GNNmodels use the loop-like location order. “Sparse” is for “sparse tactile temporal graph,” “dense” is for “dense tactile temporal

graph,” “mean” is for “mean fusion,” and “max” is for “max fusion.” The best performance is in bold.

see that the Hybrid_LIF_GNN significantly outperforms the

TactileSGNet series (Gu et al., 2020). The reason why ourmodel can

achieve the better performance could be 2-fold: (1) different from

the TactileSGNet models that only utilize TLIF neurons to extract

features from the tactile spatial graphs, our model also employs

the temporal spiking graph neural network with LLIF neurons to

extract features from the tactile temporal graphs; (2) our model

fuses the spatial and temporal spiking graph neural networks to

capture complex spatio-temporal dependencies in the data. We

also compare our model with fully GNNs by replacing the spike

functions in Equations 13, 14 with activation functions, such as

linear, elu, or LeakyRelu. These models provide fair comparison

baselines for fully GNN architectures since they employ the same

network architecture as ours. From Table 5, we observe that the

Hybrid_LIF_GNN outperforms the counterpart GNNs on the two

datasets, which might be because our model is more compatible

with event-based tactile data and better maintains the sparsity to

prevent overfitting.

4.2.4. Ablation studies
We further provide ablation studies for exploring the optimal

design choices. From Table 5, we find out that the combination

of “sparse tactile temporal graph” and “mean fusion” performs

better than other combinations. The reason for this could be

2-fold: (1) the dense tactile temporal graph involves too many

insignificant temporal dependencies and does not differentiate the

importance of each dependency; (2) the max fusion results in

information loss.

4.2.5. Timestep-wise inference
Figure 7 shows the timestep-wise inference accuracies (%) for

the spatial spiking graph neural network, the temporal spiking

graph neural network, the Hybrid_LIF_GNN, and the time-

weighted Hybrid_LIF_GNN on the two datasets. Specifically, the

output of time-weighted Hybrid_LIF_GNN at time t is

O′tw(t) = O′1(t)(1−
t

ζT
)+ O′2(t)

t

ζT
, (24)

where ζ balances the contributions of the two components in the

hybrid model and T is the total time length. From the figure, we

can see that the spatial spiking graph neural network has a good

“early” accuracy with the help of tactile spatial graphs, while its

accuracy does not improve too much at the later stage since it

cannot well capture the temporal dependencies. In contrast, the

temporal spiking graph neural network has a fair “early” accuracy,

while its accuracy jumps a lot at the later stage since it models the

temporal dependencies explicitly. The Hybrid_LIF_GNN adopts

the advantages of these two models and extracts spatio-temporal

features from multiple views, which enables it to have a better

overall performance. Furthermore, after employing the time-

weighted output and setting ζ = 2 to shift more weights to the

spatial spiking graph neural network at the early stage, the time-

weighted model can have a good “early” accuracy as well as an

excellent “final” accuracy, see red lines in Figure 7.

4.2.6. Energy e�ciency
Following the estimation methods in Section 4.1.6, we

estimate the computational costs of the Hybrid_LIF_GNN and its

counterpart GNNs on the benchmark datasets.

We show the mean spiking rates of Hybrid_LIF_GNN layers

in the Supplementary material. Table 6 provides the number of

synaptic operations conducted in the Hybrid_LIF_GNN and the

counterpart GNNs with the same network structure. From the

table, we can see that the SNNs achieve far fewer operations

than GNNs on the benchmark datasets. Moreover, following the

45 nm CMOS technology energy principle in Section 4.1.6, we

obtain the computational energy benefits of SNNs over GNNs

in Table 6. From the table, we can see that the SNN models

are 10× to 100× energy-efficient than GNNs. Furthermore, by

Frontiers inNeuroscience 15 frontiersin.org127

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

FIGURE 7

The timestep-wise inference (Algorithm 2) accuracies (%) for the spatial spiking graph neural network (SSGNN), the temporal spiking graph neural

network (TSGNN), the Hybrid_LIF_GNN, and the time-weighted Hybrid_LIF_GNN on (A) “Objects-v0” and (B) “Containers-v0".

TABLE 6 The number of synaptic operations (#op, ×108) and the

compute-energy benefit (the compute-energy of GNNs/the compute-

energy of SNNs, 45 nm) on benchmark datasets for the Hybrid_LIF_GNN.

Method Type Objects-
v0

Containers-
v0

#op Recurrent GNNs in

Table 5

GNN 1.7188 2.2146

#op Spatial spiking graph

neural network

SNN 0.1132 0.1023

Compute-energy benefit 77.44× 110.41×

#op Temporal spiking

graph neural network

SNN 0.0297 0.0313

Compute-energy benefit 295.15× 360.85×

#opHybrid_LIF_GNN SNN 0.1429 0.1336

Compute-energy Benefit 61.34× 84.54×

comparing the number of synaptic operations in the spatial spiking

graph neural network with that in the temporal spiking graph

neural network, we find that the temporal spiking graph neural

network has the higher energy efficiency. The reason for this

could be that we employ the sparse tactile temporal graphs in the

temporal spiking graph neural network and such graphs require

fewer operations.

These results are consistent with what we show in Section 4.1.6

and demonstrate the potential of our models and location spiking

neurons (LLIF neurons) on neuromorphic hardware.

4.2.7. Performance comparison with the
hybrid_SRM_FC

To fairly compare with the Hybrid_SRM_FC (Figure 2),

we further test the Hybrid_LIF_GNN (Figure 4) on “Objects-

v1,” “Containers-v1,” and “Slip detection.” From Table 7,

we can see that the Hybrid_LIF_GNN outperforms the

Hybrid_SRM_FC on “Objects-v1” and “Containers-v1” and

they both achieve the perfect slip detection. The reason for

this is that the Hybrid_LIF_GNN adopts graph topologies and

has a more complicated structure than the Hybrid_SRM_FC.

Such comparison results are consistent with the comparison

between the Tactile-SNN and TactileSGNet in Table 2 and

demonstrate the benefit of spiking graph neural networks

and complex structures on event-driven tactile learning.

Through this experiment, we show that the location spiking

neurons can be incorporated into complex spike-based learning

frameworks and further boost the performance of event-driven

tactile learning.

5. Discussion and conclusion

In this section, we discuss the advantages and limitations

of conventional spiking neurons and location spiking neurons.

Moreover, we provide preliminary results of the location spiking

neurons on event-driven audio learning and discuss the potential

impact of this work on broad spike-based learning applications.

Finally, we conclude the paper.

5.1. Advantages and limitations of
conventional and location spiking neurons

This paper proposes location spiking neurons. Based on the

neuronal dynamic equations of conventional spiking neurons and

location spiking neurons, we can see that both of them can

extract spatio-temporal dependencies from the data. Specifically,

the conventional spiking neurons employ the temporal recurrent

neural dynamics to update their membrane potentials and

capture spatial dependencies by aggregating the information from

presynaptic neurons, see Equations 2, 5, 11, and 13. However,

location spiking neurons use spatial recurrent neural dynamics

to update their potentials and model temporal dependencies

by aggregating the information from presynaptic neurons, see

Equations 7, 10, 12, and 14.

Moreover, based on experimental results, we can see that

conventional spiking neurons are better at capturing spatial

Frontiers inNeuroscience 16 frontiersin.org128

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

TABLE 7 Performance comparison between the Hybrid_SRM_FC with LSRM neurons and the Hybrid_LIF_GNN with LLIF neurons.

Method Type Objects-v1 Containers-v1 Slip detection

Hybrid_SRM_FC SNN 0.91 0.86 1.0

Hybrid_LIF_GNN‡ SNN 0.96 0.90 1.0

‡Represents Hybrid_LIF_GNN-sparse-mean-loop. The best performance is in bold.

FIGURE 8

The Hybrid_SRM_FC processes a spike audio sequence and predict its label. The network structure of this model is the same as what we show in

Figure 2.

dependencies which benefit the “early” accuracy, while location

spiking neurons are better at modeling mid-and-long temporal

dependencies which benefit the “late” accuracy. Networks built

only with conventional spiking neurons or networks built only

with location spiking neurons cannot sufficiently capture spatio-

temporal dependencies in the event-based data. Thus, we always

concatenate or fuse the networks to sufficiently capture spatio-

temporal dependencies in the data.

By introducing LSRM neurons and LLIF neurons, we verify

that the idea of location spiking neurons can be applied to

various existing spiking neuron models like TSRM neurons and

TLIF neurons and strengthen their feature representation abilities.

Moreover, we extensively evaluate the models built with these novel

neurons and demonstrate their superior performance and energy

efficiency. Furthermore, by comparing the Hybrid_LIF_GNN with

the Hybrid_SRM_FC, we show that the location spiking neurons

can be utilized to build more complicated models to further

improve task performance.

5.2. Potential impact on broad spike-based
learning applications

In this paper, we focus on boosting event-driven tactile learning

with location spiking neurons. And extensive experimental results

validate the effectiveness and efficiency of our models on the

tasks. Besides event-driven tactile learning, we can also apply

the models with location spiking neurons to other spike-based

learning applications.

5.2.1. Event-driven audio learning
To show the potential impact of our work, we apply the

Hybrid_SRM_FC (see Figure 2) to event-driven audio learning

and provide preliminary results. Please note that the objective

of this experiment is not necessarily to obtain state-of-the-

art results on event-driven audio learning, but to demonstrate

that location spiking neurons can bring benefits to the model

built with conventional spiking neurons on other spike-based

learning applications.

In the experiment, we use the N-TIDIGITS18

dataset (Anumula et al., 2018), which is collected by playing the

audio files from the TIDIGITS dataset (Leonard and Doddington,

1993) to the dynamic audio sensor–the CochleaAMS1b

sensor (Chan et al., 2007). The dataset includes both single

digits and connected digit sequences. We use the single-digit

part of the dataset, which consists of 11 categories, including

“oh,” “zero,” and digits “1–9.” A spike audio sequence of digit

“2” is shown in Figure 8, where the x-axis indicates the event

time, and the y-axis indicates the 64 frequency channels of the

CochleaAMS1b sensor. Each blue dot in the sequence represents

an event that occurs at time te and frequency fe. In this application,

we regard “frequency channels” as “locations” and apply the

Hybrid_SRM_FC to process the spike audio inputs, see Figure 8.

Through the experiments, the fully-connected SNN with TSRM

neurons achieves the test accuracy of 0.563. However, with the

help of LSRM neurons, the Hybrid_SRM_FC obtains the test

accuracy of 0.586 and correctly classifies the additional 57 spike

audio sequences. Moreover, we show the training and testing

profiles of the fully-connected SNN with TSRM neurons and

Frontiers inNeuroscience 17 frontiersin.org129

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

the Hybrid_SRM_FC in the Supplementary material. From those

figures, we can see that our hybrid model converges faster and

attains a lower loss and a higher accuracy compared to the

fully-connected SNN with TSRM neurons.

From this experiment, we can see that location spiking

neurons can be applied to other spike-based learning applications.

Moreover, the location spiking neurons can bring benefits to the

models built with conventional spiking neurons and improve their

task performance. We believe there will be further improvements

on event-driven audio learning if we can incorporate the

location spiking neurons into state-of-the-art event-driven audio

learning frameworks.

5.2.2. Visual processing
Besides event-driven audio learning, a contemporary work (Li

et al., 2022) also validates the effectiveness of spatial recurrent

neuronal dynamics on conventional image classification. This work

incorporates the spatial recurrent neuronal dynamics into the full-

precision Multilayer Perceptron (MLP) and achieves the state-of-

the-art top-1 accuracy on the ImageNet dataset. Since the model

is full-precision and real-valued, it may lose the energy efficiency

benefits of binary spikes. Our location spiking neurons employ the

spatial recurrent neuronal dynamics but also keep the binary nature

of spikes. Based on these, we think our proposed neurons could

bring more potential to computer vision (e.g., event-based vision)

when they are incorporated into MLP (Tolstikhin et al., 2021) or

Transformer (Dosovitskiy et al., 2020) frameworks.

5.3. Conclusion

In this work, we propose a novel neuron model– “location

spiking neuron.” Specifically, we introduce two concrete location

spiking neurons—the LSRM neurons and LLIF neurons. We

demonstrate the spatial recurrent neuronal dynamics of these

neurons and compare them with the conventional spiking

neurons—the TSRM neurons and TLIF neurons. By exploiting

these location spiking neurons, we develop two hybrid models for

event-driven tactile learning to sufficiently capture the complex

spatio-temporal dependencies in the event-based tactile data. The

extensive experimental results on the event-driven tactile datasets

demonstrate the extraordinary performance and high energy

efficiency of our models and location spiking neurons. This could

further unlock their potential on neuromorphic hardware. Overall,

this work sheds new light on SNN representation learning and

event-driven learning.

Data availability statement

Publicly available dataset were analyzed in the study. This

data can be found here: https://clear-nus.github.io/visuotactile/

download.html.

Author contributions

PK, AK, and OC brought up the core concept and architecture

of this manuscript and wrote the paper. PK, SB, HC, AK, and

OC designed the experiments and discussed the results. All

authors contributed to the article and approved the submitted

version.

Acknowledgments

Portions of this work Event-Driven Tactile Learning with

Location Spiking Neurons (Kang et al., 2022) were accepted

by IJCNN 2022 and orally presented at the IEEE WCCI

in 2022.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnins.2023.

1127537/full#supplementary-material

References

Abbott, L. F. (1999). Lapicque’s introduction of the integrate-and-fire model neuron
(1907). Brain Res. Bullet. 50, 303–304. doi: 10.1016/s0361-9230(99)00161-6

Anumula, J., Neil, D., Delbruck, T., and Liu, S.-C. (2018). Feature
representations for neuromorphic audio spike streams. Front. Neurosci. 12, 23.
doi: 10.3389/fnins.2018.00023

Baishya, S. S., and Bäuml, B. (2016). “Robust material classification with a tactile
skin using deep learning,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Daejeon: IEEE, 8–15.

Bullmore, E., and Sporns, O. (2012). The economy of brain network organization.
Nat. Rev. Neurosci. 13, 336–349. doi: 10.1038/nrn3214

Frontiers inNeuroscience 18 frontiersin.org130

https://doi.org/10.3389/fnins.2023.1127537
https://clear-nus.github.io/visuotactile/download.html
https://clear-nus.github.io/visuotactile/download.html
https://www.frontiersin.org/articles/10.3389/fnins.2023.1127537/full#supplementary-material
https://doi.org/10.1016/s0361-9230(99)00161-6
https://doi.org/10.3389/fnins.2018.00023
https://doi.org/10.1038/nrn3214
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Kang et al. 10.3389/fnins.2023.1127537

Calandra, R., Owens, A., Jayaraman, D., Lin, J., Yuan, W., Malik, J., et al. (2018).
More than a feeling: Learning to grasp and regrasp using vision and touch. IEEE Robot.
Automat. Lett. 3, 3300–3307. doi: 10.48550/arXiv.1805.11085

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural
networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.
doi: 10.1007/s11263-014-0788-3

Chan, V., Liu, S.-C., and van Schaik, A. (2007). Aer ear: A matched silicon cochlea
pair with address event representation interface. IEEE Trans. Circuit. Syst. I 54, 48–59.
doi: 10.1109/ISCAS.2005.1465560

Cheng, X., Hao, Y., Xu, J., and Xu, B. (2020). “Lisnn: Improving spiking neural
networks with lateral interactions for robust object recognition,” in Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-
20.Yokohama, 1519–1525.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., et al. (2014). Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint. arXiv:1406.1078.
doi: 10.48550/arXiv.1406.1078

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint. arXiv:1511.07289.
doi: 10.48550/arXiv.1511.07289

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F.,
Joshi, P., et al. (2021). Advancing neuromorphic computing with loihi: A survey
of results and outlook. Proc. IEEE 109, 911–934. doi: 10.1109/JPROC.2021.
3067593

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. (2020). An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv Preprint. arXiv:2010.11929. doi: 10.48550/arXiv.2010.11929

Du, J., Zhang, S., Wu, G., Moura, J. M., and Kar, S. (2017). Topology
adaptive graph convolutional networks. arXiv Preprint. arXiv:1710.10370.
doi: 10.48550/arXiv.1710.10370

Felleman, D. J., and Van Essen, D. C. (1991). Distributed hierarchical processing in
the primate cerebral cortex. Cereb. cortex. 1, 1–47. doi: 10.1093/cercor/1.1.1-a

Fishel, J. A., and Loeb, G. E. (2012). “Sensing tactile microvibrations with the biotac–
comparison with human sensitivity,” in 2012 4th IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomechatronics (BioRob). (Rome: IEEE),
1122–1127.

Gallego, G., Delbruck, T., Orchard, G. M., Bartolozzi, C., Taba, B., Censi, A., et al.
(2020). Event-based vision: A survey. IEEE Trans. Pat. Anal. Machine Intell. 2020, 8405.
doi: 10.48550/arXiv.1904.08405

Gandarias, J. M., Pastor, F., García-Cerezo, A. J., and Gómez-de Gabriel, J. M.
(2019). “Active tactile recognition of deformable objects with 3d convolutional neural
networks,” in 2019 IEEE World Haptics Conference (WHC). Tokyo, 551–555. IEEE.

Gerstner, W. (1995). Time structure of the activity in neural network models. Phys.
Rev. E 51, 738. doi: 10.1103/PhysRevE.51.738

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge: Cambridge University Press.

Gu, F., Sng, W., Taunyazov, T., and Soh, H. (2020). “TactileSGNet: A spiking
graph neural network for event-based tactile object recognition,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Las Vegas, NV:
IEEE), 9876–9882.

Horowitz, M. (2014). “1.1 computing’s energy problem (and what we can do about
it),” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC) (San Francisco, CA: IEEE), 10–14.

Kang, P., Banerjee, S., Chopp, H., Katsaggelos, A., and Cossairt, O. (2022). “Event-
driven tactile learning with location spiking neurons,” in 2022 International Joint
Conference on Neural Networks (IJCNN) (Padua: IEEE), 1–9.

Kappassov, Z., Corrales, J.-A., and Perdereau, V. (2015). Tactile sensing in dexterous
robot hands. Robot. Auton. Syst. 74, 195–220. doi: 10.1016/j.robot.2015.07.015

Lee, C., Kosta, A. K., Zhu, A. Z., Chaney, K., Daniilidis, K., and Roy, K. (2020).
“Spike-flownet: Event-based optical flow estimation with energy-efficient hybrid neural
networks,” in European Conference on Computer Vision. Springer, 366–382.

Leonard, R. G., and Doddington, G. (1993). Tidigits Speech Corpus. Dallas, TX:
Texas Instruments, Inc.

Li, D., Chen, X., Becchi, M., and Zong, Z. (2016). “Evaluating the energy efficiency
of deep convolutional neural networks on CPUs and GPUs,” in 2016 IEEE International
Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and

Networking (SocialCom), Sustainable Computing and Communications (SustainCom)
(BDCloud-SocialCom-SustainCom). (Atlanta, GA: IEEE), 477–484.

Li,W., Chen, H., Guo, J., Zhang, Z., andWang, Y. (2022). “Brain-inspiredmultilayer
perceptron with spiking neurons,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (New Orleans, LA), 783–793.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models. Proceedings of the 30 th International Conference on
Ma- chine Learning. Atlanta, GA.

Maass,W., and Bishop, C.M. (2001). Pulsed Neural Networks. Cambridge,MA:MIT
Press.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: Opportunities
and challenges. Front. Neurosci. 12, 774. doi: 10.3389/fnins.2018.00774

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-basedmachine intelligence
with neuromorphic computing. Nature 575, 607–617. doi: 10.1038/s41586-019-1677-2

Sanchez, J., Mateo, C.M., Corrales, J. A., Bouzgarrou, B.-C., andMezouar, Y. (2018).
“Online shape estimation based on tactile sensing and deformation modeling for robot
manipulation,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Madrid: IEEE, 504–511.

Schmitz, A., Maggiali, M., Natale, L., Bonino, B., and Metta, G. (2010). “A tactile
sensor for the fingertips of the humanoid robot iCub,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. (Taipei: IEEE), 2212–2217.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95.
doi: 10.3389/fnins.2019.00095

Shrestha, S. B., and Orchard, G. (2018). “SLAYER: Spike layer error reassignment
in time,” in Advances in Neural Information Processing Systems 31, eds S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (New York, Ny:
Curran Associates, Inc.), 1419–1428.

Soh, H., and Demiris, Y. (2014). Incrementally learning objects by touch: Online
discriminative and generative models for tactile-based recognition. IEEE Trans. Hapt.
7, 512–525. doi: 10.1109/TOH.2014.2326159

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy
considerations for deep learning in NLP. arXiv Preprint. arXiv:1906.02243.
doi: 10.48550/arXiv.1906.02243

Taunyazov, T., Chua, Y., Gao, R., Soh, H., and Wu, Y. (2020). “Fast texture
classification using tactile neural coding and spiking neural network,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). (Las Vegas, NV:
IEEE), 9890–9895.

Taunyazov, T., Koh, H. F., Wu, Y., Cai, C., and Soh, H. (2019). “Towards
effective tactile identification of textures using a hybrid touch approach,” in 2019
International Conference on Robotics and Automation (ICRA). (Montreal, QC: IEEE),
4269–4275.

Taunyazov, T., Song, L. S., Lim, E., See, H. H., Lee, D., Tee, B. C.,
et al. (2021). Extended tactile perception: Vibration sensing through tools
and grasped objects. arXiv Preprint. arXiv:2106.00489. doi: 10.48550/arXiv.2106.
00489

Taunyazoz, T., Sng, W., See, H. H., Lim, B., Kuan, J., Ansari, A. F., et al. (2020).
“Event-driven visual-tactile sensing and learning for robots,” in Proceedings of Robotics:
Science and Systems.

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T.,
et al. (2021). MLP-mixer: An all-MLP architecture for vision. Adv. Neural Inform.
Process. Syst. 34, 24261–24272. doi: 10.48550/arXiv.2105.01601

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evaluation of
rectified activations in convolutional network. arXiv Preprint. arXiv:1505.00853.
doi: 10.48550/arXiv.1505.00853

Xu, M., Wu, Y., Deng, L., Liu, F., Li, G., and Pei, J. (2021). “Exploiting
spiking dynamics with spatial-temporal feature normalization in graph learning,” in
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, ed Z. H. Zhou (Montreal, QC), 3207–3213.

Frontiers inNeuroscience 19 frontiersin.org131

https://doi.org/10.3389/fnins.2023.1127537
https://doi.org/10.48550/arXiv.1805.11085
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/ISCAS.2005.1465560
https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.48550/arXiv.1511.07289
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.1710.10370
https://doi.org/10.1093/cercor/1.1.1-a
https://doi.org/10.48550/arXiv.1904.08405
https://doi.org/10.1103/PhysRevE.51.738
https://doi.org/10.1016/j.robot.2015.07.015
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/TOH.2014.2326159
https://doi.org/10.48550/arXiv.1906.02243
https://doi.org/10.48550/arXiv.2106.00489
https://doi.org/10.48550/arXiv.2105.01601
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.48550/arXiv.1505.00853
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 11 May 2023

DOI 10.3389/fnins.2023.1160034

OPEN ACCESS

EDITED BY

Anup Das,

Drexel University, United States

REVIEWED BY

Vivek Parmar,

Indian Institute of Technology Delhi, India

Priyadarshini Panda,

Yale University, United States

*CORRESPONDENCE

Javier Cuadrado

javier.cuadrado@cnrs.fr

RECEIVED 06 February 2023

ACCEPTED 13 April 2023

PUBLISHED 11 May 2023

CITATION

Cuadrado J, Rançon U, Cottereau BR,

Barranco F and Masquelier T (2023) Optical

flow estimation from event-based cameras and

spiking neural networks.

Front. Neurosci. 17:1160034.

doi: 10.3389/fnins.2023.1160034

COPYRIGHT

© 2023 Cuadrado, Rançon, Cottereau,

Barranco and Masquelier. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Optical flow estimation from
event-based cameras and spiking
neural networks

Javier Cuadrado1*, Ulysse Rançon1, Benoit R. Cottereau1,2,

Francisco Barranco3 and Timothée Masquelier1

1CerCo UMR 5549, CNRS – Université Toulouse III, Toulouse, France, 2IPAL, CNRS IRL 2955, Singapore,

Singapore, 3Department of Computer Engineering, Automatics and Robotics, CITIC, University of

Granada, Granada, Spain

Event-based cameras are raising interest within the computer vision community.

These sensors operate with asynchronous pixels, emitting events, or “spikes”,

when the luminance change at a given pixel since the last event surpasses a

certain threshold. Thanks to their inherent qualities, such as their low power

consumption, low latency, and high dynamic range, they seem particularly tailored

to applications with challenging temporal constraints and safety requirements.

Event-based sensors are an excellent fit for Spiking Neural Networks (SNNs), since

the coupling of an asynchronous sensor with neuromorphic hardware can yield

real-time systems with minimal power requirements. In this work, we seek to

develop one such system, using both event sensor data from the DSEC dataset

and spiking neural networks to estimate optical flow for driving scenarios. We

propose a U-Net-like SNN which, after supervised training, is able to make dense

optical flow estimations. To do so, we encourage both minimal norm for the

error vector andminimal angle between ground-truth and predicted flow, training

our model with back-propagation using a surrogate gradient. In addition, the

use of 3d convolutions allows us to capture the dynamic nature of the data by

increasing the temporal receptive fields. Upsampling after each decoding stage

ensures that each decoder’s output contributes to the final estimation. Thanks

to separable convolutions, we have been able to develop a light model (when

compared to competitors) that can nonetheless yield reasonably accurate optical

flow estimates.

KEYWORDS

optical flow, event vision, spiking neural networks, neuromorphic computing, edge AI

1. Introduction

Computer vision has become a domain of major interest, both in research and in

industry. Indeed, thanks to the development of new technologies, such as autonomous

vehicles or self-operating machines, algorithms able to perceive the environment have

proven to be key to achieving the desired level of performance. Among the numerous visual

features these algorithms can estimate, optical flow (the pattern of apparent motion on

the image plane due to relative displacements between an observer and his environment)

remains one of paramount importance. Indeed, this magnitude is directly linked with

depth and egomotion, and its rich, highly temporal information is precious for advanced

computer vision applications, e.g., for obstacle detection and avoidance in autonomous

driving systems. Given the severe safety constraints associated with this kind of critical

systems, accuracy, and reliability are key to achieving successful models. However, achieving

high levels of performance is not enough: the increasing concern about energy consumption

motivates us to seek the most efficient model possible, all while retaining high-performance

standards.

Frontiers inNeuroscience 01 frontiersin.org132

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1160034
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1160034&domain=pdf&date_stamp=2023-05-11
mailto:javier.cuadrado@cnrs.fr
https://doi.org/10.3389/fnins.2023.1160034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1160034/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

In the search of an energy-efficient way to estimate optical flow,

we decided to focus our interest on event cameras. Unlike their

regular, frame-based counterpart, this kind of sensor is composed

of independent pixel processors, each firing asynchronous events

when the variation of the detected luminance since the previous

event reaches a given threshold, being this event of positive

polarity if the brightness has increased, and of negative polarity

otherwise. This behavior translates into enormous energy savings:

whereas conventional frame-based cameras are forced by design

to output a frame at a fixed frequency, event cameras do not

trigger any events for static visual scenes. Furthermore, they show

a higher dynamic range, which allows them to avoid problems

such as image artifacts (e.g., saturation after leaving a tunnel while

driving), and a lower latency than regular cameras, which makes

them particularly suitable for challenging, highly dynamic tasks

(event sensors do not suffer from motion blur, unlike their frame-

based counterparts). Nevertheless, they can also be less expressive:

event cameras only provide information regarding changes in

luminance, and not about the luminance itself. Furthermore, most

event cameras discard color information, although some devices

exist with independent firing for RGB formation at each pixel,

like the Color-DAVIS346 event camera used by Scheerlinck et al.

(2019) to generate their CED Dataset. Finally, event cameras

usually have lower spatial resolution than regular cameras, although

recent technological developments are bridging this gap (e.g.,

PROPHESEE, 2021).

In search of energy efficiency, the choice of the sensor is

not enough: the optical flow prediction algorithm itself also has

to be as efficient as possible to achieve our goal. That is why

we have resorted to Spiking Neural Networks (SNNs) to develop

our model. These bio-inspired algorithms, heavily inspired by the

brain, consist of independent units (neurons), each of them with

an inner membrane potential, which can be excited or inhibited

by pre-synaptic connections. When their inner potential reaches

a certain, predefined firing threshold, one spike is sent to the

post-synaptic neurons, and the membrane potential is reset. Since

energy consumption on dedicated hardware is linked to spike

activity, which is usually much sparser than standard analog neural

networks activations, SNNs represent a more energy-efficient

alternative. Moreover, in the absence of movement, no input events

would be produced and fed to the network, which in turn would

not trigger any spikes, and a zero-optical flow prediction would

be achieved (which is indeed the desired behavior, since no input

events can only be achieved by a lack of relative motion).

Finally, optical flow being a highly temporal task, incorporating

temporal context into our vision model is key to achieving

acceptable levels of performance. Two alternatives exist: using

stateful units within the network (e.g., LSTMs, GRUs or taking

advantage of the intrinsic memory capabilities in the case of SNNs),

or explicitly handling the temporal dependencies with convolutions

over consecutive frames along a temporal axis. Exploiting spiking

neuron inherent temporal dynamics has proven to be an extremely

challenging task to achieve, and we have therefore opted for the

second alternative.

To sum up, the main contributions of this article are:

• A novel angular loss, which can be used with standard

MSE-like functions and which helps the network to learn an

intrinsic spatial structure. To the best of our knowledge, we are

the first to ever use such a function for optical flow estimation.

• 3d-encoding of input events over a temporal dimension,

leading to increased optical flow estimation accuracy.

• A hardware-friendly downsampling technique in the form

of maximum pooling, that further improves the model’s

accuracy.

• A spiking neural network which can be implemented on

neuromorphic chips, therefore taking advantage of their

energy efficiency.

2. Related work

Ever since their introduction, event cameras have been gaining

ground within the computer vision community, and increasing

efforts have been made to develop computer algorithms based on

event data. As such, different datasets have emerged in order to

solve different kinds of computer vision problems, like the DVS128

Gesture Dataset by Amir et al. (2017) for gesture classification,

or the EVIMO Dataset by Burner et al. (2022) for motion

segmentation and egomotion estimation. Despite this interest

in event vision, the significant investment that event cameras

represent for most research centers and companies has led to

the development of event data simulators such as CARLA by

Dosovitskiy et al. (2017), as well as algorithms to perform video-to-

events conversion, like the model proposed in Gehrig et al. (2021b).

While lacking the intrinsic noise event data usually presents,

these artificial data can nonetheless be used to efficiently pre-train

computer vision neural networks, e.g., Hidalgo-Carrió et al. (2020)

pretraining their model for depth estimation on a synthetic set of

event data.

Nonetheless, for real-world applications (e.g., gesture

recognition, object detection, clustering, etc.), true event

recordings are preferred because simulators are still lacking

realistic event noise models. Concerning depth and/or optical flow

regression, two datasets have currently established themselves as

the go-to choices: theMVSECDataset by Zhu et al. (2018a), and the

DSEC Dataset by Gehrig et al. (2021a). While all of these datasets

have proven invaluable to develop event-based computer vision

algorithms, there is still an enormous gap between event-based and

image-based publicly available datasets, and many authors are still

forced to develop their own. For example, Cordone et al. (2022)

generated their own classification data from de Tournemire et al.

(2020) to account for the additional “pedestrian” class.

Most models so far have either been standard Analog Neural

Networks (ANNs) like Gehrig et al. (2021b), exploiting gated-

recurrent units to achieve state-of the art accuracy on DSEC,

or hybrid analog-spiking neural networks like Lee et al. (2022),

combining a spiking encoder with an additional analog encoder

for grayscale images, followed by a standard ANN. Other models

have tried to leverage the temporal context by feeding the network

with not only the events themselves, but also information on

event timestamps, like the EVFlowNet model presented in Zhu

et al. (2018b). More recently, Zhang et al. (2022) showed temporal

information to be a key in accurately estimating both optical

flow and depth, achieving top results in the MVSEC and the

DSEC datasets thanks to their implementation of non-spiking leaky

Frontiers inNeuroscience 02 frontiersin.org133

https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

integrators with learnable per-channel time constants. While all

of these models do indeed achieve good levels of performance

on their test sets, none of them manage to take advantage of the

neuromorphic-friendly nature of event data, since analog blocks

or additional non-spiking information prevent a deployment on

neuromorphic chips.

More interesting to this work are spiking neural networks

applied to event vision, be it for depth or for optical flow estimation.

As far as optical flow is concerned, it is worth citing the works

of Hagenaars et al. (2021), which achieves state-of-the-art levels

of performance on the MVSEC Dataset with a fully spiking

architecture. More recently, Kosta and Roy (2022) showed that

spiking neural networks can indeed compete with their analog

counterparts in terms of accuracy, showing top results both in the

MVSEC and in the DSEC Dataset. Finally, Zhang et al. (2023)

achieves a remarkable accuracy on the MVSEC Dataset with a U-

Net-like architecture and a self-supervised learning rule. However,

all of these models are not implementable on neuromorphic

hardware, since they either use upsampling techniques which

are incompatible with the spiking nature of these devices (e.g.,

bilinear upsampling), or re-inject intermediate, lower-scale analog

optical flow predictions, thereby violating the spiking constraint by

introducing floating point values in an otherwise binary model. In

addition, the choice of a self-supervised learning rule, usually linked

to a photometric loss function presented in Yu et al. (2016), means

that optical flow estimations are only provided for pixels where

events occurred, therefore creating non-dense flow maps. Looking

at depth prediction though, we do find some interesting strategies

for fully deployable neuromorphic models. Finally, authors in

Rançon et al. (2022) presented in their StereoSpike model a fully-

spiking, hardware-friendly network achieving remarkable accuracy

on the MVSEC Dataset, thanks to stateless spiking neurons that

have greatly inspired our work.

While we have focused on optical flow and depth predictions

with event cameras, there have also been preceding works achieving

top results on other computer vision tasks using event datasets

and spiking neural networks. Such is the case of the works of Kim

et al. (2022), who performed semantic segmentation via supervised

training of a SNN, or the method described in Kirkland et al.

(2022) that addressed instance segmentation on event data using

a biologically-plausible learning strategy.

3. Materials and methods

3.1. Training dataset

Our study focuses on driving scenes, and we chose the DSEC

Dataset by Gehrig et al. (2021a) to train our model. Unlike

previous state-of-the-art datasets, such as the Muti-Vehicle Stereo

Event Camera (MVSEC) Dataset by Zhu et al. (2018a), which

provided different working scenarios (indoors/outdoors, day/night,

and four possible vehicle configurations: pedestrian, motorbike, car

and drone), the DSEC dataset only consists of driving scenario

sequences. However, it provides higher-quality ground-truth labels,

thanks to the finer processing of the LIDAR measurements.

In addition, this dataset also includes masks for invalid pixels,

i.e., pixels where the optical flow ground-truth is unknown. As

such, our metrics have only been evaluated on the valid pixels.

Furthermore, this dataset provides an open benchmark to submit

the results, which we used to determine our test metrics and

compare ourselves to other works.

3.2. Input event representation

Event cameras produce an asynchronous event ei when the

luminance variation at a given pixel reaches a given threshold:

ei = (xi, yi, ti, pi) (1)

where (xi, yi) are the coordinates of the pixel emitting the event, ti
the event’s timestamp, and pi its polarity (+1 if luminance increases,

and −1 otherwise). However, in order to perform our training, we

are forced to work with a discrete time model, so a pre-processing

of this event stream has to be made. We therefore transform the

input event stream into a sequence of frames of a given length in

miliseconds, that we call “input histograms”. These frames consist

of a two-channel (C = 2) tensor of size (C,H,W), where H

and W represent the camera’s resolution, i.e., the number of input

pixels and their position in the camera. At each pixel, the first

channel represents the number of positive input events that have

been triggered in that particular pixel during the frame’s duration,

and the second channel represents the number of negative events.

A representation of a one-channel input frame can be found in

Figure 1. While not a binary representation, like the representation

paradigm presented in Cordone et al. (2021), our choice is more

expressive, since event counts account for pixel relative importance

and therefore provide richer spatio-temporal information.

We acknowledge that this frame-based approach increases

the model’s latency, since event sensors can virtually function in

continuous time. However, it is imposed by the nature or our

training, and is a widespread technique for event-based learning

(see Gallego et al., 2022 on event representations). Moreover, we

can leverage the latency reduction by our frame duration choice:

the input stream being a continuous sequence of events, we are free

to cumulate them in windows of the desired duration.

3.3. Spiking neuron model

For our network, we chose a simple neuron model that can be

easily implemented with open-source Python libraries, in addition

to beingmuch less computationally expensive than closer-to-nature

neuron mathematical models. This model is the McCulloch and

Pitts (1943). It was implemented using the Spikingjelly library,

developed and maintained by Fang et al. (2020), due to their full

integration with the Pytorch library.

Our model is based on a stateless approach: the neuron’s

potential is reset after each forward pass. Indeed, the mathematical

neuron model presented by McCulloch and Pitts consists of

stateless neurons with Heaviside activation functions. This is

equivalent to stateless integrate-and-fire neurons, i.e., stateless

artificial neurons working as perfect integrators, but which are

reset at every time step. We therefore do not exploit the intrinsic

memory capabilities of spiking neurons, but rather perform a

Frontiers inNeuroscience 03 frontiersin.org134

https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

FIGURE 1

Example of an input frame for 1 polarity. (A) Event cumulation at

each pixel for a given time interval. (B) Top view of the event frame.

We can see that events are heavily linked to contours (e.g., a zebra

crossing on the bottom part, or the windows on a building on the

right side), while regions with constant luminance (e.g., the road or

the sky) do not trigger events.

binary encoding of the information. While this approach may seem

counter-intuitive, it actually further reduces energy consumption,

since the reset operation is usually less energy demanding than the

neuronal leak, and no resources have to be allocated to long-term

memory handling. Consequently, we do not need to model such

phenomenon, and as a result our neuron model is more hardware

friendly than its leaky counterpart. Temporal context is handled by

3d convolutions in the encoder stages of the model, as we explain

in the following section.

3.4. Network architecture

Our network is based on a U-Net-like architecture

(Ronneberger et al., 2015). Indeed, U-Net has established

itself as a reference model when full-scale image predictions are

required, i.e., predictions at roughly the same resolution as the

input data. Our architecture is shown in Figure 2. After a first

convolution stage which increases the number of channels to

32 without modifying the input tensor size, each encoder stage

halves the tensor width and height while doubling the number of

channels. Conversely, each decoder stage doubles the tensor width

and height, and halves the number of channels.

In order to increase the network expressivity, each decoder

stage plays a role in the final prediction. Each decoder output

is upsampled into a full-scale, two-channel tensor (x- and y-

components of the optical flow estimation). All of the outputs

equally contribute to the network’s final estimation, which consists

of the combination of successive coarse predictions. The loss

function is evaluated after each update of the final neuron pool, thus

forcing the network’s prediction to be close to the ground-truth as

early as the first coarse update. This approach has been introduced

in Rançon et al. (2022) and proved to be beneficial to increasing the

overall accuracy.

The main features of our network are the following:

• Inspired by Temporal-Convolutional Networks, presented

in Lea et al. (2016) and Lea et al. (2017), we use three-

dimensional convolutions for our data encoding. Consecutive

input frames are combined by the temporal kernel via

unpadded convolutions, decreasing the temporal dimension

in size so it collapses to 1 when reaching the bottleneck.

Acting as delay lines, they allow to explicitly handle the

temporal dimension. The small temporal kernel size is

able to capture short-term temporal relationships, while

the increasing temporal receptive field due to consecutive

convolutions along the temporal dimension accounts for long-

term dependencies. Afterwards, the network architecture is

fully two-dimensional. By default, the temporal kernel size

we use is 5, which leads to a temporal receptive field of 21 ·

9ms = 189ms from the bottleneck and beyond.

• Skip connections between the encoder and the decoder consist

of the last component of the temporal dimension at the

corresponding encoding stage, since we believe the most

recent event information to be the most relevant for optical

flow estimation. We tested both sum and concatenate skip

connections and found that concatenations led to the best

estimations (these results are presented in Section 4.2).

• Given the relative importance of the residual blocks in the total

number of parameters, and in search of the lightest possible

model, we also analyzed the effect of reducing the number

of residuals on the network’s performance. We found that

the best model only necessitated one residual, unlike other

conventional U-Net-like architectures (e.g., Hagenaars et al.,

2021).

• Downsampling in the encoding stages is performed via

maximum pooling, instead of traditional strided convolutions,

to account for spikes within the kernel’s region, and not

so much about individual spikes. This approach has proved

to increase our model’s performance. To the best of our

knowledge, it is the first time this technique is used in a U-Net-

like spiking neural network for dense regression. In addition,

Gaurav et al. (2022) showed that this kind of downsampling

strategy is supported by neuromorphic hardware.

Frontiers inNeuroscience 04 frontiersin.org135

https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

FIGURE 2

Our proposed network architecture. 3D Encoders ensure the incorporation of a temporal context within the model. Downsampling is performed via

max. pooling to account for spatial spike activity. Each decoding stage is upsampled to contribute to the final network prediction.

• Since our final aim is to develop a model that could be

implemented on a neuromorphic chip, the whole upsampling

operation is performed via Nearest Neighbor upsampling,

which preserves hardware friendliness. Indeed, while other

widespread techniques, such as Bilinear Upsampling,

interpolate each “pixel”, Nearest Neighbor Upsampling

simply copies each value into a tensor of an increased size,

without modifying it. For further illustration, a graphic

representation of both upsampling techniques can be found

in the Supplementary material (Supplementary Figure 1).

• To further decrease the model’s weight, we used depth- and

point-wise separable convolutions (see e.g., Chollet, 2017)

everywhere in the model. These convolutions do not only

decrease the model’s number of parameters, but also reduce

the model’s overfitting, therefore increasing its performance

on unseen data.

It is important to specify that our approach is integer rather

than binary-based, since some of our skip connections are additions

instead of concatenations, and our bottleneck’s architecture is based

on tensor sums. Nevertheless, our approach remains hardware-

friendly, because:

• If the processing were asynchronous and event-driven, then

the spikes arriving through the residual connection would

typically arrive before the others. Thus, if there were two

spikes, one from the residual and one from the normal

connection, instead of doing an explicit ADD, both spikes

could be fed through the same synapse, and each spike would

cause an increment of w (instead of adding the two spikes

to get 2 and then multiplying by w to get the increment).

Moreover, even if the spikes arrived synchronously, they

would be processed sequentially using FIFO.

• Concatenation is equivalent to addition as a skip connection

if the weights are duplicated and kept tight. Indeed, if there

were two spikes, one from the residual and one from the

“normal” connection, instead of doing 2 · w, the algorithm

would perform w + w. Since the duplicated weights would be

tight, the number of trainable parameters would be the same,

and both operations would be equivalent.

3.5. Supervised learning method

Our model was trained with supervised learning using the

surrogate gradient descent, using a sigmoid function as our

surrogate gradient model. The ground-truth optical flow values

were those provided in the DSEC database. While traditional self-

supervised methods restrict their optical flow processing to pixels

where events occurred (e.g., Zhu et al., 2018b, Hagenaars et al.,

2021, or Kosta and Roy, 2022, to cite a few examples), our approach

permits dense estimations (thanks to surrogate gradient learning).

We trained ourmodel on the valid pixels given by the dataset masks

at each timestep.

Our loss function included two terms:

• A standard MSE-like loss between the value of the predicted

flow and its corresponding ground truth, with the following

formula:

Lmod =

∑Npixels

√

(predx − gtx)2 + (predy − gty)2

Npixels
(2)

Frontiers inNeuroscience 05 frontiersin.org136

https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

The term Npixels represents the number of valid pixels to be

trained at each timestep.

• In addition to a penalization in modulus discrepancy between

the vectors, we explicitly encourage the optical flow direction

to be the same between the ground-truth and the prediction.

This term has proven to be key to reduce noise in optical

flow predictions, since pixels with low optical flow values

consistently yield small modulus loss values regardless of their

direction. We used the following formula:

Lang =

∑Npixels acos(cθ)

Npixels
/ cθ =

Egt · Epred + ǫ

| Egt| · | Epred| + ǫ

(3)

where cθ is the cosine of the error angle between the predicted

and the ground-truth flow, and epsilon is a small parameter

(ǫ = 10−7) to ensure that no errors are found within the code

during execution. Furthermore, the values of cθ are clamped

between (−1+ ǫ, 1− ǫ) for the same reason.

The final loss function used to train the model is:

L = λmod · Lmod + λang · Lang (4)

From preliminary tests, we found that λmod = λang = 1 yields good

results, and we therefore decided to use these values.

As explained in Section 3.4 (Network Architecture), each

decoder’s output plays a role in the final optical flow estimation. As

such, and in order to encourage accuracy since the first decoder’s

upsampling, the loss function is evaluated for each consecutive

contribution to the final pool. After each upsampling of the

decoder’s output, the inner potentials of an IF layer are updated,

and the loss is evaluated on those potentials equivalent to summing

the spikes out of each decoder stage weighted by the corresponding

intermediary prediction layer.

Finally, in order to perform the back-propagation in

our supervised training method, we resorted to surrogate

gradient learning, introduced in Neftci et al. (2019), and already

implemented in the SpikingJelly library (Fang et al., 2020).

3.6. Training details

All of our calculations were performed on either NVIDIA A40

GPUs, or in Tesla V100-SXM2-16GBGPUs belonging to the French

regional public supercomputer CALMIP, owned by the Occitanie

region.

Trainings were realized with a batch size of 1, since it

is the optimal value we have found for our task. Although

unconventional, this result is in line with the one found in

Rançon et al. (2022), where a batch size of one was found

optimal for depth regression from event data using stateless spiking

neurons. We used an exponential learning rate scheduler, and

have implemented random horizontal flip as a data augmentation

technique to improve performance. Furthermore, thanks to our

stateless approach, we were able to train our network with

shuffled samples, instead of being forced to use the input frames

sequentially.

4. Results

We divided our dataset into a train and a validation split, and

our performance levels are reported with regard to the validation

set. The exact sequences used in each split can be found in

the Supplementary material. Nevertheless, we resort to the official

DSEC benchmark to compare ourselves to the state-of-the-art,

since it represents an objective, third-party test set. We now

proceed to present the results we obtained in our studies. Due to

the number of tests that we have run, all of the corresponding plots

are provided in the Supplementary material.

4.1. Finding the optimal kernel size

Convolutional neural networks have regained the interest of the

deep learning community during the past few years, thanks to their

ability to capture spatial relations within their kernel. Recently,

increased kernel sizes have been replacing the traditional 3 × 3

formula, with examples as relevant as Liu et al. (2022), which uses

7 × 7 kernels. Ding et al. (2022) presents a method to scale up the

kernel size to 31 × 31, and Liu et al. (2023) goes even further and

proposes to go up to 51 × 51 for the spatial kernel size, although

both of these methods rely on sparsity and re-parametrization to

achieve their goal. Starting from a naive U-Net like model, we

started our research by trying to optimize our spatial kernel size. In

the end, our results do match those presented in Ding et al. (2022),

showing that 7 × 7 kernels are optimal. Indeed, further increasing

the kernel size makes computational time explode, while accuracy

plateaus. We therefore decided to adopt a 7× 7 kernel in the spatial

dimension for our model.

Next, we optimized the temporal kernel size, directly linked

with the number of frames that we input to our model. Since we

want the temporal dimension to collapse to one in the bottleneck

thanks to unstrided convolutions in the temporal dimension, a

larger kernel size naturally requires a greater number of frames, and

therefore a heavier model. Nonetheless, it also takes into account a

longer temporal context, which may be beneficial for the network’s

accuracy. As such, we tested our simple model for temporal kernel

sizes of 3 (11 input frames), 5 (21 input frames), and 7 (31 input

frames). Our results show that increasing the kernel size up to 5

does indeed boost the model’s accuracy, but going beyond this size

does not translate into an accuracy improvement. Thus, a temporal

kernel size of 5 was chosen for the 3d convolutions in our model.

4.2. Finding the best network architecture

In order to find the best network architecture, we evaluated two

possible options:

• We compared sum vs. concatenate skip connections, since

concatenate skip connections are easier to implement in

neuromorphic hardware, but slightly increase the number of

parameters in the network.

Frontiers inNeuroscience 06 frontiersin.org137

https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

TABLE 1 Performance comparison for the di�erent proposed

architectures. All of the models have been trained for 35 epochs, using 21

input frames of 9 ms each.

Model Mod loss Angular
loss

Num.
params
(M)

1 residual + sum skip

connections

1.18 0.101 1.1

1 residual + cat skip

connections

1.10 0.094 1.2

2 residual + sum skip

connections

1.15 0.097 1.7

2 residual + cat skip

connections

1.16 0.109 1.8

The bold values indicate the best architecture, its performances obtained for each of the

metrics, and its number of parameters (in millions).

• Seeking to develop a model as light as possible, we also

characterized the effect of the number of residuals in the

network’s bottleneck on the model’s performance.

After training each of the models for 35 epochs, we found the

best model to be the 1-residual network with concatenate skip

connections, which amounts to a total of 1.22 million of parameters

and leads to an accuracy of 1.1 pixels/second of average end-point

error on our validation dataset, using 9 ms frames as an input in

all cases. The results regarding the architecture optimization have

been summarized in Table 1.

4.3. Optimizing the frame duration

Next, we focused our attention on the optimal frame duration

to accurately estimate optical flow, i.e., the total temporal context

the network processes when making a prediction. This parameter

is directly linked with the latency the model can achieve, since

optical flow estimations are only produced at the end of each frame

(provided that the input tensors are treated as a sliding window,

where only the last N=21 frames are considered).

We trained the network with frames of 4.5, 9, and 18 ms,

respectively. Our results show that the optimal frame duration was

9 ms, followed by 18 ms, and finally we get the worst performance

for frames of 4.5 ms. While it may seem counter-intuitive as a

results, since 4.5 ms frames contain a finer representation of the

event sequence, we believe this phenomenon is caused by the

lack of overall temporal context. Indeed, by using short frames,

the network is unable to extract longer-term dependencies, and

therefore to accurately predict optical flow. That is also why we

believe that 18m s frames, while coarser, do manage to better

capture these long term dependencies, and therefor provide a more

accurate estimation. These results, as well as all of the successive

optimization studies we have performed, can be found on Table 2.

4.4. Comparison with the state-of-the-art

We trained our best architecture on the whole DSEC dataset

for a total of 100 epochs. We evaluated our model on the official

TABLE 2 Performance comparison. The two best models have been

tested for di�erent slight modifications of the architecture, keeping the

number of parameters mostly unchanged.

Model Modifications Mod loss Angular loss

1 res + cat - 1.10 0.094

2 res + sum - 1.15 0.097

1 res + cat 4.5 ms frames 1.41 0.129

2 res + sum 4.5 ms frames 1.42 0.130

1 res + cat 18 ms frames 1.19 0.087

2 res + sum 18 ms frames 1.32 0.102

1 res + cat Combined polarities 1.14 0.092

2 res + sum Combined polarities 1.31 0.112

The bold values indicate the best architecture and its performances for each of themetrics. The

underline value is the best performance on the AAEmetric, obtained with an architecture that

nonetheless did not manage to beat the top-performing model.

TABLE 3 Comparison with the state-of-the art, obtained from https://

dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/.

Model AEE (px/s) AAE (deg) Num. params (M)

E-RAF

(Gehrig et al.,

2021b)

0.79 2.9 5.3

Ours 1.71 6.3 1.2

MultiCM

(Shiba et al.,

2022)

3.47 14.0 -

The bold values indicate the best performance for each of the metrics, as well as the model

with the lowest number of parameters.

test set provided by DSEC. Results are shown on Table 3. In order

to provide a fair comparison, we only included results on the

official benchmark, and not those reported on custom validation

sets. While still far from the best models, we demonstrate the

power of spiking neural networks when applied to dense regression

in computer vision, achieving good levels of performance with a

fraction of parameters when compared to other models.

We also provide some of our model’s results on the validation

set, which can be found in Figure 3. These pictures show that,

even if the network was not explicitly trained to distinguish

image contours (since it was only trained on a selection of valid

pixels at each timestep), it is nonetheless capable of extracting

structural information within the scene and generalizing it, as

illustrated in the rightmost images (unmasked predictions) for

the given examples. These results demonstrate the model’s general

comprehension of the visual scene, and we believe represent a solid

understanding of the pattern of motion.

4.5. Ablation studies

Several ablation studies have been performed on our best model

to further demonstrate our claims, and we have gathered our

conclusions in the following paragraphs. Plots containing all of

these results can be found in the Supplementary material.

Frontiers inNeuroscience 07 frontiersin.org138

https://doi.org/10.3389/fnins.2023.1160034
https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/
https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

FIGURE 3

Example predictions of our best architecture on our validation set.

For every picture, the leftmost image is the ground-truth, the middle

image shows our masked estimation (only on valid pixels), and the

rightmost image represents the unmasked estimation. (A) Optical

flow discontinuities due to vertical artifacts within the visual scene.

(B) The silhouette of the leftmost tree can be perceived on the

unmasked optical flow map. (C) Tra�c signs clearly distinguishable

on the right side. (D) Depicts the chosen colormap for optical flow

representation: Optical flow is encoded as an Lab image, where the

luminance channel represents the absolute magnitude of the flow,

and the a and b channels the di�erent directions.

4.5.1. Pooling vs. convolutional downsampling
Our results show that using maximum pooling instead of

strided convolutions is an efficient technique to downsample

spiking data. We believe that the reason behind this behavior is that

pooling is a way of densifying the tensors without changing their

spiking nature.

4.5.2. 3d vs. 2d encoding
We also compared our baseline 3d model with an equivalent

2d model, where the 21 input frames have been fed to the network

concatenated along the channel dimension, so that both models

have the same temporal context. We found out that fully 2-

dimensional models lead to decreased performance. We believe

this is due to the fact that, by using 2d convolutions, all the

temporal information is directly mixed during the first convolution

stage, therefore hindering the network from finding long-term

dependencies.

4.5.3. Loss function
We also analyzed the influence of the loss function on the final

results obtained. We compared our proposed loss model to two

single-term losses:

• Onemodel with only the norm of the error vector, but without

the angular loss term.

• One loss function with only a relative loss term:

Lrelative =
1

Npixels

∑Npixels

√

(predx − gtx)2 + (predy − gty)2

√

gt2x + gt2y + ǫ

(5)

This model penalizes deviations in the prediction relative to

the ground truth’s norm, and should therefore be able to

implicitly impose a restriction on angular accuracy.

Our results show that naively limiting the error’s norm is not

enough to achieve competitive results, and neither is limiting the

relative error. Indeed, by introducing a more aggressive term in

the loss function, we managed to force the network into implicitly

learning the optical flow’s structure, and therefore achieve better

accuracy.

It is surprising that the network with the two losses reaches a

lower Lmod than the network with Lmod only. This shows that the

second network gets trapped in a local minima and that adding the

Lang loss helps to get out of it.

4.5.4. E�ect of combining polarities on
performance

Our next study on input representation has consisted in

combining polarities into a single channel before feeding them to

the model. Polarities being closely linked to phenomena like color

or texture, we wish to study their influence on the final performance

levels. Indeed, if we imagine a gray background with a black shape

and a white shape following the same track, we would obtain

opposite polarity fronts, while the optical flow pattern would be

the same. We have therefore analyzed if polarities can be simply

combined into a total per-pixel event count.

However, our results show that keeping separate channels for

each polarities is beneficial for the network’s performance. We

believe this result is linked to the different dynamics linked to each

of the polarities, since different thresholds lead to different behavior

for luminance increments or decrements.

4.5.5. Skip connections in the bottleneck
Our final ablation study targeted the very first skip connection,

i.e., connecting the last encoder with the first decoder. Having

always kept it as a sum (slightly redundant, given the residual block

architecture) because of the high number of channels, we have

also tested transforming it into a cat skip connection. However, we

found out that it decreases the network’s performance while also

Frontiers inNeuroscience 08 frontiersin.org139

https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

TABLE 4 Performance comparison on the MVSEC dataset (indoor sequences), showing per-sequence and total average end-point error in pixels per

second.

Model indoor_flying1 indoor_flying2 indoor_flying3 AEE sum

EV-FlowNet (Zhu et al., 2018b) 1.03 1.72 1.53 4.28

Zhu et al. (2019) 0.58 1.02 0.87 2.47

Spike-FlowNet (Lee et al., 2020) 0.84 1.28 1.11 3.23

Back to Event BasicsEvf (Paredes-Vallés and

de Croon, 2021)

0.79 1.40 1.18 3.37

Back to Event BasicsFire (Paredes-Vallés and

de Croon, 2021)

0.97 1.67 1.43 4.07

XLIF-EV-FlowNet (Hagenaars et al., 2021) 0.73 1.45 1.17 3.35

XLIF-FireNet (Hagenaars et al., 2021) 0.98 1.82 1.54 4.34

Orchard et al. (2021) 0.83 1.22 0.97 3.02

Fusion-FlowNet (Lee et al., 2022) 0.56 0.95 0.76 2.27

Adaptive-SpikeNet (best ANN) (Kosta and

Roy, 2022)

0.84 1.59 1.36 3.79

Adaptive-SpikeNet (best SNN) (Kosta and

Roy, 2022)

0.79 1.37 1.11 3.27

FSFNFP (Apolinario et al., 2022) 0.82 1.21 1.07 3.10

FSFNHP−ADC (Apolinario et al., 2022) 0.85 1.29 1.13 3.27

Shiba et al. (2022) 0.42 0.60 0.50 1.52

Ours 0.58 0.72 0.67 1.97

Best result in bold, runner-up underlined. Starting from a model pre-trained on DSEC, we show state-of-the-art performance without modifying our pipeline.

increasing the number of parameters. We therefore decided to keep

it as a sum for all of the architectures.

4.6. Model evaluation on the MVSEC
dataset

In order to analyze the generalization capabilities of our

method, we also tested our model on the Multi-Vehicle Stereo

Event Camera Dataset (MVSEC), introduced in Zhu et al. (2018a).

We started by analyzing our model performance on the indoor

flying sequences. To do so, we took a model pre-trained for

DSEC, and optimized its weights on the MVSEC Dataset over

35 epochs. We followed a training approach akin to the one

adopted for the DSEC dataset, i.e., we only considered pixels

with either zero-valued ground-truth (x- and y- components

of the optical flow vector below a small threshold thr =

1e − 5) or with unknown flow values as invalid, and only

trained on valid pixels. The results we obtained, as well as a

comparison with other state-of-the-art models, can be found in

Table 4. We can see that we achieve state-of-the-art performance

levels on these sequences when compared to other existing

spiking neural networks, and top accuracy overall, even if our

architecture has not been optimized for such a vehicle/scenario

configuration.

Next, we also tested our model on the outdoor sequences

on MVSEC: training on outdoor_day2, and evaluation on

outdoor_day1. We present these results in Table 5. Although

our model leads to competitive results on all of the MVSEC

indoor sequences, it struggles to achieve competitive results on

MVSEC outdoor sequences, both when starting from a pre-trained

checkpoint or from scratch. We believe that this phenomenon is

due to a combination of factors:

• Our network architecture, and most precisely the spatial

kernel size, has been optimized for an optical flow prediction

of 480 × 640 pixels. Nevertheless, the MVSEC dataset was

recorded with a different event camera, and therefore may

demand a different kernel size to achieve top performance

levels.

• Our frame duration and overall temporal context have been

designed for a specific camera configuration and resolution.

Again, the use of a lower resolution camera leads to different

optical flow dynamics, and therefore to potentially different

temporal representation.

• Our training procedure (learning rate, scheduler, etc.) has

not been designed for such a low-resolution estimation,

and therefore further optimizations are needed to increase

accuracy.

• Finally, the outdoor_day2 sequence of the MVSEC dataset,

used for training on driving scenarios, consists of only

9 min of recording where high frequency vibrations are

constantly affecting the event camera (see Zhu et al., 2018b).

In addition, the event histograms are greatly impacted by

events caused by reflections on the car dashboard. These

noisy events may prevent from achieving competitive results

Frontiers inNeuroscience 09 frontiersin.org140

https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

TABLE 5 Performance comparison on the MVSEC dataset (outdoor

sequences), showing average end-point error in pixels per second.

Model outdoor_day1 (px/s)

EV-FlowNet (Zhu et al., 2018b) 0.49

Zhu et al. (2019) 0.32

ECNmasked (Ye et al., 2020) 0.30

Spike-FlowNet (Lee et al., 2020) 0.49

Back to Event BasicsEvf (Paredes-Vallés and

de Croon, 2021)

0.92

Back to Event BasicsFire (Paredes-Vallés and

de Croon, 2021)

1.06

XLIF-EV-FlowNet (Hagenaars et al., 2021) 0.45

XLIF-FireNet (Hagenaars et al., 2021) 0.54

Fusion-FlowNet (Lee et al., 2022) 0.59

Adaptive-SpikeNet (best ANN) (Kosta and

Roy, 2022)

0.48

Adaptive-SpikeNet (best SNN) (Kosta and

Roy, 2022)

0.44

FSFNFP (Apolinario et al., 2022) 0.51

FSFNHP−ADC (Apolinario et al., 2022) 0.48

Shiba et al. (2022) 0.30

Ours 0.85

Best result in bold, runner-up underlined. While far from the top performing contributions,

our base pipeline is able to learn to estimate optical flow from scratch, without any

optimization to make it tailored to the dataset and camera.

in these sequences, since they are nonetheless responsible

of inputting information to the network. In fact, only by

masking that section in both the input event histogram

and the associated ground-truth have we achieved training

on this scenario: otherwise, the network oscillates without

consistently increasing accuracy.

