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Editorial on the Research Topic
Artificial intelligence applications in chronic ocular diseases

Introduction

Chronic ocular diseases are eye health conditions that develop slowly over an extended
period, typically without showing noticeable symptoms in the short term. These conditions
can progressively affect vision and overall ocular health, potentially causing significant
disruptions to a patient’s life quality if not promptly diagnosed and treated. Common
chronic ocular diseases include glaucoma (Morgan and Drance, 1975), cataracts, dry eye
syndrome (Schaumberg et al., 2002), diabetic retinopathy, age-related macular degeneration,
myopia (Singh et al., 2022), and hyperopia (Sharafeldin et al., 2018). It is essential for
individuals with chronic ocular diseases to receive regular eye examinations and appropriate
medical care to manage and mitigate the long-term effects of these conditions on their eye
health and vision.

Artificial intelligence (AI) is a cutting-edge technology in computer science that aims to
enable computers to learn, reason, and make decisions like humans. AI technology has
already achieved great success in many fields, including automatic driving, financial
forecasting, natural language processing applications, and medical diagnostics. Among
the field of medical diagnostics, AI technology has significantly contributed to clinical
research in various areas. These include AI-assisted diagnosis of intracranial tumors from
magnetic resonance (MR) imaging scans (Anaraki et al., 2019), AI-supported analysis of
vascular stenosis in coronary computed tomography (CT) imaging (Han et al., 2020), AI-
assisted evaluation of head and neck CT angiography images (Fu et al., 2023), AI-powered
diagnosis of fundus lesions from fundus imaging (Li et al., 2022), and AI-driven analysis of
pneumonia in CT imaging (Chassagnon et al., 2021). Especially in eye imaging research, AI
can be utilized to conduct studies in various areas. This includes retinal disease screening
based on fundus color photographs (Orlando et al., 2020; Li et al., 2022), cataract grading
based on AS-OCT images (Zhang et al., 2022), and glaucoma grading based on multi-modal
ophthalmic examination images (Wu et al., 2023), such as fundus color photos and OCT
images. AI can also be employed for the segmentation of ocular structures or lesions in
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different modal eye examination images, including optic cup and
disc segmentation (Fu et al., 2018), retinal blood vessel segmentation
(Hu et al., 2022), lesion segmentation (Fang et al., 2022) in fundus
color images, and segmentation of ocular structural layers and
lesions in OCT images (Li et al., 2021; Farshad et al., 2022).

Moreover, the application of AI technology in the management
and treatment of chronic ocular diseases also holds significant
importance. It can offer support and improvements across
various aspects, including early diagnosis and prediction, disease
progression monitoring, personalized treatment, etiological analysis
and research, precise surgical assistance, and patient health
management (Yang et al., 2023). AI techniques will be employed
for intelligent image analysis, disease classification and diagnosis,
surgical assistance, and etiological research.

Hence, a Research Topic dedicated to the research on the
application of AI in chronic ocular diseases has been initiated.
During this Research Topic, we received a total of
53 submissions. These submissions underwent rigorous
evaluation, resulting in the inclusion of 30 selected papers. The
overall download count reached more than 7,600, with a combined
total of 53k views and downloads.We have categorized the studies in
this Research Topic according to the corresponding types of chronic
diseases based on the structure of the eyeball from front to back, as
illustrated in Figure 1; Table 1.

The ocular surface and orbital diseases involve structural
lesions of the orbit, eyelids, cornea, and so forth. The orbit is the
bony cavity within the skull that houses the eyeball, primarily
serving to protect the eye. The eyelids are movable folds of skin
that cover the eyeball, capable of opening and closing to protect
the eye from external harm, regulate the entry of light, and secrete
tears. The cornea is the transparent tissue on the front surface of
the eye, allowing light to enter the eye. Myopia-related diseases
may involve lesions on the cornea and the crystalline lens. The
crystalline lens is a transparent biconvex structure within the eye,
responsible for adjusting focal length. Glaucoma is related to
structural changes in the anterior chamber and optic nerve

pathology. The anterior chamber is a fluid-filled area located
in the front part of the eye, between the iris and the cornea,
responsible for maintaining the shape of the eye, supplying
oxygen and nutrients, and regulating eye pressure. Cataract
diseases exhibit significant abnormalities in the lens. Diseases
of the retina involve lesions in areas such as the retina, macula,
central fovea, and so forth. The primary function of retina is to
perceive light, process visual information, and transmit this
information to the brain. The macula is a critical area for
vision, especially in detail resolution, color perception, and
direct gaze. The central fovea is the most sensitive area of the
retina, allowing us to achieve the highest resolution central
vision. Fundus vasculature disorders are conditions caused by
alterations in the retinal blood vessels. The primary function of
retinal blood vessels is to supply the ocular tissues with the
oxygen and nutrients.

Ocular surface and orbital diseases

Ocular surface and orbital diseases are a group of eye conditions
that impact the structure and function of the eye’s surface. Articles
related to this topic in the Research Topic involve the studies of
various aspects, including eye orbit, eyelids, meibomian glands, and
cornea, as well as related diseases.

Eye orbit and eyelids

Bao et al. and Diao et al. primarily focus on the orbital and
eyelid images collected during clinical diagnostics for Thyroid-
Associated Ophthalmopathy (TAO). Bao et al. mainly discuss the
application of AI technology in the analysis of orbital CT/MR
images. For instance, AI methods can automatically identify and
quantify orbital anatomical structures such as bone structures,
fat, and abscesses using image segmentation techniques.

FIGURE 1
The structure of the eyeball, and chronic ocular diseases those can be caused by degeneration in different structures.
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Additionally, they summarize the applications of AI in TAO.
Similarly, Diao et al. conduct research on the application of AI
technology in the diagnosis dimension concerning TAO. They
provide an overview of recent AI applications in the clinical
diagnosis, activity, severity grading, and treatment outcome
prediction. The study also discusses current challenges and
future prospects in the application of AI in the treatment of

TAO. Wen et al. study the difference of dynamic low-frequency
amplitude between patients with TAO and normal people based
on resting brain functional MR images (fMRI), laying a
foundation for subsequent automatic diagnosis of thyroid-
associated eye disease based on dynamic low-frequency
amplitude. Based on eye orbit CT images, Zhang et al. focus
on measuring eyeball protrusion by calculating eyeball

TABLE 1 Summary of the papers in the Research Topic of Artificial Intelligence Applications in Chronic Ocular Diseases.

Disease Ocular
structure

Paper Main findings

Ocular Surface and orbital
Diseases

Eye orbit and
eyelids

Bao et al. AI methods can automatically identify and quantify orbital anatomical structures

Zhang et al.

Diao et al. AI methods can provide applications in the clinical diagnosis, activity, severity grading, and treatment
outcome prediction

Wen et al.

Meibomian gland Deng et al. Using U-Net or its variants for the segmentation of the meibomian gland, followed by morphological
parameter measurement, and subsequently applying the measured parameters for medical statistics on

different diseasesYu et al.

Li et al.

Huang
et al.

Cornea Lin et al. Using AI method to discuss the effects of cataract surgery and corneal incisions on corneal astigmatism

Cheng et al. Using deep learning method to measure the deviation of the pupil center during corneal refractive
surgery

Ji et al. AI methods can automatically diagnosis ocular surface diseases

Zhang et al.

Myopia Cornea Wang et al. Using AI methods for myopia risk prediction, diagnosis, screening, etc., and discussing the
demonstrative role of AI methods in education

Crystalline lens Zhang et al.

Bai et al.

Choroid layer Wu et al. Designing a new boundary-enhanced encoder-decoder architecture for choroid layer segmentation

Wu et al. Employing AI methods to investigate the impact of drugs on the eye structure of myopia patients

Glaucoma Anterior chamber Zhang et al. Introducing various diagnostic models for glaucoma based on different examine images. (Random forest
models and VGG networks based on visual field test results; ResNet classifier based on fundus images;

ResNet classifier based on OCT)Optic nerve

Cataracts Crystalline lens Xie et al. Developing a deep learning method for screening visually impaired cataract cases using fundus images

Retinal Diseases Retina Bai et al. Using AI methods to screen and analyze various retinal diseases, especially multiple macular-related
diseases, and also employing AI methods to analyze the biological significance of cytokines in the retina

Macula Song et al.

Fovea Feng et al.

Fundus Vasculature Disorders Fundus vasculature Ji et al. Applying AI methods in the diagnosis and grading of retinal vascular diseases

Shi et al. Using AI methods to segment blood vessels in different modal images, measure related parameters, and
then analyze changes in microvascular parameters before and after disease onset or surgical intervention

using medical statisticsDeng et al.

Zhang et al.

Shen et al.

Tang et al.

Su et al. Proposing an attention-guided cascade network for retinal vessel segmentation

Zhang et al. Using AI method eliminating eyelash artifacts from ultra-wide-field fundus images, aiming to improve
the visibility of retinal vasculature and enhance the quality of images
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protrusion distance using segmentation models in artificial
intelligence.

Meibomian gland

Four articles focus on meibomian gland analysis, all involving
segmentation of the meibomian glands and subsequently
performing different downstream tasks. Deng et al. segment the
meibomian gland area to analyze the meibomian gland conditions in
patients with meibomian gland dysfunction. Yu et al. conduct
structural segmentation and morphological analysis of the
meibomian glands to discuss the differences in meibomian gland
morphology between patients with ophthalmic herpes zoster and a
normal control group. Similarly, Li et al. analyze glandular model
parameters, automatically calculating the glandular deformation
coefficient to explore the impact of orthokeratology lenses (OK
lenses) on tear film, meibomian glands, and myopia control in
monocular myopic children. Huang et al. use a deep learning model
to analyze images, measuring meibomian gland area, density,
quantity, height, width, and curvature, and use a deep learning
system to analyze the effects of age, gender, and behavior on
meibomian gland morphology.

Cornea

Among the intelligent analysis of the corneal structure, Lin et al.
discuss the effects of cataract surgery and corneal incisions on
corneal astigmatism. Cheng et al. mainly use deep learning
technology to measure the deviation of the pupil center during
corneal refractive surgery. The application, limitations, and
challenges of AI in the diagnosis of ocular surface diseases (such
as keratitis, keratoconus, dry eye, pterygium, and other ocular
surface diseases), as well as the prospects of future applications
are summarized by Ji et al. and Zhang et al.

Myopia

The papers on this topic cover various aspects of myopia,
including high myopia, pathological myopia, strabismus,
amblyopia, and the effects of drugs on myopia. Specifically,
Wang et al. provide a comprehensive review of the advancements
in the application of different AI models and algorithms in
optometry (for issues such as myopia, strabismus, amblyopia,
keratoconus, and artificial lenses) and discussed the associated
limitations and challenges in this field. Zhang et al. conduct a
review and elaborated on the technical details of AI methods in
myopia risk prediction, screening, diagnosis, pathogenesis, and
treatment. Bai et al.discuss the application of AI-based myopia
automatic recognition systems in the training of resident
physicians, validating the role of artificial intelligence in medical
education. Wu et al. employ AI technology to investigate the impact
of drugs on the eye structure of myopia patients, particularly on
choroidal thickness and retinal thickness. Additionally, Wu et al.
conduct research on choroid layer segmentation in optical
coherence tomography (OCT) images, introducing a new

boundary-enhanced encoder-decoder architecture. This
architecture aims to precisely extract choroid layer information
from images with blurred edges, assisting in choroidal thickness
calculations.

Glaucoma

Glaucoma is a condition that gradually damages the optic nerve,
often associated with elevated intraocular pressure. If left
uncontrolled, glaucoma may lead to permanent vision loss.
Zhang et al. introduce various diagnostic models for glaucoma
based on different examined images, for example, random forest
models and VGG networks based on visual field test results, ResNet
classifier based on fundus images, and ResNet classifier based on
OCT. In view of the difficulty of creating standard data sets and
standardization guidelines, it is suggested that we should optimize
data sets and build multi-center, large sample, and high-efficiency
data sets. Finally, the clinical application rules are more
standardized, and the diagnosis and prediction tools for
glaucoma are simplified in a single direction, benefiting multiple
ethnic groups.

Cataracts

Cataracts involve the gradual clouding of the lens, resulting in
decreased vision clarity and difficulty seeing objects. While cataracts
can be treated through surgery, untreated cases can severely impair
vision. Xie et al. develop a deep learning method for screening
visually impaired cataract cases using fundus images. A total of
8,395 fundus images (5,245 subjects) from three clinical centers and
corresponding visual function parameters were collected to develop
and evaluate the deep learning method for classifying non-cataract,
mild cataract, and vision-impaired cataract. They used three deep
learning algorithms (DenseNet121, Inception V3, and ResNet50) to
train themodel to get the best model of the system. The performance
of the system is evaluated by the area under the receiver operating
characteristic curve (AUC), sensitivity, and specificity. On the
internal test dataset as well as two external test datasets, the
optimal algorithm was DenseNet121, and the system performed
better in detecting visually impaired cataracts than cataract
specialists (p < 0.05). Research shows that a function-focused
screening tool has the potential to identify visually impaired
cataracts in fundus images, leading to timely referral of patients
to tertiary eye hospitals.

Retinal diseases

The retina, a thin layer at the back of the eye, plays a vital role in
converting light into signals that our brain interprets as vision.
Retinal diseases are various medical conditions that affect the
retina’s structure or function. Early detection and treatment are
crucial for preserving eye health. Bai et al. evaluate the accuracy and
reliability of AI approaches using OCT images to achieve
community screening for 15 retinal diseases. The OCT scans
cover an area of 12 mm × 9 mm at the posterior pole retina
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involving the macular and optic disc. The 15 retinal diseases include
pigment epithelial detachment, posterior vitreous detachment,
epiretinal membranes, sub-retinal fluid, choroidal
neovascularization, drusen, retinoschisis, cystoid macular edema,
exudation, macular hole, retinal detachment, ellipsoid zone
disruption, focal choroidal excavation, choroid atrophy, and
retinal hemorrhage. Song et al. explore the biological significance
of cytokines in the eye using OCT images. They analyze the
correlation between cytokine levels in aqueous humor and retinal
fluid, shedding light on the potential role of cytokines in the
development of neovascular age-related macular degeneration.
Moreover, Feng et al. provide comprehensive overviews of the
application of AI technologies in macular edema.

Fundus vasculature disorders

Fundus vascular disorders are a group of medical diseases
related to the vascular structure at the base of the eye. Ji et al.
discuss the application of AI in the diagnosis and grading of retinal
vascular diseases, such as diabetic retinopathy, retinal vein
occlusion, and retinopathy of prematurity, based on color fundus
photographs. A significant portion of the research in this topic of our
Research Topic focuses on examining alterations in
microvasculature before and after the onset of disease or
following surgical interventions. Shi et al.segment and measure
retinal vessels in fundus color photographs, followed by exploring
the relationship between vascular parameters, including retinal
vessel branching angle, vessel fractal dimension, vessel diameter,
vessel tortuosity, vessel density, and cognitive impairment. Deng
et al.use OCT angiography (OCTA) images to compare differences
in macular microvasculature between type II diabetes patients with
and without peripheral neuropathy. Zhang et al. calculate functional
parameters related to retinal vessel oxygen saturation based on
fundus color photographs to investigate changes in retinal vessel
oxygen saturation in type II diabetes patients. Shen et al. use OCTA
images to discuss the condition of macular microvasculature and the
recovery of visual function in patients after idiopathic epiretinal
membrane surgery. Tang et al.discuss changes in retinal
microvasculature in patients with moderate to high myopia after
implantable collamer lens (ICL) implantation.

In addition to the aforementioned studies on the clinical
application of AI, Su et al. propose an attention-guided cascade
network for retinal vessel segmentation, aiming to accurately
segment retinal vessels from fundus images. Moreover, Zhang
et al. conduct research on eliminating eyelash artifacts from
ultra-wide-field fundus images, aiming to improve the visibility
of retinal vasculature and enhance the quality of eye examination
images. These studies enable more precise quantitative analysis of
retinal vasculature, which can enhance the accuracy of vascular-
related research.

Conclusion

Research on this topic has covered a wide range of chronic
ocular diseases, including ocular surface and orbital diseases,

myopia, glaucoma, cataracts, retinal diseases, and vascular
diseases, providing us with a comprehensive understanding of
chronic ocular conditions. Additionally, the studies within this
topic effectively encompass various applications of AI technology
in chronic ocular disease research. These applications include the
automatic diagnosis of chronic ocular diseases using AI, the
exploration of the relationship between changes in ocular
structures and diseases or treatments using AI, and the
enhancement of medical education and work efficiency using AI.
These research efforts have offered valuable insights into the use of
AI in the clinical diagnosis, treatment, and management. We are
confident that we will continue to make better use of AI technology
in the future.
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AI-assisted OCT in retinal
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Objective: To evaluate the accuracy and feasibility of the auto-detection of

15 retinal disorders with artificial intelligence (AI)-assisted optical coherence

tomography (OCT) in community screening.

Methods: A total of 954 eyes of 477 subjects from four local communities were

enrolled in this study from September to December 2021. They received OCT

scans covering an area of 12 mm × 9mm at the posterior pole retina involving

themacular and optic disc, as well as other ophthalmic examinations performed

using their demographic information recorded. The OCT images were analyzed

using integrated software with the previously established algorithm based on

the deep-learning method and trained to detect 15 kinds of retinal disorders,

namely, pigment epithelial detachment (PED), posterior vitreous detachment

(PVD), epiretinal membranes (ERMs), sub-retinal fluid (SRF), choroidal

neovascularization (CNV), drusen, retinoschisis, cystoid macular edema

(CME), exudation, macular hole (MH), retinal detachment (RD), ellipsoid zone

disruption, focal choroidal excavation (FCE), choroid atrophy, and retinal

hemorrhage. Meanwhile, the diagnosis was also generated from three

groups of individual ophthalmologists (group of retina specialists, senior

ophthalmologists, and junior ophthalmologists) and compared with those by

the AI. The area under the receiver operating characteristic curve (AUC),

sensitivity, and specificity were calculated, and kappa statistics were performed.

Results: A total of 878 eyes were finally enrolled, with 76 excluded due to poor

image quality. In the detection of 15 retinal disorders, the ROC curve

comparison between AI and professors’ presented relatively large AUC

(0.891–0.997), high sensitivity (87.65–100%), and high specificity

(80.12–99.41%). Among the ROC curve comparisons with those by the

retina specialists, AI was the closest one to the professors’ compared to

senior and junior ophthalmologists (p < 0.05).

Conclusion: AI-assisted OCT is highly accurate, sensitive, and specific in auto-

detection of 15 kinds of retinal disorders, certifying its feasibility and

effectiveness in community ophthalmic screening.
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Introduction

With the rapid progress in population aging and the

escalating prevalence of systemic diseases like hypertension

and diabetes mellitus, as well as the increasing incidence of

myopia in contemporary society, the morbidity rate of

multiple ophthalmic diseases, especially with various retinal

disorders, has ascended consequently. It caused visual

impairment and even blindness in both developed and

developing countries (Hong et al., 2013; Wolfram et al., 2019;

Li et al., 2022b). Among them, the age-related macular

degeneration (AMD), diabetic retinopathy (DR), and myopic

retinopathy, as well as other macular disorders like epiretinal

membranes (ERMs) and macular holes, were the significant

components and chief culprits for visual loss in most

populations (Mitchell et al., 2018; Wang and Lo, 2018; Ruiz-

Medrano et al., 2019).

Early diagnosis and prompt treatment were essential to

achieve the best possible visual prognosis (Mitchell et al.,

2018; Wang and Lo, 2018; Ruiz-Medrano et al., 2019).

Therefore, early detection at the initial stages and positive

screening at the pre-hospital level were necessary, indicating

the importance of effective and efficient community screening. A

notable and challenging fact exists on the insufficient medical

human resources allocated in the community and the

inadequately experienced ophthalmologists in primary

hospitals, forging a considerable gap and actual bottleneck

toward the enormous demand for community screening (Feng

et al., 2018).

With tremendous progress in recent years, artificial

intelligence (AI) has been integrated with various fields of

science and taken to practical engineering in multiple scenes.

The deep-learning (DL) algorithm is an advanced type of

machine learning (ML) with a multi-layered convolutional

neural network (CNN) model. It is capable of learning and

detecting image features and recognizing patterns from a large

dataset. The application of DL in medicine has fulfilled the

function of automated lesion recognition and prognosis

prediction in various diseases (Gulshan et al., 2016; Zhang Q.

et al., 2021). In the field of ophthalmology, different AI

algorithms have been developed and applied for auto-

detection of diverse diseases like glaucoma (Keel et al., 2019;

Camara et al., 2022), ocular surface diseases (Zhang Y. Y. et al.,

2021), and multiple retinal disorders, like DR, AMD, and myopic

retinopathy, and have exhibited relatively high accuracy and

reliable performance in clinical diagnosis as well as the pre-

hospital community screening, providing a promising solution

for the challenge mentioned previously (Rajalakshmi et al., 2018;

He et al., 2020; Xie et al., 2020; Cen et al., 2021).

One disadvantage of AI algorithms trained to detect retinal

disorders is that they are mainly based on the features from

fundus photography images, which could not offer a

comprehensive message of deep layers of the retina and the

choroid (He et al., 2020; Xie et al., 2020; Cen et al., 2021).

Meanwhile, the optical coherence tomography (OCT) technique

can provide the cross-sectional images of the retina with high

resolution realizing in vivo visualization of cellular tissue

microstructure via interferometry and has been widely utilized

in the clinical practice of ophthalmology. By providing the

morphological features and quantitative measurement data of

the different layers of the retina, especially at the macular and

around the optic head, and the certain depth of the choroid, OCT

shows its advantage in detecting multiple retinal diseases

superior to utilizing fundus image only. One emerging trend

is to develop AI algorithms based on OCT images to diagnose

some retinal diseases. At the same time, several studies have

shown its feasibility and revealed its accuracy in clinical

application (Sandhu et al., 2018; Treder et al., 2018; Sandhu

et al., 2020; Sogawa et al., 2020; Wang et al., 2020).

Another major disadvantage of current AI software was that

it mostly focuses only on one specific retinal disorder. In

comparison, a very considerable proportion of patients suffer

from more than one retinal disorder, which redistricts the

practical application of this AI software in a real clinical

setting (Sandhu et al., 2018; Treder et al., 2018; Sandhu et al.,

2020; Sogawa et al., 2020; Wang et al., 2020). Therefore, the

impending demand rising from clinical practice and community

screening work is to develop AI algorithms that can recognize

multiple retinal disorders simultaneously in single detection.

In view of the aforementioned requirement, this study

involved the utilization of an AI-assisted OCT instrument to

examine the retina in a community screening, with the acquired

images analyzed using a pre-designed DL algorithm that could

detect 15 retinal disorders simultaneously, aiming to evaluate its

accuracy and feasibility in the practical application.

Materials and methods

Participants’ enrollment

The inhabitants of four local communities (DaNing Road

community, GongHe Road community, PengPu Town

community, and Linfen Road community, all of which are

located in Jing’an District, Shanghai) participated in the study.

The study period was from September to December 2021.

The inclusion criteria were: 1) age>18 years; 2) co-operation
with the ophthalmic examinations; and 3) voluntary

Frontiers in Cell and Developmental Biology frontiersin.org02

Bai et al. 10.3389/fcell.2022.1053483

13

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1053483


participation in the study. The exclusion criteria were as follows:

1) patients with ophthalmic disease causing severe refractive

media opacity like keratoleukoma, cataract, and vitreous or

within ophthalmic emergency situations; 2) patients with

other severe uncontrolled systemic diseases; and 3) patients

during pregnancy or lactation period.

The study was approved by the Ethical Committee of

Shanghai Tenth People’s Hospital and conducted in

accordance with the tenets of the Declaration of Helsinki,

with the written informed consent forms signed by all the

participants voluntarily.

Community screening
All the participants underwent the following ophthalmic

examinations: 1) best-corrected visual acuity (BCVA); 2)

intraocular pressure (IOP), performed using an iCare

tonometer device (iCare IC 100, Icare Oy, Vantaa, Finland);

3) slit-lamp examination (YZ5X, Suzhou 66 Vision, Suzhou,

China); 4) automatic nonmydriatic fundus photography

(TRC-NW400, Topcon, Tokyo, Japan), images captured with

bothmacula-centered and disc-centered; and 5) spectral domain-

OCT scan (SD-OCT, BV1000, Bigvision Inc., Jiangxi, China).

Meanwhile, the demographic information of the participants and

their general medical history of systemic diseases, such as

hypertension and diabetes mellitus, were recorded.

The OCT scan covered an area of 12 mm × 9 mm at the

posterior pole of the retina involving the macular and optic disc

in one image view and extended to a depth of 2.3mm, with the

axial resolution of 5 μm and the horizontal resolution of 20 μm in

tissues. Owing to the maximum A-scan speed at 45,000 times per

second and the automated voice prompt operating system, the

process of the examination was convenient and fast. The images

were then transmitted to the AI algorithm, which was integrated

into the instrument to generate an analysis of multiple retinal

disorders. During the process, the time duration for the OCT

examination for one eye (starting from the participant placing

their head and chin at the bracket to terminating at the end of the

scan for one eye) and the output time of the AI report were also

recorded.

AI auto-detection

The inference pipeline was as follows: first, the quality of

collected OCT images was assessed using an AI algorithm. The

OCT b-scans with poor quality, such as heavy noise, severe

artifacts, low contrast, or low brightness, were excluded to avoid

the analysis results with low confidence. The module of quality

assessment is a trained binary classification model, which is

composed of ResNet-50. Then, the OCT b-scans with good

quality were imputed into a trained object detection model to

detect up to 15 categories of retinal pathologies, and the detection

model was based on the deep-learning convolutional neural

network. Subsequently, the trained key-point detection model

extracted the Bruch’s membrane opening locations on OCT

b-scans, and the false optimistic predictions of the bounding

boxes near the site of the optic disc would be eliminated. Finally, a

probability ratio (0–1) of auxiliary diagnosis based on all

considerations and lesion locations of 15 categories of retinal

disorders on OCT b-scans was calculated and applied (Figure 1).

As for the development strategy of the AI algorithm, a

multi-stage object detection model based on the adjusted

FIGURE 1
Framework of our AI algorithms designed to detect
15 different retinal disorders. (A)Workflow chart of AI algorithm (B)
Framework architecture and model establishment of our AI
algorithm with FPN-Cascade-RCNN. Conv, convolution.
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Cascade-RCNN was adopted (Essa et al., 2011). The feature

pyramid network architecture was used to extract the multi-

scale features of each b-scan image to enhance the ability of

the model to detect large-size retinal and tiny-size pathologist

such as retinal detachment and exudation. We trained the

model for 48 epochs, and the SGD optimizer was used (Zhang

Z. et al., 2021). The Smooth L1 loss function was used in the

regression of the region proposal network and cascade-head

network, and the cross-entropy loss was used in classification

parts. The online hard example mining mechanism was used

to improve the convergence speed due to the unbalanced ratio

between the foreground and background, and the tremendous

differences in learning difficulty among 15 categories of

retinal disorders were observed (Chen et al., 2021). As for

the datasets, 1311 cubes were collected and divided into the

training set, validation set, and test set with a ratio of 6:2:2.

The distribution of the datasets is presented in Supplementary

Table 1, which shows 363 cubes are normal, and most of the

retinal disorders are PVD. Three or more typical b-scans slices

were selected from cubes, and these selected slices contained

various lesions of retinal disorders, which contributed to the

better learning and adaptive ability of AI algorithm.

Subsequently, the external test was performed, and the

results of the external test set can be used as evidence of

the generalization ability of the AI model.

Ophthalmologist diagnosis

Three groups of ophthalmologists were organized to perform

manual annotation with the selection criteria as follows:

The junior group (OP1) consists of three resident doctors

who had worked in the Department of Ophthalmology for more

than 3 years. The senior group (OP2) consists of three attending

ophthalmologists with more than 8 years of experience in clinical

practice. The retinal specialist’s group (OP3) consists of three

retinal professors who have dedicated to working in the field of

retinal diseases for more than 12 years. The ophthalmologists

were all from the Department of Ophthalmology of Shanghai

Tenth People’s Hospital and trained together before the task. If

the conclusions of three doctors in each group were inconsistent,

a panel discussion and vote inside the group would be arranged

to reach a consensus and generate a standard conclusion.

A manual review and final diagnosis of the 15 retinal

disorders were prepared according to all the participant’s

medical information, including slit-lamp examination, fundus

photography, OCT images, demographic information, and

systemic medical history. Doctors in each group carried out

an independent diagnosis and were masked to AI diagnosis

results from doctors in the same group as well as in other

groups. The manual diagnosis and AI algorithm outputs were

compared according to the recognized diagnostic criteria, noting

that a combination of various pathologies could coexist in one

participant.

Statistical analysis

To evaluate the performance of the AI algorithm compared

with three different levels of ophthalmologists, the receiver

operating characteristic curve (ROC) was generated using the

diagnosis results given by the retinal specialist (OP3) regarded as

the reference standard. The area under ROC (AUC), sensitivity

and specificity, and Youden index with 95% confidence intervals

(95% CIs) were calculated. Paired comparisons were performed

between the AUC of AI to OP3, junior ophthalmologist (OP1) to

OP3, and senior ophthalmologist (OP2) to OP3 to assess their

difference toward the reference standard. Kappa (κ) statistics

were used to quantify and evaluate the degree of agreement

between AI and three different level group ophthalmologists

(OP1, OP2, and OP3). To transfer the AI grading score to a

binary decision for analysis, the cut-off value was set at 0.7 based

on the pre-setting data during model establishment, which

means that a value equal to or larger than 0.7 in AI calculated

results as positive, while less than 0.7 is recognized as negative.

The threshold value 0.7 was selected on the validation set, which

means that the AI gained the maximum value of the F1 score on

the validation set when the threshold value was set at 0.7. The

F1 score is an index that could balance the false detection rate and

missed detection rate, and it is a commonly used index for

selecting the threshold of the algorithm model. A p-value <
0.05 was considered statistically significant. All data generated

were analyzed using SPSS version 21.0 (IBM Inc., Chicago,

Illinois, United States).

Results

From September to December 2021, 477 subjects (954 eyes)

from four local communities mentioned previously participated

in the study. However, after image quality control, only 878 eyes

(from 439 subjects) were finally enrolled, while 76 eyes were

TABLE 1 Demographic information and baseline characteristics of the
participants.

Characteristic Data

Participants’ eyes, right, n (%) 439 (50%)

Age (years), mean ± SD 53.16 ± 17.14

Gender, male, n (%) 213 (48.5%)

Hypertension, n (%) 75 (17.1%)

Diabetes, n (%) 48 (10.9%)

OCT scan (seconds), mean ± SD 18.4 ± 0.11

AI outputting time (minutes), mean ± SD 4.01 ± 0.03
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FIGURE 2
ROC curves of AI/group of junior ophthalmologists (OP1)/group of senior ophthalmologists (OP2) compared to the group of retinal specialists
(OP3, as the golden standard) in diagnosis of 14 retinal disorders. (A–N) Pigment epithelial detachment (PED), posterior vitreous detachment (PVD),
epiretinal membranes (ERMs), sub-retinal fluid (SRF), choroidal neovascularization (CNV), drusen, retinoschisis, cystoid macular edema (CME),
exudation, macular hole (MH), ellipsoid zone disruption, focal choroidal excavation (FCE), choroid atrophy, and retinal hemorrhage.

Frontiers in Cell and Developmental Biology frontiersin.org05

Bai et al. 10.3389/fcell.2022.1053483

16

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1053483


TABLE 2 AUC (with 95% CI), Youden index, specificity, and sensitivity in ROC of AI/group of junior ophthalmologists (OP1)/group of senior ophthalmologists (OP2) compared to the group of retinal
specialists (OP3, as the golden standard).

AI vs. OP3 OP1 vs. OP3 OP2 vs. OP3 p
(AUC,
AI–OP3 vs.
OP1–OP3)

p
(AUC,
AI–OP3 vs.
OP2–OP3)

AUC 95% CI p Youden
index

Sensitivity
(%)

Specificity
(%)

AUC 95% CI p AUC 95% CI p

PED 0.985 0.974–0.992 <0.0001 0.9391 97.62 96.29 0.643 0.610–0.675 0.0001 0.808 0.780–0.833 <0.0001 <0.0001 <0.0001
PVD 0.973 0.960–0.983 <0.0001 0.8743 91.83 95.60 0.775 0.745–0.802 <0.0001 0.830 0.804–0.855 <0.0001 <0.0001 <0.0001
ERM 0.955 0.940–0.968 <0.0001 0.8552 91.84 93.68 0.704 0.673–0.734 <0.0001 0.759 0.730–0.787 <0.0001 <0.0001 <0.0001
SRF 0.956 0.940–0.968 <0.0001 0.8450 94.87 89.63 0.756 0.727–0.784 <0.0001 0.833 0.807–0.857 <0.0001 <0.0001 = 0.0003

CNV 0.983 0.972–0.990 <0.0001 0.9556 97.22 98.34 0.860 0.835–0.882 <0.0001 0.917 0.896–0.934 <0.0001 = 0.0007 = 0.0227

Retinoschisis 0.926 0.906–0.942 <0.0001 0.7456 92.23 82.32 0.727 0.696–0.756 <0.0001 0.739 0.708–0.767 <0.0001 <0.0001 <0.0001
Drusen 0.891 0.868–0.911 <0.0001 0.7222 92.10 80.12 0.728 0.698–0.758 <0.0001 0.803 0.775–0.828 <0.0001 <0.0001 <0.0001
CME 0.997 0.991–0.999 <0.0001 0.9537 96.43 98.94 0.732 0.702–0.761 <0.0001 0.875 0.851–0.896 <0.0001 <0.0001 = 0.0028

Exudation 0.944 0.927–0.959 <0.0001 0.7856 89.57 88.99 0.657 0.624–0.688 <0.0001 0.793 0.764–0.819 <0.0001 <0.0001 <0.0001
MH 0.948 0.931–0.962 <0.0001 0.8931 90.48 98.83 0.785 0.756–0.811 <0.0001 0.857 0.832–0.880 <0.0001 = 0.0020 = 0.0376

Ellipsoid zone
disruption

0.935 0.916–0.950 <0.0001 0.8000 87.65 92.35 0.704 0.672–0.734 <0.0001 0.734 0.703–0.763 <0.0001 <0.0001 <0.0001

FCE 0.967 0.953–0.978 <0.0001 0.9058 91.18 99.41 0.764 0.735–0.792 <0.0001 0.808 0.781–0.834 <0.0001 <0.0001 = 0.0001

Choroid atrophy 0.959 0.943–0.971 <0.0001 0.8288 93.62 89.26 0.718 0.687–0.748 <0.0001 0.799 0.771–0.825 <0.0001 <0.0001 <0.0001
Retinal hemorrhage 0.991 0.982–0.996 <0.0001 0.9631 100.00 96.31 0.744 0.714–0.773 0.0034 0.798 0.770–0.824 0.0003 = 0.0022 = 0.0136

Fro
n
tie

rs
in

C
e
ll
an

d
D
e
ve

lo
p
m
e
n
tal

B
io
lo
g
y

fro
n
tie

rsin
.o
rg

B
ai

e
t
al.

10
.3
3
8
9
/fc

e
ll.2

0
2
2
.10

5
3
4
8
3

17

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1053483


FIGURE 3
Display of multiple retinal disorders and their locations. (A–L) Fifteen categories of retinal disorders are marked by rectangles with specific
colors on OCT images.
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excluded due to poor OCT image quality, mainly due to small

pupils, keratoleukoma, cataracts, vitreous opacity, etc. The

439 subjects consisted of 213 males and 226 females, aging

from 34 to 72 (53.16 ± 17.14), among whom 75 (17.1%) had

a history of hypertension and 48 (10.9%) had a history of diabetes

mellitus. The demographic information, average time for the

OCT scan, and AI output are presented in Table 1.

The overall ROC curve comparison between AI diagnosis

and the group of retinal specialists (OP3) represented a large

AUC (0.891–0.997), high sensitivity (87.65–100%), and high

specificity (80.12–99.41%). Since no case of RD was detected

in the whole participants’ screening either by doctors or by AI

software, the data related to RD were unavailable beyond any

comparison or discussion. Among the rest 14 retinal disorders,

the best performance was revealed in the diagnosis of CME and

retinal hemorrhage, with the AUC, sensitivity, and specificity at

0.997, 96.43%, and 98.94%, and 0.991, 100%, and 96.31%,

respectively. Also, high accuracy with a relatively large AUC

was acquired in the diagnosis of PED, PVD, ERM, FCE, and

CNV, with the AUC, sensitivity, and specificity at 0.985, 97.62%,

and 96.29% in PED; 0.973, 91.83%, and 95.60% in PVD, and

0.955, 91.84%, and 93.68% in ERM, respectively. As for the

diagnosis in FCE, the AUC was 0.967 with a sensitivity of

91.18% and specificity of 99.41%, while the result was 0.983,

97.22%, and 98.34%, relatively for CNV, respectively. The lower

results were generated in the detection of exudation (AUC of

0.944, sensitivity of 89.57%, and specificity of 88.99%) and

retinoschisi (AUC of 0.926, sensitivity of 92.23%, and

specificity of 82.32%). The lowest AUC appeared in the

recognition of drusen, which still reached 0.891, with a

sensitivity of 92.10% and a specificity of 80.12%.

The ROC curve comparisons between the groups of junior

(OP1) or senior (OP2) ophthalmologists and AI to the group of

retinal specialists (OP3) were generated and compared. The

paired comparison showed that the AUC of AI–OP3 was

larger than that of OP1–OP3 or OP2–OP3 with a significant

difference, indicating that the AI results were much closer to

OP3 taken as the golden standard, surpassing OP1 or OP2.

The ROC curves for 14 retinal disorders are shown in

Figure 2, and comparisons of AUC, Youden index, specificity,

and sensitivity with 95% CI are shown in Table 2. At the same

time, representing images with lesions labeled at the specific

location of the retina are illustrated in Figure 3.

The results of the kappa analysis are shown in Table 3. The

consistency between AI and retinal specialists was relatively high,

with the average value of 0.731, while the average value was

0.579 between AI and OP1 and 0.707 between AI and OP2.

Discussion

To relieve the conflict between the enormous demand for

early screening of multiple retinal diseases with rising prevalence

and the lack of human medical resources, the application of AI

algorithms, especially the DL models as auxiliary tools for

diagnosis provided a feasible and promising solution (He

et al., 2020; Xie et al., 2020; Cen et al., 2021). Taking the

retinal OCT image rather than fundus photography only as

the diagnosis reference proof was a new trend in this field

(Treder et al., 2018; Sogawa et al., 2020; Wang et al., 2020).

However, most current software was designed to detect one

single category of retinal disease, which hindered its

application in real-world practice. Our study utilized an AI

algorithm that can recognize 15 retinal disorders at one time

with features extracted from OCT images and evaluated its

accuracy and feasibility in community screening.

In this study, the demographic information showed

equivalence in gender but possessed a relatively elder

population age, which conformed to the actual characteristic

of the four communities involved. The prevalence of

hypertension (17%) and diabetes mellitus (11%) among our

participants was similar to that of the general population

(Wang et al., 2018; Sun et al., 2022). Except for the retinal

detachment with no case occurred in the study, the incidence

rate of the rest 14 retinal disorders was close to the natural scale

in the general population (Hong et al., 2013; Mitchell et al., 2018;

Wang and Lo, 2018; Wolfram et al., 2019; Li et al., 2022b).

According to our data, the overall ROC curve comparison

between AI diagnosis and the group of retinal specialists (OP3)

exhibited large AUC (0.891–0.997), high sensitivity

(87.65–100%), and high specificity (80.12–99.41%). Also, the

AUC of AI–OP3 was larger than that of OP1–OP3 or

TABLE 3 Kappa analysis results.

Diagnosis Kappa value

AI vs. OP1 AI vs. OP2 AI vs. OP3

PED 0.608 0.816 0.774

PVD 0.657 0.763 0.873

ERM 0.452 0.584 0.834

SRF 0.440 0.539 0.580

CNV 0.824 0.860 0.843

Drusen 0.383 0.751 0.720

Retinoschisis 0.424 0.426 0.520

CME 0.809 0.847 0.803

Exudation 0.373 0.616 0.709

MH 0.555 0.630 0.709

RD NA NA NA

Ellipsoid zone disruption 0.627 0.669 0.669

FCE 0.767 0.803 0.807

CA 0.553 0.690 0.792

RH 0.635 0.899 0.595

Average 0.579 0.707 0.731
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OP2–OP3 with a significant difference, while the average value

generated from kappa analysis representing the consistency

between AI and retinal specialists (OP3) was larger than

AI–OP1 and AI–OP2, which in all supported that AI results

were much closer to OP3 as the golden standard, exceeding the

performance of OP1 or OP2, and certified the accuracy of the AI

auto-detection system we utilized.

Compared to the function of other AI software developed

for a specific category of retinal disorders (AMD, DR, or ERM

solely) in previous studies, our system also demonstrated

equal or even better performance in the corresponding

specific disease. As for the detection of AMD, one of the

leading causes of visual impairment in elderly patients, several

deep-learning algorithms have been developed to recognize

relative lesions and perform machine discrimination. Treder

et al. (2018) developed an AI algorithm based on an open-

source multi-layer deep CNNmodel to diagnose AMD and the

generated sensitivity, specificity, and accuracy were 100%,

92%, and 96%, respectively. However, the size of the test

was relatively small (n = 50). The DL model of Lee et al.

(2017) achieved an area under the ROC curve of 92.78% with

an accuracy of 87.63% at the image level, while at the patient

level, the data were 97.45% and 93.69%, respectively.

However, neither the classifiers could detect the specified

lesion nor the position of AMD, which was fulfilled in our

algorithm (Lee et al., 2017; Treder et al., 2018). Elsharkawy

et al. (2021) reviewed several studies using DL models for

AMD diagnosis in a qualitative and quantitative manner and

found that despite the positive results generated from different

algorithms, most of them could not identify or grade each type

of AMD. Also, the majority of the testing was conducted on

preselected individuals’ sample only, rather than real-world

validation in our study. Mantel et al. (2021) developed a DL

algorithm for the automated identification, localization, and

volume measurement of exudative manifestations of

intraretinal fluid (IRF), sub-retinal fluid (SRF), and

pigment epithelium detachment (PED) in neovascular age-

related macular degeneration (nAMD). The results showed

that the AUC, sensitivity, and specificity were 0.97, 0.95, and

0.99, respectively, with accurate measurement of the volumes,

despite a limited number of included OCT volumes,

advancing the aspect of AI from quantitation to

quantification.

As for the automated diagnosis of DR, the prevalence of

which was ascending worldwide and causing a visual loss for a

large population, and previous studies were carried out using

fundus photographs as image sources. In contrast, recent studies

were conducted utilizing OCT images (Sandhu et al., 2018;

Sandhu et al., 2020; Lakshminarayanan et al., 2021).

Lakshminarayanan et al. (2021) reviewed different ML models

on DR diagnosis published within 6 years (2016–2021) and

concluded that although some of the recent CNN-based

models exhibited high performance in terms of the standard

metrics, the lack of validation for real-life clinical applications

remained as defects, with difficulty in detecting specific lesion like

exudation and microaneurysms.

