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Editorial on the Research Topic

Novel technologies in the diagnosis and management of

sleep-disordered breathing

The year 2023 is a memorable one in the history of sleep-disordered breathing (SDB).

Obstructive sleep apnea (OSA) was first described as a new disease 50 years prior in 1973

(Guilleminault et al., 1973). After these 50 years of continuous development, nocturnal

SDB has become one of the most active fields in sleep medicine, forming a platform for

multidisciplinary collaboration.

Sleep-disordered breathing diagnosis and
management—Where are we now?

SDB encompasses a wide spectrum of conditions, from habitual snoring to severe

cases of OSA, and affects a vast segment of the population worldwide (Benjafield et al.,

2019). These conditions not only disrupt sleep but also lead to a range of negative

health consequences such as excessive daytime sleepiness, cognitive impairments, and

increased risk of cardiometabolic diseases. Traditional diagnostic methods, including in-

lab polysomnography, often necessitate specialized sleep centers, are labor-intensive, and

are not readily available. The current diagnostic methods also fall short in forecasting

long-term health implications, underscoring an urgent need for innovation in diagnostic

approaches and metrics for tailored disease management. Likewise, the management

of SDB also stands at a transformative juncture in the rapidly advancing field of

sleep medicine. While continuous positive airway pressure (CPAP) therapy remains the

cornerstone of SDB treatment, its effectiveness in addressing the broader spectrum of

SDB-related health issues is limited (Patil et al., 2024). This scenario underscores the

critical need for alternative treatment modalities. The integration of machine learning,

advanced diagnostic technologies, and novel therapeutic strategies heralds a move toward

more personalized care and improved outcomes for patients (Korkalainen et al., 2024).
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This Research Topic delves into the forefront of innovation in

the diagnosis and management of SDB, highlighting a shift toward

diagnostic tools and treatment methods that promise greater

accuracy, efficiency, and patient-centric care. By exploring the

latest in diagnostic technologies—ranging from portable devices

capable of capturing detailed sleep data outside conventional lab

settings to computational techniques designed to automate and

enhance data analysis—this Research Topic underscores the move

toward more accessible and comprehensive sleep assessments. In

addition, the Research Topic examines cutting-edge approaches

in the development of disease management, such as advanced

physiological modeling and phenotyping, which aim to unravel

the complexities of individual disease patterns, symptoms, and

associated conditions. These insights are pivotal for developing

personalized management strategies that address the nuanced

needs of those affected by SDB. Together, the articles presented

in this Research Topic offer a glimpse into the evolving landscape

of SDB care, highlighting both the current hurdles and promising

avenues for future interventions.

At-home recordings for more
a�ordable and available diagnostics

Accurate diagnosis is the cornerstone for assessing the

severity of sleep disorders as well as for designing optimal

disease management. New more affordable and simpler solutions

are required due to the shortcomings of polysomnography.

This can be made possible by technological advances as well

as advanced analytical pathways, machine learning, and deep

learning methodologies. Zou et al. discuss advancements in home

sleep apnea testing that utilize technology based on peripheral

arterial tone and photoplethysmography to detect respiratory

events and their potential to act as a non-invasive, cost-

effective, and accessible solution for multi-night sleep monitoring.

Concurrently, Campbell and Sulaiman review the diagnostic

potential of the WatchPAT device, which utilizes peripheral

arterial tomography in conjunction with heart rate, oximetry,

actigraphy, and respiratory movements for a minimally intrusive

home diagnosis of OSA. This device exemplifies the trend toward

integrating multiple physiological signals to refine diagnostic

accuracy outside traditional laboratory environments. Teplitzky

et al. contribute to this dialogue by reviewing alternative diagnostic

methods to polysomnography that could increase the efficiency

and accessibility of pediatric OSA diagnosis, highlighting the

urgent need for adaptable diagnostic tools in younger populations.

Finally, Zhu et al. introduce a novel approach using triboelectric

nanogenerators embedded in wearable devices. This method has

the potential for real-time, non-invasive sleep monitoring through

analysis of respiratory rates and body movements.

Leveraging machine learning to
improve diagnostics

Artificial intelligence, driven by advancements in machine

learning and deep learning methodologies further holds the

potential to transform diagnostics. Overall, these approaches have

shown promising results in automating the analysis of overnight

recordings as seen in Somaskandhan et al.. This research shows the

capability of a deep learning-based method to automatically score

sleep stages in preadolescent populations, a population that often

necessitates in-laboratory polysomnography. Their results already

illustrate accuracy on par with inter-rater reliability between

expert scorers. Meanwhile, Piccini et al. explore the application of

machine learning to identify sleep stages and diagnose OSA using

electrodermal activity signals. Their work suggests that wearable

devices could significantly reduce reliance on polysomnography by

providing a more patient-friendly approach to sleep diagnostics. In

addition to automating the scoring or simplifying the recordings,

deep learning and machine learning methods hold the potential to

gain deeper insights from the recordings. This is supported by a

review by Anderer et al. on the utilization of artificial intelligence

to provide consistent and reliable scoring of sleep stages based on

neurological and cardiorespiratory signals, especially the utilization

of hypnodensity as a method to quantify sleep stage ambiguity and

stability. These works offer a novel perspective on the assessment

of SDB.

Novel diagnostic metrics and
measurement techniques

To unravel the complexities of sleep disorders, it is crucial

to delve beyond traditional analyses by employing innovative

methods that offer a more nuanced understanding of sleep

dynamics and pathophysiological underpinnings. Traditional sleep

stage classification, with its discrete five-stage system, while

useful, often falls short in capturing the intricate patterns of

sleep fragmentation seen in disorders like OSA. Recognizing this

limitation, alternative analytical approaches have been developed

to provide deeper insights into sleep quality and architecture.

One of these methods is odds ratio product (ORP), a continuous

metric for sleep depth that can help identify differences in

sleep depth between and within individuals even when the

changes are not discernible by conventional sleep staging. Younes,

the developer of ORP, provides a comprehensive overview of

ORP’s measurement, validation, and application, underscoring its

potential in identifying distinct phenotypes of sleep disorders. ORP

thereby facilitates more personalized and effective management

strategies for conditions such as SDB, insomnia, and idiopathic

hypersomnia.

Innovative diagnostic tools such as mandibular jaw movements

(MJM) and electrical impedance tomography can provide

additional detailed and non-invasive information on sleep

disorders. Martinot and Pépin review the use of MJM as a novel,

non-invasive method for assessing respiratory effort in SDB.

This approach utilizes a single point-of-contact sensor placed on

the patient’s chin to capture MJM, which is then analyzed using

machine learning algorithms to provide diagnostic information.

The article highlights the potential of MJMmonitoring as a reliable,

patient-friendly alternative to traditional, more invasive methods

for measuring respiratory effort, such as esophageal pressure

monitoring. Similarly, Piccin et al.’s exploration of neck electrical

impedance tomography for monitoring upper airway patency

during sleep offers real-time insights into airway obstruction
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dynamics, showcasing the potential of these methodologies in

enhancing our diagnostic capabilities and ultimately improving

patient care. Exploring the multifaceted relationship between sleep

disorders and other physiological disturbances can further enrich

our understanding. For instance, Ji et al.’s study on gastrointestinal

electrophysiological signals reveals a promising avenue for

predicting sleep disturbances, highlighting the interconnected

nature of physiological systems and their impact on sleep

health. Together, these advancements signal a shift toward a

more comprehensive and nuanced approach to diagnosing and

understanding sleep disorders, paving the way for innovative

treatment modalities and improved patient outcomes.

Pathophysiological factors,
endotyping, and phenotyping to guide
treatment

The intricate nature of SDB necessitates a nuanced

understanding of its pathophysiology for the development

of personalized treatment modalities. The comprehensive

phenotyping and endotyping of OSA, leveraging a wealth of data

from patient characteristics and diagnostic recordings, is pivotal

to tailoring treatments to address specific disease traits, and can

potentially lead to enhanced treatment adherence. McNicholas

and Korkalainen discuss the complex pathophysiology and

phenotypes of OSA as well as the translation to personalized

treatment strategies. Novel diagnostic approaches are needed

to gain a deeper insight into endotypical and phenotypical

factors and to gauge the systemic effects of OSA. This likely

requires adaptation to facilitate ambulatory and multi-night

diagnostic studies, as well as simplification of recordings and the

development of more detailed analyses. As a potential solution,

Finnsson et al. provide an overview of the Endo-Phenotyping

Using Polysomnography (PUP) method, a model-based tool for

estimating endotypic traits from standard polysomnography.

This method represents a significant step forward in the pursuit

of precision medicine for OSA, offering a pathway to targeted

treatments based on individual patient profiles. However, the

authors also acknowledge the challenges that must be overcome

to translate the PUP algorithm into clinical practice, indicating

that further research and development are essential for realizing

the full potential of the technology in the context of personalized

medicine in OSA. Moreover, the upper airway muscles have no

bony or cartilaginous support and are prone to collapse during

sleep and the role of neuromuscular function in the pathogenesis

and management of OSA is summarized by a group of experts led

by Mehra et al.. In their consensus, a point-of-care model using

novel electrodiagnostic technology for upper airway assessment

is proposed. These discussions illuminate the path toward

understanding the underlying pathophysiology of SDB and the

importance of detailed phenotyping and endotyping in developing

personalized treatment plans. Such an approach not only promises

to address the specific characteristics of the disease but also to

improve patient outcomes through higher adherence to tailored

treatment strategies.

The analysis of pathophysiological factors, endotypes, and

phenotypes could guide the optimal treatment, as discussed

extensively in Gruenberg et al. who highlight the potential benefits

and limitations of various non-CPAP therapeutic modalities

including myofunctional therapy, upper airway training, and

several forms of electrical stimulation of the upper airway muscles

and nerves. For SDB patients exhibiting high loop gain, CPAP

may not suffice, prompting the need for alternative treatments

such as the enhanced expiratory rebreathing space (EERS),

reviewed by Quinn et al. EERS modifies the dead space of

CPAP devices to mitigate CO2 loss during sleep arousals, thus

stabilizing breathing patterns and addressing central sleep events

triggered by hypocapnia. This approach provides an alternative

for patients who are unresponsive to traditional CPAP therapy.

Finally, Gentina et al. present the study protocol and baseline

data for a prospective study (Self-Efficacy Measure for Sleep

Apnea study; SEMSAS) underscoring the importance of health

literacy, self-efficacy, and socio-economic factors in predicting

CPAP adherence. This ongoing study promises to elucidate the

multifaceted influences on CPAP compliance, offering a foundation

for identifying patients most likely to benefit from CPAP and

refining treatment approaches in the long term.

Treatment innovations

Patients with central sleep apnea (CSA) are often multi-

morbid and difficult to treat. Javaheri et al. evaluate the efficacy of

phrenic nerve stimulation as a treatment alternative. Their findings

suggest phrenic nerve stimulation is a safe and effective treatment

modality, capable of reducing the apnea-hypopnea index (AHI)

and enhancing sleep quality, marking it as a viable option for CSA

management. Pediatric populations, particularly those with Down

syndrome, also present unique challenges in OSAmanagement. Liu

et al.’s systematic review and meta-analysis of hypoglossal nerve

stimulation highlights its potential selected patients, addressing

the low CPAP adherence rates and the need for additional

interventions post-surgery in this demographic. Additionally,

advancements in mandibular advancement splint (MAS) therapy,

as reviewed by Mohammadieh et al., showcase a new generation

of MAS devices that integrate digital technologies and machine

learning to improve treatment efficacy, patient selection, and

compliancemonitoring. Emphasizing the role of customization and

technological integration in enhancing therapeutic outcomes, it is

anticipated that MAS therapy will play a more important role in

OSA management.

There is no pharmacological treatment for OSA in clinical

practice. The combination of noradrenergic and antimuscarinic

drugs discussed by Taranto-Montemurro et al. may open new

avenues for management strategies. Despite the promise of these

treatments, challenges remain in assessing disease severity and

pinpointing specific treatment targets, underscoring the need for

continued research and development in pharmacotherapy for OSA

(Hedner and Zou, 2022). Together, these recent developments

represent a shift toward personalized and diversified treatment

strategies for OSA, addressing the limitations of CPAP therapy

and expanding the therapeutic landscape to accommodate patient-

specific needs and preferences.
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Conclusion

This is an exciting era in sleep medicine and sleep research

with new concepts and innovations. As we stand on the precipice

of transformative advancements in the diagnosis and management

of SDB, the horizon is both promising and fraught with challenges.

The integration of machine learning, advanced diagnostic

modalities, and innovative treatment approaches heralds a

new chapter of personalized medicine, tailored to meet the

unique needs of individuals. The shift from “AHI medicine”

and “one size fits all” concepts toward precision medicine is

poised to revolutionize patient care, offering more accurate

diagnoses, enhanced treatment efficacy, and improved patient

adherence (Arnardottir et al., 2022). The successful translation

of these advancements from research to clinical practice requires

not only further validation through large-scale studies but

also a reevaluation of existing healthcare models to ensure

accessibility. Moreover, the adoption of new technologies

necessitates comprehensive training for healthcare professionals to

maximize the benefits of these tools. Interdisciplinary collaboration

will be crucial in overcoming these barriers, uniting experts from

fields such as sleep medicine, respirology, neurology, cardiology,

otolaryngology, odontology, biomedical engineering, and data

science to address the complex challenges ahead. As we navigate

these uncharted waters, the collective efforts of the scientific and

medical communities will be paramount in realizing the full

potential of these innovations, ultimately improving the lives of

millions suffering from SDB.
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Hypoglossal nerve stimulation in
adolescents with down
syndrome and obstructive sleep
apnea: A systematic review and
meta-analysis
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Xiaohua Dai 4* and Xiangming Meng 3*

1Department of Emergency or ICU, Anhui Provincial Hospital of Integrated Traditional and Western
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4Branch Center of the National Clinical Research Center for Cardiovascular Disease, The First

A�liated Hospital of Anhui University of Traditional Chinese Medicine, Cardiovascular Institute of

Anhui Academy of Chinese Medicine, Hefei, China

Objective: To evaluate the e�cacy and adverse e�ects of hypoglossal nerve

stimulation in adolescents with down syndrome and obstructive sleep apnea.

Methods: A systematic search was conducted using PubMed, Web of Science,

Embase, and Scopus databases. The systematic review followed the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A

comprehensive search strategy used a combination of Medical Subject

Headings and free words with “OR” and “AND.” Articles were screened to

extract data reporting apnea-hypopnea index, quality of life, voltage, follow-up

duration, and complications. All included participants were adolescents with

down syndrome and obstructive sleep apnea.

Results: A total of 92 articles were identified, of which 9 articles met

the inclusion criteria. A total of 106 patients were included. All the studies

showed that patients receiving hypoglossal nerve stimulation experienced a

significant decrease in apnea-hypopnea index (at least 50%). The pooled AHI

was significantly lower in patients following treatment (mean AHI reduction

17.43 events/h, 95% confidence interval 13.98–20.88 events/h, P < 0.001) after

2 case reports were excluded. The pooledOSA-18were significantly decreased

in 88 patients after treatment (mean OSA-18 reduction 1.67, 95% confidence

interval 1.27–2.08, P < 0.001) after excluding 5 studies. Four investigations

examined the necessity to optimize stimulation voltage for arousal during

treatment. The most common complication was pain or discomfort in the

tongue or mouth. Most studies had relatively short patient follow-up periods,

with the most extended follow-up being 44–58 months.

Conclusion: Hypoglossal nerve stimulation significantly reduces

apnea-hypopnea index and improves the quality of life; and thus, could

be a potential alternative therapy for obstructive sleep apnea in adolescents

with down syndrome. The adolescent’s age, potential complications,
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adverse events, long-term e�cacy, and comfort, needs to be considered while

performing hypoglossal nerve stimulation.

KEYWORDS

hypoglossal nerve stimulation, down syndrome, obstructive sleep apnea, adolescents,

apnea-hypopnea index

Introduction

Obstructive sleep apnea (OSA) is a sleep-related breathing

disorder that causes hypoxia and fragmented sleep, because

of repeated airway obstruction or collapse (1). OSA affects

approximately 5% of healthy children globally and is associated

with concomitant behavioral issues, such as inattention,

hyperactivity, and/or cognitive decline in the pediatric

population (2). Obesity and craniofacial deformities are the

most common causes of airway obstruction (3).

Down syndrome (DS), trisomy 21, or redundancy of

chromosome 21, is one of the most complex human congenital

diseases (4). Adolescents with DS show several unique

characteristics, such as generalized hypotonia, macroglossia,

facial hypoplasia, small tracheal caliber, and lingual tonsillar

hypertrophy (5). Up to 80% of children with DS have OSA,

which is thought to be caused by these unique characteristics (6).

Untreated OSA can affect a child’s development, including

reduced learning abilities, speech and language delays, and

impaired cognitive flexibility and memory (7). Currently, upper

airway surgery and continuous positive airway pressure (CPAP)

are the commonly used treatments for OSA (8). Although for

most individuals OSA improves after treatment, the incidence

of residual airway obstruction remains high (9). Following

upper airway surgery, residual airway obstruction can cause

up to 75% of children to require breathing support (10).

Furthermore, compliance with CPAP is not good enough to

meet treatment needs due to discomfort, inconvenience, and

cognitive delay (11).

Since 2014, hypoglossal nerve stimulation (HNS) has been

approved by the US Food and Drug Administration (FDA) for

treating OSA in adults (12). HNS improves breathing while

sleeping, by stimulating the muscles in the upper airway and

by hardening the tongue and soft tissues (13). Studies have

shown that HNS is more tolerable and less irritating than CPAP

and upper airway surgery, and it is an effective treatment for

moderate-to-severe OSA in adolescent patients (14).

However, there is no consensus about reducing OSA in

adolescents with DS usingHNS. In 2016, the first case of HNS for

OSA in adolescents with DS was reported (15). Although most

research in recent years have shown that HNS is a better option,

these studies have limitations in terms of sample size, in follow-

up duration, and in documentation of complications (16).

To the best of our knowledge, this is the first review of HNS

for treating OSA in adolescents with DS based on the existing

research. We sought to evaluate the efficacy and adverse effects

of HNS in adolescents with DS and OSA and to clarify the

underlying processes of HNS for treating OSA.

Methods

This systematic review was conducted following the

Preferred Reporting Items for Systematic reviews and Meta-

Analyses guidelines (17). Ethical approval is not required for

this review.

Search strategy

A systematic search was carried out through PubMed, Web

of Science, Embase, and Scopus databases. The search strategy

used a combination of Medical Subject Headings (MeSH) and

free words with “OR” and “AND.” Retrieval words included

“DS,” “Trisomy 21,” “OSA,” “sleep apnea syndromes,” “HNS,”

and “upper airway stimulation.” The detailed retrieval strategy is

available in Supplementary material. The final literature search

was completed on June 25, 2022. Two reviewers (WK and

KZ) independently qualified the studies and extracted the

data. Differences were resolved through discussion between the

two reviewers.

Inclusion and exclusion criteria for study
selection

The requirements for studies to be included were as follows:

(I) Types of participants – adolescents (the age ranges from 10

to 21 years) (18) with DS and OSA; (II) type of intervention -

HNS; and (III) type of language - English. The exclusion criteria

included relevant publications, reporting of only surgeries, cell

experiments, comments, no outcomes, not adolescents, and

repeat investigations.
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TABLE 1 A summary of studies on hypoglossal nerve stimulation for adolescents who had down syndrome and OSA.

References Study design Cases

(n)

Age Treatment

assessment

Intervention

time (h)

Voltage

titration

(v)

Follow-up

duration

(months)

Main results Adverse

events

Conclusions Risk of

bias

Yu et al. (18) Prospective

single-group

multicenter cohort

study

42 15.1± 3.0 PSG, ESS, OSA-18 9.0± 1.8/night Changed but no

more than 1.0

12 AHI was decrease (P < 0.05); OSA-18

and ESS score was improved (P < 0.05);

the most common complication was

temporary oral discomfort (11.9%).

Yes HNS is able to be

safely performed.

Good

Kay et al. (20) Case report 1 13 HSAT, PSG, CAI,

CO2%

10.5/night 1.6,1.9,2.0 8 8 months after surgery: sleep efficiency

improved; AHI decreased from 44.9 to

12.2; min CO2%:90%.

No HNS is effective in

reducing OSA

burden.

Poor

Yu et al. (21) Prospective

longitudinal,

multicenter

single-arm trial

20 15.5 PSG, OSA-18,ESS NA Unclear 12 The mean decrease in AHI was15.1 (P <

0.001);

OSA-18 and the ESS score was lower.

No HNS treatment is

safe and effective

Good

Grieco et al. (22) Prospective study 9 15.2±3.4 PSG;

Neurocognitive and

behavioral testing

Unclear Unclear 6.5 There was a significant mean decrease in

AHI by 11.0 (P < 0.05); all

neurocognitive and

behavioral testing scores are improved.

No The benefits are

reduced AHI and

improved some

neurocognitive and

behavioral

outcomes.

Fair

Stenerson et al. (23) Case series 4 10–13 PSG; OSA-18 Unclear 1.5, 1.8, 1.9, 2.1,2.2,

2.8

44–58 AHI decreased by at least 50% in all

participants; OSA-18 scores improved in

3 participants; but 2 participants

exhibited severe OSA when the device

was turned off.

No HNS effectively

controls their OSA,

but their underlying

untitrated OSA

appears to persist

into adulthood.

Good

Karlik et al. (24) Case series 3 10–19 PSG; Anesthetic

and medications

Unclear No Unclear The average AHI change was 87.4%;

tailored anesthesia protocols improve

patient outcomes.

No HNS combined

with individualized

perioperative

management can

improve OSA

symptoms in

patients

Good

Caloway et al. (25) Case series 20 The median

13.75–17.25

PSG, OSA-18 The median

9.21/night

Unclear 2 Median percent reduction in AHI of

85%; The median OSA-18 score

Yes HNS treatment

effectively reduced

Good

(Continued)
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Data extraction

Two reviewers (WK and KZ) extracted data using

Excel (Microsoft Inc., USA) spreadsheet. The data included

were as follows: authors, year of publication, study design,

voltage titration, sample size, age, treatment assessment,

intervention time, follow-up duration, main results, adverse

events, and conclusions.

Assessment of risk of bias

Two reviewers (WK and KZ) independently evaluated the

selected articles. The quality of the articles included in this

review was assessed using the National Institutes of Health

quality assessment tools (observational cohort studies and cross-

sectional studies) (19). The quality of each article was rated

as “good,” “fair,” or “poor” according to its overall quality

score. Any disagreement was resolved by consensus through

discussions between the two reviewers.

Statistical analysis

Mean differences (MD) were calculated to create forest plots

of continuous data to analyze the variations in the apnea-

hypopnea index (AHI) and A validated, disease-specific quality

of life instrument for OSA (OSA-18) between HNS and non-

HNS. We merged data using Review Manager 5.3 software. The

test was regarded as statistically significant when the P value

was <0.05 and 95% confidence intervals (CIs) were given. The

Q statistic, with a significance level of P < 0.10, was used to

investigate the heterogeneity of Mean differences. The study was

divided into two groups according to whether the number of

cases was >10, and a subgroup analysis was conducted. The

random-effects model was employed throughout the analysis.

Results

Search outcome

A total of 92 articles were obtained from the 4 databases,

out of which 41 articles remained after excluding the duplicate

ones. The literature was then further screened using the article

titles and abstracts and 20 irrelevant articles were excluded.

Next, two abstracts without full text, one surgical procedure

study, one with cellular experimental study, four review articles,

one no result article, and three non-adolescent studies, were

also excluded by full-text literature identification. Ultimately, 9

studies met the inclusion criteria for this systematic review.

A total of 106 patients were included in all investigations;

three articles had a sample size with more than 10, while 6
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articles had a sample size of no more than 10 cases. The first

related publication was published in 2016. Further, an article was

published each, in 2017, 2019, and 2020 years. Because of the

rising interest in this topic, four relevant articles were published

in 2021. Table 1 summarizes the studies included in the review.

The flow chart of the literature search is shown in Figure 1.

Treatment outcomes

AHI

All the studies showed that patients receiving HNS

experienced a significant decrease in AHI, based on the

Polysomnography (PSG) results. Diercks et al. reported the

first case of HNS treatment for a 14-year-old boy, whose AHI

dropped from 48.5 to 3.4 events/h (15). Yu et al. followed

42 patients for a year; the findings revealed that the average

AHI decreased by 12.9 ± 13.2 events/h, 65.9% of the patients

experienced a 50% decrease in AHI, and 73.2% of the patients

had an AHI of<10 events/h (18). After excluding 2 case reports,

a total of 104 patients were included in the analysis; pooled data

revealed significantly lower AHI in patients after HNS (mean

AHI reduction 17.43 events/h, 95% CI 13.98–20.88 events/h, P

< 0.001); however, there was moderate heterogeneity between

the studies (I2 = 42%, P =0.11). The forest plot of studies

investigating AHI is shown in Figure 2.

Quality of life

Five studies used the OSA-18 (a validated, disease-specific

quality of life instrument for OSA) and Epworth Sleepiness

Scale (ESS) questionnaires, to examine the improvements in

treatment durations (18, 21, 23, 25, 26). As a result, it improved

their sleep quality and subjective feelings. Kay et al. found that

FIGURE 1

Flow chart showing the process of literature screening.
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FIGURE 2

The forest plot of studies investigating AHI.

FIGURE 3

The forest plot of studies investigating OSA-18.

snoring, daytime sleepiness, behavioral problems, and supine

sleeping improved in these patients (20). According to two

studies, HNS can decrease patients’ ESS scores in terms of sleep

quality (18, 21). In addition, Greco et al. found that participants’

neurocognitive and behavioral outcomes were also amended

(22). A total of 88 patients were included after 5 studies were

excluded, and the pooled data revealed significantly decreased

OSA-18 in patients following HNS (mean OSA-18 reduction

1.67, 95% CI 1.27 to 2.08, P < 0.001), and there was no evidence

of study heterogeneity (I2 = 0%, P = 0.43). The forest plot of

studies investigating OSA-18 is shown in Figure 3.

Voltage

Four investigations examined the necessity to optimize

stimulation voltage for arousal during treatment (15, 18, 20, 23).

According to research, AHI decreases as stimulation voltage

increases, with 21.1 events/h at 1.3 V, 3.7 at 1.4 V, and 3.4

at 1.5 V (15). The remaining five investigations, however, did

not specifically record any information regarding the titration

voltage (21, 22, 24–26).

Follow-up duration

Most researchers followed patients with DS and OSA for

a short duration. Only one study had a follow-up duration of

44 to 58 months (23), two studies had <6 months (15, 25),

five studies had 6 to 12 months (18, 20–22, 26), and one

study provided no details regarding follow-up duration (24).

Noticeably, two participants had a persistently moderate OSA

after 44–58 months of follow-up, postoperatively (23).

BMI

Eight studies stated that HNS treatment should consider the

influence of body mass index (BMI) factors (15, 18, 20, 21, 23–

26), and five advised that patients should have a BMI of <32

kg/m2 (15, 18, 21, 23, 26). However, only two studies performed

BMI data analysis. There were 11 patients with BMI in the 85th

percentile or greater. Five (45.5%) of these 11 patients responded

to therapy, compared to 44.4% of patients with a BMI under

the 85th percentile (P = 0.96) (21). Age- and sex-adjusted BMIs

ranged from 19.2 to 24.6 kg/m2 at baseline, and from 19.8 to

34.6 kg/m2, and BMI percentiles increased for 3 of the four

patients (23).
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FIGURE 4

The distribution of complications of studies included in the systematic review.

Complications

Pain or discomfort in the tongue or oral cavity, were

the most common complications. Notably, three studies

documented the occurrence of serious adverse events, such as

the incidences of reading and reoperations (18, 25, 26). The

distribution of complications is shown in Figure 4.

Discussion

In this review, we investigated the therapeutic effects of

HNS for OSA in adolescents with DS, the enhancement of

participants’ quality of life, and the benefits of the intervention,

based on the current literature. In addition, we discussed

its potential therapeutic mechanism. After receiving HNS

therapy, all participants experienced a significant reduction

in AHI. Participant’s OSA-18 and ESS scores also indicated

noticeable improvements in some studies. Therefore, HNS can

be considered as an effective treatment for OSA in adolescents

with DS and is a better tolerated option than CPAP or equally

well tolerated option than CPAP.

OSA is a complex condition that demands a multimodal

treatment strategy, particularly for adolescents with DS, due

to the abnormalities in their airway structure (27). Nowadays,

tonsillectomy, adenoidectomy, and CPAP are reliable options

used to alleviate OSA (28). However, even after surgery or

after CPAP use is discontinued, the condition can persist (29).

Previous studies have proven that HNS is an effective treatment

option for OSA in adults, particularly for those who cannot

tolerate CPAP therapy (30). According to a single-center study,

themean AHI for patients with OSAwhowere treated with HNS

decreased from 38.9± 12.5 to 4.5± 4.8, whereas the mean AHI

for those who underwent uvulopalatopharyngoplasty surgery

decreased from 40.3 ± 12.4 to 28.8 ± 25.4 (31). Consequently,

HNS appears to have a more favorable therapeutic outcome than

uvulopalatopharyngoplasty surgery for patients with OSA.

With the advancement of medical technology, electrical

stimulation devices have shown numerous benefits in treating

OSA. According to research, the loss of genioglossal muscle tone

is strongly correlated with airway collapse (32). A hypoglossal

nerve stimulator comprises of an implantable pulse generator

(IPG), a pressure sensor to detect breathing, and a stimulation

lead connected to the sublingual nerve (33). The pressure sensor

monitors chest wall motion, allowing the IPG to signal the end

of expiration and the beginning of inspiration. The stimulation

is subsequently delivered to the hypoglossal nerve through the

IPG, and the stimulation leads can specifically activate certain

branches of the hypoglossal nerve, which enhances the stiffness

and protrusion of the tongue (34). Tongue protrusion expands

the cross-sectional dimensions of the airway, consequently

facilitating the patient’s airway; and thus, preventing airway

collapse (35).

The degree of AHI reduction and quality of life

improvement, are the essential measures to monitor the

effectiveness of therapeutic modalities for treating OSA. All the

adolescents included in this systematic review had used CPAP

before receiving HNS therapy, but none of them was able to

tolerate it. The PSG of all the participants showed a significantly

lower AHI score during the HNS therapy, than that before

receiving it. This result is comparable to that obtained using
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typical pediatric CPAP treatment. According to King et al.,

CPAP therapy decreased the AHI of pediatric patients from 9.8

(5.7–46.0) to 3.3 (0.4–2.2) (36). Interestingly, one study found

that discontinuing HNS did not immediately revert patients to

their initial AHI level (23). In addition, employing the ESS and

OSA-18 questionnaires, it was determined that the quality of

life of these patients improved after receiving HNS treatment

(18, 21, 23, 25, 26).

Although there are positive findings on the efficacy of HNS

in adults, the data are inconsistent. Zhu et al. followed 82

patients with moderate-to-severe OSA for 4 years and found

that the stimulation threshold of the hypoglossal nerve remained

constant (37). Further studies are needed to determine if this

phenomenon occurs during the treatment of adolescents.

The voltage threshold of HNS is also an important factor to

consider and to investigate. In adolescents, the voltage threshold

for HNS may differ from that of adults. Since adolescents with

DS are going through a particular stage of rapid physical growth,

the efficacy and safety of HNS treatment should be focused on.

While four studies have been examined at titrating stimulation

voltage, none have precisely investigated how variations in

voltage stimulation intensity affect the efficacy of the HNS

treatment. Diercks et al. observed that increasing stimulation

voltage during HNS treatment significantly reduced the AHI of

patients (15). The threshold of voltage stimulation required for

adolescents did not seem to change with age.

So far, it is unknown whether higher voltage stimulation

is necessary during HNS therapy to obtain improved efficacy.

According to certain studies, HNS can effectively control OSA

in adolescents with DS, but the underlying OSA is likely to

continue until adulthood (23). Therefore, a longer period of

follow-up is required to evaluate the long-term effectiveness of

HNS for adolescents with DS and OSA.

It is well recognized that adolescents with DS suffer from

cognitive impairment and that prolonged sleep hypopnea might

worsen this impairment (38). Furthermore, adolescents are still

in a crucial stage of intellectual and cognitive development; and

thus, they may benefit from early OSA treatment. A study of

neurocognition and behavior in nine adolescents treated with

HNS found that these participants had better neurocognitive

and behavioral scores after 6.5 months of treatment for an

average of 15.2 ± 3.4 h per day (22). The actual treatment

of adolescents requires more effort from their families daily.

Nevertheless, HNS therapy can effectively reduce the burden

on families.

BMI may have a significant impact on HNS treatment

outcomes. The Food and Drug Administration (FDA) has

recommended HNS for treating OSA in neurotypical adults

with an AHI <50 events/h, a BMI <32 kg/m2, and no

circumferential airway collapse at the level of the velopharynx

(12, 39). Adolescents with DS are still in a crucial stage of BMI

(40). According to one study, increased BMI during treatment

may explain the necessity for voltage titration (23). Currently,

no more data exists to determine how the BMI of Adolescents

with DS affects the therapeutic effect of HNS.

Adolescents with DS who were treated with HNS may

experience complications or adverse events. Therefore,

understanding the reasons behind adverse occurrences and

their consequences can help improve therapeutic outcomes.

Three studies reported adverse events, such as tongue or mouth

pain, rash, tissue inflammation, cheek swelling, irritation-

related discomfort, insomnia, pneumothorax, and swallowing

or speech-related problems. These adverse events were primarily

caused by device displacement, infection, device migration, and

poor postoperative pain control. If the patient has a small chest,

the stimulator could become squeezed by the beating heart (41).

As the patient ages and their body size increases, it is vital to

evaluate whether the length of the device wires is sufficient.

Therefore, we could reduce complications by selecting an

appropriate surgical site and a matched electrical stimulation

device, avoiding migration of the device and lead requires

adequate anchoring and limited sac dissection during device

placement, and reducing oral discomfort or pain by titrating

the voltage. Fortunately, no permanent injuries, life-threatening

illnesses, or deaths have been reported in the literature.

This review has some limitations. First, the sample sizes

of the included studies were limited, and several were case

reports. Also, none of these studies had a control group.

Thus, these investigations might be affected by research bias.

Second, the safety of HNS therapy and the reasons behind

some adverse events, including some severe ones, weren’t fully

understood by these investigations. Additionally, there was no

record of adolescent tolerance to electrical stimulation in these

investigations. It is important to consider the safety of HNS

therapy and guard against adverse outcomes. Third, the follow-

up duration of these participants was typically limited, and

the long-term consequences of HNS on adolescents with DS

and OSA remains unknown. Therefore, large-scale, prospective,

randomized controlled, multicenter studies, are required in

the future.

Conclusions

In conclusion, HNS can significantly reduce the AHI and

improve the quality of life of adolescents with DS, and can

be considered as a potential alternative treatment for OSA.

As adolescents get older, more studies are required to fully

demonstrate the effectiveness of HNS, with a greater focus

on potential complications, adverse events, long-term efficacy,

comfort, and cost-effectiveness throughout HNS treatment.

Comprehensive therapy protocols incorporating two or more

therapeutic techniques, including CPAP, upper airway surgery,

and HNS, are also worthy of investigation. Currently, HNS has

not yet received FDA approval for pediatric patients, which has

restricted its widespread clinical application.
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Study objectives: Although the importance of upper airway assessment in the

consideration of obstructive sleep apnea (OSA) is recognized, there are current

limitations in our approach to assessment.

Methods: We convened a group of experts in upper airway neuromuscular

physiology and anatomy, sleep apnea endophenotypes, novel therapeutics and sleep

epidemiology to summarize existing literature and delineate future opportunities to

utilize and incorporate innovative and less invasive techniques focused on upper

airway neuromuscular physiology to assess and manage OSA.

Results: In OSA, genioglossus electromyogram (EMG) activity is reduced during

sleep onset with higher levels observed during wakefulness compared to controls.

Surface EMG recordings are limited due to distance from the actual muscle

and while needle EMG o�ers more direct assessment, this approach is more

invasive. Novel alternatives overcoming these limitations to assess upper airway

neuromuscular physiology in OSA may therefore prove beneficial. Specifically, such

an approach would facilitate identification of upstream prognostic biomarkers of OSA

clinical trajectory and o�er more informative mechanistic data. Novel approaches

to neuromuscular assessment in OSA would enhance phenotyping to predict

better tolerance to positive airway pressure therapy and set the stage to target

neuromuscular function and upper airway anatomy. A quantifiable and repeatable

neuromuscular physiologic metric has potential to facilitate a precision medicine

strategy and personalize treatment, including measuring treatment response to

neurophysiologic-focused interventions including hypoglossal nerve stimulation

(HGNS), myofunctional therapy and neuromuscular electrical stimulation. A key area

for future investigation is whether observed neuromuscular changes can identify

patients at future risk of OSA, facilitating early intervention or prevention strategies.
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Conclusions: Overall, recognizing the critical contributions of abnormalities of upper

airway neuromuscular function to the pathophysiology of OSA, it may be important

to find accurate and reproducible neurophysiological assessments to address existing

knowledge gaps in OSA assessment and management.

KEYWORDS

obstructive sleep apnea, neuromuscular function, polysomnography, pathogenesis, upper

airway

Introduction

Obstructive sleep apnea (OSA) is a common disease with major

neurocognitive and cardiometabolic sequelae (Jenkinson et al., 1999;

Gottlieb and Punjabi, 2020). OSA is estimated to affect up to 1

billion people worldwide with the majority of disease remaining

undiagnosed and untreated (Benjafield et al., 2019). Diagnostic

strategies for OSA have evolved over time from gold standard

polysomnography (PSG), which is often regarded as cumbersome

and expensive to home sleep apnea testing (HSAT) which provides

adequate diagnostic accuracy albeit imperfect (Kuna et al., 2011;

Rosen et al., 2012). Despite ongoing efforts, the mechanistic insights

which are derived from sleep diagnostics are currently minimal,

suggesting a need for more advanced approaches.

OSA pathogenesis is recognized to involve a complex interplay of

soft tissue/craniofacial structure, neuromuscular dysfunction, arousal

threshold and control of breathing abnormalities (Younes, 2003,

2004; Jordan et al., 2014). Many patients develop OSA primarily due

to anatomical abnormalities including increased size of the upper

airway soft tissue structures (tongue, soft palate, lateral pharyngeal

walls, tonsils, etc.) or small bony craniofacial structures (e.g.,

retrognathia, micrognathia), while in other patients abnormalities in

upper airway dilator muscle function, control of breathing, or arousal

threshold play a more prominent role (Edwards et al., 2014). Some

patients have combinations of abnormalities that contribute to OSA

(Edwards et al., 2016). These underlying mechanisms or endotypes

may be important to guide personalized therapeutic interventions

and may facilitate mitigation of apnea-related complications if

adequately addressed (Malhotra et al., 2020).

At present, the gold standard for OSA diagnosis remains PSG,

but this test is relatively cumbersome and expensive and not readily

available for large portions of the population (Mulgrew et al.,

2007; Kuna et al., 2011). HSAT is increasingly accepted as an

alternative approach given less burden and expense. However, both

PSG and HSAT generally fail to discriminate among the various

mechanistic subtypes of OSA that might inform the personalized

therapeutic decisions.Moreover, neitherHSATnor PSG is sufficiently

accessible within existing medical insurer coverage paradigms to

allow repeated administration as a means of serial testing e.g., in

response to therapy. In addition, neither test can be administered

in the clinic to provide straightforward assessment at the point of

care. While deriving endophenotypes from PSG data is an area

of active research (Sands et al., 2018a), the increasing reliance

on HSATs, which provide less data than PSG, may hinder the

widespread implementation of precision medicine approaches that

are dependent on PSG data. Moreover, there is no currently available

diagnostic tool that is predictive of the future development of

OSA in at-risk individuals or progression of OSA in those with

mild disease.

The ideal diagnostic test for OSA would provide reliable and

reproducible information in terms of identifying patients who will

benefit from interventions. It would be inexpensive, easy to use and

non-invasive to allow widespread use of the technology and have

high sensitivity and specificity for OSA. It would also be readily

accessible in the clinic to allow straightforward assessment at the

point-of-care (Montesi et al., 2012). The approach would ideally

integrate characterization of mechanistic aspects of OSA. In addition,

the ability to make serial assessments of OSA severity and provide

information regarding underlying mechanisms longitudinally with

ease andminimal burden to patients would provide an opportunity to

use the technique to guide therapy and to gauge therapeutic response,

e.g., to titrate medications or neuromuscular training/stimulation. As

a point of emphasis, a technique to assess OSA severity may be useful

diagnostically whereas another technique to allow determination of

OSA mechanisms may provide therapeutic guidance. In theory, one

method could inform both diagnostics and therapeutics although

these two distinct goals need to be considered when validating

and implementing new methods. Taking into consideration patient

preference is also critical to ensure patient receptivity with

implications on engagement in the diagnostic process as well as

ultimately treatment adherence as indicated (Table 1).

Given the impact of OSA and limitations of current diagnostic

and management approaches, we convened a panel with expertise

inclusive of upper airway neuromuscular physiology and anatomy,

sleep apnea endophenotypes, novel therapeutics and sleep

epidemiology to discuss the potential of neuromuscular function

measurement in the assessment of OSA. Our objectives included

summarizing the current literature and identifying opportunities

for future research and product development. The session was

sponsored by Powell Mansfield, Inc., but the sponsor had no role in

the academic content or in drafting the manuscript. Mansfield, Inc.

is a parent company with subsidiaries of OSA diagnostic companies

including Powell Mansfield.

Unmet needs in OSA evaluation and
diagnostics

The current practice of sleep medicine relies on diagnosis of

established OSA; however, there may be antecedent abnormalities

which could identify people destined to develop OSA in the future or

who may have transient risk of OSA, for example in pregnancy and

during procedural anesthesia and sedation. Although at present, we

do not have robust preventative strategies for OSA beyond the general

health measures of diet and exercise (Awad et al., 2012; Carneiro-

Barrera et al., 2022), a technique that allowed early identification of

a high-risk population could facilitate development and testing of

novel preventive approaches, and also facilitate targeting of intensive
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TABLE 1 Ideal obstructive sleep apnea-specific diagnostic challenges characteristics of potential solutions.

Obstructive sleep apnea-specific diagnostic
challenges to address

Attributes Benefits

Neurophysiologic-focused endophenotypes Provides mechanistic data Facilitates precision medicine approach

Large, global disease burden Sensitive for disease Screening and diagnostic utility

Expense of diagnostics Specific for disease Avoid unnecessary additional testing

Apnea hypopnea index imperfect Correlates with disease severity Quantify disease burden, prioritize therapy

Currently a one-size-fits all approach Treatment responsive Measure and monitor treatment response

Polysomnography not readily available and cumbersome Point-of-Care Efficiency, accessibility, scalability

Expense of diagnostics Inexpensive Accessibility, scalability, cost-savings

Polysomnography is cumbersome and inconvenient Non-invasive Patient satisfaction and ease of use

Manual scoring is labor-intensive Easily measured Does not require major expertise to assess

Current standard is single night testing Quantitative metric Serial assessment

Patient-centered decision making Consideration of patient receptivity and

preference

Enhanced adherence and patient satisfaction

lifestyle intervention to those most likely to benefit. One situation

where prognostication would have immediate value would be in

the perioperative setting (Ayas et al., 2018). Patients without OSA

may manifest OSA postoperatively in the context of benzodiazepine

and opioid administration (Robinson et al., 1985, 1987; Ayas et al.,

2018). Such patients are likely at risk for OSA pre-operatively,

but are only identified postoperatively in the face of perturbations.

Although questionnaire-based approaches have been shown to have

value in OSA screening in the post-operative setting (Chung et al.,

2008), approaches with higher accuracy and integrating direct

neuromuscular upper airway physiology may improve efficiency of

OSA diagnostic paradigms in the post-operative setting with the

potential to improve outcomes.

Several practical challenges exist with the current diagnostic

paradigm in OSA such as cost, efficiency, accessibility, and scalability.

The gold standard PSG is a time-consuming and costly test with

limited availability for large portions of the population, involves

multiple clinical steps and is performed under atypical sleeping

conditions in a sleep lab. The emergence of HSAT has clear value

as it has enhanced accessibility and facilitated the diagnosis of

OSA without the need for in-laboratory PSG for many patients.

However, HSAT has its own limitations, including lack of a sleep

assessment for many devices (Malhotra and Ayas, 2020). Although

clinical experience suggests utility in the context of patients with

major comorbidities, data validating its use in this context are

relatively weak. HSAT often involves Level 3 testing without

electroencephalogram, thereby limiting accuracy of sleep apnea

severity assessment as monitoring time rather than sleep time is

used in the calculation of the apnea hypopnea index (AHI) and

electroencephalographic (EEG) arousals are not considered with

the scoring of hypopnea events (Berry et al., 2022). This situation

results in increased likelihood of false negative results, particularly

in those with more mild or subtle sleep-disordered breathing. The

multi-faceted aspects of the ideal diagnostic test for OSA have been

described, and would provide informative mechanistic data with ease

and little burden while generating sensitive and specific measures of

OSA that track with disease severity and treatment responsiveness

(Montesi et al., 2012).

In addition to the practical challenges, current diagnostic

approaches frequently fail to provide mechanistic insight into

the pathophysiology of OSA in an individual patient. Several

investigators have attempted to improvemechanistic insights gleaned

from PSG using sophisticated signal processing algorithms (Orr

et al., 2018; Sands et al., 2018a), although the clinical utility of these

methods has yet to be validated. While these efforts are ongoing with

respect to both HSAT and PSG, given the importance of upper airway

neuromuscular function to OSA pathogenesis (discussed below),

direct measurement of neuromuscular function offers a promising

approach that may provide valuable mechanistic information to the

more routinely available HSAT and PSG metrics. While traditional

methods of neuromuscular assessment are invasive and impractical

for routine clinical use, newer non-invasive techniques may be more

widely applicable. That said, in this context, an important nuance

that bears mention is the difference between OSA endotype (which

provides mechanistic information about the mechanisms underlying

OSA) versus phenotypes (clinical expression of disease ranging from

asymptomatic to severe sleepiness).

Unmet needs in OSA therapeutics and
management

The current gold standard for OSA treatment is continuous

positive airway pressure (CPAP). CPAP is highly efficacious for

control of OSA in most patients and may have transformative

benefits for patients who use it consistently, as it can produce major

improvement in symptoms and associated improvement in blood

pressure, snoring and perhaps cardiovascular risk (Pepperell et al.,

2002; Marin et al., 2005). Despite its efficacy, CPAP is not always well

tolerated, thus limiting its effectiveness (Schwab et al., 2013). Efforts

to improve CPAP adherence are ongoing using intensive education

and support, modern technology allowing patient engagement,

innovative sleep scoring of the diagnostic PSG to identify patients

who are more likely to use CPAP and efforts to improve the patient

experience via mask fitting, facilitating nasal patency (Hoy et al.,

1999; Malhotra et al., 2018; Benjafield et al., 2021; Younes et al., 2022),
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etc. Enhanced OSA phenotyping represents an opportunity area that

may allow for ability to predict better tolerance or intolerance to

CPAP therapy. However, intolerance or suboptimal adherence to

CPAP are likely to continue to limit its effectiveness in many patients.

Therefore, the field of sleep medicine is moving beyond the

one-size-fits all approach to treatment (Mazzotti et al., 2019) with

CPAP therapy. Alternative therapies exist that target either upper

airway anatomy (e.g., mandibular repositioning devices and surgical

modification of the upper airway) or neuromuscular function (e.g.,

hypoglossal nerve stimulation (HGNS), myofunctional therapy,

neuromuscular electrical stimulation) (Guimaraes et al., 2009;

Maghsoudipour et al., 2021; Nokes et al., 2022a,b). These alternative

therapies are individually less efficacious than CPAP, however,

underscoring the need for accurate and reliable endotypic and

phenotypic measures to identify patients likely to benefit from these

different interventions. Specific endotypes such as arousal threshold

and high loop gain have been derived as endo-phenotyping using

polysomnography (PUP) with clinically meaningful applications

(Sands et al., 2018b). Neuromuscular physiologic mechanistic data

independent of (or complementing) diagnostic HSAT or PSG

data may be valuable in identifying specific OSA endotypes that

would guide a more personalized approach to disease management.

Integration of point of care already described endotypic measures

such as breath-hold responses for loop gain (Messineo et al.,

2018) or blood sample testing [e.g., bicarbonate levels (Zou et al.,

2023)] combined with novel approaches to ascertain upper airway

neuromuscular function has potential to considerably advance

and optimize current clinical approaches. If a quantifiable and

repeatable metric could be developed, it could facilitate a precision

medicine strategy and personalize treatment, including measuring

treatment response.

As one example, HGNS is FDA approved and while there are

data to suggest individual characteristics which predict response to

therapy, there is a need for further refinement to identify a priori

patients who are likely to respond to (or fail) the intervention

(Bachour et al., 2021). Some data suggest that age, gender, body mass

index may have predictive value (Heiser et al., 2019; Pascoe et al.,

2022), but a rigorous evaluation of neuromuscular functionmay offer

biologically relevant insights to predict treatment response. The use

of drug-induced sleep endoscopy (DISE) is typically used to stratify

the candidates for HGNS based upon type of anatomical collapse, but

this approach is invasive, and expensive and may have issues around

reproducibility of collapse type (intra and inter-observer on repeated

measures). Thus, there is an opportunity to investigate and develop

alternativemethods to risk stratify patients prior toHGNS to improve

treatment response and clinical outcomes.

An increasing body of evidence indicates that myofunctional

therapy targeting the upper airway muscles during wakefulness may

improve OSA severity and symptoms in mild-to-moderate OSA

(de Felicio et al., 2018; Hsu et al., 2020; O’Connor-Reina et al.,

2020; Rueda et al., 2020; Carrasco-Llatas et al., 2021). Standardized

approaches to assess the evaluation of the stomatognathic system

have been validated using the orofacial myofunctional evaluation

(OMES) protocol which has facilitated ability to diagnose orofacial

myofunctional disorders (de Felicio et al., 2010). Approaches

involving soft palate elevation, tongue and buccofacial exercises

(de Felicio et al., 2018) applied several times per week have led

to significant improvements in AHI and Epworth Sleepiness Scale

scores in OSA patients compared with controls (Hsu et al., 2020;

Rueda et al., 2020). However, the factors– including neuromuscular

physiology– determining which patients are most likely to respond,

as well as optimal approaches to therapy, remain unclear and require

further investigation.

Another area of interest is the use of neuromuscular electrical

stimulation to activate and train upper airway muscles (Guimaraes

et al., 2009; Nokes et al., 2022a,b). While randomized studies

have not yet been reported, studies with a daytime oropharyngeal

stimulation intervention have shown improvement in snoring and

mild sleep apnea with this intervention (Guimaraes et al., 2009;

Nokes et al., 2022a,b). However, at present, we lack an ability to

predict a priori who may respond to this intervention, perhaps

suggesting that an assessment of neuromuscular function may have

value in distinguishing responders and non-responders. Of note,

prior physiological studies in OSA have shown increased strength

of the genioglossus on a tongue protrusion task, but with reduced

endurance compared to controls (Eckert et al., 2011). Neuromuscular

electrical stimulation has been shown to improve endurance in

physiological studies, although research is ongoing in this area

(Nokes et al., 2022b). In vitro studies have similarly demonstrated

increased fatigability of human genioglossus samples from non-obese

OSA patients compared with controls or CPAP-treated OSA patients

(Carrera et al., 2004). These findings suggest a potentially modifiable

aspect of upper airway neuromuscular function, although further

data are clearly required.

Thus, at present, our ability to identify which patients are likely

to respond to HGNS, myofunctional therapy or neuromuscular

electrical stimulation remains unclear. A reliable technique utilized

during sleep or wakefulness assessing neuromuscular function may

therefore be helpful in guiding appropriate therapy. In theory, some

patients who are amenable to these interventions could be identified

and prioritized for daytime neuromuscular therapy, whereas patients

unlikely to respond to daytime measures may be directed to

alternative interventions.

Neuromuscular function in OSA

Considerable research has been performed regarding upper

airway neuromuscular function in OSA (Kimoff et al., 2001; Nguyen

et al., 2005; Kimoff, 2007). Several conclusions have been suggested,

although debate is ongoing in this context. First, some evidence of

sensory impairment has been observed in the upper airway although

the pathophysiological relevance of these findings is unclear (Wallace

et al., 2022). Second, regarding motor function, the genioglossus has

been shown to have increased strength but reduced endurance in

OSA compared to controls (Eckert et al., 2011). Third, a negative

pressure reflex has been described whereby the genioglossus and

other muscles in the upper airway will activate in response to a

negative (sub-atmospheric, collapsing) pressure stimulus (Mathew,

1984). The negative pressure reflex has been shown to be increased

not decreased in OSA compared to controls (Berry et al., 2003).

Fourth, histological studies have been performed in biopsy specimens

from patients with OSA (Series et al., 1995). Series et al. showed

a highly trained upper airway muscle in OSA based on fiber type

distributions (red, type 1, slow twitch fibers) compared to non-OSA

controls (Series et al., 1995). Fifth, some authors have suggested that

the mechanical output of the upper airway muscles may be impaired

even with adequate neural stimulation (Patil et al., 2004; Jordan et al.,
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2007). So-called “neuromechanical uncoupling” has been postulated

although direct evidence has been more controversial. In aggregate

the data suggest that upper airway neuromuscular function may be

important for some but not all OSA patients.

The heterogeneity of the underlying pathophysiologic

contributions to OSA has been recognized such that four main

endophenotypic traits have been identified, i.e., (1) pharyngeal

anatomy/collapsibility, (2) ventilatory control system gain (loop

gain), (3) the ability of the upper airway to dilate/stiffen in response

to an increase in ventilatory drive, and (4) arousal threshold

(Jordan et al., 2014). Intersection with upper airway neuromuscular

physiology can be influenced by and can influence these OSA

pathophysiologic traits directly and/or indirectly. It has been

speculated that upper airway sensory dysfunction in OSA may

reflect an OSA-related neuropathic process which may also impact

motor innervation (Saboisky et al., 2012a; Wallace et al., 2022).

Indeed, several lines of evidence point to upper airway muscle

denervation-reinnervation in OSA. Histopathologic studies of OSA

upper airway tissue demonstrate fiber type grouping (Lindman and

Stal, 2002), myocyte expression of neurotrophic factors (Boyd et al.,

2004) as well as pathologic axonal and Schwann cell changes (Shah

et al., 2018). In addition, conventional genioglossus intra-muscular

electrode recordings by several groups have demonstrated classical

denervation potentials (Svanborg, 2005; Saboisky et al., 2012a)

in some OSA patients vs. controls. Vibration injury– perhaps in

combination with hypoxia– has been suggested to contribute to

the observed neuromuscular abnormalities in OSA (Saboisky et al.,

2012b). While these changes clearly have the potential to impact

upper airway motor function, their prevalence and pathophysiologic

significance remain poorly understood. Further study will be

required to determine if the observed neuromuscular changes can

identify patients at future risk of OSA, facilitating early intervention

or prevention strategies.

Assessment of neuromuscular function
in OSA

A reliable technique for direct measurement of neuromuscular

function has the potential to fill some of the unmet needs in OSA

diagnosis and management. However, the sleep medicine field has

faced multiple challenges with regards to assessing upper airway

neuromuscular physiology. Sensory testing is notoriously subjective

and cannot easily be performed during sleep (Nguyen et al., 2005).

Upper airway muscle biopsies are invasive with attendant risk of

bleeding and infection. Intramuscular EMG can be painful and

also has modest risk (e.g., bleeding, infection), and cannot easily

be applied to multiple locations within a muscle without repeated

instrumentation (Malhotra et al., 2000a). Cost and accessibility

have also limited the ability to assess neuromuscular function

of the upper airway muscles. For example, intramuscular EMG

requires costly specialized equipment that is not readily available. In

addition, diagnostic interpretation of intramuscular electromyogram

(EMG) recordings requires specialized training and expertise in

the field of neurophysiology, making testing hard to standardize

between patients and within patients on repeated measurements

between physicians. Thus, efforts to optimize accuracy of these

measurements are ongoing. Novel approaches to implement point-

of-care neuromuscular physiological assessments of the upper airway

in OSA are worth pursuing. For example, a protocol-based challenge

involving sustained negative pressure through a mask or device to

evoke neuromuscular output, i.e., an awake neuromuscular stress test

can be considered.

The genioglossus is the best studied of the upper airway dilator

muscles, although there are 23 pairs of muscles that are thought to be

important in upper airway patency (Horner et al., 1991; Mezzanotte

et al., 1992; Horner, 2000). The genioglossus is accessible and thus

potentially the easiest muscle to study. In addition, it is a large muscle

thought to have important mechanical influences on pharyngeal

airway patency (Innes et al., 1995). The genioglossus is a phasic

muscle (bursts with inspiration) and is state dependent (changes

firing pattern from wakefulness to sleep) (Horner, 1996). At present

the gold standard to assess genioglossus activity is intramuscular

electromyography using needle or fine wire electrodes (Malhotra

et al., 2000b), although it is best used for low-level short contractions

and tends to be sensitive to the movement of the electrodes, and

as noted above has the disadvantage of being invasive by nature

(O’Connor et al., 2007). A simplified, non-invasive technique is

therefore desirable for several reasons: to reduce patient discomfort;

to reduce cost; to allow assessment of multiple muscles, providing a

more thorough evaluation of upper airway neuromuscular function

rather than relying on the assumption that genioglossus activity is

representative of all the muscles in the upper airway; and to facilitate

repeated measurements over time.

Recently, a new electrodiagnostic technology called

transmembranous EMG has been developed that addresses

some of these challenges (Menon et al., 2022). The technology uses

a novel sensor and probe that allows a diagnostic assessment of

the neuromuscular function of upper airway muscles without the

need for intramuscular electrodes. The transmembranous EMG

signal allows measurement of muscle activity but also provides

diagnostic information regarding underlying pathologies e.g.,

myopathy, neuropathy, etc. Due to its minimally invasive nature,

multiple muscles can be examined at many different locations

without undue burden. Although muscle physiology assessments

may have value if they allow the assessment of neuromuscular upper

airway pathophysiology to become more accessible, there is need for

foundational reproducibility studies and enhanced understanding

of how collection of these daytime measures relate to sleep-specific

OSA pathophysiology. Further validation of the method will be

required and how best to integrate this approach clinically and in

the research setting is still to be determined. Of note, additional

potential value in use of the transmembranous EMG is to facilitate

the assessment of active perception and tongue movement, not

only passive, neuromuscular measurements (Guilleminault et al.,

2019). One potential advantage of a neuromuscular assessment

during wakefulness would be related to feasibility; however,

its ability to predict behavior/function during sleep will need

further investigation.

Future directions

Although the expert panel agreed on the importance of upper

airway assessment in the consideration of OSA, there was also

consensus about the need for further validation of newer techniques

such as transmembranous EMG and demonstration of its utility

in both research and clinical settings. Hence, there was discussion

Frontiers in Sleep 05 frontiersin.org
24

https://doi.org/10.3389/frsle.2023.1087196
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Mehra et al. 10.3389/frsle.2023.1087196

TABLE 2 Consensus regarding opportunities for innovations in upper airway neuromuscular physiologic assessments in the diagnosis and management of

obstructive sleep apnea.

Domain Statements

Mechanistic • Investigation of whether noninvasive upper airway neurophysiologic measurements and related endophenotypes also provide insight into disease

mechanisms. Moreover, the addition of mechanistic insight may help in terms of patient management.

• Clarifying prevalence of denervation or myopathic changes among OSA vs. non-OSA patients including the extent that these changes relate to symptoms,

disease severity and disease progression.

• Understanding how neurophysiologic measurements can be used to assess responses to targeted therapy.

• Evaluating neurophysiologic differences across age, sex, race and other important OSA subgroups.

Diagnostic • In theory, if a point-of-care inexpensive test were available in a clinical setting, a screen for OSA could be conducted on a large scale. A point of care test

would have value if highly sensitive (help to rule out disease) or highly specific (help to rule in disease). One approach could be used to enhance existing

screening methods such as questionnaires (STOP-BANG, MAP, Berlin) assuming it provided additional predictive value (Netzer et al., 1999; Chung et al.,

2008).

Usability • Ease of use of the neuromuscular test at the point of care and cross-disciplinary use from clinicians of different specialty type without specialized training

to conduct the test and obtain a diagnostic interpretation is a key consideration.

Prognostic • At present we do not have robust methods to prevent OSA beyond diet and exercise for weight management. However, patients may have high risk of

developing future OSA based on neurogenic abnormalities. The appropriate treatment of these patients is unclear, but clinical studies could certainly target

these high risk patients to prevent incident OSA and mitigate downstream consequences (symptom-based and adverse clinical outcomes) of untreated

OSA if effective interventions were available.

Therapeutic • Given that a number of interventions are now available to treat snoring and OSA targeting upper airway muscle physiology, a useful approach may be

to follow these patients serially over time. In theory, hypoglossal nerve stimulation or daytime neuromuscular stimulation or training could be titrated

to daytime neuromuscular pathophysiological assessments which might allow optimization of therapy. In addition, such findings may motivate patient

behavior e.g., in the context of weight loss patients may be motivated to pursue and sustain diet and exercise interventions if they received supportive

feedback regarding the efficacy of their interventions.

• Therapeutic guidance could also be provided to patients averse to CPAP if pathophysiological data were helpful in determining the optimal non-CPAP

intervention.

• In pharmacotherapeutic approaches for OSA, optimal dosing of medications could potentially be facilitated by measurement of upper airway

neuromuscular function assuming the mechanism of action of these medications is via enhanced hypoglossal motor output. For example, in the case of

atomoxetine plus oxybutynin, the serial measurement of upper airway muscle dilator activity may have therapeutic value.

regarding potential future use cases for innovative and less invasive

techniques spanning across OSA mechanistic, diagnostic, usability,

prognostic, and therapeutic guidance domains (Table 2).

OSA is now recognized to be a heterogenous disease from

the perspective of underlying pathophysiological mechanisms

(endotypes) as well as in terms of varying clinical expression

(phenotype). The mechanisms underlying OSA include collapsible

pharyngeal anatomy, dysfunction in upper airway dilator muscles,

low arousal threshold, and unstable ventilatory control as well

as other factors. In theory, knowledge of underlying mechanism

may guide therapeutic interventions, although rigorous outcome

data are lacking regarding this approach. Oxygen or acetazolamide

would be predicted to improve patients with unstable control

of breathing (Edwards et al., 2012), whereas hypoglossal nerve

stimulation or muscle training exercise may help preferentially those

patients with upper airway dilator muscle dysfunction. Regarding

phenotypes, the data suggest various clusters in which some OSA

patients are asymptomatic, some have comorbid insomnia and some

have daytime sleepiness (Ye et al., 2014). Of note, OSA patients

with hypersomnia as well as comorbid insomnia (Lechat et al.,

2022) are thought to be at cardiovascular risk, suggesting that

only a subset of OSA patients may experience improvements in

cardiovascular risk when treated for OSA. Therefore, recognition of

OSA endophenotypes is challenging the “one-size-fits-all” approach

of giving nasal CPAP to all OSA patients regardless of mechanism

or symptoms (Bosi et al., 2017; Malhotra et al., 2020). Furthermore,

as investigated in prior work (Overby et al., 2022), there is

also a role for clinical decision-making tools based upon patient

interactive physiologic assessments and endophenotypic risk for

more personalized approaches to OSA diagnosis and management.

Overall, recognizing the critical contributions of abnormalities

of upper airway neuromuscular function to the pathophysiology of

OSA (Mazzotti et al., 2019) may be important to find accurate and

reproducible neurophysiological assessments to fill existing gaps not

only in refinement of our understanding of underlying mechanisms,

but also to aid in identification of novel endophenotypes and to

enhance management efficiencies in OSA clinical pathways.
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Introduction: The use of the electrodermal activity (EDA) signal for health

diagnostics is becoming increasingly popular. The increase is due to advances

in computational methods such as machine learning (ML) and the availability

of wearable devices capable of better measuring EDA signals. One field where

work on EDA has significantly increased is sleep research, as changes in EDA are

related to di�erent aspects of sleep and sleep health such as sleep stages and

sleep-disordered breathing; for example, obstructive sleep apnoea (OSA).

Methods: In this work, we used supervised machine learning, particularly the

extreme gradient boosting (XGBoost) algorithm, to develop models for detecting

sleep stages and OSA. We considered clinical knowledge of EDA during particular

sleep stages and OSA occurrences, complementing a standard statistical feature

set with EDA-specific variables.

Results: We obtained an average macro F1-score of 57.5% and 66.6%, depending

on whether we considered five or four sleep stages, respectively. When detecting

OSA, regardless of the severity, the model reached an accuracy of 83.7% or 78.4%,

depending on the measure used to classify the participant’s sleep health status.

Conclusion: The research work presented here provides further evidence that,

in the future, most sleep health diagnostics might well do without complete

polysomnography (PSG) studies, as wearables can detect well the EDA signal.

KEYWORDS

sleep, electrodermal activity, sleep stages, obstructive sleep apnea, machine learning

1. Introduction

Electrodermal activity (EDA) is one of the longest-known and most accessible

physiological signals (Boucsein, 2012). Electrodermal activity reflects changes in skin

potential due to sweating, which, during sleep, has a thermoregulatory function. Eccrine

sweat glands, the sweat glands that are activated during sleep (Boucsein, 2012), are

innervated by the sympathetic nervous system (SNS) only, with no parasympathetic

input (Baker, 2019). Despite this direct connection between EDA and the SNS during the

night, the signal has been so far mostly used in studies of diurnal phenomena. For instance,

it has been used for detecting stress (Zontone et al., 2019), epileptic seizures (Poh et al., 2010),

and students’ emotional engagement in classrooms (Di Lascio et al., 2018).

One of the main reasons for neglecting EDA in sleep studies is the complexity of the

recorded signals. Long-term EDA recordings are susceptible to noise from various sources
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that cause artifacts in the signals, that is, sudden out-of-scale spikes;

the most prominent sources of noise are body movements and

poor skin-to-electrode connection. While in laboratory-controlled

settings it is possible to log the patient’s movements and to

discard those signal segments when analyzing data, in free-living

conditions, it is more difficult to do so. Because removing artifacts

is important, much of the research on EDA signals has focused on

automating their detection. Various methods have been proposed,

often using supervised or unsupervised machine learning (ML)

algorithms (Taylor et al., 2015; Hossain et al., 2022; Subramanian

et al., 2022). Electrodermal activity has been only scarcely and only

recently used for sleep staging or to infer sleep quality (Anusha

et al., 2022; Gashi et al., 2022).

Abnormal sweating patterns may indicate the presence of

various sleep disorders (Broman and Hetta, 1994; Idiaquez et al.,

2022). In this work, we focused on sleep-breathing disorders,

particularly obstructive sleep apnoea (OSA) (Jordan et al., 2014).

Obstructive sleep apnoea causes unexpected SNS activity, resulting

in frequent nocturnal sweating (Arnardottir et al., 2013). Despite

the relationships between EDA and OSA has been studied (Lajos,

2004; Arnardottir et al., 2010), there is still a need for a quantitative

model relating EDA and OSA.

In this paper, we applied supervised ML to EDA data to predict

sleep stages and the presence of OSA. Currently, diagnosing it

requires performing a full polysomnography (PSG) study in a

laboratory setting, followed by manual scoring of the recordings.

This procedure is time-consuming and can lead to atypical sleep

patterns because of the differences between sleeping in a controlled

environment, such as a sleep lab, and sleeping at home (Arnardóttir

et al., 2021). We present an ML-based approach that uses features

extracted from the EDA signal, recorded in a home-setting, to

automatically detect sleep stages and OSA.

2. Materials and methods

We used a set of 60 full-night PSG recordings from participants

in the Sleep Revolution Project (Arnardottir et al., 2022). We

describe the cohort in detail in Table 1. The consent of the National

Bioethics Committee and the Data Protection Authority of Iceland

was granted for this study (VSN-21-070). All participants received

and signed an informed consent for study participation.

2.1. Instrumentation

Polysomnography (PSG) studies were recorded using A1

devices from Nox Medical (Reykjavik, Iceland). As the traditional

PSG setup does not include EDA recordings, we added a channel

for the EDA signal. A1 devices measured EDA at a sampling

frequency of 200 Hz. For the measurement of the EDA signal, we

used the same technique as in Arnardottir et al. (2010).

2.2. Sleep stage labeling

Sleep experts manually scored the electroencephalogram (EEG)

and determined the sleep stage: wake (W), rapid eye movement

TABLE 1 Dataset content according to the apnoea-hypopnoea index

(AHI) or the oxygen desaturation index (ODI).

Non-OSA Mild OSA Moderate to
severe OSA

Number of participants

(AHI)

19 24 17

Female participants

(AHI)

47.4% 67.0% 29.4%

AHI 2.8± 1.3 10.0± 2.8 24.9± 10.5

BMI 25.8± 3.6 26.0± 3.6 25.8± 3.8

Age 36.2± 10.4 49.6± 14.7 52.0± 14.4

Percentage of epochs

(AHI)

32.1% 39.0% 28.9%

Number of participants

(ODI)

21 26 13

Female participants

(ODI)

42.9% 61.5% 38.5%

ODI 1.5± 2.5 9.0± 2.5 24.1± 7.7

BMI 25.8± 3.8 27.7± 4.5 29.2± 2.8

Age 38.4± 12.4 48.2± 14.8 53.9± 14.0

Percentage of epochs

(ODI)

33.9% 44.7% 21.4%

TABLE 2 Distribution of sleep stages for 4 and 5 stages architectures.

Wake N1 N2 N3 REM

12.2%± 0.1 16.5%± 0.1 32.5%± 0.1 18.2%± 0.1 20.6%± 0.1

Wake Light Deep REM

12.2%± 0.1 49.0%± 0.1 18.2%± 0.1 20.6%± 0.1

We report mean values and standard deviations.

(REM) sleep, sleep stage 1 (N1), sleep stage 2 (N2), and sleep

stage 3 (N3). The scoring procedure was performed according

to the American Academy of Sleep Medicine guidelines (Berry

et al., 2020), using the Noxturnal software (NoxMedical, Reykjavik,

Iceland). In this work, for detection, we considered both the above

mentioned five stages or only four stages, bymerging theN1 andN2

stages and relabeling them as light sleep. Additionally, we relabeled

the N3 stage as deep sleep. The stages that we considered are then

W, light sleep, deep sleep, and REM sleep, as is often done in the

literature (Genzel et al., 2014). We report the distribution of sleep

stages in Table 2.

2.3. Obstructive sleep apnoea labeling

Currently, OSA detection requires either manual scoring of

a full PSG study or a home sleep apnoea testing, and the

evaluation of two parameters: the apnoea–hypopnoea index (AHI)

and the oxygen desaturation index (ODI) per hour of sleep (Berry

et al., 2020). A shortcoming of the AHI is that it does not

quantify one of the main consequences of OSA, which is oxygen

desaturation. For this reason, sleep experts have defined the

ODI value as the number of oxygen desaturation events ≥3%
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FIGURE 1

Di�erent segments of the electrodermal activity (EDA) signal and of the Savitzky-Golay filtered signal from key phases of sleep. (A) Five minutes of

raw and filtered signal during sleep stage 3 (N3). (B) Five minutes of raw and filtered signal during rapid eye movement sleep (REM). (C) EDA events

(raw signal). (D) EDA during an obstructive sleep apnoea occurrence.

or ≥4% divided by the total sleep time (Chung et al., 2012;

Berry et al., 2020). In this work, the sleep experts used 3% as

threshold value.

We obtained a participant’s OSA status from the manual

scoring of PSG. We merged the moderate and severe OSA

conditions to obtain three classes. To define them, we used the

following modified version of the standard guidelines (AASM,

1999):

• Non-OSA: AHI <5,

• Mild OSA: 5≤ AHI <15,

• Moderate to severe OSA: AHI ≥15.

We also classified the samples based on the ODI and computed

the correlation between the two indexes and the EDA signal. Note

that the ranges used for the ODI-based classification are the same as

the ones for the AHI classification (Chung et al., 2012). Each epoch

in an individual’s data sample was labeled as either belonging to a

non-OSA participant, one with mild OSA, or one with moderate to

severe OSA. By epoch, we refer to a 30 s signal window.We adopted

this time length to be consistent with the epochs’ length used by

sleep experts during manual scoring. Note that only seven samples

were classified differently depending on whether we used the AHI

or the ODI. Finally, we present the distribution of non-OSA, mild

OSA, and moderate to severe OSA epochs in Table 1.

2.4. Signal pre-processing

From the Noxturnal software environment, we exported

EDA signals using the EDF file format and imported them in

MATLAB R© (MATLAB, 2022) for pre-processing and feature

extraction. We down-sampled the original signal from 200 to 35

Hz to reduce the computational burden, following the guidelines

presented in Braithwaite et al. (2013). We then pre-processed the

original signal to obtain different kinds of data required by our

detection algorithm.

First, because individual sweating patterns lead to significantly

different-looking EDA signals (Boucsein, 2012), we computed the

second-order polynomial best approximating the raw signal and

subtracted it from the raw signal. Second, we applied a seventh-

order Savitzky-Golay filter (Schafer, 2011) to the original signal to

eliminate high-frequency contributions. We also applied a discrete

wavelet transform (DWT) to the original signal. We computed

the approximate and detailed discrete wavelet coefficients and soft

thresholded the detail coefficients to remove possible recording

noise (Coifman and Donoho, 1995). We then subtracted the

Savitzky-Golay filtered signal from the discrete wavelet filtered

signal; we referred to it as diffEDA.

Third, we computed the first and second-order derivatives

of previously described three signals using a differentiator finite

impulse response (FIR) filter. We used this method rather
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TABLE 3 Set of variables extracted from the electrodermal activity (EDA)

signal.

Index Signal Computed features

1–18 EDA

detEDA

Mode, median, maximum of absolute value,

line length, 10th quantile, 75th quantile, singular

value decomposition (SVD) entropy,

non-linear energy, Shannon entropy

19–34 ∂tEDA, ∂
2
t EDA

∂tdetEDA,

∂
2
t detEDA

Mean value, variance, median value, numbers

above zero

35–40 EDA

detEDA

Maximum power spectral density (PSD)

estimate, frequency of the maximum PSD

estimate, Fisher’s g (Posada-Quintero et al.,

2016)

41–64 EDA detail

coefficients

decomposition

levels

(DL) 1—4

Maximum, mean, standard deviation, median,

Euclidian norm, normalized numbers above

zero

65–70 EDA

detEDA

Lyapunov exponent, maximum value of the

upper envelope, minimum value of the lower

envelope

71–72 diffEDA Sum of cross-correlation, maximum

convolution value

73–76 EDA Normalized number of event samples,

normalized event energy, normalized number

of storm samples, normalized storm energy

77 Individual Sex

than a finite-differences scheme to prevent noise propagation.

Particularly, we used a 50th-order filter with a passband frequency

of 10 Hz and a stop-band frequency of 12.5 Hz. We disregarded

the transient to avoid including artificial oscillations caused by

applying the filter by discarding N = 50 samples. Note that, we

denoted time derivatives by placing ∂t or ∂
2
t before the signal of

interest; for example, we referred to the second time derivative of

the de-trended signal as ∂
2
t detEDA.

Figure 1 shows the complexity of the EDA signal. We show 5-

min time windows of continuous N3 and REM sleep in Figures 1A,

B, respectively.We then highlight EDA events in Figure 1C. Finally,

we show the EDA signal during an OSA occurrence in Figure 1D.

2.5. Feature extraction and selection

We defined a feature set in the time-domain, frequency-

domain, as well as time-frequency domain (these are wavelet-

related variables) in a process called feature engineering (Verdonck

et al., 2021). In addition to standard statistical features, we used

number and energy content of EDA events and storms, as they

are known to differ for different sleep stages (Sano et al., 2014)

and OSA severity (Arnardottir et al., 2010). Electrodermal activity

events are oscillations of the skin voltage of defined amplitudes

and frequencies. We are particularly interested in the following

three types of oscillations: positive/negative monophasic, biphasic,

and triphasic. Electrodermal activity storms are time windows with

high concentrations of events. The definition of storms has changed

through time (Burch, 1965; Sano et al., 2014), we used an equivalent

definition to the one given by Sano and colleagues, that is, a

timespan of at least 1 min with a minimum of two EDA events.

Particularly, we used the algorithm developed in Piccini et al. (2023)

to detect EDA events and storms. Thereafter, we computed the

normalized number of samples within either an EDA event or

storm, together with their Euclidean norms. Additionally, we added

sex as a categorical feature to complete the set of variables and

normalized the features across individuals. The full feature set is

shown in Table 3.

Finally, after training and testing the model on the complete

variable set, we investigated whether we could reduce the feature

set dimension by analyzing intra-variable correlation.We identified

correlated features by computing the pairwise Pearson correlation

coefficient r. We then reduced the dimension of the feature set by

retaining only one of the correlated variables. We looked at the

correlation matrix to identify the threshold value rth.

2.6. Training procedure

Sleep stages are not equally distributed during the night,

this asymmetry caused a significant imbalance in our dataset

and affected model performance. To reduce the negative impact

of this effect, we performed synthetic minority oversampling

(SMOTE) (Chawla et al., 2002), that is, we generated artificial

samples for the minority classes to alleviate the bias toward the

most dominant class. We then trained models using the extreme

gradient boosting (XGBoost) algorithm (Chen and Guestrin, 2016),

since a gradient boosting algorithm was recently used in a similar

application with promising results (Gashi et al., 2022).

We applied different validation methods. We either used leave-

one-subject-out (LOSO) validation (Hastie et al., 2009), where we

alternately left out one sample and used the other 59 samples as

training data, or we did as previously and in addition, we trained

the model using randomly selected 25% of the epochs from the

left-out subject’s night (Personalized). We always used the same

seed for reproducibility. After this random sampling, we applied

the SMOTE algorithm to the training data. We evaluated the OSA

model only by means of the LOSO scheme. We did so, because of

the way that we labeled the data for OSA detection, see Section 2.3.

2.7. Evaluation metrics

We computed different measures to evaluate the models’

performances. All indices were obtained using scikit-

learn (Pedregosa et al., 2011). F1 and recall scores were used

to evaluate the sleep staging performances. While F1-score is a

commonly used measure in ML applications, we used the recall

score to account for the significant class imbalance (Gashi et al.,

2022). Recall score is the ratio between true positives and the

sum of true positives and false negatives and, thus, a measure for

the number of relevant objects detected by the algorithm. The

F1-score is the harmonic mean of precision and recall scores and

is used in classification problems with imbalanced datasets, as the

precision score on its own may be misleading. As we dealt with a

multi-class classification problem, we used the macro version of
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FIGURE 2

Representation of the lower triangular feature correlation matrix. We denoted the variables by index, as in Table 3.

both parameters; the macro F1-score is the average of all F1-scores,

and the macro recall is the average of all recalls. For the remainder

of the paper, we referred to the macro F1-score and macro recall

value simply as F1-score and recall.

For the OSA model, we used the F1-score and accuracy values.

Accuracy is the ratio between the number of correctly identified

epochs and the total amount of epochs. In addition to these

two measures, we evaluated the three-class algorithm’s ability to

distinguish between non-OSA participants and those with OSA.

To do this, we considered all OSA epochs as equivalent, which

made the classification problem a binary one; we then computed

the accuracy score and referred to it as the adjusted accuracy score.

We did not include the recall for OSA models’ evaluations, as

it deals with all misclassifications in the same way. Particularly,

misclassifications between severe and mild OSA conditions and

between non-OSA and OSA conditions have different clinical

meanings.

2.8. SHapley Additive exPlanations

To evaluate the contribution of each training variable, we used

SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017).

The technique was developed in game theory and only recently

adapted to ML interpretability applications (Lundberg et al., 2018).

To find the SHAP value of the i-th variable, we computed the

predictions for all possible feature combinations with and without

the i-th variable. The SHAP value is then the average of the

contributions of the i-th variable to each prediction (Molnar, 2022).

3. Results and discussion

3.1. Feature reduction

Before presenting the models’ performances, we offer an

analysis of the feature set reduction process; for the sake of

notation, we refer to variables by index, as in Table 3. We identified

three main clusters of correlated variables by looking at the

graphical representation of the correlation matrix (Figure 2). The

first one involves features 1–15, which are statistical measures, in

the time domain, of EDA and detEDA signals. The second one is

a large cluster encompassing features 41–64, variables obtained in

the time-frequency domain. Finally, non-linear features 65–70 also

show meaningful correlation patterns.

After setting rth = 0.8, we reduced the number of correlated

variables. We decided which feature to eliminate as follows: first,
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TABLE 4 Optimized feature set for the sleep staging models, rth = 0.8.

Signal Computed features

EDA Mode, maximum of absolute value, line length, singular

value decomposition (SVD) entropy, non-linear

energy, Lyapunov exponent, maximum power spectral

density (PSD) estimate, frequency of the maximum

PSD estimate, Fisher’s g (Posada-Quintero et al., 2016)

detEDA Mode, maximum of absolute value, line length, singular

value decomposition (SVD) entropy, non-linear

energy, Lyapunov exponent, requency of the maximum

PSD estimate, Fisher’s g (Posada-Quintero et al., 2016)

∂tEDA Mean, variance, median, number above zero

∂
2
t EDA Mean, median

∂tdetEDA Mean, median

∂
2
t detEDA Median

EDA detail

coefficients

decomposition

levels

(DL) 1–4

Median, normalized numbers above zero

diffEDA Sum of cross-correlation, maximum convolution value

EDA Normalized number of event samples, normalized

event energy, normalized number of storm samples,

normalized storm energy

Individual Sex

we computed the correlation coefficients between the i-th feature

and the remaining ones, then we eliminated the j-th feature, if

ri,j > rth, where ri,j is the Pearson correlation coefficient between

the i-th and the j-th variables and j > 1. We started at i = 1.

In this way, we obtained a reduced set of 40 features, which we

present in Table 4.We opted not to decrease further the rth-value, as

the resulting feature set did not present any significant clusters, see

Figure 3. Also, lower values of rth may result in worse classification

performances.

3.2. Interpretation of sleep staging

We summarized the models’ performances in Table 5, where

the F1-scores and recall values are reported. Our results suggest a

need for personalized models (Óskarsdóttir et al., 2022). A possible

explanation for the relatively poor performance is that different

brain regions can be in different sleep stages at the same time.

For instance, sweat glands’ activation signals and, thus, EDA, are

generated in the hypothalamus (Rothhaas and Chung, 2021), while

the EEG, used to manually label sleep stages, measures neocortex

activity, and it is known that the two brain areas can be in different

sleep stages (Guthrie et al., 2022). However, personalizing the

LOSO-based model with a small number of epochs from the left-

out sample dramatically improves the algorithm, see also Figures 4,

5, which show confusion matrices normalized such that the sum of

each row equals one.

By looking at the confusion matrix in Figure 4B, we concluded

that the personalized model cannot characterize the N1 sleep

stage using only EDA. Furthermore, N1 detection appeared

to be a cumbersome task even when other ML methods

and other signals were used, such as EEGs, electrooculograms

(EOGs), and electromyograms (EMGs) (Chambon et al., 2018;

Korkalainen et al., 2019). A similar disagreement in determining

the sleep stage was also found when comparing different manual

scorings (Magalang et al., 2013). However, the detection of slow

wave sleep (SWS) phases, that is, deep sleep and N3 stage, and REM

sleep phases worked well for both models. This was expected, since

these are the phases with the most distinct EDA patterns. Notably,

by looking at Figure 4B, we can conclude that, based on EDA, the

N3 stage is more similar to the N2 stage than any other sleep stage.

Finally, we offer a graphical interpretation of the sleep staging

model, trained on the reduced dataset, through the SHAP values of

the 20 most influential variables, see Figure 6. It is worth noting

that both models considered the number of EDA events to be

highly relevant for N3 stage, see Figure 6. The models also predict

a significant relationship between EDA storms and REM sleep.

Indeed, it is known that EDA activity increases in the third cycle

of REM sleep (Boucsein, 2012).

3.3. The need for personalization in sleep
staging

Several physiological considerations support the need for

personalization in EDA-based sleep staging. Nocturnal sweat, the

principal cause of changes in skin electrical properties, is secreted

to lower the core body temperature (CBT) (Baker, 2019). However,

the thermoregulation process depends on a large number of factors,

for example, age, BMI, sex, skin hydration, eccrine sweat gland

concentration, and environmental conditions (Speakman, 2018;

Grosiak et al., 2020; Yanovich et al., 2020). All the factorsmentioned

significantly impact sweat and, consequently, the EDA signal.

Furthermore, the latter is also affected by subject-dependent brain

dynamics.

It is not straightforward to decide which personal subset of

epochs to choose, as different EDA patterns arise in different parts

of the night; for example, EDA events are more frequent in REM

sleep during the last sleep cycle (Boucsein, 2012), while rarer in

other REM sleep periods. Furthermore, differences in sleep cycle

duration caused by age and OSA condition, among other factors,

may hinder the beneficial effect of the algorithm’s personalisation.

Because of this, we opted for a fixed-seed random-pick approach.

3.4. Interpretation of the OSA model

To evaluate the models’ ability to distinguish between non-OSA

persons and those with either mild or moderate to severe OSA, we

used average values of the accuracy score, the F1-score, and the

adjusted accuracy score. We also evaluated a binary classification

problem, where participants either had OSA or not, for which we

refrained from calculating the adjusted accuracy score. We present

the results as we did for the sleep staging models in Table 6. They

show that OSA severity determined through the EDA signal rather

follows the classification obtained by using the ODI rather than

the AHI. A possible explanation for this behavior is how the ODI
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FIGURE 3

Correlation matrix for the reduced feature set. Variables are denoted by index, as in Table 3.

TABLE 5 Summary of sleep staging performance for, both, four stages, and five stages classification.

No. stages rth Leave-one-subject-out Personalized

Macro F1-score Macro recall score Macro F1-score Macro recall score

Five stages 0.8 27.3% 32.4% 57.5% 58.0%

Four stages 0.8 32.8% 39.7% 66.6% 66.9%

value divides the participants. Looking at Table 1, we observed that

while both the indexes found themean age to increase with theOSA

severity, in ODI classification BMI values also increased with OSA

severity. Lower BMI values have been associated with lower mean

temperature values, (Waalen and Buxbaum, 2011), which may

result in less need for thermoregulation. Consequently, simpler

sweating patterns may be observed, which are better learned by the

algorithm.

In Figures 7, 8, we used the SHAP values to present the effect of

each variables on the different classification problem. Both three-

class models choose normalized storm samples as one of the most

significant variables, which relates well to the literature (Arnardottir

et al., 2010).

3.5. Feature selections comparison

Out of the 77 extracted variables, only eight appear in

all models’ top 20 most important features. They are EDA

mode, ∂tEDA variance, detEDA mode, EDA maximum power

spectral density (PSD) estimate, EDA frequency of the maximum

PSD estimate, ∂tEDA normalized numbers above zero, detEDA

frequency of the maximum PSD estimate, and biological sex.

The seven numerical variables are computed from two signals,

that is, raw and de-trended EDA and the derivative of the raw

signal; this subset is composed of variables spanning multiple

domains, particularly time, frequency, and EDA-specific. This

variety confirms the need to consider different dynamical behaviors
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FIGURE 4

Normalized confusion matrices when we consider five sleep stages and use the reduced feature set. (A) Leave-one-subject-out (LOSO). We trained

the algorithm without including data from the left out participant. (B) Personalized model. In addition to the 59 participants training set, we used

randomly picked 25% epochs of the test participants.