Nevertheless, our model achieves a certain level of learning on

this condition, and we are convinced that better results could

be obtained by optimizing the training pipeline for this scenario

(specially the frame duration and the kernel sizes). Taking into

account this learning, in conjunction with our competitive results

on indoor flying scenarios, we believe that these results demonstrate

the generalization capabilities of our approach, as well as its

applicability in a variety of conditions.

5. Discussion

Briefly, we have presented a hardware-friendly, lightweight

spiking model able to accurately estimate optical flow from event-

based data collected by neuromorphic vision sensors. We propose

an efficient temporal coding in the form of 3d convolutions

in the encoder that increases the temporal receptive field of

the deepest stages of the network. We also introduce a novel

angular loss function that, in conjunction with a standard

MSE-like loss, manages to boost performance by forcing the

algorithm to learn the implicit spatial structure. We use maximum

pooling as our downsampling strategy, thus densifying the tensors

in a neuromorphic-friendly fashion. Moreover, the successive

contributions of decoder outputs to the final prediction increase

the network’s expressivity, and allow us to achieve competitive

results without resorting to intermediate prediction re-injections.

Consequently, our model can be implemented in neuromorphic

hardware, thus resulting in an extremely energy efficient model that

can still achieve accurate predictions.

We believe our results contribute to promote spiking neural

networks as energy-efficient, real-world alternatives to traditional

computer vision systems, based on frame-based video treatment

and/or complex sensor data. However, we acknowledge that work

has yet to be done, since a lot of the intrinsic potential of

SNNs, namely their inherent memory handling capabilities, has

not been fully exploited in this study. Moreover, the convergence

of our experiments to an optimal batch size of 1, while having

indeed improved our model’s performance, greatly hinders the

training speed, since strategies such as data parallelization cannot

be employed. We therefore believe that these results can be further

improved, e.g., using techniques such as weight averaging or

network pre-training.

Future research lines should focus on further combining

different techniques in order to boost performance even further.

For instance, exploiting the intrinsic memory of spiking neurons

is indeed a potentially useful approach, but the increased

computational power linked to unrolling a stateful computational

graph makes the task challenging. Moreover, sensor fusion can also

be explored as an alternative to boost performance, especially since

most event cameras often also provide black and white images.

This approach could increase the network’s latency, as well as

making neuromorphic implementation challenging. Furthermore,

while temporal dependencies have been imposed a priori in our

model, they could also be natively learnt by the network. The

works of Khalfaoui-Hassani et al. (2021) present a way of increasing

kernel sizes without an increment in network parameters, capable

of achieving state-of-the-art performances. While only applied so

far for 1- and 2-dimensional convolutions, their method could

easily be adapted to our 3d approach.

Moreover, publicly available datasets usually lack challenging

conditions, such as crossing pedestrians or vehicles, which can limit

the network’s generalization capabilities. While we believe that our

proposed model is capable of understanding such situations (see

Figure 3C, where traffic signals are easily recognizable), it would be

desirable to train on more challenging scenarios.

Finally, we would like to address hardware efficiency and

implementation. We acknowledge that our approach does not

provide energy savings during training, since it is performed on

GPUs using standard ANN learning techniques, and therefore

suffers from the same energy consumption constraints as these

networks (plus the added memory usage due to the stockage of

the neuron’s membrane potential. However, energy savings can

be achieved when deployed on dedicated hardware, since they

are more energy efficient than GPUs thanks to their spiking

nature. Nonetheless, even if our model is hardware-friendly, and

therefore theoretically implementable on dedicated hardware, more

efforts can be dedicated toward making it easier to implement.

Indeed, hardware mapping would benefit fromweight quantization

(which would require less bits to store each synaptic weight)

or sparsity encouragement to fully exploit the neuromorphic

Frontiers inNeuroscience 10 frontiersin.org141

https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

hardware advantages over GPUs. These techniques, presented by

Orchard et al. (2021) and Apolinario et al. (2022), would not

only reduce energy consumption, but also facilitate potential future

implementations, and should be taken into account for actual

on-chip deployment.

Data availability statement

Original datasets are available in a publicly accessible

repository: https://dsec.ifi.uzh.ch/ (DSEC Dataset) and https://

daniilidis-group.github.io/mvsec/ (MVSEC Dataset). The original

contributions presented in the study are publicly available. This

data can be found here: https://github.com/J-Cuadrado/OF_EV_

SNN.

Author contributions

JC designed, programmed, ran the simulations, and wrote the

main core of the article. All authors conceptualized the study and

analyzed the results and provided comments to achieve the final

version of the paper.

Funding

This research was supported in part by the Agence Nationale

de la Recherche under Grant ANR-20-CE23-0004-04 DeepSee,

by the Spanish National Grant PID2019-109434RA-I00/ SRA

(State Research Agency /10.13039/501100011033), by a FLAG-ERA

funding (Joint Transnational Call 2019, project DOMINO), and by

the Program DesCartes and by the National Research Foundation,

Prime Minister’s Office, Singapore under its Campus for Research

Excellence and Technological Enterprise (CREATE) Program.

Acknowledgments

This work was granted access to the HPC resources of

CALMIP supercomputing center under the allocation 2022-

p22020. The authors would also express their gratitude to the

CerCo’s NeuroAI team and specially to Mr. Khalfaoui-Hassani, for

their constant support and insightful feedback. We would also like

to thank Mr. Fang, developer of the SpikingJelly library, for the

constant support he has provided during the whole timespan of

this study.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnins.2023.

1160034/full#supplementary-material

References

Amir, A., Taba, B., Berg, D., Melano, T., Mckinstry, J., Di Nolfo, C., et al.
(2017). “A low power, fully event-based gesture recognition system,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE), 7388–7397.
doi: 10.1109/CVPR.2017.781

Apolinario, M. P. E., Kosta, A. K., Saxena, U., and Roy, K. (2022).
Hardware/software co-design with adc-less in-memory computing
hardware for spiking neural networks. arXiv preprint arXiv:2211.02167.
doi: 10.48550/arXiv.2211.02167

Burner, L., Mitrokhin, A., Fermüller, C., and Aloimonos, Y. (2022). Evimo2: an
event camera dataset for motion segmentation, optical flow, structure from motion,
and visual inertial odometry in indoor scenes with monocular or stereo algorithms.
arXiv preprint arXiv:2205.03467. doi: 10.48550/arXiv.2205.03467

Chollet, F. (2017). “Xception: Deep learning with depthwise separable
convolutions,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (IEEE), 1800–1807. doi: 10.1109/CVPR.2017.195

Cordone, L., Miramond, B., and Ferrante, S. (2021). “Learning from
event cameras with sparse spiking convolutional neural networks,” in 2021
International Joint Conference on Neural Networks (IJCNN) (Shenzhen), 1–8.
doi: 10.1109/IJCNN52387.2021.9533514

Cordone, L., Miramond, B., and Thierion, P. (2022). “Object detection with spiking
neural networks on automotive event data,” in 2022 International Joint Conference on
Neural Networks (IJCNN) (Padua), 1–8. doi: 10.1109/IJCNN55064.2022.9892618

de Tournemire, P., Nitti, D., Perot, E., Migliore, D., and Sironi, A. (2020). A large
scale event-based detection dataset for automotive. arXiv preprint arXiv: 2001.08499.
doi: 10.48550/arXiv.2001.08499

Ding, X., Zhang, X., Han, J., and Ding, G. (2022). “Scaling up your kernels to 31×31:
Revisiting large kernel design in CNNs,” in 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (New Orleans, LA: IEEE), 11953–11965.
doi: 10.1109/CVPR52688.2022.01166

Dosovitskly, A., Ros, G., Codeville, F., Lopez, A., and Koltun, V. (2017). “CARLA:
An open urban driving simulator,” in Proceedings of the 1st Annual Conference on
Robot Learning, eds S. Levine, V. Vanhoucke, and K. Goldberg (Mountain View, CA:
PMLR), 1–16. Available online at: http://proceedings.mlr.press/v78/dosovitskiy17a/
dosovitskiy17a.pdf

Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., et al. (2020). Spikingjelly.
Available online at: https://github.com/fangwei123456/spikingjelly (accessed January
11, 2023).

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B.,
Censi, A., et al. (2022). Event-based vision: a survey. IEEE Trans.
Pattern Anal. Mach. Intell. 44, 154–180. doi: 10.1109/TPAMI.2020.30
08413

Gaurav, R., Tripp, B., and Narayan, A. (2022). Spiking approximations
of the maxpooling operation in deep SNNs. arXiv preprint arXiv:2205.07076.
doi: 10.48550/arXiv.2205.07076

Frontiers inNeuroscience 11 frontiersin.org142

https://doi.org/10.3389/fnins.2023.1160034
https://dsec.ifi.uzh.ch/
https://daniilidis-group.github.io/mvsec/
https://daniilidis-group.github.io/mvsec/
https://github.com/J-Cuadrado/OF_EV_SNN
https://github.com/J-Cuadrado/OF_EV_SNN
https://www.frontiersin.org/articles/10.3389/fnins.2023.1160034/full#supplementary-material
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.48550/arXiv.2211.02167
https://doi.org/10.48550/arXiv.2205.03467
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/IJCNN52387.2021.9533514
https://doi.org/10.1109/IJCNN55064.2022.9892618
https://doi.org/10.48550/arXiv.2001.08499
https://doi.org/10.1109/CVPR52688.2022.01166
http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17a.pdf
http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17a.pdf
https://github.com/fangwei123456/spikingjelly
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.48550/arXiv.2205.07076
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cuadrado et al. 10.3389/fnins.2023.1160034

Gehrig, M., Aarents, W., Gehrig, D., and Scaramuzza, D. (2021a). DSEC: a
stereo event camera dataset for driving scenarios. arXiv preprint arXiv:2103.06011.
doi: 10.1109/LRA.2021.3068942

Gehrig, M., Millhäusler, M., Gehrig, D., and Scaramuzza, D. (2021b). “E-RAFT:
Dense optical flow from event cameras,” in 2021 International Conference on 3D Vision
(3DV). p. 197–206. doi: 10.1109/3DV53792.2021.00030

Hagenaars, J., Paredes-Valles, F., and de Croon, G. (2021). “Self-supervised
learning of event-based optical flow with spiking neural networks,” in Advances
in Neural Information Processing Systems, Vol. 34, eds M. Ranzato, A.
Beygelzimer, P. S. Liang, and J. W. Vaughan (Curran Associates), 7167–7169.
Available online at: https://proceedings.neurips.cc/paper_files/paper/2021/file/
39d4b545fb02556829aab1db805021c3-Paper.pdf

Hidalgo-Carrió, J., Gehrig, D., and Scaramuzza, D. (2020). “Learning monocular
dense depth from events,” in 2020 International Conference on 3D Vision (3DV)
(Fukuoka), 534–542. doi: 10.1109/3DV50981.2020.00063

Khalfaoui-Hassani, I., Pellegrini, T., and Masquelier, T. (2021). Dilated
convolution with learnable spacings. arXiv preprint arXiv:2112.03740.
doi: 10.48550/arXiv.2112.03740

Kim, Y., Chough, J., and Panda, P. (2022). Beyond classification: directly training
spiking neural networks for semantic segmentation. Neuromorph. Comput. Eng. 2,
044015. doi: 10.1088/2634-4386/ac9b86

Kirkland, P., Manna, D., Vicente, A., and Di Caterina, G. (2022). Unsupervised
spiking instance segmentation on event data using STDP features. IEEE Trans. Comput.
71, 2728–2739. doi: 10.1109/TC.2022.3191968

Kosta, A. K., and Roy, K. (2022). Adaptive-spikenet: event-based optical flow
estimation using spiking neural networks with learnable neuronal dynamics. arXiv
preprint arXiv:2209.11741. doi: 10.48550/arXiv.2209.11741

Lea, C., Flynn, M. D., Vidal, R., Reiter, A., and Hager, G. D. (2017). “Temporal
convolutional networks for action segmentation and detection,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE), 1003–1012.
doi: 10.1109/CVPR.2017.113

Lea, C., Vidal, R., Reiter, A., and Hager, G. D. (2016). “Temporal convolutional
networks: A unified approach to action segmentation,” in Computer Vision –
ECCV 2016 Workshops, eds G. Hua and H. Jegou (Cham: Springer), 47–54.
doi: 10.1007/978-3-319-49409-8_7

Lee, C., Kosta, A. K., and Roy, K. (2022). “Fusion-FLOWNET: Energy-
efficient optical flow estimation using sensor fusion and deep fused spiking-
analog network architectures,” in 2022 International Conference on Robotics
and Automation (ICRA). p. 6504–6510. doi: 10.1109/ICRA46639.2022.981
1821

Lee, C., Kosta, A. K., Zhu, A. Z., Chaney, K., Daniilidis, K., and Roy, K. (2020).
“Spike-flownet: event-based optical flow estimation with energy-efficient hybrid neural
networks,” in Computer Vision–ECCV 2020: 16th European Conference (Glasgow:
Springer), 366–382.

Liu, S., Chen, Y., Chen, X., Chen, X., Xiao, Q., Wu, B., et al. (2023). More ConvNets
in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity. arXiv [Preprint]. arXiv:
2207.03620. doi: 10.48550/arXiv.2207.03620

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022).
“A convNet for the 2020s,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 11976–11986. doi: 10.1109/CVPR52688.2022.
01167

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bull. Math. Biophys. 5, 115–133. doi: 10.1007/BF02478259

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Orchard, G., Frady, E. P., Rubin, D. B. D., Sanborn, S., Shrestha, S. B.,
Sommer, F. T., et al. (2021). “Efficient neuromorphic signal processing with loihi
2,” in 2021 IEEE Workshop on Signal Processing Systems (SiPS) (IEEE), 254–259.
doi: 10.1109/SiPS52927.2021.00053

Paredes-Vallés, F., and de Croon, G. C. H. E. (2021). “Back to event basics:
Self-supervised learning of image reconstruction for event cameras via photometric
constancy,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (IEEE), 3445–3454. doi: 10.1109/CVPR46437.2021.00345

PROPHESEE (2021).Metavision? Packaged Sensor. Available online at: https://www.
prophesee.ai/event-based-sensor-packaged/

Rançon, U., Cuadrado-Anibarro, J., Cottereau, B. R., and Masquelier, T. (2022).
Stereospike: depth learning with a spiking neural network. IEEE Access 10, 127428–
127439. doi: 10.1109/ACCESS.2022.3226484

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, eds N. Navab, J. Hornegger, W. M. Wells, and
A. F. Frangi (Cham: Springer), 234–241. doi: 10.1007/978-3-319-24574-4_28

Scheerlinck, C., Rebecq, H., Stoffregen, T., Barnes, N., Mahony, R., and Scaramuzza,
D. (2019). CED: color event camera dataset. arXiv preprint arXiv:1904.10772.
doi: 10.1109/CVPRW.2019.00215

Shiba, S., Aoki, Y., and Gallego, G. (2022). “Secrets of event-based optical flow,” in
Computer Vision–ECCV 2022: 17th European Conference (Tel Aviv: Springer), 628–645.

Ye, C., Mitrokhin, A., Fermüller, C., Yorke, J. A., and Aloimonos, Y. (2020).
“Unsupervised learning of dense optical flow, depth and egomotion with event-based
sensors,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE), 5831–5838. doi: 10.1109/IROS45743.2020.9341224

Yu, J. J., Harley, A. W., and Derpanis, K. G. (2016). Back to basics: unsupervised
learning of optical flow via brightness constancy and motion smoothness. arXiv
preprint arXiv:1608.05842. doi: 10.1007/978-3-319-49409-8_1

Zhang, K., Che, K., Zhang, J., Cheng, J., Zhang, Z., Guo, Q., et al. (2022). “Discrete
time convolution for fast event-based stereo,” in 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (New Orleans, LA: IEEE), 8666–
8676. doi: 10.1109/CVPR52688.2022.00848

Zhang, Y., Lv, H., Zhao, Y., Feng, Y., Liu, H., and Bi, G. (2023). Event-based optical
flow estimation with spatio-temporal backpropagation trained spiking neural network.
Micromachines 14, 203. doi: 10.3390/mi14010203

Zhu, A. Z., Thakur, D., Ozaslan, T., Pfrommer, B., Kumar, V., and Daniilidis, K.
(2018a). The multivehicle stereo event camera dataset: an event camera dataset for 3d
perception. arXiv preprint arXiv:1801.10202. doi: 10.1109/LRA.2018.2800793

Zhu, A. Z., Yuan, L., Chaney, K., and Daniilidis, K. (2018b). EV-flowNet:
self-supervised optical flow estimation for event-based cameras. arXiv preprint
arXiv:1802.06898. doi: 10.15607/RSS.2018.XIV.062

Zhu, A. Z., Yuan, L., Chaney, K., and Daniilidis, K. (2019). “Unsupervised event-
based learning of optical flow, depth, and egomotion,” in 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (Long Beach, CA: IEEE), 988–997.
doi: 10.1109/CVPR.2019.00108

Frontiers inNeuroscience 12 frontiersin.org143

https://doi.org/10.3389/fnins.2023.1160034
https://doi.org/10.1109/LRA.2021.3068942
https://doi.org/10.1109/3DV53792.2021.00030
https://proceedings.neurips.cc/paper_files/paper/2021/file/39d4b545fb02556829aab1db805021c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/39d4b545fb02556829aab1db805021c3-Paper.pdf
https://doi.org/10.1109/3DV50981.2020.00063
https://doi.org/10.48550/arXiv.2112.03740
https://doi.org/10.1088/2634-4386/ac9b86
https://doi.org/10.1109/TC.2022.3191968
https://doi.org/10.48550/arXiv.2209.11741
https://doi.org/10.1109/CVPR.2017.113
https://doi.org/10.1007/978-3-319-49409-8_7
https://doi.org/10.1109/ICRA46639.2022.9811821
https://doi.org/10.48550/arXiv.2207.03620
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.1109/CVPR46437.2021.00345
https://www.prophesee.ai/event-based-sensor-packaged/
https://www.prophesee.ai/event-based-sensor-packaged/
https://doi.org/10.1109/ACCESS.2022.3226484
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/CVPRW.2019.00215
https://doi.org/10.1109/IROS45743.2020.9341224
https://doi.org/10.1007/978-3-319-49409-8_1
https://doi.org/10.1109/CVPR52688.2022.00848
https://doi.org/10.3390/mi14010203
https://doi.org/10.1109/LRA.2018.2800793
https://doi.org/10.15607/RSS.2018.XIV.062
https://doi.org/10.1109/CVPR.2019.00108
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 23 May 2023

DOI 10.3389/fnins.2023.1091097

OPEN ACCESS

EDITED BY

Anup Das,

Drexel University, United States

REVIEWED BY

Qi Xu,

Dalian University of Technology, China

Oliver Rhodes,

The University of Manchester, United Kingdom

Peng Li,

Tianjin University, China

Tielin Zhang,

Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Liang-Jian Deng

liangjian.deng@uestc.edu.cn

†These authors have contributed equally to this

work and share first authorship

RECEIVED 06 November 2022

ACCEPTED 28 April 2023

PUBLISHED 23 May 2023

CITATION

Qiu X-R, Wang Z-R, Luan Z, Zhu R-J, Wu X,

Zhang M-L and Deng L-J (2023) VTSNN: a

virtual temporal spiking neural network.

Front. Neurosci. 17:1091097.

doi: 10.3389/fnins.2023.1091097

COPYRIGHT

© 2023 Qiu, Wang, Luan, Zhu, Wu, Zhang and

Deng. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

VTSNN: a virtual temporal spiking
neural network

Xue-Rui Qiu1†, Zhao-Rui Wang1†, Zheng Luan1†, Rui-Jie Zhu2,

Xiao Wu3, Ma-Lu Zhang4 and Liang-Jian Deng3*

1School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of

China, Chengdu, China, 2School of Public A�airs and Administration, University of Electronic Science

and Technology of China, Chengdu, China, 3School of Mathematical Sciences, University of Electronic

Science and Technology of China, Chengdu, China, 4School of Computer Science and Engineering,

University of Electronic Science and Technology of China, Chengdu, China

Spiking neural networks (SNNs) have recently demonstrated outstanding

performance in a variety of high-level tasks, such as image classification.

However, advancements in the field of low-level assignments, such as image

reconstruction, are rare. This may be due to the lack of promising image encoding

techniques and corresponding neuromorphic devices designed specifically for

SNN-based low-level vision problems. This paper begins by proposing a simple yet

e�ective undistorted weighted-encoding-decoding technique, which primarily

consists of an Undistorted Weighted-Encoding (UWE) and an Undistorted

Weighted-Decoding (UWD). The former aims to convert a gray image into

spike sequences for e�ective SNN learning, while the latter converts spike

sequences back into images. Then, we design a new SNN training strategy,

known as Independent-Temporal Backpropagation (ITBP) to avoid complex loss

propagation in spatial and temporal dimensions, and experiments show that ITBP

is superior to Spatio-Temporal Backpropagation (STBP). Finally, a so-called Virtual

Temporal SNN (VTSNN) is formulated by incorporating the above-mentioned

approaches into U-net network architecture, fully utilizing the potent multiscale

representation capability. Experimental results on several commonly used datasets

such as MNIST, F-MNIST, and CIFAR10 demonstrate that the proposed method

produces competitive noise-removal performance extremely which is superior to

the existing work. Compared to ANN with the same architecture, VTSNN has a

greater chance of achieving superiority while consuming ∼1/274 of the energy.

Specifically, using the given encoding-decoding strategy, a simple neuromorphic

circuit could be easily constructed to maximize this low-carbon strategy.

KEYWORDS

spiking neural networks, undistorted weighted-encoding/decoding, neuromorphic

circuits, Independent-Temporal Backpropagation, biologically-inspired artificial

intelligence

1. Introduction

Spiking Neural Networks (SNNs) are artificial neural networks of the “third generation”

that closely resemble natural neural networks (Maass, 1997). Since biological motion

processing depends on temporal information and gains superb performances (Saygin, 2007).

Researchers attempt to use SNN to convert spatial complication to temporal complication.

Since the information is transmitted in the form of spikes. It also has a lower carbon footprint

(Roy et al., 2019) and superior robustness (Sironi et al., 2018). SpikeProp (Bohte et al., 2002)

initially updated weights using SNN with backpropagation and supervised learning. Few

studies are devoted to low-level image tasks with supporting neuromorphic chips, and the

Frontiers inNeuroscience 01 frontiersin.org144

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1091097
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1091097&domain=pdf&date_stamp=2023-05-23
mailto:liangjian.deng@uestc.edu.cn
https://doi.org/10.3389/fnins.2023.1091097
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1091097/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

majority of SNNs are currently focused on classification (Xing et al.,

2020; Fang et al., 2021; Zheng et al., 2021).

In addition, the vast majority of SNNs designed for low-level

tasks require specialized hardware such as event-based cameras

(Zhang et al., 2021; Zhu et al., 2022). This requirement substantially

raises the bar for usage. Pioneers in this area introduced a novel

SNN, requiring no specialized hardware (Comşa et al., 2021). Their

performance, however, is not ideal, and our work will improve it.

Since 2002 (Bohte et al., 2002), the surrogate gradient has been

commonly employed for backpropagation in SNN, then Neftci

et al. (2019) introduced Backpropagation Through Time (BPTT)

to this area. Besides, Deng et al. (2022) assert standard direct

training by utilizing a formula to distinguish it from ANN-SNN

conversion. Also, hybrid ANN-SNN conversion requires additional

time steps and must be shadow trained exclusively (Eshraghian

et al., 2021). Inspired by related studies (Werbos, 1990), Spatio-

Temporal Backpropagation (STBP) is introduced.

Since 2002 (Bohte et al., 2002), the surrogate gradient has been

commonly employed for backpropagation in SNN, then Neftci

et al. (2019) introduced Backpropagation Through Time (BPTT)

to this area. Besides, Deng et al. (2022) assert standard direct

training by utilizing a formula to distinguish it from ANN-SNN

conversion. Also, hybrid ANN-SNN conversion requires additional

time steps and must be shadow trained exclusively (Eshraghian

et al., 2021). Inspired by related studies (Werbos, 1990), Spatio-

Temporal Backpropagation (STBP) is introduced.

Other related approaches include Temporal Spike Sequence

Learning via Backpropagation (TSSL-BP) (Zhang and Li, 2020)

but only appropriate for the classification task. For the low-level

denoising assignment in this work, STBP performs worse (Comşa

et al., 2021) than our Independent-Temporal Backpropagation

(ITBP).

Rate coding, temporal coding, delta modulation, and direct

coding are four common encodingmethods. Among them, delta

modulation and rate coding lose pixel location information (Kim

et al., 2022). Direct coding canmaintain location information, but it

cannot be analyzed quantitatively (Jin et al., 2022). Weighted phase

spiking coding (a type of temporal coding) employs the binary

encoding concept (Kim et al., 2018). But it is also distorted and

requires a normalization trick. Comşa et al. (2021) employed a

latency coding method called time-to-first-spike (TTFS), inspired

by biological vision (Hubel and Wiesel, 1962), to represent pixel

brightness. TTFS cannot guarantee undistorted results, needs more

time steps, and performs worse than ours. The classification task

does not generate images; consequently, there are few decoding

methods for low-level tasks such as reconstruction. Membrane

Potential Decoding (MPD) (Kamata et al., 2022) is, to the best of

our knowledge, the only appropriate decoding method. However,

MPD generates floating results, necessitating the inclusion of a

surrogate function. Prior to our work, there was no symmetric

and undistorted SNN encoding-decoding method. Rate coding,

temporal coding, delta modulation, and direct coding are four

common methods of encoding. Among them, delta modulation

and rate coding lose pixel location information (Kim et al., 2022).

Direct coding can maintain location information, but it cannot

be analyzed quantitatively (Jin et al., 2022). Weighted phase

spiking coding (a type of temporal coding) employs the binary

encoding concept (Kim et al., 2018). But it is also distorted and

requires a normalization trick. Comşa et al. (2021) employed a

latency coding method called time-to-first-spike (TTFS), inspired

by biological vision (Hubel and Wiesel, 1962), to represent pixel

brightness. TTFS cannot guarantee undistorted results, needs more

time steps, and performs worse than ours. The classification task

does not generate images; consequently, there are few decoding

methods for low-level tasks such as reconstruction. Membrane

Potential Decoding (MPD) (Kamata et al., 2022) is, to the best of

our knowledge, the only appropriate decoding method. However,

MPD generates floating results, necessitating the inclusion of a

surrogate function. Prior to our work, there was no symmetric and

undistorted SNN encoding-decoding method.

This paper here presents a Virtual Temporal Spiking Neural

Network (VTSNN) for image reconstruction. VTSNN is based on

a modified U-net (Ronneberger et al., 2015) which is a classical

architecture. There aremany works that apply U-shape architecture

to do image reconstruction tasks such as image denoising and

achieving promising results (Yue et al., 2020; Cheng et al., 2021;

Zamir et al., 2021; Wang et al., 2022). Alternatively, we propose an

UndistortedWeighted-Encoding-Decoding method for converting

an arbitrary image into binary data (0/1) in order to efficiently

encode image data. We also demonstrate that this encoding-

decoding procedure can be performed by simple neuromorphic

circuits, thereby increasing its effectiveness. The schematic diagram

of the circuits consists of ADC and DAC. Additionally, we

propose a novel backpropagation technique called Independent-

Temporal Backpropagation (ITBP) to avoid the inefficiency of

Spatio-Temporal Backpropagation (STBP) (Wu et al., 2018). The

main contributions of this paper can be summarized as follows:

• We propose, to the best of our knowledge, the first symmetric

and undistorted encoding-decoding approach with high

efficiency for fully spiking SNN-based image reconstruction

tasks that can be implemented using simple neuromorphic

circuits. This raises the prospect of low-level tasks being

applied to neuromorphic devices.

• First, we introduce a virtual temporal SNN. This suggests

that even without temporal information, SNN can be used to

achieve competitive performance. A novel backpropagation

for direct training, called ITBP, is also proposed for

the designed encoding-decoding technique to improve

effectiveness.

• Experimental results on a variety of datasets are often superior

to the current SNN-based approach (Comşa et al., 2021) while

superior to same-architecture ANN in some cases. In addition,

VTSNN uses roughly 1/274 of the energy of ANN-based

methods.

2. Method

Based on our analysis, the application of SNN and its

neuromorphic devices is almost limited to the classification task.

Consequently, we intend to investigate SNN’s capabilities for low-

level image tasks, such as reconstruction. In the meantime, popular

input encoding methods have numerous shortcomings, including

Frontiers inNeuroscience 02 frontiersin.org145

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

redundant time steps and information distortion.Moreover, studies

on output decoding are quite rare. Therefore, we propose a novel

symmetric and undistorted encoding-decoding method to fill the

above gaps. Currently, researchers generally use STBP for the low-

level SNN task (Comşa et al., 2021), which allows information

to propagate in both temporal and spatial domains. Therefore,

we present a new backpropagation that only permits information

to propagate via the spatial domain. This backpropagation can

improve the effectiveness and gain better performance. In addition,

we want to use simple neuromorphic circuits to demonstrate the

feasibility of our encoding-decoding method. With undistorted

and symmetric encoding/decoding, simpler and more effective

backpropagation, and fewer time steps, we aim to achieve

competitive performance in low-level image reconstructing.

2.1. Preliminary

2.1.1. Spiking neurons
Since 1907 (Lapique, 1907), qualitative scientific study has

been conducted on the membrane voltage of neurons. Compared

to the many-variable and intricate H-H model (Hodgkin and

Huxley, 1952), the integrate-and-fire (IF) neuron model and leaky-

integrate-and-fire (LIF) neuron model have a significantly reduced

computational demand and are commonly recognized as the

simplest models among all popular neuron models while retaining

biological interpretability (Burkitt, 2006). The spiking neuron

model is characterized by the following differential equation

(Gerstner et al., 2014):

τ
du(t)

dt
= −u(t)+ x(t) (1)

Where u(t) represents the membrane potential of the neuron at

time step t, x(t) represents the input from the presynaptic neurons,

and τ is a time constant. What’s more, spikes will fire if u(t) exceeds

the threshold Vth. The spiking neuron models can be described

explicitly iteratively to improve computational traceability.

xit+1,n = 6jw
j
no

j
t+1,n−1 (2)

uit+1,n = uit,n g(o
i
t,n)+ xit+1,n (3)

oit+1,n = h(uit+1,n − Vth) (4)

Here, t and n, respectively, represent the indices of the time

step and n-th layer, and oj is its binary output of j-th neuron.

Furthermore, wj is the synaptic weight from j-th neuron to i-th

neuron, and by altering the way thatwj is linked, we can implement

convolutional layers, fully connected layers, etc. To bemore precise,

the spiking neurons become the IF neuron if g(x) = τ and the LIF

neuron if g(x) = τe−
x
τ . Since h(·) represents the Heaviside function

and Equation (4) is non-differentiable. The following derivatives of

the surrogate function can be used for approximation.

∂oit+1,n

∂uit+1,n

=
1

1+ (πxit+1,n)
2

(5)

The working schematic of spiking neurons is shown in Figure 1

(Eshraghian et al., 2021).

2.1.2. Tensor multiplication
In Section 2.4, a transform pair for tensors are used to describe

the decoding process. To better understand that process, here we

first give some preliminary tensor definitions. A tensor with N

dimensions is defined as P ∈ R
I1×I2×···×IN . Elements of P are

denoted as pi1 ,i2 ,··· ,iN , where 1 ≤ in ≤ IN . The n-mode unfolding

vectors of tensor P are the In-dimensional vectors obtained from

P by changing index in while keeping the other indices fixed. The

n-mode unfolding matrix P(n) ∈ R
In×I2I3···In−1In+1···IN is defined

by arranging all the n-mode vectors as the columns of the matrix

(Kolda, 2006). The n-mode product of the tensorP ∈ R
I1×I2×···×IN

with thematrix B ∈ R
Jn×In , denoted byP×nB, is anN-dimensional

tensor Q ∈ R
I1×I2×···×Jn···×IN . Hence, we have the following

transform pair that will be used later in the image decoding

process.

Q = P × nB ⇔ Q(n) = BP(n) (6)

2.2. Virtual temporal SNN

In this section, we propose and describe the concept of Virtual

Temporal SNN (VTSNN):

VTSNN is an abstract SNN definition that uses raw static

data to generate spiking sequences (0/1) as network input, and

the sequences are virtually ordered in the temporal domain.

Specifically, VTSNN holds the following fundamental:

The raw static data consists of non-temporal information

and will be transformed into ordered sequences (a static encoding

process), such as the operation of event-based hardware, rate

coding, direct coding, etc.

To realize the VTSNN, the crucial factors are to carefully design

the corresponding encoding and decoding strategies which will be

illustrated in detail.

2.3. Encoding

2.3.1. Rethinking time-to-first-spike encoding
(TTFS)

Previous study (Comşa et al., 2021) has applied a TTFS encoder

to encode more salient information as earlier spikes and gained

good results in reconstruction tasks. This encoding method is

inspired by the idea of a rapid information process with spiking

data (Thorpe et al., 2001). Here r
i,j
t is the response of a pixel of an

image at time step t. Equation (7) shows the calculation of r
i,j
t for

TTFS.

r
i,j
t =

{

1 t = (max(x)−xi,j

max(x)
)T

0 otherwise
(7)

Frontiers inNeuroscience 03 frontiersin.org146

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

FIGURE 1

Spiking neuron model (Eshraghian et al., 2021). (A) Intracellular and extracellular mediums are divided by an isolating bilipid membrane. Gated ion

channels allow ions such as Na+ to di�use through the membrane. (B) Capacitive membrane and resistive ion channels constitute a

resistor-capacitance circuit. A spike is generated when the membrane potential exceeds a threshold Vth. (C) Via the dendritic tree, input spikes

generated by I are transmitted to the neuron body. Su�cient excitation will cause output spike emission. (D) Simulation depicting the membrane

potential V(t) reaching Vth, resulting in output spikes.

FIGURE 2

A toy example of our encoding. Here we demo the UWE with nine pixels as examples. For each pixel, the grayscale image was transferred into the

eight-bit spike sequences and each bit was represented by a time step.

In terms of r
i,j
t , after obtaining it, spike sequences

are generated using the same methods as Algorithm 1

in this paper. There are two obvious disadvantages

of TTFS.

• TTFS is distorted, which means not being capable of

restoring information after coding, if solely uses a function to

approach it.

2.3.2. Undistorted weighted-encoding (UWE)
In this section, we propose the so-called UndistortedWeighted-

Encoding (UWE) to encode the input images into spike sequences,

as opposed to distorted encoders such as the time-to-first-spike

(TTFS) encoder. Specifically, UWE can encode n-bit image [0, 2n−

1] theoretically and a toy example of our coding is shown in

Figure 2. In what follows, Algorithm 1 illustrates the process of

encoding an image.

Frontiers inNeuroscience 04 frontiersin.org147

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

Input: Undistorted Weighted-Encoding; n-bit image:

x; Image shape: H,W; Simulation length: T

Output: Spiking sequences: Ert

Initialization;

for t = T − 1,T − 2, · · · , 0 do

for i = 0, 1, · · · ,H − 1; j = 0, 1, · · · ,W − 1 do

a
i,j
t = xi,j.

r
i,j
t = ⌊

a
i,j
t
2t
⌋.

if t 6= 0 then

a
i,j
t−1 = a

i,j
t mod 2t.

else
Break.

end

Append r
i,j
t to rt ∈ R

1×HW = {rH−1,W−1
t , · · · , r0,1t , r0,0t } .

Reshape it to rt ∈ R
H×W.

end

Append rt to the spiking sequences:

Ert = {rT−1, · · · , r1, r0}.

end

Algorithm 1. UWE algorithm for n-bit image.

For simplicity, we set n = 81 in our work, since the inputs

are 8-bit image [0, 255]. Thus, we use 8-bit UWE in this work.

Especially, in Algorithm 1, xi,j is a pixel in the image x. After input

encoding process, x is transferred into the spiking sequences Ert ∈

R
T×H×Wand rt ∈ R

H×W accumulates information for each time

step. Additionally, UWE is capable to be easily integrated with a

neuromorphic chip which is introduced in the discussion part. This

means n-bit image can be transferred into spiking sequences by the

neuromorphic SARADC circuits (discussed in Section 4.4) without

any floating arithmetic.

2.4. Decoding

2.4.1. Rethinking membrane potential decoding
(MPD)

The decoding method that (Kamata et al., 2022) uses for

reconstruction tasks is categorized as MPD. Actually, MPD is

similar to our Undistorted Weighted-Decoding (UWD) to some

extent. This method, like UWD, applies a weight series to encode.

However, the weight values of MPD are from 2 to 0.8 and it calls

a float artificial neuron (tanh function) before returning outputs.

This means the n-bit decoding matrix A in UWD is adjusted to 2

= {θT−1, θT−2, · · · , θ0} and θ = 0.8, then a tanh function is used

to get the real-valued reconstructed image ̂Y . The mechanism of

UWD will be introduced in the next section. Furthermore, there

is a noticeable disadvantage: MPD will induct floating arithmetic,

which is unfriendly to neuromorphic chips.

1 In our work, SNN simulation length T = n, which means each bit is

represented by a time step.

2.4.2. Undistorted weighted-decoding
To overcome the disadvantages of existing decoders, we also

present an Undistorted Weighted-Decoding (UWD) to decode the

output spiking sequences ôt ∈R
H×W (t = T−1,T−2, · · · , 0) into

the final image ̂Y . This decoding process is actually a symmetric

process of UWE, which means UWD will transform the spiking

sequences into a n-bit image. According to the preliminary, we use

the output spiking sequences ôt (t = T − 1,T − 2, · · · , 0) to build

a tensor ̂O ∈ R
T×H×W . Then, we define a n-bit decoding matrix

A ∈ R
1×T = {2T−1, 2T−2, · · · , 20}. Similar to UWE, we also set

T = 8 in the decoding process. In Section 2.1.2, we have already

introduced tensor multiplication. The final decoding process can

be described by the following formula:

̂Y = ̂O × nA ⇔ ̂Y(3) = ÂO(3) (8)

Where ̂O(3) ∈ R
T×HW is the 3-mode unfolding matrix of ̂O

while ̂Y(3) ∈ R
1×HW is the 3-mode unfolding matrix of ̂Y ∈

R
H×W×1. Hence, from the knowledge of tensor and transform

pair effectively introduced in the preliminary part (Equation 6),

we can get the final output image ̂Y . As the parallel inverse

process of UWE, the decoding method can be realized by the

neuromorphic chip we discussed later as well. The neuromorphic

DAC circuits (discussed in Section 4.4) can convert spiking

sequences to a real-valued reconstructed image without the use of

floating-point arithmetic.

2.5. Spiking neural network architecture

As an abstract and flexible concept, VTSNN can be applied

to various types of network architectures. In this work, our

VTSNN is embedded in a shallow U-net architecture, named

U-VTSNN. Because light U-net can extract features from images

relatively efficiently. Additionally, unlike current SNNs for

low-level image tasks whose data flow may contain floating

numbers (Zhu et al., 2022), the U-VTSNN is a fully spiking

neural network where all modules are built with SNN and all

synapse operations are completed by spiking neurons (Kamata

et al., 2022). In addition, U-VTSNN is a fully convolutional

network while the biases of all convolutional layers are

set to 0.

At the beginning of our image noise removal task, the

image is transformed into spike sequences, which means a 1 ×

H × W tensor is fed into VTSNN and transformed as the

size of T × H × W via UWE, followed by U-VTSNN. The

details of the internal blocks are clearly shown in Figure 3.

After all intermediate operations, the last block of U-VTSNN

will output spiking sequences. Thus, for decoding, UWD will

use the output spike sequences to generate the noise-removed

image. Based on our experiments, U-VTSNN is suitable for

diverse popular datasets, and its computational efficiency is

vastly superior to that of the same ANN architecture (over

274 times).

Frontiers inNeuroscience 05 frontiersin.org148

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

FIGURE 3

Architecture of the proposed fully spiking neural network with eight-bit as an example. UWE generates sequences from an input image. The

sequences are fed into U-VTSNN. UWD generates images from operated sequences and finishes a complete noise-removal process. Additionally, the

type and size of di�erent layers are clearly shown above.

FIGURE 4

The procedure of STBP and ITBP. For STBP, the operated sequence {ô7, ô6, · · · , ô0} (we denote the sequence as ôSeq) is transformed into ŷ via UWD.

Then MSE between y and ŷ is calculated. For ITBP, y is transformed into input sequence {o7,o6, · · · ,o0} (we denote the sequence as oSeq) by UWE.

Then, calculate weighted MSE between ôSeq and oSeq by Equation (11), where ôSeq is the operated sequence ready to be decoded.

2.6. Loss function and backpropagation

2.6.1. Rethinking spatio-temporal
backpropagation (STBP)

A previous study has applied for training high-performance

SNN (Wu et al., 2018; Jin et al., 2022). Noticeably, while examining

the stability of a classification task, some researchers applied

STBP for image generation (Comşa et al., 2021). The standard

backpropagation only considers the spatial information, which can

easily be underfitted and STBP overcomes that shortage. In order to

compare STBP with our Independent-Temporal Backpropagation

(ITBP) in the noise-removal task, the loss function corresponding

to STBP is shown below.

LSTBP =
1

N

∥

∥

∥
y− ŷ

∥

∥

∥

2

F
(9)

According to this loss function expression, the process of

updating parameters is presented. To fairly compare, we show

Frontiers inNeuroscience 06 frontiersin.org149

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

how LSTBP updates w
j
n in spatio-temporal domain. Other cases of

updating parameters of STBP can be seen inWu et al. (2018)’s work.

∂LSTBP

∂w
j
n

=

T
∑

t=1

∂LST BP

∂uit,n
o
j
t,n−1 (10)

As Equation (12) shown, while STBP updates w
j
n+1, o

i
t,n+1,

oit−1,n+1, and o
j
t,n are all connected with w

j
n+1. In Figure 4, unlike

STBP, error backpropagation of ITBP will not go through the

decoder. Hence, ITBP is more efficient than STBP. Because error

backpropagation of ITBP is in latent space but representational

space for STBP. In other words, there is a risk of overfitting.

Since there is a clear difference between ITBP and standard

backpropagation: during the training process, ITBP only encodes

the labels and does not decode network outputs; while ITBP does

not encode the labels and does decode network outputs during the

testing process. STBP has overcome standard backpropagation in

noise removal task (Comşa et al., 2021). Later in the experiment,

ITBP performed even better than STBP in a similar task.

2.6.2. Independent-Temporal Backpropagation
(ITBP)

To show the Independent-Temporal Backpropagation (ITBP)

training framework, we create the loss function LITBP where the

weighted mean square error is used as the error index. The

expression of it is described below:

LITBP =
1

N

T−1
∑

t=0

2t
∥

∥

∥
ot − ôt

∥

∥

∥

2

F
(11)

Where N is the number of training examples and ‖ · ‖F

represents the Frobenius norm, T is the total time step and we set

T = 8 for our UWE andUWD. From the equation above, we regard

LITBP as a function of w (weight). To obtain the derivative of LITBP

tow is necessary for the gradient descent. To obtain the final ∂LITBP

∂w
j
n

,

the critical step is to obtain the ∂LITBP

∂oit,n
and ∂LITBP

∂uit,n
at time t. Now,

we show the insight of getting the complete gradient descent. First,

from Equations (2) to (4), the output of spiking neurons oit,n+1 can

be represented below:

oit,n+1 = h[uit−1,n+1g(o
i
t−1,n+1)+ 6jw

j
n+1o

j
t,n − Vth] (12)

Where w
j
n+1 is the synaptic weight which links the output of

n + 1 layer spiking neuron oit,n+1 with the one of n layer o
j
t,n.

According to Equations (2) to (4), we can calculate ∂LITBP

∂oit,n
and

∂LITBP

∂uit,n
as follows.

∂LITBP

∂uit,n
=

∂LITBP

∂oit,n

∂oit,n

∂uit,n
(13)

∂LITBP

∂oit,n
=

∂LITBP

∂o
j
t,n+1

∂o
j
t,n+1

∂oit,n
(14)

∂oit,n+1

∂o
j
t,n

=
∂oit,n+1

∂uit,n+1

∂uit,n+1

∂o
j
t,n

=
∑

j

∂oit,n+1

∂uit,n+1

w
j
n+1

(15)

By Equation (5), the following derivatives of surrogate function

Equation (16) can be used for approximation.

∂oit,n+1

∂uit,n+1

=
1

1+ (πxit+1,n)
2

(16)

Here, ∂LITBP

∂uit,n
is the intermediate variable on the step of updating

parameters w
j
n, from Equations (14) to (16), we can solve Equation

(13) as follows.

∂LITBP

∂uit,n
= [

1

1+ (πxit+1,n)
2
]2

∂LITBP

∂oit,n+1

∑

j

w
j
n+1 (17)

Hence, the way we update parameters will be shown below.

∂LITBP

∂w
j
t,n

=
∂LITBP

∂uit,n

∂uit,n

∂xit,n

∂xit,n

∂w
j
n

=
∂LITBP

∂uit,n
o
j
t,n−1

(18)

To state how we update weights within one epoch

clearly, Algorithm 2 is shown. For Independent-Temporal

Backpropagation (ITBP) in this paper, it is a non-cross-

path backpropagation. That means it only propagates

spatially not temporally. In other words, it is a single-

modal spatial representation which means single-modality

simplifies and enhances ITBP’s efficiency. Last but

not least, ITBP only propagates spike sequences of

coded labels.

3. Results

To demonstrate the superiority of our work and compare it

to existing studies fairly, we choose widely used standard datasets

for our experiments. Hence, we implemented VTSNN in PyTorch

(Paszke et al., 2019), and evaluated it using MNIST (LeCun et al.,

1998), F-MNIST (Xiao et al., 2017), and CIFAR10 (Krizhevsky

et al., 2009). For MNIST and F-MNIST, we used 60,000 images

for training and 10,000 images for evaluation which is the same as

Comşa et al. (2021) in the noise-removal task. The input images

were resized to 28 × 28. To expand the applicability of VTSNN,

we also conducted experiments on CIFAR10. For CIFAR10, we

used 50,000 images for training and 10,000 images for evaluation.

The input images were resized to 32 × 32. Moreover, all noisy

images used for training and testing contain Gaussian noise at

each pixel, with η representing the noise variation in the image

scale from 0 to 1. Moreover, our training details are as follows. On

NVIDIA GeForce GTX 2080, the models are implemented using

PyTorch. In addition, each layer’s bias is set to False. The optimizer

is Adam Optimizer, which updates the weight parameters of the

network with the loss value for better gradient descent, and its

Frontiers inNeuroscience 07 frontiersin.org150

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

Input: Undistorted Weighted Encoding (UWE);

Undistorted Weighted Decoding (UWD);

VTSNN model; Simulation length: T;

n-bit input image: x; n-bit label image: y;

Iteration of train numbers: Itrain;

Iteration of validation numbers: Ival;

Initialization;

for i = 0, 1, · · · , Itrain iteration do

for t = 0, 1, · · · ,T − 1 do
Apply UWE to encode input x, label y to rt,

ot.

Input rt to VTSNN model, get spiking

sequences ôt .

end

Calculate loss function: LITBP(ot , ôt) by Equation

(11)

Backpropagation and update model parameters by

Equation (18)

end

for i = 0, 1, · · · , Ival iteration do

for t = 0, 1, · · · ,T − 1 do
Apply UWE to only encode input x to rt, .

Input rt to VTSNN model, get spiking

sequences ôt .

Append ôt to ̂O = {ô0, ô1, · · · , ôT−1}.

end

Use UWD to decode ̂O to ŷ; Calculate PSNR

between y and ŷ.

end

Algorithm 2. ITBP for one epoch.

initial learning rate is set to 0.001. Moreover, our batch size is 50

for both training and testing.

3.1. Comparison with existing works

The performance of two VTSNN variants is compared with

some models in Table 1. And a digit from MNIST dataset is

reconstructed by our model is show in Figure 5. We train and

test two variants based on the PyTorch framework, resulting in

enhanced performance across all tasks. And, we compare the

performance between ours and the methods proposed by Comşa

et al. (2021) which is the only SNN-based image reconstruction

attempt yet. On neuromorphically-encoded MNIST, the boost

values of PSNR on four various noise levels are {4.26, 5.75, 7.03,

7.06} with only eight time steps. On neuromorphically-encoded F-

MNIST, the boost value of PSNR on four various noise levels are

{3.66, 4.09, 3.692, 3.93} with also eight time steps. Moreover, the

value of PSNR on four various noise levels are {18.27, 14.08, 14.76,

13.16} on neuromorphically-encoded CIFAR10 with also eight

time steps, which is quite competitive. Furthermore, our method

can achieve higher performance in image reconstruction tasks by

neuromorphic encoding/decoding circuits. Even compared with T
A
B
L
E
1

C
o
m
p
a
ri
so

n
o
f
P
S
N
R
o
n
e
x
is
ti
n
g
w
o
rk
s
fo
r
v
a
ri
o
u
s
n
o
is
e
le
v
e
ls
a
n
d
d
i�
e
re
n
t
d
a
ta
se
ts

(B
o
ld
:
th
e
b
e
st
).

M
e
th
o
d

M
N
IS
T

F
-M

N
IS
T

C
IF
A
R
1
0

η
=
0
.2

η
=
0
.4

η
=
0
.6

η
=
0
.8

η
=
0
.2

η
=
0
.4

η
=
0
.6

η
=
0
.8

η
=
0
.2

η
=
0
.4

η
=
0
.6

η
=
0
.8

SA
T
C
-1
6

17
.0
6

16
.6
0

15
.2
4

14
.4
9

17
.5
4

16
.7
6

16
.0
4

15
.6
1

–
–

–
–

SA
T
C
-3
2

19
.1
1

17
.4
0

16
.0
6

15
.1
0

18
.0
1

17
.1
7

16
.7
2

15
.9
0

–
–

–
–

V
T
S
N
N
-L
IF

22
.9
9

21
.7
4

19
.0
4

19
.0
5

20
.8
5

20
.8
2

19
.8
6

18
.7
1

15
.8
5

10
.5
3

10
.9
6

9.
47

V
T
S
N
N
-I
F

2
3
.5
7

2
3
.1
5

2
3
.0
9

2
2
.5
6

2
1
.6
7

2
1
.2
6

2
0
.6
4

1
9
.8
3

1
8
.2
7

1
4
.0
8

1
4
.7
6

1
3
.1
6

Frontiers inNeuroscience 08 frontiersin.org151

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

FIGURE 5

A digit from MNIST set is reconstructed by the proposed VTSNN incorporated into the commonly used U-net architecture and IF neuron, at di�erent

noise levels.

TABLE 2 Comparison of PSNR on MNIST at various noise level η = 0.2 for

di�erent encoding and decoding (Bold: the best) (Wu et al., 2018; Comşa

et al., 2021; Kamata et al., 2022).

Encoding Decoding Backpropagation PSNR

UWE TTFS UWD MPD STBP ITBP

✓ ✓ ✓ 9.60

✓ ✓ ✓ 8.00

✓ ✓ ✓ 8.54

✓ ✓ ✓ 9.76

✓ ✓ ✓ 23.57

✓ ✓ ✓ 11.91

✓ ✓ ✓ 11.81

✓ ✓ ✓ 20.70

Same architecture ANN 23.05

ANN-based work, on MNIST, at η=0.2, our VTSNN-IF performs

superior to it. And the results are shown in Table 2.

3.2. Ablation study

3.2.1. Comparison between LIF neuron and IF
neuron

Currently, research uses leaky-integrate-and-fire (LIF) neurons

for SNN, believing its more complex differential equation (Gerstner

et al., 2014) can boost performance. Our experiment disproves this

bias. To conduct our experiment, we use commonly used datasets

(MNIST, FMNIST, and CIFAR10). In our method, the parameters

of the IF model are set as Vreset = None, Vth = 0.077 in 1 × 1

convolution layer (an experience parameter corresponds to best

performance), and Vth = 1.0 in all the other convolution layers. In

terms of LIF neurons, τ = 1.1, and all the other parameters are set

identically to IF neurons. In the majority of instances, as shown in

Table 1, IF neurons usually do better than LIF neurons at this task,

regardless of the noise level or dataset.

3.2.2. Comparison among di�erent coding
methods

TTFS and MPD are discussed relatively in depth in the

rethinking part (Sections 2.3.1 and 2.4.1) and introduction. Since

they have been used to generate images (Kamata et al., 2022). They

are the two most comparable methods for our UWE and UWD.

Table 2 displays all results. UWE is always superior to TTFS when

conducting a univariate experiment, and UWD is always superior

to MPD too. In addition, the UWE-UWD combination performs

exceptionally well for STBP.

3.2.3. Comparison between STBP and ITBP
Experiments demonstrate that ITBP is superior to STBP in

terms of the PSNR evaluation metrics. LSTBP and LITBP are applied

respectively with the same U-VTSNN architecture. Table 2 displays

the outcomes of these two backpropagation techniques on the

MNIST dataset with η = 0.2. All these results well proved the

superiority of our ITBP.

4. Discussion

4.1. Classification for UWE

In addition to image reconstruction, VTSNN is capable of

performing various tasks (Xu et al., 2021; Ran et al., 2022), such

as medical detection (Ghosh-Dastidar and Adeli, 2009) and speech

recognition (Mansouri-Benssassi and Ye, 2019). As mentioned in

the Introduction, classification is a common assignment for SNN.

To demonstrate the classification, we employ a VTSNN-based

LeNet (VTLeNet) (LeCun et al., 1998) in which all activation

functions are replaced by spiking neurons and UWE is used for

encoding. Then, we employVTLeNet to classify theMNIST dataset.

Furthermore, varying levels of noise (η = 0.2, 0.4, 0.6, 0.8) are

applied to the images in MNIST. Here, we are not attempting to

attain optimal outcomes, but rather to test the stability of our UWE

classification work. The results are presented as a line chart in

Figure 6.

Frontiers inNeuroscience 09 frontiersin.org152

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

FIGURE 6

Results of classification task in MNIST dataset at di�erent noise factors. For any T, while the noise level goes up the accuracy will decrease. However,

even the worst case (T = 2, η = 0.8) will achieve a quite good result (85.2%). And the best case (T = 8, η = 0.0) can perform quite competitively

(99.2%).

4.2. Energy consumption

In this section, we use the same network structure (Rathi and

Roy, 2021; Zhu et al., 2022). Ideally, in the absence of spikes, no

computations and active energy are used (Davies et al., 2018; Zhu

et al., 2022). For the sake of fairness, we exclude convolutional

computations for both and hold the above ideal conjecture. We

traverse MNIST and count ANN activation function operations

and SNN spikes. In these experiments, all spiking neurons are

replaced with an ANN activation function (e.g., ReLU), and its total

operations are counted.2 ANN then needs 18.39 M Flops3, while

VTSNN needs 2.51 M FLOPS. In other words, #OPANN=18.39 M,

#OPSNN=2.51 M.

Following the practice (Zhu et al., 2022), in 45 nm CMOS, each

ANN operation consumes 4.6 and 0.9 pJ for each spike (Horowitz,

2014). Thus, 32-bit ANN costs 18.39 M × 4.6 pJ = 8.46 × 10−5

J, or 273.77 times as much as 32-bit VTSNN. Moreover, details of

how energy consumption is calculated can be found in Table 3. This

method of calculation is generally accepted in the SNN field and

we learned from Zhu et al. (2022). The ideal results are extremely

encouraging and demonstrate SNN’s immense potential. To realize

2 The total number of ANN operations are counted by the torchstat

package (Swall0w, 2018).

3 In torchstat, the count operations are calculated by the formula

(Molchanov et al., 2016) #OPANN= 2HWCinCoutK
2 whereH andW is the output

feature map size; Cin is input channel; K is kernel size; Cout is the output

channel.

TABLE 3 Comparison of energy based on the counting of operations

between ANN and SNN.

ANN SNN

Total params 0.12 M 0.12 M

(a) Spike rate 0 0.1366

a(b) #OPANN 18.39 M 0

b(c) #OPSNN 0 2.51 M

cEnergy(10−7J) 845.94 3.09

dANN/SNN Energy 273.77

a#OPANN is the total number of ANN operations if all spiking neurons are replaced with an

ANN activation function (e.g., ReLU).
b#OPSNN = SpikeRate× #OPANN .
cEnergy = #OPANN ×4.6pJ + #OPSNN ×0.9pJ ×SpikeRate.
dEach operation in ANN (SNN) consumes 4.6 pJ (0.9 pJ). ANN/SNNEnergy can be calculated

by (b)×4.6
(a)×(c)×0.9

.

these awe-inspiring effects, however, future research into hardware

is required. The neuromorphic circuits in this paper may be a good

harbinger.

4.3. Regularity of threshold voltage

Experiments show Vth impacts outputs. To determine the

regularity of that relation, we find the optimal Vth by attempts.

Studies show a doubtful conjecture that increasing Vth increases

Frontiers inNeuroscience 10 frontiersin.org153

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

spiking rate frequency, which improves performance (Niu et al.,

2022). At each epoch, we count output spiking rate frequencies

corresponding to different Vth. Thus, we contradict that simple

correlation. Figure 7 depicts the ebb and flow of performance

regarding various Vth. Recent studies about astrocytes harbor find

during daytime and nighttime the threshold for the cell is different

(Koronowski and Sassone-Corsi, 2021). This biological property

inspired us. Other scholars in the SNN field also state that the

dynamic membrane potential threshold, as one of the essential

properties of a biological neuron is a spontaneous regulation

mechanism that maintains neuronal homeostasis, i.e., the constant

overall spiking firing rate of a neuron (Ding et al., 2022). Our

discussion is motivated by the above biological research, and we

hope to pique the interest of more academics to investigate the

regularity of threshold voltage’s insight.

4.4. Neuromorphic circuits

To enhance the efficacy of UWE and UWD, a simple

neuromorphic circuit can be introduced. The UWE and UWD

systems rely fundamentally on a binary encoding-decoding

strategy. In particular, binary data is hardware-friendly, inspiring

us to investigate ADC and DAC. The non-floating nature

of the circuits embodies the spirit of neuromorphic chips

and the successful avoidance of calculation through direct

electronic responses.

As shown in Figure 8, UWD can be enabled by a simple DAC.

Here, {B0,B1, · · · ,Bn−1} refers to spiking sequences of a pixel from

networks. Whether a spike occurs depends on whether switches are

on or off. The output of this neuromorphic chip is the real value

of that pixel. Furthermore, the resistance network corresponds to

n-bit decoding matrix A in Section 2.4.

Similarly, Figure 9 shows how to realize UWE without sample-

hold circuits. A comparator is linked to SAR logic and the

DAC model here is the circuits in Figure 8. Finally, MSB is the

abbreviation of Most Significant Bit (n-bit) while LSB refers to

Least Significant Bit (1-bit). This means MSB to LSB constitutes a

binary sequence.

4.5. Limitation

The majority of direct training SNNs are currently trained

with rather basic data. In addition, all of the current SNN-based

image reconstruction research use very simple images (Comşa et al.,

FIGURE 7

Performance of neurons in the final layer under various Vth conditions, with MSE as the evaluation metric. The circled and enlarged region illustrates

the complexity of performance surrounding a specific Vth value (Vth = 0.1 here).

Frontiers inNeuroscience 11 frontiersin.org154

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

FIGURE 8

Neuromorphic decoding circuits. We use this simple neuromorphic DAC to realize our UWD. If a switch is on, the corresponding branch outputs 1.

Otherwise, the branch outputs 0. This mechanism is designed to activate spikes. And with the resistors in series, the real pixel value is transferred.

FIGURE 9

Neuromorphic encoding circuits. we use this simple neuromorphic SAR ADC to realize our UWE. Each real pixel value will be transferred into pixel

spiking sequences.

2021; Kamata et al., 2022). Similarly, our work here is unable

to circumvent this difficulty. The reconstructed high-revolution

images created by VTSNN are not optimal and seem blurry to the

human eyes. In conclusion, SNN is still far behind ANN in image

reconstruction tasks involving high-resolution images. However,

SNN’s potential cannot be ignored.

5. Conclusions

We have developed a novel spiking neuron network called

VTSNN, where we adopt SNN with a virtual temporal dimension

and a new backpropagation method. Besides, we raise Undistorted

Weighted-Encoding to transfer the image into spiking information,

which can be easily realized by a neuromorphic circuit to improve

efficiency, as well as the symmetric process of Undistorted

Weighted-Decoding. The experiments proved that VTSNN

sometimes performs similarly to or better than ANN, for the

same architecture and VTSNN is superior to all other comparable

SNN models. Future research should focus on the development

of hardware and the applicability of high-resolution images.

There remain some constraints. The relationship between image

low-level task performance and Vth is unclear. The proposed

encoding-decoding circuits are not yet constructed physically.

Frontiers inNeuroscience 12 frontiersin.org155

https://doi.org/10.3389/fnins.2023.1091097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

Data availability statement

The study’s original contributions are given in the publication.

And our code is available at this https://github.com/bollossom/VTS

NN%20. For more information, please contact the relevant authors.

Author contributions

X-RQ, Z-RW, and ZL designed and did the experiments,

wrote the code, wrote the first draft of the manuscript, and

contributed equally. R-JZ provided consultation on SNN

knowledge, optimized the code, and helped with literature

research. XW polished the draft manuscript and reviewed

the code. M-LZ contributed to the concept and design.

L-JD directed the projects and provided overall guidance.

All authors contributed to the article and approved the

submitted version.

Funding

This research was supported by NSFC (12271083

and 12171072), Natural Science Foundation of Sichuan

Province (2022NSFSC0501).

Acknowledgments

Prof. Hong-Zhi Zhao, National Key Laboratory of Science

and Technology on Communications, UESTC, provided valuable

feedback about binary encoding, for which we are grateful. Mr.