Previous studies also involved auto-detection of myopic

macular diseases using AI algorithm due to the rising

prevalence of myopia and multiple vision-threatening

retinal damages (Sogawa et al., 2020; Choi et al., 2021; Ye

et al., 2021; Li et al., 2022a). Ye et al. (2021) engineered the

deep-learning (DL) model to identify myopic maculopathy,

including macular choroidal thinning, macular Bruch

membrane (BM) defects, sub-retinal hyper-reflective

material (SHRM), myopic traction maculopathy (MTM),

and dome-shaped macula (DSM), and the result showed

that the AUC was 0.927–0.974 for five myopic

maculopathies. Choi et al. (2021) trained and validated

three DL models to identify myopia and generated a result

of the absolute agreement with retina specialists which was

99.11%. However, the specific lesion associated with myopia

could not be detected, and validation with an external dataset

was needed. Li et al. (2022a) developed four independent CNN

models to identify retinoschisis, macular hole, retinal

detachment, and pathological myopic choroidal

neovascularization and acquired satisfactory results with a

high AUC for all conditions (0.961–0.999), revealing that the

sensitivity and specificity of the AI system were equal to or

even better than those of retina specialists.

Among the literature, we reviewed another two specific

retinal disorders: ERM and PED (Sun et al., 2016; Lo et al.,

2020). Lo et al. (2020) proposed a deep-learning model to

identify the epiretinal membrane (ERM) in OCT. Also, the

results showed that the diagnostic accuracy was 98.1% and the

AUC was 0.999, implying that the model’s performance was

slightly better than the average non-retinal specialized

ophthalmologists. Sun et al. (2016) proposed an automated

framework to segment serous PED in SD-OCT images. The

average true-positive volume fraction (TPVF), false-positive

volume fraction (FPVF), dice similarity coefficient (DSC), and

positive predictive value (PPV) were calculated as 90.08%,

0.22%, 91.20%, and 92.62%, respectively. However, the test

dataset consisted of only 25 patients.

No literature was found concerning AI auto-detection based

on OCT images of the following specific retinal disorders:

ellipsoid zone disruption, FCE, PVD, and RD.

Through the aforementioned literature review, we saw a

different performance of various AI models, as well as

compared our results. The underlying reason may include:

1) different models and architecture; 2) variant resources and

sizes of the dataset for training and testing; 3) inconsistent

standards for lesion labeling, as well as the difference in

definition and classification of a specific disease; 4)

different procedures of image quality control, as the quality

of an image may affect the results of AI output; and 5)

different methodology of evaluation, as with image view
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(only judge the image) or patient view (with consideration to

other clinical information.)

A common disadvantage of the aforementioned studies was

that their AI models focused on only one specific retinal disorder

leaving others unable to be recognized, which reduced their

feasibility and availability in real-world practice as community

screening (Kuwayama et al., 2019; Wang et al., 2020; Guo et al.,

2021; Liu et al., 2022). Our AI model could identify multiple

retinal disorders simultaneously in single detection, which was

more appropriate for the scene of community screening with the

unpredicted situations and comprehensive diseases and saved

more time and occupied fewer human resources. In addition to

the AUC and specificity, our results revealed a relatively high

sensitivity, which ensured its potency as a screening tool in the

early stage. In the procedure of the OCT scan, the average

examination time was 18.4 s for one eye and the average

output time of the AI report was 4 min. The high accuracy

and efficiency were proposed due to 1) the strategy in

architecture and model establishment, as well as the online

hard example mining mechanism utilized to improve the

convergence speed due to the unbalanced ratio between the

foreground and background; 2) accumulated experience and

advanced technology in OCT image analysis with AI

algorithms (Sun et al., 2016; Zhu et al., 2017; Shi et al., 2019;

Shi et al., 2021; Wang et al., 2022); 3) the integrated design of the

OCT instrument and AI algorithm; 4) the high performance of

the OCT instrument with a maximum A scan speed at

45,000 times per second as well as the high resolution of the

images. The aforementioned issues all guaranteed the accuracy

and speed of the community screening work.

However, there are still some limitations to our study. First, the

images were acquired from one type of the OCT instrument, and the

procedurewas carried out in one district by one singlemedical center.

To certify the accuracy of the AI system about images from other

OCT instruments and the participants from other communities with

other medical centers, we will further promote the study. The second

issue was that the detection of RD was not verified due to the

limitation of the participants in our study. Further evaluation may be

performed with specified patients. Finally, for some retinal disorders,

the performance of specificity and sensitivity still needs to be

improved with the further imperfection of the algorithm.

Conclusion

To the best of our knowledge, this was the first study carried

out in real-world community screening utilizing the SD-OCT

and integrated AI algorithm to auto-detect 15 different retinal

disorders simultaneously, with its accuracy compared to three

different levels of ophthalmologists judging from the patient

aspects. Positive results revealed that the accuracy of AI was close

to that of the retinal specialist, surpassing that of junior and

senior ophthalmologists, indicating a promising prospect of the

application of the OCT instrument and AI software in clinical

practice and community screening.
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residency training program
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Background: Artificial intelligence (AI) has been successfully applied to the

screening tasks of fundus diseases. However, few studies focused on the

potential of AI to aid medical teaching in the residency training program.

This study aimed to evaluate the effectiveness of the AI-based pathologic

myopia (PM) identification system in the ophthalmology residency training

program and assess the residents’ feedback on this system.

Materials and Methods:Ninety residents in the ophthalmology department at the

Second Affiliated Hospital of Zhejiang University were randomly assigned to three

groups. In group A, residents learned PM through an AI-based PM identification

system. In group B and group C, residents learned PM through a traditional lecture

given by two senior specialists independently. The improvement in resident

performance was evaluated by comparing the pre-and post-lecture scores of a

specifically designed test using a paired t-test. The difference among the three

groups was evaluated by one-way ANOVA. Residents’ evaluations of the AI-based

PM identification system were measured by a 17-item questionnaire.

Results: The post-lecture scores were significantly higher than the pre-lecture

scores in group A (p < 0.0001). However, there was no difference between pre-

and post-lecture scores in group B (p = 0.628) and group C (p = 0.158). Overall,

all participants were satisfied and agreed that the AI-based PM identification

system was effective and helpful to acquire PM identification, myopic

maculopathy (MM) classification, and “Plus” lesion localization.

Conclusion: It is still difficult for ophthalmic residents to promptly grasp the

knowledge of identification of PM through a single traditional lecture, while the

AI-based PM identification system effectively improved residents’ performance

in PM identification and received satisfactory feedback from residents. The

application of the AI-based PM identification system showed advantages in

promoting the efficiency of the ophthalmology residency training program.

KEYWORDS

artificial intelligence, pathologic myopia, myopic maculopathy, “Plus” lesion,
ophthalmology residency training
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Introduction

Artificial intelligence (AI) models have shown equal or better

performance in disease diagnosis and management based on the

medical image, such as diabetic retinopathy (Ruamviboonsuk

et al., 2022), glaucoma (Medeiros et al., 2021; Ibrahim et al.,

2022), age-related macular degeneration (Yan et al., 2021;

Potapenko et al., 2022), congenital cataract (Lin et al., 2019),

central serous chorioretinopathy (Xu et al., 2021; Jin and Ye,

2022), and papilledema (Milea et al., 2020). AI-based teaching

can improve students’ or junior residents’ performance and

satisfaction during ophthalmology clerkship, especially

showing an advantage in deepening understanding of signs

and morphological features (Wu et al., 2020; Han et al.,

2022). Previous surveys showed the majority of medical staff

or ophthalmologists believed AI will improve the practice of

ophthalmology and should be incorporated into medical school

and residency curricula (Valikodath et al., 2021a; Valikodath

et al., 2021b; Zheng et al., 2021).

With the rapid increase of myopia prevalence, the incidence

in high myopia was significantly raised as well (Grzybowski et al.,

2020). Myopic maculopathy (MM) is a group of severe sight-

threatening complications among pathologic myopia (PM)

patients, which usually need extensive examination and

evaluation by retinal specialists. The meta-analysis of a

pathologic myopia system (META-PM) defined PM and

provided a photographic classification and grading system for

MM (Ohno-Matsui et al., 2015). The morphological and

functional characteristics in eyes with high myopia were

positively correlated with the severity classified by METE-PM

(Zhao et al., 2020; Li et al., 2021). However, it usually takes a long

time to cultivate a qualified or experienced retinal specialist.

Therefore, we are always facing a shortage of retinal specialists,

especially in primary healthcare and community medical service

institutes. It is also a heavy task to teach PM knowledge to

relevant clinicians like residents of ophthalmology. The shortage

of specialist manpower leads to the potential application of AI

technology in clinical teaching and training tasks.

A series of deep learning systems were designed to detect PM

and MM classification based on color fundus images with

comparable performance to the general ophthalmologist and

retinal specialist (Lu et al., 2021b). We further developed an

AI-based system for automatic PM identification, MM

classification, and “Plus” lesion detection based on retinal

color fundus images (namely Ophthalmology-client), which

achieved excellent accuracy (Lu et al., 2021a). AI-based

models have been proven to be a potential resolution to aid

diagnosis and classification based on fundus photography. In this

study, we aim to evaluate the effectiveness of the AI-aided

teaching model in a group of ophthalmology residents using

our AI-based PM identification system. The performance of the

AI system is also compared with that of the traditional lecture-

based teaching model.

Materials and methods

Participant enrollment and assignment

Ninety residents participating in the ophthalmology

residency training program at the Second Affiliated Hospital

of Zhejiang University were enrolled in June 2022. The

participants were randomly assigned into three groups (1:1:

1 ratio) and parallelly finished the training on the same day.

In group A, the residents were instructed to learn the PM

knowledge through an AI-based PM identification system by

exploring and operating an AI-aided diagnosis platform-

Ophthalmology-client. In groups B and C, the residents

learned PM fundus image features through the traditional

lecture given by two senior specialists respectively. All the

procedures in this study were arranged strictly with the

approval of the ethics committee of the Second Affiliated

Hospital, School of Medicine, Zhejiang University. Written

informed consent was given by every participant.

The flowchart of the study was shown in Figure 1. All three

groups received a pre-lecture test, a 45-minute lecture, and a

post-lecture test. The same specific designed test was used for

pre-and post-lecture tests including three parts: part Ⅰ was the
recognition of PM, part Ⅱ was the MM classification, and partⅢ
was the “Plus” lesion detection.

Group A and group B were guided by an experienced

instructor 1 (Dr. Zhi Fang). Group C was guided by another

experienced instructor 2 (Dr. Zhe Xu) following the same

working flow. Both instructors are physicians from the eye

center of the Second Affiliated Hospital of Zhejiang University.

Ophthalmology-client, the AI-aided
diagnosis platform for PM

Ophthalmology-client is an AI–aided PM diagnosis and

classification platform developed by our team. This AI

platform can identify PM or non-PM, classify the MM, and

detect “Plus” lesions based on retinal fundus images. The AI

platform also can automatically localize the “Plus” lesions based

on retinal fundus images with comparable performance to retinal

experts after being trained with a large number of retinal fundus

images.

AI-based PM identification system

The residents in group A learned the contents including the

introduction of Ophthalmology-client as well as the criteria for

diagnosis of PM and the META-PM system 1 day before the

class. Besides, the instructor encouraged them to discuss the key

points of the retinal fundus image before the class. In the class,

10 min were given to allow the residents to finish the pre-lecture
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test. Then the residents had 45 min to explore and operate the

AI-aided platform of Ophthalmology-client. The content of AI

training regarding the PM topic included fundus images from a

database on the website involving typical PM at different

categories or non-PM and a report from the Ophthalmology-

client. The contents of the output report included the category of

PM according to the META-PM classification system if it is a

PM, the location of the specific lesion with labels if there is a PM

“Plus” lesion, and a brief introduction of PM. A 10-minute

discussion regarding the key points and “Plus” lesions of PM

fundus image was conducted. Finally, 10 min were given to finish

the post-lecture test.

Conduction of the traditional lecture

The residents in group B learned the knowledge of PM

diagnosis and the META-PM system 1 day before class. The

instructor encouraged them to discuss the key points of the

retinal fundus image before the class. During the class, 10 min

were given to residents to finish the pre-lecture test.

Subsequently, the instructor gave a 45-minute traditional

lecture on the topic of PM. The content of the traditional

lecture regarding the PM topic included the brief introduction

and typical fundus image of PM, the META-PM classification,

and relevant typical fundus with the indication of chorioretinal

atrophy, macular atrophy, and “Plus” lesion (lacquer cracks,

choroidal neovascularization, or Fuchs spot). A 10-minute

discussion regarding the key points and “Plus” lesions of PM

fundus image was conducted. Finally, 10 min were given to finish

the post-lecture test.

Residents’ evaluations

The residents’ evaluations of the AI-based PM identification

system were measured by a 17-item questionnaire, including

16 one-choice questions and one open-ended question (Table 1).

The questionnaire in our study was designed based on previous

studies of medical education, which rated on a 4-point scale

ranging from “strongly agree” (with the highest score) to

“strongly disagree” (with the lowest score) (Huang et al., 2016;

Wu et al., 2020). The questionnaire was conducted in group A

after class to collect and assess residents’ satisfaction with the AI-

based PM identification system. Information of the questionnaire

had several topics, including knowledge acquisition (2 items),

motivational dimension (3 items), group cooperation (1 item),

creative and critical thinking (1 item), instructor performance

(3 items), organization (1 item), overall rating (2 items),

recommendations (2 items).

Data analysis

All data from the survey questionnaire were gathered by

Questionnaire Star anonymously. We described categorical

FIGURE 1
Flowchart of the study.

Frontiers in Cell and Developmental Biology frontiersin.org03

Fang et al. 10.3389/fcell.2022.1053079

26

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1053079


variables as frequencies and percentages. The effects of the AI-

based platform on residents’ performance were measured by

comparing pre-and post-lecture scores using a paired t-test.

The difference among the three groups was evaluated by one-

way ANOVA. Furthermore, an independent t-test was used to

compare the improvement in performance between the

three groups. A subgroup analysis was conducted

between senior residents (3rd year) and junior residents

(1st–2nd year) in both groups. It was considered

statistically significant when p < 0.05. All data were

analyzed by SPSS version 22.0 software (SPSS Inc.,

Chicago, IL, United States).

Results

Baseline characteristics

All participants finished the class and completed the pre-and

post-lecture tests. There was no significant difference in the

baseline characteristics between the three groups including

gender, educational background, grade, and age (p = 0.610)

(Table 2). The percentage of the male was 33.3%, 33.3%, and

30%; the percentage with a postgraduate degree was 66.7%,

63.3%, and 63.3%; the percentage of senior residents (3rd

year) was 36.7%, 33.3%, and 30%; the age was 27.53 ±

3.48 years, 27.97 ± 3.06 years, and 27.10 ± 3.55 years

respectively in groups A, B, and C.

Pre-lecture scores of residents’
performance in each group

The total and three parts of pre-lecture scores were similar

between three groups with no significant difference (Table 3).

Subgroup analysis showed there was no obvious difference in the

total, part Ⅱ, and part Ⅲ of pre-lecture scores between the senior

and junior residents. However, the pre-lecture scores of part Ⅰ
were significantly higher among the senior residents’ than the

junior residents (Table 4, p = 0.030).

Improvement of residents’ performance in
each group

One-way ANOVA detected significant difference in the total

(p < 0.0001), part Ⅰ (p = 0.024), part Ⅱ (p < 0.0001), and part Ⅲ
(p < 0.0001) of post-lecture scores among three groups. Further

t-test found the total, part Ⅱ, and part Ⅲ of post-lecture scores

were significantly higher than the pre-lecture scores in group A

(Table 5, p < 0.01). However, we found no improvement of part Ⅰ
in group A (Table 5, p = 0.199). In group B, the improvement was

not obvious in total (p = 0.302), part Ⅰ (p = 0.087), and part Ⅱ (p =

0.504) (Table 5). In group C, the improvement was also not

significant in total (p = 0.158), part Ⅰ (p = 0.808), and part Ⅱ (p =

0.594) (Table 5). However, significant improvement of part Ⅲ
about the “Plus” lesion detection was observed in both group B

and group C (Table 5, p < 0.05). The total, part Ⅰ, part Ⅱ, and part

TABLE 1 Seventeen-item questionnaire.

No. Question

One-choice questions (A, strongly agree; B, agree; C, disagree; D, strongly disagree)

1 AI-based PM identification system helped me to acquire a higher level of knowledge

2 AI-based PM identification system is more effective and motivate compared with traditional didactic lecture

3 AI-based PM identification system challenged me to do my best

4 AI-based PM identification system promoted the learning of essential concepts or skills

5 AI-based PM identification system promoted effective cooperative learning

6 AI-based PM identification system promoted increased reading of the textbook by the students

7 Overall, I am very satisfied with the AI-based PM identification system

8 AI-based PM identification system should be offered more frequently in the curriculum

9 I will recommend the AI-based PM identification system to other residents

10 This activity was preferable to the traditional lecture

11 AI-based PM identification system is easy to operate and well-designed

12 I study with colleagues frequently

13 The instructor highly facilitated the learning process of AI-based PM identification system

14 The instructor can well answer the residents’ questions

15 The instructor encouraged and provided opportunities for discussion

16 AI-based PM identification system is beneficial to help develop creative thinking and self-learning ability

17 Compared with the traditional teaching method, what do you think are the advantages and disadvantages of the AI-based PM
identification system?

AI, artificial intelligence; PM, pathologic myopia.
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Ⅲ of post-lecture scores in group A were significantly higher than

those in group B (Table 5, p < 0.01). However, there was no

significant difference of post-lecture scores between group B and

group C (Table 5, p = 0.489 for total scores, p = 0.340 for part Ⅰ
scores, p = 0.375 for part Ⅱ scores, p = 0.137 for part Ⅲ scores),

which indicated a similar effect of training by different

instructors.

Comparison of junior and senior residents’
performance between three groups

One-way ANOVA showed significant difference of post-

lecture scoresboth in junior (p < 0.0001 for total, p =

0.033 for part Ⅰ, p < 0.0001 for part Ⅱ, and p < 0.0001 for part

Ⅲ) and senior residents (p < 0.0001for total, p < 0.0001forpart Ⅱ,

TABLE 2 Baseline characteristics of participants.

Characteristics Group A Group B Group C p Value

Male (n, %) 10, 33.3% 10, 33.3% 9, 30%

Postgraduate (n, %) 20, 66.7% 19, 63.3% 19, 63.3%

3rd year resident (n, %) 11, 36.7% 10, 33.3% 9, 30%

Age (years, mean ± SD) 27.53 ± 3.48 27.97 ± 3.06 27.10 ± 3.55 0.610

SD, standard deviation.

TABLE 3 Pre-lecture scores of three groups.

Group A (mean ± SD) Group B (mean ± SD) Group C (mean ± SD) p Value

Part Ⅰ 15.43 ± 2.06 15.23 ± 1.92 14.93 ± 2.12 0.634

Part Ⅱ 7.67 ± 2.09 8.57 ± 2.31 8.33 ± 1.58 0.207

Part Ⅲ 12.20 ± 3.03 11.77 ± 2.77 11.70 ± 2.82 0.767

Total 35.30 ± 5.72 35.57 ± 5.22 34.97 ± 4.62 0.905

SD, standard deviation.

TABLE 4 Pre-lecture scores between junior and senior residents.

Junior (1st–2nd year,
mean ± SD)

Senior (3rd year, mean ±
SD)

p Value

Part Ⅰ 14.83 ± 1.96 15.80 ± 1.95 0.030*

Part Ⅱ 7.95 ± 1.99 8.63 ± 2.08 0.133

Part Ⅲ 11.70 ± 2.84 11.93 ± 2.57 0.705

Total 34.48 ± 5.04 36.37 ± 5.01 0.097

*p < 0.05. SD, standard deviation.

TABLE 5 Improvement of residents’ performance of three groups.

Part Ⅰ Part Ⅱ Part Ⅲ Total

Group A (mean ± SD) Pre-lecture 15.43 ± 2.06 7.67 ± 2.09 12.20 ± 3.03 35.30 ± 5.72

Post-lecture 16.00 ± 1.91## 14.27 ± 3.54**## 15.47 ± 1.80**## 45.73 ± 5.00**##

Group B (mean ± SD) Pre-lecture 15.23 ± 1.92 8.57 ± 2.31 11.77 ± 2.77 35.57 ± 5.22

Post-lecture 14.53 ± 2.06 8.90 ± 1.97 13.20 ± 2.33* 36.63 ± 4.48

Group C (mean ± SD) Pre-lecture 14.93 ± 2.12 8.33 ± 1.58 11.70 ± 2.82 34.97 ± 4.62

Post-lecture 15.07 ± 2.23 8.47 ± 1.78 12.27 ± 2.46* 35.80 ± 4.78

Compared with pre-lecture scores: *p < 0.05; **p < 0.01. Compared with group B: ##p < 0.01. SD, standard deviation.

Frontiers in Cell and Developmental Biology frontiersin.org05

Fang et al. 10.3389/fcell.2022.1053079

28

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1053079


and p = 0.017for partⅢ) between three groups. Only the part Ⅰ of
senior residents showed no significant difference between three

groups (p = 0.591). Subgroup analysis showed that both junior

and senior residents in group A achieved significantly higher

post-lecture scores than those in group B (Table 6, p < 0.01).

Further analysis showed that three parts in junior residents, and

part Ⅱ, part Ⅲ in senior residents were significantly improved

(Table 6, p < 0.01). Besides, the part Ⅰ scores among senior

residents were significantly higher in group B, which was

consistent with pre-lecture scores (Table 6, p < 0.05). There

was no significant difference between senior and junior residents

in total, part Ⅱ, and part Ⅲ of group B, total and three parts of

group C (Table 6).

Residents’ satisfaction

All residents in group A responded to the questionnaire.

Overall, all respondents were satisfied with the AI-based

PM identification system and agreed that the system was

helpful, effective, innovative, and beneficial for them to

develop the skill of fundus image identification for PM and

an extensive understanding of the META-PM classification

(Figure 2).

Meanwhile, they also believed that the instructor played an

important role in guiding the AI-based PM identification system

(Figure 2). We collected residents’ answers to the open-ended

question: What are the advantages and disadvantages of the AI-

based PM identification system? Many residents confirmed that

the AI-based PM identification system benefits them, in terms of

efficiency, convenience, innovative design, flexible learning style,

self-learning ability, and self-motivation. However, some

residents expressed concerns about the hardware requirement,

accuracy, and website stability of the AI-based platform.

Discussion

Standardization is essential for the ophthalmology residency

training program. However, significant regional discrepancy

among training programs still exist and may result in the

variable competency of ophthalmology residents (Wang et al.,

2020). AI model showed the potential to provide trainees equal

opportunity and minimize the regional difference due to the self-

learning model and timely feedback (Fischetti et al., 2022).

Particularly, due to the COVID-19 pandemic, routine clinical

practice maybe disrupted. Hence, the clinical teaching can also be

substantially influenced (Ferrara et al., 2020; Silva et al., 2020).

Instead, the AI-assisted education system based on the web

platform or mobile devices has broad prospect and has been

recommended to make up the theory classes (Pradeep et al.,

2021). Moreover, medical students or trainees showed a positive

attitude toward AI and high acceptance of the AI-aided medical

training (Bisdas et al., 2021). Efforts have been made to develop

visual AI courses for further difficult AI courses (Wang et al.,

2022) or introductory curriculum into AI in radiology titled AI-

RADS for residents education (Lindqwister et al., 2021). This

study applied an AI-based PM identification system developed by

our team to the residency training program and achieved

excellent performance. Our data demonstrated a striking

improvement in the residents enrolled in the AI group. This

was in consistent with the previous study that AI model could

TABLE 6 Comparison of post-lecture scores between junior and senior residents.

Junior (1st–2nd year, mean ± SD) Senior (3rd year, mean ± SD)

Group A Group B Group C Group A Group B Group C

Part Ⅰ 15.89 ± 2.00** 14.00 ± 2.25 14.90 ± 2.32 16.18 ± 1.83 15.60 ± 1.07# 15.44 ± 2.07

Part Ⅱ 14.00 ± 3.90** 9.05 ± 1.96 8.43 ± 1.60 14.73 ± 2.94** 8.60 ± 2.07 8.56 ± 2.24

Part Ⅲ 15.58 ± 1.57** 13.05 ± 2.52 12.29 ± 2.49 15.27 ± 2.20** 13.50 ± 1.96 12.22 ± 2.54

Total 45.47 ± 5.43** 36.10 ± 5.00 35.62 ± 4.26 46.18 ± 4.35** 37.70 ± 3.16 36.22 ± 6.10

Compared with Group B: *p < 0.05; **p < 0.01. Compared with junior residents: #p < 0.05. SD, standard deviation. SD, standard deviation.

FIGURE 2
Residents’ feedback to the AI-based PM identification system
with a 4-point scale.
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improve the students’ performance in sign and diagnosis part

significantly (Wu et al., 2020). Notably, the improvement was

significant in total, part Ⅱ, and part Ⅲ while no difference was

detected in part Ⅰ. Also, a significant higher scores of part Ⅰ was
observed in senior residents compared with junior residents.

These results indicated that the PM diagnosis based on typical

fundus images can be improved by residents through self-

learning or traditional teaching activity. In one of our

traditional lecture groups, no difference in total scores was

found while part Ⅲ was significantly improved. Part Ⅲ was

about the “Plus” lesions detection from fundus images including

lacquer cracks, choroidal neovascularization, and Fuchs spot.

The improvement in part Ⅲin both traditional and AI training

goups indicated that it might be relatively easier for the trainees

to identify the “Plus” lesions compared with the mission of

categorizing the PM macular lesions according to the META-

PM grading system. Overall, the MM classification was the most

difficult, followed by the “Plus” lesion detection for residents to

fully understand and improve through the didactic lecture solely.

In this study, AI model showed better efficiency and great

potential help to acquire difficult tasks, shorten the learning

curve and training period.

The AI training exhibited better performance as it can

provide the huge and multiple fundus images as learning

materials in the online database and effectively facilitate the

trainees to deepen their understanding of PM signs and

morphological features. The database allows the trainees to

learn the relevant knowledge efficiently and improve their

performance in a short period instead of long-term clinical

practice to gain experience. Moreover, our AI system also can

archive one-to-many and interactive teaching mode. Due to the

merits of efficiency, convenience, flexible learning style, and

timely feedback, all residents were satisfied with the system.

Previous study reported the better performance of AI

technique in junior residents compared with that of medical

students (Han et al., 2022). However, adjunctive tool like ultra-

widefield retinal imaging had a better performance in junior

residents than senior residents (Lin et al., 2021). Thus, the

performance of a new teaching model or adjunct tool may

vary during different training stage. Junior and senior

residents’ performance even fluctuated during different

months of a year (Ali et al., 2022). In our study, both senior

and junior residents using AI model achieved significantly higher

scores than traditional lecture group, indicating that AI model is

worthy for all residents and has great potential for the

standardized residency training. However, part Ⅰ in senior

residents showed no difference between groups A and B,

which may due to the previous clinical training. Given these

results, we believe that a well-designed AI-assisted teaching

model can provide an effective learning and practice platform

to make up the weakness of the traditional teaching mode in

ophthalmology residency training program.

The efficiency of traditional lectures by different

instructors were also evaluated in this study. The results

showed no significant difference in both pre-and post-

lecture scores between groups B and C. Subgroup analysis

of post-lecture showed significantly higher scores of senior

residents compared to junior residents in group B, but not in

group C. These results suggested the comparable effect

between two experienced instructors only with minor

difference and further confirmed the results of the

superiority of AI-based teaching mode compared with the

traditional lecture.

The free discussion after the lectures was arranged to fully

discuss the content of the lecture. However, the discussions

between the three groups were highly related to the ir own

teaching content of each group with no crosstalk. For

example, the traditional lecture group only discussed the

relevant content mentioned by the instructor, while the AI-

based group only discussed the operating experience of AI

platform and the output of the AI platform. Moreover, the

results showed no significant improvement in scores of the

total, part Ⅰ, and Part Ⅱ after the post-lecture free discussion

in traditional lecture group. Given the reasonability and results

above, the free discussion after the lectures will not have a

significant impact on our results.

Our questionnaire also gave an intact feedback evaluation of

our AI-based PM identification system from the residents. All of

the participants were satisfied with the AI-based PM

identification system and confirmed the positive role of

instructor. Comments mainly included efficiency, convenience,

innovative design, flexible learning style and higher requirement

of hardware.

Compared to previous studies, the present study enrolled

more numbers of participants using a new in-house designed

AI-based platform. The difference between senior and junior

residents was also analyzed. However, the contents regarding

the treatment for PM or MM was not included, as the AI

model at this stage mainly focuses in the PM identification and

MM classification. Further studies are desirable to evaluate the

role of AI-based PM identification system on residency

training program in more comprehensive respects,

including diagnosis, management of disease and even

human-machine interaction.

In conclusion, we found the AI-based PM identification

system effectively improved the residents’ performance of

PM identification, while the group receiving the single

traditional lecture showed no significant improvement.

Further stratification analysis showed the similar results

between the senior and junior residents in both groups,

prompting the request for the efficient clinical teaching

model to help trainees grasp complex and difficult tasks.

Overall, application of the AI-based PM identification

system showed advantages in promoting the efficiency of
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ophthalmology residency training and received positive

feedback from residents as well.
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Morphological changes of the choroid have been proved to be associated with

the occurrence and pathological mechanism of many ophthalmic diseases.

Optical Coherence Tomography (OCT) is a non-invasive technique for imaging

of ocular biological tissues, that can reveal the structure of the retinal and

choroidal layers in micron-scale resolution. However, unlike the retinal layer,

the interface between the choroidal layer and the sclera is ambiguous in OCT,

which makes it difficult for ophthalmologists to identify with certainty. In this

paper, we propose a novel boundary-enhanced encoder-decoder architecture

for choroid segmentation in retinal OCT images, in which a Boundary

Enhancement Module (BEM) forms the backbone of each encoder-decoder

layer. The BEM consists of three parallel branches: 1) a Feature Extraction

Branch (FEB) to obtain feature maps with different receptive fields; 2) a

Channel Enhancement Branch (CEB) to extract the boundary information of

different channels; and 3) a Boundary Activation Branch (BAB) to enhance the

boundary information via a novel activation function. In addition, in order to

incorporate expert knowledge into the segmentation network, soft key point

maps are generated on the choroidal boundary, and are combined with the

predicted images to facilitate precise choroidal boundary segmentation. In

order to validate the effectiveness and superiority of the proposed method,

both qualitative and quantitative evaluations are employed on three retinal OCT

datasets for choroid segmentation. The experimental results demonstrate that

the proposed method yields better choroid segmentation performance than

other deep learning approaches. Moreover, both 2D and 3D features are

extracted for statistical analysis from normal and highly myopic subjects

based on the choroid segmentation results, which is helpful in revealing the

pathology of high myopia. Code is available at https://github.com/iMED-Lab/

Choroid-segmentation.

KEYWORDS

choroidal layer, optical coherence tomography, boundary segmentation, deep
learning, high myopia
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1 Introduction

The choroid is a dense vascular layer posterior of the uvea,

the middle membrane of the ocular posterior segment. It plays a

critical role in thermoregulation, adjustment of retinal position,

and secretion of growth factor (Nickla and Wallman, 2010). The

high blood flow in the choroid makes it immune to

environmental conditions with various extreme temperatures.

Choroidal thickness has become one of the diagnostic indicators

of many ophthalmic diseases, such as high myopia, glaucoma,

age-related macular degeneration, and diabetic retinopathy

(Regatieri et al., 2012; Chen et al., 2014; Wang et al., 2015;

Yiu et al., 2015). Takeing high myopia as an example, the

percentage of Asian young people with high myopia increaed

by 6.8%–21.6% over the period 2010 to 2014 (Wong and Saw,

2016). Individuals with high myopia are highly susceptible to

developing pathological myopia, which is one of the leading

causes of low vision and blindness (Oduntan, 2005; Cedrone

et al., 2006). Therefore, choroid segmentation and choroidal

thickness analysis are crucial in determining the pathogenesis

and treatment strategy of ophthalmopathy.

The development of Optical Coherence Tomography

(OCT) (Huang et al., 1991) has made analysis of retinal

and choroidal morphology convenient and accurate for

clinical research and application. With the emergence of

new OCT techniques such as spectral domain OCT (SD-

OCT) (Yaqoob et al., 2005), enhanced depth imaging OCT

(EDI-OCT) (Wong et al., 2011) and swept-source OCT (SS-

OCT) (Choma et al., 2003), the choroid can be clearly visible.

Because of the characteristics of non-invasive 3D imaging,

these new OCT techniques have become the primary choice

for clinicians to diagnose ophthalmic diseases. Figure 1 shows

an OCT volume acquired from a healthy eye, which can be

divided into three parts: from top to bottom (retina, choroid

and sclera). In addition, the 2D B-scans can be extracted from

the 3D volume for further study of the choroidal morphology.

Based on the B-scans, various methods have been proposed

for choroidal layer segmentation. Previous methods were mainly

based on graph theory (Zhang et al., 2012; Hu et al., 2013;

Mazzaferri et al., 2017). These methods rely on manual

parameter settings, and usually yield low efficiency, which

limits their segmentation accuracy and makes them difficult to

apply in clinical practice. With the emergence and development

of deep learning, several Convolutional Neural Network (CNN)

models have been applied to choroidal layer segmentation (Chen

et al., 2015; Sui et al., 2017; He et al., 2021; Yan et al., 2022). The

powerful feature learning capability of CNN has significantly

improved choroid segmentation accuracy and efficiency over the

last decade. In addition, end-to-end networks have enabled

models to take original images as direct input, and output

segmentation results without handcrafted operations (Mao

et al., 2020; Zhang et al., 2020).

Many current studies have explored possible improvements

of segmentation efficiency and model optimization, but only a

few have focused on the structural characteristics of the choroidal

layer. Due to the low contrast of OCT images (as shown in

Figure 1), the boundary between choroid and sclera is

ambiguous, which for many algorithms leads to inaccurate

boundary localization. However, the issue of vagueness in

imaging the Choroidal Scleral Interface (CSI) has been little

investigated. Moreover, choroidal thickness, as an alternative and

important biological indicator strongly associated with several

ocular diseases, has been quantified in much recent work on the

basis of 2D B-scans only (Regatieri et al., 2012; Kim et al., 2013;

Agrawal et al., 2020). In contrast, the 3D morphological

characteristics of the choroid and its thickness in different

regions, such as the nasal side and the foveal region, may

provide more indicative and accurate information for

FIGURE 1
Examples of a 3D OCT volume and 2D OCT B-scan image. The choroid-sclera interface (indicated by the red dashed line) is ambiguous and
difficult to extract compared to the other boundaries.
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diagnosis of ocular diseases. But few research works have

investigated choroid characteristics derived from 3D

morphology.

In this paper, we focus on tackling the following two issues in

choroid segmentation and morphological analysis. Firstly, since

it is difficult to extract the boundary between choroid and sclera

due to low contrast in OCT, existing segmentation methods

usually perform ineffectively and produce poor definition of the

choroidal boundary. Secondly, there is a lack of choroid-related

biomarkers in highly myopic subjects, especially three-

dimensional biomarkers, which are more conducive to the

diagnosis and treatment of diseases.

To this end, we propose a fully automated choroid

segmentation framework with boundary feature enhancement.

Initially, in order to extract accurate boundary information, we

design a new Boundary Enhancement Module (BEM). This

consists of three parallel branches. One branch is a Feature

Extraction Branch (FEB), which uses dilated convolution (Yu

and Koltun, 2015) with different dilation rates to acquire relevant

image features under different receptive fields, so that the

boundary features are fully retained. The second branch is a

Channel Enhancement Branch (CEB), which exploits and

enhances the boundary characteristics of different channels

through global average pooling and convolution operations.

The third branch is a Boundary Activation Branch (BAB),

which strengthens the boundary information from the spatial

perspective via one-dimensional convolution and a specific

activation function to further enhance boundary features. The

BEM can be integrated with different encoder-decoder networks,

such as the U-Net and FCN. In addition, for each B-scan, a soft

point map is generated based on the extracted points on the

choroidal boundary by using a boundary strengthen point

selection algorithm. Based on these boundary soft point maps,

we introduce the Boundary Perceptual Loss (BP-Loss) to provide

feedback on the boundary enhancement effect of the output

segmentation result. Finally, we extract and analyze both 2D and

3D morphological features of the choroid in the highly myopic

population, based on the segmentation results.

In brief, our main contributions are listed as follows:

• We propose a novel BEM module for reinforcing

information on the choroidal boundary from three

perspectives including feature, channel and space, which

can be integrated with major encoder-decoder

architectures such as U-Net, FCN, etc.

• A boundary perceptual loss is introduced to incorporate

expert knowledge into our segmentation network. This

new loss provides the flexibility to learn a prior boundary

information from a soft point map.

• We extract 3D edge point cloud features and reconstructed

the 3D structure of the choroid based on the 2D

segmentation results of all B-scans. In addition, we

statistically analyze choroidal thickness and 3D

characteristics in different subfields to further determine

the correlation between choroidal morphological changes

and high myopia.

2 Related work

2.1 Choroid segmentation

Existing methods for choroid segmentation in OCT are

mainly divisible into two categories: traditional methods, and

machine learning methods. Zhang et al. (Zhang et al., 2012) first

attempted to extract the choroidal layer in 3D SD-OCT by

adapting a graph-based method, which produced a relatively

accurate choroidal surface. However, this method was tested on

normal subjects only, and it is difficult to achieve the expected

segmentation performance for some patients, especially those

with large changes of choroidal morphology. In order to

overcome this limit, Hu et al. (Hu et al., 2013) improved the

graph-based multi-layer segmentation method by applying

various smoothness and interaction constraints to different

choroidal layer structures. This method has been validated on

OCT images collected from both healthy subjects and non-

neovascular AMD subjects, revealing great similarities with

manual segmentation.

With the emergence of Enhanced Depth Imaging OCT (EDI-

OCT) technology, its high-resolution imaging made the

choroidal layer structure more clearly displayed in OCT

B-scans, which is more conducive to choroid segmentation.

Tian et al. (Tian et al., 2013) adopted Dijkstra’s algorithm to

seek the shortest path, and the choroidal surface was quickly and

accurately detected. Similarly, Danesh et al. (Danesh et al., 2014)

proposed a segmentation method based on the Gaussian mixture

model, to obtain the choroidal structure in EDI-OCT images.

However, this still requires handcrafted features, and is sensitive

to noise artifacts existing in EDI-OCT images. In addition, Chen

et al. (Chen et al., 2015) introduced a new pipeline composed of a

progressive intensity distance image generation algorithm and

graph search method for the problem of noise and boundary

ambiguity. Wang et al. (Wang et al., 2017) used a Markov

Random Field (MRF) method to connect adjacent pixels, and

a level set method to regularize the distance of uneven textures.

Since graph search technology is greatly affected by manual

parameter settings, deep learning-based methods have been

developed to obtain the choroidal structure. Sui et al. (2017)

proposed a convolutional neural network (CNN)-based method

that learns a graph-edge weight directly from raw OCT pixels.

The network structure can be divided into two parts: one detects

the CSI boundary, and the other detects the BM boundary. This

method has revealed good adaptability to 3D EDI-OCT images

collected from both healthy subjects and patients with macular

edema. He et al. (2021) combined CNN and a l2-lq (0 < q < 1)

fitter to segment the outer choroidal surface, in which the CNN is
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used to generate predicted values, and the l2-lq fitter is employed

to maintain the stability of the fitting function. The OCT image is

partitioned into small patches to form the input of the CNN, and

post-processing is required to discard irrelevant information,

which leads to relative inefficiency compared to end-to-end

architectures. Similarly, Masood et al. (2019) used deep

learning methods to establish a new segmentation structure to

obtain the outer choroidal surface. Before being fed into the

CNN, the OCT image needs to be divided into patches for data

sampling and conversion. This method reduces the average

segmentation error, but it is still not as efficient as end-to-end

architectures.

As a result, several end-to-end deep learning approaches have

been proposed more recently. Zhang et al. (2020) proposed an end-

to-end method, consisting of a global multi-layer segmentation

block, a choroidal layer segmentation block, and a regularization

block. This first segments all the inner retinal layers, and then utilizes

global information to detect the choroidal layer. For 3DOCT images

collected from healthy subjects, the thickness difference obtained by

thismethod (4.30 ± 0.02 pixels) ismore accurate than those obtained

by other state-of-the-art methods. Chai et al. (2020) proposed a

method that can effectively segment the choroidal boundary by

minimizing the differences between different regions, and takes into

account the differences between different OCT acquisition

equipment. It feeds OCT images from different domains into a

U-Net-based network, and uses both adversarial and perceptual loss

for domain adaptation.

2.2 Choroidal thickness analysis

Examining the choroidal layer as extracted from OCT images,

ophthalmologists can analyze choroidal variations from different

perspectives. In particular, choroidal thickness is of great interest, as

it often indicates the presence or even severity of some ophthalmic

diseases. Yiu et al. (2015) extracted choroidal thickness from EDI-

OCT images collected from subjects with Age-related Macular

Degeneration (AMD). Employing on a semi-automatic

segmentation method, they analyzed the similarities and

differences in choroidal thickness between normal individuals

and patients with AMD. Wang et al. (2015) compared choroidal

thickness between patients with highmyopia and healthy people. By

analyzing the experimental results, they found that choroidal

thickness in healthy individuals is significantly thicker than that

of individuals with high myopia. Regatieri et al. (2012) examined

choroidal thickness in diabetic patients and found that the change of

choroidal thickness was related to the severity of diabetes. More

recently, several studies have shown that choroidal thickness as

revealed by retinal OCT images is associated with certain

neurodegenerative diseases. Moschos and Chatziralli (2018)

extracted the retinal thickness and choroidal thickness of patients

with Parkinson’s Disease (PD) from spectral domain OCT, and

compared the results with those from healthy individuals. The

differences between people with, and without PD were

statistically significant. Similarly, Satue et al. (2018) used swept-

source OCT to measure retinal and choroidal thickness of patients

with PD. They found that the retina of patients with PD became

thinner, while choroidal thickness might increase. Similar to our

work, Chen et al. (2022) segmented the choroidal layer of highly

myopic patients and non highly myopic people and compared the

thickness, while they lacked the analysis of three-dimensional

features, and the segmentation performance needs to be improved.

To this end, the automatic and accurate quantification of

choroidal thickness is potentially crucial to diagnosis of these

diseases. However, most quantification approaches of choroidal

thickness can only provide two-dimensional measurements at a

fixed location, which limits the practicability. Therefore, we

proposed to use 3D edge point cloud features to produce a

three-dimensional reconstruction of the choroidal layer.