FIGURE 5

Normalized confusion matrices when we consider four sleep stages and use the reduced feature set (A) Leave-one-subject-out (LOSO). We trained

the algorithm without including data from the left out participant. (B) Personalized model. In addition to the 59 participants training set, we used

randomly picked 25% epochs of the test participants.

and EDA-related phenomena when using this signal. The most

common specific feature is the number of EDA storm samples,

which is amongst the top 20 most important features for all

models, except for the two-class ODI-based OSA classification

problem. However, in the latter problem, normalized storm

energy is considered a relevant feature. Works trying to relate

EDA and OSA are scarce and based mainly on subjective

night sweats reports (Nigro et al., 2022). Although it is well-

established that OSA symptomatology includes abnormal sweating

episodes (Arnardottir et al., 2010, 2013), there needs to be more

understanding of the relationship between OSA and EDA events

and storms. Our work concludes that evaluating EDA storms, their

lengths or energies, is more decisive in detecting OSA, particularly

severe expressions, than evaluating EDA events. This conclusion

holds for OSA classifications based on both AHI and ODI severity.

4. Conclusion and future work

The presented work aimed at detecting sleep stages and

OSA severity using only the EDA signal. Recently, Anusha and

colleagues presented an ML algorithm for identifying the sleep

stage of the hypothalamus, the brain region directly responsible

for thermoregulation during sleep (Anusha et al., 2022), while,

Gashi and colleagues presented a similar algorithm based on

EDA that is able to detect wake/sleep stages and high/low sleep

quality (Gashi et al., 2022). Latter algorithms are based on

self-reported annotations. Despite these significant results, more

research on the relationship between EDA and neocortex activity

is needed. Our work is the first one, in which neocortex sleep

stages are predicted solely based on EDA. In the first part of

this research work, we presented a sleep staging algorithm that is
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FIGURE 6

SHapley Additive exPlanations (SHAP) values of the sleep staging model trained using the leave-one-subject-out (LOSO) scheme and the reduced

feature set. (A) Four sleep stages: wake (W), light sleep, deep sleep, rapid eye movement (REM) sleep. (B) Five sleep stages: wake (W), sleep stage 1

(N1), sleep stage 2 (N2), sleep stage 3 (N3), rapid eye movement (REM) sleep.

TABLE 6 Results for obstructive sleep apnoea (OSA) detection, based on the apnoea-hypopnoea index (AHI) or on the oxygen desaturation index (ODI).

OSA structure rth Mean accuracy score Macro F1-score Adj. accuracy score

AHI—non-OSA vs. OSA 0.8 75.7% 65.6% –

ODI—non-OSA vs. OSA 0.8 82.0% 67.7% –

AHI—Three groups 0.8 54.8% 32.9% 78.4%

ODI—Three groups 0.8 54.8% 32.9% 83.7%

FIGURE 7

SHapley Additive exPlanations (SHAP) values of the obstructive sleep apnoea (OSA) detection model based on apnoea-hypopnea index (AHI) values

and the reduced feature set. (A) Three-class classification problem: participants with no, mild, or moderate to severe OSA. (B) Binary classification

problem: non-OSA participants and those with OSA.

particularly accurate in detecting those sleep stages, where specific

EDA patterns are known to occur, which are N3 and REM sleep.

In the second part, we focused on OSA detection. By using the

EDA signal, we distinguished non-OSA participants from those

with OSA with reasonable accuracy.

Our work has three main limitations. The first one is

that the raw signal was recorded at 200 Hz, an unattainable

sampling frequency for current wearables. However, the signal

was significantly downsampled, to 35 Hz, before it was handled.

Since EDA events occur in the frequency band [0.25–3 Hz]

for endosomatic recordings, like the ones used in this study,

further downsampling might potentially be performed without a

significant loss of information, which we leave for future work.

The second limitation is that the sleep staging algorithm requires

a certain amount of individual data manually scored by a sleep

expert. While this prevents the sleep staging model from being

user-independent and, thus, might limit its use in wearables, in

clinical studies, requiring only a small part of the signal to be

manually scored significantly saves time and cost. Moreover, our

work adds to the body of evidence on how crucial it is to include

knowledge about sleep processes in ML models. A final limitation

is the participants’ significant ranges in age and BMI within

a relatively small sample size. While the participants’ diversity

ensured to obtain general models, it also prevented the algorithm
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FIGURE 8

SHapley Additive exPlanations (SHAP) values of the obstructive sleep apnoea (OSA) detection model based on oxygen desaturation index (ODI) values

and the reduced feature set. (A) Three-class classification problem: participants with no, mild, or moderate to severe OSA. (B) Binary classification

problem: non-OSA participants and those with OSA.

from learning patterns specific to a particular group, for example,

individuals of the same biological sex and of similar age. Future

studies may overcome this last limitation by using a more selected

cohort or by considering the body temperature signal, therefore

addressing the differences inmean body temperature due to various

aspects such as age, sex, and BMI.

To improve on the reported results, in the future, we will also

include additional signals obtainable through wearables, such as

acceleration and skin temperature. Doing so might reduce the need

for individual tuning of the algorithm and allow it to identify other

sleep stages more accurately. More precise sleep staging based on

data obtained from wearables will allow the estimation of more

advanced sleep parameters used in sleep diagnostics, such as total

sleep time and sleep efficiency. Finally, since the algorithm labels

each epoch as “non-OSA” or “OSA-prone,” it will be possible to

track a potential onset or worsening of sleep-disordered breathing.

By adequately characterizing the development of OSA symptoms,

it will be possible to define a threshold that will lead to suggesting

to seek professional advice when exceeded.
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noradrenergic and antimuscarinic
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obstructive sleep apnea:
Challenges and progress

Luigi Taranto-Montemurro1,2*, Huy Pho1 and David P. White1,2

1Apnimed Inc., Cambridge, MA, United States, 2Brigham and Women’s Hospital, Boston, MA,

United States

Obstructive sleep apnea (OSA) is a disorder characterized by repetitive collapse

of the upper airway during sleep, leading to intermittent hypoxia and sleep

fragmentation. The combination of noradrenergic and antimuscarinic drugs has

emerged as a potential pharmacological treatment option for OSA, with the most

promising combination being atomoxetine plus aroxybutynin. This combination

is currently undergoing extensive experimentation and will be soon tested in

phase 3 studies. Other noradrenergic drugs including reboxetine, and other

antimuscarinics including fesoterodine, hyoscine butylbromide, solifenacin, and

biperiden have been tested. The increasing interest in OSA pharmacotherapy is

driven by advances in our understanding of the pathophysiology of the disease and

accumulating evidence of the surprising e�ectiveness of this drug combination.

However, challenges remain in accurately measuring the severity of OSA, which

can impact our ability to fully understand the e�cacy of thesemedications. Further

research is ongoing to address these challenges and to optimize the use of

noradrenergic and antimuscarinic drugs for the treatment of OSA.

KEYWORDS

combination therapy for OSA, pharmacotherapy for OSA, norepinephrine reuptake

inhibitors, antimuscarinics, ato-oxy

Introduction

To date, the search for a pharmacotherapy to treat the underlying cause of obstructive

sleep apnea (OSA), i.e., the narrowing and obstruction of the upper airway during sleep, has

been largely limited to small observational studies or proof-of-concept, short-term clinical

trials mostly performed in academic settings (Taranto-Montemurro et al., 2019b). While

these studies show occasionally encouraging results, often they are underpowered to detect

an effect on OSA severity and even the positive study results can be difficult to replicate in

subsequent clinical trials (Marshall et al., 2008). For these reasons, investigators have been

reluctant to test drugs for OSA in large and expensive phase 2 or 3 trials.

The therapeutic space in OSA is largely dominated by continuous positive airway

pressure (CPAP) (Sutherland et al., 2018). However, multiple recent trials showed that, due

mostly to limited compliance, CPAP is not as effective as thought in treating OSA and

in preventing adverse cardiovascular and neurocognitive outcomes (Kushida et al., 2012;

Mcevoy et al., 2016). This fact has reinvigorated the research for alternative treatments

for OSA. Moreover, recent developments in the understanding of OSA pathophysiology
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(Wellman et al., 2013) and the identification in animal models

of potential targets for OSA pharmacotherapy (Horner et al.,

2017) have generated new interest by pharmaceutical companies

in this disorder. This has led to an increased number of large

ongoing phase 2 and 3 trials (Clinicaltrials.gov, 2022a,b,c), which

will hopefully advance the field of OSA pharmacotherapy in

future years.

In this short review we will focus on the ongoing development

of combinations of noradrenergic and antimuscarinic drugs for

the treatment of OSA. Only published data from peer-reviewed

journals will be reported and discussed.

Recent discoveries in animal model

It has been known for many years (Remmers et al., 1978)

that falling pharyngeal dilator muscle activity during sleep is

one of the principle causes of OSA. However, elucidating the

neural mechanisms underpinning this loss of muscle activity

has required more modern scientific techniques. Many studies

over the years have demonstrated that cells producing excitatory

neurotransmitters such as serotonin and norepinephrine decrease

their firing frequency during NREM sleep with further reductions

during REM sleep (Aston-Jones and Bloom, 1981). In addition, the

REM-related broad inhibition of skeletal muscle activity has been

shown to result from active inhibition from glycine and GABA

(Chase et al., 1989).

Recently, Richard Horner’s lab in Toronto developed a rat

preparation whereby natural sleep could be monitored using

standard techniques, a microdialysis catheter placed in the

hypoglossal motor nucleus could both measure and administer

neurotransmitters/drugs, and genioglossal EMG (EMGgg) could

be continuously recorded. Using this preparation, they first

demonstrated that loss of genioglossal muscle activity during

NREM sleep was primarily a product of reduced norepinephrine

activation of the muscle, a disfacilitation mechanism (Chan et al.,

2006). The application of an alpha agonist at the 12th motor

nucleus during NREM sleep could largely restore muscle activity in

rats. Previous work had suggested that reductions in serotonergic

neural input to the genioglossus were most important in mediating

sleep-related loss of muscle activity (Fenik et al., 2005). These

previous findings led to numerous studies assessing the impact of

medications to modify neural serotonin on OSA severity without

great efficacy (Taranto-Montemurro et al., 2019b). However, it

was later discovered that cutting the vagus nerve may have

overemphasized the role of serotonin in regulating the genioglossus

(Sood et al., 2005). Nevertheless, some investigators still believe

serotonin may have a role in the upper airway muscle activation

despite the failure of most such interventions to improve sleep

disordered breathing (Kubin, 2016).

Although, as stated above, glycine and GABA are the primary

inhibitors of skeletal muscle activity during REM sleep, this REM

sleep mechanism is less clear for upper airway dilators muscles.

Some data suggest that antagonists to glycine and GABA have little

effect on pharyngeal muscle activity during REM sleep (Park et al.,

2008). Further work in the Horner lab reported that a potentially

important source of falling EMGgg during REM sleep could be

active cholinergic (muscarinic) inhibition (Grace et al., 2013). Their

application of the antimuscarinic agent scopolamine could largely

restore genioglossal muscle activity in rats during REM sleep. Thus

muscarinic inhibition may be more important than such inhibition

by glycine or GABA in mediating REM sleep loss of pharyngeal

dilator muscle activity.

Two unrelated mechanisms may each be contributing to

falling pharyngeal dilator muscle activity during sleep, one

during NREM and the other during REM sleep. Countering

both falling norepinephrine levels during NREM sleep and

increased muscarinic inhibition during REM sleep with an

oral pharmacological agent may treat sleep apnea. A novel

combination of atomoxetine, a selective norepinephrine reuptake

inhibitor (SNRI) approved in the US for treating attention

deficit/hyperactivity disorder, with oxybutynin, an antimuscarinic

approved in the US for treating overactive bladder, has recently

been studied for treatment of OSA.

Proof-of-concept clinical trials

Table 1 provides a summary of the proof-of-concept

randomized-controlled trials testing the combination of an

SNRI and an antimuscarinic. A first trial performed at the

Brigham and Women’s Hospital in Boston (Taranto-Montemurro

et al., 2019a) showed that the combination of atomoxetine and

oxybutynin (ato-oxy) at doses of 80 and 5mg, respectively, led to a

clinically meaningful reduction in OSA severity in a group of 20

unselected patients. The reduction in AHI was associated with a

∼3-fold increase in genioglossus muscle activity (measured using

intramuscular electromyography). Additionally, in a subset of

nine patients who returned to perform polysomnography for two

subsequent nights, the administration of either agent alone did not

lead to an AHI reduction compared to placebo. A follow-up multi-

center confirmatory trial (Schweitzer et al., 2022) validated the

efficacy of ato-oxy 80/5mg in a group of 62 patients with low upper

airway collapsibility defined as a higher proportion of hypopneas

compared to apneas and an average oxygen desaturation of

<8% with disordered breathing events. In this crossover trial the

authors studied both ato-oxy and atomoxetine alone, showing that

atomoxetine had similar effect as the combination in reducing

AHI, oxygen desaturation index (ODI) and hypoxic burden (HB).

However, contrary to ato-oxy, atomoxetine alone did not reduce

the rate of respiratory arousals vs placebo and there was a trend

for reduced total sleep time (−26min) on atomoxetine alone

compared to ato-oxy (p = 0.06). Oxybutynin’s main role may be

reducing the sleep disruptive effects of atomoxetine by attenuating

its wake-promoting activity. The analysis of the endotypic traits

in both ato-oxy trials indicated that, while atomoxetine alone

seems to play the largest role in reducing airway obstruction when

compared to oxybutynin alone, only the combination improved

“active” upper airway collapsibility (collapsibility at maximum

ventilatory drive during sleep, Vactive), suggesting that ato-oxy has

a stronger effect than atomoxetine alone in recruiting the upper

airway dilator muscles and improving ventilation (Figure 1).

Aisha et al. assessed tolerability and safety of three doses of ato-

oxy after 30 days of treatment in a placebo-controlled, parallel arms

study (Aishah et al., 2022). In this small trial, which enrolled 39

patients across 4 treatment arms, the authors found that ato-oxy
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TABLE 1 Summary of proof-of concept clinical trials testing combinations of selective norepinephrine reuptake inhibitors (SNRIs) and antimuscarinics.

First
author

Journal
(year)

Intervention
arms

N, type of
study

AHI4 AHI3a HB

Placebo SNRI
Alone

Combination
SNRI +

Antimuscarinic

Placebo SNRI
Alone

Combination
SNRI +

Antimuscarinic

Placebo SNRI
Alone

Combination
SNRI +

Antimuscarinic

Taranto-

Montemurro,

Luigi

Am J Resp

Crit Care

Med (2019)

Placebo/Atomoxetine

(80mg)+

Oxybutynin (5mg)

N = 20

crossover, 1

night

28.5

(10.9 to

51.6)

7.5∗∗∗

(2.4 to 18.6)

Aishah,

Atqiya

Journal of

Applied

Physiology

(2021)

Placebo

/Atomoxetine

80mg+ Solifenacin

5 mg/Atomoxetine

80mg+ Biperiden

2mg

N = 11

Crossover, 1

night

46± 22.5 Ato+Sol 51.0±

21.4 Ato+ Bip 48.3

± 23.6

Lim, Richard Journal of

Physiology

(2021)

Placebo/Reboxetine

4mg+Hyoscine

Butylbromide

20mg

N = 12

Crossover, 1

night

51± 30 33± 22∗∗

Perger, Elisa CHEST

(2021)

Placebo/Reboxetine

4mg+ Oxybutynin

5mg

N = 18

crossover, 1

week

38.7

(29.0 to

47.8)

18.0∗∗∗

(12.5 to 21.4)

75.5

(68.1 to

168.0)

39.7∗∗∗

(25.4 to 55.3)

Schweitzer,

Paula K.

Sleep and

Breathing

(2022)

Placebo/Atomoxetine

80 mg/Atomoxetine

80mg+

Oxybutynin 5mg

N = 62

Crossover, 1

night

14.2

(5.4 to 22.3)

4.8∗∗∗

(1.4 to

11.6)

6.2∗∗∗

(2.8 to 13.6)

23.6

(12.4 to

32.7)

15.4∗∗∗

(9.0 to

27.9)

14∗∗∗

(8.1 to 17.1)

30.5

(10.4 to

31.6)

9.7∗∗∗

(3.3 to

28.8)

13.7∗∗∗

(4.4 to 30.3)

Rosenberg,

Russel

Journal of

Clinical

Sleep

Medicine

(2022)

Placebo/AD109

37.5/2.5/AD109

75/2.5

N = 31

crossover, 1

night

13.2 (8.0 to

19.1)

AD109 37.5/2.5 7.8∗

(4.0 to 13.7)

AD109 75/2.5

5.5∗∗∗

(2.2 to 9.6)

13.9

(4.5 to 21.9)

AD109 37.5/2.5

7.3∗∗

(2.0 to 12.5)

AD109 75/2.5

2.3∗∗∗

(0.1 to 10.5)

Messineo,

Ludovico

Respirology

(2022)

Placebo/Atomoxetine

80mg+

Fesoterodine 4mg

N = 12

crossover, 1

night

34.2± 19.1 30.1± 28.2 52.4± 50.5 29.7± 78.9

Altree,

Thomas J.

Journal of

Clinical

Sleep

Medicine

(2022)

Placebo/Reboxetine

4 mg/Reboxetine

4mg+ Oxybutynin

5mg

N = 16

crossover, 1

night

18± 17 13± 16∗ 14± 17∗ 36± 15 31± 14∗ 32± 17 74± 60 56± 57 56± 50∗
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FIGURE 1

Two crossover trials comparing “active” upper airway collapsibility

measured as Vactive between placebo, atomoxetine (ato) and

atomoxetine plus oxybutynin (ato-oxy) showed that only the

combination of drugs significantly increased Vactive compared to

placebo, suggesting a synergistic e�ect of the combination on

upper airway muscle activity. Vactive represents the ventilation

measured at the arousal threshold, when the upper airway dilator

muscles are maximally activated during sleep, just before the

arousal. The same pattern is confirmed in another unpublished

study with atomoxetine alone vs. AD109 (a combination of

atomoxetine and R-oxybutynin, NCT04631107). Although the

contribution of oxybutynin (oxy) in recruiting the pharyngeal

muscles seems to be inferior compared to atomoxetine, it seems to

have an important action in maximizing upper airway patency.

Numbers in parenthesis on the x-axis represent the patients studied

in each arm. Data for this figure show means (95% CI) and are taken

from Taranto-Montemurro et al. (2020) and Schweitzer et al. (2022).

*p < 0.05.

was well tolerated, with the most common side effects being dry

mouth, dyspepsia and nausea. They also observed that only the

high dose of ato-oxy, 80/5mg, reduced the AHI on day 1 (p <

0.05) and on day 30 (p= 0.09) by∼50%. HB, a recently introduced

OSA severity metric quantitively assessing the oxygen desaturation

associated with upper airway obstructive events (Azarbarzin et al.,

2018), was also dramatically reduced by >80% vs baseline at

both timepoints (p < 0.01) with high dose ato-oxy. Interestingly,

only when hypopneas were scored using the 4% desaturation

criterion according to the American Academy of Sleep Medicine

(AASM) alternative definition (AHI4), was there a statistically

significant reduction in AHI comparable to previous findings. On

the contrary, when hypopneas were scored in association with 3%

desaturation or arousal (AHI3a) there was no significant effect of

the combination on OSA severity.

In subsequent proof-of-concept studies aimed at identifying the

effects of other antimuscarinics in combination with atomoxetine,

fesoterodine (Messineo et al., 2022), solifenacin, and biperiden

(Aishah et al., 2021) all had lesser efficacy than oxybutynin,

possibly due to their more selective action on muscarinic

receptors (solifenacin, biperiden). This also could be due to

their lower permeability across the blood brain barrier compared

to oxybutynin (fesoterodine). A recent study performed in 17

Japanese OSA patients showed no effect of ato-oxy on overall

OSA severity, although a subset of patients experienced AHI
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reduction (Kinouchi et al., 2022). While this study suffers from

methodological limitations such as lack of placebo and blinding,

it suggests that ethnicity may play a role in the response to

this combination.

Recent research efforts have addressed the development and

efficacy of the combination of the R-enantiomer of oxybutynin

(aroxybutynin) with atomoxetine (combination named AD109)

with the goal of improving risk-benefit in OSA compared to

the combination with racemic oxybutynin. Indeed, oxybutynin is

commercially available in a racemic form composed of 50% S-

oxybutynin and 50% R-oxybutynin (aroxybutynin). The efficacy of

oxybutynin in OSA is believed to be related to its antimuscarinic

effects. The R-enantiomer of oxybutynin has been shown to confer

the antimuscarinic effect of oxybutynin, whereas the spasmolytic

effects (and other effects on calcium channel antagonism and

local anesthetic effects) are non-stereoselective properties of both

the enantiomers (R and S). Most recently, Rosenberg et al.

tested two doses of Apnimed’s AD109 (37.5/2.5 and 75/2.5mg

of atomoxetine/aroxybutynin) during a crossover trial in patients

with mild to moderately severe OSA [AHI4 between 5 and 20

events/h (Rosenberg et al., 2022)]. The combination showed at

both doses a statistically significant reduction of AHI4 and HB

compared to placebo after acute (1-night) administration. The

study demonstrated a dose-response for AD109, with the effect size

of high dose AD109 being larger than that of low dose AD109.

Another line of investigation aimed to test the effect of

reboxetine, another SNRI, taken alone or in combination with an

antimuscarinic, on OSA severity. During a crossover trial, Lim et al.

successfully reduced the AHI by ∼35% with reboxetine 4mg and

hyoscine butylbromide 20mg administered for 1-night and showed

an increase in genioglossus activity on drugs vs placebo (Lim et al.,

2019). Perger et al. showed, in another crossover trial, that 1 week

of reboxetine 4mg plus oxybutynin 5mg reduced OSA severity by

∼60% (p < 0.001) (Perger et al., 2022).

Finally, Altree et al. recently tested, in a single night,

randomized controlled crossover trial, the combination of

reboxetine plus oxybutynin vs reboxetine alone vs placebo

(Altree et al., 2022). Contrary to the previous experiments,

the combination did not significantly reduce the AHI3a, while

reboxetine alone showed an average AHI3a reduction of ∼15% vs

placebo (p = 0.03). As discussed above, the results were different

depending on the hypopneas scoring criteria used. When AHI4

was assessed, both reboxetine alone and the combination with

oxybutynin reduced OSA severity compared to placebo. Finally,

as was observed with atomoxetine, there was a tendency for

reboxetine alone to reduce total sleep time by ∼20 mins and

sleep efficiency by 6% (p = 0.11) compared to the combination

with oxybutynin.

Interpretation challenges of the
proof-of-concept trials

The proof-of-concept trials mentioned above raised several

interpretation challenges. The most important are related to (a)

the mechanism of contribution of the antimuscarinics (racemic

oxybutynin or aroxybutynin) to the combinations tested and (b)

the reconciliation of variable results across multiple trials.

a) The contribution of the antimuscarinics (racemic oxybutynin

or aroxybutynin)

The original hypothesis of the investigators was that the main

role of oxybutynin was to enhance upper airway dilator muscles

activity especially during REM sleep by blocking the muscarinic

inhibitory pathway to genioglossus activation. However, it has

become clear, after multiple similar findings, that the SNRIs

(atomoxetine or reboxetine) have the most important stimulatory

action on the pharyngeal dilator muscles, while the antimuscarinic

component has a smaller such effect. The available data on the effect

of oxybutynin taken alone indicate no specific reduction on REM

AHI. A potential explanation for this occurrence might be that

rather than a cholinergic mechanism becoming active only during

REM sleep to inhibit hypoglossal motor activity, there might exist a

constant cholinergic inhibition throughout all states (wake, NREM,

and REM), but it is most noticeable in REM sleep due to the absence

of inputs that support muscle activation, such as noradrenergic

inputs. As a result, the loss of noradrenergic inputs plays a

role in reducing muscle activity during non-REM sleep, while

both the noradrenergic and cholinergic mechanisms contribute to

motor suppression during REM sleep. It is unlikely that a single

mechanism is responsible for motor suppression in each state, such

as non-REM adrenergic inhibition and REM cholinergic inhibition.

The contribution of oxybutynin to upper airwaymuscle stimulation

is revealed by the synergistic effect, during NREM sleep, of the

ato-oxy combination on the “active” upper airway collapsibility

(Vactive, see Figure 1 for details) (Taranto-Montemurro et al.,

2020). It is important to highlight that the analysis of REM data

is limited by the acute reduction in REM sleep that is typically seen

with SNRIs administration. The longest study (30 days) performed

with ato-oxy suggests that a partial recovery of REM sleep is likely

to occur after a few weeks of therapy (Aishah et al., 2022) and more

data on REM sleep may be available with larger, long-term studies.

A second important contribution of the anticholinergic

agent in the ato-oxy combination was discovered to be the

mitigation of the wake-promoting effects caused by the SNRIs.

Indeed, the monoaminergic and cholinergic systems are largely

wake-promoting (Schwartz and Kilduff, 2015) with basal

forebrain cholinergic neurons activating cortical pyramidal cells

which augment cortical activation and EEG desynchronization

(Sofroniew et al., 1982; Dunnett et al., 1991). Conversely,

antimuscarinic medications have sedative properties (Thornton,

1977; Weerts et al., 2015) and this effect may be mediated by

the reduction in basal forebrain cholinergic activation (Anaclet

et al., 2015). Antimuscarinic drugs, such as atropine, have

been found to eliminate the fast, low-amplitude brainwaves

induced by adrenergic stimulants, such as amphetamine, in

animal studies. Instead, these drugs lead to the development

of slow, high-amplitude brainwaves that are characteristic of

NREM sleep. In the context of OSA treatment, the combined

effects of an antimuscarinic which increases pharyngeal

muscle activity and improves sleep consolidation may be an

ideal solution. Oxybutynin may also have less risk of next

morning sedation or muscle relaxation compared to commonly

prescribed hypnotics.

b) Reconciliation of variable results across multiple trials

As discussed above, not all the small trials to date involving

a combination of SNRI and antimuscarinic have yielded similar
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results. Although it is not possible in this short review to provide

a detailed discussion of all possible explanations for these different

outcomes, there are quite a few possibilities. Among the possible

reasons for this lack of reproducibility in proof-of-concept trials

results are the different properties of drugs used from the same

class, patient heterogeneity, methodological differences, and the

spontaneous night-to-night variability in OSA severity. In addition,

interscorer variability may cause different interpretation of the

sleep studies, and the different definitions of AHI used at different

institutions can importantly alter trial results. To address this

last issue, according to the AASM criteria, hypopneas may be

scored when associated with a 3% desaturation or arousal (AHI3a)

or, alternatively, when associated with a 4% oxygen desaturation

(AHI4) (Berry et al., 2012). While the second definition of

hypopnea is more conservative [AHI4 may be >50% lower

than AHI3a (Ruehland et al., 2009)], it also yields the greatest

reproducibility across different scorers as it avoids the scoring of

arousals in the determination of AHI. It has been clearly observed

that arousals are the largest source of interscorer variability and

definitions of AHI which include arousal scoring therefore result

in less reproducibility across sites and across trials (Loredo et al.,

1999). Other scoring criteria for hypopneas may vary from study

to study including the required reduction in flow amplitude which

may be 30% or 50% from baseline depending on definitions used

(Ruehland et al., 2009). A solution to these inconsistent scoring

rules could be the adoption of validated automatic scoring services

which are increasing in number and quality. In addition, the search

for newmetrics that may better represent the real ventilatory deficit

associated with upper airway obstruction has yielded the HB of

OSA (Azarbarzin et al., 2018). This deficit is currently only partially

captured by the AHI, which is a simple frequencymetric with scarce

correlation to clinical symptoms or long-term outcomes of OSA

(Malhotra et al., 2021).

Some of these issues related to the diagnostic paradigm of

OSA are being discussed by academic experts (Mehra et al.,

2023) and have been recently considered while designing larger

industry-sponsored trials testing the effects of pharmacotherapies

on OSA severity (Clinicaltrials.gov, 2022a,c; Hedner et al., 2022).

The Mariposa trial was a large 25-center phase 2b trial recently

concluded, which tested the effect of AD109 over a month of

therapy in patients with a baseline AHI4 between 10 and 45

events/h. To reduce the effect of night-to-night variability, the AHI

was collected and averaged over 2 nights both at baseline and on

treatment. This same strategy was used during the investigation

of sulthiame, a new carbonic anhydrase inhibitor tested for OSA

treatment from Hedner and colleagues. The use of two-night

assessments may have played a role in reducing the amount of

variability in individual responses compared to other studies on

carbonic anhydrase inhibitors (Hedner et al., 2022). In Mariposa,

AHI4 was selected as the primary outcome to increase the

reproducibility of the results across trials and across scoring centers,

and the HB was also quantified as in previous trials with the same

therapy (Rosenberg et al., 2022). Longer trials are also exploring

several patients reported outcomes. Subjective outcomes in OSA

pharmacotherapy have been largely overlooked so far but are clearly

important to fully understand the impact of treatment (Hedner and

Zou, 2022).

Conclusion

The use of a combination of selective norepinephrine reuptake

inhibitors (SNRIs) and antimuscarinic drugs has shown promise

in the search for a pharmacotherapy for OSA. While progress

has been made in this area, there are still hurdles that need

to be overcome in order to bring a treatment based on AD109

to patients. These include the need for larger and longer trials

to better define both the subjective and objective outcomes of

therapy with this drug combination. In addition, although the AHI

is considered the gold standard for evaluating the presence and

severity of OSA, there are clear limitations to its accuracy as a

metric for measuring the extent of the breathing disorder and the

effectiveness of treatments. This problem is still being addressed

in ongoing research. Despite these challenges, the prospect of a

pharmacotherapy for OSA is becoming increasingly promising,

and further research and development in this area may bring

us closer to a viable treatment option for this common and

debilitating condition.
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Mandibular advancement splint (MAS) therapy emerged as an e�ective therapy for

obstructive sleep apnoea (OSA) in themid 1990s, and is now the leading treatment

alternative for OSA. Since its inception, the field has seen a suite of revisions and

advances in relation to design and customisation, fabrication, titration methods,

response prediction models and the integration of data collection technology.

This paper reviews these current and emerging innovations in MAS therapy and

their impact upon sleep apnoea management.

KEYWORDS

oral appliance, mandibular advancement splint, mandibular advancement device, sleep

apnoea, obstructive sleep apnoea

1. Background: Mechanism of action and treatment
response

MAS is an oral appliance which protrudes the mandible in relation to the maxilla,

causing movement of soft tissues (tongue and soft palate) to increase the calibre of the upper

airway and reduce its collapsibility. Although continuous positive airway pressure (CPAP)

therapy is more effective than MAS at lowering the apnoea hypopnoea index (AHI) (Luz

et al., 2022), CPAP acceptance and compliance rates may be low, leading to reduced overall

efficacy in eliminating the burden of OSA (Grote et al., 2000; Schwartz et al., 2018). MAS

therapy improves blood pressure, daytime somnolence, driving risk and quality of life to

the same extent as CPAP, including in patients with severe OSA (Lim et al., 2006; Phillips

et al., 2013). Therefore, it is hypothesised that the reduced efficacy of MAS when compared

to CPAP may be offset by improved patient tolerance and adherence with MAS therapy

(Schwartz et al., 2018), leading to similar benefits in neuro-behavioural and cardiovascular

outcomes. However, one of the key barriers to wider uptake has been the variability of

patient response, since up to 70% of patients will experience a partial or complete treatment

response (Sutherland et al., 2015), leaving around 30% without a beneficial therapeutic

outcome. In addition, since a MAS device relies on dental adherence in order to remain

in situ, patients with inadequate dentition are ineligible and have been excluded from

research studies. Prediction tools for a favourable MAS treatment response are an area of

ongoing research.
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2. Patient selection and prediction of
response: Endotypes

Traditionally, demographic and anthropometric characteristics

have been explored as markers of MAS treatment response. For

example, younger age, less obesity, female gender, milder OSA,

and supine-dependent OSA have variously been associated with

treatment success, though these have all been weakly predictive

(Sutherland et al., 2015). Endotypic profiling has been gaining

recognition in Sleep Medicine generally as a means by which to

advance precision medicine for OSA patients, and can be applied

to MAS treatment response.

An endotype refers to a disease subtype with a distinct

functional or patho-biological mechanism (Edwards et al.,

2019). OSA endotypes include: arousal threshold (degree of

ventilatory drive required to trigger an arousal from sleep),

loop gain (instability in ventilatory control in response to a

disturbance), pharyngeal collapsibility and compensatory airway

muscle responsiveness. Traditionally, these endotypic traits have

been determined in a highly controlled research laboratory setting

using invasive measurement techniques (Edwards et al., 2016;

Bamagoos et al., 2019b). However more recently, methods have

been developed to impute endotypic traits from data accessible

from routine clinical polysomnography (PSG). For example, Terrill

et al. have developed a mathematical method to reliably calculate

loop gain from the rise in ventilatory drive that follows an

obstructive respiratory event (Terrill et al., 2015). The same group

has also developed algorithms for the estimation of pharyngeal

collapsibility and compensatory muscle responsiveness from the

changes in ventilation and ventilatory drive seen on PSG (Sands

et al., 2018). These advances pave the way for more accurate

MAS prediction models unencumbered by the need for invasive

laboratory studies. In a group of 93 patients with, on average,

moderate OSA, greater MAS efficacy was associated with 5

endotypic traits derived using algorithms applied to clinical

polysomnographic data: lower loop gain, higher arousal threshold,

lower ventilatory response to arousal, moderate pharyngeal

collapsibility and weaker muscle compensation (Bamagoos et al.,

2019a). The association of lower loop gain and MAS response has

also been confirmed in other studies (Edwards et al., 2016; Op de

Beeck et al., 2021). These findings may improve prediction models

for MAS response, and also raise questions for future research. For

example, future studies on combination therapy with MAS plus a

carbonic anhydrase inhibitor to facilitate loop gain reduction are

warranted (Hedner and Zou, 2022).

Characteristics which act as direct or surrogate markers for

the site of airway collapse have also been studied as predictors of

response toMAS therapy. For example, the level and specific type of

airway collapse observed on drug-induced sleep endoscopy (DISE)

has been associated with response to MAS. Tongue-base collapse

predicts a favourable response, whereas complete concentric

collapse or complete latero-lateral oropharyngeal collapse are seen

in those less likely to respond (Op de Beeck et al., 2019). Complete

anteroposterior epiglottic collapse predicted an unfavourable

response to maxillomandibular advancement surgery (Zhou et al.,

2021); however MAS therapy was equally effective in patients

with or without epiglottic collapse (Van de Perck et al., 2022). A

posteriorly positioned tongue with a less collapsible airway is a

positive predictor for MAS therapy (Marques et al., 2019). Further,

certain “airflow shapes”, once again derived from routine PSG, have

been used to predict the site of airway collapse and thereby response

to MAS. Increased drop in airflow during respiratory events as well

as a “pinched” expiratory flow shape (indicative of palatal prolapse)

is associated with the poorest response to MAS therapy (Vena et al.,

2020).

3. MAS titration technology

Traditionally, MAS devices are manually titrated under the

supervision of a dentist. Various titration methods have been

used, for example titrating to a percentage of maximal mandibular

advancement, titrating on the basis of symptoms such as the

alleviation of snoring or daytime somnolence, or titrating to an

improvement in hypoxic burden which may be measured at home

on overnight oximetry. Optimal titration is important to maximise

the therapeutic benefits of the MAS device. An advancement of

at least 50% of maximum mandibular protrusion is required to

have a potential therapeutic outcome while minimising adverse

side effects (Aarab et al., 2010; de Ruiter et al., 2020). However,

manual titration of a MAS remains inefficient in terms of time to

achieve optimal therapeutic outcomes (Sharma et al., 2013; Fleury

and Lowe, 2014; Kuna, 2014). International guidelines recommend

a progress diagnostic sleep study following titration to assess the

efficacy of the device (Ramar et al., 2015).

Novel MAS titration techniques such as the use of a remote-

controlled mandibular positioner (RCMP) to determine the

therapeutic level of mandibular advancement during a single night

PSG have been proposed to overcome the inefficiency barriers

to MAS therapy (Pételle et al., 2002; Tsai et al., 2004; Dort

et al., 2006; Remmers et al., 2013). Single night PSG titration

enables reasonable prospective prediction of MAS therapy success

as demonstrated by Remmers et al. (2013). However, RMCP is

resource intensive, and requires the use of a sleep laboratory and

trained and experienced staff.

A feedback-controlled mandibular positioner (FCMP) was

recently developed to enable titration of a MAS device outside the

laboratory setting (Remmers et al., 2017). The FMCP combines the

use of a level 3 home sleep apnoea test (HSAT), the mechanism

of the RCMP and machine learning algorithms to analyse

the frequency of sleep disordered breathing and automatically

titrate the mandibular advancement device accordingly to resolve

sleep disordered breathing (Remmers et al., 2017). An early

iteration of the FCMP demonstrated a sensitivity and specificity

of 85 and 93% respectively for the prediction of therapeutic

success, defined as an oxygen desaturation index (ODI) < 10/hr

with the device in situ (Remmers et al., 2017). A subsequent

iteration improved the sensitivity and specificity to 91 and 100%

respectively, with 93% prediction accuracy (Mosca et al., 2022).

This finding highlights the potential for future use of an auto-

titrating mandibular advancement device to efficiently identify the

therapeuticmandibular position. One small crossover pilot study (n

= 10) found no difference in optimal MAS positioning using three

titration methods: (1) subjective titration, (2) PSG-guided titration
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using a remotely controlled mandibular positioner (RCMP) and (3)

DISE-assisted titration using RCMP (Kazemeini et al., 2022). Larger

studies will be required to confirm the accuracy of remote titration

methods compared with in-laboratory titration.

4. Advances in mandibular
advancement splint fabrication

The European Respiratory Society recommends a custom-

made titratable MAS device as preferable over non-custom

devices (Ramar et al., 2015). Recent implementation of digital

technologies to dentistry has transformed dental workflows for

custom MAS devices (Tallarico, 2020; Alauddin et al., 2021). The

use of intraoral scanners and computer aided design/computer

aided manufacturing (CAD/CAM) techniques have streamlined

the delivery of dental care (Tallarico, 2020; Alauddin et al., 2021).

Benefits in patient preference, time savings and elimination of

physical storage make digital workflows superior to conventional

dental workflows (Mangano et al., 2017). Accuracy of both

intraoral scanners and conventional impression methods are also

comparable (Afrashtehfar et al., 2022; Hashemi et al., 2022).

Device fabrication via CAD/CAM methods allows for the time

efficient production of dental devices (van Noort, 2012). The digital

technology also provides more accurate measures of tooth and jaw

position, improving the quality of device fabrication, as well as

facilitating superior observation andmonitoring of potential dental

side effects from these appliances.

Studies comparing CAD/CAMmanufacturedMAS devices and

conventionally manufactured MAS devices are limited. One study

demonstrated a significant increase of 40% in oropharyngeal airway

volume in patients who used a CAD/CAM MAS device (Kerbrat

et al., 2021). Similar findings were also observed in oral appliance

treatment success rates of 63% (Kerbrat et al., 2021) and 80%

(Vecchierini et al., 2016) in patients using CAD/CAM devices. In

addition, therapy compliance and patient preference favoured the

CAD/CAM oral appliances (Vecchierini et al., 2016; Kerbrat et al.,

2021). The authors attributed these findings due to the differences

in material, shape, and magnitude of vertical opening between

devices (Vecchierini et al., 2016).

5. Data collection and remote
monitoring

5.1. Adherence data

The collection of efficacy and adherence data is routine for

CPAP therapy in clinical practice, and is now available for MAS

therapy. The American Academy of Dental Sleep Medicine defines

adequate compliance with oral appliance (OA) as a minimum of

≥80% of total sleep time per night, starting when the OA is placed

in the mouth and ending when the OA is removed from the mouth,

≥5 nights per week (Radmand et al., 2021). A number of small

studies have looked at objectively recorded MAS compliance over

an initial 3 month period, and most have found average compliance

rates to be in excess of 6 h per night (Sutherland et al., 2021b). In

order to objectively assess compliance data, a temperature sensitive

sensor microchip may be embedded within, or attached to, the

device. When the temperature lies within a certain range (generally

31.5–39.2◦C), it is inferred that the device is in situ within the

oral cavity, and therefore in use. The device may store from 100

days to many months’ worth of compliance information which is

available for download via a base-station at the time of patient

review. There are a number of models available, with sampling

intervals ranging from 5 to 15min. One study compared the

accuracy of three commercially available microsensors under in

vitro and in vivo, conditions, and all were found to be highly

reliable (Kirshenblatt et al., 2018). Data analysis and display varies

according to brand and software. One brand (Dentitrac, Braebon

Ltd.) additionally collects and reports positional data (supine vs.

non-supine sleep) (Sutherland et al., 2021b). Cluster analysis has

identified three main MAS adherence patterns identified over 60

days of objective adherence data recording: “Consistent Users”

(48.3%), “Inconsistent Users,” (32.8%) and “Non-Users” (19.0%).

These usage patterns can be identified within the first 20 days of

therapy, providing an early opportunity for intervention for those

patients with sub-therapeutic adherence (Sutherland et al., 2021a).

Development of device-imbedded compliance chips within

MAS devices opens up the possibility of remote, real-time

monitoring of patient compliance. Integration of device recorded

compliance data to cloud-based and patient engagement platforms

may improve patient compliance to OSA therapies in some

patients. For example, the use of cloud-based monitoring for CPAP

therapy has demonstrated an extra hour of CPAP use per night

(Hwang et al., 2018; Malhotra et al., 2018). Furthermore, the

inclusion of a patient engagement tool which provides coaching

and the ability for patients to view CPAP use to remote monitoring

further improves device usage (Hostler et al., 2017; Hwang et al.,

2018; Woehrle et al., 2018). Additionally, the adherence rate was

higher compared to usual care without remote monitoring and

patient engagement tools (Hostler et al., 2017; Hwang et al., 2018).

While platforms for remote monitoring of MAS compliance are

currently limited, integration of these platforms and telehealth

modes in future oral appliances may increase the uptake of MAS

devices and further improve long term adherence rates for some

patients. A recent study evaluated the objective compliance with

remote monitoring and therapy feedback to patients for MAS

devices (Kwon et al., 2022). Similar trends were noted to that

of remote monitoring and therapy feedback for CPAP in that,

objective compliance to MAS therapy can be increased with remote

monitoring and therapy feedback to patients (Kwon et al., 2022).

5.2. Biological signals

Another recent advance for MAS devices is the integration of

buccal oximetry sensors. Evidence on their performance is mixed

with very early success with these sensors (Rogers and Gan, 1997),

but more recent work suggesting these sensors do not provide

accurate oxygen saturation (SpO2) measurement and further

technological work was needed to determine if it is the site, the

sensors or both which is the issue (De Jong et al., 2011). In contrast,

a very recent study by Nabavi et al. (2020) successfully developed a

smart MAS that monitors cardiorespiratory parameters intraorally
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FIGURE 1

Schematic diagram illustrating mandibular movement sensor technology for the collection, storage, analysis and display of sleep data; as used in a

commercial application. Image courtesy of Somnomed.

(Nabavi et al., 2020). The device comprised of a flexible hybrid

wireless monitoring platform integrated within a MAS, that

acquires intraoral photo-plethysmography (PPG) signals. Their

results showed that the PPG signals captured intraorally are

highly correlated with the conventional PPG signals received and

therefore enabled the collection of heart rate (HR), respiratory

rate (RR), and SpO2. The estimated values of HR, RR, and SpO2

from the intraoral PPG signals show an accuracy of over 96% with

reference to PSG. Further, PPG has been combined in a single

device together with positional data and breathing route (mouth

vs. nose) (Nabavi and Bhadra, 2021). These developments have

exciting potential clinical applications and may translate into a

smart MAS device which can facilitate home-based MAS efficacy

studies, home-based MAS titration studies as well as capturing data

on combination therapy with MAS plus positional devices. Further,

the inclusion of physiological sensors highlights the potential

for the development of future FCMP devices which can more

accurately auto-titrate oral appliance during sleep (Remmers et al.,

2017).

Martinot et al. (2019) and Pépin et al. (2020) have shown

that mandibular movements measured using midsagittal mounted

magnetic sensors on the chin and the forehead, successfully

differentiated obstructive and central events (Martinot et al., 2019)

and when the signals were combined with machine learning could

successfully discriminate controls from apnoea patients (RDI ≥

5) with an area under the receiver operating characteristic curve

(AUC-ROC) of 0.95 (Pépin et al., 2020). More recent work by

the same group (Le-Dong et al., 2021) demonstrated that machine

learning also enabled accurate sleep staging to be performed with

an AUC for wake of 0.98, N1/N2 sleep of 0.86, N3 sleep of 0.97,

and REM sleep of 0.96. Additionally, mandibular jaw movements

(MJM) can be used as a surrogate measure for nocturnal respiratory

effort (RE), since the slight protrusions of the mandible during

sleep are reflective of respiratory drive (Martinot et al., 2022).

Respiratory effort measured via MJM was a stronger predictor

of prevalent hypertension than AHI (Martinot et al., 2022). Such

sensors potentially could be embedded within MAS devices to

allow capture of compliance data and cardiovascular risk profiling.

European Respiratory Society guidelines have highlighted the

need for rigorous validation studies for such diagnostic devices

which use intelligent sensors, including the need for appropriate

power calculations as well as side effect and failure rate profiling.

Importantly, it is noted that since the diagnostic algorithms for

such devices are not published, the sleep stages and event scoring

cannot be manually reviewed or altered as they can be for level 1–4

diagnostic devices (Riha et al., 2023).

At least one manufacturer has recently recognised the potential

benefits of instrumenting MAS, announcing the development of

a smart oral appliance prototype hardware and software that

provides a smart oral appliance with sensors tomonitor efficacy and

compliance1, see Figure 1.

6. Conclusion

Like many areas of medicine, OSA therapy has now entered

the age of personalisation. Advances in MAS therapy discussed

here will contribute to personalisation of MAS therapy at the

level of patient selection, titration, improved adherence and

monitoring of treatment. The use of endo-phenotypes for MAS

response prediction models is likely to become more refined and

1 https://company-announcements.afr.com/asx/som/e60260ee-9367-

11ec-b4cf-6eeaf7b2618c.pdf
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thereby more accurate, allowing for targeted patient selection

and combination treatment strategies. New MAS prototypes

can incorporate a suite of physiological sensors that support

clinical decision making with regards to titration, compliance

and efficacy of the device. In particular, mandibular movement

sensors have emerged which have diagnostic and treatment

applications, though these require rigorous validation studies. MAS

compliance monitoring and cloud-based platforms will continue to

be integrated into clinical practice to improve patient engagement

and compliance. These combined advances will increase the quality

and safety of MAS therapy, making it available to increasing groups

of patients using a targeted therapeutic approach.
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Purpose: Formal overnight polysomnography (PSG) is required to diagnose

obstructive sleep apnea (OSA) in children with sleep disordered breathing (SDB).

Most clinical guidelines do not recommend home-based tests for pediatric OSA.

However, PSG is limited by feasibility, cost, availability, patient discomfort, and

resource utilization. Additionally, the role of PSG in evaluating disease impact may

need to be revised. There is a strong need for alternative testing that can stratify

the need for PSG and improve the time to diagnosis of OSA. This narrative review

aims to evaluate and discuss innovative approaches to pediatric SDB diagnosis.

Findings: Methods to evaluate pediatric SDB outside of PSG include validated

questionnaires, single-channel recordings, incorporation of telehealth, home

sleep apnea testing (HSAT), and predictive biomarkers. Despite the promise, no

individual metric has been found suitable to replace standard PSG. In addition,

their use in combination to diagnose OSA diagnosis still needs to be defined.

Summary: When combined with adjunct assessments, HSAT advancements may

accurately evaluate SDB in children and thus minimize the need for overnight in-

laboratory PSG. Further studies are required to confirm diagnostic validity vis-à-vis

PSG as a reference standard.

KEYWORDS

sleep apnea, pediatric OSA, PSG (polysomnography), update, pediatric OSA diagnosis

Introduction

Sleep-disordered breathing (SDB) in children is characterized by disruption of normal

respiration and ventilation cycles during sleep (Gipson et al., 2019), and ranges from mild

snoring to obstructive sleep apnea (OSA). Pediatric OSA is associated with lower quality

of life (Baldassari et al., 2008), behavior and neurocognitive dysfunction (Landau et al.,

2012), impaired growth and development (Nieminen et al., 2000), and greater healthcare

utilization (Shehan et al., 2023). Risk factors for OSA in childhood include adenotonsillar

hypertrophy (Marcus and Loughlin, 1996), obesity (Mitchell and Kelly, 2007), craniofacial

anomalies (Cielo and Marcus, 2015), and neuromuscular disorders (Katz, 2009; Marcus

et al., 2012). Prevalence estimates for pediatric OSA range from 1.2 to 5.7% (O’Brien et al.,

2003; Bixler et al., 2009; Li et al., 2010), although it approaches 60% in obese children

(Verhulst et al., 2008). Pediatric OSA is expected to increase in prevalence with rising

childhood obesity (Bryan et al., 2021). Adenotonsillectomy (AT) is the first-line treatment

(American Thoracic Society, 1996; Marcus et al., 2012; Mitchell et al., 2019), resulting

in resolution or improvement in symptoms in most children. In addition to the obese

population, several other cohorts are considered high risk for OSA, with management
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nuanced by complexity. These include children with Trisomy

21, craniofacial anomalies, craniosynostoses, achondroplasia, and

with neuromuscular disorders (ElMallah et al., 2017). Though

AT is still considered the first line of treatment, these children

have higher rates of residual OSA (Rosen, 2011; Zandieh et al.,

2013; Cielo and Marcus, 2015; Moraleda-Cibrián et al., 2015;

Thottam et al., 2015; Simpson et al., 2018; Zambon et al.,

2022), often requiring additional therapy. Positive pressure may

be added to treat residual disease or primarily used in those

unsuitable for AT (Muntz, 2012; Nehme et al., 2019). Weight loss

(Verhulst et al., 2009), alone or supported by a multidisciplinary

team (Roche et al., 2020), has also been beneficial. Additional

surgical procedures can also be considered, such as hypoglossal

nerve stimulation, uvulopalatopharyngoplasty, inferior turbinate

reductions, or lingual tonsillectomy (Ravutha Gounden and

Chawla, 2022). Treatment in these cases must be tailored to the

child, considering their comorbidities.

Types of PSG are described in Table 1. Currently, overnight,

in-laboratory level I polysomnography (PSG) is the only approved

technology for diagnosis of pediatric OSA (Marcus et al., 2012;

Kirk et al., 2017). Level I PSG is attended by a sleep technician

in an accredited facility and includes a minimum of seven

parameters: electrooculography (EOG), electroencephalography

(EEG), chin electromyography (EMG), airflow, respiratory effort,

oxygen saturations, and electrocardiography (ECG) (El Shayeb

et al., 2014). Pediatric OSA is diagnosed when the PSG reports an

obstructive apnea-hypopnea index (AHI), defined as the frequency

of partial or complete reduction in air flow per hour, ≥1 (Mitchell

et al., 2019). The most common stratification for mild, moderate,

or severe disease is based on AHI thresholds of <5, 5–9, and ≥10

respectively (Marcus et al., 2013).

The American Academy of Sleep Medicine (AASM) (Aurora

et al., 2011) and the American Academy of Pediatrics (AAP)

(Marcus et al., 2012) recommend screening children with SDB

with PSG. The American Academy of Otolaryngology—Head

and Neck Surgery (AAO–HNS) recommends PSG before AT in

children <2 years of age or in those with obesity, craniofacial or

neuromuscular disorders, Down syndrome, sickle cell disease, or

mucopolysaccharidoses (Mitchell et al., 2019). The AAO–HNS also

recommends PSG if the need for surgery is uncertain or if the

physical exam does not explain the severity of SDB (Mitchell et al.,

2019).

Despite these recommendations, only 10% of children

scheduled for AT undergo a PSG (Mitchell et al., 2006). Several

barriers exist for level I PSG, e.g., access to a certified sleep

laboratory and the limited technical expertise required to diagnose

infants and younger children with OSA (Bertoni and Isaiah,

TABLE 1 Types of polysomnography (Collop et al., 2007).

Level of PSG Channels Attended?

Level I ≥7 channels Yes

Level II ≥7 channels No

Level III 4–7 channels No

Level IV 1–2 channels No

2019). Additionally, the test burden poses unique challenges for

children and their families to sleep in an unfamiliar environment

while wearing monitoring equipment (Bertoni and Isaiah, 2019).

Caregivers must be present during the PSG, which can impact

caring for other family members overnight and their productivity

the following day. Polysomnography is also expensive, ranging

from $1,000 to 4,000 dollars (Bertoni and Isaiah, 2020; Mitchell and

Werkhaven, 2020). These issues translate into social and economic

burdens for this vulnerable population.

Due to these obstacles, there is a strong need for alternative

testing that can approximate PSG results. To date, validated

questionnaires (Ahmed et al., 2018; Isaiah et al., 2020; Patel et al.,

2020; Wu et al., 2020), single-channel recordings (Kirk et al.,

2003; Saito et al., 2007; Álvarez et al., 2017; Hornero et al.,

2017; Bertoni et al., 2020), incorporation of telehealth (Paruthi,

2020; Schutte-Rodin, 2020; Castner and D’Andrea, 2022; Griffiths

et al., 2022), home-based PSG (Brockmann et al., 2013; Marcus

et al., 2014; Ioan et al., 2020; Gao et al., 2021), and biomarkers

(Patacchioli et al., 2014; De Luca Canto et al., 2015; Kheirandish-

Gozal et al., 2015; Bhattacharjee et al., 2016; Elsharkawi et al.,

2017; Teplitzky et al., 2019; Martín-Montero et al., 2022) have

been assessed. In this review, we aim to examine innovative

approaches to diagnosing pediatric OSA, including exploring

combinations of existing technology with the potential for the

accurate evaluation of pediatric OSA, thus stratifying the need for

traditional overnight PSG.

Methods

A narrative review of the relevant literature was performed.

Sources were identified through PubMed and Google Scholar

searches from September 1, 2022, through January 26, 2023.

Search terms were broad and included “pediatric OSA,” “pediatric

obstructive sleep apnea,” “pediatric home sleep apnea test,”

“sleep questionnaires,” “pediatric sleep questionnaires,” “pediatric

OSA diagnosis,” “OSA diagnosis,” “videotaping OSA,” “telehealth

pediatric OSA,” “HSAT,” “home diagnosis OSA.” Each article was

screened for relevance and quality by the authors and included in

the review when deemed appropriate.

Additional approaches

Questionnaires

The OSA-18 quality of life survey includes 18 symptom-specific

questions grouped into five categories: sleep disturbance, physical

suffering, emotional distress, daytime problems, and caregiver

concerns (Franco et al., 2000). Symptom severity is ranked on an

ordinal Likert scale from 1= none to 7= all the time. In validation

studies of the OSA-18, a total symptom score (TSS) between 60 and

80 correlated with a moderate impact on health-related quality of

life. In contrast, a score above 80 indicated a significant impact

(Constantin et al., 2010). Ishman et al. (2015) compared OSA-18

responses to PSG metrics. In White children, the specificity and

positive predictive value (PPV) of diagnosing OSA using the OSA-

18 were 100% when a TSS cut-off of ≥60 and obstructive AHI > 1
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were used (Ishman et al., 2015). However, in non-White children,

the specificity of these cut-offs was only 67%, with a PPV of 94%

(Ishman et al., 2015). The authors also noted a low sensitivity and

negative predictive value in all children, indicating an inability

to rule out OSA (Ishman et al., 2015). The study concluded that

while the OSA-18 questionnaire remains a validated tool to assess

the impact of OSA on quality of life, it cannot be used for its

diagnosis (Ishman et al., 2015). Constantin et al. (2010) reported

that OSA-18 did not accurately diagnose OSA compared to PSG,

especially in children with moderate to severe disease. A meta-

analysis importantly identified that the OSA-18 could be used as a

screening tool for pediatric OSA, though it should not replace PSG

for diagnosis (Wu et al., 2020).

The Pediatric Sleep Questionnaire (PSQ) is a validated

survey that asks caregivers about the frequency and quality of

snoring, breathing problems, mouth breathing, daytime sleepiness,

inattention/hyperactivity, and other symptoms (Chervin et al.,

2000). Answers to the questions are in a “yes/no/don’t know”

format (Chervin et al., 2000). Canto et al. (2014) performed a

systematic review and meta-analysis of questionnaires to assess

for pediatric SDB. The authors noted that the PSQ had sufficient

accuracy in screening children for OSA, but it was insufficient to

replace PSG (Canto et al., 2014). However, Wu et al. (2020) noted

that the PSQ is a sensitive tool for detecting pediatric OSA. The

authors also reported that it might be used as a screening tool for

OSA. They commented that it could be considered in combination

with pulse oximetry in children as an early detection tool (Wu et al.,

2020).

Rosen et al. (2015) demonstrated that PSQ symptom scores

related to behavior impairment, quality of life, and sleepiness

could predict improvement after adenotonsillectomy. Though it

could not act as a surrogate for PSG, the authors endorsed its

utility as an adjunct to help expect treatment response (Rosen

et al., 2015). Patel et al. (2020) studied the predictive accuracy of

questionnaires. The sleep-related breathing disorder (SRBD) scale

of the PSQ had a sensitivity of 71–84% but a low specificity of

13% (Patel et al., 2020). Also, the area under the receiver operating

characteristic (ROC) curve was small, demonstrating poor overall

diagnostic accuracy (Patel et al., 2020). They also emphasized the

critical role of questionnaires in quantifying the negative impact

of SDB on a child’s physical and psychological health (Patel et al.,

2020). Chervin et al. (2007) demonstrated that the SRBD scale of

the PSQ may predict OSA-related neurobehavioral morbidity and

response to adenotonsillectomy as well as, and sometimes better

than, standard PSG testing. The role of the PSQ may therefore be

in screening, assessing SDB-related quality of life, and measuring

surgical outcomes in children diagnosed with OSA.

The Children’s Sleep Habits Questionnaire (CSHQ) (Owens

et al., 2000), is a 45-item questionnaire and includes assessments

of parent- and child-reported symptoms among school-aged

children aged 4–10 years. Categories of symptoms include bedtime

resistance, sleep onset delay, sleep duration, sleep anxiety, night

wakening, parasomnias, sleep disordered breathing, and daytime

sleepiness (Owens et al., 2000). Items are ranked on a 3-point

scale: “usually” if the sleep behavior occurs 5–7 times per week,

“sometimes” if it happens 2–4 times/week, and “rarely” for 0–1

times/week. Owens et al. (2000) reported the validity of the CSHQ,

concluding it can be used to screen and identify children with sleep

TABLE 2 Validated sleep questionnaires.

Questionnaire Items Answer format

OSA-18 Quality of

Life (OSA-18)

18 symptom specific

questions, 5 categories

• Sleep disturbance

• Physical suffering

• Emotional distress

• Daytime problems

• Caregiver concerns

Likert scale 1 (none)

through 7 (all of the

time)

Pediatric Sleep

Questionnaire

(PSQ)

22 questions asked in the

following domains:

• Snoring—frequency and

quality

• Breathing problems

• Mouth breathing

• Daytime sleepiness

• Inattention/hyperactivity

• Other symptoms

Yes, no, don’t know

Children’s Sleep

Habits

Questionnaire

(CSHQ)

45-item questionnaire to

assess children age 4–10

years. Categories:

• Bedtime resistance

• Sleep onset delay

• Sleep duration

• Sleep anxiety

• Night wakenings

• Parasomnias

• Sleep disordered

breathing

• Daytime sleepiness

3-point scale:

• Usually—symptom is

present 5–7×/week

• Sometimes—symptom

is present 2–4×/week

• Rarely—symptom

occurs 0–1/× week

disturbances who warrant further testing, though it cannot replace

a diagnostic PSG. A summary of validated questionnaires is found

in Table 2.

Isaiah et al. (2020) used feature selection algorithms to

identify main SDB-related symptoms to predict OSA severity. The

authors noted that the original questionnaires were not successful

at predicting OSA (Isaiah et al., 2020). However, the selected

features eliminated redundancy, resulting in improved prediction

performance for OSA severity with a high pre-test probability

(Isaiah et al., 2020). Follow-up validation replicated the findings

(Kennedy et al., 2022), an essential advance in evaluation for

pediatric OSA. This new finding does require further assessment,

with multi-institutional validation. However, it holds promise as a

reasonable alternative to PSG in resource-limited situations.

Single channel recordings

The level I polysomnogrammeasures nine parameters (Bertoni

and Isaiah, 2019), of which have been studied in isolation to

approximate the overall PSG findings. They are grouped by the

system learned; sleep, cardiovascular, oximetry, position, effort, and

respiratory (SCOPER) (Collop et al., 2011; Bertoni and Isaiah, 2019,

2020). Of these, cardiovascular, oximetry, position, and respiratory

can be measured via single-channel recordings.

Cardiovascular
Overnight electrocardiogram (ECG) recordings have been

evaluated as a potential single-channel recording for pediatric OSA
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diagnosis. Shouldice et al. (2004) investigated the ability to detect

OSA in children based on their ECG recordings during overnight

PSG. In this study, obstructive apnea was defined as the absence

of airflow with continued chest wall and abdominal movement for

≥2 breaths. Hypopneas were defined as 50% or more decrease in

nasal airflow with an associated ≥4% desaturation, an arousal, or

both but were only scored if the duration was≥2 breaths. OSA was

diagnosed when the obstructive AHI was ≥1. The authors used a

different cutoff system for disease severity, with mild having AHI<

10, moderate AHI 10–15, and severe AHI> 15. The authors created

a modified quadratic discriminant analysis classification system,

which had a sensitivity of 85% and specificity of 81% to diagnose

OSA (Shouldice et al., 2004). However, of the four false negatives

identified, three were in cases classified as “mild” OSA, indicating

slightly reduced accuracy of this system in children with AHI <

10 (Shouldice et al., 2004). Heart rate variability is an ECG-derived

measure that may stratify chronic upper airway obstruction due

to the detrimental impact of intermittent hypoxia on autonomic

control of the heart (Narkiewicz et al., 1998; Baharav et al., 1999;

Teplitzky et al., 2019; Bertoni and Isaiah, 2020). Other studies found

predictable changes in heart rate variability in confirmed cases of

pediatric OSA (Baharav et al., 1999; Nisbet et al., 2013). Avenues

for future research include the integration of cardiac rhythm and

other screening methods such as questionnaires or other single

channel recordings.

Oximetry
Brouillette et al. (2000) evaluated pulse oximetry’s utility for

diagnosing pediatric OSA. In this study, when a child was suspected

of having OSA, a positive nocturnal oximetry trend had at least

97% PPV of OSA (Brouillette et al., 2000). The authors reported

that oximetry could be used for definitive diagnosis in children

with SDB and adenotonsillar hypertrophy (Brouillette et al., 2000).

Garde et al. (2019) evaluated pulse oximetry as an OSA screen

for different AHI thresholds. The authors found that with AHI

cut-offs of 1, 5, and 10, the models showed good accuracy,

sensitivity, and specificity (Garde et al., 2019). They argue that

pulse-oximetry based OSA screening at different AHI cut-offs

defined referral thresholds for in-laboratory PSG (Garde et al.,

2019). Wu et al. (2020) performed a meta-analysis and determined

that the combined use of the PSQ with pulse oximetry can detect

OSA in children, though only if PSG is not available. The authors

noted that pulse oximetry had a high specificity for screening

children without mild OSA and the highest overall specificity when

compared to PSQ and OSA-18 (Wu et al., 2020).

Nixon et al. (2004) developed an overnight oximetry data

scoring called the McGill Oximetry Score (MOS), which ranges

from 1 to 4. A score of 1 indicates a normal/inconclusive OSA

study, and additional evaluation for OSA is required (Nixon et al.,

2004). A score of 2 designates mild OSA, 3 means moderate OSA,

and 4 is severe OSA (Nixon et al., 2004). The scoring is based on

the number of drops in arterial oxygen percent saturation (SaO2)

< 90, <85, <80%, and a number of clusters of desaturation events

(Nixon et al., 2004). The authors found that overnight oximetry

can estimate OSA severity using this scoring system, allowing

prioritization of diagnostic testing and treatment for those with

severe OSA (Nixon et al., 2004). The utility of the MOS has been

varied in the literature. Chuanprasitkul et al. (2021) evaluated PSG

results after children had nocturnal oximetry in the setting of

adenotonsillar hypertrophy. The authors found a high rate of OSA

in children with inconclusive overnight oximetry, defined as MOS

category 1 (Chuanprasitkul et al., 2021). The deficiency of pulse

oximetry in isolation was corroborated by Kirk et al. (2003) who

found portable oxygen monitoring insufficient to identify OSA in

healthy children.

Pavone et al. (2013) studied the role of serial overnight pulse

oximetry readings vs. a single night and the ability to diagnose

OSA in children. This study identified night-to-night consistent

nocturnal pulse oximetry had diagnostic accuracy for OSA (Pavone

et al., 2013). The authors argue that two nights of nocturnal

pulse oximetry generate an accurate MOS score, which supports

a diagnosis of OSA when the category ≥ 2 (Pavone et al., 2013).

Similarly, Horwood et al. (2014) evaluated a treatment algorithm

based on the MOS. The authors recommended the use of MOS

when there is a need to stratify children in resource-limited

scenarios (Horwood et al., 2014). Pavone et al. (2017) found that

an abnormal pulse oximetry reading predicted the need for AT,

supporting its use in contexts where PSG is not readily available

(Pavone et al., 2017). Saito et al. (2007) similarly found that pulse

oximetry can be used to determine indications for AT. More

recently, Hoppenbrouwer et al. (2021) evaluated night-to-night

pulse oximetry variability in children by one overnight hospital-

based PSG and subsequent home oximetry for two consecutive

nights. They found that overall, there was no significant variability

between the measurements in the hospital vs. in the home setting

(Hoppenbrouwer et al., 2021).

Despite the utility of overnight pulse oximetry as a screening

method alone, it remains inferior to PSG. In situations where PSG

is feasible, pulse oximetry is not recommended as a substitute. With

an improved understanding of optimizing the data from home

overnight oximetry and its approximation of PSG data, it holds

promise for use in the future as part of a home-based test and

potentially as an independent diagnostic tool.

Position
During standard PSG, body position is monitored with apneas,

hypopneas, and changes in respiratory patterns (Bertoni and Isaiah,

2019). The most commonly used device is a wrist-worn actigraph

(Bertoni and Isaiah, 2019). Less often, body position is detected via

hip-worn or in-bed pressure sensors (Bertoni and Isaiah, 2019).

Actigraphy helps determine several PSG parameters, including

total sleep time (TST), wake after sleep onset (WASO), and sleep

efficiency (Bertoni and Isaiah, 2019). There are several actigraphs

available, including commercially available wristwatches such as the

Fitbit Ultra R© (Fitbit, San Francisco, CA) and UP R© (Jawbone, San

Francisco, CA) (Bertoni and Isaiah, 2019). Sleep-focused actigraphs

include the Actiwatch-2
R©
(Phillips Respironics, Amsterdam, The

Netherlands) and the Motionlogger R© Sleep Watch (Ambulatory

Monitoring, Ardsley, NY).

Meltzer et al. (2016) compared the Actiwatch-2 R© to standard

PSG for children with suspected OSA. In this study, the authors

found that actigraphy underestimated TST and sleep efficiency,
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although the sensitivity (0.88) and accuracy (0.84) seemed

acceptable (Meltzer et al., 2016). Similar findings were noted

when comparing additional brands of actigraphs in children and

adolescents (Meltzer et al., 2012), with accurate and sensitive

estimations of TST, WASO, and sleep efficiency, though with

poor specificity (Toon et al., 2016). The results have been varied,

as other studies found commercially available actigraphs poorly

approximate sleep compared to PSG (Meltzer et al., 2015). Bertoni

et al. (2020) utilized machine learning to generate models which

compared overnight PSG parameters to nocturnal actigraphy with

the oxygen desaturation index. The goal was to determine if the

combination of actigraphy data with oximetry can approximate

severe OSA. The authors demonstrated that actigraphy combined

with oximetry data could screen for severe OSA (Bertoni et al.,

2020), which has implications on postoperative management after

AT, as well as a potential diagnostic alternative.

As the data is mixed, further research is needed to help

determine the utility of actigraphy in children, particularly in young

children who are not yet school age. Given the safety and ease of

application, using actigraphy as part of a home sleep evaluation

would be beneficial. Their use alone to diagnose OSA is unlikely,

though in combination with other single-channel devices shows

promise. Further research is needed to assess how to use this

technology in the pediatric population effectively.

Respiratory
The AASM suggests that respiratory events be captured using

an oronasal thermal airflow sensor or a nasal pressure transducer

(Bertoni and Isaiah, 2019). These devices are limited mainly to

use in the research setting. There have been studies testing single-

channel nasal airflow pressure transducers in diagnosing adult

OSA, with some devices having better prediction of OSA than

others (Rofail et al., 2010a,b). Small studies have been performed

in infants and children regarding the utility and accuracy of using

a nasal cannula to detect sleep abnormalities. Trang et al. (2002)

evaluated 14 infants to assess the ability of a nasal cannula to

detect apneas and hypopneas. The authors found that the nasal

cannula was better able to detect hypopneas vs. apneas than a

thermistor (Trang et al., 2002). However, an observational study

comparing nasal cannula pressure to nasal airflow thermistors

in detecting apneas and hypopneas identified that the cannula

could detect more events than the thermistor (Serebrisky et al.,

2002). This more extensive study in 47 children aged 2–14 years

is essential, demonstrating a possible single-channel system for

identifying sleep disturbances in children (Serebrisky et al., 2002).

However, a recent publication based on 172 children under age

3 demonstrated limited ability for the nasal cannula to detect

obstructive events (Jurado et al., 2022). Based on these data, the

use of current technology for respiratory monitoring in children is

limited. However, its use in combination with other testing metrics

or surveys has yet to be evaluated.

Telehealth
The COVID-19 pandemic increased the scope and reach

of telehealth services. Sleep medicine is no exception to this

movement, demonstrating increased utilization over the pandemic

(Paruthi, 2020). Physicians have developed protocols by which to

apply telehealth in the evaluation of children with sleep complaints

(Witmans et al., 2008). Some pediatric sleep disorders can be

adequately evaluated via telehealth appointments, particularly

when a physical exam does not alter management. For example,

circadian rhythm disorders, insomnia, and sleep-related movement

disorders can be managed by telemedicine (Paruthi, 2020). Sleep

apnea, however, does require a formal oropharyngeal exam and

therefore is not always amenable to telehealth at the initial

diagnostic encounter. Though possibly used to screen who requires

an in-office exam, telehealth’s role in diagnosing pediatric OSA has

been challenging. However, incorporating telehealth into HSAT

has allowed successful diagnosis in 80% of children around age

10 (Griffiths et al., 2022). This demonstrates an essential caveat

to newer technologies, in that study of their use in combination

is only just beginning. The use of telehealth as an adjunct during

diagnostic testing may prove very beneficial, as demonstrated by

Griffiths et al. (2022). Further research is required to assess other

benefits of telehealth in pediatric OSA.

Videotaping during sleep
The ability of sleep video recordings to approximate PSG

findings, or add to home testing, has been studied. Sivan et al.

(1996) published the first article describing utility of home video

recordings of sleep in screening for OSA. Jacob et al. (1995)

similarly noted the value of adding videotape recordings to home

testing in children. Lamm et al. (1999) described home videotapes

as a useful screening tool in snoring children, though found they

cannot distinguish OSA from primary snoring. Given the almost

ubiquitous use of smart phones with video technology, Thomas

R. J. et al. (2022) recently tested a scoring system for short home

sleep videos taken by caregivers during episodes of concerning

breathing. The authors found that low scores ruled out moderate-

severe OSA, while scores ≥ 3 showed a sensitivity of 100%,

specificity of 36%, positive predictive value of 53%, and negative

predictive value of 100% for moderate to severe OSA (Thomas

R. J. et al., 2022). They concluded that this newly validated clinical

scoring system is valuable in triaging children with SDB (Thomas

R. J. et al., 2022). Despite successful computer-based analysis of

video images in adult OSA (Abad et al., 2016; Muñoz-Ferrer et al.,

2019), comparable work is lacking in children. Larger studies are

needed to elucidate the role of home videos for the screening and

diagnosis of pediatric OSA.

Home-based PSG
HSAT aims to replicate the results of an in-hospital PSG with

increased comfort and accessibility but lower cost and decreased

resource utilization (Kirk et al., 2017; Bertoni and Isaiah, 2020).

Typically, HSAT is achieved by combining specific PSG channels

via portable or wearable sensors (Bertoni and Isaiah, 2020).

Once determined to be accessible and feasible (Brockmann et al.,

2013; Marcus et al., 2014; Ioan et al., 2020; Lildal et al., 2021),

multiple studies have been performed to assess the adequacy of

pediatric HSAT.

Gao et al. (2021) performed a systematic review and meta-

analysis to determine the diagnostic accuracy of portable, at-home
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PSG in children. Home testing showed better specificity than

sensitivity, indicating appropriate use as a screening method for

OSA (Gao et al., 2021). Brunetti et al. (2001) proposed an algorithm

to use home testing as a screening tool to help better utilize

overnight in-lab testing.

Scalzitti et al. (2017) performed a prospective comparison of

home testing to PSG in children aged 2–17. Despite the variability

in results, the AHI and lowest oxygen saturation measurements

were similar between tests in children aged ≥ 6 years (Scalzitti

et al., 2017). These results were echoed by Withers et al. (2022)

who compared level I hospital-based PSG to level II home PSG

in children aged 5–16. The authors found that level II PSG had

an excellent correlation with level I PSG, with the benefit of

higher sleep efficiency (Withers et al., 2022). The conclusion of

this report was that level II PSG is can be considered for diagnosis

in children aged 5–18 (Withers et al., 2022). A study by Alonso-

Álvarez et al. (2015) identified home respiratory polygraphy as

a potentially helpful and reliable approach for OSA diagnosis

in children compared to in-lab PSG. Bhattacharjee et al. (2021)

noted acceptable agreement between AHI and oxygen desaturation

index between the home and in-laboratory portable monitors,

and in-laboratory PSG in 20 adolescents. When installed correctly

by trained technicians, home unattended respiratory polygraphic

recordings can be used for OSA screening in otherwise healthy

children (Ioan et al., 2023). HSAT results may be improved and

comparable to in-lab PSG, with the addition of attendance by

an online video technician (Green et al., 2022). These results are

essential, as they demonstrate a potential population that may be

tested at home, creating more availability for children who need

PSG for diagnosis. Additionally, the combination of HSAT with

screening questionnaires has been beneficial in identifying (Revana

et al., 2022), or excluding (Maggio et al., 2021), moderate to severe

OSA, further supporting the use of alternate testing methods for

improved accuracy.

At this time, the role of HSAT in children is limited to a

screening tool, as the AASM does not support the use of HSAT as

a replacement for PSG to diagnose OSA in children (Kirk et al.,

2017). Difficulty in feasibility, validity, identifying arousals and

hypoventilation, issues with use in young children or children with

comorbidities, and differences in body sizes are cited as the key

limitations (Kirk et al., 2017). The need for home testing is evident,

though to date some of the obstacles related to the mechanics of

testing have not been overcome. As more studies are performed

showing positive outcomes, the guidelines regarding HSAT may

eventually evolve.

Biomarkers
Untreated OSA has lasting implications on overall health

and physiology (Archbold et al., 2012; Marcus et al., 2012;

Teplitzky et al., 2019). The study of the systemic impact of

OSA has led to evaluation of biomarkers as an alternate means,

or adjuncts, for the diagnosis of OSA. From a cardiovascular

standpoint, untreated OSA is associated with alterations in left

ventricular mass and wall thickness, end diastolic dimensions, and

interventricular septal thickness (Amin et al., 2002; Bhattacharjee

et al., 2009; Teplitzky et al., 2019). Pediatric OSA can result in

right heart failure from pulmonary hypertension, resulting from

alveolar hypoventilation from the cyclic apneas, and subsequent

pulmonary vasoconstriction (Bhattacharjee et al., 2009; Koc et al.,

2012; Teplitzky et al., 2019). For these reasons, pre-operative

cardiovascular assessment has been considered, though with

debated utility (Li et al., 2008a; Teplitzky et al., 2019; Martín-

Montero et al., 2022).

An association between OSA and inflammation was first

described by Tauman et al. (2004) who showed that elevated

levels of plasma C-reactive protein (CRP), a known marker of

inflammation, correlated with AHI, oxygen nadir, and arousal

index in some children with OSA (Tauman et al., 2004). This

elevation in CRP was also associated with development of

cardiovascular disease (Dos Santos et al., 2008), particularly in the

setting of obesity (Choi et al., 2013). A large body of evidence

has developed evaluating the role of CRP in OSA management.

Kheirandish-Gozal et al. (2006) demonstrated elevated CRP

levels prior to treatment, with reduction in CRP levels after

adenotonsillectomy, adding evidence to support OSA leads to

systemic inflammation. This finding has been supported by

several authors, noting improvement in systemic inflammation and

reduced CRP after OSA treatment (Li et al., 2008b; Ingram and

Matthews, 2013; Mutlu et al., 2014; Nachalon et al., 2014; Van Eyck

et al., 2014). CRP may also be able to identify residual OSA after

adenotonsillectomy (Bhattacharjee et al., 2016). However, the role

of CRP in pediatric OSA is nuanced, as other research has noted

that CRP in isolation is not predictive of OSA (Kheirandish-Gozal

et al., 2015), due to confounding factors such as interindividual

variability, environmental, and genetic factors (Kheirandish-Gozal

and Gozal, 2017).

Additional metabolic markers have been assessed, given the

increasing rates of pediatric obesity (Childhood Obesity Facts,

2022), and concomitant obesity in children with OSA (Bachrach

et al., 2022). Comorbid diagnoses to obesity, such as insulin

resistance and dyslipidemia, have been evaluated in pediatric OSA

(Deboer et al., 2012; Zong et al., 2013; Bhushan et al., 2014; Amini

et al., 2017; Siriwat et al., 2020). The use of insulin and lipid levels

are not suitable for the diagnosis of OSA, but do denote systemic

involvement of the disease, and may serve as an adjunct in global

evaluation and work up.

Salivary evaluation has identified OSA biomarkers (Patacchioli

et al., 2014; Bencharit et al., 2021), some of which have reportedly

acceptable diagnostic accuracy (Canto et al., 2015). Urinary

biomarkers have also been studied with mixed results (Biyani et al.,

2018). However, some values have the possibility to be used in

diagnosis and prediction of OSA severity in children (Villa et al.,

2014; Thomas S. et al., 2022). To date, studies on these topics

are relatively small in number without reproducibility, limiting

their use as a surrogate for PSG. However, their implications on

the broad effects of OSA with systemic involvement are apparent.

Further studies are needed to better evaluate the role of biomarkers

in OSA diagnosis.

Special populations
High-risk populations include those with Trisomy 21,

craniofacial anomalies, and neuromuscular disorders (ElMallah
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et al., 2017). Alterations in craniofacial measurements, commonly

observed in children with syndromes such as Trisomy 21, have

been associated with OSA (Katyal et al., 2013; Sutherland et al.,

2020). Consideration of bodymass index (BMI) and BMI percentile

should be assessed in all children to identify those with obesity.

Obesity may cause, or worsen OSA, and increases the risk of

persistent OSA after AT (O’Brien et al., 2006; Andersen et al.,

2016). Obesity is a common comorbidity in children with Trisomy

21, making their OSA more challenging to manage. Children with

Trisomy 21 typically are also hypotonic, perpetuating their airway

collapse and OSA (Ali Khan, 2022). A multidisciplinary approach

between otolaryngology, plastic surgery, pediatric dentistry, and

pulmonology/sleep medicine for management of OSA high risk

children can improve postoperative AT outcomes and treatment of

persistent OSA (DeVries et al., 2020).

Other special populations include children with cleft palate,

in whom the underdevelopment and unusual orientation of the

palatal musculature increase the propensity for airway collapse

(Robison and Otteson, 2011; Muntz, 2012). Surgical procedures

designed to repair these anatomic problems are also associated with

a higher risk of postoperative upper airway obstruction, requiring

a high degree of vigilance following surgery (Rose et al., 2002;

Bergeron et al., 2019).

Results of screening tools for OSA in children with Trisomy 21

have been mixed. Several authors have found use of questionnaires

unreliable (Grantham-Hill et al., 2020; Skotko et al., 2023).

However, Hill et al. (2018) successfully screened for moderate to

severe OSA via home pulse oximetry, helping determine which

children need formal PSG to confirm OSA. New technologies are

emerging to aid in OSA diagnosis (Bassett and Musso, 2017),

particularly in these complicated children. Brockmann et al. (2016)

studied the feasibility of home PSG in children with Trisomy 21,

and obtained a technically successful and acceptable home PSG

in 83% of children, concluding that portable home PSG devices

may be considered for diagnosis. Ioan et al. (2022) described the

utility of pulse transit time (PTT), a technology shown to detect

subcortical autonomic arousals, with ventilator polygraphy (PG)

to diagnose OSA in children with Trisomy 21. The authors noted

a specificity of 1.0 for oAHI >1 event/hour on PTT-PG. When

the autonomic arousal index (PTTAI) on PTT-PG is added, the

sensitivity for oAHI > 1 is 1.0. The authors concluded that the

use of PTT-PG and PTTAI can be diagnostic, though is dependent

on signal quality (Ioan et al., 2022). To assess areas of persistent

obstruction, cinematic magnetic resonance imaging (“cine MRI”)

uses standardized MRI algorithms to localize regions of persistent

airway obstruction (Manickam et al., 2016; Isaiah et al., 2018).

Another option is drug-induced sleep endoscopy (DISE), with

a recent consensus statement on its use in children (Baldassari

et al., 2021). In DISE, clinicians can identify potential sites of

airway obstruction during sleep using fiberoptic endoscopy to

visualize endoluminal upper airway obstruction under anesthesia.

The principal uses of cine MRI and DISE are to tailor treatment of

upper airway obstruction in children with craniofacial syndromes

and potentially in those with recidivism related to OSA. The

discussion of OSA in complex children is nuanced and detailed,

deserving of its own review. However, it is helpful to address

these additional metrics used with PSG, to facilitate personalized

approaches for treating pediatric OSA.

Conclusions

Diagnosis of pediatric sleep disordered breathing is limited by

access to level I in-lab PSG. Due to the economic burden of this test,

patient-family inconvenience, and limited accessibility, additional

methods for diagnosis are needed. Thoughmany avenues have been

explored, none in isolation has been satisfactory as a replacement

to PSG. Further validation efforts are needed to confirm the

adequacy of single channel vs. combined channel recordings in

the home setting, though data to date are promising. Similarly,

adjunct evaluations such as questionnaires and biomarkers, may

prove effective when used in conjunction with some of the SCOPER

technologies. Newer studies on pediatric HSAT show promise and

may eventually be a reasonable option in certain populations.

Additional large volume studies are required, but with the great and

persistent need for more accessible diagnostic testing, continued

research will hopefully identify acceptable and accurate alternatives

to level I PSG.
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Deep learning-based algorithm 
accurately classifies sleep stages 
in preadolescent children with 
sleep-disordered breathing 
symptoms and age-matched 
controls
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Engineering, Landspitali University Hospital, Reykjavik, Iceland, 7 Department of Immunology, Landspitali 
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9 Department of Allergy, Landspitali University Hospital, Reykjavik, Iceland, 10 Children's Hospital 
Reykjavik, Reykjavik, Iceland, 11 Science Service Center, Kuopio University Hospital, Kuopio, Finland

Introduction: Visual sleep scoring has several shortcomings, including inter-
scorer inconsistency, which may adversely affect diagnostic decision-making. 
Although automatic sleep staging in adults has been extensively studied, it is 
uncertain whether such sophisticated algorithms generalize well to different 
pediatric age groups due to distinctive EEG characteristics. The preadolescent 
age group (10–13-year-olds) is relatively understudied, and thus, we  aimed to 
develop an automatic deep learning-based sleep stage classifier specifically 
targeting this cohort.

Methods: A dataset (n = 115) containing polysomnographic recordings of Icelandic 
preadolescent children with sleep-disordered breathing (SDB) symptoms, 
and age and sex-matched controls was utilized. We  developed a combined 
convolutional and long short-term memory neural network architecture relying 
on electroencephalography (F4-M1), electrooculography (E1-M2), and chin 
electromyography signals. Performance relative to human scoring was further 
evaluated by analyzing intra- and inter-rater agreements in a subset (n = 10) of 
data with repeat scoring from two manual scorers.

Results: The deep learning-based model achieved an overall cross-validated 
accuracy of 84.1% (Cohen’s kappa κ = 0.78). There was no meaningful performance 
difference between SDB-symptomatic (n = 53) and control subgroups (n = 52) 
[83.9% (κ = 0.78) vs. 84.2% (κ = 0.78)]. The inter-rater reliability between manual 
scorers was 84.6% (κ = 0.78), and the automatic method reached similar 
agreements with scorers, 83.4% (κ = 0.76) and 82.7% (κ = 0.75).

Conclusion: The developed algorithm achieved high classification accuracy 
and substantial agreements with two manual scorers; the performance metrics 
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compared favorably with typical inter-rater reliability between manual scorers 
and performance reported in previous studies. These suggest that our algorithm 
may facilitate less labor-intensive and reliable automatic sleep scoring in 
preadolescent children.

KEYWORDS

Pediatric sleep staging, preadolescent cohort, inter-rater reliability, pediatric sleep-
disordered breathing, community controls, deep learning, recurrent neural network, 

convolutional neural network

Introduction

Sleep is a vital component of health and well-being for children 
and is particularly important for maintaining normal neurocognitive 
functions (1–4). Subsequently, sleep disorders are associated with 
detrimental health consequences such as emotional and behavioral 
problems (5, 6) and attention deficiency (7). Given that sleep disorders 
such as obstructive sleep apnea (OSA) are common in children 
(prevalence of 1%–4%) (8), there is substantial motivation to develop 
efficient and effective diagnostic systems. Accurate sleep stage 
classification is an important step in both the diagnosis of pediatric 
sleep disorders and research investigating normal physiological sleep; 
and is manually scored according to the American Academy of Sleep 
Medicine (AASM) (9) guidelines using electroencephalography 
(EEG), electrooculography (EOG), and submental electromyography 
(EMG) signals recorded using polysomnography (PSG) (9). However, 
manual sleep scoring is expensive and time-consuming (10) and is 
subjective leading to inconsistency between human scorers (11–17). 
While the typical Cohen’s kappa for inter-rater agreement is 0.76–
0.78 in adults, it can be as low as 0.57–0.63 between international sleep 
centers (11, 12); and could be even lower in children due to greater 
variability in EEG signal characteristics (18–21).

Automated sleep staging systems have been proposed to overcome 
the limitations of manual sleep stage classification; and such 
algorithms are already incorporated in some commercial PSG 
software where they provide a preliminary scoring that is verified and 
corrected by a human expert. Numerous published studies have also 
attempted to fully automate the sleep staging process (22–47). Whilst 
historically, these have used feature engineering approaches or hand-
crafted rules (29–32), most recent studies utilize deep learning-based 
algorithms (22–26, 33–46). Although modern deep learning-based 
approaches generally perform well (kappa agreement typically ranging 
between 0.67 and 0.87) (48–51), the majority have focused on adult 
populations (22, 23, 30–39, 41, 43, 45). Due to the continuous 
maturation of the brain, EEG signals in children may vary with age 
(18–20); and therefore, it is uncertain whether the sophisticated sleep 
staging systems designed for adults generalize well to children.

