Objective: A growing body of research shows the promise and efficacy of EMG-based robot interventions in improving the motor function in stroke survivors. However, it is still controversial whether the effect of EMG-based robot is more effective than conventional therapies. This study focused on the effects of EMG-based robot on upper limb motor control, spasticity and activity limitation in stroke survivors compared with conventional rehabilitation techniques.
Methods: We searched electronic databases for relevant randomized controlled trials. Outcomes included Fugl-Meyer assessment scale (FMA), Modified Ashworth Scale (MAS), and activity level.
Result: Thirteen studies with 330 subjects were included. The results showed that the outcomes post intervention was significantly improved in the EMG-based robot group. Results from subgroup analyses further revealed that the efficacy of the treatment was better in patients in the subacute stage, those who received a total treatment time of less than 1000 min, and those who received EMG-based robotic therapy combined with electrical stimulation (ES).
Conclusion: The effect of EMG-based robot is superior to conventional therapies in terms of improving upper extremity motor control, spasticity and activity limitation. Further research should explore optimal parameters of EMG-based robot therapy and its long-term effects on upper limb function in post-stroke patients.
Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/; Identifier: 387070.
Objective: Anterior cruciate ligament reconstruction (ACLR) cannot decrease the risk of knee osteoarthritis after anterior cruciate ligament rupture, and tibial contact force is associated with the development of knee osteoarthritis. The purpose of this study was to compare the difference in bilateral tibial contact force for patients with unilateral ACLR during walking and jogging based on an EMG-assisted method in order to evaluate the risk of knee osteoarthritis following unilateral ACLR.
Methods: Seven unilateral ACLR patients participated in experiments. The 14-camera motion capture system, 3-Dimension force plate, and wireless EMG test system were used to collect the participants’ kinematics, kinetics, and EMG data during walking and jogging. A personalized neuromusculoskeletal model was established by combining scaling and calibration optimization. The inverse kinematics and inverse dynamics algorithms were used to calculate the joint angle and joint net moment. The EMG-assisted model was used to calculate the muscle force. On this basis, the contact force of the knee joint was analyzed, and the tibial contact force was obtained. The paired sample t-test was used to analyze the difference between the participants’ healthy and surgical sides of the participants.
Results: During jogging, the peak tibial compression force on the healthy side was higher than on the surgical side (p = 0.039). At the peak moment of tibial compression force, the muscle force of the rectus femoris (p = 0.035) and vastus medialis (p = 0.036) on the healthy side was significantly higher than that on the surgical side; the knee flexion (p = 0.042) and ankle dorsiflexion (p = 0.046) angle on the healthy side was higher than that on the surgical side. There was no significant difference in the first (p = 0.122) and second (p = 0.445) peak tibial compression forces during walking between the healthy and surgical sides.
Conclusion: Patients with unilateral ACLR showed smaller tibial compression force on the surgical side than on the healthy side during jogging. The main reason for this may be the insufficient exertion of the rectus femoris and vastus medialis.
This systematic review provides critical and propositional information on criteria for determining the volume and intensity of drop jumps during plyometric training programs. Eligibility criteria were defined according to PICOS: Participants: male or female athletes, trained or recreationally active (16–40 years). Intervention duration: more than 4 weeks. Comparators: passive or active control group during a plyometric training program. Outcomes: information on improvement with Drop Jump or Depth Jump, with other jumps, acceleration, sprint, strength, and power output. Design: randomized controlled trials. We searched articles published in PubMed, SPORTDiscus, Web of Science, and Scopus. The search was conducted until 10 September 2022 for English-language articles only. The risk of bias was assessed using Grading of Recommendations, Assessment, Development and Evaluation (GRADE) for randomized controlled studies. We identified 31495 studies, of which only 22 were included. We found that six groups presented results with women, 15 presented results with men, and the remaining four presented mixed studies. Of the 686 people recruited, 329 participants aged 25.79 ± 4.76 years were involved in training. Methodological problems in training intensity, volume distribution, and individualization were noted, but methodological recommendations for their solution are also provided. It is concluded that the drop height should not be understood as the intensity determinant of plyometric training. Intensity is determined by ground reaction forces, power output, and jump height, among other factors. Furthermore, the athletes’ experience level selection should be based on the formulas recommended within this research. These results could be helpful for those who intend to conduct new plyometric training programs and research.
Objective: The aim of this study was to investigate the effects of acute Kinesio Taping (KT) intervention on the muscle strength and balance ability of college basketball players with functional ankle instability (FAI).
Methods: Thirty college basketball players with FAI were treated with acute KT to test the changes in their muscle strength and balance ability.
Results: After acute KT intervention, the ankle dorsiflexion moment and the ankle plantar flexion moment increased by 34% and 19.9%, respectively. The stable plane test with the subjects’ eyes open decreased by 1%, whereas that with the subjects’ eyes closed decreased by 1.1%. The swaying environment test with the subjects’ eyes open increased by 2.4%. The swaying plane test with the subjects’ eyes open increased by 5.1%, whereas that with the subjects’ eyes closed increased by 16.2%. The swaying environment test with the subjects’ eyes open plus the use of a plane increased by 12.1%.