2.3 Boundary segmentation

Boundary segmentation in images remains a research

hotspot, not only in the fields of medical image analysis but

also in many fields of other computer vision such as remote

sensing. The mainstream boundary segmentation approaches

may be divided into two categories: filtering-based methods,

and learning-based methods. Wang et al. (2018) introduced

an interactive geodesic method based on CNN into medical

image segmentation: a mannual correction of boundary

information is required to improve the accuracy of boundary

segmentation. Lee et al. (2020) proposed a novel network with

boundary preserving blocks to retain the boundary information

via learning proper weights of boundary features. Wei et al.

(2021) proposed a concentric loop CNN with a boundary

detector and a refinement block to improve the effect of

boundary segmentation in remote sensing images. Dang and

Lee (2021) improved the effect of boundary segmentation in

document images by sharing the weights of boundary features

and global features, and using adversarial loss to strengthen the

learning of boundary information. Wang et al. (2021) combined

a transformer with CNN to enhance the segmentation of skin

lesions, and used an attention mechanism to boost the

performance of boundary segmentation. Recently, Yu et al.

(2022) proposed FBCU-Net, which uses boundary semantic

features to segment medical images, but it is mainly used for

region segmentation and the performance of layer structure

segmentation still needs to be improved.

3 Methods

In this paper, we propose a novel encoder-decoder network

with boundary feature enhancement for choroid segmentation.

The proposed choroid segmentation framework is presented in
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Figure 2. The proposed framework adopts U-Net (Ronneberger

et al., 2015) as the baseline encoder-decoder network, and

incorporates a novel module, termed a BEM into each

encoder/decoder layer. The BEM consists of three parallel

branches: FEB, CEB and BAB. In addition, pre-trained VGG-

19 is utilized to calculate the specific boundary perceptual loss,

which guides the segmentation framework in reducing the gap at

boundary feature level between the predicted segmentation map

and ground truth.

In order to train the proposed framework, a soft point map

is constructed for each B-scan as another ground truth for

extra supervision. Boundary enhancement points are first

extracted using the boundary enhancement point selection

algorithm. To allow tolerance of the key points’ position in the

training phase, we generate Gaussian distributed disks based

on all extracted points for each B-scan to construct the

corresponding soft point map. The details are illustrated in

the following subsections.

3.1 Soft point map construction

Inspired by Lee et al. (2020), we employed the boundary

enhancement point selection algorithm to select several key

points, then generated a point map for each B-scan as another

ground truth for training. By contrast with the binary disks

generated on the selected points in (Lee et al., 2020), we

adopted a two-dimensional Gauss function to generate a

point map with soft boundaries for more effective guidance

with boundary information to segmentation. This

modification is mainly based on the following

considerations: a binary disk allocates undifferentiated

attention to all pixels in the neighborhood of the

corresponding selected point, which creates vulnerability to

deviation of boundary localization. The soft point map can be

expressed as follows:

Si,j � max
k∈ 1,...,K{ }

exp − i − xk( )2 + j − yk( )2
2σ2

( ) (1)

where (i, j) represent the coordinates of one pixel of the generated

soft point map matrix S; (xk, yk) represent the coordinates of kth

selected key point (total K selected key points); σ represents the

standard deviation of the Gauss function. The differences

between the original point map and the proposed soft point

map are illustrated in Figure 3.

3.2 Boundary enhancement module

The proposed choroid segmentation architecture

incorporates our novel BEMs into its encoder/decoder

layers, as shown in Figure 2. Figure 4 presents the

architecture of the BEM, which consists of three branches

including FEB, CEB and BAB. The BEM can be embedded in

various layers in the segmentation network. The BEM

embedded in the ith layer takes the feature maps

fi ∈ Rwi×hi×ci as input, where wi, hi, and ci respectively

represent the width, height and channels of the feature

maps at the ith layer. The FEB produces the boundary-

enhanced point map Mi ∈ Rwi×hi×1. The CEB generates a

channel-wise weighting vector Ni ∈ Rci . The BAB outputs a

FIGURE 2
An overview of the proposed boundary enhancement framework for choroid segmentation. A novel BEM is incorporated into each encoder/
decoder layer of the proposed framework. In addition, a pre-trained VGG network is utilized to calculate the specific boundary perceptual loss to
improve the choroidal boundary segmentation with the guidance of the soft point map generated from ground truth.
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single-channel activation map Qi ∈ Rwi×hi×1. Then, the final

output feature maps vi ∈ Rwi×hi×ci is calculated as follows:

vi � fi ⊕ fi ⊗ Mi ⊗ Qi ⊗ Ni( ), (2)

where ⊕ represents element-wise addition; ⊗ represents

multiplication (pixel-wise multiplication for single-channel

maps Mi and Qi, and channel-wise multiplication for the

weighting vector Ni).

3.2.1 Feature extraction branch

The gray section in Figure 4 shows the architecture of the

FEB, which is designed for extracting a boundary-enhanced point

map with different receptive fields. Multiple receptive fields

integrate global context information and local detailed

information, which is beneficial to accurate localization of

boundary key points. We adopted convolution with different

FIGURE 3
Two different types of point maps extracted from the same OCT B-scan. The original points map was generated using binary disk as (Lee et al.,
2020), while the soft map was generated based on a two-dimensional Gauss function. All points were extracted from the same boundary of ground
truth.

FIGURE 4
The architecture of the proposed BEM (A). The BEM consists of three parallel branches including FEB (B), CEB (C) and BAB (D), which achieve
enhancement of boundary information from the feature, channel and spatial perspective, respectively.
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dilation rates to obtain the features with different receptive fields.

Finally, the features with different receptive fields are

concatenated and then fed into a single 1 × 1 convolutional

layer with a Sigmoid function. Let dsr(fi) be the encoded feature

maps of input feature maps fi using s × s convolution with

dilation rate r. Then the generated boundary-enhanced point

map can be expressed as:

Mi � S d1
1 d1

1 fi( ) ⊙ d3
1 fi( ) ⊙ d3

2 fi( ) ⊙ d3
4 fi( ) ⊙ d3

6 fi( )[ ]( ),
(3)

where ⊙ and S denote a concatenation operation, and a Sigmoid

function, respectively.

3.2.2 Channel enhancement branch

Each channel of a feature map may be regarded as a specific-

class response. However, there are also some differences in the

importance of different feature classes to a specific task (e.g.,

choroid segmentation). In order to selectively enhance features

useful for choroid segmentation, a CEB is designed to calculate

channel-wise weighting vectors for extracted feature maps. The

detailed structure of CEB is shown in the green section of

Figure 4. The branch first adopts global average pooling (gap)

to generate channel-wise statistics of the input feature maps fi,

then applies one-dimensional convolution of kernel size 3 to

obtain the final channel-wise weighting vectors Ni, which can be

denoted as follows:

Ni � S C1D3 fgap fi( )( )( ), (4)

where fgap denotes global average pooling; C1D3 denotes the one-

dimensional convolution of kernel size 3; S denotes a Sigmoid

function.

3.2.3 Boundary activation branch

In order to further improve detection of the choroidal

boundary, we introduced an extra branch called the BAB, as

detailed in by the red section of Figure 4. The channel number of

the feature maps is reduced to 1 via a 1 × 1 convolutional layer

followed by a Sigmoid function: a specific activation function is

then applied to the obtained single-channel feature map, which

can be formulated as follows:

Qi � e xi−0.5( )2 + 1 − e−0.25,
xi � S C2D1 fi( )( ),{ (5)

where fi represents the input feature maps; C2D1 represents the

1 × 1 convolutional layer; S denotes a Sigmoid function.

It is worth noting that the specific activation function was

designed based on the observation that choroidal boundary

pixels generally have a value around 0.5 in the obtained

feature maps, while interior of choroid and background pixels

have values near 1 and 0, respectively. To this end, the activation

map is utilized to adjust each feature map spatially for the

choroid segmentation task, by assigning higher weights for

choroidal boundary pixels (close to 2—e−0.25), and lower

weights for interior of choroid and background pixels (close

to 1) (Simonyan and Zisserman, 2014). In this way, the boundary

information is highlighted after activation.

3.3 Loss function

In order to effectively train the proposed choroid

segmentation network, we introduced a novel loss called

boundary perceptual loss (BP-Loss), which embeds the soft

point map into the segmentation network. The complete joint

loss function is formed after incorporating segmentation loss.

3.3.1 Segmentation loss

First, we adopted Binary Cross Entropy Loss as the

segmentation loss in order to reduce the difference between

the ground-truth segmentation map and the predicted

segmentation map, which is defined as:

LossSeg � −∑
i

1 − SiGT( ) · log 1 − Ŝ
i

Pred( ) + SiGT · log Ŝ
i

Pred( )( ),
(6)

where SiGT and Ŝ
i
Pred represent the ith pixel of ground truth

segmentation map, and the corresponding predicted

segmentation map, respectively.

3.3.2 Boundary perceptual loss

Unlike general semantic segmentation tasks, medical

images require strong expert knowledge to achieve better

segmentation performance. Therefore, we concatenated the

generated soft point map with the predicted result and

ground-truth to form the input of the VGG network, in

order to constrain their geometrical relationship. To

maintain consistency between the output of the FEB and

ground truth. We adopted mean square error (MSE) loss

and defined boundary point loss as:

LossiMap � 1
hi × wi

∑h
i

j�1
∑w

i

k�1
Mi

j,k −Mi
GTj,k

( )2

, (7)

where Mi and Mi
GT respectively represent the output point map

and the ground truth soft point map for the FEB in the ith layer,

and hi and wi represent the corresponding height and width,

respectively.
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LossGF � ∑
i

1
Ni

‖ϕi SGT ⊙ MGT( ) − ϕi ŜPred ⊙ MGT( )‖1, (8)

where ϕi (·) denotes the feature maps from the ith layer of the

VGG-19 network pre-trained on the ImageNet; SGT denotes

ground truth segmentation map; MGT denotes ground truth

soft point map; ŜPred denotes the predicted segmentation map;

⊙ denotes concatenation operation; and Ni denotes the element

number of feature maps from the ith layer of VGG-19.

The Boundary Perceptual Loss is defined as:

LossBP � LossGF +∑n
i

LossiMap (9)

where n indicates the number of BEMs in the proposed choroid

segmentation network.

Finally, the total loss function is defined as:

LossTotal � λSegLossSeg + λBPLossBP (10)

where λSeg and λBP are set as 0.5 and 0.5 in our task.

4 Experiment settings

4.1 Dateset

In this work, a newChoroidalOCT image for SegmenTAtion

(COSTA) dataset, which consists of three subsets named

COSTA-H, COSTA-T and COSTA-B, was constructed for our

proposed approach. These subsets were acquired from different

devices or adopted different bit depths, as illustrated in Figure 5.

• COSTA-H consists of 10 OCT volumes from 10 healthy

subjects. Each volume was captured by the Heidelberg Spectrails

system, and contains 384 non-overlapping B-scans, each covering a

3 × 3 × 2mm3 region. Two groups of ophthalmologists were invited

to independently make manual annotations of the upper and lower

boundaries of the choroidal layer (BM andCSI), and their consensus

were used as ground truth after discussion. In order to reduce the

number of manual annotations, we asked these ophthalmologists to

annotate one B-scan every six consecutive B-scans, due to the high

similarity between adjacent B-scans in an OCT volume. Finally, we

obtained a total of 384/6 × 10 = 640 B-scans with manually

annotated choroid boundaries.

• COSTA-T was captured by the Topcon DRI-OCT-

1 system, containing a total of 20 OCT volumes from

20 healthy human eyes. Each volume contains 256 B-scans

with a resolution of 512 × 992 pixels covering a 6 × 6 ×

2mm3 region. This dataset was also annotated by the same

protocol as COSTA-H, yielding a total of 256/4 × 20 =

1280 B-scans with annotated choroid boundaries.

Both COSTA-H and COSTA-T datasets were used for training

and testing, where the ratio of data volume between the training and

testing sets is 3:1. To more accurately and credibly evaluate the

proposed network, we adopted the 4-fold cross-validation strategy,

i.e., randomly dividing all samples into 4 equal pieces and taking

each piece as the validation set and others as the training set in turn.

After 4 groups of tests, different validation sets are replaced each

time. That is, the results of four groups of models are obtained, and

the average value is taken as the final result.

• COSTA-B was captured by a homemade 70-Khz SD-OCT

system with different bit depths, and all this data was selected from

Hao et al. (Hao et al., 2020). It contains 199 annotated B-scans with a

resolution of 270 × 450 pixels from one normal subject. By contrast

with COSTA-H and COSTA-T, COSTA-B was only used to test the

robustness of the proposed method with respect to imaging quality.

For the same B-scan, we also made a comparison of segmentation

results based on different bit depths. The higher bit depth represents

the better image quality, whichmakes for easier choroid segmentation.

4.2 Implementation

All deep learning approaches in the experiments were

implemented with PyTorch (Paszke et al., 2019) and ran on a

single NVIDIA GeForce GTX 3090 GPU with 24 GB memory

FIGURE 5
Examples of the original OCT images from (A) COSTA-H dataset, (B) COSTA-T dataset, (C) COSTA-B dataset (6 bit-depth), and (D) COSTA-B
dataset (12 bit-depth).
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under an Ubuntu 16.04 system. The proposed network was

trained with 400 epochs, and some hyper-parameters were set

as follows: Adam optimization, with an initial learning rate of

0.0005 and batch size of 8. For other comparison methods, we

adopted the same training strategy in the original paper.

4.3 Quantitative evaluation metrics

In order to compare the performance of the proposed

method with other state-of-the-art deep learning networks, the

following routine metrics for image segmentation were adopted

and calculated:

• Dice Coefficient (Dice) = 2 × TP
2 × TP+FP+FN;

• Intersection over Union (IoU) = TP
TP+FP+FN;

• Accuracy (Acc) = TP+TN
TP+TN+FP+FN;

• Sensitivity (Sen) = TP
TP+FN;

where TP is true positive, FP is false positive, TN is true negative,

and FN is false negative.

In addition, we adopted Average Unsigned Surface Detection

Error (AUSDE) (Xiang et al., 2018) based on BM and CSI:

AUSDE � 1
m

∑m
i�1

|y i( ) − ŷ i( )| (11)

where m represents the width of the B-scan, y(i) and ŷ(i)

represent vertical coordinates of the ith point in the horizontal

direction of BM or CSI in the predicted segmentation map and

ground truth, respectively. Based on y(i) and ŷ(i) of BM and CSI

(respectively denoted as y(i)
BM, ŷ(i)

BM and y(i)
CSI, ŷ

(i)
CSI), average

Thickness Difference (TD) can also be calculated as:

TD � 1
m

∑m
i�1

‖y i( )
CSI − y i( )

BM| − |ŷ i( )
CSI − ŷ i( )

BM‖ (12)

5 Results

In this section, we performed training, validation as well as

testing on COSTA-H and COSTA-T datasets, and compared them

with the state-of-the-art choroid segmentation methods from both

qualitative and quantitative perspectives. In addition, we applied the

model trained on COSTA-H to COSTA-B to validate the robustness

of the proposed method. Furthermore, we applied the proposed

method to high myopia subjects. Segmentation results of all B-scans

were then utilized for 3D reconstruction, which extracts 3D features

for clinical correlation analysis.

5.1 Qualitative results

Figure 6 shows the visualization of the results of training and

testing on Heidelberg, and we compare them with other popular

methods that use deep learning to segment the choroid layer,

including the U-Net (Ronneberger et al., 2015), FCN (Long et al.,

2015), DeepLab v3+ (Chen et al., 2018), SegNet (Badrinarayanan

et al., 2017), CE-Net (Gu et al., 2019), CS-Net (Mou et al., 2019),

and SCA-CENet (Mao et al., 2020). In Figure 7, the BM and CSI

are located by blue and red lines, respectively. In both the overall

segmentation and the boundary extraction (shown by the

zoomed-in part of Figure 7), the proposed BEM performed

better than its counterparts, which shows that our

reinforcement of boundary characteristics is useful and efficient.

The testing results on the COSTA-B dataset are presented in

Figure 8, which shows three OCT B-Scans with different bit

depths, including 6, 8, and 12 (the best image quality) bits. The

model with the best segmentation results on the COSTA-H

dataset was used to segment these images. The segmentation

results show the excellent robustness of the proposed model.

Common segmentation methods that focus on global

information and lack detailed features have difficulty in fully

segmenting all the choroid layers. In contrast, the proposed

method, which benefits from its ability to enhance boundary

characteristics and extract different features from different

perceptual fields and channels, shows good robustness across

images of differing qualities.

5.2 Quantitative results

In order to verify the advantages of our method from a

quantitative perspective, we selected the Dice, IoU, AUSDE and

TD as evaluation metrics. For the COSTA-B test, only two

metrics, Dice and IoU, were selected for evaluation, as the

segmentation results of many methods could not form clear

boundary lines (as shown in Figure 8).

Table 1 shows the quantitative comparison of various deep

learning methods applied to the COSTA-H dataset. As is shown

in Table 1, our method achieved 97.06% of the Dice coefficient

and 94.31% of the IoU value, with a Boundary Error of 0.9496 for

AUSDE of the BM and a Detection Error of 3.0029 for the lower

boundary CSI, outperforming other methods. After adding BEM

and BP-Loss to UNet, the value of AUSDE of CSI is improved by

2.57 pixels and that of TD is improved by 2.68 pixels,

demonstrating the value of boundary extraction.

In order to further evaluate our proposed method, we

conducted additional tests on the COSTA-T dataset and the

results are shown in Table 2. With the help of BEM, our method

achieves 92.87% of the Dice coefficient and 86.91% of the IoU

value: after adding the BEM and BP-Loss, this improves to 2.02%

and 2.39% on the Dice and IoU values, respectively.

We also select 6, 8, 10, and 12 bit depth images in the

COSTA-B dataset for evaluation on the DICE and IoU metrics.

For each network, both the best trained and validated models on

the COSTA-H dataset were tested. It may be seen from Figure 9,

by contrast with our proposed method, the segmentation results
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of the other networks degrade significantly over decreased depths

of the same image. Specifically, all of the tested algorithms obtain

better segmentation results on the 12-bit depth map than those

on the 6 and 8-bit depths. This further validates the robustness of

the proposed method.

5.3 Ablation study

In order to verify that each branch in the BEM and the BP-Loss

are effective, we conducted ablation experiments by removing each

branch separately and performing the experiments on the same

FIGURE 6
The visualization of the example result of choroid segmentation on the COSTA-H dataset. The first image is the original image, the second
image is the ground truth, and the next few images are the results of different methods of segmentation: the specific methods are marked in the
upper left corner of the image. White denotes a correctly segmented choroidal area, red denotes over-segmentation, and blue denotes under
-segmentation.

FIGURE 7
Results of different choroid segmentation methods in boundary detection. The name of the method is shown at the upper left corner of each
image.
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FIGURE 8
Comparison results of other choroid segmentationmethods in boundary detection. The specificmethods aremarked in the upper left corner of
the image.

TABLE 1 Quantitative segmentation results of different deep learning methods on the COSTA-H dataset.

COSTA-H

Methods Acc(%) Sen(%) Dice (%) AUSDE (pixels) TD (pixels) Size (Mb)

BM CSI

U-Net 99.04 ± 0.92 95.52 ± 3.87 96.10 ± 3.96 1.01 ± 1.07 5.57 ± 5.58 5.92 ± 7.01 53.7

CE-Net 99.09 ± 0.88 96.05 ± 5.12 96.30 ± 3.08 1.05 ± 0.25 3.95 ± 5.03 4.19 ± 4.89 116.2

FCN 99.00 ± 0.95 96.33 ± 5.51 96.04 ± 3.26 1.25 ± 0.46 3.93 ± 4.82 4.24 ± 4.57 134.4

SegNet 98.86 ± 0.70 96.70 ± 2.97 95.68 ± 1.84 1.33 ± 0.73 4.72 ± 3.22 4.99 ± 3.12 176.8

DeepLab v3+ 98.78 ± 0.99 95.30 ± 5.40 95.23 ± 3.29 1.37 ± 0.89 5.36 ± 5.08 5.52 ± 4.94 368.1

SCA-CENet 99.14 ± 0.80 96.11 ± 4.65 96.41 ± 3.23 1.01 ± 0.30 4.11 ± 5.15 4.40 ± 5.00 116.2

CS-Net 99.00 ± 0.85 95.31 ± 4.92 96.03 ± 2.85 1.03 ± 0.50 4.32 ± 4.45 4.46 ± 4.26 35.8

Our method 99.27 ± 0.27 97.07 ± 2.01 97.06 ± 0.90 0.95 ± 0.59 3.00 ± 1.48 3.24 ± 1.37 54.1

The values in bold represent the best of all the comparative experimental results.

TABLE 2 Quantitative segmentation results of different deep learning methods on the COSTA-T dataset.

COSTA-T

Methods Acc(%) Sen(%) Dice (%) AUSDE (pixels) TD (pixels) Size (Mb)

BM CSI

U-Net 97.20 ± 1.47 91.32 ± 6.25 90.85 ± 4.29 1.99 ± 0.97 11.99 ± 7.48 11.98 ± 7.45 53.7

CE-Net 97.52 ± 1.46 93.00 ± 5.85 91.77 ± 4.70 1.96 ± 0.81 10.06 ± 6.35 10.18 ± 6.49 116.2

FCN 97.19 ± 1.47 91.49 ± 6.53 90.61 ± 5.04 2.72 ± 3.56 12.17 ± 7.54 11.97 ± 8.32 134.4

SegNet 97.37 ± 1.35 92.01 ± 6.11 91.38 ± 4.04 2.12 ± 1.17 11.43 ± 6.67 11.57 ± 6.61 176.8

DeepLab v3+ 96.87 ± 1.64 87.00 ± 9.05 88.95 ± 6.01 3.22 ± 4.35 13.75 ± 9.18 13.92 ± 8.71 368.1

SCA-CENet 97.62 ± 1.52 93.30 ± 5.93 92.21 ± 4.78 1.94 ± 0.70 9.56 ± 6.56 9.77 ± 6.65 116.2

CS-Net 97.31 ± 1.52 90.65 ± 6.74 91.12 ± 4.58 1.76 ± 0.59 11.16 ± 7.74 11.20 ± 7.76 35.8

Our method 97.85 ± 1.25 92.47 ± 6.13 92.87 ± 3.70 1.88 ± 1.07 9.11 ± 6.19 9.23 ± 6.28 54.1

The values in bold represent the best of all the comparative experimental results.
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dataset, and the results are shown in Figure 10. It can be seen that the

dice and IoUmetrics gradually increase with the addition of different

branches, both in COSTA-T and COSTA-H datasets. It is obvious

that the segmentation result benefits from every branch of the BEM.

After adding BEM, the IoU of the segmentation result on

COSTA-T dataset reaches 86.53%, which is 3.01% higher than the

baseline. With the help of BP-Loss, the segmentation result reaches

86.91%, which further improves the segmentation effect. Similarly,

each module and branch plays a role on the COSTA-H dataset.

6 Clinic applications

High myopia is a common visual impairment worldwide.

The mechanical pulling of the growing eye axis in high myopia

leads to retinal and choroidal thinning, as well as to a variety of

pathological changes in the fundus, which can easily evolve into

pathological myopia (Read et al., 2019; Scherm et al., 2019; Singh

et al., 2019). Previous studies have shown that choroidal

thickness is significantly higher in highly myopic patients than

that in the healthy subjects, but no correlation has been found in

other features such as volume, surface area, curvature of the BM

and CSI, and other 3D features. Encouraged by the good

perfomance of the proposed method demonstrated in the

experimentation, we applied the segmentation method to a

prospective clinical study, in which the choroidal thickness of

different regions are extracted and the 3D morphology of

choroidal structures reconstructed using point clouds.

1) Dataset: We collected 20 volunteers aged between 20 and

30 years with high myopia. The right and left eyes of all

FIGURE 9
Trend of Dice and IoU results of different segmentation methods in different bit depth images. (A), (C) are the result on the COSTA-H dataset,
and (B), (D) are the result on the COSTA-T dataset.

FIGURE 10
Ablation results on COSTA-H and COSTA-T datasets. The blue bars denote the quantitative results of the baseline network U-Net. The orange
bars denote the segmentation results of the network with FEB. The gray bars denote the segmentation results of the network with FEB and CEB. The
yellow bars denote the segmentation results of the network with FEB, CEB, and BAB. The red bars denote the segmentation results of the network
with FEB, CEB, BAB, and BP-Loss.
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volunteers were scanned by the Heidelberg Spectrails system

device for data acquisition, and volume data were extracted

within a 4.5 × 4.5 × 2mm3 area centered on the macular.

Each volume contained 512 B-scans.

2) Result: Figure 11 shows the distribution of choroidal layer

thickness in different areas across the volume, in both normal

and highly myopic subjects. Table 3 shows the quantitative

results of the average choroidal thickness in different subfields

of the macula. The average choroidal thickness in the highly

myopic subjects was significantly thinner than that in the normal

subjects in all regions, with an average choroidal thickness of

230.41 ± 28.92 μm in the normal population and 177.31 ±

42.35 μm in the highly myopic subjects, while the specific

thickness distribution in the other regions is shown in

Table 3, with p-values less than 0.001 after t-test, which is

consistent with the results reported in (Wang et al., 2015)

recently.

Current studies on the correlation between choroidal

morphology and diseases rarely involve the 3D features of the

choroid. To fill this gap, we reconstructed the 3D morphology of

the choroid and extracted the 3D features of choroidal volume,

surface area and surface curvature using 3D point clouds. The

FIGURE 11
Choroidal layer thickness map in normal and highly myopic subjects using Early Treatment Diabetic Retinopathy Study (ETDRS) circles of 1 mm,
3 mm, and 6 mm. The standard ETDRS subfields dividing the macula into 9 subfields. CFT: Central foveal thickness; TIM: Temporal inner macula;
NIM: Nasal inner macula; SIM: Superior inner macula; IIM: Inferior inner macula; TOM: Temporal outer macula; NOM: Nasal outer macula; SOM:
Superior outermacula; IOM: Inferior outermacula. (A) denotes the thicknessmap in normal subject, (B) denotes the 9 subfields ofmacula, (C,D)
denote the average choroidal thickness [μm] of subfields in normal subjects and highly myopic, respectively.

TABLE 3 Average choroidal thickness and 95% CI of different Early Treatment Diabetic Retinopathy Study (ETDRS) subfields in normal and highly
myopic subjects.

ETDRS subfield Normal High Myopia Mean Difference (μm)* 95%CI (μm) p-value

Mean SD Mean SD Lower Bound Upper Bound

(μm) (μm) (μm) (μm)

Center point thickness 235.93 45.54 180.94 50.72 −54.99 28.13 81.85 <0.001
Central foveal thickness 242.85 40.91 177.31 52.13 −65.54 12.82 39.81 <0.001
Superior inner macula 247.22 31.86 186.16 48.40 -61.06 38.97 83.16 <0.001
Nasal inner macula 246.43 33.50 185.05 49.44 −61.38 38.55 84.22 <0.001
Inferior inner macula 246.08 37.16 177.73 49.94 −68.36 44.32 92.39 <0.001
Temporal inner macula 236.63 44.22 170.19 47.37 −66.44 40.79 92.08 <0.001
Superior outer macula 245.70 27.59 185.94 48.96 −59.76 38.20 81.32 <0.001
Nasal outer macula 237.04 29.44 187.05 46.11 −49.99 29.19 70.78 <0.001
Inferior outer macula 237.30 30.78 174.64 44.82 −62.67 41.85 83.49 <0.001
Temporal outer macula 210.82 45.66 153.32 40.59 −57.50 32.83 82.16 <0.001
Global average 230.41 28.92 177.31 42.35 −53.09 33.47 72.72 <0.001

* Normal group as reference, SD, means Standard Deviation.
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average volume of the choroid in the central macular notch 3 ×

3 × 2mm3 in the normal subjects was 2.211 ± 0.656mm3, whereas

the average volume of the choroid in the same range in the highly

myopic subjects was 1.304 ± 0.441 mm3, with a p-value less than

0.001. This is also consistent with the relevant research results

reported in (Barteselli et al., 2012).

In addition, we also calculated the surface area and the

curvature of the upper and lower choroid: the results are

shown in Table 4. It may be seen from Table 4 that the

choroidal surface areas of highly myopic subjects and normal

subjects are significantly different, while differeces of curvature

between highly myopic subjects and normal subjects are not as

significant.

7 Discussion and conclusion

With the emergence and popularity of deep learning

methods, several choroidal layer segmentation methods

have been developed during the last decade and many

have been applied to choroidal segmentation tasks.

However, due to the low depth and low contrast of the

early OCT techniques, the applications of deep learning

methods to retinal segmentation tasks have been limited.

Since the continuous innovation of OCT equipment means

that the choroid can now be rendered intact in B-scan, it is

straightforward that the previous methods for segmenting

the retinal layer should be applied to the task of choroidal

layer segmentation. However, even when using the most

recent technical improvements in OCT imaging, the CSI

layer of the choroid is still not as clear as the boundaries

of the retina. Therefore, the models developed for retinal

layer segmentation tend to generate ambiguous results when

applied to the choroidal boundary.

Recognizing the limitations of existing models, the goal of

our work is to develop a method to automatically segment the

choroidal layers, while dealing with the ambiguous boundary.

We enable the segmentation network to focus on the boundary

features by adding a boundary enhancement module to the major

segmentation network. The module has three branches to

enhance boundary features via different perspectives:

expanding the perceptual field using dilated convolution,

activating a boundary features using the boundary activation

function and extracting the boundary features of different

channels using channel convolution.

In order to embed expert knowledge into the proposed

choroidal automatic segmentation model, we extract boundary

enhancement points from the boundary of ground truth and

generate a soft point map, then introduce a boundary perceptual

loss, so that the boundary region information can be fed back to

the segmentation network based on ground truth, following

which the accurate segmentation of the choroidal layer can be

performed.

In addition, in order to further validate the clinical

application of this method, compared with previous studies,

we investigated not only from the two-dimensional

perspective of thickness, but also from a three-dimensional

perspective. The differences of choroidal 3D morphological

structures between highly myopic and normal subjects are

compared. This paper demonstrates the effectiveness of the

proposed method, which has the potential to promote

understanding the pathogenesis of some eye diseases (e.g.,

high myopia) related to morphological changes of the

choroid, so as to support early screening and intervention.

However, this work has limitations. For example, the

volunteer normal subjects may have a certain degree of

myopia, yet still not reach the definition of high myopia,

which may affect the statistical analysis of final results. The

dataset employed for validation might be extended, not only

in terms of data volume but also in terms of disease types, such as

glaucoma and pathological myopia. Another limitation of our

method is that it is less useful for tackling multi-layer (multi-

class) segmentation tasks. Since the selected boundary

enhancement points have not been further classified by

different layers, soft point map construction and boundary

enhancement module in the proposed method might not be

suitable for multi-layer segmentation in retinal OCT images. In

future work, the proposed model may be improved by setting

different weights to the boundary points, which would change the

type and number of points adaptively. In this way, the proposed

TABLE 4 Results of choroidal 3D features in normal and highly myopic subjects.

Normal High Myopia Mean Difference * p-value

Mean SD Mean SD

BM Curvature (mm−1) 0.027 0.011 0.029 0.006 0.002 0.538

CSI Curvature (mm−1) 0.091 0.024 0.115 0.141 0.024 0.474

Inner Volume (mm3) 2.211 0.656 1.304 0.441 -0.907 <0.001
Inner Surface Area (mm2) 1.166 0.258 0.804 0.436 -0.362 <0.001

* Normal group as reference.
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model might then be applied to both binary and

multiclassification tasks.
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Orbital and eyelid disorders affect normal visual functions and facial

appearance, and precise oculoplastic and reconstructive surgeries are

crucial. Artificial intelligence (AI) network models exhibit a remarkable ability

to analyze large sets of medical images to locate lesions. Currently, AI-based

technology can automatically diagnose and grade orbital and eyelid diseases,

such as thyroid-associated ophthalmopathy (TAO), as well as measure eyelid

morphological parameters based on external ocular photographs to assist

surgical strategies. The various types of imaging data for orbital and eyelid

diseases provide a large amount of training data for network models, which

might be the next breakthrough in AI-related research. This paper

retrospectively summarizes different imaging data aspects addressed in AI-

related research on orbital and eyelid diseases, and discusses the advantages

and limitations of this research field.
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Introduction

Artificial Intelligence (AI) simulates and extends human intelligence, and has been

hailed as “the Future of Employment” (Yang et al., 2021). Long before the mid-twentieth

century, the British scientist Alan Turing first predicted that machines could become

intelligent (Li et al., 2019), and in 1956, McCarthy introduced “AI” at the Dartmouth

Conference (Dzobo et al., 2020). At the time, “AI” was actualized via a static computer

program that controlled a machine, which is unlike the AI we currently know (Mintz and

Brodie, 2019). In 1959, Samuel developed the theory of AI and proposed “machine

learning (ML)” (Finlayson et al., 2019), which denotes the capability of a computer to

learn by itself without explicit program instructions (Nichols et al., 2019). In ML large

amounts of data are analyzed to make predictions on real-world events using supervised

and unsupervised algorithms. ML has spawned variants such as conventional machine

learning (CML) and deep learning (DL) (Brehar et al., 2020; Ye et al., 2020). DL has

exhibited a remarkable ability to analyze high-dimensional data with multiple processing

layers, gradually becoming the mainstream of ML modeling (Finlayson et al., 2019). In

particular, DL-based technologies display excellent abilities to extract image features and
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associate various types of data, which plays an active role in the

automatic recognition of image, sound, and text data (Cai et al.,

2020). Ting et al. (2017) reported that AI could automatically

diagnose diabetic retinopathy from more than 100,000 retinal

photographs. In recent years, DL has gradually become a new

tool in the automatic diagnosis of glaucoma and cataracts (Lin

et al., 2019; Wu et al., 2019; Wang et al., 2020a; Girard and

Schmetterer, 2020). Some commercial software applications

related to DL are used to assist in the diagnosis of retinal

diseases in clinical practice (van der Heijden et al., 2018;

Girard and Schmetterer, 2020).

Imaging data, including orbital computed tomography (CT),

orbital magnetic resonance imaging (MRI), and external ocular

photographs, play a crucial role in the diagnosis and treatment of

orbital and eyelid diseases (Bailey and Robinson, 2007; Abdullah et al.,

2010). Currently, AI automatically diagnoses and grades some orbital

and eyelid diseases, such as orbital blowout fractures and thyroid-

associated ophthalmopathy (TAO) (Li et al., 2020; Song et al., 2021a).

Automatic measurement of eyelid morphological parameters and

automatic surgical decision-making based on AI technology are

two recent research hotspots (Bahceci Simsek and Sirolu, 2021;

Chen et al., 2021; Lou et al., 2021; Hung et al., 2022). Compared to

traditional medical models, AI can rapidly analyze large sets of patient

data, achieving healthcare cost savings and assisting in the construction

of teleconsultation platforms (Bi et al., 2020). Automatic measurement

of eyelid morphological parameters based on AI technology could

correct artifactual errors to maintain objectivity and repeatability in

patient data evaluation, whichmight be a new tool in the assessment of

oculoplastic surgery (Lou et al., 2021). However, because of the small

amount of standard imaging data and the imbalance in categories,

ensuring a highly-efficient algorithm training is still a challenge. In

addition, the development of methods for obtaining high-quality

imaging data of orbital and eyelid diseases should also be considered.

In this paper, we comprehensively review the application of AI-

based technology to the diagnosis and treatment of orbital and eyelid

diseases by analyzing various types of image data. The advantages and

limitations of AI in this field are also discussed to explore its potential

targets in detecting and treating orbital and eyelid diseases.

What is artificial intelligence?

AI is a branch of computer science, in which “artificial” indicates

that the systems are man-made and “intelligence” denotes features

such as consciousness and thinking (Thrall et al., 2018). The major

purpose of AI is to simulate human thinking processes by learning

from existing experiences to solve problems that cannot be solved

through traditional computer programming (Bischoff et al., 2019).ML

is a subset of AI that has become the mainstream of AI technology

(Shin et al., 2021). ML extracts and analyzes the features of input

samples to classify new homogeneous samples (Totschnig, 2020). ML

automatically improves and optimizes computer algorithms and

programs by analyzing the data rather than relying on explicit

program instructions (Nichols et al., 2019; Cho et al., 2021).

Among the various ML models that have emerged, neural

networks simulate the synaptic structure of human neurons and

improve the computational ability of ML by adjusting the parameters

of network models (Starke et al., 2021). Convolutional neural

networks (CNNs), which have an encoding structure similar to

that of visual cortical neurons (Hou et al., 2019), have become one

of themost popular neural networkmodels (Mintz and Brodie, 2019).

In human vision, each neuron in the visual cortex responds to

stimulation by activating specific regions in the visual space that form

the entire visual field (Figure 1) (Brachmann et al., 2017). Similarly,

CNNs extract features from the input image and output a featuremap

using convolution and pooling operations (Le et al., 2020). A

convolution layer consists of a set of two-dimensional numerical

matrices that are also known as filters. The CNN obtains the pixel

value of the output images by multiplying the value in the filter by the

value of the corresponding pixel in the image and summing the

product, that is, via convolution operations (Brachmann et al., 2017).

To avoid similar sizes of the output pixels after the convolution

operation, the CNN changes the size of the output pixels by reducing

the input values through the pooling operation. By repeating the

convolution and pooling operations, the CNN continuously self-

corrects so that the output values become closer to the human

ratings (Larentzakis and Lygeros, 2021). New neural network

models, such as UNet and ResNet, have been developed to

overcome the difficulty of training CNNs with deep layers. These

neural network models improve the framework of a CNN by

expanding its depth, convolutional layer, or pooling layer. For

example, while traditional CNN models can only classify images

and output the labeling of an entire image, UNet can achieve pixel-

level classification and output the class of each pixel, which makes it

well-suited for image segmentation tasks (Yin et al., 2022). ResNet

solves the gradient vanishing and gradient exploding problems of

traditional CNNs by adding a residual block (He et al., 2020).

To process large amounts of data, multilayer neural networks

have been cascaded to form DL algorithms (Kaluarachchi et al.,

2021). Compared with traditional ML algorithms, DL has a

greater ability to analyze large-scale matrix data (Jalali et al.,

2021). The relationship between AI, ML, and DL is shown in

Figure 2. Currently, DL-based technologies are widely used in the

diagnosis of certain ophthalmic diseases, such as cataracts (Wu

et al., 2019) and glaucoma (Sudhan et al., 2022), and the

segmentation of medical images, including those of retinal

vessels (van der Heijden et al., 2018).

Artificial intelligence technology
applied to orbital computed
tomography/magnetic resonance
imaging images

Orbital CT and MRI are important tools for the diagnosis

and monitoring of orbital and eyelid diseases (Weber and
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Sabates, 1996). MRI and CT rely on magnetic fields and radio

wave energy to provide images within the orbit (Russell et al.,

1985; Langer et al., 1987). MRI is suitable for imaging soft tissue,

whereas CT is commonly used to image bony structures (Hou

et al., 2019). CT and MRI images are suitable as training data for

AI-based research as they have less background occupation and

noise (Thrall et al., 2018; Jalali et al., 2021).

Automatic identification and
segmentation of anatomical structures
from orbital computed tomography/
magnetic resonance imaging

Automatic recognition and labeling of anatomical structures of

the eye orbit can be achieved through the segmentation of medical

images based on AI technology (Hou et al., 2019). Furthermore, AI

can segment bony structures from orbital CT/MRI images.

Hamwood et al. (2021) developed a DL system for the

segmentation of bony regions from orbital CT/MRI images that

exhibited excellent efficiency, particularly in terms of computational

time. Li et al. (2022a) extracted bony orbit features and analyzed

Asian aging characteristics through the popular deep CNN (DCNN)

model. Some commercial software can also automatically segment

orbital regions fromCT images (Hamwood et al., 2021). In addition,

using AI-based technology, irregular soft tissues, such as fat and

abscesses, have been reliably segmented from orbital CT/MRI

images. Brown et al. (2020) used a UNet-like CNN to segment

orbital septal fat from orbital MRI images, and the results showed

that AI segmentation was consistent with manual segmentation. Fu

et al. (2021) trained and evaluated a context-aware CNN (CA-CNN)

to segment orbital abscess regions from CT images of patients with

orbital cellulitis, with the AI results being similar to those obtained

by medical experts.

In addition, AI can automatically quantify certain anatomical

structures based on image segmentation. Umapathy et al. (2020)

FIGURE 1
(A) Human visual feedback pathway. (B) Neural network structure framework mimics the human neural network. (C) The convolution process
performs a linear transformation at each position of the image and maps it to a new value. (D) Pooling is a computational process that reduces the
data size. The commonly used pooling methods are max pooling and average pooling.

FIGURE 2
Machine learning is a subset of artificial intelligence. Deep
learning has revolutionized the machine learning field in the past
few years. It is now widely used in image recognition, voice
recognition, etc.
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established an MRes-UNet model to segment and quantify the

volume of the eyeball based on orbital CT images. Pan et al.

(2022) achieved automatic calculation of the size and height of

the bony orbit regions using a U-Net++ based on pre-3D images

reconstructed from orbital CT images.

Automatic diagnosis and grading of orbital
and eyelid diseases based on orbital
computed tomography/magnetic
resonance imaging images

Orbital CT/MRI images are crucial in the preliminary

diagnosis of orbital diseases such as orbital wall fractures,

orbital tumors, and TAO (Griffin et al., 2018). Orbital

blowout fractures are one of the most common injuries

caused by orbital trauma. Li et al. (2020) used the Inception

V3 DCNN to automatically classify CT images exhibiting orbital

burst fractures. Song et al. (2021a) proposed a 3D-ResNet to

automatically detect TAO from orbital CT images, and the

trained AI algorithm showed excellent performance in a real

clinical setting. Lin et al. (2021) used a DCNN to grade TAO

based on orbital MRI images, resulting in a labeling of disorder

areas that was consistent with that made manually through an

occlusion test. Hanai et al. (2022) developed a deep neural

network to assess the enlarged extraocular muscles (EEM) of

patients with Graves’ ophthalmopathy (GO) from orbital CT

images. When applied to the test data, the area under the receiver

operating curve (AUC) was 0.946, indicating that the deep neural

network could effectively detect EEM in GO patients. Lee et al.

(2022) used 288 orbital CT scans from patients with mild and

moderate-to-severe GO and healthy controls to train a neural

network for diagnosing and assessing the severity of GO. The

developed neural network yielded an AUC of 0.979 in diagnosing

patients with moderate-to-severe GO. Han et al. (2022)

automatically identified the differences in the orbital

cavernous venous malformations (OCVM) from orbital CT

images by training 13 ML models, including support vector

machines (SVMs) and random forests. Nakagawa et al. (2022)

implemented a VGG-16 network to determine from CT images

whether a nasal or sinus tumor invades the periorbital area. The

network model achieved a diagnostic accuracy of 0.920,

indicating that CNN-based DL techniques can be a useful

supporting tool for assessing the presence of orbital

infiltration on CT images.

In addition to diagnosing and grading diseases, AI can extract

and determine subtle features from images to differentiate

confusing diseases. Orbital cavernous hemangioma and

schwannoma differ in terms of surgical strategy but have

similar MRI features. Bi et al. (2020) developed a database of

orbital MRI images of patients with cavernous hemangioma and

schwannoma from 45 hospitals in China and used AI to identify

and classify the affected eye, tumor location, and tumor category.