A smaller number of recent studies have focused on automatic 
sleep staging in children (24–29, 40, 42, 44, 47). Whilst some of these 
focus on two- or three-stage sleep classification (24, 26–28) 
[predominantly those considered infants (26–28)] or using non-EEG-
based approaches intended for limited channel screening (29, 47), 
studies published in parallel with the development of this work using 
electrophysiological channels have demonstrated high sleep 
classification performance (40, 42, 44). However, there are some 

important limitations. Firstly, none of these studies included both 
children with sleep disorders and asymptomatic controls recruited 
from the community. Secondly, there are substantial gaps in the ages 
of the children studied. In particular, the preadolescent children 
(10–13-year-olds) are not well represented, reflecting them being a 
relatively understudied group in sleep research more generally. Given 
the substantial emotional and hormonal changes (52) during this 
period having an automated tool to better facilitate the investigation 
of physiological and pathophysiological sleep in this age group is 
highly desirable.

As such, the overarching aim of this study was to develop a deep 
learning-based method to automate sleep stage classification, 
specifically targeting preadolescent children with sleep-disordered 
breathing (SDB) symptoms and age and sex-matched community 
controls. We hypothesized that a combined convolutional and long 
short-term memory network architecture enables accurate pediatric 
sleep stage classification using raw frontal EEG, EOG, and EMG 
signals. This algorithm was developed and cross-validated using a 
dataset of overnight PSG recordings of Icelandic children. 
Performance relative to human scoring was further evaluated by 
conducting intra-rater and inter-rater agreement analysis in a subset 
of data with repeated scorings from two experienced human scorers.

Methods

Dataset

The dataset utilized in this study comprised 10–13 years old 
Icelandic children from the EuroPrevall-iFAAM birth cohort (53–56). 
Of the Icelandic EuroPrevall (57) study population, children who were 
reported to snore at least three times or have witnessed apneas at least 
once a week (n = 109) were invited to engage in a home PSG. Out of 
the 109 invitees, 55% agreed to participate (n = 60). Additionally, 58 
children with no snoring or apneas were included in the age and 
sex-matched control group. Two of the recordings were not completed 
successfully, and one participant declined the full usage of data. Thus, 
the total study population included 115 children with almost equal 
proportions of SDB-symptomatic (n = 59) and control participants 
(n = 56).

Informed written consent was obtained from parents or legal 
guardians for all children who participated in this study; and data 
collection was approved by the Ethical Committee of Landspitali—the 
National University Hospital of Iceland and the National Bioethics 
Committee of Iceland (VSN 18–206). The PSG device used for this 
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study was Nox A1 (Nox Medical, Reykjavik, Iceland) and was 
configured by two experienced sleep technologists. All the PSG 
recordings were conducted at home over a single night. The sleep 
stages of all 115 PSGs included in the final study population were 
initially scored once manually into categories: W, N1, N2, N3, and R 
by one of two human scorers using the full montage of recommended 
channels in compliance with current AASM guidelines (9). This 
scoring was treated as the “gold standard” and utilized as the reference 
to compare with during the neural network training, validation, 
and testing.

In addition, a subset of this data comprising 10 PSGs was 
rescored once more by the same manual scorer and twice separately 
by the other scorer. This yielded a total of four distinct scorings, used 
solely for the purpose of conducting a separate comparative intra- 
and inter-rater agreement analysis. This was conducted to 
demonstrate the reliability of our algorithm by investigating whether 
our results are comparable to inter- and intra-rater reliability 
between manual scorers.

Software and hardware configurations for 
algorithm development and data-analysis

We used Conda (version 4.8.3) environment with Python 3.6.10, 
Keras API (version 2.3.1), and TensorFlow (version 2.2.0) backend to 
implement the neural network architecture. The training was 
conducted using an AMD Ryzen Threadripper 2990WX CPU, x86_64 
architecture, 128 GB RAM, and NVIDIA GeForce RTX 2080 
GPU. Statistical analyses related to intra-rater and inter-rater 
reliabilities were conducted in Python 3.6.10 with scikit-learn 0.24.2.

Neural network architecture

We adopted an architecture comprised of a combined 
convolutional neural network (CNN) and recurrent neural network 
(RNN) trained in an end-to-end manner that we have previously 
utilized for automated sleep staging in adult populations (22). The 
CNN part was chosen to study the unique features of the sleep stages, 
while the RNN was utilized to learn the temporal distribution. This 
and similar architectures (i.e., variations of CNN-RNN combined 
networks) have previously demonstrated competitive results in adult 
sleep staging (22, 35, 37, 39); and part of our motivation was to 
examine how generalizable such an architecture is to children in the 
preadolescent age group.

The CNN part comprised six 1D convolution layers, each of which 
was followed by batch normalization and a rectified linear unit (ReLU) 
activation function. Two max-pooling layers and a global average 
pooling layer were included in the architecture, each situated after 
every two 1D convolutional layers, respectively (Figure  1). The 
complete network consisted of a time-distributed layer of the entire 
CNN part, followed by a gaussian dropout layer, a bidirectional long 
short-term memory (LSTM) layer, and a time-distributed dense layer 
with softmax activation (Figure 1). A tanh activation function was 
used in the LSTM, and a hard-sigmoid activation was used in the 
recurrent step. The final layer of the complete architecture was a dense 
layer accompanied by a softmax activation function generating the 
output sequence of the sleep stage probabilities.

Automatic sleep staging

Three channels consisting of frontal EEG (derivation F4-M1), 
EOG (derivation E1-M2), and submental EMG (derivation 

FIGURE 1

Illustration of the combined convolutional neural network (CNN) and 
long short-term memory (LSTM) network architecture. The 
parameters of the 1D convolution layers (Conv1D) are provided as 
(c = number of convolutional filters, k = kernel size, s = stride size). For 
the max pooling, the parameters are given as (p = pool size, s = stride 
size). LSTM and the softmax dense layer have the number of units as 
the parameter (i.e., h = number of hidden/output units in LSTM and 
u = number of nodes in dense layer). The dropout layers were active 
only during the training phase. A sequence of softmax values was 
generated by the model indicating the probabilities of possible sleep 
stages for every epoch. The sleep stage with the highest softmax 
value was estimated as the corresponding sleep stage of that epoch.

67

https://doi.org/10.3389/fneur.2023.1162998
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Somaskandhan et al. 10.3389/fneur.2023.1162998

Frontiers in Neurology 04 frontiersin.org

Chin1-Chin2) were used as the input for the final neural network 
architecture. The primary motivations for using these channels were: 
(1) use of frontal channels to make it more practical for the ambulatory 
sleep settings and simplify the overall measurement protocol; (2) to 
maintain consistency with recent literature that is tended towards 
using minimal channels to perform accurate sleep staging utilizing 
deep learning techniques; and (3) for consistency with the AASM 
criteria (9), which explicitly requires EEG, EOG, and EMG signals for 
sleep stage classification. These signals were initially recorded with a 
sampling frequency of 200 Hz but downsampled to 100 Hz to reduce 
the computational load. Signal segments at the beginning and the end 
of the recordings without manual scorings were excluded from the 
final analysis.

The complete dataset was initially divided into two individual sets: 
(1) Analysis set: primary data, which comprised 105 PSGs scored once 
manually and used for the neural network training, validation, and 
testing; and (2) Comparison set: which included the remaining 10 
PSGs that were manually scored four times, i.e., twice each by two 
human experts. The comparison set was held out of training and 
evaluation of the model; and solely used for investigating intra- and 
inter-rater agreements between the two independent manual scorers 
and relative to the automated classification.

10-fold cross-validation was performed with the whole analysis 
set (n = 105) to obtain the best estimate of the non-biased model 
performance. For the cross-validation, the analysis set was first 
randomly separated into 10 equally sized segments. One of these 
segments was utilized as an independent test set, while the remaining 
data were further randomly divided into training (90%) and validation 
(10%) sets to train and choose the optimal model. The test set was held 
intact from the model training and validation and used as an unseen 
data for the model evaluation. This entire process was repeated 10 
times with a different subset representing the independent test set in 
each iteration. The final reported results are for the classification 
performance in the aggregation of the test set from each of the 10 
iterations of the cross-validation (n = 105). Figure 2 presents a data 
flow diagram, which illustrates how the final study data was formed 
and how it was divided and used for the analysis.

The model was trained in a sequence-to-sequence manner with 
an input sequence length of one hundred 30-s epochs, i.e., an input 
sequence of one hundred epochs was mapped to the target reference 
sleep stage sequence of identical length at once to comprehend inter-
epoch dependency. The sequence length was chosen based on initial 
testing and as a compromise between computational load and 
capturing a sufficiently long sleep cycle. A categorical cross-entropy 
loss function, an Adam optimizer with warm restarts (58), and a 
learning rate range of 0.001 to 0.00001 optimized with a learning rate 
finder (59) were used during training. In the training set, an overlap 
of 75% was used to multiply the size of the training data by four when 
forming the sequences. No overlap was applied to validation or test 
sets. The maximum number of training epochs was set to 200. 
However, the training was only conducted until the validation loss 
function value no longer decreased considerably. For this, an early 
stopping callback with a patience coefficient of 20 was used, meaning 
that if validation loss did not improve for 20 consecutive epochs, then 
the training was stopped. This was done to prevent overfitting and to 
avoid wasting computational resources on training a model that is 
unlikely to improve. The final performance of the classifier was 

obtained by aggregating the test set results across all 10 folds. The 
accuracies were evaluated in an epoch-by-epoch manner. As an output 
of the model, the estimated sleep stage was determined to be the one 
with the highest softmax value. Cohen’s kappa coefficient (κ) (60) was 
utilized to assess the scoring consensus between manual and automatic 
scorings. Finally, we investigated the model performance separately 
between the SDB-symptomatic and control groups as well as between 
PSG-quantified clinical pediatric OSA (AHI ≥ 1) and non-OSA 
(AHI < 1). Groupwise performance was assessed by aggregating the 
test set results across all 10 folds and separately calculating the 
accuracies and kappa coefficients for each group.

For comparison with previous literature, we  also separately 
trained and cross-validated our model to classify sleep into four (W/
N1 + N2/N3/R) and three (W/N1 + N2 + N3/R) stages utilizing the 
analysis set as a secondary analysis. To determine inter-rater 
agreement-related performance between the automatic classifier and 
two manual annotators in the comparison set, we  retrained the 
network using the entire analysis set and evaluated it on the unseen 
comparison set.

Intra- and inter-rater agreement analysis

As a secondary investigation, we performed a separate intra- and 
inter-rater agreement analysis to examine the reliability of the neural 
network model by evaluating its predictive performance relative to 
multiple human scorings. A subset (i.e., the comparison set, n = 10, not 
included in the cross-validated training and evaluation) of the 
pediatric dataset was utilized for this analysis. Two European Sleep 
Research Society-certified sleep technologists from Reykjavik 
University Sleep Institute each scored the 10 PSGs twice (separated by 
at least 2 weeks); thus, producing four different sets of sleep scoring. 
Scorers were blinded to patient identities throughout the analysis. The 
manual scoring was compared with each other and with the neural 
network-predicted scores to evaluate the intra- and inter-rater 
reliabilities. In addition, we also examined how the automatic sleep 
stage classifications compared with the manual scoring when 
considering only the epochs that achieved a scoring consensus 
between both human scorers.

Score match percentage (percent accuracy) and kappa coefficient 
were used to determine the overall intra- and inter-rater agreements 
between different scorings. Sleep stage-specific intra- and inter-rater 
agreements were also calculated. Stage-specific agreements between 
the manual and automatic classifications were calculated with the 
manual scoring defined as the reference. Stage-specific agreements 
between manual classifications were defined as the average of the 
agreements calculated when each of the manual classifications was 
separately treated as the reference.

Results

Characteristics of the study population

A summary of demographic information and characteristics of 
the whole study population (n = 115), SDB-symptomatic subgroup 
(n = 59), and asymptomatic subgroup (n = 56) is presented in Table 1.
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Table 2 depicts the number and the percentage of 30-s epochs of 
each sleep stage in the whole dataset according to the manual 
reference scoring.

Classification performances in analysis set

The neural network-based method yielded overall absolute 
accuracies of 84.6% (κ = 0.78), 82.3% (κ = 0.76), and 84.1% (κ = 0.78) 
in the training, validation, and test sets, respectively, during the 
10-fold cross-validation. There was no meaningful difference in the 

test set (n = 105) performance between individuals recruited with SDB 
symptoms (n = 53) and age and sex-matched controls (n = 52) [83.9% 
(κ = 0.78) vs. 84.2% (κ = 0.78)]. In the analysis set, 24 children fulfilled 
the diagnostic criteria for pediatric OSA (AHI ≥ 1) after PSG. Out of 
these children, 15 were from the originally recruited SDB-symptomatic 
subgroup and the remaining 9 were from the asymptomatic control 
subgroup. There was similarly no meaningful difference in the test set 
performance between children with PSG quantified AHI ≥ 1 (n = 24) 
and those with AHI < 1 (n = 81) [82.9% (κ = 0.77) vs. 84.3% (κ = 0.78)].

Considering the class-specific performance of the deep 
learning-based method, stage N1 had the lowest prediction 

A B

FIGURE 2

Data flow diagram that illustrates (A) how the final study data was formed and (B) how the data was divided and used for the analyses. PSG, 
polysomnography; EEG, electroencephalography.
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accuracy of 17.7%, while the N3 stage attained the highest accuracy 
of 89.8% in the test set. Figure 3 presents the confusion matrix of 
the test set classification performance aggregated across all 10 folds 
of the cross-validation in the analysis set (n = 105, total number of 
epochs = 108,796). Figure 4 shows a summary of the individual-
level automatic sleep stage classification performances of all 
children comprising the aggregated test set across the 10 folds 
during cross-validation (i.e., analysis set, n  = 105). In the 
aggregated test set, our algorithm distinguished sleep epochs from 
wake epochs (references are based on manual scoring) with a 
sensitivity of 97.9% and a specificity of 82.1%. Table 3 presents 
detailed stage-wise classification performance metrics (i.e., 
sensitivity, specificity, positive predictive value, and negative 
predictive value) in the aggregated test set (n = 105).

The test set accuracies obtained for four- and three-stage 
classifications were 85.4% (κ = 0.80) [W: 81.8%, N1 + N2: 85.2%, N3: 
85.5%, R: 86.9%] and 92.6% (κ = 0.84) [W: 79.8%, N1 + N2 + N3: 
95.3%, R: 87.3%] respectively.

Performance relative to intra- and 
inter-rater agreement in comparison set

The classification model retrained using the whole analysis set and 
evaluated on the comparison set for the purpose of comparing the 
automatic scoring with different manual scorings yielded an overall 
training accuracy of 87.2% (κ = 0.81) and an overall accuracy of 84.5% 
(κ = 0.78) in the unseen test set (i.e., the comparison set).

The overall inter-rater reliability between the two manual scorers 
was 84.6% (κ = 0.78) in the comparison set and the neural network-
based automatic approach achieved similar agreements with scorers 
individually: 83.4% (κ = 0.76) and 82.7% (κ = 0.75). The intra-rater 
scoring consensuses were highest for sleep stage R for both scorers. In 
contrast, inter-rater agreements were highest for N3. As expected, the 
intra- and inter-rater agreements were lowest for N1 (Table 4). The 
neural network approach agreed with at least one of the manual 
scorers in 89.8% of the epochs. Similarly, when considering only the 
epochs with a scoring consensus between the manual scorers, 90.4% 
(κ = 0.86) of those epochs were also scored as the same sleep stage by 
the automatic classifier. The sleep stage-specific agreement in this 
instance were W: 88.2%, N1: 28.4%, N2: 93.0%, N3: 91.1%, and R: 
89.7%. Figure  5 illustrates an example comparison between 
hypnograms of an individual annotated by manual scorers and the 
automatic classifier. The performance of the automated classifier in 
this individual was close to the population average (i.e., κ = 0.78 with 
manual scorer 1 and κ = 0.77 with scorer 2).

Discussion

The overarching aim of this study was to develop a deep learning-
based automatic sleep stage classification system for preadolescent 
children. As such, we developed a combined CNN-LSTM architecture 
utilizing a dataset containing overnight PSGs of Icelandic 
preadolescent children with SDB symptoms and age and sex-matched 
controls. The cross-validated sleep stage classification performance 
was evaluated with a 3-channel input (i.e., frontal EEG + EOG + chin 
EMG). In addition, to further evaluate the performance relative to 
human scoring and to examine the reliability of the model, 
we conducted a separate intra- and inter-rater agreement analysis in 
a subset (n = 10) of data with repeated scorings from two expert 
human scorers. Overall, our algorithm achieved a high classification 
accuracy and substantial agreement with both manual scorers. The 
performance metrics compared well with previous automated sleep 

TABLE 1 The demographics and characteristics of the study population.

Whole 
population

SDB-
symptomatic 

group

Control 
group

n (boys %) 115 (66.1%) 59 (67.8%) 56 (64.3%)

Age (years), 

mean ± SD 11.8 ± 0.8 11.7 ± 0.8 11.9 ± 0.8

BMI (kg/m2), 

median 

(range) 19.7 (13.5–31.9) 20.6 (15.5–28.7) 18.9 (13.5–31.9)

AHI 

(events/h), 

median 

(range) 0.5 (0.0–6.3) 0.6 (0.0–6.3) 0.3 (0.0–3.2)

TST (min), 

mean ± SD 479.6 ± 54.1 471.3 ± 59.7 488.3 ± 46.5

Sleep 

efficiency (%), 

mean ± SD 93.1 ± 4.2 93.1 ± 4.0 93.1 ± 4.4

SD, Standard deviation; BMI, Body mass index; AHI, Apnea-hypopnea index; TST, Total 
sleep time; SDB, Sleep-disordered breathing.

TABLE 2 Number and percentage of 30-s epochs of each sleep stage in the pediatric dataset based on initial manual reference scoring.

Sleep 
stage

Whole dataset (n = 115) SDB-symptomatic group (n = 59) Control group (n = 56)

Number Percentage (%) Number Percentage (%) Number Percentage (%)

W 8,469 7.1 4,455 7.4 4,014 6.8

N1 3,724 3.1 1,657 2.8 2,067 3.5

N2 28,880 24.3 14,170 23.6 14,710 25.0

N3 54,786 46.1 28,055 46.8 26,731 45.5

R 22,917 19.3 11,649 19.4 11,268 19.2

Total 118,776 100 59,986 100 58,790 100

W, Wakefulness; R, Rapid eye movement sleep; N1, N2, N3, Three different levels of non-rapid eye movement sleep; SDB, Sleep-disordered breathing.
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staging methods and with inter-rater reliability between manual 
scorers both in this population and those reported in the literature 
(14). Moreover, the individual-level automatic classification accuracies 
and kappa values were consistent across both children with SDB 
symptoms and non-diseased controls. These findings indicate that our 
model enables accurate and reliable automatic sleep stage classification 
for preadolescent children.

In the present study, the classification performance metrics of all 
sleep stages except for N1 were excellent (Figure 3; Table 3), and the 
overall performance of this method compares well to the previously 
published studies involving pediatric populations (24–29, 40, 42, 44). 
However, direct comparison to previous studies is difficult due to 

different datasets and age variations. Previously, Huang et al. (25) 
adopted a timestamp-based segmentation strategy with a 
deconvolutional neural network for automatic sleep staging in 
children aged 5–10 years and achieved an accuracy of 84.3%. However, 
a considerably smaller dataset (n = 21) and a complex 11-channel 
input (i.e., 6 EEG + 2 EOG + 3 EMG) were used in that study (Table 5). 
In comparison, our study achieved a similar performance with a larger 
pediatric cohort using only a 3-channel input. In parallel with the 
development of our work, other studies have also focused on sleep 
staging including pediatric patients and have demonstrated similar 
performance metrics (40, 42, 44). Notably, Wang et al. (42) achieved 
high classification performance (with slightly lower kappa values 
compared to the present study when using a similar 3-channel input) 
with a modularized network utilizing a clinical pediatric dataset of 344 
SDB patients with age 2–18 years (Table 5). Similarly, Phan et al. (44) 
demonstrated that different deep learning-based algorithms with good 
performance in adults also generalized well to 5–10-year-old children 
with SDB in the Childhood Adenotonsillectomy Trial dataset (62) 
(Table 5). Likewise, a large-scale study conducted by Perslev et al. (40) 
utilized multiple adult and pediatric datasets (i.e., PSG recordings 
from 15,660 participants of 16 clinical studies, including PSGs from 2 
public pediatric sets) to train and evaluate a U-net architecture and 
attained high sleep stage classification accuracies. While our algorithm 
achieves similar or slightly higher performance to these previous 
studies, it makes two important unique contributions. Firstly, our 
study is the first to evaluate and demonstrate equivalent performance 
in children with both suspected SDB and community controls, thus 
demonstrating this important aspect of generalizability. Secondly, 
we specifically focus on preadolescent children, which are either not 
represented or are under-represented in previous works. This not only 
confirms the generalizability of such approaches to this age group; but 
also provides a tool to investigate sleep in this cohort in more detail. 
This is a period of substantial emotional and hormonal changes (52), 
and a better understanding of how sleep changes during this period 
would be highly desirable.

Our algorithm also performed comparably with the state-of-
the-art sleep staging methods developed for adults (22, 23, 30–39, 41, 
43, 45), which typically achieve kappa performance in the range of 
0.67–0.87 (48–51). We  previously demonstrated that a similar 
CNN-LSTM architecture for sleep staging works well in adult 
populations and outperformed previously published methods at the 

FIGURE 3

Confusion matrix of the test set classification performance 
aggregated across all 10 folds of the cross-validation in the primary 
analysis set (n = 105, total number of epochs = 108,796). Each row of 
the matrix represents the instances in the manual reference scoring 
while each column represents the instances in the neural network-
predicted sleep scoring. The diagonal of the matrix shows all correct 
predictions. Values presented inside parentheses denote the number 
of epochs in each predicted class. W, Wakefulness; R, Rapid eye 
movement sleep; N1, N2, N3, Three different levels of non-rapid eye 
movement sleep; κ, Cohen’s kappa coefficient.

A B

FIGURE 4

A summary of the individual-level automatic sleep stage classification performances: (A) Accuracies in percentage (range: 73.3%–90.4%) and 
(B) Cohen’s kappa (Range: 0.69 to 0.84) of all children comprising the aggregated test set (n = 105) across the 10 folds during cross-validation.
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time (22). The accuracy and kappa values achieved in the present 
study considering a preadolescent cohort are almost identical to the 
performance metrics obtained in adult cohorts utilized by Korkalainen 
et  al. (22). Therefore, our findings confirm that the considered 
architecture generalizes well to preadolescent children with SDB and 
non-diseased controls.

The inter-rater agreements achieved in this dataset are comparable 
to the consensus between manual scorers, where kappa is typically 
0.76–0.78  in adult populations (14, 17). Considering the separate 
inter-rater reliability analysis conducted in the comparison set, the 
sleep stage-specific agreements obtained for the automatic method 
well exceeded the consensus between the two manual scorers in 
scoring sleep stage N2; were near-identical for W, N3, and R; but were 
modestly lower for stage N1 [possibly reflecting the relatively small 
(3.1%) proportion of N1 in this dataset] (Table 4). Nonetheless, our 
neural network-based approach showed substantial agreements (61) 
with both manual scorers and matched the concordance between 
human scorers. Moreover, the automatic approach matched with at 
least one of the two manual scorers in 89.8% of the epochs, while the 
match percentage between the manual scorers was only 84.6%, further 
emphasizing the reliability of the proposed algorithm relative to 
manual scoring.

Incorporating a reliable and accurate deep learning-based 
automatic sleep staging system to support the current clinical 

procedure could significantly benefit pediatric sleep disorder 
diagnosis. As elucidated in several studies (11–16), the traditional 
sleep scoring may lack adequate inter-rater reliability and manifest 
high variability. However, once trained, deep learning-based 
approaches, including the proposed model, would always classify 
sleep stages uniformly for the same data. This can be a substantial 
advantage of our model compared to visual sleep scoring as it 
eliminates limitations such as human-scorer vigilance-related 
errors. Finally, manual scoring is laborious, time-consuming, and 
expensive. The proposed method can perform quickly once trained 
(i.e., typically well within a minute per overnight study) and would 
significantly improve the efficiency of the sleep stage 
classification process.

The main performance limitation of the proposed algorithm is the 
low classification performance and inter-rater agreements of stage N1 
(Figure 3; Tables 3, 4). As expected, the overall accuracy in classifying 
stage N1 was poor (only 17.7%), and N1 sleep was most frequently 
confused with N2, and then with wake (Figure 3). One explanation for 
this is the relatively small amount of N1 epochs in the dataset (only 
3.1%) and therefore the algorithm is relatively poorly trained on this 
stage. However, inter-human-rater agreements for N1 were similarly 
low in both our study and published literature where N1 agreements 
range between κ = 0.19–0.31 (11, 12). This suggests that even for 
experienced manual sleep scorers, N1 is the hardest sleep stage 
to identify.

The mean (± SD) total sleep time (TST) of 479.6 ± 54.1 min 
observed in this dataset is lower than the typical average TST in this 
age group (63, 64). Similarly, we identified that the proportion of R 
sleep is slightly lower than what is usually observed in preadolescent 
children (64). There are two possible explanations for this discrepancy. 
Firstly, for other scientific purposes, the children wore a double EEG 
setup with two devices, a scoop cannula over their mouth, and an 
additional electrodermal activity (EDA) sensor (65); and this may 
have caused them to wake up earlier than usual and take the 
equipment off and consequently may have affected the TST and R 
sleep proportion. Second, this study was performed in Iceland during 
the summer months with an unusual amount of daylight, which may 
also have possibly caused early awakenings.

TABLE 3 Detailed stage-wise classification performance metrics in the 
test set aggregated across the 10-fold cross-validation in the primary 
analysis set (n = 105).

Sleep 
stage

Sensitivity Specificity PPV NPV

W 82.1% 97.9% 74.9% 98.6%

N1 17.7% 99.0% 37.4% 97.4%

N2 82.1% 88.9% 70.4% 93.9%

N3 89.8% 95.1% 94.0% 91.6%

R 84.4% 97.5% 89.1% 96.3%

W, Wakefulness; R, Rapid eye movement sleep; N1, N2, N3, Three different levels of non-
rapid eye movement sleep; PPV, Positive predictive value; NPV, Negative predictive value.

TABLE 4 Intra-rater and inter-rater reliability metrics for individual and overall sleep stage comparisons between manual scorers and the automatic 
method in a holdout subset of n = 10 (i.e., the comparison set).

Intra-rater 
agreement: S1

Intra-rater 
agreement: S2

Inter-rater 
agreement: S1 

versus S2

Inter-rater 
agreement: S1 

versus Auto

Inter-rater 
agreement: S2 

versus Auto

W 88.6% 89.6% 83.6% 80.8% 81.3%

N1 44.3% 63.1% 32.6% 24.9% 14.2%

N2 77.3% 81.4% 72.7% 83.8% 87.3%

N3 91.5% 92.5% 91.5% 87.7% 89.5%

R 92.7% 93.0% 90.7% 86.7% 86.2%

Overall 87.5% 89.3% 84.6% 83.4% 82.7%

κ 0.82 0.85 0.78 0.76 0.75

Remark Almost Perfect Almost Perfect Substantial Substantial Substantial

Agreements between manual and automatic classifications were calculated using manual scoring as the reference. Agreements between manual classifications were obtained by averaging 
agreements calculated with each manual classification as the reference. The remarks on the agreements are based on the guidelines by Landis and Koch (61) for Cohen’s kappa values. S1, 
Human scorer 1; S2, Human scorer 2; Auto, Automatic method; κ, Cohen’s kappa coefficient; W, Wakefulness; R, Rapid eye movement sleep; N1, N2, N3, Three different levels of non-rapid eye 
movement sleep.
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The study population consisted of Icelandic preadolescent 
children with symptoms of SDB (n = 59) and age and sex-matched 
controls (n = 56). However, there were no meaningful differences in 
the demographic characteristics between these two subgroups. Post 
PSG, 26 children fulfilled the diagnostic criteria for pediatric OSA 
(AHI ≥ 1) [17 from the SDB symptomatic subgroup and 9 from the 
asymptomatic control subgroup]; out of which, only one individual 
was deemed to have moderate pediatric OSA (AHI ≥ 5). Severe OSA 
was not found, and the study population did not explicitly include 
children with other sleep disorders. Different sleep disorders have 
distinct characteristics and could cause significant sleep architectural 
changes and deteriorated sleep quality. For example, OSA patients 
usually have more light sleep stages and less N3 and R sleep (66), 
whereas narcolepsy patients usually have fragmented sleep and 
abnormal and frequent sleep stage R occurrences (67). As such, 
further investigations are required to confirm the generalizability of 
our algorithm in these other groups, including those with more 

moderate and severe OSA. We believe these results must be generalized 
with caution to other heterogeneous clinical populations or centers 
internationally where participant characteristics may vary 
substantially; also to children with age range out of that in the present 
study. Similarly, this was well-curated scientific data. However, in 
practice, the algorithm would need to cope with artefact typical of 
clinical sleep studies; and further validation is required to examine the 
performance of this algorithm in these conditions. Further, it is likely 
that modern deep learning-based automated sleep classifiers have 
already achieved near-saturated performance metrics (68). Therefore, 
to be incorporated into clinical practice, future studies must focus 
more on improving the generalizability, reliability, uncertainty 
quantification, and interpretability of deep learning-based sleep 
staging models (44, 48, 51). Finally, to date, this and other studies 
focused on the classification of sleep stages without consideration of 
arousal events. Given the significant physiological overlap between 
arousal and wake stage, there are likely to be significant advantages to 

A

B

C

FIGURE 5

An example comparison between hypnograms of an individual annotated by (A) Manual scorer 1, (B) Manual scorer 2, and (C) Automatic classifier. The 
performance of the automated classifier in this individual was close to the population average (i.e., κ = 0.78 with manual scorer 1 and κ = 0.77 with scorer 
2).

TABLE 5 Performance comparison of the present study with previous deep-learning-based pediatric sleep staging.

Cohort size (n) Community control 
group included (Y/N)

Age range Stages Accuracy [kappa 
(κ)]

Present work 115 Y 10 to 13 years

5 (W/N1/N2/N3/R) 84.1% (0.78)

4 (W/N1 + N2/N3/R) 85.4% (0.80)

3 (W/N1 + N2 + N3/R) 92.6% (0.84)

Jeon et al. (24) 218 N - 3 (W/N1/N2) 92.2% (0.88)

Huang et al. (25) 21 N 5 to 10 years 5 (W/N1/N2/N3/R) 84.3% (−)

Wang et al. (42) 344 N 2 to 18 years

5 (W/N1/N2/N3/R) 82.6% (0.76)

4 (W/N1 + N2/N3/R) 85.8% (0.79)

3 (W/N1 + N2 + N3/R) 91.4% (0.81)

Phan et al. (44) 1,216 N 5 to 10 years 5 (W/N1/N2/N3/R) 88.8% (0.85)

Only studies utilizing deep learning techniques with EEG-based channels and specifically targeted at pediatric populations excluding infants are included. Y, Yes; N, No.
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incorporating arousal event scoring within the same algorithm as 
sleep stage classification.

Conclusion

Pediatric sleep disorders are prevalent, and manual sleep stage 
classification has significant challenges. As such, incorporating an 
accurate and reliable automatic sleep staging method in clinical 
practice would greatly assist in improving the efficiency of pediatric 
sleep disorder diagnosis. The proposed deep learning-based 
classification algorithm enables fast, accurate, and reliable automatic 
sleep staging based on frontal EEG, EOG, and chin EMG signals in 
preadolescent children. Our findings favor the utility of deep learning-
based approaches for sleep staging over the traditional manual method.
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Human experts scoring sleep according to the American Academy of Sleep

Medicine (AASM) rules are forced to select, for every 30-second epoch, one

out of five stages, even if the characteristics of the neurological signals are

ambiguous, a very common occurrence in clinical studies. Moreover, experts

cannot score sleep in studies where these signals have not been recorded, such as

in home sleep apnea testing (HSAT). In this topic review we describe how artificial

intelligence can provide consistent and reliable scoring of sleep stages based on

neurological signals recorded in polysomnography (PSG) and on cardiorespiratory

signals recorded in HSAT. We also show how estimates of sleep stage probabilities,

usually displayed as hypnodensity graph, can be used to quantify sleep stage

ambiguity and stability. As an example of the application of hypnodensity in the

characterization of sleep disordered breathing (SDB), we compared 49 patients

with sleep apnea to healthy controls and revealed a severity-depending increase in

ambiguity and decrease in stability during non-rapid eye movement (NREM) sleep.

Moreover, using autoscoring of cardiorespiratory signals, we show how HSAT-

derived apnea-hypopnea index and hypoxic burden are well correlated with the

PSG indices in 80 patients, showing how using this technology can truly enable

HSATs as alternatives to PSG to diagnose SDB.

KEYWORDS

hypnogram, hypnodensity, sleep stage ambiguity, sleep stage continuity, machine

learning, cardiorespiratory sleep staging, hypoxic burden

Introduction

Human sleep stage scoring was developed to summarize the information of

electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG)

correlates of normal sleep for healthy subjects (Rechtschaffen and Kales, 1968). These

neurological signals provide the basic information requisite for visually differentiating

sleep stages in 30-second epochs. Currently, the recommended rules are summarized in

the Manual for the Scoring of Sleep and Associated Events (Version 3) published by the

American Academy of SleepMedicine (Troester et al., 2023). In older subjects and in patients

with sleep disturbances, ambiguous epochs are created by intrusions, translocations, or

migrations of specific patterns (Keenan et al., 2013). Consequently, visual sleep scoring, even

by well-trained and experienced scorers, retains a degree of subjectivity. Limited interrater
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reliability is well documented and repeatedly reported (Danker-

Hopfe et al., 2004, 2009; Penzel et al., 2013; Rosenberg and Van

Hout, 2013; Younes et al., 2016; Cesari et al., 2021; Lee et al., 2022).

Recently, we have shown in three different datasets scored by six,

nine, and twelve scorers, that sleep stage ambiguity is the rule rather

than the exception and that sleep stage probabilities calculated

with artificial intelligence (AI) provide an excellent estimate of this

ambiguity (Bakker et al., 2023). These sleep stage probabilities,

whether based on multiple manual scorings or on autoscoring

can be plotted in pseudo colors and have been referred to as

hypnodensity graph by Stephansen et al. (2018).

In this topic review we explore how modern AI-based

techniques can be used to describe human scoring ambiguity,

and how it can be further leveraged to characterize SDB and

to unlock the full potential of HSAT. In the first section,

we introduce the concept of hypnodensity as a technique to

represent the probabilities with which sleep experts assign the

5 sleep stages to each epoch. In the second section, we show

how the AI-determined hypnodensity is an excellent estimate of

the hypnodensity determined by multiple manual scorings, thus

providing an estimate of human ambiguity in sleep scoring. In the

third section we provide validation data for hypnodensity-derived

sleep staging, and further evaluate the potential benefits of using

hypnodensity-derived features to quantify sleep stage ambiguity

and stability in patients with sleep apnea. In the fourth section we

compare AI-determined sleep stage probabilities estimated from

cardiorespiratory signals such as those typically recorded in HSAT,

with hypnodensity based on multiple manual scorings. Finally,

in the fifth and last section, we show how AI-based scoring of

cardiorespiratory signals impacts the agreement between SDB-

related sleep parameters derived from reduced montage with those

derived from full PSG in patients with sleep disturbances.

Hypnodensity based on multiple
manual scorings

As discussed recently by Penzel (2022), error rates of 15%

or more are usually accepted for sleep stage scoring. The author

stated that an agreement between sleep stage scorers of 85% is

acceptable, and it gets worrying if the agreement drops below 70%.

However, these values only apply to the comparison between two

scorers. As three or more scorers are compared, the percentage

of complete agreement between the scorers continues to decrease

(Bakker et al., 2023). Figure 1 shows an example of a 30-second

epoch with ambiguity, which can be uncovered by independently

assessing the study by multiple scorers. The example shown in

Figure 1 was taken from a study with independent scorings by

12 human experts. Seven experts scored this epoch as N2, four

as N1 and one scorer scored the epoch as W. In the 50 epochs

during the sleep onset period, as indicated by the arrow in the

top panel of Figure 1, only 2 epochs were unequivocally scored

as W and 4 epochs unequivocally as N2. Thus, during this sleep

onset period, the 12 scorers agreed completely on only 12% of

the epochs (6 out of 50 epochs). The left part of Figure 2 shows

the 12 hypnograms for the study used in the example of Figure 1.

The hypnograms are sorted from scorer 1 to scorer 12, and epochs

where each scorer disagrees with at least one of the upper scorer(s)

are grayed out. As it can be seen, that while scorers 1 and 2 agree

for 75.6% of the epochs, the percentage of epochs with complete

agreement decreases continuously with each additional scorer. The

final set of twelve scorers only reach complete agreement for 36.9%

of the epochs (390 out of 1,057 epochs). The right part of Figure 2

presents the sleep stage probabilities as hypnodensity graphs based

on aggregated scorers: the first graph corresponds to the first scorer

(top graph with probabilities of 0 or 1), the second graph, to

the first and second scorers (with probabilities 0 or 1 for epochs

with agreement or 0.5 for epochs with disagreement) and so on,

until the second graph from the bottom, with the probabilities

based on all 12 manual scorings. Note that in this example, not

a single epoch of N1 and N3 was scored unequivocally by all 12

experts. Furthermore, only isolated epochs N2 have been scored

with complete agreement. Longer periods of complete agreement

are mostly found in epochs scored as wake or rapid-eye movement

(REM) sleep.

If multiple manual expert scorings are available for a study, it is

possible to determine a consensus scoring. In this case, consensus

is based on a majority vote. In the 30-second epoch example of

Figure 1, the consensus score would be N2 since 7 out of 12 scorers

assigned this epoch as N2. To avoid ties, one could weigh the

assessments of scorers with a higher agreement with the other

scorers (as measured by Cohen’s kappa) more than the assessments

of scorers with lower agreement (Stephansen et al., 2018). This

approach was used in the examples of Figures 2, 4, resulting in the

consensus scorings shown in the bottom left as hypnograms and in

the bottom right superimposed on the hypnodensity graphs.

Since the amount of agreement progressively displayed in

Figure 2 depends on the order of the scorers, we performed all

possible order permutations across the twelve scorers and averaged

the percentages of epochs with complete agreement. Figure 3 shows

the averaged percentages of complete agreement across scorers for

all 10 studies with 12 scorings, vs. the number of scorers compared.

The number of permutations which depends on the number of

scorers compared is shown in the table on the top. Interestingly,

the decline in agreement can be modeled almost perfectly by a

power function y = axb where y is the percentage of epochs with

complete agreement, x is the number of scorers, a is the coefficient

(in %), and b is the exponent. This model explained almost 100%

of the variance not only for PSG 1 (blue line, corresponds to the

study illustrated in Figure 2) but for each of the 10 PSGs (all R2

> 0.99) with a constant close to 100% and an exponent between

−0.31 and −0.74, depending on the study. The worst complete

agreement between the 12 scorers (16.7%) was found for PSG 5,

where like for PSG 3, the agreement already falls below 50% when

comparing three scorers. Figure 4 illustrates the study PSG 5 in the

same way as PSG 1 was illustrated in Figure 2. Note that there are

only a few isolated epochs of N2 and some epochs of W that have

been scored unequivocally by the 12 experts. In Bakker et al. (2023),

we described that the power functions were very similar also for

two other datasets with 70 PSGs scored by 6 scorers and 15 PSGs

scored by nine scorers, indicating a robust effect independent of

the dataset and the scorers. On average, the exponent of the power

function is close to −0.5 indicating that the scoring agreement

is approximately inversely proportional to the square root of the
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FIGURE 1

Example of an ambiguous sleep epoch during sleep onset (PSG1: OSAS patient, male, 76 years). Upper part (first hour): The trends from top to bottom

are: “Arousals”, arousal events; the hypnogram superimposed on the hypnodensity graph with the color codes W, gray; R, red; N1, cyan; N2, blue; N3,

green; “Resp. Events”, respiratory events; “Leg Movements”, leg movement events. Lower part (30-s window): The signals from top to bottom are:

“REOG” and “LEOG”, right and left EOG; “F4A1”, “F3A2”, “C4A1”, “C3A2”, “O2A1”, and “O1A2”, the six EEG channels; “CHIN”: chin EMG; “P-Flow”: nasal

pressure airflow. This epoch containing an arousal due to a hypopnea was scored as N2 by 7, as N1 by 4 and as W by one out of 12 scorers. Thus,

based on 12 manual scorings the sleep stage probabilities for this epoch are for W: 0.08, for N1: 0.33, for N2: 0.58, for N3: 0.0, and for R: 0.0.

FIGURE 2

A representative example of 12 manually scored hypnograms and the derived hypnodensities (PSG1: OSAS patient, male, 76 years). (A) The individual

hypnograms sorted from scorer 1 to scorer 12 (Manual-1 to Manual-12) where epochs with disagreement to the upper scorer(s) are grayed out. The

bottom hypnogram depicts the consensus scoring based on majority vote. (B) The corresponding hypnodensity graphs based on the sorted scorings

(Manual-1 to Manual-12). Thus, the first hypnodensity graph is based on Manual-1 scoring only, the second on Manual-1 and Manual-2 scorings,

etc. The (two) last hypnodensity graphs are based on all 12 manual scorings where the consensus hypnogram is superimposed on the last

hypnodensity. The color codes are W, gray; R, red; N1, cyan; N2, blue; N3, green. Note that while the agreement between the first two scorers is

75.6%, the agreement decreases continuously with each new scorer included in the comparison so that if 12 scorers are compared the percentage

of epochs with complete agreement is reduced to 36.9%.
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FIGURE 3

Percentage of all epochs with complete sleep staging agreement across 12 scorers in 10 PSGs. The number of scorers compared is shown on the

x-axis; the percentage of complete agreement across the compared scorers is shown on the y-axis. The mean of all possible permutations for

choosing x scorers out of the available scorers are shown for each PSG (colored filled circles) and for the mean of the 10 PSGs (black filled squares).

The table in the upper right corner describes the number of permutations for each combination of scorers. The reduction in complete agreement

alongside the increasing number of scorers follows an almost-perfect power function (dashed lines for each dataset). In addition to the coe�cients

and exponents, the explained variances (R2) are shown. Modeled together, the power function y = axb has a coe�cient aMEAN of 96 and an exponent

bMEAN of−0.45. This function explains more than 99% of the variance.

number of scorers included in the analysis. This means that on

average, the complete agreement drops to 50% when four or more

scorers are compared [100%/sqrt(4)= 50%].

To derive the AASM-recommended sleep parameters, one can

use the consensus hypnogram. Alternatively, all the parameters

could be determined from each of the 12 hypnograms and

subsequently averaged to achieve a more robust estimate of the

patients’ sleep characteristics. Table 1 compares the results for

both approaches for the example study shown in Figure 2 and

demonstrates once more the impact of between-scorer variability

on the derived sleep parameters. As shown in Table 1, the total

sleep time varies between 348 and 408min, the time spent in N1

varies between 23.5 and 134min, the time in N2 varies between

180 and 311.5min, the time in N3 varies between 0 and 67min

and the time in R varies between 22 and 42min, depending on

which expert scored this study. Averaged over the 10 studies with 12

scorers, total sleep time varied between 319 and 390min, the time

in N1 varies between 29 and 127min, the time in N2 varies between

125 and 250, the time in N3 varies between 7 and 56min, and the

time in R varies between 42 and 63min. Since each expert typically

interprets the rules consistently, paired samples t-tests comparing

the parameters based on the two extreme values are all significant

at p < 0.01. Moreover, significant differences in the total sleep time,

and the time spent in each of N1, N2, N3, and R were also found for

many of the 66 possible pairwise comparisons between two scorers.

For example, 15 scorer pairs differed significantly at p < 0.01 in

the scoring of total sleep time. The number of significant t-tests

were 25, 28, 27, and 9 for the time spent in N1, N2, N3, and R,

respectively. Only 5 out of the 66 scorer pairs showed no significant

difference in any of the 5 parameters (i.e., scorer 1 vs. scorer 2,

scorer 1 vs. scorer 6, scorer 2 vs. scorer 3, and scorer 6 vs. scorer 7).

Similar high inter-scorer ranges have been reported by

Magalang et al. (2013) averaged over 15 PSGs scored by 9 experts

(N1: 32 to 111min; N3: 25 to 73min) as well as by Younes et al.

(2018) averaged over 70 PSGs scored by 10 experts (N1: 16 to

155min; N3: 4 to 111min). The consequences of these different

interpretations are certainly significant. Younes et al. (2018) stated

that in nearly all the 70 PSGs, regardless of the average value

obtained from the 10 scorers, stage N1 sleep time could be reported

as well below normal or well above normal just depending on who
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FIGURE 4

Manually scored hypnograms and the derived hypnodensities for the study with the worst agreement between the 12 scorers (PSG5: Hypersomnia

with sleep apnea, male, 78 years). (A) The individual hypnograms sorted from scorer 1 to scorer 12 (Manual-1 to Manual-12) where epochs with

disagreement to the upper scorer(s) are grayed out. The bottom hypnogram depicts the consensus scoring based on majority vote. (B) The

corresponding hypnodensity graphs based on the sorted scorings (Manual-1 to Manual-12). Thus, the first hypnodensity graph is based on Manual-1

scoring only, the second on Manual-1 and Manual-2 scorings, etc. The (two) last hypnodensity graphs are based on all 12 manual scorings where the

consensus hypnogram is superimposed on the last hypnodensity. The color codes are W, gray; R, red; N1, cyan; N2, blue; N3, green. Note that while

the agreement between the first two scorers is 68.2%, the agreement decreases continuously with each new scorer included in the comparison so

that if 12 scorers are compared the percentage of epochs with complete agreement is reduced to 16.7%.

TABLE 1 Sleep parameters derived frommultiple manual scorings (OSAS patient, male, 76 years).

Scorer TST (min) N1 (min) N2 (min) N3 (min) R (min)

Manual-1 356.5 83 231.5 0 42

Manual-2 381.5 74.5 253 21 33

Manual-3 357.5 88 247 0 22.5

Manual-4 387 48 311.5 0 27.5

Manual-5 408 94.5 264 18.5 31

Manual-6 360 53.5 245.5 33.5 27.5

Manual-7 382 83.5 248 19.5 31

Manual-8 370.5 45 228.5 67 30

Manual-9 370.5 23.5 255.5 62.5 29

Manual-10 399 115.5 200 45 38.5

Manual-11 348 96 217 13 22

Manual-12 375.5 134 180 39 22.5

Manual-Mean=Manual-Hypnodensity 374.7 78.3 240.1 26.6 29.7

Manual-Consensus Hypnogram 372.5 62 259 20.5 31

Manual-1 to Manual-12: parameters derived from the twelve individual manual scorings. Manual-Mean: mean value of the 12 parameters, which is equal to parameters derived from the

hypnodensity based on the manual scorings. Manuel-Consensus Hypnogram: parameters derived from the manual consensus hypnogram. Light and dark ocher cells indicate per parameter the

lowest and highest value, respectively; gray cells indicate parameters based on multiple manual scorers.

scored the PSG. Similarly, reported stage N3 sleep time ranged from

zero to high values regardless of average stage N3 sleep time of

the PSG.

To avoid individual scorer bias in the estimation of sleep

parameters, one may make use of multiple expert scorings.

The averaged parameters are given in the penultimate row of

Table 1 (Manual-Mean). Alternatively, these averaged parameters

can be computed directly from the hypnodensity graph by

calculating the area under the sleep stage probability curves of

the respective stages (Manual-Hypnodensity). Note that these

mean parameters are not necessarily equal to the parameters

computed from a majority vote hypnogram. Based on the
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TABLE 2 Overview of sleep staging validation studies with algorithms outputting the hypnodensity graph.

Author, year,
algorithm name

Training dataset Feature extraction /

epoch encoder

Classifier/Sequence
encoder

Test dataset Cohen’s κ Hypnodensity

Stephansen et al. (2018)

Stanford-STAGES

Cohort: N= 2,784; 10 cohorts EEG, EOG, EMG: Cross-correlation

encoding+CNN

Unidirectional LSTM Cohort: N= 70; IS-RC, 6 scorers 0.75

Cesari et al. (2021)

Stanford-STAGES

Stanford-STAGES algorithm Cohort: N= 1,066; SHIP,

2 scorers

0.68

Vallat and Walker (2021)

YASA

Cohort: N= 3,163;

7 cohorts

EEG, EOG, EMG (time-domain

features and spectrogram)

LightGBM HC: N= 25; DOD-H, 5 scorers

PAT(OSA): N= 55; DOD-O,

5 scorers

0.80

0.77

Anderer et al. (2022b)

Somnolyzer

Cohort: N= 588; SIESTA (7

sleep centers)

2–6 scorers

EEG, EOG, EMG (Sleep/wake

related features)+MLP/CNN

bidirectional LSTM (→RandK)+

CNN+ unidirectional

LSTM (→AASM)

Cohort: N= 426; ABC, homePAP, MESA, 1

scorer

0.74

Bakker et al. (2023)

Somnolyzer

Somnolyzer algorithm Cohort: N= 70; IS-RC, 6 scorers

PAT: N= 15; SAGIC, 9 scorers

PAT: N= 10;Somnoval,12 scorers

0.78

0.75

0.76

ICC: 0.91

ICC: 0.91

ICC: 0.91

Cesari et al. (2022)

Stanford-STAGES

Stanford-STAGES algorithm PAT (Narcolepsy type1 and 2, idiopathic

hypersomnia, subjective EDS): N= 143,

1 scorer

0.75

Cesari et al. (2022)

YASA

YASA algorithm 0.76

Brandmayr et al. (2022)

ENGELBERT

HC: N= 20;Sleep-EDF-20

HC: N= 78;Sleep-EDF-SC

Cohort: N= 62;MASS-SS3

Single-channel EEG (raw signal)+

CNN

Local MHSA on overlapping

windows

HC: N= 20; Sleep-EDF-20 (CV)

HC: N= 78; Sleep-EDF-SC (CV)

Cohort: N= 62; MASS-SS3 (CV)

0.82

0.79

0.80

Fiorillo et al. (2023b)

DeepSleepNet-Light

Cohort: N= 70; IS-RC, 6

scorers

HC: N= 25; DOD-H, 5

scorers

PAT (OSA): N= 55; DOD-O,

5 scorers

Single-channel EEG (raw signal)+

CNN

Deep CNN (Soft consensus label

smoothing)

Cohort: IS-RC, 6 scorers (CV)

HC: DOD-H, 5 scorers (CV)

PAT (OSA): DOD-O,5 scorers (CV)

0.67

0.76

0.71

ACS: 0.85

ACS: 0.91

ACS: 0.89

Fiorillo et al. (2023b)

Simple Sleep Net

EEG, EOG, EMG (spectrogram)+

bidirectional GRU+ Attention

Layer

Bidirectional GRU (Soft consensus

label smoothing)

Cohort: IS-RC, 6 scorers (CV)

HC: DOD-H, 5 scorers (CV)

PAT (OSA): DOD-O,5 scorers (CV)

0.73

0.84

0.80

ACS: 0.82

ACS: 0.91

ACS: 0.91

Cohort, cohort study; HC, healthy controls; PAT, patients with sleep disturbance; OSA, patients with obstructive sleep apnea; PD, Parkinson’s Disease; IS-RC, Research study on sleep disordered breathing in women in midlife, University of Pennsylvania, Philadelphia;

SIESTA, SIESTA sleep database; Somnoval, Somnolyzer validation study dataset; Sleep-EDF, Sleep-EDF Database Expanded; DOD-H, Dreem Open Dataset – Healthy Volunteers; DOD-O, Dreem Open Dataset – Obstructive Sleep Apnea Patients; homePAP, Home

Positive Airway Pressure study; ABC, Apnea, Bariatric surgery, and CPAP study; SHIP, Study of Health in Pomerania; MESA, Multi-Ethnic Study of Atherosclerosis; SAGIC, Sleep Apnea Genetics International Consortium, The Ohio State University Medical Center,

Columbus; CNN, Convolutional neural network; LSTM, long short-term memory; MLP, multilayer perceptron; LightGBM, decision tree-based gradient-boosting machine; decision tree; MHSA, Multi-head self-attention.
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consensus hypnogram (last line in Table 1) the time in N1

is 62min, while the time in N1 is 78.3min (+16.3min)

if averaged across the times derived from each of the 12

hypnograms or if the N1 probabilities of the hypnodensity

curve are integrated. Specifically, the time in N1 is typically

underestimated if the parameters are derived from a consensus

scoring, since the epoch-by-epoch agreement for stage N1 is

generally low between manual scorers. Given the wide variability

in the interpretation of the recorded neurological signals by

manual experts, it is highly questionable to rely on a single

expert’s assessment. Furthermore, none of the 12 hypnograms

or the consensus hypnogram provide insights into this inter-

scorer variability. In contrast, the hypnodensity reflects sleep stage

ambiguity while retaining all the information contained in a

consensus hypnogram.

Hypnodensity based on autoscoring
using neurological signals

Autoscoring with artificial intelligence enables the direct

quantification of sleep stage ambiguity by determining sleep stage

probabilities for each epoch. Based on these probabilities, it is

possible to create a hypnodensity chart from autoscoring which

can be directly compared to the hypnodensity chart based on

multiple expert scorings. In Table 2 we summarize publications

using AI-algorithms for sleep staging and reporting autoscored

hypnodensity graphs (Stephansen et al., 2018; Cesari et al.,

2021, 2022; Vallat and Walker, 2021; Anderer et al., 2022b;

Brandmayr et al., 2022; Bakker et al., 2023; Fiorillo et al., 2023b).

In addition to information regarding the training datasets, the

epoch encoder including feature extraction, the sequence encoder

and classifier, and the test datasets, the Cohen’s kappa values

obtained in each study are given. Two publications describe

quantitative comparisons between the hypnodensity graph derived

from autoscoring vs. the hypnodensity graph derived from

multiple manual scorings. Bakker et al. (2023) computed the

intra-class correlation coefficient (ICC) for absolute agreement

between the probability curves from auto and manual scoring

per sleep stage as well as overall sleep stages for the entire

night, while Fiorillo et al. (2023b) computed the cosine similarity

between the probability values from auto and manual scoring

per 30-s epoch and averaged these values over the entire

night resulting in average cosine similarity (ACS) measures.

As can be seen in Table 2, both approaches indicate a high

agreement between the autoscored and the manually derived

hypnodensity graphs with an ICC of 0.91 and an ACS of up

to 0.91.

The Stanford-STAGES, YASA, Somnolyzer and Simple Sleep

Net algorithms use EEG, EOG and chin EMG channels as inputs,

while the ENGELBERT and DeepSleepNet-Light algorithms are

based on a single EEG channel only, offering sleep staging for

reduced montage recordings. The Somnolyzer autoscoring system

uses all recorded frontal, central and occipital EEG channels,

left and right EOG channels, as well as the chin EMG channel

for feature extraction. Somnolyzer feature extraction includes

identification of artifacts, detection of slow waves, k-complexes,

sleep spindles, and episodes with alpha waves, determination of

the EEG background activities (delta, theta, alpha, slow and fast

beta activities) based on the EEG channels. EOG channels were

used for detecting slow and rapid eye movements as well as eye-

blinks. The chin EMG channel was used to detect tonic and

transient EMG activities (Anderer et al., 2005, 2010). The original

Somnolyzer algorithm (Version 1.7; 2005) was developed according

to the criteria defined by Rechtschaffen and Kales (1968) (R&K)

and subsequently modified (Version 1.8; 2009) to comply with

the AASM 2007 criteria (Iber et al., 2007). For version 4.0 of

Somnolyzer released commercially in 2021, a supervised deep

learning algorithm was used to train a neural network where 472

PSGs from the SIESTA database (Klosch et al., 2001) were used

for parameter optimization, and the remaining 116 PSGs were used

for early-stopping to prevent the model from overfitting. Each PSG

was scored by two independent technologists and one consensus

scorer chosen from a pool of 30 scorers to obtain R&K sleep

stage probabilities as training targets. This corresponds to the soft

consensus labels smoothing approach using an alpha coefficient of 1

as presented by Fiorillo et al. (2023b). The categorical cross-entropy

between the sleep stage probabilities and the network output with

softmax activation was used as loss function during the training.

In a further step, arousals, sleep spindles, and k-complexes were

added to the feature set and a convolutional neural network (CNN)

followed by a bidirectional long short-term memory (LSTM) layer

was trained using data from 72 PSGs scored according to AASM

criteria to sub-classify NREM sleep stages.

The final Somnolyzer network output assigned AASM-related

sleep stage probabilities of W, N1, N2, N3, R to each 30-sec

epoch. Figures 5, 6 compare the hypnodensity derived from the

12 manual scorings with the hypnodensity determined by the

Somnolyzer autoscoring system for the two studies shown in

Figures 2, 4, respectively. As can be seen in the examples from this

independent test set, the sleep stage probabilities of Somnolyzer

match almost perfectly with the sleep stage probabilities based on

the 12 human scorings. The ICCs for absolute agreement between

the two probability curves are 0.97 for PSG 1 (Figure 5) and 0.89 for

PSG 5 (Figure 6). Also note the high similarity in the probability

curves for each sleep stage. In Figure 5, we highlighted 6 periods.

Box 1 comprises sleep onset with a change from W to a small

amount of N1 probability at the start, back to definite W, and

then with increasing N1 probability via sleep onset, which is the

first epoch with sleep probability higher than wake probability

(solid line), to definite sleep with N1+N2 probability above 0.95

with approximately equal amount of N1 and N2 probability at

the end of the box 1. Note that just before the end of box 1,

there are epochs which were assigned still as W by some scorers,

while others assigned these epochs already as N2 sleep. Boxes 2,

3, 4, and 6 indicate periods where at least two experts scored N3.

Note that the N3 probabilities derived from autoscoring follow the

N3 probabilities derived from the 12 manual scorings not only in

respect to the timing, but also in respect to the amount, with the

highest N3 probability reaching 0.75 (8 out of 12 scorers) in box

3 and the lowest at 0.17 (2 out of 12 scorers) in box 2. Finally,

also for the R probabilities (box 5) the manually- and autoscoring-

based curves match in terms of time and magnitude. Interestingly,

even for the study with the worst agreement between scorers, the

manually- and autoscoring-based probability curves match closely

(Figure 6).
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FIGURE 5

A representative example comparing the hypnodensities derived from 12 manual scorings (A) and from autoscoring (B) for the same PSG shown in

Figure 2 (PSG1: OSAS patient, male, 76 years). The color codes are W, gray; R, red; N1, cyan; N2, blue; N3, green. The time period depicted in box 1

highlights the sleep onset period with the actual sleep onset at Wprob <0.5 indicated as solid line; Boxes 2, 3, 4, and 6 indicate time periods where at

least 2 scorers have scored N3; Box 5 indicate the time period where at least one scorer has scored R. Note the similarity of the manually-derived

and the autoscoring-derived sleep stage probabilities.

As presented in Bakker et al. (2023) the ICCs for absolute

agreement between sleep stage probabilities derived from manual-

and Somnolyzer autoscoring were, on average 0.91 for all stages for

all three datasets with multiple scorers (Table 2). For the individual

sleep stages the ICCs were as follows: 0.93-0.94 for stage W; 0.72–

0.74 for stage N1; 0.88–0.89 for stage N2; 0.85–0.94 for stage N3;

and 0.96–0.97 for stage R. Thus, according to the thresholds defined

by Koo and Guideline (2016) the probability curves for all stages, as

well as for individual stages W and R show excellent agreement;

good agreement for stages N2 and N3; and, moderate agreement

even for stage N1.

The hypnodensity graph based on the manual scorers shown

in Figure 5 clearly indicates that although all experts follow the

well-established AASM rules for scoring PSGs, the interpretation

of the rules may, and often does vary substantially between scorers,

specifically for epochs or events with equivocal features (Rosenberg

and Van Hout, 2013; Younes et al., 2016, 2018). Experts, when

scoring these epochs, may be biased toward sensitivity or specificity,

probably depending on their internal representation of the features

(i.e., their personal feature template or prototype). As soon as the

features in the epoch are close enough to their subjective template,

the scorer will score this epoch accordingly. Consequently, if the

following epoch shows features that are similar or even closer to

their template, the scorers will continue to score the same sleep

stage. This also explains the gradual increase in epochs scored

as sleep (box 1) or in epochs scored as N3 (boxes 3 and 4). If

the features never match close enough their personal template of

slow wave sleep, scorers may never even start scoring N3 in the

entire recording, which is the case for scorers 1, 3, and 4 in the

recording shown in Figure 5 (see also Table 1). In contrast, scorers

8 and 9 have obviously a very sensitive template of slow wave

sleep resulting in 4 periods of slow wave sleep with a total time in

N3 of more than 1 h (Table 1). Younes et al. (2018) showed that

some technologists scored stage N3 sleep when delta wave duration

was well below 6 s whereas for others much greater durations

were required.
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FIGURE 6

Comparison between the hypnodensities derived from 12 manual scorings (A) and from autoscoring (B) for the PSG with the worst agreement

between manual scorers (PSG5: Hypersomnia with sleep apnea, male, 78 years). The color codes are W, gray; R, red; N1, cyan; N2, blue; N3, green.

Note the similarity of the manually-derived and the autoscoring-derived sleep stage probabilities.

Interestingly, by varying sensitivity settings, an autoscoring

can mimic these different interpretations. The Somnolyzer

autoscoring system has the option to select different sensitivities

for arousal, spindle/k-complex, slow wave, apnea and hypopnea

event detection. In Anderer et al. (2022b) we reported the effects

of changing these sensitivity settings in a study based on 10 PSGs

from 10 apnea patients (5 diagnostic-, 2 titration- and 3 split-

nights) each scored independently by 8 experts. Sleep parameters

derived from the manual scorings varied considerably between the

8 scorers (time in N1: 29–127min, time in N2: 125–209min, time

in N3: 19–56min, time in R: 42–63min). With the default (=

balanced) setting, Somnolyzer autoscoring was close to the mean

of the 8 manual scorings (time in N1: 82 and 85min, time in

N2: 184 and 176min, time in N3: 41 and 42min, time in R: 59

and 56min, for the Somnolyzer scoring and the mean of the 8

manual scorings, respectively). Moreover, by varying the sensitivity

settings in 5 steps (frommaximal precision to maximal sensitivity),

the autoscoring perfectly mimicked the variability observed in

the 8 manual scorers. Thus, by merely varying the sensitivity

settings, the inter-scorer variability observed in manual scorings

can be explained. Furthermore, the high agreement between the

hypnodensity based on the manual scorings and the autoscoring

indicates that the 30 scorers who participated in the scoring of

our training set covered the full spectrum from maximal sensitivity

to maximal precision. In a recent paper on interpretation and

further development of the hypnodensity, Huijben et al. (2023)

concluded based on theoretical analyses and empirical evidence

that the hypnodensity graph, predicted by a classifier that had

been trained in a supervised manner, resembles the inter-rater

disagreement across the scorers that annotated the PSGs of the

training set. Consequently, training sets used to develop classifiers

for sleep staging have to be scored by experts covering the

full spectrum from highly sensitive to highly precise within the

AASM scoring rules in a sufficiently large sample of subjects

of both sexes, including healthy controls and a wide range of

patients with different sleep disturbances, to ensure that the

hypnodensity output of the trained neural network reflects this

full spectrum.
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Hypnodensity-derived sleep stages
and parameters

Based on the hypnodensity, a sleep stage can be assigned as

the stage with the highest probability (argmax). The Somnolyzer

algorithm, however, uses a hierarchical approach to assure that for

instance epochs with a higher probability for sleep than for wake

are scored as sleep, even if the probability for wake is higher than

for any individual sleep stage. In the hierarchical approach a sleep

stage is assigned to each epoch as follows: if the wake-probability

was > 0.5, assign W; else if the REM-probability was higher than

the NREM probability (sum of the probabilities of N1, N2, and

N3), assign R; else if the N3-probability was higher than the sum of

the N1- and N2-probabilities, assign N3; else if the N2-probability

was higher than the N1-probability, assign N2; otherwise assign

N1. In an additional post-processing step, Somnolyzer enforces the

AASM smoothing rules for scoring R as well as N2, based on the

occurrence (start and duration) of arousals, sleep spindles and K

complexes (Troester et al., 2023).

A validation study of the Somnolyzer algorithm by Anderer

et al. (2022b) with 426 PSGs (224 PSGs from theMESA study (Chen

et al., 2015), 178 PSGs from theHomePAP study (Rosen et al., 2012)

and 24 PSGs from the ABC study (Bakker et al., 2018) scored by one

scorer resulted in a Cohen’s kappa between Somnolyzer autoscoring

and manual scoring of 0.739 (with a 95% confidence interval of

0.737 to 0.741), reflecting substantial agreement according to the

thresholds defined by Landis and Koch (1977). In agreement with

human inter-rater reliability studies, the highest kappa values were

observed for wake and REM detection (0.85 and 0.87) followed by

N2 and N3 detection (0.72 and 0.73), while the detection of N1

resulted in the lowest kappa value of 0.46.

Another Somnolyzer validation study based on the three

external datasets scored by six, nine, and twelve scorers,

demonstrated for each dataset that the agreement between

autoscoring and consensusmanual-scoring was significantly higher

than agreement between manual-scoring and consensus manual-

scoring (Bakker et al., 2023). In the dataset with 70 PSGs and 6

scorers, autoscoring achieved a Cohen’s kappa of 0.78, vs. 0.69

for manual scorings; for the dataset with 15 PSGs and 9 scorers,

autoscoring achieved 0.74 vs. 0.67 for manual scorings; and for the

dataset with 10 PSGs and 12 scorers, 0.75 vs. 0.67 (all p < 0.01).

As shown by the authors in supplementary tables, the percentage

of agreement between autoscoring and consensus scoring was 85,

83 and 83% for the three studies. Thus, in 15–17% of the epochs,

Somnolyzer disagreed with the consensus. However, in almost all

of these epochs at least one scorer disagreed with the consensus and

more importantly, autoscoring agreed in these cases with at least

one of the deviating scorers. By considering as a correct detection,

all epochs where autoscoring and at least one manual scorer agreed,

the percentage of agreement increases to 97.9, 98.3, and 99.1% for

the three datasets with 6, 9, and 12 scorers. In addition, the authors

showed that sleep staging derived from autoscoring was for each

individual PSG non-inferior to manual-scoring.

Many AI-based sleep scoring algorithms have been developed

and validated in the last few years. In Tables 3, 4 we summarize

publications using AI-algorithms for sleep staging based on

neurological signals that reported Cohen’s kappa for the 5-stage

comparison. Note the large difference in the size of the training

data (between 10 and more than 15,000 PSGs) as well as in the size

of the test data (between 8 and close to 3000). Table 3 summarizes

validation results of AI-algorithms that applied a hold-out or cross-

validation; i.e., an internal validation based on data from the same

dataset that has been used for training (Supratak et al., 2017; Sors

et al., 2018; Phan et al., 2019; Zhang et al., 2019; Abou Jaoude et al.,

2020; Guillot et al., 2020; Korkalainen et al., 2020; Sun et al., 2020a;

Alvarez-Estevez and Rijsman, 2021; Fiorillo et al., 2021, 2023b; Jia

et al., 2021; Nasiri and Clifford, 2021; Olesen et al., 2021; Pathak

et al., 2021; Vallat and Walker, 2021; Brandmayr et al., 2022; Cho

et al., 2022; Ji et al., 2022; Li C. et al., 2022; Li T. et al., 2022; Sharma

et al., 2022; Yubo et al., 2022). Table 4 summarizes the validation

results of AI-algorithms which have been validated in datasets

completely unseen by the model (Anderer et al., 2018, 2022b;

Biswal et al., 2018; Patanaik et al., 2018; Stephansen et al., 2018;

Zhang et al., 2019; Abou Jaoude et al., 2020; Alvarez-Estevez and

Rijsman, 2021; Cesari et al., 2021, 2022; Vallat and Walker, 2021;

Bakker et al., 2023). The reported Cohen’s kappa values ranged

between 0.60 [external validation in 70 patients with Parkinson’s

disease (Patanaik et al., 2018)] to 0.91 [internal 20-fold epoch-

wise cross validation in 8 healthy subjects (Li C. et al., 2022)].

Cohen’s kappa values reported for the 45 internal validation studies

using hold-out or cross-validation were significantly higher than

for the 19 studies using external test sets for validation (0.79 ±

0.04 vs. 0.72 ± 0.06; p < 0.001 independent samples t-test). In

all studies that reported Cohen’s kappa for both, an internal and

an external test set the kappa for the internal testing was always

higher than for the external testing (Zhang et al., 2019; Abou

Jaoude et al., 2020; Alvarez-Estevez and Rijsman, 2021; Vallat and

Walker, 2021). Moreover, in studies reporting Cohen’s kappa for

patients and for healthy controls, the kappa for controls was always

higher than for patients (Supratak et al., 2017; Guillot et al., 2020;

Korkalainen et al., 2020; Vallat and Walker, 2021; Ji et al., 2022;

Yubo et al., 2022). Accordingly, Korkalainen et al. (2020) reported a

decrease in Cohen’s kappa depending on OSA severity in a clinical

dataset of 891 patients, with a kappa of 0.79 for individuals without

OSA diagnostic (n = 152) to a kappa of 0.68 for patients with

severe OSA (n = 254). Consequently, performance measures of

sleep stage validation studies need to be interpreted depending on

the validation method used and the characteristics of the subjects

included in the test dataset.

Table 2 summarizes the kappa values for the 20 validation

studies of the 6 AI-based autoscoring algorithms outputting the

hypnodensity graph (Stephansen et al., 2018; Cesari et al., 2021,

2022; Vallat and Walker, 2021; Anderer et al., 2022b; Brandmayr

et al., 2022; Bakker et al., 2023; Fiorillo et al., 2023b). As can be

seen in Table 2, Cohen’s kappa for the 5-stage comparison was

comparable between the six algorithms. Stephansen et al. (2018),

Bakker et al. (2023) and Fiorillo et al. (2023b) validated their

algorithms in the same IS-RC cohort and reported, as compared

to the consensus of 6 scorers, kappa values between 0.67 and

0.78. Cesari et al. (2022) compared the Stanford-STAGES and

YASA algorithm in a dataset of patients with central disorders

of hypersomnolence and reported almost identical kappa values

for the two algorithms (0.747 and 0.755 for Stanford-STAGES

and YASA, respectively). These findings suggest that modern
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TABLE 3 Overview of sleep staging validation studies with AI-algorithms providing Cohen’s kappa based on internal validation.

Author, Year Name Training dataset Input signals Test dataset Cohen’s κ

Supratak et al. (2017)

DeepSleepNet

Cohort: N= 62; MASS

HC: N= 20; Sleep-EDF

Single-channel EEG Cohort: MASS (CV)

HC: Sleep-EDF (CV)

0.80

0.76

Sors et al. (2018) Cohort: N= 5,793; SHHS Single-channel EEG Cohort: N= 1738; SHHS

(HO)

0.81

Phan et al. (2019)

SeqSleepNet

Cohort: N= 200; MASS EEG, EOG, EMG Cohort: MASS (CV) 0.82

Zhang et al. (2019) Cohort: N= 5,213; SHHS EEG, EOG, EMG Cohort: N= 580; SHHS (HO) 0.82

Sun et al. (2020a) Cohort: N= 147; MASS EEG, EOG, EMG Cohort: MASS (CV) 0.80

Guillot et al. (2020)

SimpleSleepNet

HC: N= 25; DOD-H, 5 scorers

PAT (OSA): N= 55; DOD-O, 5

scorers

EEG, EOG, EMG HC: DOD-H, 5 scorers (CV)

PAT (OSA): DOD-O, 5

scorers (CV)

0.85

0.82

Korkalainen et al. (2020) HC: N= 153; Sleep-EDF

PAT (OSA): N= 891; Clinical

Dataset

Single-channel EEG (and

single-channel EOG)

HC: Sleep-EDF (CV)

PAT (OSA): Clinical datsaset

(CV)

0.78

0.78

Abou Jaoude et al. (2020) PAT: N= 6,341; MGH 4 EEG channels PAT: N= 791; MGH (HO) 0.74

Alvarez-Estevez and Rijsman

(2021)

Cohort: N= 443; 6 datasets EEG, EOG, EMG (raw signal)

+ CNN

Cohort: N= 88 (HO) 0.80

Olesen et al. (2021) Cohort: N= 15,684; 5 cohorts EEG, EOG, EMG Cohort: N= 1,584 (HO) 0.80

Vallat and Walker (2021)

YASA

Cohort: N= 3,163; 7 cohorts EEG, EOG, EMG Cohort: N= 585 (HO) 0.82

Nasiri and Clifford (2021) PAT: N= 994; PhysioNet 6 EEG channels PAT: PhysioNet (CV) 0.75

Fiorillo et al. (2021)

DeepSleepNet-Lite

HC: N= 39; Sleep-EDF 2013

HC: N= 153;Sleep-EDF 2018

Single-channel EEG HC: Sleep-EDF 2013 (CV)

HC: Sleep-EDF 2018 (CV)

0.78

0.73

Pathak et al. (2021) Cohort: N= 5,793; SHHS

PAT: N= 1418; Clinical

EEG, EOG, EMG Cohort: N= 579; SHHS (HO)

PAT: N= 142; Clinical (HO)

0.79

0.68

Jia et al. (2021) HC: N= 10; ISRUC-S3

HC: N= 62; MASS-SS3

EEG (6 channels ISRUC, 20

channels MASS)

HC: ISRUC (CV)

HC: MASS (CV)

0.77

0.84

Li T. et al. (2022) HC: N= 61; Sleep-EDF 2013

HC: N= 197;Sleep-EDF 2018

Single-channel EEG HC: Sleep-EDF 2013 (CV)

HC: Sleep-EDF 2018 (CV)

0.78

0.74

Ji et al. (2022) HC: N= 10; ISRUC-S3

PAT: N= 100; ISRUC-S1

EEG, EOG, EMG, ECG HC: ISRUC-S3 (CV)

PAT: ISRUC-S1 (CV)

0.78

0.77

Li C. et al. (2022)

EEGSNet

HC: N= 8; Sleep-EDF-8

HC: N= 39; Sleep-EDF-20

HC: N= 153; Sleep-EDF-78

Cohort: N= 329; SHHS

Single-channel EEG HC: Sleep-EDF-8 (CV)

HC: Sleep-EDF-20 (CV)

HC: Sleep-EDF-78 (CV)

Cohort: SHHS (CV)

0.91

0.82

0.77

0.79

Sharma et al. (2022) Cohort: N= 8,455; SHHS EEG, EOG, EEG Cohort: N= 580; SHHS1

(HO)

Cohort: N= 2651; SHHS2

(HO)

0.77

0.80

Cho et al. (2022)

StageNet

PAT: N= 530; Clinical dataset EEG, EOG, EMG PAT: N= 72, Clinical dataset

(HO)

0.84

Yubo et al. (2022)

MMASleepNet

HC: N= 39; Sleep-EDF-20

HC: N= 153; Sleep-EDF-78

HC: N= 10; ISRUC-Sleep3

PAT: N= 100; ISRUC-Sleep1

EEG, EOG, EMG HC: Sleep-EDF-20 (CV)

HC: Sleep-EDF-78 (CV)

HC: ISRUC-Sleep3 (CV)

PAT: ISRUC-Sleep1 (CV)

0.83

0.76

0.77

0.73

Brandmayr et al. (2022)

ENGELBERT

HC: N= 20; Sleep-EDF-20

HC: N= 78; Sleep-EDF-SC

Cohort: N= 62; MASS-SS3

Single-channel EEG HC: N= 20; Sleep-EDF-20

(CV)

HC: N= 78; Sleep-EDF-SC

(CV)

Cohort: N= 62; MASS-SS3

(CV)

0.82

0.79

0.80

(Continued)
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TABLE 3 (Continued)

Author, year Name Training dataset Input signals Test dataset Cohen’s κ

Fiorillo et al. (2023b)

DeepSleepNet-Light

Cohort: N= 70; IS-RC, 6 scorers

HC: N= 25; DOD-H, 5 scorers

PAT (OSA): N= 55; DOD-O, 5

scorers

Single-channel EEG Cohort: IS-RC, 6 scorers (CV)

HC: DOD-H, 5 scorers (CV)

PAT (OSA): DOD-O, 5

scorers (CV)

0.67

0.76

0.71

Fiorillo et al. (2023b)

Simple Sleep Net

Cohort: N= 70; IS-RC, 6 scorers

HC: N= 25; DOD-H, 5 scorers

PAT (OSA): N= 55; DOD-O, 5

scorers

EEG, EOG, EMG Cohort: IS-RC, 6 scorers (CV)

HC: DOD-H, 5 scorers (CV)

PAT (OSA): DOD-O, 5

scorers (CV)

0.73

0.84

0.80

N-studies 45

Cohen’s κ Mean± SD 0.79± 0.04

Min 0.67

Max 0.91

Internal validation, CV, cross-validation; HO, hold-out validation; Cohort, cohort study; HC, healthy controls; PAT, patients with sleep disturbance; OSA, patients with obstructive sleep apnea;

MASS, Montreal Archive of Sleep Studies; Sleep-EDF, Sleep-EDF Database Expanded; SHHS, Sleep Heart Health Study; MGH, Massachusetts General Hospital; IS-RC, Research study on sleep

disordered breathing in women in midlife, University of Pennsylvania, Philadelphia; DOD-H, Dreem Open Dataset – Healthy Volunteers; DOD-O, Dreem Open Dataset – Obstructive Sleep

Apnea Patients; PhysioNet, PhysioNet database resources; ISRUC, ISRUC-SLEEP Dataset.

AI-based autoscoring systems offer valid alternatives to manual

expert scoring and that the role of manual adjustment and expert

review of automatic scorings might no longer be required.

While the most obvious application of the hypnodensity

is the determination of the traditional sleep stages, additional

information may be derived from the sleep stage probabilities.

Stephansen et al. (2018) extracted features from the hypnodensity

in patients with narcolepsy by quantifying sleep stage

mixing/dissociation. Examples for these features are the time

taken before 5% of the sum of the product between W, N2, and

REM, calculated for every epoch, has accumulated, weighted

by the total amount of this sum or the time taken before

50% of the wakefulness in a rerecording has accumulated,

weighted by the total amount of wakefulness. In addition to

these hypnodensity-derived features describing unusual sleep

stage overlaps, the authors added features expected to predict

narcolepsy based on prior knowledge, such as REM sleep latency

and sleep stage sequencing parameters. By means of a Gaussian

predictor classifier they achieved a specificity of 96% and a

sensitivity of 91% for classifying narcolepsy type-1 as validated in

independent datasets. In a more recent study, Cesari et al. (2022)

investigated whether biomarkers describing sleep instability and

architecture derived from both manual hypnogram and automatic

hypnogram and hypnodensity graphs might differentiate between

distinct disorders of hypersomnolence, such as narcolepsy type-

1, narcolepsy type-2, idiopathic hypersomnia and subjective

excessive daytime sleepiness. They extracted features from

manual and automatic hypnograms, such as standard features,

transition features, bouts features, features describing stability and

fragmentation of sleep stages as well as the distribution of sleep

stages across the night, and REM sleep-specific features such as

the number of nightly sleep onset REM periods. In addition, they

extracted features from the hypnodensity, including the features

proposed by Stephansen et al. (2018) and features reflecting

certainty and amount of sleep stages per epoch and across the

night. Their results confirmed narcolepsy type-1 specific sleep

structure which made it possible to discriminate narcolepsy

type-1 from the other groups with high performance (88%

accuracy) and narcolepsy type-2 from idiopathic hypersomnia

with moderate performance (65% accuracy). Future studies

in larger cohorts are needed to improve the differentiation of

disorders of hypersomnolence, but these preliminary findings

already highlight the promise of hypnodensity in exploiting

sleep stage ambiguity and overlap as clinical hallmarks of certain

sleep disorders.

In a recent study using the Somnolyzer algorithm (Anderer

et al., 2022a), we compared the standard sleep parameters such as

total sleep time (TST), sleep latency (SL), REM latency (REML),

sleep efficiency (SEFF), wake after sleep onset (WASO), and

the time in N1, N2, N3, and R derived from the autoscored

hypnogram, to the standard sleep parameters derived from the

autoscored hypnodensity in young (20 – < 40 years), middle-

aged (40 – < 60 years) and older (60–95 years) healthy controls

from the Siesta database (n = 195, 93 males and 102 females

aged 20 to 95 years). Overall, the hypnogram-derived and the

hypnodensity-derived standard parameters showed very similar

age-related changes. However, the age-related changes based on the

hypnodensity-derived parameters were consistently slightly higher

than the coefficients derived traditionally from the hypnogram.

Moreover, we determined a quantitative measure of sleep

stage ambiguity in percent [100∗(1-p(i)MAX) where p(i)MAX is the

highest sleep stage probability for epoch i] and a measure of sleep

stage continuity in percent [100∗(1-abs(p(i)MAX - p(i+1)MAX)] if

epochs i and i+1 are from the same class. In the case of no

ambiguity, p(i)MAX is 1 and thus the ambiguity for that epoch

is 0%. As can be clearly seen in Figures 5, 6 for both manually-

determined and Somnolyzer-determined sleep stage probabilities,

the vast majority of epochs have a p(i)MAX < 1.0, indicating some

amount of ambiguity. In the case of only small changes in the

hypnodensity between two adjacent epochs the continuity measure

is close to 100%. If the change in the hypnodensity between two

adjacent epochs increases, the continuity measure will decrease

accordingly. Interestingly, sleep stage ambiguity and continuity

showed opposite changes with age for epochs scored as sleep as

compared to epochs scored as wake: in wake, ambiguity decreases

and continuity increases with age, while during sleep, ambiguity
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TABLE 4 Overview of sleep staging validation studies with AI-algorithms providing Cohen’s kappa based on external validation.

Author, Year

Name

Training Dataset Input Signals Test Dataset Cohen’s κ

Biswal et al. (2018) PAT: N= 9,000; MGH 2-6 EEG channels Cohort: N= 580; SHHS 0.73

Patanaik et al. (2018) HC: N= 1,330; Duke-NUS 2 EEG and 2 EOG channels PAT: N= 210; SDU

PAT(PD): N= 77; UCSD

0.74

0.60

Stephansen et al. (2018)

Stanford-STAGES

Cohort: N= 2,784; 10 cohorts EEG, EOG, EMG Cohort: N= 70; IS-RC, 6

scorers

0.75

Anderer et al. (2018)

Somnolyzer

Cohort: N= 588; SIESTA (7 sleep

centers) 2–6 scorers

EEG, EOG, EMG PAT (OSA): N= 97;

Somnoval, 4 scorers

0.79

Zhang et al. (2019) Cohort: N= 5,213; SHHS EEG, EOG, EMG Cohort: N= 461; SOF

Cohort: N= 2,907; MrOS

0.68

0.70

Abou Jaoude et al. (2020) PAT: N= 6,341; MGH 4 EEG channels PAT: N= 243; homePAP

PAT: N= 129; ABC

0.69

0.66

Alvarez-Estevez and Rijsman

(2021)

Cohort: N= 443; 6 datasets EEG, EOG, EMG Cohort: N= 20-154;

inter-cohort performance

0.63

Cesari et al. (2021)

Stanford-STAGES

Cohort: N= 2784; 10 cohorts EEG, EOG, EMG Cohort: N= 1,066; SHIP, 2

scorers

0.68

Vallat and Walker (2021)

YASA

Cohort: N= 3,163; 7 cohorts EEG, EOG, EMG HC: N= 25; DOD-H, 5

scorers

0.80

0.77

Anderer et al. (2022b)

Somnolyzer

Cohort: N= 588; SIESTA (7 sleep

centers) 2–6 scorers

EEG, EOG, EMG Cohort: N= 426; ABC,

homePAP, MESA

0.74

Bakker et al. (2023)

Somnolyzer

Cohort: N= 588; SIESTA (7 sleep

centers); 2–6 scorers

EEG, EOG, EMG Cohort: N= 70; IS-RC, 6

scorers

PAT: N= 15; SAGIC, 9

scorers

PAT: N= 10; Somnoval, 12

scorers

0.78

0.75

0.76

Cesari et al. (2022)

Stanford-STAGES

Cohort: N= 2,784; 10 cohorts EEG, EOG, EMG PAT (hypersomnia): N= 143 0.75

Cesari et al. (2022)

YASA

Cohort: N= 3,163; 7 cohorts EEG, EOG, EMG PAT (hypersomnia): N= 143 0.76

N-studies 19

Cohen’s κ Mean ± SD 0.72 ± 0.06

Min 0.60

Max 0.80

External validation, performance in datasets completely unseen by the model; Cohort, cohort study; HC, healthy controls; PAT, patients with sleep disturbance; OSA, patients with obstructive

sleep apnea; PD, Parkinson’s Disease; SHHS, Sleep Heart Health Study; MGH, Massachusetts General Hospital; Duke-NUS, Medical School, Singapore; SDU, Sleep Disorders Unit, Singapore

General Hospital; UCSD, University of California, San Diego School of Medicine; IS-RC, Research study on sleep disordered breathing in women in midlife, University of Pennsylvania,

Philadelphia; SIESTA, SIESTA sleep database; Somnoval, Somnolyzer validation study dataset; SOF, Study of Osteoporotic Fractures; MrOS, Osteoporotic Fractures in Men study; DOD-H,

DreemOpen Dataset – Healthy Volunteers; DOD-O, DreemOpen Dataset – Obstructive Sleep Apnea Patients; homePAP, Home Positive Airway Pressure study; ABC, Apnea, Bariatric surgery,

and CPAP study; SHIP, Study of Health in Pomerania; MESA, Multi-Ethnic Study of Atherosclerosis; SAGIC, Sleep Apnea Genetics International Consortium, The Ohio State University

Medical Center, Columbus.

increases, and continuity decreases with age. Together with the

significant increase in WASO with age, this means that with

increasing age subjects are awake longer, and these wake periods

are more definite and stable. On the other hand, during sleep,

ambiguity increased, and continuity decreased over age, indicating

more uncertainty and less sleep stability with increasing age. The

highest correlation with age was the increase in ambiguity of epochs

scored as sleep (with a Pearson correlation coefficient of r = 0.62;

p < 0.01) and the highest partial correlation with the arousal

index (controlling for the effect of age) was the decrease in sleep

continuity with increasing arousal index (r = −0.79; p < 0.01)

(Anderer et al., 2022a).

Besides sleep duration, depth, and continuity, sleep restorative

properties depend on the capacity of the brain to create periods of

sustained stable sleep (Parrino et al., 2012). As discussed by Parrino

et al. (2022), NREM sleep is bimodal with stable and instable

periods, or alternatively conceptualized by the authors as effective

and ineffective. Thus, the stability domain has only 2 forms of

NREM sleep—stable and unstable where N3 is usually stable, N1 is

always unstable, but N2 may be stable or unstable. To characterize
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the differences between apnea patients and healthy controls, we

derived further features from the hypnodensity graph to cover

these aspects of sleep physiology: the percentage of ambiguous

NREM and REM epochs, where an epoch is defined as ambiguous

if p(i)MAX is ≤ 0.95; the percentage of stable NREM epochs,

where two adjacent NREM epochs are considered as stable if

(p(i)N2 + p(i)N3) > 0.95 and (p(i+1)N2 + p(i+1)N3) > 0.95; the

percentage of stable REM epochs, where two adjacent REM epochs

are considered as stable if p(i)R > 0.95 and p(i+1)R > 0.95; the

percentage of NREM sleep depth defined as a weighted average

of NREM probabilities: 100∗((p(i)N1 + 2∗p(i)N2 + 4∗p(i)N3))/4).