Jia-Le Yü, College of Architecture and Urban Planning, Tongji

University, assisted with the creation of figures. Mr. Bin Kang from

the National Exemplary School of Microelectronics, UESTC, gave

feedback about circuits.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation
in temporally encoded networks of spiking neurons. Neurocomputing. 48, 17–37.
doi: 10.1016/S0925-2312(01)00658-0

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input. Biol. Cybern. 95, 1–19. doi: 10.1007/s00422-006-0068-6

Cheng, S., Wang, Y., Huang, H., Liu, D., Fan, H., and Liu, S. (2021). “Nbnet:
noise basis learning for image denoising with subspace projection,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4896–4906.
doi: 10.1109/CVPR46437.2021.00486

Comşa, I. M., Versari, L., Fischbacher, T., and Alakuijala, J. (2021).
Spiking autoencoders with temporal coding. Front. Neurosci. 15, 936.
doi: 10.3389/fnins.2021.712667

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Deng, S., Li, Y., Zhang, S., and Gu, S. (2022). Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv, 2202.11946.

Ding, J., Dong, B., Heide, F., Ding, Y., Zhou, Y., Yin, B., et al. (2022). Biologically
inspired dynamic thresholds for spiking neural networks. arXiv preprint arXiv,
2206.04426.

Eshraghian, J. K., Ward, M., Neftci, E., Wang, X., Lenz, G., Dwivedi, G., et al.
(2021). Training spiking neural networks using lessons from deep learning. arXiv, 2109.
12894.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y.
(2021). “Incorporating learnable membrane time constant to enhance learning
of spiking neural networks,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) (Montreal, QC: IEEE), 2661–2671.
doi: 10.1109/ICCV48922.2021.00266

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014).Neuronal Dynamics:
From Single Neurons to Networks andModels of Cognition. Cambridge University Press.

Ghosh-Dastidar, S. and Adeli, H. (2009). A new supervised learning algorithm for
multiple spiking neural networks with application in epilepsy and seizure detection.
Neural Netw. 22, 1419–1431. doi: 10.1016/j.neunet.2009.04.003

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117, 500.
doi: 10.1113/jphysiol.1952.sp004764

Horowitz, M. (2014). “1.1 Computing’s energy problem (and what we can do about
it),” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC) (San Francisco, CA: IEEE), 10–14. doi: 10.1109/ISSCC.2014.6757323

Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106.
doi: 10.1113/jphysiol.1962.sp006837

Jin, C., Zhu, R. J., Wu, X., and Deng, L. J. (2022). Sit: a bionic and non-linear neuron
for spiking neural network. arXiv, 2203.16117.

Kamata, H., Mukuta, Y., and Harada, T. (2022). “Fully spiking variational
autoencoder,” in Proceedings of the AAAI Conference on Artificial Intelligence
(Vancouver, BC: AAAI Press), 7059–7067. doi: 10.1609/aaai.v36i6.20665

Kim, J., Kim, H., Huh, S., Lee, J., and Choi, K. (2018). Deep neural networks with
weighted spikes. Neurocomputing 311, 373–386. doi: 10.1016/j.neucom.2018.05.087

Kim, Y., Park, H., Moitra, A., Bhattacharjee, A., Venkatesha, Y., and Panda, P.
(2022). “Rate coding or direct coding: Which one is better for accurate, robust, and
energy-efficient spiking neural networks?,” in 2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (Toronto, ON: IEEE), 71–75.
doi: 10.1109/ICASSP43922.2022.9747906

Kolda, T. G. (2006). Multilinear Operators for Higher-Order Decompositions.
Technical report, Sandia National Laboratories (SNL), Albuquerque, NM; Livermore,
CA. doi: 10.2172/923081

Koronowski, K. B., and Sassone-Corsi, P. (2021). Communicating clocks shape
circadian homeostasis. Science 371, eabd0951. doi: 10.1126/science.abd0951

Krizhevsky, A., (2009). Learning multiple layers of features from tiny images.
Master’s thesis, University of Toronto, Toronto, ON, Canada.

Lapique, L. (1907). Recherches quantitatives sur l’excitation electrique des nerfs
traitee comme une polarization. J. Physiol. Pathol. 9, 620–635.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791

Frontiers inNeuroscience 13 frontiersin.org156

https://doi.org/10.3389/fnins.2023.1091097
https://github.com/bollossom/VTSNN%20
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1109/CVPR46437.2021.00486
https://doi.org/10.3389/fnins.2021.712667
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1016/j.neunet.2009.04.003
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1609/aaai.v36i6.20665
https://doi.org/10.1016/j.neucom.2018.05.087
https://doi.org/10.1109/ICASSP43922.2022.9747906
https://doi.org/10.2172/923081
https://doi.org/10.1126/science.abd0951
https://doi.org/10.1109/5.726791
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qiu et al. 10.3389/fnins.2023.1091097

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)00011-7

Mansouri-Benssassi, E., and Ye, J. (2019). “Speech emotion recognition with
early visual cross-modal enhancement using spiking neural networks,” in 2019
International Joint Conference on Neural Networks (IJCNN) (Budapest), 1–8.
doi: 10.1109/IJCNN.2019.8852473

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. (2016). Pruning
convolutional neural networks for resource efficient inference. arXiv: 1611.06440.

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Niu, L.-Y., Wei, Y., Long, J.-Y., and Liu,W.-B. (2022). High-accuracy spiking neural
network for objective recognition based on proportional attenuating neuron. Neural
Process. Lett. 54, 1055–1073. doi: 10.1007/s11063-021-10669-6

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“Pytorch: an imperative style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems (NeurlPS) (Vancouver, BC), 32.

Ran, X., Xu, M., Mei, L., Xu, Q., and Liu, Q. (2022). Detecting out-of-distribution
samples via variational auto-encoder with reliable uncertainty estimation.Neural Netw.
145, 199–208. doi: 10.1016/j.neunet.2021.10.020

Rathi, N., and Roy, K. (2021). “Diet-SNN: a low-latency spiking neural network
with direct input encoding and leakage and threshold optimization,” in IEEE
Transactions on Neural Networks and Learning Systems (Glasgow: IEEE), 1–9.
doi: 10.1109/TNNLS.2021.3111897

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: convolutional
networks for biomedical image segmentation,” in International Conference on Medical
Image Computing and Computer-assisted Intervention (MICCAI) (Munich), 234–241.
doi: 10.1007/978-3-319-24574-4_28

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-basedmachine intelligence
with neuromorphic computing. Nature 575, 607–617. doi: 10.1038/s41586-019-1677-2

Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for
biological motion perception. Brain 130, 2452–2461. doi: 10.1093/brain/awm162

Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., and Benosman, R. (2018). “Hats:
histograms of averaged time surfaces for robust event-based object classification,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Salt Lake City, UT: IEEE), 1731–1740. doi: 10.1109/CVPR.2018.00186

Swall0w, A. (2018). torchstat. GitHub. Available online at: https://github.com/
Swall0w/torchstat.git (accessed July 7, 2022).

Thorpe, S., Delorme, A., and Van Rullen, R. (2001). Spike-based strategies for rapid
processing. Neural Netw. 14, 715–725. doi: 10.1016/S0893-6080(01)00083-1

Wang, Z., Cun, X., Bao, J., Zhou,W., Liu, J., and Li, H. (2022). “Uformer: a general u-
shaped transformer for image restoration,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (Orlando, FL: IEEE), 17683–17693.
doi: 10.1109/CVPR52688.2022.01716

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proc. IEEE 78, 1550–1560. doi: 10.1109/5.58337

Wu, Y., Lei, D., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv: 1708.07747.

Xing, Y., Di Caterina, G., and Soraghan, J. (2020). A new spiking convolutional
recurrent neural network (SCRNN) with applications to event-based hand gesture
recognition. Front. Neurosci. 14, 1143. doi: 10.3389/fnins.2020.590164

Xu, Q., Shen, J., Ran, X., Tang, H., Pan, G., and Liu, J. K. (2021). Robust transcoding
sensory information with neural spikes. IEEE Trans. Neural Netw. Learn. Syst. 33,
1935–1946. doi: 10.1109/TNNLS.2021.3107449

Yue, Z., Zhao, Q., Zhang, L., and Meng, D. (2020). “Dual adversarial network:
toward real-world noise removal and noise generation,” in European Conference on
Computer Vision (Springer), 41–58. doi: 10.1007/978-3-030-58607-2_3

Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., Yang, M.-H., et al. (2021).
“Multi-stage progressive image restoration,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (Montreal, QC: IEEE), 14821–14831.
doi: 10.1109/CVPR46437.2021.01458

Zhang, W., and Li, P. (2020). Temporal spike sequence learning via
backpropagation for deep spiking neural networks. Adv. Neural Inform. Process.
Syst. 33, 12022–12033.

Zhang, X., Liao, W., Yu, L., Yang, W., and Xia, G.-S. (2021). “Event-based synthetic
aperture imaging with a hybrid network,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (Montreal, QC: IEEE), 14235–14244.
doi: 10.1109/CVPR46437.2021.01401

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021).
“Going deeper with directly-trained larger spiking neural networks,”
in Proceedings of the AAAI Conference on Artificial Intelligence
(Vancouver, BC: AAAI Press), 11062–11070. doi: 10.1609/aaai.v35i12.
17320

Zhu, L., Wang, X., Chang, Y., Li, J., Huang, T., and Tian, Y. (2022).
“Event-based video reconstruction via potential-assisted spiking neural network,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (Orlando, FL: IEEE), 3594–3604. doi: 10.1109/CVPR52688.
2022.00358

Frontiers inNeuroscience 14 frontiersin.org157

https://doi.org/10.3389/fnins.2023.1091097
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/IJCNN.2019.8852473
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1007/s11063-021-10669-6
https://doi.org/10.1016/j.neunet.2021.10.020
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1093/brain/awm162
https://doi.org/10.1109/CVPR.2018.00186
https://github.com/Swall0w/torchstat.git
https://github.com/Swall0w/torchstat.git
https://doi.org/10.1016/S0893-6080(01)00083-1
https://doi.org/10.1109/CVPR52688.2022.01716
https://doi.org/10.1109/5.58337
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.3389/fnins.2020.590164
https://doi.org/10.1109/TNNLS.2021.3107449
https://doi.org/10.1007/978-3-030-58607-2_3
https://doi.org/10.1109/CVPR46437.2021.01458
https://doi.org/10.1109/CVPR46437.2021.01401
https://doi.org/10.1609/aaai.v35i12.17320
https://doi.org/10.1109/CVPR52688.2022.00358
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 23 June 2023

DOI 10.3389/fnins.2023.1187252

OPEN ACCESS

EDITED BY

Anup Das,

Drexel University, United States

REVIEWED BY

Antonio Rios-Navarro,

Sevilla University, Spain

Liliana Ibeth Barbosa Santillan,

University of Guadalajara, Mexico

*CORRESPONDENCE

Amirreza Yousefzadeh

amirreza.yousefzadeh@imec.nl

RECEIVED 15 March 2023

ACCEPTED 30 May 2023

PUBLISHED 23 June 2023

CITATION

Tang G, Vadivel K, Xu Y, Bilgic R, Shidqi K,

Detterer P, Traferro S, Konijnenburg M,

Sifalakis M, van Schaik G-J and Yousefzadeh A

(2023) SENECA: building a fully digital

neuromorphic processor, design trade-o�s and

challenges. Front. Neurosci. 17:1187252.

doi: 10.3389/fnins.2023.1187252

COPYRIGHT

© 2023 Tang, Vadivel, Xu, Bilgic, Shidqi,

Detterer, Traferro, Konijnenburg, Sifalakis, van

Schaik and Yousefzadeh. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

SENECA: building a fully digital
neuromorphic processor, design
trade-o�s and challenges

Guangzhi Tang1, Kanishkan Vadivel1, Yingfu Xu1, Refik Bilgic2,

Kevin Shidqi1, Paul Detterer1, Stefano Traferro1,

Mario Konijnenburg1, Manolis Sifalakis1, Gert-Jan van Schaik1 and

Amirreza Yousefzadeh1*

1Imec, Eindhoven, Netherlands, 2Imec, Leuven, Belgium

Neuromorphic processors aim to emulate the biological principles of the brain

to achieve high e�ciency with low power consumption. However, the lack

of flexibility in most neuromorphic architecture designs results in significant

performance loss and ine�cient memory usage when mapping various neural

network algorithms. This paper proposes SENECA, a digital neuromorphic

architecture that balances the trade-o�s between flexibility and e�ciency using

a hierarchical-controlling system. A SENECA core contains two controllers,

a flexible controller (RISC-V) and an optimized controller (Loop Bu�er). This

flexible computational pipeline allows for deploying e�cient mapping for various

neural networks, on-device learning, and pre-post processing algorithms. The

hierarchical-controlling system introduced in SENECA makes it one of the most

e�cient neuromorphic processors, along with a higher level of programmability.

This paper discusses the trade-o�s in digital neuromorphic processor design,

explains the SENECA architecture, and provides detailed experimental results

when deploying various algorithms on the SENECA platform. The experimental

results show that the proposed architecture improves energy and area e�ciency

and illustrates the e�ect of various trade-o�s in algorithm design. A SENECA core

consumes 0.47 mm2 when synthesized in the GF-22 nm technology node and

consumes around 2.8 pJ per synaptic operation. SENECA architecture scales up

by connectingmany cores with a network-on-chip. The SENECA platform and the

tools used in this project are freely available for academic research upon request.

KEYWORDS

event-based neuromorphic processor, spiking neural network, architectural exploration,

bio-inspired processing, SENECA, AI accelerator

1. Introduction

Neuromorphic engineering’s vision is to boost the efficiency of neural networks to

the level of the biological brain. Our brain can process temporal information from the

distributed sensors, fuse them, and generate sophisticated output activities, all in real-

time. In addition, it also memorizes the results and adapts to environmental changes over

time (LeDoux, 1994). These tasks are done with a small energy budget of 10–20 W (Mink

et al., 1981; Quian Quiroga and Kreiman, 2010). The advance of deep learning research

makes neural network algorithms perform similarly or better than biological brains in many

tasks (Silver et al., 2017; Brown et al., 2020; Shankar et al., 2020). However, executing those

algorithms in hardware as efficiently as the brain is extremely challenging.

Frontiers inNeuroscience 01 frontiersin.org158

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1187252
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1187252&domain=pdf&date_stamp=2023-06-23
mailto:amirreza.yousefzadeh@imec.nl
https://doi.org/10.3389/fnins.2023.1187252
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1187252/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

Since neural network algorithms are general purpose (can be

applied to a variety of problems, mainly for signal processing),

they enable the opportunity to build specialized hardware called

Neural Processing Units (NPUs), which are simultaneously

domain-specific (circuit level) and general-purpose (algorithm

level). Therefore NPUs can execute neural networks with

significantly more efficiency compared to CPUs. Neuromorphic

processors are special NPUs that mimic biological principles

by implementing features like memory-processor co-localization,

sparsity exploitation, and data-flow processing. However, due to the

mismatch between available silicon technology and the biological

fabric of the brain, opting for the right level of bio-mimicry is

the main controversial topic in this field of research. Although

all state-of-the-art neuromorphic processors claim to outperform

conventional solutions in specific benchmarks (Basu et al., 2022;

Chen et al., 2022), they are mostly not competitive for practical

applications, where a complex set of various neural networks

and sensors are used (Altan et al., 2018; Grigorescu et al., 2020;

Ravindran et al., 2020). Deployment of practical applications

requires an end-to-end mapping of several neural network models

and learning algorithms.

Despite the general-purpose attribute of neural network

algorithms on their core computations, different computation

pipelines on various types of neuron models, connectivity

types, and learning algorithms can result in performance drops

when deployed in neuromorphic platforms with an architectural

mismatch. Each model of neural network requires one or a few

special computation pipelines. However, a fundamental trade-

off exists between making a flexible computational pipeline

and an efficient processor. Most neuromorphic processors

are highly efficient in executing the core computations (e.g.,

integrating a spike into neurons’ membranes) with a specially

optimized controller that limits the flexibility of the computational

pipeline (Akopyan et al., 2015; Stuijt et al., 2021; Frenkel

and Indiveri, 2022). The design also restricts the effective

utilization of memory hierarchy and data reuse, constraining

performance, area, and power efficiency. We observed that the

lack of flexibility in mapping the practical applications results

in significant performance loss and inefficient memory usage in

such neuromorphic processors (Molendijk et al., 2022), making

them a non-competitive solution for the EdgeAI market. On

the other hand, several recent neuromorphic processors opted

for a high level of programmability by using a complex and

less efficient controller (for example, an embedded processor)

to schedule their computational pipeline flexibly (Davis, 2021;

Höppner et al., 2021). Benchmarking results in this work show such

a controller could consume an order of magnitude more energy

than an efficient controller. Therefore, an effective neuromorphic

architecture design is needed to balance the trade-off between

flexibility and efficiency.

In this paper, we propose the SENECA neuromorphic

architecture, a flexible and efficient design with a hierarchical

controlling system consisting of a flexible controller (RISC-V)

and a custom-made efficient controller (Loop Buffer). During

computation, the loop buffer executes micro-codes made by a

series of simple instructions, and RISC-V controls the order of

execution of each micro-code, which makes the computational

pipeline customizable and efficient. Moreover, the multi-level

flexible controller enables SENECA to employ a hierarchical

memory structure with an efficient data reuse capability. Such

an architecture gives SENECA a high level of flexibility and

area efficiency without sacrificing energy efficiency. We showed

that SENECA is among the most energy-efficient neuromorphic

processors while keeping its high level of flexibility. Briefly, the

main contributions of the paper are the following:

• Introduce a neuromorphic processor with a flexible processing

pipeline to efficiently deploy various neuron models,

connectivity types, and learning algorithms on one platform.

• Introduce the concept of the hierarchical control mechanism

that allows for high flexibility without significant

performance loss.

• Provide detailed measurements of energy consumption of

various logic blocks, neuron processing instructions, and

neural network algorithms in SENECA, which is helpful

for future design space exploration and algorithm-hardware

co-optimization.

• Demonstrate spike-grouping as a method to exploit the

memory hierarchy and improve the energy efficiency of

neuromorphic processing.

We discuss the trade-offs in the design of a digital

neuromorphic processor and compare state-of-the-art

architectures based on those trade-offs in Section 2. We introduce

the SENECA neuromorphic architecture in Section 3. This

architecture was briefly introduced in Yousefzadeh et al. (2022).

In this paper, we provide more extensive architectural details.

We also explain the design choices of SENECA based on the

mentioned trade-offs. Synthesis results, instruction level, and

algorithm level benchmarking of the SENECA processor are

provided in Section 4. The provided results can be useful

for modeling in algorithm-hardware co-optimizations. Our

synthesis result shows SENECA has a high area efficiency, and

the instruction level benchmarking showed a competitive 2.8

pJ/Synaptic operation when employing a data reuse strategy.

Algorithm level benchmarking in Section 4.2 shows SENECA’s

performance for fully connected and convolutional neural

networks next to the on-device learning with e-prop. Algorithm-

level benchmarking provides more insight into instruction-level

benchmarking by measuring all the overheads of the RISC-V

controller. Our experimental results showed that the flexibility

overhead provided by RISC-V is bounded within 10% the main

bulk of the computational load. It also demonstrates the flexibility

of SENECA to map various neural network algorithms efficiently.

The paper ends with a short conclusion in Section 5.

2. Important trade-o�s in
neuromorphic architecture design

Since neuromorphic architecture design aims to follow the

principles of bio-inspired processing mechanisms in the available

nano-electronic technologies, facing several challenges that result

from the platform constraints is expected. In this section, we discuss

the challenges of neuromorphic architecture design by reviewing

Frontiers inNeuroscience 02 frontiersin.org159

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

FIGURE 1

Simple block diagrams of common neuro-synaptic cores. (A) Shows a neuro-synaptic core that implements 12 neurons, each with 15 synapses and

one output axon. The core has 3 input axons, and 3 output axons and neurons are fully connected. The red dots in the synaptic array show the

synaptic weight’s strength. (B) Shows a neuro-synaptic core where the axons are time-multiplexed and implemented with a shared connection. (C)

Shows a neuro-synaptic core where both the axons and neurons are time-multiplexed.

existing approaches and justifying the choice of SENECA design

with trade-offs in solving these challenges.

2.1. Logic time-multiplexing

A biological neural network is built from many neurons

connected through synapses and axons. Neurons contain an

internal state (so-called membrane potential) that accumulates

weighted spikes. In its simplest form, each synapse has a

weight that adjusts the intensity of the current injected into the

post-synaptic neuron.

Figure 1 shows three simplified examples of architectures for a

neuro-synaptic core that emulates a population of interconnected

neurons. These architectures can be realized in silicon with

various technologies [for example, analog (Schemmel et al., 2022),

digital (Arthur et al., 2012; Stuijt et al., 2021), and in-memory

processing (Ahmadi-Farsani et al., 2022)]. Figure 1A is the most

bio-inspired one, in which neurons are interconnected through

a cross-bar synaptic memory. However, this explicit connectivity

can become easily prohibitive to be routed in a 2D structure of

conventional silicon ICs.

Since data can travel/process a million times faster in silicon

than in the brain1, a typical silicon neural network can operate

1M times faster than its biological counterpart. Therefore, it

makes sense to partially time-multiplex elements of silicon neural

networks, even though it is not bio-inspired. To the best of our

knowledge, all scalable digital neuromorphic chips adopt a kind of

time-multiplexing technique.

Figure 1B illustrates a neuro-synaptic core architecture where

the axons are time-multiplexed. In this case, each spike pulse

1 Biological action-potential velocity is less than 120 m/s while the speed

of a pulse traveling in a wire is around 2× 108 m/s.

is encoded in a packet of data, including the address of

the source neuron, so-called Address Event Representation

(AER) (Yousefzadeh et al., 2017a). Using this method, each neuron

needs to process one spike at a time (in series), simplifying silicon

neurons’ architecture. In addition, axon time-multiplexing allows

flexibility and scalability by connecting many neuro-synaptic cores

in a packet-switched network, as shown in Figure 2. However, axon

time multiplexing changes a single spike pulse to a potentially

large data packet. For example, in Figure 1B, each packet will need

to have at least log2(number of neurons) bits to accommodate the

address of neurons.

Despite the packetization overhead, axon time multiplexing is

used in all digital neuromorphic processors (to our knowledge). A

step further is to time-multiplex the physical neurons, as shown in

Figure 1C. In this case, one shared physical neuron can emulate

several hundreds of neurons in a neuro-synaptic core. Especially

when the neuron model is more complex, or the physical neuron

is designed to be programmable (for example, to support several

neuron models), neuron time multiplexing significantly improves

the area efficiency and allows to scale up the number of neurons

in a neuro-synaptic core. However, it also introduces some serious

trade-offs.

First, timemultiplexing of neurons requires loading and storing

the neuron states from memory. In Figure 1B, neuron states

can remain inside the physical neurons. But in Figure 1C, a

neuron state memory is introduced. Each physical neuron needs

to load the corresponding neuron state, update it and store it

back in the neuron state memory. This extra memory access

potentially reduces the system’s energy efficiency. Additionally,

even though silicon is much faster than bio-fabric, in practice,

neuron time-multiplexing can slow down the neuro-synaptic cores

and increase latency. The controller in Figure 1C is the second

overhead of neuron time-multiplexing. Neuron time-multiplexing

requires a controller to orchestrate the time-multiplexing process.

Frontiers inNeuroscience 03 frontiersin.org160

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

FIGURE 2

A typical neuromorphic processor, scaling with a Network on Chip

(NoC) as time-multiplexed axons.

The complexity of the controller depends on the flexibility

(programmability) and features that the core supports.

Despite the disadvantage of neuron time-multiplexing, its

benefits in area efficiency make it inevitable to be used by almost

all digital neuromorphic processors (Furber et al., 2014; Akopyan

et al., 2015; Davies et al., 2018; Frenkel et al., 2018; Demler, 2019;

Mayr et al., 2019; Moreira et al., 2020; Davis, 2021). However,

for some small-scale architectures (sub mW) (Stuijt et al., 2021)

where power consumption is prioritized over area efficiency and

programmability, the controller overhead might be considerable,

and therefore neuron time-multiplexing is not implemented. The

last column of Table 1 shows a few neuromorphic architectures

and their neuron time-multiplexing ratio. SENECA uses axon and

neuron time-multiplexing to process a flexible number of neurons

in each core.

2.2. Memory

In the architecture shown in Figure 1C, memory cells are the

only part that cannot be time-multiplexed. Each neuron must have

dedicated memory cells for membrane potential (neuron state),

synaptic weights, and axons (destination addresses). As a result,

memory is responsible for most of the area and power consumption

in a neuro-synaptic core.

Several trade-offs are involved in the design of the memory

block (Stansfield, 2022). The first trade-off regarding memory

is the size of memory per core. As a rule of thumb, the area

efficiency in a neuro-synaptic core improves by increasing the

memory size (due to an increase in the time-multiplexing ratio

of other elements). However, the higher time-multiplexing ratio

for the physical neurons, in general, increases the processing

time. Additionally, the distance between the memory cells and

its peripherals increases in a larger memory, resulting in slightly

higher power consumption of individual memory accesses. On the

other hand, using smaller memory in the core means less number

of neurons/synapses per core. Therefore, in such a platform, it is

required to use more interconnected cores to deploy an application,

which also increases the load of the interconnect (more data

movement). Table 1 shows the amount of memory per core in a few

digital neuromorphic processors.

A second challenge is the choice of memory technology.

Register-File (Latch) and SRAM2 are the most common memories

used in digital processors. New memory technologies (eDRAM,

eFlash, MRAM, etc.) are also gaining popularity. It is also possible

to opt for off-chip memory. In this case, the method to connect two

chips to each other greatly affects the performance (2D chiplet, 3D

stacked integration, etc.).

µBrain (Stuijt et al., 2021) uses latch memory, which allows

it to be fully synthesizable (SRAMs are analog IPs and cannot

be synthesized using standard digital gates). Register Files (and

Latches) are fully synthesizable using the standard digital gates

(unlike SRAM, which is an analog IP); therefore, placing each

memory cell very close to the processing logic is possible. However,

it consumes more area than SRAM for larger memory sizes (Teman

et al., 2016). SRAM provides a very competitive balance for the

area, performance and power consumption when only onememory

technology is used. As a result, most of the architectures in Table 1

only use SRAM memory for weight and neuron states. However,

when targeting large-scale neural networks (multi-Gb parameters),

SRAM becomes unaffordable. SpiNNaker (Furber et al., 2014)

uses SRAMs for neuron states and a 1Gb 3D-integrated off-

chip DDR memory for synaptic weights (in its standard SDK).

This arrangement allows for storing a large number of synaptic

weights (1Gb) in a small, affordable chip. Using off-chip DDR

memory dramatically improves the area efficiency and cost since

memory foundries optimize the process of memory cells for

large-scale fabrication (for example, by using fewer metal layers).

However, it also increases the distance between memory and

the processor, which is undesirable, especially for neuromorphic

processors (Pedram et al., 2016).

Due to a highly sparse processing pattern of neuromorphic

applications, the static power consumption in a neuromorphic

chip, if not carefully designed, can easily exceed 30% of the

total power consumption (Stuijt et al., 2021). Data retention in

volatile memory is the primary source of static power consumption.

Using Non-Volatile Memory (NVM) technologies can theoretically

address this issue. However, NVM technologies generally suffer

from high latency (access time), extremely high write power

consumption and limited endurance.

SENECA architecture is designed to use a hybrid memory

architecture and mixed memory technologies. SENECA has the

flexibility to dynamically allocate different parameters to various

memory blocks. Therefore, one can optimize the application

mapping for the best energy and area trade-offs. In this case,

the data’s location will depend on how often it is used. Table 2

shows Power, Performance, and Area (PPA) measurements of

different memory technologies used in SENECA, measured using

randomized experiments in Cadence JOULES (with FDX 22

nm technology, typical corner). As can be seen, each memory

technology has its own unique advantages, which can be optimized

when used in a hybrid memory architecture.

2 SRAM is inherently analog, but it is used as an IP with digital IOs.

Frontiers inNeuroscience 04 frontiersin.org161

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

TABLE 1 Comparison between area, memory, and the technology node used in a few neuromorphic chips.

Architecture mm2 Memory (Mb) Technology Neurons(Physical)

/Core /Core /core

ODIN (Frenkel et al., 2018) 0.086 0.28 STM 28 nm 256(1)

TrueNorth (Akopyan et al., 2015) 0.10 0.10 Samsung 28 nm 256(1)

NeuronFlow (Moreira et al., 2020) 0.1 0.12 TSMC 28 nm 1024(1)

Loihi2 (Davis, 2021) 0.21 1.5 Intel 4 nm Flex(1)

Loihi (Davies et al., 2018) 0.41 2.0 Intel 14 nm 1024(1)

ReckOn (Frenkel and Indiveri, 2022) 0.45 1.1 FDSOI 28 nm 256(16)

µBrain (Stuijt et al., 2021) 1.42 0.15 TSMC 40 nm 336(336)

SpiNNaker (Furber et al., 2014) 5.6 0.12 130 nm Flex(1)

SpiNNaker2 (Höppner et al., 2021) 1.09 1.0 FDX 22 nm Flex (64)

Tianjic (Deng et al., 2020) 0.092 0.17 UMC 28 nm 256(16)

SENECA 0.47 2.3 FDX 22 nm Flex(8)

The amount of memory can be used as an indication of the number of neurons and synapses per core.

TABLE 2 Comparison of memory modules used in SENECA.

Memory module Memory size Energy Static power Area Latency

(fJ/b) (pW/b) (um2/b) (ns)

Register-file (inside NPEs) 16W × 16b (256b) 8 600 3.6 < 1

64W × 16b (1kb) 12 610 3.6 < 1

SRAM block (Inst/Data Mem) 8KW × 32b (256Kb) 180(R)–220(W) 10 0.2 2

STT-MRAM (Shared Mem) 256k× 144b (36.8Mb) 2,000(R) 0 0.1 25(R)

HBM (Shared Mem; Xilinx, 2020) 64 Gb 7000 – 0.003 135

2.3. Programmability

Programmability means “The capability within hardware and

software to change; to accept a new set of instructions that alter its

behavior.” In this definition, the biological brain is programmable.

Our brain easily adapts to the augmented artificial sensors and

actuators (Hartmann et al., 2016).

The desired level of programmability in the neuromorphic

processors is much higher than in the brain. At least, a user of a

neuromorphic processor needs to start from a pre-trained network

and be able to program the synaptic weights. In addition, there

are various neural network architectures, learning algorithms, and

neuron models. A highly flexible neuromorphic processor allows

the deployment of several applications and algorithms and is

helpful in researching and developing new ideas.

Adding flexibility to the architecture will cost area and

power. Thereby increasing the energy consumption per operation.

However, the added functionalities may result in optimizations

that significantly improve the application level performance, for

example, by reducing data movement and memory access. Table 3

lists a few neuromorphic architectures based on their level of

programmability. A flexible mapping allows for reusing all memory

blocks for neurons and synapses to use the maximum amount

of memory in each core (no hard partitioning of memories).

Using programmable data type allows for the optimal mapping

of quantized networks. Different layers in a neural network have

different quantization requirements, which can only be exploited if

the processor supports multiple data types.

Supporting efficient deployment of various neural network

architectures (Dense, Conv, RNN, Transformers, etc.) also requires

flexibility. For example, in most neural networks, due to a

regular architecture, it is possible to mathematically calculate the

destination address of a neuron (in the controller in Figure 1C)

instead of storing them in the axon memory, therefore saving a

relatively large amount of memory. Another example is weight

sharing in Convolutional Neural Networks (CNNs). In CNNs,

synapses of a channel share their weights. If the processor

architecture cannot support the weight-sharing feature, it is

required to store several hundred copies of the same synaptic

weights in the weight memory. For example, Implementation of an

HW-optimized CNN in TrueNorth (Akopyan et al., 2015) with 1.5

M ternary weights (3 Mb), consumed 3, 721 cores (372 Mb; Amir

et al., 2017). Mapping of the same CNN in SENECA requires only

4 cores (8.4 Mb).

Supporting various neuron and synaptic models (e.g., plasticity

algorithms) requires additional flexibility. At this moment, there

is no evidence that a specific spiking neuron model or a local

learning algorithm will be dominant due to its superior efficiency

in all applications. Therefore, these flexibilities can result in better

power consumption when considering end-to-end application

deployment. In particular, the local learning algorithm within the

synapse model, which is at the frontier of neural network research,

Frontiers inNeuroscience 05 frontiersin.org162

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

TABLE 3 Programmibility (flexibility) of di�erent dimensions in di�erent neuromorphic processors.

Architecture Mapping Data-type Network Neuron Synapse Energy per

architecture model model SOp (pJ)

ODIN Low Fixed Fixed Fixed Fixed 12.7

(Frenkel et al., 2018)

ReckOn Low Fixed Fixed Fixed Fixed 5.3

(Frenkel and Indiveri, 2022)

µBrain Low Fixed Fixed Fixed Fixed 26

(Stuijt et al., 2021)

TrueNorth Low Fixed Low Fixed Fixed 2.5

(Akopyan et al., 2015)

Tianjic Low Fixed High Medium Fixed 1.54

(Deng et al., 2020)

NeuronFlow Low Low Medium Medium Fixed 20

(Moreira et al., 2020)

Loihi Low Low Medium Low Medium 23.6

(Davies et al., 2018)

Loihi2 High Medium Medium High Medium NA

(Davis, 2021)

SpiNNaker High Medium High High High 45

(Stromatias et al., 2013)

SpiNNaker2 High Medium High High High 10

(Höppner et al., 2021)

SENECA High Medium High High High 2.8

Synaptic Operation (SOp) varies in different applications and is only mentioned for high-level comparison. Mapping: low—hard partitioning of memory for weight and state; high—flexible

memory reusing. Data-type: fixed—single data type supported; low—limited data type supported and only support binary events; medium—mixed-precision data type supported and graded

events supported. Network architecture: fixed—only support Fully-Connected network; low—optimal support on Fully-Connected network and very costly support on CNN; medium—

optimal support on Fully-Connected network and costly support to CNN; high—optimal support to both fully-Connected and CNN, and can also support novel network architectures.Neuron

model: fixed—single fixed model; low—single predefined model with limited programmability; medium—multiple predefined models with limited programmability; high—fully programmable

model. Synapsemodel: fixed—single fixedmodel; medium—single fixedmodel with limited programmable learning support; high—fully programmablemodel and fully programmable learning

support.

requires the right level of programmability to explore application-

level performance optimizations. For example, Davies et al. (2018)

provides configurable learning rules using microcode operations

supported by the learning engine per core. By limiting flexibility

to the sum-of-products of synaptic traces, Loihi struggled to deploy

advanced learning algorithms and required algorithm designers to

find non-optimal workarounds to deploy the learning on the chip

(Renner et al., 2021; Tang et al., 2021). Furthermore, trace-based

learning on Loihi requires updating all synapses at each time step,

restricting the learning algorithm from exploiting the event-driven

advantage of neuromorphic computing3. In contrast, SENECA is

at the right level of programmability to deploy various learning

algorithms via the neuron processing instruction set (detailed

in Section 3.2), which can better exploit the application-level

performance optimization.

3 In the neuromorphic processors, the words “events” and “spikes,” and

“neuron activation” are used interchangeably. In this context, Event-driven

processing means the processing pipeline is triggered by incoming spikes or

non-zero neuron activations.

2.4. Interconnectivity

To connect the neuro-synaptic cores to each other in a

neuromorphic system (Figure 2), it is possible to use shared buses

(or circuit-switched Network on Chip [NoC]; Balaji et al., 2019),

point-to-point connections (Stuijt et al., 2021), or a packet-switched

NoC. The packet-switched NoC is the most popular option due to

its higher performance and flexibility (Furber et al., 2014; Akopyan

et al., 2015; Moradi et al., 2017; Davies et al., 2018; Frenkel et al.,

2018; Demler, 2019; Mayr et al., 2019; Moreira et al., 2020; Davis,

2021), as shown in Table 4.

One of the challenges in neuromorphic chips is the “operational

intensity” of a single packet of data. In other words, if the processing

of a packet of data is much faster than the delivery time of that

packet (low operational intensity), then the interconnect is themain

bottleneck. For example, a spike from an axon that is connected

to many neurons triggers a high amount of neural updates. If all

destination neurons are located in one neuro-synaptic core, then

the operational intensity of the spike packet is high. However,

if the destination neurons are distributed in several cores, many

spike packets are required to deliver the same spikes to all of those

cores. In this case, the operational intensity of each packet is lower.

Frontiers inNeuroscience 06 frontiersin.org163

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

TABLE 4 Type of network on chip for di�erent large-scale neuromorphic processors.

Architecture Core/Router Multicasting Compression

TrueNorth (Akopyan et al., 2015) 1 No No

NeuronFlow (Moreira et al., 2020) 1 No No

Loihi (Davies et al., 2018) 4 No No

Loihi2 (Davis, 2021) 4 No No

SpiNNaker (Stromatias et al., 2013) 16 Yes No

SpiNNaker2 (Mayr et al., 2019) 4 Yes Software

Tianjic (Deng et al., 2020) 1 Yes No

SENECA 1 Yes Software

Therefore, in the platforms with smaller but more cores, the spike

packets’ operation density is generally lower.

Multi-casting is a feature that increases the operational

intensity of spike packets by reducing the total data movements.

When a core wants to send a spike packet to several other cores in

a uni-cast interconnect, several copies of the packet with different

destination addresses must travel over the interconnect from the

source core toward the destination cores. A multicasting NoC

makes the copies closer to the destination cores, reducing the

communication overhead. As a trade-off, complete support of

multi-casting considerably increases the complexity of the NoC.

SENECA supports a lightweight multi-casting NoC with a small

routing table. Our study showed that a small routing table is enough

formost of the neural networks with regular connectivity. However,

SENECA NoC needs to switch to the unicast mode in extreme

irregularity cases.

Another possibility to improve the operation intensity is to

compress the spike packets. Each spike packet contains an address

field and an optional data field. It is easier to compress the address

field for the spikes which are fired simultaneously since they are

generally correlated. Spike compression saves the NoC energy

and the memory consumption of spike queues (at the entrance

of each core). However, a compression algorithm introduces

extra computational overhead, and its performance is application

dependent. Therefore, selecting a compression algorithm and

accelerating it in a neuromorphic processor is a difficult trade-

off. Additionally, due to spike compression, the spike packets

will have variable lengths, which slightly increases the router’s

complexity. In SENECA, we use a simplified yet effective spike

address compression inside the controller.

2.5. Asynchronous design

Another challenge for digital event-based processing cores is

the clock. At this moment, synchronous digital design, which

requires a clock signal, is far more popular than asynchronous

design. The main reason is that, in synchronous digital design, the

circuit’s behavior is not dependent on the timing characteristics of

the underlying silicon technology.

A clock is a high-frequency pulse that is continuously

switching. In a synchronous digital circuit, the clock signal must

FIGURE 3

Distribution of the power consumption in various elements in

SENECA when executing the online learning algorithm experiment,

explained in Section 4.2.

reach almost everywhere inside a synchronous domain through a

highly controlled latency circuit (called a clock tree). As shown in

Figure 3, a clock tree consumes a substantial part of the dynamic

energy in SENECA, which is a significant overhead.

A traditional method to address the wasted dynamic power of

the system due to clock signal in idle time is clock gating. In this

method, a control logic gates the clock signal of a digital block in

the absence of events. However, due to the overhead of the control

logic, it is not feasible to reach 100% clock gating efficiency.

One possibility to improve the system’s scalability is to have

regional clock generators. In this case, a large clock tree is divided

into smaller local trees. This method is called GALS (Globally

asynchronous, Locally Synchronous) architecture. In GALS, the

interconnects between these synchronous regions must follow an

asynchronous protocol (Yousefzadeh et al., 2016). The trade-off in

GALS design is drawing the asynchronous boundary, which can

be either inside their cores, between cores, or between chips for

large-scale designs.

A possible optimization over GALS is designing clock

generators triggered by the input events. In this so-called self-

clocked logic, a distributed set of simplified oscillator circuits

generates the exact number of pulses required to process an input

event. Therefore, clock gating latches are not required (which

are constantly active). Depending on the number of event-based

Frontiers inNeuroscience 07 frontiersin.org164

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

oscillators, a self-clocked circuit design might be a better trade-off

than clock gating. However, it requires a complex, hand-optimized

asynchronous digital design, which affects its design cost and

portability to newer technologies.

Asynchronous design is advertised to be faster and consumes

less dynamic power. However, without spending considerable

design time, it isn’t easy to harvest its benefits. On the other hand,

synchronous circuits can be designed to finish their task extremely

fast and turn off the clock signal to save energy. Considering those

trade-offs, we only used GALS with core-to-core asynchrony in the

SENECA. Table 5 lists several neuromorphic processors based on

their asynchronous design choices.

3. SENECA architecture

In this section, we introduce our proposed neuromorphic

architecture, named SENECA4. SENECA comprises

interconnected neurosynaptic cores, illustrated in Figure 4.

The cores are programmed to process input events and generate

output events. An input event enters the core through the NoC

(Network on Chip) and interrupts the RISC-V. Depending on the

type of event, RISC-V decides how to preprocess it. In general, for

a normal incoming spike, RISC-V performs a pre-processing phase

to retrieve the relevant local information required to process the

spikes (for example, the address of the corresponding parameters

in the Data Memory) and packs that information in the form

of a micro-task. Then this micro-task is pushed to the Task

FIFO. The loop controller executes the tasks one by one based

on the micro-code instructions stored in the loop buffer. The

loop controller is a small dedicated controller programmed to

execute a sequence of instructions in parallel through the NPEs

(Neural Processing Elements). Some neural operations in NPEs

may result in output spikes which will be converted to packets of

data inside the event generator. The event generator unit interrupts

the RISC-V to perform postprocessing on the generated events.

RISC-V can feed the generated events back into the Task FIFO or

send them out through the NoC. Following, we will explain each

element of SENECA in more detail.

3.1. RISC-V controller

In Figure 1C, there is a controller which handles the

input/output spike flow. This controller mainly performs the

address translation task. It generates an address for the newborn

spikes from the physical neuron and translates the addresses of

the incoming spikes to the internal memory address. Address

translation depends on the architecture and mapping of the neural

network. A general-purpose processor allows for efficient mapping

of various applications, improving both area and power efficiency.

In SENECA, we used a tiny RISC-V as part of the controller

of the core. This controller (along with its instruction memory)

consumes around 10% of the total core area, and its energy

efficiency is around 10× worse than the accelerated neural

4 SENECA stands for “Scalable Energy e�cient Neuromorphic

Computer Architecture.”

TABLE 5 Asynchronousity level in various neuromorphic chips.

Architecture Asynchronousity level

ODIN (Frenkel et al., 2018) Fully synchronous

ReckOn (Frenkel and Indiveri, 2022) Fully synchronous

µBrain (Stuijt et al., 2021) Self-clocked

TrueNorth (Akopyan et al., 2015) Core-to-core

NeuronFlow (Moreira et al., 2020) Chip-to-chip

Loihi (Davies et al., 2018) Self-clocked

Loihi2 (Davis, 2021) Self-clocked

SpiNNaker (Stromatias et al., 2013) Core-to-core

SpiNNaker2 (Mayr et al., 2019) Core-to-core

Tianjic (Deng et al., 2020) Core-to-core

SENECA Core-to-core

processing element (NPE). However, if properly used, it provides

features that well-compensates the costs through:

1. Dynamic allocation and reuse of the core memory for both

weights and neuron states.

2. Calculate the destination address of neurons (axons) instead of

using axon memory.

3. The optimum use of different memory technologies.

4. Implementing a lightweight event-compression mechanism.

RISC-V performs per-spike operations (not per synapse). For

many popular neural network architectures, each spike(activation)

triggers over 100 synaptic updates (Yousefzadeh and Sifalakis,

2022). As part of the address calculation is accelerated in the Event

Generator (output spikes) and in the Loop controller (input spikes),

RISC-V only executes <1% of the total number of operations in

a target application. This results in a negligible energy overhead

which can be compensated by optimized memory access. The

selected RISC-V controller in a SENECA core is a low-power,

free and open-source Ibex controller from lowRISC5. This Ibex

controller is a small processor with a 2-stage pipeline and uses

RV32IMC (Waterman et al., 2014) instruction set (Figure 5).

3.2. Neuron processing elements (NPEs)

The SENECA core includes an array of neuron processing

elements (NPEs) that act as physical neurons in Figure 1C. Each

NPE contains a small register-based memory and executes a

category of instructions. An array of NPEs is forming a SIMD

(Single Instruction Multiple Data) type architecture (Flynn, 1972).

Instructions to be executed in NPEs are coming from the Loop

Buffer. NPEs can get their data fromData Memory (through a wide

Data Memory port), RISC-V (by directly writing into their register

file), and Loop controller (broadcasting).

The register file inside the NPEs allows for reusing data as much

as possible before reading/writing it into the Data Memory. Table 2

5 https://lowrisc.org/

Frontiers inNeuroscience 08 frontiersin.org165

https://doi.org/10.3389/fnins.2023.1187252
https://lowrisc.org/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

FIGURE 4

(Left) A core of SENECA and its internal pipeline. It contains a general-purpose controller (RISC-V), many Neuron Processing Elements (NPEs) as

physical neurons, Loop Bu�er, Event-generator, NoC, and Share Memory Prefetch Unit. The orange blocks are the register-based memories, and the

green blocks are the SRAM memories. (Right) Four interconnected clusters containing 16 SENECA cores (connected through the NoC) and one

shared memory (MRAM or HBM).

FIGURE 5

Internal structure of the Ibex controller (Schiavone et al., 2017; Chadwick, 2018).

shows that accessing the data in NPEs’ register file is about 20×

more energy efficient than accessing the Data in the Data Memory

(SRAM). For example, in an extreme case where the number of

neurons is low6, keeping the neuron states inside the NPEs and only

reading the weights from Data Memory (avoiding the neuron state

read/write) reduces the energy consumption of a synaptic operation

from 2.8 to 1.8 pJ7.

6 Less than 256 neurons in the current setup.

7 NPE registers are used to keep neuron states, weights, and event values

(if used). In addition, some registers are used to store intermediate values in

In neuromorphic applications, the optimized resolution

of neuron states and synaptic weights depends on several

variables (Khoram and Li, 2018). Therefore, to optimize the

memory footprint and access energy, it is crucial that our NPEs

support various data types and precision. Currently, NPEs are

designed to support 4, 8, and 16 bit data precisions, both for

the micro-code. Therefore, the maximum number of neuron states which

can be kept locally depends on the micro-code. If we use half of the NPE

registers for neuron states, it is possible to keep 256 neurons in the NPEs of

a SENECA core (based on Table 6, 8-NPEs, each with 64 registers).

Frontiers inNeuroscience 09 frontiersin.org166

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

linear and logarithmic quantization (floating point). They also

support shared scale factors (Köster et al., 2017; Moons et al., 2017;

Jacob et al., 2018; Kalamkar et al., 2019; Coelho et al., 2021). This

flexibility allows for the memory-efficient deployment of mixed

precision neural networks for inference and on-device adaptation.

Each NPE consumes 1.3% of the total area of the core.

3.3. Loop controller

The loop controller accelerates part of the controller’s task in

Figure 1 by orchestrating the time-multiplexing of physical neurons

and generating a Data Memory address for the Data Memory

access. Loop controller has an important role in improving the

energy efficiency of SENECA.

As mentioned, NPEs do not implement a specific neuron

model. They only execute special operations, which are common

among many neuron models. A neuron/synapse/learning model

can be built by sequential execution of a few instructions, called

microcode. The loop controller sends the microcode to the NPEs in

a “for-loop” style to process events. Therefore, the Loop controller

is optimized to execute nested loops. Executing loops using the

loop controller is 100× more energy efficient compared to the

RISC-V.

Loop buffer in Figure 4 is a small register-based memory to

store a few microcodes. Each microcode is called to process a

type of event (for example, neuron update or neuron threshold

evaluation).Micro-Code 1 shows an example of a micro-code.

The instructions are located inside the loop buffer memory.

The loop controller dispatches the instructions to NPEs (same

instructions for all NPEs) one by one and the corresponding

address to the Data Memory. The codes executed in the loop

buffer have a special structure in the form of nested loops.

This format is optimized for executing neural networks and is

flexible enough for executing the core of all neural network

algorithms.

Processing of an event requires a set of information that RISC-

V provides to the Loop controller in the form of Tasks, queued

in the Task FIFO. Since the loop buffer holds several micro-

codes, it must be clear which micro-code should be executed. Each

task also contains one or more addresses (e.g., weight address

in Micro-Code 1). Task FIFO allows RISC-V to push future

tasks for processing without waiting for the current task to be

completed. The micro-code will execute in parallel in all the NPEs.

Every instruction executes in one cycle (pipelined); therefore, the

execution of a micro-code can take several hundred cycles.

While(task exists in the Task FIFO) //process
events

//initialized by RISC-V
State_Addr = 0x100120
//Copy the weight address from the task FIFO
Weight_Addr = TASK_FIFO_ADDR
//update 256x8 neurons (8=number of NPEs)
for (i=0, i<256, i++)

for (j=0, j<32, j++)
R1 = DMEM[State_Addr*i+j] //Load 8

neuron states
R2 = DMEM[Weight_Addr*i+j] //Load 8

weights

R1 = R1 + R2 //8 Accumulation
DMEM[State_Addr*i+j] = R1 //Store the 8

states

Micro-Code 1. Example of a micro-code for a fully connected layer, with

2,048 neurons.

3.4. Event generator

As mentioned, due to axon time-multiplexing, every time

a neuron fires, we need to convert its output to a packet of

data. The event generator performs this task after receiving the

corresponding instruction from the Loop controller. This block

inspects one of the internal registers of NPEs. Depending on a

predefined condition, it generates a packet (event) containing a

unique address (source neuron ID) and an optional value (for

graded spikes). The generated events will be collected in a FIFO

and provided to RISC-V for further post-processing of events (e.g.,

adding a core address to it, compression, etc.).

3.5. Network-on-chip (NoC)

To connect the neuro-synaptic cores and deliver the spike

events, SENECA is using an NoC with a minimal footprint.

This NoC supports multicasting (source-based addressing) and

variable-length packets (needed for compression). Multicasting

and event compression features can help to reduce the total

communicated bits.

The multicasting feature is implemented using filters stored in

a register-based routing table inside each router (a similar approach

to Furber et al., 2014). Every filter entry contains three fields:

Input, Lable, and OutputPorts, which define the output port for

each input event. Figure 6 illustrates a mapped neural network and

the corresponding routing table for one of the cores. Even though

increasing the number of filters increases the routing flexibility,

a small set of filters is sufficient for many neural networks with

structured connectivity. For non-structured connectivity types (like

TABLE 6 Available synthesis parameters in a SENECA core and their

default value, used in this paper.

Parameter Default value

Number of NPEs 8

Per NPE register file size 64×16 b

Loop buffer register file size 128×23 b

Data memory size 2 Mb

Instruction memory size 256 Kb

Event generator FiFo size 128× 23 b

NoC input FiFo size 128× 32 b

NoC output FiFo size 32× 32 b

Loop buffer event address FiFo size 16× 23 b

Loop buffer event data FiFo size 16×16 b

Frontiers inNeuroscience 10 frontiersin.org167

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

FIGURE 6

Example of mapping a four-layer neural network (Color coded in cores and links) in a 16-core chip. The routing table for core-5 is shown on the left.

millions of randomly connected neurons), a less optimum routing

might be used due to limited filtering capacity.

3.6. Shared memory pre-fetch unit (SMPU)

A SENECA core may extend its local Data Memory by using

denser and larger shared memory blocks, as shown in Figure 4.

The primary motivation behind this decision is to use a different

memory technology that allows us to improve the area efficiency

of a core. Shared memory can be implemented either on-chip

using newer and denser memory technologies (e.g., STT-MRAM)

or off-chip using, for example, a 3D stacked memory technology

(Beyne et al., 2021; Sheikh et al., 2021; Bamberg et al., 2022). Shared

memory is optional and will only be used if the local data memories

are not enough to store the parameters. Also, non-volatile shared

memory allows to power off the volatile memories of a core during

low activity times to reduce leakage power. It is important to

note that, unlike conventional GPU architectures, SENECA’s shared

memories are not supposed to be used to communicate between

processing cores.

Shared Memory Pre-fetch Unit (SMPU) is an optimized DMA

that enables efficient shared memory access through a direct link to

the arbiter of the shared memory (Figure 4). Since shared memory

is far from the neuro-synaptic cores, each data transfer will cost

more energy and latency (Table 2). SMPU can hide the extra latency

by pre-fetching the required parameters for events that are waiting

in the queue.

4. Analysis and results

SENECA core can be synthesized with various parameters.

Table 6 shows the parameters and their default values used in this

paper for synthesis. This section provides the area measurements

of a SENECA core. This information can be used to estimate the

area for a scaled-up system with an arbitrary number of cores.

Since optimizing the leakage power is important for neuromorphic

processors, we decided to target FDX-22nm technology from

Global Foundries (GF-22 nm) as an ultra-low-leakage technology

node. Figure 7 shows the physical implementation of a single

SENECA core. Table 7 shows the breakdown of area consumption,

and Table 1 compares it with other neuromorphic processors.

SENECA has a high area efficiency which comes from the flexibility

in mapping, logic time-multiplexing and using hierarchical

memory architecture.

4.1. Instruction level benchmarking

As mentioned, NPEs can execute various instructions. Each

instruction execution requires the engagement of Loop Buffer,

NPEs and possibly Event Generator and Data Memory. We have

performed a detailed instruction-level energy measurement of a

SENECA core and report the average energy consumption of

some of the NPE instructions in Table 88. The pre-silicon energy

breakdown includes the power consumption of NPE plus all the

modules needed to execute the instruction in NPEs. However, since

those blocks are shared between 8 NPEs, their contribution in total

8 Extra information for Table 8: Energy of Computation: Energy

consumption of the involved unit of ALU (inside the NPE), which performs

the specific operation. Energy of each NPE: This energy number includes

the total NPE power consumption, including the Energy of Computation,

and energy consumption of the access to the register file in the NPE. Energy

of the Loop bu�er: This column reports the total energy of the loop bu�er.

Loop bu�er is shared between 8-NPEs and enables execution of “eight”

instructions. Energy of the Event Generator: This column reports the total

energy of the event generator. The event generator is shared between

8-NPEs and performs eight register inspections. If a register inspection

results in a firing, the event generator consumes extra power per firing.

Energy of Data-Mem-16b/Data-Mem-32b: This column reports the energy

consumption of data memory to access 16b/32b of data. Energy of RV +

Peripherals: Includes energy consumption of the RISC-V and its peripherals

(like the main communication bus). Energy of Inst-Mem-32b: This column

reports the energy consumption of instruction memory to read a 32b

instruction. Total energy per instruction: This column includes the energy

consumption to execute a single instruction. For neural operations in

NPE, it includes the energy of one NPE, plus all the overheads (energy of

Data-Mem access and one-eighth of loop bu�er/event-generator energy, if

involved). For RISC-V energy and NoC, it is simply the summation of all the

other columns.

Frontiers inNeuroscience 11 frontiersin.org168

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

FIGURE 7

Snapshot of the physical implementation of a SENECA core in GF-FDX22nm technology using the Cadence Innovus implementation system. Green

boxes show the banks of Data memory. The orange box is the instruction memory, and the distributed gray cells are the standard logic.

energy per instruction is divided proportionally. The results are

measured by running each instruction 8, 000 times with random

data using the Cadence JOULES (time-based mode), an RTL level

power measurement tool (within 15% of signoff power; Cadence,

2021), and with the GF-22 nm FDX technology node in the

typical corner (0.8v and 25C, no back-biasing). Reported energy

consumption includes the total (both dynamic and static) power

consumption of one SENECA core while executing the instruction.

The leakage power for the complete SENECA core is around 30µW

(0.06 pJ in a 2 ns clock cycle).

Reported energy numbers in Table 8 are measured considering

the pessimistic scenario of switching and randomness. In practical

scenarios (also shown in the next sections), the instruction power

consumption is less than the reported numbers.

As seen in Table 8, the energy consumption of the computing

unit (the involved part of the ALU inside the NPE which executes

the computation) is a small part of the total energy consumption.

To execute an instruction like ADD, it is required to access

three registers, which is as power expensive as the instruction

itself. By looking into the energy consumption of Data Memory

access, it can be seen that the location and resolution of data

can significantly change the overall power consumption of an

algorithm. Using Table 8, it is possible to estimate the energy

consumption of a synaptic operation for various neuron models,

parameter resolutions and memory mapping.

To update an Integrate-And-Fire neuron (Abrahamsen et al.,

2004) and perform one synaptic operation in its simplest form,

it is required to load the neuron state and synaptic weight from

memory, add the synaptic weight to the neuron state and store

TABLE 7 Area consumption (cell area plus wiring) of one neuro-synaptic

core and its components in the GF-22 nm technology node, using

Cadence Genus tool.

Module Cell count (k) Area(kµm2) Area (%)

RISC-V 11 10.9 2.3

SMPU 1.7 2.1 0.4

NoC 9.8 12.1 2.6

RV peripherals 2.9 2.4 0.5

NPE 5.6 6.3 1.3

Event generator 7.3 9.7 2.1

Loop buffer 8.9 10.5 2.2

Inst Mem 1× 256 kb 41.2 8.7

Data Mem 8× 256 kb 330.7 70

Total core 92.6 472.4 100

We configured this neuro-synaptic core to have 8 NPEs, 22 kb of register-based memory, 2

Mb of Data Memory, and 128 kb of instruction memory with 500 MHz clock frequency.

the updated neuron state back. This synaptic operation can be

done with the first implementation of Micro-Code 2 and consumes

12.7 pJ. If we use low precision parameters (4b weight and 8b

state) and then perform integer operation, as shown in the second

implementation of Micro-Code 2, the cost of synaptic operation

will drop to 5.6 pJ. The cost of synaptic operation can drop even

further with “spike-grouping,” where we reuse the loaded neuron

state by processing a group of spikes together. For example, in the

Frontiers inNeuroscience 12 frontiersin.org169

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

TABLE 8 Energy consumption breakdown for various instructions executes in NPEs.

Instruction Description Energy of Energy of Energy of Total Energy

computation each NPE loop bu�er per instruction

ADD/SUB/MUL FP16 Arithmetic ops. 0.5 1.3 0.9 1.4

2xINT8b Arithmetic ops. 0.3 1.1 0.9 1.2

GTH/MAX/MIN FP16 Compare ops. 0.3 1.1 0.9 1.2

EQL/ABS 0.2 1.0 0.9 1.1

AND/ORR 16b Bit-wise ops. 0.2 1.0 0.9 1.1

SHL/SHR 0.3 1.1 0.9 1.2

I2F Data type cnv. 0.3 1.0 0.9 1.1

RND 0.6 1.3 0.9 1.4

Instruction Description Energy of Energy of Energy of Total energy

Data-Mem-16b each NPE loop bu�er per instruction

MLD 16b Data Mem load 2.9 0.6 1.6 3.7

MST 16b Data Mem store 3.5 0.2 1.6 3.9

Instruction Description Energy of Energy of Energy of Total energy

event generator each NPE loop bu�er per instruction

EVC Event capture 0.6 0.4 0.5 0.5

+ per generated event +1.1 +0 +0 +1.1

Instruction Description Energy of Energy of Energy of Total Energy

RV+Peripheries Inst-Mem-32b Data-Mem-32b per instruction

RISC-V Ops Averaged per instruction 5.9 5.7 0 11.6

+ Data Mem access +10 +10

NOC Per 32b event transmission – – – 2

The energy of the computation is part of the NPE’s energy, consumed by the involved compute logic inside the NPE. All the numbers are in pJ.

third implementation of Micro-Code 2, we load each neuron state

once and update it with a group of four spikes before storing it

back in the memory, resulting in 2.8 pJ per synaptic operation.

Spike-grouping implementation assumes that several neurons in

the previous layer fire simultaneously, which is common.

First implementation (1 SOP)
R1 = DMEM[State_Addr*i+j] //3.7pJ
R2 = DMEM[Weight_Addr*i+j] //3.7pJ
R1 = R1 + R2 //1.4pJ
DMEM[State_Addr+i] = R1 //3.9pJ
//Total = 12.7pJ

Second implementation, Low Precision (4 SOPs)
R1 = DMEM[State_Addr] //2*states 3.7pJ
R2 = DMEM[State_Addr+1] //2*states 3.7pJ
R3 = DMEM[Weight_Addr] //4*weights 3.7pJ
R1 = R1 + R3 //2*Int_ADD 1.2pJ
R3 = R3>>8 //Shift 1.2pJ
R2 = R2 + R3 //2*Int_ADD 1.2pJ
DMEM[State_Addr] = R1 //2*states 3.9pJ
DMEM[State_Addr+1] = R2 //2*states 3.9pJ
//Total = 22.5pJ (5.6pJ per SOP)

Third implementation, Low Precision +
spike-grouping (16 SOPs)

R1 = DMEM[State_Addr] //2*states 3.7pJ
R2 = DMEM[State_Addr+1] //2*states 3.7pJ
for(i=0; i<4, i++)

R3 = DMEM[Weight_Addr(i)] //4*weights 3.7pJ

R1 = R1 + R3 //2*Int_ADD 1.2pJ
R3 = R3>>8 //Shift 1.2pJ
R2 = R2 + R3 //2*Int_ADD 1.2pJ

DMEM[State_Addr] = R1 //2*states 3.9pJ
DMEM[State_Addr+1] = R2 //2*states 3.9pJ
//Total = 15.2pJ+4*7.3 (2.8pJ per SOP)

Micro-Code 2. Integrate-and-fire neuron, instruction level

benchmarking.