The AI system was validated, showing an accuracy greater than

0.900 on a multicenter database. Xie et al. (2022) developed a DL

model that combines multimodal radiomics with clinical and

imaging features to distinguish ocular adnexal lymphoma (OAL)

from idiopathic orbital inflammation (IOI). The diagnosing

results yielded an AUC of 0.953, indicating that the DL-based

analysis may successfully help distinguish between OAL and IOI.

Hou et al. (2021) used an SVM classifier and the bag-of-features

(BOF) technique to distinguish OAL from IOI based on orbital

MRI images. During an independent verification test, the

proposed method with augmentation achieved an AUC of

0.803, indicating that BOF-based radiomics might be a new

tool for the differentiation between OAL and IOI. Early

detection of hypothyroid optic neuropathy (TON) is crucial in

clinical decision-making. Wu et al. (2022) built an AI predictive

model to distinguish between TAO and TON by extracting

radiomic features from optic-nerve T2-weighted water-fat

images from a cohort of patients with TAO and a cohort of

patients with TON. Table 1 summarizes the discussed AI-related

studies on orbital CT/MRI images.

Artificial intelligence technology
based on external ocular
photographs

Owing to features such as easy and convenient delivery and

storage, external ocular photographs are unique imaging data for

diagnosing orbital and eyelid diseases. External ocular

photographs show abnormalities and deformities in the orbital

and eyelid appearance caused by trauma, tumors, inflammation,

and other factors (Fukuda et al., 2005). With the development of

face recognition technology, AI could locate and extract ocular

information from faces, which lays the foundation for AI

research based on external ocular photographs.

Automatic measurements of eyelid
morphologic parameters from external
ocular photographs

The accurate measurement of eyelid morphological

parameters is crucial in developing an individual eyelid

surgery strategy. However, manual measurement of eyelid

morphological parameters is difficult to replicate because of

subjective errors induced by head movements and changes in

facial expressions. AI provides a more objective and convenient

tool for quantifying eyelid morphological parameters by

parameterizing facial structures and automatically measuring

length, area, and volume. Moriyama et al. (2006) achieved eye

motion tracking based on the eyelid structure parameters and iris

position. Van Brummen et al. (2021) utilized a ResNet-50 model

to segment regions, such as the iris and eyebrow, to measure the
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TABLE 1 AI-related studies utilizing orbital CT/MRI images.

Authors Study goals Imaging data
type

Dataset Network model Accuracy AUC Dice

Hamwood
et al. (2021)

Segmentation of the bony
orbital regions

Orbital CT and
MRI images

Training set (n =
443 slices). Test set
(n = 363 slices)

Two full convolutional
neural networks
(CNNs) in series
followed by a graph-
search method

— — Dice (CT images) =
0.813 and 0.975.
Dice (MRI
images) = 0.930 and
0.995

Li et al.
(2022a)

Analysis of Asian aging
characteristics by extracting
features of the bony orbit

Orbital CT
images

595 people UNet 0.979 (Male)
and 0.992
(Female)

— —

Brown et al.
(2020)

Segmentation of orbital
septal fat

Orbital MRI
images

1,018 scans from
256 participants

UNet-like CNN — — —

Fu et al.
(2021)

Segmentation of orbital
abscess regions

Orbital CT
images

67 patients Context-aware CNN
(CA-CNN)

— — Dice = 0.780.
Jaccard = 0.120.
Hausdorff = 0.650

Umapathy
et al. (2020)

Segmentation and
quantification of eyeball
volume

Orbital CT
images

80 patients MRes-UNet — — Dice = 0.940

Pan et al.
(2022)

Segmentation of the bony
orbit regions

Orbital CT
images

595 Chinese people UNet — — IoU = 0.954

Li et al.
(2020)

Classification of orbital CT
images with orbital blowout
fractures

Orbital CT
images

94 patients and
94 normal people

Inception V3 deep
CNN (DCNN)

0.920 0.957 —

Song et al.
(2021a)

Detection of patients with
thyroid-associated
ophthalmopathy (TAO)

Orbital CT
images

193 patients and
715 normal people

3D-ResNet 0.870 0.919 —

Lin et al.
(2021)

Grading of TAO disease Orbital MRI
images

160 patients (80% for
training, 20% for
testing)

DCNN 0.863 0.922 —

Hanai et al.
(2022)

Assessment of the enlarged
extraocular muscles of
patients with Graves’
ophthalmopathy

Orbital CT
images

371 participants — 0.946 —

Lee et al.
(2022)

Diagnosis and severity
assessment of Graves’
ophthalmopathy

Orbital CT
images

288 cases; 80% for
training and 20% for
testing

A developed CNN. Moderate-to-
severe GO:
0.930 mild GO:
0.826

0.979
0.895

—

Han et al.
(2022)

Distinguishing orbital
cavernous venous
malformations

Orbital CT
images

215 patients with
OCVM and 96 non-
OCVM patients

13 ML models — — —

Nakagawa
et al. (2022)

Determination of whether a
tumor invades the
periorbital area in a nasal or
sinus tumor

Orbital CT
images

Training set (n = 119).
Test set (n = 49)

Pre-trained CNN
algorithm devoted to
image classification

0.920 0.940 —

Bi et al.
(2020)

Identification and
classification of the affected
eye, tumor location, and
tumor category

Orbital MRI
images

11,489 images of
cavernous
hemangioma and
3,478 images of
schwannoma

RCNN ResNet-101 0.911 0.954 —

Xie et al.
(2022)

Distinguishing ocular
adnexal lymphoma (OAL)
from idiopathic orbital
inflammation (IOI)

Orbital CT
images

OAL (n = 39) and IOI
(n = 50)

VGG-16 0.920 0.953 —

Hou et al.
(2021)

DifferentiatingOAL and IOI Orbital contrast-
enhanced MRI
(CE-MRI)

IOI (n = 28 patients)
and OAL (n =
28 patients)

Support vector
machine (SVM)

— 0.803 —

Wu et al.
(2022)

Distinguishing hypothyroid
optic neuropathy from TAO
patients

Orbital MRI
images (optic-
nerve T2-
weighted water-
fat images)

Training set (n = 163).
Test set (n = 72)

Radiomics nomogram — Test set:
0.880 vs.
0.750

—
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marginal reflex distance (MRD) in static and dynamic external

ocular photographs. Simsek and Sirolu used computer vision

algorithms to automatically measure pupillary distance (PD), eye

area (EA), and average eyebrow height (AEBH) from external

ocular photographs for evaluating the surgical effect of patients

who had undergone Muller’s muscle-conjunctival resection

(MMCR) surgery (Bahceci Simsek and Sirolu, 2021). The

automated measurement of eyelid morphology parameters

based on AI technology helps assess eyelid status and

improves the accuracy of eyelid surgery.

Compared with other types of imaging data, external ocular

photographs can be taken and shared by patients and physicians

through smartphones and the internet, which provides sufficient

data for AI research on external ocular photographs. Chen et al.

(2021) compiled CNN algorithms using the software MAIA to

build DL models for the automatic measurement of MRD1,

MRD2, and levator muscle strength based on external ocular

photographs taken with smartphones. This study was the first

smartphone-based DL model for the automatic measurement of

eyelid morphological parameters. Compared to those obtained

manually, measurements taken with the aid of AI are more

objective.

Ptosis is a common eyelid disorder in which a drooping

eyelid obscures the pupil, hindering vision in severe cases.

Ptosis is generally diagnosed by measuring eyelid

morphological parameters, such as the levator muscle

strength, lid fissure height, and limbal reflex distance,

based on typical clinical symptoms. Surgical therapy is the

main treatment for ptosis (Mahroo et al., 2014). Tabuchi

et al. (2022) performed an automatic diagnosis of ptosis

using a pre-trained MobileNetV2 CNNi applied to photos of

patients taken with an iPad Mini. Hung et al. (2022) realized

the automatic identification of monocular appearance

photos of ptosis patients based on a VGG-16 neural

network, and the results showed that AI outperformed

GPs in diagnosing ptosis. Combined with devices such as

smartphones, the analysis of eye appearance based on AI can

be useful in further clinical scenarios. AI provides an

objective tool for measuring eyelid morphological

parameters and planning surgery strategies instead of

relying on the experience of surgeons. Song et al. (2021b)

developed a gradient-boosted decision tree (GBDT) for

choosing ptosis surgery strategies and trained it with 3D

models created by photographing and scanning the eyes of

ptosis patients with a structured light camera. The AI model

evaluates the external ocular photographs and the 3D model

to determine whether surgery is required and establish the

surgery strategy to follow. Lou et al. (2021) evaluated the

outcome of ptosis surgery by comparing pre- and

postoperative values of eyelid morphological parameters,

such as MRD1 and MRD2, which were automatically

measured by a UNet from ocular appearance photographs

of the patients.

Artificial intelligence diagnosis and
prediction based on external ocular
photographs

Oculoplastic surgery involves the aesthetic restoration and

predicting postoperative outcomes through AI can help the

surgeon develop a personalized plastic surgery plan. The major

purpose of oculoplastic surgery is to realize the expected aesthetic

goals. However, it is hard to judge the expected aesthetic results due to

a variety of subjective factors (Swanson, 2011). Establishing an

objective facial beauty standard is still controversial. Zhai et al.

(2019) proposed a new facial detection method based on a transfer

learning CNN, which has better classification accuracy than previous

geometric assessment methods, laying a foundation for the prediction

of oculoplastic surgery effects. Yixin et al. explored the effect of the

eyelid on oculoplastic surgery and aesthetic outcomes by comparing

the postoperativemetrics of oculoplastic patients assessed by the CNN

model with those assessed only artificially. The CNN assessment

group had better postoperative extent, lower eyelid skin wrinkles,

eyelid tear troughs, skin shine, and aesthetic scores than the control

group, suggesting that CNN is a beneficial tool for evaluating

oculoplastic surgery (Yixin et al., 2022).

Eyelid and periocular skin tumors seriously affect the health and

aesthetics of patients (Silverman and Shinder, 2017). Early preliminary

screening through external photography helps detect and monitor

these tumors. Seeja and Suresh (2019) trained aUNet to automatically

segment skin lesions and differentiate melanoma from benign skin

lesions, achieving reliable results in the segmentation and diagnosis of

melanoma. Li et al. (2022b) used a faster region-based CNN and aDL

classification network to build an AI system that automatically detects

malignant eyelid tumors from ocular external photographs, obtaining

positive performance on both internal and external test sets (AUC

ranging from 0.899 to 0.955). CNNs could fully mine image

information and distinguish deep features from external

photography to detect subtle eyelid and skin tumors that are

elusive to the naked eye, thus helping reduce misdiagnosis and

missed diagnosis.

Changes in ocular appearance, such as retraction of the upper

eyelid, strabismus, and proptosis, are crucial in the diagnosis of TAO

(Hodgson and Rajaii, 2020). Huang et al. (2022) used the ResNet-50

model to obtain an automatic diagnosis of TAO based on external

ocular photographs. Karlin J et al. (2022) developed a DL model for

detecting TAO based on external ocular photographs. A set

comprising 1944 photographs from a clinical database was used

for training, and a test set of 344 additional images was used to

evaluate the trained DL network. The accuracy of the model on the

test set was 0.892, and heatmaps showed that themodel could identify

pixels corresponding to the clinical features of TAO. Orbital

decompression surgery can alleviate the symptoms of eye

protrusion and repair the appearance of patients with TAO.

According to the 2021-EUGOGO guidelines, orbital

decompression surgery is the recommended treatment strategy for

patients with severe TAO (Smith, 2021). Yoo et al. (2020) trained a
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conditional generative adversarial network (GAN) using pre- and

postoperative external ocular photographs of patients with orbital

decompression. The trained GAN could convert the preoperative

external ocular photographs into predictive postoperative images,

which were similar to the real postoperative condition, suggesting

that GAN might be a new tool for the prediction of oculoplastic

surgery results. Table 2 summarizes the aforementioned AI-related

studies on external ocular images.

Artificial intelligence-based
techniques using other image data
types

Tear spillage is a major symptom of lacrimal duct obstruction

(LDO), and its incidence in rural areas is gradually increasing

(Brendler et al., 2013). The use of anterior segment optical

coherence tomography (AS-OCT) to assess the tear meniscus

is considered a more objective non-invasive diagnostic

procedure. Imamura et al. used DenseNet-169 and pooled

DL models (VGG-16, ResNet-50, DenseNet-121, DenseNet-

169, Inception ResNet-V2, and Inception-V3) to detect

patients with LDO from AS-OCT images. The trained

network models exhibited remarkable reliability in

marking the areas of the tear meniscus (Imamura et al.,

2021).

Pathological examination is the gold standard for diagnosing

the nature of ocular tumors. However, traditional pathological

examination results are influenced by the experience of the

physician, which takes a large amount of time from specimen

submission to result confirmation (Heran et al., 2014). AI is not

influenced by subjective factors and can process a large number

of specimens in a short time. Wang et al. (2020b) used AI

technology to automatically diagnose malignant melanoma of

the eyelid from pathological sections. They also developed a

random forest model to grade tumor malignancy, suggesting that

TABLE 2 AI-related studies utilizing external ocular images.

Authors Study goals Imaging
data
type

Dataset Network model Accuracy AUC

Moriyama et al.
(2006)

Eye motion tracking External ocular
images

— Generative eye region
model

— —

Van Brummen
et al. (2021)

Segmentation of regions such
as iris and eyebrow

Photographs of
periorbital areas

418 images ResNet-50 — —

Bahceci Simsek
and Sirolu,
(2021)

Evaluation of postoperative
changes

Full-face
photographs

55 patients DLIBML toolkit — —

Chen et al.
(2021)

Measurement of eyelid
paraments

External ocular
images

411 participants MAIA software — —

Tabuchi et al.
(2022)

Classification of images taken
with a tablet device of patients
with blepharoptosis diagnosis

Eyelid images 1,276 images Pre-trained
MobileNetV2 CNNi

0.828 0.900

Hung et al.
(2022)

Identification of monocular
appearance photos of ptosis
patients

External ocular
images

782 images VGG-16 0.90 0.987

Song et al.
(2021b)

Determination of the choices of
ptosis surgery strategies

External ocular
images

152 eyes Gradient-boosted
decision tree (GBDT)

0.826 0.795

Lou et al. (2021) Evaluation of ptosis surgery
outcome

External ocular
images

103 patients (135 ptotic
eyes)

U-Net (Attention
R2U-Net)

— —

Yixin et al.
(2022)

Exploration of the effect of
eyelid on oculoplastic surgery
and aesthetic outcomes

External ocular
images

64 patients Multichannel CNN 0.988 —

Huang et al.
(2022)

Diagnosis of TAO Facial images 3,120 eyes ResNet-50 U-Net Eye location: 0.980.
Cornea: 0.930. Sclera
segmentation: 0.870

Over 0.850

Li et al. (2022b) Automatic detection of
malignant eyelid tumors

External ocular
images

Development set (n =
1,258). External test set
(n = 309)

Faster-RCNN — AUCs ranged
from 0.899 to
0.955

Karlin J et al.
(2022)

Detection of thyroid eye disease External ocular
images

Training set (n = 1994).
Test set (n = 344)

ResNet-18 0.892

Yoo et al.
(2020)

Synthesis of realistic
postoperative appearance for
orbital decompression surgery

External ocular
images

500 preoperative images
and 500 postoperative
images

Generative adversarial
network (GAN)

— 0.957
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AI may be a future tool for the rapid screening and grading of

tumor pathology.

Jiang et al. (2022) proposed a DL framework for the

automatic detection of malignant melanoma (MM) of the

eyelid based on self-supervised learning (SSL). The framework

consisted of a self-supervised model for detecting MM regions at

the patch level and another model for classifying lesion types at

the slide level. Considering that the differential diagnosis of basal

cell and sebaceous carcinomas of the eyelid is highly dependent

on the experience of the pathologist, Luo et al. (2022) proposed a

fully automated differential diagnostic method based on whole

slide images (WSIs) and DL classification, achieving an accuracy

of 0.983 for the trained network model.

In addition, AI-decision models can be established based on

various types of patient information. Song et al. (2022) trained an

ML model using a database that contained both ocular surface

characteristics and demographic information (gender, age) of

patients with lacrimal sacculitis. Tan et al. (2017) established an

alternating decision tree to predict the risk of reconstructive

surgery after eyelid basal cell carcinoma (pBBC) resection which

provides a new prediction model based on a database with

various patient information.

Discussion

The acquisition and analysis of imaging data are crucial in the

treatment of orbital and eyelid diseases. In this paper, we discuss

the advantages and limitations of AI technology for diagnosing

orbital and eyelid diseases by analyzing the different

characteristics of image data and the current problems and

potential approaches to promote the development of AI-based

technology in this field.

Orbital and eyelid diseases are primarily caused by

inflammatory (Lutt et al., 2008), metabolic, and traumatic

factors (Li et al., 2020). The anatomy integrity of the orbital

and eyelid not only protects and supports important structures,

such as the eyeball and optic nerve, but is also critical to the

aesthetic appearance of the patient’s face (Huggins et al., 2017).

AI converts traditional medical images into matrix data and

supports clinical decision-making by developing models and

analyzing the matrix data (Mintz and Brodie, 2019). Structural

segmentation of orbital CT/MRI images using AI might assist in

endoscopic and 3D-print surgery and lay a foundation for robotic

surgery (Wang et al., 2022). In addition, the automatic

measurement of eyelid morphological parameters based on

external ocular photographs provides a new tool for

developing individualized eyelid surgical strategies (Bahceci

Simsek and Sirolu, 2021). Thus, AI technology for diagnosing

and treating orbital and eyelid diseases, which remains in its

infancy, has great potential for broad clinical application.

Imaging data play an important role in the diagnosis and

treatment of orbital and eyelid diseases, providing an adequate

source of data for AI training. Non-invasive Orbital CT

examination is easy and fast to perform (Lee et al., 2004).

Orbital MRI examination is free of ionizing radiation damage

and is superior in revealing soft tissue. Compared with MRI

examinations, CT images are noisier (Hamwood et al., 2021).

Therefore, the traditional UNet algorithm is better suited to

training with CT images because it extracts rich feature scales and

can effectively filter local noise (Pan et al., 2022). External ocular

photographs serve as a unique type of imaging data for orbital and

eyelid diseases and provide information for eyelid surgery decisions.

Compared with other types of medical images, external ocular

photographs are non-invasive and can be easily taken by doctors

and patients with smartphones, which breaks the barrier of expensive

image equipment and facilitates the application of AI (Chen et al.,

2021). Furthermore, automatic facial recognition and eye-tracking

technology, which have been widely used in safety inspection,

instrument development, etc., could also be applied to AI research

based on external ocular photographs (Asaad et al., 2020). In addition,

visual field tests, OCT, and CT of the optic-nerve canal also play an

active role in the diagnosis of orbital and eyelid diseases. The

multimodal diagnostic images provide adequate raw datasets for

training AI models and validating their performance.

Although AI analysis of imaging data of orbital and eyelid

diseases has, there are some limitations in its development (Mintz

and Brodie, 2019; Yang et al., 2021). Uneven disease prevalence

and small sample sizes for certain rare diseases cause oversampling

when training AI models for specific types of diseases, resulting in

poor generalization and a lack of adaptability to new data. Several

studies have shown that the category imbalance problem can be

solved by weighting the data differently when computing the loss

function (Liu et al., 2021; Luo et al., 2021). Moreover, the current

AI datasets of orbital and eyelid diseases are generally obtained

from the samemedical institution. However, it is difficult to obtain

standardized data because of the differences in the examination

equipment used by different medical institutions. Image-based AI

research requires large sets of standard, annotated imaging data,

which are still scarce in the case of orbital and eyelid diseases as

compared, for instance, with ImageNet. Transfer learning may

offer a good solution to the lack of imaging data.When obtaining a

large dataset or labeling the data is difficult, learning can be

transferred from a task with sufficient data that is easily labeled

and similar to the target task. Liu et al. (2020) modified ResNet-

152, which was pre-trained on ImageNet, through transfer

learning to classify left and right optic discs with an accuracy of

0.988, thus demonstrating a new solution to the lack of data in

orbital and eyelid diseases. In addition, we can increase the amount

of data through data augmentation by rotating, panning, zooming,

or changing the brightness or contrast of the images. For example,

Song et al. (2021a) performed 200 rotations on the training data for

a CNN to increase the dataset size and reduce overfitting. When

verified, the overfitting of the trained CNN remarkably decreased.

There are also some drawbacks regarding the quality of imaging

data in orbital and eyelid diseases, which have limited the
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development of AI-related research. For example, it is difficult to

obtain standardized orbital CT/MRI images due to the long

scanning time, different equipment, and variable experience of

the operators. Zhai et al. (2021) developed a method based on a

signed distance field for the automatic calibration and quantitative

error evaluation when processing orbital CT images, which

provides a new tool to standardize CT/MRI images. Moreover,

lighting variations prevent high-quality standardized external

ocular photography. To address this problem, some studies

have attempted to model the illumination templates and

establish illumination-invariant algorithms (Li et al., 2007; Lu

et al., 2017), whose main purpose is to make shapes and

textures independent of illumination variations. Lastly, ethical

considerations and patient privacy issues associated with

external ocular photography also require in-depth deliberation.

Overall, although there are still some limitations to the

advance of AI-based research on orbital and eyelid diseases, as

large databases are established and shared and as new neural

networks that more closely resemble biological neurons are

developed, further development of such AI applications is

expected to occur, leading to the next breakthrough in

ophthalmology.

Conclusion

AI technology has a significant potential for application in

the automatic diagnosis and precise quantification of orbital and

eyelid diseases. AI is more objective than manual methods, can

process large amounts of data in a short time, and, thus, could

assist physicians in clinical decision-making and surgical design.

The predictive capabilities of AI may also play an active role in

assessing the outcome of oculoplastic surgery. As computer

algorithms are updated and high-quality datasets become

available, AI will play a broader role in the assessment of

orbital and eyelid disorders in the future.
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Effectiveness of reducing corneal
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Purpose: In this retrospective study, the efficacy of the FEMTO LDV

Z8 Femtosecond Laser-Assisted Cataract Surgery (Femto Z8 FLACS) and the

Femtosecond laser Arcuate Keratotomy (FSAK) in decreasing the corneal

astigmatism was investigated.

Methods: During FLACS, FSAK was positioned with the help of the FEMTO LDV

Z8 laser at a diameter of 8.5 mm and an 80% depth. Before and 3 months after

surgery, the astigmatism of the cornea was measured with the aid of Pentacam.

The variables influencing the efficacy of FSAK were assessed using the multiple

regression analysis technique. Vector analyses were carried out. To determine

the net corneal alterations, the with-the-wound and against-the-wound

variations were computed along the FSAKs’ meridian.

Results: This study investigated 80 eyes from 62 participants. The average

keratometric astigmatism value was 0.92 ± 0.44 diopters (D). The average

keratometric astigmatism decreased to 0.61 ± 0.45 D 3months following FSAK

compared to preoperative corneal astigmatism (p < 0.05). Additionally, there was a

considerable decline in the percentageof eyeswith±0.5D and±1.0D astigmatism,

which reduced 3 months after surgery by 58% and 85%, respectively (p < 0.05).

Conclusion: The FEMTO LDV Z8 laser can create an effective and precise arcuate

keratotomy with an excellent safety profile, rapid recovery, and vision stability.

KEYWORDS

high-frequency femtosecond laser-assisted phacoemulsification, arcuate keratotomy,
corneal astigmatism, nomogram, cataract surgery
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Introduction

The advancements in Femtosecond Laser-Assisted Cataract

Surgery (FLACS) allowed ophthalmologists to achieve very

accurate, safe, and predictable refractive results. At the same time,

patients’ high expectations regarding “spectacle independence” have

made astigmatism correction an increasingly important component

of cataract surgery (Pager et al., 2004; Hawker et al., 2005). Recent

large-scale retrospective surveys showed that approximately 40%–

47% of eyes preparing for cataract surgery exhibit the minimal

astigmatism value of 1.0 Diopter (D) (Khan and Muhtaseb, 2011;

Yuan et al., 2014). Furthermore, Ferrer-Blasco et al. have reported that

approximately 22% of cataract patients have 1.50 D or higher (Ferrer-

Blasco et al., 2009). Villegas et al. (2014) observed a decrease in visual

quality when patients showed refractive astigmatismof 0.5D (Villegas

et al., 2014). Hence, less than 0.5 D would be recommended for the

visual benefit of precise astigmatism correction.

Although arcuate relaxing keratotomy is a well-established

technique to manage astigmatism, most surgeons are

uncomfortable with performing manual arcuate keratotomy

during cataract surgery (Duffey and Leaming, 2005; Yeu et al.,

2013). The femtosecond laser features precise incisions taking the

depth, shape, and angulation of arcuate incisions into account,

giving surgeons the ability to titrate the incision instead of

creating these manually.

Notably, the femtosecond laser has received widespread

recognition for its high dependability, consistency, and

effectiveness in eliminating corneal astigmatism in patients

suffering from mild to moderate astigmatism (Alió et al., 2014;

Grewal et al., 2016; Vickers and Gupta, 2016; Baharozian et al., 2017;

Roberts et al., 2018). In this review paper, Chang concluded that

intrastromal FSAK is a great alternative for native eyes undergoing

FLACS to correct the issue like low astigmatism (<1.5 D) and that

most cuts are carried out at the optical zone of ≥7.5 mm to prevent

dysphotopsia (Chang, 2018).

In planning astigmatism management, it is important to

obtain reliable and consistent astigmatism measurements.

Nomograms can be used to calculate arc length and optical

zone required to obtain the astigmatism correction once the

degree of astigmatism has been established.

Nomograms for FLACS FSAK can readily be found in recent

literature (Medical; Wang et al., 2016). However. Most of the

nomogram was established for high-pulses (µJ) coupled with

low-frequency (kHz) laser systems, such as LenSx (Alcon

Laboratories). A modified Donnenfeld nomogram has been

presented by Wang et al. (2016) to support the application of

the high-energy femtosecond laser platform, i.e., LenSx to correct

astigmatism during cataract surgery.

The Femto LDV Z8 (Ziemer Ophthalmic Systems AG, Port,

Switzerland) is a novel low-energy pulses (nJ) paired with a high-

frequency (MHz) femtosecond laser system having a small spot

size that pinpoints the exact location of the ocular surfaces

intraoperatively. Because of this, the cutting processes in both

systems are different. High-pulse energy facilitates wider spot

spacing as the mechanical force applied to the expanding bubbles

propels the cutting action. The low-pulse energy laser, on the

other hand, allows for an increasing number of overlapping

smaller-sized spots that directly vaporize the tissue inside the

plasma volume, thereby successfully separating tissue without the

need for the secondary mechanical tearing effects (Pepose 2008;

Latz et al., 2021). As a result, the cuts achieved by low-energy

pulses with high-frequency lasers, such as Femto LDV Z8

(Ziemer) system, create a smooth surface without damaging

the adjacent tissues (Riau et al., 2014; Lin et al., 2021).

However, the efficacy of FSAK combined with FLACS of low-

energy high-frequency laser platforms and a nomogram has not

been established yet. In this study, Wang’s modified Donnenfeld

nomogram was used for the purpose of estimating the number

and arc length of FSAK. This study assessed the effectiveness of

FSAK performed during Femto LDV Z8 FLACS. Meanwhile, a

nomogram based on age and the type of astigmatism (WTR and

ATR) was developed. This could be the first study that assessed

the effectiveness of FSAK performed during Femto LDV

Z8 FLACS (Z8 FLACS).

Patients and methods

Patients

In this single-center retrospective study, 80 eyes in total from

62 cataract patients who underwent the FLACS treatment between

January 2019 and August 2021 were included. A skilled surgeon

(HYL) at the universal Eye Center in Zhong-Li, Taiwan carried out

the surgeries. The Institutional Review Board at Antai Tian-Sheng

Memorial Hospital in Taiwan (21-088-B) approved the study after

waiving the permission since the data was collected during routine

patient care. This study was carried out following the principles of

the Declaration of Helsinki for human research.

The participants who were included in this study had to fulfill

the following inclusion criteria: aged ≥45 years, able to cooperate

with the requirements of the docking system for femtosecond laser,

should not have undergone any ocular trauma or surgery, absence of

any ocular surface disease, presence of clear corneal media, ability to

achieve full pupil dilation (>7 mm), and they should be able to come

back for their scheduled follow-up tests. The following exclusion

criteria were used in the study: minimal K-value <37 D; maximum

K-value of >58 D; corneal disease or pathology with the exception of
senile cataract, and a total corneal irregular astigmatism

index >0.4 μm as determined by Pentacam.

Corneal astigmatism measurements

Keratometry measurements were estimated preoperatively

from Pentacam (Oculus, Wetzlar, Germany). The simulated
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keratometry of steep K-value, flat K-value, steep K meridian, and

Km of Pentacam were measured 1 and 3 months postoperatively.

Preoperative femtosecond laser arcuate
keratotomy planning

For phacoemulsification-induced astigmatism, 0.1 D was set

in the system based on an earlier analysis conducted by the same

surgeon (Lin, HYM.D., data to be published). The location of the

incision was the temporal side of the eyes (left eye/0° or right eye/

180°). If the FSAK were closer to the primary cut, its location

would be shifted 30° away from the temporal side. The arc length

and number of FSAKwere calculated using theWang nomogram

and were entered into the program for femtosecond laser

treatment (Wang et al., 2016).

Surgical technique

1 VERION-guided marking and manual meridian

adjustment:

To prevent the effects of cyclotorsion, limbus registration was

carried out with the help of a Verion image-guided system with

the patients asked to sit upright. Then, a Verion system-guided

27-gage needle and ink were used and 2 endpoints of the 0°–180°

horizontal axis were inscribed on the corneal limbus. When the

Femto LDV Z8 image was captured after docking experiments,

two blue marks at the limbus that were 180° apart could be noted

clearly. The operator screen was used to project the horizontal

Femto LDV Z8 reference line onto the cornea. Cyclotorsion was

the cause of the angular difference between the two. The surgeon

carefully set the two lines in alignment (Lin et al., 2019).

2 FLACS + FSAK technique:

Phenylephrine and tropicamide eye drops (Mydrin-P Eye

Drop, Santen) were injected into the eye for 30, 25, 20, 15, and

10 min Before the procedure to help dilate the pupils. For 3 days

before surgery, the patients received 4 daily injections of

ketorolac 0.5% ophthalmic solution (Acular LS; Allergan, Inc.,

Irvine, CA). The mobile arm of the laser system was anchored

over the corneal apex after the suction ring was filled with a

balanced salt solution so as to form a fluid-filled interface. The

femtosecond laser was used to generate a 5.5 mm capsulotomy.

The lens was divided into either 4 quadrants (cataract grade II) or

into 6 quadrants (cataract grade III). Following the

recommendations by the manufacturer of the femtosecond

laser, paired or single penetrating FSAK with a preset length

were placed at an 8.5 mm diameter and a depth of 80% of the

corneal thickness. The femtosecond laser produced a 1.0 mm

single-plane paracentesis and a 2.2 mm primary 2-plane clean

corneal incision (+40°/50°). The intraocular lenses were

successfully inserted into the capsular bag.

In the paired FSAK group, the eyes were divided into two

subgroups: With The Rule astigmatism (WTR) and Against The

Rule astigmatism (ATR). For the eyes affected by WTR

astigmatism, the paired FSAK was carried out around 90° and

270° based on the steep axis of corneal astigmatism (±30°).

However, for eyes affected by ATR astigmatism, the paired

FSAK were implemented around 0° and 180° according to the

corneal astigmatism steep axis (±30°). Meanwhile, the corneal

incision was shifted to 210° (OD) or 30° (OS). In a single FSAK

group, for eyes affected by WTR astigmatism, one FSAK was

done around 0° meridian (OD) or 180° (OS), and a clear corneal

incision of FLACS was done at 180° (OD) or 0° (OS). Figure 1

depicts the animation derived from the FEMTO LDV

Z8 program demonstrating the position of clear corneal

incision (purple dots), paired arcuate keratotomy (yellow

dots), and paracentesis (light blue dots) of FLACS with FSAK

on the right eye.

Data and statistical analysis

Changes in keratometry
The percentage of eyes with keratometric astigmatism that

was determined with the aid of Pentacam at 0 ± 0.25 D, ±

0.50 D, ± 0.75 D, ± 1.00 D, ± 1.50 D, ± 2.00 D, and ±3.00 D before

and after surgery has also been listed.

Astigmatism vector analysis
The Alpins method, which was included in the ASSORT

software, was used to measure three vectors and their

relationships while taking into consideration the differences

(variations) in the keratometric astigmatism axis to study the

changes occurring during the surgery (Alpins, 2001). The

anticipated astigmatic modification following surgery was a

target-induced astigmatism vector (TIA). Furthermore, surgically

induced astigmatism (SIA) was seen to be an astigmatic change

brought about by surgery. Postoperative corneal astigmatism is

similar to the difference vector (DV). The ratio of SIA to TIA

(SIA/TIA) is used to determine the correction index (CI). The

arithmetic difference noted between the angles of the SIA and TIA is

known as the angle of error (AE). The magnitude of error (ME) is

the arithmetic difference between the SIA and TIA.

The flattening index (FI) shows the percentage of SIA that

effectively reduces astigmatism at the target meridian (FI = SIA

Cos2.AE/TIA).

FSAK nomograms
The Holladay-Cravy-Koch formula was used for estimating

the with-the-wound (WTW) and against-the-wound (ATW)

variations (Holladay et al., 1992). The Pentacam HR was used

to obtain the preoperative and postoperative simulated K in
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addition to their axes for these computations. A WTW

demonstrates the astigmatic effects along the steep corneal

meridian, while an ATW reveals the astigmatic effect at 90°

from the steep meridian. The WTW-ATW difference illustrates

the total net effect or net corneal change induced by the incision

alongside the meridian of the relaxing incision.

Statistical analysis

SPSS software was used for all descriptive statistical analyses

(version 23.0, SPSS, Inc.). The percentage data were presented in %,

whereas numerical data were expressed as mean ± SD. The

Kolmogorov-Smirnov test was carried out to determine whether

the data distribution was normal. To assess corneal astigmatism

before surgery and 3months after surgery, a paired-sample t-test

was employed. Statistical significancewas described as a p-value<0.05.
The net corneal changes estimated by deducting the ATW changes

from WTW changes that indicate the effectiveness of FSAK were

evaluated using the multiple regression analysis technique.

Results

In total, 62 patients and 80 eyes were involved in this study.With

arc lengths that ranged between 25 and 55°, 49 of the 80 eyes

underwent a paired FSAK, while 31 underwent a single FSAK

FIGURE 1
The animations from the FEMTO LDV Z8 program demonstrate the position of clear corneal incision (purple dots), paired arcuate keratotomy
(yellow dots), and paracentesis (light blue dots) of FLACS with FSAK on the right eye.

TABLE 1 Preoperative patient characteristics and biometric
parameters.

Mean ± SD Range

Age (y) 65 ± 7 47 to 85

Axial length (mm) 24.4 ± 1.5 29 to 22

Pachymetry (mm) 555.9 ± 29.8 646 to 490

Pentacam Sim K

Km vaule (D) 43.6 ± 1.4 39.5 to 47.9

Astigmatism magnitude (D) 0.9 ± 0.4 0.2 to 2.3

K, corneal power; Km, simulated keratometry; D, diopter.

TABLE 2 Percentage of eye within certain levels of corneal astigmatism measured by Pentacam (n = 80).

Keratometric Astigmatism (D) Pre-OP keratometric
Astigmatism

Post-OP 3 months
keratometric Astigmatism

Labels Num Eyes % Num Eyes %

≤0.25 2 3% 15 19%

0.26 to 0.50 8 10% 31 39%

0.51 to 0.75 23 29% 14 18%

0.76 to 1.00 22 28% 7 9%

1.01 to 1.25 7 9% 5 6%

1.26 to 1.50 11 14% 4 5%

1.51 to 2.00 5 6% 4 5%

2.01 to 3.00 2 3% 0 0%
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with arc lengths that ranged between 20 and 55°. During surgery, the

average patient agewas 65± 7 years. The average axial lengthwas seen

to be 24.4 ± 1.5 mm.The patients’ characteristics and ocular biometric

parameters are listed in Table 1. No significant intraoperative or

postoperative complications occurred during the surgery.

Changes in keratometric astigmatism

The percentage of eyes within ±0.5D and ±1.0 D of keratometric

astigmatism measured by Pentacam significantly increased

3 months after surgery to 58% and 85%, as shown in Table 2.

TABLE 3 Vector analysis of keratometric astigmatism after femto Z8 FLACS and FSAK using the alpins method.

Vector Analysis
Parameters

Pair FSAKs

Total (n =
80)

Total (n =
49)

WTR group
(n = 34)

ATR group
(n = 15)

Single FSAK
(n = 31)

TIA Arithmetic mean ± SD, D
Range, D

0.92 ± 0.44 0.2 to 2.3 0.93 ± 0.35 0.4 to 1.8 0.91 ± 0.34 0.5 to 1.8 0.99 ± 0.39 0.4 to 1.6 0.89 ± 0.57 0.2 to 2.3

SIA Arithmetic mean ± SD, D
Range, D

0.95 ± 0.60 0.1 to 2.69 0.89 ± 0.54 0.1 to 2.57 0.72 ± 0.41 0.1 to 2.07 1.26 ± 0.61 0.33 to 2.57 1.05 ± 0.69 0.23 to 2.69

DV Arithmetic mean ± SD, D
Range, D

0.61 ± 0.45 0 to 2.0 0.47 ± 0.30 0 to 1.3 0.46 ± 0.24 0.1 to 1.2 0.49 ± 0.40 0 to 1.3 0.83 ± 0.56 0.1 to 2.0

CI Arithmetic mean ± SD
Geometric mean Range

1.17 ± 0.80 0.94
0.11 to 3.97

0.96 ± 0.51 0.84
0.17 to 3.17

0.80 ± 0.37 0.71
0.17 to 1.64

1.31 ± 0.63 1.21
0.67 to 3.17

−0.16 ±
0.89–1.99 to 1.77

ME Arithmetic mean ± SD, D
Range, D

−0.03 ±
0.65–2.35 to 1.61

0.05 ± 0.43–1.27 to 1.15 0.19 ± 0.34–0.57 to 1.15 −0.27 ± 0.45–1.27 to 0.2 1.50 ± 1.04 1.14
0.11 to 3.97

AE Arithmetic mean ± SD, °

Range, °
1.00 ± 16.38–41.50 to
58.87

−1.78 ± 13.97–41.50 to
27.07

−2.69 ± 15.80–41.50 to
27.07

0.29 ± 8.60–15.96 to
14.57

5.39 ± 19.04–19.56 to
58.87

Absolute AE Arithmetic mean ±
SD, ° Range, °

11.43 ± 11.72 0 to 58.87 9.54 ± 10.27 0 ± 41.5 10.88 ± 11.63 0 ± 41.5 6.49 ± 5.37 0 to 15.96 14.41 ± 13.33 0 to 58.87

FI Arithmetic mean ± SD, D
Range, D

−1.03 ±
0.84–3.89 to 0.61

−0.87 ±
0.54–3.13 to −0.03

−0.70 ±
0.39–1.62 to −0.03

−1.26 ±
0.62–3.13 to -0.67

−1.28 ±
1.14–3.89 to 0.61

WTW-ATW Arithmetic mean ±
SD, ° Range

−0.86 ±
0.63–2.67 to 0.18

−0.82 ±
0.55–2.55 to −0.02

−0.64 ±
0.43–2.01 to −0.02

−1.21 ±
0.60–2.55 to −0.32

−0.93 ±
0.74–2.67 to 0.18

TIA, target induced astigmatism; SIA, surgically induced astigmatism; DV, difference vector; ME, magnitude of error; CI, correction index; AE, angle of error; Absolute AE, absolute angle of

error; FI, flattening index; WTW-ATW, net corneal change induced by the incision; SD, standard deviation.

FIGURE 2
The corneal angle of error for the paired FSAK group (A) and single FSAK group (B).
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Astigmatism vector analysis

This study showed a significant decrease in keratometric

astigmatism post-surgery. Preoperative average keratometric

astigmatism or TIA value was 0.92 ± 0.44 D, which was

significantly decreased to 0.61 ± 0.45 D or presented as DV

3 months postoperatively (p < 0.001). In paired FSAK group,

the mean keratometric astigmatism was decreased from

0.93 ± 0.35 D to 0.47 ± 0.30 D at 3 months

postoperatively (p < 0.001). However, in the single FSAK

group, the mean keratometric astigmatism reduced from

0.89 ± 0.57 D to 0.83 ± 0.56 D (p = 0.53), with no

statistical difference.

Table 3 displays the outcomes of vector analysis using the

Alpins approach, including SIA, TIA, ME, DV, AE, CI, and

absolute AE. In the paired FASK group, the arithmetic mean SIA

magnitude was recorded to be 0.89 ± 0.54 D, which was lower

than the arithmetic mean TIA in the single FSAK group. CI,

FIGURE 3
Scatterplots depicting target-induced astigmatism (TIA) vs. the surgically induced astigmatism (SIA). (A). Cases of paired FSAK group; A1. Cases
of WTR in paired FSAK group; A2. Cases of ATR in paired FSAK group and (B). cases of single FSAK group.
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which refers to the ratio of the SIA to TIA, presents the

overcorrection when it is greater than one or an under

correction if it is less than one. The geometric mean of CI

values for paired FSAK groups was 0.84, which can be

interpreted as mild under-correction, whereas the single FSAK

group was 1.14, which means overcorrection.

The ME (arithmetic difference present between the SIA

and TIA) was −0.03 ± 0.65 D, which indicated a near-zero

value or a slight under-correction. AE refers to the arithmetic

variation between the angles of SIA and TIA. The corneal AE

for both groups is shown in Figure 2. A total of 45% of eyes

received paired FSAK during FLACS surgery and had AE

within −5 to 5°, indicating no significant systematic error for

the misaligned treatment. However, only 29% of eyes in the

single FSAK groups had AE within ±5°, which revealed

different factors, like healing or alignment at the individual

level.

The FI shows the amount of astigmatism that was decreased

at the intended meridian. FI shows an ideal value of −1. Here, the

calculations showed an effective FI of −1.03 ± 0.84 D, which

shows that astigmatism correction at that targeted orientation is

effective. Significant mean net corneal changes (WTW-ATW)

were −0.82 ± 0.55 D in the paired FSAK group and–0.93 ±

0.74 D in the single FSAK group, 3 months post-surgery.

Whereas the magnitude of WTW-ATW astigmatism of WTR

in paired FSAK group was −0.64 ± 0.43 D, ATR in the paired

FSAK group was −1.21 ± 0.60 D.

A scatterplot of SIA vs. TIA after combined Femto LDV

Z8 Femto and FSAK is illustrated in Figure 3. As mentioned

above, overcorrection occurred when SIA/TIA is > 1, and under-

correction occurred when SIA/TIA is < 1.

In paired FSAK group, the preoperative TIA and SIA values,

3 months after surgery, showed a significant relationship (r =

0.93, p < 0.01). However, the correlation between TIA and SIA in

the single group was very low (r = 0.03, p = 0.886).