Table 5 provides the demographic data and the standard sleep

parameters derived from the hypnogram for the controls and the

apnea patients, as well as for the subgroup of mild to moderate

apnea patients (apnea-hypopnea index, AHI < 30) and severe

apnea patients (AHI ≥ 30). The four groups did not differ in age

and sex distribution.When compared to healthy controls the apnea

patients did not differ in total sleep time, sleep efficiency, wake

after sleep onset, sleep latency, REM latency and time in stage

R, but showed increased time in N1 and decreased time in N2

sleep, while the time in N3 sleep was reduced only in patients with

severe apnea.

Figure 7 summarizes the differences in the additional features

between the 3 groups of apnea patients and age- and sex-

matched healthy controls for the 5 NREM-features and the 4

REM-features derived from the hypnodensity graph. Concerning

the differences between mild-to-moderate apnea and controls, we

observed significant increases in the percentage of ambiguous

NREM epochs (67 vs. 53%) and in the amount of the mean

ambiguity (19 vs. 15%) as well as significant decreases in the

percentage of stable NREM epochs (58 vs. 68%). These findings

reflect the reduction of stable NREM sleep in patients with mild-to-

moderate apnea (see also the significant shift from N2 to N1 sleep

in Table 4). In contrast, REM sleep features are not significantly

different between mild-to-moderate apnea and controls. While

standard REM parameters such as REM latency and time and

percentage in stage R are, even in patients with severe apnea,

not significantly different to controls (Table 4), the hypnodensity-

derived REM sleep features show significant increases in ambiguity

and decreases in REM sleep stability in severe apnea (Figure 7).

Parameters not determinable from the classical hypnogram, such

as sleep stage ambiguity, reflecting the uncertainty of manual expert

scorers, as well as sleep stage continuity, reflecting epoch-to-epoch

changes of these uncertainties, may give valuable additional insights

in the effects of different disorders in sleep architecture. A possible

source of this ambiguity captured by the hypnodensity may be sleep

stage shifts occurring within one 30-s epoch. Korkalainen et al.

(2021a) used a deep learning approach based on the traditional

30-s epoch duration as well as based on shorter epoch durations

(15-, 5-, 1-, and 0.5-s) to evaluate differences in sleep architecture

between obstructive sleep apnea (OSA) severity groups. The

authors reported decreases in sleep continuity with increases in

OSA severity using Cox proportional hazards ratio or Kaplan–

Meier survival curves, and these group differences became larger

TABLE 5 Demographic and standard sleep parameters for apnea patients and controls.

Controls Apnea-All Apnea-AHI < 30 Apnea-AHI ≥ 30

N 49 49 18 31

Age (years) 47.4± 15.4 50.8± 9.6 52.6± 8.4 49.8± 10.1

Sex (f/m) 7/42 7/42 4/14 3/28

AHI (#/hr TST) 1.4± 1.3 46.9± 28.7∗ 18.5± 7.4∗ 63.4± 22.8∗

HB (%min/hr TST) 2.4± 3.9 187.6± 196.5∗ 49.4± 32.7∗ 267.9± 207.5∗

ArI (#/hr TST) 15.1± 5.8 39.4± 23.1∗ 21.3± 9.1∗ 50.0± 22.2∗

TST (min) 367.7± 54.9 382.0± 65.7 359.8± 84.3 394.8± 49.1

Sleep latency (min) 27.7± 23.5 25.6± 29.7 34.3± 44.5 20.5± 14.6

REM latency (min) 103.4± 44.2 199.9± 70.9 104.1± 47.3 127.2± 80.6

WASO (min) 80.8± 55.6 86.2± 55.4 102.4± 69.3 76.7± 44.0

Sleep efficiency (%) 77.4± 11.3 77.3± 12.8 72.2± 15.7 80.3± 10.0

N1 (min) 44.8± 22.3 121.7± 71.8∗ 70.6± 30.8∗ 151.3± 72.4∗

N2 (min) 205.4± 42.7 158.8± 63.3∗ 169.4± 62.4∗ 152.7± 65.5∗

N3 (min) 43.2± 30.4 29.4± 24.9 44.3± 22.5 20.7± 22.3∗

R (min) 74.3± 24.6 72.1± 26.7 75.4± 29.5 70.1± 25.2

N1 (% TST) 12.5± 6.5 32.1± 18.0∗ 20.3± 9.3∗ 38.9± 18.4∗

N2 (% TST) 55.8± 8.0 41.1± 13.5∗ 46.0± 9.7∗ 38.2± 14.7∗

N3 (% TST) 11.7± 8.3 8.3± 7.5 13.4± 7.9 5.3± 5.6∗

R (% TST) 20.0± 5.5 18.6± 6.4 20.3± 7.6 17.5± 5.4

∗p < 0.01 as compared to controls. AHI, apnea-hypopnea index; HB, hypoxic burden; ArI, arousal index; TST, total sleep time; WASO, wake after sleep onset.
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FIGURE 7

Di�erences in hypnodensity-derived features between patients with sleep apnea and age- and sex-matched healthy controls (n = 2 × 49). The left

part depicts hypnodensity-derived NREM-features and the right part REM-features for the controls and the three patient groups mild & moderate

apnea with AHI<30 (n = 18), all 49 apnea patients, and severe apnea with AHI≥30 (n = 31). *Indicates significant di�erences based on independent

samples t-tests between patients and controls at p < 0.01.

the shorter the epoch duration used was. The U-sleep model as

presented by Perslev et al. (2021) can evaluate sleep architecture

with even higher temporal resolution of up to 128Hz which

could provide additional diagnostic information and possible

new ways of analyzing sleep. Interestingly, as shown recently by

Fiorillo et al. (2023a) the U-sleep architecture successfully encoded

sleep patterns even from non-recommended electrode derivations

based on a large and heterogeneous dataset of 28,528 PSG

recordings from various sleep centers (Fiorillo et al., 2023a). The

authors wonder, given the criticisms of the AASM rules, the limited

interrater reliability of manual scoring according to these rules, and

the complexity of sleep, whether an unsupervised deep learning

sleep scoring algorithm (i.e., without using manual sleep scorings

as training targets) might be a better approach to describing

human sleep.

Future studies in larger samples of patients with sleep related

respiratory disturbance including measures of clinical outcome

will be necessary to assess the relevance of hypnodensity-derived

features for the development of physiological biomarkers. Of

course, such endeavor should not be limited to apnea patients.

Penzel et al. (2017) suggested that physiological biomarkers

might be appropriate to characterize functional characteristics,

as seen in the variety of sleep disorders. As stated above,

the first promising examples for the construction of narcolepsy

biomarkers including variables derived from hypnodensity have

been already published (Stephansen et al., 2018; Cesari et al.,

2022).

Hypnodensity based on autoscoring
using cardiorespiratory signals

HSAT studies are increasingly used as an alternative to PSG

studies to diagnose SDB (Rosen et al., 2018). While less rich

than the traditional PSG, HSATs are considerably less expensive

due to a reduced cost of equipment and lower setup effort,

enable increased access in remote or underserved areas, higher

patient turnover, are much more comfortable and thus, less

disruptive of sleep, and importantly, enable the opportunity to

monitor patients in conditions that are more representative of their

habitual sleep (Kim et al., 2015; Kundel and Shah, 2017; Rosen

et al., 2018). HSAT studies record as a minimum set of signals,

airflow, pulse oximetry, and respiratory effort for identification and

classification of apneas and hypopneas. Relying on this reduced
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signal montage has obvious drawbacks compared to PSG studies.

The absence of neurological signals required for manual sleep

staging means that the AHI cannot be determined based on

manual scoring. Instead, total sleep time is substituted by either

monitoring time or recording time for calculation of the respiratory

event index (REI) (Zhao et al., 2017). Reliance on the REI in

place of the AHI results in reduced SDB diagnostic sensitivity

that is not easily quantifiable, without knowing the amount of

wakefulness in the individual recording (Bianchi and Goparaju,

2017). Further, there is no ability to screen for REM-related OSA or

identify abnormalities in sleep architecture which may impact the

subsequent treatment plan or signify the need for further testing

(Kapur et al., 2017).

This limitation of HSATs motivated attempts to leverage

the known expression of autonomic nervous system activity in

sleep by analyzing cardiorespiratory signals, which are in fact

routinely recorded with these polygraphic systems: the non-REM

progression from N1 to N3 is typically accompanied by an increase

in cardiovagal drive and parasympathetic activity, which translates

to a lower heart rate, more regular breathing, and an increased

respiratory mediation of heart rate variability (Eckert and Butler,

2016; Lanfranchi et al., 2016). REM sleep is characterized by a state

of autonomic instability where sympathetic and parasympathetic

nervous system activity fluctuate, producing abrupt changes in

heart rate, and irregular breathing. In the absence of neurological

signals, these algorithms are typically limited to the estimation

of the stages wake, light sleep (LS; comprising the combination

of N1 and N2), deep sleep (DS; corresponding to N3), and

REM sleep. The differentiation between N1 and N2 based on

neurological signals requires not only the timing of arousals but

also sleep spindles and k-complexes, neither of which are available

with cardiorespiratory inputs. These algorithms, of course, cannot

mimic human scoring, since there are no rules, nor is it feasible,

to visually relate changes in heart rate and respiration to sleep

stages. However, advanced AI methods can often leverage, and

go beyond what humans can possibly encode, to find relations

in the data based on patterns that span entire recordings,

while simultaneously analyzing numerous characteristics of the

various signals.

The AI-based Somnolyzer-CReSS algorithm uses as input

cardiorespiratory signals, and outputs sleep stage probabilities per

30-s epoch for stages Wake, LS, DS and REM sleep (Bakker

et al., 2021). The CReSS-derived probability curves can be directly

compared to the probabilities derived from multiple manual

scorings using neurological signals as input. Figures 8, 9 compare

the manually-derived sleep stage probabilities to the sleep stage

probability of the CReSS autoscoring for the two studies shown in

Figures 5, 6. Note that the probabilities for N1 and N2 are summed

up to a single LS probability. The ICCs for absolute agreement

between the two probability curves are 0.91 for PSG 1 (Figure 8)

and 0.84 for PSG 5 (Figure 9). While these correlation coefficients

are slightly lower than the coefficients between autoscoring based

on neurological signals and multiple manual scorings (0.97 for

PSG1 and 0.89 for PSG 5), they still indicate good agreement

between cardiorespiratory- and manually- determined sleep stage

probabilities. In Figure 8, we highlighted the same 6 periods as

in Figure 5. Box 1 comprises again sleep onset with increasing

LS probability via sleep onset, which is the first epoch with

sleep probability higher than wake probability (solid line), to

definite sleep with LS probability > 0.95 at the end of the

box 1. Boxes 2, 3, 4, and 6 indicate periods were at least

two experts scored N3. Note that the DS probabilities derived

from CReSS autoscoring closely resemble the N3 probabilities

derived from the 12 manual scorings. Finally, also for the R

probabilities (box 5) the manually- and autoscoring-based curves

match in terms of timing and magnitude. Interestingly, even

for the study with the worst agreement between scorers, the

manually- and autoscoring-based probability curves match closely

(Figure 9). The ICCs between manually-derived probabilities and

CReSS-derived probabilities range from 0.81 to 0.95 (mean: 0.88

± 0.05) for the 10 studies, indicating good agreement between the

probability curves.

Consequently, the CReSS-derived hypnodensity also reflects

a good estimate of the epoch-by-epoch ambiguity of manual

scorings. The fact that very similar probabilities are derived from

cardio-respiratory signals and neurological signals suggests that

many of these uncertainties between sleep stages manifest in

both, the central and the autonomic nervous system activity.

This supports the view that states in-between two sleep stages

are normal physiological states and that much of the uncertainty

observed in sleep scorings is of an aleatoric nature, limiting

the potential for further increases in inter-scorer agreement

by efforts in improving scoring rules, training, or models.

In a recently introduced framework to analyze uncertainty in

sleep staging, van Gorp et al. (2022) differentiate aleatoric

uncertainty, that arises from biological factors (such as age, drugs,

pathologies, or local sleep) or measurement factors (such as

placing of electrodes or interferences and artifacts), from epistemic

uncertainty that arises from a lack of knowledge about the data or

the optimal model.

Agreement between sleep parameters
derived from cardiorespiratory signals
with sleep parameters derived from
full PSG signals

Most of the early algorithms for cardiorespiratory sleep

staging relied on manually engineered features carefully crafted

to capture changes in autonomic nervous system activity during

sleep, leveraging domain knowledge of sleep and cardiorespiratory

physiology. In 2015, Fonseca et al. (2015) presented an algorithm to

estimate sleep based on cardiorespiratory signals using manually-

engineered features and a linear discriminant classifier, and

reported a Cohen’s kappa of 0.49 for the 4-stage comparison

validated in 48 healthy subjects. By incorporating time information

and replacing the classifier by conditional random fields, Cohen’s

kappa increased to 0.53 in 100 healthy subjects (Fonseca et al.,

2018). In 2017, Tataraidze et al. (2017) reported a kappa of 0.56

based on respiratory inductance plethysmography (RIP) signals

using an extreme gradient boosting classifier in 658 healthy subjects

and Beattie et al. (2017) reported a kappa of 0.52 based on

photoplethysmography (PPG) and actigraphy signals using a linear
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FIGURE 8

A representative example comparing the hypnodensities derived from 12 manual scorings (A) and from cardiorespiratory autoscoring (B) for the

same study shown in Figure 2 (PSG1: OSAS patient, male, 76 years). The color codes are WK, gray; REM, red; LS, blue; DS, green. The time period

depicted in box 1 highlights the sleep onset period with the actual sleep onset at Wprob <0.5 indicated as solid line; Boxes 2, 3, 4, and 6 indicate time

periods where at least 2 scorers have scored N3; Box 5 indicate the time period where at least one scorer has scored R. Note the similarity of the

manually-derived and the cardiorespiratory autoscoring-derived sleep stage probabilities.

discriminant classifier in 60 healthy controls. In recent years,

various machine learning approaches for scoring sleep based on

cardiorespiratory signals have been developed and validated in

internal and external datasets. Cohen’s kappa for the 4-stage

comparison (wake, light sleep, deep sleep, REM)were in the average

0.56± 0.12 for 11 datasets with internal testing (cross-validation or

hold-out validation) (Li et al., 2018; Radha et al., 2019; Wei et al.,

2019; Sridhar et al., 2020; Huttunen et al., 2021; Zhao and Sun, 2021;

Garcia-Molina and Jiang, 2022) and 0.47± 0.15 for 10 datasets with

external testing (Fonseca et al., 2020; Sridhar et al., 2020; Sun et al.,

2020b; Bakker et al., 2021; Garcia-Molina and Jiang, 2022).

The Somnolyzer-CReSS algorithm was validated in a test set

of 296 PSGs from the Multi-Ethnic Study of Atherosclerosis

[MESA (Chen et al., 2015)] and achieved a kappa value of 0.68

and in a second test set of 296 PSGs from the Sleep Heart

Health Study [SHHS (Quan et al., 1997; Redline et al., 1998)],

a kappa value of 0.64, which are the two highest kappa values

for external testing of cardiorespiratory sleep staging algorithms

reported to date (Bakker et al., 2021). Sensitivity and precision

for detecting wakefulness based on cardiorespiratory signals was

76.0 and 88.1%, respectively. This indicates good performance of

the cardiorespiratory sleep staging for discriminating wake and

sleep, which is important for determining total sleep time, and

consequently, indices relating the number of respiratory events or

the hypoxic burden (HB) to the hours of sleep. When compared to

indices computed based on the duration of recording ormonitoring

time, the indices related to CReSS-determined total sleep time show

a higher sensitivity, specifically in recordings with a significant

amount of wake periods. To demonstrate the clinical relevance

of CReSS, we determined the number of correctly diagnosed

patients by HSAT as compared to the gold standard AHI in

the 296 studies from the MESA dataset for a threshold of 15

events per hour. Using the CReSS-derived TST instead of the

recording time as denominator for the calculation of the indices

reduced the false negative diagnosis from 33 patients (11.1%) to

only 5 patients (1.7%). Moreover, sensitivity and precision for
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FIGURE 9

Comparison between the hypnodensities derived from 12 manual scorings (A) and from cardiorespiratory autoscoring (B) for the study with the

worst agreement between manual scorers (i.e., the same study as in Figure 4, PSG5: Hypersomnia with sleep apnea, male, 78 years). The color codes

are WK, gray; REM, red; LS, blue; N3, green. Note the similarity of the manually-derived and the cardiorespiratory autoscoring-derived sleep stage

probabilities.

detecting REM sleep based on cardiorespiratory signals was 85.3

and 79.6%, respectively (Anderer et al., 2022b). This indicates the

good performance of CReSS for discriminating REM sleep from

Wake and NREM sleep. Using the definition for REM-related OSA

by Mokhlesi and Punjabi (2012) (i.e., an AHINREM of fewer than

5 events/h and an AHIREM of at least 5 events/h with at least

30min of REM sleep), we achieved a sensitivity of 91% and a

specificity of 98% for detecting REM-related OSA by means of

CReSS as compared to gold standard PSG scoring. This suggests

that REM-relatedOSA can be detected based onCReSS-determined

REM sleep with a clinically acceptable accuracy (Anderer et al.,

2022b).

In addition to the AHI, which indicates the number of

respiratory events per hour of sleep, we determined the hypoxic

burden as proposed by Azarbarzin et al. (2019). The hypoxic

burden is determined by measuring the respiratory event-

associated area under the desaturation curve from pre-event

baseline. The authors showed, in a large sample from the Sleep

Disorder in Older Men study [MrOS (Orwoll et al., 2005)] and the

SHHS (Quan et al., 1997; Redline et al., 1998), that the hypoxic

burden strongly predicted cardiovascular disease-related mortality,

indicating that not only the frequency (as measured by the AHI),

but the depth and duration of the desaturations caused by sleep-

related upper airway obstructions (as measured by the hypoxic

burden), are important disease-characterizing features. Figure 10

shows based on Somnolyzer autoscoring, in the upper part, scatter

plots relating the AHI to the HB for TST as well as for NREM

and REM sleep. As can be seen, the HB for events occurring

during REM sleep is, in our dataset, ∼50% larger than for events

in NREM sleep. Note that patients with a relatively low overall

AHI may be experiencing severe OSA during REM, which is

particularly important given that events taking place during REM

are longer, and are associated with more pronounced hypoxemia,

higher sympathetic activation, and greater surges in blood pressure

and heart rate (Findley et al., 1985; Peppard et al., 2009; Lechat

et al., 2022a,b). This characteristic of the disease may very well help
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explain the link between REM-related OSA and its association with

adverse cardiovascular, metabolic, and neurocognitive outcomes

(Varga and Mokhlesi, 2019).

In their comprehensive review on the hypoxic burden in

obstructive sleep apnea , Martinez-Garcia et al. (2023) suggested

a threshold HB > 60% min/h (i.e., 15min of 4% desaturation

every hour) to identify patients who are at increased risk of

cardiovascular morbidity and mortality. In the lower part of

Figure 10, we enlarged a portion of the scatterplot of AHI vs. HB

and marked the values for two studies with approximately the

same AHI close to 15, but with very different HB values (20.4%

min/h and 78.2% min/h). In addition, we show for both studies the

averaged oxygen saturation curves, time-aligned by the termination

of the respiratory events, which are used to determine the subject-

specific search window. While the number of respiratory events

(100 and 106) and the duration of the search window (54s and

55s) are almost identical, the averaged desaturation is much deeper

in subject M0037, reflecting the large difference between the

two studies.

Figure 11 compares standard sleep parameters based on

Somnolyzer autoscoring derived from full PSG signals vs. the

same parameters derived from HSAT signals in patients with sleep

disturbance from the SIESTA database. Hypopneas were scored

in the PSG studies using the 3% oxygen desaturation and/or

arousal rule, and in the HSAT studies using 3% desaturation

and/or autonomic response (heart rate increase ≥ 5bpm) to enable

a direct comparison between the PSG- and the HSAT-derived

indices. In addition to the 49 apnea patients, we also included the

26 patients with insomnia related to generalized anxiety disorder

or depression, and the 5 patients with periodic limb movement

disorder in the analysis to cover the full spectrum from no to

severe SDB. In addition to the scatter plots for TST, AHI and

HB per hour total sleep time, the scatter plots for NREM and

REM are shown. The CReSS algorithm estimated TST as well as

time in NREM and REM sleep with high accuracy. The ICC for

absolute agreement are for TST 0.92 (95%–CI 0.83 to 0.95) for

time in NREM 0.88 (95%–CI 0.75 to 0.93), and for time in REM

0.88 (95%–CI 0.82 to 0.92). Consequently, the indices per hour

sleep also show almost perfect agreement between the analysis

based on PSG signals and the analysis based on the reduced HSAT

montage (all ICCs ≥ 0.98 with a 95%–CI from 0.97 to 0.99).

Thus, analyses based on signals recorded typically in HSAT by

means of CReSS are a valid alternative to full PSG studies in

patients with suspected OSA for determining the severity based on

the AHI and HB per hour sleep and for diagnosing REM-related

OSA.

Conclusions and future directions

There is convincing evidence that manual sleep staging, even

when performed by experienced, well trained, and motivated

scorers without the usual time constraints of clinical routine,

results in significant interrater differences. We have shown in three

independent datasets scored by six to twelve experienced scorers

that sleep stage ambiguity is the rule rather than the exception

(Bakker et al., 2023). Recent papers investigating reasons for this

ambiguity discuss scorers’ uncertainty in applying the rules as well

as contradictory patterns within one epoch as possible explanations

(van Gorp et al., 2022; Huijben et al., 2023). van Gorp et al.

(2022) introduced a theoretical framework to analyze uncertainty

in sleep staging, differentiating aleatoric uncertainty that arises

from biological factors (such as age, drugs, pathologies, or local

sleep) or measurement factors (such as placing of electrodes or

interferences and artifacts) and epistemic uncertainty that arises

from a lack of knowledge about the data or the optimal model.

In standard sleep staging, scorers are forced to decide based

on the information obtained in the EEG, EOG, and chin EMG

signals. This process involves matching the pattern observed in

an epoch with a template or prototype and putting them into the

context with patterns from previous epochs. Depending on the

scorers’ personal template, this may result in significantly different

sleep parameters derived from the manually-scored hypnogram

as shown in Table 1 for one PSG. In autoscoring systems these

different interpretations can be modeled by varying the sensitivity

settings for the detection of sleep/wake related features such

as sleep spindles, k-complexes, slow waves or arousals without

changing the scoring rules. This provides evidence that large parts

of the inter-scorer differences in the derived sleep parameters are

not due to violations of the scoring rules by one or the other

scorer, but rather due to the room for interpretation left open

by the visual identification of these sleep/wake related patterns.

These interpretations range from high sensitivity to high precision

sometimes resulting in extreme differences where one expert

scores 67min of N3 (high sensitivity for slow wave detection)

while another expert scores no N3 sleep at all (high precision

in slow wave detection) in the same study, despite following the

same rule (≥20% of the epoch consisting of slow wave activity).

This means that a decision for an epoch does not only affect

this one epoch but can have consequences for a whole series of

subsequent epochs resulting in the observed large differences in

sleep parameters.

When we compared sleep parameters averaged over 10 PSGs

between all 66 possible pairs of 12 scorers, we found in 61 of these

pairs a significant t-value at p < 0.01 in at least one of 5 tested

parameters (TST, time in N1, N2, N3, and R), most frequently

in the time spent in N3 sleep. This implies that when comparing

two conditions (patients vs. controls, baseline vs. therapy, etc.)

that were scored by different (groups of) scorers, it cannot be

distinguished whether significant results describe a difference

between the conditions or a bias of the scorers. Possible solutions to

this problem include having all PSGs from a study (at least all PSGs

from one subject, in case of repeated measurements) scored by the

same expert, having all PSGs scored by multiple manual scorers, or

by using a clinically validated autoscoring algorithm.

In future research, it is therefore strongly recommended

that the performance of sleep scoring algorithms should be

independently validated in datasets which were completely unseen

by the models both during training and internal validation, that

are representative of the population to be tested, and ideally,

that are collected in different centers and scored by different

(pools of) human experts. In fact, the AASM has announced such

an AI/Autoscoring Pilot Certification program at their website.

The program intends to test the various scoring solutions to

one and the same external dataset with representative recordings

vs. multiple manual expert scorers. This will allow a direct
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FIGURE 10

Correlation between apnea-hypopnea index (AHI) and hypoxic burden (HB) in patients with sleep disturbance (n = 80; 49 apnea patients, 26

insomnia patients, 5 PLMD patients). Upper part: scatter plots relating the AHI to the HB for TST (A) as well as for NREM sleep (B) and REM sleep (C).

Lower part: enlarged scatterplot of AHI vs. HB with red marks for two studies with approximately the same AHI of 15, but with significantly di�erent

HB values (D–F) show the averaged oxygen saturation curves, time-aligned by the termination of the respiratory events (time = 0), which are used to

determine the subject-specific search window for the two studies marked in red in (D).

comparison of the performance of the published algorithms and

will give the sleep centers an objective measure for deciding which

algorithm to use. Since multiple human expert scorings will be

available in this project, the hypnodensity graphs provided by

the different algorithms could be compared to the hypnodensity

graph based on human scorings so that the hypnodensity from

certified algorithms may be established as standard representation

of sleep into the clinic. In this context, it will be an interesting

topic of future research to determine and establish well-accepted

metrics for assessing the quality of hypnodensity graphs. While the

overall agreement on the traditional five-stage hypnogram is often

measured using the Cohen’s kappa coefficient, the F1 score or class-

wise metrics like the Mathews correlation coefficient, no metric for

comparing sleep stage probabilities has been widely adopted by the

field of sleep medicine, yet. Possible metrics include the ICC to

compare probabilities for individual stages, their average (macro

average), their average weighted by the sum of the probabilities

per stage (weighted macro average) or the ICC based on the

concatenated probability curves over all five stages (micro average),

as well as the ACS to compare sleep stage probability distributions

(Bakker et al., 2023; Fiorillo et al., 2023b). In fact, both metrics

yield very similar results and others such as cross-entropy or

Kullback–Leibler divergence might become relevant for measuring

the difference between the sleep stage probability distributions

based on multiple manual scorings and autoscoring.

We presented examples of potential valuable hypnodensity-

derived features such as sleep stage ambiguity, continuity, depth,

and stability for describing differences between patients with

sleep apnea and healthy controls. Stephansen et al. (2018) and

Cesari et al. (2022) derived up to 1000 features of sleep structure,

transitions, and instability from the hypnodensity to train a

classifier for diagnosing narcoleptic patients. Further examples for

hypnodensity-derived features including pre-softmax features as

well as features obtained from unsupervised learning are also being

researched (Huijben et al., 2023). Future research should evaluate

and test these features for their usefulness in biomarker research.

Concerning HSATs, AI-based cardiorespiratory sleep staging

offers reliable estimates of total sleep time, as well as time spent

in light, deep, and REM sleep (Li et al., 2018; Radha et al., 2019;

Wei et al., 2019; Sridhar et al., 2020; Sun et al., 2020b; Bakker et al.,

2021; Huttunen et al., 2021; Zhao and Sun, 2021; Garcia-Molina

and Jiang, 2022; Pini et al., 2022). This allows for determining

indices of SDB severity per hour of sleep as well as per hour of

NREM and REM. In contrast with the classical recommendations

for HSATs which do not measure sleep but instead rely on the total

monitoring/recording time, the accurate estimates of sleep time can

be used to increase the sensitivity of these tests, making the indices

immune to the duration of wakefulness in these unsupervised

studies. In addition, they allow the identification of patients with

REM-related obstructive sleep apnea, the computation of hypoxic

burden as a function of the total sleep time as well as the times in

NREM and REM.

With the recent advances in autoscoring in general, and the

development of hypnodensity in particular, it is increasingly clear

Frontiers in Sleep 20 frontiersin.org96

https://doi.org/10.3389/frsle.2023.1163477
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Anderer et al. 10.3389/frsle.2023.1163477

FIGURE 11

Correlation between neurological signal-based and cardiorespiratory signal-based sleep parameters in patients with sleep disturbance (n = 80; 49

apnea patients, 26 insomnia patients, 5 PLMD patients). Upper part: scatter plots relating TST (A), time in NREM (B) and time in REM (C) based on the

analysis using PSG signals with the values obtained from the analysis using HSAT signals only. Middle part: scatter plots relating AHI (D), AHI in NREM

sleep (E) and AHI in REM sleep (F) based on the analysis using PSG signals with the values obtained from the analysis using HSAT signals only. Lower

part: scatter plots relating HB (G), HB in NREM sleep (H) and HB in REM sleep (I) based on the analysis using PSG signals with the values obtained

from the analysis using HSAT signals only.

that AI may have a defining role in future sleep research, and

eventual clinical applications. The development of new biomarkers

may help us understand pathophysiological mechanisms that were

until now simply not accessible from hypnograms scored by

individual human experts. On the other hand, this technology

shows promise in the routine home testing and diagnosis of

SDB. By enabling an estimate of TST with HSATs, AHI and

HB across total sleep time and during REM can be estimated,

until now an exclusive of the more inconvenient and expensive

PSG studies. To further improve the estimation of these indices,

several attempts to determine autonomic arousals as surrogate

of cortical arousals for the confirmation of hypopneas have been

published (Pillar et al., 2002; Olsen et al., 2018; Li et al., 2020).

Taranto-Montemurro et al. (2023) recently reviewed challenges and

progress in the development of a combination of noradrenergic

and antimuscarinic drugs for the treatment of OSA. The authors

concluded that there are still hurdles in quantifying presence and

severity of OSA to fully understand the impact of treatment.

The authors concluded that the usage of alternative measures

to the standard AHI, such as the HB might better represent

treatment effects on the ventilatory deficit associated with upper

airway obstruction. In a recent review, Korkalainen et al. (2021b)

discussed self-applied home sleep recordings including wearable

sensing solutions and AI-based scoring for screening and long-

termmonitoring of sleep disorders. Besides the obvious advantages

in clinical practice, the larger scale and higher throughput of AI-

enabled HSATs may also facilitate larger population-wide research

studies that help us understand the link between SDB and other

health conditions and outcomes.
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Assessment of respiratory e�ort (RE) is key for characterization of respiratory

events. The discrimination between central and obstructive events is important

because these events are caused by di�erent physio-pathological mechanisms

and require di�erent treatment approaches. Many of the currently available

options for home sleep apnea testing either do not measure RE, or RE signal

recording is not always reliable. This is due to a variety of factors, including

for instance wrong placement of the respiratory inductance plethysmography

(RIP) sensors leading to artifacts or signal loss. Monitoring of mandibular jaw

movements (MJM) provides the ability to accurately measure RE through a single

point of contact sensor placed on the patient’s chin. The inertial unit included in

the capturing technology and overnight positional stability of the sensor provide

a robust MJM bio-signal to detect sleep-disordered breathing (SDB). Many of

the pharyngeal muscles are attached to the mandible directly, or indirectly via

the hyoid bone. The motor trigeminal nerve impulses to contract or relax these

muscles generate discrete MJM that reflect changes in RE during sleep. Indeed,

the central drive utilizes the lower jaw as a fine-tuning lever to sti�en the

upper airway musculature and safeguard the patency of the pharynx. Associations

between the MJM bio-signal properties and both physiological and pathological

breathing patterns during sleep have been extensively studied. These show a

close relationship between changes in the MJM bio-signal as a function of RE

that is similar to levels of RE measured simultaneously by the reference bio-

signals such as esophageal pressure or crural diaphragmatic electromyography.

Specific waveforms, frequencies, and amplitudes of these discrete MJM are seen

across a variety of breathing disturbances that are recommended to be scored by

the American Academy of Sleep Medicine. Moreover, MJM monitoring provides

information about sleep/wake states and arousals, which enables total sleep time

measurement for accurate calculation of conventional hourly indices. The MJM

bio-signal can be interpreted and its automatic analysis using a dedicatedmachine

learning algorithmdelivers a comprehensive and clinically informative study report

that provides physicians with the necessary information to aid in the diagnosis

of SDB.

KEYWORDS

mandibular jawmovements, obstructive sleep apnea, respiratory e�ort, home sleep apnea

test (HSAT), respiratory drive, automated analysis
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Introduction

The American Academy of Sleep Medicine (AASM) scoring

rules for sleep-related respiratory events are based on changes

in airflow captured by dedicated sensors and associated with

an arousal and/or oxygen desaturation. Another key physiologic

parameter required to assess sleep-disordered breathing (SDB)

is respiratory effort (RE) to allow differentiation between

central and obstructive apneas; while increased RE reflects

obstructive SDB events, which are the most frequent breathing

disturbances, decreased RE is mandatory for a reliable scoring

of central events including hypopneas (Berry et al., 2012,

2017).

The gold standard marker of RE during sleep is the

amplitude of the esophageal pressure (PES) curve, a surrogate

for diaphragmatic muscular contraction in the presence of

increased flow resistance in the upper airway. However, esophageal

manometry is an invasive method that is rarely used in

clinical practice because of associated patient discomfort and

related sleep alterations (Vandenbussche et al., 2015). Failure

to correctly detect increased RE when present may result in

incorrect classification of breathing disturbances and contribute

to incorrect therapeutic decision making (Randerath et al.,

2013; Martinot et al., 2019; Randerath, 2021). In addition, the

high and rising prevalence of obstructive sleep apnea (OSA)

highlights the need for reliable home sleep apnea testing (HSAT)

options (Raphelson et al., 2022). However, measurement error

compared with conventional polysomnography (PSG) can be

problematic with HSAT. This is due to several factors, including

inappropriate placement of sensors, use of recording time rather

than sleep time as a denominator for calculation of SDB indices,

technical issues leading to failed studies, and many others

as previously summarized (Malhotra et al., 2015). Also, some

specific clinical conditions, including associated cardiovascular

comorbidities that favor central events, can preclude performance

of HSAT.

This article details the use of a new-generation bio-

signal, mandibular jaw movements (MJM), easily captured

using a connected device set up on the chin by the patient

at home, and recently validated against the gold standard

measurement of RE, i.e., PES monitoring (Pépin et al.,

2022).

PSG evaluation of normal respiratory
activity of the mandibular jaw

During normal sleep the mandibular jawmoves slightly around

a fixed position and the mouth is almost closed. However,

MJM behind closed lips can be recorded. A physiological

displacement of the jaw of only a few 10ths of a millimeter is

seen during normal or mildly limited breathing superimposed

on the respiratory cycle based on airflow or the respiratory

impedance plethysmogaphy (RIP) thoracic and abdominal bands

(Figure 1).

Rationale for evaluating sleep
respiratory activity at the mandibular
jaw level

Essentially the mandibular jaw plays the role of a lever to

stabilize the pharynx. During sleep it is important to ensure upper

airway patency in the presence of negative and suctioning pressure

inside the upper airway. The latter is countered by the leverage

effect of the mandibular jaw that moves a few 10ths of a millisecond

before the diaphragm contracts.

By stiffening the pharyngeal walls, the position and movements

of the mandible during sleep are important to preserve or restore

upper airway patency. These MJM reflect both the central drive

and variations in upper airway resistance that typically occur

during abnormal respiratory events. As sleep deepens into non-

rapid eye movement (NREM) stage 3 (N3) sleep, the upper

airway resistance is known to increase, and this is reflected by

an increase in the amplitude of MJM (Le-Dong et al., 2021). It

can be hypothesized that this increase in MJM amplitude reflects

the central drive to the mandibular muscles (depressors and

elevators) that act as a lever to stiffen the oral floor (mylohyoid,

geniohyoid, and the anterior belly of the digastric muscle)

during elevation.

Beyond the longitudinal traction determined by changes in

lung volume accompanied by a decrease in the transmural pressure

gradient applied to the pharyngeal walls and by an increase in

longitudinal airway wall tension, horizontal traction can contribute

to upper airway patency via the hyoid bone when this mobile

bone is immobilized by tightening of the posterior and inferior

muscles (the stylo and mastoido-hyoid and the sterno and crico

thyroid-hyoid muscular groups) during a complex coordinated

interplay. As suggested by Hollowell et al., the respiratory activity

of the mandibular jaw can be described as a co-activation of the

depressors/elevators of the mandibular jaw that occurs to finely

tune the position of the mandible and ensure upper airway patency

during normal sleep (Hollowell and Suratt, 1991). Small increases

in upper airway inspiratory resistance are accompanied by small

increases in the MJM amplitude, as shown by the arrow D in the

zoomed in part of Figure 1.

Technology for monitoring and
recording mandibular jaw movements
in the home setting

The first studies validating the clinical use of MJM relied on

magnetometry measurements (Nomics, Liège, Belgium; Martinot

et al., 2017). More recently, MJM could also be captured using

a single point of contact sensor (Sunrise, Namur, Belgium)

attached to the patient’s chin (in the mentolabial sulcus). This

new home sleep apnea test is composed of a coin-sized, tri-

axial sensor including a gyroscope and an accelerometer. Jaw

displacement is calculated from the rotational speed measured by

the gyroscope. This rotational movement is produced by rotation

of the mandibular condyle in the temporo-mandibular joint. The
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position of the mandible resulting from elevation and depression

in relation to gravity is provided by the accelerometer.

Recorded MJM data by the sensor are transferred to

a smartphone application via Bluetooth for external control.

Then, at the end of the night, MJM data are transferred via

wireless connection to a cloud-based infrastructure, and data

are analyzed with a dedicated machine-learning algorithm that

simulates the process of PSG manual scoring. To do so, the

algorithm has been trained to recognize stereotypical MJM

patterns matching specific PSG signals related to physiological

or pathological events (such as sleep stages, arousals, apneas or

hypopneas) in order to predict them and compute associated

clinical scores delivered in a comprehensive report generated

within minutes.

Compared with magnetometry, the tri-axial sensor has some

advantages, its ease of use with a single point of contact at the

chin level, the higher signal resolution and its ability to record

MJM in three dimensions (rather than only vertical movements).

Even though there are similarities between the two devices in

terms of signal frequency during normal breathing or increased RE,

and common specific MJM patterns related to arousals, apnea or

hypopnea events, data processing of both devices is different. The

machine learning task for themagnetometry bio-signal utilizes only

one channel and remains to be further developed and validated,

whereas the Sunrise algorithm has been extensively trained and

validated over recent years, and utilizes six channels of raw data

(x, y, z components of the gyroscope and accelerometer) providing

different information at a given time (Pépin et al., 2020; Le-Dong

et al., 2021; Martinot et al., 2021, 2022).

Other measurements of related bio-movements also exist, they

use surface EMG of the jaw-closing masseter muscles during

polysomnography (Kato et al., 2013; Shiraishi et al., 2021). The

dissemination of this technique is not possible currently for

repeated home sleep apnea testing.

FIGURE 1 (Continued)
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FIGURE 1 (Continued)

Fragment of polysomnography including the mandibular jaw movements bio-signal showing a long period of respiratory e�ort-related arousal and

then successive episodes of apneas. From the top to the bottom: Oxygen saturation from pulse oximetry; Rib cage and abdominal movements

captured by respiratory inductive plethysmography; Nasal pressure canulae; Oronasal thermistor; Mandibular jaw movements (MJM) recorded by the

gyroscope (Gyr) and the accelerometer (Acc) of the Sunrise device; Snore monitored by a microphone; Sleep stages; Pulse rate derived from

oximetry. The highlighted vertical bars depict the cortical arousals scored with EEG/EMG based rules. (A) MJM on arousal, which is significant and of

large amplitude due to the related cortical activation intensity. (B) Arousals associated with subcortical activation are accompanied by a smaller

magnitude of displacement. (C) Show the decrease in MJM during central sleep-disordered breathing events. (D) Shows that small increases in upper

airway inspiratory resistance are accompanied by a small increase in the MJM amplitude. (E) Shows how much respiratory e�ort increases as

intraluminal pressure decreases, suctioning the pharyngeal walls during an intra-event negative e�ort dependence pattern.

Clinical applicability of mandibular jaw
movement recording to estimate
conventional PSG-derived indices

Measurement of MJM enables accurate sleep time

measurement. The shapes, frequencies, and amplitudes of

these discrete MJM vary between different sleep stages and

breathing disturbances as described by Le-Dong et al. (2021) and

Pépin et al. (2020; see the related supplemental documents). When

asleep and driven in synchronicity with the respiratory oscillators,

mandibular displacements are quite stable compared with awake

MJM that are highly variable, often fast, and unpredictable in

amplitude and frequency (see arrows A in Figure 2). On arousal,

jaw movements are significant and of large amplitude due to the

related cortical activation intensity (see arrow A in Figure 1).

Arousals associated with subcortical activation are accompanied

by a smaller magnitude of displacement (see arrow B in Figure 1).

The intensity of these arousals correlates well with the amplitude

of the concomitant mandibular jaw displacement, likely due to
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FIGURE 2

Fragment of polysomnography including the mandibular jaw movements bio-signal showing alternate periods of awakening with non-rapid eye

movement light sleep stage. From the top to the bottom: Oxygen saturation from pulse oximetry; Rib cage and abdominal movements captured by

respiratory inductive plethysmography; Nasal pressure canulae; Oronasal thermistor; Mandibular jaw movements (MJM) recorded by the gyroscope

(Gyr) and the accelerometer (Acc) of the Sunrise device; Snore monitored by a microphone; Sleep stages; Pulse rate derived from oximetry. The

highlighted vertical bars depict the cortical arousals scored with EEG/EMG based rules. (A) Indicate MJM that are highly variable, often fast, and

unpredictable in amplitude while awake. (B) Show a decrease of the amplitude in the MJM bio-signal, sometimes reduced to a background noise

while asleep. The decrease in central drive can be accompanied by a slight mouth opening.

a related cortico-bulbar reflex. Therefore, the analysis of MJM

provides an accurate estimate of sleep/wake states and of the

arousal hourly index. Sleep quality metrics showed clinically

relevant agreement with manual polysomnographic staging:

median [95%CI] differences of −10.25min [−52.87 to +19.00],

0min [−23.37 to +6.50], −2.22% [−11.06 to +3.80] for Total

Sleep Time, Sleep Onset Latency, and Sleep Efficiency, respectively

(Le-Dong et al., 2021).

The use of MJM-derived sleep time instead of recording time

as a denominator for calculation of SDB-related indices improves

the agreement between the calculated values based on MJM and

those visually scored during conventional PSG. The Sunrise derived

respiratory disturbances index showed diagnostic capability with

ROC AUC of 0.95 (95% CI: 0.92–0.96) and 0.93 (95% CI: 0.90–

0.93) for corresponding PSG index of 5 and 15 n/h, respectively

(Pépin et al., 2020). Applying the near boundary double labeling

method would improve the agreement between Sunrise automated

scoring and PSG, by reducing the bias due to inter-human PSG

scoring of AHI with an overall agreement (Kappa coefficient) that

was 0.80 and 0.86 without and with near boundary double labeling,

respectively (Martinot et al., 2022).

During the periods of pharyngeal obstruction that are

characteristic of obstructive SDB events, the mouth opens

(sometimes with a crescendo pattern, mimicking the typical pattern

of crescendo changes in PES during an obstructive apnea or

hypopnea) before an arousal occurs, closing the mouth (Figure 3).

This is likely due to different carbon dioxide sensitivities between

the mandibular jaw depressors and elevators. There is first a more

intense phasic recruitment of the depressors leading to mouth

opening until an arousal occurs with a peak in airflow coinciding

with mouth closure due to a greater recruitment of the elevators.

In Figure 3, a decrease in airflow is accompanied by a persistently

elevated or increasing rotational speed of the mandible, indicating

a persistent high central drive or increasing drive against the upper

airway obstruction. During the period of such obstructive episodes

different means of MJM amplitudes can be observed possibly as

a function of their dominant endotypes (with more or less upper

airway muscle gain).

During central SDB events, the amplitude of MJM decreases

and the bio-signal can be reduced to a background noise (see

arrows C in Figure 1). Due to a decrease in central drive, a slight

mouth opening can occur when the elevators cannot sustain the

mandible at an upper position. The arrows B in Figure 2 mark

a decrease in the MJM bio-signal amplitude, showing a decrease

in the trigeminal output. Therefore, changes in MJM amplitude

can be used to classify SDB events as central or obstructive

based on the ongoing or underlying level of RE. Distribution of

MJM amplitude differs significantly between event types: median

(95% confidence interval) values of 0.60 (0.16–2.43) for central

apnea, 0.83 (0.23–4.71) for central hypopnea, 3.23 (0.72–18.09) for

obstructive hypopnea, and 6.42 (0.88–26.81) for obstructive apnea

(Martinot et al., 2019; Pépin et al., 2022).

In addition, prolonged periods of sustained inspiratory and/or

expiratory effort are well-represented by a progressive increase in

MJM amplitude until a relief occurs by way of an arousal (Figure 1).

These prolonged periods of RE also called respiratory effort-related

arousals (RERAs) can last for more than 1min, are sometimes

accompanied by snoring, and are characterized by a progressive

increase in the rotational speed of the mandible. The increased

central drive observed through the MJM gyroscopic bio-signal
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FIGURE 3

Fragment of polysomnography including the mandibular jaw movements bio-signal to show episodes of “classic” and “drive-dependent” obstructive

sleep apnea (OSA). From the top to the bottom: Oxygen saturation from pulse oximetry; Rib cage and abdominal movements captured by respiratory

inductive plethysmography; Nasal pressure canulae; Oronasal thermistor; Mandibular jaw movements recorded by the gyroscope (Gyr) and the

accelerometer (Acc) of the Sunrise device; Snore monitored by a microphone; Pulse rate derived from oximetry. The highlighted vertical bars depict

the cortical arousals scored with EEG/EMG based rules. (A, B) Represent episodes of “classic” and “drive-dependent” OSA, respectively. The

accelerometer channel shows the changes in the mandible position during the period of crescendo pattern: the more the signal is negative, the

more the mouth opens until an arousal occurs, characterized by an abrupt and positive displacement of the mandible reflecting the closure of the

mouth and peaking the airflow.

can be stable or unstable, and is marked by several subcortical

activations identified by concomitant changes in heart rate, pulse

tonometry or pulse transit time when these metrics are evaluated

using in-laboratory PSG. Most of the time, these changes are ended

by a cortical arousal corresponding to a salient movement of the

mandibular jaw to close the mouth.

Hypopnea is the most frequent respiratory event reported

during sleep. AASM rules recommend that hypopneas are classified

as either obstructive or central depending on the associated

RE, reflecting an increase or decrease in the central respiratory

command for obstructive and central events, respectively. Correct

characterization of the hypopnea sub-type provides information

about its origin and contributes to a personalized therapeutic

decision-making process (Martinot et al., 2019). As a metric, the

overall apnea-hypopnea index (AHI) does not provide accurate

clinical risk stratification because it includes both central and

obstructive events.

On polygraphy, the presence of elevated RE is assessed by

the examination of the dual RIP belt signals (e.g., amplitude and

phase shift) and changes in the shape of inspiratory nasal pressure

(e.g., flow limitation or plateau aspect) and/or the appearance

of a crescendo or stable snoring. Information provided by the

RIP belt signals can be misleading in obese patients for instance,

since obesity can cause misclassification of obstructive events as

central, especially in the unsupervised home setting, and RIP belt

signals are prone to fail or disappear (Loube et al., 1999; Masa

et al., 2003). A shift phase of the RIP thoracic and abdominal

bands belt signals could indicate increased RE and classify the

hypopnea as obstructive, although the signal remains difficult to

interpret during rapid eye movement (REM) sleep where the tone

in the accessory respiratory muscles is lost. In addition, the shape

of the nasal pressure signal is altered by mouth breathing and

primarily reflects increased upper airway resistance rather than the

underlying central drive. A typical flattening waveform strongly

suggests an increase in upper airway resistance that could also occur

at low levels of RE (Hosselet et al., 1998; Ayappa et al., 2000; Pamidi

et al., 2017; Mann et al., 2021). Therefore, a reliable backup signal

for RE is required to increase robustness and reliability.

When the nasal pressure signal is superposed on the MJM bio-

signal at the time of an intra-event negative effort dependence

pattern, the increased stimulation of trigeminal motor neurons is

clearly associated with a curvilinear decrease in flow signal during

the second part of the inspiration with a termination peak. This

pattern is well-depicted by an increased peak-to-peak amplitude of

the MJM bio-signal (arrow E in the zoomed in part of Figure 1,

and zoomed in part of Figure 4). This shows how much RE

increases while the intraluminal pressure decreases, suctioning the

pharyngeal walls.

The RE measured through MJM monitoring determines the

airflow amplitude (central drive) as a function of the residual

pharyngeal permeability during the period of obstruction. In the

“classic” model of OSA, apneas and hypopneas are characterized

by a loss of airway patency precipitating increased central drive, as

shown by an increase in the rotational speed of the mandible while

the mouth opens more and more until an arousal occurs, closing

the mouth and reopening the upper airway, with an associated
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FIGURE 4

Fragment of polysomnography including the mandibular jaw movements bio-signal showing a period of cyclical breathing. From the top to the

bottom: Oxygen saturation from pulse oximetry; Rib cage and abdominal movements captured by respiratory inductive plethysmography; Nasal

pressure canulae; Oronasal thermistor; Snore monitored by a microphone; Mandibular jaw movements recorded by the gyroscope (Gyr) and the

accelerometer (Acc) of the Sunrise device; Pulse rate derived from oximetry; Sleep stages. In the zoomed in part, the presence of inspiratory flow

limitation at the ventilatory peak is clearly evident suggesting that the pharynx is not fully open. Intra-event negative e�ort dependence patterns are

well depicted in the zoomed in part of the figure showing how much respiratory e�ort increases as intraluminal pressure decreases, suctioning the

pharyngeal walls.

peak in airflow (arrow A in Figure 3). Until the upper airway

reopens, the airflow is abolished or is minimal despite an increase

in the central drive. By contrast, the “drive-dependent” model of

OSA is characterized by a loss of central drive, promoting dilator

muscle hypotonia and, consequently, precipitating respiratory

events for many patients. “Drive-dependent” events are depicted

by concomitant changes in airflow and MJM amplitude in relation

to the degree of pharyngeal obstruction (arrow B in Figure 3; Gell

et al., 2022).

During periodic breathing (central SDB), the airflow oscillates

between apnea or hypopnea and hyperpnea (where the breathing

frequency can accelerate). In Cheyne Stokes respiration (common

in patients with heart failure), the airflow follows a characteristic

waxing-waning pattern. The Biot’s (or ataxic) respiration is

characterized by variable changes in flow, random apneas or

hypopneas, and no regularity. The specificMJM patterns associated

with each change in breathing are detectable based on the level

of central drive, as shown in Figure 4. In the zoomed in part
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of Figure 4, the presence of inspiratory flow limitation at the

ventilatory peak, and the presence of snoring strongly suggest that

the pharynx is not fully open.

Conclusion

MJM provide a robust and comprehensive bio-signal to detect

SDB. During normal periods of breathing during sleep, the

mandible (or lower jaw) moves slightly around a fixed position.

The shapes, frequencies, and amplitudes of these discrete MJM

vary between different sleep stages and breathing disturbances.

Chemoreceptors and upper airway pressure sensors inform the

brain about breathing disturbances. In response, an increase in the

central motor drive will recruit and stiffen the pharyngeal muscles

so that normal breathing resumes. Many of these muscles are

attached to the mandible. Therefore, contracting or relaxing these

muscles generates discrete and informative MJM. The ability of

MJM to accurately measure RE during sleep has been confirmed

during simultaneous, synchronized in-laboratory PSG (Pépin et al.,

2022).

Overall, the measurement of MJM provides the clinician with

deep insights into the work of breathing, including intra-event

negative effort dependence patterns and differentiation between

central and obstructive SDB events, including central hypopneas.

Essentially, monitoringMJM is like having a probe in the brainstem

to observe the regulating activity of the brain during sleep. This

provides a new, comprehensive, reliable, validated and objective

way of detecting and characterizing SDB.
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Introduction

In order to further promote miniaturization, convenience and intelligence of sleep

monitoring devices, a novel method using triboelectric nanogenerator (TENG) for sleep

monitoring and analysis has attracted attention gradually (1–9). TENG is an energy

collection technology (10–12), which based on coupling of triboelectric electrification and

electrostatic induction during the conversion of mechanical energy to electrical energy

(13). with advantages of low cost, diverse structure, stable output, high energy conversion

efficiency, strong shape adaptability, eco-friendly (14, 15), TENG can harvest mechanical

energy from water waves, vibration, raindrops, wind and other environments (16). Its

unique working modes also enables TENG to obtain biomechanical energy under sports and

physiological conditions (17), including body movement, respiration, and heartbeat, which

enables sleep monitoring free from the lack of batteries with a smaller volume and better

use experience.

At present, sleep monitoring based on TENG mainly focuses on respiratory rate, head

movement, eye changes and limb movements, which are important parameters related to

sleep quality. For example, Yue et al. (1) prepared a self-powered all-nanofiber electronic skin

based on TENG, which integrates a series of complex flexible sensors to analyze sleep quality

by detecting respiratory rate and carotid signal frequency. However, the preparation process

is relatively complex. Zhang et al. (5) fabricate a self-powered waist wearable respiratory

monitoring device by taking advantage of the characteristics that the abdomen will deform

during breathing. The respiratory information is retrieved by detecting the changes in

abdominal circumference during human respiration to monitor sleep status. In addition,

the energy generated by clearing abdominal deformation during breathing can also provide

energy for the sensor. Kou et al. (9) prepared an intelligent pillow based on a flexible and

breathable triboelectric nanogenerator (FB-TENG) sensor array, and evaluated the sleep

quality by detecting the real-time headmovement trajectory during sleep by the self-powered

pressure sensor array, as shown in Figure 1a. On the other hand, Cao et al. (18) proposed

a free deformable tribo-sensor (FDTS) based on nanofiber reinforced ultra-thin elastomer.

After integrating the FDTS with the eye mask, the sleep state is evaluated by sensing the

blinking action of the human body during sleep. In the research of limb motion, there are

many sensitive and TENG-based limb motion sensors (7, 8). By monitoring the voltage

output signal generated by the relative motion of the triboelectric layer in the device caused

by human body movement in sleep, the time and number of human body movements in

sleep can be collected and recorded in real time. The monitoring of sleep quality is mainly

realized by pressure sensors, but the existing monitoring system still needs to improve the
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FIGURE 1

(a) Self-powered intelligent pillow based on TENG monitors head movement track (9). (b) An example of hypnogram (21). (c) Self-powered mask

shape wearable device based on TENG (28). (d) Schematic diagram of breathing mode (28). (e) Test process of sleep monitoring belt made by porous

TENG self-powered tactile sensor with CNT doping (3).

sensitivity and stability of detection and faces challenges such

as complex structure, high manufacturing cost, and difficulty in

washing, which limits the application in real-time sleep posture

detection and physiological analysis.

This paper analyzes the work of current researchers in

respiratory rate, head movement, eye changes and limb

movements, which are important parameters related to sleep

quality. At the same time, it also analyzes the development

direction of emerging electronic devices for sleep monitoring and

analysis in the future, which has certain reference significance.

TENG and sleep disorders

Due to the accelerated pace of modern life, more and

more people are experiencing sleep disorders such as insomnia,

obstructive sleep apnea-hypopnea syndrome (OSAHS), and

circadian rhythm disorders, often caused by increased work

pressure and irregular lifestyles (19, 20). Effective sleep monitoring

and analysis are crucial in identifying sleep quality problems

promptly, adjusting health habits, and seeking medical advice

in a timely manner (21, 22). Figure 1b displays a typical sleep

architecture, which represents the cyclic pattern of sleep (21).

Numerous energy harvesters were developed in the past decades

(23). Wherein TENGs can convert mechanical energy in the

environment into electrical energy for self-power supply, and

obtain information regarding environmental changes by analyzing

the generated electrical signals (24, 25), even improve the overall

performance of the system (26). In addition, these sleep monitoring

devices generally use a sensitive motion sensor based on TENG.

The relative movement of the triboelectric layer in the device which

is caused by the tiny movements of the human body during sleep

can generate a voltage output signal of up to tens of volts, thus

reflecting the sleep situation in real time. For instance, we can

analyze the signal frequency to determine wakefulness, shallow

sleep, and deep sleep stages, as well as use the recorded time to

determine the sleep duration and time taken to fall asleep.

High sensitive triboelectric
nanogenerator wearable devices

To facilitate and quickly implement sleep monitoring, TENGs

are usually fabricated as various wearable devices, such as electronic
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skin patches (7), belts (5), goggles (18), which can analyze

sleep behavior by monitoring limb movements, breathing or eye

movements. In recent years, there has been a lot of research

on the performance improvement and function optimization

of wearable devices for TENG. For example, Chen et al. (27)

vertically integrated the single-electrode TENG and the fiber-

based piezoelectric nanogenerators (PENG) to further improve the

self-power efficiency of wearable devices. At the same time, the

piezoelectric nanofibers are used to monitor human physiological

signals quantitatively and realize sleep monitoring. Salauddin et al.

(6) combined MXene/Ecoflex nanocomposites with fabric to build

a waterproof triboelectric nanogenerator device (FW-TENG) with

advantages of self-powering and mechanical comfortable. Besides,

it is also very reliable and stable underwater, which is an important

feature for next generation of wearable/portable technology. On the

optimization of data processing based on TENG wearable devices,

Yun et al. (28) proposed amask-shaped triboelectric nanogenerator

(M-TENG) using mechanical energy generated by respiratory

airflow, as shown in Figure 1c. This wearable device can detect the

electrical signals generated by the breathing patterns in different

sleep stages (as shown in Figure 1d). These electrical signals can be

classified with the assistance of machine learning. Considering the

optimization of sensor preparation methods for wearable devices,

Ding et al. (3) designed a self-powered tactile sensor with CNT-

doped porous TENG. This self-powered sensor has low cost, high

durability and good sensitivity. In the test, the sleepmonitoring belt

prepared by this sensor can obtain accurate data about real-time

heartbeat and respiration, as shown in Figure 1e.

Although wearable devices based on TENGs have achieved

great progress in recent years, it is inevitable that wearable devices

will affect the natural sleep state of the human body to some extent

during use. In this regard, many researchers start with intelligent

textiles based on TENG, and prepare them into more comfortable

bedding to maximize the restoration of the natural sleep state of the

human body.

Washable intelligent mattress for sleep
monitoring

A non-invasive sleep monitoring scheme that does not need

to attach any sensor or transducer to the human body has been

proposed. The method is to use large pressure-sensitive and

washable smart textiles based on TENG array to make them into

smart mattresses, which can detect sleep behavior in real time. This

smart mattress is mainly composed of three layers: the top layer

and the bottom layer are composed of cross and vertical conductive

layers, and the middle of the two conductive layers is a wavy

polyethylene terephthalate (PET) film interlayer. When external

pressure is applied to the smart mattress, the structural change of

the middle PET layer will lead to the change of its contact area

with the two conductive layers, thus producing potential difference.

In current work, the intelligent mattress which proposed by Lin

et al. (4) has excellent pressure sensitivity (0.77 V/Pa), fast response

time (80ms), and can still generate stable external pressure signal

after washing in tap water. However, the wave-shaped structure

embedded in its mattress lacks comfortable materials, which can

bring a certain sense of discomfort. Moreover, the size magnitude

of the array element is 10 × 10 cm2, resulting in low resolution.

Further, Zhou et al. (2) proposed a single layer soft intelligent textile

that can be used for mattresses has solved the issue of comfort in

terms of material selection, but its resolution remains the same.

Intelligent mattress devices generally offer the advantages of low

cost, fast response time, and deep stability. However, their sleep

monitoring detection methods are relatively simple, which makes

it difficult to accurately reflect specific sleep statuses.

Head movement monitoring during
sleep

Considering the relationship between head posture changes

and sleep state during sleep, an intelligent pillow which based on

a flexible and breathable triboelectric nanogenerator (FB-TENG)

sensor array was developed (9). This method uses intelligent

pillow to realize sleep state monitoring with characteristics of

high resolution, pressure sensitivity, non-intrusive, comfort and

breathability. Each FB-TENG sensor unit that touched by the

human head will output a voltage signal during sleep, and the

output voltage signal which is generated by each FB-TENG

sensor unit is different due to the different touching force. It

can monitor and record the movement track of the human

head by sorting each voltage output signal in chronological

order. These changes are mainly caused by body turnover, and

then these can be used to analyze the change of sleeping

posture and reflect the sleep situation directly. In addition,

the intelligent pillow does not need to wear any wearable

electronic equipment during use, which can greatly reduce the

impact of monitoring equipment on the human body’s natural

sleep state.

Discussion

Through the coupling effect of triboelectric electrification and

electrostatic induction, TENG is not only a low-cost and reliable

energy collection technology, but also a combination of self-

driving pressure sensing technology to achieve the monitoring of

sleep quality. The only restriction on its application is the anti-

cleaning performance of materials. Some of the sleep monitors

need to be worn by users, which can’t maintain the most natural

state of sleep. And the use of patches or electronic skin with

poor permeability may also cause skin itching, inflammation and

other uncomfortable symptoms. In this regard, a large pressure-

sensitive and washable smart textile which based on the TENG

array can be used to make intelligent instruments, it can detect

sleep behavior in real time, such as smart mattresses, smart

pillows, etc. Among them, the TENG unit is made of conductive

material and elastomer material of waveguide structure, with

excellent characteristics such as high sensitivity, fast response

time, durability and water resistance, and is connected to form

a self-driving pressure sensor array. At the same time, it is

equipped with an additional integrated data acquisition, processing

and wireless transmission system, which can realize real-time

sleep behavior monitoring and sleep quality evaluation. Therefore,

the application of nano-triboelectric generator in the field of
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bedding is more feasible and available than the solution of using

wearable devices.

On the other hand, to further improve the accuracy

and specificity of sleep monitoring, an interesting idea is

to use TENG based smart textiles with smart pillows in

conjunction, and comprehensive analysis of sleep data with

machine learning which is obtained from multiple intelligent

bedding products, so as to provide targeted recommendations

for different sleep behaviors of different patients. Further,

because of the real-time collection of patients sleeping posture

through intelligent bedding, it is possible to achieve poor

sleeping posture reminders. For infants and incapacitated patients,

smart textiles and smart pillows can add certain control

programs to prevent falling out of bed issues. For example,

an alarm function can be added to the TENG arrays in the

row closest to the edge of the bed for smart pillows or

smart textiles, and trigger the alarm function when they are

contacted simultaneously.

Moreover, TENG can harvest mechanical energy from body

organs (heart beating, muscle contraction and gastrointestinal

peristalsis) to form electric field and generate electricity to

realize electrical stimulation, which can help regulate the

heartbeat, relieve muscle atrophy and promote wound healing.

At the same time, the electricity which generated by TENG

can be used to stimulate cells, tissues and organs directly

(29). This shows the potential application in rehabilitation and

treatment. Secondly, different external stimulation may lead to

different output signals of TENG, which can work as self-

powered sensors to monitor real-time physiological signals.

In addition, in order to improve stability and provide more

choices of triboelectric materials, TENG is integrated with other

sensors to form an impedance matching system or hybrid

system. TENG has great potential in the field of medical care,

but it still has a certain distance between experiment and

practical application.
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Obstructive sleep apnea (OSA) is a common disorder characterized by recurrent

upper airway obstruction during sleep. Despite the availability of continuous

positive airway pressure (CPAP) as the gold standard treatment, it is not well

tolerated by all patients. Accordingly, research has increasingly focused on

developing methods for OSA endotyping, which aims to identify underlying

pathophysiological mechanisms of the disorder to help guide treatment for CPAP-

intolerant individuals. Four key endotypic traits have been identified, namely:

collapsibility, upper airwaymuscle compensation, arousal threshold and loop gain.

However, most methods for extracting these traits require specialized training and

equipment not available in a standard sleep clinic, which has hampered the ability

to assess the full impact of these traits on OSA outcomes. This paper aims to

provide an overview of current methods for OSA endotyping, focusing on the

Endo-Phenotyping Using Polysomnography (PUP) method and its cloud-based

extension, PUPpy, which o�er scalable and accessible ways to estimate endotypic

traits from standard polysomnography.We discuss the potential for thesemethods

to facilitate precision medicine for OSA patients and the challenges that need to

be addressed for their translation into clinical practice.

KEYWORDS

sleep disordered breathing, pathophysiology, precision medicine, endotyping,

phenotyping

Introduction

Obstructive sleep apnea (OSA) is a highly prevalent disorder that has major

consequences for neurocognitive, cardiovascular, and metabolic health. Unfortunately, the

leading therapeutic intervention, continuous positive airway pressure (CPAP), is limited

by patient tolerance despite its otherwise excellent efficacy (Lozano et al., 2010; Weaver

et al., 2012; Rotenberg et al., 2016; Bakker et al., 2019; Shapiro et al., 2021; NCA-

CPAP, 2022; Šiarnik et al., 2022). Of the array of available and experimental non-CPAP
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interventions—including weight loss (Schwartz et al., 1991),

oral appliances (Ng et al., 2003; Chan et al., 2010; Edwards

et al., 2016a; Dissanayake et al., 2021; Pattipati et al., 2022),

positional therapy (Randerath W. et al., 2021), hypoglossal nerve

stimulation (Certal et al., 2015; Costantino et al., 2020; Op de

Beeck et al., 2021b), pharyngeal surgery [particularly in pediatrics

(Schwartz et al., 1992; Joosten et al., 2017; Gozal et al., 2020)],

supplemental oxygen (Wellman et al., 2008), pharmacological

interventions to: activate dilator muscles (e.g., atomoxetine-plus-

oxybutynin) (Taranto-Montemurro et al., 2019, 2020; Hedner

and Zou, 2022a; Schweitzer et al., 2022), decrease arousability

from sleep (e.g., eszopiclone) (Eckert et al., 2011), and stabilize

ventilatory control (carbonic anhydrase inhibitors) (Hedner and

Zou, 2022a; Hedner et al., 2022)—each appears to be efficacious

in some patients more than others. For the most part, non-CPAP

therapies are administered in an empirical (i.e., trial-and-error)

manner, with limited mechanistic information available to the

clinician to predict the likelihood of a successful intervention in

individual patients.

Over the last decade, the field of sleep medicine has

come to the consensus that (1) there are different underlying

pathophysiological causes of OSA (i.e., endotypic traits) (Younes,

2003; Younes et al., 2007;McGinley et al., 2008; Edwards et al., 2012,

2019; Sands et al., 2014), (2) that these traits differ considerably

between patients (Wellman et al., 2011; Eckert et al., 2013; Xie

et al., 2013; Sands et al., 2023), and (3) that individual differences

in traits provide a mechanistic explanation for why some patients

respond preferentially to one therapy over another (Wellman

et al., 2008; Stanchina et al., 2015; Edwards et al., 2016a; Joosten

et al., 2017; Landry et al., 2017; Sands et al., 2018a; Light et al.,

2019). These concepts provide a potential avenue for precision

medicine, whereby a subgroup of patients sharing a common

underlying pathophysiology could be judiciously administered a

therapy with preferential benefit. Accordingly, investigators have

recently accelerated efforts to subclassify OSA based onmechanistic

endotypic traits (i.e., endotypes) or other clinically-observable

characteristics more generally (i.e., phenotypes), with the goal of

better matching interventions to patients in a way that maximizes

efficacy and tolerability (Edwards et al., 2019; Light et al., 2019;

Malhotra et al., 2020).

Key endotypic traits

There are at least four key endotypic traits that contribute

to OSA (Younes et al., 2007; Ratnavadivel et al., 2010; Wellman

et al., 2011; Eckert et al., 2013; Sands et al., 2018a; Light et al.,

2019; Malhotra et al., 2020). Increased pharyngeal collapsibility is

the primary determinant of OSA (Kirkness et al., 2008; Eckert

et al., 2013; Sands et al., 2018b, 2023; Alex et al., 2022), and is

characterized by an increased tendency of the pharyngeal tissues

to obstruct the upper airway during sleep. Specifically, greater

collapsibility manifests as a reduction in the ventilatory flow rate.

Second, reduced pharyngeal dilator muscle activity is characterized

by a failure of the dilator muscles (including the genioglossus

muscle) to provide a normal baseline level of activation and/or

the reflex increase in activation as ventilatory drive rises with

obstruction (Wellman et al., 2011; Sands et al., 2018b). Low reflex

compensationmay be consequent to reduced neural responsiveness

to stimuli and/or reduced neuromechanical efficiency. Third, a

low arousal threshold is also a key trait contributing to OSA

pathophysiology and is defined by a lower ventilatory drive

threshold that triggers arousal (Heinzer et al., 2008; Wellman

et al., 2011). Mechanistically, a lower arousal threshold places a

limit on the ventilatory drive stimulus that the dilator muscles

normally rely on to provide compensation support to the upper

airway. Finally, a greater ventilatory instability or loop gain is

defined as an excessive ventilatory drive response opposing a

change in ventilation from baseline eupneic breathing (Wellman

et al., 2011; Terrill et al., 2015). Despite being the hallmark of

central sleep apnea, increased loop gain is also a key factor in

the pathophysiology of OSA and is largely dominated by the

dynamic ventilatory response to carbon dioxide (Younes et al.,

2007). Conceptually, a higher loop gain contributes to OSA

by exacerbating the transient loss of ventilatory drive stimuli

needed to maintain muscle compensation in the presence of a

vulnerable airway.

An important advance in the understanding of OSA

pathophysiology is the notion that each of the four key traits

are defined by ventilation and ventilatory drive (Younes, 2003;

Wellman et al., 2011, 2013; Owens et al., 2015; Sands et al.,

2018b) (see Figure 1). Collapsibility determines the ventilation

during sleep at eupneic (normal resting baseline) ventilatory drive.

Compensation is the increase in ventilation between eupneic

drive and the maximum drive achievable during sleep, occurring

at the arousal threshold, e.g. just before the termination of a

respiratory event. Arousal threshold is the ventilatory drive

that causes arousals. Loop gain is the ventilatory drive response

to changes in ventilation from eupnea. Using this conceptual

framework, it is possible to combine the endotypes mechanistically

to explain the absence or presence of OSA and to understand

the degree to which the traits causing OSA can be leveraged

to ameliorate it (Wellman et al., 2013; Owens et al., 2015). For

example, lowering loop gain is unlikely to be beneficial in patients

with severe collapsibility and a poor muscle response, since such

patients will incur pharyngeal collapse and loss of ventilation

regardless of the level of ventilatory drive stimuli. For patients with

ineffective upper airway muscles, raising the arousal threshold

is unlikely to be helpful. These patients are expected to exhibit

pharyngeal collapse regardless of their ability to tolerate increased

ventilatory drive.

Accumulating evidence supports the concept that differences in

these traits can explain responses to available and emerging CPAP

and non-CPAP therapies. Key examples include the following:

Patients with a high arousal threshold tend to adhere more to CPAP

treatment, and increasing the arousal threshold pharmacologically

with eszopiclone has been found to further improve CPAP

adherence (Schmickl et al., 2020). Supplemental oxygen therapy to

lower loop gain appears to be most efficacious in patients with less

severe collapsibility, greater compensation, and higher loop gain

(Wellman et al., 2008; Edwards et al., 2016b; Sands et al., 2018a).

We caution that the use of hypnotics and supplemental oxygen

as OSA therapies is still experimental and has not been approved
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FIGURE 1

(A) Simulated respiratory event to illustrate the key concepts behind deriving sleep apnea endotypes from a ventilation signal. A simulated flow signal

is shown above to help visualize the respiratory event. Ventilation is derived from the flow signal. A mathematical model of the chemoreflex control

of breathing is fit to the unobstructed ventilation data, shown as a stepped blue line. The model is used to derive a continuous estimate of chemical

drive, shown as a black continuous line. The chemical drive can be interpreted as the intended ventilation, which was not achieved due to the airway

obstruction. Loop gain is then derived from the fitted model as the ratio of the output signal (chemical drive) to the input signal (ventilation).

Collapsibility is measured as the ventilation at 100%eupnea drive (V̇passive). Arousal threshold is defined as the chemical drive preceding arousal. Upper

airway muscle compensation (V̇comp) is the di�erence in ventilation at eupneic drive (100%eupnea) and ventilation at the arousal threshold. (B) From

the minute ventilation and drive data on (A) we create a ventilation-vs.-drive plot or “endogram.” Here, drive is binned into centiles and the median

ventilation value within each drive bin is plotted against the median value of the binned drive data. The ventilatory endotypes: compensation, V̇passive

and V̇active can be read directly from the plot. The endogram is used to aggregate and visualize the characteristic ventilation-drive relationships for a

whole sleep study.

for clinical use. Oral appliance therapy appears most beneficial in

patients with less severe collapsibility and lower loop gain (Edwards

et al., 2016a; Vena et al., 2020; Op de Beeck et al., 2021a), and

may also be more efficacious in those with lower compensation and

higher arousal threshold (Bamagoos et al., 2019). Hypoglossal nerve

stimulation was most successful in patients with a higher arousal

threshold, lower loop gain and good compensation; it may also be

more efficacious in those with greater collapsibility (Op de Beeck

et al., 2021b). On the other hand, according to a recent analysis

(Wong et al., 2022), endotyping does not seem to be predictive

of pharyngeal surgical outcomes. A key point emerging from the

available response to therapy studies is that there is often no single

trait that predicts the response to any non-CPAP therapy–even

when the trait is explicitly targeted. Rather, knowledge of the traits

in combination appears to be required. While further prospective

validation studies are needed to confirm the use of endotypes in this

context, knowledge of endotypic traits provides a promising means

to identify subgroups of patients who aremost likely to benefit from

different therapies. Ultimately, clinically-applicable measurements

of these traits will be needed before clinicians can utilize them

to make treatment decisions for different subgroups of patients,

i.e., precision medicine (Eastwood et al., 2011; Eckert et al., 2011;

Edwards et al., 2012; Joosten et al., 2017; Randerath et al., 2018;

Sands et al., 2018a; Bamagoos et al., 2019; Light et al., 2019; Taranto-

Montemurro et al., 2019, 2020; Vena et al., 2020, 2022; Carter and

Eckert, 2021; Op de Beeck et al., 2021a,b; Duong-Quy et al., 2022;

Hedner and Zou, 2022b).

Methods for quantifying endotypic
traits

Here, we review current sleep apnea endotyping methodologies

and how they can be translated from laboratory research into

standard clinical practice. There are three streams of research

methods for investigating endotypic traits. First, the simplest

method for trait estimation is to relate direct output parameters

from standard polysomnography (PSG) to the underlying sleep

apnea pathophysiology [e.g., high apnea index (AI) as an

indicator for high upper airway collapsibility]. These methods

often require minimal additional calculations but do not take

advantage of the wealth of mechanistic information available

in PSG studies. Second, in the physiological laboratory, gold

standard signals are directly measured to assess ventilation and

ventilatory drive, with or without careful experimental procedures

to manipulate ventilatory drive. Such studies typically seek to

demonstrate physiological differences between patients or effects

of therapies. These methods require invasive measurements using

specialized equipment and training that are not available in

standard sleep clinics. Finally, in the clinical setting, methods of

estimating ventilation and ventilatory drive have been developed,

with the goal of translating physiological knowledge from

the physiology laboratory to the clinical arena where gold

standard recordings are not feasible. Such studies use data

collected during a routine sleep study and seek to provide

a physiologically-sound means to predict the likelihood of
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responding to different interventions. These three approaches are

summarized below.

Pathophysiological insights from the
polysomnography report

Useful but somewhat rough estimates of most OSA endotypes

can be garnered without complex calculations or non-standard

measurement equipment. One common approach is to estimate

upper airway collapsibility from routine PSG indices as well as

anthropometric measures. Several indicators have been explored

in the literature, including the fraction of hypopnea vs. apnea

(i.e., Fhypopnea; lower values reflect greater collapsibility), apnea

index (Vena et al., 2022), waist circumference, mean obstructive

apnea duration, rapid eye movement apnea hypopnea index (REM-

AHI), and non-REM obstructive apnea index (NREM-OAI) over

NREM-AHI (Genta et al., 2020).

In addition, nadir oxygen saturation, high AHI and Fhypopnea
have been found to be independent predictors of arousal threshold

(Edwards et al., 2014a), and short respiratory event duration has

been used as an indicator for increased arousability from sleep

(Sands et al., 2018c; Butler et al., 2019). Quantifying loop gain from

PSG using simple approaches has remained elusive. Algorithms

have been developed for predicting high loop gain from the cyclical

self-similarity of respiratory events during sleep (Oppersma et al.,

2021). A simpler approach was proposed recently where higher

AHI and lower hypopnea-percentage (i.e., Fhypopnea) were used to

predict higher loop gain values with moderate accuracy (Schmickl

et al., 2022). Furthermore, high AHI during NREM vs. REM may

indicate high loop gain, as loop gain has been shown to be lower in

REM sleep (Landry et al., 2018; Joosten et al., 2021).

While, to our knowledge, no simple approaches have been

published for deriving upper airway muscle compensation, there

have been recent developments in training machine learning

models to predict OSA endotypes and responses to treatment.

These models utilize PSG variables and anthropometric measures

as inputs and use machine learning or decision trees to classify

patients for precision medicine in sleep apnea (Dutta et al., 2021,

2022).

Overall, these methods underline the fact that there is a wealth

of physiologically relevant information in routine PSG reports that

are not yet fully utilized for precision diagnoses.

Specialized CPAP manipulation in the
physiology laboratory

CPAP manipulations have been used for decades in OSA

research to investigate OSA pathophysiology (Younes, 2003, 2004;

McGinley et al., 2008; Wellman et al., 2011, 2013; Edwards et al.,

2012, 2014b; Eckert et al., 2013; Sands et al., 2014; Messineo

et al., 2018). Many permutations of these methods involved

the following concepts: (1) Patients are placed on an optimal

CPAP that resolves flow limitation and provides stable breathing.

Conceptually, at quiet, stable breathing; ventilation and ventilatory

drive are at eupneic levels and are considered to be equal to

each other. (2) Abruptly “dropping” CPAP to a subtherapeutic

level reveals a flow-limited airway with reduced capacity for

ventilation due to the maximally “passive” pharyngeal dilator

muscles. (3) Over time (e.g., with more gradual CPAP dial-downs),

ventilatory drive rises and activates the pharyngeal muscles, which

typically yields an improvement in ventilation that is considered

to reflect dilator muscle compensation. (4) The arousal threshold

is typically measured as the ventilatory drive (e.g., diaphragm

EMG via catheter) or esophageal pressure on breaths preceding

arousals during the experimental reductions in CPAP levels.

(5) Measurement of gold standard loop gain typically involves

quantifying the size of the increase in ventilatory drive that occurs

in response to a controlled reduction in ventilation.

The most widely used approach for OSA endotyping avoids the

need for invasive measurements of ventilatory drive through the

use of judicious CPAP dial-ups to optimal pressure. The underlying

basis for this method was that ventilatory drive equals ventilation

during these periods (Wellman et al., 2011, 2013). This method

allows for the derivation of the endotypes without the use of

specialized equipment that is not present in a standard PSG lab,

such as diaphragm EMG and esophageal/epiglottic manometry for

measuring respiratory effort (Eckert et al., 2011, 2013; Sands et al.,

2014; Edwards et al., 2016b). Using non-standard methodologies

or equipment requires higher levels of training and longer setup

time, and often results in a more invasive experience for the patient.

These factors all hinder large scale adoption of the methods, despite

their potential for guiding treatment selection (Terrill et al., 2015;

Sands et al., 2018b; Finnsson et al., 2021).

Nonetheless, specialized CPAP manipulation studies require

advanced training and are limited to only several laboratories

worldwide. Specialized CPAP equipment that allows pressure drops

to lower than 4 cmH2O are also not commercially available.

Further, the average success rate of the CPAP drop method for

estimating the four endotypic traits for each individual patient

has been reported to be from 69% (Eckert et al., 2013) to 76%

(Wellman et al., 2013), with difficulty initiating or maintaining

sleep throughout the study procedures being a commonly reported

issue (Edwards et al., 2012, 2014b; Eckert et al., 2013). The ratio

of analyzable CPAP-drops per patient varied from a low of 16%

(Edwards et al., 2014b) to a high of 70% (Eckert et al., 2013). These

methods are therefore most suitable for assessing patients who are

solid sleepers (higher arousal threshold) during periods of the night

with the deepest sleep (Ratnavadivel et al., 2009, 2010). As a result,

this approach is limited in its translational potential.

Gold standard signals during spontaneous
breathing without CPAP

An important step in the transition from the physiology

laboratory to non-invasive clinical measurements involves

the assessment of traits from spontaneous breathing,

measuring ventilation and ventilatory drive, without the use

of CPAP manipulation.

For many years, investigators have measured the arousal

threshold without CPAP manipulation, using direct, invasive,

measurement of the ventilatory drive (typically via catheters placed
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to assess negative esophageal or epiglottic pressures) prior to a

scored arousal (Berry et al., 1996; Haba-Rubio et al., 2005; Eckert

et al., 2011; Edwards et al., 2014a; Carter et al., 2016; Sands et al.,

2018c). Extending this approach, a method was developed to assess

collapsibility and muscle compensation directly from invasive

measurement of ventilation (oronasal mask and pneumotach) and

ventilatory drive (intraesophageal diaphragm EMG) (Sands et al.,

2018b). The approach provides a ventilation-vs.-drive curve (see

example in Figure 1B) describing pharyngeal mechanics that is

conceptually similar to that measured via CPAP drops, but has the

advantage of using direct measurement of these two variables, and

captures the pathophysiology without disrupting the cyclic events

that define the disorder.

Polysomnographic method

The Endo-Phenotyping Using Polysomnography (PUP)

method was developed by Sands and colleagues to translate the

above methods to estimates that could be used clinically (Terrill

et al., 2015; Sands et al., 2018b). The approach was designed

to estimate the pathophysiological endotypes of OSA from a

standard clinical PSG without the need for invasive measurements.

Currently, this method extracts an estimate of ventilatory flow

from the nasal pressure signal. Tidal volume is calculated by

integrating the flow signal, where ventilation is derived by dividing

the tidal volume by each breath’s duration. Ventilation is presented

as a percentage of a local 7-min average, with 100% considered to

represent eupneic ventilation. Thus, ventilation at 0% represents

a complete apnea, 100% is eupneic breathing, and >100% is

hyperpnea. Rather than invasively measuring ventilatory drive,

an estimate is calculated from the ventilation signal, leveraging

the assumption that ventilation reveals the ventilatory drive when

the airway is open but not when it is obstructed. A drive estimate

is derived using a chemoreflex model which takes the ventilation

signal as input and outputs chemical drive according to the

dynamics dictated by the model parameters (gain, time constant,

delay). This chemical drive signal is best fit to the ventilation

signal using least squares; specifically, the chemoreflex model

parameters are adjusted. In addition, the presence of arousal is

also used in the model. Namely, an additional wakefulness/arousal

drive is considered during any breath that lies within the margins

of a scored arousal; a single additional parameter (ventilatory

response to arousal) (Edwards et al., 2013) is added to the chemical

drive to yield the overall ventilatory drive; when arousals are

scored, it is this ventilatory drive signal that is best fit to the

ventilation signal. Goodness of fit, for least squares minimization,

is only evaluated between scored events, i.e., when the airway is

expected to be unobstructed. These estimates of ventilation and

ventilatory drive are used in place of the gold standard signals

(Terrill et al., 2015; Sands et al., 2018c; Finnsson et al., 2021; Gell

et al., 2022). An illustration of estimated ventilation and ventilatory

drive is shown in Figure 1A. With the normalized ventilation

values and corresponding drive values, the PUP method can be

used to derive loop gain (Terrill et al., 2015), arousal threshold

(Sands et al., 2018c), upper airway collapsibility, and upper airway

compensation (Sands et al., 2018b). Typically, these traits are

derived and presented for NREM sleep. See an application of the

method to patient data in Figure 2.

Scalability
PSG endotyping has since been used in multiple research

applications (Wellman et al., 2011, 2013; Terrill et al., 2015;

Sands et al., 2018b,c; Taranto-Montemurro et al., 2019, 2020;

Finnsson et al., 2021; Alex et al., 2022), primarily in studies

seeking to identify a patient subgroup that responds preferentially

to existing and experimental interventions. However, authors

of the work have required specialized software (MATLAB)

and some training to independently generate trait data. To

demonstrate that the approach is truly scalable, our team recently

introduced “PUPpy” (Finnsson et al., 2021), a new independent

implementation in the Python programming language of the

PUP method, that was originally implemented in MATLAB.

PUPpy is a cloud-enabled solution based on the original PUP

method principles (Finnsson et al., 2021), and directly provides

the user with endotypic trait values from uploaded clinically-

collected PSG data. The trait values are congruent with the

PUP method and demonstrated that there are no major hurdles

anymore to making the analysis widely accessible to researchers

and clinicians. To maintain the alignment of the PUPpy

method with the original validation of the PUP method, it

would be helpful to validate it against gold standard methods

(e.g., CPAP drop method/gold standard ventilation and drive

signals) to provide an opportunity for ongoing enhancement

and development.

Normative values and demographic
di�erences

As endotyping is an emerging field in sleep research, thresholds

for abnormal endotypic trait values have not yet been established.

Several studies have reported the range of values of different

endotypic traits calculated using the PUPmethod. Table 1 describes

two previously published datasets where PUP has been used

for analysis: Osteoporotic Fractures in Men Study (MrOS) and

Multi-Ethnic Study of Atherosclerosis (MESA) (Blackwell et al.,

2011; Chen et al., 2015; Zhang et al., 2018; Alex et al., 2022).

Here we also include a new dataset collected in Taiwan at the

China Medical University Hospital (CMUH) that is unique for

its clinical population, which we analyzed using PUPpy (Finnsson

et al., 2021). The low, moderate, and high values for each trait

are described for each of the three datasets based on their

tertiles (Table 2). Notably, compared to the community studies,

the clinical population appears to exhibit greater collapsibility and

lower compensation, consistent with greater pharyngeal deficits,

as expected. The clinical population also exhibited a higher

average arousal threshold, perhaps a reflection of an increased

physiological “sleepiness” (Edwards et al., 2014a) that may be

expected of symptomatic individuals attending a sleep clinic. It is

also possible that differences in race/ethnicity of the populations

contribute to these differences, noting that Asian populations

often exhibit greater anatomical compromise and collapsibility

in obesity-adjusted analyses (O’Driscoll et al., 2019). Further
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FIGURE 2

The figure shows two patients with di�erent OSA expressions. Patient 1 (A, B) displays classic sleep apnea with high collapsibility and low upper airway

compensation. Patient 2 (C, D), has drive-dependent sleep apnea (Gell et al., 2022) where respiratory events correspond to reductions in chemical

drive. As the drive increases the upper airway dilators are activated and some ventilation is restored, hence the upper airway compensation is larger.

understanding of the OSA etiology of different demographics via

sleep apnea endotyping has the potential to provide insight into

optimal treatment pathways.

Future methodological developments

The non-invasive PSG method described has several

limitations with respect to accurately capturing ventilation

and ventilatory drive. A recent debate on the topic highlighted

some of the limitations of the method as well as giving

suggestions for improvements (Sands and Edwards, 2023;

Younes and Schwab, 2023). Here, we discuss areas of

current development.

Limitations of manual scoring of respiratory
obstruction

A fundamental assumption of the model-based endotype

approach is that the airway is unobstructed and not flow-limited
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TABLE 1 Descriptive statistics and endotype values in NREM sleep for di�erent cohorts.

PUP with cannula flow and
modeled drive in NREM

sleep

PUP with cannula flow and
modeled drive in NREM

sleep

PUPpy with cannula flow
and modeled drive in

NREM sleep.