4.2. Algorithms level benchmarking

Instruction level benchmarking can provide a fast estimation of

the energy cost of an application composed of many instructions.

However, it cannot accurately predict the overhead costs and

the timings in more complicated scenarios. To perform a more

accurate benchmarking, we implemented a few examples of the

most common neural network layers and learning algorithms to

measure their energy and execution times.

4.2.1. Event-driven fully-connected processing
Fully-connected computations on all-to-all connections

between input neurons and output neurons form the basis of many

neural network architectures, including multilayer perceptron

Frontiers inNeuroscience 13 frontiersin.org170

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

(MLP), recurrent neural networks (RNN), convolutional

neural networks (CNN), and more recently, transformers,

and MLP-Mixers (LeCun et al., 2015; Vaswani et al., 2017;

Tolstikhin et al., 2021). To reduce the computational cost,

existing algorithms utilize input sparsity with binary spikes

from SNNs (Zambrano et al., 2019) and graded spikes from

DNNs (Yousefzadeh et al., 2019; Kurtz et al., 2020). In this

section, we implement the event-driven processing of a fully-

connected layer in SENECA and benchmark its performance

with binary and graded spikes, low-precision parameters, and

spike-grouping.

Figure 8 illustrates the event-driven processing in SENECA

that can exploit the sparsity in the inputs for fully-connected

computation. Each incoming input spike is processed in order

by adding the corresponding synaptic weight to all post-synaptic

neurons. For graded spikes, the graded value is multiplied by

the synaptic weight before adding to the neuron state. For spike-

grouping, multiple input spikes are integrated into the neuron state

in the same iteration, reducing the neuron state memory access.

Generally, inference of a neural network layer in SENECA

consists of three phases: preprocessing, integration, and firing (see

Figure 9). In the preprocessing phase, RISC-V preprocesses the

input spikes by finding the local memory addresses of the weights

and the output neuron states based on the input spikes’ source

address. The loop buffer starts executing the neural integration

phase as soon as RISC-V finishes pre-processing the first spike.

After processing all spikes and at the end of the time-step, the

firing phase will be first executed inside the NPEs, which results

in generated events inside the event generator. RISC-V then reads

the generated event, computes, and attaches the extra information

through post-processing before sending out a compressed spike

packet. The RISC-V preprocessing time depends on the number of

incoming spikes, while the RISC-V post-processing time depends

on the number of generated events. The operation time of NPEs

depends on the number of spikes and the number of neurons

in the layer.

Table 9 shows the time/energy measurements of the several

implementations/mappings of the fully connected layer. In all the

experiments, 16 input spikes are processed, and 16 output spikes are

generated. The fully connected layer contains 4, 000 neurons. In the

“Graded Spike” experiment [Baseline], the spike value, weights and

neuron states are 16b. The second experiment shows 6.1% energy

reduction when using binary spikes instead of graded (floating

point) spikes. In the “spike-grouping” experiment, we process

four graded spikes together, as explained in Micro-Code 2, which

results in 47.0% energy reduction over the baseline. The fourth

experiment combines binary spikes andweight quantization. In this

experiment, we use binary spike, 4b weights and 8b neuron states,

allowing us to use the integer ADD operations. Using quantization

and binary spikes results in a 52.7% energy reduction over the

baseline. Bymixing binary spike, quantization, and spike-grouping,

we reduce the energy consumption of baseline implementations

by 80.7%.

Using binary spikes reduces the number of computations

(skipping the spike-weight multiplication). On the other hand,

spike grouping reduces the amount of memory access by reusing

the neuron states in the NPEs’ register file. As seen in Table 9,

FIGURE 8

Processing a fully connected layer in an event-driven model.

Processing each event requires reading all the synaptic weights

from Data Memory, Reading neurons’ state (membrane), updating

them and writing them back. Since the core has eight NPEs, only

eight neurons will be updated in each internal loop iteration.

Spike-grouping (right) reduces the memory access (read/write) for

the neuron states by processing several spikes simultaneously.

memory access optimization has a more significant effect on

energy and processing time. Weight quantization reduces both

computational cost and memory access. However, neural networks

lose accuracy when quantized. Since it is possible to trade off the

number of parameters, sparsity, and accuracy of a neural network,

it is not known in priory if a quantized network is the most

hardware efficient one (Kim et al., 2022). SENECA architecture

provides enough mapping flexibility for neural architecture search

(NAS) approaches to co-optimize algorithm accuracy and hardware

performances (Benmeziane et al., 2021; Chitty-Venkata and

Somani, 2022).

4.2.2. Event-driven convolutional neural layer
processing

Spiking convolutional neural networks have been

widely used in neuromorphic computing for event-based

processing (Yousefzadeh et al., 2017b; Kheradpisheh et al., 2018;

Negri et al., 2018; Patino-Saucedo et al., 2020; Lv et al., 2023). The

convolutional neural layer consists of a sequence of fully-connected

operations on overlapping local regions of the input space using

shared weights. Efficient event-driven convolutional processing

requires weight reuse for memory efficiency and sparse input spikes

for computational efficiency (Yousefzadeh et al., 2015). Compared

with the fully-connected processing presented in Section 4.2.1,

the event-driven convolutional operation requires a more

complex pre-processing and post-processing. In this section, we

implement the event-driven processing of a convolutional neural

layer in SENECA and benchmark the hardware performance of

the processing.

Event-driven convolutional processing directly integrates the

input spike to post-synaptic neurons in the spike’s projection field

without waiting for all spikes to arrive. Figure 10 illustrates the

Frontiers inNeuroscience 14 frontiersin.org171

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

FIGURE 9

Total power consumption of a SENECA core in time when processing 16 incoming spikes in a fully connected layer and generating (fire) 16 output

spikes.

TABLE 9 Experimental results for fully connected layer.

Time RISC-V NPEs Dmem Total core Energy per

Experiment (µS) energy (nJ) energy (nJ) energy (nJ) energy (nJ) SOp (pJ)

[Baseline]

Graded spikes 228 11.7 423.3 434.0 908.8 14.2

Binary spikes 179.9 8.4 288.7 525.8 853.1 13.3

Spike-grouping 121.8 13.4 291.8 155.0 481.9 7.5

Binary Spike

+Quantization 109.2 10.7 143.5 254.8 429.5 6.7

Binary Spike

+Quantization

+Spike-grouping 57.7 10.5 100.4 52.9 175.5 2.7

RISC-V energy includes RISC-V and its instruction memory. NPEs energy includes all NPEs, Loop buffer, and Event-generator blocks. Synaptic operation (SOp) energy is calculated by dividing

the total core energy by 64 k (4,000 neurons, each processing 16 spikes).

event-driven convolutional neural layer processing in SENECA,

in which a single incoming spike is integrated into the post-

synaptic layer with 2D convolutional connectivity. In this case,

each spike carries information about the coordination of the

source neuron and its channel number from the previous layer.

Based on these coordinates, RISC-V calculates the projection field’s

start address and the corresponding shared weights’ address to

support NPE processing. As a result, the RISC-V operations in

the convolutional layers are slightly more complex than the fully

connected layers.

Figure 11 and Table 10 show the energy measurements of

the convolutional layer implementation. In the experiment, we

measured a convolutional layer with 128 channels processing 16

input spikes from the previous layer. This experiment uses BF16

values for input spikes, weights, and neuron states. By using the

3 × 3 kernel sizes, each input spike updates a projection field of

3× 3× 128 neurons.

The incoming 16 spikes are from the same (X, Y) location

but various channels. This is very common in event-driven

convolutional processing since all the neurons in different channels

in an (X, Y) location update and fire simultaneously. We exploit

this feature with the following techniques to further reduce the cost

of communication and pre-processing:

• Creating a compressed packet of spikes by sending the source

(X, Y) address of all the spikes only once in the header,

followed by the (Channel, Value) of each spike.

• Processing the (X, Y) location in the RISC-V only once to find

the neuron states in the projection field.

The energy measurements did not include the firing phase

of the neurons. The event-driven convolutional processing in

SENECA can support depth-first CNN, which spontaneously fires

neurons that receive all inputs in its receptive field (Goetschalckx

et al., 2022; Lv and Xu, 2022; Symons et al., 2022). This can

avoid keeping the state of all neurons in the memory and results

in lower latency for CNN processing compared to the layer-wise

synchronized firing in existing neuromorphic hardware (Hwu et al.,

Frontiers inNeuroscience 15 frontiersin.org172

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

FIGURE 10

Processing a spike in a convolutional layer. The neurons in the

projection field will be updated after receiving the input spike shown

in this figure.

2017; Massa et al., 2020). Although this is out of the scope of the

paper, the flexibility of the RISC-V controller makes it possible to

have efficient depth-first spike generation in the future.

4.2.3. Recurrent on-device learning with e-prop
Recurrent spiking neural networks (RSNN) consist of recurrent

connections and spiking neurons. With sparse recurrent spikes on

top of stateful neurons, RSNN learns temporal information from

sequence data better than vanilla SNN (Yin et al., 2021; Kumar

et al., 2022). Training of RSNN using backpropagation-through-

time (BPTT) requires unrolling the network on the time dimension

and performing temporal backpropagation (Bellec et al., 2018; Wu

et al., 2018), which is memory and computation intensive. To make

RSNN learning suitable for edge applications, alternative online-

learning algorithms have been proposed to compute gradients

without temporal unrolling and backpropagation (Bellec et al.,

2020; Tang et al., 2021; Bohnstingl et al., 2022). The e-prop

algorithm has demonstrated state-of-the-art online recurrent

learning performance (Bellec et al., 2020; Traub et al., 2022). As

the core component of e-prop, the eligibility trace computes the

local gradients of synaptic weights in real-time during forward

propagation. In this section, we implement the eligibility trace

computation of e-prop in SENECA and benchmark the algorithm’s

performance for RSNN learning.

The e-prop eligibility trace eij computes the local gradient
dzj
dWij

of the synaptic weight Wij with respect to the spike output zj of

the post-synaptic layer. By employing the past-facing perspective

of recurrent learning, e-prop approximates the local gradient using

a Hebbian-like learning rule combining pre and post-synaptic

information. When using RSNN with leaky-integrate-and-fire

(LIF) neurons, the eligibility trace is computed as follows,

trace{zin,i}[k] = trace{zin,i}[k− 1]+ β · zin,i[k] (1)

eij[k] = trace{zin,i}[k] · h(vj[k]) (2)

where trace is the input trace of pre-synaptic spikes zin,i, β is

the leak of the LIF neuron model, vj is the neural state, h is the

surrogate gradient function that estimates the non-differentiable

spiking function, and k is the timestep.

We implemented the e-prop eligibility trace computation with

an RSNN layer in SENECA. The RSNN layer implementation

uses the same synaptic integration phase as the fully-connected

layer presented in Section 4.2.1 using graded spikes. Recurrent

spikes from the previous timestep are buffered and then

processed in the same way as the input spikes. Additional

pre and post-synaptic information needs to be prepared to

compute the eligibility trace, including the input trace and the

output surrogate gradient. For memory efficiency, we compute

the input trace separately for each input dimension instead

of repeating the computation for each synaptic weight. The

surrogate gradient computation is fused into the firing phase to

avoid additional memory access. Here, we used a rectangular

function introduced in Wu et al. (2018) as the surrogate

gradient function. The eligibility trace matrix is the outer product

of the input trace vector and the surrogate gradient vector.

To compute this outer product, we feed the input trace as

events to the NPEs and parallelize the computation on the

output dimension.

Figure 12 and Table 11 show the energy measurements of the

eligibility trace computation with an RSNN layer in SENECA.

We constructed an RSNN layer with 32 input neurons and 128

output neurons. Since the RSNN has fully connected recurrent

connections, the input dimension to the output neuron is

160. The memory overhead of e-prop consists of the input

traces (160 × 16b), post-synaptic surrogate gradients (128 ×

16b), and the eligibility traces (160 × 128 × 16b), which

roughly doubles the memory requirement of the inference-

only RSNN layer. The RSNN layer processes 16 input events

and eight recurrent events, and generates 16 output events. As

shown in Figure 12, the computation has four phases: RSNN

forward path, RSNN firing, input trace update, and eligibility

trace update. Table 10 shows the detailed times and energy

consumption of each phase. Compared to the fully-connected

baseline in Table 8, the e-prop algorithm introduces around 30%

overhead on each synaptic operation in the RSNN forward

computation (14.1 vs. 18.3 pJ per SOp). This overhead mainly

comes from the input spike buffering on RISC-V required for

the input trace computation. Due to the dense vector outer

product iterating every synaptic weight, the eligibility trace

matrix update is the most time and energy-costly phase in our

implementation. The cost of this phase can be reduced by exploiting

the sparsity in the vectors using the event-driven processing

of SENECA.

Even though the deployed algorithm can be further optimized

for SENECA (for example, by quantization, sparsification, and

spike grouping), it demonstrates the capability of SENECA to

execute such a complex pipeline efficiently. Due to the algorithm’s

popularity, e-prop and its close variants have been benchmarked

on several other neuromorphic processors (Tang et al., 2021;

Frenkel and Indiveri, 2022; Perrett et al., 2022; Rostami et al.,

2022). Those implementations are either forced to be (1) less

efficient due to hardware-algorithm mismatch (Tang et al., 2021;

Perrett et al., 2022; Rostami et al., 2022) or (2) hard-wired only to

execute a limited version of this algorithm (Frenkel and Indiveri,

2022) which cannot adapt to deploy the new and more efficient

online learning algorithms (Yin et al., 2021; Bohnstingl et al.,

2022).

Frontiers inNeuroscience 16 frontiersin.org173

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

FIGURE 11

Total power consumption of a SENECA core in time when processing 16 spikes in a convolutional layer.

TABLE 10 Experimental results for convolutional layer.

Time RISC-V NPEs Dmem Total core Energy per
(µS) energy (nJ) energy (nJ) energy (nJ) energy (nJ) SOp (pJ)

29.6 12.1 75.4 126.6 221.9 12.0

RISC-V energy includes RISC-V and its instruction memory. NPEs energy includes all NPEs, Loop buffer, and Event-generator blocks. Synaptic operation (SOp) energy is calculated by dividing

the total core energy by 18.4 k (128× 3× 3 neurons, integrating 16 spikes). In this experiment, the firing of neurons is not included.

FIGURE 12

Total power consumption of a SENECA core in time when executing the RSNN layer equipped with the e-prop online learning.

TABLE 11 Experimental results for e-prop with RSNN.

Time RISC-V NPEs Dmem Total core Normalized

Algorithm phase (µS) energy (nJ) energy (nJ) energy (nJ) energy (nJ) energy (pJ)

Forward path 10.5 13.4 18.8 20.7 56.2 18.3/SOp

Firing 0.9 1.3 2.0 0.8 4.5 35.0/Output

Input trace 1.1 2.3 0.9 1.1 4.7 29.3/Input

Eligibility trace 68.2 21.8 117.7 127.8 289.7 14.1/Weight

RISC-V energy includes RISC-V and its instruction memory. NPEs energy includes all NPEs, Loop buffer, and Event-generator blocks.

5. Conclusion

In this paper, we introduced the SENECA neuromorphic

architecture, a flexible and scalable design that tackles

the challenges in neuromorphic engineering. We justified

SENECA’s design choices by discussing the main trace-

offs in the neuromorphic processor design and compared

the proposed architecture with existing designs from these

Frontiers inNeuroscience 17 frontiersin.org174

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

perspectives. To demonstrate the efficiency of SENECA,

we provided detailed instruction level measurements

and algorithm level benchmarking for the few most

common algorithms.

The algorithm-level benchmarking shows that the flexibility

of SENECA allows us to efficiently map various algorithms

without sacrificing energy efficiency. Furthermore, our results

show that flexibility increases optimization space and results

in more optimized algorithm implementation (e.g., optimized

fully-connected processing). The flexibility gives SENECA the

potential to outperform a large group of neuromorphic processors

when a hybrid of neural network algorithms with on-device

learning is required to perform the task (e.g., sensory fusion in

automotive applications). This aligns with the trend in the new

generation of more flexible neuromorphic architecture compared

to the first generations of the same processors to increase the

competitiveness of the design in EdgeAI (Mayr et al., 2019; Davis,

2021).

SENECA, like any other neuromorphic chip, is a memory-

dominant processor. Memory consumes most of the area and

power consumption of the processor. In Table 9, we have shown

the performance improvement when saving on the memory

access is more significant than saving on the computation.

SENECA allows using flexible mapping of neural networks,

resulting in high memory efficiency. It also supports a more

advanced memory hierarchy, allowing for better scalability

and data reuse (For example, spike-grouping in Table 9). For

future work, we will look into optimizing memory area and

power consumption using new memory technologies and 3D

integration. We are looking into competitive Non-Volatile

Memories (NVM) with high density (e.g., STT-MRAM) to be

used as the on-chip shared memory. NVMs can be several

times denser than SRAM when deployed in larger blocks.

Having a large shared memory allows us to store multiple

specialized neural network models and switch between them in

different scenarios. Integrating shared memory with advanced 3D

technology allows for reducing the distance between the shared

memory and the cores, which reduces power consumption and

latency.

Our benchmarking results show that computation in RISC-

V is significantly more expensive than in the accelerators

(like loop buffer and NPEs). Therefore, we accelerate the

most common operations shared by many applications.

SENECA provides a test bed to measure various accelerators’

performance improvement and area overhead. This gives us the

opportunity to constantly evaluate SENECA’s performance for

new neural network algorithms and look for opportunities

to add more accelerated operations to the architecture

in the future. In conclusion, the SENECA architecture

paves the way for future efficient neuromorphic designs in

balancing different trade-offs in neuromorphic engineering to

achieve high performance and versatility in neural network

applications. The SENECA platform and the tools used

in this project are available for academic research upon

request.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

Hardware design: G-JS, AY, PD, and ST. Algorithm and

software design: MS, GT, KV, YX, and KS. Writing the manuscript:

MK, MS, GT, YX, AY, G-JS, ST, KV, and PD. PnR area result of

the SENECA core: RB. All authors contributed to the article and

approved the submitted version.

Funding

This work was partially funded by research and innovation

projects ANDANTE (ECSEL JU under grant agreement No.

876925), DAIS (KDT JU under grant agreement No. 101007273),

and MemScale (Horizon EU under grant agreement 871371). The

JU receives support from the European Union’s Horizon 2020

research and innovation programme and Sweden, Spain, Portugal,

Belgium, Germany, Slovenia, Czech Republic, Netherlands,

Denmark, Norway, and Turkey.

Conflict of interest

All authors were employed by Imec.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Abrahamsen, J. P., Hafliger, P., and Lande, T. S. (2004). “A time domain
winner-take-all network of integrate-and-fire neurons,” in Proceedings of 2004
IEEE International Symposium on Circuits and Systems, Vol. 5 (Vancouver, BC).
doi: 10.1109/ISCAS.2004.1329537

Ahmadi-Farsani, J., Ricci, S., Hashemkhani, S., Ielmini, D., Linares-Barranco,
B., and Serrano-Gotarredona, T. (2022). A cmos-memristor hybrid system for
implementing stochastic binary spike timing-dependent plasticity. Philos. Trans. R. Soc.
A 380:20210018. doi: 10.1098/rsta.2021.0018

Frontiers inNeuroscience 18 frontiersin.org175

https://doi.org/10.3389/fnins.2023.1187252
https://doi.org/10.1109/ISCAS.2004.1329537
https://doi.org/10.1098/rsta.2021.0018
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J.,
Merolla, P., et al. (2015). Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.
2474396

Altan, A., Aslan, Ö., and Hacıoğlu, R. (2018). “Real-time control based on NARX
neural network of hexarotor UAV with load transporting system for path tracking,” in
2018 6th International Conference on Control Engineering & Information Technology
(CEIT) (Istanbul), 1–6. doi: 10.1109/CEIT.2018.8751829

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al. (2017).
“A low power, fully event-based gesture recognition system,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (Honolulu, HI), 7243–7252.
doi: 10.1109/CVPR.2017.781

Arthur, J. V., Merolla, P. A., Akopyan, F., Alvarez, R., Cassidy, A., Chandra, S.,
et al. (2012). “Building block of a programmable neuromorphic substrate: a digital
neurosynaptic core,” in the 2012 International Joint Conference on Neural Networks
(IJCNN) (Brisbane, QLD), 1–8. doi: 10.1109/IJCNN.2012.6252637

Balaji, A., Wu, Y., Das, A., Catthoor, F., and Schaafsma, S. (2019). “Exploration
of segmented bus as scalable global interconnect for neuromorphic computing,” in
Proceedings of the 2019 on Great Lakes Symposium on VLSI (Tysons Corner, VA),
495–499. doi: 10.1145/3299874.3319491

Bamberg, L., Joseph, J. M., García-Ortiz, A., and Pionteck, T. (2022). “Interconnect
architectures for 3d technologies,” in 3D Interconnect Architectures for Heterogeneous
Technologies (Springer), 27–47. doi: 10.1007/978-3-030-98229-4_2

Basu, A., Deng, L., Frenkel, C., and Zhang, X. (2022). “Spiking
neural network integrated circuits: a review of trends and future
directions,” in 2022 IEEE Custom Integrated Circuits Conference
(CICC) (Newport Beach, CA), 1–8. doi: 10.1109/CICC53496.2022.
9772783

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). “Long
short-termmemory and learning-to-learn in networks of spiking neurons,” inAdvances
in Neural Information Processing Systems, Vol. 31 (Montreal).

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R.,
et al. (2020). A solution to the learning dilemma for recurrent networks
of spiking neurons. Nat. Commun. 11, 1–15. doi: 10.1038/s41467-020-
17236-y

Benmeziane, H., El Maghraoui, K., Ouarnoughi, H., Niar, S., Wistuba, M., and
Wang, N. (2021). “Hardware-aware neural architecture search: survey and taxonomy,”
in IJCAI, 4322–4329. doi: 10.24963/ijcai.2021/592

Beyne, E., Milojevic, D., Van der Plas, G., and Beyer, G. (2021). “3D SOC integration,
beyond 2.5 d chiplets,” in 2021 IEEE International Electron Devices Meeting (IEDM)
(San Francisco, CA), 3–6. doi: 10.1109/IEDM19574.2021.9720614

Bohnstingl, T., Woźniak, S., Pantazi, A., and Eleftheriou, E. (2022). Online
spatio-temporal learning in deep neural networks. IEEE Trans. Neural Netw. Learn.
Syst. 1–15. doi: 10.1109/TNNLS.2022.3153985

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al.
(2020). Language models are few-shot learners. Adv. Neural Inform. Process. Syst.
33, 1877–1901. Available online at: https://papers.nips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Cadence (2021). Joules RTL power solution. Available online at: https://www.
cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-
rtl-power-solution.html

Chadwick Greg, E. A. (2018). Ibex. Available online at: https://github.com/lowRISC/
ibex

Chen, L., Xiong, X., and Liu, J. (2022). A survey of intelligent chip design
research based on spiking neural networks. IEEE Access 10, 89663–89686.
doi: 10.1109/ACCESS.2022.3200454

Chitty-Venkata, K. T., and Somani, A. K. (2022). Neural architecture search survey:
a hardware perspective. ACM Comput. Surveys 55, 1–36. doi: 10.1145/3524500

Coelho, C. N., Kuusela, A., Li, S., Zhuang, H., Ngadiuba, J., Aarrestad, T. K.,
et al. (2021). Automatic heterogeneous quantization of deep neural networks for low-
latency inference on the edge for particle detectors. Nat. Mach. Intell. 3, 675–686.
doi: 10.1038/s42256-021-00356-5

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday,
S. H., et al. (2018). Loihi: a neuromorphic manycore processor with
on-chip learning. IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.1121
30359

Davis, M. (2021). Taking neuromorphic computing to the next level with loihi 2.
Intel Technol. Brief. Available online at: https://download.intel.com/newsroom/2021/
new-technologies/neuromorphic-computing-loihi-2-brief.pdf

Demler, M. (2019). Brainchip Akida is a Fast Learner, Spiking-Neural-Network
Processor Identifies Patterns in Unlabeled Data. Microprocessor Report. Available
online at: https://d1io3yog0oux5.cloudfront.net/brainchipinc/files/BrainChip+Akida+
Is+a+Fast+Learner.pdf

Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., et al. (2020). Tianjic: a unified
and scalable chip bridging spike-based and continuous neural computation. IEEE J.
Solid State Circuits 55, 2228–2246. doi: 10.1109/JSSC.2020.2970709

Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE
Trans. Comput. 100, 948–960. doi: 10.1109/TC.1972.5009071

Frenkel, C., and Indiveri, G. (2022). “Reckon: a 28nm Sub-mm2 task-agnostic
spiking recurrent neural network processor enabling on-chip learning over second-
long timescales,” in 2022 IEEE International Solid-State Circuits Conference (ISSCC)
(San Francisco, CA), Vol. 65, 1–3. doi: 10.1109/ISSCC42614.2022.9731734

Frenkel, C., Lefebvre, M., Legat, J.-D., and Bol, D. (2018). A 0.086-mm2
12.7-pj/sop 64k-synapse 256-neuron online-learning digital spiking neuromorphic
processor in 28-nm cmos. IEEE Trans. Biomed. Circuits Syst. 13, 145–158.
doi: 10.1109/TBCAS.2018.2880425

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker project.
Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Goetschalckx, K., Wu, F., and Verhelst, M. (2022). Depfin: a 12-nm depth-first,
high-resolution CNN processor for IO-efficient inference. IEEE J. Solid-State Circuits.
58, 1425–1435. doi: 10.1109/JSSC.2022.3210591

Grigorescu, S., Trasnea, B., Cocias, T., and Macesanu, G. (2020). A survey
of deep learning techniques for autonomous driving. J. Field Robot. 37, 362–386.
doi: 10.1002/rob.21918

Hartmann, K., Thomson, E. E., Zea, I., Yun, R., Mullen, P., Canarick, J., et al.
(2016). Embedding a panoramic representation of infrared light in the adult rat
somatosensory cortex through a sensory neuroprosthesis. J. Neurosci. 36, 2406–2424.
doi: 10.1523/JNEUROSCI.3285-15.2016

Höppner, S., Yan, Y., Dixius, A., Scholze, S., Partzsch, J., Stolba, M., et al. (2021).
The spinnaker 2 processing element architecture for hybrid digital neuromorphic
computing. arXiv preprint arXiv:2103.08392.

Hwu, T., Isbell, J., Oros, N., and Krichmar, J. (2017). “A self-driving robot
using deep convolutional neural networks on neuromorphic hardware,” in 2017
International Joint Conference on Neural Networks (IJCNN) (Anchorage, AK), 635–641.
doi: 10.1109/IJCNN.2017.7965912

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., et al. (2018).
“Quantization and training of neural networks for efficient integer-arithmetic-only
inference,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (Salt Lake City, UT), 2704–2713. doi: 10.1109/CVPR.2018.00286

Kalamkar, D.,Mudigere, D.,Mellempudi, N., Das, D., Banerjee, K., Avancha, S., et al.
(2019). A study of bfloat16 for deep learning training. arXiv preprint arXiv:1905.12322.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., andMasquelier, T. (2018). STDP-
based spiking deep convolutional neural networks for object recognition.Neural Netw.
99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Khoram, S., and Li, J. (2018). “Adaptive quantization of neural networks,” in
International Conference on Learning Representations (Vancouver, BC).

Kim, M., Saad, W., Mozaffari, M., and Debbah, M. (2022). “On the tradeoff between
energy, precision, and accuracy in federated quantized neural networks,” in ICC
2022-IEEE International Conference on Communications (Seoul), 2194–2199. IEEE.
doi: 10.1109/ICC45855.2022.9838362

Köster, U., Webb, T., Wang, X., Nassar, M., Bansal, A. K., Constable, W., et al.
(2017). “Flexpoint: an adaptive numerical format for efficient training of deep neural
networks,” in Advances in Neural Information Processing Systems, Vol. 30.

Kumar, N., Tang, G., Yoo, R., and Michmizos, K. P. (2022). Decoding EEG
with spiking neural networks on neuromorphic hardware. Trans. Mach. Learn. Res.
Available online at: https://openreview.net/forum?id=ZPBJPGX3Bz

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr, J., Goin, M., et al. (2020).
“Inducing and exploiting activation sparsity for fast neural network inference,” in
Proceedings of the International Conference on Machine Learning.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

LeDoux, J. E. (1994). Emotion, memory and the brain. Sci. Am. 270, 50–57.
doi: 10.1038/scientificamerican0694-50

Lv, C., Xu, J., and Zheng, X. (2023). “Spiking convolutional neural networks for text
classification,” in The Eleventh International Conference on Learning Representations
(Kigali).

Lv, M., and Xu, E. (2022). Efficient dnn execution on intermittently-
powered iot devices with depth-first inference. IEEE Access 10, 101999–102008.
doi: 10.1109/ACCESS.2022.3203719

Massa, R., Marchisio, A., Martina, M., and Shafique, M. (2020). “An efficient
spiking neural network for recognizing gestures with a DVS camera on the Loihi
neuromorphic processor,” in 2020 International Joint Conference on Neural Networks
(IJCNN) (Glasgow, UK), 1–9. doi: 10.1109/IJCNN48605.2020.9207109

Mayr, C., Hoeppner, S., and Furber, S. (2019). Spinnaker 2: A 10 million
core processor system for brain simulation and machine learning. arXiv preprint
arXiv:1911.02385.

Frontiers inNeuroscience 19 frontiersin.org176

https://doi.org/10.3389/fnins.2023.1187252
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/CEIT.2018.8751829
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/IJCNN.2012.6252637
https://doi.org/10.1145/3299874.3319491
https://doi.org/10.1007/978-3-030-98229-4_2
https://doi.org/10.1109/CICC53496.2022.9772783
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.24963/ijcai.2021/592
https://doi.org/10.1109/IEDM19574.2021.9720614
https://doi.org/10.1109/TNNLS.2022.3153985
https://papers.nips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://papers.nips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://doi.org/10.1109/ACCESS.2022.3200454
https://doi.org/10.1145/3524500
https://doi.org/10.1038/s42256-021-00356-5
https://doi.org/10.1109/MM.2018.112130359
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://d1io3yog0oux5.cloudfront.net/brainchipinc/files/BrainChip+Akida+Is+a+Fast+Learner.pdf
https://d1io3yog0oux5.cloudfront.net/brainchipinc/files/BrainChip+Akida+Is+a+Fast+Learner.pdf
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/ISSCC42614.2022.9731734
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/JSSC.2022.3210591
https://doi.org/10.1002/rob.21918
https://doi.org/10.1523/JNEUROSCI.3285-15.2016
https://doi.org/10.1109/IJCNN.2017.7965912
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1109/ICC45855.2022.9838362
https://openreview.net/forum?id=ZPBJPGX3Bz
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/scientificamerican0694-50
https://doi.org/10.1109/ACCESS.2022.3203719
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Tang et al. 10.3389/fnins.2023.1187252

Mink, J. W., Blumenschine, R. J., and Adams, D. B. (1981). Ratio of
central nervous system to body metabolism in vertebrates: its constancy and
functional basis. Am. J. Physiol. Regul. Integr. Compar. Physiol. 241, R203–R212.
doi: 10.1152/ajpregu.1981.241.3.R203

Molendijk, M., Vadivel, K., Corradi, F., van Schaik, G.-J., Yousefzadeh, A.,
and Corporaal, H. (2022). “Benchmarking the epiphany processor as a reference
neuromorphic architecture,” in Industrial Artificial Intelligence Technologies and
Applications, 21–34.

Moons, B., Goetschalckx, K., Van Berckelaer, N., and Verhelst, M.
(2017). “Minimum energy quantized neural networks,” in 2017 51st Asilomar
Conference on Signals, Systems, and Computers (Pacific Grove, CA), 1921–1925.
doi: 10.1109/ACSSC.2017.8335699

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2017). A scalable multicore
architecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (dynaps). IEEE Trans. Biomed. Circuits Syst. 12, 106–122.
doi: 10.1109/TBCAS.2017.2759700

Moreira, O., Yousefzadeh, A., Chersi, F., Cinserin, G., Zwartenkot, R. J., Kapoor,
A., et al. (2020). “Neuronflow: a neuromorphic processor architecture for live AI
applications,” in 2020 Design, Automation Test in Europe Conference Exhibition (DATE)
(Grenoble), 840–845. doi: 10.23919/DATE48585.2020.9116352

Negri, P., Soto, M., Linares-Barranco, B., and Serrano-Gotarredona, T. (2018).
“Scene context classification with event-driven spiking deep neural networks,” in
2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS)
(Bordeaux), 569–572. doi: 10.1109/ICECS.2018.8617982

Patino-Saucedo, A., Rostro-Gonzalez, H., Serrano-Gotarredona, T., and Linares-
Barranco, B. (2020). Event-driven implementation of deep spiking convolutional
neural networks for supervised classification using the spinnaker neuromorphic
platform. Neural Netw. 121, 319–328. doi: 10.1016/j.neunet.2019.09.008

Pedram, A., Richardson, S., Horowitz, M., Galal, S., and Kvatinsky, S. (2016). Dark
memory and accelerator-rich system optimization in the dark silicon era. IEEE Des.
Test 34, 39–50. doi: 10.1109/MDAT.2016.2573586

Perrett, A., Summerton, S., Gait, A., and Rhodes, O. (2022). “Online learning in snns
with e-prop and neuromorphic hardware,” in Neuro-Inspired Computational Elements
Conference, 32–39. doi: 10.1145/3517343.3517352

Quian Quiroga, R., and Kreiman, G. (2010). Measuring sparseness in the brain:
comment on bowers (2009). Psychol. Review. 117, 291–297. doi: 10.1037/a0016917

Ravindran, R., Santora, M. J., and Jamali, M. M. (2020). Multi-object detection
and tracking, based on dnn, for autonomous vehicles: a review. IEEE Sensors J. 21,
5668–5677. doi: 10.1109/JSEN.2020.3041615

Renner, A., Sheldon, F., Zlotnik, A., Tao, L., and Sornborger, A. (2021). The
backpropagation algorithm implemented on spiking neuromorphic hardware. arXiv
preprint arXiv:2106.07030. doi: 10.21203/rs.3.rs-701752/v1

Rostami, A., Vogginger, B., Yan, Y., and Mayr, C. G. (2022). E-prop on spinnaker
2: exploring online learning in spiking RNNs on neuromorphic hardware. Front.
Neurosci. 16:6. doi: 10.3389/fnins.2022.1018006

Schemmel, J., Billaudelle, S., Dauer, P., and Weis, J. (2022). “Accelerated
analog neuromorphic computing,” in Analog Circuits for Machine Learning,
Current/Voltage/Temperature Sensors, and High-speed Communication (Springer),
83–102. doi: 10.1007/978-3-030-91741-8_6

Schiavone, P. D., Conti, F., Rossi, D., Gautschi, M., Pullini, A., Flamand, E., et al.
(2017). “Slow and steady wins the race? A comparison of ultra-low-power RISC-V
cores for internet-of-things applications,” in 2017 27th International Symposium on
Power and Timing Modeling, Optimization and Simulation (PATMOS) (Thessaloniki),
1–8. doi: 10.1109/PATMOS.2017.8106976

Shankar, V., Roelofs, R., Mania, H., Fang, A., Recht, B., and Schmidt, L. (2020).
“Evaluating machine accuracy on imagenet,” in International Conference on Machine
Learning (Vienna), 8634–8644.

Sheikh, F., Nagisetty, R., Karnik, T., and Kehlet, D. (2021). 2.5 d and 3d
heterogeneous integration: emerging applications. IEEE Solid-State Circuits Mag. 13,
77–87. doi: 10.1109/MSSC.2021.3111386

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al.
(2017). Mastering the game of go without human knowledge. Nature 550, 354–359.
doi: 10.1038/nature24270

Stansfield, T. (2022). Improving the efficiency of AI applications using in-memory
computation [White paper]. Surefcore Limited. Available online at: https://www.sure-
core.com/new-wp/wp-content/uploads/2022/10/WP4-AI-IMC-1.pdf

Stromatias, E., Galluppi, F., Patterson, C., and Furber, S. (2013). “Power
analysis of large-scale, real-time neural networks on spinnaker,” in The 2013

International Joint Conference on Neural Networks (IJCNN) (Dallas, TX), 1–8.
doi: 10.1109/IJCNN.2013.6706927

Stuijt, J., Sifalakis, M., Yousefzadeh, A., and Corradi, F. (2021). µbrain: an event-
driven and fully synthesizable architecture for spiking neural networks. Front. Neurosci.
15:538. doi: 10.3389/fnins.2021.664208

Symons, A., Mei, L., Colleman, S., Houshmand, P., Karl, S., and Verhelst, M. (2022).
Towards heterogeneous multi-core accelerators exploiting fine-grained scheduling of
layer-fused deep neural networks. arXiv preprint arXiv:2212.10612.

Tang, G., Kumar, N., Polykretis, I., and Michmizos, K. P. (2021). Biograd:
biologically plausible gradient-based learning for spiking neural networks. arXiv
preprint arXiv:2110.14092.

Teman, A., Rossi, D., Meinerzhagen, P., Benini, L., and Burg, A. (2016). Power,
area, and performance optimization of standard cell memory arrays through controlled
placement. ACM Trans. Des. Autom. Electron. Syst. 21, 1–25. doi: 10.1145/2890498

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T.,
et al. (2021). MLP-mixer: an all-MLP architecture for vision. Adv. Neural Inform.
Process. Syst. 34, 24261–24272. Available online at: https://proceedings.neurips.cc/
paper/2021/file/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Paper.pdf

Traub, M., Otte, S., Menge, T., Karlbauer, M., Thümmel, J., and Butz, M. V. (2022).
Learning what and where-unsupervised disentangling location and identity tracking.
arXiv preprint arXiv:2205.13349.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems, Vol. 30 (Long Beach, CA).

Waterman, A., Lee, Y., Patterson, D., Asanovic, K., and level Isa, V. I. U.
(2014). The RISC-v Instruction Set Manual. Vol. I: User-Level ISA, Version, 2.
doi: 10.21236/ADA605735

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12:331.
doi: 10.3389/fnins.2018.00331

Xilinx (2020). Virtex ultrascale+ hbm fpga. Available online at: https://www.xilinx.
com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html

Yin, B., Corradi, F., and Bohté, S. M. (2021). Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks. Nat. Mach. Intell. 3,
905–913. doi: 10.1038/s42256-021-00397-w

Yousefzadeh, A., Jabłoński, M., Iakymchuk, T., Linares-Barranco, A., Rosado, A.,
Plana, L. A., et al. (2017a). Onmultiple AER handshaking channels over high-speed bit-
serial bidirectional LVDS links with flow-control and clock-correction on commercial
FPGAS for scalable neuromorphic systems. IEEE Trans. Biomed. Circuits Syst. 11,
1133–1147. doi: 10.1109/TBCAS.2017.2717341

Yousefzadeh, A., Khoei, M. A., Hosseini, S., Holanda, P., Leroux, S.,
Moreira, O., et al. (2019). Asynchronous spiking neurons, the natural key to
exploit temporal sparsity. IEEE J. Emerg. Selec. Top. Circuits Syst. 9, 668–678.
doi: 10.1109/JETCAS.2019.2951121

Yousefzadeh, A., Masquelier, T., Serrano-Gotarredona, T., and Linares-Barranco,
B. (2017b). “Hardware implementation of convolutional stdp for on-line visual feature
learning,” in 2017 IEEE International Symposium on Circuits and Systems (ISCAS)
(Baltimore, MD), 1–4. doi: 10.1109/ISCAS.2017.8050870

Yousefzadeh, A., Plana, L. A., Temple, S., Serrano-Gotarredona, T., Furber, S.
B., and Linares-Barranco, B. (2016). Fast predictive handshaking in synchronous
FPGAS for fully asynchronous multisymbol chip links: application to spinnaker
2-of-7 links. IEEE Trans. Circuits Syst. II 63, 763–767. doi: 10.1109/TCSII.2016.
2531092

Yousefzadeh, A., Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). “Fast
pipeline 128× 128 pixel spiking convolution core for event-driven vision processing
in FPGAS,” in 2015 International Conference on Event-Based Control, Communication,
and Signal Processing (EBCCSP), 1–8. IEEE. doi: 10.1109/EBCCSP.2015.7300698

Yousefzadeh, A., and Sifalakis, M. (2022). “Delta activation layer
exploits temporal sparsity for efficient embedded video processing,” in 2022
International Joint Conference on Neural Networks (IJCNN) (Padua), 1–10.
doi: 10.1109/IJCNN55064.2022.9892578

Yousefzadeh, A., Van Schaik, G.-J., Tahghighi, M., Detterer, P., Traferro,
S., Hijdra, M., et al. (2022). “Seneca: scalable energy-efficient neuromorphic
computer architecture,” in 2022 IEEE 4th International Conference on
Artificial Intelligence Circuits and Systems (AICAS) (Incheon), 371–374.
doi: 10.1109/AICAS54282.2022.9870025

Zambrano, D., Nusselder, R., Scholte, H. S., and Bohté, S. M. (2019).
Sparse computation in adaptive spiking neural networks. Front. Neurosci. 12:987.
doi: 10.3389/fnins.2018.00987

Frontiers inNeuroscience 20 frontiersin.org177

https://doi.org/10.3389/fnins.2023.1187252
https://doi.org/10.1152/ajpregu.1981.241.3.R203
https://doi.org/10.1109/ACSSC.2017.8335699
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.23919/DATE48585.2020.9116352
https://doi.org/10.1109/ICECS.2018.8617982
https://doi.org/10.1016/j.neunet.2019.09.008
https://doi.org/10.1109/MDAT.2016.2573586
https://doi.org/10.1145/3517343.3517352
https://doi.org/10.1037/a0016917
https://doi.org/10.1109/JSEN.2020.3041615
https://doi.org/10.21203/rs.3.rs-701752/v1
https://doi.org/10.3389/fnins.2022.1018006
https://doi.org/10.1007/978-3-030-91741-8_6
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/MSSC.2021.3111386
https://doi.org/10.1038/nature24270
https://www.sure-core.com/new-wp/wp-content/uploads/2022/10/WP4-AI-IMC-1.pdf
https://www.sure-core.com/new-wp/wp-content/uploads/2022/10/WP4-AI-IMC-1.pdf
https://doi.org/10.1109/IJCNN.2013.6706927
https://doi.org/10.3389/fnins.2021.664208
https://doi.org/10.1145/2890498
https://proceedings.neurips.cc/paper/2021/file/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Paper.pdf
https://doi.org/10.21236/ADA605735
https://doi.org/10.3389/fnins.2018.00331
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html
https://doi.org/10.1038/s42256-021-00397-w
https://doi.org/10.1109/TBCAS.2017.2717341
https://doi.org/10.1109/JETCAS.2019.2951121
https://doi.org/10.1109/ISCAS.2017.8050870
https://doi.org/10.1109/TCSII.2016.2531092
https://doi.org/10.1109/EBCCSP.2015.7300698
https://doi.org/10.1109/IJCNN55064.2022.9892578
https://doi.org/10.1109/AICAS54282.2022.9870025
https://doi.org/10.3389/fnins.2018.00987
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Frontiers in Neuroscience 01 frontiersin.org

Adaptive STDP-based on-chip
spike pattern detection
Ashish Gautam * and Takashi Kohno

Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

A spiking neural network (SNN) is a bottom-up tool used to describe
information processing in brain microcircuits. It is becoming a crucial
neuromorphic computational model. Spike-timing-dependent plasticity (STDP)
is an unsupervised brain-like learning rule implemented in many SNNs and
neuromorphic chips. However, a significant performance gap exists between ideal
model simulation and neuromorphic implementation. The performance of STDP
learning in neuromorphic chips deteriorates because the resolution of synaptic
efficacy in such chips is generally restricted to 6 bits or less, whereas simulations
employ the entire 64-bit floating-point precision available on digital computers.
Previously, we introduced a bio-inspired learning rule named adaptive STDP and
demonstrated via numerical simulation that adaptive STDP (using only 4-bit fixed-
point synaptic efficacy) performs similarly to STDP learning (using 64-bit floating-
point precision) in a noisy spike pattern detection model. Herein, we present the
experimental results demonstrating the performance of adaptive STDP learning.
To the best of our knowledge, this is the first study that demonstrates unsupervised
noisy spatiotemporal spike pattern detection to perform well and maintain the
simulation performance on a mixed-signal CMOS neuromorphic chip with low-
resolution synaptic efficacy. The chip was designed in Taiwan Semiconductor
Manufacturing Company (TSMC) 250  nm CMOS technology node and comprises
a soma circuit and 256 synapse circuits along with their learning circuitry.

KEYWORDS

adaptive STDP, spiking neural networks, 4-bit synapse, mixed-signal neuromorphic chip,
spike pattern detection, unsupervised learning, temporal coding, synapse resolution

1. Introduction

The human brain is designated as the most complex thing in the known universe
(Herculano-Houzel, 2011). At the microcircuit level, neuronal cells are morphologically
arranged in layers with various (mostly unknown) connectivity motifs. However, information
processing mechanisms at this level are still not completely understood, and exploring them in
known motifs is crucial for developing insights into many aspects, such as the biological
mechanisms of learning and the emergence of intelligence.

One of the engineering approaches to understanding the microcircuit of the brain is
“analysis by synthesis.” In this bottom-up approach, brain microcircuit models are physically
implemented using electronic circuits. Mixed-signal neuromorphic hardware, which has
recently gained popularity in “neuromorphic computing,” is another effective tool for
understanding the microcircuit (Kohno et al., 2014; Mayr, 2019; Neckar et al., 2019; Pehle et al.,
2022). Mixed-signal implementations are more realistic than computer simulations or purely
digital implementations. Owing to the thermal noise in silicon, analog neuron circuits inherently
generate stochastic spikes (Kohno et al., 2014), similar to neuronal cells, where noise from ion
channels and intrinsic neurotransmitter release results in stochastic spiking. Such stochastic

OPEN ACCESS

EDITED BY

Anup Das,
Drexel University, United States

REVIEWED BY

Keiji Miura,
Kwansei Gakuin University, Japan
Shuangming Yang,
Tianjin University, China

*CORRESPONDENCE

Ashish Gautam
 asgautam@iis.u-tokyo.ac.jp

RECEIVED 11 April 2023
ACCEPTED 15 June 2023
PUBLISHED 13 July 2023

CITATION

Gautam A and Kohno T (2023) Adaptive STDP-
based on-chip spike pattern detection.
Front. Neurosci. 17:1203956.
doi: 10.3389/fnins.2023.1203956

COPYRIGHT

© 2023 Gautam and Kohno. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

TYPE Original Research
PUBLISHED 13 July 2023
DOI 10.3389/fnins.2023.1203956

178

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1203956&domain=pdf&date_stamp=2023-07-13
https://www.frontiersin.org/articles/10.3389/fnins.2023.1203956/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1203956/full
mailto:asgautam@iis.u-tokyo.ac.jp
https://doi.org/10.3389/fnins.2023.1203956
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1203956

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 02 frontiersin.org

spiking is not observed in digital neuron implementations or
computer simulations, unless additional noise is incorporated. On the
other hand, in purely digital neuromorphic implementation (Davies
et al., 2018; Frenkel et al., 2019; Mayr, 2019; Stuijt et al., 2021; Yang
et al., 2022), relatively larger scale networks can be implemented as the
circuit size can be scaled down with technology node. Additionally,
they also have much faster design and testing cycle compared to
mixed-signal chips. In this study, we focus on mixed-signal
implementation. In addition to energy efficiency and biological
plausibility, an extra advantage of this approach is that it can
potentially serve as a fundamental technology for utilising information
processing in brain microcircuits, either in biomedical applications or
in the development of close-to-brain power-efficient artificial
intelligence (AI). Regardless of the current limitation in the scalability
of mixed-signal implementation, these peculiar advantages make
mixed-signal neuromorphic substrates ideal platforms for
implementing neuronal networks and exploring biologically plausible
learning mechanisms in the near future.

Numerous learning rules have been developed to train SNNs
(Diehl and Cook, 2015; Lee et al., 2016; Shrestha et al., 2017; Huh and
Sejnowski, 2018; Kheradpisheh et al., 2018; Neftci et al., 2019;
Kheradpisheh and Masquelier, 2020; Sakemi et al., 2021). These rules
are either inspired by the brain’s mechanisms or are spike-based
variants of the backpropagation algorithm, utilising smoothed spike
functions or surrogate gradient techniques. This study focuses on the
circuit implementation of spike-timing-dependent plasticity (STDP),
a commonly observed spike-based learning mechanism in the brain.
It has been suggested that a single STDP-empowered neuron can
detect spatiotemporal spike patterns embedded in biologically
plausible input spike trains (Masquelier et al., 2008). Moreover, it can
detect multiple embedded spike patterns using a lateral inhibitory
configuration (Masquelier et al., 2009), which is another commonly
observed network motif in the brain (Douglas et al., 1989). The input
spike trains used in these studies were modelled using an
inhomogeneous Poisson process, which is known to capture the basic
statistical properties of spiking activity in the brain (Dayan and
Abbott, 2001). Spike trains also incorporate noise and jitter into their
spike patterns, which roughly correspond to synaptic noise. The
embedded spike patterns were solely characterised by their spike
timing (rather than spike rate); thus, approximately modelled the
temporal coding observed in various neuronal pathways (Thorpe
et al., 2001). Since this input model was developed based on
biologically possible prerequisites, it has the potential to be a
fundamental model for understanding information processing
principles in the lateral inhibition network. Another crucial
characteristic of the input spike train model used in Masquelier et al.
(2008, 2009) is the generality of the embedded spike patterns, making
the model agnostic for any particular type of input.

In Masquelier et al. (2008, 2009), synaptic efficacy (weight) was a
64-bit floating-point value. The performance of the spike pattern
detection depends on its resolution (high resolution provides better
performance). However, the resolution of these non-volatile efficacy
variables in a physical implementation is generally limited. In
neuromorphic chips developed for neuromorphic computing tasks
(for example, MNIST classification) or the neuroscience focused
“analysis by synthesis” framework, synaptic efficacy is generally stored
using one of three methods: utilising capacitors (Azghadi et al.,

2014a), employing digital memory (Schemmel et al., 2006; Moradi
and Indiveri, 2014; Thakur et al., 2018) or employing non-volatile
memory devices (Kuzum et al., 2013). Analog circuits with capacitor-
based efficacy storage are extremely energy efficient, but they suffer
from leakage issues, resulting in gradual memory loss over time.
Another approach is to use palimpsest synapse circuits that have two
stable states in the long term (Indiveri et al., 2006). They overcome the
leakage problem, but have a low efficacy resolution (~1.5 bits). Mixed-
signal STDP circuits store multibit synaptic efficacy in digital memory
and use a digital-to-analog converter (DAC) to convert the efficacy
into a synaptic current. However, synapse circuits with high-efficacy
resolution require large DAC circuits, limiting the number of synapses
that can be implemented on a chip. Since the area of a single-synapse
circuit doubles for every one-bit increase in resolution, it is impractical
to implement high-resolution synapses. Most chips implement
synapses with a resolution between four to six bits. The final approach
involves the use of novel non-volatile memory devices (Saxena et al.,
2017; Mulaosmanovic et al., 2020). These are still being researched
and are believed to be potential solutions for implementing high-
resolution synaptic efficacy in a small area. However, a reliable efficacy
greater than three bits has not yet been observed in these devices, and
they incur hardware implementation overheads upon maturation. For
example, ferroelectric field effect transistor (FeFET)-based synapses
require relatively high-voltage (>2.5 V) pulses to program
their efficacy.

The resolution of individual synapses in the brain remains a topic
of debate (Petersen et al., 1998; Enoki et al., 2009; Liu et al., 2017).
However, similar to neuromorphic chips, physical synapses in the
brain may also face the problem of implementing a high-resolution
synaptic efficacy.

It has been established that synaptic efficacy modifications are
affected not only by STDP and other Hebbian-based learning rules but
also by other factors, such as network oscillations (Hölscher et al.,
1997; Hyman et al., 2003) and the presence of neuromodulators
(Frémaux and Gerstner, 2015; Andersen et al., 2017). For example,
dopamine, a neurotransmitter, has been demonstrated to vary the
STDP learning window towards potentiation, regardless of the spike
order (Zhang et al., 2009). Inspired by this observation, a hardware-
friendly and biologically possible variation of the STDP rule, called
adaptive STDP, was proposed in Gautam and Kohno (2021). Using
numerical simulations of ideal models, it was shown that the adaptive
STDP rule with 4-bit synapses achieves a performance similar to that
of the ideal model (64-bit floating-point) for spike pattern detection
by a single neuron (Gautam and Kohno, 2021). In the adaptive STDP
rule, the parameter controlling the time window for long-term
depression (LTD) is increased during learning. This stabilises the
learning process by controlling the learning rate. The efficacy update
is also restricted to a single bit at any instant in time by using a
rectangular STDP learning window instead of an exponential one,
which considerably simplifies circuit implementation.

In this study, we present a circuit to implement the adaptive STDP
rule and solve the same problem on a mixed-signal neuromorphic
chip. Our results demonstrate that the on-chip performance of the
adaptive STDP rule in the presence of fabrication mismatch and
thermal noise is similar to that of the numerical simulation of the ideal
circuit model. In other words, the performance of the circuit matches
that of the ideal model. To the best of our knowledge, this is the first

179

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 03 frontiersin.org

study that demonstrates a mixed-signal neuromorphic chip that can
perform spatiotemporal pattern detection, where spike patterns are
characterised by spike timings, instead of spike rates, and learning is
purely unsupervised using STDP-based rules. The chip was designed
in the Taiwan Semiconductor Manufacturing Company (TSMC)
250-nm CMOS process and comprises only 256 synapse circuits (with
4-bit efficacy resolution) activating a biomimetic soma circuit. This
relatively large process node was selected owing to its availability and
budget constraints. The chip has a single neuron circuit, and
we restricted this study to a single neuron-single pattern case. Similar
to the STDP rule, the adaptive STDP rule is easily scaled to multiple
neurons-multiple patterns case using lateral inhibitory connections
between multiple neurons. Its simulation results are found in Gautam
and Kohno (2023).

The remainder of this paper is organised as follows. Next section
explains the models and experimental setups, followed by a
description of the overall architecture and major components of the
chip. The biomimetic neuron circuit is not described in this study, and
its details are available in Kohno and Aihara (2016) and Kohno et al.
(2017). In the Results section, the experimental results of the on-chip
spike pattern detection using a single neuron are presented. The final
section presents a discussion of the results and conclusions derived
from the study.

2. Materials and methods

2.1. Models and setups

The model is based on a previous study (Masquelier et al., 2008),
in which a noisy spatiotemporal spike pattern repeatedly present at
irregular intervals in stochastic spike trains was detected by a neuron
using STDP learning. The neuron receives spike trains via Naff
synapses, where Naff represents the number of afferents. These spike
trains were generated independently via an inhomogeneous Poisson
process. The instantaneous firing rate was varied between 0 and
90 Hz, and a minimum time of 50 ms was chosen for the spike rate
to change from 0 to 90 Hz. Each afferent spike occurred at least once
within a 50 ms duration, fixing 20 Hz as the minimum spiking
frequency. Once the stochastic spike trains (225 s long) for Naff
synapses were generated, a 50 ms long slice (the spike pattern to
be detected) was randomly chosen and copied. The original spike
train was then divided into 50-ms-long sections and constrained by
the desired spike pattern appearance rate (chosen to be 25 or 10%);
a certain number of these sections were randomly chosen and
replaced by the spike pattern to be detected. During the copy-and-
paste process, consecutive 50 ms sections were avoided. The
population-averaged firing rate of these afferents in 10-ms time -bins
was approximately the same throughout the input spike train
(approximately 54 Hz). The 50-ms sections comprising the spike
patterns also have the same population average spike rate as the rest
of the input spike train. The presence of spike patterns is
characterised by nothing other than the specific spike times of the
afferents. Subsequently, an additional 10 Hz spontaneous noise was
added to the spike trains of all the afferents to increase the difficulty
of pattern detection, and a random jitter was introduced in the exact
timing of the spike within the spike pattern. In the absence of this
additional noise and jitter, all afferents encoding the spike pattern

would fire in precisely the same manner in each pattern presentation.
The inclusion of the additional 10 Hz noise increased the population
average firing rate of the afferents (measured in 10 ms time bins) to
approximately 64 Hz. The jitter in the spike timing was modelled
using a Gaussian distribution with zero mean and a standard
deviation of 1 ms.

In Masquelier et al. (2008), the LIF neuron model was used, and
Naff was 2000, of which only half encoded the spike patterns. The
resolution of synaptic efficacy was employed using 64-bit floating
point available on digital computers, and the ideal STDP rule
biassed towards depression was used. The chip used to demonstrate
the results in this study has a qualitatively modelled biomimetic
neuron circuit, and Naff was reduced to 256 because its integrated
circuit technology node (250 nm) was too large to integrate 2048
synapse circuits in the available chip area. The adaptive STDP rule
was used, the resolution of the synapses was restricted to four bits,
and the update in synaptic efficacy at any instant was restricted to
a single bit.

On-chip experiments were conducted using four different setups.
A summary of the experimental setups is provided in Table 1, and
raster plots of the input spike trains for all four setups are shown in
Figure 1. In Setups 1 and 3, all 256 synapse circuits were activated
using stochastic spike trains comprising hidden spike patterns. The
only difference is that the input spike trains in Setup 3 have additional
10 Hz Poisson spikes and random jitters in spike timing within each
instance of the spike pattern. The jitters were modelled as a Gaussian
random variable with zero mean and a standard deviation of 1 ms. In
Setups 2 and 4, only 128 of the 256 afferents were used to encode the
repeating spike patterns, whereas the remaining 128 encoded only
Poisson spikes. In other words, only half of the total afferents encode
the spike patterns. In Table 1 and Figure 1, Naff active_ represents the
number of afferents actively encoding the pattern. In addition, similar
to Setup 3, the spike trains in Setup 4 comprised the aforementioned
additional noise and jitter. Setups 2 and 4 demonstrated applicability
in more practical cases, where the repeating spike pattern may not
be encoded by all afferents. Compared with the reference study
(Masquelier et al., 2008), the number of afferents was significantly
reduced (from 2048 to 256), which made pattern detection more
challenging. Hence, additional noise and jitter were not included in
Setups 1 and 2 to compensate for this change. The input spike trains
in all setups were 225 s long, and 50 runs were executed for each setup.
In Masquelier et al. (2008), a 225 s input spike train was repeated
twice to make it 450 s long. However, since most of the learning takes
place in the initial phase of the run, we used a 225 s long input in
this study.

TABLE 1 Summary of the experimental setups for on-chip learning with
adaptive STDP rule.

Setup 1 2 3 4

Number of

afferents (Naff)

256 256 256 256

Number of active

afferents

(Naff active_)

256 128 256 128

Additional noise

and jitter

NO NO YES YES

180

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 04 frontiersin.org

2.2. Circuit description

2.2.1. Overall architecture
The input spike trains are transmitted from the PC to the chip via

a field-programmable gate array (FPGA). An on-chip spike-address
decoder circuit receives the target address of the synapse and activates
it asynchronously. A block diagram of the chip’s circuits used for spike
pattern detection is shown in Figure 2 (green-shaded region). It has a
single neuron comprising a biomimetic soma circuit that receives
currents from 256 excitatory synapses via a bidirectional current
conveyor circuit (Chaisricharoen et al., 2010; Kohno and Aihara, 2016;

Kohno et al., 2016). The neuron circuit implements a point neuron
model, and a current conveyor circuit is required as an interface,
because if the synapse circuits are directly connected to the soma
circuit, their high parasitic capacitance and leakage current distort the
spiking dynamics of the soma circuit. The current conveyor replicates
the currents induced by the synapses into the soma, and thus
implements the single-compartment point neuron model. The soma
was primarily designed using PMOS transistors because they have a
significantly lower leakage current than their NMOS counterparts,
thereby minimising the overall static power consumption of the
circuit. Therefore, its current polarities and spiking behaviour are

FIGURE 1

Raster plot of afferents in the four setups. Embedded spike patterns are highlighted in red. Setups 1 and 3 use 256 afferents to encode the spike
patterns, whereas Setups 2 and 4 only use half of the afferents (128 out of 256). Afferents in Setups 3 and 4 have a jitter (with a standard deviation of
1 ms) in the spike timing within the patterns along with additional stochastic 10 Hz spikes. Average spiking frequency of afferents in these setups is
64 Hz. Setups 1 and 2 do not have this additional noise and jitter and have an average spiking frequency of 54 Hz. Spike patterns are temporally coded.
More specifically, the spike patterns are only characterised by the spike timing of the afferents. Spiking rate inside and outside the pattern is the same.

181

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 05 frontiersin.org

opposite to the conventional directions, and an excitatory (inhibitory)
synapse circuit induces a current out of (into) the soma circuit and
depolarises (hyperpolarizes) it. It consumes less than 6 nW of static
power and is configurable in several spiking modes, including major
neuronal cell classes (e.g., fast-spiking, low-threshold spiking, and
regular spiking). In this study, it is configured in the Class 1 mode in
Hodgkin’s classification without spike frequency adaptation (fast-
spiking), which is qualitatively equivalent to the LIF model. The spikes
(action potentials) generated by the soma circuit are approximately
2 ms wide and are converted into pulses by the spike detector circuit
(Figure 3A). Its first-stage circuit is a wide-range transconductance
circuit configured as a comparator (Figure 3C) that compares the
membrane potential of the soma circuit with a fixed voltage (Vref) and
outputs a pulse approximately 2 ms wide (similar to the width of the
spike). Subsequently, a follower differentiator circuit (Figure 3B)
reduces the pulse width to around 100 μs (Mead, 1989). This pulse
represents the postsynaptic spike and is fed back to the learning
circuitry of all synapse circuits. A multistage buffer is used at the
output owing to the high parasitic capacitance of node Vpost_in
(connected to the learning circuits of the 256 synapse circuits).