Figures 4, 5 present the single-angle polar plots for vector

TIA, DV, vector SIA, and CI for both groups. The standard

deviation for the X and Y axes was visualized in the call-out box,

and vector means are represented as red diamonds (measured in

the double-angle vector space).

FIGURE 4
Single-angle polar plots for paired FSAK group. The vector average values were plotted in the form of a red diamond (estimated using the
double-angle vector space) and the SD values for the X and Y axeswere presented in a call-out box. (A). SIA vector; (B). TIA vector; (C). DV; and (D). CI.
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Femtosecond laser arcuate keratotomy
nomograms

The net corneal changes (WTW-ATW) were derived for

nomogram development using the corneal simulated

variations that were estimated using the Pentacam

3 months following surgery (Table 4). According to the age

and length of the paired FSAK, the following regression

formulas were used for eyes having WTR and ATR corneal

astigmatism:

Paired group:

a) WTR

Net corneal changes = −0.01601507 × age (years) −

0.0413699 × length (degrees) + 1.98254955

b) ATR

Net corneal changes = −0.01601507 × age (years) −

0.0413699 × length (degrees) − 0.66906866 + 1.98254955.

In the single FSAK group, the correlation between TIA and

SIA was very low. Therefore, a nomogram for the single FSAK

was not designed (r = 0.03, p = 0.886).

Discussion

Two alternative laser parameter patterns are used by

FLACS: high-energy pulses (µJ) coupled with a low-

frequency (kHz); low-energy pulses (nJ) coupled with a

high-frequency (MHz). Because of this, the cutting

processes used by both systems are different. A particularly

smooth surface is produced by the Femto LDV Z8 (Ziemer)

system without damaging the surrounding tissues (Riau et al.,

2014; Lin et al., 2021). This is important for the FSAK because

it offers smoother corneal incisions during surgery. The other

difference between the LenSx and Femto LDV Z8 systems is

the docking interface. Femto LDV Z8 system employs a liquid-

FIGURE 5
Single-angle polar plots for a single FSAK group. The vector average values were plotted in the form of a red diamond (estimated using the
double-angle vector space) and the SD values for the X and Y axeswere presented in a call-out box. (A). SIA vector; (B). TIA vector; (C). DV; and (D). CI.
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filled interface, where the vacuum ring improves the contact

with the sclera, and the center is filled with liquid. LenSx

system uses an applanating curved interface, which directly

touches the cornea. Though during the surgery, the

mechanical contact interface significantly stabilizes the

cornea, the use of a liquid-filled interface has been found to

prevent corneal folds that may cause incomplete capsulotomy.

Yet, as mentioned above, the efficacy of FSAK combined

with FLACS of low-energy high-frequency laser platforms

could be different. Each platform has developed its

recommendations to minimize unwanted problems during

the FSAK procedure. According to the manufacturer’s

instructions, the paired FSAK was placed for the Femto

LDV Z8 at a diameter of 8.5 mm and a corneal thickness

depth of 80%. The modified Donnenfeld nomogram proposed

by Wang et al. (2016) was used to calculate the number and

length of FSAK since there was no calculator available to do so

during FLACS.

In this study, vector analysis showed that the mean

keratometric astigmatism measured by Pentacam was

decreased in the 3rd month after surgery. The vector analysis

was conducted to estimate the WTW and ATW changes that

denote the overall net effect caused by the incisions. At 3 months

after surgery, the average WTW and ATW changes in the paired

FSAK group were recorded to be −0.82 ± 0.55 D.

The multiple regression analysis revealed that age, FSAK

location, and FSAK arc length were found to significantly

influence total net corneal modifications (WTW-ATW changes).

Age, larger incisions, horizontal incisions (0° or 180°), corneal

astigmatism, and preoperative ATR all contribute to the amount

of net corneal modifications that arise in eyes with preoperative

ATR. In this study, the main incision of FLACS was at the temporal

side of the cornea, which is more stable and predictable than the

oblique angle, such as 120° or 60°.

Based on the results obtained in this study, the effectiveness of

FSAK alongside the horizontal meridian is greater than the vertical

meridian within the same age groups. This could be attributed to

corneal biomechanical factors linked to temporal incision. As a result, it

was seen that the length of arcuate incision needed for ATR cornea is

less thanWTRcornea for the same correction of astigmatism. Previous

studies have shown that the amplitude of refractive cylinder increases

with increasing age, and its orientation also shifts from WTR to ATR

(Saunders, 1986; Gudmundsdottir et al., 2000; Navarro et al., 2013;

Rozema et al., 2019). Thus, for long-term FLACS and FSAK surgical

outcomes, it is suggested that it is better to have overcorrection than

under-correction when dealing with ATR corneal astigmatism.

TABLE 4 Nomogram: total net corneal change (WTW-ATW changes) based on age and length of FSAKs in paired group with WTR and ATR corneal
astigmatism.

Paired
Incision
Length

Age

50 years 55 years 60 years 65 years 70 years 75 years 80 years

WTR eyes

25° 0.15 0.07 −0.01 −0.09 −0.17 −0.25 −0.33

30° −0.06 −0.14 −0.22 −0.30 −0.38 −0.46 −0.54

35° −0.27 −0.35 −0.43 −0.51 −0.59 −0.67 −0.75

40° −0.47 −0.55 −0.63 −0.71 −0.79 −0.87 −0.95

45° −0.68 −0.76 −0.84 −0.92 −1.00 −1.08 −1.16

50° −0.89 −0.97 −1.05 −1.13 −1.21 −1.29 −1.37

55° −1.09 −1.17 −1.25 −1.33 −1.41 −1.49 −1.57

60° −1.30 −1.38 −1.46 −1.54 −1.62 −1.70 −1.78

ATR eyes

25° −0.52 −0.60 −0.68 −0.76 −0.84 −0.92 −1.00

30° −0.73 −0.81 −0.89 −0.97 −1.05 −1.13 −1.21

35° −0.94 −1.02 −1.10 −1.18 −1.26 −1.34 −1.42

40° −1.14 −1.22 −1.30 −1.38 −1.46 −1.54 −1.62

45° −1.35 −1.43 −1.51 −1.59 −1.67 −1.75 −1.83

50° −1.56 −1.64 −1.72 −1.80 −1.88 −1.96 −2.04

55° −1.76 −1.84 −1.92 −2.00 −2.08 −2.16 −2.24

60° −1.97 −2.05 −2.13 −2.21 −2.29 −2.37 −2.45
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In terms of the single FSAK group in this study, as the

correlation between TIA and SIA was very low and did not show

statistical significance, there is no reliable astigmatism reduction.

When considering the effectiveness, the asymmetrical incisions

created by FSAK and FLACS could lead to variable

biomechanical responses, and therefore, variable effectiveness

in reducing ATR astigmatism in a single FSAK group. The

incisions of FSAK and FLACS could result in variable

influences on several aspects, such as the angle of the corneal

incision, full/partial depth, and one/two plans.

This study has a few drawbacks. Firstly, the sample size is small,

necessitatingmore extensive patient follow-up visits. The purpose of

this study was to present the preliminary findings and recommend a

Z8 nomogram. More patients will be included in the trial with a

longer follow-up duration, and the nomogram’s performance will be

assessed further. Secondly, the keratometric and refractive results of

a small subset of eyes that underwent single FSAKweremerged with

those of the eyes that experienced paired FSAK. These conclusions

sum up the outcomes of these related cases. Eyes were separated into

single FSAK and paired FSAK groups to compute and visualize the

WTW and ATW alterations induced by the FSAK.

In conclusion, low-energy high-frequency femtosecond laser

arcuate keratotomy performed during cataract surgery can reduce

the pre-existing low-grade corneal astigmatism in a short-term

observation. Long-term observation of refractive stability is

needed. Furthermore, our nomogram needs to be refined,

requiring more cases to be enrolled in the future. It is necessary

to evaluate the length and depth of the incisions and determine the

role played by the corneal biomechanical factors to assess the long-

term benefits.
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Meibomian gland morphological
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Varicella-zoster virus (VZV) infections result in a series of ophthalmic

complications. Clinically, we also discover that the proportion of dry eye

symptoms was significantly higher in patients with herpes zoster

ophthalmicus (HZO) than in healthy individuals. Meibomian gland

dysfunction (MGD) is one of the main reasons for dry eye. Therefore, we

hypothesize that HZO may associate with MGD, affecting the morphology of

meibomian gland (MG) because of immune response and inflammation. The

purpose of this study is to retrospectively analyze the effect of HZO with

craniofacial herpes zoster on dry eye and MG morphology based on an

Artificial intelligence (AI) MG morphology analytic system. In this study,

26 patients were diagnosed as HZO based on a history of craniofacial

herpes zoster accompanied by abnormal ocular signs. We found that the

average height of all MGs of the upper eyelid and both eyelids were

significantly lower in the research group than in the normal control group

(p < 0.05 for all). The average width and tortuosity of all MGs for both upper and

lower eyelids were not significantly different between the two groups. The MG

density of the upper eyelid and both eyelids were significantly lower in the HZO

group than in the normal control group (p = 0.020 and p = 0.022). Therefore,

HZO may lead to dry eye, coupled with the morphological changes of MGs,

mainly including a reduction in MG density and height. Moreover, it is important

to control HZO early and timely, which could prevent potential long-term

severe ocular surface injury.

KEYWORDS

varicella-zoster virus, herpes zoster ophthalmicus, artificial intelligence, convolutional
neural network, meibomian gland morphology

Introduction

Herpes zoster (HZ) is caused by the reactivation of the latent varicella-zoster virus

(VZV) within the sensory ganglia. VZV is a member of the Herpesviridae family that

affects sensory neurons following a varicella infection in childhood (chickenpox) (Jeng,

2018). VZV tends to be reactivated when immunosuppression is caused by medication,
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illness, or advanced age. Different degrees of eye lesions can

occur when the virus invades the ocular branch of the trigeminal

nerve. VZV infections result in a series of ophthalmic

complications, including involvement of the skin and cornea,

as well as the iris, retina, optic nerve, and other cranial nerves. An

estimated 10%–20% of people with HZ will develop herpes zoster

ophthalmicus (HZO) (Johnson et al., 2015), such as ptosis,

blepharitis, keratitis, scleritis, uveitis, glaucoma, diffuse or

focal choroiditis, and acute retinal necrosis (Davis and

Sheppard, 2019; Niederer et al., 2021). These manifestations

are considered to be related to active infection as well as to

the host’s immune response and inflammation. In addition, HZO

is chronic and recurrent, which is different from cutaneous

herpes zoster mostly occurs only once in a lifetime.

Clinically, we also found that the proportion of dry eye

symptoms, such as dryness, foreign body sensation, redness, and

burning, was significantly higher in patients with HZO than in

healthy individuals. A case-control study confirmed that patients

with a history of herpes simplex (HS) keratitis often experience ocular

dryness (Simard-Lebrun et al., 2010; Jabbarvand et al., 2015;

Roozbahani and Hammersmith, 2018). We consider that the

underlying mechanisms of dry eye owing to HZ infection are the

same as those of HS infection, including corneal nerve function

abnormalities, chronic inflammation of the ocular surface, and so on.

The Tear Film and Ocular Surface Dry Eye Workshop II in

2017 defined dry eye disease (DED) as a multifactorial disease of

the ocular surface characterized by a loss of homeostasis of the tear

film and accompanied by ocular symptoms. Tear film instability

and hyperosmolarity, ocular surface inflammation and damage,

and neurosensory abnormalities play etiological roles in DED

(Craig et al., 2017). Evaporative dry eye accounts for the

majority of dry eye and is most often caused by meibomian

gland dysfunction (MGD). The meibomian gland (MG) is an

important sebaceous gland located in the eyelid that secretes lipids,

an important component of the tear film (Yu et al., 2016; Stapleton

et al., 2017). Abnormalities in the quantity and quality of lipids can

damage the lipid layer of the tear film, severely affecting the

physicochemical properties of the tear film and reducing its

stability, which can lead to evaporative dry eye (Bron et al.,

2004; Yeotikar et al., 2016). The function of MG is closely

related to its morphology. Studies have shown that the

morphology of MG is a sensitive early diagnostic indicator of

MGD (Yeotikar et al., 2016; Adil et al., 2019). We hypothesize that

HZOmay be associated withMGD, similar tomany inflammatory

diseases, such as Sjögren syndrome, rheumatoid arthritis, and

rosacea (Wang et al., 2018), affecting the morphology of MGs

because of immune response and inflammation.

Artificial intelligence (AI) analytic system based on a

convolutional neural network (CNN) is a relatively new

technology in the field of computer vision. CNN is a feedforward

neural network that can reduce manual analysis errors and save time

when used to manipulate MG images (Rajkomar et al., 2017; Chen

et al., 2018a; Deng et al., 2021). Our previous study confirmed that a

CNN-based AI system could be used to analyze MG morphological

characteristics efficiently and effectively (Zhang et al., 2022).

Therefore, the purpose of this study was to retrospectively analyze

the effect of HZO with craniofacial herpes zoster on dry eye andMG

morphology based on AI MG morphology analytic system. To the

best of our knowledge, this is the first study to investigate the change

of MGs morphology after craniofacial herpes zoster.

Materials and methods

Subjects

We conducted a retrospective, self-control study at the

Affiliated Eye Hospital of Wenzhou Medical University from

December 2018 to May 2021. This study was approved by the

Research Ethics Committee of the Eye Hospital, Wenzhou

Medical University. All the procedures adhered to the tenets

of the Declaration of Helsinki. Informed consent to publish was

obtained from all participants before including them in the study.

The patients were diagnosed as HZO based on a history of

craniofacial herpes zoster accompanied by herpes zoster keratitis.

Participants wearing contact lenses, with chalazion, active

nasolacrimal infections, severe systemic diseases, and a history

of ocular trauma or surgery were excluded from the study. Basic

information was collected, including patients’ age at diagnosis of

craniofacial herpes zoster, patient age at diagnosis of HZO,

interval time from diagnosis of craniofacial herpes zoster to

the diagnosis of HZO, duration of follow-up, HZO eye, and

gender. The HZO eye was used as the research

group, whereas, the contralateral eye was used as the control

group.

AI model and morphology analysis

A Keratograph 5M (K5M; Oculus, Wetzlar, Germany) was

used to perform meibography scans of the upper and lower

FIGURE 1
The network structure of the ResNet50_U-net model in this
study.
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eyelids of both eyes. An AI analytical system for MG morphology

was used to automatically analyze and calculate the morphological

parameters ofMGs. The AImodel used in this study was a revision

of our previously published model (Figure 1) (Zhang et al., 2022).

We replaced the 50-layer ResNet (ResNet50) with themax-pooling

layers of the U-net model, however, the up-sampling layer

remained the same. We called it ResNet50_U-net model, and

the AI system achieved 92% accuracy (IoU) and 100% repeatability

in MG segmentation for both upper and lower eyelids.

1) Vagueness value (Yin and Gong, 2019)

MGs display intensity inmeibography. Firstly, grayscale values

of each pixel of meibography were measured by a computer.

Secondly, the algorithm of the vagueness value is as follows:

Average grayscale value of MGs = Total grayscale values of

MGs/Total pixels of MGs

Average grayscale value of background = (Total grayscale

values of tarsus−Total grayscale values of MGs)/(Total pixels

of tarsus−Total pixels of MGs)

Vagueness value = Average grayscale value of MGs−Average

grayscale value of background

Figure 2 shows the different vagueness values. The higher the

value, the clearer the picture.

2) MG morphological indexes

The morphological parameters of MGs included height,

width, tortuosity, and density. MG height was the vertical

difference between the top and bottom pixels of the MG, and

MG width is the area divided by height. The MG density was

defined as the ratio of the sum of the area of the MGs to the total

area of the tarsus, as follows:

MG density = Sum pixels of all MGs/Total pixels of the tarsus

We defined MG tortuosity as the ratio of the imaginary

straight length between the two nodes and the actual length of

each MG. The MG perimeter was a pixel at the edge of the MG.

Because the outlines of the MGs were irregular, some of them

MGs were tilted. Therefore, we used the minimum external

rectangle to frame the outline of the MGs and calculate their

height.

MG tortuosity = MG perimeter/(2 × height of the minimum

external rectangle of the MG)−1

Statistical analysis

Statistical analysis was performed using IBM SPSS

26.0 statistical software. Sample characteristics were

summarized using descriptive statistics including means and

SD for continuous measures, and frequencies and percentages

for categorical measures. The normality of all datasets was tested

using the Kolmogorov-Smirnov test. The paired t-test or the

Wilcoxon signed-rank test was used to compare the differences

between HZO eyes and normal eyes. A p value < 0.05 was

considered significant.

Results

This study included 26 patients who had been diagnosed with

HZO. The demographic features were presented in Table 1. The

mean age was 54.16 ± 18.59 years when diagnosed as HZO and

the majority was male (76.9%). Age stratification into 10-year

increments revealed that HZO could occur at any age and

increase with age (Figure 3). The mean interval time from

craniofacial herpes zoster to HZO was 6.50 months. The tear

break-up time (TBUT) and tear meniscus height (TMH) were

not statistically different between the research group and the

control group.

FIGURE 2
The diagrams of different vagueness values. (A) showed the higher vagueness value, (B) showed the lower vagueness value.
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Table 2 showed the MG vagueness value in the research

group and normal control group. The vagueness value of the

upper eyelid was lower in the research group (27.24 ± 10.32) than

in the normal control group (30.54 ± 11.51), but there was no

statistical difference (p > 0.05). The results of the lower eyelid and

both eyelids were consistent with those of the upper eyelid.

Figure 4 shows the heat map of vagueness distribution in the

two groups.

To understand the effect of VZV infection on MG

morphology, we calculated the average height, width,

tortuosity, and density of all MGs. The results were

presented in Table 3. The average height of all the MGs of

the upper eyelid and both eyelids were significantly lower in the

research group than in the normal control group (p < 0.05 for

all). However, the average height of all MGs of the lower eyelid

in the research group (87.52 ± 19.13) was not significantly lower

than in the control group (89.90 ± 19.38; p = 0.603). Except for

the average width of all MGs of both eyelids, the average width

of all MGs and the average tortuosity of all MGs of the upper

eyelid, lower eyelid, and both eyelids were not significantly

different between the two groups. The MG density of the upper

eyelid and both eyelids was significantly lower in the research

group than in the normal control group (p = 0.020 and p =

0.022, respectively).

We also compared the changes in the average height of all

MGs, the average width of all MGs, the average tortuosity of

all MGs, and MG density between the two groups during

follow-up visits (Figure 5). The results showed that the

parameters of MG morphology, such as the average height

of all MGs, the average width of all MGs, the average

tortuosity of all MGs, and MG density, decreased over

time. Although there was no significant difference between

the research group and the control group for parameters of

MG morphology over time, the parameters of MG

morphology in the research group were lower than those

in the normal control group as time went on. The results were

shown in Figure 5 and Table 4.

The MG morphology parameters, including the average

height, width, tortuosity, and MG density, had no significant

correlations with TBUT and TMH in either the research group or

the control group (p > 0.05 for all).

TABLE 1 Demographic features and baseline characteristics.

Parameters

Age at diagnosis of HZO (years, mean ± SD) 54.16 ± 18.59

Gender (n, male/female) 20/6

Eye involved (n, OD/OS) 9/17

Interval time from diagnosis of craniofacial herpes zoster to a diagnosis of HZO (months) 6.50

(3.00, 12.25)

TBUT (seconds)

Research group 5.76 ± 2.86

Control group 7.68 ± 4.92

TMH (mm)

Research group 0.22 (0.18, 0.26)

Control group 0.19 (0.16, 0.23)

HZO, herpes zoster ophthalmicus; TBUT, tear break-up time; TMH, tear meniscus height.

FIGURE 3
Distribution of age at the time of diagnosis of HZO by decade.

FIGURE 4
The heat map of vagueness distribution in the two groups.

Frontiers in Cell and Developmental Biology frontiersin.org04

Yu et al. 10.3389/fcell.2022.1094044

74

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1094044


Figure 6 showed the follow-up results of a child.We investigated

the photograph of MG in the early stage of HZO and 2 years after

infection. In the early stage, the photograph of MG in the eye with

HZO was blurry. However, the photograph of MG became clear

when the inflammation was under control. However, it was still

more twisted and fragmented than the other eye.

We also investigated the photographs of MG before and after

HZO (Figure 7). There was no significant difference between the

sides before HZO for the photograph of MG. The MG after HZO

became more twisted, and swelled with more fragmentation than

the status before HZO.

Discussion

Ocular inflammation may cause typical ocular surface

changes in patients with HZO and craniofacial herpes zoster.

Additionally, the nerve damage inherent to VZV infection results

in a neurotrophic keratopathy with diminished corneal

sensation, loss of corneal epithelial integrity, and tear

dysfunction (Liesegang, 2008; Ghaznawi et al., 2011). Many

studies have shown a strong association between MGD and

ocular surface inflammation (Wang et al., 2018). Mathers

et al. reported that patients with chronic inflammation, such

as blepharitis and conjunctivitis, experienced a greater loss of

MGs (Mathers et al., 1991; Mathers and Billborough, 1992).

Thus, we hypothesized that HZ infection associated ocular

surface inflammation might cause peri-glandular inflammation

and subsequent MG loss.

MG atrophy causes abnormalities in the quantity and quality

of lipids, which can damage the lipid layer of the tear film and

lead to MGD. A detailed analysis of MGs morphology is

important to determine the extent and severity of MGD

(Deng et al., 2021). Most AI-assisted morphologic studies of

the MGs have focused on the MGs grading system, and few have

quantitatively discussed the various morphological

characteristics, such as tortuosity and density. The present

study utilized an AI system based on a convolutional neural

network, to automatically analyze MG morphology, including

the height, width, tortuosity, density, and vagueness value of the

MGs. Currently, studies on MGmorphology have focused on the

tortuosity of MGs, whereas studies on MG density are relatively

rare. Xiao et al. (2019) found that meiboscore, gland distortion,

and MG length had an excellent ability to differentiate between

patients with MGD and healthy subjects. They considered that

structural MG changes were closely associated with MGD

progression. Shirakawa et al. (2013) compared MG

morphology between children and adults and confirmed that

MG density in the upper eyelid was significantly greater in

children than in adults. Shirakawa et al. (2013) defined MG

TABLE 3 MG parameters of the two study groups.

Parameters Research group Control group p value

Upper eyelid Average height of all mgs 126.46 ± 43.81 149.92 ± 41.44 0.014

Average width of all mgs 21.26 ± 4.76 24.76 ± 8.78 0.058

Average tortuosity of all mgs 0.43 ± 0.10 0.50 ± 0.23 0.485

MG density 0.19 ± 0.08 0.22 ± 0.08 0.020

Lower eyelid Average height of all mgs 87.52 ± 19.13 89.90 ± 19.38 0.603

Average of all mgs 26.50 ± 5.89 28.00 ± 5.25 0.338

Average tortuosity of all mgs 0.53 ± 0.15 0.58 ± 0.14 0.174

MG density 0.16 ± 0.07 0.19 ± 0.08 0.088

Both eyelids Average height of all mgs 107.07 ± 26.58 119.91 ± 25.76 0.038

Average width of all mgs 23.93 ± 4.58 26.39 ± 5.43 0.039

Average tortuosity of all mgs 0.48 ± 0.10 0.52 ± 0.12 0.139

MG density 0.17 ± 0.06 0.21 ± 0.06 0.022

TABLE 2 MG vagueness value in the research group and normal control group.

Research group Control group p value

Vagueness value of the upper eyelid 27.24 ± 10.32 30.54 ± 11.51 0.208

Vagueness value of the lower eyelid 22.76 ± 10.18 23.90 ± 11.92 0.693

Vagueness value of both eyelids 25.00 ± 6.85 27.22 ± 7.49 0.270
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density as the number of MGs divided by eyelid width. In our

study, MG density was calculated as the ratio of the sum of the

area of the MGs to the total area of the tarsus, which is a

continuous, objective, quantitative index that is more accurate

than MG grading and avoids subjective errors. We compared the

MG morphology (height, width, tortuosity, density, and

vagueness value of the MGs) with and without HZO using

this novel AI system.

Some morphological characteristics of MGs, such as length,

width, and shape irregularity, have been suggested to be

valuable for assessing MGD. We found the average height of

all MGs and MG density in the upper eyelid and both eyelids

were significantly decreased in the research group compared to

the normal controls (Table 3). Similar to our study, some

research groups had described other changes in MG

morphology, such as MG thickness and length, in patients

with dry eye. A related study found that the number of

distorted glands and MG thickness, density, and length were

inversely correlated with meibum expressibility (Xiao et al.,

2019). However, in our study, the average width of all MGs and

average tortuosity of all MGs of the upper eyelid, the lower

eyelid, and both eyelids were not significantly different between

the research group and the normal control group (Table 3). In

our previous study, the early stage of MGD showed an increase

in tortuosity, while in patients with more severe MGD, the

change in tortuosity was no longer noticeable and the density

decreased significantly (Lin et al., 2020). In the present study,

we assumed that ocular inflammation caused by HZO was

severe, thus leading to severe MGD associated MGs

shortening and decreased MGs density, rather than increased

MG tortuosity. Furthermore, conjunctival inflammation and

edema could affect vagueness value by reducing transmission of

infrared light. We also calculated the vagueness value in the

research group and normal control group. The research group

was lower than the normal control group, but there was no

statistical difference. We speculated the cause that some

FIGURE 5
The changes in MG morphology parameters over time. (A) showed the changes in the average height of all MGs during follow-up visits, (B)
showed the changes in the average width of all MGs during follow-up visits, (C) showed the changes in the average tortuosity of all MGs during
follow-up visits, (D) showed the changes of MG density during follow-up visits.
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patients had a certain period of time from the onset of the

disease and the conjunctival inflammation had subsided when

the meibographs were taken. This phenomenon was clearly

observed in meibographs of some patients followed from the

early stage of the disease.

In addition, we also compared the changes in MG

morphology parameters over time, such as the average

height of all MGs, the average width of all MGs, the

average tortuosity of all MGs, and MG density. The results

showed that the parameters of MG morphology were

decreasing as time went on. Although there was no

statistical difference regardless of the presence or absence of

HZO, the parameters of MG morphology in the research

group were always lower than those in the normal control

at different periods. We considered the possible reason was the

insufficient sample size for each period. We plan to include

patients with ocular herpes simplex in further studies. The

population of ocular herpes simplex patients similar to HZO is

larger and more common.

What’s more, we observed two special cases (Figures 6, 7).

Figure 6 showed the follow-up results for a child. In the early

stages of HZO, the photograph of MG on the side of the HZO

was blurry. However, the meibography images became clear

when inflammation was controlled. This suggests that

TABLE 4 The changes in MG morphology parameters over time.

Parameters Time interval Research group Control group p value

MG height 0–3 min 115.85 ± 31.32 126.62 ± 31.41 0.270

3–6 min 110.02 ± 22.78 137.60 ± 19.91 0.058

6–12 min 106.39 ± 32.61 117.20 ± 19.31 0.344

>12 min 98.34 ± 21.53 108.31 ± 19.81 0.347

MG width 0–3 min 24.93 ± 3.88 27.07 ± 6.58 0.247

3–6 min 23.62 ± 3.83 26.43 ± 6.00 0.280

6–12 min 24.07 ± 5.10 26.71 ± 4.63 0.343

>12 min 23.50 ± 5.03 25.06 ± 5.27 0.484

MG tortuosity 0–3 min 0.46 ± 0.07 0.55 ± 0.11 0.075

3–6 min 0.50 ± 0.08 0.51 ± 0.14 0.870

6–12 min 0.49 ± 0.08 0.53 ± 0.08 0.333

>12 min 0.48 ± 0.10 0.53 ± 0.15 0.439

MG density 0–3 min 0.19 ± 0.07 0.23 ± 0.07 0.067

3–6 min 0.18 ± 0.04 0.23 ± 0.05 0.108

6–12 min 0.21 ± 0.07 0.19 ± 0.06 0.666

>12 min 0.16 ± 0.06 0.18 ± 0.06 0.383

FIGURE 6
The follow-up results of a child. (A–D) showed the photograph of MG in the early stage of HZO, and (E–H) showed the photographs of MG
following 2 years after HZ infection. (A,B,E,F) were the control eyes without HZ infection, and (C,D,G,H) were the research eyes with HZ infection.
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palpebral conjunctival edema caused by inflammation,

leading to blurred meibography images and lower optical

density also plays an important role in MG density decrease

(Chen et al., 2018b). Figure 7 showed that there was no

significant difference between the eye with HZO and the

normal contralateral eye in the photograph of MG before the

attack of craniofacial herpes zoster. After the onset of

craniofacial herpes zoster, the MGs became twisted,

swollen, and fragmented in the HZO eye. Comparing

these two cases, we believe it is important to control HZO

early. Early and timely control of inflammation could

prevent potential complications, such as peri-glandular

inflammation, loss of MGs, dry eye, and so on.

The present study has some limitations. The sample size was

small and the age span of the patients was large, which might be the

reason for the lack of statistically significant differences in

parameters between the research group and the normal control

group. The changes in MGs over time in HZO patients

should be verified in a future study with a larger sample.

Conclusion

In conclusion, similar to many ocular surface inflammatory

diseases, HZO may lead to dry eye, and be accompanied by

morphological changes of MGs, mainly including a reduction in

MG density and height. Moreover, it is important to control

HZO early and timely, which could prevent potential long-term

severe ocular surface injury.
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Is histogrammanipulation always
beneficial when trying to improve
model performance across
devices? Experiments using a
Meibomian gland segmentation
model

Xianyu Deng1,2†, Lei Tian3,4†, Yinghuai Zhang1,2, Ao Li3,4,
Shangyu Cai1,2, Yongjin Zhou1,2* and Ying Jie3,4*
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2Marshall Laboratory of Biomedical Engineering, Shenzhen, China, 3Beijing Ophthalmology and Visual
Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of
Ophthalmology, Capital Medical University, Beijing, China, 4Ophthalmology and Visual Sciences Key
Laboratory, Beijing, China

Meibomian gland dysfunction (MGD) is caused by abnormalities of the meibomian

glands (MG) and is one of the causes of evaporative dry eye (DED). Precise MG

segmentation is crucial for MGD-related DED diagnosis because themorphological

parameters of MG are of importance. Deep learning has achieved state-of-the-art

performance inmedical image segmentation tasks, especiallywhen training and test

data come from the same distribution. But in practice, MG images can be acquired

from different devices or hospitals. When testing image data from different

distributions, deep learning models that have been trained on a specific

distribution are prone to poor performance. Histogram specification (HS) has

been reported as an effective method for contrast enhancement and improving

model performance on images of different modalities. Additionally, contrast limited

adaptive histogram equalization (CLAHE) will be used as a preprocessingmethod to

enhance the contrast of MG images. In this study, we developed and evaluated the

automatic segmentationmethod of the eyelid area and theMG area based on CNN

and automatically calculated MG loss rate. This method is evaluated in the internal

and external testing sets from two meibography devices. In addition, to assess

whether HS and CLAHE improve segmentation results, we trained the network

model using images fromonedevice (internal testing set) and testedon images from

another device (external testing set). High DSC (0.84 for MG region, 0.92 for eyelid

region) for the internal test set was obtained, while for the external testing set, lower

DSC (0.69–0.71 for MG region, 0.89–0.91 for eyelid region) was obtained. Also, HS

and CLAHE were reported to have no statistical improvement in the segmentation

results of MG in this experiment.
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Introduction

Meibomian glands (MG) are special sebaceous gland located

on the tarsal plate of eye (Erich et al., 2011). They produce

meibum to prevent tear from over evaporation (Nichols et al.,

2011), maintain the surface tension of the tear film, and trap tears

between its oily edge and the eyeball. Healthy MG are elongated

in shape, arrange in parallel and throughout the entire tarsal plate

(Djalilian, 2018). Functional and/or structural problem of MG

may cause meibomian gland dysfunction (MGD) (Driver and

Lemp, 1996). MGD is a chronic, diffuse abnormality of the

meibomian glands, commonly characterized by terminal duct

obstruction and/or qualitative/quantitative changes in the

glandular secretion (Den et al., 2011; Nichols et al., 2011).

MGD often leads to tear film alteration, ocular surface

disease, and is the leading cause of evaporative dry eye

(Turgut et al., 2018), which can seriously affect the patient’s

life and increase the global public health and financial burden

(McDonald et al., 2016).

Meibomian gland area loss is an important index to evaluate

MGD (Arita et al., 2014). MGD can be directly observed using

meibography, which is an optical imaging technique allowing

visualizing MG morphology in vivo (Pult and Nichols, 2012).

Recently, many non-contact infrared meibography methods

were developed, making the MGD diagnosis process more

patient-friendly and less time-consuming (Pult and Riede-

Pult, 2012; Wong et al., 2019; Xiao et al., 2020; Hwang et al.,

2021). These devices allow users to capture high-resolution

images of meibomian glands in a short period of time, which

can provide sufficient experimental material for MG analysis.

Quantification of the area of meibomian glands loss is of

importance when assessing MGD. To date, automatic

methods based on image processing techniques have been

developed for the automated assessment and classification of

MGD (Arita et al., 2014; Celik et al., 2013; Koprowski et al., 2016;

Koprowski et al., 2017; Liang et al., 2017; Llorens-Quintana et al.,

2019; Pult and Riede-Pult, 2013; Xiao et al., 2021). In recent

years, MGD automatic analysis methods based on convolutional

neural network (CNN) have been developed rapidly. These

works automatically segment the eyelid and MG, and calculate

the loss rate and analyze the morphological parameters of MG

(Wang et al., 2019). In order to promote the segmentation

performance of MG, contrast limited adaptive histogram

equalization (CLAHE) will be used as an image preprocessing

step to enhance the contrast of MG images (Prabhu et al., 2020;

Dai et al., 2021).

However, the MG images used in these works were acquired

from a single device. The preset parameters of the method or the

trained model are for the specific data domain used in the

experiment. When testing these methods with images from

other distribution domains (such as different image

modalities, or different acquisition devices), a lower

performance is usually obtained (Yan et al., 2019). Such

problem is called “distribution shift” (Jo and Bengio, 2017).

To reduce the performance gap, an effective method is to

reduce the distribution domain distance of the data. Training

a generative adversarial network (GAN) to generate fake images

between two different domains is a common method to improve

the generalization of the model to data from different domains

(Perone et al., 2019; Yan et al., 2019); but it requires a large

number of training samples. In some medical image processing

tasks, histogram specification (HS) has been reported as an

effective method for contrast enhancement and improving

model performance on images of different modalities, such as

between MRI and CT images (Naseem et al., 2021).

In this study, we focus on two open questions in the field of

automated meibomian gland analysis:

1) In the CNN-based MG analysis method, does CLAHE

improve the network performance?

2) Can HS improve the performance of models trained with data

collected from a single device on cross-device data?

This study aims at developing and validating an MG

segmentation method based on CNN. Whether HS and

CLAHE as preprocessing methods can effectively improve the

segmentation performance of the CNN model was also

investigated in this study. MG images captured from different

devices were divided into different testing sets based on different

preprocessing methods, and then segmented by CNN model to

calculate MG loss rate. All the results will be compared with the

ground-truth by the clinicians.

Related works

Histogram specification (HS) enhances the brightness and

contrast of the input image and transforms the input image into

an image with a similar shape to the template histogram. HS has

the advantage of simplicity and low computational cost (Xiao

et al., 2018). HS is very common in the preprocessing stage of

medical images. HS is used to match the histogram of the input

image to the template image to initialize and avoid gradient

explosion before using CNN to segment the kidney based on CT

images (da Cruz et al., 2020). Naseem et al. (2021) based on HS to

enhance images of different modalities. They enhance low-

contrast CT images based on MRI images based on the

second-order distribution.

The rawMG image often has low contrast. In other word, the

pixel intensity of glands and background have little difference, as

a result, it is difficult for the observer to separate the glands from

background, especially when the image is blur. CLAHE is applied

for the meibography image enhancement. CLAHE enhances an

image by limiting the height of the local region histogram, such as

a 64 pixels neighborhood block, thereby overcome the global

uneven illumination and noise amplification problem. CLAHE is
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often used as a preprocessing method to enhance the

performance of MG segmentation (Prabhu et al., 2020; Dai

et al., 2021).

Materials

This study involves 287 subjects (age: 56.1 ± 17.2 years old,

83men and 204 women) collected by Beijing TongrenHospital. The

purpose and possible consequences of the studywere explained to all

involved subjects. Exclusion criteria included 1) ocular allergies, 2)

history of ocular surgery, 3) history of ocular trauma, 4) other eye

diseases, 5) long term or frequent contact lens use and 6) Any other

eye or systemic disease known to affect the tear film. Excluded

images include: 1) Images included something other than the eyelids

and their surrounding tissueswere, 2) Images were not sufficiently

clear for automatic analysis were excluded. 3) Patients’ eyes

exhibited excessive meibomian lipid secretion. The study was

approved by the Ethical Committee of the Beijing Tongren

Hospital and was conducted in accordance with the tenets of the

Declaration of Helsinki. A total of 1,074 images were collected by

professional clinicians, including 888MG images collected from

Keratograph 5M (K5M; OCULUS Optikgeräte GmbH, Wetzlar,

Germany) and 186 fromKANGHUADED-1L (KH).Note that Ik5m
is used to represent the image set collected from K5M, and Ikh is

used to represent the image collected from KH. Then, Ik5m was

divided into two sets, 648 for training set used for neural networks

training, and 240 for testing set to appraise the algorithm

performance. And Ikh is used as an external testing set to test

the performance of our models on data from different device. It

should be noted that as a retrospective study, some of the

287 patients have received treatment and collected follow-up data

at different times, therefore there are more meibomian gland images

than the subject number.

The ground-truth annotation was completed by a senior

clinician using imageLabeler application in MATLAB

(9.5.0.944444, R2018b, Java 1.8.0_152-b16). For labeling the

eyelid region, the upper edge is defined at the opening of the

gland, the lower edge is defined at the edge of proximal tarsal

plate, and the horizontal borders is defined at the top and bottom

borders intersected (Wang et al., 2019). Value 1 and 2 are used to

denote the eyelid region and the MG region, respectively.

Examples are shown in Figure 1.

Methods

Image preprocessing

Images Ikh and Ik5m acquired by two different devices are

involved in this study. The grayscale histograms of the two image

sets are significantly different, as shown in the figure. HS is applied to

convert the grayscale density so that Ikh can be matched to the

histogram of Ik5m. Specifically, the brightness distribution of each

image in Ik5m is counted, and the results are averaged to obtain an

average histogramHk5m representing Ik5m. Then, each image of Ikh
is matched toHk5m usingHS, resulting in a similar pixel distribution

to Ik5m, as shown. Ikh−HS is used to represent Ikh after HS

preprocessing. To explore the effect of CLAHE on segmentation

performance, Ik5m, Ikh and Ikh−HS were preprocessed with CLAHE.

Ik5m−CLAHE, Ikh−CLAHE and Ikh−HS−CLAHE are used to represent each

set of images processed using CLAHE.

FIGURE 1
Examples of upper and lower eyelids and MG, and ground-truth for segmentationmask. Black, gray, and white pixel represent the background,
eyelid region and MG region, respectively.
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MG segmentation network

To segment the eyelid region andMG region, we constructed

a compact CNN based on U-Net architecture (Ronneberger et al.,

2015). The segmentation network contains an encoder and a

decoder, as shown in Figure. Specifically, we use ResNet-34 and

remove its fully connection layers as the backbone of our network

(He et al., 2016). Residual blocks in ResNet-34 use shortcuts to

extract features more efficiently, transfer gradients and prevent

gradients vanishing in deep layers. A residual block is consisted

of convolution layers, batch normalization layers and rectified

linear unit (ReLU), as shown in Figure 2.

Inspired by CE-Net (Zaiwang et al., 2019), we add a multi-

scale perception block (MSP) between encoder and decoder, as

shown in Figure 3. In order to save calculation cost, MSP realizes

multi-scale convolution operation through dilated convolution,

as shown in Figure 3. Convolution kernels of different sizes have

different receptive fields, allowing more features to be captured.

In this study, MSP contains 3 × 3, 5 × 5, and 7 × 7 convolution

layers, which are realized by 3 × 3 dilatation convolution with

dilated rate 1, 2, and 3, respectively. Finally, the feature graph is

integrated by 1 × 1 convolution. After each convolutional layer,

ReLU is added as activation function to increase the nonlinearity

of the network.

In the decoder, each step consists of a bilinear

interpolation operation, which is responsible for upscaling

the feature map resolution by four times, followed by two

convolutional blocks (Figure 2) and a concatenation with the

corresponding feature maps from the encoder. At the final

layer, a 1 × 1 padded convolutional layer was used to map the

multi-channel feature maps to three classes that are belonged

to eyelid region, MG region, and background region. The

output of network was converted to a grayscale segmentation

map, in which value 0, 1, and 2 are responding to background

pixel, eyelid pixel, and MG region pixel, respectively.

MG loss rate calculation

MG loss rate is the ratio of the area of meibomian gland loss

to the total eyelid area. Therefore, the MG loss rate is a positive

real number in the range [0,1]. The loss rate can be expressed by

Eq. 1.

MGatrophy rate � 1 − MGarea

Eyelid area
(1)

MG loss rate is a parameter directly related to the severity of

MGD and is the most used in clinic. When the meibomian gland

FIGURE 2
Network architecture for the segmentation of tear meniscus. The network (A) is a U-Net-like architecture with a modified ResNet-34 as
encoder. The bottom of the network is multi-scale perception block (MSP). (B) and (C) are the illustrations of the residual block and convolution
block, respectively.
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atrophied by 33%, the severity of MGD increased by one grade,

which is known as meiboscore (Arita et al., 2014; Arita et al.,

2008).

Results

Two models were trained with the training set, including: 1)

the model was trained with the k5m generation graph; 2) K5M

images enhanced by CLAHE were used for training. Each

training image and its corresponding mask were resized to

256 × 256 and augmented by gamma transformation,

rotation, blur, noise addition, and image flip. The data

augmentation increased the training images by 12 times.

Training and evaluating of the proposed models were

performed on a computer with an Nvidia GeForce GTX

3090 GPU. The deep learning models were implemented

based on PyTorch (version 1.1.0) package in Python. All

models were trained using the Adam optimizer (α = 0.9, β =

0.999), with an initial learning rate of 0.0003 and decays 0.8 times

every five epochs. The batch size is set to 32 and the maximum

epoch number of 50. L1 regulation was applied to prevent over-

fitting (Hawkins, 2004). The loss function used in the experiment

is Dice loss function (Jadon, 2020), which is represented by Eq. 2.

LDice � 1 − 2 · ∣∣∣∣y ∩ y′
∣∣∣∣∣∣∣∣y∣∣∣∣ + ∣∣∣∣y′∣∣∣∣ (2)

To explore the influence of HS and CLAHE on model

performance, k5m images and KH images were divided into

different testing sets, which were: 1) Ik5m and Ikh; 2) apply HS

to KH image with Ik5m as the guide images; 3) preprocessed

Ik5m and Ikh using CLAHE. The specific division is shown in

Table 1.