Conclusion: KT can increase the isokinetic strength of the ankle dorsum muscle and plantar flexion of college basketball players with FAI. The effect of KT in the static balance test was weaker than that in the dynamic balance test. The findings indicate that KT can significantly improve the balance ability of college basketball players with FAI during dynamic sports.
Background: Neurological disorders with dyskinesia would seriously affect older people’s daily activities, which is not only associated with the degeneration or injury of the musculoskeletal or the nervous system but also associated with complex linkage between them. This study aims to review the relationship between motor performance and cortical activity of typical older neurological disorder patients with dyskinesia during walking and balance tasks.
Methods: Scopus, PubMed, and Web of Science databases were searched. Articles that described gait or balance performance and cortical activity of older Parkinson’s disease (PD), multiple sclerosis, and stroke patients using functional near-infrared spectroscopy were screened by the reviewers. A total of 23 full-text articles were included for review, following an initial yield of 377 studies.
Results: Participants were mostly PD patients, the prefrontal cortex was the favorite region of interest, and walking was the most popular test motor task, interventional studies were four. Seven studies used statistical methods to interpret the relationship between motor performance and cortical activation. The motor performance and cortical activation were simultaneously affected under difficult walking and balance task conditions. The concurrent changes of motor performance and cortical activation in reviewed studies contained the same direction change and different direction change.
Conclusion: Most of the reviewed studies reported poor motor performance and increased cortical activation of PD, stroke and multiple sclerosis older patients. The external motor performance such as step speed were analyzed only. The design and results were not comprehensive and profound. More than 5 weeks walking training or physiotherapy can contribute to motor function promotion as well as cortices activation of PD and stroke patients. Thus, further study is needed for more statistical analysis on the relationship between motor performance and activation of the motor-related cortex. More different type and program sports training intervention studies are needed to perform.
Background: Functional ankle instability (FAI) is the primary classification of ankle injuries. Competitive activities have complicated movements that can result in ankle re-injury among patients with FAI. Unanticipated movement state (MS) and mental fatigue (MF) could also happen in these activities, which may further increase their joint injury risk.
Objective: This study aimed to clarify the biomechanical characteristics difference of the lower extremity (LE) between the injured side and the uninjured side among patients with FAI when they perform unanticipated side-step cutting after MF.
Methods: Fifteen males with unilateral FAI participated in this study (age: 20.7 ± 1.3 years, height: 173.6 ± 4.4 cm, weight: 70.1 ± 5.0 kg). They used the injured side and the uninjured side of LE to complete anticipated and unanticipated side-step cutting before and after MF. The kinematic and kinetics data were evaluated using three-way ANOVA with repeated measures.
Results: During patients with FAI performed anticipated side-step cutting, the ankle stiffness of both sides showed no significant change after MF; During they performed unanticipated side-step cutting, their injured side presented significantly lower ankle stiffness after MF, while the uninjured side did not have such change. In addition, after MF, the injured side exhibited increased ankle inversion, knee valgus and LR, but the uninjured side did without these changes.
Conclusion: Influenced by MF, when patients with FAI use their injured side of LE to perform side-step cutting, this side LE has a higher risk of musculoskeletal injuries such as lateral ankle sprains and anterior cruciate ligament injury. The ankle stiffness of the injured side will be further reduced when patients with FAI perform unanticipated side-step cutting, which increases ankle instability and the risk of re-injury.
Purpose: The purpose of this study was to examine biomechanical performance of the foot-up serve (FUS) in female tennis players at different skill levels.
Methods: FUS analysis was completed in the biomechanical laboratory by 32 female college tennis players at three different levels. During FUS, 3D-biomechanical data from tennis players’ lower limbs were collected. One-way ANOVA was used to examine differences in kinematic and kinetic data between groups
Results: Range of motion (ROM) of bilateral lower-limb joints revealed significant differences in kinematics performance during both the preparation and landing cushion phases (p < 0.05). During preparation, Level 3 was significantly longer than Level 2 (P-a = 0.042, P-b = 0.001, and P-c = 0.006). During the flight phase, significant differences between levels 1 and 3 (P-a:0.002) and levels 1 and 2 (P-c:0.000) were discovered (P-a:0.002 and P-c:0.000). There were significant height differences between levels 1 and 2 as well as between levels 1 and 3. (P-a = 0.001, P-c = 0.000). During serve preparation (P-c = 0.001) and landing, GRF’s peak was significantly higher than level 3. (P-c:0.007). Significant differences were found between groups in the LLS preparation stage, with level 3 significantly higher than levels 1 and 2. (P-a = 0.000, P-b = 0.001, and P-c = 0.000); during landing, level 2 LLS was significantly higher than levels 1 and 3. (P-a = 0.000, P-b = 0.000, and P-c = 0.035).
Conclusion: The range of motion of joints and the stiffness of the lower limbs have a significant impact on a tennis player’s FUS performance. A larger of joint mobility and lower-limb stiffness promote better performance during the FUS preparation stage.