2.2.2. Synapse circuit
The fabricated chip comprises 256 synapse circuits with configurable

polarity. In this study, all synapse circuits were configured to induce
excitatory currents independent of the postsynaptic membrane
potential. A schematic of the circuit is shown in Figure 4. It has three
stages: a 4-bit DAC (M1–M10) that implements synaptic efficacy, an
integrator stage (Csyn and M11) similar to the log-domain integrator
(LDI) (Merolla and Boahen, 2004), and an output stage (M12). This
circuit is a modified version of the circuit proposed in our previous
study (Gautam and Kohno, 2020), in which the output stage comprises
a transconductance amplifier circuit instead of a single transistor, M12.

Its detailed description is found in Gautam and Kohno (2018, 2020). A
brief description of the circuit operation is provided below: Transistors
M7–M10 in the DAC stage are binary weighted, and their activation is
switched by transistors M3–M6. Their state is controlled by a learning
circuit that configures the 4-bit synaptic efficacy (nW0-nW3). The MOS
capacitor M2, along with the inverter INV0 form a charge injection
compensation module. Bias voltages sVw and sVt control the amplitude
scale and time constant of the synaptic current, respectively. The on-chip
spike-address decoder circuit transmits a pulse to a synapse upon
receiving its address. The input pulse at node nVin activates the synapse’s
DAC stage and charges node Vsyn for the duration of the input pulse.
Subsequently, Vsyn is linearly discharged by a constant current sunk by
M11 operating in the saturation region. The circuit operates in the
subthreshold regime and the linear charging and discharging profile of
Vsyn induces an exponential current through transistor M12, thus
mimicking the standard synaptic current profile. The circuit was
designed in the TSMC 250 nm technology node, with each synapse
circuit occupying an area of 4,400 μm2. The design also includes circuits
for other configurations (inhibitory and conductance-based). In this
study, synapse circuits were configured to generate excitatory synaptic
currents similar to fast AMPA synapses, (Destexhe et al., 1998) with sVw
and sVt fixed at 230 and 160 mV, respectively.

2.2.3. Learning circuitry
All the synapse circuits have a learning circuit to implement the

adaptive STDP learning rule. Similar to the STDP learning rule, the
adaptive STDP learning rule updates the synaptic efficacy based on
the spike timings of the pre- and postsynaptic neurons; however, the
modification (if any) in the synaptic efficacy is restricted to one bit
(the least significant bit). This is described by the learning function
shown in Figure 5 and is mathematically expressed as follows:

FIGURE 2

Block diagram of the spike pattern detector. The spike trains are transmitted from the PC to the spike address decoder circuit of the chip via an FPGA.
The chip comprises one neuron circuit with 256 synapse circuits. Each synapse has 4-bit efficacy resolution and a learning circuitry. The voltages VLTD,
VLTP, sVw, and sVt are applied via external voltage sources and are common to all 256 synapse/learning circuits. A current conveyor circuit is used as an
interface between the soma and synapse circuits and the bias voltage Vcc_ref (also applied via an external voltage source) sets the node voltage Vpost to
approximately the same value via the feedback action of the current conveyor circuit. All voltage nodes with open circles are connected to external
voltage sources.

182

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 06 frontiersin.org

()
() ()pre

post

1bit,if and ,
1

1bit,if and ,
j i i j

j
j i j i

t t t t t LTP
w

t t t t t LTD
 + ≤ − <∆ = − > − <

Where tpre denotes the maximum delay of the postsynaptic spike
after the presynaptic spike that leads to potentiation (LTP), tpost
denotes the maximum delay of the presynaptic spike after the

FIGURE 3

Spike detector circuit shown in Figure 2. (A) Block diagram of the circuits with sample voltage output waveforms for each block. BUFF_1x comprises
two inverters connected in series and BUFF_4x comprises four inverters with successively increasing width connected in series to drive the node
Vpost_in. (B) Differentiator circuit (C) Comparator circuit.

FIGURE 4

Schematic of excitatory synaptic circuit. Binary-weighted transistors’ dimensions: M7  =  0.3758*(w/l), M8  =  w/l, M9  =  2*(w/l) and M10  =  4*(w/l). Efficacy
bits nW0-nW3 connect to the learning circuitry.

183

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 07 frontiersin.org

postsynaptic spike that leads to depression (LTD), and all the other
variables have their general meanings. The learning parameter tpre is
kept constant during learning, and tpost is increased, as shown in
Figure 5B. A detailed description of this learning rule is presented in
Gautam and Kohno (2021). A block diagram of the learning circuit
used for implementing adaptive STDP learning is illustrated in
Figure 6A. The circuits in the block LTP and LTD are symmetric, and
calculate the time difference between pre-and postsynaptic spikes
according to (1) and potentiate or depress the synaptic efficacy. The
synaptic efficacy is stored in a 4-bit up-down counter that saturates at
its maximum (15) and minimum (0) values. A conceptual schematic
of the half-circuit controlling potentiation (LTP) of the synaptic
efficacy is shown in Figure 6B. The potentiation and depression half-
circuits are symmetric. In the latter half-circuit, the terminals
Vpre in_ and Vpost_in are interchanged. To update the synaptic
efficacy, the counter receives two successive pulses from each half-
circuit: A configuration pulse (Vconfig) and an update pulse
(Vupdate). When arriving from the LTP (LTD) half-circuit, the former
pulse configures the counter to count up (down), and the latter pulse
potentiates (depresses) the counter value. The output of the 4-bit
counter is connected to the DAC stage of the synapse circuit, i.e., to
terminals nW0- nW3 shown in Figure 4.

The potentiation half-circuit (Figure 6B) operates as follows: A
presynaptic pulse at Vpre in_ activates M1 and discharges node Vpot
which then pulls down the top terminal of the NOR gate (via the
buffer BUFF). When a postsynaptic pulse arrives soon (within tpre
ms at Vpost_in) after the presynaptic pulse, both terminals of the

NOR gate are pulled low and node Vconfig goes high for the duration
of the postsynaptic pulse (~ 100 μs wide). Consequently, transistor
M4 switches on and swaps the state of the latch (INV0 and INV1)
whilst generating a pulse (~ 100 μs wide) at the input node of the
pulse width reducer circuit. This reduces the input pulse width and
generates a pulse (~ 100 ns) at the output node Vupdate. Signals
Vconfig and Vupdate modify counter value. First, Vconfig configures
the state of the up-down counter to count up, and then, Vupdate
increases its count value. However, when the delay between the pre-
and postsynaptic pulses is greater than tpre , transistor M2 charges
node Vpot back to Vdd . Therefore, the output of the NOR gate does
not flip to a high state even when a postsynaptic pulse arrives and the
counter value remains unchanged. The drain current of M2 is set by
the bias voltage VLTP which, along with the value of the capacitor
CLTP decides tpre in the adaptive STDP rule (1). The higher the value
of VLTP , the higher the value of tpre. The inverter INV5 at the output
node (Vupdate) resets node Vpot once the counter is potentiated.
This ensures that only the most recent pair of pre- and postsynaptic
spikes is considered to update the synaptic efficacy [as per the
learning rule implemented in Masquelier et al. (2008)], instead of
considering the entire history of spikes. In the experimental setups,
VLTP was fixed at 780 mV. The initial value of VLTDwas fixed close to
that of VLTP at 783 mV and later adapted to higher values during
learning, as shown in Figure 5B. A higher VLTD implies a higher value
of tpost . The current chip did not contain adaptation circuitry, and
the adaptation of VLTD was controlled using an external
voltage source.

FIGURE 5

Adaptive STDP learning rule. (A) Rectangular STDP function (B) Adaptation of tpost while learning.

FIGURE 6

Learning circuitry. (A) Top level block diagram (B) Schematic of the LTP half-circuit controlling potentiation.

184

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 08 frontiersin.org

2.2.4. Bidirectional current conveyor circuit
A standard bidirectional current conveyor circuit (Figure 7) was

used to connect the soma and synapse circuits (Chaisricharoen et al.,
2010). Its input node, Vpost, connects to the output of 256 synapse
circuits, and its output node, Vmem, connects to the soma circuit.
Upon the activation of the synapses, a current is drawn out of node
Vpost. This current is sourced by M7, mirrored into M15, sunk by
M16, mirrored into M20, and drawn out of node Vmem via cascoded
transistor M19. The current conveyor circuit conveys the current
drawn from its input node to its output node, Vmem, and depolarises
the soma circuit. Voltage VCC ref_ (600 mV) fixes the voltage of node
Vpost to approximately the same value as its own via the feedback
generated by transistors M4, M5, M8, and M9. The voltage bias
VCC Vb_ was fixed at 630 mV. The power supply rails of the output
branch Vdd out_ and Vss out_ were set at slightly lower and higher
voltages than their ideal values of 1 and 0 V, respectively, to minimise
the thermal noise induced by the circuit into the neuronal soma
(See Discussion).

2.2.5. Spike train transfer
Stochastic spike trains with hidden spike patterns to be detected

(generated using the procedure described in Section 2.1) were used to
activate the synapse circuits. They were transmitted from a PC to a
chip in real time via a FPGA. The transmitted spike train data
comprises the addresses of the target synapse circuits (0 to 255) along
with their activation times. An on-chip spike-address decoder
asynchronously activates the synapse circuits upon receiving their
address. The FPGA was used to implement first-in-first-out (FIFO)
logic that stores the addresses of the synapse circuits and their
activation times (received from the PC). The activation times are
transmitted and stored as the relative time differences between
subsequent input spikes in the incoming spike train. The spike address
decoder circuit receives the address of the synapse circuit from the

FIFO logic in the FPGA and instantly activates it. A single-address bus
connects the FIFO output of the FPGA to the spike address decoder.
FPGA measures time (in steps of 10 μs). When the measured time
matches the activation time in the FIFO output, it loads the
corresponding address onto the address bus connecting the FIFO and
the spike address decoder. The decoder is a high-speed circuit that
activates the synapse circuit in less than 20 ns upon receiving its
address and generates a 2 ms wide pulse to activate the desired synapse
circuit. When the activation times of two or more synapse circuits
overlap, they are activated sequentially with a 10 μs delay. In a typical
run, a maximum error of 50 μs was observed owing to such overlaps.
On average, in the input spike train, the time difference between the
activation times of any two synapse circuits is in the order of 80 μs,
and the error of 50 μs (overlap in the activation time of five synapse
circuits) is an extreme case that occurs rarely. The timescale of the
soma and synapse circuits is in the order of milliseconds. Hence,
activation time errors in the order of 10 of microseconds can
be ignored.

3. Results

The on-chip experiments (for the setups listed in Table 1) were
performed in two groups. The input spike trains in the first (second)
group contain a 50 ms long spike pattern to be detected with a 25%
(10%) appearance rate. In other words, in the first group,
approximately 1,125 spike patterns were hidden in 225 s long spike
trains, and in the second group, approximately 450 spike patterns were
hidden. The second group had more stochastic spikes (90 vs. 75%)
than the first group, which made the pattern detection more
challenging. The on-chip performance of the adaptive STDP learning
rule is summarised in Table 2. The success criteria was chosen to be a
hit rate (neuron spikes within the pattern) greater than 98% and zero

FIGURE 7

Current conveyor circuit.

185

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 09 frontiersin.org

false alarms (neuron spikes outside the pattern) in the last 75 s
(one-third duration) of the run, which is similar to the criteria used
in studies (Masquelier et al., 2008; Gautam and Kohno, 2021).

3.1. Setups 1 and 3

In Setup 1 (3), success rates of 96 (88) and 90 (80) % were obtained
for spike pattern appearance rates of 25 and 10%, respectively. Both
setups used 256 afferents to encode the spike patterns. The
performance of Setup 3 is worse than that of Setup 1, owing to the
presence of additional noise and jitter. In the majority of runs that did
not meet the success criteria in Setup 3, learning occurred. However,
there were false alarms and (or) the hit rates were less than 98%. The
false alarms had low amplitudes and were visibly different from the
regular spikes within the pattern (Figure 8F). Amongst the runs that
had the highest number of false alarms (> 10), the neurons spiked
twice within the 50 ms pattern, thereby implying that too many
synapses were potentiated which likely caused numerous false alarms.
A detailed breakdown of the performance of all the setups is presented
in Table 3. The failed run column represents cases where the neuron
stopped spiking during the learning process. An example of time
evolution of the neuron dynamics in a successful run in Setup 3 with
a pattern appearance rate of 10% is shown in Figures 8A–E. The
spiking behaviour of the soma is shown in Figure 8A. A high spiking
frequency was initially observed, which decreased as learning
progressed, and the neuron became more selective to spike inputs. The
spiking behaviour of the neuron in the last second is shown in
Figure 8B. As expected, the neuron spiked only in the presence of this
pattern. The times at which the 50 ms pattern ends are superimposed
in the bottom-right corner of the figure, and the pattern durations are
marked by grey boxes. Figure 8C shows the adaptation of the VLTD
during training. Three adaptation curves corresponding to Setups 1
and 2 (orange curve), Setup 3 (blue curve), and Setup 4 (green curve)
are plotted. Figure 8D shows the bimodal distribution of the synaptic
efficacy after the completion of the run. Figure 8E shows how the time
required to spike within a pattern changes during learning. In this run,
the neuron learned to spike within approximately 30 ms. The final
figure shows an instance of double spikes within the pattern, and a
false alarm from an unsuccessful run. The false alarm profile was
markedly different (low in amplitude with non-existent refractory
action) from the spikes that occurred within the pattern.

3.2. Setups 2 and 4

In Setups 2 and 4, only half of the afferents encoded the spike
patterns (with additional noise and jitter in setup 4). These results are

not deterministic. Different results were observed for the same input
over multiple trials: some runs were successful, whereas others failed.
Specifically, when the pattern appearance rate was 10% in Setup 2 and
it was 10 and 25% in Setup 4. Two types of variations were observed:
the hit rate varied, and the neuron stopped spiking whilst learning.
The success rates (marked with *) listed in Table 2 are based on the
first run for each of the 50 input-spike trains. In Setup 2 (10% pattern
appearance rate), the neuron either stopped spiking during learning
or successfully learned to detect the pattern with a 100% hit rate in
multiple trials with the same input. In Setup 4 (25% pattern appearance
rate), significant variations were observed primarily in the hit rate. In
some trials (with the same input), hit rates greater than 98% were
achieved, whereas their values were much lower (in the range of 80 to
98%) in the others. Both types of variations were observed in Setup 4
(10% pattern appearance rate). We attribute this behaviour to the
thermal noise in the chip, as fixed-pattern noise or second-order
effects by themselves cannot give rise to this probabilistic behaviour.
Since Setups 1 and 3 employed a higher number of afferents, their
performances were immune to the effect of thermal noise. The worst
performance was obtained in Setup 4 because its spike pattern model
was the most difficult (128 active afferents with additional noise and
jitter in the spike patterns).

3.3. Ideal model vs. on-chip performance

To ensure a fair comparison, ideal model simulations were
performed using the same input spike trains across all setups. The
performance comparison is tabulated in Table 4. The performance of
on-chip pattern detection was better than that achieved in the ideal
model simulation, which is surprising since the latter is expected to
have better performance intuitively. However, most of the failures in
the ideal model simulation were due to presence of a few false alarms.
If the success criterion is slightly relaxed to allow false alarms (less
than 1%), the performance of ideal model simulation comes close to
that of the on-chip experiments. The complexity of spike pattern
model increases progressively in Setups 2, 3, and 4. Furthermore, it is
known that the performance of STDP-based rules degrades with a
reduction in number of active afferents (Gütig and Sompolinsky, 2006;
Masquelier et al., 2008). Thus, the success rate in these challenging
setups can be significantly improved by increasing Naff active_ , as
demonstrated in Gautam and Kohno (2021) where Naff active_ was
four to eight time larger.

3.4. Circuit parameters

In the experiments, only three parameters were modified across
the setups: the resting membrane potential of the soma circuit, the
initial value of synaptic efficacy, and the final value of VLTD after
adaptation. The actual values are listed in Table 5. The parameter
Irest Vin_ is connected to one of the inputs of the differential pair of a
wide-range transconductance amplifier circuit (Mead, 1989), whose
output is connected to the membrane potential of the soma circuit.
The other terminal of the differential pair is fixed at 500 mV. Parameter
Irest Vin_ controls the current sourced from the transconductance
circuit and is used to set the resting membrane potential of the soma
circuit. The spiking threshold of the soma circuit is approximately

TABLE 2 Experimental results of adaptive STDP rule.

Setup 1 2 3 4

Success rate with

25% pattern

appearance rate.

96% 80% 88% 26%*

Success rate with

10% pattern

appearance rate.

90% 64%* 80% 14%*

186

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 10 frontiersin.org

710 mV. Depending on the number of afferents encoding the spike
patterns (Naff active_), the resting potential of the soma circuit varies
across setups. The resting potential in Setups 1 and 3 (~ 870 mV) was
higher than that in Setups 2 and 4 (~ 840 mV) because the number of
active afferents (Naff active_) in the former setups was double that of
the latter. Higher Naff active_ leads to the potentiation of a higher
number of synapses. To compensate for this reduction in the number
of available synapses in Setups 2 and 4, the resting membrane potential
was reduced. Owing to the change in the resting membrane potential,
the initial synaptic efficacy is also changed across setups. The efficacy
value that caused the soma to spike in the desired frequency range of
40–200 Hz during the initial phase of the run was chosen (Gautam
and Kohno, 2021). This criterion sets the range of synaptic efficacy
values that can be selected. The third parameter, VLTD final_ , which
corresponds to the final value of VLTD after adaptation, was adapted
to different values to account for variations in the complexity of the

setups. A high value of VLTD implies a higher tpost (Figure 5B) and a
higher probability of depression of synaptic efficacies. In Setups 1 and
2, VLTD final_ value of 829 mV was used. The inputs in Setups 3 and 4
contained additional noise and jitter (making pattern detection more
challenging). Therefore, VLTD final_ was reduced to 817 and 813 mV,
respectively. For the learning circuits, VLTP was fixed at 780 mV and
the initial value of VLTD was 783 mV, which was then adapted to
higher values during learning, as shown in Figure 5B.

The rate at which VLTD is adapted plays an important role in the
learning process. In all runs, VLTD reached its maximum value in
approximately 100 s during the learning process. As the complexity of
the input spike trains increases, a slowly rising VLTD led to more stable
learning. For example, a quicker adaptation rate where VLTD reaches
its maximum value in 40 s yields similar results in Setup 1, but the
performance degrades in other setups, particularly in Setups 2 and 4
(with 10% pattern appearance rate). Delaying the maximum reaching

FIGURE 8

(A) Soma circuit’s membrane potential during the run. (B) Soma circuit’s membrane potential during the last second, it spikes within the shaded 50 ms
spike pattern. (C) The adaptation in the value of VLTD while learning (shown for all setups). (D) Bimodal distribution of synaptic efficacies after learning.
(E) Latency to spike within the 50  ms pattern. (F) An instance of failed run showing false alarm (shaded red) and double spikes within the spike pattern
(shaded grey).

187

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 11 frontiersin.org

time to more than 100 s did not result in any further improvement in
performance. The shape of the adaptation curve is not important as
long as it adapts slowly. Experiments were performed with linear,
exponential, and stepwise increase in the value of VLTD and similar
results were observed.

3.5. Spiking latency

In the experiments, the parameters VLTP and VLTD were carefully
selected. Compared to simulation-based studies (Masquelier et al., 2008;
Gautam and Kohno, 2021), a smaller number of afferents were used in
this study. This reduction affects the time at which the soma circuit
spikes within the 50 ms long pattern after learning is completed. It is
generally known that in the spike pattern detection tasks discussed in
this study, the neuron learns to spike at the beginning of the 50 ms-long
spike pattern (Song et al., 2000; Guyonneau et al., 2005). During the
learning process, the neuron first spikes at a random point within the
50 ms-long spike pattern. During learning, the STDP-based learning
rules potentiate those synapses that receive input spikes immediately
before a postsynaptic spike. Stronger synaptic inputs advance the time
of the postsynaptic spike in the next pattern presentation. This reduction
in latency to spike within the pattern continues until the neuron learns
to spike near the beginning of the pattern. When using the adaptive
STDP learning rule, VLTP (which sets tpre) and the number of afferents
(Naff) influence the time at which the soma spikes within the 50 ms-long
pattern. For any given value of VLTP , when the number of afferents is
high, there is a higher probability of STDP learning to track back

through the pattern by progressively potentiating synapses that were
activated earlier in the pattern. However, this backtracking does not
occur when the number of afferents is low (as is the case in this study).
In the case of fewer afferents, backtracking can be achieved if the value
of VLTP (tpre) is increased. With a longer tpre ,the learning rule allows
the potentiation of temporally distant synapses in terms of their
activation times. However, this also increases the probability of
potentiating synapses not associated with the pattern, thereby making
the learning process less stable and degrading overall performance.
When VLTP and the initial value of VLTD were increased to 800 and
803 mV (from 780 and 783 mV, respectively, used to obtain the results
in Table 2), the neuron learned to spike within 10 ms from the beginning
of the pattern in all successful runs. However, the overall success rate
decreased, particularly in the setups with 10% pattern appearance rate.
Hence, relatively smaller values of the learning parameters tpre and tpost
(set via VLTP and VLTD) were chosen to keep the learning process stable.
When changing VLTP, the initial value of VLTD must also be changed,
because, according to the learning rule, the initial value of tpost (set
by VLTD) must be close to tpre (set by VLTP). It is noteworthy that even
in Gautam and Kohno (2021), backtracking and spiking latencies under
10 ms were achieved in Setups 1 and 2, in which the number of afferents
was high, but not in Setup 3, in which the number of afferents was low.

3.6. Power consumption

The average power consumptions (measured from the chip) of the
soma circuit, 256 synapse circuits, and 256 learning circuits during the

TABLE 3 Performance breakdown showing number of runs for each setup.

Setups with pattern
appearance rate

100% hit
rate and 0

false alarms

100%  >  hit
rate  >  98% and
0 false alarms

>98% hit rate
and 1  <  false
alarms<40

98%  >  hit
rate  >  94%

Failed runs Total runs

1 25% 48 – 1 (1 false alarm) – 1 50

10% 44 – 6 (< 5 false alarms) – 0 50

2 25% 40 – 5 (<3 false alarms) – 5 50

10% 32 6(<3 false alarms) 12 50

3 25% 35 9 1 (<5 false alarms) 4 (0 false alarms) 1 50

10% 31 9 4 (< 30 false alarms,

and double spikes)

2 (0 false alarms) 4 50

4 25% 2 11 8 (<5 false alarms) 6 (<

40 false alarms)

6(<10 false alarms) 17 50

10% 3 4 10 (<5 false alarms) 3

(<40 false alarms)

3(<4 false alarms) 27 50

TABLE 4 Comparison of the ideal model simulation with on-chip performance.

Setups
Naff_active / Naff

Additional noise
and jitter

Success rate (25% pattern
appearance rate)

Success rate (10% pattern
appearance rate)

Ideal Model on-chip Ideal model on-chip

1 256/256 No 90% 96% 82% 90%

2 128/256 No 46% 80% 40% (64%)*

3 256/256 Yes 64% 88% 60% 80%

4 128/256 Yes 8% (26%)* 6% (14%)*

188

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 12 frontiersin.org

initial 50 s of the run (when the majority of synapse circuits were
active and not depressed) were within 6 nW, 2.4 nW, and 2.1 μW,
respectively. The power consumption measured from the learning
circuit includes the consumption of up-down counters that store
synaptic efficacies as well as additional circuitry measuring the spike
timings. The static power consumption (when the afferents were
inactive) of the 256 synaptic circuits and 256 learning circuits was
within 120 pW and 200 nW, respectively.

4. Discussion and conclusion

This study focused on the neuromorphic implementation of the
adaptive STDP rule with 4-bit synapses. The circuit implementation
is simpler than that of conventional STDP circuits with the same
resolution. Both rules require a circuit to measure the time between
the pre-and postsynaptic spikes. However, the circuit used to update
the efficacy is much simpler in the adaptive STDP rule, primarily
because a rectangular learning window was used instead of an
exponential one, and the efficacy update at any time instant was
restricted to a single bit. Thus, the update can be performed using a
simple 4-bit up-down counter circuit, thereby eliminating the need for
additional circuits, such as adders, subtractors, and analog-to-digital
converters (ADCs), which are required to implement the STDP rule.
The overhead of the additional circuit required to implement the
adaptation of VLTD (tpost) is negligible because it can be shared by all
the synapses. Without the adaptation of VLTD, even if a higher synaptic
resolution (8-bit) is used with the rectangular learning window, spike
pattern detection is not successful. In Cassidy et al. (2011), such a
learning function (tpost>tpre) with 8-bit synapses was shown to achieve
a bimodal distribution of efficacies in a balanced excitation experiment
(Song et al., 2000). With 8-bit synapses and spike pattern model used
in this study, we also observed a bimodal distribution of synaptic
efficacies after learning. However, pattern detection was not successful
because of the presence of many false alarms even after 450 s
of learning.

The performance was evaluated and compared using a biologically
possible input spike train model with embedded spike patterns. This
input model was chosen because its spike trains and embedded
patterns are built on biologically plausible prerequisites, making them
suitable for networks that explore biologically plausible computations.

The adaptive STDP rule was proposed in Gautam and Kohno
(2021), where numerical simulation results with ideal models were
shown. However, in such simulations, the various effects in analog
VLSI, such as device mismatch, parasitics, and thermal noise, cannot
be fully considered. The experimental results demonstrate that, even
in the presence of these effects, the performance of adaptive STDP

learning is either similar to or better than that obtained in the
numerical simulation (Table 4). Additionally, we also observed
unstable results in (more challenging) Setups 2 and 4, where, owing to
thermal noise, for the same input spike trains, certain runs succeeded
in detecting the patterns whilst others failed. Such unstable spiking is
known to occur in the brain but cannot be observed in ideal numerical
simulations unless additional noise is added. Surprisingly, the
performance on-chip was better than the ideal model simulation in all
setups. One probable reason for this can be attributed to thermal noise
as it might contribute to suppression of false alarms by disturbing the
postsynaptic spike’s timing. Such suppression is not possible in ideal
model simulation unless additional noise is incorporated. This
hypothesis will be validated in future works. The integrated circuit
fabricated in this study was scalable. Learning occurs in an on-chip
and completely unsupervised manner. To the best of our knowledge,
this is the first neuromorphic chip to accomplish spatiotemporal spike
pattern detection in noisy inputs using a low-bit-resolution synaptic
memory in an unsupervised regime.

The resolution of the synaptic efficacy in our synaptic circuit is
4-bit. A 4-bit DAC was used to generate a synaptic current
corresponding to the synaptic efficacy. In contemporary synapse
circuits, these DACs are designed using large transistors or current-
mirror circuits to minimise the device mismatch, which increases the
silicon area and power consumption (Wang and Liu, 2006; Moradi
and Indiveri, 2014). Instead of focusing on the accuracy of the DAC,
the DAC in our synaptic circuit was designed using relatively smaller
transistors (see the caption of Figure 4) without any mirroring circuits,
which saves significant silicon area and power. The DAC has
monotonicity (differential nonlinearity (DNL) > −1); however,
linearity is not guaranteed. Device mismatch also affects the amplitude
and time constant of synaptic currents, which are controlled by the
voltage parameters sVw and sVt , respectively. The learning parameters
tpre and tpost are controlled by the voltage parameters VLTP and VLTD
, respectively. These voltages are common to all synapses and learning
circuits. The fact that adaptive STDP learning worked well with such
a DAC demonstrates that a low-resolution (4-bit) and relatively
low-accuracy DAC is sufficient for its implementation. The effects of
DAC accuracy and device mismatch on the pattern-detection
performance should be evaluated in the future.

In this study, the adaptation curve was generated using an external
voltage source. In future, it will be integrated into the chip. A
low-power circuit that generates a smoothly increasing adaptation
curve is shown in Figure 9A. Spectre Simulator was used to plot
Figure 9B with voltages VLTD inital_ and VLTD final_ of 780 and 850 mV,
respectively.

Another important parameter is VLTD final_ . An excessively high
value causes the neuron to stop spiking (owing to the depression of
the majority of synapses), and an exceedingly small value results in
many false alarms. False alarms are not necessarily harmful in multi-
layer networks. When occurring stochastically, they can contribute as
the background population activity to maintain the membrane
potential of the neurons in the next layer close to their spiking
threshold. Thus, in addition to the features learned in the first learning
layer (spikes occurring within the pattern), the parameter VLTD final_
can be used to control the rate of stochastic spikes serving as inputs to
successive layers. This aspect should be explored in future studies.

A bidirectional current conveyor circuit was used as an interface
to transmit the synaptic current into the soma circuit. The current

TABLE 5 Parameters changed across setups.

Setups
Irest_Vin

Initial
synaptic
efficacy

VLTD_final

1 600 mV 5 829 mV

2 500 mV 4 829 mV

3 600 mV 6 817 mV

4 500 mV 4 811 mV

189

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 13 frontiersin.org

conveyor circuit induced noise in the soma circuit. The power supply
lines had extremely low ripple noise because ultralow ripple power
supplies were used. A plausible reason for this noise is the thermal
noise in the silicon and bias voltage sources. The induced noise caused
the membrane potential of the soma circuit to fluctuate randomly by
approximately 50 mV (peak-to-peak) at a resting membrane potential
of 800 mV. In addition, the amplitudes of the fluctuations increased as
the resting membrane potential approached the spiking threshold
(710 mV). To minimise this noise, voltages Vdd out_ and Vss out_ , which
are the power and ground terminals of the output branches of the
current conveyor, respectively, were fixed at 954 mV and 50 mV
(instead of their original values in the Spectre simulation of 1 V and
0 V). With this change, the random fluctuation in membrane potential
was reduced to approximately 30 mV at a resting membrane potential
of 800 mV. To reduce noise further, the resting membrane potential of
the soma circuit was maintained at 850 mV (approximately 150 mV
from the spiking threshold). The static power consumption of the
current conveyor circuit was under 90 nW (evaluated using Spectre
simulation). In the future, the current conveyor design will
be improved to minimise the induced noise so that the resting
membrane potential of the soma circuit can be maintained close to the
spiking threshold. An improved circuit may also improve the on-chip
performance of the spike pattern models in Setups 2 and 4.

Several mixed-signal neuromorphic chips with STDP learning
capabilities have been proposed to date. Although analog STDP
circuits that store synaptic efficacy on capacitors offer higher energy
efficiency compared to the mixed-signal circuits (like the one used in
this study), they are often impractical in many applications due to the
need for large capacitors and their susceptibility to leakage issues. For
an extensive review of such circuits, please refer to (Azghadi et al.,
2014b). The BrainscaleS (Schemmel et al., 2010) and BrainscaleS2
(Pehle et al., 2022) chips use 4- and 6-bit synaptic efficacies and were
implemented in 180 nm and 65 nm technology nodes, respectively. Its
circuits for tracking the pre-and postsynaptic spike traces are purely
analog, which store the state of these traces as voltages on a capacitor.
A high-speed ADC serially reads these voltages and transfers them to
a digital Plasticity Processing Unit (BrainscleS2) that updates the
synaptic efficacy. The plasticity module in ROLLS (Qiao et al., 2015)

and, more recently, Dynap-SEL (Moradi et al., 2018) chips from INI
implement the spike-dependent synaptic plasticity (SDSP) learning
rule and use similar learning circuits (Brader et al., 2007). The synaptic
resolution in the Dynap-SEL chip is increased to 4 bits (Thakur et al.,
2018), whereas the ROLLS chip uses a ~ 1.5-bit palimpsest synapse.
The ROLLS chip is implemented in a 180 nm node and Dynap-SEL in
both the 180 nm (Moradi et al., 2018) and 28 nm fully depleted silicon
on insulator (FD-SOI) technology nodes (Qiao and Indiveri, 2016).
Our current chip is fabricated in a 250 nm technology node and
comprises a single neuron circuit. Thus, its performance cannot
be appropriately compared with those of these chips. However, certain
differences can be highlighted. The circuits in the BrainscaleS project
were designed to operate in the above-threshold domain (of MOS
transistors) with accelerated timescales, whereas our circuit was
designed to operate in biological timescales. Thus, for the same
technology node, the area occupied by the learning circuits to
calculate the traces of pre-and-post synaptic spikes in our chip would
be higher than that in the BrainscaleS(2) chip, but the power
consumption would be significantly lower. We could not find the exact
value of the power consumption of the learning circuit. The SDSP rule
implemented in the ROLLS and Dynap-SEL chips is a rate-based
semi-supervised learning rule that classifies input spikes based on
their spike rates (Boi et al., 2016; Kreiser et al., 2017). Amongst the
spike-based learning circuits proposed thus far, the bistable palimpsest
synapse in the ROLLS chip is the most efficient in terms of area and
power. In our chip, the energy consumed to process a pair of pre -and
postsynaptic spikes and update the synaptic efficacy by 1-bit is about
235 pJ. This value was significantly higher than that of the ROLLS chip
(77fJ). However, its performance is limited by its low-resolution
efficacy (Pfeil et al., 2012; Saxena et al., 2017). Its limitations are
discussed in Boi et al. (2016). The newer Dynap-SEL chip will have
better performance because it uses 4-bit synaptic efficacy; however, its
power consumption will also be significantly higher because it also
uses a counter circuit similar to our implementation to update
synaptic efficacy. We could not find the exact value of the power
consumption for the learning circuit in the Dynap-SEL chip. In
contrast to the rate-based SDSP rule implemented in the ROLLS and
Dynap-SEL chips, the learning mechanism in our chip is driven by the

FIGURE 9

(A) Circuit to generate a smoothly rising adaptation curve. (B) Adaptation curve plotted using Spectre simulation of circuit in Figure 9A. The learning
begins when the afferent synapse circuits are activated (marked by an arrow).

190

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 14 frontiersin.org

spike timings of pre- and postsynaptic neurons. The input spike trains
have a uniform average rate inside and outside the spike patterns, and
only the spike timing relationship amongst the afferents differentiates
the spike pattern from the noise. Thus, in this study, the information
was not coded according to spike rate. In addition, the learning
mechanism is devoid of a teacher signal; that is, it is completely
unsupervised, in which a spatiotemporal spiking pattern buried in
noise can be spontaneously detected. Since a major part of our
learning circuit is digital, it can be easily scaled down to minimise the
silicon area when implemented in lower technology nodes.

The power consumed by the fabricated learning circuitry in the
experiments was higher than that evaluated using the Spectre
simulator. It can be attributed to variations in the fabrication process
(Mead, 1989). The static power consumption of 256 learning circuits
was less than 200 nW, which scales to less than 800 pW for a single
learning circuit. In Spectre simulator, this value for a single learning
circuit was under 140 pW in the typical process corner but under 1.4
nW in the worst power corner, thereby implying that the chip was
fabricated away from the typical process corner. The major
contributors to dynamic power consumption in the learning circuit is
the short-circuit currents during the switching of the inverters. Proven
techniques, such as the use of starved inverters, will be incorporated
in the future to minimise the dynamic power consumption. Power
consumption can be further minimised by implementing circuits in
FD-SOI technology, which has comparatively lower leakage currents.

Most mixed-signal neuromorphic chips employ the nearest-
neighbour pair-based STDP rule. However, different variants of the
STDP rules that incorporate multi-spike interactions have been
observed in different regions of the brain (Wang et al., 2005; Froemke
et al., 2006; Pfister and Gerstner, 2006; Bono and Clopath, 2017).
Within the analysis by the synthesis neuroscientific framework, a
significant challenge for neuromorphic researchers is to develop
scalable and hardware-friendly learning circuits that consider such
multi-spike interactions and use SRAM or novel non-volatile memory
devices to store synaptic efficacies. The design of these learning
circuits will be explored in future studies.

The chip architecture is scalable for the incorporation of
multiple neuron circuits. Our future chips will be designed in a

lower-technology node and integrate multiple neuron circuits.
Event-based communication circuits will be expanded in line with
the Address Event Representation (AER) protocol that has been
successfully implemented in many large-scale neuromorphic chips
(Thakur et al., 2018). The chip in this study was fabricated in a
relatively older TSMC 250 nm technology node, but all the circuits
presented in the study were fitted to lower technology nodes;
250 nm was chosen because of its availability and financial
constraints. We plan to use the 28 nm FD-SOI technology in
future work.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

AG performed the study. TK supervised it. All authors contributed
to the article and approved the submitted version.

Funding

This study was partially supported by JSPS KAKENHI Grant
Number 21H04887, DLab, The University of Tokyo in collaboration
with Cadence Design Systems, Inc., and JST SICORP Grant
Number JPMJSC15H1.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

References
Andersen, N., Krauth, N., and Nabavi, S. (2017). Hebbian plasticity in vivo: relevance

and induction. Curr. Opin. Neurobiol. 45, 188–192. doi: 10.1016/J.CONB.2017.06.001

Azghadi, M. R., Iannella, N., Al-Sarawi, S., and Abbott, D. (2014a). Tunable low
energy, compact and high performance neuromorphic circuit for spike-based synaptic
plasticity. PLoS One 9:88326. doi: 10.1371/journal.pone.0088326

Azghadi, M. R., Iannella, N., Al-Sarawi, S. F., Indiveri, G., and Abbott, D. (2014b).
Spike-based synaptic plasticity in silicon: design, implementation, application, and
challenges. Proc. IEEE 102, 717–737. doi: 10.1109/JPROC.2014.2314454

Boi, F., Moraitis, T., Feo, V.De, Diotalevi, F., Bartolozzi, C., Indiveri, G., et al. (2016).
A bidirectional brain-machine interface featuring a neuromorphic hardware decoder.
Front. Neurosci. 10, 1–15. doi: 10.3389/fnins.2016.00563

Bono, J., and Clopath, C. (2017). Modeling somatic and dendritic spike mediated
plasticity at the single neuron and network level. Nat. commun 8, 1, 706–17. doi:
10.1038/s41467-017-00740-z

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912. doi:
10.1162/neco.2007.19.11.2881

Cassidy, A., Andreou, A. G., and Georgiou, J. (2011). A combinational digital logic approach
to STDP. proc. - IEEE Int. Symp. Circuits Syst, 673–676. doi: 10.1109/ISCAS.2011.5937655

Chaisricharoen, R., Chipipop, B., and Sirinaovakul, B. (2010). CMOS CCCII:
structures, characteristics, and considerations. AEU-Int. J. Electron. C. 64, 540–557. doi:
10.1016/j.aeue.2009.03.009

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: A neuromorphic Manycore processor with on-Chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Dayan, P., and Abbott, L. F. (2001). Theoretical neuroscience: Computational and
mathematical modeling of neural systems. Cambridge: The MIT Press.

Destexhe, A., Mainen, Z., and Sejnowski, T. (1998). “Kinetic models of synaptic
transmission” in Methods in neuronal modelling, from ions to networks. eds. C. Koch and
I. Segev (Cambridge, MA: MIT Press), 1–25.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition using
spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99. doi: 10.3389/
FNCOM.2015.00099

Douglas, R. J., Martin, K. A. C., and Whitteridge, D. (1989). A Canonical Microcircuit
for Neocortex. Neural Comput. 1, 480–488. doi: 10.1162/NECO.1989.1.4.480

Enoki, R., Hu, Y. L., Hamilton, D., and Fine, A. (2009). Expression of long-term
plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly
presynaptic: optical quantal analysis. Neuron 62, 242–253. doi: 10.1016/J.
NEURON.2009.02.026

Frémaux, N., and Gerstner, W. (2015). Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules. Front Neural Circuits 9:85. doi:
10.3389/FNCIR.2015.00085

Frenkel, C., Lefebvre, M., Legat, J. D., and Bol, D. (2019). A 0.086-mm2 12.7-pJ/
SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor

191

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/J.CONB.2017.06.001
https://doi.org/10.1371/journal.pone.0088326
https://doi.org/10.1109/JPROC.2014.2314454
https://doi.org/10.3389/fnins.2016.00563
https://doi.org/10.1038/s41467-017-00740-z
https://doi.org/10.1162/neco.2007.19.11.2881
https://doi.org/10.1109/ISCAS.2011.5937655
https://doi.org/10.1016/j.aeue.2009.03.009
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/FNCOM.2015.00099
https://doi.org/10.3389/FNCOM.2015.00099
https://doi.org/10.1162/NECO.1989.1.4.480
https://doi.org/10.1016/J.NEURON.2009.02.026
https://doi.org/10.1016/J.NEURON.2009.02.026
https://doi.org/10.3389/FNCIR.2015.00085

Gautam and Kohno 10.3389/fnins.2023.1203956

Frontiers in Neuroscience 15 frontiersin.org

in 28-nm CMOS. IEEE Trans Biomed Circuits Syst 13, 145–158. doi: 10.1109/
TBCAS.2018.2880425

Froemke, R. C., Tsay, I. A., Raad, M., Long, J. D., and Dan, Y. (2006). Contribution of
individual spikes in burst-induced long-term synaptic modification. J. Neurophysiol. 95,
1620–1629. doi: 10.1152/JN.00910.2005

Gautam, A., and Kohno, T. (2018). A low power silicon synapse with tunable reversal
potential. Proc. of Int. Conf. On Artif. Life and robot 23, 477–480. doi: 10.5954/
ICAROB.2018.OS9-5

Gautam, A., and Kohno, T. (2020). Biomimetic analog silicon synaptic circuit with
tunable reversal potential. J. Robotics 7, 22–26. doi: 10.2991/jrnal.k.200512.005

Gautam, A., and Kohno, T. (2021). An adaptive STDP learning rule for
neuromorphic systems. Front. Neurosci. 15, 1–12. doi: 10.3389/fnins.2021.741116

Gautam, A., and Kohno, T. (2023). Adaptive STDP learning with lateral inhibition for
neuromorphic systems. In proceedings of international conference on artificial life and
robotics (ICAROB2023). Oita, Japan

Gütig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike
timing–based decisions. Nat. Neurosci. 9, 420–428. doi: 10.1038/nn1643

Guyonneau, R., Vanrullen, R., and Thorpe, S. J. (2005). Neurons tune to the earliest spikes
through STDP. Neural Comput. 17, 859–879. doi: 10.1162/0899766053429390

Herculano-Houzel, S. (2011). Not all brains are made the same: new views on brain
scaling in evolution. Brain Behav. Evol. 78, 22–36. doi: 10.1159/000327318

Hölscher, C., Anwyl, R., and Rowan, M. J. (1997). Stimulation on the positive phase
of hippocampal Theta rhythm induces Long-term potentiation that can be Depotentiated
by stimulation on the negative phase in area CA1 in vivo. J. Neurosci. 17, 6470–6477.
doi: 10.1523/JNEUROSCI.17-16-06470.1997

Huh, D., and Sejnowski, T. J. (2018). Gradient descent for spiking neural networks. In
Proceedings of the 32nd International Conference on Neural Information Processing
Systems (NIPS’18). Red Hook, NY, USA: Curran Associates Inc., 1440–1450.

Hyman, J. M., Wyble, B. P., Goyal, V., Rossi, C. A., and Hasselmo, M. E. (2003).
Stimulation in hippocampal region CA1 in behaving rats yields long-term
potentiation when delivered to the peak of theta and long-term depression when
delivered to the trough. J. Neurosci. 23, 11725–11731. doi: 10.1523/
JNEUROSCI.23-37-11725.2003

Indiveri, G., Chicca, E., and Douglas, R. (2006). A VLSI array of low-power spiking
neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans.
Neural Netw. 17, 211–221. doi: 10.1109/TNN.2005.860850

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018). STDP-
based spiking deep convolutional neural networks for object recognition. Neural Netw.
99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Kheradpisheh, S. R., and Masquelier, T. (2020). Temporal backpropagation for spiking
neural networks with one spike per neuron. Int. J. Neural Syst. 30:2050027. doi: 10.1142/
S0129065720500276

Kohno, T., and Aihara, K. (2016). A three-variable ultralow-power analog silicon
neuron circuit,” in The 2016 International Symposium on Nonlinear Theory and Its
Applications, A3L-G-1, (Yugawara), 190–193.

Kohno, T., Li, J., and Aihara, K. (2014). Silicon neuronal networks towards brain-
morphic computers. Nonlinear Theory and Its Applications, IEICE 5, 379–390. doi:
10.1587/NOLTA.5.379

Kohno, T., Sekikawa, M., and Aihara, K. (2017). A configurable qualitative-modeling-
based silicon neuron circuit. Nonlinear Theory and Its Applications, IEICE 8, 25–37. doi:
10.1587/NOLTA.8.25

Kohno, T., Sekikawa, M., Li, J., Nanami, T., and Aihara, K. (2016). Qualitative-
modeling-based silicon neurons and their networks. Front. Neurosci. 10, 1–16. doi:
10.3389/FNINS.2016.00273

Kreiser, R., Moraitis, T., Sandamirskaya, Y., and Indiveri, G. (2017). On-chip
unsupervised learning in winner-take-all networks of spiking neurons, in 2017 IEEE
Biomedical Circuits and Systems Conference, (Turin, Italy: BioCAS), 1–4.

Kuzum, D., Yu, S., and Philip Wong, H. S. (2013). Synaptic electronics: materials, devices
and applications. Nanotechnology 24:382001. doi: 10.1088/0957-4484/24/38/382001

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking neural networks
using backpropagation. Front. Neurosci. 10, 1–16. doi: 10.3389/FNINS.2016.00508

Liu, K. K. L., Hagan, M. F., and Lisman, J. E. (2017). Gradation (approx. 10 size states)
of synaptic strength by quantal addition of structural modules. Philos. Trans. R. Soc.
Lond. Ser. B Biol. Sci. 372:20160328. doi: 10.1098/RSTB.2016.0328

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2008). Spike timing dependent
plasticity finds the start of repeating patterns in continuous spike trains. PLoS One
3:e1377. doi: 10.1371/journal.pone.0001377

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2009). Competitive STDP-based
spike pattern learning. Neural Comput. 21, 1259–1276. doi: 10.1162/neco.2008.06-08-804

Mayr, C. (2019). SpiNNaker 2: A 10 million Core processor system for brain
simulation and machine learning. CoRR abs/1911.02385. Available at: http://arxiv.org/
abs/1911.02385 (Accessed December 24, 2022).

Mead, C. (1989). Analog VLSI and neural systems. Germany: Springer Science &
Business Media.

Merolla, P., and Boahen, K. A. (2004). “A recurrent model of orientation maps with
simple and complex cells,” in Advances in Neural Information Processing Systems. eds
S. A. Solla, T. K. Leen and K.-R. Müller Vol. 16 (Vancouver, BC: MIT Press), 995–1002.

Moradi, S., and Indiveri, G. (2014). An event-based neural network architecture with
an asynchronous programmable synaptic memory. IEEE Trans Biomed Circuits Syst 8,
98–107. doi: 10.1109/TBCAS.2013.2255873

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable multicore
architecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (DYNAPs). IEEE Trans Biomed Circuits Syst 12, 106–122. doi:
10.1109/TBCAS.2017.2759700

Mulaosmanovic, H., Mikolajick, T., and Slesazeck, S. (2020). FeFETs for neuromorphic
systems. Top. Appl. Phys. 131, 399–411. doi: 10.1007/978-981-15-1212-4_20

Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N., Voelker, A. R., et al. (2019).
Braindrop: A mixed-signal neuromorphic architecture with a dynamical systems-based
programming model. Proc. IEEE 107, 144–164. doi: 10.1109/JPROC.2018.2881432

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in spiking
neural networks: bringing the power of gradient-based optimization to spiking neural
networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Stradmann, Y., et al.
(2022). The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity.
Front. Neurosci. 16:158. doi: 10.3389/FNINS.2022.795876

Petersen, C. C. H., Malenka, R. C., Nicoll, R. A., and Hopfield, J. J. (1998). All-or-none
potentiation at CA3-CA1 synapses. Proc. Natl. Acad. Sci. U. S. A. 95, 4732–4737. doi:
10.1073/PNAS.95.8.4732

Pfeil, T., Potjans, T. C., Schrader, S., Schemmel, J., Diesmann, M., and Meier, K. (2012). Is a
4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent
plasticity in neuromorphic hardware. Front. Neurosci. 6, 1–19. doi: 10.3389/FNINS.2012.00090

Pfister, J. P., and Gerstner, W. (2006). Triplets of spikes in a model of spike timing-
dependent plasticity. J. Neurosci. 26, 9673–9682. doi: 10.1523/JNEUROSCI.1425-06.2006

Qiao, N., and Indiveri, G. (2016). Scaling mixed-signal neuromorphic processors to
28 nm FD-SOI technologies. Proceedings - 2016 IEEE biomedical circuits and systems
conference, BioCAS. 552–555.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., et al.
(2015). A reconfigurable on-line learning spiking neuromorphic processor comprising
256 neurons and 128K synapses. Front. Neurosci. 9, 1–17. doi: 10.3389/fnins.2015.00141

Sakemi, Y., Morino, K., Morie, T., and Aihara, K. (2021). A supervised learning
algorithm for multilayer spiking neural networks based on temporal coding toward
energy-efficient VLSI processor design. IEEE Trans Neural Netw Learn Syst. 34, 394–408.
doi: 10.1109/TNNLS.2021.3095068

Saxena, V., Wu, X., Srivastava, I., and Zhu, K. (2017). Towards spiking neuromorphic
system-on-a-chip with bioplausible synapses using emerging devices. in Proceedings of
the 4th ACM International Conference on Nanoscale Computing and Communication
(NanoCom 2017), Washington D.C., DC, USA), 1–6.

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S. (2010). A
wafer-scale neuromorphic hardware system for large-scale neural modeling,” in 2010
IEEE International Symposium on Circuits and Systems (ISCAS), (Paris, France),
1947–1950.

Schemmel, J., Grübl, A., Meier, K., and Mueller, E. (2006). Implementing synaptic
plasticity in a VLSI spiking neural network model,” in The 2006 IEEE International Joint
Conference on Neural Network Proceedings, (Vancouver, BC, Canada), 1–6.

Shrestha, A., Ahmed, K., Wang, Y., and Qiu, Q. (2017). Stable spike-timing dependent
plasticity rule for multilayer unsupervised and supervised learning. Proceedings of the
international joint conference on neural networks. 1999–2006.

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning through
spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926. doi: 10.1038/78829

Stuijt, J., Sifalakis, M., Yousefzadeh, A., and Corradi, F. (2021). μBrain: an event-driven
and fully synthesizable architecture for spiking neural networks. Front. Neurosci. 15:538.
doi: 10.3389/FNINS.2021.664208

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., et al.
(2018). Large-scale neuromorphic spiking Array processors: A quest to mimic the brain.
Front. Neurosci. 12:891. doi: 10.3389/FNINS.2018.00891

Thorpe, S., Delorme, A., and Van Rullen, R. (2001). Spike-based strategies for rapid
processing. Neural Netw. 14, 715–725. doi: 10.1016/S0893-6080(01)00083-1

Wang, H. X., Gerkin, R. C., Nauen, D. W., and Bi, G. Q. (2005). Coactivation and
timing-dependent integration of synaptic potentiation and depression. Nature
neuroscience 8, 187–193. doi: 10.1038/nn1387

Wang, Y., and Liu, S. C. (2006). Programmable synaptic weights for an aVLSI network of
spiking neurons,” in 2006 IEEE International Symposium on Circuits and Systems (ISCAS),
(Kos, Greece), 4.

Yang, S., Wang, J., Zhang, N., Deng, B., Pang, Y., and Azghadi, M. R. (2022).
CerebelluMorphic: large-scale neuromorphic model and architecture for supervised
motor learning. IEEE Trans Neural Netw Learn Syst 33, 4398–4412. doi: 10.1109/
TNNLS.2021.3057070

Zhang, J. C., Lau, P. M., and Bi, G. Q. (2009). Gain in sensitivity and loss in
temporal contrast of STDP by dopaminergic modulation at hippocampal synapses.
Proc. Natl. Acad. Sci. U. S. A. 106, 13028–13033. doi: 10.1073/PNAS.0900546106

192

https://doi.org/10.3389/fnins.2023.1203956
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1152/JN.00910.2005
https://doi.org/10.5954/ICAROB.2018.OS9-5
https://doi.org/10.5954/ICAROB.2018.OS9-5
https://doi.org/10.2991/jrnal.k.200512.005
https://doi.org/10.3389/fnins.2021.741116
https://doi.org/10.1038/nn1643
https://doi.org/10.1162/0899766053429390
https://doi.org/10.1159/000327318
https://doi.org/10.1523/JNEUROSCI.17-16-06470.1997
https://doi.org/10.1523/JNEUROSCI.23-37-11725.2003
https://doi.org/10.1523/JNEUROSCI.23-37-11725.2003
https://doi.org/10.1109/TNN.2005.860850
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1587/NOLTA.5.379
https://doi.org/10.1587/NOLTA.8.25
https://doi.org/10.3389/FNINS.2016.00273
https://doi.org/10.1088/0957-4484/24/38/382001
https://doi.org/10.3389/FNINS.2016.00508
https://doi.org/10.1098/RSTB.2016.0328
https://doi.org/10.1371/journal.pone.0001377
https://doi.org/10.1162/neco.2008.06-08-804
http://arxiv.org/abs/1911.02385
http://arxiv.org/abs/1911.02385
https://doi.org/10.1109/TBCAS.2013.2255873
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1007/978-981-15-1212-4_20
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/FNINS.2022.795876
https://doi.org/10.1073/PNAS.95.8.4732
https://doi.org/10.3389/FNINS.2012.00090
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1109/TNNLS.2021.3095068
https://doi.org/10.1038/78829
https://doi.org/10.3389/FNINS.2021.664208
https://doi.org/10.3389/FNINS.2018.00891
https://doi.org/10.1016/S0893-6080(01)00083-1
https://doi.org/10.1038/nn1387
https://doi.org/10.1109/TNNLS.2021.3057070
https://doi.org/10.1109/TNNLS.2021.3057070
https://doi.org/10.1073/PNAS.0900546106

TYPE Original Research

PUBLISHED 08 August 2023

DOI 10.3389/fnins.2023.1229951

OPEN ACCESS

EDITED BY

Anup Das,

Drexel University, United States

REVIEWED BY

Yufei Guo,

China Aerospace Science and Industry

Corporation, China

Fang Liu,

Dalian University of Technology, China

*CORRESPONDENCE

Yu Zhang

zhangyu80@zju.edu.cn

RECEIVED 27 May 2023

ACCEPTED 19 July 2023

PUBLISHED 08 August 2023

CITATION

Zhang H, Li Y, He B, Fan X, Wang Y and Zhang Y

(2023) Direct training high-performance spiking

neural networks for object recognition and

detection. Front. Neurosci. 17:1229951.

doi: 10.3389/fnins.2023.1229951

COPYRIGHT

© 2023 Zhang, Li, He, Fan, Wang and Zhang.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Direct training high-performance
spiking neural networks for object
recognition and detection

Hong Zhang1, Yang Li1, Bin He1, Xiongfei Fan1, Yue Wang1 and

Yu Zhang1,2*

1State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering,

Zhejiang University, Hangzhou, China, 2Key Laboratory of Collaborative Sensing and Autonomous

Unmanned Systems of Zhejiang Province, Hangzhou, China

Introduction: The spiking neural network (SNN) is a bionic model that is

energy-e�cient when implemented on neuromorphic hardwares. The non-

di�erentiability of the spiking signals and the complicated neural dynamics make

direct training of high-performance SNNs a great challenge. There are numerous

crucial issues to explore for the deployment of direct training SNNs, such as

gradient vanishing and explosion, spiking signal decoding, and applications in

upstream tasks.

Methods: To address gradient vanishing, we introduce a binary selection gate

into the basic residual block and propose spiking gate (SG) ResNet to implement

residual learning in SNNs. We propose two appropriate representations of the gate

signal and verify that SG ResNet can overcome gradient vanishing or explosion by

analyzing the gradient backpropagation. For the spiking signal decoding, a better

decoding scheme than rate coding is achieved by our attention spike decoder

(ASD), which dynamically assigns weights to spiking signals along the temporal,

channel, and spatial dimensions.

Results and discussion: The SG ResNet and ASD modules are evaluated on

multiple object recognition datasets, including the static ImageNet, CIFAR-

100, CIFAR-10, and neuromorphic DVS-CIFAR10 datasets. Superior accuracy is

demonstrated with a tiny simulation time step of four, specifically 94.52% top-

1 accuracy on CIFAR-10 and 75.64% top-1 accuracy on CIFAR-100. Spiking

RetinaNet is proposed using SG ResNet as the backbone and ASD module for

information decoding as the first direct-training hybrid SNN-ANNdetector for RGB

images. Spiking RetinaNet with a SG ResNet34 backbone achieves anmAP of 0.296

on the object detection dataset MSCOCO.

KEYWORDS

spiking neural networks, gate residual learning, attention spike decoder, spiking

RetinaNet, object recognition, object detection

1. Introduction

In recent years, significant progress has been made in deep learning research, which has

become a primary tool for various computer vision tasks, such as object recognition, object

detection, and semantic segmentation. Key technologies such as ResNet (He et al., 2016) and

batch normalization (Ioffe and Szegedy, 2015) have enabled the construction of deep neural

networks with numerous parameters and deep model structures, achieving high accuracy

in the aforementioned tasks. However, the growing network complexity and data quantity

make it increasingly expensive to train and deploy deep neural networks. Therefore, it is

necessary to explore network models and computational paradigms that are more efficient

than current artificial neural networks (ANNs). One of the main research directions is the

spiking neural network (SNN), a bionic neuron model inspired by biological neuron models

Frontiers inNeuroscience 01 frontiersin.org193

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1229951
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1229951&domain=pdf&date_stamp=2023-08-08
mailto:zhangyu80@zju.edu.cn
https://doi.org/10.3389/fnins.2023.1229951
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1229951/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

based on spiking signals (Gerstner and Kistler, 2002; Cheng et al.,

2023; Yi et al., 2023). Researchers have paid considerable attention

to SNN because of its high-energy efficiency on neuromorphic

hardwares (Merolla et al., 2014; Davies et al., 2018).

Due to the non-differentiability of the spiking signals, training

high-performance SNNs is challenging. First, researchers utilized

the spike-timing-dependent plasticity (STDP) (Song et al., 2000)

rule to conduct the unsupervised training of SNNs. STDP is a

biology-inspired process that adjusts the synaptic weights based on

the relative timing of the presynaptic and postsynaptic neurons’

action potentials. However, STDP cannot accomplish supervised

learning for large-scale networks, which limits its practical

application. Currently, there are two mainstream approaches to

obtain deep SNN models: ANN-to-SNN conversion and direct-

training. The ANN-to-SNN conversion method consists of two

steps. First, an ANNmodel corresponding to the target SNNmodel

is trained. Then, the connection between the firing rates of the

SNN and the activation values of the ANN are used to establish a

conversion formula to help convert the weight of the ANN model

to that of the SNN. The accuracy of this conversion is largely

determined by the simulation time steps of SNNs. The simulation

time step is usually in hundreds or thousands to obtain an SNN

with competitive performance, which results in the unacceptably

high latency. The second method, direct-training, approximates

the non-differentiable heaviside step function with a surrogate

gradient and trains the SNNs directly through backpropagation.

Researchers usually adopt the backpropagation through time

(BPTT) framework, which is derived from RNN. Unlike ANN-

to-SNN conversion, the direct-training method requires only a

tiny time step. The network thus obtained has very low latency,

making it superior in real-time scenarios. However, because

of the complicated neural dynamics of SNNs and the non-

differentiability of spiking signals, direct-training of SNNs requires

further exploration on several crucial issues to achieve acceptable

results on large-scale datasets, such as ImageNet (Deng et al., 2009)

and MSCOCO (Lin et al., 2014).

The first issue is the gradient vanishing or explosion problem,

which restricts SNNs to shallow architectures. To solve this

problem, a natural idea is to introduce residual learning fromANNs

into the SNNs. Spiking ResNet (Lee et al., 2020) replaces the ReLU

activation function in the residual block with spiking neurons such

as the integrate-and-fire (IF) and leaky-integrate-and-fire (LIF)

(Gerstner and Kistler, 2002). However, it has been found that such

a spiking residual block of spiking ResNet cannot achieve identity

mapping because of the complex dynamics of spiking neurons. On

this basis, SEW ResNet (Fang et al., 2021a) has used an element-

wise function to modify the residual block and has successfully

achieved identity mapping. However, the ADD function used in

SEW ResNet introduces non-spiking signals, which no longer

conforms the properties of SNNs and preventes SNNs from being

deployed on neuromorphic hardware. Therefore, effective residual

learning in SNNs remains a problem worth exploring. We believe

that the shortcut connection with addition in the residual block

enables the analog tensor in different levels to achieve lossless

information fusion, which is the reason for the high performance of

the ADD-based SEWResNet. However, the spiking signal is binary,

and its addition operation cannot be deployed. This motivates us to

explore a better residual block structure to accomplish information

fusion with only full-spike operations.

Another problem is the decoding of spike trains, which

determines the high-dimensional image features in object

recognition. There are two schemes: temporal and rate coding. The

former directly adopts spike times as the information carrier, which

is efficient in large time-step systems. However, direct-training

SNNs have tiny time steps, leading to low accuracy of temporal

coding. The latter method uses firing rates as the information

carrier. Many direct training methods (Fang et al., 2021a; Zheng

et al., 2021) have adopted it due to its high performance. However,

Wu et al. (2021) found that rate coding produced a less smooth

learning curve, reducing the final accuracy. Meanwhile, from the

perspective of neuroscience, rate coding is unreasonable because

it treats activation at each time step as equally important. In fact,

spikes at different times and in different spaces may have different

effects on the results, depending on the salient region (Itti et al.,

1998; Yao et al., 2021).