The performance of the MG segmentation models was

assessed by dice similarity coefficient (DSC), recall, and

precision. These results were reported in Table 1 and

Table 2. The results in Table 1 show that all images have

close results. The maximum value of each indicator is marked

in bold. Table 3 shows the comparison between segmentation

results of different preprocessing methods on two image set.

Note that there is no statistical difference in all different

testing sets, except that the precision between the Ikh−CLAHE

and Ikh−HS−CLAHE is statistically different. Similar results can

also be found in the Ik5m and Ik5m−CLAHE, with no statistically

significant difference between the evaluation results of the

segmentation model regardless of whether the images were

processed with CLAHE or not.

Figure 4 shows some visualization of MG segmentation

results. Most of the images in both the internal testing set and

the external testing set have segmentation results with high DSC

score, and the network predicted segmentation masks and

ground-truth masks have high similarity and coincidence. But

some images in the external testing set have very low

segmentation results, as shown in Figure 5, both the eyelid

region and the MG region are under-segmented, with rough

edges and anomalous masks. These under-segmented images

have dissimilar features when compared with the predicted

results on average level.

Figure 6 and Figure 7 show the direct comparison results

between the MG loss rate and GT for the external and internal

testing sets. Most of the predicted MG loss rates are distributed

near the ideal line (predicted MG loss rate equals to ground-truth

MG loss rate), which indicates that the MG loss rates calculated

according to the predicted segmentation results of the network

are relatively close to the ground-truth. RootMean Squared Error

(RMSE) in Table 4 was used to quantify and compare the MG

loss rate with the ground-truth. Testing set Ik5m−CLAHE has the

smallest RMSE when compared with ground-truth

(RMSE = 0.09).

Discussion

Meibomian glandmorphology analysis is an important index to

evaluateMGD. However, the current manual gradingmethods have

FIGURE 3
Illustration of multi-scale perception block (MSP). The 3 × 3,
5 × 5, and 7 × 7 convolution layers are realized by 3 × 3 dilatation
convolution with dilated rate 1, 2, and 3, respectively.
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the problems of heavy workload, low efficiency and large error,

which is not conducive to the standardized diagnosis and treatment

of MGD and dry eye. In this study, we developed and evaluated the

automatic segmentation method of the eyelid area and the MG area

based on CNN and automatically calculated MG loss rate. This

method is evaluated in the internal and external testing sets from the

two meibography devices. In addition, we also tested that the pre-

processing method of HS and CLAHE as MG images has not

improved significantly.

In this experiment, the segmentation results of the

external testing set (Ikh, Ikh−HS, Ikh−CLAHE, and

Ikh−HS−CLAHE) from another device are lower than the

internal testing set (Ik5m and Ik5m−CLAHE). Such

performance gap is common in segmentation tasks based

on CNN. Even though data augmentation was used in the

training phase, data augmentation in the distribution domain

of the training set (Ik5m and Ik5m−CLAHE) cannot close the

distribution gap, because domain shift is systematic. As shown

in the histogram in Figure 8, Ikh and Ik5m have very different

pixel distributions. These image differences lead to a

performance gap in the segmentation performance of the

model between the two different testing sets. We used HS

TABLE 1 Segmentation results of testing images from KH.

MG region Eyelid region

DSC Recall Precision DSC Recall Precision

Ikh 0.70 ± 0.26 0.75 ± 0.29 0.67 ± 0.27 0.90 ± 0.10 0.89 ± 0.12 0.92 ± 0.07

Ikh−HS 0.69 ± 0.27 0.73 ± 0.29 0.67 ± 0.27 0.89 ± 0.10 0.88 ± 0.12 0.92 ± 0.08

Ikh−CLAHE 0.71 ± 0.26 0.75 ± 0.27 0.69 ± 0.26 0.90 ± 0.06 0.89 ± 0.10 0.92 ± 0.07

Ikh−HS−CLAHE 0.70 ± 0.25 0.72 ± 0.27 0.71 ± 0.27 0.91 ± 0.05 0.91 ± 0.08 0.91 ± 0.07

Ikh : Testing images from KH without any preprocessing.

Ikh−HS : Testing images from KH with HS.

Ikh−CLAHE : Testing images from KH with CLAHE.

Ikh−HS−CLAHE : Testing images from KH with HS and CLAHE.

Bold values are indicates the best performance.

TABLE 2 Segmentation results of testing images from K5M.

MG region Eyelid region

DSC Recall Precision DSC Recall Precision

Ik5m 0.84 ± 0.11 0.79 ± 0.15 0.93 ± 0.07 0.92 ± 0.05 0.87 ± 0.08 0.97 ± 0.08

Ik5m−CLAHE 0.84 ± 0.11 0.79 ± 0.15 0.92 ± 0.07 0.92 ± 0.05 0.87 ± 0.08 0.98 ± 0.03

Ik5m : Testing images from K5M without any preprocessing.

Ik5m−CLAHE : Testing images from K5M with CLAHE.

Bold values are indicates the best performance.

TABLE 3 Comparison between segmentation results of different preprocessing methods.

MG region Eyelid region

DSC Recall Precision DSC Recall Precision

p-value p-value p-value p-value p-value p-value

Ikh-Ikh−HS 0.36 0.12 0.16 0.42 0.16 0.41

Ikh-Ikh−CLAHE 0.38 0.20 0.16 0.39 0.17 0.0004

Ik5m-Ik5m−CLAHE 0.40 0.38 0.43 0.37 0.40 0.34

p < 0.01 is considered a statistical difference (Mann-Whitney U test).

The bold value here means that the p value less that 0.05 which indicates a statistical difference.
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to make the histograms much more similar, but the obtained

network segmentation results did not improve significantly.

t-SNE (Van der Maaten and Hinton, 2008) was used to gain

insight into the difference between the two sets of images

before and after using HS, as shown in Figure 9A. The images

are applied dimensionality reduction and projected onto a 2D

FIGURE 4
Examples of segmentation results for external and internal testing images. Img, GT, and pred represent input images, ground-truth masks, and
predicted segmentation masks, respectively.

FIGURE 5
Some under-segmented examples in the external testing set due to the distribution gap. Img, GT, and pred represent input images, ground-
truth masks, and predicted segmentation masks, respectively.
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FIGURE 6
(A–D) represent the direct comparison of the ground truth and predicted MG atrophy rates of the unprocessed image set Ikh, image set Ikh-
CLAHE processed with CLAHE, image set Ikh-HS processed with HS, and image set Ikh-HS-CLAHE processed with HS and CLAHE, respectively.

FIGURE 7
(A) and (B) represent the direct comparison of the ground real and predicted MG atrophy rates of the unprocessed image set Ik5m, image set
I5m-CLAHE processed with CLAHE, respectively.
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TABLE 4 RMSE of internal and external testing set compared with ground-truth.

Ikh Ikh−HS Ikh−CLAHE Ikh−HS−CLAHE Ik5m Ik5m−CLAHE

RMSE 0.12 0.12 0.13 0.11 0.10 0.09

The bold value here means the smallest RMSE and the best performance.

FIGURE 8
Histogram comparison of internal and external test sets. (A) Shows the histograms of Ikh and Ik5m; (B) Shows the histograms of Ik5m and Ikh−HS.

FIGURE 9
Execution of t-SNE algorithm for images from two different devices. Colors represent data from different devices. (A) A visualization of the
t-SNE 2D non-linear embedding projection for the images without CLAHE. (B) A visualization of the t-SNE 2D non-linear embedding projection for
the images with CLAHE for contrast enhancement.
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plane. There is a large gap between the distributions of Ik5m
and Ikh. Also, HS does not effectively reduce the distribution

gap, although the histograms had been matched. Changing the

low-dimensional image feature of gray distribution will not

affect CNN to extract and learn the high-dimensional

semantic information of the image.

CLAHE can effectively enhance the visual effect of MG

images, which is beneficial for doctors to read and measure

MG images manually. However, CLAHE does not significantly

improve the segmentation results of neural networks, because

CLAHE also fails to close the distribution gap between the

distributions of Ik5m and Ikh, as shown in Figure 9B. CNN have

been shown to be feasible in medical image segmentation

tasks, but when used in practice, network models can suffer

huge performance degradations if image data from other

distributed domains are involved. Such performance gap

can be explained using the independent and identically

distributed (i.i.d.) assumption of statistical learning: a

network model that is well-trained in the source

distribution domain does not necessarily achieve similar

high performance on datasets with the same distribution as

the source distribution domain performance (Zhu et al.,

2017). Adjusting the pixel distribution of images by HS and

CLAHE did not improve the prediction results of the network

model, although the images were visually very similar to the

source distribution domain. Through tsne-2D visualization, it

can be found that HS and CLAHE do not close the

distribution gap.

Conclusion

In this study, we developed and validated a CNN-based

automatic MG analysis method based on MG images acquired

by two different devices, K5M and KH. Predictions of MG loss

rates were in high agreement with the gold standard obtained

by physicians. We also found that in this study HS and

CLAHE do not significantly improve the performance of

CNN for segmenting MG, which may indicate that in

future deep learning-based MG analysis tasks, no

additional computational cost is required for image

preprocessing phase.
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Reduced macula microvascular
densities may be an early
indicator for diabetic peripheral
neuropathy
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Purpose: To assess the alteration in themacularmicrovascular in type 2 diabetic

patients with peripheral neuropathy (DPN) and without peripheral neuropathy

(NDPN) by optical coherence tomography angiography (OCTA) and explore the

correlation between retinal microvascular abnormalities and DPN disease.

Methods: Twenty-seven healthy controls (42 eyes), 36 NDPN patients (62 eyes),

and 27 DPN patients (40 eyes) were included. OCTA was used to image the

macula in the superficial vascular complex (SVC) and deep vascular complex

(DVC). In addition, a state-of-the-art deep learning method was employed to

quantify the microvasculature of the two capillary plexuses in all participants

using vascular length density (VLD).

Results: Compared with the healthy control group, the average VLD values of

patients with DPN in SVC (p = 0.010) and DVC (p = 0.011) were significantly

lower. Compared with NDPN, DPN patients showed significantly reduced VLD

values in the SVC (p = 0.006) and DVC (p = 0.001). Also, DPN patients showed

lower VLD values (p < 0.05) in the nasal, superior, temporal and inferior sectors

of the inner ring of the SVC when compared with controls; VLD values in NDPN

patients were lower in the nasal section of the inner ring of SVC (p < 0.05)

comparedwith healthy controls. VLD values in theDVC (AUC=0.736, p < 0.001)

of the DPN group showed a higher ability to discriminatemicrovascular damage

when compared with NDPN.

Conclusion:OCTA based on deep learning could be potentially used in clinical

practice as a new indicator in the early diagnosis of DM with and without DPN.

KEYWORDS

diabetic retinopathy, microvasculature, optical coherence tomography angiography,
vascular length density, diabetic peripheral neuropathy
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Introduction

The incidence of diabetes has been rising worldwide in recent

years. The number of people diagnosed with diabetes is expected

to reach 800 million by 2045 (Sun et al., 2022). Vascular

complications (including microvascular and macrovascular)

are the main reasons for the increase in morbidity and

mortality in diabetic patients (Sarwar et al., 2010; Kim et al.,

2021). Long-term hyperglycemia may lead to large and small

vessel abnormalities; some of the major complications include

cardiovascular disease, diabetic nephropathy, diabetic

retinopathy, and neuropathy (Cole and Florez 2020).

Although some of the studies showed that intensive blood

glucose control could reduce the risk of microvascular

complications in diabetic patients, such as diabetic retinopathy

(Chew et al.,2010) and diabetic peripheral neuropathy (DPN)

(Callaghan et al., 2012), the beneficial effects of intensive control

on macrovascular and cardiovascular endpoints in patients with

type 2 diabetes are vague. Therefore, early detection of

complications related to diabetes and further understanding of

their underlying pathology are of crucial importance.

DPN is one of the most common complications of type 1 and

type 2 diabetes. More than half of diabetic patients suffer from

peripheral nerve injury (Kazamel et al., 2021). DPN mainly leads

to chronic neuropathic pain, numbness and tingling of

extremities, paresthesia, and foot ulcer. Its diagnosis

commonly relies on traditional measurement methods of

neuropathy, such as nerve conduction studies, skin biopsy

FIGURE 1
OCTA image analysis of macular fovea and artificial intelligence algorithm for layered analysis of images. (A) Using OCTA to scan the macula
area of the subject within the range of 3 × 3 mm2, and the images of capillaries around the fovea are obtained. Then, using deep learning software,
FAZwas used to fit a circle with radius r, after which three concentric circles with radius r, 1.5 r, and 2 r were drawn.With further partitioning, the retina
was divided into inner and outer rings: nasal area, superior area, temporal area, and inferior area, and there were 8 areas in total. (B) The retina
was segmented into SVC (from the internal limiting membrane to 10 μm above the inner plexiform layer) and DVC (from 10 μm above the inner
plexiform layer to the 10 μm below the outer plexiform layer) images with different depths. The images (C–K) show retinal microvascular in a
different layer of HC, NDPN, and DPN groups. (C–E) The images show the full-thickness retinal microvasculature produced by OCTA in HC, NDPN,
and DPN groups. (F–H) Capillaries in the SVC by deep learning software. (I–K) Capillaries in the DVC by deep learning software.
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evaluation, Michigan Neuropathy Symptom Inventory (MNSI),

and the Utah Early Neuropathy Scale (UENS) (Singleton et al.,

2008; Iqbal et al., 2018). Yet, these diagnostic methods have low

repeatability, poor sensitivity (especially in detecting early-stage

disease), and certain hysteresis in early clinical diagnosis (Malik

2014). If not timely treated, DPN develops into a diabetic foot,

leading to amputation. Previous studies have shown that the 5-

year survival rate of diabetic patients after amputation is even

lower than that of prostate cancer and breast cancer (Selvarajah

et al., 2019).

The recent development of new ophthalmological

examination methods allows the evaluation of systemic

vascular and nerve damage by using the changes in ocular

vascular and nerve microstructures. Because the retina is

suggested as a site of diabetic damage, prior studies suggested

that the retinal nerve fiber layer (RNFL) changes are associated

with the presence of DPN (Shahidi et al., 2012; Salvi et al., 2016;

Dehghani et al., 2017). A recent report suggested a close link

betweenmicrocirculation dysfunction and DPN (Hu et al., 2021).

In addition, several studies using fundus photography have

shown significant retinal vascular changes in DPN patients

compared with healthy controls (Ding et al., 2012; Hu et al.,

2021). However, retinal photography imaging rarely gives

information about deeper retinal microstructure, so subtle

microvascular changes that occur at the capillary level may be

missed.

OCTA is a non-invasive, non-contact imaging technology

that enables the high-resolution visualization of the retinal

microvasculature network in different retina layers.

Cumulative reports using OCTA (Kim A et al., 2016; Chen

et al., 2017) show that the retinal microvascular density of

diabetic patients is lower than that of healthy controls.

However, little is known about the retinal microvascular

changes in DPN patients. In this study, we used an automated

framework based on the state-of-the-art deep learning approach

to extract retinal microvasculature to characterize the macula

microvascular alterations that occur in type 2 diabetic patients

with DPN and those without DPN. We also determined the

ability of the deep learning approach to find the changes in the

retinal microvascular network at different levels in different

subareas and to look for indicators that can prompt the

diagnosis of DPN patients so as to improve the diagnostic

rate of DPN patients.

Materials and methods

Participants

This was an observational cross-sectional study. Subjects

admitted to the Affiliated People’s Hospital of Ningbo

University were enrolled between November 2019 and August

2021. The study was approved by the Ethics Committee of The

Affiliated People’s Hospital of Ningbo University and followed

the Declaration of Helsinki. All participants provided informed

consent.

Diabetes mellitus patients with and without DPN and healthy

controls were included in our study. Patients with type 2 diabetes

mellitus were diagnosed according to WHO standards (Alberti

and Zimmet 1998). A retinal specialist (YW) used a modified

Airlie House classification (Wu et al., 2013) to select DM patients

with retinopathy.

Basic information, such as medical history and symptoms,

was collected from all participants. Besides, neurological

examination of the nervous system and nerve conduction tests

were also performed. Neurological examinations included pain

sensation, temperature sensation, tactile sensation, vibration

sensation, and ankle reflex. According to the comprehensive

analysis of peripheral symptoms, signs, and nerve conduction

test results (Tesfaye et al., 2010; Lipsky et al., 2012), the DPN

diagnosis was confirmed by a neurologist (AC). Therefore, we

classified possible and probable DPN into the NDPN group, and

subclinical and confirmed DPN into the DPN group (Sloan et al.,

2021).

The healthy controls were in good health in the past, with no

history of diabetes and no history of eye diseases or surgery.

Clinical information such as diabetes and hypertension were

recorded for all participants. Controls were excluded if they had

the following: trauma or toxic disorder affecting the brain, optic

nerve, or retina, current or previous drug abuse, uncontrolled

hypertension, hypotension, and any neuro-ophthalmic disease

which could affect the retina, patients with diabetic retinopathy

in the proliferative phase and non-proliferative phase in which

the retinal structures were affected by bleeding, edema, and other

reasons.

Ophthalmic examinations

All the enrolled subjects underwent complete binocular

examination, including best corrected visual acuity, intraocular

pressure, anterior segment slit lamp examination, ultra-wide

angle fundus photography, and OCTA examination. Type

2 diabetes mellitus (primary and long-term) patients were

30–80 years old, with ametropia between

+3.00 D and −3.00 D, intraocular pressure between 10 and

21 mmHg, no obvious turbid refractive media, no history of

glaucoma, no diffuse or focal sheath thinning, no retinal

hemorrhage or macular defect, and no treatment history of

active eye disease. Participants with the following conditions

were excluded: 1) serious cardiovascular and cerebrovascular

diseases, malignant tumors, immunological diseases, etc.; 2)

history of intraocular surgery (exception: cataract extraction

within 12 months); 3) ocular disease affecting the retina that

has been diagnosed in the past, including macular edema, the

onset of glaucoma, optic nerve disease, and choroidal
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neovascularization; 4) image quality affected by abnormal

refractive medium or poor fixation (<8); 5) a patient with

diabetic retinopathy greater than NPDR2 grade 2 or diabetic

retinopathy affecting the fovea; 6) poor control of hypertension

causes hypertensive retinopathy.

OCTA imaging

Zeiss Cirrus 5000-HD-OCT Angioplex (Carl Zeiss Meditec,

Dublin, CA, United States) with a scanning rate of

68,000 A-scans/s was used for retinal imaging. Each B-scan

consisted of 350 A-scans in the horizontal and vertical

directions. OCTA equipment includes three-dimensional

projection artifact elimination (3D PAR) technology, which

can minimize the artifacts in images while keeping the

authenticity of the images.

Both eyes of all participants were examined and imaged. The

macula was analyzed using B-scans covering an area of 3 × 3 mm2

repeated horizontally and vertically. Images of good quality (signal

quality≥8) were selected for further analysis. Angiograms with

irregular patterns of vessels or irregular vascular segmentation

were excluded. Retinal layer segmentation of the macula was

done commercially by an inbuilt algorithm in the OCTA tool

(Spaide et al., 2014). The retina in the macular region was

divided into the superficial vascular complex (SVC, from the

internal limiting membrane to 10 μm above the inner plexiform

layer) and deep vascular complex (DVC, from 10 μm above the

inner plexiform layer to the 10 μm below the outer plexiform layer)

for microstructure analysis.

Deep learning algorithm on macular
microvasculature

A state-of-the-art OCTA-Net algorithm was used for the

microvasculature segmentation (Ma et al., 2020). To construct

this model, we used a coarse-to-fine segmentation method, in

which the initial confidence map for the retinal microvascular

network was generated first, followed by the outline of the

macular microvasculature. The OCTA-Net was trained on the

public OCTA Segmentation Dataset (ROSE); its effectiveness has

been well documented in a previous report (Ma et al., 2020).

Vascular length density (VLD) was used to assess the macular

microvasculature; VLD is defined as the ratio of the total number of

pixels on microvascular centerlines to the measurement area. VLD

in the SVC and the DVC was calculated using MATLAB software.

The VLD value of the nine quadrant sectors (center, superior

inner, temporal inner, inferior inner, nasal inner, superior outer,

temporal outer, inferior outer, and nasal outer) was analyzed to give

the mean value. To generate the sub-sectors, we first fit a circle with

radius r using the foveal avascular zone (FAZ) and then drew three

concentric circles with radius r, 1.5 r, and 2r, respectively, as shown

in Figure 1 to exclude the potential influence of the FAZ (Figure 1).

Statistical analysis

IBM SPSS Statistics 23 software (version 23; SPSS, Inc.

Chicago, IL, United States) was used for statistical analysis.

The Kolmogorov-Smirnov test was applied to assess the normality

of the data. Quantitative variables were expressed as mean ±

TABLE 1 Demographic characteristics of all subjects.

Parameters Control, n = 27 NDPN, n = 36 DPN, n = 27 p

Eyes 42 62 40

Age, y 57.12 ± 13.36 55.50 ± 10.11 59.63 ± 8.53 0.324

Sex, M/F 10:17 22:14 16:11 0.129

BMI 21.97 ± 1.68 24.50 ± 2.92 22.84 ± 3.61 0.003

MAP, mmHg 91.69 ± 7.12 92.44 ± 8.97 91.99 ± 8.98 0.944

SE, diopter −0.41 ± 1.10 −0.29 ± 1.72 −0.12 ± 0.93 0.628

BCVA, logMAR 0.01 ± 0.03 0.01 ± 0.04 0.06 ± 0.13 0.003

IOP, mmHg 15.40 ± 2.89 15.83 ± 2.90 16.74 ± 3.70 0.148

Duration, y NA 6.40 ± 6.81 9.93 ± 6.47 0.043

HbA1c — 9.75 ± 2.19 9.36 ± 2.14 0.499

BG — 9.36 ± 3.55 9.55 ± 4.19 0.843

TG — 2.18 ± 2.90 2.12 ± 1.54 0.917

T-CHOL — 4.83 ± 1.27 4.53 ± 1.48 0.388

HDL-C — 1.15 ± 0.32 1.07 ± 0.30 0.272

LDL — 3.01 ± 0.75 2.77 ± 1.04 0.314

Values for continuous variables are means ± standard deviations for all subjects in each group. HC, healthy control; NDPN, Diabetic patients without DPN; DPN, diabetic patients with

peripheral neuropathy; –, not performed; NA, not applicable; BCVA, best-corrected visual acuity. One-way ANOVA, for numerical data.
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standard deviation (SD). Refraction data were converted to spherical

equivalent (SE). The best corrected visual acuity was expressed as the

logarithm of theminimum resolution angle (LogMAR). Generalized

estimating equations (GEE) were used to assess the differences

among the groups while adjusting for age, gender, mean arterial

pressure, and signal quality of angiograms. The subjects’ receiver

operating characteristic (ROC) curve was used to assess the

diagnostic capability of the VLD calculated by the artificial

intelligence recognition system for diabetes with DPN. Larger

areas under the ROC curve (AUROC) indicated higher

diagnostic values. A p-value <0.05 was considered statistically

significant.

Results

Demographic characteristics among three
groups

We initially enrolled 30 healthy controls and 66 DM patients;

three healthy controls were excluded due to age macular

degeneration (AMD) and three DM patients because of

uncooperativeness during retinal imaging using the OCTA.

Finally, 27 healthy controls (42 eyes), 36 DM patients without

DPN (62 eyes), and 27 DM patients with DPN (40 eyes) were

included in data analysis. There was no significant difference

among the three groups in age, sex, and MAP (all p > 0.05,

Table 1). Yet, there was a significant difference in visual acuity

between the three groups (p = 0.003, Table 1) and the visual

acuity was significantly lower in the DPN group vs the other two

groups. As far as the duration of diabetes is concerned, the

disease duration in the DPN group was obviously longer than

that of the NDPN group (p = 0.043, Table 1).

Changes in VLD among the three groups

To further explore the correlation between DPN and

microvascular changes in the retina, we used OCTA to collect

fundus blood vessels from three groups of subjects and used the

intelligent recognition system trained on the public ROSE dataset to

segment the vascular. There was no significant difference in the

TABLE 2 Comparison of VLD value among the three groups.

HC NDPN DPN P1 P2 P3

SVC

Average 7.61 ± 0.73 7.50 ± 0.84 6.89 ± 0.98 0.868 0.010 0.006

Inner Nasal 11.38 ± 0.83 10.90 ± 1.19 10.35 ± 1.04 0.04 <0.001 0.023

Superior 11.47 ± 1.03 11.16 ± 0.98 10.30 ± 1.17 0.311 <0.001 <0.001
Temporal 11.10 ± 1.02 10.79 ± 1.06 10.22 ± 1.21 0.203 0.002 0.033

Inferior 11.63 ± 1.07 11.32 ± 1.17 10.70 ± 1.22 0.189 0.001 0.019

Outer Nasal 25.01 ± 2.59 24.76 ± 3.03 23.12 ± 2.78 0.499 0.003 0.007

Superior 24.93 ± 3.15 24.61 ± 3.51 22.70 ± 3.16 0.918 0.009 0.005

Temple 24.33 ± 3.08 24.16 ± 2.70 23.23 ± 3.09 0.805 0.169 0.198

Inferior 24.29 ± 3.16 24.35 ± 3.15 23.33 ± 3.56 0.97 0.219 0.181

DVC

Average 8.07 ± 0.41 8.07 ± 0.63 7.60 ± 0.57 0.286 0.011 0.001

Inner Nasal 9.02 ± 1.74 9.07 ± 1.60 8.84 ± 1.67 0.985 0.506 0.448

Superior 11.02 ± 0.97 10.87 ± 1.26 10.19 ± 1.24 0.554 0.003 0.006

Temporal 9.38 ± 1.47 9.12 ± 1.65 9.11 ± 1.63 0.426 0.452 0.962

Inferior 10.64 ± 1.40 10.48 ± 1.70 10.32 ± 1.54 0.6 0.354 0.607

Outer Nasal 28.92 ± 2.42 28.37 ± 3.11 27.43 ± 3.00 0.336 0.056 0.237

Superior 28.45 ± 2.22 28.55 ± 2.80 26.48 ± 3.01 0.796 0.002 <0.001
Temple 28.89 ± 2.29 28.71 ± 3.31 27.09 ± 4.09 0.738 0.037 0.046

Inferior 28.47 ± 2.47 28.06 ± 3.10 26.84 ± 3.24 0.69 0.065 0.096

P1: comparison betweenHC, and NDPN; P2: comparison betweenHC, andDPN; P3: comparison betweenNDPN, andDPN., data were adjusted for age, gender; MAP, and signal quality of

angiograms; SVC, superficial vascular complex; DVC, deep vascular complex.
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average VLD values of the SVC (p = 0.868, Table 2) and DVC

(p = 0.286, Table 2) in NDPN when compared with healthy

controls; yet, DPN patients showed significantly lower SVC

(p = 0.010, Table 2) and DVC (p = 0.011, Table 2) average VLD

values when compared with healthy controls. Also, compared

with NDPN, DPN showed significantly lower SVC (p = 0.006,

Table 2) and DVC (p = 0.001, Table 2) average VLD values.

Next, the VLD values of the SVC and DVC in the eight

sections around the fovea were compared among the three

groups. Figure 2 shows the comparison of VLD values in the

eight sections of the SVC and DVC among the three groups.

DPN patients showed significantly lower VLD values (p <
0.05, Figure 2) in the nasal, superior, temporal and inferior

sectors of the inner ring of the SVC when compared with

controls; likewise, VLD values in NDPN patients were

significantly lower in the nasal section of the inner ring of

the SVC (p < 0.05, Figure 2) compared with controls.

Importantly, DPN patients showed significantly lower VLD

values (p < 0.05, Figure 2) in the four inner ring sections of the

SVC compared with NDPN. As for DVC, we found that the

VLD values coming from the DPN group were significantly

decreased in superior sectors of the inner ring, as well as

superior and temporal sectors of the outer ring (p < 0.05,

Figure 2) when compared with healthy controls and NDPN

groups.

ROC curve analysis was carried out to determine the ability

of VLD to detect alterations in microvascular of DPN and NDPN

(Figure 3). The VLD values in the DVC of the DPN group

showed a higher ability to discriminate microvascular damage

when compared with the NDPN group (Figure 3). The results

showed that the area under the curve (AUC) of SVC in the

diagnosis of DPN was 0.729 (p < 0.001), while the cutoff point of

8.01 showed a sensitivity of 95%, a specificity of 40.48% (Table 3).

On the other hand, the AUC of DVC for DPN development was

0.736 (p < 0.001), with a cutoff point of 7.47, showing a sensitivity

of 47.50% and a specificity of 92.86%. SVC (AUC = 0.519, p >
0.05) and DVC (AUC = 0.520, p > 0.05) had poor diagnostic

values for NDPN (Table 3).

FIGURE 2
Comparison of VLD in different sectors between HC, NDPN, and DPN groups. (A) Describe the VLD of the SVC in four inner quadrant sectors
(nasal inner, superior inner, temporal inner, and inferior inner). (B) VLD of DVC in four inner sectors. (C) VLD of SVC in four outer quadrant sectors
(nasal outer, superior outer, temporal outer, and inferior outer). (D) VLD of DVC in four outer quadrant sectors. VLD is defined as the ratio of the total
number of pixels on microvascular centerlines to the area of measurement.
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Discussion

It would be beneficial to gain a better understanding of the

neurodegeneration and vascular complications in both normal

and DPN patients in order to determine the characteristics and

progression of this disease. Traditional neurodegenerative

indicators are not sensitive enough to detect early DPN and

identify disease progression (Iqbal et al., 2018). As a result, half of

the diabetic patients have DPN in the course of their disease

development, but only about 20% of them have typical clinical

manifestations of neuropathy at the time of diagnosis (Deli et al.,

2013; Hosseini and Abdollahi 2013; Verrotti et al., 2014). Our

research provides a new method for diagnosing DPN, which is

expected to become an objective biomarker for predicting which

patients may develop from NDPN to DPN in the future.

Previous cross-sectional studies (Ding et al., 2012; Hu et al., 2021)

showed that DPN patients have a retinal microvascular abnormality,

which is not seen in healthy controls. However, these reports used

fundus photography, which limits the resolution of the retinal

microvasculature to the superficial vessels. In this study, we used

OCTA to image the macular microvasculature and utilized a deep

learning approach to assess the VLD in DPN and NDPN when

compared with healthy controls and determined the diagnostic ability

of the deep learning approach to identify the macular capillary

changes. DPN was significantly altered in SVC and DVC

when compared with healthy controls and NDPN. The SVC

layer is responsible for the metabolic supply of the ganglion

cell. A previous study observed degeneration of retinal

ganglion cells and axons in SVC in diabetic patients (Kim

K et al., 2016; Kim et al., 2018). Changes in the SVC seen in our

report complement the already reported OCT structural

markers (Shahidi et al., 2012; Sangeetha et al., 2016). On

the other hand, DVC lies beneath the SVC and is

important for the nutrition of the inner nuclear layer. This

microvascular plexus consists of bipolar cells, horizontal cells,

FIGURE 3
ROC curve analysis of VLD in the SVC and DVC. (A) The diagnostic efficiency of VLD value of NDPN group in different levels. (B) The diagnostic
efficiency VLD value of the DPN group. Greenline: The ROC of DVC. Blueline: The ROC of SVC.

TABLE 3 ROC curve analysis of VLD in different layers of DM with or
without DPN.

AUC
(95%CI)

Cutoff Sen, % Spe, % p

NDPN

SVC 0.519 7.41 38.71 69.05 0.740

DVC 0.520 8.18 48.39 64.29 0.721

DPN

SVC 0.729 8.01 95.00 40.48 <0.001
DVC 0.736 7.47 47.50 92.86 <0.001

AUC, area under the curve; CI, confidence interval; Cut Off, the magnitude of the

analyte to be detected; Sen, sensitivity; Spe: specificity.
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and amacrine cells found in the deeper portion of the inner

retina. The DVC is supplied by vertical anastomoses of the

SVC (Campbell et al., 2017), indicating that changes in the

SVC may affect the DVC. The microvascular changes seen in

our current study are in line with previous OCTA studies

(Nesper et al., 2017; Conti et al., 2019; Dai et al., 2020), which

used different quantitative programs to characterize the

microvascular changes suggesting that peripheral

neuropathy may lead to microvascular impairment.

Patients with DM can exhibit microvascular damage

(Thrainsdottir et al., 2003), endothelial cell proliferation, and

intimal thickening, which results in blockage of the vessel lumen,

ultimately leading to hypoperfusion and dysfunction of nerve cells

(Malik et al., 1993). Microvascular impairment progresses into

neuropathy and is one of the hallmarks of DPN (Gibbons and

Shaw 2012). In the early phase, microvascular impairment and

peripheral neuropathy are principally asymptomatic, and few tests

are accessible for diagnosis. Interestingly, we found that the VLD in

DPN patients’ nasal and superior areas was more susceptible and

pronounced than in other areas. Similarly, Radi et al. found that the

retina vessel density in the superficial of the macular region was

significantly reduced, and the decrease in the superior and temporal

sectors was the most obvious in the early stage of DR (Radi et al.,

2019). In addition, Li et al. (2020) performed fundus angiography

and fundus photography on patients with diabetic

retinopathy at different stages and found that the

exudation and microvascular lesions on the nasal side of

the posterior pole increased significantly in the early phase of

diabetic retinopathy and the microvessels on the nasal side

were significantly damaged. However, some scholars found

that diabetic microvascular abnormalities were more

common on the temporal side than on the nasal side in

the early stage of retinopathy in diabetic patients (Silva

et al., 2013; Matsunaga et al., 2015). This phenomenon of

uneven distribution of lesions may be related to the uneven

physiological or metabolic processes in different regions,

such as abnormal expression and distribution of

biochemical substances such as caspase-1 (Glut1), and

inducible nitric oxide synthase (iNOS) and PKCE (Tang

et al., 2003). Other scholars believe that the differences in

microvascular changes in different sections may be related to

the different anatomical structures of retinal

microcirculation (Chaher et al., 2022). However, the

specific mechanism is still unclear.

Importantly, we analyzed the ability of the macular

microvasculature density to detect the early changes in DPN and

NDPNgroups. Our ROC curve analysis showed the ability of VLD in

SVC and DVC to discriminate between HC and DPN, HC, and

NDPN; however, the DVC showed a higher discriminating power

than the SVC. Noteworthy, the DVC has a thinner and smaller

microvascular structure making it more sensitive to the progression

of the disease than the SVC (Wang et al., 2018); thus, we suggest that

this plexus may be more sensitive to the microvascular damage

associated with the disease cascade. This implies a close connection

between neurodegeneration and microvasculature in these patients.

Since retinal microvascular has been suggested to reflect

microvascular diseases in other parts of the body (Cankurtaran

et al., 2020; Zhang et al., 2021), we suggest that assessment of

retinal microvasculature could be a route for the early detection

of microvascular degenerates as indirect pointers of DPN. Such in

vivo quantitative means allow monitoring of DPN and may enable

the assessment of treatments. Therefore, endocrinologists should

comprehensively consider the retinal structure and

microvasculature in estimating and treating the early DPN of DM

patients.

There are several limitations in the present study. First,

six participants were excluded due to movement during

OCTA imaging. Moreover, healthy control subjects were

not examined for HbA1c. Although the history of past

medical conditions was obtained from each patient, we

cannot rule out the possibility of underlying diseases.

Second, this cross-sectional study did not comprehensively

analyze retinal microvascular parameters over time and

disease progression in patients with DPN. Finally, the

sample size is relatively small. The relationship between

the development of retinal vascular changes over time and

DPN should be further explored through a multi-center

longitudinal study with larger samples.

Conclusion

Our results showed that DM patients with DPN had

significantly lower SVC and DVC VLD, and the VLD in the

nasal and superior sectors of DPN patients was more susceptible

andmore pronounced.We also found that the AUCs for VLD of the

SVC and DVC could discriminate between DPN patients and

controls to a certain extent and may serve as an early pointer of

microangiopathy. OCTA based on deep learning could be

potentially used in clinical practice as a new indicator in the

early diagnosis of DM with and without DPN.
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In recent years, with the rapid development of computer technology, continual

optimization of various learning algorithms and architectures, and

establishment of numerous large databases, artificial intelligence (AI) has

been unprecedentedly developed and applied in the field of ophthalmology.

In the past, ophthalmological AI research mainly focused on posterior segment

diseases, such as diabetic retinopathy, retinopathy of prematurity, age-related

macular degeneration, retinal vein occlusion, and glaucoma optic neuropathy.

Meanwhile, an increasing number of studies have employed AI to diagnose

ocular surface diseases. In this review, we summarize the research progress of

AI in the diagnosis of several ocular surface diseases, namely keratitis,

keratoconus, dry eye, and pterygium. We discuss the limitations and

challenges of AI in the diagnosis of ocular surface diseases, as well as

prospects for the future.

KEYWORDS

artificial intelligence, ocular surface disease, disease diagnosis, keratitis, keratoconus,
dry eye, pterygium

1 Introduction

Since the beginning of the 21st century, significant changes have occurred in daily life

with the rapid development of science and technology, including computer science. In

2018, the US Food and Drug Administration approved the launch of IDx-DR, which is the

first ophthalmic artificial intelligence (AI) device that can automatically diagnose and

grade diabetic retinopathy. Since then, there has been an upsurge in the application of AI

technology in the field of ophthalmology and various research results continue to emerge.

AI is a branch of computer science that mainly studies and develops new technical science

to simulate and extend the theory, methods, technology, and application systems of

human intelligence. Machine learning (ML), deep learning (DL), artificial neural

networks, deep neural networks (DNNs), convolution neural networks (CNNs), and

transfer learning all belong to this category. At present, a series of research achievements

have been made in AI technology for the diagnosis and treatment of eye diseases such as

diabetic retinopathy (Raman et al., 2019; Ai et al., 2021; Bhardwaj et al., 2021), retinopathy

of prematurity (Redd et al., 2018; Attallah, 2021; Wang et al., 2021a), age-related macular
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degeneration (Burlina et al., 2018; Yan et al., 2020; Yim et al.,

2020), retinal vein occlusion (Nagasato et al., 2018; Nagasato

et al., 2019; Xu et al., 2022), and glaucoma (Christopher et al.,

2018; Hood and De Moraes, 2018; Medeiros et al., 2021).

In general, ocular surface diseases are diseases that damage

the normal structure and function of the cornea, conjunctiva, and

ocular surface. In recent years, increasing studies have applied AI

to assist in the diagnosis of ocular surface diseases. In this review,

we summarize the application of AI in the diagnosis of four

common ocular surface diseases: keratitis, keratoconus, dry eye,

and pterygium. Moreover, we discuss the limitations and

challenges of AI in clinical applications and future prospects.

The term “diagnosis” used in this article has a broad meaning,

including the designation or detection of a specific disease and

other diagnostic decisions (for example, identification and

screening of different disease states, subtypes, stages or

degrees, and the prediction of disease progression).

The basic research flow of an AI model for such an

application is presented in Figure 1. First, the dataset is

organized, low-quality images are deleted, and the remaining

high-quality images are divided into the training, verification,

and testing sets. Subsequently, the AI model is trained using the

training set, validated using the verification set, and optimized

according to the results. Finally, the optimized AI model is tested

using the testing set, and the application performance of the AI

model is obtained.

The basic framework of this review, which is divided into

four parts, is depicted in Figure 2. The first part focuses the

current status of AI and its application in ophthalmic diseases;

the second part presents the research progress of AI in the

diagnosis of ocular surface diseases; the third part introduces

the limitations and challenges of AI in the diagnosis of ocular

surface diseases; the fourth part provides an overview of the

future application prospects of AI in the diagnosis of ocular

surface diseases.

2 Application of AI in ocular surface
disease diagnoses

2.1 Application of AI in keratitis diagnosis

Keratitis, which is the fifth most common cause of human

blindness (Pascolini and Mariotti, 2012; Flaxman et al., 2017),

refers to the weakening of the corneal defense ability and

inflammation of the corneal tissue as a result of exogenous or

endogenous pathogenic factors. The etiology of keratitis is

complex; it can be caused not only by pathogenic

microorganisms (such as bacteria, fungi, viruses, and

FIGURE 1
Basic flow chart of AI model.

FIGURE 2
Basic framework of this review.
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chlamydia), but also by autoimmune diseases such as rheumatoid

arthritis. The inflammation of adjacent tissues (such as

conjunctivitis, scleritis, and iridocyclitis) may also lead to

keratitis (Chidambaram et al., 2018; Khor et al., 2018). At

present, the classification of keratitis has not been unified. It

can be categorized as infectious, immune, malnourished,

neuroparalytic, and exposed keratitis, according to its

pathogenic causes. Infectious keratitis can be further

subdivided into bacteria, viruses, fungi, chlamydia, and so on,

according to different pathogenic microorganisms (Tena et al.,

2019).

Although the etiology of keratitis is varied, the pathological

processes of different types usually exhibit common

characteristics. The classical pathological process can be

divided into four stages: the infiltration, ulcer formation, ulcer

regression, and healing stages (Li et al., 2021). The most common

symptoms of keratitis in clinical manifestations include eye pain,

photophobia, tears, and blepharospasm, which can persist until

the inflammation subsides (Austin et al., 2017). Keratitis is often

accompanied by varying degrees of vision loss. Typical signs of

keratitis include ciliary hyperemia, corneal infiltration, and

corneal ulcer formation. Moreover, it is often accompanied by

varying degrees of vision loss. The shape and location of corneal

infiltration and ulcers also differ according to the location, size,

and nature of the lesion (Ting et al., 2018; Ting et al., 2021).

Although keratitis exhibits typical characteristics, its diagnosis is

challenging owing to its diverse clinical manifestations and

atypical symptoms and signs in the early stages, and especially

if the appropriate equipment is unavailable. Applying AI

technology to assist in keratitis diagnosis can aid the

treatment of keratitis and reduce the blindness rate (Li et al.,

2021; Tahvildari et al., 2021).

Kuo et al. (Kuo et al., 2021) constructed a model for the

diagnosis of bacterial keratitis based on several DL algorithms

(ResNet-50, ResNeXt-50, DenseNet-121, SE-ResNet50,

EfficientNet B0, EfficientNet B1, EfficientNet B2, and

EfficientNet B3). They collected 1,512 slit lamp images for the

training, modification, and verification of the diagnostic model.

Following verification, the EfficientNet B3 model exhibited the

best performance, with a sensitivity of 0.741, a specificity of 0.643,

and an accuracy of 0.703. Lv et al. (Lv et al., 2020) constructed an

AI model that can automatically diagnose keratitis based on the

ResNet algorithm, and collected 2,088 confocal microscope

images to train and test the model. Following testing, the

AUC value, sensitivity, specificity, and accuracy of the model

were 0.9875, 0.9186, 0.9834, and 0.9626, respectively. Kuo et al.

(Kuo et al., 2020b) constructed a DL model for the diagnosis of

fungal keratitis based on the DenseNet algorithm, and used

288 collected corneal images to train and test the DL model.