N = 2,316 [MrOS] N = 1,792 [MESA] N = 765 [CMUH]

Setting Unattended in-home PSG, manually

scored

Unattended in-home PSG, manually

scored

In-lab PSG, manually scored PSG

Population Community cohort Community cohort Clinical cohort

Age 76 [72–80] 68 [61–76] 41 [34–51]

Sex (M:F) 2316:0 866:926 641:124

Race/Ethnicity 3% Black, 91%White, 2% Hispanic, 3%

Asian, 1% Other

27% Black, 24% Hispanic, 12% Chinese,

37%White

100% Southeast Asian∗∗∗

BMI 27.0 [25.0–30.0] 28.2 [25.0–32.1] 28.9 [25.8–32.4]

AHI 20.0 [12.0–33.0] 20.8 [12.2–34.9] 25.9 [13.3–52.1]

Collapsibility (V̇passive, %)† 71.5± 15.6 77.5± 14.4 62.0± 22.8

Collapsibility (V̇min, %) 50.9± 22.5 63.7± 20.4 50.5± 17.2

Compensation (V̇active-V̇passive, %) 5.7± 24.1 6.1± 18.2 −3.6± 20.3

Loop gain (LG∗

1) 0.62± 0.17 0.58± 0.18 0.55± 0.18

Loop gain (LGn∗∗) 0.50± 0.12 0.44± 0.11 0.38± 0.10

Arousal Threshold (%)† 148.2± 26.5 139.5± 23.9 159.10± 28.26

Values either presented as Median [IQR] or Mean± SD ∗LG1 , the loop gain at 1 cycle/min, is typically used for endotyping from PSG instead of the steady-state loop gain (LG0). This is because

natural respiratory events rarely reach steady state, so LG0 does not have good observability. LG1 is more accurately observed since 1 cycle/min is closer to the frequency of respiratory events.
∗∗LGn represents the loop gain at the system’s natural frequency. ∗∗∗Based on knowledge of the Taiwanese population. †The values for Collapsibility (V̇passive) and Arousal Threshold have

been square root transformed for normality (Sands et al., 2018a; Alex et al., 2022 - Identifying obstructive sleep apnoea patients responsive).

TABLE 2 33rd percentile and 66th percentile (i.e., trentiles) of the endotypic traits in NREM sleep for di�erent cohorts.

33.3 percentile 66.6 percentile

MrOs MESA CMUH MrOs MESA CMUH

Collapsibility (V̇passive, %)† 70.3 76.8 58.7 78.7 83.7 75.5

Collapsibility (V̇min, %) 46.1 63.2 45.7 64.9 74.8 59.4

Compensation (V̇active-V̇passive; %) 4.1 4.3 −7.4 11.1 8.2 6.2

Loop gain (LG1) 0.54 0.49 0.46 0.68 0.62 0.60

Loop gain (LGn) 0.45 0.38 0.34 0.55 0.47 0.42

Arousal threshold (%)† 134.9 127.7 142.4 156.0 144.4 165.3

†The values for Collapsibility (V̇passive) and Arousal Threshold have been square root transformed for normality (Sands et al., 2018a; Alex et al., 2022 - Identifying obstructive sleep apnoea

patients responsive).

during recovery hyperpnea as well as during periods where no

respiratory events are scored (Terrill et al., 2015; Sands et al.,

2018b; Finnsson et al., 2021). Recently our colleagues showed that

some patients consistently exhibit flow-limited recovery breaths

(Mann et al., 2021). In those patients, the ventilatory drive

will be underestimated. To mitigate this, continuous measures

of the severity of upper airway obstruction could be used to

improve the model-estimated drive signal. Flow-shape-derived

(Mann et al., 2019, 2021; Parekh et al., 2021) and RIP-derived

(Finnsson, 2017; Parekh et al., 2021) breath-level obstruction

measures have been explored with promising results. Continuous

quantification of obstruction could further enhance the precision

of drive and ventilation estimates in the presence of sustained

flow limitation and a concomitant rise in baseline drive above

eupneic levels.

Passive upper airway collapsibility

Passive upper airway collapsibility is most commonly

represented by Pcrit (Kirkness et al., 2008; Eckert et al., 2013) and

represents the x-intercept of a plot of airflow or ventilation vs.

CPAP pressure level. Pcrit can be interpreted as the theoretical

CPAP pressure level where the airway closes. Although Pcrit
has been considered a gold standard method for upper airway

collapsibility, it requires manipulation of airway pressures

(Kazemeini et al., 2022) and is inherently not observable

during spontaneous breathing. By contrast, the y-intercept of

the same ventilation-vs.-CPAP relationship, called “V̇passive,”

similarly provides a gold standard collapsibility measure in

units of ventilation (Younes, 2003). V̇passive represents the

maximum level of ventilation that can be achieved at normal
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ventilatory drive through a passive airway at atmospheric pressure.

Importantly, patients spend their time spontaneous breathing

at atmospheric pressure (by definition), so this variable is

potentially both observable and physiologically relevant to their

OSA pathophysiology.

Estimating passive upper airway collapsibility (ventilation

at eupneic drive, “V̇passive”) from non-invasive signals during

spontaneous breathing requires an accurate assessment of the

ventilatory drive. As discussed above, any underestimation of

the ventilatory drive is expected to provide an overestimation of

V̇passive. To address this concern, Vena et al. recently examined

an alternative measure of passive collapsibility: ventilation at nadir

drive (V̇min), a measure which is independent of systematic bias

in drive levels (Vena et al., 2022). Pcrit was found to be more

strongly correlated with V̇min (r = −0.54) than it is with V̇passive

(r = −0.38). We emphasize, however, that a perfect correlation

is not necessarily expected since Pcrit and V̇min/V̇passive are

inherently different measures. Nonetheless the modest correlation

indicates that there remains room for further development. We

also emphasize that V̇passive measured from spontaneous breathing

is systematically greater than that measured following an acute

reduction in CPAP, likely because the baseline dilator muscle

activity is greater off CPAP than immediately after an abrupt CPAP

drop, even at similar drives. While the spontaneous breathing

methods capture less of a truly passive tissue mechanical behavior,

it may be advantageous to quantify the degree of collapsibility

as it contributes to the pattern of cyclic events that define each

patient’s disorder.

Oral breathing

A key limitation of nasal pressure is that it captures nasal rather

than combined oronasal airflow. Unfortunately, oral breathing

is both prevalent and significant in OSA (Gleeson et al., 1986;

Nascimento et al., 2019) and can be invoked by obstructive

respiratory events (Suzuki et al., 2015; Lebret et al., 2018). Errors

in trait estimates are expected for those with the most pervasive

mouth opening during sleep (Redline et al., 2007).

Several auxiliary flow sensors have been proposed to mitigate

the effects of oral breathing. An oronasal thermistor is frequently

invoked (Redline et al., 2007), yet this sensor technology does

not provide a linear flow measurement for quantitative use (Farré

et al., 1998; Redline et al., 2007). When properly calibrated and

processed, respiratory inductance plethysmography (RIP) can be

used to assess ventilation (Montazeri et al., 2021). With careful

calibration, RIP could provide a flow signal to generate traits

similar to those derived from oronasal flow and may provide a

more reliable alternative to nasal pressure in circumstances with

considerable mouth breathing.

Repeatability and physiological variability

It is established that some traits vary within a night. Given

both physiological variability and measurement noise, there may

be concerns about repeatability of estimated trait values generated

from PSG methods. Most notably, collapsibility is greater in supine

position than in lateral position (Ong et al., 2011) but often

appears unaffected by sleep stage (Ong et al., 2011; Joosten et al.,

2021; Messineo et al., 2022). Loop gain, however, is lower during

REM sleep than during NREM (Joosten et al., 2021). Interestingly,

upper airway muscle compensation is largely unaffected by state

(Messineo et al., 2022). As with prior physiology studies, trait

values reported by the PUP method for these traits are the medians

during NREM for the night of study, and physiological variations

are incorporated into the 95 percentile confidence intervals of the

estimated values.

The traits derived from PUP have been shown to have

a moderate-to-good within-night repeatability, with correlations

(Pearson correlation) ranging from 0.69 to 0.83 (Alex et al.,

2022) for two independent measures taken from the same night.

Night-to-night repeatability is similar, with correlations (intra-

class correlation) ranging from 0.72 to 0.83 (Strassberger et al.,

2023) in one study, and 0.67–0.91 in another (Tolbert et al.,

2023). In general, intraclass correlations for collapsibility, loop

gain, and arousal threshold have been >0.8 but lower for

compensation. Of note, compensation is calculated as the difference

in two collapsibility measures (V̇active minus V̇passive) such that

measurement error is augmented. Overall, however, night-to-night

repeatability is similar to that observed for apnea-hypopnea index

(Alex et al., 2022). Long term repeatability (6–7 years between

studies), at least in an elderly male population, has been shown to

be more modest with r= 0.36–0.61.

With the goal of increasing repeatability, incorporating the

effects of sleep state, position, arousal intensity (Azarbarzin et al.,

2014; Amatoury et al., 2016), or other covariates may be beneficial,

but the optimal means to do so remains an area for future research.

Future clinical utility

Over the last decade, the field of sleep medicine has actively

investigated novel clinically-applicable measurements that capture

differences in underlying disease pathophysiology to aid clinicians

in selecting the most appropriate treatments for their patients

(Wellman et al., 2011; Carberry et al., 2018; Schmickl et al., 2018;

Sutherland et al., 2018; Edwards et al., 2019; Light et al., 2019;

Martinez-Garcia et al., 2019; Lyons et al., 2020; Siriwardhana et al.,

2020). Until now, clinical interventions for the treatment of OSA

have primarily followed a one-dimensional treatment pathway: A

single diagnostic parameter, the AHI, or one of its analogs (Epstein

et al., 2009; LCD, 2022; NCA- CPAP, 2022) was used to determine

the need for a single intervention, CPAP. This pathway from

diagnosis to treatment involves minimal mechanistic information

which may lead to simplistic decision-making, which in turn

may deter new physicians from entering the field (Watson et al.,

2017). On the other hand, OSA is a highly complex disorder

that manifests as the downstream product of interacting deficits

in multiple pathophysiological traits, and involves aspects of

upper airway anatomy, pulmonary mechanics, ventilatory control,

pharyngeal muscle control, and sleep neurobiology. Unfortunately,

many of these academically challenging aspects are not currently

considered in daily clinical sleepmedicine to benefit patients. Novel

clinically available tools to capture these underlying mechanisms
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could potentially change the nature of clinical sleep medicine.

Once available–and supported by data on their clinical utility–

we consider that clinicians will have the means available to better

understand the etiology of an individual’s disorder and use this

information to select the optimal treatment for their patient.

The pathway to widespread use of endotypic traits is expected

to involve several research and clinical challenges. Greater accuracy

of the estimates of traits through improved processing and

estimation of ventilation and ventilatory drive will be needed. Such

studies will need to be guided by gold standard signals obtained

from physiology laboratory settings with simultaneous clinical

signals. The field will further benefit from a shift toward improved

respiratory signal fidelity (perhaps in the opposite direction to

the current approach of determining how few signals can be used

to obtain a diagnostic AHI value). Currently, some in-laboratory

clinical sleep recording systems over-filter airflow signals well

beyond AASM criteria: High pass filters (baseline drift filter)

should be set to “off” (per AASM recommended filter settings);

while the AASM recommended filter setting criteria allows up

to 0.03Hz, even this level compromises advanced flow waveform

analysis. Low pass filters, often used by technicians to remove

snoring vibrations to assess score flow reductions for hypopneas,

should be no lower than 12.5Hz to evaluate flow limitation (Mann

et al., 2019, 2021), but AASM recommends no lower than 100Hz

(equivalent to “off” for sampling rates 25–200Hz). The field is

also lacking a standardized system for signals storage (e.g., signal

labels vary widely) and annotations tabulations (e.g., event and

epoch names vary widely, often durations are not available) to

facilitate automated analyses. Manual sleep and event scoring will

presumably be replaced with automatic scoring, that for many

years may require manual quality control review. The software

for analyzing traits needs to be at the fingertips of clinical sleep

laboratories through data uploading or built as an add-on to

commercially available sleep systems so that summary data can

make their way into the “future PSG report.” The feasibility

of this has been demonstrated through the PUPpy cloud-based

implementation of the method (Finnsson et al., 2021). Clinicians

will need guidance on how to interpret trait data with respect to

the reliability and the likely responses to different therapies. For

this to be evidence-based, substantially larger datasets containing

raw PSG data before and after different therapies are needed

to better define the expected treatment responses for different

endotypic subgroups, ultimately allowing a clinician to see the

expected treatment effects (and 95% confidence) for a host of

therapies based on their values of collapsibility, loop gain, etc.

Such data is also needed to better define “high” and “low” values

for a given trait. In the meantime, the current use of endotypic

traits in recent clinical trials is encouraging. Subsequently, larger

studies will be needed to show that knowing the endotypic traits

provides better patient outcomes and is more cost-effective than

not knowing them (and using trial-and-error to select therapeutic

interventions). Potentially, these studies could extend to whether

endotypes should serve as an aid in deciding if a patient’s OSA

is severe enough to warrant treatment or not, although novel

phenotypic traits such as hypoxic burden (Azarbarzin et al., 2019),

heart rate response to events (Azarbarzin et al., 2021), or baseline

levels of sleepiness/hypertension (Randerath W. J. et al., 2021)

could be better suited for that purpose. There is a substantial

amount of challenging work to do for investigators, clinicians, and

engineers to make precision sleep medicine a reality.

In summary, it is now attainable to estimate individual

differences in the key traits contributing to sleep apnea–

collapsibility, compensation, arousal threshold, and loop gain–

through analysis of ventilation and ventilatory drive in a routine

clinical sleep study, i.e., without invasive measurements or

specialized operators. Multiple challenges are being overcome for

the translation of these endotypic traits into clinical practice. We

consider that such mechanistic information will facilitate precision

medicine for OSA, and in doing so, make clinical sleep medicine a

more enriched and rewarding field.
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Risk assessment model for  
sleep disturbance based on 
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Background: Sleep disturbance has become a considerable factor affecting 
the quality of life for middle-aged and elderly people; however, there are still 
many obstacles to screening sleep disturbance for those people. Given the 
growing awareness of the association between gastrointestinal function and 
sleep disturbance, our study aims to predict the risk of sleep disturbance using 
gastrointestinal electrophysiological signals.

Methods: The Pittsburgh Sleep Quality Index and gastrointestinal 
electrophysiological signals of 914 participants in western China were used to 
establish the model. Demographic characteristics and routine blood test were 
collected as covariates. Participants were randomly assigned into two sets with a 
7:3 ratio for training and validation. In the training set, the least absolute shrinkage 
and selection operator (LASSO) regression and stepwise logistic regression were 
used, respectively for variables selection and optimization. To assess the model 
performance, receiver operator characteristic (ROC) curve, calibration curve and 
decision curve analysis (DCA) were utilized. Then, validation was performed.

Results: Thirteen predictors were chosen from 46 variables by LASSO regression. 
Then, age, gender, percentage of normal slow wave and electrical spreading 
rate on the pre-meal gastric channel, dominant power ratio on the post-meal 
gastric channel, coupling percent and dominant frequency on the post-meal 
intestinal channel were the seven predictors reserved by logistic regression. The 
area under ROC curve was 0.65 in the training set and 0.63 in the validation set, 
both exhibited moderate predictive ability. Furthermore, by overlapping the DCA 
results of two data-sets, there might be clinical net benefit if 0.35 was used as 
reference threshold for high risk of sleep disturbance.

Conclusion: The model performs a worthy predictive potency for sleep 
disturbance, which not only provides clinical evidence for the association of 
gastrointestinal function with sleep disturbance, but also can be considered as an 
auxiliary assessment for screening sleep disturbance.

KEYWORDS

sleep disturbance, Electrogastroenterography, LASSO regression, decision curve 
analysis, ROC curve
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Introduction

Sleep disturbance is one of the most prevalent mental disorders, 
especially among the middle-aged and elderly people (1), which 
generally manifest insomnia, narcolepsy, poor sleep quality, and 
obstructive sleep apnea (OSA) syndrome (2). According to 
epidemiological surveys, the prevalence of sleep disturbance increases 
significantly with aging and affects more than half of those over the 
age of 60 (3); and moreover, the COVID-19 pandemic has exacerbated 
the effects of sleep disturbance (4). Sleep disturbance could drastically 
reduces a person’s quality of life (5), and raises the chance of 
developing a mental disorder, such as depression or anxiety, or both, 
especially in the middle-aged and elderly individuals (6–9). 
Furthermore, it has been shown that elderly individuals who have 
sleep disturbance exhibit a higher risk of developing neurological 
diseases including Parkinson’s and Alzheimer’s diseases as well as 
stroke, migraine, and cognitive impairment (10–14). On the other 
hand, elderly people with sleep disturbance are more reliant on 
sleeping pills (15, 16), which adds to their illness burden, impacts the 
ability to communicate with others, and injures the energy in social 
activities during the day (17).

A general community screening is required for such individuals 
due to the significance of sleep disturbance in the senior population, 
although there are some challenges. Currently, patient-rated 
questionnaires, such the Insomnia Severity Index (ISI) and Pittsburgh 
Sleep Quality Index (PSQI), are trustworthy tools for estimating the 
severity of sleep disturbance (18). However, since the use of PSQI and 
ISI necessitates that participants have the necessary cognitive 
capacities and educational levels, it is challenging to become effective 
and widely accessible community screening tools for all middle-aged 
and elderly people or those with cognitive decline. In addition, 
polysomnography could provide precise estimations of sleep duration 
and quality, but due to its costly and time-consuming drawbacks, it is 
also difficult to become a routine clinical procedure (19). Therefore, a 
practical, effective, and objective instrument is urgently needed to aid 
to the screening of sleep disturbances in the middle-aged and 
elderly people.

In recent years, the bidirectional regulatory mechanism of 
gut-brain axis has attracted a lot of scientific attention, which 
highlights the close connection between the gastrointestinal 
homeostasis and the health of the central nervous system (CNS), and 
reveals the significant effect of gastrointestinal function changes on 
the CNS (20). The conception of the gut-brain axis also corresponds 
to an old Chinese proverb saying that a disturbed stomach makes it 
impossible to go asleep, which was an early exploration in the 
association between gastrointestinal function and sleep disturbance.

Numerous studies have shown this close association between 
gastrointestinal dysfunction and sleep disturbance. For instance, some 
clinical studies have found that gastrointestinal diseases like 
inflammatory bowel disease, gastro-oesophageal reflux disease, 
digestive disease, and functional gastrointestinal disorders are more 
likely develop symptoms of sleep disturbance, and these diseases that 
most frequently impair sleep are acid-related (21–23). Additionally, 
Zhe Wang et al. (24) pioneered the microbiota-gut-brain axis that the 
gut microbiota is bidirectional correlated with sleep behavior, which 
may contribute to the regulation of sleep quality. These findings raise 
the prospect of predicting the risk of sleep disturbance by using 
diagnostic tools for gastrointestinal function.

Electrogastroenterogram (EGEG) is a non-invasive method that 
uses cutaneous electrodes applied to the abdominal skin across the 
stomach and intestine to capture myoelectrical activity (25). The 
myoelectric activity of the gastrointestinal tract is primarily 
composed of slow wave and spinal potential. Since its popularization 
in the 1990s, EGEG has been used as an auxiliary method of 
diagnosing a variety of gastrointestinal functional disorders (26). 
Furthermore, W C Orr et  al. (27) revealed that patients with 
irritable bowel syndrome had significantly different manifestations 
of EGEG during sleep compared to normal people. Anjiao Peng 
et al. (28) also demonstrated that patients with rapid eye movement 
sleep behavior disorder also had irregular changes of EGEG. Based 
on these lines of evidences, our study aims to compare the 
differences in gastrointestinal myoelectrical activity by EGEG 
between patients with sleep disturbance and healthy controls, and 
establishes a risk assessment model with the expectation of 
considering as an auxiliary assessment for sleep disturbance in the 
middle-aged and elderly people.

Methods and materials

Subjects

In this cross-sectional research, participants over the age of 40 
were recruited from 60 communities in western China between 
January 2020 and December 2021. All subjects voluntarily 
participated in our study and signed informed consent, and they 
were required to possess the necessary knowledge and 
communication ability to complete the relevant questionnaire and 
clinical diagnostic. The exclusion criteria for subjects included: 1) 
Subjects diagnosed with gastrointestinal diseases such as gastritis 
and gastric ulcer, within the last 6 months, 2) Subjects with 
gastrointestinal discomfort such as diarrhea and constipation, 3) 
Subjects with a history of drug use within the past week, 4) Subjects 
with severe cardio, liver and kidney dysfunction or metabolic 
diseases such as diabetes, 5) Subjects with major mental illness. 
Following that, all subjects were told to abstain from alcohol and 
follow a light diet for 3 days in order to complete the EGEG test, 
along with a sleep disturbance questionnaire and a routine blood 
test on the same day. All clinical examinations and questionnaire 
assessments were conducted jointly by neurology physicians from 
the West China hospital and community health service staff. For 
each subject, general information on age, gender, body mass index 
(BMI), and the history of smoking and alcohol drinking was 
collected, clinical information including the results of PSQI 
questionnaire, routine blood tests, and EGEG examination was also 
collected. This study was approved by the Ethics Committee of West 
China Hospital of Sichuan University (No. 2018–491, 2022–1,138).

Routine blood test

We required each participant in our study undergo a routine 
blood test, and collected their most common blood glucose and 
lipid information such as glucose, triglyceride (TG), total 
cholesterol (Tch), high density lipoprotein (HDL) and low density 
lipoprotein (LDL).
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EGEG records

We used an eight-channel gastrointestinal electromyograph 
(XDJ-S8, Hefei Kaili Company, Hefei, China) to measure the 
gastrointestinal myoelectrical activity. Prior to the EGEG examination, 
all participants were instructed to fast for at least 6 hours and to refrain 
from consuming alcohol and spicy, greasy, or irritating foods for at 
least 3 days. In a supine position, the measurement of EGEG was 
performed. Eight gastrointestinal electrodes, including four gastric 
electrodes (corpus gastricum, gastric antrum, gastric lesser curvature, 
and gastric greater curvature), and four intestinal electrodes 
(ascending colon, transverse colon, descending colon, and rectum), 
were positioned on the abdominal skin (Hanjie Company. Ltd., 
Shanghai, China), as shown in Figure 1.

The reference electrode was positioned on the medial wrist of the 
right hand, and the grounding electrode was positioned on the medial 
ankle of the right leg. Participants were instructed to remain still for 
the whole 6 minutes of the pre-meal EGEG recording. Following that, 
they were received a mealtime functional load test, which providing 
about 200 kcal of food, and accepted a 6 minutes post-meal EGEG 
recording after waiting 5 minutes.

EGEG data processing

The background noise was filtered out from the EGEG recordings 
by setting a high cutoff frequency of 0.1 Hz and a low cutoff frequency 
of 0.008 Hz. The EGEG recordings were produced at sampling rate 
of 1 Hz.

After visual inspection for artifacts, the raw EGEG data was 
automatically calculated by the computer alongside the EGEG, and 
the following indicators of each electrode were collected separately: 

1) mean amplitude of waveform (MAW), 2) mean frequency of 
waveform (MFW), 3) electrical rhythm disturbance (ERD), 4) 
reaction area of waveform (RAW), 5) electrical spreading rate 
(ESR), 6) dominant frequency (DF), 7) dominant power ratio 
(DPR), 8) percentage of normal slow wave (PNSW), 9) coupling 
percent (CP).

Given the high degree of internal consistency among the electrode 
recording data on the gastric and intestinal channels, we merged the 
electrode indicators by averaging four gastric and four intestinal 
electrodes separately. Meanwhile, due to the EGEG tests were 
conducted pre-meal and post-meal, a total of 36 EGEG parameters 
were eventually derived for each participant.

Sleep disturbance assessment

The PSQI questionnaire was used to assess sleep quality of the 
participants in the past month, and to diagnose whether they had a 
sleep disturbance. The PSQI questionnaire consists of 19 self-
reported questions and five questions that should be answered by 
roommates, which are used only for clinical information and not 
tabulated in the scoring. The 19 self-reported questions were used to 
calculate the PSQI score, which could divided into seven 
components, with each component scored from 0 to 3. The seven 
components separately are: 1) subjective sleep quality, 2) sleep 
latency, 3) sleep duration, 4) habitual sleep efficiency, 5) sleep 
disturbances, 6) use of sleeping medication, and 7) daytime 
dysfunction. The sum of these components produces a global score, 
which ranges from 0 to 21, where a higher score indicates worse 
sleep quality. A total score over than eight points is considered as 
having a sleep disturbance, and whether the subjects had a sleep 
disturbance is the outcome variable in our study (29).

FIGURE 1

(A) A pattern diagram of electrodes positioning for EGEG recording. Eight electrodes from gastric and intestinal channels reflect the myoelectrical 
activity, including four gastric electrodes (corpus gastricum, gastric lesser curvature, gastric greater curvature, gastric antrum), and four intestinal 
electrodes (ascending colon, transverse colon, descending colon, rectum). (B) A sample diagram of the positioning process in EGEG examination. 
EGEG, electrogastroenterogram.
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Statistic analysis

Variables selection

In linear regression models, the least absolute shrinkage and 
selection operator (LASSO) regression is a shrinkage and variable 
selection approach that might aid to the identification of significant 
predictors. LASSO regression could shrink a portion of the regression 
coefficients towards zero, and any predictors with a coefficient of zero 
are eliminated from the model. For forecasting the response variable, 
the remaining predictors with nonzero coefficients are regarded as 
being the most crucial (30). Using the type measure of-2log-likelihood 
and the binomial family to centralize and normalize the included 
variables, and the optimum lambda value was chosen by LASSO 
regression with 10 fold cross-validation. The best performing model 
was created using the “Lambda.min” setting.

According to the theoretical requirements for external validation, 
the total number of participants in our study were randomly split into a 
training set and a validation set in a 7:3 ratio. We included a total of 46 
variables for variables screening, including the demographic 
characteristics, the results of routine blood test, and 36 EGEG parameters.

Considering the large number of variables included in this study, 
in order to ensure sufficient statistical efficiency of the assessment 
model in the training set, we required that the sample size of the 
training set should be  at least 10 times more than the number of 
variables, and therefore the estimated total sample size for this study 
should be at least 658 people.

Setting risk assessment model

The statistic analysis in our study consisted of two parts: variables 
selection and assessment of predictive power. The data in the training 
set was analyzed using the LASSO regression in order to select the 
optimal predictors from all the variables. The predictors chosen from 
LASSO regression was further optimized by using stepwise multi-
variable logistic regression. Then, final version of risk assessment 
model was established and plotted the nomogram of the model. The 
odds ratio (OR) and 95% confidence interval (CI) were used in our 
study to define the contributions and to produce the nomogram.

Furthermore, several validation methods were used to evaluate 
the predicting efficiency of the risk assessment model, both into the 
training set and the validation set. The area under the receiver 
operating characteristic (ROC) curve was used to evaluate the 
performance of the risk assessment model in identifying true positive 
patients with sleep disturbance from participants. The calibration 
curve, accompanied by the Hosmer-Lemeshow test, was used to assess 
the calibration of this model (31). The decision curve analysis (DCA) 
was used to determine the clinical practicability of model according 
to searching the best net benefit under the different threshold 
probabilities (32). All analyzes were performed using R version 4.1.3 
with packages glmnet and rms, and the significance level was set as a 
two tailed alpha <0.1.

Results

A total of 914 subjects, comprising 275 males and 639 females, 
were included in the study and completed relative clinical 

examinations. Of these, 301 participants (32.93%) were diagnosed 
with sleep disturbance. 639 and 275 participants were assigned to the 
training and validation sets, respectively, as a result of the random 
assignment in a 7:3 ratio. We compared each variable between patients 
with sleep disturbance and healthy controls in both groups, as detailed 
in Table 1.

According to the results, age, ESR and DF on the pre-meal gastric 
channel, as well as DF on the post-meal intestinal channel were shown 
to be significantly different between patients with sleep disturbance 
and healthy control in both sets (p < 0.1). In addition, variables that 
had significant differences between sleep disturbance and healthy 
control in the training set alone included gender, ERD, DPR, PNSW 
and CP on the post-meal gastric channel, DPR, PNSW, and CP on the 
intestinal gastric channel; in the validation set alone included MAW 
and RAW on the pre-meal gastric channel, MFW, ERD and DF on the 
pre-meal intestinal channel, MFW and RAW on the post-meal 
intestinal channel.

Among the 46 associated variables, 13 potential predictors were 
chosen in the training set by binomial LASSO regression. These 
predictor variables were age, gender, LDL, ESR, DF, and PNSW on the 
pre-meal gastric channel, DPR on the pre-meal intestinal channel, 
RAW, DPR, and CP on the post-meal gastric channel, DF, DPR and 
CP on the post-meal intestinal channel. The variables screening 
processed by LASSO regression and ten-fold cross validation is shown 
in Figure 2, and the coefficients of retained variables are shown in 
Supplementary Sup S1.

The retained 13 predictors variables used stepwise binomial logistic 
regression for further optimization, and established the final risk 
assessment model. The final risk assessment model for sleep disturbance 
consists of seven predictors, including age, gender, PNSW and ESR on 
the pre-meal gastric channel, DPR on the post-meal gastric channel, DF 
and CP on the post-meal gastric channel. Among these predictors, 
increasing age associated with a higher risk of sleep disturbance, and 
male had a lower risk of sleep disturbance than female. With the 
exception of the DPR on the post-meal gastric channel, the EGEG 
variables were both negative associated with the risk of sleep disturbance, 
and details are presented in Table 2. All predictors except gender were 
significant at the 0.05 level. To facilitate risk assessment of sleep 
disturbance using these predictor variables, the nomogram and dynamic 
nomogram were both created and are shown in Figure  3, which is 
helpful to carry out personalized clinical evaluation.

In terms of model validation and efficiency evaluation, we utilized 
the model to generate the predicted probability for 275 subjects in the 
validation set, and plotted the corresponding ROC curve to evaluate 
its sensitivity and specificity. The area under ROC curves were both 
above 0.6 in the two groups, indicating that the model exhibited a 
satisfying robustness. The results of sensitivity were 0.74 and 0.81 in 
the training and validation set respectively, meaning that the risk 
assessment model performed well in identifying true positive patients 
of sleep disturbance, but the results of specificity were 0.51 and 0.43, 
respectively, indicating that the model has insufficient ability to 
identify false negative patients, as shown in Figure 4.

Furthermore, we plotted the calibration curve and decision curve 
of the model both in two datasets, as shown in Figures 5, 6. The results 
of calibration curves in both datasets showed consistency between 
ideal curve and bias-correct curve; however, due to insufficient 
number of patients in the validation set, the curve deviated slightly 
from the apparent line. In the DCA, the threshold range of prediction 
probability were 0.34–0.63 and 0.29–0.35 in two sets, respectively, and 
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TABLE 1 The demographic characteristics, hematological parameters, and EGEG variables of the middle-aged and elderly subjects in training and validation set.

Variables Training set (N = 639) Validation set (N = 275)

Sleep 
disturbance 

(N = 219)

Health control 
(N = 420)

p value Sleep 
disturbance 

(N = 82)

Health control 
(N = 193)

p value

Demographic characteristics

  Gender 0.092* 0.289
  Male 160 (73.06) 278 (66.19) 64 (78.05) 137 (70.98)
  Female 59 (26.94) 142 (33.81) 18 (21.95) 56 (29.02)
  Smoking 30 (13.70) 51 (12.14) 0.663 9 (10.98) 23 (11.92) 0.986
  Alcohol 50 (22.83) 100 (23.81) 0.858 12 (14.63) 43 (22.28) 0.199
  Age 57.39 ± 6.29 55.63 ± 5.92 0.001*** 56.73 ± 6.14 55.11 ± 6.35 0.050**
  BMI 24.11 ± 3.27 24.22 ± 2.89 0.654 24.07 ± 3.38 24.64 ± 3.26 0.195

Hematological parameters

  Glucose 5.59 ± 1.57 5.45 ± 1.19 0.275 5.33 ± 1.15 5.39 ± 1.05 0.695
  TG 1.65 ± 1.25 1.60 ± 1.07 0.620 1.51 ± 0.80 1.74 ± 1.72 0.128
  Tch 5.47 ± 0.93 5.36 ± 0.97 0.143 5.30 ± 1.04 5.44 ± 0.99 0.291
  HDL 1.80 ± 0.48 1.76 ± 0.49 0.339 1.78 ± 0.49 1.76 ± 0.50 0.756
  LDL 3.07 ± 0.75 2.98 ± 0.70 0.167 2.96 ± 0.79 3.03 ± 0.71 0.457

Gastric channel pre-meal

  MAW 174.88 ± 93.31 174.28 ± 87.87 0.938 195.28 ± 97.57 168.92 ± 87.10 0.036**
  MFW 3.50 ± 0.31 3.47 ± 0.32 0.279 3.42 ± 0.29 3.45 ± 0.32 0.485
  ERD, % 20.93 ± 3.54 20.96 ± 3.75 0.906 21.49 ± 4.78 20.97 ± 3.60 0.374
  RAW 62.54 ± 33.04 62.95 ± 31.61 0.880 69.45 ± 35.68 60.38 ± 30.69 0.047**
  ESR 0.87 ± 1.51 1.17 ± 1.94 0.031** 0.62 ± 1.13 1.17 ± 1.81 0.002***
  DF 3.02 ± 0.24 2.98 ± 0.25 0.054* 2.95 ± 0.24 3.00 ± 0.26 0.097*
  DPR, % 60.98 ± 6.38 61.08 ± 6.19 0.861 62.40 ± 6.63 61.24 ± 5.95 0.175
  PNSW, % 58.38 ± 8.00 59.36 ± 8.47 0.148 60.19 ± 8.81 59.49 ± 7.73 0.532
  CP, % 90.81 ± 7.07 90.04 ± 7.98 0.216 89.70 ± 8.06 90.93 ± 6.89 0.228

Intestinal channel pre-meal

  MAW 186.70 ± 115.78 191.62 ± 117.46 0.612 167.35 ± 98.65 183.66 ± 111.59 0.230
  MFW 12.81 ± 2.30 12.98 ± 2.40 0.376 12.12 ± 2.02 12.83 ± 2.26 0.011**
  ERD, % 23.98 ± 5.88 23.34 ± 5.78 0.196 25.11 ± 4.97 23.01 ± 5.59 0.002***
  RAW 70.06 ± 41.83 72.18 ± 43.04 0.547 62.71 ± 36.76 68.60 ± 40.19 0.240
  ESR 0.38 ± 0.77 0.45 ± 0.92 0.333 0.49 ± 1.07 0.41 ± 0.79 0.545
  DF 11.57 ± 2.66 11.80 ± 2.86 0.312 10.91 ± 2.44 11.61 ± 2.73 0.035**
  DPR, % 30.16 ± 6.00 30.98 ± 6.25 0.108 30.71 ± 6.60 31.22 ± 6.23 0.557
  PNSW, % 51.84 ± 11.28 52.43 ± 13.17 0.553 54.84 ± 10.80 52.79 ± 13.17 0.179
  CP, % 82.32 ± 17.60 82.97 ± 18.24 0.665 82.78 ± 18.99 83.47 ± 16.57 0.776

Gastric channel post-meal

  MAW 206.86 ± 93.50 211.29 ± 94.21 0.571 221.58 ± 98.08 204.96 ± 106.15 0.212
  MFW 3.42 ± 0.33 3.42 ± 0.31 0.871 3.37 ± 0.27 3.42 ± 0.29 0.108
  ERD, % 20.47 ± 4.04 21.10 ± 4.00 0.062* 20.19 ± 3.47 20.68 ± 3.90 0.299
  RAW 73.44 ± 33.55 75.93 ± 33.44 0.373 79.07 ± 34.85 72.71 ± 36.26 0.173
  ESR 1.31 ± 2.33 1.10 ± 2.13 0.252 1.17 ± 2.73 1.15 ± 2.05 0.937
  DF 2.98 ± 0.27 2.97 ± 0.29 0.720 2.96 ± 0.26 2.96 ± 0.27 0.858
  DPR, % 62.86 ± 6.07 61.5 ± 6.08 0.007*** 63.44 ± 6.39 62.60 ± 6.18 0.313
  PNSW, % 60.95 ± 8.35 59.67 ± 8.26 0.065* 61.63 ± 8.23 61.11 ± 8.50 0.637
  CP, % 93.90 ± 5.85 92.58 ± 7.27 0.013** 92.40 ± 7.82 93.11 ± 5.95 0.465

Intestinal channel post-meal

  MAW 177.24 ± 96.21 187.78 ± 97.48 0.192 160.37 ± 76.60 176.75 ± 92.01 0.129
  MFW 12.01 ± 1.89 12.13 ± 2.16 0.490 11.28 ± 1.77 12.16 ± 2.22 0.001***
  ERD, % 25.73 ± 4.95 25.04 ± 5.23 0.102 25.94 ± 4.54 25.03 ± 4.77 0.134
  RAW 66.12 ± 34.92 69.95 ± 35.32 0.191 58.96 ± 27.24 65.90 ± 33.23 0.073*
  ESR 0.54 ± 1.02 0.57 ± 1.33 0.770 0.71 ± 1.18 0.56 ± 1.03 0.322
  DF 10.46 ± 2.10 10.81 ± 2.51 0.059* 10.05 ± 1.96 10.85 ± 2.44 0.004***
  DPR, % 28.96 ± 4.79 29.79 ± 5.03 0.042** 29.34 ± 4.94 29.77 ± 4.54 0.505
  PNSW, % 53.60 ± 9.30 53.96 ± 10.44 0.649 54.30 ± 8.32 53.73 ± 10.66 0.635
  CP, % 89.85 ± 10.33 91.71 ± 10.25 0.031** 91.26 ± 9.83 90.92 ± 10.42 0.799

TG, triglyceride; Tch, total cholesterol; HDL, high density lipoprotein; LDL, low density lipoprotein; MAW, mean amplitude of waveform; MFW, mean frequency of waveform; ERD, electrical rhythm 
disturbance; RAW, reaction area of waveform; ESR, electrical spreading rate; DF, dominant frequency; DPR, dominant power ratio; PNSW, percentage of normal slow wave; CP, coupling percent.
Classification variables are described in the form of frequency (%); Statistical significance, *p < 0.10; **p < 0.05; ***p < 0.01.
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the threshold probability selection range was significantly narrowed 
in the validation set. The overlap of threshold probabilities in the two 
sets is between 0.34 and 0.35. Therefore, in the EGEG-based risk 
assessment model, patients with a predicted probability higher than 
0.35 were considered to be high risk of sleep disturbance, and this 
reference threshold might provide a clinical net benefit.

Discussion

Sleep disturbance is a crucial factor affecting many nervous 
system diseases and mental disorders (33, 34). The development of 
sleep disturbance is also more likely to occur in middle-aged and 
elderly people. Improving the diagnosis rate of sleep disturbance in 
this population is conducive to earlier detection and treatment, which 
will significantly enhance their quality of life and reducing the burden 
of disease. However, extensive community screening is still difficult 
due to the limitations of self-reported questionnaires and 
polysomnography, leaving many people with sleep disturbance are 

never detected (35, 36). This deficiency is anticipated to be remedied 
by the risk assessment model of sleep disturbance based on EGEG that 
our research has developed. By using multiple evaluation indicators 
including ROC curve, calibration curve and DCA curve, the 
performance of the risk assessment model was compared and verified 
in the training set and verification set. It was discovered that the 
predictive ability of the model was stable and that it was effective at 
identifying positive patients with sleep disturbance. In the future, it is 
possible to use this model extensively in the community for sleep 
disturbance screening due to its satisfactory model performance.

For clinicians, the precise diagnostic of gastrointestinal 
inflammation, irritable bowel syndrome, functional gastrointestinal 
disorders, and digestive dysfunction is greatly benefited by the use of 
EGEG (37, 38). However, because the gastrointestinal channel has 
weaker myoelectrical activity than the heart and brain, there have not 
been many studies to explore EGEG’s potential for broader applications 
and connections to other disorders (39). Combining the risk prediction 
model developed based on EGEG for mild cognitive impairment (MCI) 
(40), EGEG demonstrated worthy predictive potential for both sleep 

FIGURE 2

(A) The process of variables selection by binomial LASSO regression, a coefficient profile plot was produced against the log (lambda) sequence, different 
colors represent the different variables. (B) The results of ten-fold cross validation, by verifying the optimal lambda in the LASSO model, the partial 
likelihood deviance (binomial deviance) curve was plotted, and dotted vertical lines were drawn based on minimum lambda and standard error criteria.

TABLE 2 Risk assessment model of sleep disturbance in middle-aged and elderly people.

Variables Beta Std.error Z value OR 95%CI p value

Lower Upper

Age 0.050 0.015 3.446 1.052 1.022 1.082 0.001***

Gender, ref. = female −0.340 0.193 −1.763 0.711 0.485 1.035 0.078*

Pre-meal

PNSW of gastric 

channel −0.024 0.011 −2.211 0.976 0.956 0.997 0.027**

ESR of gastric channel −0.127 0.053 −2.381 0.881 0.790 0.974 0.017**

Post-meal

DPR of gastric channel 0.041 0.015 2.774 1.042 1.012 1.073 0.006***

CP of intestinal channel −0.017 0.008 −2.015 0.984 0.968 1.000 0.044**

DF of intestinal 

channel −0.089 0.039 −2.283 0.914 0.845 0.986 0.022**

OR, odds ratio; ESR, electrical spreading rate; DF, dominant frequency; DPR, dominant power ratio; PNSW, percentage of normal slow wave; CP, coupling percent.
Classification variables are described in the form of frequency (%); Statistical significance, *p < 0.10; **p < 0.05; ***p < 0.01.
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disturbance and MCI. In the future, for middle-aged and elderly people 
with cognitive decline, communication disorders, and other difficulties 
to ensure the accuracy of questionnaire screening, EGEG may have 
excellent potential for detection of sleep disturbance and MCI.

In our risk assessment model, there are five parameters of EGEG 
contributed major value for predicting sleep disturbance, namely, 
PNSW and ESR on the pre-meal gastric channel, DPR on the post-
meal gastric channel, DF and CP on the post-meal gastric channel. 

FIGURE 3

(A) The nomogram of the risk assessment model for sleep disturbance in training set. (B) The dynamic nomogram of the risk assessment model for sleep 
disturbance in training set. The nomogram of the sleep disturbance was developed with the predictors: age, gender, PNSW of gastric channel pre-meal, 
ESR of gastric channel pre-meal, DPR of gastric channel post-meal, CP of intestinal channel post-meal, DF of intestinal channel post-meal. PNSW, 
percentage of normal slow wave; ESR, electrical spreading rate; DPR, dominant power ratio; CP, coupling percent. *p < .05; **p < .01; ***p < .001.

FIGURE 4

(A) ROC curves of the risk assessment model for sleep disturbance in the training set. (B) And in the validation set. The y-axis indicates the true-positive 
rate of the risk prediction. The x-axis indicates the false-positive rate of the risk prediction.

FIGURE 5

(A) The calibration curves of the risk assessment model for sleep disturbance in the training set. (B) And in the validation set. The y-axis indicates the 
actual probability of sleep disturbance. The x-axis indicates the predicted risk of sleep disturbance. The diagonal dotted line indicates perfect prediction 
by an ideal model. The solid line represents the model performance, a closer fit to the diagonal dotted line represents a better prediction.
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Comparing to the previous studies, PNSW, DF and CP also provide 
significant values in the diagnosis of gastrointestinal dysfunction (41, 
42). For instance, a meta-analysis of EGG in patients with functional 
dyspepsia concluded that pre-meal PNSW and post-meal CP were 
important indicators (43). Another meta-analysis of EGG in patients 
with nausea and vomiting syndrome also found that post-meal DF 
was lower than that of healthy individuals (44). Our findings suggest 
that, in contrast to healthy individuals, the changes in gastrointestinal 
myoelectrical activity do exist not only in the sleep disturbance 
patients with gastrointestinal diseases, but also in the patients without 
the symptoms of gastrointestinal dysfunction.

Overall, our study demonstrates that sleep disturbance can 
be  manifested by the changes of myoelectrical activity on the 
gastrointestinal channel. The risk assessment model established based 
on EGEG has important clinical significance and is promising to be used 
in the community screening for sleep disturbance in middle-aged and 
elderly people. However, our study still has some limitations. Since our 
subjects were recruited from the voluntary participation of middle-aged 
and elderly people in the community, and a perfect sampling procedure 
was not used, the representativeness of the samples is lacking, which 
cannot exclude potential selection bias. In addition, our study only 
included participants from the western region, which may have distinct 
population characteristics compared to other regions, and can 
be resolved by including other areas. In addition, the overall prediction 
accuracy of the model is less than 0.70, which may be due to the limited 
sample size, and may be clarified with a larger sample size.

Conclusion

The risk assessment model based on EGEG indicators exhibits an 
acceptable efficiency and satisfying robustness of predicting the risk 
of sleep disturbance. Our findings also provide evidence for a close 
association between the gastrointestinal myoelectrical activity and 
sleep disturbance in middle-aged and elderly people. With the widely 
applied risk assessment model based on EGEG as an auxiliary method 
to diagnose sleep disturbance, it would be  likely to achieve a full 
coverage of sleep disturbance screening for the middle-aged and 
elderly population in the community.
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Study objectives: The prospective Self-Efficacy Measure for Sleep Apnea 
study (SEMSAS) is investigating thresholds for health literacy, self-efficacy and 
precariousness at obstructive sleep apnea (OSA) diagnosis to predict CPAP 
adherence. This paper describes the study protocol and presents baseline data 
from the ongoing study.

Methods: Eligible individuals had confirmed OSA and were referred to a homecare 
provider for continuous positive airway pressure (CPAP) therapy initiation. Data 
on patient characteristics and comorbidities were collected, along with baseline 
evaluations of self-efficacy [15-item Self-Efficacy Measure for Sleep Apnea 
tool (SEMSA-15)], precariousness [Deprivation in Primary Care Questionnaire 
(DipCareQ)], and health literacy (Health Literacy Questionnaire). CPAP adherence 
over 12 months of follow-up will be  determined using remote monitoring of 
CPAP device data. The primary objective is to define an optimal SEMSA-15 score 
threshold to predict CPAP adherence at 3- and 12-month follow-up.

Results: Enrollment of 302 participants (71% male, median age 55 years, median 
body mass index 31.6 kg/m2) is complete. Low self-efficacy (SEMSA-15 score ≤ 2.78) 
was found in 93/302 participants (31%), and 38 (12.6%) reported precariousness 
(DipCareQ score > 1); precariousness did not differ significantly between individuals 
with a SEMSA-15 score ≤ 2.78 versus >2.78. Health literacy was generally good, but 
was significantly lower in individuals with versus without precariousness, and with 
low versus high self-efficacy.

Conclusion: SEMSAS is the first study using multidimensional baseline assessment 
of self-efficacy, health literacy and precariousness, plus other characteristics, to 
determine future adherence to CPAP, including CPAP adherence trajectories. 
Collection of follow-up data is underway.
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obstructive sleep apnea, continuous positive airway pressure, adherence, health 
behavior, health literacy
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1. Introduction

Obstructive sleep apnea (OSA) is an important chronic condition 
that is characterized by repetitive complete (apnea) or partial 
(hypopnea) cessation of airflow due to collapse of the upper airway 
during sleep that induce symptoms or harms. The factors underlying 
these events are multifactorial and not fully understood, but are likely 
to include obesity, craniofacial features/changes, altered upper airway 
function, fluid shift towards the neck when in a supine position, and 
pharyngeal neuropathy (1).

OSA of at least mild severity has been estimated to affect nearly 1 
billion adults aged 3–69 years worldwide (2). This is clinically relevant 
due to well-documented associations between OSA and several 
important neurocognitive, cardiovascular and metabolic 
comorbidities, including hypertension, cardiovascular disease, atrial 
fibrillation, diabetes, and even cancer (3–12). In addition, undiagnosed 
and untreated OSA have been associated with major depressive 
disorder, reduced quality of life, and increased healthcare utilization 
(13–19).

The standard treatment for moderate-to-severe OSA is 
continuous positive airway pressure (CPAP), which splints the upper 
airway open during sleep (20). When used correctly and for an 
adequate duration each night, CPAP is highly effective in suppressing 
sleep-related respiratory events, and improving symptoms and 
cognitive function (20, 21). However, in real-life clinical practice 
settings, the effectiveness of CPAP for suppressing apneas and 
hypopneas, and ameliorating the negative clinical consequences of 
OSA, is limited by poor adherence rates and high rates of therapy 
termination (22–24).

Numerous studies have investigated the clinical and physiological 
determinants of adherence to CPAP therapy. A high residual apnea-
hypopnea index during treatment (>5–10 per hour) has been 
associated with poor adherence and high rates of therapy termination 
(25). In addition, device factors, such as the type of interface and its 
supply, have also been shown to influence longer-term adherence to 
PAP therapy (26). With respect to patient factors, higher income, 
educational level and number of household members have been 
associated with increased CPAP adherence in some studies, but 
currently available data are not consistent (27–29). Low socioeconomic 
status (SES) is another predictor of poor adherence to CPAP, and 
individuals with higher SES are more likely to start therapy (27, 30–
32). Other factors that individually have been shown to increase the 
risk of non-adherence to CPAP therapy include low health literacy, 
forgoing healthcare, and precariousness (33–35). OSA health literacy 
has been found to be  lower in individuals with lower educational 
attainment and socioeconomic status (36). Socioeconomic disparities 
were acknowledged as contributing to sleep health disparities and 
CPAP adherence in a recent American Thoracic Society consensus 
document (37).

A good understanding of individual characteristics at the time of 
the diagnosis could help to predict CPAP adherence after treatment 
initiation and allow clinicians and homecare providers to better 
manage patient adherence trajectories by selecting and implementing 
the most appropriate strategies to increase adherence. However, the 
majority of currently published studies have only investigated a single, 
or small number of, determinants of CPAP adherence and no one 
factor has been consistently identified has having high predictive 
value. In addition, no study has yet investigated the contribution of 

health literacy, precariousness and self-efficacy measures, as well as 
clinical characteristics, to CPAP therapy adherence.

The Self-Efficacy Measure for Sleep Apnea (SEMSA) tool is a 
psychometrically acceptable self-report questionnaire for the 
measurement of health beliefs and behaviors in individuals with OSA 
being treated with CPAP (38). It was developed based on Bandura’s 
social cognitive theory (39) and originally included 26 items (38, 39). 
A shorter 15-item version (SEMSA-15) was developed to improve 
usability in clinical practice (40) while retaining similar psychometric 
properties to the original version. The SEMSA study (SEMSAS) has 
been designed to identify specific thresholds for health literacy, self-
efficacy and precariousness assessed at the time of OSA diagnosis to 
predict CPAP adherence over the short (3 months) and long 
(12 months) term. The objective of this paper is to describe the study 
protocol and present baseline data relating to self-efficacy based on the 
SEMSA-15, precariousness and health literacy from the ongoing 
SEMSAS, which will soon complete follow-up.

2. Materials and methods

2.1. Study design

SEMSAS is a multicenter (n = 3), prospective observational cohort 
trial (NCT04894175) that started in May 2021 and finished recruiting 
in December 2022. All participants are from the North of France 
(Bétune, Denain and Lille), a region that includes areas that have 
differing levels of precariousness. The study protocol was approved by 
the French Comité de protection des personnes Nord Ouest III (ref 
2020-68). As an observational study without changes in patient care 
or management, potential participants were provided with 
information about the study. Those who did not object to the use of 
their data for the study were included, in accordance with French law 
and European General Data Protection Regulation (GDPR).

2.2. Study participants

Eligible individuals were adults with a physician diagnosis of OSA 
who were referred for initiation of CPAP therapy managed by a 
homecare provider. Individuals without OSA or those with OSA that 
was not being treated with CPAP were not eligible.

2.3. Data acquisition and assessments

Clinicians collected demographic and clinical data at baseline 
(after enrollment/provision of informed consent), including age, 
height, weight, sex, comorbidities (hypertension, cardiovascular 
disease, diabetes, COPD, and asthma), OSA-related symptoms 
(presence or absence of any of the following: severe snoring, daytime 
sleepiness, daytime tiredness, morning headache, and nycturia), and 
method used for OSA diagnosis (single night polysomnography or 
polygraphy). The following data were collected at CPAP initiation: 
device, interface, pressure, and use of a humidifier (Figure 1). Data on 
CPAP adherence, residual AHI and leak were collected during 
follow-up, and data on quality of life and the ESS score were collected 
at the end of follow-up (Figure 1).
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Participants completed several baseline questionnaires that were 
provided by the homecare provider involved in setting up and 
initiating CPAP. These questionnaires gathered data relating to 
following parameters: personal characteristics (marital status, 
socioeconomic information, and health insurance); precariousness 
[the Deprivation in Primary Care Questionnaire (DipCareQ)] (41); 
health literacy [the Health Literacy Questionnaire (HLQ)] (42); 
chronotype (the degree to which individuals are active and alert at 
certain times of the day, primarily in the morning or evening); the 
shortened version of SEMSA (SEMSA-15 scale) (40); the 12-item 
Short Form health survey for quality of life (SF-12) (43); and the 
Epworth Sleepiness Scale (ESS) (44). The ESS and SF-12 will also 
be completed at the 12-month follow-up to allow assessment of the 
evolution of daytime sleepiness and quality of life during 
CPAP therapy.

2.3.1. DipCareQ
The DipCareQ questionnaire includes 16 questions about 

subjective social status, education, source of income, welfare status 
and subjective poverty that define deprivation in three distinct 
dimensions: material deprivation (eight items), social deprivation (five 
items), and health deprivation (three items) (41). Patients provide a 
yes or no answer to each question, with a score of 1 for yes and 0 for 
no. A score for each type of deprivation is determined, then a formula 
is used to calculate an overall score from 0 to 5, with higher scores 
indicating greater deprivation. For this study, DipCareQ score groups 
of 0–1 and 2–5 were used.

2.3.2. HLQ
The HLQ includes 44 items and covers nine distinct scales 

representing health literacy: (1) feeling understood and supported by 
healthcare providers; (2) having sufficient information to manage my 
health; (3) actively managing my health; (4) social support for health; 
(5) appraisal of health information; (6) ability to actively engage with 
healthcare providers; (7) navigating the healthcare system; (8) ability 
to find good health information; and (9) understand health 
information enough to know what to do (42). Responses for items in 
scales 1–5 are: strongly agree, disagree, agree and strongly agree. 

Responses for items in scales 6–9 are: cannot do, very difficult, quite 
difficult, easy, and very easy. Scale scores are determined by summing 
the item scores and then dividing by the number of items in the scale.

For scales 1–5 (four possible responses from strongly disagree to 
strongly agree), scores below 2.5 indicate that, on average, respondents 
tend to disagree with the statements within a scale. For scales 6–9 (five 
possible responses from cannot do/always difficult to always easy), 
scores below 3.5 indicate that, on average, respondents find the task 
within a scale difficult to do.

2.3.3. SEMSA-15
The SEMSA-15 includes five items each relating to perceived risks, 

outcome expectancies and self-efficacy, and has been shown to have 
the same good psychometric properties as the 26-item version (40). 
Items are groups into three subscales: perception of the consequences 
and risks of OSA (perceived risk); perception of the expected benefits 
of CPAP (outcome expectations); and feeling of self-efficacy in regular 
use of CPAP (self-efficacy). Each item is rated on a Likert scale from 
1 to 4, with higher scores indicating greater risk perception, higher 
benefit expectancy with treatment, and greater perceived self-efficacy 
(38, 39). The final score is obtained by averaging scores for each item. 
With the SEMSA-15, the best classification performance for prediction 
of CPAP adherence was for the self-efficacy sub-score, with a cut-off 
value of 2.78 (sensitivity 57%, specificity 79%, positive predictive value 
31%, and negative predictive value of 92%) (40).

2.4. Validity and reliability of measures

Exploratory and confirmatory factor analyses were conducted for 
each measurement scale. A Structural Equation Model (AMOS 26.0) 
tested the measurement models among all four using full information 
maximum likelihood estimation (FIML) with missing values 
estimation. The following criteria were used to assess configural 
invariance: χ2 and degrees of freedom (χ2/df < 5), Tucker–Lewis index 
(TLI >0.90), comparative fit index (CFI >0.90), incremental fit index 
(IFI >0.90), and root mean square error of approximation (RMSEA 
<0.10). The reliability coefficients for all constructs were acceptable 

FIGURE 1

Study design and assessments. CPAP, continuous positive airway pressure; DipCare-Q, deprivation in primary care questionnaire; ESS, epworth 
sleepiness scale; HLQ, health literacy questionnaire; OSA; obstructive sleep apnea; PG, polygraphy; PSG, polysomnography; SEMSA-15, 15-item self-
efficacy measure for sleep apnea; SF-12, Short Form-12.

140

https://doi.org/10.3389/fneur.2023.1148700
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Gentina et al. 10.3389/fneur.2023.1148700

Frontiers in Neurology 04 frontiersin.org

(all Cronbach alpha’s > 0.70). Convergent validity (AVE >0.50) was 
based on Fornell and Larcker (45).

2.5. CPAP adherence and follow-up

CPAP adherence will be determined from remote monitoring of 
device data, and will be  reported at 3 and 12 months after CPAP 
initiation. CPAP adherence will be reported as both a continuous 
variable and as a binary variable (threshold of 4 h/night).

Over the 12-month follow-up period reasons for loss of follow-up 
will be identified to differentiate between participants who stop using 
CPAP and are therefore non-adherent and those who stop 
participating in the study but remain adherent to CPAP or those who 
are deceased. In addition, the number and nature of physical 
interventions performed by the homecare provider technician during 
the follow-up period will be recorded.

2.6. Study objectives

The primary objective of SEMSAS is to define an optimal 
SEMSA-15 score threshold to predict adherence to CPAP at 3- and 
12-month follow-up. The study also had a number of secondary 
objectives (Table 1). The objective of the current report is to present 
full details of the study protocol and describe baseline data relating to 
self-efficacy based on the SEMSA-15, precariousness and health 
literacy for enrolled participants.

2.7. Sample size

The sample size calculation was based on achieving 90% power to 
identify an optimal threshold for the primary objective (i.e., the 

SEMSA-15 score threshold to predict 3- and 12-month CPAP 
adherence) with a minimum area under the receiver operator 
characteristic curve (ROC AUC) of 0.63. Assuming a CPAP 
non-adherence or therapy termination rate of 25% and a 20% loss to 
follow-up rate of 20%, it was calculated that 300 individuals would 
need to be included in the study.

2.8. Statistical analysis

2.8.1. Baseline data
In the current paper, qualitative variables are described using 

number and percentage, and qualitative variables as median and 
interquartile range (IQR). A Chi-squared test was used to compare 
qualitative variables and the Mann–Whitney test was used to 
compare quantitative variables. Effect sizes were computed using 
Cohen’ d coefficient for quantitative variable and phi coefficient for 
binary variables. Statistical analyses of baseline data were 
performed using SAS v9.4 (SAS Institute Inc., Cary, NC, 
United States). A value of p threshold of 0.05 was used to define 
statistical significance.

2.8.2. Methodology for follow-up analysis
The imputation strategy for missing values will be considered 

based on patterns of missingness and rate of missing values. For the 
primary objective, predictors of CPAP adherence (as a binary 
variable: <4 vs. ≥4 h/night) will be determined using a multivariable 
mixed logistic regression model, with a random effect on center 
determine possible variability between centers. Various parameters, 
including demographic and clinical covariables, will be considered as 
possible confounding factors based on clinical expertise and the 
results of univariable analysis. ROC AUC values for different models 
will be compared using the Delong method to identify which has the 
best performance and the Youden index will be used to define the 
optimal threshold for the SEMSA-15 questionnaire score. The dataset 
will be divided into two for training and validation (75% and 25% of 
the total sample, respectively). The model will be developed using the 
training dataset and then tested on the validation dataset. 
Performance of the final model, including sensitivity, specificity, and 
positive and negative predictive values, will be  computed on the 
validation dataset.

Trajectories of CPAP adherence will be clustered by using specific 
approaches for time series, such as dynamic time warping, as 
previously described (46). Associations between patient characteristics 
and CPAP adherence trajectory clusters will be investigated by using 
comparison tests.

Multivariable linear generalized mixed effect models will 
be used to study the evolution of quality of life (SF-12 score) and 
daytime sleepiness (ESS score) over time. Confounding factors will 
be  selected using univariable analyses and introduced into the 
model. Finally, unsupervised clustering will be  performed to 
identify specific phenotypes at the time of the diagnosis and to 
investigate the impact of individual determinants such as health 
literacy, precariousness and SEMSA-15 score on patient clinical 
phenotype at baseline.

Finally, a structural equation model will be considered to identify 
direct and indirect relationships between measured variables and 
12-month CPAP adherence. This approach will allow assessment of 

TABLE 1 Secondary study endpoints.

Secondary endpoint Time of assessment

Define patient phenotypes based on all available 

baseline clinical and socio-demographic data

Baseline

Compute an overall SEMSA-15 score to predict 

CPAP adherence

3-month and 12-month 

follow-up

Determine the impact of health literacy on 

CPAP adherence (based on the HLQ)

3-month and 12-month 

follow-up

Determine the impact of precariousness on 

CPAP adherence (based on the DipCareQ)

3-month and 12-month 

follow-up

Determine the impact of patient quality of life 

on CPAP adherence (based on the SF-12)

3-month and 12-month 

follow-up

Construct an overall predictive model of CPAP 

adherence

3-month and 12-month 

follow-up

Assess interactions between CPAP adherence 

trajectories and patient characteristics

3-month and 12-month 

follow-up

Assess improvements in quality of life based on 

health literacy and precariousness

12-month follow-up

CPAP, continuous positive airway pressure; DipCareQ, deprivation in primary care 
questionnaire; HLQ, health literacy questionnaire; SEMSA-15, 15-item self-efficacy measure 
for sleep apnea; SF-12, short form-12.
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causal relationships between different measured factors and the 
outcome. For this approach, exploratory and confirmatory factorial 
analyses will be  performed for each score to assess convergent and 
discriminant validity. Moderating effects, including precarity and 
individual determinants, will be  considered by performing 
subgroup models.

Statistical analyses will be performed using a variety of different 
software, including SAS, R, and AMOS.

3. Results

3.1. Study population

A total of 302 individuals were included in the study. 
Participant characteristics were typical of an OSA population, 
being predominantly male, older age and high body mass index 
(Table 2). There were some differences between study centers with 
respect to OSA diagnosis, OSA severity, rate of hypertension, and 
SEMSA-15 score at baseline (Supplementary Table S1); these will 
be  corrected for in the statistical analysis of follow-up data. 
Hypertension was the most common comorbidity, occurring in 

nearly half of the study population. Based on the apnea-hypopnea 
index (AHI), baseline OSA was severe, and the prevalence of 
symptoms was high. A majority of participants reported daytime 
sleepiness or tiredness, almost all had severe snoring, and more 
than half had morning headache. Most individuals (82.5%) were 
married or in a permanent relationship [median duration 26 years 
(range 12–42)]. Nearly half of all participants (44.5%) had 
children living at home. More than half (58.6%) reported a 
professional activity (of whom 40.2% were a worker or employee), 
35.8% reported being a senior manager or business owner, while 
24% reported an “intermediate” profession. Validity and reliability 
data for all measures being used in the study are shown in 
Supplementary Tables S2, S3.

3.2. Self-efficacy at baseline

The median (IQR) SEMSA-15 score at baseline was 3 (2.7–3). 
Overall, 31% of the study population (n = 93/302) had low self-
efficacy based on a SEMSA-15 score of was ≤2.78  in 93 patients. 
Overall demographic and clinical characteristics were generally 
comparable between individuals with a low SEMSA-15 score 

TABLE 2 Participant demographic and clinical characteristics at baseline, overall and in patient subgroups based on baseline 15-item self-efficacy 
measure for sleep apnea (SEMSA-15) score.

Characteristic Total (n = 302) SEMSA-15 score

Low (≤2.78) 
(n = 93; 31%)

High (>2.78) 
(n = 209; 69%)

Value of p# (ES)*

Age, years 55 (47–64) 59 (48–68) 55 (47–63) 0.07

Male sex, n (%) 213 (70.5) 70 (75.3) 143 (68.4) 0.23

Body mass index, kg/m2 32 (28–36) 31 (28–34) 32 (28–36) 0.09

Comorbidities, n (%)

  Hypertension 145 (48.0) 42 (45.2) 103 (49.3) 0.51

  Diabetes 42 (13.9) 18 (19.4) 24 (11.5) 0.07

  Heart failure 14 (4.6) 8 (8.6) 6 (2.9) 0.03 (0.12)

  Dyslipidemia 64 (21.2) 25 (26.9) 39 (18.7) 0.11

Mode of sleep apnea diagnosis, n (%)

  Single night polygraphy 234 (77.5) 66 (71) 168 (80.4) 0.07

  Single night polysomnography 68 (22.5) 27 (29) 41 (19.6)

Apnea-hypopnea index, /h 43 (35–57) 43 (34–55) 43 (35–58) 0.23

Oxygen desaturation index, /h 34 (23–50) 36 (27–52) 33 (23–48) 0.09

ESS score 12 (8–15) 10 (7–14) 12 (8–17) <0.01 (0.37)

ESS score > 10, n (%) 170 (56) 44 (47.3) 126 (60.3) 0.04 (0.12)

OSA symptoms, n (%)

  Severe snoring 287 (95.0) 87 (93.5) 200 (95.7) 0.43

  Daytime sleepiness 260 (86.1) 75 (80.6) 197 (94.3) <0.01 (0.02)

  Daytime tiredness 272 (90.1) 75 (80.6) 197 (94.3) <0.01 (0.21)

  Morning headache 170 (56.3) 51 (54.8) 119 (56.9) 0.73

  Nycturia 206 (68.2) 62 (66.7) 144 (68.9) 0.70

Values are median (interquartile range) or number of patients (%).  
# Value of p calculated using the Mann–Whitney test for quantitative variables and Chi-square test for qualitative variables.  
* Effect size (ES) computed using Cohen D coefficient for continuous variables and Phi coefficient for binary variables.  
ESS, epworth sleepiness scale; OSA, obstructive sleep apnea; SEMSA-15, 15-item self-efficacy measure for sleep apnea.
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compared with those who had a high SEMSA-15 score. However, 
those with a SEMSA-15 score of ≤2.8 were significantly more likely 
to have heart failure and an ESS score of >10, but significantly less 
likely to report daytime sleepiness or daytime tiredness, compared 
with individuals who had a higher SEMSA-15 score (Table  2). 
Although statistically significant, the effect sizes for these differences 
were small. Most of the fit indices for each of these measurement 
models were within the acceptable range suggested by Collier (47). 
With respect to socio-economic characteristics, individuals with a 
high SEMSA-15 score usually had a graduate education and were in 
the high socio-professional category. Of the different SEMSA-15 
subscales, scores were lowest for perceived risk and highest for 
outcome expectations (Table 3). The total score, and scores for all 
three subscales were significantly higher in the high versus low 
SEMSA-15 score group with a large effect size (Table 3).

3.3. Precariousness at baseline

A total of 38 participants (12.6%) reported precariousness (based 
on a DipCareQ score > 1). Precariousness did not differ significantly 
between those with a SEMSA-15 score ≤ 2.78 versus >2.78, indicating 
that there was no association between self-efficacy and precariousness.

3.4. Health literacy and impact of 
precariousness and self-efficacy

Based on a threshold score of 2.5 for each item on the HLQ, the 
individuals with OSA enrolled in this study had a good level of health 
literacy (Table  4). Health literacy across most domains did differ 
significantly based on precariousness and self-efficacy, with median 
scores being significantly lower in patients with versus without 
precariousness (DipCareQ score > 1 vs. ≤1) and low versus high self-
efficacy (SEMSA-15 score ≤ 2.78 vs. >2.78) (Table 4). Distributions 
around median values also varied between participant subgroups 
(Supplementary Figure S1).

4. Discussion

The SEMSA study (SEMSAS) is the first to propose a 
multidimensional evaluation of determinants of CPAP adherence 
based on a combination of data including self-efficacy, precariousness, 
health literacy and individual characteristics/demographics. Data on 

these parameters will be used to predict CPAP adherence at 3 months 
and 1 year, and also to relate individual characteristics to CPAP 
adherence trajectories using remote monitoring data. It will 
be interesting to see associations between self-efficacy based on the 
SEMSA-15 score and other sociological evaluations. The inclusion and 
assessment of a broad range of potential factors that could influence 
adherence to CPAP should facilitate the identification of new 
predictors of CPAP adherence in conjunction with SEMSA-15, as well 
as confirm those already known to influence use of CPAP after 
therapy initiation.

Participants enrolled in SEMSAS have clinical characteristics that 
are indicative of a cohort with severe OSA and a clear indication for 
CPAP therapy. The study population showed a good level of health 
literacy, a low rate of precariousness, and more than two-thirds had 
good self-efficacy (based on a SEMSA-15 score > 2.78). Interestingly, 
there was no difference in precariousness between individuals with 
low or good self-efficacy even though other factors such as education 
level and profession did differ between patient subgroups based on 
SEMSA score (≤2.78 vs. >2.78). However, health literacy was 
significantly impacted by precariousness and self-efficacy, and was 
predictably lower in those with higher levels of precariousness and/or 
lower self-efficacy.

The rate of precariousness reported by study participants was 
12.6%. To the best of our knowledge, SEMSAS is the first study to 
report precariousness in individuals starting CPAP. One previous 
analysis that included patients with OSA syndrome found that 43.7% 
reported deprivation based on the Evaluation de la précarité et des 
inégalités de santé dans les Centres d’examens de santé (EPICES) 
questionnaire score (36). Deprivation may differ from precariousness, 
limiting the ability to directly compare these findings. However, both 
studies were conducted in France and highlight the fact that 
precariousness and/or deprivation are likely to be important factors 
for a relevant proportion of individuals with OSA.

As described in the Methods section, the original SEMSA scale 
included 26 questions, but a shortened version was developed and 
validated (38) to improve clinical utility. It was this shorter version 
(SEMSA-15) that was used in the current study. Data on association 
between SEMSA-15 scores and adherence are only available from 
one previous study (as a secondary endpoint), where the self-
efficacy subscale score was significantly correlated with mean CPAP 
usage at 1 month and a trend was found at 6 months (48). In 
addition, a number of previous prospective studies have reported 
an association between SEMSA-26 scores and CPAP adherence, 
although none had a follow-up period of longer than 3 months (28, 
49–55). In addition, the SEMSA-26 score has been found to 

TABLE 3 Self-efficacy based on the SEMSA-15 score, overall and by subscale.

SEMSA-15 Total (n = 302) SEMSA-15 score

Low (≤2.78)  
(n = 93; 31%)

High (>2.78) 
(n = 209; 69%)

Value of p (ES)*

Total score 3.0 (2.7–3.3) 2.5 (2.3–2.7) 3.1 (3.0–3.3) <0.01 (2.7)

Perceived risk 2.6 (2.2–3.0) 2.0 (1.6–2.4) 2.8 (2.4–3.0) <0.01 (1.5)

Outcome expectations 3.4 (2.8–3.6) 2.8 (2.4–3.0) 3.4 (3.2–3.8) <0.01 (1.5)

Self-efficacy 3.2 (2.8–3.6) 2.6 (2.2–3.0) 3.4 (3.0–3.8) <0.01 (1.7)

Values are median (interquartile range).  
*Effect size (ES) computed using Cohen D coefficient. SEMSA-15, 15-item self-efficacy measure for sleep apnea.
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be higher in individuals defined as CPAP adherers (3.5 ± 0.52) or 
CPAP attempters (3.1 ± 0.7) compared with CPAP non-adherers 
(2.8 ± 0.2) (48).

Poor adherence to CPAP therapy remains a challenge that limits 
the clinical benefits of treatment in real-world settings. Identifying 
which variables and data are able to predict CPAP adherence is 
crucial both for clinicians and homecare providers. This is likely to 
best be  achieved by collecting information at the time of CPAP 
initiation to allow identification of individuals that might need 
additional support to achieve appropriate levels of CPAP adherence 
during long-term therapy. Appropriate and personalized measures 
can then be  implemented during the early stages of treatment, 
allowing both adherence and the clinical benefits of CPAP therapy to 
be maximized.

Recruitment and collection of baseline data in SEMSAS are now 
complete. Adherence data at 3- and 12-month follow-up are being 
collated, which will allow this to be correlated with the extensive 
baseline data collected to provide a comprehensive picture of factors 
associated with CPAP adherence. In addition, data on CPAP 
adherence are being collected daily by remote monitoring utilizing 
the cloud connectivity features built in to CPAP devices. This will 
allow additional and informative analysis of CPAP adherence 
trajectories rather than just at two specific timepoints during 
follow-up.

In conclusion, SEMSAS aims to answer specific questions to 
help improve knowledge about patient determinants of CPAP 
adherence, especially self-efficacy, precariousness and health 
literacy. A multidimensional evaluation of data from these 
assessments combined with clinical/demographic data will allow 
more in-depth understanding of sociological concerns that are 
associated with poor CPAP adherence and could limit access to 
healthcare. The study findings should help to facilitate the 
identification of individuals who will be  nonadherent to CPAP 
therapy, and determine specific clinical thresholds for several 
questionnaires that might help to differentiate between those who 
will be adherent or non-adherent.
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TABLE 4 Health literacy item scores for the overall population and in patient subgroups based on DipCareQ index score and SEMSA-15 score.

HLQ item All patients 
(n = 302)

Baseline DipCareQ score Baseline SEMSA-15 score

0–1 
(n = 264)

2–5 
(n = 38)

Value of p 
(ES)*

≤2.78 
(n = 93)

>2.78 
(n = 209)

Value of 
p (ES)*

Feeling understood and supported by healthcare 

providers

3.3 (3.0–3.8) 3.3 (3.0–3.8) 3.0 (3.0–3.5) 0.02 (0.42) 3.0 (3.0–3.5) 3.3 (3.0–3.8) <0.01 (0.48)

Having sufficient information to manage my health 3.0 (3.0–3.3) 3.0 (3.0–3.3) 3.0 (2.5–3.0) <0.01 (0.59) 3.0 (2.8–3.0) 3.0 (3.0–3.3) <0.01 (0.27)

Actively managing my health 2.9 (2.6–3.0) 3.0 (2.6–3.0) 2.8 (2.2–3.0) 0.01 (0.45) 3.0 (2.6–3.0) 2.8 (2.6–3.2) 0.40

Social support for health 3.2 (3.0–3.6) 3.2 (3.0–3.6) 3.0 (2.4–3.4) <0.01 (0.71) 3.0 (3.0–3.4) 3.2 (3.0–3.6) 0.04 (0.17)

Appraisal of health information 3.8 (3.5–4.0) 3.8 (3.5–4.0) 3.5 (3.3–4.0) 0.05 (0.45) 3.0 (2.6–3.0) 3.0 (2.6–3.2) 0.03 (0.23)

Ability to actively engage with healthcare providers 4.0 (3.6–4.2) 4.0 (3.6–4.2) 4.0 (3.4–4.2) 0.07 4.0 (3.6–4.0) 4.0 (3.6–4.2) 0.03 (0.15)

Navigating the healthcare system 3.8 (3.5–4.0) 3.8 (3.5–4.0) 3.5 (3.3–4.0) 0.05 (0.33) 3.8 (3.5–4.0) 3.8 (3.5–4.2) 0.13

Ability to find good health information 3.8 (3.4–4.0) 3.8 (3.6–4.0) 3.8 (2.8–4.0) <0.01 (0.69) 3.8 (3.4–4.0) 3.8 (3.4–4.0) 0.06

Understand health information well enough to know 

what to do

4.0 (3.6–4.2) 4.0 (3.6–4.2) 3.8 (3.6–4.0) 0.07 3.8 (3.6–4.0) 4.0 (3.6–4.2) 0.02 (0.25)

Values are median (interquartile range).  
*Effect size (ES) computed using Cohen D coefficient. DipCareQ, deprivation in primary care questionnaire; HLQ, health literacy questionnaire; SEMSA-15, 15-item self-efficacy measure for 
sleep apnea.

144

https://doi.org/10.3389/fneur.2023.1148700
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Gentina et al. 10.3389/fneur.2023.1148700

Frontiers in Neurology 08 frontiersin.org

University Foundation. This work has been partially supported by 
MIAI @ university Grenoble Alpes (ANR-19-P3IA-0003).

Acknowledgments

Medical writing assistance was provided by Nicola Ryan, 
independent medical writer, funded by AUXILAIR, France.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fneur.2023.1148700/
full#supplementary-material

References
 1. Lévy P, Kohler M, McNicholas WT, Barbé F, McEvoy RD, Somers VK, et al. 

Obstructive sleep apnoea syndrome. Nat Rev Dis Primers. (2015) 1:15015. doi: 10.1038/
nrdp.2015.15

 2. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. 
Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-
based analysis. Lancet Respir Med. (2019) 7:687–98. doi: 10.1016/s2213-2600(19)30198-5

 3. Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, et al. 
Association of atrial fibrillation and obstructive sleep apnea. Circulation. (2004) 
110:364–7. doi: 10.1161/01.Cir.0000136587.68725.8e

 4. Nieto FJ, Peppard PE, Young T, Finn L, Hla KM, Farré R. Sleep-disordered 
breathing and cancer mortality: results from the Wisconsin sleep cohort study. Am J 
Respir Crit Care Med. (2012) 186:190–4. doi: 10.1164/rccm.201201-0130OC

 5. Lavie P, Herer P, Hoffstein V. Obstructive sleep apnoea syndrome as a risk factor 
for hypertension: population study. BMJ. (2000) 320:479–82. doi: 10.1136/
bmj.320.7233.479

 6. Seicean S, Kirchner HL, Gottlieb DJ, Punjabi NM, Resnick H, Sanders M, et al. 
Sleep-disordered breathing and impaired glucose metabolism in normal-weight and 
overweight/obese individuals: the sleep heart health study. Diabetes Care. (2008) 
31:1001–6. doi: 10.2337/dc07-2003

 7. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, et al. 
Sleep Apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll 
Cardiol. (2017) 69:841–58. doi: 10.1016/j.jacc.2016.11.069

 8. Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes 
in men with obstructive sleep apnoea-hypopnoea with or without treatment with 
continuous positive airway pressure: an observational study. Lancet. (2005) 365:1046–53. 
doi: 10.1016/s0140-6736(05)71141-7

 9. Linz D, Woehrle H, Bitter T, Fox H, Cowie MR, Böhm M, et al. The importance of 
sleep-disordered breathing in cardiovascular disease. Clin Res Cardiol. (2015) 
104:705–18. doi: 10.1007/s00392-015-0859-7

 10. Marshall NS, Wong KKH, Cullen SRJ, Knuiman MW, Grunstein RR. Sleep Apnea 
and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality 
in the Busselton health study cohort. J Clin Sleep Med. (2014) 10:355–62. doi: 10.5664/
jcsm.3600

 11. Mitra AK, Bhuiyan AR, Jones EA. Association and risk factors for obstructive sleep 
Apnea and cardiovascular diseases: a systematic review. Diseases. (2021) 9:88. doi: 
10.3390/diseases9040088

 12. Reutrakul S, Mokhlesi B. Obstructive sleep Apnea and diabetes: a state of the art 
review. Chest. (2017) 152:1070–86. doi: 10.1016/j.chest.2017.05.009

 13. Baldwin CM, Griffith KA, Nieto FJ, O'Connor GT, Walsleben JA, Redline S. The 
association of sleep-disordered breathing and sleep symptoms with quality of life in the 
sleep heart health study. Sleep. (2001) 24:96–105. doi: 10.1093/sleep/24.1.96

 14. Ding Q, Kryger M. Greater health care utilization and cost associated with 
untreated sleep apnea. J Clin Sleep Med. (2020) 16:5–6. doi: 10.5664/jcsm.8152

 15. Edwards C, Almeida OP, Ford AH. Obstructive sleep apnea and depression: a 
systematic review and meta-analysis. Maturitas. (2020) 142:45–54. doi: 10.1016/j.
maturitas.2020.06.002

 16. Lacasse Y, Godbout C, Sériès F. Health-related quality of life in obstructive sleep 
apnoea. Eur Respir J. (2002) 19:499–503. doi: 10.1183/09031936.02.00216902

 17. Wheaton AG, Perry GS, Chapman DP, Croft JB. Sleep disordered breathing and 
depression among U.S. adults: National Health and nutrition examination survey, 
2005-2008. Sleep. (2012) 35:461–7. doi: 10.5665/sleep.1724

 18. Sterling KL, Cistulli PA, Linde-Zwirble W, Malik A, Benjafield AV, Malhotra A, 
et al. Association between positive airway pressure therapy adherence and health care 
resource utilization in patients with obstructive sleep apnea and type 2 diabetes in the 
United States. J Clin Sleep Med. (2022) 19:563–71. doi: 10.5664/jcsm.10388

 19. Sterling KL, Pépin JL, Linde-Zwirble W, Chen J, Benjafield AV, Cistulli PA, et al. 
Impact of positive airway pressure therapy adherence on outcomes in patients with 
obstructive sleep Apnea and chronic obstructive pulmonary disease. Am J Respir Crit 
Care Med. (2022) 206:197–205. doi: 10.1164/rccm.202109-2035OC

 20. Patil SP, Ayappa IA, Caples SM, Kimoff RJ, Patel SR, Harrod CG. Treatment of 
adult obstructive sleep apnea with positive airway pressure: an American Academy of 
sleep medicine clinical practice guideline. J Clin Sleep Med. (2019) 15:335–43. doi: 
10.5664/jcsm.7640

 21. Condoleo V, Bonfrate L, Armentaro G, Pelaia C, Cassano V, De Marco M, et al. 
Effects of continuous positive airway pressure on comprehensive geriatric assessment 
and cognitive function in elderly patients with obstructive sleep apnea syndrome. Intern 
Emerg Med. (2023) 18:769–79. doi: 10.1007/s11739-023-03220-z

 22. Gervès-Pinquié C, Bailly S, Goupil F, Pigeanne T, Launois S, Leclair-Visonneau L, 
et al. Positive airway pressure adherence, mortality, and cardiovascular events in patients 
with sleep Apnea. Am J Respir Crit Care Med. (2022) 206:1393–404. doi: 10.1164/
rccm.202202-0366OC

 23. Pépin JL, Bailly S, Rinder P, Adler D, Benjafield AV, Lavergne F, et al. Relationship 
between CPAP termination and all-cause mortality: a French Nationwide database 
analysis. Chest. (2022) 161:1657–65. doi: 10.1016/j.chest.2022.02.013

 24. Pépin JL, Bailly S, Rinder P, Adler D, Szeftel D, Malhotra A, et al. CPAP therapy 
termination rates by OSA phenotype: a French Nationwide database analysis. J Clin Med. 
(2021) 10:936. doi: 10.3390/jcm10050936

 25. Liu D, Armitstead J, Benjafield A, Shao S, Malhotra A, Cistulli PA, et al. Trajectories 
of emergent central sleep Apnea during CPAP therapy. Chest. (2017) 152:751–60. doi: 
10.1016/j.chest.2017.06.010

 26. Benjafield AV, Oldstone LM, Willes LA, Kelly C, Nunez CM, Malhotra A, et al. 
Positive airway pressure therapy adherence with mask resupply: a propensity-matched 
analysis. J Clin Med. (2021) 10:720. doi: 10.3390/jcm10040720

 27. Palm A, Grote L, Theorell-Haglöw J, Ljunggren M, Sundh J, Midgren B, et al. 
Socioeconomic factors and adherence to CPAP: the population-based course of disease 
in patients reported to the Swedish CPAP oxygen and ventilator registry study. Chest. 
(2021) 160:1481–91. doi: 10.1016/j.chest.2021.04.064

 28. Bakker JP, O'Keeffe KM, Neill AM, Campbell AJ. Ethnic disparities in CPAP 
adherence in New Zealand: effects of socioeconomic status, health literacy and self-
efficacy. Sleep. (2011) 34:1595–603. doi: 10.5665/sleep.1404

 29. Gulati A, Ali M, Davies M, Quinnell T, Smith I. A prospective observational study 
to evaluate the effect of social and personality factors on continuous positive airway 
pressure (CPAP) compliance in obstructive sleep apnoea syndrome. BMC Pulm Med. 
(2017) 17:56. doi: 10.1186/s12890-017-0393-7

 30. Wickwire EM, Jobe SL, Oldstone LM, Scharf SM, Johnson AM, Albrecht JS. 
Lower socioeconomic status and co-morbid conditions are associated with reduced 
continuous positive airway pressure adherence among older adult medicare 
beneficiaries with obstructive sleep apnea. Sleep. (2020) 43:zsaa122. doi: 10.1093/
sleep/zsaa122

 31. Kendzerska T, Gershon AS, Tomlinson G, Leung RS. The effect of patient 
Neighborhood income level on the purchase of continuous positive airway pressure 
treatment among patients with sleep Apnea. Ann Am Thorac Soc. (2016) 13:93–100. doi: 
10.1513/AnnalsATS.201505-294OC

145

https://doi.org/10.3389/fneur.2023.1148700
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fneur.2023.1148700/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fneur.2023.1148700/full#supplementary-material
https://doi.org/10.1038/nrdp.2015.15
https://doi.org/10.1038/nrdp.2015.15
https://doi.org/10.1016/s2213-2600(19)30198-5
https://doi.org/10.1161/01.Cir.0000136587.68725.8e
https://doi.org/10.1164/rccm.201201-0130OC
https://doi.org/10.1136/bmj.320.7233.479
https://doi.org/10.1136/bmj.320.7233.479
https://doi.org/10.2337/dc07-2003
https://doi.org/10.1016/j.jacc.2016.11.069
https://doi.org/10.1016/s0140-6736(05)71141-7
https://doi.org/10.1007/s00392-015-0859-7
https://doi.org/10.5664/jcsm.3600
https://doi.org/10.5664/jcsm.3600
https://doi.org/10.3390/diseases9040088
https://doi.org/10.1016/j.chest.2017.05.009
https://doi.org/10.1093/sleep/24.1.96
https://doi.org/10.5664/jcsm.8152
https://doi.org/10.1016/j.maturitas.2020.06.002
https://doi.org/10.1016/j.maturitas.2020.06.002
https://doi.org/10.1183/09031936.02.00216902
https://doi.org/10.5665/sleep.1724
https://doi.org/10.5664/jcsm.10388
https://doi.org/10.1164/rccm.202109-2035OC
https://doi.org/10.5664/jcsm.7640
https://doi.org/10.1007/s11739-023-03220-z
https://doi.org/10.1164/rccm.202202-0366OC
https://doi.org/10.1164/rccm.202202-0366OC
https://doi.org/10.1016/j.chest.2022.02.013
https://doi.org/10.3390/jcm10050936
https://doi.org/10.1016/j.chest.2017.06.010
https://doi.org/10.3390/jcm10040720
https://doi.org/10.1016/j.chest.2021.04.064
https://doi.org/10.5665/sleep.1404
https://doi.org/10.1186/s12890-017-0393-7
https://doi.org/10.1093/sleep/zsaa122
https://doi.org/10.1093/sleep/zsaa122
https://doi.org/10.1513/AnnalsATS.201505-294OC


Gentina et al. 10.3389/fneur.2023.1148700

Frontiers in Neurology 09 frontiersin.org

 32. Simon-Tuval T, Reuveni H, Greenberg-Dotan S, Oksenberg A, Tal A, Tarasiuk A. 
Low socioeconomic status is a risk factor for CPAP acceptance among adult OSAS 
patients requiring treatment. Sleep. (2009) 32:545–52. doi: 10.1093/sleep/32.4.545

 33. Ellender CM, Le Feuvre S, Boyde M, Duce B, Winter S, Hukins CA. Adequate 
health literacy is associated with adherence to continuous positive airway pressure in 
adults with obstructive SLEEP apnea. Sleep Adv. (2021) 2:zpab013. doi: 10.1093/
sleepadvances/zpab013

 34. Li Y, Shikino K, Terada J, Katsumata Y, Kinouchi T, Koshikawa K, et al. The 
relationship between CPAP and health literacy: a prospective observational study. J Gen 
Fam Med. (2022) 23:370–5. doi: 10.1002/jgf2.568

 35. Daabek N, Tamisier R, Foote A, Revil H, Joyeux-Jaure M, Pépin JL, et al. Impact 
of healthcare non-take-up on adherence to long-term positive airway pressure therapy. 
Front Public Health. (2021) 9:713313. doi: 10.3389/fpubh.2021.713313

 36. Robbins R, Hays RD, Calderón JL, Seixas A, Newsome V, Chung A, et al. The 
development and psychometric evaluation of the survey of obstructive sleep Apnea 
functional health literacy. Sleep Med Res. (2021) 12:64–73. doi: 10.17241/
smr.2021.00885

 37. May AM, Patel SR, Yamauchi M, Verma TK, Weaver TE, Chai-Coetzer CL, et al. 
Moving toward Equitable Care for Sleep Apnea in the United States: positive airway 
pressure adherence thresholds: an official American Thoracic Society policy statement. 
Am J Respir Crit Care Med. (2023) 207:244–54. doi: 10.1164/rccm.202210-1846ST

 38. Micoulaud-Franchi JA, Coste O, Bioulac S, Guichard K, Monteyrol PJ, Ghorayeb 
I, et al. A French update on the self-efficacy measure for sleep Apnea (SEMSA) to assess 
continuous positive airway pressure (CPAP) use. Sleep Breath. (2019) 23:217–26. doi: 
10.1007/s11325-018-1686-7

 39. Weaver TE, Maislin G, Dinges DF, Younger J, Cantor C, McCloskey S, et al. Self-
efficacy in sleep apnea: instrument development and patient perceptions of obstructive 
sleep apnea risk, treatment benefit, and volition to use continuous positive airway 
pressure. Sleep. (2003) 26:727–32. doi: 10.1093/sleep/26.6.727

 40. Dupuy L, Bioulac S, Coste O, Guichard K, Monteyrol P-J, Ghorayeb I, et al. 
Proposition of a shortened version of the self-efficacy measure for sleep Apnea 
(SEMSA-15): psychometric validation and cut-off score for CPAP adherence. Sleep Vigil. 
(2020) 4:17–21. doi: 10.1007/s41782-020-00083-8

 41. Vaucher P, Bischoff T, Diserens EA, Herzig L, Meystre-Agustoni G, Panese F, et al. 
Detecting and measuring deprivation in primary care: development, reliability and 
validity of a self-reported questionnaire: the DiPCare-Q. BMJ Open. (2012) 2:e000692. 
doi: 10.1136/bmjopen-2011-000692

 42. Osborne RH, Batterham RW, Elsworth GR, Hawkins M, Buchbinder R. The 
grounded psychometric development and initial validation of the health literacy 
questionnaire (HLQ). BMC Public Health. (2013) 13:658. doi: 
10.1186/1471-2458-13-658

 43. Ware J Jr, Kosinski M, Keller SD. A 12-item short-form health survey: construction 
of scales and preliminary tests of reliability and validity. Med Care. (1996) 34:220–33. 
doi: 10.1097/00005650-199603000-00003

 44. Johns MW. A new method for measuring daytime sleepiness: the Epworth 
sleepiness scale. Sleep. (1991) 14:540–5. doi: 10.1093/sleep/14.6.540

 45. Fornell C, Larcker DF. Evaluating structural equation models with unobservable 
variables and measurement error. J Mark Res. (1981) 18:39–50. doi: 
10.1177/002224378101800104

 46. Bottaz-Bosson G, Hamon A, Pépin JL, Bailly S, Samson A. Continuous positive airway 
pressure adherence trajectories in sleep apnea: clustering with summed discrete Fréchet and 
dynamic time warping dissimilarities. Stat Med. (2021) 40:5373–96. doi: 10.1002/sim.9130

 47. Collier JE. Applied structural equation modelling using AMOS. New York: 
Routledge (2020).

 48. Gauld C, Rhanmi H, Philip P, Micoulaud-Franchi JA. Validation of the French cues 
to CPAP use questionnaire in patients with OSAS: a step forward for evaluating cues to 
CPAP use in order to predict treatment adherence. J Psychosom Res. (2022) 158:110943. 
doi: 10.1016/j.jpsychores.2022.110943

 49. Olsen S, Smith S, Oei T, Douglas J. Health belief model predicts adherence to 
CPAP before experience with CPAP. Eur Respir J. (2008) 32:710–7. doi: 
10.1183/09031936.00127507

 50. Sawyer AM, Canamucio A, Moriarty H, Weaver TE, Richards KC, Kuna ST. Do 
cognitive perceptions influence CPAP use? Patient Educ Couns. (2011) 85:85–91. doi: 
10.1016/j.pec.2010.10.014

 51. Sawyer AM, King TS, Hanlon A, Richards KC, Sweer L, Rizzo A, et al. Risk 
assessment for CPAP nonadherence in adults with newly diagnosed obstructive sleep 
apnea: preliminary testing of the index for nonadherence to PAP (I-NAP). Sleep Breath. 
(2014) 18:875–83. doi: 10.1007/s11325-014-0959-z

 52. Wallace DM, Shafazand S, Aloia MS, Wohlgemuth WK. The association of age, 
insomnia, and self-efficacy with continuous positive airway pressure adherence in black, 
white, and Hispanic U.S. Veterans. J Clin Sleep Med. (2013) 09:885–95. doi: 10.5664/
jcsm.2988

 53. Lai AY, Fong DY, Lam JC, Weaver TE, Ip MS. Linguistic and psychometric 
validation of the Chinese version of the self-efficacy measures for sleep apnea 
questionnaire. Sleep Med. (2013) 14:1192–8. doi: 10.1016/j.sleep.2013.04.023

 54. Ye L, Pack AI, Maislin G, Dinges D, Hurley S, McCloskey S, et al. Predictors of 
continuous positive airway pressure use during the first week of treatment. J Sleep Res. 
(2012) 21:419–26. doi: 10.1111/j.1365-2869.2011.00969.x

 55. Wallace DM, Vargas SS, Schwartz SJ, Aloia MS, Shafazand S. Determinants of 
continuous positive airway pressure adherence in a sleep clinic cohort of South Florida 
Hispanic veterans. Sleep Breath. (2013) 17:351–63. doi: 10.1007/s11325-012-0702-6

146

https://doi.org/10.3389/fneur.2023.1148700
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1093/sleep/32.4.545
https://doi.org/10.1093/sleepadvances/zpab013
https://doi.org/10.1093/sleepadvances/zpab013
https://doi.org/10.1002/jgf2.568
https://doi.org/10.3389/fpubh.2021.713313
https://doi.org/10.17241/smr.2021.00885
https://doi.org/10.17241/smr.2021.00885
https://doi.org/10.1164/rccm.202210-1846ST
https://doi.org/10.1007/s11325-018-1686-7
https://doi.org/10.1093/sleep/26.6.727
https://doi.org/10.1007/s41782-020-00083-8
https://doi.org/10.1136/bmjopen-2011-000692
https://doi.org/10.1186/1471-2458-13-658
https://doi.org/10.1097/00005650-199603000-00003
https://doi.org/10.1093/sleep/14.6.540
https://doi.org/10.1177/002224378101800104
https://doi.org/10.1002/sim.9130
https://doi.org/10.1016/j.jpsychores.2022.110943
https://doi.org/10.1183/09031936.00127507
https://doi.org/10.1016/j.pec.2010.10.014
https://doi.org/10.1007/s11325-014-0959-z
https://doi.org/10.5664/jcsm.2988
https://doi.org/10.5664/jcsm.2988
https://doi.org/10.1016/j.sleep.2013.04.023
https://doi.org/10.1111/j.1365-2869.2011.00969.x
https://doi.org/10.1007/s11325-012-0702-6


TYPE Review

PUBLISHED 18 July 2023

DOI 10.3389/frsle.2023.1214363

OPEN ACCESS

EDITED BY

Ding Zou,

University of Gothenburg, Sweden

REVIEWED BY

Brandon Nokes,

University of California, San Diego,

United States

Kingman P. Strohl,

AOL, United States

*CORRESPONDENCE

Shahrokh Javaheri

shahrokhjavaheri@icloud.com

RECEIVED 29 April 2023

ACCEPTED 09 June 2023

PUBLISHED 18 July 2023

CITATION

Javaheri S, Germany RE and

Dupuy-McCauley K (2023) Phrenic nerve

stimulation for treatment of central sleep

apnea. Front. Sleep 2:1214363.

doi: 10.3389/frsle.2023.1214363

COPYRIGHT

© 2023 Javaheri, Germany and

Dupuy-McCauley. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Phrenic nerve stimulation for
treatment of central sleep apnea

Shahrokh Javaheri1,2,3*, Robin Elizabeth Germany4,5 and

Kara Dupuy-McCauley6

1Bethesda Medical Center, Cincinnati, OH, United States, 2Division of Cardiovascular Disease, The Ohio

State University, Columbus, OH, United States, 3Division of Pulmonary, Critial Care and Sleep Medicine,

University of Cincinnati, Cincinnati, OH, United States, 4Division of Cardiovascular Diseases, University of

Oklahoma Health Sciences Center, Oklahoma City, OK, United States, 5ZOLL Respicardia, Inc,

Minnetonka, MN, United States, 6Center for Sleep Medicine, Mayo Clinic, Rochester, MN, United States

The prevalence of central sleep apnea (CSA) is rare in general population. However,

CSA is prevalent in those with cardiovascular and cerebrovascular disorders.