The inability to handle complex computer vision tasks well

is another problem. Most existing approaches are limited to

classification. Object detection, a fundamental task in vision, has

widespread applications in many real-time scenarios. However,

there are only a few direct-training spiking object detectors.

Cordone et al. (2022) trained an SSD detector using spiking VGG,

MobileNet, and DenseNet as the backbones. Kugele et al. (2021)

constructed a similar detector using a spiking DenseNet. They both

performed detection on event data. Neither case performed well in

the large-scale MSCOCO datasets, indicating that their methods

were not applicable to most existing vision systems. In addition,

the gradient degradation problem was not addressed such that

the deeper DenseNet achieved a worse accuracy in Cordone et al.

(2022).

To address the gradient vanishing or explosion problem,

we implemented the identity mapping of the residual block

under the constraints of spiking signals by proposing spiking

gate (SG) ResNet. The inspiration mainly comes from GRU

(Cho et al., 2014) and Highway Network (Srivastava et al.,

2015). These works have shown that the gate mechanism can

dynamically control the flow of information in the network and

can significantly solve the gradient vanishing problem. In each

basic block of SG ResNet, a binary selection gate is introduced

to guide the information fusion of the spiking signals. As for the

decoding scheme, we propose the attention spike decoder (ASD)

to decode the spike output from SG ResNet more effectively.

The ASD block is highly generalizable and can be applied to

object recognition and detection tasks. The effectiveness of the

SG ResNet and ASD block are evaluated on object recognition

datasets, including three static image datasets and a neuromorphic

dataset. In addition, we propose spiking RetinaNet using SG

ResNet as the backbone and the ASD block for information

decoding. This is the first direct-training hybrid SNN-ANN

detector that can achieve good performance on the MSCOCO

dataset.

Our contributions are as follows:

• A spiking gate ResNet with full-spike operations is developed

to solve the gradient vanishing in SNNs to make deep SNNs

Frontiers inNeuroscience 02 frontiersin.org194

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

trainable. Furthermore, two appropriate formulations of the

binary gate in SG ResNet are provided.

• An attention spike decoder is proposed to apply temporal,

channel, and spatial attention to accumulate the information

of spiking signals. This is an effective and general decoder for

both object recognition and detection.

• Numerous experiments are conducted on both static image

and neuromorphic datasets in the object recognition task to

verify the effectiveness of the SG ResNet and ASD block.

• Spiking RetinaNet, which is a hybrid neural network, is

proposed to combine the SG ResNet backbone with a

detection head. The ASD block plays a vital role in spike

decoding. We demonstrate that with a proper backbone and

decoding, a direct-training SNN can perform well in object

detection.

2. Related work

There are two main approaches to training and deploying

deep SNNs: ANN-to-SNN conversion and direct-training SNNs.

Most works of these two approaches restrict the task to object

recognition. In this study, a spiking RetinaNet detector is also built.

Thus, related works of object recognition will be chiefly overviewed

and then we will review the research on object detection with SNNs.

2.1. ANN-to-SNN conversion

Rueckauer et al. (2016) provided a theoretical basis for the

ANN-to-SNN conversion approach. Theoretically, the firing rates

of spiking neurons in SNNs can be estimated by the activation of

the ReLU function in ANNs with the corresponding structures.

With weight normalization and BN integration, a well-trained

ANN can be converted to an SNN with minimal loss of precision

(Diehl et al., 2015). Sengupta et al. (2019) proposed SpikeNorm to

improve conversion, which was the first to test this approach on

deep architectures such as VGG and ResNet. Furthermore, time-

based coding (Han and Roy, 2020), SNN calibration (Li et al.,

2021), and clamped and quantized training (Yan et al., 2021)

have been proposed for optimizing the conversion error. Other

methods (Deng and Gu, 2021; Bu et al., 2022; Li and Zeng, 2022)

have realized high-performance conversions, which have narrowed

the gap between the SNNs and ANNs. However, there are many

drawbacks to ANN-to-SNN conversion methods. First, it does not

work with neuromorphic data because ANNs cannot be trained on

these data. Second, high precision requires SNNs to adopt a very

large simulation time step, leading to high latency of the converted

SNNs, which is unsuitable for deployment in real scenarios.

2.2. Direct-training SNNs

Direct-training methods optimize the parameters of SNNs

using direct error backpropagation. One popular approach is to

unfold the network over the simulation time by referring to the

BPTT framework of the RNN. Because the heaviside step function

used in spiking neurons is not differentiable, researchers typically

use sigmoid, arc-tangent, and other functions to calculate the

surrogate gradient. Such methods (Wu et al., 2018; Neftci et al.,

2019; Lee et al., 2020) usually obtain low latency and can train

SNNs with small simulation time steps. Recently, in addition to

designing powerful spiking neurons (Fang et al., 2021b; Li et al.,

2022; Yao et al., 2022), researchers have primarily improved the

accuracy of direct-training SNNs from network structure and

training techniques (Guo et al., 2023). We will elaborate on them.

Similar to ANN, deep plain SNNs still suffer from gradient

vanishing or explosion problems. Thus, SNN structure design

based on residual learning has become mainstream. However,

indiscriminately imitating the ResNet (Lee et al., 2020) cannot

solve this problem because of the properties of spiking neurons.

Fang et al. (2021a) systematically analyzed the cause of gradient

vanishing from the perspective of identity mapping in SEW ResNet

and tried to solve this problem using element-wise functions.

However, their approach breaks the rule that SNNs use only

spiking signals. In addition, multi-level firing (Feng et al., 2022),

membrane shortcut (Hu et al., 2021), and threshold-dependent

batch normalization (Zheng et al., 2021) technologies have been

successively utilized to construct deeper SNNs. Unlike themanually

designed networks above, AutoSNN (Na et al., 2022) and SNASNet

(Kim et al., 2022) use the neural architecture search approach for

SNN structure design.

At the training technique level, some researchers aim

to improve the surrogate gradient-based backpropagation

process. These improvement routes include membrane or spike

regularization (Guo et al., 2022a,c), spike knowledge distillation

(Xu et al., 2023a,b), and designing better surrogate gradients

(Che et al., 2022; Guo et al., 2022b). In addition to the surrogate

gradient-based backpropagation, there are also some effective

direct-training methods designed specifically for SNNs, including

STDP-based learning (Saunders et al., 2018; Tavanaei and Maida,

2019; Hao et al., 2020), tandem learning (Wu et al., 2021), and

differentiations on spike times (Mostafa, 2017; Wunderlich and

Pehle, 2021; Zhou et al., 2021), spike representation (Meng et al.,

2022), and equilibrium state (Xiao et al., 2021).

2.3. Object detection with SNNs

Similar to object recognition, spiking detectors are generated

by ANN-to-SNN conversion and direct-training methods. Spiking

YOLO (Kim et al., 2020) is the first spiking detector converted

from an ANN. Channel-wise data-based normalization is used to

optimize the conversion process. Miquel et al. (2021) proposed

the analog-to-spiking conversion method, which allows a more

complex network structure like RetinaNet. Chakraborty et al.

(2021) combined the unsupervised spike time dependent plasticity

method and hybrid training method spike time dependent

backpropagation to deploy a spiking hybrid detector. All the above

studies have adopted conversion from ANN to SNN. Therefore,

their networks have large time steps and are inefficient. Kugele

et al. (2021) and Cordone et al. (2022) presented direct-training

spiking detectors by combining some spiking backbones with an

SSD detection head. Such detectors have very low latency and are

well-suited for real-time scenarios. However, they are only applied

Frontiers inNeuroscience 03 frontiersin.org195

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

to event cameras and cannot be used in existing vision systems with

RGB camera images. To the best of our knowledge, our spiking

RetinaNet is the first to complete object detection on static images

dataset such as MSCOCO.

3. Spiking architectures and decoding

In this section, we first introduce the spiking neuron models

used in this study. Then, the spiking gate residual (SGR) block

and SG ResNet is proposed based on residual learning and gate

mechanism.We further propose two appropriate representations of

the binary selection gate in the SGR block and analyze its gradient

propagation. Finally, the attention spike decoder is proposed to

decode the spike output from SG ResNet.

3.1. Spiking neuron model

Spiking neurons imitate biological neural mechanisms that

communicate via spiking signals. The IF and LIF (Gerstner and

Kistler, 2002) models are used in this study. They are simplified

models with high implementation efficiency while preserving

sufficient biological dynamics. The following formula expresses the

linear differential equation of LIF neurons:

τm
dV l

i (t)

dt
= −

[

V l
i (t)− Vrest

]

+ RIli(t), (1)

where V l
i is the membrane potential, Ili is the input current, τm

is the time constant, Vrest represents the resting potential, and R

represents the membrane resistance. Without loss of generality,

we treat R as unitary in the rest of the study; i and l denote

that this neuron is the ith one in the lth layer of the whole

network. Compared with LIF, the IF neuron ignores the leaky

effect of membrane potential. The following equation describes its

dynamics:

dV l
i (t)

dt
= RIli(t). (2)

In this equation, provided that the membrane potential V l
i

exceeds the spike fire threshold Vth, the neuron fires a spike

immediately. Simultaneously, the membrane potential will be reset

to Vrest . The neuron’s output can be then represented by the

following equation:

sli(t) = 2

(

V l
i (t)− Vth

)

(3)

where sli is the output spike of the neuron at time step t, and 2 is

the heaviside step funcion defined as follows:

2(x) =

{

1, x ≥ 0

0, x < 0
(4)

In practice, it is necessary to discretize the dynamical equations.

The discretized LIF and IF dynamics are shown in Eqs 5 and 6

(Fang et al., 2021b), respectively.

Hl
i[t] = V l

i [t − 1]+
1

τm

(

Ili[t]−
(

V l
i [t − 1]− Vreset

))

(5)

Hl
i[t] = V l

i [t − 1]+ Ili[t] (6)

where Hl
i[t] can be regarded as the hidden membrane potential

before trigger time t. V l
i [t − 1] represents the membrane potential

of a neuron at time t−1. Ili[t] is the synaptic current at time t, which

is determined by the output of the neurons in the preceding layer.

wl−1
ij denotes the synaptic connection strength between jth neuron

in layer l − 1 and the ith neuron in layer l, and bli represents the

corresponding bias. Then, Ili[t] can be expressed by the following

formula.

Ili[t] =
∑

j

wl−1
ij Sl−1

j [t]+ bli (7)

The discrete output equation of the neuron is shown in Eq. 8,

where Sli[t] is the output spiking signal at time t. When Sli[t] = 1,

the neuron fires a spike; otherwise, when (Sli[t] = 0), the neuron

does not fire any spike.

Sli[t] = 2

(

Hl
i[t]− Vth

)

(8)

Once the neuron fires a spike, the membrane potential V l
i [t] at

time t is reset toVrest . Therefore, the discrete representation ofV
l
i [t]

is presented as follows.

V l
i [t] = Hl

i[t](1− Sli[t])+ VrestS
l
i[t]. (9)

For simplicity, both V[0] and Vrest are set to 0. Meanwhile,

the derivative of the function 2 is determined by the pre-defined

surrogate function. The implementation and GPU acceleration of

all neurons are based on the PyTorch and SpikingJelly (Fang et al.,

2020) frameworks.

3.2. Spiking gate ResNet

The high-level architecture of SG ResNet is the same as that

of ResNet. We used the spiking gate residual block to replace the

base module and created a deep SNN without gradient vanishing.

Figure 1 shows the structures of the basic residual block, spiking

residual block, and spiking gate residual block.

3.2.1. Basic and spiking residual block
Figure 1A shows the basic residual block in ResNet, where

ReLU represents the rectified linear unit activation function, and

the weight layer consists of a convolutional layer and a batch

normalization layer. This expression is given by Eq. 10, where X

is the input of the current block, which is the output of the previous

block. Based on the property of ReLU function in the domain

Frontiers inNeuroscience 04 frontiersin.org196

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

FIGURE 1

Basic residual block (A), spiking residual block (B), and our spiking gate residual block (C).

FIGURE 2

Illustration of the gate mechanism.

[0,+∞), the residual block can easily implement identity mapping

when F (X) ≡ 0.

Y = ReLU (F (X) + X) (10)

Figure 1B shows the structure of the spiking residual block,

which replaces ReLU function with spiking neurons. Its expression

is given in Eq. 11. Fang et al. (2021a) proved that, in such a

structure, identity mapping could only be achieved by using the IF

model under specific conditions, leading to gradient vanishing or

explosion in deep spiking ResNet.

Y[t] = SN (F (X[t]) + X[t]) (11)

3.2.2. Spiking gate residual block
The basic gate mechanism is shown in Figure 2. Given inputs

X1,X2, and the gate signalGate ∈ [0, 1], the analog gate mechanism

performs a weighted sum of X1 and X2. If a binary value is selected

as Gate and both inputs are spike signals, the gate mechanism

chooses one of the inputs as the output. We call it a binary selection

gate (BSG). The formula of BSG is shown as follows:

Y = BSG(X1,X2;Gate)

= Gate · X1 + (1− Gate) · X2.
(12)

Figure 1C displays the structure of our spiking gate residual

(SGR) block, where X[t] and Y[t] are the input and output of the

module, respectively. SN is a spiking neuron layer. There are two

main modifications compared to spiking residual blocks. First, the

second SN is moved before the shortcut connection such that no

redundant activation of X[t] is performed, similar to the ReLU

before addition (RBA) block (He et al., 2016). Second, the addition

operation of the shortcut connection is replaced by the BSG, and

the output and intermediate variables are always spiking signals

with the help of the binary signal Gate. The formulation of this

block is expressed in Eq. 13. When Gate equals 1, the output is

SN (F (X[t])), and when Gate is 0, the output is X[t], with the SGR

block implementing identitymapping. The formulation ofGatewill

be discussed later.

Y[t] = BSG (SN (F (X[t])),X[t];Gate)

= Gate · SN (F (X[t])) + (1− Gate) · X[t].
(13)

In the basic residual block, at least one ReLU activation

exists between the input and the output. Specific properties of

the ReLU function make multiple activations equivalent to a

single activation. Moreover, multiple activations have the benefit of

preventing infinite output in deep layers, which exists in the RBA

block. However, properties of spiking neurons differs from ReLU.

Multiple SN activations are not equivalent to a single activation

Frontiers inNeuroscience 05 frontiersin.org197

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

FIGURE 3

Downsample spiking gate residual block in SG ResNet.

and may even block gradient propagation. Therefore, to remove

the redundant activations, the second SN is moved to the position

before the shortcut connection in Eq. 13. Meanwhile, our BSG

ensures that the module’s output remains spiking signal, which

avoids the infinite output in the RBA block.

3.2.3. Formulation of downsample block
As a stack of the above SGR blocks, the SG ResNet usually

consists of multiple stages. In some stages, the first block must

downsample the image, and hence, it is referred to as a downsample

block, and its structure is shown in Figure 3. We replace the

original identity connection with the third weight layer and an SN

neuron layer in this block. Meanwhile, to realize downsampling,

a convolutional layer with a stride of 2 is adopted in the first and

third weight layers. Due to SN activation in the shortcut path,

this downsample block cannot achieve perfect identity mapping.

However, the number of downsample blocks is usually only four

and stays unchanged as the depth of the network grows. Therefore,

the corresponding degradation is ignored.

3.3. Gate formulation and analysis

3.3.1. Formulation of binary selection gate
The most important part of the BSG module is Gate, the

binary selection gate signal. For convenience, we denote the hidden

features after the second weight layer of the SGR Block as H[t],

where H[t] = SN (F (X[t])). H ∈ RT×c×h×w stacks all features

over the temporal dimension. In this study, T represents the time

step of the spiking network, c is the number of channels of the

feature map, and h and w are the height and width of the feature

map, respectively. The expression for Gate is provided in Eq. 14:

Gate = 2
(

W ·H + B− thr
)

, (14)

where W,B ∈ RT×c×h×w. In Eq. 14, we first applied element-wise

linear mapping to H with learnable weight W and bias B. Then,

the heaviside step function with a threshold of thr shown in Eq. 4

is applied to transform the analog result into binary form.W and B

are initialized to 1 and 0, respectively. Under such conditions, when

H = 0, the value of Gate will also be zero, and the entire SGR block

will act as an identity mapping block. In practice, h and w vary with

the image size, whereas T changes with the simulation time step.

If the image size or simulation time step is large, the number of

parameters corresponding to W and B may be unacceptable. For

efficiency, we proposed two representations: BSG* with learnable

parameters and BSG without learnable parameters.

For BSG*, we have H share weight and bias along the

dimensions T, h, and w. Therefore, the sizes of W and B are

R1×c×1×1.

For BSG, we have Gate = H when W ≡ 1 and B ≡ 0. Under

such conditions, W and B are constant, and the SGR block has no

additional learnable parameters. In this case, the SGR block can be

expressed as follows:

Y = Gate · H + (1− Gate) · X

= H2 + (1−H)X.
(15)

3.3.2. Gradient analysis
With BSG and BSG*, the SGR block achieves identity mapping

when H ≡ 0. In this case, the gradient of the SGR block’s

output Y with respect to input X can be calculated using the

following formula. Because the second SN has been moved before

the shortcut connection, the following gradients do not need to

involve the derivation of the spiking neurons.

∂Y

∂X
=

∂
(

Gate ·H + (1− Gate) · X
)

∂X

=
∂(0+ 1 · X)

∂X
= 1.

(16)

Denote Y l and Xl as the output and input of the lth block,

respectively. As Y l = Xl+1, the gradient backpropagation can be

calculated as follows:

∂Y l+k

∂Xl
=

k
∏

i=0

∂Y l+i

∂Xl+i
= 1. (17)

Because the relative gradient above is constant, the gradient

of the deep layers in SG ResNet can be backpropagated to the

shallow layers. Thus, SG ResNet can solve the gradient vanishing

or explosion problem.

Frontiers inNeuroscience 06 frontiersin.org198

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

3.3.3. Di�erence to SEW ResNet
SG ResNet and SEW ResNet (Fang et al., 2021a) are both

improved variants of spiking ResNet, while their motivations are

different, which is ultimately reflected in the different ways of

integrating the left and right branches of the residual block.

SEW ResNet aims to achieve identity mapping, using

element-wise functions to integrate the left and right branches.

It proposes spike-constrained AND and IAND functions

and the unconstrained ADD function. However, the ADD

function requires non-spike computations, making it unsuitable

for deployment.

We plan to use the gate mechanism to control the flow of spike

information. At the beginning of the design, we set both spike

constraint and identity mapping as goals. First, we binarize the

analog gate signal into a spike one, and the gate mechanism turns

into a binary selection gate, which can ensure that the output is

also a spike signal. Furthermore, we have proven that when the

selection of the gate signal comes from the hidden feature H of the

left branch, and the residual block can achieve identity mapping.

From the performance perspective, SG ResNet is superior to

SEW ResNet based on AND and IAND functions under spike

constraint. However, if the spike condition is relaxed, SEW ResNet

based on the ADD function is better. The ADD function integrates

both branches without loss of information, while the spike

constraint determines that information integration is inevitably

lossy. This comparison will also be analyzed in the experiment.

3.4. Attention spike decoder

After the spiking network, a decoder is required to decode the

spiking features to analog. The spiking feature output by the SG

ResNet is denoted as X ∈ RT×c×h×w, where T is the time steps, c

is the channel size, and h and w denote the spatial dimension of

the image. The rate coding method averages X along the temporal

dimension, so the resulting XR ∈ Rc×h×w is the corresponding

firing rate. However, such a method treats information at each time

point as equally important, which is not reasonable in neuroscience.

We introduce the attention module in Woo et al. (2018) along

multiple dimensions and propose ASD module to decode the

spiking features and fully utilize the information in the sparse

spike form. The detailed structure of the ASD module is shown

in Figure 4, including temporal, channel, and spatial attention,

as well as the averaging operation and skip connections. Given

spiking feature X, we first perform temporal-wise refinement using

temporal attention (TA) and then average the feature along the

time dimension. Channel attention (CA) and spatial attention (SA)

then perform feature refinement sequentially. Finally, the output

of the rate coding and SA are added as the output of ASD by skip

connections.

3.4.1. Temporal attention and average operation
As is shown in Figure 4A, TA first computes channel-spatial

statistics using 3-D global average-pooling. These statistics are fed

into two point-wise convolutional layers to obtain the 1-D temporal

attention map. Subsequently, after a sigmoid function, the 1-D

temporal attention map is multiplied by the origin feature.

Before the output of TA is sent to CA, the average operation

is used to squeeze features in the temporal dimension for two

reasons. First, a squeeze of the temporal dimension by the average

operation significantly reduces the computational effort of TA and

SA while keeping the statistics and attention maps unchanged.

Second, both TA and SA use max-pooling to extract attention

maps. Each element of the spiking feature is a Boolean value

that is unsuitable for max-pooling. Therefore, Boolean values are

converted to analog before TA and SA.

3.4.2. Channel attention
As is shown in Figure 4B, CA takes XT as the input and outputs

channel-refined feature XTC. First, we extract spatial statistics using

2-D global average-pooling and max-pooling. These two sets of

statistics are then fed into a two-layer point-wise convolution with

shared weights. The output channel size for the first convolution

is set to C/r to reduce computation, where r is the reduction rate.

After the convolution, the two outputs are merged by element-wise

summation and a channel attentionmap is generated using sigmoid

activation. Finally, the channel-refined feature XTC is obtained by

multiplying the attention map with XT .

3.4.3. Spatial attention and skip connection
As is shown in Figure 4C, SA takesXTC as the input and outputs

the spatial-refined feature XTCS. First, we extract and concatenate

the channel statistics using 1-D average-pooling and max-pooling.

The concatenated statistics are then fed into a 7 × 7 convolutional

layer with a sigmoid activation to generate a spatial attention map.

Finally, the spatially refined feature XTCS is obtained by multiplying

the attention map with XTC.

Instead of directly using XTCS as the output, we add it to the

rate coding feature by the skip connection to obtain a more robust

feature representation. The average operation is utilized to obtain

the rate coding feature from the original spiking feature. Finally, the

output XASD of the ASD module is the fusion of attention-refined

and rate-coded features.

4. Object recognition and detection

Object recognition requires the network to output the semantic

class of the specified image, and object detection requires bounding

boxes and corresponding classes of all objects in the image. In

this section, we explain our network structure that solve these two

problems, as is shown in Figure 5. The network is composed of

the spiking backbone, recognition network, and detection network.

The proposed SG ResNet is used as a spiking backbone to extract

the image features. The recognition network decodes the image

features and obtains the corresponding semantic classes. The

detection network takes multiple scales of image features as inputs

and outputs the bounding boxes and corresponding classes of

objects. Thus, the object recognition network consists of a spiking

backbone and a recognition network; the object detection network

consists of the spiking backbone and a detection network.

Frontiers inNeuroscience 07 frontiersin.org199

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

FIGURE 4

Illustration of attention spike decoder. Given spiking feature X, temporal-wise refinement is first performed using temporal attention, and the features

along time dimension are averaged in (A). Then, channel attention (B) and spatial attention (C) perform feature refinement sequentially. Finally, the

output of rate coding and spatial attention is added for the output.

FIGURE 5

Illustration of the networks in object recognition and object detection tasks. The object recognition network consists of the spiking backbone and

recognition network; the object detection network consists of the spiking backbone and detection network.

4.1. Spiking backbone

The spiking backbone consisted of an encoder layer and

a four-stage computational body. The encoder layer includes

a convolution with a stride of 2, an IF neuron, and a max-

pooling downsampling layer. It receives analog images as inputs

and converts them into spikes. The four-stage body is built with

spiking gate residual blocks and performs the bulk of computation.

Frontiers inNeuroscience 08 frontiersin.org200

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

The second to fourth stages downsample the features and output

8, 16, and 32 times downsampled spiking features, respectively.

The detailed kernel, depth, and channel size settings of the spiking

backbone are listed in Table 1. The layer configurations refers to

the classic ResNet configurations. As a result, the amount of layers

includes the total number of convolutional layers in the backbone

and the fully connected layer in the recognition network.

4.2. Recognition network

The recognition network has a small number of parameters.

First, the ASD module is used to decode the output of the fourth

stage in the backbone into the corresponding analog feature.

Then, the analog image feature is squeezed into a 1-D vector

by global average-pooling. A fully connected layer followed by a

softmax function classifies the vector into the semantic class, which

performs recognition of the images.

4.3. Detection network

The proposed spiking RetinaNet, a hybrid SNN-ANN object

detector, consists of an SG ResNet (SNN) and a detection network

(ANN). SG ResNet extracts the deep features of images for

detection network, and the ASD module does the intermediate

signal conversion. RetinaNet is chosen as our detection framework

because it is one of the most classic one-stage detectors. Its

backbone and detection subnet are highly decoupled. It fits well

with most ResNet-like backbones, making it very suitable for

verifying and comparing the feature extraction capabilities of the

backbones in detection tasks.

In this study, the feature pyramid petwork (FPN) (Lin et al.,

2017a) and detection head in the RetinaNet (Lin et al., 2017b)

model are used for the detection network. First, we use three

independent ASD modules to convert the spiking features of the

second to fourth stages in the backbone into analog features. Taking

these features as the input, the FPN constructs a five-level feature

pyramid with levels from P3 to P7, where the resolution of Pl
is 2l times lower than the input, and each Pl has 256 channels.

The feature pyramid is fed into a detection head with shared

weights between different scales. The detection head consists of

two sub-networks, the classification subnet and box regression

subnet, each having four convolutional layers to accomplish the

corresponding task. After the processing of the two sub-networks,

the final predictions are obtained, including the bounding box and

class information of the object.

5. Experiment

The methods are tested on the object recognition and detection

tasks. For object recognition, SG ResNet is compared with other

methods on both the static and neuromorphic image benchmarks,

including CIFAR-100, CIFAR-10, ImageNet, and DVS-CIFAR10.

For object detection, we demonstrate that the performance of our

spiking RetinaNet is very close to that of RetinaNet with artificial

neurons under the same experimental setup. Ablation studies are

then conducted on several vital questions, such as the ability to

overcome gradient vanishing.

Since both SG ResNet and SEW ResNet are variants of Spiking

ResNet and SEW ResNet based on ADD does not strictly meet

the spike constraints, we compare the two methods in the ablation

study and show the advantages of SG ResNet under the condition

of spike constraints.

In our experiments, the implementation and GPU acceleration

of all neurons are based on the PyTorch and SpikingJelly (Fang

et al., 2020) frameworks. On natural image datasets, we adopt IF

as the spiking neuron and set Vrest = 0 and Vth = 1. For the DVS-

CIFAR10 dataset, we adopt the PLIF neuron and set the initial time

constant to 2. The ArcTan function (σ ′(x) = 1
1+(πx)2

) is used as the

surrogate function to calculate the gradients of all spiking neurons.

For all experiments, we use the stochastic gradient descent (SGD)

optimizer with a momentum of 0.9. To reduce GPU memory cost

and accelerate training, we adopt the mixed precision training in

PyTorch. The training schedule, learning rate, batch size, and other

parameters are presented in Table 2.

5.1. Object recognition

Comparisons on CIAFR-100, CIFAR-10, ImageNet, and DVS-

CIFAR10 are presented in Table 3. Unless otherwise specified,

the decoding modules used after SG ResNet are ASD modules.

We list the deploying methods of all studies. Among them,

the spike-based BP means the direct-training method using

the surrogate gradient. ANN-to-SNN means the ANN-to-SNN

conversion method. Hybrid training combines the above two

methods and trains networks in two stages, and IDE training,

tandem learning, and SNN distillation are specialized training

methods designed for SNNs.

For a fair comparison, we use the standard top-1 accuracy in

the object recognition task for all datasets. Top-k accuracy is an

essential metric for assessingmodel generalization ability and refers

to the proportion of samples in the test set for which the correct

category appears in the top-k confidence of the model’s output. The

higher the metric, the better the model performs.

5.1.1. CIFAR-100
CIFAR-100 is a static image classification dataset with 60,000

images and a image size of 32 × 32. It contains 100 classes, and

each class has 500 images for training and 100 images for testing.

On the CIFAR-100 dataset, we apply random cropping with a

size of 32, a padding with a size of 4, and horizontal flipping for

data augmentation. Moreover, data normalization is applied by

subtracting the mean value of the pixel intensity and dividing by

the standard variance. This ensures that the input images have zero

mean and unitary variance.

We make some modifications to the SG ResNet for the CIFAR

dataset by setting the kernel size of the first convolutional layer to

3 × 3 and removing the max-pooling layer at the same time. We

test it on three networks with different depths, SG ResNet10, SG

ResNet18, and SGResNet34. As is expected, the greater the network

depth, the higher the accuracy. Thus, SG ResNet does not suffer

Frontiers inNeuroscience 09 frontiersin.org201

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

TABLE 1 Detailed network settings of SG ResNet.

10-layers 18-layers 34-layers 50-layers

Encoder layer
7× 7, 64, stride 2 for ImageNet and MSCOCO/3× 3, 64, stride 1 for CIFAR

3× 3 maxpool, stride 2 for ImageNet and MSCOCO/identity for CIFAR

Stage1

3× 3, 64

3× 3, 64

× 1

3× 3, 64

3× 3, 64

× 2

3× 3, 64

3× 3, 64

× 3

1× 1, 64

3× 3, 64

1× 1, 256

× 3

Stage2

3× 3, 128

3× 3, 128

∗

× 1

3× 3, 128

3× 3, 128

∗

× 2

3× 3, 128

3× 3, 128

∗

× 4

1× 1, 128

3× 3, 128

1× 1, 512

∗

× 4

Stage3

3× 3, 256

3× 3, 256

∗

× 1

3× 3, 256

3× 3, 256

∗

× 2

3× 3, 256

3× 3, 256

∗

× 6

1× 1, 256

3× 3, 256

1× 1, 1, 024

∗

× 6

Stage4

3× 3, 512

3× 3, 512

∗

× 1

3× 3, 512

3× 3, 512

∗

× 2

3× 3, 512

3× 3, 512

∗

× 3

1× 1, 512

3× 3, 512

1× 1, 2, 048

∗

× 3

∗Represents that the first SGR block performs downsampling.

TABLE 2 Training settings and hyper parameters.

Dataset Learning rate schedule Epoch Learning rate Weight decay Batch size GPU

CIFAR-100 Step, Tsteps = [60, 120, 160] 200 0.1 0.0001 32 1

CIFAR-10 Step, Tstep = [100, 150] 200 0.1 0.0001 32 1

ImageNet Cosine, Tmax = 320 320 0.1 0 32 8

DVS-CIFAR10 Cosine, Tmax = 64 64 0.01 0 8 1

MSCOCO Step, Tstep = [64, 70] 72 0.01 0.0001 2 8

from the gradient vanishing problem. We achieve 75.64% accuracy

with a time step of only 4 on the SG ResNet34 network, which is

much better than the other methods in terms of both latency and

performance.

5.1.2. CIFAR-10
CIFAR-10 is a small-size dataset similar to CIFAR-100. It

has only 10 classes, and each class contains 5,000 images for

training and 1,000 images for testing. Data augmentation and

pre-processing on CIFAR-10 are the same as CIFAR-100 dataset.

On CIFAR-10, we adopted a network structure similar to

CIFAR-100 and conducted experiments on the three depths.

Compared with other network-structure-level methods of SNNs,

we achieve 94.52% accuracy with a time step of 4 on the SG

ResNet34 network. This confirms the superiority of our newly

proposed method.

5.1.3. ImageNet
ImageNet (Deng et al., 2009) is a large-scale dataset which

contains 1.28 million images for training and 50,000 images for

validation. On this dataset, we randomly crop the images with a size

of 224 × 224. Furthermore, random horizontal flipping is further

applied for augmentation. Similar to CIFAR-100 and CIFAR-10, we

normalize every image to ensure zero mean and unitary variance.

On ImageNet, we conduct experiments on SG ResNet18, SG

ResNet34, and SG ResNet50. With the ASD module, SG ResNet34

has achieved an accuracy of 65.08%. Furthermore, SG ResNet50

has achieved 66.25% accuracy with a time step of only 4. Here, SG

ResNet50 uses rate coding as the decoder because we found that

SG ResNet50 with ASD decoder converges much faster than rate

coding, indicating an overfitting problem in the training process.

Same as that in CIFAR datasets, we observe an enhancement

of accuracy in deeper networks. Our SG ResNet outperforms

some studies with spike-based BP and hybrid training methods.

Compared with ANN-to-SNN methods, we report competitive

results with much fewer time steps.

5.1.4. DVS-CIFAR10
DVS-CIFAR10 (Li et al., 2017) is a neuromorphic dataset

which contains 10,000 images in the format of spike train. It

is obtained by recording the moving images of CIFAR-10 on a

LCD monitor with a DVS camera. On this dataset, we adopt the

AER data pre-processing (Fang et al., 2021b). During the pre-

processing, the event is split into 16 slices(same number as time

steps). Furthermore, for each training sample, we randomly deleted

Frontiers inNeuroscience 10 frontiersin.org202

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

TABLE 3 Top-1 accuracy and time step comparisons on object recognition datasets.

Dataset Network Deploying methods Time steps Accuracy

CIFAR-100

ResNet20 (Han et al., 2020) ANN-to-SNN 4,096 67.82%

VGG-like (Yan et al., 2021) ANN-to-SNN 300 71.84%

ResNet20 (Liu et al., 2022) ANN-to-SNN 16 68.69%

VGG11 (Rathi et al., 2020) Hybrid Training 125 67.84%

CIFARNet-F (Xiao et al., 2021) IDE Training 100 73.07%

Ms ResNet110 (Hu et al., 2021) Spike-based BP – 66.83%

AutoSNN (Na et al., 2022) Spike-based BP 8 69.16%

SNASNet (Kim et al., 2022) Spike-based BP 8 73.04%

MT-ResNet-20 (Wang et al., 2023) Spike-based BP 5 73.45%

SG ResNet10 (ours) Spike-based BP 4 73.19%

SG ResNet18 (ours) Spike-based BP 4 74.86%

SG ResNet34 (ours) Spike-based BP 4 75.64%

CIFAR-10

ResNet20 (Han et al., 2020) ANN-to-SNN 4,096 91.36%

VGG16 (Rathi et al., 2020) Hybrid training 200 92.02%

CIFARNet (Wu et al., 2021) Tandem learning 8 90.98%

ResNet18 (Xu et al., 2023b) SNN Distillation 4 93.41%

ResNet19 with tdBN (Zheng et al., 2021) Spike-based BP 6 93.16%

Ms ResNet110 (Hu et al., 2021) Spike-based BP – 92.12%

AutoSNN (Na et al., 2022) Spike-based BP 8 93.15%

SNASNet (Kim et al., 2022) Spike-based BP 8 94.12%

DS-ResNet (Feng et al., 2022) Spike-based BP 4 94.25%

MT-ResNet-20 (Wang et al., 2023) Spike-based BP 5 94.44%

SG ResNet10 (ours) Spike-based BP 4 93.0%

SG ResNet18 (ours) Spike-based BP 4 93.92%

SG ResNet34 (ours) Spike-based BP 4 94.52%

ImageNet

ResNet34 (Han et al., 2020) ANN-to-SNN 4,096 69.89%

ResNet20 (Li et al., 2021) ANN-to-SNN 32 64.54%

ResNet34 (Rathi et al., 2020) Hybrid Training 250 61.48%

ResNet34 with tdBN (Zheng et al., 2021) Spike-based BP 6 63.72%

ResNet50 with tdBN (Zheng et al., 2021) Spike-based BP 6 64.88%

Ms ResNet34 (Hu et al., 2021) Spike-based BP 6 69.42%

SG ResNet18 (ours) Spike-based BP 4 62.51%

SG ResNet34 (ours) Spike-based BP 4 65.08%

SG ResNet50 (ours) Spike-based BP 4 66.25%

DVS-CIFAR10

CIFARNet (Wu et al., 2021) Tandem learning 20 65.59%

7-layer CNN (Wu et al., 2019) Spike-based BP 40 60.50%

ResNet-19 (Zheng et al., 2021) Spike-based BP 10 67.80%

Ms ResNet20 (Hu et al., 2021) Spike-based BP – 75.56%

AutoSNN (Na et al., 2022) Spike-based BP 20 72.50%

DS-ResNet (Feng et al., 2022) Spike-based BP – 70.36%

7B SG ResNet (ours) Spike-based BP 16 70.60%

Frontiers inNeuroscience 11 frontiersin.org203

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

four slices for augmentation.We use a 7B-Net which contains seven

SGR blocks, which has achieved 70.6% accuracy with a time step

of 16.

5.2. Object detection

We validate the effectiveness of spiking RetinaNet on the

MSCOCO (Lin et al., 2014) dataset and compare it with ANN

RetinaNet. MSCOCO is a large-scale object detection dataset

containing 330K images and 80 target classes. In the experiments,

the train and val sets of the 2017 release are used as our training and

testing datasets, respectively. We randomly crop the images with a

size of 1,333 × 800. Furthermore, random horizontal flipping with

a ratio of 0.5 was applied for augmentation during training.

Two metrics, mean average precision (mAP) and mean average

recall (mAR), are used to evaluate object detection effectiveness.AP

evaluates the ability of the detector to perform correct classification

and accurate localization of a certain category. mAP is the average

value of AP for each category. In addition to the mAP, we evaluate

the detection performance for objects of different sizes. APS, APM ,

and APL indicate the detection performance for small, medium,

and large objects, respectively. Unlike precision, recall is concerned

with whether the detector can detect more ground truths. AR is the

average recall over IoU from 0.5 to 1.0. Similarly, we also use ARS,

ARM , and ARL to represent the recall of small, medium, and large

objects, respectively.

The training schedules are listed in Table 2. Time steps of all SG

ResNet backbones are 4. The experimental results are presented in

Table 4. For each comparison group, the largestmAP andmAR are

in bold, and the second largestmAP andmAR are underlined.

It is worth mentioning that SG ResNet consumes tens of times

less energy than ANN ResNet, which is quantitatively analyzed

in Section 5.3.1. With such energy efficiency, spiking RetinaNet

can accomplish the object detection task effectively. Under the

condition of using backbones of the same depth, spiking RetinaNet

achieved a slightly lower mAP than ANN RetinaNet but with

a far more energy-efficient backbone. Spiking RetinaNet with

SG ResNet18 and ASD module achieved an mAP of 0.285 and

mAR of 0.476. By comparing the detection results of different

objects, we find that spiking RetinaNet is more robust in detecting

small objects. Compared with the median and large objects, the

performance degradation of small objects is lower. The APS and

ARS of spiking RetinaNet with SG ResNet18 and ASD are even

higher than those of ANN RetinaNet.

5.3. Ablation studies

5.3.1. Energy e�ciency comparison
The energy efficiency of SG ResNet is analyzed in the study. The

network energy consumption is related to the type of operations

it employs and the number of floating-point operations (FLOPS).

Most operations in the convolutional layers of ANNs are multiply-

and-accumulate (MAC) (Panda et al., 2020). However, because the

spiking signals used by SNNs are binary, the convolutional layers of

SNNs use only the accumulate (AC) operations. These operations

occur only when the spiking neuron fires a spike. Certainly, some

layers will also adopt MAC operations in SNNs, such as the encoder

layer and the ASD module in SG ResNet. The FLOPS counts of

the convolutional layers of ANN and SNN for CIFAR-100 are

calculated using Eqs 18 and 19, respectively.

FLOPSANN = O2 × Cin × Cout × k2, (18)

FLOPSSNN = O2 × Cin × Cout × k2 × Fr × T, (19)

where O is the output size, CIN and Cout denote the input and

output channel size, and k is the weight kernel size. Because the

spike activity of SNN is sparse, the firing rate Fr ≪ 1 in each

convolutional layer. For the energy calculation, we take the energy

consumption of 45nm COMS technology (Han et al., 2015) as the

criterion, in which 32-bit integer MAC operation consumes 3.1pJ,

and 32-bit integer AC operation consumes 0.1pJ. We calculate the

FLOPS of MACs and ACs in SNN and ANN, respectively, and

further estimate the total energy consumption. Using 3 × 32 ×

32 CIFAR images as the input, we analyzed ANN ResNet18 and

SG ResNet18. Because the number of parameters and FLOPs of

batch normalization are small and can be incorporated into the

convolutional layer during deployment, we ignored the effect of

batch normalization in our experiments. Analysis results are shown

in Table 5.

Regarding parameter numbers, SG ResNet18 has only 0.03M

more than ANN ResNet18 (from the ASD module). In terms

of FLOPS, SG ResNet18 has only 1.9M MACs, and most of the

operations are ACs. The total energy consumed by SG ResNet18 is

4.1× 107pJ, which is 41.7 times lower than that of ANN ResNet18.

5.3.2. E�ects of the ASD module
We propose the attention spike decoder to convert image

features from spiking to analog. In this part, we validate the

superiority of the ASD module over the rate coding method in

SG ResNet10, SG ResNet 18, and SG ResNet 34. Experiments

are conducted on CIFAR-100, and the training setups of the two

decoders are the same. Results are presented in Table 6.

In this experiment, the ASD module has only 0.033M

parameters and 0.08M FLOPS, with an energy consumption of

only 2.55 × 105pJ (0.63% of the total energy consumption of SG

ResNet18). This shows that the improvement brought by ASD is

due to its superior design rather than the increase in parameters or

computational power.

As is shown in the table, the attention spike decoder has

improved the accuracy compared with rate coding. SG ResNet34

has the highest accuracy improvement among the three deep

network structures, from 75.01 to 75.64%. The previous object

detection experiments in Table 4 also show that the ASD module

performs better than rate coding. In spiking RetinaNet with a

SG ResNet18 backbone, the ASD module has improved the mAP

and mAR by 0.5 and 0.8%, respectively. In the experiment of SG

ResNet50 with ASD on ImageNet, an overfitting problem occurs,

indicating that the ASD module may not fit well with large models

with bottleneck modules.

Frontiers inNeuroscience 12 frontiersin.org204

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

TABLE 4 Object detection results of ANN RetinaNet and spiking RetinaNet on the MSCOCO dataset.

Network Backbone With ASD mAP APS APM APL mAR ARS ARM ARL

ANN RetinaNet ANN ResNet18 ✗ 0.299 0.143 0.313 0.417 0.478 0.269 0.502 0.659

Spiking RetinaNet SG ResNet18 ✗ 0.280 0.141 0.290 0.395 0.468 0.259 0.497 0.636

Spiking RetinaNet SG ResNet18 X 0.285 0.150 0.300 0.400 0.476 0.272 0.508 0.643

ANN RetinaNet ANN ResNet34 ✗ 0.319 0.159 0.339 0.448 0.497 0.289 0.523 0.680

Spiking RetinaNet SG ResNet34 ✗ 0.292 0.148 0.308 0.406 0.478 0.268 0.510 0.653

Spiking RetinaNet SG ResNet34 X 0.296 0.153 0.313 0.407 0.484 0.280 0.510 0.657

TABLE 5 Energy e�ciency comparison between ANN ResNet18 and SG

ResNet18.

Network Parameters MACs ACs Energy

ANN ResNet18 11.22M 549.2M 0M 1.7× 109pJ

SG ResNet18 11.25M 1.9M 348.9M 4.1× 107pJ

TABLE 6 Top-1 accuracy comparisons between rate coding method and

our attention spike decoder on CIFAR-100 dataset.

Network Rate coding Attention spike decoder

SG ResNet10 72.68% 73.19%

SG ResNet18 74.62% 74.86%

SG ResNet34 75.01% 75.64%

The bold values indicate the maximum accuracies of the comparison.

TABLE 7 Top-1 accuracy comparisons between SG ResNet and spiking

ResNet on the CIFAR-100 dataset.

Network SG ResNet Spiking ResNet

ResNet10 72.68% 73.00%

ResNet18 74.62% 74.36%

ResNet34 75.01% 32.05%

The bold values indicate the maximum accuracies of the comparison.

5.3.3. Validation on solving the gradient vanishing
problem

The proposed SG ResNet solves the problem of gradient

vanishing in spiking ResNet. Therefore, in this section, we compare

SG ResNet with spiking ResNet in the structures of ResNet10,

ResNet18, and ResNet34. The training setups of the two methods

are the same. The experimental results are shown in Table 7. To

eliminate the impact of the ASDmodule, rate coding is used for the

decoding scheme in both networks.

As is illustrated in Table 7, spiking ResNet has an acceptable

accuracy over two relatively shallow network structures, ResNet10

and ResNet18. However, when the depth reached 34, gradient

vanishing occurs. As the network depth increased from 18 to 34,

the accuracy of spiking ResNet decreases from 74.36 to 32.05%. In

contrast, with increase in depth, an enhancement is observed in

accuracy of SGResNet. Furthermore, our SGResNet has the highest

accuracy of 75.01% on the deepest ResNet34, thus proving that SG

ResNet effectively solves the gradient vanishing problem.

TABLE 8 Ablation study on the relationship between SG ResNet and SEW

ResNet on CIFAR-100 dataset.

Network SG ResNet SEW ResNet
(IAND)

SEW ResNet
(ADD)

ResNet10 72.68% 71.96% 73.02%

ResNet18 74.62% 73.89% 74.90%

ResNet34 75.01% 73.8% 75.93%

Values in the table represents the top-1 accuracy. The bold values indicate the maximum

accuracies of the comparison.

5.3.4. Comparison and discussion on SEW ResNet
Previously, SEW ResNet (Fang et al., 2021a) is also a variant

of spiking ResNet that analyzed and solved the gradient vanishing

problem from the perspective of residual learning. They analyzed

the reason for the gradient vanishing theoretically and proposed

the element-wise function to solve this problem. However, the

most effective one of their proposed element-wise functions is

ADD, which makes the network no longer spiking. In our SG

ResNet, a gate mechanism is introduced to solve gradient vanishing

while ensuring that the network is still spiking. In this section,

we compare SG ResNet with SEW ResNet using IAND and ADD.

Experimental results are shown in Table 8. To avoid the impact

of the ASD module, the decoding scheme used in all methods is

rate coding.

IAND is a binary operator that returns the inverse and of two

inputs. The output of IAND operation with two spiking inputs

remains a spiking signal. Thus, the SEW ResNet with IAND is

a deployable network. Compared with SEW ResNet with IAND,

our SG ResNet performs better at every depth. On the CIFAR-

100 dataset, SG ResNet34 has achieved 1.21% higher accuracy than

SEW ResNet34 (IAND). ADD is a binary operator that returns the

addition of two inputs. However, SEW ResNet with ADD is more

like an ANN rather than an SNN. As is expected, SEW ResNet

(ADD) has the highest accuracy among the three methods.

Based on the above results, the SEW ResNet (ADD) structure,

which is similar to the original ResNet, can achieve the best

performance without considering signal type. However, this does

not necessarily mean that it is the best. Our SG ResNet can be

considered as an better compromise that improves accuracy while

adhering to the spiking signal constraint.

5.3.5. Comparison between BSG and BSG*
As is mentioned in Section 3.3, Eq. 14 is the general expression

for our gate signal, and the module constituted by such Gate

Frontiers inNeuroscience 13 frontiersin.org205

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

TABLE 9 Ablation study on the binary selection gate formulations on

CIFAR-100.

Network BSG BSG*

SG ResNet10 72.68% 71.75%

SG ResNet18 74.62% 73.71%

SG ResNet34 75.01% 74.21%

Values in the table represents the top-1 accuracy. The bold values indicate the maximum

accuracies of the comparison.

is BSG*. Furthermore, if the linear transformation in Eq. 14 is

ignored and Gate directly equals H, then the module is of type

BSG. This part compares these two modules, and the experimental

results are shown in Table 9. To avoid the impact of the ASD

module, rate coding is used as the decoding scheme for both

methods. As is seen, both BSG and BSG* solve the gradient-

vanishing problem. A deeper network brings the enhancement

of accuracy. Through a lateral comparison, the network using

BSG is more accurate than BSG*, primarily, for two reasons

accounting. First, to reduce the number of parameters, W and B

are only learnable in the channel dimension, which may lead to

inaccuracy in the linear transformation. Second, we use heaviside

step function to binarize the gate signal. During backpropagation,

we use gradient surrogate functions, which may lead to inaccurate

optimization of the gate signal. In summary, the effect of BSG*

with linear transformation was not as good as that of BSG at

present. We also hope that our research can help realize the

effectiveness of the gate mechanism and further promote the

detailed design.

6. Discussion and conclusion

This study focuses on the issues to be solved during direct

training of high-performance SNNs in object recognition and

detection tasks. We introduced a binary gate mechanism and

presented the spiking gate ResNet to form deep architectures in

SNNs. This is the first time that a widely used gate mechanism

in RNNs is being combined with SNNs in the structural

design. Through gradient analysis, we prove that SG ResNet

can overcome gradient vanishing or explosion problems. An

attention spike decoder is also proposed to address the spiking

signal decoding problem. Using SG ResNet as the backbone

and the ASD module for information decoding, we propose

spiking RetinaNet, which is the first direct-training hybrid SNN-

ANN detector for RGB images. The experimental results show

that SG ResNet with an ASD decoder outperforms most direct-

training SNNs with the surrogate gradient method on the object

recognition task. Furthermore, spiking RetinaNet has achieved a

satisfactory performance in object detection with an energy efficient

spiking backbone.

Regarding the future research topics, the binary gate

mechanism is non-trivial and valuable to be further explored,

including the efficiency-performance trade-off of parameterized

gate mechanism and binarization of gate signals. In addition, it

will be quite helpful and contributive to investigate how to use

gate mechanism in the residual connection of spiking transformer.

Finally, downstream vision applications of spiking neural networks

are also what we consider to be a crucial direction, including

image segmentation, object detection, video recognition, optic flow

estimation, and so on.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

HZ: methodology, software, and writing—original draft. YL:

formal analysis and writing—review and editing. BH, XF, and

YW: writing—review and editing. YZ: methodology and writing—

review and editing. All authors contributed to the article and

approved the submitted version.

Funding

This study was supported by STI 2030-Major Projects

2021ZD0201403, in part by NSFC 62088101 Autonomous

Intelligent Unmanned Systems, and in part by the Open Research

Project of the State Key Laboratory of Industrial Control

Technology, Zhejiang University, China (No. ICT2022B04).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeuroscience 14 frontiersin.org206

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

References

Bu, T., Ding, J., Yu, Z., and Huang, T. (2022). Optimized potential initialization for
low-latency spiking neural networks. arXiv. [preprint]. doi: 10.48550/arXiv.2202.01440

Chakraborty, B., She, X., and Mukhopadhyay, S. (2021). A fully spiking hybrid
neural network for energy-efficient object detection. IEEE Trans. Image Process. 30,
9014–9029. doi: 10.1109/TIP.2021.3122092

Che, K., Leng, L., Zhang, K., Zhang, J., Meng, Q., Cheng, J., et al. (2022).
Differentiable hierarchical and surrogate gradient search for spiking neural networks.
Adv. Neural Inf. Process. Syst. 35, 24975–24990.

Cheng, X., Zhang, T., Jia, S., and Xu, B. (2023). Meta neurons improve spiking
neural networks for efficient spatio-temporal learning. Neurocomputing 531, 217–225.
doi: 10.1016/j.neucom.2023.02.029

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On
the properties of neural machine translation: encoder-decoder approaches. arXiv.
[preprint]. doi: 10.48550/arXiv.1409.1259

Cordone, L., Miramond, B., and Thierion, P. (2022). Object detection
with spiking neural networks on automotive event data. arXiv. [preprint].
doi: 10.48550/arXiv.2205.04339

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., et al. (2009). “ImageNet: a
large-scale hierarchical image database," in 2009 IEEE Conference on Computer Vision
and Pattern Recognition (Miami, FL: IEEE), 248–255. doi: 10.1109/CVPR.2009.5206848

Deng, S., and Gu, S. (2021). Optimal conversion of conventional artificial neural
networks to spiking neural networks. arXiv. [preprint]. doi: 10.48550/arXiv.2103.00476

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., Pfeiffer, M., et al. (2015).
“Fast-classifying, high-accuracy spiking deep networks through weight and threshold
balancing," in 2015 International Joint Conference on Neural Networks (IJCNN)
(Killarney: IEEE), 1–8. doi: 10.1109/IJCNN.2015.7280696

Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., et al. (2020). Spikingjelly.
Available online at: https://github.com/fangwei123456/spikingjelly (accessed August
15, 2022).

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., Tian, Y., et al. (2021a).
Deep residual learning in spiking neural networks. Adv. Neural Inf. Process. Syst. 34,
21056–21069. doi: 10.48550/arXiv.2102.04159

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., Tian, Y., et al.
(2021b). “Incorporating learnable membrane time constant to enhance
learning of spiking neural networks," in Proceedings of the IEEE/CVF
International Conference on Computer Vision (Montreal, QC: IEEE), 2661–2671.
doi: 10.1109/ICCV48922.2021.00266

Feng, L., Liu, Q., Tang, H., Ma, D., and Pan, G. (2022). Multi-level firing with spiking
Ds-ResNet: enabling better and deeper directly-trained spiking neural networks. arXiv.
[preprint]. doi: 10.48550/arXiv.2210.06386

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single
Neurons, Populations, Plasticity. Cambridge: Cambridge University Press.
doi: 10.1017/CBO9780511815706

Guo, Y., Chen, Y., Zhang, L., Liu, X., Wang, Y., Huang, X., et al. (2022a). Im-loss:
information maximization loss for spiking neural networks. Adv. Neural Inf. Process.
Syst. 35, 156–166.

Guo, Y., Chen, Y., Zhang, L., Wang, Y., Liu, X., Tong, X., et al. (2022b). “Reducing
information loss for spiking neural networks," in Computer Vision-ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XI (Tel
Aviv: Springer), 36–52. doi: 10.1007/978-3-031-20083-0_3

Guo, Y., Huang, X., and Ma, Z. (2023). Direct learning-based deep spiking neural
networks: a review. arXiv. [preprint]. doi: 10.48550/arXiv.2305.19725

Guo, Y., Tong, X., Chen, Y., Zhang, L., Liu, X., Ma, Z., et al. (2022c). “RecDis-
SNN: rectifying membrane potential distribution for directly training spiking neural
networks," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (New Orleans, LA: IEEE), 326–335. doi: 10.1109/CVPR52688.2022.00042

Han, B., and Roy, K. (2020). “Deep spiking neural network: energy efficiency
through time based coding," in European Conference on Computer Vision (Glasgow:
Springer), 388–404. doi: 10.1007/978-3-030-58607-2_23

Han, B., Srinivasan, G., and Roy, K. (2020). “RMP-SNN: RESIDUAL membrane
potential neuron for enabling deeper high-accuracy and low-latency spiking neural
network," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (Seattle, WA: IEEE), 13558–13567. doi: 10.1109/CVPR42600.2020.01357

Han, S., Pool, J., Tran, J., and Dally, W. (2015). “Learning both weights and
connections for efficient neural network.” inAdvances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems 2015
(Montreal, QC), 1135–1143. Available online at: https://proceedings.neurips.cc/paper/
2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html

Hao, Y., Huang, X., Dong, M., and Xu, B. (2020). A biologically plausible supervised
learning method for spiking neural networks using the symmetric stdp rule. Neural
Netw. 121, 387–395. doi: 10.1016/j.neunet.2019.09.007

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (Las Vegas, NV: IEEE), 770–778. doi: 10.1109/CVPR.2016.90

Hu, Y., Wu, Y., Deng, L., and Li, G. (2021). Advancing residual learning towards
powerful deep spiking neural networks. arXiv. [preprint]. doi: 10.48550/arXiv.2112.
08954

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: accelerating deep network
training by reducing internal covariate shift," in International Conference on Machine
Learning (Lille: JMLR), 448–456. Available online at: http://proceedings.mlr.press/v37/
ioffe15.html

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention
for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259.
doi: 10.1109/34.730558

Kim, S., Park, S., Na, B., and Yoon, S. (2020). Spiking-yolo: spiking neural network
for energy-efficient object detection. Proc. AAAI Conf. Artif. Intell. 34, 11270–11277.
doi: 10.1609/aaai.v34i07.6787

Kim, Y., Li, Y., Park, H., Venkatesha, Y., and Panda, P. (2022). “Neural architecture
search for spiking neural networks," in Computer Vision-ECCV 2022: 17th European
Conference (Tel Aviv: Springer), 36–56. doi: 10.1007/978-3-031-20053-3_3

Kugele, A., Pfeil, T., Pfeiffer, M., and Chicca, E. (2021). “Hybrid SNN-
ANN: energy-efficient classification and object detection for event-based vision,"
in DAGM German Conference on Pattern Recognition (Bonn: Springer), 297–312.
doi: 10.1007/978-3-030-92659-5_19

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-
based backpropagation for training deep neural network architectures. Front. Neurosci.
14, 119. doi: 10.3389/fnins.2020.00119

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). CIFAR10-DVS: an event-stream
dataset for object classification. Front. Neurosci. 11, 309. doi: 10.3389/fnins.2017.00309

Li,W., Chen, H., Guo, J., Zhang, Z., andWang, Y. (2022). “Brain-inspiredmultilayer
perceptron with spiking neurons," in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (New Orleans, LA: IEEE), 783–793.
doi: 10.1109/CVPR52688.2022.00086

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021). “A free lunch from ANN:
Towards efficient, accurate spiking neural networks calibration,” in Proceedings of the
38th International Conference onMachine Learning, edsM.Meila and T. Zhang (PMR),
6316–6325. Available online at: http://proceedings.mlr.press/v139/li21d.html

Li, Y., and Zeng, Y. (2022). Efficient and accurate conversion of spiking neural
network with burst spikes. arXiv. [preprint]. doi: 10.48550/arXiv.2204.13271

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017a).
“Feature pyramid networks for object detection," in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (Honolulu, HI: IEEE), 2117–2125.
doi: 10.1109/CVPR.2017.106

Lin, T.-Y., Goyal, P., Girshick, R., He, K., andDollár, P. (2017b). “Focal loss for dense
object detection," in Proceedings of the IEEE International Conference on Computer
Vision (Venice: IEEE), 2980–2988. doi: 10.1109/ICCV.2017.324

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft coco: common objects in context," in European Conference on Computer
Vision (Cham: Springer), 740–755. doi: 10.1007/978-3-319-10602-1_48

Liu, F., Zhao, W., Chen, Y., Wang, Z., and Jiang, L. (2022). SpikeConverter: an
efficient conversion framework zipping the gap between artificial neural networks
and spiking neural networks. Proc. AAAI Conf. Artif. Intell. 36, 1692–1701.
doi: 10.1609/aaai.v36i2.20061

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., Luo, Z.-Q., et al. (2022). “Training
high-performance low-latency spiking neural networks by differentiation on
spike representation," in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (New Orleans, LA: IEEE), 12444–12453.
doi: 10.1109/CVPR52688.2022.01212

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Miquel, J. R., Tolu, S., Schöller, F. E., and Galeazzi, R. (2021). “Retinanet
object detector based on analog-to-spiking neural network conversion," in 2021 8th
International Conference on Soft Computing and Machine Intelligence (ISCMI) (Cario:
IEEE), 201–205. doi: 10.1109/ISCMI53840.2021.9654818

Mostafa, H. (2017). Supervised learning based on temporal coding in
spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.
doi: 10.1109/TNNLS.2017.2726060

Frontiers inNeuroscience 15 frontiersin.org207

https://doi.org/10.3389/fnins.2023.1229951
https://doi.org/10.48550/arXiv.2202.01440
https://doi.org/10.1109/TIP.2021.3122092
https://doi.org/10.1016/j.neucom.2023.02.029
https://doi.org/10.48550/arXiv.1409.1259
https://doi.org/10.48550/arXiv.2205.04339
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/arXiv.2103.00476
https://doi.org/10.1109/IJCNN.2015.7280696
https://github.com/fangwei123456/spikingjelly
https://doi.org/10.48550/arXiv.2102.04159
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.48550/arXiv.2210.06386
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1007/978-3-031-20083-0_3
https://doi.org/10.48550/arXiv.2305.19725
https://doi.org/10.1109/CVPR52688.2022.00042
https://doi.org/10.1007/978-3-030-58607-2_23
https://doi.org/10.1109/CVPR42600.2020.01357
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2112.08954
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1109/34.730558
https://doi.org/10.1609/aaai.v34i07.6787
https://doi.org/10.1007/978-3-031-20053-3_3
https://doi.org/10.1007/978-3-030-92659-5_19
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1109/CVPR52688.2022.00086
http://proceedings.mlr.press/v139/li21d.html
https://doi.org/10.48550/arXiv.2204.13271
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1609/aaai.v36i2.20061
https://doi.org/10.1109/CVPR52688.2022.01212
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/ISCMI53840.2021.9654818
https://doi.org/10.1109/TNNLS.2017.2726060
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zhang et al. 10.3389/fnins.2023.1229951

Na, B., Mok, J., Park, S., Lee, D., Choe, H., Yoon, S., et al. (2022). “AutoSNN:
Towards energy-efficient spiking neural networks,” in International Conference on
Machine Learning, eds K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S.
Sabato (Baltimore, MD: PMLR), 16253–16269. Available online at: https://proceedings.
mlr.press/v162/na22a.html

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Panda, P., Aketi, S. A., and Roy, K. (2020). Toward scalable, efficient, and
accurate deep spiking neural networks with backward residual connections, stochastic
softmax, and hybridization. Front. Neurosci. 14, 653. doi: 10.3389/fnins.2020.
00653

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent
backpropagation.arXiv. [preprint]. doi: 10.48550/arXiv.2005.01807

Rueckauer, B., Lungu, I.-A., Hu, Y., and Pfeiffer, M. (2016). Theory and tools for
the conversion of analog to spiking convolutional neural networks. arXiv. [preprint].
doi: 10.48550/arXiv.1612.04052

Saunders, D. J., Siegelmann, H. T., Kozma, R., et al. (2018). “STDP learning of
image patches with convolutional spiking neural networks," in 2018 International
Joint Conference on Neural Networks (IJCNN) (Rio de Janeiro: IEEE), 1–7.
doi: 10.1109/IJCNN.2018.8489684

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95.
doi: 10.3389/fnins.2019.00095

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Highway networks. arXiv.
[preprint]. doi: 10.48550/arXiv.1505.00387

Tavanaei, A., and Maida, A. (2019). BP-STDP: approximating backpropagation
using spike timing dependent plasticity. Neurocomputing 330, 39–47.
doi: 10.1016/j.neucom.2018.11.014

Wang, X., Zhang, Y., and Zhang, Y. (2023). MT-SNN: Enhance spiking neural
network with multiple thresholds. arXiv [Preprint]. arXiv: 2303.11127.