The sensitivity, specificity, and accuracy of the diagnostic model

were 0.711, 0.684, and 0.694, respectively. Liu et al. (Liu et al.,

2020) proposed a DL model that can diagnose keratitis using two

CNNs (AlexNet and VGGNet), and improved the diagnostic

performance of the model using data enhancement and image

fusion. They collected 1,213 confocal microscope images to train

and validate the model. The experimental results revealed that

the accuracies of the AlexNet and VGGNet models were

0.9995 and 0.9989, respectively. According to the

aforementioned research, intelligent diagnosis models based

on DL have exhibited good performance for keratitis diagnosis

and significant application potential. Keratitis can be diagnosed

as early as possible with limited medical resources, thereby

reducing the occurrence of corneal blindness.

Gu et al. (Gu et al., 2020) proposed a method to distinguish

infectious and non-infectious keratitis based on the Inception

v3 algorithm. They collected 5,325 slit lamp images for training

and testing. Following testing, the AUC values of the model for

diagnosing infectious and non-infectious keratitis were 0.930 and

0.934, respectively. Hung et al. (Hung et al., 2021) constructed an

AI model that can distinguish different types of keratitis using

various CNNs (DenseNet-121, DenseNet-161, DenseNet-169,

DenseNet-201, EfficientNet B3, Inception v3, ResNet-101, and

ResNet-50). They used 1,330 slit lamp images for training and

verification. The average accuracy was 0.80 and the performance

of DenseNet-161 was the best, with an AUC value of 0.85. Li et al.

(Li et al., 2021) presented a system using three classical DL

algorithms (DenseNet-121, Inception v3, and ResNet-50) to

distinguish different types of keratitis. They collected

13,557 slit lamp images for training and verification of the

classification system. The DenseNet-121 model exhibited the

best performance, with a sensitivity of 0.977, a specificity of

0.982, and an accuracy of 0.980. Ghosh et al. (Ghosh et al.,

2022) combined three CNNs (VGG-19, ResNet-50, and

DenseNet-121) to create an AI model that can distinguish

bacterial keratitis from fungal keratitis. They used 2,167 slit

lamp images for training and testing. The results

demonstrated that the model sensitivity was 0.77, the

F1 score was 0.83, and the AUC value was 0.904. The

above AI model exhibits good performance in the

classification of keratitis, which is close to that of clinical

practice, and is expected to become a powerful auxiliary tool

in clinical work.

Xu et al. (Xu et al., 2021a) developed an AI model that can

automatically detect and evaluate corneal inflammatory cells in

patients with keratitis using five DL algorithms (VGG-16,

ResNet-101, Inception v3, Xception, and Inception-ResNet

v2). They used 4,011 confocal microscope images to train and

verify the model. The Inception-ResNet v2 model exhibited the

best performance, with an AUC value of 0.9646, an accuracy of

0.9767, a sensitivity of 0.9174, and a specificity of 0.9931. Tiwari

et al. (Tiwari et al., 2022) constructed an AI model based on a

CNN that can distinguish active keratitis from scar healing. They

collected 2,445 corneal images for the model training and

verification. Following verification, the F1 score of the model

was 0.843, the sensitivity was 0.935, the specificity was 0.8442,

and the AUC value was 0.9731. The above results suggest that AI
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technology also offers good application potential in evaluating

the activity of keratitis. The above studies are summarized in

Table 1.

2.2 Application of AI in keratoconus
diagnosis

Keratoconus is a congenital developmental disorder that is

characterized by localized conical protuberances with thinning of

the corneal stroma in the protuberant area. Conus protuberances

may lead to severe irregular astigmatism and high myopia,

thereby resulting in severe vision loss (Pinero et al., 2012;

Hashemi et al., 2020). The disease generally occurs before and

after puberty and occurs in both eyes, with a progressive decline

in visual acuity (Chatzis and Hafezi, 2012). It can be corrected by

myopic lenses in the early stages and contact lenses need to be

worn owing to irregular astigmatism in the later stages (Papali’i-

Curtin et al., 2019). The typical characteristics of the disease are

central or paracentric conic dilatation, whereby the cone may be

large or small, round or oval, and the thinning area of the corneal

stroma is most obvious at the top of the cone. Patients with

advanced keratoconus can see Munson’s sign, Vogt’s striae, or

Fleischer’s ring and other clinical signs, which can aid in

diagnosing keratoconus (de Sanctis et al., 2008; Gordon-Shaag

et al., 2012; Chan et al., 2021). Although clinical diagnosis is

straightforward for obvious keratoconus, it is difficult to diagnose

atypical early keratoconus. At present, the most effective method

for the early diagnosis of the disease is corneal topography, which

reveals that the central corneal topography is distorted and the

lower quadrant becomes steep. The corneal steepness expands to

the subnasal, superior temporal, and superior nasal quadrants

with the progression of the disease. Other examination methods

include keratometers, retinography, and Placido discs (Brunner

et al., 2018; Mohammadpour et al., 2018; Rocha-de-Lossada et al.,

2021). Patients with early keratoconus can wear frame glasses or

keratoplasty lenses according to the optometry results to improve

their visual acuity (Goh et al., 2020). Moreover, intracorneal ring

implants and corneal cross-linking or other methods can be used

to delay the progress of the disease (Ferdi et al., 2019). If patients

with early keratoconus do not receive effective intervention, the

late stage will lead to severe vision loss, requiring keratoplasty, or

even blindness. Therefore, the early screening, detection, and

effective intervention of keratoconus are particularly important.

Tan et al. (Tan et al., 2022) proposed a diagnostic model for

keratoconus based on the 5-FNN neural network model. They

collected corneal videos of 354 eyes for the model training and

testing. The results revealed that the diagnostic accuracy,

sensitivity, and specificity of the model were 0.996, 0.993, and

1.000, respectively. Kamiya et al. (Kamiya et al., 2019) developed

TABLE 1 Summary of application of AI models in keratitis.

Authors Task Sample
size

AI algorithms Diagnostic performance

Kuo et al.
(2021)

Diagnosis 1,512 images ResNet-50, ResNeXt-50, DenseNet-121, SE-ResNet-50,
EfficientNet B0, EfficientNet B1, EfficientNet B2, EfficientNet B3

Sensitivity = 0.741, Specificity = 0.643,
Accuracy = 0.703

Lv et al. (2020) Diagnosis 2,088 images ResNet AUC = 0.9875 Sensitivity =
0.9186 Specificity = 0.9834 Accuracy = 0.9626

Kuo et al.
(2020b)

Diagnosis 288 images DenseNet Sensitivity = 0.711 Specificity =
0.684 Accuracy = 0.694

Liu et al. (2020) Diagnosis 1,213 images AlexNet Accuracy of AlexNet = 0.9995

VGGNet Accuracy of VGGNet = 0.9989

Gu et al. (2020) Classification 5,325 images Inception v3 AUC of infectious keratitis = 0.930

AUC of non-infectious keratitis = 0.934

Hung et al.
(2021)

Classification 1,330 images DenseNet-121, DenseNet-161, DenseNet-169, DenseNet-201,
EfficientNet B3, Inception v3, ResNet-101, ResNet-50

Average accuracy = 0.80, AUC of DenseNet-
161 = 0.85

Li et al. (2021) Classification 13,557 images DenseNet-121, Inception v3, ResNet-50 Sensitivity = 0.977 Specificity =
0.982 Accuracy = 0.980

Ghosh et al.
(2022)

Classification 2,167 images VGG19, ResNet-50, DenseNet-121 Sensitivity = 0.77, F1 score = 0.83, AUC =
0.904

Xu et al.
(2021a)

Detection 4,011 images VGG-16,ResNet-101, Inception v3, Xception, Inception-ResNet v2 AUC = 0.9646, Accuracy = 0.9767,
Sensitivity = 0.9174, Specificity = 0.9931

Tiwari et al.
(2022)

Classification 2,445 images CNNs F1 score = 0.843, Sensitivity = 0.935,
Specificity = 0.8442, AUC = 0.9731
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a diagnostic classification model based on ResNet-18 to assist in

the diagnosis and classification of keratoconus. They collected

543 anterior segment optical coherence tomography (As-OCT)

images for the model training and testing. According to the

results, the diagnostic accuracy of the model was 0.991 and the

classification accuracy was 0.874. Dos Santos et al. (Dos Santos

et al., 2019) designed an AI model that can diagnose keratoconus

based on U-Net. They collected and marked 20,160 images for

the model training and testing. Following testing, the accuracy of

the model was 0.9956. The high accuracy and excellent

performance of the above AI models demonstrate that AI

technology can be used extensively in the clinical diagnosis

and treatment of keratoconus, thereby greatly reducing the

work stress of clinicians.

As early keratoconus often exhibits no typical symptoms and

signs, screening to distinguish patients with keratoconus will help

them to receive earlier treatment. Kuo et al. (Kuo et al., 2020a)

constructed an AI model that can screen keratoconus based on

three CNNs (VGG-16, Inception v3, and ResNet-152), and

collected 354 corneal topographic maps for model training

and external testing. The results revealed that the ResNet-152

model achieved the best performance, with an accuracy of 0.958,

a sensitivity of 0.944, a specificity of 0.972, and an AUC value of

0.995. Chen et al. (Chen et al., 2021) presented a model that can

detect coning modeling using CNNs. The model was trained and

tested using the whole Liverpool (United Kingdom) and

New Zealand (NZ) datasets. The results demonstrated that the

model accuracy was 0.9785. Lavric et al. (Lavric and Valentin,

2019) constructed a screening model that can rapidly screen

keratoconus based on CNNs, and collected 4,350 corneal

topographic maps to train and test the model. The results

indicated that the model accuracy was 0.9933. Al-Timemy

et al. (Al-Timemy et al., 2021) developed a detection model

that can recognize keratoconus based on the EfficientNet B0 DL

algorithm. They collected 4,844 corneal topography maps for the

training, debugging, and verification of the model. The AUC

value, F1 score, and accuracy of the model were 0.99, 0.99, and

0.985, respectively. Abdelmotaal et al. (Abdelmotaal et al., 2020)

constructed an AI model that can recognize keratoconus based

on CNNs, and used 19,310 corneal topographic maps for training

and testing. The test results demonstrated that the model

accuracy was 0.958. In view of the good results of the above

AI models in keratoconus identification and screening, timely

diagnosis and treatment is possible.

Castro-Luna et al. (Castro-Luna et al., 2021) developed a

model that can classify subclinical keratoconus using the random

forest (RF) model. They collected clinical data of 81 eyes to train

and verify the model. Kamiya et al. (Kamiya et al., 2021)

presented a neural network prediction model to predict the

progression of keratoconus, and collected 218 As-OCT images

for training and verification. The results revealed that the

prediction accuracy of the model was 0.794. Kato et al. (Kato

et al., 2021) constructed an AI model that can predict the

progression of keratoconus based on the VGG-16 neural

network model, and collected 274 corneal tomography images

for training and verification. According to the results, the AUC

value, sensitivity, and specificity of the model were 0.814, 0.778,

and 0.696, respectively. Yousefi et al. (Yousefi et al., 2018)

developed an AI model using ML to predict the severity of

keratoconus. They collected and processed 3,156 corneal

topographic maps for the model training and verification. The

specificity and sensitivity of the model were 0.941 and 0.977,

respectively. Herber et al. (Herber et al., 2021) presented an AI

model that can predict the severity of keratoconus through two

types of ML (linear discriminant analysis (LDA) and RF

algorithms), and collected clinical data of 434 eyes for training

and verification. Following verification, the accuracies of the

LDA and RF models were 0.71 and 0.78, respectively. The

above studies demonstrate that AI models can achieve

satisfactory results in the classification and prediction of the

progression of keratoconus. Thus, such models can be used to

create effective treatment plans for keratoconus patients. The

above studies are summarized in Table 2.

2.3 Application of AI in the diagnosis of
dry eye

Dry eye, which is also known as keratoconjunctivitis sicca,

refers to the decline in tear film stability caused by an abnormal

quality and quantity of tears or abnormal dynamics resulting

from any cause. It is accompanied by eye discomfort, resulting in

ocular surface tissue lesions of various diseases (Craig et al.,

2017a; Craig et al., 2017b). Dry eye disease is caused by many

complex pathological processes. It can be roughly divided into

abnormal tear dynamics and an abnormal ocular surface

epithelium (Hu et al., 2021), both of which often play a role

overall. Recent studies have demonstrated that changes in the eye

surface, immune-based inflammatory response, apoptosis,

decreased levels of sex hormones, and meibomian gland

dysfunction are the main causes of xerophthalmia (Cardona

et al., 2011; Argiles et al., 2015; Rodriguez et al., 2018;

DeAngelis et al., 2019). However, the relationship or causal

relationship between the factors is not yet fully understood.

At present, no consensus exists on the diagnostic classification

criteria of dry eye. According to the etiology, dry eye is mainly

divided into water sample deficiency dry eye, mucin deficiency

dry eye, lipid deficiency dry eye, and dry eye caused by abnormal

tear dynamics. The most common symptoms of dry eye are eye

fatigue, foreign body sensation, dryness, burning, eye distension,

eye pain, photophobia, and eye redness (Tepelus et al., 2017). Dry

eyes slightly affect visual acuity in the early stage. Filamentous

keratitis may occur after the development of the disease. Corneal

ulcers, corneal thinning, perforation, and occasional secondary

bacterial infection may occur in the late stage, and visual acuity

will be seriously affected after the formation of corneal scar,
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thereby resulting in a decline in the quality of life of patients

(Nichols et al., 2011; Stapleton et al., 2017). The main clinical

examination methods for dry eye include the tear secretion test,

tear film rupture time, tear river height measurement, Schirmer

test, tear osmotic pressure, and fluorescein staining (Nichols

et al., 2004; Sullivan et al., 2010; Zeev et al., 2014; Vehof et al.,

2020). Doctors need to spend more time and energy on

examination and analysis in the clinical diagnosis of dry eye.

Numerous research data have shown that dry eye has a high

incidence and consumes substantial manpower and financial

resources every year; thus, it is necessary to improve the

diagnosis and treatment efficiency of dry eye.

AI has been increasingly applied to dry eye with remarkable

effects. Chase et al. (Chase et al., 2021) constructed a DL model

for the diagnosis of dry eye. They collected 27180 As-OCT

images for the model training and testing. The results

demonstrated that the accuracy, sensitivity, and specificity of

the model in the diagnosis of dry eye were 0.8462, 0.8636, and

0.8235, respectively. Zhang et al. (Zhang et al., 2022) established a

dry eye diagnosis model using a U-Net image segmentation

algorithm and ResNet image classification algorithm. The

models were trained and evaluated using blinking videos of

357 patients with dry eye and 152 normal persons, and the

accuracies were 0.963 and 0.960, respectively. Da Cruz et al. (da

Cruz et al., 2020a) used six DL models (the support vector

machine (SVM), RF, naive Bayes, multilayer perceptron,

random tree, and radial basis function network) for the

classification of tear film images to assist in the diagnosis of

dry eye. They used the VOPTICAL_GCU database for training

and verification. The RF model achieved the best classification

effect, with an accuracy of 0.990, an AUC value of 0.999, a kappa

value of 0.995, and an F-measure of 0.996. Da Cruz et al. (da Cruz

et al., 2020b) also used the six DLmodels to classify tear film lipid

layers automatically for the diagnosis of dry eye. They trained

TABLE 2 Summary of application of AI models in keratoconus.

Authors Task Sample size AI algorithms Diagnostic performance

Tan et al. (2022) Diagnosis 354 eyes 5-FNN Accuracy = 0.996, Sensitivity = 0.993, Specificity =
1.000

Kamiya et al. (2019) Diagnosis 543 images ResNet-18 Accuracy = 0.991

Accuracy = 0.874

Dos Santos et al. (2019) Diagnosis 20,160 images U-Net Accuracy = 0.9956

Kuo et al. (2020a) Detection 354 maps VGG-16, Inception v3,
ResNet-152

Accuracy = 0.958, Sensitivity = 0.944

Specificity = 0.972

AUC = 0.995

Chen et al. (2021) Detection Liverpool and New Zealand
datasets

CNNs Accuracy = 0.9785

Lavric and Valentin,
(2019)

Detection 4,350 maps CNNs Accuracy = 0.9933

Al-Timemy et al. (2021) Detection 4,844 maps EfficientNet B0 AUC = 0.99

F1 score = 0.99

Accuracy = 0.985

Abdelmotaal et al. (2020) Detection 19,310 maps CNNs Accuracy = 0.958

Castro-Luna et al. (2021) Classification 81 eyes RF Accuracy = 0.89

Kamiya et al. (2021) Prediction 218 images Neural network Accuracy = 0.794

Kato et al. (2021) Prediction 274 images VGG-16 AUC = 0.814

Sensitivity = 0.778, Specificity = 0.696

Yousefi et al. (2018) Prediction 3,156 maps ML Specificity = 0.941

Sensitivity = 0.977

Herber et al. (2021) Prediction 434 eyes LDA, RF Accuracy of LDA = 0.71

Accuracy of RF = 0.78
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and tested various DL models on the VOPTICAL_GCU datasets.

The results revealed that the classification effect of the RF model

was the best, with an accuracy of 0.97 and an AUC value of 0.99.

Based on the above research, AI models exhibit high accuracy

and superior performance in the diagnosis of dry eye, and can be

used in the clinical diagnosis and treatment of dry eye in the

future.

Koprowski et al. (Koprowski et al., 2016) developed a method

for the automatic quantitative assessment of meibomian gland

dysfunction (MGD) based on DL, and used 172 images (upper

and lower eyelid images of 86 participants) for training and

verification. The results revealed that the sensitivity of this

method was 0.993 and the specificity was 0.975, which was

faster and more accurate than an ophthalmologist. Wang

et al. (Wang et al., 2019) proposed a method that can

accurately evaluate meibomian gland atrophy based on a

DNN. They collected 706 upper eyelid images for the model

training, adjustment, and verification. The results demonstrated

that the segmentation accuracy of the meibomian gland atrophy

was 0.954 and the overall grading accuracy was 0.956. Waruoka

et al. (Maruoka et al., 2020) constructed various DL models to

detect obstructive MGD. Following training and verification

using 137 images, the performance of DenseNet-201 was the

best, with an AUC value of 0.966, a sensitivity of 0.942, and a

specificity of 0.821. Setu et al. (Setu et al., 2021) constructed an

algorithm for meibomian gland segmentation based on DL. A

total of 728 clinical images were used to train and evaluate the

model. According to the results, the average precision, recall, and

F1 score were 0.83, 0.81, and 0.84, respectively. The function of

the meibomian gland is closely related to the incidence of dry eye.

These studies, which are summarized in Table 3, demonstrate

that AI technology can be used to effectively evaluate the function

of the meibomian gland, reduce the analysis time, and improve

the diagnostic accuracy of doctors.

TABLE 3 Summary of application of AI models in dry eye.

Authors Task Sample size AI algorithms Diagnostic performance

Chase et al. (2021) Diagnosis 27,180 images DL Accuracy = 0.8642, Sensitivity = 0.8636,
Specificity = 0.8235

Zhang et al. (2022) Diagnosis 507 videos U-Net Accuracy of U-Net = 0.963

ResNet Accuracy of ResNet = 0.960

da Cruz et al.
(2020a)

Diagnosis VOPTICAL_GCU
database

SVM, RF, naive Bayes, multilayer perceptron, random tree,
radial basis function network

Accuracy = 0.990

AUC = 0.999

Kappa = 0.995

F-measure = 0.996

da Cruz et al.
(2020b)

Diagnosis VOPTICAL_GCU
database

SVM, RF, naive Bayes, multilayer perceptron, random tree,
radial basis function network

Accuracy = 0.97

AUC = 0.99

Koprowski et al.
(2016)

Assessment 172 images DL Sensitivity = 0.993

Specificity = 0.975

Wang et al. (2019) Assessment 706 images DNNs Accuracy of meibomian gland atrophy
segmentation = 0.954

Overall grading accuracy = 0.956

Maruoka et al.
(2020)

Detection 137 images DL AUC = 0.966

Sensitivity = 0.942

Specificity = 0.821

Setu et al. (2021) Detection 728 images DL Accuracy = 0.83

Recall = 0.81

F1 score = 0.84
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2.4 Application of AI in pterygium
diagnosis

Pterygium is a chronic inflammatory disease named for

its insect wing shape. It is mainly characterized by

fibrovascular hyperplasia of conjunctival tissue and the

invasion of the surrounding corneal tissue, which is also

known as proliferative disease (Yue and Gao, 2019; Wang

et al., 2021b). Pterygium usually consists of three parts: the

head, neck, and body, which often invade the cornea and

limbus cornea (Seet et al., 2012). Its incidence is closely

related to the geographical latitude, especially near the

equator between 30 and 35 degrees. Furthermore, the

disease is more common in outdoor working people (such

as fishermen and farmers) (Coroneo, 2011; Delic et al., 2017).

However, the specific cause of the disease remains unknown

and it may be related to ultraviolet exposure, smoke, viral

infections, ocular degeneration, sex, and age (Sjo et al., 2007;

Huang et al., 2013; Rezvan et al., 2018). Clinically, the disease

occurs in both eyes, especially on the nasal side. In the early

stage, there are generally no obvious symptoms or only a

slight foreign body sensation. When the lesion invades the

corneal pupil area, corneal astigmatism or direct occlusion of

the pupil area will occur, thereby resulting in a decline in

visual acuity (Kampitak et al., 2016). Pterygium can divided

into the progressive and static types according to the

development of abnormal tissue (Safi et al., 2016).

Progressive pterygium exhibits protuberance of the head

and infiltration at the front, Stocker lines at times, and

hyperemia and hypertrophy of the body, with gradual

growth into the cornea. Static pterygium exhibits a flat

head, thin body, and static non-development (Mohd Radzi

et al., 2019). At present, the clinical diagnosis of pterygium is

mainly dependent on anterior segment photography (Abdani

et al., 2022). Surgery is the main treatment for the disease.

Small and static pterygium generally do not require

treatment, but sand, sunlight, and other stimulation

should be reduced as far as possible. Furthermore, when

the pterygium invades the pupil area, it should be resected in

time (Graue-Hernandez et al., 2019). However, surgical

resection may still result in postoperative complications in

patients with advanced pterygium, such as a high recurrence

rate, corneal scarring, and astigmatism (Hirst, 2003; Mahar

and Manzar, 2013; Resnikoff et al., 2020). Therefore, it is very

important to screen pterygium and evaluate the timing of

surgery in the early stage.

In recent years, with the rapid development of AI, it has

been increasingly applied to assist in the clinical screening,

diagnosis, and prognosis of pterygium. Zheng et al. (Zheng

et al., 2021) constructed two diagnostic models (MobileNet

1 and MobileNet 2) that can aid in the diagnosis of pterygium.

They collected 436 images of the anterior segment of the eyes

for the testing and training of the diagnostic models. The

MobileNet 2 model achieved the best performance, with a

sensitivity of 0.8370, a specificity of 0.9048, and an F1 score of

0.8250. Wan et al. (Wan et al., 2022) constructed a diagnosis

system for pterygium using U-Net, which was employed to

assist doctors in creating surgical treatment strategies for

pterygium patients. They collected 489 anterior segment

images to test and verify the diagnosis system. The

experimental results revealed that the Dice coefficients of

the pterygium and corneal segmentation were 0.9020 and

0.9620, respectively, and the kappa consistency coefficient

between the diagnosis results of the system and those of

doctors was 0.918, which indicates that the system offers

practical application significance. Xu et al. (Xu et al.,

2021b) studied a diagnostic system that can intelligently

diagnose pterygium using a DL algorithm. They collected

1,220 anterior segment images for the system training and

testing. Compared with the expert diagnosis results, the

diagnostic accuracy of the system was 0.9468 and the

specificity was high. The above research demonstrates that

AI technology can be used as an auxiliary diagnostic tool to

assist clinicians with diagnosing pterygium, thereby

significantly reducing their work stress and improving their

efficiency.

Zaki et al. (Wan Zaki et al., 2018) built a system for pterygium

screening based on a DL algorithm, and evaluated the system

using a using an SVM and an artificial neural network. They used

the UBIRIS, MILES, and Brazil Pterygium databases to train,

modify and test the system. The results demonstrated that the

accuracy, sensitivity, specificity, and AUC value of the system

were 0.9127, 0.887, 0.883, and 0.956, respectively. Abdani et al.

(Abdani et al., 2021) developed a system that can automatically

screen pterygium through the DL algorithm, and used

328 images of the anterior segment of the eye for training and

verification. The accuracy of the system was 0.9330. Fang et al.

(Fang et al., 2021) created a pterygium detection model based on

DL, and collected 9443 images of the anterior segment of the eye

for the model training and testing. The AUC value, sensitivity,

and specificity of the model were 0.995, 0.985, and 0.990,

respectively. These studies demonstrate that AI models have

exhibited good performance in pterygium screening. It is

expected that such approaches can be used in pterygium

screening in areas where medical resources are scarce or the

economy is challenged to achieve early diagnosis and timely

medical treatment for pterygium patients.

Jais et al. (Jais et al., 2021) developed a model that can predict

the best corrected visual acuity of patients with pterygium using

four different ML algorithms (the decision tree, SVM, logistic

regression, and naive Bayes). They used the data of 93 patients

with different types of pterygium as the dataset for the model.

The final results showed that the SVM model achieved the best

performance, with an accuracy of 94.44% ± 5.86%, a specificity of

100%, and a sensitivity of 92.14% ± 8.33%. Hung et al. (Hung

et al., 2022) developed a DL system for grading pterygium and
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predicting postoperative recurrence. The system used 237 images

for training and testing. According to the results, the sensitivity,

F1 score, and accuracy for the pterygium grading were

0.8000–0.9167, 0.8182 to 0.9434, and 0.8667 to 0.9167,

respectively, whereas the sensitivity and specificity for

predicting the postoperative recurrence of pterygium were

0.6667 and 0.8182, respectively. Thus, AI models can aid in

predicting the recurrence and prognosis of pterygium, and can

help clinicians to deal with various postoperative complications

better, so as to create the most effective treatment plan. The above

studies are summarized in Table 4.

3 Limitations and challenges

According to the aforementioned diverse applications of AI

in ocular surface disease diagnoses, AI has shown considerable

advantages for ocular surface and other ophthalmic disease

diagnoses, especially through data and image analysis.

However, although many studies on the application of AI to

the diagnosis of ocular surface diseases have exhibited

satisfactory results, they still have numerous limitations and

challenges. 1) Datasets suffer from image quality problems

(Ghosh et al., 2022; Dong et al., 2022). Some of the images in

the training, verification, and test sets used in some AI studies

suffered from quality problems, such as unclear or incomplete

images, which significantly impacted the research results. 2) The

external verification of algorithms face many challenges (Tan

et al., 2022; Martins et al., 2022). The DL algorithms in several

studies was verified and tested on open datasets. When they are

applied to actual clinical diagnosis and treatment, their

performance will be reduced owing to the differences in image

quality, shooting equipment, patient cooperation etc. 3) The

sample size used in some studies was small (Zhang et al.,

2022; Kang et al., 2022). The datasets used in some studies

contained small sample sizes, resulting in unstable

performance of the AI models and large differences in results.

4) Heterogeneity of patients (Wan et al., 2022; Sheng et al., 2022).

Every person is different, and most individuals have considerable

differences among each other. This human heterogeneity is likely

to result in a decline in the accuracy of AI model verification and

testing for clinical diagnosis and treatment. 5) Biases exist in AI

model datasets (Hung et al., 2022; Keel et al., 2018; Pur et al.,

2022). The AI models are most likely to be successful when they

are trained and validated using high-quality datasets. However,

many studies used small or common datasets (wherein some data

may be biased), which caused certain biases in their results,

resulting in low external applicability of AI models.

TABLE 4 Summary of application of AI models in pterygium.

Authors Task Sample size AI algorithms Diagnostic performance

Zheng et al. (2021) Diagnosis 436 images MobileNet 1, MobileNet 2 Sensitivity = 0.8370, Specificity = 0.9048

F1 score = 0.8254

AUC = 0.8720

Wan et al. (2022) Diagnosis 489 images U-Net Dice of pterygium = 0.9020

Dice of cornea = 0.9620, Kappa = 0.918

Xu et al. (2021b) Diagnosis 1,220 images DL Accuracy = 0.9468

Wan Zaki et al.
(2018)

Detection UBIRIS, MILES, and Brazil
Pterygium databases

SVM, neural network Accuracy = 0.9127, Sensitivity = 0.887,
Specificity = 0.883

AUC = 0.956

Abdani et al.
(2021)

Detection 328 images DL Accuracy = 0.9330

Fang et al. (2021) Detection 9,443 images DL AUC = 0.995

Sensitivity = 0.985, Specificity = 0.990

Jais et al. (2021) Prognosis and
recurrence

93 patients Decision tree, SVM, logistic regression,
naive Bayes

Accuracy = 94.44% ± 5.86%

Specificity = 100%

Sensitivity = 92.14% ± 8.33%

Hung et al. (2022) Prognosis and
recurrence

237 images DL Sensitivity = 0.6667

Specificity = 0.8182
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4 Prospects for the future

Although the application of AI to the clinical diagnosis

of ophthalmic diseases, such as ocular surface diseases, still

faces numerous challenges. The current AI studies on ocular

surface disease diagnoses indicate that AI can obtain the

disease characteristics from the training set and apply them

to the verification or testing set to diagnose the corresponding

disease. AI can classify images into different types according

to the disease characteristics, such as disease classification

and stage. Additionally, AI can also detect and segment

the anatomical structure in the image, such lesion shape, to

realize the automatic quantization of image biomarkers

and perform auxiliary diagnosis. Therefore, based on these

advantages, the application of AI technology in clinical

diagnosis and treatment offers infinite potential and

significant prospects. With the continual progress of science

and technology, the ongoing improvements in AI, and the

establishment and improvement of relevant legal systems,

AI will be better applied to the clinical diagnosis and

treatment of ophthalmology, especially in economically

challenged areas and those that lack medical resources,

in the near future. The application of AI will greatly

improve the level of diagnosis and treatment in such

areas, thereby aiding more patients to detect diseases as

soon as possible, which is essential for early diagnosis

and treatment. Moreover, if clinical diagnosis and treatment

course can be entirely established through AI, the work

stress of clinical medical staff will be significantly reduced

and their work efficiency will improve, allowing them to

perform the best diagnosis and offer the best treatment plan

for patients.

AI offers the potential to improve the diagnosis level of

ophthalmic diseases significantly. In the future, with the

expansion of AI in the field of ophthalmology, in

addition to image processing technology, other AI

technologies will be researched and applied in the field of

ophthalmology. The full application of AI will result in

fundamental changes in the clinical ophthalmology

diagnosis and treatment.
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for myopia challenges: A review
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Myopia is a significant global health concern and affects human visual function,
resulting in blurred vision at a distance. There are still many unsolved challenges in
this field that require the help of new technologies. Currently, artificial intelligence
(AI) technology is dominating medical image and data analysis and has been
introduced to address challenges in the clinical practice of many ocular diseases.
AI research in myopia is still in its early stages. Understanding the strengths and
limitations of each AI method in specific tasks of myopia could be of great value and
might help us to choose appropriate approaches for different tasks. This article
reviews and elaborates on the technical details of AI methods applied for myopia risk
prediction, screening and diagnosis, pathogenesis, and treatment.

KEYWORDS

artificial intelligence, machine learning, deep learning, risk prediction, myopia,
classification, semantic segmentation

Introduction

Artificial intelligence (AI), first proposed by John McCarthy in 1956, refers to the science
and engineering of making intelligent computer programs and is considered one of the key
technologies of the fourth industrial revolution. Due to its great potential for automated analysis
of medical information and imaging, AI is rapidly developing in the medical field (Gupta et al.,
2020). This pattern of automated screening, diagnosis, or risk assessment based on clinical and
imaging data has proven to be applicable to a wide range of clinical diseases such as
cardiovascular diseases (Wang et al., 2017), neurological diseases (Sarraf and Tofighi, 2016),
respiratory diseases (Zech et al., 2018), and malignancies (Coudray et al., 2018), and has a
tendency to be translated into real clinical practice. For ocular diseases such as diabetic
retinopathy (DR) (Gulshan et al., 2016), age-related macular degeneration (AMD) (Peng et al.,
2019), and cataracts (Gutierrez et al., 2022), AI has been used for screening, diagnosis, and other
aspects. However, there are relatively few applications of AI in myopia.

Myopia is one of the most common refractive errors. In myopic eyes, the high corneal
curvature and long eye axis cause distant objects to be imaged in front of the retina, resulting in
blurred vision at a distance and affecting human visual function (Morgan et al., 2012). The
current global prevalence of myopia is estimated to be about 28.3%, and this number will grow
to 49.8% by 2050 (Holden et al., 2016). The situation is even worse in East Asia (Edwards and
Lam, 2004; Han et al., 2019; Ueda et al., 2019; Dong et al., 2020). Online remote learning and
working styles have led to a further increase in myopia rates, especially among school-age
adolescents (Liang et al., 2021). If left uncontrolled, myopia can progress to high myopia. This
will increase the likelihood of developing irreversible fundus lesions or pathologic myopia and is
one of the main causes of low vision or even vision loss. In China, myopia prevention and
control has become a national strategy, but there are still many challenges to overcome to
achieve this goal, which needs the help of novel technology.
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Currently, the main challenges faced in myopia are: A) Unclear
pathogenesis. It is difficult to objectively quantify the role of many
impact factors on myopia, such as genetics, environment, and lifestyle.
The morphological changes in eyes are also uncertain; B) Large
screening workload. Myopia can only be prevented but not cured,
and currently the most effective way is mass screening and follow-up.
However, an insufficient number of relevant equipment and
ophthalmologists makes it impossible to achieve large population
coverage; C) Difficulties in risk prediction. The lack of reliable risk
prediction model for high and pathologic myopia, as well as individual
differences in the progression of myopia makes it difficult to provide
timely intervention; and D) Uncertain efficacy. There is a range of
myopia prevention and control methods including outdoor activities,
spectacles, corneal contact lenses, atropine, and surgical treatments.
Emerging methods include low-intensity red light irradiation.
However, it is still a question of how to choose the most
appropriate method for each individual.

Various works have been proposed to review the research of AI in
myopia (Foo et al., 2021; Du and Ohno-Matsui, 2022; Zhang et al.,
2022). To our knowledge, none of the existing work has elaborated
technical details of the discussed work, thus fail to make readers more
aware of strengths and limitations of each AI method in specific tasks
of myopia. This could be of great value to readers with a technical
background who are interested in ophthalmic data analysis and
myopia. Therefore, our review investigates how AI methods can be
applied to address important challenges in the field of myopia and
their technical details, with the hope of informing relevant researchers
including ophthalmologists and computer scientists.

The basic framework of this review is depicted in Figure 1. In the
second part, we summarize widely used AI technology and evaluation
metrics inmyopia at present; the following four parts focus on the research
progress and technical details of different AI technology in myopia risk

prediction, myopia screening and diagnosis, myopia pathogenesis, and
myopia treatment, respectively; the seventh part provides a comprehensive
discussion of the challenges and future prospects of AI in myopia.

Commonly used AI technology and
evaluation metrics in myopia

In the absence of a universal evaluation benchmark, existing
research in myopia does not start with a single AI method, but
usually tries several models at the same time and selects the best
performing one after parameter tuning and inter-model comparison.
Machine learning (ML) is an important branch of AI that refers to
methods for training computers to automatically learn relationships
between inputs and outputs without explicitly programming them for
each situation, and is suitable for analyzing large-scale medical data
(Deo, 2015). Conventional machine learning (CML) methods
(Chauhan and Singh, 2018) such as linear regression, support
vector machine (SVM), and random forest (RF) have been applied
in myopia. Newly proposed integrated learning methods such as
XGBoost and Gradient Boosting can also been seen (Balyen and
Peto, 2019). On the other hand, with breakthroughs in computing
power and the introduction of convolutional neural networks (CNNs),
deep learning (DL) methods are performing well in the analysis of
medical images (Albawi et al., 2017). Some basic deep learning
network structures including ResNet, DenseNet, Inception V3,
MobileNet, UNet, and VGGNet are widely used in solving
problems in the field of myopia. In addition, due to data privacy
issues, most myopia studies can only train models based on data from
a single center or several centers in the same region, so pre-trained
models or transfer learning methods are often utilized to achieve better
performance on relatively small datasets.

FIGURE 1
Overview diagram of this review.
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When evaluating the performance of a model, AI research in
myopia often uses the following metrics: For classification tasks such
as disease detection and prognosis prediction, metrics calculated from
the confusion matrix such as accuracy, sensitivity, specificity, and
F1 score are usually used for evaluation. Area under the receiver
operating characteristic curve (AUROC) and area under the precision-
recall curve (AUPRC) are also commonly used and give a more general
idea about the classifier performance, for they do not require a cut-off
point; When the task is to derive a prediction region, such as lesion
segmentation of fundus pictures, it is often evaluated by Intersection of
union (IoU) and Dice similarity coefficient (DSC). These two metrics
measure the overlap area between the predicted region and the ground
truth;While for regression tasks such as refraction prediction and axial
length prediction, the evaluation is often performed using mean
absolute error (MAE), mean square error (MSE) and root mean
square error (RMSE). The detailed calculation method of these
evaluation metrics is presented in Figure 2.

AI technology for myopia risk prediction

In clinical work of myopia, it is often necessary to evaluate and
follow up patients with low to moderate myopia, especially to monitor
the visual acuity of the pediatric and adolescent population. This will
generate a series of data and records including (Chen et al., 2021):
myopia-related risk factors (e.g., near work time, outdoor activity time,
genetics, race, gender, etc.), best-corrected visual acuity, refraction,
axial length, and some ocular metrics (e.g., intraocular pressure, ocular
surface conditions). Analyzing and interpreting these data is a
challenge: on the one hand, there is a lack of reliable risk
prediction models to determine the progression of myopia patients
and their prognosis. On the other hand, given the size of the data and

the complexity of a disease like myopia, it is difficult to perform
manual analysis.

Conventional machine learning methods have the ability to
process large amounts of data in a non-linear way and to extract a
large number of potential predictor variables, even though their
number may exceed the number of observed variables. This
characteristics is suitable for analyzing myopic data (Obermeyer
and Emanuel, 2016). Based on the eye and behavioral data from
more than three thousand elementary school students, a study by Yang
et al. (2020) provided a systematic solution that included feature
selection, data cleaning, and model training. A series of protective and
risk factors for myopia were screened, and a risk prediction model
based on SVM was highly accurate in predicting the occurrence of
myopia in the future. Compared to using a single model, Li et al.
(2022a) introduced the idea of ensemble learning and constructed a
strong classifier by integrating a large number of decision trees as the
basic unit. However, there was no significant improvement in the
results, which may be related to the dataset and the selection of
predictor variables. In addition, the number of samples available for
machine learning algorithms has greatly increased in the era of big
data, enabling us to train models with sufficient samples. A study that
included data from more than 600,000 refractive examinations
confirmed the value of large data volume in improving machine
learning performance (Lin et al., 2018). However, clinical data
collected in real-world settings are often biased, and different
studies set up validation sets in different ways. Reasonable
evaluation of the performance of different models and improving
their generality are issues that need to be solved.

Besides predicting refractive data, the choice of the target variable
can also vary according to clinical need. For children wearing
orthokeratology lens, changes in corneal curvature make refractive
examinations inaccurate in assessing myopia progression, while axial

FIGURE 2
(A) The confusion matrix. (B) Evaluation metrics for segmentation tasks in the field of myopia. (C) Evaluation metrics for classification tasks in the field of
myopia. (D) Evaluation metrics for regression tasks in the field of myopia. yi is the ground-truth value of sample i and ŷi is the predicted value of sample i.
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length is more reliable. Tang et al. (2020) showed that robust
regression model was able to achieve an accurate prediction of
axial length growth. Also, with the use of electronic medical
records at all levels of medical institutions and the establishment of
standardized information management systems, information and data
interoperability will be realized among institutions. With more
information that can be mined, not only can the model
performance be improved, but also more application scenarios will
emerge. Table 1 summarizes the discussed conventional machine
learning methods for myopia risk prediction.

AI technology for myopia screening and
diagnosis

As myopia progresses further, the axial length (AL) increases, the
optic disc begins to tilt and twist, and irreversible retinal
chorioretinopathy may develop. These are some of the fundus
lesions associated with high myopia. Among these patients, about
3.1% eventually develop different types of myopic maculopathy with a
characteristic set of pathological changes (Chang et al., 2013).
Pathologic myopia and its complications have become the leading
cause of blindness in China (Duan et al., 2021) and there are some
urgent needs in this area. First, early identification of fundus changes is
important. About 14% of myopic patients are highly myopic and at
least one fundus examination is recommended annually to assess the
condition of central and peripheral retina (Gifford et al., 2019).
However, manual interpretation of these images is laborious and
even unfeasible. Second, myopia-related fundus lesions are not
obvious in their early stages and are difficult to describe or
quantify. Doctors with different experience will give different
judgments. This is a matter of concern in those districts with little
medical care and is not suitable for the promotion of large-scale and
standardized screening at the community level.

Deep learning for automatic detection and
classification of myopia-related fundus
changes

The detection of fundus lesions and myopia-related complications
in high myopia is an important need, for which deep learning methods

such as CNNs already have high accuracy (Shao et al., 2021; Sun et al.,
2021). Compared to the manual, deep learning methods take only a
few hours to a few days in the training phase of the model and can
produce instant results when interpreting images. It is even possible to
achieve “offline prediction” based on smartphones (Natarajan et al.,
2019). The structure of CNNs consists of four parts: preprocessing,
feature extraction, classification and special modules representing
various novel ideas. The preprocessing part includes noise
reduction, enhancement of FP, OCT or other pictures, unifying
resolution, focusing on regions of interest (ROIs), etc. The feature
extraction part, also known as backbone network, is the core of CNNs.
Convolutional kernels are selected to extract image features by
convolutional operation on the original input image. The
classification part consists of fully connected layers, which convert
the output feature map of the last convolutional layer into a one-
dimensional vector. The probability of having a certain myopic fundus
lesion is obtained using functions such as Sigmoid or Softmax, and
compared with a threshold to output the result. There is no fixed
definition of special modules, and it is up to the researcher to choose
which modules to use and how to use them. Commonly used modules
in ophthalmic image processing include attention mechanisms,
residual connectivity, and bottleneck structures. In general, the
current CNN models applied to myopia are not novel. The fact
that in fundus image analysis, the number of pixels in target
structures such as lesions, optic cups optic discs and blood vessels
is much less than the background and the curved structure of blood
vessels (especially capillaries) is often complicated. These traits in
ophthalmology imaging result in a difficult sampling problem.
Proposing customized backbone networks or special modules based
on the characteristics of myopia-related tasks could be a way to further
improve the model performance.

Not only the detection, but also the differentiation of diverse
classes of myopia-related fundus lesions is challenging. As the
difficulty of the task increases, it is generally necessary to increase
the depth of the backbone network to ensure that deep features in
fundus pictures can be better extracted. However, traditional
convolutional neural networks such as AlexNet and VGG16 may
suffer from gradient explosion or disappearance when the depth is
increased. New methods represented by ResNet (Tan et al., 2021; Ye
et al., 2021; Park et al., 2022), InceptionNet (Choi et al., 2021; Li et al.,
2022b), and DenseNet (Sogawa et al., 2020) have effectively addressed
this problem. Lu et al. (Lu et al., 2021) used ResNet18 as the backbone

TABLE 1 Summary of CML methods for myopia risk prediction.