CSA may persist or even worsen with positive airway pressure therapy in some

patients and phrenic nerve stimulation (PNS) o�ers an alternative treatment for

patients with CSA. The device is implanted similar to a cardiac pacemaker and

typically followed in the sleep clinic. Multiple studies have described the e�cacy

and safety of PNS. Improvements were seen in apnea hypopnea events, central

events, arousals, and daytime sleepiness and maintained through 5 years. Safety

demonstrated a 91% freedom from serious adverse events through 1 year. The

physiologic approach and improvement in sleep metrics and quality of life with

a strong safety profile make this therapy a good option for many patients with

central sleep apnea.

KEYWORDS

central sleep apnea, neurostimulation, sleep disordered breathing, phrenic nerve,

cardiovascular disease, heart failure

Introduction

Compared to obstructive sleep apnea (OSA), the prevalence of central sleep apnea (CSA)

is rare in general population. Similarly, while there are many treatment options today

for OSA, treatment options for CSA are few. Phrenic nerve stimulation (PNS) represents

one of the newest treatment options for patients with CSA. The device is implanted

by a cardiologist in the cardiac suite and programmed by sleep specialists. Clinical data

demonstrates improvement in sleep metrics with safety similar to other neurostimulation

systems. It is important for sleep clinicians today to understand where the benefit and risk of

this therapy for this unique patient population.

In adults, CSA is prevalent in certain conditions (Javaheri and Badr, 2023), most

commonly in those with cardiovascular and cerebrovascular disorders (Javaheri et al., 2017).

Among cardiac disorders, left ventricular systolic dysfunction, heart failure with reduced

ejection (HFrEF) is the most common (Figure 1). However, CSA can also be comorbid with

symptomatic and asymptomatic left ventricular dysfunction (Lanfranchi et al., 2003), and

atrial fibrillation (Sin et al., 1999). The association with CSA has been best documented in

AF in association with HFrEF. In one study of 100 patients with HFrEF, 80% of those with

AF had CSA (Javaheri et al., 1998). Importantly, in a long-term prospective study of 2,865

community-dwelling older men who underwent a baseline polysomnogram (PSG) and were

followed for a mean 7.3 years, elevated central apnea index (CAI) andHunter Cheyne-Stokes

Breathing (HCSB) was significantly associated with increased risk of decompensated heart

failure and/or development of clinical heart failure (Javaheri et al., 2016). Atrial fibrillation

is associated with CSA not only in those with reduced ejection fraction, but also with those

with preserved ejection fraction (Bitter et al., 2009).
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Phrenic nerve stimulation for treatment of
CSA

Whereas, continuous positive airway pressure (CPAP) is quite

effective in the treatment of OSA, it is ineffective in a large number

of subjects with CSA such those with heart failure (Javaheri and

McKane, 2020) or those on opioids (Javaheri et al., 2014). In

these individuals, CSA persists or may worsen with positive airway

pressure therapy, whereas phrenic nerve stimulation (PNS) is quite

effective in virtually eliminating central sleep apnea.

Following a pivotal randomized control trial (Costanzo et al.,

2016) in 2017, the FDA approved a transvenous phrenic nerve

stimulation (TPNS) device (remedē system, ZOLL Medical,

Minnetonka, MN) for the treatment of CSA of various causes.

Historically, it is interesting to note that although PNS was

approved by the FDA in 2017, this is not a new idea. In Sarnoff

et al. (1948) demonstrated for the first time that artificial respiration

could be effectively administered to the cat, dog, monkey, and

rabbit in the absence of spontaneous respiration by electrical

stimulation of one (or both) phrenic nerves (Sarnoff et al., 1948).

In later experiments, these investigators showed that unilateral

phrenic nerve stimulation is also equally effective in humans as they

had exhibited in animal models (Wittenberger et al., 1949).

The system and the algorithm

The phrenic nerves pass over and come in close proximity

with veins, both on the right (brachiocephalic) and on the left

(pericardiophrenic vein) (Figure 2). Similar to cardiac pacemaker

implantation, an electrophysiologist places the stimulation lead

within the vein in close proximity to the phrenic nerve. The

stimulation lead is typically introduced on the right side below the

clavicle and then attached to the pulse generator, which is placed

under the skin in the right pectoral area (Augostini et al., 2019).

The procedure typically lasts between 2 and 3 h, is completed under

conscious sedation and patients typically go home the same day.

The therapy is activated in the sleep medicine clinic ∼6 weeks

after implantation using a programmer similar to a tablet computer.

The device collects information regarding position, breathing and

activity at night and this information can be used to program the

device (Figures 3, 4). Following the initial programming session,

therapy is personalized over the next few months and then efficacy

is confirmed with a sleep study (Figure 5). Typically, the device is

programmed to lower the respiratory rate with a slightly longer and

deeper breath.

This is in contrast to other diaphragmatic or phrenic nerve

stimulation systems which increase both respiratory rate and tidal

volumes. These systems are typically placed in the operating

room under general anesthesia with electrodes placed touching the

phrenic nerve. These systems are often bilateral and the batteries

are external and rechargeable. The tidal volume and rates can be

changed by the patient or family similar to a ventilator and they are

designed to take the place of mechanical ventilation in the case of

spinal cord injury or central congenital hypoventilation syndrome

(Headley et al., 2021). In other words, they are designed to increase

minute ventilation whereas the transvenous PNS (remede system)

is designed to stabilize breathing (stabilize carbon dioxide) and

indicated for CSA in adults (Schwartz et al., 2020).

Clinical studies

Multiple studies have described the efficacy and safety of PNS.

Feasibility and pilot studies
A proof-of-concept study (Ponikowski et al., 2012) was

completed in sixteen patients with CSA. Overnight unilateral

stimulation of phrenic nerve resulted in virtual elimination of CAI

(27 to 1 events/hour of sleep, P ≤ 0.001). There was also significant

reduction in the apnea hypopnea index (AHI) with the median

decreasing from 45 to 23 events/ hour of sleep (P = 0.002). There

were no significant changes in obstructive apnea index (OAI);

the residual events were primarily hypopneas. In concert with

reduction in CAI, similar changes occurred in arousal index (32

to 12 events/hour of sleep, P = 0.001]. Oxygen desaturation index

of 4% (ODI4%) decreased from 31 to 14 events/hour of sleep, P =

0.002]. The feasibility study was followed by a pilot study (Abraham

et al., 2015) which demonstrated chronic efficacy at 3 months with

a reduction in AHI from baseline of 49.5 +/- 14.6 events per hour

of sleep to 22.4 ± 13.6 events per hour of sleep; p < 0.0001)

with follow-up through 1 year (Jagielski et al., 2016). Additionally,

improvements were noted in sleepiness (Epworth Sleepiness Scale

improved 4.1 points from baseline) and quality of life compared

to baseline (76% noted improvement in health) (Abraham et al.,

2015).

Pivotal trial

In this trial (Costanzo et al., 2016), 151 eligible patients with

moderate or severe CSAwere randomly assigned to the treatment

(n = 73) or control (n = 78) groups at the time of implantation.

Participants in the active arm received PNS for the next 6

months. All PSG were centrally and blindly scored. There were

significant decreases in AHI, CAI, arousal index, % time in rapid

eye movement (REM) sleep and ODI4% (Table 1). The difference

between the treatment and control group demonstrated a 25

event/hour reduction in AHI and 23 event/hour reduction in CAI.

Importantly, daytime sleepiness and patient global assessment were

statistically improved compared to the control group. Following the

six-month randomization period, all patients had therapy activated

and were followed until the end of the trial at∼3 years.

In general, CSA is less prevalent in REM sleep than in non-

REM (NREM) sleep (Orr et al., 2016). In the pivotal trial, the CAIs

in NREM and REM sleep were 28 and 8/h of sleep, respectively.

In order to determine the efficacy of PNS to improve CSA during

REM sleep, we performed a separate assessment of patients from

the pivotal trial. We compared changes in sleep apnea indices

from baseline to 6 months in REM and NREM sleep for treatment

(active TPNS therapy, n = 50) and control (inactive device, n =

57). The analysis was performed only in patients who had at least

5min of REM sleep in both the initial and follow up PSG. Similar
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FIGURE 1

Prevalence of central sleep apnea in heart failure.

FIGURE 2

Transvenous phrenic nerve stimulation system.

to findings from the pivotal trial, we found the AHI decreased

significantly during both REM and NREM sleep in patients with

TPNS. Compared to baseline, the mean REM AHI decreased

significantly from 28/h of REM sleep to 8/h in the active arm. The

respective values in the control group were 20/h of REM at baseline

and 25/h at 6 month follow up.

Also, similar to the data in the pivotal trial, the reduction in AHI

was driven by reductions in central events. Compared to baseline,

respectivemedian values for REMCAIwere 8 at baseline and 0 with

treatment at 6 months.

This analysis suggests that although CSA is

traditionally associated with NREM sleep, patients
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FIGURE 3

Sample diagnostic information from the remedē® system.

FIGURE 4

Sample diagnostic information: DRēAM view screen.
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FIGURE 5

Example of therapy O�-On during overnight polysomnogram. Picture courtesy ZOLL Respicardia: This is an individual patient example and does not

provide any indication, guide, warranty or guarantee as to the response other patients may have to the therapy. Individual results may vary.

FIGURE 6

Proposed CSA treatment algorithm. Treatment should always start with guideline directed medical therapy (GDMT) and options for treatment include

continuous positive airway pressure (CPAP), phrenic nerve stimulation (PNS), medications and oxygen.

with CSA have a significant, albeit lower, number

of centrally mediated disordered breathing events in

REM sleep, and PNS improves CSA in both REM and

NREM sleep.

Long term studies

Efficacy and safety through 12 months (Costanzo et al.,

2018b) were reported. Similar improvements were demonstrated
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TABLE 1 Di�erences between treatment and control group in the

remedē® system pivotal trial (6 months data).

Between group
change (treatment
versus control)n =

132 (change +/–
standard deviation)

Central apnea index (CAI) −23+/– 18 P < 0.0001

Apnea hypopnea index (AHI) −25+/– 18 P < 0.0001

Arousal index (AI) −15+/– 19 P < 0.0001

Percent of sleep in REM sleep 2+/– 8 P = 0.024

Moderate or marked

improvement in patient global

assessment

55 (40–68) P < 0.0001

Oxygen desaturation index

(ODI) 4%

−23+/– 18 P < 0.0001

Epworth Sleepiness Scale

(ESS)

−3.7+/– 5.0 P < 0.0001

TABLE 2 Serious adverse events with the remedē® system through 12

months in the pivotal trial.

Serious adverse event Number of patients
(N = 151) (%)

Impending pocket erosion 2 (1%)

Implant site hematoma 1 (1%)

Implant site infection 2 (3%)

Extra-respiratory stimulation 1 (1%)

Concomitant device interaction 1 (1%)

Lead component failure 1 (1%)

Lead dislodgement 2 (3%)

Lead displacement 1 (1%)

Non-cardiac chest pain 1 (1%)

Elevated transaminase 1 (1%)

in the control group and the initial treatment group once

activated including improvements in AHI, CAI, arousal index

and oxygenation. Patient global assessment demonstrated a similar

improvement in overall quality of life in 74% and a moderate or

marked improvement in overall health in 58% of the former control

group once therapy was activated, similar to the treatment group,

at 6 months.

Additional long-term data was gathered in a subset of patients

enrolled in a post-approval study through 5 years (Costanzo et al.,

2022). Patients underwent an in-lab attended PSG at 5 years.

Improvements in sleepmetrics continued through the 5 years of the

study as well as improvements in daytime sleepiness and included

a 22 event per hour reduction in AHI with a median CAI of 1

event/hour (95% CI 0.5).

One additional investigator-initiated trial was completed by

Fox et al. (2019) and demonstrated a similar safety and efficacy

profile to the pivotal study. All patients enrolled had heart failure

with reduced ejection fraction. AHI improved from 38+/– 18 to 17

+/– 9 (P= 0.01) and time below 90% improved from 81+/- 56min

to 28 +/– 43min (P < 0.01). While no improvement in ejection

fraction was noted, there was a 40-meter improvement in 6-minute

hall walk test (P= 0.035).

Heart failure

There is particular interest of the treatment of CSA in patients

with heart failure following the surprising results of the SERVE-HF

study, which demonstrated increases in cardiovascular mortality

with the treatment of CSA (Cowie et al., 2015). The subset of

patients withHFwas evaluated in a study by Costanzo et al. (2018a).

This group was 64% of the overall study group in the Pivotal

Study and had similar improvements in sleep metrics. In addition,

an improvement in disease-specific quality of life was seen in the

Minnesota Living with Heart Failure scale−6.8± 20.0 (P= 0.005)

at 1 year compared to baseline (Costanzo et al., 2018a). There

was a small improvement in left ventricular ejection fraction of

4.0% (interquartile range −1.0 to 8.0%; P = 0.004) and a positive

trend in time to first heart failure hospitalization with rates of

4.7% (standard error = 3.3) in the treatment group and 17.0%

(standard error = 5.5) in the control group (P = 0.065). There was

no difference between the treatment and control group inmortality,

but there was only 6 months of randomized data.

Idiopathic central sleep apnea

ICSA is a relatively rare disorder. Patients may present with

insomnia, daytime fatigue, and sleepiness. In a small sub-study

(Javaheri et al., 2020) of 16 patients with moderate to severe central

sleep apnea (baseline AHI = 40, CAI = 25), PNS improved at 6,

12, and 18 months of therapy: the AHI decreased by 25, 25, and 23

events/h (P < 0.001 at each visit) and the central apnea index by

22, 23, and 22 events/h (P < 0.001 at each visit). Furthermore, the

arousal index decreased by 12 (P = 0.005), 11 (P = 0.035), and 13

events/h (P < 0.001). Quality of life instruments showed clinically

meaningful improvements in daytime somnolence, fatigue, general

and mental health, and social functioning. The only related serious

adverse event was lead component failure in one patient.

Safety of phrenic nerve stimulation

Safety of phrenic nerve stimulation has been studied with

different systems for over 50 years (Sarnoff et al., 1948). Initial

studies on the transvenous system found safety similar to other

neurostimulation platforms, but with some lead issues related to

dislodgement with the initial lead design (Abraham et al., 2015).

The lead was redesigned for the pivotal trial to maintain better

stability over time.

In the pivotal trail, 138 (91%) of 151 patients had no serious

related adverse events at 12 months. Seven (9%) cases of related-

serious adverse events occurred in the control group and six (8%)

cases were reported in the treatment group (Table 2). Seven patients

died (unrelated to implant, system, or therapy), four deaths (two
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in treatment group and two in control group) during the 6-

month randomization period when neurostimulation was delivered

to only the treatment group and was off in the control group,

and three deaths between 6 months and 12 months of follow-

up when all patients received neurostimulation. Twenty-seven

(37%) of 73 patients in the treatment group reported non-serious

therapy-related discomfort that was resolved with simple system

reprogramming in 26 (36%) patients but was unresolved in one

(1%) patient. Complications between year 1 and 5 occurred in 5%

of patients and were primarily related to lead issues. However, there

were three episodes in two patients of interactions with cardiac

devices. These resolved with reprogramming, but physicians should

be aware of the possibility of interaction.

Advantage and disadvantages of PNS

In contrast to positive airway pressure devices which increase

intrathoracic pressure and could result in adverse hemodynamic

consequences, particularly in the setting of heart failure, PNS

therapy is a physiological treatment mimicking normal breathing.

Here we note that in the largest randomized clinical trial for the

treatment of CSA, the SERVE-HF trial, there was a significant

association with use of adaptive servo-ventilation (ASV) and

cardiovascular mortality when compared to the control arm.

The investigators hypothesized that one potential reason for this

association was the increased intrathoracic pressure imposed by the

device. PNS is devoid of this adverse side effect.

Another advantage of PNS is adherence to therapy. The therapy

activates automatically at night as long as the patient is in a sleeping

position. Notably, both in the CANPAP and the SERVE-HF trials,

adherence to CPAP and ASV was about 3 to 4 h (Bradley et al.,

2005; Cowie et al., 2015). Because, the burden of CSA increases

in late hours of NREM sleep (Javaheri, 2000), full adherence to

PNS provides additional benefit, compared to mask therapy. We

note that residual hypopneas may remain after PNS. Changing the

programming of the device over time can improve the number

of events. If residual events are obstructive, low CPAP could be

effective (Beyerbach et al., 2019).

Clinical implications

TPNS is now available at more than one hundred centers in the

United States. Determining which patients are most appropriate

for this therapy takes both the sleep metrics and patient co-

morbidities. Specifically, patients with low ejection fractions have

few therapeutic options and may be early candidates for TPNS. We

have previously proposed the following flowchart for treatment of

CSA (Figure 6) (Javaheri et al., 2020). Once implanted, patients will

have several visits in the sleep clinic and a follow up sleep study

to optimize the programming of the device. Understanding this

follow-up pathway will be important to the prescribing physician.

TPNS is an implantable device, and the cost is high, like

hypoglossal nerve stimulation, compared to other sleep apnea

therapies. Large scale, long-term studies related to mortality

are not yet available. However, the physiologic approach and

improvement in sleep metrics and quality of life with a strong

safety profile make this therapy a good option for many patients

with CSA.
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Obstructive Sleep Apnea (OSA) is exceedingly common but often under-treated.

Continuous positive airway pressure (CPAP) has long been considered the

gold standard of OSA therapy. Limitations to CPAP therapy include adherence

and availability. The 2021 global CPAP shortage highlighted the need to tailor

patient treatments beyond CPAP alone. Common CPAP alternative approaches

include positional therapy, mandibular advancement devices, and upper airway

surgery. Upper airway training consists of a variety of therapies, including

exercise regimens, external neuromuscular electrical stimulation, and woodwind

instruments. More invasive approaches include hypoglossal nerve stimulation

devices. This review will focus on the approaches for modifying upper airway

muscle behavior as a therapeutic modality in OSA.

KEYWORDS

genioglossus, hypoglossal nerve, precision medicine, control of breathing, sleep

disordered breathing, positive airway pressure

Introduction

OSA overview and underlying pathogenic mechanisms

Obstructive sleep apnea (OSA) is a common and heterogeneous condition that affects

up to one billion individuals globally (1). OSA left untreated is associated with severe

comorbidities, including diabetes mellitus (2), coronary artery disease (3), increased risk

of stroke (4), congestive heart failure (5), atrial fibrillation (6), and possibly death (7).

While continuous positive airway pressure (CPAP) is the gold standard, adherence is highly

variable (8). The 2021 global CPAP shortage highlighted the need for different approaches to

OSA management (9). Conventional approaches to those who are CPAP intolerant include

positional therapy, weight loss, oral appliances, and upper airway surgery (10). Our lab and

others are attempting to understand the pathophysiological drivers of OSA to personalize

therapeutic options (11). The OSA traits (endotypes) will not be reviewed extensively here

but include: (1) excessively collapsible upper airways, (2) inadequate muscle compensation,

(3) ventilatory control instability (high loop gain), and (4) low respiratory arousal threshold

(ArTH) (12). This review will focus on studied modalities for improving upper airway

dilation as potential OSA treatments. We will examine the role of upper airway training

and electrical stimulation of the upper airway muscles and nerves as therapeutic options for

OSA (13). Notably, drug therapy for improving upper airway motor output is also an active

area of investigation but is beyond the scope of this review (14–16).
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Overview of the respiratory upper airway

The upper airway consists of 23 pairs of muscles, including

dilators, protrudors, retractors, and the intrinsic muscles of the

tongue (17, 18). These muscles are state-dependent, meaning that

their activity level tends to decrease with sleep onset (19), especially

with rapid-eye movement (REM) sleep (20, 21). Concerning OSA

pathogenesis, genioglossus is the best studied of these muscles

due to its ease of access [i.e., with electromyography (EMG)

wires] (22).

However, multiple upper airway dilators and constrictors

are important in the upper airway response to flow-limited

breathing during sleep (23). Indeed, the superior, middle, and

inferior pharyngeal constrictor muscles constrict and decrease

airway caliber during times of increased airway volume (such

as during inspiration), but have dilatory action when airway

volumes are low (such as at the end of an apnea) (23).

The pharyngeal retractors styloglossus and hyoglossus, while

typically known for decreasing airway caliber on their own, may

have a synchronous effect with genioglossus to promote upper

airway patency (24). The peripharyngeal muscles as well as the

intrinsic muscles of the tongue are also important in maintaining

luminal patency amidst flow limitation (25, 26). Additionally,

the muscles of the soft palate palatoglossus, palatopharyngeus,

levator palatini, tensor palatini in addition to other muscle groups

are important in combatting obstructive events of the upper

airway (27).

Upon sleep onset, the upper airway relies on chemoreceptive

cues, mechanical load, and lung volume afferent cues to drive firing

patterns for each breath cycle (22). There is a negative pressure

reflex, in which inspiratory negative pressure across the upper

airway increases genioglossus output (28). This reflex is generally

attenuated during sleep compared to wakefulness, but is augmented

during supine sleep vs. recumbent (28, 29). Both mechanical

loading and elevated pCO2 increase upper airway dilator output,

with an additive effect when these two stimuli are combined (22).

In many cases of OSA however, the efficacy of upper airway

dilators in maintaining pharyngeal patency is reduced (30). This

loss of efficacy is partly related to a decrease in the state-dependent

drive but also may emerge from an inadequate muscle output to

compensate for an excessively collapsible upper airway (20). The

importance of upper airway neuromyopathy has been debated, with

data somewhat mixed regarding whether observed abnormalities

are a cause or consequence of disease (31–35). There may also be

muscle asynchrony contributing to the loss of pharyngeal patency

in sleep (36). With consideration of the role of upper airway muscle

function in sleep apnea pathogenesis, a number of strategies have

been undertaken to improve upper airway performance in response

to flow-limited breathing.

Attempts at improving muscular dilation of
the upper airway

Myofunctional therapy for the treatment of OSA
While themechanisms of OSA pathogenesis are heterogeneous,

exercises for improving upper airway stability through muscle

training and improvement in passive pharyngeal properties [such

as the critical closing pressure (PCrit)] have been pursued

in clinical research (37). The ideal training regimen, training

method, and patient selection for improving OSA is yet to

be determined. Still, there may be an improvement in sleep

apnea severity, and daytime symptoms with dedicated upper

airway training regimens often referred to as myofunctional

therapy (MT), though the data is inconsistent (38). MT has

been predominantly studied in mild to moderate OSA (39). The

exercises prescribed are heterogeneous and the relativemechanisms

for these exercises to combat OSA are uncertain. There have

also been studies of MT in severe OSA, where MT appears less

effective but may serve as a CPAP adjunct (40). Exercises are

reported to target the soft palate, tongue, and external facial

muscles (38).

A common combination of the above exercises is appended

below (Table 1). Exercises are typically intensified over the course

of a 6-week training period.

Benefits and limitations of myofunctional therapy
In some randomized controlled trials (RCTs), MT

demonstrated improvements in polysomnographic measures

of sleep, including AHI and oxygen saturation parameters

(10). In a meta-analysis including observational studies, MT

elicited a 50% decline in the AHI among adults and a 62%

decline in the AHI among children (38). MT also demonstrated

improvements in secondary outcomes, including subjective

quality of life scores, Epworth Sleepiness Scale (ESS), snoring,

and CPAP compliance (38). The mechanism(s) of MT on AHI

reduction are heterogeneous and not fully delineated (10, 37).

Notably, MT has also been used as an adjunct to improve CPAP

adherence (41). However, a major limitation of MT is the lack

of standardization. Generalizability between MT studies remains

low due to variable inclusion criteria, follow-up protocols,

exercise regimens, and training devices (10). Additionally, the

mild severity of OSA within the available studies creates the

possibility of regression to the mean explaining some of the

positive reported results for MT. The ideal anatomy for MT

benefit, i.e., based on Mallampati/Friedman scores, for instance,

is unclear. The durability of effect of MT is also uncertain

(39). Barriers to adherence with MT are potentially related to

lack of patient engagement/understanding once they are in a

home setting and practicing MT exercises independently (42).

According to the European Respiratory Society guidelines, MT is

not recommended as a treatment unless patients are reluctant to

engage in surgical/mechanical strategies (43). Further research on

MT should focus on determining which exercises yield maximal

benefit, which patients benefit from MT, and which therapeutic

adjuncts can and should be added for an individual based on their

unique OSA traits.

According to the European Respiratory Society guidelines,

MT is not suggested as a standard treatment for OSA [43].

The guidelines recommend patients use CPAP instead of

MT (43). However, patients who are reluctant to engage

in surgical/mechanical strategies may find improvements

in their symptoms (43). These recommendations are
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TABLE 1 Representative MT regimen prescribed to patients with mild-moderate OSA.

Category Exercise name # seconds # repititions # sessions/day

Tongue 1 Tongue Press 5 5x 2

2 Stick Your Tongue Out 5 5x 2

3 Stick Your Tongue Out and Down 5 5x 2

4 Stick Your Tongue Out and Up 5 5x 2

Soft palate 1 Blowing with Resistance with Balloon 5 10x 2

2 Say “Ahhh” 10 10x 2

Throat and neck 1 Ceiling Swallow 5 10x 2

2 Going Up 10 10x 2

Jaw and lips 1 Lip Workout 10 10x 2

2 Jaw Resist 10 10x 2

3 Chewing

The regimen advances and is modified over a 6-week period. Adapted from Guimaraes et al. (37). This is solely meant for illustrative purposes, and the ideal MT training regimen is unclear.

conditional and are based off a low quality of evidence.

More research on MT is necessary to provide confident

recommendations.

Upper airway training with woodwind
instruments

Over the past 20 years, it has been noted that woodwind

instrument playing may have a protective effect on OSA

(44). In 2006, Puhan noted that playing the didgeridoo, an

indigenous Australian instrument, improves the AHI compared

to controls (44). This study prompted the investigation of

other woodwind instruments for treating and preventing

OSA (45). In a study comparing wind instrument musicians

to string instrument musicians, no significant differences

in sleep efficiency or subjective sleep quality metrics were

noted (46).

Didgeridoo

The use of woodwind instruments such as the didgeridoo may

be beneficial in the treatment of symptomatic OSA. In a study

by Puhan and colleagues, didgeridoo practice showed significant

improvement in AHI, ESS, and partner sleep disturbance scores

(44). In a meta-analysis of the effects of musical interventions

in OSA, the didgeridoo was the most therapeutic musical

intervention in improving sleep-disordered breathing (45). This

findingmay be due to the unique nature of the didgeridoo requiring

circular breathing (45). Circular breathing is the vocalization of

a continuous tone while simultaneously inspiring through the

nose. This procedure is performed by expelling air through the

mouth and using the cheek muscles to create a reservoir of

air. Notably, however, in other instruments requiring circular

breathing, such as the bassoon, circular breathing in and of

itself has yet to be shown to be effective in treating OSA

consistently (47).

Puhan and colleagues, are the only research group to research

the effects of the didgeridoo on OSA thus far to our knowledge

(44). One major limitation of this study was the small sample size

of 25 participants and the lack of a rigorous control group. The

control group consisted of participants put on a waiting list. This

approach was viewed as easier than having participants practice

with a “sham” didgeridoo. A clear role of didgeridoo playing in

OSA treatment is not defined (48).

Other woodwind instruments

Subsequent studies have separated instruments into single-

reed, double-reed, high-brass, and low-brass instruments (48).

Single reed instruments (clarinet, saxophone) include a single piece

of cane that vibrates when sound is introduced. In contrast, double

reed instruments (bassoon, oboe, English horn) have two pieces of

cane that vibrate and a narrower aperture. Low brass includes tubas

and sousaphones. High brass includes trumpets and French horns.

Of the instruments noted, the double reed appears to improve

AHI and daytime symptoms consistently, with more hours spent

playing corresponding to greater AHI reduction (48). Ward et al.

argued that the narrower aperture of double reed instruments and

requisite air pressure were comparable to high-brass instruments

(30–42 mmHg vs. 13–42 cmH2O) and thus did not explain the

differences in efficacy across the woodwinds. Additionally, benefit

in OSA treatment was not seen in non-wind instrumentalists

(48). Rather, they speculated that the differences in efficacy were

attributable to the differences in muscle activation patterns across

the instruments (48). Circular breathing does not have a clear

and consistent role in improving the AHI (47). Although, the

extent of circular breathing and requisite practice requirement

of the didgeridoo may be greater than in other instruments and

thus involve a more intensive circular breathing practice (48).

While woodwind instruments may be helpful for sleep apnea,
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which instruments to use and how to implement them remains

uncertain (49).

Electrical stimulation of the upper airway
Electrical stimulation of the upper airway has included both

external stimulation of upper airwaymuscles and direct stimulation

of nerves supplying the upper airway. Current devices for external

and internal (surgical) stimulation of the upper airway muscles and

nerves, respectively, are shown in Figure 1.

External submental electrical stimulation

External stimulation of the upper airway dilator muscles has

recently become a clinically significant modality in treating mild

OSA. Devices like eXcite OSA and TESLA offer symptom relief

for primary snoring and OSA (50, 51). External stimulation of

upper airway muscles has come about through various approaches,

predominantly focused on nighttime tongue stimulation.

The initial attempts at electrically stimulating the upper airway

during flow-limited breathing were by Miki et al. (52). Using

submental electrodes and a microphone over the cervical trachea,

electrical stimulation of 15–40V at a frequency of 50Hz was

applied when tracheal breath sounds were<15% of tracheal sounds

during tidal breathing for 5 s (52). This study was in six patients and

showed decreased sleep apnea severity and increased stage III sleep

without associated arousals (52). This same group showed that

direct stimulation of genioglossus in anesthetized dogs decreased

upper airway resistance (53). Hillarp et al. later used submental

electrical stimulation in a single patient during apneic events. The

behavior of the upper airway was recorded using videoradiography

and showed that tongue base obstruction improved with submental

stimulation (54).

Edmonds et al. subsequently used a transcutaneous

neuromuscular stimulation device (TENS) to assess the efficacy of

concurrent submental and infrahyoid stimulation on OSA severity.

No significant reduction in AHI was noted (55). Additional

efforts entailing multi-site stimulation emerged in the following

years. Guilleminault attempted simultaneous submental and

transmucosal sublingual stimulation with a proprietary device

without significant change in OSA parameters (56). Schnall also

attempted simultaneous submental, paralaryngeal, and submucosal

stimulation using a horseshoe shaped electrode while measuring

pharyngeal resistance as the primary outcome measure. Only

sublingual resistance improved (57).

In 1999, Wiltfang et al. applied daytime submandibular

electrical stimulation to suprahyoid muscles by intra and extraoral

electrodes via a transcutaneous electrical nerve stimulation (TENS)

unit. After a 4-week training regimen (30min twice a day), the

researchers documented suprahyoid hypertrophy by ultrasound,

reduced respiratory disturbance index from 13.2 to 3.9/h, and

reduced oxygen desaturation index from 23 to 2.8/h. Despite these

improvements, this study did not materialize into an exportable

clinical protocol or novel device. Steier et al. used a commercially

available Neurotrac stimulator to elicit submental stimulation of

genioglossus during N2 sleep, with a resolution of upper airway

occlusion when activated (58). This work ultimately culminated

in the development of the transcutaneous electrical stimulation

(TESLA) device. TESLA, a device that utilizes TES, delivers a

continuous low-current electrical stimulation to the genioglossus

during sleep, which causes increased airway patency. TESLA

transmits an electrical current transcutaneously via dermal patches

in the sub-mandibular area.

In an RCT, TESLA accounted for multiple positive outcomes.

The AHI improved by a mean of 9.1 [95% confidence interval

(CI) 2.0, 16.2] events/h, and the 4% oxygen desaturation index

(ODI) improved by a mean of 10.0 (95% CI 3.9, 16.0) events/h

(51, 59). TESLA exhibited a 100% response rate for mild OSA

patients, while patients with moderate and severe OSA reported

a 46 and 29% response rate, respectively. While it is still not

understood which OSA patients are ideal candidates for TESLA,

early studies have identified some features associated with higher

success rates. Current inclusion criteria for TESLA include an AHI

of 5–35 events/h, a BMI of <32 kg/m2, CPAP intolerance, and

low adherence to MAD (60). Adverse effects of TESLA include

dry mouth, skin discomfort, and claustrophobia. No major adverse

events were reported.

During sleep, the TESLA system included external stimulation

of the “upper airway dilators” via 4 x 4 cm patches on the anterior

neck. This system appeared to reduce RDI, but which muscles are

activated with this program is unclear (59).

There is also the Kalinix device, but limited data have been

reported beyond a congress abstract with 20 patients. The authors

noted that 52% of individuals had a reduction in AHI, but the exact

change is unreported. Inclusion criteria were adults with AHI 15–

65 events/h and BMI < 32 kg/m2. No serious adverse events were

noted. Follow-up studies have not yet been reported (61).

Day-time electrical stimulation
Most of the previously mentioned stimulation devices involved

transcutaneous stimulation during sleep and included a broad

range of OSA severity. Transoral stimulation is a new modality

treating mild OSA and simple snoring in individuals with a BMI

< 35 kg/m2 (62). EXciteOSA, formerly known as Snoozeal, is

an oral device that activates the upper airway through electrical

stimulation. It includes three components: a control unit, a

washable mouthpiece, and a Bluetooth smartphone application.

Four electrodes supply the tongue with electrical stimulation. Two

electrodes lie on top of the tongue, and two sit below the tongue to

generate vertical and diagonal stimulation patterns.

Patients have full control over the intensity of electrical

stimulation using their smartphone. The device emits a series of

pulse-bursts over 20min. The frequency of stimulation changes

in a defined sequence throughout the treatment cycle. Phase 1

of the treatment includes 20min once per day, and phase 2

includes 20min twice per week, though phase 2 of therapy is often

individualized in clinical practice.

In the available clinical data, eXciteOSA showed significant

improvements in objective and subjective indices of OSA. The AHI

reported a mean reduction of 3.4 ± 5.0 events/h (95% CI 2.2–4.7)

from 10.2 to 6.8 events/h (p< 0.01). The oxygen desaturation index

decreased by 2.5 ± 4.6 events/h (95% CI 1.4–3.6) from 8.4 to 5.9
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FIGURE 1

(A) External stimulation devices which have been utilized in OSA treatment. Left to right, ExciteOSA, TESLA, and Kalinix devices. (B) Implantable upper

airway stimulation devices, including Genio, Inspire, and the Aura6000 device. IDE, Investigational Device Exemption. Image re-use permissions

granted where applicable (51, 86, 87).
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events/h (p < 0.01). Mean ESS reduced from 8.7 to 5.3 (reduction

of 3.4 ± 4.1; 95% CI 2.4–4.4; p < 0.01). Composite Pittsburg

sleep quality index (PSQI) decreased from 7.3 to 5.9 (reduction of

1.4 ± 2.8; 95% CI 0.7–2.1; p < 0.01). However, further study is

needed to identify the optimal patient population for this device.

Additionally, it remains unclear how therapy should be modified

(if at all) after the initial 6 weeks of treatment. A recent randomized

controlled trial has completed enrollment with reportedly favorable

results, but the results have not yet been made available to the

public. Possible side effects include drooling, tongue tingling, and

tooth discomfort (50).

It has been suggested that improving tongue endurance may

not influence OSA. In one study evaluating the effects of a six

weeklong tongue endurance program, no improvements in OSA

severity were detected (63). The exercise regimen did however

produce improvements in daytime sleepiness.

Surgical approaches to upper airway
stimulation—hypoglossal nerve stimulation

Hypoglossal Nerve Stimulators (HGNS) are surgically

implanted devices that apply electrical stimulation to the

hypoglossal nerve to control the movement of the tongue. HGNS

is an effective tool to treat OSA because it allows for control of

the genioglossus and hence pharyngeal volume. We will include

multiple HGNS devices on the market and in development in this

review, including the Inspire device, Apnex, Genio, and Aura6000.

Inspire

Inspire became the only FDA-approved HGNS after the

STAR trial in 2014. The initial feasibility study of this model

however, dates back to 2001 (64). The Inspire device is surgically

implanted into the upper chest, commonly on the right side,

and innervates the medial branch of the ipsilateral hypoglossal

nerve. Inspire contains three components: a respiratory sensing

lead, an impulse generator, and a stimulation lead. The respiratory

sensing lead detects the exact phase of the respiratory cycle

activating the impulse generator during inspiration. The impulse

generator sends an electrical impulse to the hypoglossal nerve

through the stimulation lead. Upon electrical stimulation of the

hypoglossal nerve, the tongue stiffens and protrudes. Inspire uses

both respirophasic and a fixed stimulation pattern. Electrical

stimulation strength is modulated with a remote control.

Benefits and limitations of Inspire

Observational studies have provided some evidence to establish

Inspire as a clinically efficacious device in treating OSA (65).

In the pivotal STAR trial, HGNS decreased AHI by 68%, from

an average of 29.3 events per hour to 9.0 events per hour (65).

The ODI score decreased by 70%, from 25.4 events per hour

to 7.4 events per hour (65). Secondary outcomes, including the

Functional Outcomes of Sleep Questionnaire (FOSQ) and ESS, also

showed improvement (65). This trial was followed by a therapy-

withdrawal study which randomly assigned responders to withhold

HGNS temporarily. Results from this study showed responders

taken off HGNS returned to baseline in both AHI and ODI.

When HGNS was re-initiated, the AHI and ODI returned to post-

treatment standards (65). The most comprehensive data set on

HGNS is the ADHERE Registry, which includes patient-level data

for individuals who have undergone HGNS. Analysis of this data

set further confirms the significant therapeutic effects of HGNS on

both objective and subjective measures of OSA (66). This registry

now includes nearly 5,000 patients with longitudinal data.

Patient selection for Inspire is based on criteria informed by the

STAR trial (65). Indications for implantation include moderate to

severe OSA with CPAP intolerance or refusal. Patients must have

a BMI < 32 kg/m2; <25% central/mixed apnea events, and an

AHI between 15 to 65/h (65). Contraindications for HGNS include

a complete concentric collapse of the soft palate (65). Candidacy

requirements for HGNS devices are still evolving.

HGNS appears well-tolerated, but 1/3 of patients have been

deemed non-responders long-term (66). To optimize patient

selection for HGNS, Op de Beek examined OSA endotypes and

noted that those with a higher arousal threshold, greater muscle

compensation, and lower loop gain had a higher chance of HGNS

success (67). Conversely, patients with low muscle compensation

and mild collapsibility were noted to have lower HGNS success

rates (67). Additionally, higher baseline AHI, lower BMI, and

older patient age appear to be associated with a greater reduction

in AHI with HGNS (68). These results suggest diagnosing the

non-anatomical characteristics of OSA may play a critical role in

prescribing HGNS (67).

From an anatomic perspective however, complete palatal and

complete tongue base collapse, but not complete lateral pharyngeal

wall collapse as assessed by drug-induced sleep endoscopy

(DISE) are associated with greater AHI reduction following

HGNS implantation (69). Additionally, tongue morphology during

stimulation is important for maintaining airway patency (70).

Tongue protrusion and maintenance of tongue shape is associated

with increased airflow, whereas anterior movement with increases

in tongue height are associated with decreased airway patency

(70). Lastly, both the extrinsic and intrinsic muscles of the

tongue appear to be activated by HGNS, with the milieu of

muscles activated depending on cuff position, voltage intensity, and

pattern of stimulation (71). Thus, there is tremendous complexity

underpinning patient selection, therapy optimization, and non-

anatomic traits in generating an optimum response to HGNS.

Apnex

One of the initial HGNS device studied was the Apnex device

(72). This device has a single stimulation lead and two respiratory

sensing leads (73). Cuff placement is on the main branch of

the hypoglossal nerve, distal to the branches innervating tongue

retractors (determined intraoperatively through stimulation). This

device was reported to be well-tolerated and significantly reduced

AHI, particularly in those with a BMI< 35 kg/m2 (73). This device,

however, is no longer actively studied and is not clinically available.
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Genio

Genio is a bilateral HGNS device produced by Nyxoah (74).

Genio provides stimulation to both branches of the hypoglossal

nerve (65). This device requires a single midline submental incision

with placement of paddled electrodes over bilateral distal medial

hypoglossal nerve branches. The preferential selection of the

distal branches reportedly activates genioglossus alone without

the recruitment of adjacent muscles (74). An external, submental

stimulator is placed on an adhesive, disposable patch to activate

the cuffs (74). The stimulator must be recharged daily but has

the advantage of not having an implanted battery. The Genio

does not have respiratory sensing leads and delivers stimulation

via adjustable, pre-programmed rates and duty-cycles in order to

match the patient’s breathing frequency. The BLAST OSA study

was pivotal for this device (74). Inclusion criteria were adults 21–

65 years old, AHI 15–65 events/h, BMI < 32 kg/m2, and fewer

than ten central events/h on PSG (74). This study did not meet

its primary endpoint of an AHI reduction of 15 events/h, but AHI

was significantly reduced from 23.7 ± 12.2 to 12.9 ± 10.1 and

ESS from 11.0 ± 5.3 to 8.0 ± 5.4 (74). Quality of life metrics and

bed-partner-reported snoring were also considerably reduced. No

serious adverse events were reported (74).

In a study comparing unilateral HGNS and bilateral HGNS, no

significant differences were detected in the AHI or ESS between the

two treatment groups (75). This evidence suggests bilateral HGNS

may be as a safe and effective as unilateral HGNS.

Aura6000

The Aura6000 is an emerging technology from LivaNova

(previously under ImThera). The Aura6000 does not have a

respiratory sensing component and assessment for concentric

collapse by DISE is not part of the clinical workflow (76). The

Aura6000 electrodes are placed in an unfasciculated portion of the

hypoglossal nerve, targeting multiple muscle groups in the fatigue-

resistant components of the posterior tongue (77). The rate of

serious adverse events appears to be comparable to Inspire (25).

The inclusion criteria for ongoing studies include adults over 22

with AHI 20–65/h and CPAP refusal or intolerance. Exclusion

criteria include BMI > 35 kg/m2, comorbid pulmonary, cardiac, or

renal disease, and detailed PSG exclusion criteria, most notably, the

presence of central or mixed apneas in >25% of AHI events (78).

Based on the recent THN3 trial, data at 12–15 months for enrolled

participants suggest that AHI is reduced by 42.5% percent within

their cohort (25).

Ansa cervicalis stimulation

Stimulation of the ansa cervicalis as a therapeutic target to treat

OSA can be used alone or in combination with HGNS (79). The

ansa cervicalis is a nerve plexus innervating the infrahyoid strap

muscles including the sternothyroid muscle. When activated, these

muscles create caudal displacement of the hyoid bone, resulting in a

stiffened upper airway (80, 81). In a small clinical study, stimulation

of the ansa cervicalis increased inspiratory airflow in patients with

severe OSA during DISE (79). Ansa Cervicalis Stimulation (ACS)

increases pharyngeal volume by increasing caudal traction of the

upper airway (82).

ACS may help overcome incomplete responses to HGNS (83).

The combined effect of tongue protrusion and tracheal traction

is likely synergistic (80). Early data on ACS are limited by small

sample size, low diversity of study population, and lack of data

accounting for end-expiratory lung volume (79). However, it has

been shown that ACS decreases PCrit and Popen (when nasal

pressure exceeds surrounding tissue pressure), with a significantly

greater improvement in Popen with bilateral vs. unilateral ACS

(84). It is challenging to compare HGNS and ACS due to

different stimulation patterns. Despite these limitations, ACS has

shown robust improvements in airway collapsibility and should be

further investigated.

Summary and future directions

There is a rich history of improving upper airway output as a

therapeutic modality in OSA (52, 78). Efforts have included MT,

woodwind instruments, external stimulation devices, and direct

nerve stimulation of varying regions of the hypoglossal nerve

and the ansa cervicalis. A comprehensive consensus statement

on non-PAP therapies was issued by the European Respiratory

Society in 2021. Notably, the quality of evidence for many non-

PAP interventions appears to be poor (43). Each intervention has

improved OSA with routine use, but it is unclear which patients

and endotypes benefit from each modality (85). We anticipate that

the future of OSA therapy will include tailoring interventions to

OSA traits and patient preferences, which will allow for optimum

therapeutic engagement. Despite being a relatively young field, with

<50 years of history, tremendous progress has been made in the

application of bench physiology to the bedside in the management

of OSA. Improving upper airway mechanics is just one approach,

but considerable nuance is involved in a task as seemingly simple

as stabilizing the pharyngeal airway. Similar granularity is required

in addressing the other endotypes as well. As such, the future of

our field includes precision medicine toward unique combinations

of endotypic traits, multiple lines of concurrent therapies, and

therapeutic adjustments as individual patient physiology evolves

(13). We view this challenge with great excitement and believe

tremendous opportunities to individualize patient care in OSA

lie ahead.
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Obstructive sleep apnea (OSA) is a common condition a�ecting an estimated

936 million individuals worldwide, leading to a considerable demand for

diagnostic services. Polysomnography, the current gold standard for diagnosis,

is resource intensive and inconvenient for patients and healthcare providers. The

WatchPAT is an unobtrusive device for home OSA diagnosis. It utilizes peripheral

arterial tomography in conjunction with heart rate, oximetry, actingraphy, and

respiratory movements for the diagnosis of OSA. It has good correlation with

polysomnography for OSA diagnosis and also reports sleep time and sleep

staging. The WatchPAT device has reported sensitivities of 81–95%, specificities

of 66–100%, positive predictive values of 79–96%, and negative predictive values

of 92% for the determination of the apnea–hypopnea index (AHI). It has also been

studied and its use validated in a variety of patient populations, including children,

older adults, pregnant women, and those with comorbid medical conditions.

The device has also been adopted for use in screening for cardiac arrhythmia

and central sleep apnea, although neither use has become widespread. With the

emergence of telemedicine and an increasing demand for sleep services, the

WatchPAT device can be a useful aid in OSA diagnostics.

KEYWORDS

obstructive sleep apnea, WatchPAT, telemedicine, sleep disorders, central sleep apnea

(CSA)

Introduction

Obstructive sleep apnea (OSA) affects an estimated 936 million individuals worldwide,

of whom approximately 425 million individuals require treatment (Benjafield et al., 2019),

leading to a considerable demand for OSA diagnostics. The current gold standard for

diagnosis, polysomnography, has considerable drawbacks and is resource intensive. As a

consequence, newer less invasive diagnostic modalities have emerged. One such modality

is the WatchPAT (WP) device. The aim of this review is to discuss the WP device, its

role in OSA diagnosis in various patient populations, and other uses for the device that

have emerged.

Sources and search strategy

References used for this review were identified from PubMed and Medline searches.

Search terms used included “WatchPAT,” “Peripheral Arterial Tomography,” and “PAT” in

conjunction with specific disorders and other investigations, including “polysomnography

(PSG),” “obstructive sleep apnoea,” “sleep apnoea,” “central sleep apnea,” and “sleep staging.”
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Background

OSA is caused by recurrent episodes of upper airway

collapse during sleep, which results in a reduction (hypopnea)

or absence (apnea) of airflow, oxygen desaturation, and arousal.

Arousals contribute to symptoms including sleep fragmentation,

unrefreshing sleep, and excessive daytime sleepiness. It is then

graded in severity on the apnea-hypopnea index (AHI) according

to the average number of hypopneas and apneas during sleep. OSA

is associated with increased rates of road traffic accidents (Terán-

Santos et al., 1999), workplace accidents (Garbarino et al., 2016),

cardiovascular disease (Peppard et al., 2000; Punjabi et al., 2009),

and diabetes (Wang et al., 2022), among others.

Polysomnography (PSG) is the current gold standard for

OSA diagnosis. It measures sleep time, stage, and arousals using

an electroencephalogram, airflow using a thermistor, respiratory

efforts with chest and abdominal bands, oxygen saturation, body

position, leg movements, and snoring, with or without video

monitoring. PSG can be performed with direct monitoring in

a sleep laboratory (Type 1 study) or unattended at home or in

the laboratory (Type 2 studies). However, polysomnography has

significant drawbacks. It is labor intensive, intrusive for patients,

and expensive for the health care provider.

Given the limitations of inpatient PSG, home sleep apnea

testing (HSAT) has become commonplace and has been further

accelerated by the COVID-19 pandemic. HSAT is broadly

considered under two clinical pathways: the multiple access

outpatient pathway and the telemedicine pathway. Under the

multiple access pathway, the patient attends an outpatient

appointment, then returns to pick up their HSAT device, returns

the device, and attends a final appointment for results. The

telemedicine pathway involves telemedicine consultations and

direct receipt of the testing device by the patient at home. Home

sleep apnea tests (HSATs) have proved popular and may be

either Type 3 studies, which measure at least two respiratory

variables (respiratory effort, flow), oxygenation saturation, and a

cardiac variable, or Type 4 studies, which measure only one or

two parameters, generally oxygen saturation and heart rate. The

American Academy of SleepMedicine (AASM) guidelines state that

an HSAT should incorporate at least the following: nasal pressure,

chest and abdominal movements, oximetry or peripheral arterial

tomography with oximetry and actingraphy (Kapur et al., 2017).

WatchPAT technology

The WatchPAT device uses peripheral arterial tonometry

(PAT). PAT technology is based on the variations in peripheral

vascular resistance during sleep and arousals due to fluctuations

in sympathetic nerve activity. During non-REM sleep, sympathetic

activity is lower, with a consequent reduction in blood pressure and

heart rate (Somers et al., 1993). During REM sleep, this activity

increases above the levels observed during wakefulness, with blood

pressure and heart rate increasing in tandem (Somers et al., 1993).

Arousals from sleep result in bursts of sympathetic activity,

which in turn result in blood pressure surges and tachycardias

(Schnall et al., 1999). These hemodynamic changes lead to

increased peripheral vascular resistance. Our fingertips contain

dense vascular beds with high contractions of sympathetic

alpha receptors. Apnea- or REM sleep-induced activation of

the sympathetic nervous system leads to the activation of these

receptors, with resultant peripheral vasoconstriction, increased

vascular tone, and decreased blood flow at the fingertip

(Schnall et al., 1999). This can be detected by finger probe

polysomnography. Studies have demonstrated a good correlation

(r = 0.82) between PAT-detected apneas and those detected with

EEG during PSG in both adult and pediatric populations (Pillar

et al., 2002, 2003; O’Brien and Gozal, 2007).

Obstructive sleep apnea can be detected and diagnosed

using PAT technology in conjunction with oximetry, heart rate,

actingraphy, and respiratory movements (Penzel et al., 2004)

(Figure 1). Additionally, WatchPAT technology allows for better

assessment of sleep stages, including total sleep time, rather than

total recording time, which is frequently used by HSAT (Hedner

et al., 2011).

The WatchPAT and sleep staging

The vast majority of home sleep studies do not record sleep

itself, as they do not have access to EEG data. Instead, they rely on

recording time. TheWatchPAT device utilizes actingraphy (Hedner

et al., 2004) and a PAT signal to distinguish between waking time,

sleep, REM, and non-REM (NREM) sleep (Herscovici et al., 2007),

of which the latter is further subdivided into light or deep sleep

(Bresler et al., 2008). Traditionally, NREM sleep has been classified

into four stages by PSG: stage 1 (N1), drowsiness; stage 2 (N2), light

sleep; and finally stages 3 and 4 (N3 and N4), deep sleep. Instead,

the WatchPAT divides NREM sleep into light sleep (stages 1 and 2)

and deep sleep (stages 3 and 4).

The WatchPAT then combines PAT signal and actingraphy to

develop an automatic sleep-stage detection algorithm, using the

PAT software package (Medical, 2002b). However, it is important

to appreciate that the evidence for WP sleep staging is weaker

than that for the gold standard, PSG. In a large multicenter

study, researchers compared PSG and WP sleep staging and

found only moderate agreement on the sleep stage (Cohen κ

coefficient= 0.475) (Hedner et al., 2011). A smaller study, designed

to assess the efficacy of the WatchPAT-200 (WP-200) in the

diagnosis of OSA, found low agreement between PSG and light

sleep (ICC = 0.495, p < 0.001), very low agreement for REM

sleep (ICC = 0.237, p = 0.044), and no agreement for deep sleep

(p= 0.514) (Ceylan et al., 2012).

Diagnosis of OSA by WatchPAT

There are currently three generations of the WatchPAT device:

WatchPAT-100, 200, and 300 (WP-100, WP-200, and WP-300,

respectively), as well as a disposable model, WatchPAT-ONE. All

generations utilize PAT, oximetry, heart rate, and actingraphy,

with various firmware and hardware upgrades in each generation.

The most recent model, WP-300, contains an updated snoring,

and body position sensor to monitor chest movements and

diagnose central sleep apnea (Medical, 2020). Multiple studies
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FIGURE 1

Figure demonstrating reduction in PAT signal following apnoic events.

have compared most devices with PSG, either by carrying out

simultaneous PSG and WP studies or with studies on separate

nights and in-lab and at-home studies. We have outlined in the

following section the data relevant to OSA diagnosis for each

generation of WP device in comparison to polysomnography for

the diagnosis of obstructive sleep apnea.

At present, we know from several studies that the WP-100 has

excellent correlation for AHI (Zou et al., 2006; Choi et al., 2010),

respiratory desaturation index (RDI) (Bar et al., 2003; Penzel et al.,

2004; Zou et al., 2006; Hedner et al., 2011), and oxygen desaturation

index (ODI) (Penzel et al., 2004; Zou et al., 2006), with a reported

sensitivity of 100%, a specificity of 83%, a positive predictive value

(PPV) of 95%, and a negative predictive value (NPV) of 100% for

the diagnosis of OSA compared to PSG (Choi et al., 2010).

Similarly, in a comparison with PSG, the WP-200 has been

reported to have an excellent correlation for AHI (Pang et al., 2007;

Ceylan et al., 2012; Onder et al., 2012; Weimin et al., 2013; Körkuyu

et al., 2015; Gan et al., 2017; Tondo et al., 2021), RDI (Ceylan et al.,

2012; Yuceege et al., 2013), ODI (Ceylan et al., 2012; Onder et al.,

2012; Yuceege et al., 2013; Tondo et al., 2021), and mean oxygen

saturations (Onder et al., 2012; Yuceege et al., 2013; Körkuyu et al.,

2015). It also has a reported sensitivity of 81–95%, a specificity of

66–100%, a PPV of 79.4–96%, and an NPV of 92% for AHI (Ceylan

et al., 2012; Weimin et al., 2013; Tondo et al., 2021). For RDI, a

sensitivity of 89%, a specificity of 77%, a PPV of 82%, and an NPV

of 86% are reported (Yuceege et al., 2013) (Table 1).

Themost recentWatchPAT device,WP-300, uses a finger probe

for oximetry and polysomnography and a chest probe to record

snoring, body position and respiratory effort. No data on the

WP-300 have yet been published.

A cost-effectiveness study using an unspecified WP device

found that the telemedicine pathway was more expensive for

the healthcare provider but significantly cheaper for patients,

indicating that a telemedicine service with WP devices would be

acceptable to the patient population (Di Pumpo et al., 2022). Use

of the WP device rather than full PSGs in traditional outpatient

services has been shown to reduce time to OSA diagnosis and

treatment, leading to overall cost savings (Phua et al., 2021).

OSA treatment and WatchPAT technology

The WP has also been examined in the assessment of patients

with OSA receiving continuous positive airway pressure (CPAP)

therapy, which is the mainstay of treatment for individuals with

OSA and excessive daytime sleepiness, or OSA and hypertension

(Patil et al., 2019). One study compared simultaneous in-laboratory

PSG and WP-100 assessment of patients on CPAP therapy,

demonstrating good agreement between the WP and PSG for

residual RDI (sensitivity of 86% and specificity 47% for RDI

>5) (Pittman et al., 2006). An additional, non-inferiority study

compared standard PSG diagnosis and titration of CPAP therapy

with WP-100 in two separate groups. CPAP adherence and clinical

outcomes were similar in both groups (Berry et al., 2008). Given

the scarcity of PSG availability, many sleep centers use limited

sleep studies (LSS) for the assessment of CPAP efficacy. One
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TABLE 1 Summary of studies comparing WatchPAT and polysomnography.

References WP device Comparison
device

Study population AHI RDI ODI Mean
saturations

Sleep time

Bar et al.

(2003)

WatchPAT-100 Level 1 PSG N= 102 (No

gender breakdown)

- R= 0.88,

p < 0.001

- - -

Ceylan et al.

(2012)

WatchPAT-200 Level 1 PSG N= 51 (No

gender breakdown)

AHI < 15:

Sensitivity 0.93

Specificity 66

PPP 0.794

NPV 0.85

AHI < 30

Sensitivity 0.88

Specificity 0.8

PPV 0.71

NPV 0.92

ICC= 0.961, CI

0.858–0.951,

p < 0.001

ICC= 0.877, CI=

0.794–0.928,

p < 0.001

- -

Choi et al.

(2010)

WatchPAT 100 PSG N= 25 (84% men) R= 0.94,

p < 0.001

Sensitivity 1

Specificity 0.83

PPV 0.95

NPV 1

- - - -

Gan et al.

(2017)

WP-200 PSG N= 20 (90% men ) R= 0.94,

p < 0.0001

- - - R= 0.6228,

p < 0.0034

Hedner et al.

(2011)

WP-100 PSG n= 228 (No

gender breakdown.)

- ICC= 0.87,

p < 0.005

- - ICC= 0.79,

p < 0.01

Körkuyu et al.

(2015)

WP-200 Level 1 psg N = 30 (83.8%) R= 0.802,

p < 0.001

PPV 0.96

- - Mean WP 93.1%,

PSG 92.6%,

p < 0.001

r= 0.246,

p= 0.184

Onder et al.

(2012)

WatchPAT-200 Level 1 PSG N= 59 (64% men ) Group 1:

r= 0.92

p < 0.001

Group 2:

R= 0.94

p < 0.001

- Group 1:

R= 0.97

p < 0.001

Group 2:r= 0.99

p < 0.001

Group 1: R= 0.89,

p < 0.001 Group 2:

R= 0.96,

p < 0.001

Group 1:

R= 0.62,

p= 0.003

Group 2:

R= 0.24,

p= 0.23

Pang et al.

(2007)

Unspecified Level 1 PSG N= 37 (33%) R= 0.9288,

p < 0.0001

AHI > 5

Sensitivity 0.94

Specificity 0.8

- - - R= 0.5815;,

p= 0.005

Penzel et al.

(2004)

WP-100 Level 1 PSG N=21 (No

gender breakdown.)

R= 0.89,

p < 0.01

R= 0.89,

P < 0.01

R= 0.87,

p < 0.01

- r= 0.15

Tondo et al.

(2021)

WP-200 PSG N= 47 (62% men ) R= 0.86,

p < 0.001

Sensitivity 0.81, Specificity

0.73

- 0.93,

p < 0.0001

- -

(Continued)
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study compared LSS with WP analysis for residual AHI on CPAP;

interestingly, the WP device detected a higher rate of residual Sleep

Disordered Breathing (SDB) than the LSS (Schöbel et al., 2018).

Limitations of WatchPAT in OSA

Although all these studies report high correlations between

WP and PSG, with a proportion reporting high sensitivity and

specificity, some have reported that the WP can underscore AHI

at the mild range and overscore at the high range (Gan et al., 2017).

A further study examined the correlation but also concordance for

OSA diagnosis between the WP and PSG. Diagnostic accuracy was

high in the moderate and severe OSA cohorts, with a sensitivity

of 91%, a specificity of 61%, and negative and positive predictive

values of 76 and 83% respectively. Conversely, of those assessed

by the WP as having mild OSA, only 49.6% were deemed by

PSG to have mild disease, with 20.4% having moderate or severe

disease and 30.1% having no OSA (Ioachimescu et al., 2020).

This suggests that further clarification is required in cases of

high pre-test possibility or a negative test where symptoms are

present. Additionally, in a meta-analysis of 17 studies comparing

simultaneous PSG and WP, pooled specificities of 94, 92, and 74%

and sensitivities of 44, 72, and 87% for AHI thresholds of 5, 15, and

30 events/h, respectively, were calculated (Iftikhar et al., 2022).

Importantly, in the vast majority of studies comparing WP and

PSG, the majority of participants were men, with a mean 68% male

majority in all studies, and some study populations containing 90–

100% male participants (Yuceege et al., 2013; Gan et al., 2017).

While this probably reflects themale preponderance in OSA, it does

mean that the WP has been understudied in the female population;

however, the results may not be generalizable.

It is also important to note that theWP device is not suitable for

OSA diagnosis in all patients, and there are some contra-indications

for its use. The manufacturer states that the device should not be

used in adults taking short-acting nitrates or alpha blockers, those

using a permanent pacemaker with atrial pacing and without sinus

rhythm, or those with sustained non-sinus cardiac arrhythmia

(Schnall et al., 2022).

Phentolamine, an alpha blocker, has been shown to induce

peripheral vasoconstriction and decrease pulse wave amplitude

during finger plethysmography, both in healthy controls (Grote

et al., 2003) and in individuals with severe OSA (Zou et al.,

2004). Although these studies were small, both strongly

indicate that alpha blockers are likely to interfere with the

diagnostic capabilities of a WatchPAT device. A specific

study on the effect of nitrates on peripheral tomography in

OSA has not yet been performed. Pharmacokinetic studies

have demonstrated that both nitroglycerin and isosorbide

dinitrate induce peripheral vasodilation and influence finger

pulse plethysmography, which suggests that they would also

interfere with the PAT signal (Schnelle et al., 1981; Bass et al.,

1989). The manufacturers state that a wash-out period of

3 h may be adequate for doxazosin; however, this is based

on a study where only five of the 106 participants used an

alpha blocker.

The effect of cardiac pacing and cardiac arrhythmias other than

atrial fibrillation on WatchPAT diagnosis has not been formally
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evaluated, but the manufacturers state that they presume that it

would interfere with the WP algorithms that derive AHI, among

others. Although this recommendation is not evidence based, it

would be prudent to avoid the use of WP in these cases, if possible.

Additionally, given that WP technology relies on vascular tone,

conditions such as arterial stiffness or atherosclerosis may interfere

with its diagnostic capabilities. Brachial-ankle pulse wave velocity

(baPWV) has been used as a surrogate measurement for arterial

stiffness and is a known predictor of cardiovascular disease (Kim

et al., 2014). A comparative study of WP and PSG measured

baPWV and found that participants with an elevated baPWV have

a low correlation between WP-AHI and PSG-AHI. Notably, in

those with a pulse wave velocity that the investigators determined

as high, there was no correlation between WP and PSG AHI

(r = 0.4, p = 0.04) (Kinoshita et al., 2018). Although this was

a small study of 61, predominantly male, patients with a high

prevalence of cardiovascular co-morbidities, it is still a reasonable

assumption that, in a population at high risk of cardiovascular

disease and arterial stiffening, with a high pre-test probability of

OSA, a negative WP study may require further PSG clarification.

The WatchPAT has been used to good effect for OSA diagnosis

across a range of conditions and research studies, including

asthma, diabetes, congestive cardiac failure, myasthenia gravis, and

following surgical interventions for OSA (Park et al., 2014; Yeh

et al., 2015; Shinoda et al., 2019; Carey et al., 2023). Despite some

critical studies, it has proved to be a good tool that has been

widely adopted for the diagnosis of OSA. In those with a negative

WatchPAT study and significant symptoms, PSG clarification may

be needed; however, this is often the case with other HSATs.

OSA diagnosis in other patient
populations

Pediatrics

SDB affects 1–3% of all children, causing, among other effects,

sleep disruption, daytime cognitive impairment, and behavioral

problems (Evans et al., 2023). SDB encompasses upper airway

obstruction in children with otherwise normal development as

well as in those with other underlying conditions. Full PSG is

the gold standard for diagnosis of SDB, but as with adults, it is

burdensome and costly. Moreover, some children may find PSG

difficult to tolerate.

The WatchPAT device is currently approved for use in children

from 12 years of age weighing >65 kg in America, Europe, and

Japan (Medical, 2002a). The WP-200 has been studied in children

aged 8 to 15 years. Compared to simultaneous Level 1 PSG, the

WP had an excellent agreement for AHI (ICC = 0.89) and ODI

(ICC = 0.87). The device used the same algorithm as that used for

adults, which may under-detect respiratory events in the pediatric

population (Tanphaichitr et al., 2018). In another study specifically

addressing the diagnosis of OSA in adolescents (ages 13–17 years),

theWP-200 had a sensitivity of 100% and a specificity of 96% for an

AHI > 5 events/h compared to PSG (Choi et al., 2018).

The WP has also been studied in children under the age of 12

with symptoms suggestive of pediatric SDB (PSDB) but negative

nocturnal pulse oximetry. Nocturnal pulse oximetry is often used

as a screening tool for PSDB, as it is widely available, inexpensive,

and simple to carry out. A study examined the use of WP rather

than PSG following a negative pulse oximetry reading.WP detected

PSDB in 35.7% of children with an RDI of >5. An AHI criterion

of >1 was fulfilled by 60.7% of children (Serra et al., 2017). Given

that all the population had previously had a negative pulse oximetry

reading, the WP may be a more useful screening tool in this

population. There are some disadvantages to WP device use in

children. A pediatric finger probe is not available, and children

under the age of five or those will smaller fingers will not be able

to use it.

Pregnancy

SDB during pregnancy is associated with adverse outcomes,

such as gestational hypertension, and is therefore important to

detect. It is generally presumed to be related to gestational weight

gain. PSG is inconvenient during pregnancy, so the WP would be

a simple alternative. A study compared ambulatory PSG and WP-

200 assessment of third-trimester pregnant women, some of whom

were at high risk and some at low risk of SDB. Correlations between

WP and PSG for total sleep time (r = 0.76, p < 0.001), AHI (r

= 0.76, p < 0.001), RDI (r = 0.68, p < 0.001), and mean oxygen

saturations (r =0.94, p < 0.001) were all high; however, only low

correlation was found for sleep stages (r = 0.1–0.32 for each sleep

stage) (O’Brien et al., 2012). Additionally, WP had a sensitivity of

88%, a specificity of 87%, a negative predictive value of 70%, and a

positive predictive value of 96% for an AHI >5 events/h (O’Brien

et al., 2012). This suggests that the WP could be a useful tool for

detecting SDB in pregnancy.

Patients with other medical conditions

The WatchPAT device has been examined in the diagnosis of

OSA with a number of other conditions and co-morbidities.

For example, OSA is common in individuals with Down

syndrome, with a reported prevalence of up to 78% (Giménez

et al., 2018). A feasibility study into the utility of WatchPAT

in a population of individuals with Down syndrome and signs

and symptoms consistent with OSA found an OSA prevalence

of 95%. Importantly, 69% of this study population found the

WatchPAT device acceptable (Alma et al., 2022). Given that PSG

is a burdensome investigation for any individual and those with

intellectual disabilities often find some investigations difficult to

tolerate, WatchPAT may provide a useful diagnostic tool in this

population. As the study did not have a comparison group, the

accuracy of the WatchPAT diagnosis in this population cannot be

commented on.

For our growing elderly population, one study evaluated PSG

and WatchPAT-200 in 56 individuals, comparing a younger age

group (20–35 years) with an older group (50–65 years). Good

agreement between PSG and WP was found for AHI and oxygen

saturations in both groups, suggesting that WP can be reliably used

in those populations. However, caution may still be needed for

patients over 65 years old (Onder et al., 2012). As we age, vascular
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stiffness increases, and vascular compliance reduces. Moreover,

cardiovascular co-morbidities are more prevalent in the elderly

population. These factors could all influence the ability of the

WatchPAT device to diagnose OSA in the elderly population.

Chronic obstructive pulmonary disease (COPD) is a common

condition that often overlaps with OSA. Given that COPD can itself

lead to reduced oxygen saturation, many studies evaluating WP

have excluded individuals with COPD. However, two studies in

which the majority of patients had moderate COPD have directly

compared the PSG andWP-200 analysis of individuals with COPD.

The investigators found good correlation in AHI (r = 0.85, p <

0.001) between PSG and WP, including in those with moderate to

severe disease, demonstrating that the WP device can be used to

diagnose OSA in this patient population (Holmedahl et al., 2019;

Jen et al., 2020).

Sleep apnea is a recognized risk factor for cardiovascular

disease, including atrial fibrillation (AF). OSA is common in

individuals with AF, with an estimated prevalence ranging from

49 to 62% (Gami et al., 2004; Stevenson et al., 2008), and it

increases the rate of AF after electrical cardioversion (Mazza et al.,

2009). Moreover, treatment of OSA leads to a reduction in the

risk of AF recurrence (Qureshi et al., 2015; Shukla et al., 2015).

Generally, studies examining WP have excluded patients with

cardiac arrhythmia, owing to the concern that the arrhythmia

may interfere with PAT amplitude and rate changes. In a study

examining the usefulness of WP for the diagnosis of OSA in

patients with AF, the authors found that WP is a suitable diagnostic

tool for OSA in this population. AF does not appear to interfere

significantly with the PAT signal or the time used for analysis. WP

had a sensitivity of 88% and a specificity of 63% for the diagnosis

of OSA compared to PSG, with an overall agreement in sleep

staging of 62%, similar to that found in the general population

(Tauman et al., 2020). An additional study used the WatchPAT-

ONE disposable device to screen for SDB in a population with AF

using a telemedicinemodel. Here, a prevalence of 55% formoderate

to severe SDB was found by the WP device, again indicating that

the WP is a useful tool for SDB screening in individuals with AF

(Verhaert et al., 2022).

Other uses for the WatchPAT device

Diagnosis of atrial fibrillation

From the above findings, it is clear that the WatchPAT device

is suitable for diagnosis of OSA in individuals with AF. As AF is

common in patients with SDB, a team attempted to find whether

the WP device could detect cardiac arrhythmias during a sleep

study. Using the WP-200 device, they performed simultaneous WP

and PSG analysis in a population suspected of SDB with co-existing

congestive cardiac failure or AF. The ECG was scored manually on

the PSG and blinded to the WP analysis. It is known that the PAT

signal directly relates to ventricular contraction and, hence, can be

used to detect the irregularly irregular pattern of AF. TheWatchPat

used a novel automatic algorithm, based on the PAT signal, and was

found to have moderate sensitivity (77%) but high specificity (99%)

for the detection of AF lasting longer than 6min (Pillar et al., 2022).

The results indicate that the WP device may be a useful screening

tool for AF in a population being evaluated for SDB and could flag

patients who need further investigation.

Diagnosis of central sleep apnea

Central sleep apnea (CSA) syndromes are characterized by

SDB with associated decreased or diminished respiratory effort.

Symptoms include excessive daytime sleepiness and nocturnal

awakenings (Aurora et al., 2012). Given the symptom overlap

with OSA, a proportion of patients referred for the assessment

of OSA will actually have an element of CSA or a mixture of

the two. The WP device detects CSA by combining PAT signal

changes with respiratory movements derived from its snoring

and body position sensor. A large study compared simultaneous

WP-200 and PSG analysis of a population undergoing assessment

for SDB. The study population was enriched with individuals

with congestive cardiac failure, who have a high risk for CSA

due to the Cheyne–Stokes breathing pattern. These investigators

demonstrated moderate sensitivity (72%), high specificity (99%),

and high correlation (r > 0.8) between PSG and WP (Pillar et al.,

2020) in the detection of central apneic events, suggesting yet

another use of WatchPAT technology.

Cognitive impairment and sleep
disturbance

There is a strong relationship between Alzheimer’s disease (AD)

and sleep disturbance, and many patients with mild cognitive

impairment (MCI) or AD report sleep problems. Performing PSG

can be challenging in this population, due to the complexity

of the equipment and also because patients are removed from

their accustomed home environment. A study compared patient-

reported sleep disturbance withWP sleep assessment in individuals

with AD and MCI. Through this, it was found that AD patients

had significantly reduced REM sleep with increased light sleep,

compared to healthy controls and MCI. The authors noted

that there was no correlation between subjective reports of

sleep quality and objective sleep measures by WP, suggesting

that WP may be a useful tool for objective sleep evaluation

(Tadokoro et al., 2020).

Conclusion

Sleep apnea and its symptoms, including sleepiness and

fatigue, are common in the general population. Additionally, the

COVID-19 pandemic and the fatigue associated with post-COVID

syndrome may lead to an increased demand for sleep services that

are already stretched by pandemic-related disruptions.

The WatchPAT is an unobtrusive device for home diagnosis

of OSA. It has good correlation with polysomnography,

although the results should be interpreted with caution at

the extremes of disease severity. Its use has been studied

and validated in a variety of patient populations, including

children, older adults, pregnant women, and those with

co-morbidities. The device has also been adopted, though
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not widely, in screening for cardiac arrhythmias and central

sleep apnea.

Finally, the WatchPAT has been shown to decrease the time

to OSA diagnosis and treatment and also has a cost-benefit for

patients as part of a telemedicine service. It is clear that the

WatchPAT could provide a cost- and time-effective solution in

healthcare services where there is a high demand for services and

limited access to PSG.
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Obstructive Sleep Apnea (OSA) arises due to periodic blockage of the upper airway 
(UA) during sleep, as negative pressure generated during inspiration overcomes 
the force exerted by the UA dilator muscles to maintain patency. This imbalance 
is primarily seen in individuals with a narrowed UA, attributable to factors such as 
inherent craniofacial anatomy, neck fat accumulation, and rostral fluid shifts in the 
supine posture. Sleep-induced attenuation of UA dilating muscle responsiveness, 
respiratory instability, and high loop gain further exacerbate UA obstruction. The 
widespread comorbidity profile of OSA, encompassing cardiovascular, metabolic, 
and neuropsychiatric domains, suggests complex bidirectional relationships with 
conditions like heart failure, stroke, and metabolic syndrome. Recent advances 
have delineated distinct OSA phenotypes beyond mere obstruction frequency, 
showing links with specific symptomatic manifestations. It is vital to bridge the 
gap between measurable patient characteristics, phenotypes, and underlying 
pathophysiological traits to enhance our understanding of OSA and its interplay 
with related outcomes. This knowledge could stimulate the development 
of tailored therapies targeting specific phenotypic and pathophysiological 
endotypes. This review aims to elucidate the multifaceted pathophysiology of 
OSA, focusing on the relationships between UA anatomy, functional traits, clinical 
manifestations, and comorbidities. The ultimate objective is to pave the way for a 
more personalized treatment paradigm in OSA, offering alternatives to continuous 
positive airway pressure therapy for selected patients and thereby optimizing 
treatment efficacy and adherence. There is an urgent need for personalized 
treatment strategies in the ever-evolving field of sleep medicine, as we progress 
from a ‘one-size-fits-all’ to a ‘tailored-therapy’ approach.

KEYWORDS

obstructive sleep apnea, pathophysiology, phenotypes, precision medicine, 
personalized treatment

1. Introduction

Obstructive sleep apnea (OSA) represents a significant global health burden affecting an 
estimated 936 million adults globally with far-reaching consequences on individual and public 
health (1). OSA develops as a result of recurring upper airway obstruction (UA) during sleep 
leading to severely reduced or absent airflow (hypopnea or apnea). The disorder is typically 
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associated with snoring and intermittent hypoxia, and episodes are 
frequently terminated by brief mini-arousals resulting in fragmented 
sleep with reduced amounts of slow wave sleep (SWS) and rapid-eye-
movement (REM) sleep (2). These changes in sleep architecture may 
result in unrefreshing sleep and excessive daytime sleepiness 
(EDS) (3).

Beyond the direct impacts on sleep quality, OSA is associated with 
numerous comorbidities. The intermittent hypoxemia and sleep 
fragmentation associated with OSA can trigger cellular and molecular 
responses that promote sympathetic excitation, systemic 
inflammation, and other abnormal responses, which may result in the 
development of comorbidities such as cardiometabolic and 
neuropsychiatric conditions (4). OSA is also a major risk factor for 
motor vehicle accidents, which appears to be largely a consequence of 
EDS (5). There is strong evidence that untreated OSA is associated 
with systemic hypertension, especially with a loss of the normal 
nocturnal dipping pattern of blood pressure (BP), with growing 
evidence of risk for cardiovascular disease (6). Overall, these factors 
also lead to a substantial economic toll arising from direct medical 
expenditures, productivity losses, and accident-related costs (7). 
Despite its high prevalence and significant health implications, OSA 
remains underdiagnosed and undertreated, emphasizing the urgency 
for effective management strategies.

However, not all patients with OSA as measured by the level of 
sleep-disordered breathing (SDB), have a clinically significant 
disorder. Moreover, there is increasing evidence that the current 
grading of OSA severity as measured by the apnea-hypopnea index 
(AHI, number of apneas and hypopneas per hour of sleep) is 
inadequate (8). Additional measures including the hypoxic burden 
during sleep, the level of daytime symptoms such as sleepiness, and 
relevant biomarkers such as nocturnal BP dipping are required to 
adequately assess the clinical significance of the disorder in terms of 
outcomes, comorbidity risk, and treatment indications (9–12).

The standard therapy of OSA over the past 3 to 4 decades has 
centered around continuous positive airway pressure (CPAP), which 
acts by overcoming the negative intrapharyngeal pressure during 
inspiration that is the most important causative factor in OSA. While 
highly effective, the device is cumbersome, and compliance is limited. 
Thus, other treatment options are highly desirable, which can 
be  facilitated by a detailed understanding of the complex 
pathophysiology of OSA. Since aspects of pathophysiology vary 
between patients, in addition to phenotypes, such an understanding 
should facilitate a personalized approach to management, especially 
in the area of pharmacotherapy. This consideration represents the 
principal objective of this review.