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). “CBAM: convolutional block
attention module," in Proceedings of the European Conference on Computer Vision
(ECCV) (Cham: Springer), 3–19. doi: 10.1007/978-3-030-01234-2_1

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., Tan, K. C., et al. (2021). A tandem
learning rule for effective training and rapid inference of deep spiking neural networks.

IEEE Trans. Neural Networks Learn. Syst. 34, 446–460. doi: 10.1109/TNNLS.2021.
3095724

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., Shi, L., et al. (2019). Direct training
for spiking neural networks: faster, larger, better. Proc. AAAI Conf. Artif. Intell. 33,
1311–1318. doi: 10.1609/aaai.v33i01.33011311

Wunderlich, T. C., and Pehle, C. (2021). Event-based backpropagation can
compute exact gradients for spiking neural networks. Sci. Rep. 11, 1–17.
doi: 10.1038/s41598-021-91786-z

Xiao, M., Meng, Q., Zhang, Z., Wang, Y., and Lin, Z. (2021). Training feedback
spiking neural networks by implicit differentiation on the equilibrium state. Adv.
Neural Inf. Process. Syst. 34, 14516–14528. doi: 10.48550/arXiv.2109.14247

Xu, Q., Li, Y., Fang, X., Shen, J., Liu, J. K., Tang, H., et al. (2023a). Biologically
inspired structure learning with reverse knowledge distillation for spiking neural
networks. arXiv. [preprint]. doi: 10.48550/arXiv.2304.09500

Xu, Q., Li, Y., Shen, J., Liu, J. K., Tang, H., Pan, G., et al. (2023b). “Constructing deep
spiking neural networks from artificial neural networks with knowledge distillation," in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
7886–7895.

Yan, Z., Zhou, J., and Wong, W.-F. (2021). Near lossless transfer learning
for spiking neural networks. Proc. AAAI Conf. Artif. Intell. 35, 10577–10584.
doi: 10.1609/aaai.v35i12.17265

Yao, M., Gao, H., Zhao, G., Wang, D., Lin, Y., Yang, Z., et al. (2021). “Temporal-
wise attention spiking neural networks for event streams classification," in Proceedings
of the IEEE/CVF International Conference on Computer Vision (Montreal, QC: IEEE),
10221–10230. doi: 10.1109/ICCV48922.2021.01006

Yao, X., Li, F., Mo, Z., and Cheng, J. (2022). GLIF: a unified gated
leaky integrate-and-fire neuron for spiking neural networks. arXiv. [preprint].
doi: 10.48550/arXiv.2210.13768

Yi, Z., Lian, J., Liu, Q., Zhu, H., Liang, D., Liu, J., et al. (2023). Learning
rules in spiking neural networks: a survey. Neurocomputing 531, 163–179.
doi: 10.1016/j.neucom.2023.02.026

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021). Going deeper with directly-
trained larger spiking neural networks. Proc. AAAI Conf. Artif. Intell. 35, 11062–11070.
doi: 10.1609/aaai.v35i12.17320

Zhou, S., Li, X., Chen, Y., Chandrasekaran, S. T., and Sanyal, A. (2021). Temporal-
coded deep spiking neural network with easy training and robust performance. Proc.
AAAI Conf. Artif. Intell. 35, 11143–11151. doi: 10.1609/aaai.v35i12.17329

Frontiers inNeuroscience 16 frontiersin.org208

https://doi.org/10.3389/fnins.2023.1229951
https://proceedings.mlr.press/v162/na22a.html
https://proceedings.mlr.press/v162/na22a.html
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2020.00653
https://doi.org/10.48550/arXiv.2005.01807
https://doi.org/10.48550/arXiv.1612.04052
https://doi.org/10.1109/IJCNN.2018.8489684
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1038/78829
https://doi.org/10.48550/arXiv.1505.00387
https://doi.org/10.1016/j.neucom.2018.11.014
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/TNNLS.2021.3095724
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1038/s41598-021-91786-z
https://doi.org/10.48550/arXiv.2109.14247
https://doi.org/10.48550/arXiv.2304.09500
https://doi.org/10.1609/aaai.v35i12.17265
https://doi.org/10.1109/ICCV48922.2021.01006
https://doi.org/10.48550/arXiv.2210.13768
https://doi.org/10.1016/j.neucom.2023.02.026
https://doi.org/10.1609/aaai.v35i12.17320
https://doi.org/10.1609/aaai.v35i12.17329
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 13 September 2023

DOI 10.3389/fnins.2023.1225871

OPEN ACCESS

EDITED BY

Anup Das,

Drexel University, United States

REVIEWED BY

Shuangming Yang,

Tianjin University, China

Xuchong Zhang,

Xi’an Jiaotong University, China

Sen Lu,

The Pennsylvania State University (PSU),

United States

*CORRESPONDENCE

Changqing Xu

cqxu@xidian.edu.cn

†These authors share first authorship

RECEIVED 20 May 2023

ACCEPTED 24 August 2023

PUBLISHED 13 September 2023

CITATION

Pei Y, Xu C, Wu Z, Liu Y and Yang Y (2023)

ALBSNN: ultra-low latency adaptive local binary

spiking neural network with accuracy loss

estimator. Front. Neurosci. 17:1225871.

doi: 10.3389/fnins.2023.1225871

COPYRIGHT

© 2023 Pei, Xu, Wu, Liu and Yang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

ALBSNN: ultra-low latency
adaptive local binary spiking
neural network with accuracy loss
estimator

Yijian Pei1†, Changqing Xu1,2*†, Zili Wu3, Yi Liu2 and Yintang Yang2

1Guangzhou Institute of Technology, Xidian University, Xi’an, China, 2School of Microelectronics, Xidian

University, Xi’an, China, 3School of Computer Science and Technology, Xidian University, Xi’an, China

Spiking neural network (SNN) is a brain-inspiredmodel withmore spatio-temporal

information processing capacity and computational energy e�ciency. However,

with the increasing depth of SNNs, the memory problem caused by the weights

of SNNs has gradually attracted attention. In this study, we propose an ultra-

low latency adaptive local binary spiking neural network (ALBSNN) with accuracy

loss estimators, which dynamically selects the network layers to be binarized to

ensure a balance between quantization degree and classification accuracy by

evaluating the error caused by the binarized weights during the network learning

process. At the same time, to accelerate the training speed of the network, the

global average pooling (GAP) layer is introduced to replace the fully connected

layers by combining convolution and pooling. Finally, to further reduce the error

caused by the binary weight, we propose binary weight optimization (BWO), which

updates the overall weight by directly adjusting the binary weight. This method

further reduces the loss of the network that reaches the training bottleneck.

The combination of the above methods balances the network’s quantization and

recognition ability, enabling the network to maintain the recognition capability

equivalent to the full precision network and reduce the storage space bymore than

20%. So, SNNs can use a small number of time steps to obtain better recognition

accuracy. In the extreme case of using only a one-time step, we still can achieve

93.39, 92.12, and 69.55% testing accuracy on three traditional static datasets,

Fashion- MNIST, CIFAR-10, and CIFAR-100, respectively. At the same time, we

evaluate our method on neuromorphic N-MNIST, CIFAR10-DVS, and IBM DVS128

Gesture datasets and achieve advanced accuracy in SNN with binary weights. Our

network has greater advantages in terms of storage resources and training time.

KEYWORDS

spiking neural networks, binary neural networks, neuromorphic computing, sparsity,

visual recognition

1. Introduction

Courbariaux et al. (2015) proposed Binary Connect, which pioneered the study of

binary neural networks. Binarization can not only minimize the model’s storage usage

and computational complexity but also reduce the storage resource consumption of model

deployment and greatly accelerate the inference process of the neural network. In the

field of convolution neural networks (CNNs), many algorithms have been proposed and

satisfactory progress has been made. However, conventional quantization techniques end up

in either lower speedup or lower accuracy because these works fail to dynamically capture

the sensitivity variability in the input feature map values. Therefore, we are motivated to

apply different levels of quantization for different feature map values. Some researchers have

Frontiers inNeuroscience 01 frontiersin.org209

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1225871
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1225871&domain=pdf&date_stamp=2023-09-13
mailto:cqxu@xidian.edu.cn
https://doi.org/10.3389/fnins.2023.1225871
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1225871/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

embarked on the study of mixed-precision algorithms, which

has led to many hardware accelerator designs. Chang et al.

(2021) designed a reconfigurable CNN processor, which can

reconstruct the computing unit and the on-chip buffer according

to the computing characteristics of the model with mixed-

precision quantization. Jiang et al. (2020) designed the PRArch

accelerator architecture which support both conventional dense

convolution and aggregated sparse convolution and implement

mixed-precision convolution on fix-precision systolic arrays. Song

et al. (2020) proposed an architecture that utilizes a variablespeed

mixed-precision convolution array. It can achieve a significant

improvement in performance with a small loss of accuracy.

Spiking neural networks, as the third generation of neural

networks, is a computational paradigm that simulates the biological

brain based on the dynamic activation of binary neurons and

event-driven (Illing et al., 2019; Tavanaei et al., 2019). Using

the time sparsity of binary time series signals can improve the

computational energy efficiency on special hardware (Mead, 1990;

Xu et al., 2020). The combination of SNNs and binary networks

has gradually attracted more and more attention (Srinivasan and

Roy, 2019; Lu and Sengupta, 2020; Kheradpisheh et al., 2022).

However, it is still a great challenge to train SNNs due to

their non-differentiable activation function. In order to maintain

good accuracy, some researchers choose to use pre-training to

obtain parameters from artificial neural networks (ANNs) (Cao

et al., 2015; Lu and Sengupta, 2020; Wang et al., 2020; Xu

et al., 2022b). The pre-training of ANN gives up the advantage

of SNNs in temporal and spatial information processing. In

recent years, some studies have successfully trained binarized

SNNs (BSNNs) directly. For example, Jang et al. (2021) used the

Bayesian rule to train BSNNs directly, and Kheradpisheh et al.

(2022) used time-to-first-spike coding in the direct training of

the network.

To maintain the energy efficiency and reasonable recognition

accuracy of BSNNs, we propose accuracy loss estimators (ALE)

and binary weight optimization (BWO). We use them to

construct an ultra-low latency adaptive local binary spiking neural

network. In addition, we apply global average pooling (GAP)

structures to improve the speed of the networks further. To

illustrate the superiority of our model, we conduct experiments

on several datasets, our model dramatically improves the

performance of BSNNs, and our contributions can be summarized

as follows:

• Inspired by the mixed weight training, we design the ALE.

When the network is trained, ALE will automatically select

binary weight or full precision weight for training to solve

the problem of large precision loss in the full binary weight

training.

• We use the GAP layer instead of the fully connected layer to

reduce the amount of calculation and change the output layer

of SNNs to alleviate the phenomenon that it takes a long time

to train BSNNs directly.

• To reduce the error caused by the binary weight in the

backpropagation, we propose the BWO, which can directly

adjust the binary weight based on the error. This method

further reduces the error of networks and improves their

performance.

2. Related works

2.1. Binary spiking neural networks

Generally, when choosing the quantization of the network, we

can consider the following two aspects: weight and input (Qin

et al., 2020). However, due to the characteristics of SNNs, there

is no need to apply extra additional quantization of the network

input. Recently, the idea of combining SNN and binarization has

been proposed. Lu and Sengupta (2020) proposed B-SNN, which

is transformed into BSNNs by pre-training binarized convolution

neural network (BCNN). Roy et al. (2019) analyzed the results

of combining different binary neurons with various binarized

weight methods. Kheradpisheh et al. (2022) proposed BS4NN

and explored the adaptation of simple non-leaky integrate-and-

fire neurons, time-to-first-spike coding, and binarized weight

in backpropagation. Jang et al. (2021) proposed BISNN, which

combined Bayesian learning to train SNNs with binarized weights.

Guo et al. (2022) proposed a hardware-friendly local training

algorithm. Binary random weights in the local classifiers were

demonstrated to be effective in training without accuracy

loss, which simplifies the algorithm for low-cost hardware

implementation.

However, a lot of studies have focused on approximating full

precision weights or reducing gradient errors to learn discrete

parameters. For BSNN, it is usually to keep the first and last

layers not binarized to reduce the accuracy drop based on the

experimental experience (Deng et al., 2021). This method usually

works, but there is still room for improvement.

2.2. Training of binary spiking neural
networks

The trainingmethods of BSNNs are also gettingmore andmore

attention. Recently, Mirsadeghi et al. (2021) proposed the STiDi-

BP algorithm to avoid reverse recursive gradient computation

while using binarized weights to obtain good performance. Wang

et al. (2020) proposed the weights-thresholds balance conversion

method to scale the full precision weights into binarized weights

through changing the corresponding thresholds of spiking neurons

and then effectively obtain BSNNs. Roy et al. (2019) trained

ANNs with constrained weights and activations and deployed

them into SNNs with binarized weights. The BS4NN proposed by

Kheradpisheh et al. (2022) takes the advantage of the temporal

dimension and performs better than a simple binary neural

network with the same architecture.

Che et al. (2022) developed a differentiable hierarchical search

framework for spiking neurons, where spike-based computation

is realized on both the cell and the layer level search space.

Guo et al. (2023) has studied what roles the temporal truncation

and local training play in affecting accuracy and computational

cost including GPU memory cost and arithmetic operations.

Zhao et al. (2022) proposed a more biologically plausible spike

timing dependent plasticity routing mechanism. Yang et al. (2022)

proposed a novel spike-based framework with minimum error

Frontiers inNeuroscience 02 frontiersin.org210

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

entropy and used the entropy theory to establish the gradient-based

online meta-learning scheme in a recurrent SNN architecture.

The current BSNNs training method mainly uses all binarized

weights, which fails to achieve a balance between accuracy and

spatial quantization. Furthermore, SNNs usually require sufficient

time steps to simulate neural dynamics and encode information and

also take a long time to converge, which brings huge computational

costs (Sengupta et al., 2019).

3. Methods

In this section, we will first introduce the neuron model, binary

spiking neural network learning method, and GAP Layer and

binarization method. Then, we will also introduce our proposed

accuracy loss estimator and binary weight optimization.

3.1. Iterative leaky integrate-and-fire neural
model

In this study, we use the iterative leaky integrate-and-fire (LIF)

neuron model to construct networks. First, we will introduce the

classic leaky integrate-and-fire model, which is defined as

τ
du(t)

dt
= −u(t)+ I(t), u < Vth, (1)

where u(t) is the membrane voltage of the neuron at time t, τ

is the decay constant of the membrane potential, and I(t) is the

input from the presynaptic neuron. The membrane potential u

exceeds the threshold Vth and then returns to the resting potential

after firing a spike. Then, the LIF neuron model is converted

into an iterative version that is easy to program. Specifically, an

iterative version can be obtained by the last spiking moment and

the presynaptic input:

u(ti) = u(ti−1)e
ti−1−t

τ + I(ti), (2)

where u(ti−1) is the membrane voltage at time step ti−1 and the I(ti)

is the input from the presynaptic neuron at time step ti.

When the neuron output is zero before the last moment,

the membrane voltage leaks. This process can be expressed

mathematically simply:

ul+1
p (ti+1) = τul+1

p (ti)(1− ol+1
p (ti))+

lmax
∑

q=1

wpqo
l
q(ti+1), (3)

where ul+1
p (ti+1) is the membrane voltage of pth neuron of (l+1)th

layer at time step ti+1, o
l+1
p (ti) is the output of pth neuron of (l+1)th

layer at time step ti, τ is the decay factor, wpq represents the weight

of the qth synapse to the pth neuron, and lmax is the total number

of neurons at the lth layer.

Finally, a step function f (x) is used to represent whether the

neuron’s membrane voltage reaches a threshold voltage Vth and

fires a spike:

ol+1
p (ti+1) = f (ul+1

p (ti+1)), (4)

TABLE 1 Accuracies from di�erent methods.

Dataset Network
architecture

High precision
layer

Acc(%)

Fashion-MNIST Structure-1 Scheme 1 92.42

Fashion-MNIST structure-1 Scheme 2 93.01

CIFAR-10 Structure-2 Scheme 1 85.91

CIFAR-10 Structure-2 Scheme 2 86.43

where the step function is f (x) =

{

1 x ≥ Vth

0 x < Vth

3.2. Accuracy loss estimator for weight
binarization

To reduce the accuracy drop of BSNNs, it is usually to keep the

first and last layers non-binarized based on engineering experience,

which means that the weight precision of the first and last layers

plays an important role in the inference of the neural network

(Deng et al., 2021). However, according to our study, which

layer should be binarized depends on the structure of the neural

networks and the characteristics of the datasets, and it is not always

the best solution to keep the first and last layers with full precision.

As shown in Table 1, under the same binary network structure

of Fashion-MNIST and CIFAR-10, scheme 1: keep the first and last

layers with full precision, and scheme 2: keep the weights of the first

two layers of the network as full precision. The result of scheme 2 is

better than that of scheme 1.

Therefore, we propose ALE, which automatically selects

binarized and non-binarized network layers during network

training by estimating the effect of different network layers on

network accuracy.

First of all, we used the Manhattan distance between

approximate binarized weights and full precision weights as the

error estimation of binarized weight wl
loss

, and its calculation

formula is shown below:

wl
loss =

n
∑

i=1

|wl
i − bwl

i|, l = 1, 2, 3...L, (5)

where wl
i is the ith full precision weight of the lth layer and bwl

i is

the ith approximate weight of the lth layer.

For a BSNN, each output channel of the spiking convolution

layer corresponds to one feature extraction. So, we used the average

error of feature extraction Al to estimate the error caused by the

binarized weights. The formula is shown below.

Al =
wl
loss

clout
, (6)

where clout is the number of output channels of the lth layer.

There is a situation that is worth noting. If the error values Al

of the two layers in the network are similar and there is a significant

difference in the number of weights, we certainly want to choose the

Frontiers inNeuroscience 03 frontiersin.org211

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

one with more weights for binarization because it will save more

space. Therefore, in addition to the error caused by binarization,

we also consider the size of weight storage space as the criteria

for selecting binarized layers, and the layer with a more significant

number of weights will have a greater probability of being chosen

for binarization.

Because error estimationAl caused by binarization is calculated

based on wloss and cout , we tried to use them to estimate the

difference in the weight storage space of different layers, the

formula is as follows:

Ml =
θ
l
max − θ

l
1

2
(7)

θ
l
max is the Al obtained when the number of output channels of

the lth layer is equal to 1 and θ
l
1 is the obtained Al when the

number of output channels of the lth layer equal to the total

number of weights. For example, for a weight in the shape of

[output channel, input channel, kernel size, kernel size]

= [10, 10, 3, 3] its θmax is equal to Al in the shape of [1, 100, 3, 3],

and θ1 is equal to Al in the shape of [100, 1, 3, 3]. These Al can be

obtained quickly by using the Equations (5), (6).

To simplify the calculation of M, we used the Al to estimate θ
l
1

and θ
l
max based on the relationship between the error estimation

of binarization weights with different shapes, which is obtained by

experiments. The relationship is shown below.

wl
loss

wl′

loss

≈
2

√

√

√

√(
clout

cl
′

out

)2 ∗
clin

cl
′

in

, (8)

where wl
loss

, clout , and clin are the weight error of lth layer, the

number of output channels, and the number of input channels,

respectively. wl′

loss
, cl

′

out , and cl
′

in are the weight error of lth layers

reshaped weights, the corresponding number of output channels,

and the corresponding number of input channels, respectively.

Furthermore, we consider the influence of binarized weights at

different layers in the forward pass and backpropagation.We set the

same number of weights in each layer and carried out binarization

layer by layer, and the network structure (structure-3,4,5,6) is

shown in Table 2. At the same time, we observe the impact of the

binary weights of each layer on the network recognition accuracy.

Due to the first and second layers having been proven to have a

significant influence on the accuracy of networks (Qin et al., 2020),

we only study the weights of other layers. As shown in Figure 1, the

network accuracy decreases evenmore when the layers at both ends

of the network use binary weights.

We can take the subscript of the middle layer as the central

axis, set the importance of the first and last layers to η, and use an

approximate parabola to describe this phenomenon:

F(x) = ǫ(x−
sumL+ 1

2
)2, (9)

where x is the index of layer, ǫ is a facter which is equal to 4∗η
(sumL−1)2

,

sumL represents the total number of layers, η is a variable, and we

set it to 1 by default.

TABLE 2 Network structure of di�erent methods.

Name Network architecture

Structure-1 16C3-16C3-AP2-64C3-64C3-AP2-256C3-1024C3-10

Structure-2 16C3-32C3-AP2-512C3-AP2-512C3-1024C3-10

Structure-3 10C3-10C3-10C3-10C3-10C3-10C3-10

Structure-4 16C3-16C3-16C3-16C3-16C3-16C3-10

Structure-5 30C3-30C3-30C3-30C3-30C3-30C3-10

Structure-6 50C3-50C3-50C3-50C3-50C3-50C3-10

FIGURE 1

Influence of di�erent binary layers on accuracy. On Cifar10, based

on structure-3, we translate the precision curves under other

structures (structure-4,5,6). Abscissa is the subscript of the

binarization layer (the weights of other layers keep high precision),

the first subscript is 1, and the ordinate is result accuracy.

We combine Al, Ml, and F(x) together to get the criteria R(x)

for selecting binarized layers, which is shown below.

R(x) =

{

(1
Al+Ml)F(x) , x ≤ sumL+1

2

(1
Al+Ml)log10(K)F(x) , x >

sumL+1
2 ,

(10)

where K represents the number of classes in the dataset. We can

make different selection strategies according to the value of R(x) to

satisfy different applications. We will discuss the strategies in detail

in the experiment section.

3.3. GAP layer

Because of the binary output of spiking neurons, it is extremely

sensitive to noise when the results of a few time steps are directly

used for classification. Therefore, it is usually to use the spiking

trains for a long period of time to indicate the degree of response to

the category, which causes extra computational consumption. To

address this problem, we learn from CNN’s global average pooling

(Lin et al., 2013) and apply it in SNNs to reduce the time steps.

The GAP layer consists of a convolutional layer and a global

average pooling layer (GAP) (Lin et al., 2013). The convolution

Frontiers inNeuroscience 04 frontiersin.org212

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

layer adjusts output channels to the number of classifications of

the dataset. The global average pooling layer converts the feature

map into a classification vector, which is directly related to the

final classification result. The overall structure of the GAP layer is

shown in Figure 2. The number of output channels is first adjusted

to the number of dataset classes by convolution calculation. Then,

a global average pooling is used to transform the spatial average of

the feature maps from the last layer to the confidence of categories.

The obtained confidence is used as the probability of recognition.

Just as GAP plays a role in CNNs, it can enforce correspondence

between feature maps and categories and integrates global spatial

information of SNNs.

3.4. Backpropagation with adaptive local
binarization

For the binarization of the weights, we use three binarized

weight blocks for the binarization approximation of the full

precision weights. That is, a linear combination of three binary

filters α is used to represent the full precision weightW.

W ≈ α1B1 + α2B2 + α3B3. (11)

In this way, ALE’s formula 5 for calculating wloss, in which bw is

transformed into bw =
∑3

i=1 |αiWi|.

Then, we calculate the value of each binarized weight B

referring to Lin et al. (2017). The equations are given as follows:

Bi = sign(W −mean(W)+ (i− 2)std(W)), i = 1, 2, 3, (12)

where mean(W) and std(W) are the mean and standard deviation

ofW, respectively.

Once B is obtained, we can get α easily according to

min
α

J(α) = ||w− Bα||2 (13)

For the forward pass, the forward calculation rule of

approximate convolution in Lin et al. (2017) is still used, but the

network needs to choose whether to binarize the weight of which

layer according to ALE, instead of artificially fixing the binarization

layer. The forward propagation formula is as follows:

O =

{

∑3
m=1 αmConv(Bm,A) Binarization

Conv(W,A) else
(14)

where Conv() represents convolution function and A and O are the

input and output tensor of a convolution, respectively.

BSNNs are affected by binarized weight and binary input,

so the backpropagation process must be reconsidered. We use

the Dirac function to generate the spikes of SNNs. Due to

the non-differentiability of the Dirac function, the approximate

gradient function is used instead of the derivative function in

backpropagation (Wu et al., 2018; Neftci et al., 2019; Xu et al.,

2022a), the approximate gradient function is defined as follows:

h(u) =
1

a
sign(|u− Vth <

a

2
|), (15)

where u represents the membrane voltage, Vth represents the

threshold, and a is the parameter that determines the sharpness of

the curve.

Using the chain rule, the error gradient with respect to the

presynaptic weight W is

∂L

∂W
=

∂L

∂O

∂O

∂W
=

∂L

∂O
(
1

a
sign(|u− Vth <

a

2
|)), (16)

where L is the loss function and sign is signum function.

Moreover, the binarization function of weight is also a typical

step function, and a straight-through estimator (STE) (Bengio et al.,

2013) is usually used to solve this problem.

∂L

∂W

STE
=

∂L

∂O

∂O

∂B

∂Htanh

∂W
=

∂L

∂O

∂O

∂B
=

∂L

∂B
(17)

where O and Htanh as the output tensor of a convolution and

hard-tanh function, respectively.

In Figure 3, we show the network layer with ALE and its

workflow. First, the network can use the Flag obtained from “Box”

to determine whether this layer uses binarized weights. Then, the

selected weights are convolved with the input. For the current

training step, “Box” stores the selection result of the last training

step, and these results will be used to select whether the binarized

weight will be used. ALE will recalculate the value of R and update

the selection results in the “Box” simultaneously. Next, the process

for ALE to recalculate the value of R is as follows. It calculates the

binarized weight BW according to the original weightW1, and then

they work together to get R. Finally, the selection result depends on

the value of R and the selection criteria, and the results are updated

to the ‘Box’.

Therefore, the overall structure of the adaptive local binary

Spiking Neural Network (ALBSNN) structure is illustrated

in Figure 4. The network consists of N end-to-end spiking

convolution blocks and a GAP layer block. The spiking convolution

block consists of an ALE, a spiking convolution layer, a batch

normalization layer, and an average pooling layer. ALE decides

whether the weight is binarized or not, and the spiking convolution

layer extracts the features of the image. The GAP layer is used to

alleviate the excessive cost of the time steps.

3.5. Binary weight optimization

We use three binarized weight blocks for the binarization

approximation of full precision weights, and it is classified as the

problem of solving the optimal weight coefficient. When the neural

network training tends to be stable, the binary weight processed

by the sign function is almost difficult to change. For the network

that reaches the training bottleneck, coefficient optimization can

no longer meet the demand for improving accuracy. However, the

accuracy can be further improved by adjusting the binary weight.

To keep the degree of adjustment controllable, we modify only

one binary weight tomeet the demand for weight change. As shown

in Figure 5, when the network training is stable, L is the gradient

calculated according to the chain rule, and its product with the

learning rate lr is the adjustment on a single weight. Because the

weight is composed of three binary weights, we choose one of the

Frontiers inNeuroscience 05 frontiersin.org213

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

FIGURE 2

Overall structure of the GAP layer.

FIGURE 3

Network layers with ALE. The box records the index of layers that need to be binarized. The flag determines whether the binarized weights are used

for convolution calculation. W1, BW, and W2 represent the original weight, the binarized weight, and the weights selected for convolution

calculation, respectively. Conv is the convolution function.

FIGURE 4

Overall structure of adaptive local binary spiking neural network.

Frontiers inNeuroscience 06 frontiersin.org214

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

FIGURE 5

Overall structure of binary weight optimization.

binary weights, which needs tomeet the condition that among these

binary weights BWi(i = 1, 2, 3), BWi × αi is the closest to the

adjustment (L × lr). Then, delete this binary weight BW and its

coefficient α, that is, the weight is only composed of the remaining

two binary weights.

Two more restrictions are required for the above methods: (1)

There is a situation in which we do not update the binary weight.

If BW × α is much larger than L × lr, the update of the binary

weight will cause more errors resulting in accuracy degradation of

the network. Therefore, the selected “closest” binary weights need

a restriction to determine whether the weights are adjusted. In this

article, we stipulate that the difference between L× lr and BW × α

must not exceed L 100 times. Otherwise, the selected “closest”

binary weight will not be adjusted. (2) Only adjust the network layer

using binary weights.

Finally, as shown in Figure 5, the adjusted binary weights will

be recombined into full precision weights, and it needs to be trained

again tomake the weight better adapted to the network. A profit can

be obtained by doing a small amount of binary weight optimization.

4. Experiments

In this section, we evaluate our proposed adaptive local binary

spiking neural network (ALBSNN) on both traditional static

Fashion-MNIST (Xiao et al., 2017), CIFAR-10, and CIFAR-100

(Krizhevsky et al., 2009) datasets and neuromorphic N-MNIST

(Orchard et al., 2015), CIFAR10-DVS (Li et al., 2017), and DVS128

Gesture datasets (Amir et al., 2017). Fashion-MNIST is a fashion

product image dataset with 10 classes, 70,000 grayscale images

in the size of 28 × 28. CIFAR-10 and CIFAR-100 are composed

of three channel RGB images of size 32 × 32. CIFAR-10 has

10 classes, while CIFAR-100 has 100 classes, and all images are

divided equally by class. The neuromorphic-MNIST (N-MNIST)

dataset is a spiking version of the MNIST dataset recorded by

the neuromorphic sensor. It consists of 60,000 training examples

and 10,000 test examples. CIFAR10-DVS is composed of 10,000

examples in 10 classes, with 1,000 examples in each class. DVS128

Gesture dataset contains 11 kinds of hand gestures from 29 subjects

under three kinds of illumination conditions.

4.1. Experimental setup

All reported experiments below are conducted on an NVIDIA

Tesla V100 GPU. The implementation of our proposed ALBSNN is

on the Pytorch framework (Paszke et al., 2019). Only one timestep

is used to demonstrate the advantage of our proposed ALBSNN on

ultra-low latency. Adam is applied as the optimizer (Kingma and

Ba, 2014). The results shown in this study refer to the average results

obtained by repeating five times.

In this study, we apply several data augmentation during

training processing as follows: (1) padding the original figure, and

the padding size is 4, (2) crop pictures with a size of 32 pixels

randomly, (3) flip the image horizontally with half probability, and

(4) normalized image, the standard deviation is 0.5. For the testing

process, only normalization is applied (Shorten and Khoshgoftaar,

2019).

We use an iterative LIF model and approximate gradient

for network training. The first convolutional layer acts as an

encoding layer and network structures for Fashion-MNIST, CIFAR-

10, CIFAR-100, N-MNIST, DVS128 Gesture, and CIFAR10-DVS

Frontiers inNeuroscience 07 frontiersin.org215

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

TABLE 3 Network structures.

Dataset Structure

*MNIST
16C3-16C3-AP2-64C3

-64C3-AP2-256C3-1024C3-GAP

*CIFAR-10
128C3-256C3-AP2

-512C3-AP2-1024C3-512C3-GAP

CIFAR-100
128C3-256C3-AP2-512C3

-AP2-1024C3-512C3-512C3-GAP

*MNIST represents Fashion-MNIST and N-MNIST datasets. *CIFAR-10 represents CIFAR-

10, DVS128 Gesture and CIFAR10-DVS datasets.

datasets are shown in Table 3. Between the convolution calculation

and the activation function, batch-normalization(BN) (Ioffe and

Szegedy, 2015) is applied. All convolution operations used in the

experiment are based on the operations provided by Pytorch.

The hyperparameters of networks we used in our experiments

are shown in Table 4. The learning rate uses the cosineanealing

strategy (Loshchilov and Hutter, 2016). Unless otherwise specified,

our experiments report the testing accuracy of Fashion-MNIST,

N-MNIST, CIFAR-10, CIFAR10-DVS, and DVS128 Gesture after

training 50 epochs. For CIFAR-100, 400 epochs are applied for

training.

4.2. E�ectiveness of ALE and BWO

To validate the effectiveness of ALE and BWO, we compare

ALBSNN, SNN with full precision weights (FPSNN), SNN with

binarization of all weights (BSNN), and BSNNwhose first layer and

last layer are non-binarized (FLNBSNN) on each dataset. For the

fairness of comparison, ALBSNN is designed to select two layers

to maintain full precision. Table 5 shows the accuracy of different

methods. We obtain FPSNN and BSNN results by STBP (Wu et al.,

2018) and ABC-NET (Lin et al., 2017). Compared with FPSNN,

BSNN, FLNBSNN, and ALBSNN will drop some accuracy due to

binarization. ALBSNN achieves better results in accuracy because

the ALE block can help network select more suitable layers based on

the network structure and dataset. In some datasets, the selection

result of ALBSNN is the same as that of FLNBSNN, which is

affected by the network structure. We will discuss it in the next

section.

To validate the effectiveness of binary weight optimization

(BWO). Tables 5, 6 make a comparison of a binary network with

and without BWO. We maintain the training environment of

ALBSNN here without additional parameter adjustment. At the

same time, we only use BWO to train the network 20 times on

all datasets to avoid excessive consumption of network resources.

On these datasets, binary weights are optimized further by the

proposed BWO. The accuracy of the network on Fashion-MNIST,

N-MNIST, DVS128 Gesture, and CIFAR-10 has almost reached

the level of the full-precision network, so the improvement in

accuracy is not particularly significant. For larger and more

complex datasets, such as the CIFAR-100 and CIFAR10-DVS, our

method has greater potential to improve accuracy.

TABLE 4 Parameters setting.

Parameter *MNIST *CIFAR-10 CIFAR-100

Vth 0.5 0.5 0.5

τ 0.25 0.25 0.25

a 1 1 1

Learning rate 0.001 0.001 0.001

Batch size 16 16 16

Time step 1 1 1

Optimizer Adam Adam Adam

Criterion MSE MSE Cross-Entropy

*MNIST represents Fashion-MNIST, and N-MNIST datasets. *CIFAR-10 represents CIFAR-

10, DVS128 Gesture and CIFAR10-DVS datasets.

TABLE 5 Accuracy of di�erent methods static datasets.

Dataset Method Full precision
layer

Acc(%)

Fashion-MNIST BSNN - 92.38

FLNBSNN 1,7 92.92

ALBSNN 1,2 93.10

ALBSNN + BWO 1,2 93.39

FPSNN all 93.48

CIFAR-10 BSNN - 89.65

FLNBSNN 1,6 91.01

ALBSNN 1,6 91.64

ALBSNN + BWO 1,6 92.12

FPSNN all 92.37

CIFAR-100 BSNN - 59.98

FLNBSNN 1,7 68.19

ALBSNN 1,7 68.65

ALBSNN + BWO 1,7 69.55

FPSNN all 70.00

4.3. Rethink about local binarization

Compared with the selection results on each dataset, we find

these selection results are related to the complexity of the dataset

and the network structure. As shown in Tables 5, 6, ALBSNN

chooses the same layers as FLNSNN to keep full precision when

the structure used by the dataset is the *CIFAR-10 in Table 4. If

we change the network structure so that the difference between the

weights of the head layer and the tail layer is larger, then we will get

different results from FLNBSNN. The network structure is shown

in Table 7. ALBSNN chooses to keep the weight accuracy of the first

and second layers to the full precision (weight binarization of other

layers), and the network accuracy is higher than that of FLNBSNN.

If the final output channel is relatively small and the size

of weights between adjacent network layers is relatively large,

ALBSNN may obtain a better binarization scheme by ALE.

However, if the size of weights in the network increases or decreases

Frontiers inNeuroscience 08 frontiersin.org216

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

gradually, FLNBSNN is a good solution. As the weights of common

networks generally conform to the rule of flat change layer by layer,

the selection of ALE tends to be similar to FLNB. Of course, if the

non-binarized layers are not limited to two, ALE still can obtain

a better binarization scheme by evaluating the error caused by the

binarized weights. To sum up, the selection result of ALE is mainly

related to the complexity of the dataset and the structure of the

neural network.

4.4. Impact of selection criteria

In the previous section, in order to make a fair comparison with

FLNBSNN, we select the two layers with the largest value R as full

precision layers. In this section, we choose four different selection

criteria SC1, SC2, SC3, and SC4 to show the impact of the selection

criteria on the accuracy of ALBSNN. SC1 applies the mean value R

of all layers as the baseline. When the value R of a layer is greater

than the mean value, this layer is selected as the full precision layer.

SC2 uses the R of the last layer as the baseline. If the R of a layer is

greater than the baseline, and the layer is non-binarized. For SC3,

the first and last layers are selected as full precision layers, and the

TABLE 6 Accuracy of di�erent methods on neuromorphic datasets.

Dataset Method Full precision
layer

Acc(%)

N-MNIST BSNN - 98.38

FLNBSNN 1,7 99.13

ALBSNN 1,2 99.19

ALBSNN + BWO 1,2 99.33

FPSNN all 99.40

DVS128 Gesture BSNN - 92.32

FLNBSNN 1,6 94.55

ALBSNN 1,6 94.77

ALBSNN + BWO 1,6 95.33

FPSNN all 95.68

CIFAR10-DVS BSNN - 58.38

FLNBSNN 1,6 68.01

ALBSNN 1,6 68.31

ALBSNN + BWO 1,6 68.98

FPSNN all 71.38

mean of R of the other layers is set as the baseline; R of other layers

exceeds the baseline, the layer is selected as the full precision layer.

For SC4, the first and last layers are selected as full precision layers,

and the layer closest to the average value of R excluding these two

layers is also regarded as the full precision layer.

As Table 8 is shown, a different binarization scheme is obtained

based on the network structure and dataset by ALE with the

different selection criteria. It is obvious that the accuracy is

positively correlated with the number of layers using full-precision

weights. Among them, SC2 has a significant improvement in

accuracy and takes up less resources, which is the most cost-

effective. In practice, we can choose the appropriate selection

criteria according to the requirements of accuracy and weight

storage space.

4.5. Compared with other methods

In this section, we compare our ALBSNN with several

previously reported state-of-the-art methods with the same or

similar binarization SNN network. For a fair comparison, we

replace the fully connected layer with the GAP Layer and build

an ALBSNN based on a similar network structure for discussion.

For the Fashion-MNIST, BS4NN (Kheradpisheh et al., 2022) is

trained with a simple fully connected network, and Mirsadeghi

et al. (2021) uses a higher-performance convolutional network

TABLE 8 Accuracy of di�erent selection criteria.

Dataset Selection
criteria

Full precision
layer

Acc(%)

Fashion-MNIST SC1 1 92.81

SC2 1,6 93.10

SC3 1,2,7 93.26

SC4 1,3,7 93.21

CIFAR-10 SC1 1 90.36

SC2 1,6 91.64

SC3 1,2,6 91.71

SC4 1,5,6 91.69

CIFAR-100 SC1 1 65.68

SC2 1,6 68.65

SC3 1,2,6 68.88

SC4 1,5,6 68.89

TABLE 7 Di�erent results of ALBSNN and FLNBSNN.

Dataset Network architecture Method Full precision layer Acc(%)

CIFAR-10 16C3-32C3-AP2-512C3-AP2

-512C3-1024C3-GAP

FLNBSNN 1,6 85.91

CIFAR-10 ALBSNN 1,2 86.43

DVS128 Gesture FLNBSNN 1,6 89.15

DVS128 Gesture ALBSNN 1,2 89.89

Frontiers inNeuroscience 09 frontiersin.org217

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

TABLE 9 Comparison of di�erent methods.

Dataset Method Learning Epoch Timestep
Weight storage space

(Normalized)
Acc(%)

Fashion-MNIST

BS4NN Spike-based BP 500 100 1.85 87.50

SSTiDi-BP Spike-based BP - 100 3.09 92.00

ALBSNN + BWO Spike-based BP 20 1 1 92.04

CIFAR-10

Roy-SVGG10 ANN2SNN 150 - 1.26 88.27

Wang-SVGG10 ANN2SNN 500 100 1.26 90.19

ALBSNN + BWO Spike-based BP 50 1 1 92.12

CIFAR-100

Roy-SVGG100 ANN2SNN 400 - 2.76 54.44

Wang-SVGG100 ANN2SNN 500 300 1.18 62.02

ALBSNN + BWO Spike-based BP 400 1 1 69.55

N-MNIST

LISNN Spike-based BP 20 100 5.86 99.45

TDNNA-BP Spike-based BP 100 50 2.92 99.09

ALBSNN + BWO Spike-based BP 50 10 1 99.27

DVS128 Gesture

CSRN Spike-based BP 100 60 5.69 93.40

ALBSNN + BWO Spike-based BP 50 20 1 94.63

CIFAR10-DVS

NeuNormSNN Spike-based BP 200 100 8.59 60.50

ASF-BP Spike-based BP - - 1.62 62.50

ALBSNN + BWO Spike-based BP 50 10 1 68.98

for recognition (we denote this network by SSTiDi-BP). Both

networks use temporal backpropagation for learning. For CIFAR-

10 and CIFAR-100 datasets, the network structures used by Roy

et al. (2019) and Wang et al. (2020) are both modified VGG

network (Simonyan and Zisserman, 2014); we used Roy-SVGG10

and Wang-SVGG10 to denote these two networks, respectively.

They do not train the SNN directly but instead use the method of

ANN-to-SNN conversion.

For neuromorphic datasets, the SNN train with binary weights

is relatively scarce, so we used high-precision SNN for comparison

here. LISNN (Cheng et al., 2020) and TDNNA-BP (Lee et al., 2020)

carried out experiments on N-MNIST. CSRN (He et al., 2020)

carried out experiments on DVS128 Gesture. NeuNormSNN (Wu

et al., 2019) and ASF-BP (Wu et al., 2021) carried out experiments

on CIFAR10-DVS. Table 9 shows the corresponding experimental

results.

The weight storage space is normalized with respect to the

baseline(ALBSNN). For traditional static datasets, our recognition

accuracy is on the same level as state-of-the-art SNN networks

with binary weights, but we use less training time and save more

storage resources. Compared with Wang-SVGG10, our ALBSNN

achieves 1.93 and 7.53% average testing accuracy improvement

with only one-time steps and fewer epochs. For the weight

storage space, our ALBSNN can obtain more than 20 and

15% reduction on the CIFAR-10 and CIFAR-100, respectively.

For neuromorphic datasets, compared with the SNN network

with high precision weights, our network still achieves advanced

results, uses less training time, and saves more than 50% storage

resources.

5. Conclusion

This study proposes a construction method of ultra-low latency

adaptive local binary spiking neural network with an accuracy loss

estimator, which balances the pros and cons between full precision

weights and binarized weights by choosing binarized or non-

binarized weights adaptively. Our network satisfies the requirement

of network quantization while keeping high recognition accuracy.

At the same time, we find the problem of long training time

for BSNNs. Therefore, we propose the GAP Layer, in which a

convolution layer is used to replace the fully connected layer, and

a global average pooling layer is used to solve the binary output

problem of SNN. Because of the binary output, SNN usually needs

to run multiple time steps to get reasonable results. Finally, we

find that when the BSNN is stable, the binary weight processed

by the sign function is difficult to change, which leads to the

bottleneck of network performance. Therefore, we propose binary

weight optimization to reduce the loss by directly adjusting the

binary weight, which makes the network performance close to

the full-precision network. Experiments on traditional static and

neuromorphic datasets show that our method saves more storage

resources and training time and achieves competitive classification

accuracy compared with existing state-of-the-art BSNNs.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: data openly available in the public repository.

Frontiers inNeuroscience 10 frontiersin.org218

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

The data that support the findings of this study are openly available

in Fashion-MNIST at https://doi.org/10.48550/arXiv.1708.07747,

CIFAR-10 at http://www.cs.utoronto.ca/~kriz/cifar.html, CIFAR-

100 at http://www.cs.utoronto.ca/~kriz/cifar.html, CIFAR10-DVS

at https://doi.org/10.3389/fnins.2017.00309, DVS128Gesture at

https://research.ibm.com/interactive/dvsgesture/, and N-MNIST at

https://doi.org/10.3389/fnins.2015.00437.

Ethics statement

The studies were conducted in accordance with the

local legislation and institutional requirements. Written

informed consent for participation was not required from

the participants or the participants’ legal guardians/next of kin

in accordance with the national legislation and institutional

requirements because all the data in the study came from public

datasets.

Author contributions

YP, CX, and ZW contributed to conception and design of the

study. YP and CXwrote the first draft of themanuscript. YY and YL

use statistical, mathematical or other forms of techniques to analyze

or synthesize research data. All authors contributed to manuscript

revision, read, and approved the submitted version.

Funding

This study was supported by the National Natural Science

Foundation of China under Grant 62004146, by the China

Postdoctoral Science Foundation funded project under Grant

2021M692498, by the Fundamental Research Funds for

the Central Universities under Grant XJSJ23106, and by

Science and Technology Projects in Guangzhou under Grant

SL2022A04J00095.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al.
(2017). “A low power, fully event-based gesture recognition system,” in Proceedings
of the IEEE conference on computer vision and pattern recognition 7243–7252.
doi: 10.1109/CVPR.2017.781

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432.

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural
networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.
doi: 10.1007/s11263-014-0788-3

Chang, L., Zhang, S., Du, H., Wang, S., Qiu, M., and Wang, J. (2021).
“Accuracy vs. efficiency: Achieving both through hardware-aware quantization
and reconfigurable architecture with mixed precision,” in 2021 IEEE
International Conference on Parallel Distributed Processing with Applications,
Big Data Cloud Computing, Sustainable Computing Communications, Social
Computing Networking (ISPA/BDCloud/SocialCom/SustainCom) (IEEE)
151–158. doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.
00033

Che, K., Leng, L., Zhang, K., Zhang, J., Meng, Q., Cheng, J., et al. (2022).
“Differentiable hierarchical and surrogate gradient search for spiking neural networks,”
in Advances in Neural Information Processing Systems 35, 24975–24990.

Cheng, X., Hao, Y., Xu, J., and Xu, B. (2020). “Lisnn: Improving spiking neural
networks with lateral interactions for robust object recognition,” in IJCAI 1519–1525.
doi: 10.24963/ijcai.2020/211

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Advances in Neural
Information Processing Systems 28.

Deng, L., Wu, Y., Hu, Y., Liang, L., Li, G., Hu, X., et al. (2021). “Comprehensive
SNN compression using admm optimization and activity regularization,” in IEEE
Transactions on Neural Networks and Learning Systems.

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2022). “Efficient hardware
implementation for online local learning in spiking neural networks,” in 2022 IEEE 4th
international conference on artificial intelligence circuits and systems (AICAS) (IEEE)
387–390. doi: 10.1109/AICAS54282.2022.9869946

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2023). Efficient training
of spiking neural networks with temporally-truncated local backpropagation through
time. Front. Neurosci. 17, 1047008. doi: 10.3389/fnins.2023.1047008

He, W., Wu, Y., Deng, L., Li, G., Wang, H., Tian, Y., et al. (2020). Comparing snns
and rnns on neuromorphic vision datasets: Similarities and differences. Neur. Netw.
132, 108–120. doi: 10.1016/j.neunet.2020.08.001

Illing, B., Gerstner, W., and Brea, J. (2019). Biologically plausible deep learning
but how far can we go with shallow networks? Neur. Netw. 118, 90–101.
doi: 10.1016/j.neunet.2019.06.001

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference on Machine
Learning (PMLR) 448–456.

Jang, H., Skatchkovsky, N., and Simeone, O. (2021). “Bisnn: Training spiking neural
networks with binary weights via bayesian learning,” in 2021 IEEE Data Science and
Learning Workshop (DSLW) (IEEE) 1–6. doi: 10.1109/DSLW51110.2021.9523415

Jiang, Z., Song, Z., Liang, X., and Jing, N. (2020). “Prarch: Pattern-based
reconfigurable architecture for deep neural network acceleration,” in 2020
IEEE 22nd International Conference on High Performance Computing and
Communications; IEEE 18th International Conference on Smart City; IEEE 6th
International Conference on Data Science and Systems (HPCC/SmartCity/DSS)
122–129. doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00016

Kheradpisheh, S. R., Mirsadeghi, M., and Masquelier, T. (2022). Bs4nn: Binarized
spiking neural networks with temporal coding and learning. Neural Process. Lett. 54,
1255–1273. doi: 10.1007/s11063-021-10680-x

Kingma, D., and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images. Toronto, ON.

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-
based backpropagation for training deep neural network architectures. Front Neurosci.
14, 119. doi: 10.3389/fnins.2020.00119

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). Cifar10-dvs: an event-stream dataset
for object classification. Front. Neurosci. 11, 309. doi: 10.3389/fnins.2017.00309

Frontiers inNeuroscience 11 frontiersin.org219

https://doi.org/10.3389/fnins.2023.1225871
https://doi.org/10.48550/arXiv.1708.07747
http://www.cs.utoronto.ca/~kriz/cifar.html
http://www.cs.utoronto.ca/~kriz/cifar.html
https://doi.org/10.3389/fnins.2017.00309
https://research.ibm.com/interactive/dvsgesture/
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00033
https://doi.org/10.24963/ijcai.2020/211
https://doi.org/10.1109/AICAS54282.2022.9869946
https://doi.org/10.3389/fnins.2023.1047008
https://doi.org/10.1016/j.neunet.2020.08.001
https://doi.org/10.1016/j.neunet.2019.06.001
https://doi.org/10.1109/DSLW51110.2021.9523415
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00016
https://doi.org/10.1007/s11063-021-10680-x
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2017.00309
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv preprint
arXiv:1312.4400.

Lin, X., Zhao, C., and Pan, W. (2017). “Towards accurate binary convolutional
neural network,” Advances in Neural Information Processing Systems 30.

Loshchilov, I., and Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983.

Lu, S., and Sengupta, A. (2020). Exploring the connection between binary and
spiking neural networks. Front. Neurosci. 14, 535. doi: 10.3389/fnins.2020.00535

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.
doi: 10.1109/5.58356

Mirsadeghi, M., Shalchian,M., Kheradpisheh, S. R., andMasquelier, T. (2021). Stidi-
bp: Spike time displacement based error backpropagation in multilayer spiking neural
networks. Neurocomputing 427, 131–140. doi: 10.1016/j.neucom.2020.11.052

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient
learning in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Magaz. 36, 51–63.
doi: 10.1109/MSP.2019.2931595

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting static
image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9,
437. doi: 10.3389/fnins.2015.00437

Paszke, A., Gross, S., Massa, F., Lerer, A., and Chintala, S. (2019). “Pytorch: An
imperative style, high-performance deep learning library,” in 33rd Conference onNeural
Information Processing Systems (NeurIPS 2019) (Vancouver, Canada).

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N. (2020). Binary neural
networks: A survey. Patt. Recogn. 105, 107281. doi: 10.1016/j.patcog.2020.107281

Roy, D., Chakraborty, I., and Roy, K. (2019). “Scaling deep spiking neural networks
with binary stochastic activations,” in 2019 IEEE International Conference on Cognitive
Computing (ICCC) (IEEE) 50–58. doi: 10.1109/ICCC.2019.00020

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: Vgg and residual architectures. Front. Neurosci. 13, 95.
doi: 10.3389/fnins.2019.00095

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. J. Big Data 6, 1–48. doi: 10.1186/s40537-019-0197-0

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Song, Z., Fu, B., Wu, F., Jiang, Z., Jiang, L., Jing, N., et al. (2020). “DRQ:
dynamic region-based quantization for deep neural network acceleration,” in 2020

ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)
(IEEE) 1010–1021. doi: 10.1109/ISCA45697.2020.00086

Srinivasan, G., and Roy, K. (2019). Restocnet: Residual stochastic binary
convolutional spiking neural network for memory-efficient neuromorphic computing.
Front. Neurosci. 13, 189. doi: 10.3389/fnins.2019.00189

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida,
A. (2019). Deep learning in spiking neural networks. Neur. Netw. 111, 47–63.
doi: 10.1016/j.neunet.2018.12.002

Wang, Y., Xu, Y., Yan, R., and Tang, H. (2020). Deep spiking neural networks
with binary weights for object recognition. IEEE Trans. Cogn. Dev. Syst. 13, 514–523.
doi: 10.1109/TCDS.2020.2971655

Wu, H., Zhang, Y., Weng, W., Zhang, Y., Xiong, Z., Zha, Z.-J., et al. (2021).
“Training spiking neural networks with accumulated spiking flow,” in Proceedings of
the AAAI conference on artificial intelligence 10320–10328. doi: 10.1609/aaai.v35i12.
17236

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct training for
spiking neural networks: Faster, larger, better,” in Proceedings of the AAAI Conference
on Artificial Intelligence 1311–1318. doi: 10.1609/aaai.v33i01.33011311

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xu, C., Liu, Y., Chen, D., and Yang, Y. (2022a). Direct training via backpropagation
for ultra-low-latency spiking neural networks with multi-threshold. Symmetry 14,
1973. doi: 10.3390/sym14091933

Xu, C., Liu, Y., and Yang, Y. (2022b). Ultra-low latency spiking neural networks
with spatio-temporal compression and synaptic convolutional block. arXiv preprint
arXiv:2203.10006. doi: 10.1016/j.neucom.2023.126485

Xu, C., Zhang, W., Liu, Y., and Li, P. (2020). Boosting throughput and efficiency
of hardware spiking neural accelerators using time compression supporting multiple
spike codes. Front. Neurosci. 14, 104. doi: 10.3389/fnins.2020.00104

Yang, S., Tan, J., and Chen, B. (2022). Robust spike-based continual meta-
learning improved by restricted minimum error entropy criterion. Entropy 24, 455.
doi: 10.3390/e24040455

Zhao, D., Li, Y., Zeng, Y.,Wang, J., and Zhang, Q. (2022). Spiking capsnet: A spiking
neural network with a biologically plausible routing rule between capsules. Inf. Sci. 610,
1–13. doi: 10.1016/j.ins.2022.07.152

Frontiers inNeuroscience 12 frontiersin.org220

https://doi.org/10.3389/fnins.2023.1225871
https://doi.org/10.3389/fnins.2020.00535
https://doi.org/10.1109/5.58356
https://doi.org/10.1016/j.neucom.2020.11.052
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1109/ICCC.2019.00020
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/ISCA45697.2020.00086
https://doi.org/10.3389/fnins.2019.00189
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1109/TCDS.2020.2971655
https://doi.org/10.1609/aaai.v35i12.17236
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.3390/sym14091933
https://doi.org/10.1016/j.neucom.2023.126485
https://doi.org/10.3389/fnins.2020.00104
https://doi.org/10.3390/e24040455
https://doi.org/10.1016/j.ins.2022.07.152
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 11 October 2023

DOI 10.3389/fnins.2023.1160899

OPEN ACCESS

EDITED BY

Anup Das,

Drexel University, United States

REVIEWED BY

Yuhang Song,

University of Oxford, United Kingdom

Dong Song,

University of Southern California, United States

*CORRESPONDENCE

Keiji Miura

miura@kwansei.ac.jp

RECEIVED 07 February 2023

ACCEPTED 31 August 2023

PUBLISHED 11 October 2023

CITATION

Konishi M, Igarashi KM and Miura K (2023)

Biologically plausible local synaptic learning

rules robustly implement deep supervised

learning. Front. Neurosci. 17:1160899.

doi: 10.3389/fnins.2023.1160899

COPYRIGHT

© 2023 Konishi, Igarashi and Miura. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Biologically plausible local
synaptic learning rules robustly
implement deep supervised
learning

Masataka Konishi1, Kei M. Igarashi2 and Keiji Miura1*

1Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin

University, Sanda, Hyogo, Japan, 2Department of Anatomy and Neurobiology, School of Medicine,

University of California, Irvine, Irvine, CA, United States

In deep neural networks, representational learning in the middle layer is essential

for achieving e�cient learning. However, the currently prevailing backpropagation

learning rules (BP) are not necessarily biologically plausible and cannot be

implemented in the brain in their current form. Therefore, to elucidate the learning

rules used by the brain, it is critical to establish biologically plausible learning

rules for practical memory tasks. For example, learning rules that result in a

learning performance worse than that of animals observed in experimental studies

may not be computations used in real brains and should be ruled out. Using

numerical simulations, we developed biologically plausible learning rules to solve

a task that replicates a laboratory experiment where mice learned to predict the

correct reward amount. Although the extreme learning machine (ELM) and weight

perturbation (WP) learning rules performed worse than the mice, the feedback

alignment (FA) rule achieved a performance equal to that of BP. To obtain a more

biologically plausible model, we developed a variant of FA, FA_Ex-100%, which

implements direct dopamine inputs that provide error signals locally in the layer of

focus, as found in the mouse entorhinal cortex. The performance of FA_Ex-100%

was comparable to that of conventional BP. Finally, we testedwhether FA_Ex-100%

was robust against rule perturbations and biologically inevitable noise. FA_Ex-

100% worked even when subjected to perturbations, presumably because it could

calibrate the correct prediction error (e.g., dopaminergic signals) in the next step

as a teaching signal if the perturbation created a deviation. These results suggest

that simplified and biologically plausible learning rules, such as FA_Ex-100%,

can robustly facilitate deep supervised learning when the error signal, possibly

conveyed by dopaminergic neurons, is accurate.

KEYWORDS

backpropagation, feedback alignment, deep learning, neuromorphic engineering,

entorhinal cortex, dopaminergic neurons, olfactory system, biological plausibility

1. Introduction

Nowadays, deep learning with the backpropagation rule (BP) is very popular because

of its high performance (Schmidhuber, 2015); accordingly, neuromorphic engineering has

garnered attention (Richards et al., 2019). One of the merits of BP is that it automatically

obtains an appropriate representation of features in the middle layers without manual

tuning. BP efficiently leverages the explicit and repetitive function y = f(x) for neural

networks to calculate gradients for updating synaptic weights. However, BP faces challenges,

such as the vanishing gradient problem (Schmidhuber, 2015) and, more importantly,

Frontiers inNeuroscience 01 frontiersin.org221

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1160899
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1160899&domain=pdf&date_stamp=2023-10-11
mailto:miura@kwansei.ac.jp
https://doi.org/10.3389/fnins.2023.1160899
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1160899/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

GRAPHICAL ABSTRACT

Schematic illustration of three learning rules: BP, backpropagation; FA, feedback alignment; and FA_Ex-100%, feedback alignment with 100%

excitatory neurons in middle layer. BP requires the information in W2 to backprop. FA requires heterogeneity in the tentative impact of the middle

layer neurons on the output. FA_Ex-100% is the most biologically plausible in the sense that it can be computed at a synaptic triad only with locally

available information as explained below, but its performance is fairly good and comparable to that of BP. With the notations, yi1 : = f
(

∑

j W
ij

1x
j
)

,

y2 : = f
(
∑

i W
i
2y

i
1

)

, and J : = e2

2
=

(y2−y)
2

2
, the gradient for BP is given by ∂J

∂W
ij
1

= e Wi
2 f

′
(

∑

j W
ij

1x
j
)

· xj, whose Wi
2 is replaced by a random number Bi

for FA and by 1 for FA_Ex100%. Therefore, for FA_Ex-100%, the synaptic weights in the middle layer are updated by the following rule:

(1W)ij = −0.01 ∂J

∂W
ij
1

= −0.01 xj θ (Ii) e, where θ is a step function and Ii is the current input to neuron i. This can be interpreted as

(1W)ij ∝ prei × postj × dopamine. Interestingly, simplified and biologically plausible learning rules like FA_Ex-100% work robustly as far as the error

signal, possibly conveyed by dopaminergic neurons, is accurate.

struggles to backpropagate across the many layers of information

required for fine-tuning synaptic weights (Lillicrap et al., 2020).

That is, BP is not necessarily biologically plausible because it

requires sophisticated information that propagates over long

distances. What synaptic learning rules are adopted by the brain?

The simplest candidate has no learning in the middle layers.

An extreme learning machine (ELM) that sets the synaptic weights

in the middle layers to random initial values and updates only

the synaptic weights in the output layers, similar to reservoir

computing, could be implemented in the brain. However, the

performance of ELM is limited because it fails to fully exploit the

potential of deep neural networks, as the neural representations in

the middle layers do not improve during the training period.

The second well-known candidate is weight perturbation (WP),

where synaptic weight changes in the middle layers are randomly

sampled, similar to Markov chain Monte Carlo (MCMC) (Lillicrap

et al., 2020). In this learning rule, the proposed synaptic weight

changes are adopted if they reduce the error, which is conveyed

as a teacher signal, possibly by the dopaminergic neurons (Schultz

et al., 1997; Eshel et al., 2015, 2016; Tian et al., 2016; Watabe-

Uchida et al., 2017; Kim et al., 2020; Amo et al., 2022). In other

words, the gradients are not analytically computed like BP but are

obtained “numerically” through trial-and-error. However, WP is

inefficient as it cannot immediately identify the steepest descent

direction, like BP, but rather explores better synaptic weights using

random walks.

The third candidate is the recently developed feedback

alignment (FA) and its variants (Lillicrap et al., 2016; Nokland,

2016; Frenkel et al., 2021). FA updates synaptic weights in the

middle layers using a modified backpropagation rule, where theW2

term, which represents the synaptic weight vector to the output

layer, is replaced with a fixed ([-1,1]-uniformly) random vector

B. FA should successfully complete learning; for example, if W2

approaches B by the end of learning, consistent with the learning

assumption (W2 = B). Note that the difference between BP and

FA resides in the learning of synaptic weights in the middle layers;

however, the learning rule for synaptic weights in the output layers

remains common for both rules. Because FA is fairly heuristic, there

may be room for improvement.