This review provides an overview of the pathophysiological and 
phenotypic factors of OSA in the context of therapeutic interventions, 
discusses their effectiveness in targeting different pathophysiological 
traits, and underscores the need for a shift toward personalized 
treatment modalities for optimal patient outcomes. Moreover, with 
the rise of new computational paradigms and machine learning 
approaches to categorizing and clustering patient symptom profiles, 
the review provides an overview of the topic and stresses the 
significance of connecting these novel techniques with understandable 
and quantifiable physiological factors to facilitate personalized 
treatments. To this end, we conducted a non-systematic literature 
search on PubMed and included studies and articles published up 
until July 2023. Our selection of articles was primarily guided by their 

relevance to the themes of pathophysiology, personalized treatment, 
and digital medicine techniques for OSA assessment and management. 
We sought to integrate the insights from these diverse sources into a 
narrative discussion, enriching the understanding of the current state 
of translating physiological factors and phenotypes into personalized 
treatment in its various aspects. This review does not aim to 
be  exhaustive but aims to illuminate key concepts and stimulate 
further investigation in the realm of OSA pathophysiology, 
phenotypes, and personalized treatment.

2. Pathophysiology

The pathophysiology of OSA is complex and multifactorial and 
stems from the interplay between anatomical and non-anatomical 
factors. The fundamental abnormality reflects an inability of the upper 
airway (UA) dilating muscles to overcome the negative forces that 
develop within the oropharynx during inspiration (Figure 1). The UA 
dilating muscles, contracting in a phasic manner that precede each 
inspiration, work to counteract the negative pressure generated in the 
UA during inspiration. This delicate balance can be compromised by 
any factor that escalates this negative pressure or diminishes the 
effectiveness of UA dilating muscle contractions, thereby leading to an 
increased risk of UA obstruction (2). A similar risk arises from a 
narrowed UA, as this amplifies the negative pressure in the oropharynx 
during inhalation, predisposing to closure. Anatomical factors that 
may contribute to such narrowing include craniofacial bony 
morphology, soft tissue accumulation in the neck from obesity or 
adenotonsillar hypertrophy, and variable factors such as fluid 
gravitating to the neck in the recumbent position. Moreover, 
non-anatomical factors such as diminished muscle responsiveness, 
heightened sensitivity to arousals, and a high ventilatory control 
system gain (termed loop gain), contribute significantly to the 
disorder’s development and progression, which are also influenced by 
genetic, environmental, and lifestyle factors.

2.1. Upper airway narrowing

The majority of patients with OSA have a narrowed oropharyngeal 
airway, a finding that can be clinically assessed by the Mallampati score 
(13). Genetic factors play a major role in this narrowing (14). Defects in 

FIGURE 1

Balance of forces affecting the patency of the upper airway and 
potential for personalized treatment.
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the bony and maxillofacial structures in the lower face and neck as well 
as malocclusions, i.e., misalignments of the teeth when the jaws are 
closed, significantly contribute to UA narrowing (15). Maxillofacial 
defects can include conditions such as micrognathia, where the lower 
jaw is undersized, or retrognathia, characterized by a receding jawline. 
Both these conditions can result in posterior positioning of the tongue, 
consequently predisposing to obstruction of the UA (16). These defects 
may be evident in children with the Robin sequence or Treacher-Collins 
syndrome who are especially prone to OSA because of bony changes to 
the lower face and/or mandible (17). Similarly, a high-arched palate or 
a long soft palate can further reduce the size of the UA, thus contributing 
to OSA. Moreover, malocclusions often present with a retruded 
mandible, which may cause posterior positioning of the tongue. 
Alternatively, malocclusions may lead to difficulties in breathing 
through the nose causing increased mouth breathing and increasing the 
likelihood of OSA (18, 19).

Furthermore, the accumulation of soft tissue in the neck due to 
obesity or within the UA due to adenotonsillar hypertrophy can 
precipitate OSA in susceptible individuals by reducing the size of the 
oropharyngeal lumen (2). Conditions such as heart failure and 
end-stage renal failure associated with fluid retention can also 
contribute to the development of UA obstruction and OSA. This is due 
to nocturnal redistribution of fluid to the neck region while in a 
recumbent position, subsequently increasing UA collapsibility by 
narrowing of the lumen and diminishing the efficiency of dilator 
muscle contractions (20, 21).

While nasal obstruction is a relatively minor factor in predisposing 
to UA obstruction, variable nasal obstruction such as with rhinitis, 
contributes to the pathophysiology of OSA (22, 23). Furthermore, 
intranasal corticosteroid therapy has been reported to benefit patients 
with rhinitis and mild to moderate OSA (24). The supine body 
position may also compromise UA patency (25), largely due to 
gravitational forces, which is evident in the clinical setting where the 
AHI is often highest in the supine position.

2.2. Upper airway dilator muscle function

Patency of the UA is dependent on contraction of the pharyngeal 
dilator muscles, especially the genioglossus, which stiffen the 
collapsible segment of the UA during inspiration (2). The phasic 
contraction of these muscles is co-ordinated with inspiration and 
precede contraction of the diaphragm by milliseconds (26). 
Contraction of these UA muscles is influenced by chemical stimuli, 
vagal input, changes in UA pressure, and baroreceptor activity (27).

The narrowed UA seen in OSA results in greater inspiratory 
negative pressure, which requires more forceful contraction of the UA 
dilating muscles to maintain oropharyngeal patency. There is evidence 
that dilating muscle contraction in OSA is greater than in normal 
subjects during wakefulness, but diminishes to a greater extent during 
sleep, which predisposes to occlusion (28), especially in REM sleep 
(29). Hence, the primary issue in OSA is inadequate muscle 
compensation to combat the heightened inspiratory negative pressure, 
and not necessarily a fundamental deficiency in muscle function. The 
effects of this insufficient response by UA dilating muscles are 
aggravated by the fact that these are skeletal muscles, whose 
performance sees a more pronounced drop during sleep compared to 
the diaphragm.

2.3. Respiratory control

Respiratory control is an integral aspect of OSA pathophysiology 
and its dysfunction contributes to decreased UA muscle activity in 
certain circumstances. OSA often presents with a pattern of 
frequently reoccurring apneas, highlighting the instability of 
respiratory control which shares similarities to periodic breathing. 
At the heart of this control is the coordinated activity of the key 
muscles, diaphragm and genioglossus as UA obstruction is most 
likely to develop when EMG activity of these muscles is at the lowest 
point of the respiratory cycle, thus acting as a critical physiological 
determinant of apnea onset (2). As the apnea progresses, EMG 
activity of the UA dilating muscles progressively increases reaching 
a peak at apnea termination. This is typically followed by several 
large breaths after which both EMGs decrease potentially 
predisposing to further obstruction (30).

The transition from wakefulness to non-REM sleep usually results 
in a minor reduction in ventilation even in healthy subjects. This is 
attributed to a reduced response to the carbon dioxide (CO2) stimulus 
that drives respiration. However, in OSA patients, this decrease may 
tip the balance toward an apneic threshold that is critically dependent 
on CO2 levels (31). This is exacerbated by post-apnea hyperventilation, 
resulting in CO2 reduction and predisposing to further apneas (30).

A vital component of unstable respiratory control is loop gain, 
which is a measure of the sensitivity of the feedback loop that modifies 
ventilation in response to respiratory disturbances. As such, loop gain 
may also affect the predisposition to apnea. A high loop gain, where 
the magnitude of the increase in ventilation following apnea is high, 
contributes to ventilatory instability, thereby predisposing to recurring 
apnea (30).

Apnea termination is often associated with cortical arousal, which 
is an important protective mechanism, but may predispose to further 
apnea by contributing to post-apneic hyperventilation (32–34). These 
respiratory-related cortical arousals may vary in intensity and 
represent a distinct pathophysiologic feature (35), which may 
be  quantified by the arousal threshold, that can be  assessed 
noninvasively by PSG (36). A low arousal threshold may be  a 
contributing factor to recurring apneas and represents a potential 
therapeutic target in selected patients (37). The interactions of these 
multiple elements underline the central role of respiratory control in 
the pathophysiology of OSA.

2.4. Genetic contribution

Emerging research highlights the significant role of genetics in the 
pathophysiology of OSA. Studies have demonstrated a substantial 
genetic component to OSA and related traits, such as BMI, craniofacial 
structure, and sleep-related parameters. There is a strong heritability 
in the size of the oropharyngeal space, which is a major factor in the 
UA narrowing that is typical of patients with OSA (14). Recent 
advances in genomics have further enabled the identification of 
specific genetic variants associated with OSA (38, 39). Polymorphisms 
in several genes, including those involved in serotonin metabolism, 
inflammation, and obesity, have been linked to OSA susceptibility 
(38). Furthermore, gene–environment interactions, particularly with 
obesity, also play a crucial role in OSA risk. These findings underscore 
the complex, multifactorial nature of OSA, with genetic factors 
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interplaying with environmental and lifestyle factors in shaping 
disease onset and progression. While these advancements provide 
insights into the pathogenesis of OSA, there is still much to uncover, 
and ongoing research in this area is vital for refining disease risk 
prediction and uncovering potential targets for personalized 
treatment strategies.

2.5. Integrated pathophysiology and 
implications for treatment

Recently, there has been a surge in interest concerning the 
influence of non-anatomical factors on the development and 
progression of OSA (40). A study of subjects with and without OSA 
revealed that about one-third of the subjects in each group 
demonstrated the endotypes of either diminished genioglossus muscle 
responsiveness during sleep, low arousal threshold, or high loop gain, 
while 28% of subjects demonstrated a combination of multiple 
traits (41).

While the principal factor of increased UA collapsibility in OSA 
can be effectively reversed by CPAP therapy, a more comprehensive 
insight into the underlying pathophysiology provides the potential for 
additional management options in selected patients (Figure 1) (42). 
Inadequate UA dilating muscle compensation against increased 
collapsing forces may be improved by drug therapy that stimulates 
these muscles (43). The reduction in respiratory motor neurone 
output that is a physiological feature of sleep may be  reversed by 
electrical stimulation of the hypoglossal nerve (44). A high loop gain 
may be diminished by acetazolamide (45) and a low arousal threshold 
may be increased by zolpidem therapy (46). These medications may 
have a role in selected patients where such factors are found to 
be  contributing factors in the integrated pathophysiology of 
the disorder.

3. Clinical and pathophysiological 
phenotypes

3.1. Clinical phenotypes

The categorization of distinct clinical phenotypes is viable in 
populations suspected of having OSA (47). Furthermore, some 
pathophysiological traits that are frequently observed in OSA patients, 
such as loss of nocturnal dipping of BP, may influence the likelihood 
of associated comorbidity (48). As such, the findings of a diagnostic 
sleep study should be interpreted alongside these additional elements 
when assessing the clinical relevance of OSA for each patient. It’s 
essential to tailor management strategies to individual phenotypes, 
considering not only the symptom profile but additional factors 
beyond the AHI such as acute systemic effects and associated relevant 
comorbidities in the decision-making process (40). However, 
understanding the underlying pathophysiological mechanisms and 
connecting them to observable characteristics is crucial when moving 
toward individualized treatment pathways.

Endotypes and phenotypes of OSA have been extensively studied 
(49). Phenotype refers to a combination of disease characteristics that 
can be used to distinguish certain categories of patients from others 
(50) and several cluster analyses have been reported that distinguish 

clinical subtypes (51). Early reports identified 3 symptomatic 
phenotypes of OSA, namely disturbed sleep, minimal symptoms, and 
EDS (52). More recent reports added the additional phenotype where 
upper airway symptoms were dominant (53). An important feature of 
such reports is that similar average AHI levels were evident across 
clusters, which indicates that clusters of clinical phenotypes cannot 
be differentiated by the AHI. Furthermore, specific pathophysiological 
endotypes identified by PSG predicted the risk of adverse 
cardiovascular outcomes (54).

There is some evidence that the sleepy OSA phenotype may 
be associated with a higher risk of comorbidity (40), although this 
relationship is not clear-cut. A report based on the Sleep Heart Health 
Study indicated that the excessively sleepy phenotype was strongly 
associated with prevalent heart failure and incident cardiovascular 
disease (55). However, the insomnia subtype, which was a distinct 
cluster in a report from the European Sleep Apnoea Database cohort 
study (ESADA), was more frequently linked with cardiovascular 
comorbidity than the sleepy phenotype (56). The phenotype of 
non-dipping nocturnal BP has a high diagnostic prediction for OSA 
as measured by the AHI (57).

Future research requires the identification of specific markers of 
OSA that predict clinical significance and risk of adverse outcomes, 
and which may more reliably predict response to targeted treatment 
(49, 58). Identifying the pathophysiological and endotypic connections 
would further the understanding of the underlying phenomenon to 
deepen the insight into the mechanisms through which the markers 
connect to outcomes.

3.2. Modern data analytical methods for 
phenotyping and the translation to 
treatment

Traditionally, the identified phenotypes are dependent on 
categorized or simplistic variables and metrics only considering a few 
aspects of the disorders. For example, by quantifying sleep disruption 
by the number of awakenings or the overall sleep architecture while 
connecting that to categories of questionnaire-quantified sleepiness 
(51, 59). However, there exists inherent variation in the quantified 
parameters and differences in their reporting. For example, there is 
always at least minor inter-scorer variability both in respiratory event 
scoring and sleep staging and major differences in scoring arousals 
from sleep (60). This variability is inherently propagated to all 
consequent analyses and assessments and may affect the identified 
phenotypes. Similarly, quantifying sleepiness based on questionnaires 
such as ESS is variable, especially noticeable between genders (61), 
and there can also be intra-individual differences depending on the 
timing of the questionnaire (62).

There are different ways to go beyond the current clinical practices 
in identifying disease characteristics. For example, in the sleep 
architecture, various methods to quantify sleep fragmentation and 
sleep microstructure have been presented (63–66). Meanwhile, there 
are possibilities to characterize respiratory events as well as nocturnal 
hypoxemia in more detail (10, 11, 67). Similarly, aside from only 
assessing sleepiness based on questionnaires, there are various 
objective measures as well as different tests to assess neurocognitive 
function and impairment which may provide more reliable outcome 
metrics. The major hindrance in adaptation is the massive workload 

177

https://doi.org/10.3389/fneur.2023.1239016
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


McNicholas and Korkalainen 10.3389/fneur.2023.1239016

Frontiers in Neurology 05 frontiersin.org

required to obtain a sufficient dataset for identifying phenotypes based 
on microstructures.

The rise of machine learning and artificial intelligence alongside 
increased computational capacities has given rise to different ways to 
utilize the entirety of the collected data without limiting it to a few 
simplified metrics (67). As an example, these developments form a 
major objective of Sleep Revolution project, funded by the European 
Union Horizon 2020 Research and Innovation Programme (Grant no. 
965417), which seeks to transform current diagnostic methods for 
sleep-disordered breathing by using machine learning tools to 
facilitate automatic scoring outside traditional boundaries (68). By 
using these tools together with phenotyping, the project seeks to 
identify novel variables and analysis techniques that may more 
accurately identify patients with a clinically significant OSA syndrome, 
thus facilitating more personalized patient management (69). 
Similarly, as with biomarkers, there have been advances utilizing the 
patient characteristics and sleep recording data to develop markers, 
which can be  termed data-markers, connected to disease 
characteristics, severity and risk of comorbidities (70). As an example, 
there have been promising approaches in identifying subgroups or 
clusters of patients based on observable characteristics. One way of 
summarizing the findings is a division into common themes as 
formulated by Zinchuk and Yaggi (51): (1) Subtype A, consisting of 
younger, obese males with severe OSA and classic symptoms, 
responding well to CPAP treatment; (2) Subtype B, which includes 
older, obese males with severe OSA, frequent comorbidities, and 
minimal symptoms, responding less effectively to CPAP; (3) Subtype 
C, featuring middle-aged, mildly obese females suffering from 
insomnia and moderate to severe OSA, with mixed responses to 
CPAP; and (4) Subtype D, which encompasses younger, nonobese 
males with severe OSA and primary upper airway symptoms, 
displaying the lowest hypoxemia and comorbidity rates and limited 
CPAP success. Overall, these approaches provide new pathways to 
targeted treatments.

However, while there have been promising approaches, these 
warrant further research and require major amounts of data, likely 
possible to obtain only through multi-institutional collaborative 
efforts. The major limiting factor in the adaptation of novel data-
markers and data-analytical metrics to the clinics is the lack of 
reliability, generalizability, and especially the transparency of the 
results. If the obtained data-marker or phenotype cannot be rigorously 
connected to pathophysiological and endotypic aspects, it is unlikely 
to gain widespread use and reliability in clinical practice. While the 
modern data-analytical approaches may provide clearer connections 
between symptomology and measurable characteristics and even 
provide novel therapeutical targets, connecting these to the underlying 
factors and physiological effects giving rise to the observable 
characteristics would further promote the adaptation to clinics 
and therapeutics.

4. Personalized treatment

4.1. Continuous positive airway pressure

The fundamental goal of treatment in OSA is to maintain UA 
patency and thereby stabilize breathing pattern and ensure adequate 
ventilation. Continuous positive airway pressure (CPAP) is the gold 

standard in OSA treatment, consistently demonstrating high efficacy 
in mitigating the disorder’s principal signs and symptoms when used 
appropriately. Its mode of action is delivering a positive air pressure 
via a mask to the UA, which effectively prevents airway collapse 
during sleep.

In the context of personalized treatment, CPAP’s efficacy can 
occasionally extend beyond its primary anatomical target of airway 
obstruction. The therapy proves effective in treating non-anatomical 
or non-traditional traits involved in OSA pathophysiology, such as 
individuals with a high arousal threshold or high loop gain. Modern 
CPAP devices employ intricate algorithms to adjust pressure according 
to the user’s individual requirements, thus facilitating more 
personalized treatment strategies.

4.2. Dental appliances

Although CPAP is highly effective in maintaining UA patency, 
the device is cumbersome and is often not well tolerated. Thus, 
alternative effective therapies are desirable, especially in patients 
with poor CPAP compliance. For example, mandibular 
advancement devices (MAD) are designed to push the lower jaw 
forward during sleep and these custom-fitted dental appliances 
enhance the UA size and reduce its propensity to collapse. MADs 
are especially suited to treat primary snoring and mild OSA (71), 
but are also reasonable alternatives in patients with more severe 
OSA who fail to tolerate CPAP.

In personalized OSA therapy, MADs primarily target anatomical 
contributors but can indirectly influence some non-anatomical traits 
as well. Their ability to adjust the level of mandibular advancement 
allows for patient comfort and therapeutic efficacy (72), enhancing 
treatment adherence and outcomes. MADs are also effective for 
treating bruxism alongside OSA (73, 74). They offer a promising step 
toward individualizing OSA treatment, with ongoing research set to 
further enhance their utility in this area. While reports comparing 
CPAP and MAD therapy found CPAP to be generally more effective 
in reducing AHI and EDS, the effects were similar in patients with 
milder OSA (75).

4.3. Pharmacotherapy

Several pharmacological agents have been evaluated that target 
different pathophysiological endotypes of OSA. While many such 
agents have been reported to benefit OSA in the form of reduced AHI, 
none are yet licensed to treat the disorder (76). Drug therapies that 
target pathophysiological traits such as UA collapsibility by increasing 
dilator muscle contraction, respiratory control abnormalities such as 
high loop gain, and low arousal threshold have each been identified to 
benefit OSA in selected patient populations.

Desipramine, a central nervous system norepinephrine reuptake 
inhibitor and a member of the tricyclic antidepressant (TCA) family, 
lessens the sleep-induced reduction of genioglossus activity and 
enhances pharyngeal stability in healthy individuals (77). It has been 
observed to lower the AHI in patients with OSA who exhibit 
insufficient genioglossus muscle adaptation (78). Another drug, 
atomoxetine, which also inhibits norepinephrine reuptake, in 
combination with an antimuscarinic agent, oxybutynin, has been 
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found to considerably decrease the AHI in patients suffering from 
OSA (43).

Hypnotics have long been recommended to avoid in patients with 
respiratory disease because of potential adverse effects on respiration 
during sleep. However, recent reports in the setting of OSA indicate a 
potential role for certain hypnotics such as zolpidem in selected 
patients where a low arousal threshold represents a significant 
pathophysiological trait (37, 79). However, as there are no published 
randomized clinical trials, no recommendations can be given on the 
clinical use of hypnotics in patients with OSA (80). Another more 
recent report indicated that zolpidem increases sleep efficiency and 
the respiratory arousal threshold without changing sleep apnoea 
severity and pharyngeal muscle activity (46).

4.4. Surgical approaches

Accumulation of soft tissue in the oropharyngeal region 
contributing to airway constriction can be medically or surgically 
addressed. Pediatric patients showing signs of adenotonsillar 
hypertrophy and OSA can improve with surgical intervention (81), 
while adults with central obesity and OSA can benefit from weight loss 
through methods such as bariatric surgery (82) or intensive dietary 
control coupled with medication (83). Liraglutide, a long-acting 
agonist of the glucagon-like peptide one receptor, has shown 
promising results in inducing weight loss and significantly decreasing 
AHI in OSA patients (84).

4.5. Other approaches and digital medicine

The diminished output of respiratory motor neurons triggered by 
sleep could potentially be countered by electrical stimulation of the 
hypoglossal nerve, offering an alternative treatment to CPAP, 
particularly for patients who struggle with compliance (44, 85). For 
those with high loop gain, acetazolamide may provide relief for OSA 
symptoms and carry the added advantage of decreasing blood pressure 
(45, 86). For individuals suffering from OSA who also have fluid 
overload, diuretic therapy might be  beneficial by curbing the 
nocturnal upward shift of fluid (87).

The role of oxygen therapy in the management of OSA is uncertain 
and not advised in most cases, although a recent report suggests that 
oxygen supplementation may benefit OSA acutely, possibly by 
reducing the arousal response (88). Finally, positional treatments in 
cases where most of the respiratory events occur in supine position 
have long been recognized as a viable alternative (89).

Advances in digital medicine have begun to revolutionize the 
prevention and treatment of OSA. Telemedicine and remote patient 
monitoring, for instance, are making it easier for healthcare providers 
to diagnose and manage OSA. Patients can undertake sleep studies in 
the comfort of their homes using portable polysomnography devices, 
while apps and wearable technologies are providing insights into sleep 
pattern and other critical factors related to OSA (68). Moreover, 
cognitive behavioral therapy for insomnia (CBT-I) is showing promise 
in managing comorbid conditions often present in OSA patients, and 
has potential for digitalization and simple utilization alongside other 
treatment modalities (90, 91). Additionally, machine learning and 

artificial intelligence algorithms have the potential in the future to 
be utilized to understand factors behind limited adherence for CPAP 
and MAD devices as well as to optimize their settings, thus enabling 
a more personalized approach to OSA treatment. These digital health 
tools not only enhance the accessibility and convenience of OSA 
treatment but also offer the potential for more effective, tailored 
therapeutic interventions.

Overall, several potential treatment pathways have been identified 
(Table  1). However, targeting these to patients and choosing the 
optimal treatment pathway may require extensive knowledge and 
assessment of the pathophysiological characteristics and the 
individualized phenotype to match the established efficacy of CPAP 
(Figure 2).

5. Take-away messages and practical 
care points

Overall, successful management of OSA requires a comprehensive, 
personalized, and interdisciplinary approach. Below, we provide a few 
practical care points derived from our review, designed to assist in the 
decision-making process and enhance the management of OSA 
patients in a practical and applied manner:

 1. Comprehensive Evaluation: OSA is multifactorial. A thorough 
evaluation of factors such as craniofacial anatomy, body mass 
index, neck circumference, and sleeping positions can provide 
valuable insights into a patient’s risk of OSA.

 2. Recognition of Comorbidities: Given the significant 
association between OSA and various cardiovascular, 
metabolic, and neuropsychiatric conditions, screening for these 
comorbidities should be  an integral part of the patient’s 
clinical evaluation.

 3. Phenotypic Consideration: Understanding that OSA presents 
with different phenotypes can aid in the identification of 
patients who might not respond to conventional therapies. 
Awareness of these phenotypes can also help clinicians provide 
personalized treatment strategies.

 4. Alternative Treatments: In patients who are non-compliant or 
non-responsive to CPAP therapy, consider other treatments 
such as dental devices, positional therapy, upper airway 
surgery, hypoglossal nerve stimulation, or pharmacotherapy.

 5. Proactive Follow-up and Management of OSA: Regular 
follow-ups are necessary to assess the efficacy of the chosen 
treatment strategy and make adjustments if necessary. Also, 
patient education regarding the potential implications of 
untreated OSA and the benefits of treatment compliance can 
aid in improving therapeutic outcomes.

 6. Interdisciplinary Approach: Clinicians should be encouraged 
to collaborate with experts from various disciplines, such as 
dietitians for weight management, psychologists for behavior 
therapy, or surgeons for potential surgical interventions, for a 
holistic approach to patient care.

 7. Research and Continuous Learning: As the understanding of 
OSA pathophysiology and treatment options evolves, clinicians 
should make efforts to stay updated on the latest research 
findings and integrate them into their practice where relevant.
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6. Conclusion and future directions

Despite extensive knowledge of the pathophysiological 
mechanisms and the adverse systemic effects of OSA, only limited 
benefit, if any, has been demonstrated from CPAP therapy in 
randomized trials designed to evaluate cardiometabolic benefit in 
patients with OSA. Many reasons can be  considered for these 
negative outcomes including inappropriate patient selection such 
as inclusion of mainly non-sleepy patients, reliance on the AHI as 
the sole measure of disease categorization, inclusion of patients 
with pre-existing comorbidity, and inadequate CPAP compliance. 
Patient selection for such outcome studies should consider 
inclusion variables beyond the AHI that include symptomatic 
patients, and CPAP compliance should be  factored into the 
outcome assessment (92).

Furthermore, it should be considered that some symptoms 
consistent with OSA such as sleepiness and fatigue could be a 
result of other factors such as lifestyle and disturbed sleep. New 

approaches to syndrome definition are required that consider 
different clinical OSA phenotypes in combination with 
endotypes and pathophysiological factors. New diagnostic 
approaches are needed that incorporate novel technologies to 
provide surrogates for sleep structure, to gauge exposure to 
systemic effects of OSA, and to identify specific biomarkers and 
data-markers for disease classification. While potentially useful 
markers could conceivably be derived from the PSG (93–96), 
the conventional sleep diagnostic test will likely require 
adaptation to facilitate ambulatory and multi-night 
diagnostic studies.

The ultimate goal is the development of diagnostic approaches 
that lead to the diagnosis of a clinically relevant OSA disorder 
that will include measures that give a more comprehensive insight 
into pathophysiological mechanisms in the individual patient. 
This approach should facilitate a more personalized treatment 
plan that goes beyond the simple question of CPAP or not (58, 
97, 98).

FIGURE 2

Factors to consider when translating pathophysiology and phenotypes to personalized treatment.

TABLE 1 Summary of the key findings and implications for personalized treatment of obstructive sleep apnea (OSA).

Key findings Implications for personalized treatment

OSA is characterized by recurrent upper airway obstruction during sleep due to 

an imbalance between negative inspiratory pressure and the ability of the upper 

airway dilating muscles to maintain patency

Continuous Positive Airway Pressure (CPAP) and Mandibular Advancement Devices 

(MADs) can be tailored to individual needs, but suffer from low compliance

Identifying individual pathophysiological traits can inform personalized 

treatment approaches

Personalized treatment strategies have the potential to provide alternatives to CPAP 

therapy in selected patients

OSA is often associated with comorbidities such as cardiovascular disease, 

metabolic disorders, and neuropsychological conditions

Novel treatment strategies such as hypoglossal nerve stimulation, certain medications, and 

lifestyle modifications like weight loss can be employed based on the patient’s unique 

pathophysiology

There are various phenotypes independent of the number of obstructions, 

which relate to symptoms and outcomes; however, linking these to underlying 

pathophysiology is vital to advancing our understanding of OSA

Ongoing research and advances in digital medicine techniques can further enhance the 

personalization of OSA treatment
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Feasibility of neck electrical
impedance tomography to
monitor upper airway dynamics
during sleep

Vivien S. Piccin1, Erick D. L. B. de Camargo2,

Rafaela G. S. Andrade1, Vinícius Torsani3, Fabíola Schorr1,

Priscilla S. Sardinha1, Fernanda Madeiro1, Pedro R. Genta1,

Marcelo G. Gregório1, Carlos R. R. de Carvalho3,

Marcelo B. P. Amato3 and Geraldo Lorenzi-Filho1*

1Sleep Laboratory of the Heart Institute (InCor), University of Sao Paulo Medical School, São Paulo,

Brazil, 2Biomedical Engineering, Center for Engineering, Modeling and Applied Social Sciences, Federal

University of ABC, São Bernardo do Campo, Brazil, 3Respiratory ICU, Hospital das Clinicas, University of

Sao Paulo Medical School, São Paulo, Brazil

Background: There is a lack of non-invasive methods for monitoring the

upper airway patency during sleep. Electrical impedance tomography (EIT) is

a non-invasive, radiation-free tool that has been validated to monitor lung

ventilation. We hypothesized that electrical impedance tomography (EIT) can be

used for monitoring upper airway patency during sleep.

Methods: Sleep was induced in 21 subjects (14 males, age 43 ± 13 years,

body mass index 32.0 ± 5.3 kg/m2) with suspected obstructive sleep apnea

(apnea-hypopnea index: 44 ± 37 events/h, range: 1–122 events/h) using low

doses of midazolam. Patients wore a nasal mask attached to a modified CPAP

device, allowing variable and controlled degrees of upper airway obstruction.

Confirmation of upper airway patency was obtained with direct visualization of the

upper airway using nasofibroscopy (n = 6). The changes in total neck impedance

and in impedance in four cranio-caudal regions of interest (ROIs) were analyzed.

Results: Total neck impedance varied in concert with breathing cycles and peaked

during expiration in all patients. Group data showed a high cross-correlation

between flow and impedance curves (r =−0.817, p < 0.001). Inspiratory peak flow

correlated with simultaneous neck impedance (r = 0.866, p < 0.001). There was a

high correlation between total neck impedance and velopharynx area (r = 0.884,

p < 0.001), and total neck impedance and oropharynx area (r = 0.891, p < 0.001).

Conclusions: Neck EIT is sensitive and captures pharyngeal obstruction under

various conditions. Neck EIT is a promising method for real-time monitoring of

the pharynx during sleep.

KEYWORDS

diagnostic imaging, electric impedance, obstructive sleep apnea, structure collapse,

electrical impedance tomography, nasofibroscopy
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Introduction

Obstructive sleep apnea (OSA) is characterized by repetitive

pharyngeal collapse during sleep, resulting in recurrent arousals

and arterial oxygen desaturation (Young et al., 1993; Tufik et al.,

2010). Upper airway collapse results from complex interaction

of multiple factors, including respiratory control instability,

insufficient pharyngeal muscle dilatory activity and upper airway

anatomy (Haponik et al., 1983; Suratt et al., 1983; Schwab et al.,

1995; Mezzanotte et al., 1996; Heinzer et al., 2005). In OSA patients,

recurrent obstruction occurs in the upper airway between the

soft palate, the palatal tonsils, the base of the tongue and the

lateral pharyngeal walls (Kim et al., 2019). On the other hand, the

dynamic mechanisms leading to upper airway obstruction during

sleep are poorly understood. Imaging techniques, such as computed

tomography (CT) and magnetic resonance imaging (MRI), have

provided detailed insights about the upper airway of patients while

awake, but limited information during sleep (Abramson et al.,

2010; Tang et al., 2012; Brown et al., 2013; Wang et al., 2014;

Zhang et al., 2014). Direct visualization of the upper airway using

drug-induced sleep endoscopy is an invasive method that has also

provided only partial information regarding the dynamics of the

upper airway during obstruction (Badr et al., 1995; Hewitt et al.,

2009; Rodriguez-Bruno et al., 2009). Forced oscillation technique

(FOT) is a non-invasive method to monitor upper airway patency,

but the application requires a nasal mask and does not allow

insights on anatomical behavior of the upper airway (Campana

et al., 2012). Therefore, the monitoring of the dynamic upper

airway collapse during sleep may provide a window of opportunity

to better understanding the pathophysiology of OSA.

Electrical impedance tomography (EIT) is based on the concept

that the injection of small amounts of electrical current (5–10mA;

125 kHz) in a rotating sequence through pairs of surface electrodes

provide electrical potentials that vary according to the shape and

distribution of the anatomical area under study (Kim et al., 2019).

EIT capacity to measure lung aeration (Victorino et al., 2004; Costa

et al., 2009a) was validated previously since air has much higher

impeditivity than tissues (Brown et al., 1985; Frerichs et al., 1999).

Typically, 32 electrodes are positioned linearly around the thorax.

This configuration is based on the Sheffield protocol (Brown and

Seagar, 1987) and provides information regarding a total cross-

sectional width of∼7–10 cm (Costa et al., 2009b).

Kim et al. (2019) conducted a study with seven healthy

participants and 10 patients with OSA under non sedated sleep,

to determine whether EIT could identify upper airway narrowing

or collapse. In that study, transient varsupsetneqqairway closure

was induced by the swallowing maneuver, and EIT images were

confirmed by simultaneous magnetic resonance imaging (MRI)

scans. Obstructive hypopnea and apnea were detected successfully

by EIT in 10 patients with OSA, and no significant changes in EIT

Abbreviations: CPAP, continuous positive airway pressure; CT, computed

tomography; EIT, electrical impedance tomography; FOT, forced

oscillation technique; MRI, magnetic resonance imaging; OP, oropharynx;

OSA, obstructive sleep apnea; Pcrit, critical closure pressure; PSG,

polysomnography; RG, retroglossal; RP, retropalatal; V’Imax, inspiratory

peak flow; VP, velopharynx.

data were observed in seven healthy participants during concurrent

EIT and PSG tests. Authors concluded that EIT could be a useful

real-time monitoring device for detecting upper airway narrowing

or collapse during natural sleep, in OSA patients.

Another study applying EIT imaging technique to evaluate

upper airway was conducted by Ayoub et al. (2019), with seven

healthy subjects (six male and one female) with no history of

witnessed apnea and ten male OSA patients. The subject was

connected to the PSG and the 16-channel EIT device at the

supine position. For EIT imaging, electrical currents of 1 mArms

at 11.25 kHz were sequentially injected between chosen pairs

of neighboring electrodes and induced voltages were measured

between other neighboring electrode pairs. After removing the

artifact components, they demonstrated the feasibility of the

upper airway EIT imaging technique to characterize obstructive

hypopnea and apnea events during natural sleep. In that study,

during normal breathing, EIT images clearly showed that the

upper airway was totally open and filled with the air. The air was

replaced by conductive upper airway soft tissues during obstructive

hypopnea and apnea events, which were successfully detected in the

reconstructed EIT images (Ayoub et al., 2019).

In the same way, Ayoub et al. (2020) analyzed time series

of reconstructed EIT images, providing quantitative information

about how much the upper airway was closed during collapse and

reopening. Ten OSA patients’ data were studied, and the results

showed that the EIT can compare the upper airway dynamics

between obstructive apnea and hypopnea.

Our work, the first one that uses EIT technique in induced sleep,

was designed to study neck EIT as a feasible method of monitoring

upper airway patency during sleep.

This study applies EIT on the upper airway under the

hypothesis that electrical impedance tomography can be a

continuous upper airway imaging technique during sleep. To this

end, we studied patients with a wide range of OSA severity.

To obtain variable degrees of upper airway obstruction we used

the method of critical closure pressure (Pcrit) determination,

applying variable levels of nasal pressure during induced sleep.

In a sub sample we directly visualized the upper airway anatomy

using endoscopy.

Materials and methods

Subjects aged between 18 and 70 years suspected of having OSA

referred to the Sleep Laboratory at the Heart Institute—Hospital

das Clínicas were invited to participate. Subjects with previous

upper airway surgery and significant heart or pulmonary disease

were excluded. All participants underwent standard diagnostic

overnight polysomnography (PSG) (Embla Systems Inc., USA)

(Gamaldo et al., 2014). Subjects provided written informed consent,

and the protocol was previously approved by the Hospital das

Clínicas Ethics Committee (Protocol Number: 0748/11).

Neck electrical impedance tomography

EIT is a method of estimating impedance distribution (or

variations of impedance distribution) inside a domain. This domain
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FIGURE 1

Sample CT-scan image of a volunteer, used to create a

three-dimensional finite element mesh.

is discretized using the Finite Element Method (FEM). The vector

of impedance of each finite element represents the variations of

the impedance distribution in time. The problem of estimating

the vector of impedance based on the injected current, measuring

electrical potentials on the boundary of the domain and knowing

the structure of the model may be classified as an inverse problem.

The algorithm is a sensitivitymatrix. Two different sets of measured

voltages are required: the first set (V0) is the reference set of

measurements, and the second set (V1) is related to the modified

impedance distribution. An estimate of the normalized resistivity

distribution may be computed using the Equation (1), where “B” is

the inverse of the sensitivity matrix, and ρ is the impeditivity (1ρ

= (ρ1- ρ0)/ρ0) (Aya et al., 2007).

1ρ = B1V (1)

Because the image formation problem of EIT is a difficult

inverse problem due to its non-linearity, regularization methods

are required. For this project, a Spatial Gaussian Filter was used for

regulation, resulting in smooth images (Aya et al., 2007).

A three dimensional (3D) finite element mesh was created

based on CT-scan images of a volunteer (Figure 1). The resulting

mesh contained 62,500 tetrahedral elements and 11,700 nodes,

and its total dimensions were 184 × 221 × 153mm (height ×

length × width) (Figure 2A). Thirty-two electrodes were placed

around the subject’s neck circumference in a zigzag configuration,

allowing the determination of impedance variation across a vertical

length of 18.4 cm (Figure 2B). The electrodes were connected to an

impedance tomography device (Enlight
R©
, Timpel, Brazil), which

generates 50 images per second.

For each set of measured voltages, impeditivity changes (1ρ)

were noted using the Equation (1) for all tetrahedral elements, and

a cross-sectional image of the sagittal plane passing through the

center of the mesh was created.

Small amounts of electrical current (5–10mA; 125 kHz) were

injected in a rotating sequence through pairs of electrodes, with

one non-injecting electrode interposed between the injecting

electrodes. These currents traveled through the neck following

pathways that varied according to neck shape and the distribution

of impeditivities, generating an electrical potential gradient at the

surface, which was then transformed into a 3D image of the

electrical impedance distribution within the neck. Surface electrical

measurements were used to infer living tissue impeditivity. A

low-pass filter (0.333Hz) minimized perfusion interference. Image

reconstruction was based on relative changes in impedance relative

to a reference (first 300 frames of neck EIT), assuming that the

shape of the neck did not change. Only regions of the upper

airway in which the impedance changed over time were represented

among the EIT images (Costa et al., 2009b). In this study the

changes in total neck impedance and in impedance in four cranio-

caudal regions of interest (ROIs) were analyzed. The total neck

impedance value, as well as the ROI values, were obtained through

the sum of the pixels values of the image (or the respective ROI).

Data acquisition during sleep

The subjects remained in the sleep laboratory in the morning

immediately after diagnostic polysomnography (PSG). Sleep was

induced using low doses of midazolam (Genta et al., 2011)

with the subjects used a nasal mask connected to a modified

CPAP device (Philips Respironics, Murrysville, PA) interposed

by 2 pneumotachographs connected in series. The CPAP was

initially titrated to overcome obstructive events and flow limitations

during sleep (holding pressure). Pcrit was determined as previously

described (Gleadhill et al., 1991). Briefly, once stable stage 2

was achieved at the holding pressure for at least 2min, the

CPAP was abruptly reduced by 1 cmH2O during expiration

and was held at this level for five breaths. CPAP was then

returned to the holding pressure for 1min before being dropped

an additional 1 cmH2O for another five breaths. This process

entailed progressive CPAP decreases until obstructive apnea

occurred. Flow and pressure curves were analyzed using custom-

designed software (Matlab, The MathWorks, Natick, MA). Neck

EIT data were stored in a computer that recorded neck

impedance and pressure and flow measurements derived from

the second nasal mask pneumotacograph. Neck EIT images and

inspiratory peak flow (V’Imax) were analyzed using custom-

designed software (LabVIEW, National Instruments Corporation).

Pcrit determination allowed for neck EIT assessments under

controlled levels of flow limitation.

Direct measurement of the upper airway

Sleep endoscopy was performed following Pcrit

determination in a subgroup of patients (n = 6). An ultra-

slim bronchofibervideoscope (2.8mm diameter, Olympus
R©

BF

type XP160F) was inserted through a sealed port in the nasal mask.

The distance between the tip of the scope and the area of interest

was measured using a wire (marked in centimeters) that passed

through the aspiration channel of the scope (Schorr et al., 2012).

The scope’s tip was placed one centimeter above the velopharynx

(VP: retropalatal airway) and one centimeter above the oropharynx

(OP: retroglossal airway). Images were digitally recorded during
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FIGURE 2

(A) Illustrates a finite element model of the neck. (B) Depicts a subject wearing 32 electrodes spanning his neck circumference in two equidistant

bands, with 16 electrodes making up each band; the first strap is located near the level of the maxilla, and the second is immediately beneath the

first. Small connectors were positioned in a zigzag configuration, as illustrated by the dashed lines. Neck EIT covers a vertical length of 18.4 cm.

TABLE 1 Baseline characteristics, sleep study, CPAP holding pressure and

Pcrit of the population studied.

No. total of subjects 21

Male Female Total range

No. by gender, % 14 (67%) 7 (33%)

Age, years 40± 13 50± 9 23–69

BMI, kg/m2 32± 5 32± 5 24–43

Neck circumference, cm 42± 3 38± 2 36–50

AHI, events per hour 44± 37 44± 35 1–122

Min SaO2 , % 81± 10 82± 6 52–91

ESS 11± 5 14± 6 2–22

CPAP holding pressure, cmH2O 13± 4 14± 3 5–20

Pcrit, cmH2O 2± 5 4± 3 −4 to 10

Values are expressed as the means ± SD. CPAP, continuous positive airway pressure; Pcrit,

critical closing pressure; BMI, body mass index; ESS, Epworth Scale; AHI, apnea-hypopnea

index. The statistical analysis found no significant differences between genders.

five breaths under the following 3 different nasal pressures: with no

flow limitation, with flow limitation and during obstructive apnea.

At each level of nasal pressure, the images of the smallest VP and

OP areas of one representative respiratory cycle were captured

using specific software (Vegas Movie Studio HD Platinum 11.0,

Sony Creative Software Inc.). The area was calculated by delimiting

the lumen image (ImagePro Plus 4.5.0.19, Media Cybernetics

Inc.) and comparing it with the same distance-magnification

using millimeter paper (Isono et al., 2002). VP and OP areas were

plotted against values of impedance valleys collected at the holding

pressure, under flow limitation and during obstructive apnea.

Statistical analysis

Data were expressed as means ± SD (or medians when

appropriate). Mann–Whitney U-test was used to detect the

differences in the males’ and females’ baseline characteristics,

FIGURE 3

An example of one representative subject, showing that total

impedance (solid line) varies during stable breathing (presented by a

flow curve, dashed line). During measurements of the impedance

during stable breathing, valleys occurred during inspiration (gray

columns), and impedance peaks occurred during expiration.

Because air is a poor conductor of electricity, the lower value of the

upper airway cross-sectional area occurred during inspiration, and

the higher value occurred during expiration. In this example, r =

0.914, p < 0.001. Flow data was acquired by the EIT machine a

pneumotachograph connected in series with the airflow circuit,

which saves the flow data synchronously with the impedance data.

sleep study, CPAP holding pressure and Pcrit. The relationship

between flow and total impedance changes during stable breathing

was tested using cross-correlation. We used the Fischer r-to-z

transformation to transform these correlation coefficient values

into weighted additive quantities. Spearman’s rank correlation

coefficient was applied to correlate V’Imax and impedance at

each step of the pressure reduction during Pcrit determination.

Also the Spearman’s rank correlation coefficient was applied to

correlate the mean impedance value in the impedance valley with

the smallest VP and OP cross-sectional areas at nasal pressures

Frontiers in Sleep 04 frontiersin.org187

https://doi.org/10.3389/frsle.2023.1238508
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Piccin et al. 10.3389/frsle.2023.1238508

FIGURE 4

(A) Shows an example from a representative subject in whom we observed a flow decrease, followed by impedance variation, during CPAP reduction.

(B) Provides a magnification of one step of the CPAP reduction (arrow), showing that the impedance also varies during the breathing cycle.

TABLE 2 Delta between the impedance determined during stable

breathing and impedance during severe flow restriction.

Delta Range

1st ROI −2.049± 1.240 −4.081/−0.497

2nd ROI −3.286± 1.895∗ −6.482/−0.907

3rd ROI −1.980± 1.382 −4.803/−0.097

4th ROI −1.684± 1.527 −3.776/+1.539

Group data for the delta between the mean impedance value at three consecutive inspiratory

peak flows, during stable breathing and during severe flow restriction. The impedance delta

was significantly higher in the 2nd region of interest (ROI) compared with the remaining

ROIs (p < 0.001). The results are expressed as means ± SD. ROI: region of interest (n = 21).
∗p < 0.001.

with no flow restriction, with flow restriction and during apnea.

Because subjects’ levels of nasal CPAP were different and because

impedance is a relative value, the z-score transformation [z-score

= (x – µ)/σ, where x = sample value, µ = sample mean, and

σ = standard deviation] was used to normalize and correlate

the pooled data of V’Imax, neck impedance and pharyngeal area.

Thereafter, we used a generalized estimation equation (GEE) model

to determine in a subgroup of patients (n = 6) the numerical

relationship between total neck impedance and the minimum

VP and OP areas. The Kruskal-Wallis test was employed to

identify differences in impedance variation between ROIs (delta

between the mean impedance values at three consecutive peak

FIGURE 5

In all subjects, we observed a high correlation coe�cient between

the total neck impedance variation z-scores (Y-axis) and the V’Imax

z-scores (X-axis). Data were acquired while the pressure was

reduced until apnea occurred.

inspiratory flow measurements) during stable breathing and severe

flow restriction. The Wilcoxon test was used to define which ROI

exhibited the higher delta value. Statistical significance was set at
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FIGURE 6

This figure shows an example of a representative respiratory cycle of one subject subjected to di�erent CPAP levels. From left to right: no flow

restriction, flow restriction and apnea. From top to bottom: flow curve (dashed line), total neck impedance (solid line), and upper airway images at

the velopharynx (VP) and oropharynx (OP) areas. The impedance decreased progressively from no flow restriction to flow restriction and apnea. The

chart scale does not allow us to visualize the impedance changes during the breathing cycle. RP, retropalatal; RG, retroglossal.

p < 0.05. SPSS 15.0 for Windows
R©

was used (2006 SPSS Inc.,

Chicago, Illinois).

Results

Twenty-one individuals completed the study (Table 1).

Sleep was induced with a mean total midazolam dose of

2.5 ± 1.2mg. In all subjects, the total impedance varied within

the respiratory cycle during stable breathing, as shown in a

representative example (Figure 3).

In all cases, the impedance valleys were close to the inspiratory

peak flow, and the impedance peaks were close to the expiratory

peak flow. During stable breathing, the group demonstrated

an average cross-correlation between the flow and impedance

curves of r = −0.817, obtained during stable breathing (p <

0.001). The mean time-lag was 0.48 ± 0.35 s (range: 0–1.52 s).

During nasal pressure reductions, we observed that the total neck

impedance decreased in proportion to the flow reduction on all

occasions and in all patients, as observed in a representative subject

(Figure 4).

Table 2 demonstrates that the delta between the average

impedance values of three consecutives peak inspiratory flow

measurements taken during stable breathing and during severe flow

restriction was significantly higher in the 2nd ROI than in the 1st,

3rd, and 4th ROIs.

V’Imax and total neck impedance (expressed as z-score) were

strongly correlated in the entire group (r = 0.866, p < 0.001)

(Figure 5).

The minimum mean VP areas during stable breathing and

severe flow restriction (six subjects that performed nasofibroscopy)

were 20.52 mm2 (3.59 SE, range of 12.90–37.18 mm2) and

4.03 mm2 (2.84 SE, range of 0.52–18.13 mm2), respectively

(Figure 6). The minimum mean OP areas during stable breathing

and during severe flow restriction were 18.50 mm2 (3.81 SE,

range of 5.53–34.27 mm2) and 5.19 mm2 (2.36 SE, range

of 0.78–15.06 mm2), respectively. The GEE analysis indicates

that there is a significant VP area effect when controlling for

the impedance signal at retroglossal area (p = 0.13), with a

prevalence ratio of 0.29. Also, the results indicate that there is

a significant OP area effect when controlling for the impedance

signal at retropalatal area (p = 0.11), with a prevalence ratio

of 0.45.

The group data correlations among the minimum VP and OP

areas and total neck impedance were 0.884 and 0.891, respectively

(p < 0.001) (Figure 7). At Figure 8 it is possible to observe, in a
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FIGURE 7

In a subgroup of subjects (A) shows the relationship between impedance variation and retropalatal area variation at the holding pressure (no

respiratory flow restriction), intermediary pressure (∼50% of respiratory flow restriction) and obstructive pressure (apnea). (B) Shows the same

relationship between impedance variation and retroglossal area variation.

representative subject, that upper airway changes are also visible on

the neck electrical impedance tomography image.

Discussion

This was the first study using EIT method in sleep induced

patients. In our study, EIT consistently detected upper airway

occlusion induced by applying variable levels of nasal pressure

during induced sleep (method of Pcrit determination). There

were no differences by gender in our study (regarding baseline

characteristics, sleep study, CPAP holding pressure and Pcrit). Also,

we didn’t notice any sex-specific differences in male vs. female on

impedance data acquisition.

Neck EIT was sensitive and varied in concert with the

respiratory cycle (Figure 3). Neck EIT also decreased in concert

with and in proportion to the level of CPAP reduction. The

image of one representative patient (Figure 4) was confirmed via

the demonstration of a close relationship between V’Imax and

simultaneous neck impedance in all patients (Figure 5). Finally, the

upper airway image obtained by direct visualization both on the VP

and OP areas correlated with total neck impedance.

We placed the electrodes around the neck in two parallel

rings in a zigzag configuration to obtain information from a wide

region (that would encompass the pharynx). The zigzag electrode
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FIGURE 8

This figure shows images of impedance variation of the sagittal plane, in a representative subject, at di�erent CPAP pressures (pressure of 10 cmH2O

was used as reference). The images show a decrease in impedance as the CPAP pressure decreases to Pcrit (1 cmH2O). There is an artifact near the

back of the neck, likely due to di�erences between the model’s shape and the actual shape of the neck. Also, as showed in Table 2, we can observe

that negative impedance variation was higher in the 2nd ROI (region of interest).

positioning allowed for the construction of a 3D finite element

mesh that corresponded to a longitudinal area of 18.4 cm (∼9.2 cm

rostral and 9.2 cm caudal to the electrode center). Using this

configuration neck EIT captured changes in pharyngeal patency

cephalic to the electrodes positioned at the neck.

Total neck impedance was sensitive and varied in concert with

the tidal volume during stable breathing.We found a strong inverse

cross-correlation between the flow and impedance curves (r =

−0.817, p< 0.001), indicating that impedance valleys (lowest upper

airway cross-sectional areas) occurred during the inspiratory phase

and that impedance peaks (highest upper airway cross-sectional

areas) occurred during the expiratory phase (Figure 3).

These findings are consistent with previous studies of non-

invasive continuous imaging of the upper airway during natural

sleep, conducted for OSA patients, using the EIT technique (Ayoub

et al., 2019, 2020; Kim et al., 2019).

In our study, the high sensitivity of neck EIT, which

varied in concert with CPAP reductions, was self-evident in

one representative example (Figure 4). Group data derived from

all subjects demonstrated a high correlation coefficient between

V’Imax and total neck impedance variation (r = 0.866). Therefore,

the progressive flow restriction associated with progressive

CPAP reduction was associated with progressive decreases in

neck impedance (indicating a smaller cross-sectional area). This

observation is consistent with those of previous studies that

demonstrated strong correlations between CPAP levels and

pharynx areas (Launois et al., 1993; Morrison et al., 1993; Isono

et al., 2002). Additionally, Isono et al. (1997) demonstrated that

variable and controlled levels of flow limitation correlate with

upper airway cross-sectional area. The assumption that neck EIT

correlates with upper airway patency was further confirmed via

direct visualization of the upper airway. Also, at Figures 6, 7

we show the same relationship between impedance level, flow

restriction and upper airway collapse.

Finally, the finding that the 2nd ROI (rather than the first and

most cranial ROI) exhibited the largest variation in impedance

during upper airway obstruction (Table 2) clearly indicates that EIT

captured changes in pharyngeal patency cephalic to the electrodes

positioned on the neck.

Limitations

Our new method has limitations. A virtual 3D finite element

mesh was created based on CT-scan images from a single male

volunteer. However, we studied a wide range of cranium, upper

airway, soft tissue, and body characteristics (Table 1), and the

signals were clear in all subjects. The method may also be

applied using customized meshes according to individual biotypes.

Additionally, the system only responds to changes in impedance;

therefore, we are not able to provide absolute values for anatomical

evaluations. Also, Kim et al. (2019) in their study concluded that

changes in the upper airway size can be estimated with good

accuracy, but shape estimation needs future improvements in the

EIT image quality (Kim et al., 2019). We believe that electrical

impedancemay provide absolute values for anatomical descriptions

in the future (Costa et al., 2009b).

Additionally, neck EIT images were obtained with the subjects

in a stable position. Ayoub et al. (2019) found that EIT data from

the lower face were contaminated by artifacts from respiratory

motions, blood flows in the carotid artery and neck movements.

In our study, EIT artifacts generated by body motion was limited to

controlled conditions but is an important consideration that needs

to be resolved in time to come

Although our method was able to assess impedance variations

in different upper airway segments, the model of the electrical

impedance tomography system in this study was built based

on the anatomical characteristics of a single individual. This

certainly limited our analysis to the comparison of different

anatomical sites and made us prioritize the total impedance

analysis. However, we demonstrated that the technique

allows segmental evaluation, which we hope will be viable in

the future.

Conclusion

Neck EIT is a sensitive method that varies with the

breathing cycle and correlates with peak flow under

flow limitation, indicating that neck EIT monitors
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pharyngeal patency during sleep. Therefore, neck EIT

is a promising non-invasive method that may provide

insights on the dynamic of upper airway obstruction

during sleep.
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Enhanced expiratory rebreathing
space for high loop gain sleep
apnea treatment

Thomas Quinn, Robert Joseph Thomas and

Eric James Heckman*

Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess

Medical Center, Boston, MA, United States

The pathophysiology of sleep apnea goes beyond anatomic predisposition to

airway collapse and includes additional factors such as arousal threshold and loop

gain. High loop gain is a prominent feature in central and complex sleep apnea

(with a mixture of obstructive and central features) where relative hypocapnia can

lead to respiratory instability and periodic breathing. Existing therapies, including

continuous positive airway pressure (CPAP) and adaptive servo-ventilators, often

inadequately treat sleep apnea with high loop gain features. Enhanced expiratory

rebreathing space (EERS) targets prevention of the hypocapnia that triggers central

events in sleep by increasing dead space in amounts less than typical tidal volumes.

This is accomplished by covering traditional exhalation ports on positive airway

pressuremasks and adding small additional tubingwith distal exhalation and safety

valves. This technique reduces carbon dioxide (CO2) blow-o� during arousals and

the associated large recovery breaths, typically producing a maximal increase in

resting CO2 by 1–2 mmHg, thus increasing the CO2 reserve and making it less

likely to encounter the hypocapnic apneic threshold. Typically, the amount of EERS

is titrated in response to central events and periodic breathing rather than aiming

for a goal CO2 level. Ideally CO2 monitoring is used during titration of EERS and the

technique is avoided in the setting of baseline hypercapnia. This method has been

used in clinical practice at our sleep center for over 15 years, and retrospective data

suggests an excellent safety profile and high rates of successful therapy including

in patients who have previously failed CPAP therapy. Limitations include decreased

e�ectiveness in the setting of leak and decreased tolerance of the bulkier circuit.

EERS represents a simple, a�ordable modification of existing positive airway

pressure modalities for treatment of central and complex sleep apnea. Areas of

future study include randomized controlled trials of the technique and study of

use of EERS in combination with adaptive ventilation, and pharmacologic adjuncts

targeting high loop gain physiology.

KEYWORDS

complex sleep apnea, loop gain, periodic breathing, EERS, carbon dioxide, dead space

Introduction

It is now generally accepted that the pathophysiology of obstructive sleep apnea (OSA)

involves non-anatomical traits, including high loop gain, an impaired negative pressure

response, low arousal threshold, increased arousal intensity and sleep fragmentation.

However, clinical guidelines and management of apnea has largely ignored the growing

research data supporting the importance of considering an endotype/phenotype driven

approach to optimized and personalized sleep apnea care. In those with hypocapnic central

sleep apnea (CSA), there is little argument that high loop gain and hypocapnia is a key
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destabilizer of sleep-respiration (Javaheri and Badr, 2023). The

hypercapnic ventilatory response is in fact elevated in idiopathic

CSA (Xie et al., 1994, 1995). In those with OSA, high loop

gain will result in a tendency to hypocapnia. Yet, measurement

or manipulation of carbon dioxide (CO2) has largely remained

confined to research laboratories. Here, we present the logic behind,

the practical application of, and our results with the use of dead

space plus positive airway pressure, a method we call Enhanced

Expiratory Rebreathing Space (EERS).

Sleep apnea phenotypes and control
of respiration—the importance of CO2

There is increasing appreciation of the varied phenotypes of

sleep apnea (Malhotra et al., 2020; McNicholas and Pevernagie,

2022). Although OSA, with an anatomic predisposition to airway

collapse is the most commonly invoked mechanism, it has long

been considered only a partial contributor (Remmers et al., 1978;

Mezzanotte et al., 1996; Younes et al., 2007). While other factors

such as failure of muscle recruitment/compensation can contribute

to OSA (Younes et al., 2012, 2014), these factors fail to explain

sleep apnea of a central nature, or, the common variant of a

mixture of both obstructive and central disease (complex sleep

apnea) (Gilmartin et al., 2005). Although the establishment of the

diagnosis of treatment-emergent sleep apnea (TE-CSA) has raised

awareness of pathophysiological “mixed” sleep apnea (ICSD-3), it

oversimplifies the patterns of sleep apnea to an artificial “all or

none” format where one physiology clearly dominates. In fact, TE-

CSA merely reflects the consequence of targeting only the upper

airway when breathing control instability is also present. In reality,

the features of reduced respiratory effort and obstruction are often

intertwined and evident to some extent across both diagnostic and

titration sleep studies. Central events, with prolonged exhalation

and reduced airway stenting can produce airway collapse and

obstruction (Badr et al., 1995). Given this, the label complex

sleep apnea may be more appropriate (Gilmartin et al., 2005;

Morgenthaler et al., 2006). Thus, multiple pathophysiologic factors

contribute to these different phenotypes, including a low arousal

threshold and loop gain (Table 1) (Eckert et al., 2013).

The sleep-related arousal threshold describes the ease with

which an individual can be triggered to arouse from sleep,

with a low arousal threshold suggesting that even mild stressors

(respiratory or non-respiratory) can lead to an arousal. Conversely,

a high arousal threshold suggests that a high amplitude stressor

is required to disrupt sleep. In the context of sleep apnea, a low

threshold will lead to more frequent sleep wake transitions (Jordan

et al., 2017) and seems to have consequences for tolerance of

positive pressure therapy (Zinchuk et al., 2021). Targeting this

factor underlies the principle of using sedatives to treat sleep

apnea (Eckert et al., 2011; Edwards et al., 2016; Ahmad et al.,

2023). However, trials examining monotherapy with sedatives to

control sleep apnea have been inconsistent (Rosenberg et al., 2007;

Carter et al., 2018). A high arousal threshold is a predictor of a

positive response to hypoglossal nerve stimulation for sleep apnea,

consistent with a role for the arousal threshold in modulating

outcomes of sleep apnea (Op de Beeck et al., 2021).

Loop gain refers to the relation of a response to a disturbance,

for sleep apnea the ratio of ventilatory response in reaction to a

ventilatory stimulus. When the loop gain is higher than desirable,

there is a disproportionately robust ventilatory response, and

when lower than desirable, and over-damped system. A vigorous

ventilatory response may seem advantageous compared to the

alternative, a low loop gain leading to an insufficient ventilatory

response, and hence a tendency to hypoventilation. However, high

loop gain causes its own challenges given the control mechanisms

governing respiration in sleep (Younes et al., 2001). Loop gain can

be further classified as controller gain, mixing gain and plant gain.

Controller gain refers to the sensitivity of the system to changes in

chemical stimuli like carbon dioxide and is governed by central and

peripheral chemoreceptors (Orr et al., 2017; Roberts et al., 2022).

High controller gain suggests that a given change in PaCO2 will

result in a greater change in ventilation, while a low controller gain

will generate a lesser response in ventilation for the same change in

PaCO2. In sleep apnea, intermittent nocturnal hypoxia sensitizes

the carotid body and results in a steeper slope of the hypoxic

ventilatory response and elevated controller gain (Tamisier et al.,

2009). Plant gain refers to the efficiency of gas exchange within

the respiratory system; it is dependent on the characteristics of

the individual’s cardiopulmonary systems. An individual without

cardiopulmonary comorbidities will have a higher percentage of

their lung volume participating in efficient gas exchange. A normal

pulmonary system leads to more change in gas levels per change in

minute ventilation than an individual with, for example, advanced

chronic obstructive lung disease (COPD). The COPD patient has

lower plant gain and is less likely to produce a large change in CO2

for a given change in ventilation. In a system with high loop gain, a

low efficiency of gas exchange can actually help prevent hypocapnia

and hence the resultant overshooting of the ventilatory response.

In addition, an “arousal gain” can be considered a modifier, with

more vigorous arousals a result of greater effective controller gain.

Mixing gain is most relevant in conditions like heart failure with a

prolonged circulation time.

The control of ventilation is quite different in the states

of wake and sleep. Inputs are much more numerous during

wakefulness and include the peripheral and central chemoreceptor

response to multiple molecules including oxygen, hydrogen ions,

CO2, nitric oxide and hydrogen sulfide; input from temperature

and pain stimuli; lung stretch; emotional stimuli; and voluntary

control of breathing (Del Negro et al., 2018). The influence

of most of these inputs wanes with a transition to sleep. In

the sleep state, voluntary and emotional stimuli are absent and

respiration during non-rapid eye movement (NREM) sleep is

largely governed by chemical drivers. Specifically, CO2 becomes the

key respiratory driver, such that hypercapnic respiratory response

is the greatest determinant of ventilatory drive during sleep. The

NREM CO2 threshold is just a few mmHg lower than CO2

values under eupnea. The CO2 reserve, therefore, is the space

where CO2 may fluctuate without triggering ventilatory instability.

CO2 reserve is low in those with hypocapnic CSA, periodic

breathing, or TE-CSA (Dempsey et al., 2004; Xie et al., 2011,

2013). The ventilatory response to hypercapnia and hypoxia are

also more robust during wake as compared to sleep, with more

substantial increases in ventilation in response to CO2 increase or

O2 decrease.
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TABLE 1 Relative contribution of pathologic features in di�erent sleep apnea endotypes.

Sleep apnea type Airway narrowing Loop gain Arousal threshold Role for EERS

Obstructive Significant Average Variable No

Central Minimal High Variable Yes

Mixed Significant High Low Yes

Obesity hypoventilation syndrome Mild to significant Low High No

The changing inputs to respiration upon sleep onset result

in an inherently unstable state. The loss of behavioral control,

reduced respiratory drive, and reduced chemosensitivity make

hypoventilation more likely, while decreased muscle tone increases

obstruction; as a result, there is an increased risk for flow limitation.

The mild retention of CO2 after sleep onset offers some protection

for respiratory stability as it increases the PETCO2-PCO2 apneic

threshold difference. Progressive flow limitation causes a reduction

in ventilation and a proportionate response dictated by the

individuals’ loop gain. In the situation of high loop gain, a robust

respiratory response to this reduction in ventilation increases

the risk of inducing hypocapnia below the hypocapnic apneic

threshold and thus induction of a central apnea. A resulting apnea

subsequently leads to CO2 re-accumulation and therefore increased

ventilatory drive, which is disproportionately high in the setting of

high loop gain, generating an alternating cycle of relative hypo- and

hypercapnia. Ultimately, this cycle can cascade to the point that

periodic breathing is generated and maintained. The combination

of both high loop gain and low arousal threshold can be particularly

problematic, as the tendency to quickly arouse increases the

frequency of transitions between wake and sleep, allowing for

significant fluctuations in ventilatory drive and therefore the risk of

over-ventilation in the setting of high loop gain. Even in patients

with primary OSA, objective measurement of arousal threshold

and loop gain suggest that about a third of patients have high

loop gain and a third have low arousal threshold; this suggests

that these factors are relevant across all forms of sleep apnea

(Eckert et al., 2013). Although formal measurement of loop gain

and arousal threshold is not typically utilized in clinical practice,

features collected by typical polysomnography can hint at these

characteristics (Table 2).

Central apneas induced by relative hypocapnia during sleep are

a well-established phenomenon. In the intubated and sedated ICU

patient, alkalemia induced during a control mode of mechanical

ventilation will result in apneas upon the transition to pressure

support modes due to low levels of CO2 and subsequent

lack of respiratory drive. At high altitude, the reduced FiO2

leads to increased minute ventilation based on the hypoxic

respiratory response. This increased minute ventilation leads to

hypocapnia below that achieved at sea level and thus central

apneas and high attitude periodic breathing result (Masuyama

et al., 1989; Khoo et al., 1996; Fowler and Kalamangalam,

2002; Lombardi et al., 2013; Pramsohler et al., 2019). In TE-

CSA, the appropriate improvement in ventilation with treatment

of obstruction leads to relative hypocapnia and induction of

respiratory instability (“high altitude at sea level”). Patients with

high loop gain, such as those with congestive heart failure

and idiopathic CSA, lack the typical degree of hypoventilation

TABLE 2 Polysomnographic features suggestive of high loop gain and

low arousal threshold.

Features suggestive
of high loop gain

Description

NREM dominance of events • Events cluster around sleep wake

transitions when overventilation has

maximal impact at inducing central events

• Respiratory events markedly improved in

REM vs. NREM sleep, ideally a

supine-to-supine comparison

Periodic breathing Cyclic under-shoot and over-shoot of

ventilation creating a metronomic

self-similar pattern

Oximetry banding Series of self-similar events of consistent

duration and oxygen desaturations produces

a thick line on oximetry when viewed on the

scale of the entire night

Treatment emergent central

apneas

Increased ventilation triggers central events

in the setting of low CO2 reserve

Prolonged time between event

onset and oxygen nadir

associated with the event

Cardiac insufficiency leads to a mixing delay,

an increased transit time of relatively

deoxygenated blood to reach the peripherally

located oximetry sensors

Features suggestive of
low arousal threshold

Description

Elevated Spontaneous

Arousal Index

Suggestive of easy arousal

Non-hypoxic sleep apnea AHI3% significantly greater than AHI4%,

suggestive fragmentation is not driven by gas

exchange abnormalities

Elevated N1 sleep Evidence of frequent sleep stage transitions

Persistent cyclic alternating

pattern (CAP) of EEG despite

optimal upper airway support

Indicative of frequent EEG arousals and

arousability

with transition to sleep and the ventilatory response to CO2

below eupneic values is more sensitive. This combination makes

it more likely for these high loop gain CHF patients to

reach the hypocapnic induced apneic threshold (Xie et al.,

2002).

Despite the fact that central events induced by relative

hypocapnia are a common feature of sleep breathing, traditional

treatments of sleep apnea remain insufficient to treat sleep apnea

phenotypes enriched for central events, whether due to primary

CSA, or complex sleep apnea with a mixture of central and

obstructive events. The CANPAP trial showed that continuous

positive airway pressure (CPAP) leaves a substantial residual

burden of central apneas in patients with congestive heart failure

and fails to improve heart failure related outcomes (Bradley et al.,

2005). Adaptive servo ventilators are designed for Hunter-Cheyne-

Stokes respiration, a classic feature of high loop gain. These bilevel
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machines are designed to adjust the pressure delivered relative

to respiratory effort (inverse, anti-cyclic) in attempts to break

the cycle of periodic breathing. Practically, the ability of these

proprietary algorithms to successfully prevent periodic breathing

may be brand-specific, as different models produce substantially

different minute ventilations in the same individual (Knitter et al.,

2019). Pathological pressure cycling imposes hemodynamic stress

on the cardiovascular system (Gunn et al., 2018). Although studies

suggest that adaptive servo ventilators are superior to CPAP for

treatment of the respiratory features of complex sleep apnea, the

impact on sleep quality and clinical outcomes is less striking

(Morgenthaler et al., 2014). The expense of these machines and

strict coverage criteria are challenges (Morgenthaler et al., 2021).

The SERVE-HF trial demonstrated increased mortality in those

with systolic heart failure, which severely undercuts the utility of the

device in those patients at elevated risk for high loop gain (Cowie

et al., 2015). Acetazolamide (discussed in more detail below) shifts

the CO2 response curve to the left and lowers the apneic threshold,

improving respiratory stability. Supplemental oxygen has been

demonstrated to have a positive effect on sleep apnea with high loop

gain (Sands et al., 2018). However, oxygen monotherapy cannot

overcome upper airway resistance. In addition, it can be difficult

to qualify for in the context in the US insurance system, and self-

pay has a significant long-term expense world-wide (Morgenthaler

et al., 2021).

Introducing dead space/enhanced
expiratory rebreathing space

Based on the physiology of hypocapnic induced central apneas,

an intervention preventing hypocapnia would be a logical target.

CO2 modulation has been utilized as a strategy to stabilize

periodic breathing and other chemoreceptor-associated breathing

abnormalities for over 40 years. Berssenbrugge and colleagues first

demonstrated in 1983 that hypoxia-induced periodic breathing

could be eliminated by augmenting inhaled FiCO2, resulting in a

3–6 torr increase in arterial PaCO2 and normalization of breathing

pattern, supporting the hypothesis that periodic breathing is due

in part to transient oscillations in arterial CO2 content above and

below the CO2 apnea threshold (Berssenbrugge et al., 1983). Dead

space has been used to improve sleep-breathing and thus sleep in

mechanically ventilated patients (Parthasarathy and Tobin, 2002),

periodic breathing at high altitude (Lovis et al., 2012; Patz et al.,

2013), idiopathic CSA (Xie et al., 1997), and heart failure (Khayat

et al., 2003). The “dose” required to stabilize ventilation may not

meaningfully improve sleep quality or arousals (Szollosi et al.,

2004).

The first demonstration of the benefits of a low concentration

of CO2 that was “clamped” to just above the NREM sleep CO2

threshold was in 2005 (Thomas et al., 2005). In that report,

using an investigational device, a concentration of 0.5–0.8 (%

CO2) was sufficient to enable respiratory stability when combined

with positive pressure airway support. This realization motivated

the trial of a small amount of dead space (50–100 cc, vs. the

300–500 cc used in prior reports) with CPAP. The concept of

Enhanced Expiratory Rebreathing Space (EERS) is the adaptation

of dead space to concomitant use of positive pressure ventilation

(Gilmartin et al., 2010). The EERS space is analogous to the “dead-

space” in the native respiratory system, which accounts for the

volume of air in each breath that does not interface with the gas-

exchanging tissues of the lung (i.e., the volume of air contained

within the conducting airways such as the mouth, trachea and

bronchi). In the normal adult, anatomical dead space accounts

for roughly 33% of the total tidal volume of inspired air (roughly

130–180 cc’s per breath) and can be measured more accurately

via the Fowler method, or single-breath nitrogen washout test.

Other forms of dead space include alveolar dead space which is

often secondary to disease (e.g., atelectasis, impaired pulmonary

blood flow, or increased alveolar pressure) as well as apparatus

dead space from respiratory equipment, such as that utilized in

EERS circuitry.

Biological e�ects of EERS

EERS has a few possible effects to enable respiratory stability.

First, by using EERS, loop gain is lowered through reduction

in plant gain, by reducing the efficiency of CO2 removal with

ventilation. Second, by slightly raising baseline CO2 (1–2mm Hg),

the likelihood of hitting the NREM CO2 threshold is reduced, and

the CO2 reserve is therefore increased. Third, the greatest effect

of EERS may be during intermittent arousal-induced ventilatory

blow-off (a “shock-absorber” effect), preventing the major resulting

fluctuations of CO2 that inevitably occur. Finally, there may be

effects at the level of cerebral blood flow. There is no change in

mean heart rate or respiratory rate (Gilmartin et al., 2010).

Creating EERS

Native non-vented masks may be used, or “conversion” of

a standard vented mask. It should be noted that some masks

like the ResMed AirFitTM N20 has a non-vented configuration

with a short stalk. EERS is achieved first by blocking the typical

mask exhaust vents, for example by adding a compound such

as silicone putty to block the vent holes and prevent normal

CO2 escape. This step converts a standard “vented” CPAP mask

into a “non-vented” mask setup, and adds about 70 (nasal

mask) to 100 (oronasal mask) cc’s of dead space to the system.

Additional EERS volumes are then added by inserting corrugated

flexible tubing in 50 cc increments to the mask tubing, with

the ability to add 50–150cc’s total of EERS to the system. A

swivel valve (we use the Philips Whisper Swivel II Exhalation

Valves), which allows for continuous venting and thus represents

the termination of the non-vented circuit, is added at the distal

end of the EERS tubing and allows for exhalation of CO2

(Figures 1, 2). In full-face mask setups, a safety valve (non-

rebreathing valve) is added to prevent theoretical asphyxiation

in the event of a power outage or machine malfunction, but

could be considered optional in nasal-only. Most if not all current

full-face masks come with an inbuilt non-rebreathing valve, and

no added safety valve is required; as a default we use safety

valves in nasal masks also. A patient with normal dexterity and

mental status could also easily remove the mask in the event of

power failure.
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Patient selection

Adherence to positive pressure therapies is a significant

predictor for symptomatic improvements in OSA, with usage

>6 h nightly associated with decreased sleepiness, improvement

in daily functioning, and normalization objective memory

performance (Zimmerman et al., 2006; Weaver et al., 2007).

In patients with high loop gain sleep apnea, there are some

FIGURE 1 (Continued)
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FIGURE 1 (Continued)

(A) Example of a nasal pillow mask set up with the nonvented, EERS modification. The model is a Dreamwear by Respironics-Phillips. (B) Description

of parts used. Silicone ear plugs (typically CVS Health, or Mack’s brand) are utilized to cover the standard mask vents. Other components—Whisper

Swivel−332113—Respironics-Philips, Non-Rebreather Valve—NV-HC209—Fisher & Paykel, EERS tubing—PES-1680-(50,100,150)

cc—Teleflex/Hudson, Flex Tube with 22mm connector–PMS-6107—Portex, 22mm Connectors—HUD1421—Teleflex/Hudson. The sequence is

mask-safety valve (if nasal mask)-EERS-Whisper-standard CPAP (with connectors as needed). The connector and extra tubing allow both to connect

to typical CPAP tubing and modulation of the amount of EERS. (C) The safety valve has a one wave valve that allows air to be entrained through side

ports in the event of power loss with discontinuation of positive airway pressure. An alternative is the Hans-Rudolph non-rebreathing valve part

numbers 115402 or 115401. (D) The Whisper valve serves as the exhalation vent in the series.

data that non-adherence rates are even higher than those with

straightforward OSA (Ni and Thomas, 2023). Measurements

of baseline unstable ventilatory control (i.e., high loop gain)

have also been associated with elevated residual AHI and rates

of CPAP non-response defined as residual AHI >5/h despite

adequate control of obstruction, even when CPAP compliance
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FIGURE 2

Example of a full-face mask set up with the nonvented, EERS modification. The model is a Fisher & Paykel, F&P ViteraTM. The existing internal mask

safety valve is utilized with the addition of connectors, EERS tubing, and Whisper Swivel Valve.

is maintained. This implicates that the measurement of loop

gain is a potential a priori predictor of patients who would

benefit from adjunctive therapies to standard positive airway

pressure (Stanchina et al., 2015).

By identifying patients who would be suitable for EERS

therapy prior to standard CPAP failure, there is the potential

for improved long-term compliance and acceptance of CPAP

therapy. In the original EERS paper, we reported that 80% of

patients who were treated had given up therapy; we had a long-

term “salvage” rate of about 50% at long-term follow-up. This is

particularly important as CPAP therapy has been demonstrated

to resolve central events related to loop gain over time in select

patients (Kuzniar et al., 2008; Javaheri et al., 2009), but this

relies on the establishment of successful and compliant CPAP use.

Thus, EERS use has three global goals—enabling healing in those

whose high loop gain features will resolve by improving short-

term tolerance, long-term benefits in those who have persistence

of control instability, and salvage of those who have already

failed therapy (i.e., providing a “second chance” at therapy). As

hypoxia is a key driver of acquired increases in loop gain, it

is expected that those who have substantial hypoxia are likely

to improve over time, while those who have minimal hypoxia

and possibly genetically determined abnormality will have long-

term persistence. Heart failure is an example of a condition

where some patients do not have severe hypoxia yet can have

overt periodic breathing; many patients however are hypoxic, and

the combination of hypoxic and non-hypoxic mechanisms can

markedly elevate loop gain.

There are currently multiple methods for identifying

underlying high loop gain as a marker for standard CPAP

failure and/or an indication for EERS. Besides overt CSA

or TE-CSA, multiple morphological features on diagnostic

polysomnograms can be used to detect likely underlying elevated

loop gain including NREM predominance of respiratory events

with stabilization during REM sleep, increased NREM sleep

stage transitional instability, short-cycle (<30 s) self-similar

events, and “banding” oxygen desaturations visualized on pulse

oximetry (Thomas et al., 2004). Mathematical formulas to

measure loop gain have been utilized routinely in the research

settings or secondary analysis of clinical trial data (Sands et al.,

2011; Stanchina et al., 2015; Joosten et al., 2017; Li et al., 2019).

The Phenotyping Using Polysomnography (PUP) method is a

promising, potentially scalable method, of estimating endotypes

from existing polysomnograms by using changes in estimated

minute ventilation to determine metrics of respiratory drive

(Finnson et al., 2021). Objective measurement of respiratory

self-similarity (respiratory events with clone-like timing and

morphology) also aids in risk-prediction (Oppersma et al., 2021).

Residual events after several months of CPAP use also is a useful

marker of a person who may need therapy targeting high loop

gain, though mechanical effects of an oronasal mask (Genta et al.,

2020), high leak or sleep fragmentation may all contribute (Ni and

Thomas, 2023). Current device algorithms for detecting residual

apneas on CPAP therapy have been shown to have significant

errors in detection, particularly with regards to the presence of

short cycle (<30 s) periodic breathing (Ni and Thomas, 2023).

Frontiers in Sleep 07 frontiersin.org200

https://doi.org/10.3389/frsle.2023.1248371
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Quinn et al. 10.3389/frsle.2023.1248371

Patient safety and monitoring

In our extensive clinical experience with over 1,000 active

patients and over 10,000 patient years of use, the use of

EERS has been demonstrated to be safe and well tolerated in

general OSA populations, in addition to patients with significant

comorbidities including heart failure with reduced ejection fraction

(unpublished). Initiation of (or conversion to) a non-vented mask

and addition of 50 cc EERSmay be considered as empiric treatment

(i.e., without in-lab CPAP titration with ETCO2 monitoring) in

patients without risk factors for hypoventilation (normal serum

bicarbonate, normal pulmonary functions, body mass index ≤40

Kg/M2, ≤20min with oxygen saturation under 90%, absence of

disorders known to cause hypoventilation, absence of opiate or

baclofen use). This approach to empiric therapy was necessitated

by the COVID-19 pandemic, and used successfully.

Biocalibration of CO2

After the conventional setup for the polysomnogram recording,

we routinely perform a “CO2 biocalibration.” With a NV mask,

mainstream ET CO2 sensor and no positive airway pressure,

resting wake end-tidal CO2 is measured, followed by the change

in CO2 with the addition of 50, 100 and 150 cc dead space. The

sensor is placed at the mask outlet, and is able to capture the

exhaled stream and provide a clear ETCO2 “plateau” in most

instances. This measurement is quite sensitive to leak around

the edges of the mask, and thus a very good fit is necessary

for accurate tracking during sleep. While we originally had a

set of recommendations for starting EERS volumes based on

these values, we have shifted to using this maneuver as a safety

check for unexpected hypercapnia. If the ETCO2 is ≥45mm Hg,

supervising on-call physician permission is required to use a non-

vented mask. During titration, we tolerate a 5mm Hg rise in

ETCO2 but this threshold is virtually never reached except in

opiate-induced CSA, as positive airway pressure provides a natural

continuous washout. In over 5,000 sleep laboratory titrations with

end-tidal CO2 monitoring, there has never been a single instance of

induction of unexpected sleep hypercapnia in a patient with normal

resting wake CO2. In patients undergoing in-lab non-vented CPAP

titrations with EERS, continuous real-time ETCO2 monitoring is

ideally utilized. With the non-vented configuration, end-tidal CO2

levels are generally readily attainable, including a clean plateau

signal. However, reliable ETCO2 measurements can occasionally

be limited by issues with mask fit and leak. Transcutaneous CO2

monitoring is a non-invasive method for obtaining accurate skin-

surface oxygen and CO2 levels in the laboratory setting but is not

critical if reliable ETCO2 levels can be obtained. The minimum

general recommendation is to measure resting wake CO2 by any

means including blood gas analysis prior to a non-vented titration.

How to titrate EERS and positive
airway pressure—practice points

In-lab titration of EERS and positive airway pressure relies

upon careful understanding of the individual patient’s underlying

physiology, and often requires balancing control of obstruction

through increased positive airway pressure against potential

worsening of respiratory instability as mean airway pressures

increase. As patients can differ drastically regarding the level

of obstruction and underlying loop gain, as well as important

parameters such as baseline sleep consolidation and arousal

threshold, titration is therefore unique to each patient and should

be performed in a physiologic rather than algorithmic fashion. That

being said, there are a few key principles which should serve to

guide successful titration of EERS.

Typically, titration is started with a non-vented mask setup

with CPAP pressures at the lowest reasonable pressure to

address obstruction (e.g., 6–8 cmH20). The decision to start the

titration with additional EERS (50–150 cc’s) is individualized

and is dependent on (1) perceived level of underlying loop gain

abnormality, (2) starting CO2 levels obtained prior to titration,

and (3) the patient’s tendency for prolonged sleep latency and

poor sleep consolidation. This last point is important as adding

additional EERS, as opposed to simply increased CPAP pressures,

involves physically entering the room and making alterations to

the patient’s mask which will generate an arousal from sleep.

No automated method to adjust EERS remotely currently exists.

Regarding starting pressures, prior standard CPAP titrations can

be useful to guide initial settings, with the understanding that

standard titrations which do not address underlying loop gain often

over-titrate in an attempt to stabilize breathing through increased

pressures rather than CO2 modulation.

As the titration progresses, pressures can be increased for

clear flow-limitation and obstructive events, which typically

predominate in REM sleep. Periodic (particularly short-cycle)

obstructive events, especially in NREM sleep, should raise suspicion

for high loop gain as a primary driver of the respiratory instability

and aggressive up-titration of pressures should be avoided in

favor of the addition of EERS if possible. It is often useful to

intermittently and frequently review respiratory patterns in a 5–

10min window; this can help to visualize more subtle waxing and

waning respiratory patterns seen as a result of high loop gain which

can appear purely obstructive or evenmissed when viewing in a less

compressed window (Figures 3–5).

Important aspects of the titration include stage/stability

of sleep and body position. Both obstructive and high-loop

gain physiology respiratory events are typically much more

difficult to control in supine sleep. Therefore, an effort

should be made to achieve respiratory stability in the supine

position in both REM (typically predominantly obstructive

requiring higher pressures) and NREM (typically predominantly

loop-gain related and responsive to increased EERS). This

balance is delicate and it is possible that respiratory control

is unachievable in the supine position. If so, the titration

can progress to avoidance of supine sleep utilizing the

same principles, with non-supine sleep utilized as a primary

therapeutic intervention.

Proof of e�cacy and safety

Dead space has some documented efficacy in hypocapnic

CSA, though a prospective randomized trial of EERS is yet
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FIGURE 3

Baseline polysomnography: this baseline PSG of a patient with known sleep apnea demonstrates obstruction with clear high loop gain features

including medium-cycle, self-similar waxing and waning respiratory events resulting in apneas and oxygen desaturations. Respiratory e�ort is present

but minimal during apneic periods. The hypoxia nadir associated with an event actually occurs after the crescendo arm of respirations of the

following cycle has concluded, indicative of a mixing delay.

FIGURE 4

Standard CPAP titration: the patient was placed on standard, vented CPAP titration with no demonstrable improvement in breathing pattern with the

use of positive airway pressure alone despite some improvement in obstructive physiology. The ongoing crescendo-decrescendo respiratory pattern

and self-similar cycle suggest that the residual events are central rather than obstructive in nature despite the ongoing reduced respiratory e�ort.

Despite guidance to score central hypopneas, the AASM scoring rules remains di�cult for most sleep labs given the lack of use of esophageal

balloon probes. Thus, identification of central hypopneas remains highly dependent on pattern recognition by the interpreting provider.

to be done. By using sub-tidal volume dead space with

continuous wash-out with positive airway pressure, EERS enables

an additive or even synergistic effect on respiratory control

stability in sleep apnea care. EERS may be used with adaptive

ventilation, a common practice in our center for patients that

are difficult to control with either intervention alone. This

combination typically reduces the range of pressure oscillations

from the adaptive ventilator, improves tolerance, and reduces

patient-ventilator desynchrony. Logically, EERS and standard

bilevel ventilation would seem incompatible, but a rare patient
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FIGURE 5

CPAP with EERS: the patient’s CPAP titration is altered to include a non-vented mask and addition of EERS. With this change, breathing is immediately

stabilized, with resolution of the crescendo-decrescendo respiratory e�ort of periodic breathing and normalization of oxygenation. The addition of

EERS can allow successful application of higher CPAP pressures when needed to treat residual obstruction without augmenting instability. Of note,

despite improvement in respiratory stability a cyclic pattern can still be observed in the plethysmogram signal, suggesting that the autonomic e�ects

of the respiratory instability of high loop gain features are still not completely controlled. In some patients, cyclical arousals may persist despite

stabilization of breathing. The serves as a testament to the complex multi-system integration of sleep physiology, with some components capable of

demonstrating dissociated behavior.

may prefer the comfort of bilevel ventilation to CPAP. In a

large-scale retrospective review of >200 patients with CPAP-

refractory sleep apnea undergoing non-vented CPAP titration,

control of disease was typically achieved when EERS volume

was added to increase ETCO2 during sleep by just 1–2

mmHg above wake eupneic levels (mean ETCO2 38.6 ± 2.9

mmHg at optimal therapy). Features of EERS titration vs.

traditional CPAP titration from this retrospective review are

summarized in Table 3 (Gilmartin et al., 2010). This study

highlights the goal of EERS therapy in preventing nocturnal

hypocapnia, rather than inducing hypercapnia, with EERS titrated

for control of respiratory events rather than achievement of

certain CO2 levels. Modest overall increases in ETCO2 with

the addition of EERS additionally highlights the plausible

mechanism of improved breathing control, which is likely

secondary to reduction in plant gain and the amplitude of CO2

oscillations during sleep, rather than large increases in arterial

CO2 levels.

Dead space has also been shown to efficacious in the treatment

of CSA in patients with heart failure, with the addition of

400–600 cc of dead space alone resulting in improved sleep

quality and respiratory stabilization, without detrimental effect

on stroke volume or cardiac index as measured by transthoracic

echocardiography, heart rate, or blood pressure (Khayat et al.,

2003). Other data suggests that CO2 modulation via dead

space is effective in significantly reducing AHI in a majority

of OSA patients with a wide range of chemoreflex gains, with

improved control over other interventions such as hyperoxia

and transient isocapnia (Xie et al., 2013). In clinical practice,

the main limitations are excessive leak (site or total volume),

mask fit (tightness) and amplification of borderline claustrophobia.

While these are not unique to the use of EERS, the latter is less

leak tolerant.

Patient barriers to use

The use of non-vented masking with EERS is highly reliant on

an adequatemask seal, as significant leakage (even 20–30 lpmwhich

is considered acceptable in standard CPAP application) may “wash

out” rebreathing space and results in loss of breathing stability

(Gilmartin et al., 2010), depending on the site of leak. Therefore,

achieving adequate mask seal is paramount in successful therapy.

Patients who demonstrate excessive leak should undergo mask

fitting, with consideration of adjuncts such a chin strap or lip tape

to prevent washout through the mouth.

A potential barrier to adequate mask seal is the EERS tubing

itself; given the additional materials required to be added to the

circuit, patients may need to alter their typical sleep position

or utilize clips or other positional aids to ensure mask seal

remains adequate for the duration of the night. Patients who are

particularly sensitive to temperature and humidity fluctuations,

including those with claustrophobia, may have more difficulty

adjusting to the rebreathing space and comfort controls should be

adjusted accordingly.

Finally, the dead space traps somemoisture. Some patients may

find that there is too much condensation in the rebreathing space.

Adjusting humidification or even omitting humidification entirely

are strategies to consider. The ambient humidity and temperature

will also matter, as condensation (“rain out”) is more common in

winter months.

Pharmacologic adjuncts

In patients with significant respiratory instability, medications

aimed at stabilizing breathing may be useful in conjunction with

EERS. The most commonly utilized medication in this setting is
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TABLE 3 Retrospective analysis of 204 patients with CPAP refractory sleep apnea treated with EERS between 1/1/04 and 7/1/06.

Measure Diagnostic PSG Standard Titration EERS Titration p-value

Sleep efficiency (%) 71.3± 18.2 66.9± 21.5 75.4± 14.9 <0.001

TST 222.4± 126.6 219.8± 105.2 308.5± 87.5 <0.001

Stage 1 (% TST) 21.6± 18 24± 19 20.3± 12.7 0.09

Stage 2 (% TST) 60.9± 16.8 56.7± 16.6 58.8± 13.1 0.05

Stage 3 (% TST) 5.8± 7.4 4.6± 6.5 5.5± 6.1 0.05

Stage 4 (% TST) 2.2± 6.3 1.2± 4.2 1.7± 4.2 0.10

REM sleep (% TST) 9.8± 9 13± 10.1 14± 9.5 <0.001

AHI 4% (/h of sleep) 36± 36.8 25.4± 59 4.1± 5.8 <0.001

RDI (/h of sleep) 69.8± 32.8 59.4± 33.9 30.7± 19.7 <0.001

CAI (/h of sleep) 3.8± 8.2 8.9± 11.1 1.5± 2.8 <0.001

Min O2 88.7± 8.1 88.5± 4.8 92.7± 4.5 <0.001

PLM index 6.1± 15.7 2± 4.8 15.2± 19.2 <0.001

EERS titration finding Value

EtCO2 mean wake 38.1± 3.1mm Hg

EtCO2 minimum when respiratory control achieved (minimum 50ml EERS) 38.6± 2.8mm Hg

EtCO2 maximum for the study 42.1± 3mm Hg

Throbbing headache on arousal 0

Headache attributable to mask straps 11 (5.4%)

Palpitations 0

Dyspnea 0

All patients’ had in lab attended polysomnography for diagnosis, conventional CPAP titration, and further titration of EERS. Polysomnographic characteristics are displayed as well as CO2

levels and reported complications (Gilmartin et al., 2010).

AHI, apnea hypopnea index; CAI, central apnea index; EERS, enhanced expiratory rebreathing spacel; Et CO2 , end tidal carbon dioxide; PLM, periodic limb movement; PSG, polysomnogram;

RDI, respiratory disturbance index; TST, total sleep time.

acetazolamide, a carbonic anhydrase inhibitor initially used for the

treatment of altitude sickness. The drugs shifts the CO2 response

curve to the left and lowers the NREM sleep apneic threshold.

Acetazolamide has been demonstrated to reduce respiratory loop

gain by approximately 40% in patients with OSA via reduction

in plant gain, and reducing the ventilatory response to arousal

(Edwards et al., 2012, 2013). In one study of 236 patients with high

loop gain sleep apnea, the addition of 125–250mg of acetazolamide

to standard CPAP therapy resulted in a reduction in breathing

related arousal index, AHI3%/AHI4%, and RDI when compared

to CPAP alone (Ni et al., 2023), and is generally safe and well-

tolerated. Other pharmacologic adjuncts for the treatment of high

loop gain sleep apnea include zonisamide (Eskandari et al., 2014),

topiramate (Westwood et al., 2012), sulthiame (Hedner et al.,

2022) (all carbonic anhydrase inhibitors) as well as buspirone

(Maresh et al., 2020; Giannoni et al., 2021), which could be

considered for patients in whom acetazolamide is poorly tolerated

or contraindicated. Oxygen can always be considered an additional

adjunct, as it directly reduces chemoreflex gain (Franklin et al.,

1997; Sasayama et al., 2009; Yayan and Rasche, 2016).

Considerations for home monitoring

In home settings, patients should be monitored for appropriate

use of the EERS circuit. The increased complexity and need for

after-market modification, combined with reduced familiarity of

the technique with durable medical equipment (DME) providers

means that there needs to be close collaboration with local

DME companies. Practically this can increase risk for errors in

application of the circuit for the patient. Compliance data is key

to track with particular attention paid to markers of respiratory

instability including residual central apneas and periodic breathing.

However, positive airway pressure devices likely underestimate

these patterns and manual review of the breath-by-breath

waveform data can be particularly useful in EERS patients (Ni and

Thomas, 2023). Given leak’s ability to washout the effect of EERS

this should be tracked and aggressively addressed on compliance

data. Persistent optimal respiratory and symptom control despite

substantial leak should raise the question of whether the EERS

modification is still necessary and could trigger a trial return to a

typical “vented” mask set up. A subset of patients with high loop

gain, specifically those with substantial hypoxia, will have complete

resolution of respiratory instability with successful therapy.

Conclusions

Sleep apnea has multiple endotypes and a substantial minority

of patients have high loop gain and/or low arousal threshold which

predisposes to respiratory instability and central apneas. This is

often triggered by relative hypocapnia. Central and complex sleep
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apnea remain difficult to control with existing positive airway

pressure modalities. EERS represents an affordable, and relatively

simple modification of existing positive airway therapy to modulate

CO2 and minimize the hypocapnia that can trigger central apneas.

Retrospective data over more than 15 years of clinical use Suggest

high rates of success in patients previously intolerant of CPAP and

an excellent safety profile. This technique should be avoided in

patients with baseline hypercapnia. As the technique typically only

generates at most a 1–2 mmHg increase in CO2 it is unlikely to

evoke clinically significant hypercarbia or sympathoexcitation. In

order to expand the use of EERS, multi-center, randomized control

trials of EERS are desired. Further studies are also warranted to

examine the combination of EERS with pharmacotherapy aimed at

treatment of high loop gain.
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The odds ratio product (ORP) is a continuous metric of sleep depth that ranges

from 0 (very deep sleep) to 2. 5 (full wakefulness). Its advantage over the

conventional method recommended by AASM is that it discloses di�erent levels

of stage wake (sleep propensity) and di�erent sleep depths within the same

sleep stage. As such, it can be used to identify di�erences in sleep depth

between subjects, and in the same subjects under di�erent circumstances, when

di�erences are not discernible by conventional staging. It also identifies di�erent

sleep depths within stage rapid-eye-movement sleep, with possible implications

to disorders during this stage. Epoch-by-epoch ORP can be displayed graphically

across the night or as average values in conventional sleep stages. In addition,

ORP can be reported as % of recording time in specific ORP ranges (e.g.,

deciles of the total ORP range) where it produces distinct distribution patterns

(ORP-architecture) that have been associated with di�erent clinical disorders and

outcomes. These patterns o�er unique research opportunities to identify di�erent

mechanisms and potential therapy for various sleep complaints and disorders. In

this review I will discuss howORP ismeasured, its validation, di�erences from delta

power, and the various phenotypes, and their postulated mechanisms, identified

by ORP architecture and the opportunities for research to advance management

of sleep-disordered breathing, insomnia and idiopathic hypersomnia.

KEYWORDS

sleep depth, delta power, in obstructive sleep apnea, insomnia, hypersomnia, validation,

sleep architecture, precision medicine

Introduction

In contrast to evaluating sleep state in discrete stages (wake, NREM1-NREM3), assigned

every 30 s, the odds ratio product (ORP) measures wake/sleep state on a continuous scale

from 0 (very deep sleep) to 2.5 (full wakefulness) and makes this assessment every 3 s (1).

The continuous nature of the ORP scale makes it possible to distinguish different wake states

in the transition from full wakefulness to light sleep (Figure 1A), and different levels of sleep

depth within the same conventional sleep stage (Figure 1B). In addition, measurement over

3-s intervals makes it possible to measure brief dynamic changes in sleep depth that cannot

be obtained from the conventional staging approach.

Since its original description in 2015 (1). ORP was used in numerous studies to

determine normative values and reproducibility (2), relation to conventional staging (1, 3, 4),

differences in ORP between central and frontal electroencephalogram (EEG) derivations (4),

differences from delta power as measures of sleep depth (5), changes in obstructive sleep

apnea (OSA) and Insomnia (6–8), sleep changes with continuous positive airway pressure

(CPAP) (6, 9), changes in response to sleep restriction and deprivation (5, 10), maturational

changes in sleep and association with pediatric psychiatric disorders (11, 12), association

with CPAP adherence (13), association with sleepiness and quality of life (2, 7, 13, 14),
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underlying mechanism of poor sleep and its consequences in

critically ill patients (15–17), response to traffic noise (18),

association with traffic accidents (19), and dynamics of sleep

recovery after arousal (8, 20).

Along with these studies, the reporting of ORP has evolved

from simple description of its values in specific sleep stages or

sleep disorders or as temporal changes across the night, to various

patterns of ORP distribution within total recording time (7). This

last development has changed ORP from being a simple descriptive

tool of sleep depth to a way of understanding mechanisms of sleep

complaints and disorders.

The above observations and developments have provided new

insights into sleep physiology and pathology. However, virtually

all published information was derived from retrospective studies.

While the accumulated information is sufficient to formulate

hypotheses about diagnoses and likely effective therapy of various

sleep complaints, it is necessary to perform prospective studies

to validate these hypotheses before ORP can be used clinically in

patient management. In this review I will present the observations

that form the bases for several proposed investigations, and what

is needed to validate the retrospective observations. But first, some

basic information about how ORP is measured, validation of ORP

as a measure of sleep depth, and how ORP is reported, will

be presented.

How is ORP measured?

ORP can be measured from any central or frontal electrode

(1, 4). This feature makes it possible to measure ORP from reduced

monitoring devices attached to the forehead. Although only one

derivation is needed, it is always better to monitor two similar

electrodes, one on each side. This allows detection of differences

in ORP between the two sides. Such differences make it possible to

identify and discard artifacts and to detect true differences in sleep

depth between the two sides, with potential clinical implications

(2, 15, 19). In addition, one electrode can serve as a spare if the

other fails.

The method of calculating ORP was described in detail

elsewhere (1). Briefly, fast Fourier transform is applied to all EEG

values within non-overlapping 3-s epochs. Total power in each

of 4 frequency ranges, within the 0.33–35.0Hz frequency range,

is calculated. Power in each frequency range is assigned a rank

from 0 to 9 based on its location within the range of powers (in

the relevant frequency) observed in 56 clinical polysomnograms

(PSGs) representing a wide range of clinical disorders. The four

ranks are concatenated into one 4-digit number (Bin number)

that describes the powers in the different frequencies from left

to right relative to each other. Thus, 4,179 refers to a 3-s epoch

in which power in the slowest range is in the 5th decile of the

range of powers observed in this frequency, while power in the

next higher frequency is in the second decile, and power in the

two highest frequencies are in their 8th and 10th (highest) deciles

of their respective ranges [see Younes (3), for examples of EEG

patterns with different bin numbers]. This approach is distinct from

other spectral methods that rely on absolute power in selected

frequencies, since absolute power is influenced by technical and

biological factors unrelated to sleep depth [see, Normalized EEG

power (2)]. The probability of patterns associated with each bin

number occurring in epochs scored wake, or during arousals,

is determined from a look-up table. This probability (0–100%)

is divided by 40 (% wake epochs in development files) thereby

converting the range to an ORP range of 0 to 2.5, where 0 refers to

a pattern that never occurs during wake epochs or during arousals,

while 2.5 refers to patterns that are never seen during sleep (1).

An important detail to note is that the slowest of the four

frequency ranges used to calculate ORP (0.33–2.33Hz) is different

from the conventional delta range, which is wider (0.5–4.0, or 0.5–

5.0Hz) (21). For ORP, power in the fast delta range (2.6–4.0Hz) is

combined with power in the theta range (4.3–6.7Hz) to provide

the power in the second range used to calculate ORP. This has

important implications to the EEG frequency that is most sensitive

to sleep depth, as will be discussed in the section on ORP vs. Delta

Power, below.

Validation

ORP correlates well with the visual appearance of the EEG

(1, 7) (Figure 1), and decreases (deeper sleep) following sleep

deprivation (10), and sleep restriction (5), while increasing as

sleep progresses during the night (22). ORP increases transiently

following application of brief noise stimuli whether or not they

result in cortical arousal (18). However, the most compelling

evidence is the finding that the correlation between ORP in a given

30-s epoch and probability of spontaneous arousal or awakening

occurring in the next epoch is quite high (Figures 2A, B; r2 = 0.98)

(1, 5).

ORP vs. Delta power

Power in the delta frequency range (up to 4 or 5Hz) is

commonly used to evaluate sleep depth. However, other than its

increase following sleep deprivation (23, 24), and decrease across

the night (24), and during nocturnal sleep after daytime naps

(25), there has been little information on the quantitative relation

between delta power and sleep depth as defined by ease of arousing

from sleep.

In a recent study (5), the relationships between delta power

(0.33–5.67Hz) or ORP and arousability, were compared in healthy

young adultsmonitored overnight for 8 consecutive nights of which

the first two served as baseline. Baseline results are shown in

Figure 2B. The relationship between ORP in any given 30-s epoch

and probability of arousal or awakening in the next 30-s epoch

was, as described earlier (1), linear (r2 = 0.99; Figure 2B). The

relationship for delta power was strikingly different; arousability

decreased as delta power increased but only over a very limited

delta power range (0.0–300 µV2), with no further decrease in

arousability as delta power increased to 1,000 µV2 or more

(Figure 2B). The inflection point, at 300 µV2, is generally the

delta power at which the large delta waves (>75 µV2, 0.5–2.0Hz)

begin to appear and stage N3 is scored (5). Further increases

in average delta power (in 30-s epochs) simply reflect increasing

number and/or amplitude of delta waves. These observations have

important clinical implications:
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FIGURE 1

(A) Four 30-s strips of EEG tracings all staged as wake, illustrating various states between full wakefulness (top tracing) and near sleep. The ORP

values reflect these di�erences. (B) Five 30-s strips staged as N2 but showing a variety of patterns that range from one that reflects very light sleep

(top panel) to one that is very similar to stage N3 except that the total duration of delta waves is <20% of the epoch (From reference: Younes M,

Azarbarzin A, Reid M, Mazzotti DR, Redline S. Characteristics and reproducibility of novel sleep EEG biomarkers and their variation with sleep apnea

and insomnia in a large community-based cohort. Sleep. (2021) 44:145.).

FIGURE 2

(A) Relation between average odds ratio product (ORP) in 30-s epochs during sleep and the probability of arousal or awakening in the next 30-s

epoch (Arousability Index) in 56 polysomnograms (PSG) of patients with assorted sleep disorders. Numbers at top are number of 30-s epochs used at

each ORP level (From reference: Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, et al. Odds ratio product of sleep EEG as a

continuous measure of sleep state. Sleep. (2015) 38:641–54.). Permission to be obtained if paper is accepted (B), Top Panel: Relation between

average ORP in 30-s epochs during sleep and the probability of arousal or awakening in the next 30-s epoch in 40 normal subjects. Bottom Panel:

Relation between log delta power and arousal probability in the same sleep studies. Note that arousability decreases over a small range of delta power

(From reference: Younes M, Schweitzer PK, Gri�n KS, Balshaw R, Walsh JK. Comparing two measures of sleep depth/intensity. Sleep. (2020) 43:127.).
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• Differences in delta power when delta waves are present

do not reflect differences in sleep depth; rather they reflect

density (number per minute) and amplitude of delta waves.

Growing evidence points to a critical role of these delta wave

characteristics in memory, cognition, sleep maintenance and

mental health (26). Given that these characteristics can be

easily measured in clinical sleep studies, reporting them, or

simply reporting average delta power in stage N3, may provide

important insights into mechanisms of various manifestations

of clinical sleep disorders.

• Almost the entire change in sleep depth occurs before N3 is

scored (Dotted vertical lines, Figure 4). Thus, absence of stage

N3 need not signify absence of deep sleep.

ORP and conventional sleep stages

Figure 3A illustrates how 30-s epochs with different ORP levels

are typically scored by expert scorers (Panel A), and Figure 3B

the range of ORP in different visually scored sleep stages. When

ORP is <0.25 two scorers agree that the patient is asleep almost

all the time (white sections). When ORP is >2.25, they agree

the patient is awake almost all the time (black zones). Percent of

epochs scored wake by both scorers remains very low (<5%) until

ORP of 1.00, but disagreement (gray zones) increases slightly as

ORP approaches 1.00. Between ORP 1.00 and 1.75, disagreement

between scorers occurs in a substantial fraction of epochs and

for these three deciles collectively, the chances of disagreement,

agreement on stage wake or sleep are almost random. Epochs in

this range contain features of both stages to a sufficient extent that

elicits disagreement between expert scorers. Accordingly, they are

considered transitional. Between 1.75 and 2.25 epochs are most

commonly scored wake by both scorers but in some epochs, sleep

features (slowing, micro sleep) are sufficiently prominent to result

in the epoch scored sleep by one or both scorers. Thus, ORP in

this range reflects the extent to which visually appreciated sleep

features exist in the epoch. Figure 3B shows results of ORP recorded

in different stages in in the Sleep Heart Health Study (n = 5,804).

There is a wide range of ORP in all stages but on averages ORP

decreases progressively as stage progresses from wake to stage N3.

The range of ORP in rapid eye movement sleep (REM) is very wide

and on average higher than in stages N2 and N3. However, much

overlap exists between stages.

How is ORP reported and how its
results might be interpreted?

While the methods of reporting are extensively described here,

the interpretations suggested in this section are mostly based on

retrospective studies or logical extension of basic sleep findings

in the literature. Interpretations provided here are intended to

stimulate discussion and to suggest ideas for prospective research

and not as a guide to management.

ORP can be reported in several ways with each offering different

insights into the patient’s sleep. Figure 4 illustrates four of these

approaches. The figure shows results of 3 subjects, one with no sleep

symptoms (Panel 4A) and two with symptoms of insufficient/non-

restorative sleep (Panels 4B and 4C). The conventional hypnogram

and conventional architecture data (above each panel) in all three

cases were within normal limits:

A) Graphical approach (30-s epoch-by-epoch ORP graph,

Figure 4): This display provides a bird’s-eye view of the changes

in wake propensity and sleep depth across the night, offering

detail that cannot be appreciated from numerical summaries. It

also serves a learning objective in that it confirms some of the

advantages of ORP. For example, in the illustrated Figure 4, one

can see that ORP varies widely within stage wake and stage N2 (any

panel), and that REMORPmay be higher (Figures 4A, B) or similar

to ORP in NREM sleep in different patients (Wide arrows). It is

also clear that ORP during stage N2 can be as low as in stage N3

(1, 5), such that absence of stage N3 does not mean lack of deep

sleep. It can also be appreciated that the rate at which sleep deepens

following an awakening is different among patients (compare rates

of decline at light arrows in panels 4B and 4C). A curious observer

may also make new connections between certain patterns and

clinical presentations that may result in new research hypotheses.

B) ORP in Different Sleep Stages (Figure 4, values at the

bottom of each panel): These values compliment conventional

stages by showing differences between patients, or in the same

patient before and after interventions, that cannot be disclosed

by conventional stages. Figure 4, and the following discussion,

illustrate how the use of ORP can identify sleep abnormalities

when a patient is symptomatic, but the sleep study is normal

by conventional metrics. Thus, notwithstanding the similar

conventional architecture among the 3 subjects of Figure 4,

ORPWAKE was low (less alert) in subjects B and C than in subject

A and ORPNREM and ORPREM were highest (lighter sleep) in

subject B and very low (deep sleep) in subject C (Figure 4). The

obvious next question is: what are normal values in the different

sleep stages?

Table 1 shows average and range of ORP in different stages

according to demographic and disease categories (2). ORP in any

stage ranges widely among individuals within any category, even in

subjects with no OSA or insomnia, and there is almost complete

overlap in the ranges among different subcategories, so that there

is no clear demarcation between values in health and disease. This

is likely because sleep depth (ORP during sleep) and propensity

(ORP during stage wake) are to a large extent influenced by sleep

pressure (5, 7, 10). In turn, sleep pressure may be high or low in

different subjects because of sleep pathology (e.g., excessive sleep

need in idiopathic hypersomnia and hyperarousal in insomnia,

respectively) or because of different demographics (2, 7), and sleep

history (5, 7, 10) in people who are otherwise normal (Table 1).

Accordingly, actual values in individual patients are not very

helpful in determining, per se, whether they represent pathology or

physiology.

What is important in interpreting ORP in sleep stages is to note

where the value falls within its respective range in the community

at large. A high ORPNREM within its range (e.g., patient B, Figure 4;

1.29 in a range of 0.50–1.36, Table 1) indicates that NREM sleep is

very light. Absence of clinical sleep symptoms (insomnia, excessive

sleepiness, non-restorative sleep. . . etc.) would suggest a physiologic

reason and may be ignored. On the other hand, presence of sleep

symptoms (e.g., patient B, Figure 4) would point to: (a) A disorder

that interferes with progression to deep sleep (e.g., OSA, periodic

limb movement (PLM) disorder, other somatic or environmental

arousal stimuli); (b) A low sleep pressure state associated with
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FIGURE 3

(A) Frequency distribution of 30-s epochs with di�erent average odds ratio product (ORP). Within each bar white and black segments are epochs

staged asleep and awake, respectively, by two expert technologists while hatched segments are epochs receiving a split awake/asleep decision (From

reference: Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, et al. Odds ratio product of sleep EEG as a continuous measure of

sleep state. Sleep. (2015) 38:641–54.). (B) Range (median and 5 and 95 percentiles) ORP in di�erent visually determined stages in 5,781 subjects of

the Sleep Heart Health Study (SHHS) incorporation subjects with obstructive sleep apnea (OSA) (n = 2,504), insomnia (n = 419), insomnia + OSA (n =

403), and neither insomnia nor OSA (n = 2,455).

FIGURE 4

Data from three subjects (A–C) with normal conventional hypnograms illustrating substantial di�erences in their ORP metrics. Values above each

panel are derived from the conventional sleep metrics showing that all values were within normal limits. TST, total sleep time; SE, sleep e�ciency;

N1%, N3%, and REM% are percent of TST in stages N1 and N3 of non-rapid eye movement sleep (NREM) and in rapid eye movement sleep (REM),

respectively. Epoch by epoch odds ratio product (ORP) values are displayed as graphs below the hypnograms of the 3 subjects and as averages in

di�erent sleep stages and show substantial di�erences between the 3 subjects. ORPWAKE, ORPNREM, ORPREM, and ORPTRT are the average values of

ORP in all epochs staged as Wake, NREM sleep, REM sleep, and total recording time, respectively. Note that the rate at which ORP decreases from full

wakefulness to deep sleep di�ers between subjects [thin arrows in subjects (B, C)], and that ORP during REM sleep varies among subjects [thick

arrows in subjects (B, C)]. CSI, integral of the di�erence between 2.5 (full wakefulness) and instantaneous ORP (Graph values) across total recording

time, representing total units of wake suppression during the study. Note the marked di�erence between the three subjects. Histograms to the right

show %TRT spent within each ORP decile with sleep depth decreasing from decile 1 (very deep) to decile 7 (transitional sleep) to full wakefulness

(decile 10). Note the marked di�erence in the ORP histograms of the three subjects with subject A having a normal distribution, subject B having

most epochs in transitional and light sleep while in subject C the distribution is markedly shifted to the left. See text for interpretation of these

di�erences (Un-published data).

Frontiers inNeurology 05 frontiersin.org212

https://doi.org/10.3389/fneur.2023.1273623
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Younes 10.3389/fneur.2023.1273623

TABLE 1 Odds ratio product in di�erent stages per demographics and disease categories.

Category Number ORPWAKE ORPNREM ORPREM ORPTRT

All 5,781 2.12 (1.85–2.35) 0.83 (0.49–1.22) 1.28 (0.74–1.89) 1.14 (0.73–1.60)

Age (yrs.)

40–55 1,533 2.07 (1.74–2.30)a 0.79 (0.48–1.16)a 1.18 (0.72–1.75)a 1.04 (0.67–1.46)a

55–70 2,399 2.13 (1.83–2.34)b 0.83 (0.52–1.24)b 1.30 (0.78–1.86)b 1.13 (0.74–1.58)b

70–90 1,849 2.15 (1.84–2.36)c 0.87 (0.52–1.31)c 1.35 (0.79–1.92)c 1.22 (0.79–1.68)c

Gender

F 3,027 2.14 (1.85–2.35)a 0.82 (0.50–1.25)a 1.28 (0.74–1.88)a 1.12 (0.71–1.60)a

M 2,754 2.09 (1.77–2.32)b 0.85 (0.53–1.25)b 1.29 (0.78–1.83)a 1.15 (0.75–1.59)b

Race

White 4,889 2.13 (1.83–2.34)a 0.84 (0.51–1.25)a 1.28 ( 0.76–1.86)a 1.14 (0.73–1.60)a

Black 512 2.10 (1.77–2.33)b 0.88 (0.57–1.29)b 1.38 (0.88–1.93)b 1.20 (0.80–1.65)b

Other 380 2.05 (1.74–2.29)c 0.77 (0.49–1.13)c 1.18 (0.72–1.79)c 1.04 (0.67–1.47)c

Disease category

No OSA or Insomnia 2,454 2.13 (1.83–2.35)a 0.81 (0.49–1.22)a 1.27 (0.74–1.89) 1.10 (0.70–1.56)a

Insomnia 419 2.16 (1.86–2.36)b 0.85 (0.49–1.29)bc 1.31 (0.78–1.92) 1.18 (0.73–1.65)bd

Comisa 403 2.13 (1.78–2.34)ac 0.88 (0.53–1.36)b 1.30 (0.77–1.83) 1.21 (0.78–1.66)b

Mild OSA 1,557 2.11 (1.80–2.33)c 0.83 (0.52–1.22)acd 1.28 (0.77–1.83) 1.13 (0.75–1.57)c

Mod. OSA 482 2.10 (1.80–2.33)c 0.85 (0.53–1.26)bd 1.28 (0.79–1.85) 1.15 (0.73–1.64)cd

Sev. OSA 465 2.07 (1.70–2.30)d 0.93 (0.58–1.35)e 1.3 (0.84–1.86) 1.21 (0.80–1.63)b

∗ , values are means (5–95 percentile).
a,b,c values within the same category that do not share the same superscript are significantly different from each other (p < 0.001).

ORP, odds ratio product; REM, rapid eye movement sleep; NREM, non-REM; TRT, total recording time. Values in this table were derived from Tables 2, 3 of reference Younes et al. (2).

insomnia (hyperarousal) or related to lifestyle or use of stimulant

drugs or drinks. These possibilities can be distinguished by other

findings in the sleep study (e.g., OSA, PLMs, excessive wake time)

or in the history (insomnia, lack of excessive somnolence, excessive

napping, drugs, or stimulant drinks). Noting ORP in other sleep

stages can be helpful in difficult cases. For example, high ORPNREM
associated with high ORPWAKE suggests a low sleep pressure state,

while an associated low ORPWAKE points to a sleep disorder that

interferes with progression to deep sleep (Patient B, Figure 4)

(2, 8, 14).

By contrast, a low ORPNREM (Patient C, Figure 4) could be

normal, particularly in asymptomatic young adults (7). However,

if associated with excessive somnolence or non-restorative sleep,

it suggests a state of high sleep pressure due to insufficient sleep

prior to the sleep study or excessive sleep need (certain types of

idiopathic hypersomnia) (27). These can be distinguished from the

sleep history.

Table 1 shows that on average ORP in all stages increases with

age. ORPWAKE is higher and ORPNREM is lower in females, while

the opposite is true in the black race. These differences are, however,

small relative to the wide range in any category.

ORPWAKE reflects the weighted average of ORP in all epochs

scored wake. Thus, it is low whenmost wake epochs are in a drowsy

wake state, indicating reduced vigilance (Figure 1A), and vice versa.

Reflecting this, ORPWAKE is higher in insomnia than in subjects

with no insomnia while it decreases progressively withOSA severity

(Table 1). By contrast, ORPNREM is higher than controls (noOSA or

insomnia) in the presence of both OSA and insomnia.

ORPREM documents the variable background EEG in this stage,

which visually ranges from a pattern indistinguishable from stage

wake to one not that different from deep stage N2, without the

spindles. Reflecting this range, ORPREM is higher than ORPNREM
(0.74–1.89, Table 1) but the difference between ORPNREM and

ORPREM varies widely from being minimal (Figure 4C) to being

large (Figures 4A, B). The significance of these differences is not

clear although the association of high ORPREM with reduced REM

time and increased REM fragmentation (28) may be relevant to

abnormal dream states andmood disorders. Interestingly, ORPREM
is a strong trait (2) and, unlike other ORP measures, is not different

between genders or disease phenotypes (Table 1).

In addition to the above uses of ORP in different stages,

ORPNREM was recently found to be a significant determinant of

sleep improvement on CPAP (6) and adherence to CPAP (13), both

outcomes are better when ORPNREM is high before therapy.

Opportunities for research

• The most significant advantage of ORP over conventional

staging is its ability to identify differences in sleep depth

within the same conventional sleep stage (Figure 1). An
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important clinical question is therefore whether clinical

outcomes are improved when ORP in different stages is

available to treating physicians investigating suspected sleep

disorders. Specific questions may include: (A) Does ORP

help identify abnormalities in patients with sleep complaints

when conventional architecture is normal or inconclusive

(e.g., using the approach described for interpreting differences

in Figure 4)? (B) Does ORP help explain symptomatic

improvement or deterioration following a given intervention

(e.g., CPAP, or therapy for insomnia or depression . . . etc.)

when conventional architecture did not change? For example,

didORPNREM improve or deteriorate despite unchanged times

in different sleep stages, or did ORPWAKE increase or decrease,

indicating change in sleep pressure, on therapy.

• Examining potential associations of ORPREM with

psychiatric disorders.

• Confirming the ability of ORP at baseline to predict sleep

improvement on, (6) and adherence to, (13) CPAP.

C) Cumulative Sleep Index (CSI) (7): Given that ORP in full

wakefulness is close to 2.5, the difference between 2.5 and ORP at

any moment is a measure of “wake suppression” at that moment

(Figure 4). CSI is the integral of these differences across total

recording time (TRT) in minutes. Thus, a patient who remains

fully awake throughout would have a CSI of 0 while a patient

who was in very deep sleep throughout would have a CSI of

2.5∗TRT. For a common TRT of 480min, the maximum CSI is

1,200 min.ORPunits.

The advantage of CSI over total sleep time (TST) or sleep

efficiency (SE) is that it takes into account different sleep depths

during sleep and also includes reductions in ORP during stage

wake (drowsy wake, Figure 1A). Thus, a minute with ORP of 1.8

during stage wake contributes 0.7 units to CSI when it does not

contribute to TST or SE. Its advantage over ORP in total recording

time (ORPTRT) is that it incorporates differences in TRT. In practice

CSI is calculated from [(2.5-ORPTRT)
∗ TRT] (7). When CSI is

measured from sleep studies with unrestricted time in bed, it

provides the total “units of sleep” needed by the subject to sleep

enough (i.e., individual sleep need), particularly if the value is

reproducible over several consecutive nights.

Normal values have not yet been properly established. However,

the Sleep Heart Health Study (SHHS) provides preliminary data

on this variable in that subjects were not instructed to wake

up at any specific time. In SHHS subjects with no OSA or

insomnia and with TRT >7 h (to avoid studies ending because

of technical problems) TRT, TST, and SE ranged up to 541min

(≈9 h), 519min (8.7 h), and 98.4%, respectively. In this cohort

CSI averaged 651 ± 129 and was reported to decline with age

(due primarily to declining ORPTRT) and to be only marginally

higher in women, and not affected by BMI (7). The most

interesting finding here was that at any age the range of CSI varied

widely with a SD of 121 units, representing a 90% confidence

interval of 484 units (Figure 5A). After excluding 444 subjects

with TST>7 h, who likely had excessive sleep pressure during

the single study, the relation with age was essentially unchanged

with the exception that the standard deviation (SD) decreased

from 121 to 108 (Figure 5B). This wide variation of “sleep

need” is particularly noteworthy as it is not consistent with the

fairly narrow range of currently recommended sleep time (7–

8 h).

CSI was recently used to investigate mechanisms of idiopathic

hypersomnia (IH) (27). Figure 6 shows results from 3 patients

from this study who underwent sleep studies with unrestricted

duration in Dr. Robert Thomas’ laboratory at Harvard University

and represent the extreme range of the results. All three patients

slept >10 h (Figure 6), had no OSA (apnea hypopnea index (AHI)

2.4, 0.9, and 0.5 h−1), and only one patient had brief periods of

PLMs (Figure 6A) (PLM index 26, 3, and 3 h−1), thereby consistent

with IH.

Arousal index was normal in all three (12, 22, and 21 h−1) and

although total sleep time (TST: 319, 395, and 474min, in patients

1–3) and sleep efficiency (SE:70, 84, and 95%) were different

among the three patients in the first 8 h, the differences were not

informative regarding the reason for excessive sleepiness. The ORP

tracings (Figure 6) clearly show that sleep was very light in patient

1, deeper in patient 2, and even deeper in patient 3 (ORPTRT: 2.13,

1.12, and 0.48, respectively), thereby indicating that insufficient

sleep in a typical time in bed (8 h) may be contributing to sleepiness

in patient 1 but not likely in patients 2 or 3, unless sleep need is high

(i.e., idiopathic hypersomnia).

CSI provides additional information to what can be gleaned

from ORP values in that it is a quantitative index of how much

sleep the patient obtained in the usual 8-h study vs. what he/she gets

with unrestricted sleep. Thus, Patient 1 managed only 169 units of

sleep at 8 h, well below the 90% CI observed in community dwellers

(Figure 5). At the end of the unrestricted study CSI was 345, well

below average sleep need (e.g., Figure 5). Given these findings, it

may be reasonable to conclude that, rather than having excessive

sleep need, this patient has decreased sleep need (e.g., hyperarousal)

as evidenced by the low CSI after ad lib sleep, while this very

modest sleep need cannot be delivered in 8 h due to the very poor

sleep quality. Thus, pending validation studies, investigation and

treatment of poor sleep to lower ORP might be the appropriate

management strategy in this patient.

Patient 2 (Figure 6) had an average amount of sleep in the first

8 h (CSI 651) but he clearly needed more (1,022 at the end of the

study). At his average ORP rate (ORPTRT = 1.12), he needed an

extra 4 h. However, his ORP during the first 8 h had still some room

to improve (decrease). If ORP could be decreased to the same level

as patient 3 (ORPTRT = 0.48) patient 2 can potentially achieve his

needs [1,022] within a normal time in bed (Patient 3 achieved 970

at 8 h).

At the extreme other end, patient 3 (Figure 6) had nearly the

maximum CSI he could achieve in 8 h (970). There is no room to

improve his sleep in order to decrease his required time in bed and

treatment needs to focus on managing excessive sleepiness.

Following the same logic, it may be reasoned that excessive

wake time in an 8-h study in a patient whose CSI during the study

is average or high, may be due to the patient achieving his normal

sleep need in a shorter than the recommended time in bed and

spends the rest of bedtime awake. On the other hand, a low CSI

under the same circumstances in a non-sleepy patient suggests low

sleep pressure throughout, which may be a hyperarousal state (see

ORP type 1,3, below).
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FIGURE 5

(A) Relation between Cumulative Sleep Index (CSI) and age in subjects of the Sleep Heart Health Study (SHHS) with total recoding time >7h and no

obstructive sleep apnea or insomnia. (B) Same relation after excluding subjects with >7h of total sleep time. Dashed lines in panel B are ±2 SD from

the main regression line (un-published data).

FIGURE 6

Range of odds ratio product (ORP) results in three patients (patients 1, 2, 3) with idiopathic hypersomnia represented in (A–C). Cumulative sleep

index values (CSI) values are shown at 8 hours and at the end of the study. Patient 1 had very high ORP (light/transitional sleep) throughout the 13h

study. His CSI was only 169 at 8 h and was still 345 after 13h, both values are well below average sleep need (cf. Figure 5). CSI in patient 2 was normal

at 8 h but increased well above mean ±2 SD (Figure 5B) after 11h of sleep, indicating high sleep need. In patient 3 CSI was already well above

average (970) at 8 h but increased further to 1,249 at 10.5 h, indicating extremely high sleep need. ORP histograms are shown to the right and

illustrate marked di�erences despite the same clinical diagnosis. PLM, periodic limb movements. See text for potential implications of these di�erent

patterns on management (From an unpublished study by Dr. Robert Thomas, with permission from Dr. Thomas).

Opportunities for research

• The above interpretations and management suggestions

assume that an increase of one unit of CSI has the same

restorative function regardless of whether it is generated

by more sleep time or more sleep depth. This is an

assumption that needs to be proven. The easy availability of the

quantitative CSI makes it possible to address this fundamental
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question as well as other aspects of the restorative function

of sleep.

• CSI provides an opportunity for determining personalized

sleep need. Thus, measuring CSI in a subject who feels

refreshed during a period of ad lib sleep on a sustained

basis (e.g., vacation) would determine his/her total amount

of sleep need. This would then represent the subject’s sleep

target needed under other conditions where he/she has non-

restorative sleep, with the target reached through extension

of regular time in bed or improvement in sleep depth via

appropriate therapy, as the case may be.

D) ORP-related Sleep Architecture (The ORP Histogram):

This is the most informative way of presenting ORP results

(see Histograms in Figure 4). Rather than reporting % of

time in different conventional sleep stages, percent of time

in different ORP deciles is displayed as a histogram (7). The

striking contrast between the three histograms in Figure 4, despite

normal conventional architecture, illustrates the sensitivity of this

approach. Such plots provide easy to recognize patterns that

can be categorized, with the categories studied to determine

their association with clinical outcomes. The patterns also allow

caregivers to formulate hypotheses regarding the likely underlying

mechanisms of the patient’s complaints, which can be pursued by

history or appropriate tests.

Based on susceptibility to arousal (Figures 2A, B) (1, 5) deciles

1 and 2 reflect the fraction of time spent in deep and very deep

sleep (ORP <0.5), while decile 10 (ORP >2.5) reflects time in full

wakefulness (Figure 1). In between these two extremes the different

deciles represent (from left to right), decreasing levels of sleep depth

(deciles 3 and 4; ORP 0.50–1.00, Figures 1, 2) and transitional sleep

with features of both sleep and wakefulness (deciles 5–7, ORP 1.00–

1.75). Epochs in deciles 8 and 9 (ORP 1.75–2.25) are usually scored

wake but they contain some sleep features (e.g., theta waves or

periods of micro-sleep that are<15 s; Figure 1A) and reflect drowsy

wake states (7).

Categorization of these patterns is based on the relation

between times spent in deep sleep and in full wakefulness in

response to pure changes in sleep pressure (7). In response to

a pure increase in sleep pressure, as in after sleep deprivation,

the histogram shifts to the left, with deep sleep increasing and

full wakefulness decreasing, while in response to decreased sleep

pressure, as in later in the sleep period, the opposite happens

(Figure 7) (7). This paradoxical relation between deep sleep and full

wakefulness is put to use as follows:

The full ranges of % deep sleep (deciles 1 + 2) and % full

wakefulness (decile 10) were determined in 3,585 subjects of the

Sleep Heart Heath Study (SHHS) who had >7 h of total recording

time (7). The mid-range (25th-75th percentile) for each variable

(deep sleep and full wakefulness) was determined. Values in the

lowest quartile of each range were assigned a rank of 1, values

in the mid-range were assigned a rank of 2, and values in the

highest quartile were assigned a rank of 3. A two-digit number

was assigned to each PSG based on these two digits. Thus, type

1,3 describes a PSG with % deep sleep in the lowest quartile and

% full wakefulness in the highest quartile, and so on. Nine types

were, accordingly, categorized (1,1, 1,2, . . . 3,3). Based on response

to pure changes in sleep pressure (Figure 7), types with paradoxical

relation between deep sleep and full wakefulness (e.g., 1,3 or 3,1)

are consistent with low (type 1,3) or high (type 3,1) sleep pressure,

respectively. When the two variables are both in the high or low

quartile (e.g., 1,1 or 3,3), the type is not consistent with pure

changes in sleep pressure.

In summary, assigning a two-digit number to ORP

distribution makes it possible to easily appreciate the underlying

pathophysiology. Thus, low first digit and high third digit

(i.e., 1,3) signify a disorder associated with low sleep pressure

across the night, and vice versa for type 3.1. When both digits

are low (i.e., 1,1) the decreased amount of deep sleep is not

due to low sleep pressure since there was little time in full

wakefulness, and suggests a sleep disrupting disorder. And

when both digits are high (i.e., 3,3) the excessive amount of full

wakefulness is not due to low sleep pressure across the night

(e.g., hyperarousal) since there was plenty of deep sleep. The

other advantage is that these 9 patterns do not overlap (i.e.,

are mutually exclusive) which, unlike differences in times of

conventional stages, limits the possible underlying mechanisms of

sleep complaints.

The following section describes the clinical associations and

likely mechanisms of the different ORP types (7), beginning

with the most clinically relevant types. Table 2 gives an

overview of the distribution of the different types in different

clinical phenotypes in the SHHS, and Figure 8 shows the

frequency of different types in different age groups in the same

study (7).

Type 1,1 (Figure 4B, right): The low amount of deep sleep

suggests either low sleep pressure or a disorder that interrupts

progression to deep sleep. However, the low amount of full

wakefulness does not support the existence of low sleep pressure

(7). Accordingly, the most likely mechanism of this pattern is a

disorder that interferes with progression to deep sleep and, likely

as a consequence, may be associated with high sleep pressure

(e.g., excessive sleepiness) (7). The following findings support

this conclusion:

• This pattern is rare (2%) in community dwellers free of OSA

or insomnia (7).

• Its frequency increases exponentially as OSA severity increases

(3.1%, 3.5%, 5%, and 15.1%, respectively, with mild (AHI 5–

15 h−1), moderate (AHI 15–30 h−1), severe (30–50 h−1), and

very severe (AHI >50 h−1) OSA) (Table 2) (7).

• Its frequency is also very high in critically ill, intubated un-

sedated patients in the intensive care unit (33%) (17), where

OSA is not a factor but other factors that preclude progression

to deep sleep are in abundance (30).

• It is one of only three (of nine) ORP types in which CPAP

improves sleep among patients with OSA (6).

• Among patients with OSA it is the ORP pattern associated

with highest average ESS (11.3±5.4), highest frequency

of ESS>10 (67.9%), and highest frequency of ESS >17

(15.5%) (6).

• Among all ORP types it is associated with the lowest mental

[SF36(M)] and second lowest physical [SF36(P)] quality of life

scores (7).
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FIGURE 7

(A, B) Odds ratio product (ORP) architecture in 200 healthy participants in before and following 36h of sleep deprivation. Note the remarkable

leftward shift in the ORP distribution. (C, D) Comparison of ORP-architecture in the first and second halves of the night in Sleep Heart Health Study

(SHHS) subjects with “No OSA or Insomnia.” An opposite shift is evident. ↓ and ↑, significant increase or decrease relative the same decile in the

reference panel (p < 1E−10 in all). PSG, polysomnogram (From reference: Younes M, Gerardy B, Pack AI, Kuna ST, Castro-Diehl C, Redline S, et al.

Sleep architecture based on sleep depth and propensity: patterns in di�erent demographics and sleep disorders and association with health

outcomes. Sleep. (2022) 45:59.).

These observations support the notion that this pattern results

from a disorder that interferes with progression to deep sleep

that is frequently associated with excessive sleepiness, with OSA

being the most recognized, but not the only, example of such

a disorder. Thus, finding pattern 1,1 in a patient with sleep

symptoms and no obvious sleep pathology that can account for

it in the PSG (e.g., subject in Figure 4B) suggests the presence of

other sources of frequent arousal stimuli (skin, musculoskeletal,

gastrointestinal, . . . etc.).

Type 1,2: This type is similar to type 1,1 except that full

wakefulness accounts for up to 12% of TRT instead of being <3.4%

in type 1,1 (7). As in pattern 1,1, its frequency increases with OSA

severity (Table 2) (6, 7), and it is one of the three types where

sleep improves on CPAP (6). It is also associated with higher ESS

and lower quality of life (7). Accordingly, it is considered to have

the same underlying mechanism as type 1,1. It is, however, more

common in the community, occurring in 9.7% of subjects with no

OSA or insomnia, as opposed to 2% for type 1,1 (Table 2) (7). Thus,

it is more likely to be encountered in patients with no OSA. It is

still not clear, however, if it is associated with excessive sleepiness

and poor quality of life if not associated with OSA.

Opportunities for research

• The long term impact of OSA on health outcomes is currently

uncertain (60). It is likely that negative health outcomes occur

in only aminority of patients such that they are obscured when

diluted with a large number of patients who are not so affected.

As a corollary, treatment of OSA may benefit only a subset of

patients and this benefit is obscured when outcomes of therapy

studies are performed on unselected patients. Currently,

efforts are directed at identifying patients whose long term

health outcomes are adversely affected and, by extension, who

might benefit fromCPAP or other OSA therapy. Conventional

sleep study metrics, including AHI, are not very helpful in this

regard (60). Recently, other markers such as hypoxic burden

and presence of excessive somnolence have been associated

with increased risk of cardiovascular events but the results

have been inconsistent in different cohorts (29, 31–35). The

discovery that only two ORP types, 1,1 and 1,2, are associated

with poor sleep quality and associated excessive sleepiness,

provides an opportunity to determine whether these two types

selectively benefit from OSA therapy.
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TABLE 2 Distribution of di�erent ORP architecture types in clinical categories.

ORP type Sleep heart health study All

“No disease” Obstructive sleep apnea Insomnia

Mild Mod.a Sev.b V. sev.d NSDc SSDe
+OSAc

1,1 30 (2.0) 30 (3.1) 13 (3.5) 7a (5.0) 11d (15.1) 6 (3.3) 0 (0) 10 (4) 107

1,2 147 (9.7) 118 (12.1) 53 (14.2) 29b (20.9) 18b (24.7) 26 (14.4) 5 (6.3) 29 (11.6) 425

1,3 131 (8.6) 88 (9.0) 40 (10.7) 15 (10.8) 16b (21.9) 9 (5.0) 23d (28.8) 43b (17.3) 365

2,1 168 (11.1) 106 (10.9) 37 (9.9) 16 (11.5) 3 (4.1) 21 (11.7) 3 (3.8) 23 (9.2) 377

2,2 406 (26.8) 266 (27.3) 102 (27.3) 40 (28.8) 13 (17.8) 64 (35.6) 9 (11.3) 57 (22.9) 957

2,3 177 (11.7) 128 (13.2) 54 (14.4) 16 (11.5) 4 (5.5) 10 (5.6) 31d (38.8) 38 (15.3) 458

3,1 201 (13.2) 104 (10.7) 39 (10.4) 11 (7.9) 5 (6.8) 20 (11.1) 1 (1.3) 21 (8.4) 402

3,2 219 (14.4) 114 (11.7) 36 (9.6) 5 (3.6) 1 (1.4) 23 (12.8) 3 (3.8) 20 (8.0) 421

3,3 35 (2.3) 19 (2.0) 3 (0.8) 0 (0) 2 (2.7) 1 (0.6) 5 (6.3) 8 (3.2) 73

Total 1,517 973 374 139 73 180 80 249 3,585

OSA, obstructive sleep apnea; NSD, normal sleep duration; SSD, short sleep duration; Mod., Sev., V.Sev., are moderate, severe, and very severe OSA, respectively. values are number of subjects

with the type indicated; numbers in brackets indicate the percent of subjects in each clinical category with the type indicated. Differences between values in each category and the “No-disease”

category were evaluated by the Chi-square test and their significance is indicated by superscripts in the column heading.
ap < 0.02; bp < 0.0001; cp < 1.E-5; dp < 1.E-10; ep < 1.E-25. From Table 3 in reference Younes et al. (7).

FIGURE 8

Prevalence of di�erent odds ratio product (ORP) types in di�erent age groups in the Sleep Heart Health Study. Lines are upper margin of error (95%

confidence interval). Solid circles, values found in participants with severe (gray circle), and very severe OSA (black circles) in the di�erent ORP types.

White stars, values found in participants with insomnia and short sleep duration. Dark stars, values found in participants with insomnia plus OSA. All

symbols are plotted against the 55–70 age group (gray columns) since average age in all clinical groups fell in this range. Where no symbols are

shown above a given ORP type, the prevalence of the type is within the confidence interval of participants with no OSA or insomnia (From reference:

Younes M, Gerardy B, Pack AI, Kuna ST, Castro-Diehl C, Redline S, et al. Sleep architecture based on sleep depth and propensity: patterns in di�erent

demographics and sleep disorders and association with health outcomes. Sleep. (2022) 45:59.).

• Similarly, given the myriad causes of excessive sleepiness,

at least as measured by the Epworth Sleepiness Scale (ESS),

presence of somnolence in a patient with OSA does not

indicate that somnolence is caused by OSA (6). In fact, average

ESS does not begin to increase until AHI is >45 h−1 and even

then the increase is minimal (6). Determining if sleepiness in

sleepy patients with OSA improves preferentially in those with

ORP types 1,1 and 1,2 would be worthwhile.

• Given that the selective improvement in sleep on CPAP in

types 1,1 and 1,2 was found in split sleep studies, additional

prospective studies while patients are on long term CPAP are

needed to confirm these findings.

Type 1,3 (Figure 9A): This pattern is most relevant to patients

with excessive wake time (low sleep efficiency). The paradoxical

relation between deep sleep (very little) and full wakefulness

(excessive) in this type is consistent with low sleep pressure across

the night. Given the multiple mechanisms of low sleep pressure,

this pattern is ubiquitous, occurring in asymptomatic subjects and

in association with various sleep disorders (Table 2) (7). In a large
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community cohort (Sleep Heart Health Study; SHHS) pattern 1,3

was present in 365 of 3,585 (10.2%) of all subjects (Table 2). Of

these, 131 (35.8%) occurred in subjects with no insomnia or OSA

(7). Of the remaining 234 subjects with this pattern 202 subjects

(87%) had concomitant OSA (Table 2) (7). Of these, only 43 (21%)

also had concomitant insomnia (Table 2) (7), thereby meeting the

criteria of COMISA (Comorbid insomnia and sleep apnea) (36).

It should be pointed out that the frequency of type 1,3 in

patients with mild, moderate, and severe OSA is not significantly

different than that of subjects with no OSA and that even in very

severe OSA (AHI >50 h-1), the number of patients with this type

(16, Table 2) exceeded that expected from values in no OSA (6,

Table 2) by only relatively few patients (10), several of whom had

insomnia symptoms but in whom symptoms were less frequent

than 3 times per week. Thus, the extra patients with type 1,3 (n

= 10) may have been examples of COMISA. Furthermore, in a

separate study on patients with insomnia and excessive wake time,

there was no difference in ORP in any sleep stage between those

with and without mild-moderate OSA (8), and in a separate study,

wake time remained high, albeit somewhat lower, in patients with

type 1,3 and insomnia when treated with CPAP (6). Accordingly,

when type 1,3 and OSA coexist, the excessive wake time likely

reflects a state of low sleep pressure, independent of OSA.

Consistent with earlier findings that wake time increases with

age (37, 38), type 1,3 increases dramatically in frequency with age

in asymptomatic subjects, from<2% (95% percentile) in those<40

years to 20% in those over 70 years (Figure 8) (7). The increase in

wake time with age is primarily in the ORP range of full wakefulness

(decile 10), with much smaller increases in drowsy wakefulness

(deciles 8 and 9) (7), suggesting that the excess wake time in older

people is due to age-related decrease in sleep pressure (or need)

rather than to age-related diseases that impair sleep (7). It follows

that finding this pattern need be of concern only if associated with

insomnia or if the patient is young even in the absence of insomnia,

where it may indicate a disorder of low sleep pressure, for example

a latent hyperarousal state or excessive napping.

In summary, the above findings suggest that OSA is not causally

related to excessive wake time when the two conditions coexist

except possibly in very severe OSA. Even when the associated OSA

is severe, it is possible that the low sleep pressure in this pattern

may be contributing to OSA severity, rather than the other way

around (8). By correcting upper airway instability CPAP use in such

combined cases is associated with improved sleep depth but is not

expected to normalize wake time (6).

The relation between type 1,3 and insomnia is complex. Of

365 subjects with this pattern in the SHHS, only 75 (20.5%) met

the accepted definition of insomnia (Table 2) despite the excessive

wake time (Table 1) (7). On the other hand, the frequency of

type 1,3 in subjects with COMISA (17.3%) and in those with

insomnia and short sleep duration (Insomnia SSD; 28.8%, Table 2),

was significantly higher than in those without insomnia (8.7%) or

in those with paradoxical insomnia (Insomnia with normal sleep

duration (NSD); 5%, Table 2), suggesting a causal relation between

the excessive wake time in this type and the patient’s symptoms.

For the entire SHHS cohort type 1,3 was associated with

the lowest SF36 (P) and the third lowest SF36 (M) (7). These

associations persisted after adjusting for age, gender, body mass

index (BMI), AHI, and insomnia. In addition, type 1,3 was

associated with significantly lower SF36 (P) and SF36 (M) in

subjects with no OSA or insomnia after adjusting for age, gender,

and BMI (7). Thus, this type is the most consequential with

respect to quality of life, whether or not it is associated with

OSA or insomnia. Type 1,3 was also associated with higher

risk of hypertension and all-cause mortality in the same study

(unpublished observations).

It is worth noting that despite the progressive increase in

frequency of types 1,1, 1,2, and 1,3 with OSA severity (Table 2),

other types not associated with poor sleep, sleep improvement on

CPAP, or reduced quality of life (Types 2,1 to 3,3, see below) are

also seen in OSA (Table 1). These types accounted for 75.8%, 71.6%,

63.3%, and 38.3% of all patients in mild, moderate, severe, and very

severe OSA, respectively (Table 2) (7).

Opportunities for research

1) Further studies are needed to determine if long term CPAP

use improves clinical outcome in patients with mild-moderate OSA

associated with excessive wake time since the impairment in sleep

depth at this level of severity is minimal (6).

2) Sleep in Critically Ill Patients: It is well-known that sleep

is very poor in critically ill patients in intensive care units

(39–42). Independent of critical illness, poor sleep adversely

affects several organ functions that are critical for recovery and

liberation from mechanical ventilation (immune function (43, 44),

respiratory control (45), neuroendocrine and metabolic function

(46–48), cardiovascular responses (49), mental health (50, 51). It

is therefore likely that poor sleep contributes to poor outcome

in such patients (30, 52). An important question, therefore, is

whether normalization of sleep improves clinical outcomes in these

patients. Critically ill patients are routinely administered different

kinds of sedatives to help them sleep. However, whether these

sedatives result in normal sleep or simply act as CNS depressants

is not known.

ORP was recently used to study sleep in critically ill patients

(15–17). In one study, those with little or no time in full wakefulness

during 15 h of monitoring were less likely to pass a weaning

trial (15). In another study on un-sedated stable patients prior

to extubation, ORP types 1,1, 1,2, and 1,3 were present in 68%

of patients, by contrast to a frequency of 25.8% in the general

community (17). Of these three types, type 1,1 was the most

frequent (33.0%) followed by type 1,3 (22.0%) (17). Furthermore,

these abnormal ORP patterns were found with similarly high

frequency (77%) among a separate cohort of intensive care unit

(ICU) survivors, with little improvement 6 months after discharge

(17). These findings strongly suggest that poor sleep in critically

ill patients, prior to attempted extubation, is largely due either

to arousal stimuli that preclude progression to deep sleep (types

1,1 and 1,2) or to a hyperarousal state (type 1,3), and that these

abnormalities persist even months after discharge (17).

In a third study, the impact of mild sedation with propofol

and dexmedetomidine on ORP architecture was studied (16).

These two agents caused a leftward shift in the ORP distribution

toward the normal pattern in all patients, with pattern becoming

normal or almost normal in most patients. On average, ORP
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FIGURE 9

Three ORP types found in subjects with excessive time in full wakefulness (decile 10). In type 1,3 (A) there is little deep sleep. In type 2,3 (B) time in

deep sleep is normal, and in type 3,3 (C) time in deep sleep is above average. Types 1,3 and 2,3 are the most common types in insomnia with short

sleep duration. ESS, Epworth Sleepiness Scale (From reference: Younes M, Gerardy B, Pack AI, Kuna ST, Castro-Diehl C, Redline S, et al. Sleep

architecture based on sleep depth and propensity: patterns in di�erent demographics and sleep disorders and association with health outcomes.

Sleep. (2022) 45:59.).

architecture approached normal distribution. Importantly, apart

from normalizing ORP distribution, the spectral pattern of the

EEG at any given ORP was indistinguishable from that in natural

sleep outside the ICU, suggesting that these agents, in appropriate

doses, are capable of producing normal sleep rather than CNS

depression (16).

Collectively, these three studies indicate that poor sleep in the

ICU ismostly related to abnormal arousal stimuli, or a hyperarousal

state, and that sleep can be normalized by the appropriate kind

and amount of sedation. Also given that ORP can be measured

and displayed in real time (53) it would be feasible to control the

sedative dosage using ORP feedback. It would be of great interest to

determine whether, using such feedback, clinical outcomes improve

by implementing a sustained period of sleep (e.g., corresponding

to normal total sleep time) with some variation in sleep depth to

simulate the different sleep cycles seen normally, and adjusted to

coincide with nighttime to maintain a normal circadian rhythm.

Type 2,3 (Figure 9B): As in type 1,3, type 2,3 is characterized

by excessive time in full wakefulness (Figure 9B) and a high

frequency in insomnia SSD (38.8%) but not insomnia NSD

(Table 2). Therefore, the excessive time in full wakefulness likely

contributes to insomnia symptoms. Type 2,3 is the most frequent

type in insomnia SSD (Table 2). However, in marked contrast to

type 1,3, type 2,3 is associated with normal amount of deep sleep

(sum of deciles 1 and 2; 17.6 ± 4.9% vs. 4.6 ± 3.2%, p < 0.0001;

Figure 9B). It is also not associated with reduced quality of life, (7)

or hypertension or mortality (unpublished). These findings, along

with a normal (average) ESS (6, 7) and no associated poor health

outcome suggest that this type occurs in people who obtain enough

restorative sleep but stay in bed longer than they need to Younes

et al. (7).

Type 3,3 (Figure 9C): As its 2-digit number indicates, this

type is associated with high amounts of deep sleep as well as

full wakefulness (Figure 9C). Its frequency was very low in all

age groups in subjects with no OSA or insomnia in the SHHS

(Figure 8) and its frequency did not increase with OSA severity

and/or insomnia (Table 2). ESS and quality of life are average

(7). The location of the fully wake time within the sleep study

is highly variable and may consist of one long period early, late

or in mid-region, or multiple shorter periods within sleep period

time (Figure 10). This type suggests a circadian disorder or an

individual who meets his sleep need in less time than time in

bed (short sleeper). Multiple short awakenings may also be related

to urination. Wake periods often start suddenly from deep or

REM sleep (Figure 10), which may suggest a parasomnia. Enquiry

about these possible causes would be appropriate in patients with

this type.

Opportunities for research

Research in insomnia
At present, sleep studies are not recommended for patients with

insomnia as they are felt to contribute little to clinical management

and may exclude many patients with primary insomnia (54). The

use of ORP in patients with insomnia has, however, identified

several phenotypes that differ in health outcomes and likely

underlying mechanisms and, potentially in response to therapy.

These findings advocate for use of PSG in patients with insomnia,

if only for research purposes.

Insomnia with Normal Sleep Duration: As expected we found

no difference in conventional indices between insomnia with

Frontiers inNeurology 13 frontiersin.org220

https://doi.org/10.3389/fneur.2023.1273623
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Younes 10.3389/fneur.2023.1273623

FIGURE 10

(A–C) Conventional sleep hypnograms and 30-s odds ratio product (ORP) results in three subjects with ORP type 3,3 [high amounts of deep sleep

(ORP <0.5) as well as high amounts of full wakefulness (ORP >2.25)] showing the di�erent locations of excessive time in full wakefulness within the

sleep study. Unpublished data.

normal sleep duration and subjects with no insomnia (7). Also,

apart from one interesting finding, there were no differences

in ORP architecture between these patients and those with no

insomnia (Table 2) (7). However, in marked contrast to insomnia

with short sleep duration, time in full wakefulness (decile 10) was

significantly lower than in patients with no insomnia (7). To the

extent that less time in full wakefulness is suggestive of higher sleep

pressure (Figure 7), this observation suggests that, notwithstanding

the lack of difference in distribution of ORP types (Table 2),

sleep may have been of lower quality in these patients. Further

investigation into differences in sleep microstructure is warranted.

Insomnia with Short Sleep Duration: Vgontzas et al. reported

that insomnia with SSD is the most biologically severe form

of insomnia, being associated with a high risk of hypertension,

diabetes, cognitive impairment, and mortality (55–59). The current

findings indicate that ORP architecture in insomnia SSD includes

several distinct phenotypes that share excessive wake time but

differ in other respects: (a) ORP type 1,3 with poor sleep along

with poor health outcomes (Figure 9A); (b) ORP type 2,3 with

normal sleep quality and no adverse health outcomes (Figure 9B);

(c) Type 3,3 with better than average sleep quality and no adverse

health outcomes (Figure 9C); (d) Other uncommon types in which

excessive wake time is preferentially in the drowsy wake state

(deciles 8 and 9) (Table 2). Of these, except for type 1,2, which

accounts for 6.3% of these patients and is associated with slight

reduction in SF36 (M), these types are also not associated with

adverse health outcomes.

Thus, it is possible that the adverse effects described by

Vgontzas et al. (55–59) stem from the increased representation

of type 1,3 in this insomnia category (Table 2). Also, given the

different likely mechanisms of these various phenotypes (7), it is

possible that response to insomnia therapy may differ among these

phenotypes. It would be of considerable clinical importance to

confirm these findings and to determine if these types respond

differently to insomnia treatment modalities.

Types 3,1 and 2,1: Type 3,1 is the prototypical pattern of

uncomplicated high sleep pressure (Figures 2C, 7B). Except for a

lesser amount of deep sleep (19.8± 5.2% vs. 41.1± 9.7%TRT) type

2,1 shares all characteristics and associations as type 3,1. Thus, their

frequency is highest in young adults (>24% of adults <40 years;

Figure 8) and decreases progressively with age to <7% in subjects

>70 years (Figure 8). On average, in the SHHS, they occurred with

similar frequency in adults with no OSA or insomnia (13.2 and

11.1%, respectively; Table 2) and, reflecting the impact of severe

OSA in preventing progression to deep sleep, frequency decreased

as OSA severity increased, becoming uncommon (<7%) in very

severe OSA (Table 2). Also as expected, their frequency is much

reduced in insomnia SSD but not in insomnia NSD (Table 2).When

associated with OSA, their presence indicates that sleep depth is

not degraded by the disorder. This is supported by the fact that

sleep depth does not improve, or deteriorates, when CPAP is used

(acutely) in patients with OSA and this ORP type (6).

Reflecting the fact that most subjects with these two types

have no sleep disorder or have OSA that does not interfere

with progression to deep sleep (see above and Table 1), ESS is

not significantly increased (6, 7). However, given their similarity

with the pattern seen with sleep deprivation (Figure 7B), and

their high frequency in patients with idiopathic hypersomnia
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(Patient 3, Figure 6), (27) occurrence of type 3,1 in subjects

with excessive sleepiness (e.g., Figure 4C), and particularly

in older individuals, would suggest that the patient may

not be getting sufficient sleep because of poor lifestyle or

excessive sleep need (idiopathic hypersomnia; see Cummulative

Sleep Index, CSI; above), and such disorders need to be

excluded before discounting insufficient sleep as the reason for

excessive sleepiness.

Type 2,2 (Figures 2A, 6A, D): This is the most common type

among subjects (in the SHHS) with no OSA or insomnia

(26.8%, Table 1), and its frequency is nearly the same at

all OSA severity levels and both insomnia types (Table 2).

ESS and quality of life indices are average (7). The average

amounts of deep sleep and full wakefulness argue against

high or low sleep pressure. Accordingly, this type almost

certainly reflects normal sleep. If associated with symptoms

suggestive of a sleep disorder (sleepiness, non-restorative

sleep, insomnia) the symptoms are not likely due to a sleep

abnormality (7).

Type 3,2 (Figure 7C): This type differs from type 2,2 in having

more deep sleep while the amount of full wakefulness is average,

making it less likely that sleep pressure is high. It is most common

in subjects with no OSA or insomnia (Table 2) and its frequency

decreases as OSA severity increases and in insomnia SSD (Table 2).

It is also not associated with increased sleepiness or poor quality

of life (7), and when associated with OSA sleep depth is not

responsive to CPAP (6). These findings suggest that this is a

normal pattern.

In summary, there are four patterns that predominate in

subjects with no obvious sleep pathology and their frequency

either decreases or is unchanged in the presence of OSA or

insomnia (Types 2,1, 3,1, 2,2, and 3,2). They are statistically

not associated with excessive sleepiness or poor quality of life.

Accordingly, such patterns likely represent normal sleep except

when they are found under specific circumstances such as types

2,1 or 3,1 in an older subject or in a subject with objective

excessive sleepiness. Type 2,3 also appears to be a normal pattern

except for its frequent occurrence in insomnia with short sleep

duration, where it may be a milder variant of type 1,3 or,

pending investigations, simply reflect staying in bed longer than

needed. On the other hand, types 1,1 and 1,2 always warrant

investigation into possible sources of frequent arousals. Type 1,3

is also of concern, except in old asymptomatic subjects, as it

may indicate a disorder of low sleep pressure (e.g., hyperarousal,

excessive napping. . . etc.).

Conclusion

ORP is a continuousmetric of sleep depth and wake propensity.

It makes it possible to distinguish different wake states in the

transition from full wakefulness to light sleep and different levels

of sleep depth within the same conventional sleep stage. It has

been extensively validated. It can be reported in graphic as

well as numeric ways. When reported as percent of recording

time spent in different ORP deciles the distribution patterns

are distinct from each other and suggest different underlying

mechanisms for patient symptoms. Using these patterns, different

phenotypes have been found in patients with OSA, insomnia

and idiopathic hypersomnia. These provide the bases for future

research that could pave the way for improved management of

these disorders.
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Obstructive sleep apnea (OSA) is a prevalent condition that negatively impacts

cardiovascular, metabolic and mental health. A high proportion of individuals

with OSA remain undiagnosed and incur significant healthcare costs. The gold

standard OSA diagnostic is in-lab polysomnography, but this is costly and

time-consuming. Home sleep apnea tests (HSATs), including cardiorespiratory

polygraphy and peripheral artery tonometry technology, provide an alternative.

Advances in HSAT technology include non-invasive, easy-to-use medical devices

that could allow unobtrusive, accessible, multi-night, cost-e�ective diagnosis and

management of sleep-disordered breathing. One type of these devices is based

on determination of peripheral arterial tone, and use photoplethysmography

signals from the finger (oxygen saturation, pulse wave amplitude and pulse rate).

The devices contain algorithms that use these data to generate the traditional

metrics required by the American Academy of Sleep Medicine. They can be

used to record sleep parameters over multiple nights at home, and can also

provide information on total sleep time (TST) and sleep stages (including time

spent in rapid eye movement sleep). The combination of objective measures

(apnea-hypopnea index, oxygen desaturation index, respiratory disturbance index,

TST) and subjective measures (symptoms and other patient-reported outcome

measures) could facilitate the development of a personalized therapeutic plan

for OSA patients. It is anticipated that the streamlined digital pathway facilitated

by new peripheral artery tone-based technology could contribute to reducing

the underdiagnosis of OSA, accelerating access to appropriate treatment, and the

optimization of OSA therapy.

KEYWORDS

diagnosis, peripheral artery tonometry, precision medicine, sleep disordered breathing,

telehealth, HSAT, night-to-night variability
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1. Introduction

Obstructive sleep apnea (OSA) is the most common form of

sleep-disordered breathing (SDB). It is characterized by partial

or complete upper airway obstructions that are associated with

intermittent hypoxia and transient arousals. The global prevalence

of OSA in middle-aged adults has been estimated to be nearly

one billion, with approximately half of these having moderate-to-

severe disease with an indication for treatment (Benjafield et al.,

2019).

OSA results in increased sympathetic activity, oxidative stress,

inflammation, endothelial and metabolic dysfunction, and is

associated with a variety of cardiovascular, cerebrovascular and

metabolic diseases, and increased all-cause mortality (Nieto et al.,

2000; Peppard et al., 2000; Kendzerska et al., 2014; Kent et al.,

2015; Linz et al., 2015; Reutrakul and Mokhlesi, 2017; Xie et al.,

2017; Mehra et al., 2022; Salari et al., 2022). Untreated OSA also

contributes to occupational and traffic accidents (Bioulac et al.,

2017; Hirsch Allen et al., 2020) and absence from work (Lallukka

et al., 2014), and has a negative impact on cognitive function

(Gnoni et al., 2023) and quality of life (Kerner and Roose, 2016;

Vinnikov et al., 2017; Alomri et al., 2021; Legault et al., 2021).

A high proportion of individuals with OSA remain

undiagnosed (Young et al., 1997; Kapur et al., 2002). This is

relevant from a health system perspective because a person with

OSA has been estimated to have double the annual healthcare costs

than someone without OSA (Kapur et al., 1999). Furthermore,

the diagnosis and treatment of OSA are associated with positive

economic benefit (Wickwire, 2021; Mattila et al., 2022; Sterling

et al., 2023).

2. OSA diagnosis

The current gold standard for diagnosing OSA is in-laboratory

polysomnography (PSG). PSG is a costly and time-consuming

process that requires highly trained personnel for set-up and

scoring, and therefore has limited availability. PSG is essential

in specific patient groups (e.g., those with comorbidities), but

the majority of individuals do not require PSG for diagnosis

of OSA. PSG is subject to the first-night effect and although

it can be performed over multiple nights and at home, this

is resource intensive and not feasible in the majority of cases,

which limits its ability to detect night-to-night variability in SDB

parameters (Newell et al., 2012). Therefore, there is a need for

OSA diagnostic tests that are more widely available, cost effective

and can be used for timely multi-night sleep testing, allowing

healthcare professionals to take care of all individuals referred for

evaluation or management of OSA. As a result, home sleep apnea

testing (HSAT) has become a routine approach for individuals

with suspected OSA. HSAT does not require supervision, is

less expensive than PSG and allows replication of sleep patterns

under “usual” conditions. Many PSG-validated HSAT devices are

available (e.g., level 3 cardiorespiratory polygraphy) that provide

adequate apnea-hypopnea index (AHI) estimation according to

the American Academy of Sleep Medicine (AASM) criteria for

sleep apnea diagnosis (Kapur et al., 2017; Rosen et al., 2018).

However, use of total recording time rather than total sleep time

(TST) to calculate respiratory indices may lead to important

underestimation of event rates (Escourrou et al., 2015; Massie

et al., 2022a). According to the AASM practical guidelines, both

polygraphy and peripheral artery tonometry-based HSATs can

be used for the diagnosis of sleep apnea (American Academy

of Sleep Medicine, 2023). There are two Conformité Europénne

(CE) mark and US Food and Drug Administration-approved,

commercially available peripheral artery tonometry-based HSAT

devices (NightOwl
R©
and WatchPAT

R©
).

2.1. Photoplethysmography and peripheral
arterial tonometry for detection of
respiratory events

Reflectance-based photoplethysmography (PPG) detects

pulsatile changes in blood volume in peripheral tissues and has

been defined as an important technology in sleep monitoring

devices (Ryals et al., 2023). Peripheral artery tonometry refers

to the determination of peripheral arterial vascular tone (the

net balance between vasoconstriction and vasodilation) using

PPG data. Peripheral artery tonometry measures pulsatile

volume changes in the digital vascular bed that are densely

innervated (Schnall et al., 1999; Zou et al., 2004). In the context

of OSA, there is increased sympathetic nervous system activity

near the end of a respiratory event (obstructive apnea). The

associated release of norepinephrine increases tone in the

peripheral arteries, resulting in vasoconstriction and a reduction

in the volume of blood displaced between systole and diastole.

By measuring this relative change in blood volume, sudden

changes in peripheral arterial tone that occur in response to

respiratory events can be detected (O’Donnell et al., 2002).

These pulse wave amplitude drops have been shown to be an

important biomarker of cardiometabolic risk and outcomes

(Hirotsu et al., 2020; Strassberger et al., 2021; Solelhac et al.,

2023).

Peripheral artery tonometry-based devices combine

information on changes in arterial volume with oxygen saturation

(SpO2; both from the PPG signal) with data on peripheral

arterial tone and heart rate (Yalamanchali et al., 2013; Massie

et al., 2018; Van Pee et al., 2022; Lyne et al., 2023). During

recording, a respiratory event is typically detected by analyzing

the co-occurrence of one or more of the following events:

oxygen desaturation; vasoconstriction (decreased peripheral

artery tonometry signal); and increased pulse rate. Based on these

data, peripheral artery tonometry devices contain proprietary

algorithms that generate the traditional metrics required by the

AASMManual for the Scoring of Sleep and Associated Events (e.g.,

AHI, respiratory disturbance index) (American Academy of Sleep

Medicine, 2023). The two currently available devices, NightOwl R©

and WatchPAT R©, have different proprietary algorithms and

technical specifications. Both have been validated against PSG (Zou

et al., 2006; Massie et al., 2018; Van Pee et al., 2022), and generally

show good agreement with PSG for parameters such as the AHI

and OSA severity (O’Brien et al., 2012; Yalamanchali et al., 2013;

Camilon et al., 2014; Choi et al., 2018; Ioachimescu et al., 2020;

Van Pee et al., 2022). Furthermore, information on sleep (e.g.,
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TST, time spent in rapid eye movement [REM] sleep, wake time)

can also be estimated using peripheral artery tonometry-based

devices (Hedner et al., 2011; Massie et al., 2018; Zhang et al.,

2020).

2.2. Detection of central sleep apnea and
REM sleep using peripheral artery
tonometry-based devices

Although OSA is the predominant sleep apnea subtype, central

sleep apnea (CSA) is another important form of SDB (Dempsey,

2019). The mechanisms underlying these two types of sleep

apnea are different, because CSA is characterized by a lack of

respiratory drive, while OSA result from a partial or complete

obstruction of the upper airways. In PSG, cessation of respiratory

drive or effort can be inferred from the abdominal and thoracic

respiratory effort belts. This information is not currently available

from peripheral artery tonometry-based devices, but could be

detected using fingertip PPG data. The fingertip PPG signal

inherently contains respiratory information because blood flow to

body extremities is influenced by alterations in thoracic pressure

throughout the respiratory cycle (Ryals et al., 2023). Therefore, the

PPG signal amplitude oscillates in synchrony with the respiratory

cycle. This amplitude modulation can be isolated to retain a signal

representing respiratory effort. The respiratory effort signal can

then be used to classify respiratory events as being of an obstructive

or central nature. Use of PPG has recently been shown to provide

useful data for the detection of CSA in individuals with suspected

sleep apnea (Sommermeyer et al., 2012; Massie et al., 2023).

Approximately 10%−36% of individuals with sleep apnea

have REM-predominant OSA (Alzoubaidi and Mokhlesi, 2016),

whereby SDB events are more pronounced during REM sleep

(Varga and Mokhlesi, 2019). These individuals are at high

risk for common OSA comorbidities, including atherosclerosis,

hypertension, metabolic syndrome and diabetes (Mokhlesi et al.,

2014; Acosta-Castro et al., 2018; Ljunggren et al., 2022). In order

to properly define this phenotype, it is essential to be able to

classify REM sleep with sufficient accuracy. Vasoconstrictions and

oxygen desaturations detected in peripheral artery tonometry and

SpO2 signal traces, respectively, show a different temporal pattern

between REM and non-REM sleep (Lavie et al., 2000; Dvir et al.,

2002; Herscovici et al., 2007; Choi et al., 2016). Furthermore, pulse

rate low frequency power has been shown to increase in REM

sleep (Chouchou and Desseilles, 2014). This means that PPG-based

techniques can be used to detect REM sleep (Lavie et al., 2000;

Zhang et al., 2020), although peripheral artery tonometry-based

HSAT has lower sensitivity for REM detection than PSG (Massie

et al., 2022b).

Overall, the ability of peripheral artery tonometry-based HSAT

devices to detect REM sleep and their potential to differentiate

between central and obstructive respiratory events increase the

utility and application of these devices across a range of SDB

types. They may also have clinical usefulness in individuals with

comorbidities such as atrial fibrillation (Tauman et al., 2020; Jensen

et al., 2023) and chronic obstructive pulmonary disease (Hansson

et al., 2023).

2.3. Multi-night sleep testing

A key advantage of a peripheral artery tonometry-based

approach is that it provides a convenient and low-cost option

for multi-night testing. This is important because evaluating

SDB over multiple nights provides a greater amount of data

on respiratory parameters. This may help to achieve a correct

diagnosis, and could allow evaluation of the evolution of sleep-

related breathing disorders over time during the application of

appropriate therapy. Peripheral artery tonometry devices are small,

and therefore allow more natural (e.g., less supine) sleep due to

the lack of cables compared with PSG. Furthermore, there is a

large body of evidence showing that there is substantial night-

to-night variation in sleep-related respiratory events, meaning

that a single night of monitoring may be insufficient to allow

reliable determination of sleep apnea severity at the individual

level, resulting in misclassification in a substantial proportion of

people (Punjabi et al., 2020; Roeder et al., 2020; Lechat et al.,

2022). Furthermore, emerging evidence suggests that large night-

to-night variability in sleep apnea severity (based on the AHI)

is a predictor of uncontrolled hypertension (Lechat et al., 2023),

and that sleep data from a single night of recording performed

worse than multi-night testing with respect to cardiovascular risk

prediction (Lechat et al., 2023). For data from multiple nights of

sleep testing (at least three nights in total, including one night

on the weekend), some experts believe that it is probably best to

use the highest AHI value recorded to provide guidance regarding

treatment initiation, rather than the average AHI. However, studies

are needed to validate this approach. In summary, the multi-night

monitoring capability of peripheral artery tonometry devices allows

patient sleep trajectories over time to be determined in an accessible

and acceptable manner, providing a clearer understanding of

sleep habits and allowing better shared decision-making and more

personalized therapy (Hrubos-Strøm et al., 2023; Lisik et al.,

2023).

3. OSA diagnostic and management
workflow using peripheral artery
tonometry-based devices

HSAT workflow is simple and can be implemented remotely.

However, a wider consideration is how new, multi-night, low-

touch tools such as peripheral artery tonometry devices can be

incorporated into the SDB patient pathway in a way that maximizes

benefits for the patient (optimizing diagnosis and therapy), for

healthcare professionals (time saving, reduced sleep lab workload,

patient-centered management), and for the healthcare system

(cost savings, resource optimization). As well as diagnosis, use of

simple, compact HSAT devices could contribute to improving the

efficiency of ongoing management of OSA therapies, including oral

appliances and positive airway pressure therapies. An integrated

and personalized diagnostic and therapeutic digital pathway

can be facilitated by the use of objective diagnostic measures

(AHI, oxygen desaturation index, sleep time, hypoxic burden),

subjective measures such as symptoms and patient-reported
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outcome measures, and the monitoring of therapy efficacy

(Figure 1).

For healthcare professionals, HSAT with a device that

uses peripheral artery tonometry (such as NightOwl
R©

and

WatchPAT
R©
) is considered to be less time consuming, allowing

more efficient patient management using a digital pathway without

any loss of diagnostic accuracy. Having a solution that can be

implemented remotely also allows more patients to be reached,

especially those who do not have easy access to a sleep laboratory or

sleep physician. In addition, the COVID-19 pandemic highlighted

the value of being able to continue healthcare evaluations and

treatment monitoring without face-to-face interaction between

healthcare professionals and patients (Bouloukaki et al., 2023).

Accurate, multi-night sleep testing information is a key

component that can help to drive much-needed personalized

approaches to the diagnosis and treatment of sleep apnea

(Arnardottir et al., 2022). While OSA may superficially be

considered as a single disease, there are a variety of diverse clinical

manifestations (or phenotypes) (Zinchuk et al., 2017; Duong-Quy

et al., 2022). The presence of different OSA phenotypes means that

a personalized, approach to the diagnosis and treatment of OSA

is required to optimize clinical outcomes for individual patients

(McNicholas and Korkalainen, 2023). The ability to detect different

sleep apnea phenotypes such as REM-predominant OSA and CSA

makes peripheral artery tonometry-based devices valuable tools for

facilitating this type of personalized treatment.

Another important consideration is the patient experience,

which is becoming increasingly recognized as a key measure

of health system performance (Jamieson Gilmore et al., 2023).

There are a number of features that would likely result in

a good experience for individuals being investigated for SDB

using peripheral artery tonometry-based devices. These include

the ability to perform sleep testing over multiple nights in the

home environment, simple device set-up, quick and reliable

event analysis. This approach is also ideally suited to facilitate

a P4 medicine approach to OSA—Predict; Prevent; Personalize;

Participate (Lim et al., 2017). Early and effective diagnosis

of OSA in otherwise healthy individuals would allow the

implementation of lifestyle interventions and early treatment that

could contribute to prevention of common OSA comorbidities

(i.e., primary prevention) (Yim-Yeh et al., 2010), facilitate

personalization of therapy options, and allow the individual to

participate in the diagnosis and monitoring of their condition.

Furthermore, simplicity and flexibility are important, especially for

the disabled, the elderly and for people who are less familiar with

new technologies.

4. Discussion

It has long been recognized that there is a lack of healthcare

resources to meet the clinical demands of individuals with sleep

apnea or suspected sleep apnea (Flemons et al., 2004; Pack, 2004).

Nevertheless, effective and timely diagnosis of OSA plays an

important role in preventing or limiting the negative health impacts

of this condition. Peripheral artery tonometry-based wearable

sleep testing devices that can be self-administered by the patient

and scored automatically using validated artificial intelligence and

machine learning-based algorithms have the potential to fill an

important gap in healthcare service provision, improve access to

diagnostic sleep studies and provide a cost-effective solution for

sleep apnea diagnosis and monitoring.

FIGURE 1

Toward a digital pathway for obstructive sleep apnea with peripheral arterial tone-based monitoring, from diagnosis to therapy management. AHI,

apnea-hypopnea index; CPAP, continuous positive airway pressure; ODI, oxygen desaturation index; PROM, patient-reported outcome measures;

REM, rapid eye movement.
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Compared with conventional PSG, the benefits of peripheral

artery tonometry-based wearable sleep testing devices include ease

of performing evaluations over multiple nights. In addition, there

will be savings in clinical staff time by avoiding complicated

inventory, on-site desktop software updates, and cleaning and

sterilization/disinfection procedures. However, these HSAT devices

do not record a direct measurement of flow so it is not possible

to distinguish between apneas and hypopneas (although both

are counted), and there is no EEG-based sleep-staging (although

information on sleep stages can be obtained by other means).

Furthermore, there are some settings where use of peripheral artery

tonometry may not be the most appropriate option. For example,

device performance could be adversely impacted by alternations in

the sympathetic response or impaired perfusion at the peripheral

tissue, such as during treatment with adrenergic systemmodulators

(e.g., alpha-adrenergic antagonists) (Zou et al., 2010) and in

individuals with clinically relevant peripheral vascular disease.

Thus, although alternative approaches to sleep apnea assessment

might be more appropriate in these groups, use of peripheral artery

tonometry-based devices to address the unmet need for better

approaches to OSA diagnosis for the majority of individuals would

allow in-demand sleep laboratory services to be prioritized formore

complex individuals (Fietze et al., 2022).

4.1. Looking to the (not too distant) future

Sleep medicine is a rapidly developing field, but the prevalence

of OSA is growing and the number of sleep specialists is

inadequate to meet the increasing need. This highlights the

need for initiatives such as new tools and telehealth to provide

safe, effective clinical care to an expanding group of patients

(O’Donnell et al., 2020). The move toward greater utilization

of telemedicine solutions was accelerated during the COVID-19

pandemic due to lockdowns and social distancing requirements

(Monaghesh and Hajizadeh, 2020). It makes sense to capitalize on

this momentum to improve the diagnosis andmanagement of SDB,

and simple, wearable devices based on measurement of peripheral

arterial tone, such as NightOwl
R©
and WatchPAT

R©
, can make an

important contribution to this. For instance, peripheral arterial

tone-basedHSATs can provide primary care professionals with easy

tools to diagnose OSA. These cloud-based multiple-night HSAT

technologies can be beneficial for communities without major

medical center for SDB management thus promoting equitable

SDB identification, diagnosis, and treatment (Gueye-Ndiaye et al.,

2023). Moreover, the technologies provide the possibility of

OSA screening in large populations and enable new approaches

for a simplified and automated OSA diagnostic procedure and

treatment follow-up. HSATs, wearable technologies and advances

in telemedicine may also help to strengthen inter-departmental

collaboration, thus improving the overall care of patients with OSA

(Mahoney, 2020; McNicholas and Pevernagie, 2022).

Overall, the possibility of integrating diagnostic, device therapy

and patient clinical data is attractive, and facilitates a more holistic

approach to patient management. New-generation wearable

devices that record a variety of signals to provide information

on sleep stage/quality, arousals, sleep position, and a variety of

SDB metrics (such as hypoxic burden) (Trzepizur et al., 2022)

will provide a more complete picture to inform clinical decision

making throughout the patient journey. Better understanding of

patient phenotypes will allow specific characteristics to be linked

to treatment outcomes (Mazzotti et al., 2019). The variety of

accurate data obtained from new connected devices could be used

to inform both diagnostics and clinical decision making based

on sleep-related breathing parameters, age, symptoms and risks

(Hajipour et al., 2023), and in accordance with current clinical

recommendations and guidelines (Patil et al., 2019; Randerath et al.,

2021; Grote et al., 2023). The new capabilities provided by new

technologies and innovations bring new capabilities, such as use of

the same device to diagnose sleep apnea and then monitor therapy

compliance and efficacy. For example, one currently available

peripheral artery tonometry-based device (NightOwl R©) has 10

nights of battery capacity. The ability to record over 10 consecutive

nights could allow three nights for diagnostic studies (AHI, oxygen

desaturation index, hypoxic burden and patient-reported outcome

measures) followed by sevn nights to implement and monitor

a personalized treatment plan, including assessment of changes

in hypoxic burden and patient-reported outcomes (Figure 1).

This could contribute to reducing the underdiagnosis of OSA,

accelerating access to appropriate treatment, and optimization of

OSA therapy.
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