The candidates for the learning rule that the brain implements

can be narrowed down by comparing the performances of FA and

its variants to those of BP (see also Scellier and Bengio, 2017; Song

et al., 2020, 2022; Meulemans et al., 2021; Millidge et al., 2022;

Salvatori et al., 2022 for other potential learning rules). Learning

rules that underperform the behavioral performance of mice, for

example, are unlikely to be implemented in the brain.

However, most benchmarks in previous studies on FA and its

variants were unsatisfactory because they used image recognition

tasks. (1) There is no evidence that dopaminergic signals are used

as error signals for learning in the primary and other visual cortices.

(2) Specifically, there is no evidence that the “middle layers” in the

visual system exhibit enough plasticity depending on the training

Frontiers inNeuroscience 02 frontiersin.org222

https://doi.org/10.3389/fnins.2023.1160899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

images and their labels. (3) The BP for conventional convolutional

neural networks specialized in image processing is too complex

to be implemented in the brain. (4) The object recognition task

requires excessively long training sequences, which do not end

while the animals are alive. Given that the performance of various

learning rules can heavily depend on the tasks imposed, it is very

important to impose a biologically plausible task when comparing

different learning rules as candidates implemented in the brain.

That is, the mathematical neural network models to be constructed

should cover the brain regions where the “middle layers” display

enough plasticity for a given task.

Therefore, we focused on the plasticity in the entorhinal

cortex (Igarashi et al., 2014, 2022; Igarashi, 2015, 2016), where

dopaminergic inputs are known to exist, and constructed a

mathematical model to explain it as learning in the middle

layer of a deep supervised neural network. A previous study

reported that during an experiment in which mice performed a

task to obtain a water reward, the entorhinal cortex displayed

plasticity, which can be viewed as representation learning in the

middle layer, with dopamine serving as a teacher signal (Lee

et al., 2021). Thus, it is worth modeling this olfactory system

to elucidate learning rules in the middle layer of the brain.

Furthermore, knowledge of the network structure of the olfactory

system, which is evolutionarily conserved to some extent, can

be utilized for mathematical modeling (Hiratani and Latham,

2022). We used a basic mathematical model of the olfactory

system as a multilayer neural network, including the olfactory

cortex (sensory input layer), entorhinal cortex (middle layer), and

prefrontal cortex (output layer). In this study, we compared the

learning performance of this model under different learning rules.

A graphical summary is presented in Graphical Abstract.

2. Materials and methods

In this study, we performed numerical simulations in which

a three-layer network solved a generalized XOR task (k-dXOR

task) using various learning rules and learning parameters. All

numerical calculations were implemented using handmade code in

Python 3.9.13. The Python codes used to reproduce all figures are

publicly available.

2.1. k-dXOR task

We simulated a laboratory task in which the output neuron

learned the reward amount (Wang et al., 2013). As the expected

reward amount is a continuous variable, we used a regression task

rather than a classification task.

As the input-output function to learn, we used the k-dXOR

task, where, of the d dimensions of the inputs, the first k inputs are

relevant and necessary to predict the output, and the remaining d-k

inputs are irrelevant. Specifically, the true input-output function to

learn is assumed to be

y = sign(x1)sign(x2) . . . sign(xk).

To generate the training and test artificial data, we first

randomly generated the x-coordinates (x1, x2, . . . , xn) and then

determined y according to the above equation. xi was generated

randomly according to the normal distribution, with its expectation

randomly chosen as+1 or−1 with a probability of 0.5 and standard

deviation of 0.01:

xi = (random.rand() > 0.5)∗2− 1+ random.randn()∗0.01

A nonlinear task was considered because it is too easy to reflect

a realistic laboratory task. Thus, we used k = 2 because it is known

that rodents can perform reversal learning, which can be regarded

as k = 2 (Roesch et al., 2007) and therefore, a realistic brain model

should be able to solve the k-dXOR task, at least for k = 2. In the

reversal learning, the emergence of the cue (or the first) stimulus

upsets the entire task and reverses the output.

Learning performance was measured using the squared error

of the test data or the predicted squared error. In each figure, the

average and standard deviation of the predicted squared errors for

100 repeated simulations with different random seeds are plotted.

2.2. Three-layer neural network

Throughout the paper, we used a three-layer neural network

consisting of the input layer (tentative olfactory cortex or olfactory

bulb; Cury and Uchida, 2010; Miura et al., 2012; Haddad et al.,

2013; Uchida et al., 2014), the middle layer (tentative entorhinal

cortex; Nakazono et al., 2017, 2018; Funane et al., 2022), and

the output layer (tentative prefrontal cortex; Starkweather et al.,

2018). The neural activity in the input layer represents the input

x of the k-dXOR task, whereas the neural activity in the output

layer represents the output y. Note that we began with the

olfactory representation at the olfactory cortex as an input for the

neural network, although there are other early areas for olfactory

information processing before the olfactory cortex, such as the

olfactory bulb and olfactory receptor neurons. However, if there is

low plasticity in these early areas, we believe that we can begin with

a higher-level area (olfactory cortex) to simplify the model.

The number of neurons in the input layer is the same as that

in the dimensions of the task inputs. The number of neurons

in the output layer is one because the output is a scalar (one-

dimensional) representing the expected amount of reward. The

numbers of neurons in the middle layer were 10 or 20 for the case

depicted in Figure 1 and 20 for the cases depicted in Figures 2–7.

Initial values of synaptic weights W1 and W2 were randomly

chosen according to the uniform distribution [−0.01, 0.01].

Then, for training, the weights were updated using one of the

following rules.

2.3. Learning rules

The learning rules are described as follows: Note that the

difference resides only in the weight update rule for the middle

layers. That is, the weight-update rule in the output layer is

common for all learning rules; thus, it is the same as that for BP.

Frontiers inNeuroscience 03 frontiersin.org223

https://doi.org/10.3389/fnins.2023.1160899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

FIGURE 1

Predicted mean squared errors for four learning rules: BP, FA, WP, and ELM. The input dimension is 12, of which the relevant input dimension is two

and the noise input dimension is 10. The learning rate η = 0.02 for tanh or η = 0.01 for ReLU is chosen to be large enough to maximize training

speed while preserving stability. The performance of FA is comparable to that of BP. The performances increased with number of middle layer

neurons and with ReLU as an activation function.

FIGURE 2

Predicted squared errors for BP, FA, FA_normal, FA_Ex-80%, and FA_Ex-100% with various noise input dimensions. The relevant input dimension is

two, the number of middle layer neurons is 20, and the learning rate is η = 0.01. The performances for the variants of FA are fairly good and

comparable to those of FA and BP.

2.3.1. Extreme learning machine
ELM (Huang et al., 2004, 2006) sets the synaptic weights in the

middle layers to random initial values and updates only the synaptic

weights in the output layers, similar to reservoir computing. In

other words, the ELM never learns in the middle layers. Therefore,

if the neural network does not obtain adequate representation in the

layer immediately before the output layer, the task cannot be solved

successfully. Specifically, a task can be solved only if the output is

represented by the weighted sum of the neural activities in the layer

immediately before the output layer.

Frontiers inNeuroscience 04 frontiersin.org224

https://doi.org/10.3389/fnins.2023.1160899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

2.3.2. Weight perturbation
For the synapses in the middle layer, WP (Lillicrap et al., 2020)

chooses a candidate for the small weight update 1W1 randomly.

Then, if the change of weights reduces the squared error for the

training data, WP adopts the update and modifies the synaptic

weight as W1 = W1 + 1W1. In other words, a randomly

“perturbed” weight vector 1W1 is adopted if the perturbation

decreases the cost function. To be precise, at each epoch, the

elements of a candidate matrix (1W1)ij are randomly proposed

according to a normal distribution with a mean and standard

deviation of 0 and ǫ(=0.005), respectively.

2.3.3. Back propagation
BP (Richards et al., 2019; Lillicrap et al., 2020) updates the

synaptic weights using the usual backpropagation rule for both the

middle and output layers. The weight vector is updated according

to the gradient vector to minimize the cost function (squared

error). Graphical Abstract presents a concrete equation for the

weight update.

2.3.4. Feedback alignment
FA (Lillicrap et al., 2016) updates synaptic weights in themiddle

layers using themodified backpropagation rule, where theW2 term,

which represents the synaptic weight vector to the output layer, is

replaced by a fixed ([-1,1]-uniformly) random vector B. FA should

finish learning successfully; for example, if W2 approaches B by the

end of learning, consistent with the learning assumption (W2 =

B). Graphical Abstract presents a concrete equation for the weight

update. The variants of FA are described in the main text.

2.4. Leaning parameters

The learning rate η was set at 0.02 for tanh or 0.01 for ReLU for

the case depicted in Figure 1, 0.01 for the case depicted in Figure 2,

and 0.005 for the cases depicted in Figures 3–7. To simplify the

comparison, we did not schedule the learning rate across the

epochs. That is, we maintained a fixed learning rate within each

simulation and did not change it across training epochs (time).

This approach allowed us to use a learning rate that maximized

performance and ensured a fair comparison of different learning

rules. Note that as long as the training proceeds stably, the final

performance does not essentially depend on the learning rate,

except for its effect on learning speed. For example, halving the

learning rate doubles the number of learning epochs required

for training.

The batch size was fixed at eight. In each epoch, the cost

function was measured for eight samples of training data, and a

weight update was performed to reduce the cost function once per

epoch. Thus, one epoch corresponds to a single weight update. Note

that, as long as the total sample size for training remains the same,

the batch size has minimal impact on the final performance. For

example, if the batch size is reduced to four from eight, the number

of epochs required to complete the learning doubles. However, the

total number of samples (experimental trials) required to achieve a

given level of accuracy remains unchanged. Using this trial count,

one can judge whether the number of trials required is biologically

realistic, which is discussed further in the Discussion section.

3. Results

3.1. Comparison of learning rules: ELM, WP,
FA, and BP

In this study, using numerical simulations, we compared the

performance of deep neural networks with different learning rules

(ELM, WP, FA, and BP) for a task that simulated a laboratory

experiment wheremice predicted reward amounts (Lee et al., 2021).

One important goal here is to judge the biological plausibility of

the learning rules. Thus, a learning rule that underperforms in

laboratory mice is unlikely to be adopted in the brain. Indeed, there

is an easy and unique rule to update synaptic weights toward the

output layer. Thus, the update rule in the output layer is common

across different learning rules. However, the learning rule that

performs best in the middle layer remains uncertain. Consequently,

we compared the performance of the different synaptic update rules

in the middle layers.

First, we compared the prediction performance of a three-layer

neural network trained with ELM (Huang et al., 2004, 2006), WP

(Lillicrap et al., 2020), BP (Richards et al., 2019; Lillicrap et al.,

2020), and FA (Lillicrap et al., 2016). Although the details of each

learning rule are available in the Materials and Methods section,

they are briefly summarized below. ELM never updates the synaptic

weights in the middle layers and maintains them at their initial

randomized values. In other words, ELM only updates the synapses

leading to the output layer.WP randomly proposes (small) synaptic

updates in the middle layer and adopts them if they reduce the

squared error for the training data in the current batch. BP updates

synaptic weights using the conventional backpropagation rule for

both the middle and output layers. Note that the synaptic update

rule for the output layer is common to the four rules, and thus is

the same as that for BP. FA updates synaptic weights in the middle

layers using a modified backpropagation rule where the W2 term,

which represents the synaptic weight vector to the output layer, is

replaced by a fixed ([-1,1]-uniformly) random vector B. FA should

successfully complete learning; for example, if W2 approaches B

by the end of learning, consistent with the learning assumption

(W2 = B).

To simulate the laboratory task where mice learned the

expected amount of reward (sugar water), we trained a three-

layer network consisting of the input layer (piriform cortex, N =

12), middle layer (entorhinal cortex, N = 20), and output layer

(prefrontal cortex, N = 1) to learn the artificial data generated

by the k-dXOR task, which is a generalization of XOR to various

input dimensions. Further details are provided in the Materials and

Methods section. Taking advantage of the fact that task difficulty

can be controlled by the number of neurons in the middle layer and

the input dimensions, we set the number of neurons in the middle

layer to 20 and the input dimension d to 12, of which the dimension

of the input that is relevant to the output k is 2 and the irrelevant

dimension dnoise is 10. We used k = 2 entirely because rodents

can perform reversal learning, which can be regarded as k = 2

(Roesch et al., 2007). Therefore, a realistic brain model should be

Frontiers inNeuroscience 05 frontiersin.org225

https://doi.org/10.3389/fnins.2023.1160899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

FIGURE 3

Predicted squared errors when f’(s) is shifted along y-axis. As an activation function, ReLU is used. The learning rate is 0.005 (commonly used for

Figure 3 and later and the half of that for Figures 1, 2). The number of middle layer neurons is 20 (left–bottom). The epoch (learning time) when the

predicted squared error falls below 0.1 is plotted against the x-shift. The learning with FA or its variants is robust even if f and f’ is inconsistent.

able to solve the k-dXOR task, at least for k= 2. Note that although

we use rather small noise input dimensions dnoise, which makes

the task less challenging in the real brain, the number of input or

sensory neurons is relatively large. However, we believe that the

number of neurons in themiddle layers is also high in the real brain.

Therefore, the same task can be solved by increasing both numbers

in a balanced manner (Hiratani and Latham, 2022). However,

owing to the limitations in computational resources, this study

used a rather limited number of neurons to perform simulations, as

described above. Future work may explore GPU-based simulations

to increase both the input- and middle-layer neuron counts in a

balanced manner. Note that as an activation function, we used

either tanh (Figure 1, top), which was used in the original FA study

(Lillicrap et al., 2016), or ReLU (Figure 1, bottom), which generally

enhances the learning performance (Krizhevsky et al., 2017).

Figure 1 (top-left) demonstrates that the accuracy increases

or the predicted squared error decreases with epochs (learning

time). The performance was outstanding for conventional BP

and its variant FA, where the predicted squared error dropped

below 0.1, effectively solving the task of predicting sugar water

amounts. FA, even in its original form, performed slightly better

than BP, suggesting that biologically plausible FA may have

the potential to work fairly well, particularly for specific tasks.

In contrast, ELM and WP struggled to solve this problem.

ELM and WP excel at simpler tasks, such as k-dXOR tasks

with dnoise = 0 (d-k = 0, no noise input). However, as the

input dimension increases and the task complexity increases,

ELM and WP fall short. Given that the brain likely deals with

a large number of noise inputs and solves challenging tasks,

ELM and WP cannot apparently be adopted by the brain.

Moreover, the training period for ELM and WP exceeds 1,000

epochs, further suggesting their implausibility in biological learning

processes.

The reasons why ELM and WP underperformed may be

attributed to several factors. When ELM does not have a sufficient

number of neurons in the middle layers, such as in the current

setting, its neural representations in the middle layer immediately

before the output layer are too inadequate to solve the task. WP,

which essentially randomly explores synaptic weights in the middle

layers, can, in principle, eventually learn any task, but it tends to

require an impractically long time to converge. This is because

there are too many possibilities to explore randomly when the

dimensions of the input and the space to explore are large. For

example, because WP can only propose one synapse at each epoch

for a possible update, it takes at least as many epochs as the

number of synapses to explore all directions. Given the efficiency

of exploration, BP, which skillfully utilizes the steepest descent

(greedy) direction, can converge much faster, particularly for high-

dimensional tasks.

Figure 1 (top-right) shows that increasing the number of

neurons in the middle layer to 20 expedited the training, possibly

owing to the enhanced representational capacity. In fact, the errors

for FA and BP fall below 0.1 more quickly. In general, performance

(generalization error) is determined by the balance between the

difficulty of the task and the structure of the neural network, such

as the number of neurons in the middle layer. Although the original

FA uses the suboptimal weight update vector 1W, which is not

necessarily parallel to gradients like BP, the performance of FA is

only slightly lower than that of BP. The time (number of training

epochs) for FA to fall below 0.1 takes only 40% longer than that of

BP. In fact, the performance of FA is much better than that of ELM

or WP, making it a practical choice for solving the task.

Figure 1 (top-right) shows that replacing tanh with ReLU as

an activation function, which is a widely recommended empirical

practice, enhances performance, especially for BP and FA. ELM

and WP did not show any noticeable enhancements. Notably, the

Frontiers inNeuroscience 06 frontiersin.org226

https://doi.org/10.3389/fnins.2023.1160899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

predicted squared error for FAwith ReLU quickly reached 0.1 in the

early phase of the training. In contrast, after a considerable number

of epochs, the predicted squared error for BP decreased below

0.001, faster than that for FA. However, because this asymptotic

accuracy can be easily tuned by parameters, such as the scheduling

of learning rates, and may be unnecessarily high for laboratory

experiments, the initial phase may be more important than the

asymptotic phase.

While the superiority of FA over ELM and WP in the

experimental results is expected, exploring functions that depend

on only a few input features is novel. Therefore, Figure 1 compares

different learning rules under identical conditions, similar to a

Rosetta Stone.

In the following subsection, we exclusively use ReLU as

an activation function, as it demonstrates superior performance

compared to tanh, as shown in Figure 1. When we used ReLU, FA

demonstrated a striking performance in the early phase of training.

Therefore, we continue to examine FA as a promising candidate

for biological learning. ELM and WP are not considered in the

subsequent figures, as they yielded relatively poor performance.

Next, we attempted to further improve FA and BP by tuning

various learning parameters. It is especially worth developing a

variant of the FA, as the FA in its original form has already

shown fairly good performance. Among themany possible variants,

we wanted to explore the biologically plausible variants with

adequately high performance.

3.2. Proposed variants of FA enhance
learning performance

As shown in Figure 1, both FA and BP exhibit good

performance. However, from a biological plausibility perspective,

conventional BP and its variant FA, in their original forms, suffer

from two challenges: (1) they require the activities of postsynaptic

neurons with high accuracy, and (2) they require information that

physically backpropagates across layers. Therefore, we propose new

variants of FA to address these challenges. However, it is empirically

known that most ad-hoc learning rules destabilize during training

and fail. Meanwhile, learning rules based on cost functions such as

BP tends to be more reliable. Thus, we base our new learning rules

on BP and FA.

Fortunately, the first challenge can be resolved by simply

adopting the ReLU as an activation function, which tends to

outperform other activation functions. The resulting learning

rule only requires ON or OFF resolutions for the activities

of postsynaptic neurons and can be easily implemented in a

living system with stability. This is because the differentials of

the activation function for the postsynaptic neuron required to

compute the learning rule are simpler for ReLU than for the tanh

and sigmoid functions. For f(s) = ReLU(s), f ’(s) = 0 for s < 0, or

1 for s > 0. Note that the only assumption we have proposed thus

far is to use ReLU as an activation function, and no approximation

to the cost function is needed to compute the differentials of the

activity of postsynaptic neurons in the living system.

Note that the ReLU is not only powerful and simple in

computing but also biologically plausible when rate-based models

are considered. For example, it has been shown that the f-I curve

(firing frequency plotted against the input current) of a realistic

neuron model is well described by a ReLU (Shriki et al., 2003).

Regarding the second challenge, it is insightful to review the

original FA, where the impact of the activity of a neuron in the

middle layer x on the activity of a neuron in the output layer y,

or dy/dx, which is used to compute the weight update 1W in

BP, is modified by replacing the connection matrix with output

layer W2 with a random matrix B. Because the weight in the

middle layer W1 is trained with this modification, learning can

converge if the assumption W2 = B holds and everything is

consistent. However, the physical substances representing B remain

unclear, and information on B is required to backpropagate across

the layers.

Therefore, we further modify FA slightly and use (B)ij = 1 for

all i and j, assuming that all middle-layer neurons have the same

impact on the output layer. We call this learning rule FA_Ex-100%.

However, this finding implies that only excitatory neurons exist

in the middle layer. Therefore, we can further modify it to have

20% inhibitory neurons with (B)ij = 1 (for i: excitatory, 80%) or

−1 (for i: inhibitory, 20%) randomly according to the Bernoulli

distribution. We call this learning rule FA_Ex-80%. Furthermore,

we define FA_normal as the third variant of FA, where the random

matrix B is neither uniform nor Bernoulli but normal. As we will

demonstrate later, these three variants of FA are comparable to FA

and significantly outperform ELM andWP.

Remarkably, the FA and their variants can be implemented as

synaptic triads. That is, in order to compute the synaptic weight

update (1W)ij, only three types of information that are available

at the synapse are required: the activities of the presynaptic neuron

i, the postsynaptic neurons j, and the dopaminergic neuron (error

signal). Multiplying the three activities available at the synapse is a

biologically plausible computation.

1W
ij
1 = prei × postj × dopamine, (1)

The reason why only locally available information suffices to

compute 1W
ij
1 is simply that W2 has been replaced by B. That is,

if B = 1 (or is fixed to a constant) and the backpropagation of W2

information is no longer required, as shown in Graphical Abstract,

we can simply send e (the error signal) directly to the synapses in

the middle layer.

Figure 2 compares the predicted squared errors for the five

learning rules, BP, FA, and the three FA variants. Here, we fixed

the relevant input dimension to two and varied the noise input

dimension between 50, 100, and 200 to control the task difficulty.

The learning rate η = 0.01 is fixed (not scheduled), and the

activation function f = ReLU and its derivative f ’ =ReLU’ are

consistently used in the equation to compute the weight update

1W (this is not necessarily satisfied in the case depicted in

Figures 3–7).

Figure 2 (left) shows that the performance for the variants of FA

is sufficient, and, similar to FA in Figure 1, their predicted squared

losses fall below 0.1 faster than that of BP. This demonstrates

that learning comes into effect even if the FA does not use a

uniformly random matrix B. Surprisingly, the learning rule that

is implementable at a synaptic triad with only locally available

information, such as FA_Ex-100% (or FA_Ex-80%), works fairly

Frontiers inNeuroscience 07 frontiersin.org227

https://doi.org/10.3389/fnins.2023.1160899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

well. Furthermore, the differentials of the postsynaptic neuron’s

activity can easily be computed using ReLU instead of tanh as an

activation function. Figure 2 (middle, right) shows that the variants

of the FA can solve difficult tasks with high-dimensional noise

inputs. Even a task with an input noise dimension (200) that is ten

times larger than the number of middle-layer neurons (20) can be

solved. Although we did not perform large-scale simulations, it is

possible to solve the high-dimensional problem by balancing the

input noise dimensions and the number of middle-layer neurons

(Hiratani and Latham, 2022).

3.3. Proposed learning rules are robust and
even approximated rules work

Thus far, we have proposed new learning rules as variants of

the FA and have demonstrated that these variants are effective in

solving challenging tasks. In FA_Ex-100% and FA_Ex-80%, the

weight update 1W (which is essentially a gradient vector) can be

represented as a multiplication within a synaptic triad:

1W
ij
1 = prei × f ′(Ij)× dopamine. (2)

Intuitively, all we need for computing 1W
ij
1 is the impact

of weight updates on postsynaptic activities, which is why W2

appeared in 1W
ij
1 for BP (see Graphical Abstract for details). Then

replacing W2 by a random vector B is equivalent to assuming that

the impact of the weight update 1W
ij
1 on the neural activity in the

output layer is (proportional to) Bj. Therefore, postj in Equation

1 for FA and its variants can be expressed as f ′(Ij), where f is

the activation function (of the postsynaptic neuron j) and Ij is the

current input to the j-th postsynaptic neuron. Note that because we

use ReLU as an activation function f , f ′ is actually a step function.

However, it may be challenging to implement Equation 2 in

the brain because it requires an accurate calculation of f ′, that is,

the differential of the activity of postsynaptic neurons with respect

to their input current. It is unclear whether accurate information

on the activity of postsynaptic neurons can be conveyed to

presynaptic neurons and if the differential of neural activity can

be accurately computed in the brain. Therefore, we would like to

determine whether the learning rules function even if the brain

cannot accurately compute f ′ and is forced to approximate it

with some errors. Specifically, we consider a series of systematic

approximations for f ′ as variants of the learning rules and assess

the extent to which they still work. We not only confirm the

robustness by maintaining the accuracy but also determine if we

can improve the accuracy by approximations for the heuristically

derived FA and its variants, which have room for improvement.

That is, although we used ReLU as the activation function f , f ′ in

Equation 2 for computing the weight updates is not necessarily

its derivative ReLU, but something different. In this context, f ′ is

inconsistent with f . Specifically, to explore methods of perturbing

f ′ in a systematic manner, we consider parallel translations, scaling,

and noise addition.

First, we shifted f ′orig(=ReLU’) along the y-axis and considered

f
′

= ReLU’(s)+shift. This shift should yield a bias in computing

1W
ij
1 in Equation 2. However, as shown in Figure 3, these

perturbed learning rules functioned fairly well as long as the shifts

were sufficiently small. For example, once the weight-update rule

for FA_Ex-100% in Graphical Abstract is averaged across the input

x and error e for large data or long epochs, the effect of the y-

shift (adding a constant) on f ’(s) should approach zero when the

mean of x or e is zero. This may explain why the effect of the y-

shift is negligible if it is small. Similarly, the weight update rule,

which can be interpreted as the multiplication of three terms,

may become more stable if x, e, and f ’(s) are balanced (i.e., any

of the three terms have a zero-mean). In fact, strikingly, when

we shifted by −0.5 along the y-axis, and f
′

is the most balanced

(zero-mean), the accuracy improved. This may provide a hint for

improving accuracy, although it is uncertain whether making each

term easy to cancel generally works. Note that it is generally very

challenging to improve accuracy in an ad hoc manner, and this

approach represents one of the few ways to significantly improve

performance based on our experiments in this paper.

Next, we shifted f ′orig(=ReLU’) along the x-axis, introducing

f
′

= ReLU’(s-shift). As shown in Figure 4, these perturbed learning

rules functioned fairly well as long as the shifts were positive

and sufficiently small. However, when the shift was negative or

adequately positive, the performance deteriorated. Thus, although

these learning rules are robust against x-shifts of f
′

to some extent,

it is not straightforward to significantly enhance performance solely

through x-shifts.

As depicted in Figure 5 (top), amplifying f ’ along the y-axis

as f
′

= f ′orig x constant, sped up the learning. However, this

result is trivial. For example, multiplying f
′

by a constant is

almost equivalent to multiplying the learning rate by the same

constant (Figure 5, bottom). However, in Figure 5 (top), we do not

multiply the learning constant for the output layer by the same

constant, which leads to unbalanced learning. Therefore, there are

discrepancies between Figure 5 (top, bottom).

Because it does not make sense to magnify ReLU’ along the x-

axis (it has no discernible effect), we consider a sigmoid function

f
′

(s) = Sigmoid(cs) for some constant c. As shown in Figure 6, the

performance was enhanced with c (slope at s = 0). Especially at

the large limit of c (=50), the performance approached that of the

original learning rules with f
′

= f ′orig(=ReLU’) as expected.

Finally, we added normal noise as f
′

= f ′orig + noise. Figure 7

(top) shows that the learning functions fairly well as long as the

noise amplitude is significantly smaller than one. The same result

was observed when fixed noise was applied, as shown in Figure 7

(bottom), where the initially fixed noise was used across epochs for

the same neuron. The results demonstrate robustness in learning

against noise.

4. Discussion

Our contribution resides in demonstrating successful learning

for FA_Ex-100% with a more biologically plausible connection

matrix B. Note that B is a random weight matrix (vector) in the

original FA paper (Lillicrap et al., 2016), whereas an all-1 vector

B was also considered in this study. A condition on B for the

successful learning ofW1 was derived under the assumption that all

activation functions are linear (i.e., linear neurons), and W2 is not

Frontiers inNeuroscience 08 frontiersin.org228

https://doi.org/10.3389/fnins.2023.1160899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

FIGURE 4

Predicted squared errors when f’(s) is shifted along x-axis. As an activation function, ReLU is used (forig =ReLU). The learning rate is 0.005. The number

of middle layer neurons is 20 (left–bottom). The epoch (learning time) when the predicted squared error falls below 0.1 is plotted against the y-shift.

The learning performance with FA or its variants is robust even if f and f’ is inconsistent.

trainable (related to Figure 5 in Lillicrap et al., 2016). In essence, the

derived conditionW2·B > 0 was not satisfied before learning where

W2 ·B = 0, whileW2 gets aligned with B during the training ifW2 is

also trainable. From this viewpoint, it is expected that any B (with a

randomly initializedW2) suffices the conditionW2 ·B > 0 after the

training, and FA works in the end. Thus, the conditionW2 · B > 0

provides insight into the entire learning process, including both

W1 and W2 as trainable parameters to be successful, although it

does not serve as a sufficient condition for general cases rigorously.

Note that what matters actually is whether the cost function (J

= sum of squared errors) consistently decreases at each update:

1J (W1,W2) =
∂J

∂W1
·1W1 +

∂J
∂W2

·1W2 = −eW2 · Be+ 0 < 0,

which leads to the condition W2 · B > 0 for W1 in Lillicrap et al.

(2016) as the error e is just a scalar. Overall, there is no rigorously

proven condition for successful learning, and the results in our

study cannot be predicted from such a simple condition. Thus, we

believe that our contribution, demonstrating successful and robust

learning for a more biologically plausible B is not trivial.

4.1. What are the constraints imposed by
biological plausibility?

In this study, in a narrow sense, biological plausibility means

that the weight update rule can be computed only with local

information that is available at a synaptic triad. Additionally, a

biologically plausible learning rule should exhibit high performance

comparable to that of a real brain, as the brain is unlikely to adopt

a learning rule that underperforms it.

We cannot emphasize enough that rules that use only the

synaptic triad are highly biologically plausible. As a variant of the

FA, we derived rules that exclusively use a synaptic triad. Their

performances are comparable to those of BP and FA. Among them,

FA_Ex-100% is particularly elegant in the sense that its weight

update rule is uniform throughout the network. This is because B=

1. The update rule is not exclusive to middle-layer neurons but also

applies to output neurons. Therefore, we may only require a single

learning rule for the entire brain. It is worth examining whether

FA and its variants are implemented in the brain and whether the

experimentally observed synaptic updates are consistent with these

learning rules.

We acknowledge that FA encounters challenges as networks

become deeper. Even if the FA only works with a limited number

of layers, here we consider shallow networks as a model olfactory

system because dopaminergic inputs are only available in a limited

number of layers in the real brain. We do not claim that many

trainable layers with plasticity are required to reproduce the

biological brain.

It is known that animals can learn a task where a preceding

cue reverses the outcomes. Therefore, it is natural to assume that

the ability to solve an XOR task is necessary for an algorithm to

be used in the real biological brain. We agree that this is not a

sufficient condition. Although the XOR task is just a minimum-

level problem that must be solved by a biological algorithm, it is

ideal in that its difficulty can be controlled by changing the input

dimensions to achieve a wide range of task levels. We agree that

further benchmarks, possibly with larger networks, are necessary

and will be left for future work.

Performing well with 3-layer ANNs is the minimum

requirement. Future work should attempt more realistic network

structures with untrainable layers and loops. We agree that

the reality of the model can be an endless argument, although

previous studies on the olfactory system have considered similar

mathematical models with random connections and inputs

(Hiratani and Latham, 2022). Even so, we are committed to

the study of biology, and our model serves as a valuable tool

Frontiers inNeuroscience 09 frontiersin.org229

https://doi.org/10.3389/fnins.2023.1160899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

FIGURE 5

Predicted squared errors when f’(s) is scaled along y-axis. As an activation function, ReLU is used (forig = ReLU). The learning rate is 0.005. The

number of middle layer neurons is 20. The learning performance with FA or its variants is robust even if f and f’ is inconsistent.

FIGURE 6

Predicted squared errors when f’(s) is scaled along x-axis as f’(s) = Sigmoid(cx). As an activation function, ReLU is used (forig = ReLU). The learning rate

is 0.005. The number of middle layer neurons is 20. The learning performance with FA or its variants is robust even if f and f’ is inconsistent.

in the sense that the proposed local synaptic learning rule can

be easily compared with the experimental observations. We

strongly believe that this new line of research involving end-to-end

training under local synaptic rules will be the key to understanding

human intelligence.

4.2. Scalability is essential for pursuing
biological plausibility

In this study, tuning the task difficulty significantly changed

the results. If the real tasks that the brain must solve are more

difficult than the ones used here, the candidates for the learning

rules should be narrowed down. Therefore, it will be essential

to simulate tasks involving various difficulties in the future. For

example, we use rather small noise input dimensions, dnoise, which

makes the task easy; however, in the real brain, the number of input

or sensory neurons is large. However, we believe that the number

of neurons in the middle layers is also large in the real brain.

Therefore, the same task may be solved by increasing both numbers

in a balanced manner (Hiratani and Latham, 2022). Future work

may explore GPU-based simulations to increase both the input-

and middle-layer neuron counts in a balanced manner.

Although we maintained a batch size of eight throughout this

study, it is natural for mice to learn from each trial as an epoch

or with a batch size of one. However, it is also realistic for mice to

exploit the memories of several past trials. In addition, when the

total sample size for training was the same, the batch size did not

affect the final performance. Therefore, it is important to determine

whether mice can perform tasks within a realistic number of

laboratory trials (training samples). For example, Figure 2 (bottom

right) shows that 100 epochs or 800 trials (with a batch size of eight)

were required for training with BP or FA. This number of trials may

initially appear substantial, as the brain can learn more quickly for

some tasks. However, this number is primarily influenced by the

task complexity and network parameters. In practice, this number

Frontiers inNeuroscience 10 frontiersin.org230

https://doi.org/10.3389/fnins.2023.1160899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

FIGURE 7

Predicted squared errors when an unfixed (top) or fixed normal noise (bottom) with various amplitudes is added to f’(s) as f’=ReLU+Noise. As an

activation function, ReLU is used (forig =ReLU). The learning rate is 0.005. The number of middle layer neurons is 20. The learning performance with

FA or its variants is robust even if f and f’ is inconsistent.

can be significantly reduced by introducing more neurons in the

middle layer. The brain may indeed adopt a regime of abundant

middle-layer neurons. Therefore, although we set the maximum

epoch to 1,000 (8,000 trials) in all figures, as it is too long for mice

to perform in the laboratory experiment, this trial number can be

efficiently controlled by adjusting learning parameters such as the

number of middle-layer neurons.

Taken together, many issues related to biological plausibility

can be rephrased as issues of scalability in the sense that the

learning parameter can counterbalance task difficulty, such as input

dimensions, as the performance in the large limit is unknown.

Checking the scalability requires future work, and it is necessary

to elucidate, possibly with GPUs, the types of regimes used by

the brain.

We agree that high-dimensional experiments using larger

networks assisted by GPUs are desirable. However, not only

GPU availability but also software development is pivotal

for scaling; the existing frameworks for deep learning are

mostly prepared for the backpropagation learning rule.

Therefore, implementing a handmade learning rule without

explicit cost functions for training is challenging. Although

we are currently developing original Python code to utilize

GPUs for handmade learning rules, we believe that this

is worth further work. We aim to publish the current

paper separately using highly readable code specialized for

attached CPUs.

4.3. From spiking models to rate-based
models

In this study, we focused exclusively on rate-based learning

rules and did not discuss spike timing. However, it is easy

to bridge the gap between these two approaches by starting

with small time bins and subsequently averaging them, which

results in rate-based learning rules. This is because FA variants

require only the spike frequencies of presynaptic, postsynaptic, and

dopaminergic neurons.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

MK performed the numerical simulations. KI contributed to

the discussion on biological plausibility. KM wrote the manuscript.

All authors contributed to the manuscript revision and have read

and approved the submitted version.

Frontiers inNeuroscience 11 frontiersin.org231

https://doi.org/10.3389/fnins.2023.1160899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

Funding

KM was partially supported by JSPS KAKENHI Grant Nos.

JP18K11485, JP22K19816, and JP22H02364. KI was supported

by the NIH (R01MH121736, R01AG063864, and R01AG066806),

Japan Science and Technology Agency (JPMJPR1681), Brain

Research Foundation (BRFSG-2017-04), Whitehall Foundation

(2017-08-01), BrightFocus Foundation (A2019380S), Alzheimer’s

Association (AARG-17-532932), and New Vision Research

Foundation (CCAD201902).

Acknowledgments

We are grateful to Jason Y. Lee for critical comments regarding

this manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Amo, R., Matias, S., Yamanaka, A., Tanaka, K. F., Uchida, N., and Watabe-
Uchida, M. (2022). A gradual temporal shift of dopamine responses mirrors the
progression of temporal difference error in machine learning. Nat. Neurosci. 25, 1082.
doi: 10.1038/s41593-022-01109-2

Cury, K. M., and Uchida, N. (2010). Robust odor coding via inhalation-
coupled transient activity in the mammalian olfactory bulb. Neuron 68, 570–585.
doi: 10.1016/j.neuron.2010.09.040

Eshel, N., Bukwich, M., Rao, V., Hemmelder, V., Tian, J., and Uchida, N. (2015).
Arithmetic and local circuitry underlying dopamine prediction errors.Nature 525, 243.
doi: 10.1038/nature14855

Eshel, N., Tian, J., Bukwich, M., and Uchida, N. (2016). Dopamine neurons
share common response function for reward prediction error. Nat. Neurosci. 19, 479.
doi: 10.1038/nn.4239

Frenkel, C., Lefebvre, M., and Bol, D. (2021). Learning without feedback: fixed
random learning signals allow for feedforward training of deep neural networks. Front.
Neurosci. 15, 629892. doi: 10.3389/fnins.2021.629892

Funane, T., Jun, H. C., Sutoko, S., Saido, T. C., Kandori, A., and Igarashi, K. M.
(2022). Impaired sharp-wave ripple coordination between the medial entorhinal cortex
and hippocampal CA1 of knock-in model of Alzheimer’s disease. Front. Syst. Neurosci.
16, 955178. doi: 10.3389/fnsys.2022.955178

Haddad, R., Lanjuin, A., Madisen, L., Zeng, H. K., Murthy, V. N., and Uchida, N.
(2013). Olfactory cortical neurons read out a relative time code in the olfactory bulb.
Nat. Neurosci. 16, 949–U227. doi: 10.1038/nn.3407

Hiratani, N., and Latham, P. E. (2022). Developmental and evolutionary constraints
on olfactory circuit selection. Proc. Natl. Acad. Sci. USA. 119, e2100600119.
doi: 10.1073/pnas.2100600119

Huang, G. B., Zhu, Q. Y., and Siew, C. K. (2006). Extreme learning machine: Theory
and applications. Neurocomputing 70, 489–501. doi: 10.1016/j.neucom.2005.12.126

Huang, G. B., Zhu, Q. Y., Siew, C. K., and ieee. (2004). “Extreme learning machine:
A new learning scheme of feedforward neural networks,” in IEEE International Joint
Conference on Neural Networks (IJCNN) (Budapest, Hungary).

Igarashi, K. M. (2015). Plasticity in oscillatory coupling between hippocampus and
cortex. Curr. Opin. Neurobiol. 35, 163–168. doi: 10.1016/j.conb.2015.09.005

Igarashi, K. M. (2016). The entorhinal map of space. Brain Res. 1637, 177–187.
doi: 10.1016/j.brainres.2015.10.041

Igarashi, K. M., Lee, J. Y., and Jun, H. (2022). Reconciling neuronal representations
of schema, abstract task structure, and categorization under cognitive maps in
the entorhinal-hippocampal-frontal circuits. Curr. Opin. Neurobiol. 77, 102641.
doi: 10.1016/j.conb.2022.102641

Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M. B., and Moser, E. I. (2014).
Coordination of entorhinal-hippocampal ensemble activity during associative learning.
Nature 510, 143. doi: 10.1038/nature13162

Kim, H. G. R., Malik, A. N., Mikhael, J. G., Bech, P., Tsutsui-Kimura, I., Sun, F.
M., et al. (2020). A unified framework for dopamine signals across timescales. Cell 183,
1600. doi: 10.1016/j.cell.2020.11.013

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90. doi: 10.1145/3065386

Lee, J. Y., Jun, H., Soma, S., Nakazono, T., Shiraiwa, K., Dasgupta, A., et al. (2021).
Dopamine facilitates associative memory encoding in the entorhinal cortex. Nature
598, 321. doi: 10.1038/s41586-021-03948-8

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random
synaptic feedback weights support error backpropagation for deep learning. Nat.
Commun. 7, 13276. doi: 10.1038/ncomms13276

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton, G.
(2020). Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346.
doi: 10.1038/s41583-020-0277-3

Meulemans, A., Farinha, M. T., Ordonez, J. G., Aceituno, P. V., Sacramento, J., and
Grewe, B. F. (2021). “Credit assignment in neural networks through deep feedback
control,” in Advances in Neural Information Processing Systems 34.

Millidge, B., Tschantz, A., and Buckley, C. L. (2022). Predictive coding approximates
backprop along arbitrary computation graphs. Neur. Comput. 34, 1329–1368.
doi: 10.1162/neco_a_01497

Miura, K., Mainen, Z. F., and Uchida, N. (2012). Odor representations in olfactory
cortex: distributed rate coding and decorrelated population activity. Neuron 74,
1087–1098. doi: 10.1016/j.neuron.2012.04.021

Nakazono, T., Jun, H., Blurton-Jones, M., Green, K. N., and Igarashi, K. M. (2018).
Gamma oscillations in the entorhinal-hippocampal circuit underlying memory and
dementia. Neurosci. Res. 129, 40–46. doi: 10.1016/j.neures.2018.02.002

Nakazono, T., Lam, T. N., Patel, A. Y., Kitazawa, M., Saito, T., Saido, T. C.,
et al. (2017). Impaired in vivo gamma oscillations in the medial entorhinal cortex of
knock-in alzheimer model. Front. Syst. Neurosci. 11, 48. doi: 10.3389/fnsys.2017.00048

Nokland, A. (2016). “Direct feedback alignment provides learning in deep neural
networks,” in Advances in Neural Information Processing Systems 29.

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen,
A., et al. (2019). A deep learning framework for neuroscience. Nat. Neurosci. 22,
1761–1770. doi: 10.1038/s41593-019-0520-2

Roesch, M. R., Stalnaker, T. A., and Schoenbaum, G. (2007). Associative encoding
in anterior piriform cortex versus orbitofrontal cortex during odor discrimination and
reversal learning. Cerebr. Cortex 17, 643–652. doi: 10.1093/cercor/bhk009

Salvatori, T., Song, Y. H., Xu, Z. H., Lukasiewicz, T., Bogacz, R., and Assoc
Advancement Artificial, I. (2022). “Reverse differentiation via predictive coding,”
in 36th AAAI Conference on Artificial Intelligence/34th Conference on Innovative
Applications of Artificial Intelligence/12th Symposium on Educational Advances in
Artificial Intelligence (Electr Network). doi: 10.1609/aaai.v36i7.20788

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: bridging the gap
between energy-based models and backpropagation. Front. Comput. Neurosci. 11, 24.
doi: 10.3389/fncom.2017.00024

Schmidhuber, J. (2015). Deep learning in neural networks: an overview.Neur. Netw.
61, 85–117. doi: 10.1016/j.neunet.2014.09.003

Schultz, W., Dayan, P., andMontague, P. R. (1997). A neural substrate of prediction
and reward. Science 275, 1593–1599. doi: 10.1126/science.275.5306.1593

Shriki, O., Hansel, D., and Sompolinsky, H. (2003). Rate models for
conductance-based cortical neuronal networks. Neur. Comput. 15, 1809–1841.
doi: 10.1162/08997660360675053

Frontiers inNeuroscience 12 frontiersin.org232

https://doi.org/10.3389/fnins.2023.1160899
https://doi.org/10.1038/s41593-022-01109-2
https://doi.org/10.1016/j.neuron.2010.09.040
https://doi.org/10.1038/nature14855
https://doi.org/10.1038/nn.4239
https://doi.org/10.3389/fnins.2021.629892
https://doi.org/10.3389/fnsys.2022.955178
https://doi.org/10.1038/nn.3407
https://doi.org/10.1073/pnas.2100600119
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.conb.2015.09.005
https://doi.org/10.1016/j.brainres.2015.10.041
https://doi.org/10.1016/j.conb.2022.102641
https://doi.org/10.1038/nature13162
https://doi.org/10.1016/j.cell.2020.11.013
https://doi.org/10.1145/3065386
https://doi.org/10.1038/s41586-021-03948-8
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1162/neco_a_01497
https://doi.org/10.1016/j.neuron.2012.04.021
https://doi.org/10.1016/j.neures.2018.02.002
https://doi.org/10.3389/fnsys.2017.00048
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1093/cercor/bhk009
https://doi.org/10.1609/aaai.v36i7.20788
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1162/08997660360675053
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Konishi et al. 10.3389/fnins.2023.1160899

Song, Y., Lukasiewicz, T., Xu, Z., and Bogacz, R. (2020). “Can the brain do
backpropagation?—Exact implementation of backpropagation in predictive coding
networks,” in Advances in Neural Information Processing Systems 33.

Song, Y., Millidge, B., Salvatori, T., Lukasiewicz, T., Xu, Z., and Bogacz, R.
(2022). Inferring neural activity before plasticity: a foundation for learning beyond
backpropagation. bioRxiv 2022.2005.2017.492325. doi: 10.1101/2022.05.17.492325

Starkweather, C. K., Gershman, S. J., and Uchida, N. (2018). The medial prefrontal
cortex shapes dopamine reward prediction errors under state uncertainty. Neuron, 98,
616. doi: 10.1016/j.neuron.2018.03.036

Tian, J., Huang, R., Cohen, J. Y., Osakada, F., Kobak, D., Machens, C.
K., et al. (2016). Distributed and mixed information in monosynaptic inputs

to dopamine neurons. Neuron 91, 1374–1389. doi: 10.1016/j.neuron.2016.
08.018

Uchida, N., Poo, C., and Haddad, R. (2014). Coding and
transformations in the olfactory system. Annu. Rev. Neurosci. 37, 363–385.
doi: 10.1146/annurev-neuro-071013-013941

Wang, A. Y., Miura, K., and Uchida, N. (2013). The dorsomedial striatum encodes
net expected return, critical for energizing performance vigor. Nat. Neurosci. 16, 639.
doi: 10.1038/nn.3377

Watabe-Uchida, M., Eshel, N., and Uchida, N. (2017). Neural
circuitry of reward prediction error. Ann. Rev. Neurosci. 40, 373–394.
doi: 10.1146/annurev-neuro-072116-031109

Frontiers inNeuroscience 13 frontiersin.org233

https://doi.org/10.3389/fnins.2023.1160899
https://doi.org/10.1101/2022.05.17.492325
https://doi.org/10.1016/j.neuron.2018.03.036
https://doi.org/10.1016/j.neuron.2016.08.018
https://doi.org/10.1146/annurev-neuro-071013-013941
https://doi.org/10.1038/nn.3377
https://doi.org/10.1146/annurev-neuro-072116-031109
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

+41 (0)21 510 17 00
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Provides a holistic understanding of brain

function from genes to behavior

Part of the most cited neuroscience journal series

which explores the brain - from the new eras

of causation and anatomical neurosciences to

neuroeconomics and neuroenergetics.

Discover the latest
Research Topics

See more

Frontiers in
Neuroscience

https://www.frontiersin.org/journals/Neuroscience/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Spike-based learning application for neuromorphic engineering
	Table of contents
	Synthesizing Images From Spatio-Temporal Representations Using Spike-Based Backpropagation
	1. Introduction
	2. Learning Spatio-Temporal Representations using Spiking Autoencoders
	2.1. Input Encoding and Neuron Model
	2.2. Network Model
	2.3. Backpropagation Using Membrane Potential

	3. Experiments
	3.1. Regenerative Learning With Spiking Autoencoders
	3.2. Audio to Image Synthesis Using Spiking Auto-Encoders
	3.2.1. Dataset
	3.2.2. Network Model
	3.2.3. Results

	4. Discussion and Conclusion
	Author Contributions
	Funding
	References

	Boosting Throughput and Efficiency of Hardware Spiking Neural Accelerators Using Time Compression Supporting Multiple Spike Codes
	1. Introduction
	2. Materials and Methods
	2.1. Proposed Time-Compressed Neural Computation
	2.1.1. Spike Train Compression in Weighted Form
	2.1.2. Input-Output-Weighted (IOW) Spiking Neurons
	2.1.3. Scaling of Time Constants of SNN Dynamics
	2.1.4. Flexible Compression Ratios Using Time Averaging

	2.2. Proposed Input-and-Output Weighted (IOW) Spiking Neural Models
	2.2.1. IOW Neurons Based on Standard LIF Model
	2.2.2. IOW Neurons Based on Bursting LIF Model

	2.3. Time-Compressed SNN Accelerator Architectures

	3. Results
	3.1. Input Spike Train Compression
	3.2. Behavior of the Proposed IOW-LIF Neurons
	3.3. Reservoir Responses of the LSMs
	3.3.1. Performances of TC-SNNs With IOW LIF Neurons
	3.3.2. Performances of TC-SNNs With Bursting Coding
	3.3.3. Performances of Time Compressed Multi-Layer Feedforward SNN With IOW LIF Neurons
	3.3.4. Performances of PTC-SNNs With Reconfigurable Compression Ratio

	4. Discussion
	Data Availability Statement
	Author Contributions
	References

	Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks
	1. Introduction
	1.1. Probabilistic Spike Propagation

	2. SNN Preliminaries
	3. Probabilistic Spike Propagation
	3.1. Key Concepts
	3.2. Accelerating Convergence
	3.3. Realizing the Probabilistic Synapse
	3.3.1. Optimization: Determining the Termination Point

	4. Hardware
	4.1. Overview
	4.1.1. Eval Unit
	4.1.2. Controller
	4.1.3. SNPEs
	4.1.3.1. Mapping Synaptic Clusters to Lanes
	4.1.3.2. Asynchronous Spike Processing

	5. Experimental Methodology
	5.1. Benchmarks
	5.2. P-SNNAP Details

	6. Results
	6.1. Accuracy vs. Synaptic Updates
	6.2. Reductions in Synaptic Updates, Energy, and Run-Time
	6.3. Number of Synaptic Clusters vs. Accuracy
	6.4. Resolution of the Cumulative Histogram

	7. Related Works
	7.1. Custom Hardware Architectures
	7.2. Stochastic Techniques
	7.3. Specialized Neuron Models and Encoding Schemes
	7.4. Pruning and Approximate Computing
	7.5. Emerging Technologies

	8. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	BlocTrain: Block-Wise Conditional Training and Inference for Efficient Spike-Based Deep Learning
	1. Introduction
	2. Related Work
	2.1. Local Training of Deep Neural Nets
	2.2. Fast Inference for Deep Nets

	3. Spike-Based Input Representation, Neurons, and BPTT
	4. BlocTrain Training and Inference Algorithm
	4.1. Block-Wise Complexity-Aware Training
	4.2. Fast Inference With Early Exit

	5. Results
	5.1. Experimental Setup
	5.2. ResNet-9 SNN on CIFAR-10
	5.3. ResNet-11 SNN on CIFAR-100
	5.4. VGG-16 SNN on CIFAR-100

	6. Discussion
	6.1. BlocTrain Hyperparameters Heuristics
	6.2. Blocking Strategy for Deeper SNNs
	6.3. Comparison With Early Inference
	6.4. Comparison With End-to-End Training
	6.4.1. Accuracy Comparison
	6.4.2. Training Time Comparison

	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Neuroevolution Guided Hybrid Spiking Neural Network Training
	1. Introduction
	2. Related Works
	3. Preliminaries
	3.1. Spiking Neural Networks
	3.2. Differential Evolution Algorithm

	4. Neuroevolution Guided Hybrid SNN Training Algorithm
	4.1. Latency-Accuracy Tradeoff Driven Optimization and Interpretibility
	4.2. Adversarial Attack Driven Optimization and Interpretability

	5. Experiments and Results
	5.1. Datasets and Implementation
	5.2. Results
	5.3. Comparison Against Backpropagation Through Time (BPTT) Fine-Tuning

	6. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Heterogeneous Ensemble-Based Spike-Driven Few-Shot Online Learning
	Introduction
	Background
	Few-Shot Learning Model Based on a Meta-Learning Framework
	Information-Theoretic Learning

	Materials And Methods
	Proposed Ensemble Loss
	Mixture Maximum Correntropy Criterion
	Cross-Entropy Loss Function
	Regularization by Minimum Mean Square Error
	Network Architecture of the Proposed Heterogeneous Ensemble-Based Spike-Driven Few-Shot Online Learning Model
	Two-Compartment Spiking Neuron Model With Adaptation Mechanism
	Spike-Driven Online Learning Model

	Results
	Details of the Heterogeneous Ensemble-Based Spike-Driven Few-Shot Online Learning Architecture
	Few-Shot Learning Performance on Spike Patterns With Non-Gaussian Noise
	Few-Shot Learning Performance With Non-Gaussian Noise
	Few-Shot Learning Performance on Manipulator Control
	Effects of the Ensemble Parameters on Learning Performance
	Comparison With the Other Models on Few-Shot Learning Performance
	Effects of the Critical Parameters of the Heterogeneous Ensemble-Based Spike-Driven Few-Shot Online Learning Model on Learning Performance

	Discussion
	Theoretical Analysis
	Power Efficiency Based on the Heterogeneous Ensemble-Based Spike-Driven Few-Shot Online Learning Model
	Comparison With Spiking Neural Networks of Liquid State Machines and Future Work

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Presynaptic spike-driven plasticity based on eligibility trace for on-chip learning system
	Introduction
	Materials and methods
	ALIF model with SFA mechanism
	Eligibility trace in synapses
	Synaptic plasticity
	Architecture overview
	ALIF model implementation
	Presynaptic spike-driven plasticity
	Classifier implementation

	Results
	Results of experiments
	Hardware consumption evaluation

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Trainable quantization for Speedy Spiking Neural Networks
	1. Introduction
	2. State of the art
	3. Methods
	3.1. Spike based information compression
	3.2. Quantization error analysis
	3.3. PDF-optimized quantization for spiking neurons
	3.4. PDF-optimized non-uniform quantization for spiking neurons

	4. Experiments and results
	4.1. Experimental setup
	4.2. Experimental results on CIFAR-10/100
	4.3. Experimental results on Google Speech Commands
	4.4. Ablation studies

	5. Discussion and further improvements
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Boost event-driven tactile learning with location spiking neurons
	1. Introduction
	2. Related work
	2.1. Spiking Neural Networks (SNNs)
	2.2. Event-driven tactile sensing and learning

	3. Methods
	3.1. Existing spiking neuron models vs. location spiking neuron models
	3.2. Event-driven tactile learning with location spiking neurons
	3.2.1. Event-driven tactile learning with the LSRM neurons
	3.2.2. Event-driven tactile learning with the LLIF Neurons
	3.2.2.1. Tactile graph construction
	3.2.2.2. Hybrid_LIF_GNN

	3.3. Implementations
	3.3.1. Location orders
	3.3.2. Hybrid_SRM_FC
	3.3.3. Hybrid_LIF_GNN

	4. Experiments
	4.1. Hybrid_SRM_FC
	4.1.1. Datasets
	4.1.2. Comparing models
	4.1.3. Basic performance
	4.1.4. Ablation studies
	4.1.5. Timestep-wise inference
	4.1.6. Energy efficiency

	4.2. Hybrid_LIF_GNN
	4.2.1. Datasets
	4.2.2. Comparing models
	4.2.3. Basic performance
	4.2.4. Ablation studies
	4.2.5. Timestep-wise inference
	4.2.6. Energy efficiency
	4.2.7. Performance comparison with the hybrid_SRM_FC

	5. Discussion and conclusion
	5.1. Advantages and limitations of conventional and location spiking neurons
	5.2. Potential impact on broad spike-based learning applications
	5.2.1. Event-driven audio learning
	5.2.2. Visual processing

	5.3. Conclusion

	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Optical flow estimation from event-based cameras and spiking neural networks
	1. Introduction
	2. Related work
	3. Materials and methods
	3.1. Training dataset
	3.2. Input event representation
	3.3. Spiking neuron model
	3.4. Network architecture
	3.5. Supervised learning method
	3.6. Training details

	4. Results
	4.1. Finding the optimal kernel size
	4.2. Finding the best network architecture
	4.3. Optimizing the frame duration
	4.4. Comparison with the state-of-the-art
	4.5. Ablation studies
	4.5.1. Pooling vs. convolutional downsampling
	4.5.2. 3d vs. 2d encoding
	4.5.3. Loss function
	4.5.4. Effect of combining polarities on performance
	4.5.5. Skip connections in the bottleneck

	4.6. Model evaluation on the MVSEC dataset

	5. Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	VTSNN: a virtual temporal spiking neural network
	1. Introduction
	2. Method
	2.1. Preliminary
	2.1.1. Spiking neurons
	2.1.2. Tensor multiplication

	2.2. Virtual temporal SNN
	2.3. Encoding
	2.3.1. Rethinking time-to-first-spike encoding (TTFS)
	2.3.2. Undistorted weighted-encoding (UWE)

	2.4. Decoding
	2.4.1. Rethinking membrane potential decoding (MPD)
	2.4.2. Undistorted weighted-decoding

	2.5. Spiking neural network architecture
	2.6. Loss function and backpropagation
	2.6.1. Rethinking spatio-temporal backpropagation (STBP)
	2.6.2. Independent-Temporal Backpropagation (ITBP)

	3. Results
	3.1. Comparison with existing works
	3.2. Ablation study
	3.2.1. Comparison between LIF neuron and IF neuron
	3.2.2. Comparison among different coding methods
	3.2.3. Comparison between STBP and ITBP

	4. Discussion
	4.1. Classification for UWE
	4.2. Energy consumption
	4.3. Regularity of threshold voltage
	4.4. Neuromorphic circuits
	4.5. Limitation

	5. Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges
	1. Introduction
	2. Important trade-offs in neuromorphic architecture design
	2.1. Logic time-multiplexing
	2.2. Memory
	2.3. Programmability
	2.4. Interconnectivity
	2.5. Asynchronous design

	3. SENECA architecture
	3.1. RISC-V controller
	3.2. Neuron processing elements (NPEs)
	3.3. Loop controller
	3.4. Event generator
	3.5. Network-on-chip (NoC)
	3.6. Shared memory pre-fetch unit (SMPU)

	4. Analysis and results
	4.1. Instruction level benchmarking
	4.2. Algorithms level benchmarking
	4.2.1. Event-driven fully-connected processing
	4.2.2. Event-driven convolutional neural layer processing
	4.2.3. Recurrent on-device learning with e-prop

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Adaptive STDP-based on-chip spike pattern detection
	1. Introduction
	2. Materials and methods
	2.1. Models and setups
	2.2. Circuit description
	2.2.1. Overall architecture
	2.2.2. Synapse circuit
	2.2.3. Learning circuitry
	2.2.4. Bidirectional current conveyor circuit
	2.2.5. Spike train transfer

	3. Results
	3.1. Setups 1 and 3
	3.2. Setups 2 and 4
	3.3. Ideal model vs. on-chip performance
	3.4. Circuit parameters
	3.5. Spiking latency
	3.6. Power consumption

	4. Discussion and conclusion
	Data availability statement
	Author contributions
	References

	Direct training high-performance spiking neural networks for object recognition and detection
	1. Introduction
	2. Related work
	2.1. ANN-to-SNN conversion
	2.2. Direct-training SNNs
	2.3. Object detection with SNNs

	3. Spiking architectures and decoding
	3.1. Spiking neuron model
	3.2. Spiking gate ResNet
	3.2.1. Basic and spiking residual block
	3.2.2. Spiking gate residual block
	3.2.3. Formulation of downsample block

	3.3. Gate formulation and analysis
	3.3.1. Formulation of binary selection gate
	3.3.2. Gradient analysis
	3.3.3. Difference to SEW ResNet

	3.4. Attention spike decoder
	3.4.1. Temporal attention and average operation
	3.4.2. Channel attention
	3.4.3. Spatial attention and skip connection

	4. Object recognition and detection
	4.1. Spiking backbone
	4.2. Recognition network
	4.3. Detection network

	5. Experiment
	5.1. Object recognition
	5.1.1. CIFAR-100
	5.1.2. CIFAR-10
	5.1.3. ImageNet
	5.1.4. DVS-CIFAR10

	5.2. Object detection
	5.3. Ablation studies
	5.3.1. Energy efficiency comparison
	5.3.2. Effects of the ASD module
	5.3.3. Validation on solving the gradient vanishing problem
	5.3.4. Comparison and discussion on SEW ResNet
	5.3.5. Comparison between BSG and BSG*

	6. Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	ALBSNN: ultra-low latency adaptive local binary spiking neural network with accuracy loss estimator
	1. Introduction
	2. Related works
	2.1. Binary spiking neural networks
	2.2. Training of binary spiking neural networks

	3. Methods
	3.1. Iterative leaky integrate-and-fire neural model
	3.2. Accuracy loss estimator for weight binarization
	3.3. GAP layer
	3.4. Backpropagation with adaptive local binarization
	3.5. Binary weight optimization

	4. Experiments
	4.1. Experimental setup
	4.2. Effectiveness of ALE and BWO
	4.3. Rethink about local binarization
	4.4. Impact of selection criteria
	4.5. Compared with other methods

	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Biologically plausible local synaptic learning rules robustly implement deep supervised learning
	1. Introduction
	2. Materials and methods
	2.1. k-dXOR task
	2.2. Three-layer neural network
	2.3. Learning rules
	2.3.1. Extreme learning machine
	2.3.2. Weight perturbation
	2.3.3. Back propagation
	2.3.4. Feedback alignment

	2.4. Leaning parameters

	3. Results
	3.1. Comparison of learning rules: ELM, WP, FA, and BP
	3.2. Proposed variants of FA enhance learning performance
	3.3. Proposed learning rules are robust and even approximated rules work

	4. Discussion
	4.1. What are the constraints imposed by biological plausibility?
	4.2. Scalability is essential for pursuing biological plausibility
	4.3. From spiking models to rate-based models

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Back Cover