Research Tasks AI
technology

Accuracy Sensitivity Specificity AUC MAE R2

Yang et al.
(2020)

Prediction of the onset of
myopia in primary school

students

GBRT, SVM 0.93 0.94 0.94 0.97 — —

Li et al. (2022) Prediction of the progression
of myopia

RF 0.8–0.9 — — — <0.05D —

Lin et al. (2018) Prediction of the onset of
myopia in adolescents

RF — — — 0.802-0.888
(8 years in
advance)

0.678-0.879
(8 years in
advance)

0.743-0.912
(8 years in
advance)

Tang et al.
(2020)

Prediction of axial length
growth

Robust linear
regression

— — — — 0.293 0.86

GBRT, gradient boosting regression tree; SVM, support vector machine; RF, random forest.
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network to classify lesions in patients with high myopia based on color
fundus images. The results showed that the classification accuracy for
each lesion specified in META-PM, a widely accepted classification
standard for pathologic myopia, was comparable to that of experts,
reaching 97.03%–99.41%. On this basis, it is meaningful to engineer
relevant algorithms so that these results can truly contribute to clinical
and healthcare screening of myopic patients.

In addition to training deeper networks to solve more complex
tasks, the application of AI in ophthalmology is mostly carried out
by clinicians, focusing more on clinical application value than on
algorithms themselves. That is to say, a flexible model that can
reduce parameter tuning efforts and match with specific tasks is
needed. Google’s EfficientNet (Tan and Le, 2019), proposed in
2019, is a solution based on which Du et al. (Du et al., 2021) trained
four bicategorical models to detect four fundus lesions in highly
myopic patients, namely diffuse atrophy, patchy atrophy, macular
atrophy, and choroidal neovascularization. With EfficientNet-B0
used as basis, models with different parameters can be easily
constructed by adjusting depth, width and resolution
simultaneously. At the same time, the included MBConv
module introduces an attention mechanism that forces the
network to pay more attention to the “critical regions” of the
image. The results showed that the detection accuracy of this
auxiliary classification system for all lesions except choroidal
neovascularization was more than 84%, and the overall
detection accuracy for myopic macular degeneration was up to
87.53%, whereas the classification accuracy of ophthalmology
specialists on the same task was merely 89%. A study by Li
et al. (2022c) showed similar results, further confirming the
effectiveness of EfficientNet. However, according to Du et al.
(2021) , the detection of choroidal neovascularization was only
37.07%, which might be related to the poor visualization of blood
vessels in color fundus images (Jiang et al., 2020; Laíns et al., 2021).
OCTA can image blood vessels better, but there are currently no
studies using AI methods to analyze OCTA images in myopic eyes.
Table 2 summarizes the above-presented methods for automatic
detection and classification of myopia-related fundus changes.

Deep learning for automatic segmentation of
myopia-related fundus changes

Besides the above-mentioned research with direct outcomes,
completing semantic segmentation tasks on fundus images of
myopic eyes helps us better comprehend the morphological
changes (Read et al., 2019). It can also aid in the training of
physicians to interpret images (Fang et al., 2022). In labeling the
choroid and the layers of the retina in OCT images, Cahyo et al. (2020)
took advantage of the multi-scale feature fusion characteristic of UNet,
thus preserving more information. UNet is one of the most commonly
used models for semantic segmentation of medical images
(Ronneberger et al., 2015; Li et al., 2021). It proposes a novel
structure called “Decoder-Encoder”: the decoder is used for feature
extraction, and the encoder is used for up-sampling and feature fusion,
which is very suitable for medical images with simple semantics and
fixed structure. The results showed that by fusing shallow features with
little semantic information but accurate target location and deep
features with rich semantic information but coarse target location,
the IoU could reach above 0.90. Accurate segmentation results were
obtained even for the thin choroid of highly myopic patients. By using
the upgraded version of UNet, namely UNet++, the segmentation of
optic disc, retinal atrophy lesions, and retinal detachment lesions was
also satisfactory (Hemelings et al., 2021). However, UNet is a
standalone network structure that is difficult to combine with other
networks. In view of this, Feature Pyramid Networks (FPNs), a module
that can be added after many network structures, was proposed in
2017 (Lin et al., 2017). The core idea consists of two: up-sampling deep
features and fusing features from each layer at different depths, and
performing prediction independently at different feature layers. Lu
et al. (2021) applied FPN to the focal segmentation task of myopic
macular lesions and showed that the performance could be
substantially improved without changing the structure of the
original model and with essentially no increase in computational load.

Completing classification or other tasks on the basis of semantic
segmentation is a new direction of current research (Shao et al., 2021).
Based on the segmentation results of the choroid and retina, Chen

TABLE 2 Summary of DL methods for classification tasks in myopia.

Research Tasks AI technology Accuracy Sensitivity Specificity AUC

Lu et al. (2021) Detection of PM and classification
of MM

ResNet18; FPN-based Faster R-CNN 0.970–0.994 0.684–0.978 0.970–0.995 0.979–0.995

Du et al. (2021) Classification of MM EfficientNet 0.875–0.975 0.370–0.872 0.945–0.983 0.881–0.982

Tan et al. (2021) Detection of highmyopia andMM ResNet101 — — — 0.913–0.978

Li et al. (2022) Detection of tessellated fundus
and PM

Dual-stream DCNNs — 0.811–0.988 0.959–0.996 0.970–0.998

Sogawa et al.
(2020)

Detection of MM VGG16/19; ResNet50; Inception V3;
InceptionResNetV2; Xception; DenseNet121/169/210

0.676–0.965 0.906–1.000 0.942–1.000 0.970–1.000

Li et al. (2022) Detection of four myopic vision-
threatening conditions

InceptionResNetV2 — — — 0.961–0.999

Choi et al. (2021) Detection of high myopia ResNet50; InceptionV3; VGG-16 — — — 0.860–0.900

Ye et al. (2021) Detection of MM ResNet101 — — — 0.927–0.974

Park et al. (2022) Detection of PM ResNet18/50; EfficientNet 0.860–0.950 0.850–0.930 0.880–0.960 0.950–0.980

PM, pathologic myopia; MM, myopic maculopathy.
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(Chen et al., 2022) quantified the thickness of each layer by adding an
additional fully connected layer. The retina is histologically divided
into ten layers that are only 400–500 microns thick at their thickest
point and may be even thinner in myopic eyes. Therefore, their results
can help physician improve the accuracy of interpretation. Notably,
while not common currently in AI research in myopia, this type of
application is widespread in diabetic retinopathy and can change the
“end-to-end” workflow (i.e., prediction directly based on entire
images). Table 3 summarizes the above-mentioned studies for
automatic segmentation of myopia-related fundus changes.

AI technology in the study of myopia
pathogenesis

Deep learning for investigating myopia-
related morphological changes

Artificial intelligence can provide new ideas for morphological
changes in myopic eyes. On tasks that ophthalmologists cannot
perform (e.g., predicting refraction based on fundus images), deep
learning methods can be done with low mean square error based on
FP, UWF FP, or OCT images (Varadarajan et al., 2018; Shi et al., 2021;
Yoo et al., 2022). One explanation is that the model automatically
learns fundus changes that are not visible in the early stages of myopia
and uses them for prediction. Considering this, Shi et al. (2021)
introduced the gradient-weighted class activation mapping (Grad-
CAM) method to find the region most essential for model prediction.
The core idea is to calculate the gradient of the previous layer of the
fully connected layer (i.e.: the last convolutional layer) with respect to
each pixel in the input image, and to draw a heatmap from it. The
pixels that have a higher impact on the model prediction are closer to
the red color in the heatmap, and the pixels with less impact are closer
to the blue color. The results showed that the area of interest was
concentrated around the optic disc as well as the macula, suggesting a
potential relationship between early morphological changes in this
region and myopia.

In many mammalian models, choroidal thickness (ChT) can
rapidly change in both directions when images are focused
anteriorly (myopia) or posteriorly (hyperopia) to the retina
before axial changes (Read et al., 2019). Studies have confirmed
that the choroid undergoes histological changes before the retina in
highly myopic eyes (Jonas and Xu, 2014; Zhou et al., 2017). The
choroid can also influence choroidal neovascularization and scleral
growth through the secretion of growth factors (Nickla and
Wallman, 2010; Scherm et al., 2019) which in turn affects the
progression of myopia. However, the choroid is the middle layer of
the eye wall and cannot be viewed with the naked eye through
fundus images. To investigate the choroidal changes, Sun et al.
(2021) applied radiomics methods to the optic disc region. Features
were automatically extracted from fundus images using
PyRadiomics program, followed by LASSO regression to filter
the most predictive features and eventually, a novel optic disc
imaging metrics was constructed. The results showed that AI
methods can effectively predict ChT based on fundus images
rather than OCT images, which facilitates the assessment of
early pathological changes in highly myopic eyes and guides
early diagnosis and treatment.

Conventional machine learning for exploring
myopia-related genes

Through the use of molecular techniques such as linkage analysis,
candidate gene analysis, genome-wide association studies (GWAS)
and next-generation sequencing (NGS), many new genes and
chromosomal loci associated with myopia have now been
identified. Representative studies include CREAM (Verhoeven
et al., 2013) and 23andME (Tedja et al., 2018). However, these
genes can currently explain less than 10% of the genetic variation
in myopia (Han et al., 2022). Considering the size and high
dimensional characteristics of this data type, conventional machine
learning methods are suitable to transform it into valuable knowledge.
Ghorbani Mojarrad et al., 2018 used data from CREAM and 23andME

TABLE 3 Summary of DL methods for segmentation tasks in myopia.

Research Tasks AI
technology

Accuracy Sensitivity Specificity IoU Dice score F1 score

Cahyo et al.
(2020)

Segmentation of choroid
in myopic eyes

U-Net 0.99 — — 0.92 — —

Lu et al. (2021) Segmentation of myopic
“Plus” lesions

ResNet50; FPN 0.656–0.789 — — — — 0.688–0.889

Chen et al.
(2022)

Segmentation and
quantification of the

choroid in myopic eyes

Mask R-CNN — — — — 0.938 —

Li et al. (2021) Segmentation of choroidal
sublayers and vessels

U-Net 0.980–0.987 0.699–0.962 0.990–0.999 — 0.699–0.959 —

Shao et al.
(2021)

Segmentation of
tessellated fundus and

calculating FTD

ResNet18; FCN 0.965 0.725 0.961 — — —

Hemelings et al.
(2020)

Segmentation of myopia-
related fundus changes

U-Net++ — — — — 0.93 (optic disc), 0.80
(retinal atrophy), 0.80
(retinal detachment)

0.98 (optic disc), 0.91
(retinal atrophy), 0.70
(retinal detachment)

FTD, fundus tessellated density.
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to screen for differential genes and calculate a genetic risk score (GRS),
which was used as a variable to construct linear models. The results
showed that the inclusion of the GRS significantly improved the
performance of models in determining the occurrence of myopia
compared with using the number of myopic relatives (NMP) alone
(p < 0.0001). The model incorporating GRS better estimated refractive
error at 7 (R2 = 3.0% vs. 3.7%) and 15 (R2 = 2.6% vs. 7.0%) years old
compared to using only age, sex, and NMP, but the improvement was
still unsatisfactory, as supported by the results of Chen et al. (2019) .
One possible reason is that the current understanding of myopia-
related single nucleotide polymorphisms (SNPs) and gene-
environment interactions is still limited. As for deep learning
methods, deep neural networks (DNNs) and recurrent neural
networks (RNNs) can be used for tasks such as variant calling,
genome annotation, mutation classification, and “phenotype-
genotype” correspondence (Dias and Torkamani, 2019) but have
not yet been applied in myopia.

AI technology in myopia treatment

As mentioned above, the mechanisms of myopia onset and
progression are still unclear, thus the methods of myopia
prevention and treatment are constantly being updated. For
non-progressive myopia (i.e., people with slow progression of
myopia and progression≤0.50D/year), available correction
methods include spectacles, corneal contact lenses, and surgery
(e.g., laser keratomileusis, implantable collamer lens (ICL),
posterior scleral reinforcement). For progressive myopia
(i.e., those with rapid myopic progression and
progression≥0.75 D/year), available control measures include
orthokeratology lens, spectacles with multi-point myopic
defocus technique or point diffusion technique, medications
(e.g., atropine, pirenzepine, 7-methylxanthine), low-energy red
light irradiation, and a combination of above methods.

When choosing orthokeratology lens, less trials can help reduce
the chance of ocular infections (Kam et al., 2017). The use of
conventional machine learning methods can provide an accurate
estimate of the proper alignment curve (AC) curvature of the lens.
The results of Fan et al. (2022) showed that models such as SVM and
Gaussian process had a better fitness with R-squared (R2) up to
0.73–0.91. By using different kernel functions, SVM can also assist
in the prediction of two important parameters of orthokeratology
lens: return zone depth (RZD) and landing zone angle (LZA). The R2

can reach above 0.80 and 0.90, respectively (Fan et al., 2022).
AI technology also have applications in refractive surgery.
Methods like random forest, gradient boosting, XGBoost, and SVM
regression (SVR) can assist in implant size selection and arch
height prediction in ICL surgery (Kamiya et al., 2021; Kang et al.,
2021; Shen et al., 2021). Proper sizing ensures a safe postoperative
ICL dome and reduces complications such as angle-closure glaucoma
and anterior subcapsular cataract. Using an artificial neural network
(ANN) containing dual hidden layers and boosting strategy, Cui et al.
(2020) developed an assistance system for the design of SMILE
surgical parameters. The postoperative corrected distance visual
acuity (CDVA) is similar to the preoperative CDVA, but the
postoperative uncorrected distance visual acuity (UDVA) is greater
than the preoperative one. This result demonstrated that while AI did
not significantly differ from experts in terms of safety, they did

increase in terms of effectiveness. However, these studies have
made simplifications to clinical need, such as considering only two
ICL sizes and converting the regression problem into a classification
problem. This may improve model performance but also results in
some limitations.

In addition, Wu et al. (2020) retrospectively analyzed a cohort of
patients with topically applied atropine for myopia control. They used
multiple conventional machine learning methods to predict IOP at the
endpoint based on 19 variables, and the best performing XGBoost
algorithm had an RMSE of up to 2.2604 mmHg, showing potential in
predicting efficacy as well as potential side effects of atropine. Fewer
studies have used AI in this area, possibly because cohort data for
myopia are more difficult to collect compared to cross-sectional
studies. Table 4 summarizes the aforementioned AI-related studies
for myopia treatment.

Discussion

Artificial intelligence-enabled intelligent ophthalmic devices are
an important solution to the lack of ophthalmic medical resources
(especially in primary hospitals), but the area of healthcare has its
unique concerns. To apply AI methods in the process of real myopia
clinical practice, we believe that the following aspects should be
focused on.

Firstly, physician and patient acceptance is a challenge. Scheetz
et al. (2021) showed a high rate of patient satisfaction with AI
technology for ophthalmic screening, but Lin et al. (2022) found that
residents were “algorithm aversion” and expected more physician
involvement in eye screening services. Explainable artificial
intelligence (XAI) is a potential solution to open the “black box”
and gain the trust of patients. When detecting myopic macular
lesions using OCT images, deep learning models can be trained using
soft labels and output the probability of belonging to each lesion
category rather than predicting a particular category, which has been
shown to yield satisfying results (Du et al., 2022). Other visualization
methods, such as the occlusion test (Zeiler and Fergus, 2014),
saliency maps (Simonyan et al., 2013) and gradient-weighted class
activation maps (Grad-CAMs) (Selvaraju et al., 2017) can also
retrospectively analyze the prediction process of neural networks
and highlight important regions relevant to decision making, thus
improving interpretability. AI studies on other ocular diseases often
choose to publish their heatmap results (Brown et al., 2018; Keel
et al., 2019) and many current studies in myopia are gradually
starting to take this on board.

Secondly, it is important to accurately evaluate the performance of
AI methods from a technical point of view. Existing AI studies in
myopia do not have directly comparable results due to the difference
in datasets and the way training set/test set were selected. In this
regard, some studies have thought beyond the perspective of clinical
applications to the perspective of computer science and have done
some “benchmark work” in diabetic retinopathy (Li et al., 2019): by
establishing a multicenter, well-labeled dataset and conducting
repetitive tests using several state-of-the-art algorithms on same
tasks, a benchmark of algorithm performance could be established
and serves as a reference for further development of relevant
evaluation systems. This can be borrowed to myopic AI research to
help address the critical question of how to evaluate whether the
performance of an AI method is good enough.
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TABLE 4 Summary of AI technology for myopia treatment.

Research Tasks AI technology Accuracy AUC MAE RMSE R2

Fan et al.
(2022)

Estimation of the AC
curvature in

orthokeratology lens
fitting

Robust linear regression;
SVM; Bagging decision
trees; Gaussian process

— — 0.263–0.507 0.373–0.680 0.73–0.91

Fan et al.
(2021)

Prescribing CRT lens
parameters in adolescents

with myopia

Gaussian process; Robust
linear regression; SVM

— — 0.386-0.979 (for
LZA); 5.326-8.644

(for RZD)

0.556-1.214 (for
LZA); 6.883-10.998

(for RZD)

0.693-0.866 (for
LZA); 0.964-

0.975 (for RZD)

Shen et al.
(2021)

Prediction of the
postoperative ICL vault

RF; Gradient Boosting;
XGBoost

0.802-0.828 (vault
prediction); 0.815-
0.822 (ICL size
prediction)

0.718–0.765 — 159.03–162.53 0.285–0.315

Kang et al.
(2021)

Prediction of the
postoperative ICL vault

XGBoost; Light GBM;
RF; SVM

0.759 (internal
validation); 0.674

(external validation)

— 106.88 (internal
validation); 143.69

(external
validation)

140.14 (internal
validation); 186.29
(external validation)

—

Kamiya et al.
(2021)

Prediction of
postoperative ICL vault

SVR; Gradient
Boosting; RF

— — 99.6–131.4 — —

Cui et al.
(2020)

Prediction of SMILE
nomogram

ANN — — 0.066–0.114 — 0.9645

Wu et al.
(2020)

Prediction of IOP in
children with myopia
treated with topical

atropine

MARS; CART; RF;
XGBoost

— — 0.778–0.867 2.260–2.432 —

AC, alignment curve; CRT, corneal refractive therapy; LZA, landing zone angle; RZD, return zone depth; SVR, support vector regressor; SMILE, small incision lenticule extraction; ANN, artificial

neural network; MARS, multivariate adaptive regression splines; CART, classification and regression tree.

FIGURE 3
Three ways to integrate AI technology into existing clinical practices.
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Lastly, AI should not only continue to improve its performance
on evaluation metrics, but also be organically integrated with
clinical practice in myopia to achieve a better visual health
system. Regarding how to integrate a new technology into
existing clinical practice, Bossuyt et al. (2006) summarized three
possible ways (Figure 3): replacement, triage, and add-on. For the
application of AI in myopia, we believe that the “Triage” and “Add-
on”ways are viable and valuable: the former uses AI as the most basic
diagnostic classification tool that can serve as a referral for large-
scale primary ophthalmology screening or as an “opportunistic
screening” in non-ophthalmology clinical work; The latter uses AI
in parallel with or after the clinician’s diagnosis to serve as an
assistant in tasks like segmenting the layers of the retina or
measuring thickness on OCT images for classifying pathologic
myopia, as mentioned earlier. As for the “Replacement”, AI
algorithms are used to replace clinicians in clinical diagnostic
tasks, which is generally only applicable to tasks that are simple
enough or where the AI performs absolutely better than the
physician. This requires rigorous validation and is not common
in the field of myopia.

Conclusion

The application of AI in the field of myopia is impressive, and
its performance holds promise to replace traditional computer-
aided diagnostic systems (CADs). The results of this review
suggest that AI has been applied to tackle some of the key
challenges in myopia clinical practice. However, AI research
should not simply be about applying models to various tasks
and more attention needs to be paid to those technical
problems that have yet to be solved. In the future, more
technical approaches need to be proposed according to the
characteristics of each task. It is promising that more AI
approaches will be deployed as stable and efficient diagnostic
systems for practical clinical diagnosis.
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Prospective clinical study of retinal
microvascular alteration after ICL
implantation
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DamagedOcular Nerve, Beijing, China, 2Cixi Institute of BioMedical Engineering, Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, Ningbo, China

Purpose: To evaluate the retinal microvascular alteration after implantable collamer
lens (ICL) implantation inmoderate to highmyopia patients using quantitative optical
coherence tomography angiography (OCTA).

Methods: This prospective cohort study included 50 eyes of 25 patients with
preoperative spherical equivalent ≥ −3.00 D. Patients underwent bilateral ICL
implantation at the Department of Ophthalmology, Peking University Third
Hospital, from November 2018 to July 2019. OCTA was used to image the
superficial and deep retinal capillary plexuses before ICL implantation surgery and
at 3 months follow-up.

Results: There was no significant difference in the microvascular density within each
annular zone and all quadrantal zones of the superficial and deep layers found in
myopia patients before and after ICL surgery.

Conclusion: Levels of microvascular density in retinal capillary plexuses were stable,
as detected by theOCTA, showing the high security of ICL implantation, whichwould
not leave adverse effects on retinal microvasculature in myopia patients.

KEYWORDS

implantable collamer lens implantation surgery, myopia, optical coherence tomography
angiography, retinal microvasculature, vessel density, visual acuity

1 Introduction

With the increase in educational pressure and limited time outdoors, myopia has become
the most common vision problem (Morgan et al., 2018). Recent epidemiological studies
indicated a prevalence of myopia as high as 80%–90% in young adults in East Asia (Foster
and Jiang, 2014; Wu et al., 2016). It is estimated that, in 2050, half of the world’s population will
be affected with myopia and 10% of people will be at a relevant risk of becoming blind as a result
of high myopia (Holden et al., 2016; Hopf and Pfeiffer, 2017). With the elongation of the eyeball
that occurs with the progression of myopia, the retinal microvascular decrease was observed in
the myopia subjects (Yang et al., 2016; Al-Sheikh et al., 2017; Li et al., 2017).

Since the introduction of the Implantable Collamer Lens (ICL; Staar Surgical, Nidau,
Switzerland) in 1993, refractive surgery has entered a new era of myopia treatment (Assetto
et al., 1996). Because it significantly increased best-corrected visual acuity (BCVA) while
reducing caused higher-order aberrations and improving postoperative contrast sensitivity
(Wang and Zhou, 2016), the ICL is most frequently used to correct high and extrememyopia. In
addition, the ICL performs superbly in the treatment of low to moderate myopia (Kamiya et al.,
2012; Dougherty and Priver, 2017; Kamiya et al., 2018).
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However, multiple studies revealed that intraocular refractive
surgery, such as cataract surgery, may lead to early retinal
ischemia, hypoxia, or even retinal vasculitis (Alnawaiseh et al.,
2018; Kim et al., 2018; Pilotto et al., 2019; Liu J et al., 2021).
Retinal complications would cause a potential or substantial threat
to patients’ vision. So, it is vital to monitor retinal microvascular
alteration after intraocular refractive surgery. ICL implantation is also
a kind of intraocular refractive surgery. However, it is still unknown
whether the ICL implantation surgery will affect the retinal
microvasculature of myopic eyes.

Optical coherence tomography angiography (OCTA) is a new,
non-invasive imaging technique with wide application potential for
retinal vascular disease (de Carlo et al., 2015; Gao et al., 2016;
Wylegala, 2018). In 2006, Optical Coherence Angiography was first
performed to visualize the vasculature in the human eyes (Makita
et al., 2006). OCTA can produce high-resolution, three-dimensional
images and measure the microvascular network in different layers of
the retina structure without the use of contrast agents (Gao et al., 2016;
Zhang Q et al., 2016). This study aimed to use OCTA to uncover
potential retinal capillary network alterations induced by ICL
implantation surgery.

2 Materials and methods

2.1 Participants

This study includes a total of 50 eyes from 25 participants with
moderate and high myopia. All subjects underwent ICL implantation
surgery at the Department of Ophthalmology, Peking University
Third Hospital between November 2018 and July 2019. Inclusion
criteria: 21–45 years old, binocular myopia, with a spherical equivalent
of greater than −3.00 diopters (D), anterior chamber depth (ACD) ≥
2.8 mm, corneal endothelial cell count (cECC) ≥ 2000 cells/mm2, SE
remained unchanged for more than 1 year, unsatisfactory vision with
contact lenses or spectacles. All patients included in this study had no
history of intraocular surgery and showed no other ocular pathologies
(uveitis, glaucoma, cataract, keratoconus, severe dry eye, etc.) or
serious systemic diseases (diabetes, uncontrolled hypertension,
severe hyperthyroidism, etc.).

The method of this study was approved by the Ethics Committee
of Peking University Third Hospital (M2020240). In addition, this
study was registered and approved on Clinical Trials.gov
(NCT04443231). Each subject was given informed consent after an
adequate study explanation.

Before surgery, each subject got a full ocular examination: The
ACD (measured from the endothelium to the crystalline lens) was
measured using anterior segment Optical Coherence Tomography
(Visante-OCT; Carl Zeiss Meditec, Jena, Germany), the horizontal
white-to-white (WTW) distance and axial length (AL) were measured
by optical biometry (IOL Master 700; Carl Zeiss Meditec, Jena,
Germany), cECC was obtained from each eye, using a corneal
endothelial microscope (SP-2000; Topcon, Tokyo, Japan).
Additionally, each eye was subjected to slit-lamp biomicroscopic
examination, corneal topography, and funduscopic examination.

The size of the ICL was calculated with a STAAR sizing formula,
based on the result of WTW and ACD. Myopia patients are planned
for standard ICL implantation surgeries by the same surgeon (QH)
under similar settings. Preoperatively, in all patients, 0.5% levofloxacin

eye drops were used 3 days before the operation, four times daily and
topical anesthesia (4% lidocaine) was administered 30 min before the
operation. Through a 3.0-mm temporal corneal incision, the ICL was
slowly inserted into the anterior chamber following the implantation
of hyaluronic acid (ViscAid, Beijing, China), under visualization with
OPMI Lumera 700 surgical microscope (Carl Zeiss Meditec,
Germany), and the Toric ICL implantation surgery was completed
with the help of the Callisto Eye System (Carl Zeiss Meditec,
Germany). Any remaining viscosurgical device was washed out of
the anterior chamber with the balanced salt solution. Antibiotic eye
drops, steroidal eye drops, and artificial tear drops were used
postoperatively.

Moreover, each patient’s eye was assessed for uncorrected visual
acuity (UCVA), BCVA, intraocular pressure (IOP), and manifest
refraction before surgery as well as 1 day, 1 week, 1 month, and
3 months afterward. For statistical analysis, the decimal Snellen
evaluation of UCVA and BCVA was converted to the logarithm of
the minimum angle of resolution (logMAR). With the aid of a non-
contact tonometer (CT-80; Topcon, Tokyo, Japan), the IOP was
measured. The central vault of the ICL (distance from the posterior
surface of the ICL to the crystalline lens) was measured using OCT
3 months after surgery.

2.2 OCT angiography

After the ocular examination, AngioVue (Optovue, Fremont, CA,
United States), was used to capture the OCTA images in all
participants from 8:00 a.m. to 12:00 a.m. The system has an
A-scan rate of 70 kHz scans per second, with a light source
centered on 840 nm and a bandwidth of 45 nm. The scan area was
centered on the fovea with a field of view of 6 mm × 6 mm. The
resolution of the exported OCT images was 400 × 400 pixels and
images with scan quality ≥6 were included for analysis. Automatic
segmentation was performed by the software to generate images of the
superficial retinal capillary plexus (SCP), and deep retinal capillary
plexus (DCP). The SCP was segmented from 3 μm beneath the inner
limiting membrane (ILM) to 15 μm beneath the inner plexiform layer
(IPL), representing the outer boundary of the ILM to the outer
boundary of the IPL. The DCP was segmented from 15 μm
beneath the IPL to 70 μm beneath the IPL, representing the outer
boundary of the IPL to the outer boundary of the outer plexiform layer
(OPL) (Yang et al., 2016).

Due to the elongation of the eye, the magnification for imaging the
fundus using fundus photography and OCT differs in the myopic eye
(Li et al., 2017). As a result, Bennett’s formula (Figure 1) (Bennett et al.,
1994) was used to correct magnification in photographs taken with
highly myopic eyes. The correction formula of the image is:

t � p × q × s (1)
Where t represents the actual scan length, p is the magnification factor
determined by the OCTA imaging system, and s represents the
original measurement value obtained from the OCTA. The formula
of the correction factor q is:

q � 0.01306 × AL − 1.82( ) (2)
The AL is the axial length as mentioned above. The foveal

avascular zone (FAZ) centroid was determined using Matlab (The
Mathworks, Inc., Natick, MA, United States) and the image was
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skeletonized. Since large blood vessels in the deep retinal vascular
plexus were considered to be projection artifacts of superficial blood
vessels (Zhang M et al., 2016), our custom algorithm separated the
vessels with diameters >30 μm in both the superficial and deep layers.
The images were then converted to binary images. The partition
method for the macular retinal region was shown in Figure 2.

Fractal dimension (FD) analysis was commonly used in the
objective quantification of retinal capillary complexity (Ab Hamid
et al., 2016). Photoshop was used to crop the image of each area
separately, and then the box-counting method with FracLab
2.1 toolbox was used to quantitatively analyze the FD
(representing blood vessel density) of each area. FracLab (Paris,

France) is designed for digital image analysis and is a plug-in for
Matlab.

2.3 Statistical analysis

The data were presented as the mean ± standard deviation (SD).
The differences between the means were evaluated using
independent sample t-tests (for patients preoperatively and
postoperatively) and analyzed using SPSS Statistics 24 (SPSS
Inc., Chicago, IL, United States). p < 0.05 was considered
significantly different.

FIGURE 1
Magnification correction of OCTA high myopia image. According to Bennett’s formula, the original image (A) was magnified ×1.10 to obtain the
magnified image (B) based on AL = 26.17mm, and then further cropped to the size of the original image (C). Scale bar: 600 μm. (A), (B), and (C)were based on
the same OCTA image.

FIGURE 2
Image partitioning and processing methods. (A)OCTA image after magnification correction. The OCTA image was skeletonized and large blood vessels
with a diameter> 30 μmwere extracted (B) and divided. The annular zonewith a diameter of 0.6–5 mm (C)was divided into 6 annuli (C1—C6) for analysis after
the removal of the avascular zone (D). In addition, four quadrants centered on the fovea were generated (E). ST, superior temporal; SN, superior nasal; IN,
inferior nasal; IT, inferior temporal. Scale bar: 600 μm. (A), (B), (C), (D), and (E)were based on the sameOCTA image, which was the same sample as used
for Figure 1.

Frontiers in Cell and Developmental Biology frontiersin.org03

Tang et al. 10.3389/fcell.2023.1115822

127

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1115822


TABLE 1 Preoperative demographics of the myopia patients underwent implantable collamer lens implantation in this study.

Characteristic Mean ± SD

Number, people/eyes 25/50

Sex, male/female 5/20

Age (years) 27.0 ± 3.8 (range 21–36)

MRSE (D) −8.50 ± 2.68

LogMAR BCVA 0.02 ± 0.06

AL (mm) 26.63 ± 1.06

WTW (mm) 11.90 ± 0.31

ACD (mm) 3.26 ± 0.25

cECC (cells/mm2) 2913.00 ± 218.86

ICL size (mm) 12.9 ± 0.3

ICL power (D) −9.38 ± 2.70 (−4.00 to −14.00)

MRSE, manifest refraction spherical equivalent; LogMAR, logarithm of the minimal angle of resolution; BCVA, best corrected visual acuity; AL, axial length; WTW, white-to-white; ACD, anterior

chamber depth; cECC, corneal endothelial cell count.

FIGURE 3
Clinical examinations of myopia patients after ICL implantation surgery. (A) Changes in Snellen lines of BCVA at 3 months after ICL implantation. (B)
Changes between BCVA 3 months after ICL implantation and UCVA Preoperatively. (C)Changes in intraocular pressure 3 months after ICL implantation. (D) A
scatter plot of the attempted versus the achieved manifest spherical equivalent correction 3 months after ICL implantation. (E) Time course of manifest
spherical equivalent after ICL implantation. The asterisks indicate statistically significant differences between pre-surgery and post-surgery. D, day; W,
week; M, month(s).

Frontiers in Cell and Developmental Biology frontiersin.org04

Tang et al. 10.3389/fcell.2023.1115822

128

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1115822


3 Result

The demographics of the enrolled subjects are summarized in
Table 1. The mean patient age at the time of surgery was 27.0 ±
3.8 years (ranging from 21 to 36 years). The preoperative manifest
refraction spherical equivalent (MRSE) was −8.50 ± 2.68 D (ranging
from −3.50 D to −13.88 D). The preoperative manifest sphere
was −7.95 ± −2.57 D (ranging from −3.00 D to −13.75 D). The
preoperative manifest refractive cylinder was −1.16 ± 0.92 D (ranging
from 0.00 to −3.25 D). The IOP was 14.60 ± 2.71 mmHg. AL was
26.63 ± 1.06 mm (ranging from 24.87 to 29.50 mm). WTW was
11.90 ± 0.31 mm (ranging from 11.3 mm to 12.7 mm). ACD was
3.26 ± 0.25 mm (ranging from 2.92 mm to 3.80 mm).

All surgical procedures were uneventful, and no postoperative
complications, such as cataract formation, pigment dispersion
syndrome, pupillary block, or axis rotation, were seen
throughout the observation period. Visual acuity improved for
all patients on the first day after surgery. Three months
postoperatively, 2% of eyes lost one line of vision and 98% of
eyes maintained or gained BCVA (Figure 3A). The efficacy index
was 1.11 ± 0.24 (preoperative BCVA: 0.01 ± 0.06 logMAR and
postoperative UCVA: −0.02 ± 0.06 logMAR, p < 0.05; Figure 3B).
The mean preoperative IOP and postoperative IOP (14.6 ±
2.7 versus 15.2 ± 3.2, p > 0.05; Figure 3C) were not significantly
different. At 3 months postoperatively, 90% and 100% were
within ±0.5 and 1.0 D of the attempted correction, respectively
(Figure 3D). The time course changes in the manifest refraction
were shown in Figure 3E. Changes in the manifest refraction from

1 day to 3 months were 0.02 ± 0.68 D. Three months
postoperatively, the vault was 0.64 ± 0.20 mm.

Preoperative versus postoperative retinal microvascular density
for myopia patients, with p values for comparison. The total annular
zone was divided into four quadrantal zones and six annular zones
(bandwidth = 0.73 mm). No significant difference in the
microvascular density within each annular zone and all quadrantal
zones of the superficial and deep layers was found in myopia patients
between pre-surgery and post-surgery (Figure 4).

4 Discussion

Myopia is one of the most prevalent eye disorders, and the
epidemic of high myopia, in particular, is a serious hazard to
public health, such as financial, psychological, quality of life, and
direct and indirect risks of blindness. ICL implantation is one of the
methods to treat myopia. According to our data, ICL implantation is a
safe and effective treatment for both moderate and high myopia. No
eye loses two or more lines of vision after ICL implantation. All eyes
were within ±1.0 D of the attempted correction and both refractive
status and IOP remained stable for 3 months after surgery. Its
performance in safety, effectiveness, stability, and predictability is
even better than the results of Sanders et al. (2004) due to the
advancement of surgical techniques and the update of ICL.

Retinopathy is the most common complication of high myopia,
which is a slowly progressive and sight-threatening condition. Several
studies have investigated the retinal microvascular in patients with

FIGURE 4
The FD (representing retinal microvascular density) of ICL patients pre- and post-surgery for each layer. Among the six individual annular zones (A, B), the
microvascular density in the (A) superficial and (B) deep layers showed no significant difference in myopia patients pre- and post-surgery (all p > 0.05). The
microvascular density was also not significantly different in all quadrantal zones of the superficial (C) and deep (D) layers in myopia patients pre-and post-
surgery. (all p > 0.05). ST, superior temporal; SN, superior nasal; IN, inferior nasal; IT, inferior temporal.
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myopia, revealing the retinal microvascular network alterations inmyopic
eyes. The structural elongation of the eyeball mechanically stretches the
retinal tissue, resulting in the straightening and narrowing of the
microvessels and consequently the decrease of the retinal
microvascular density and perfusion in myopic eyes (Li et al., 2017;
Leng et al., 2018; Li et al., 2018;Milani et al., 2018; Gołębiewska et al., 2019;
Guo et al., 2019). Jiang et al. (2021) found that the superficial and deep
macular microvascular density in high myopia was significantly higher
than that in non-high myopia by using OCTA; Liu M et al. (2021) also
reached the same conclusion in a larger sample study and found a
negative correlation between microvascular density and axial length.

OCT angiography, as an advanced imaging technique
characterized by non-invasiveness, quantification, and reliability,
which can detect blood flow signals in the retina, has superior
advantages over traditional angiography techniques. OCTA is
widely used in the evaluation and diagnosis of eye diseases, such as
high myopia retinopathy (Grudzińska and Modrzejewska, 2018),
glaucoma optic nerve damage (Rao et al., 2020), retinal vein
occlusion (Hirano et al., 2021) and diabetic retinopathy (Sun et al.,
2021). Using OCTA, images from different layers of the retina can be
projected clearly due to its high resolution. In the present study, by
using OCT angiography, superficial and deep retinal capillary density
were measured in moderate and high myopia patients who underwent
ICL implantation between pre-surgery and post-surgery. The OCTA
provided the macular perfusion of a 6 mm × 6 mm area, we calculated
the microvascular density in each region through the box-counting
method after correcting for magnification. Our data showed that ICL
implantation surgery would not leave adverse effects on the retinal
capillary network.

Moreover, clinical evidence suggests that eye surgery would cause
the alteration of retinal microcirculation (Alnawaiseh et al., 2018; Kim
et al., 2018; Liu J et al., 2021). Pilotto et al. (2019) found that the
perfusion of the retinal microvascular plexus in the deeper layers of the
macula increased after uncomplicated cataract surgery, which may be
related to the early postoperative local inflammatory response.
Analogously, Chen et al. (2017) used a retinal oximeter to detect
retinal oxygen desaturation due to retina oxygen deficiency after ICL
implantation. ICL implantation surgery as a safe and effective
refractive surgery plays an important role in correcting moderate
and high myopia. However, due to the unusual anatomy and
physiology of the retina in high myopia eyes, it deserves our
attention for any microcirculation abnormality inherent to ICL
implantation surgery. Using OCTA, ophthalmologists can easily
assess patients’ retinal microvascular health and disease, which
might be beneficial for pre-operative evaluation of ICL
implantation surgery and the detection of postoperative
complications.

There were a few limitations to this study. Since the levels of
microvascular density in the retinal capillary plexuses after ICL
surgery detected by OCTA were stable in this study, the sample size
could not be calculated. Although we have included as many participants
as possible in this study, the number of patients was relatively small and
the follow-up period was only 3 months. In bigger populations and
during longer follow-up periods, retinal microvascular change may be
seen. Besides, because most of the patients who underwent ICL
implantation were young people, this study did not include children
and the elderly, whose preoperative retinal microcirculation is slightly
different (Leng et al., 2018; Golebiewska et al., 2019), and might respond
differently to ICL implantation surgery. Moreover, the OCTA scan area

used in this study is 6 mm × 6mm around the macula. Although it has a
wider scan range, it has not achieved the best presentation on retinal
microvasculature.

In conclusion, this study demonstrates that ICL implantation is an
effective treatment for both moderate and high myopia in young
patients, with excellent safety, predictability, and stability.
Simultaneously, using OCTA, this research provides evidence that
ICL implantation has no adverse effects on retinal microvascular.
Further larger sample sizes and longer-term studies are warranted to
confirm the conclusions presented herein.
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Research progress and application
of artificial intelligence in thyroid
associated ophthalmopathy
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Sainan Chen, Pei Mou, Xiaoye Ma and Ruili Wei*

Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China

Thyroid-associated ophthalmopathy (TAO) is a complicated orbitopathy related to
dysthyroid, which severely destroys the facial appearance and life quality without
medical interference. The diagnosis and management of thyroid-associated
ophthalmopathy are extremely intricate, as the number of professional
ophthalmologists is limited and inadequate compared with the number of
patients. Nowadays, medical applications based on artificial intelligence (AI)
algorithms have been developed, which have proved effective in screening many
chronic eye diseases. The advanced characteristics of automated artificial
intelligence devices, such as rapidity, portability, and multi-platform compatibility,
have led to significant progress in the early diagnosis and elaborate evaluation of
these diseases in clinic. This study aimed to provide an overview of recent artificial
intelligence applications in clinical diagnosis, activity and severity grading, and
prediction of therapeutic outcomes in thyroid-associated ophthalmopathy. It also
discussed the current challenges and future prospects of the development of
artificial intelligence applications in treating thyroid-associated ophthalmopathy.

KEYWORDS

thyroid-associated ophthalmopathy, artificial intelligence, deep learning, automated
diagnosis, facial images

Introduction

Artificial intelligence (AI) has gradually become a part of each aspect of our lives, especially
medicine, with the rapid development of computer technologies and smart devices. This term
did not emerge recently but was first proposed at a conference in 1956 (Russell and Norvig,
2010). The early achievement of AI applications in medicine was the automated recognition of
electrocardiograms, which was based on programmed medical knowledge (Kundu et al., 2000).
Machine learning (ML), a subfield of computer science, endowed AI with the ability to
independently discern patterns from data. The training set, containing several inputs and
relevant outputs, is critical for ML methods to analyze the underlying patterns, which help
obtain correct outputs from new inputs (Deo, 2015). Further, deep learning (DL) has given a
major boost to the AI renaissance in recent decades. DL methods generally build an artificial
neural network with many layers to analyze colossal datasets, such as numerous medical images
(LeCun et al., 2015; Schmidhuber, 2015).

The application of integrated AI-ML-DL algorithms, combined with advanced medical
imaging and data transmission systems, has grown rapidly in the medical field, such as
ophthalmic healthcare (Balyen and Peto, 2019). For instance, diabetic retinopathy (DR) can be
detected by screening the retina using fundus photography and optical coherence tomography
as a representative chronic ocular disease. It was found that multiple AI applications in retinal
images had significant benefits in the early detection of DR (Gulshan et al., 2016; Ting et al.,
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2017; Tufail et al., 2017). Recent studies also revealed that the detection
of glaucoma could be promoted using AI-ML-DL algorithms with
high accuracy, sensitivity, and specificity (Li et al., 2018a; Devalla et al.,
2018).

Thyroid-associated ophthalmopathy (TAO), an intricate
autoimmune disease, is associated with the highest incidence of the
orbital disorder in adults, affecting approximately 2.9 men and
16 women per hundred thousand people every year (Bartley et al.,
1995; Wiersinga and Bartalena, 2002). Severe cases tend to develop in
male and older patients, accompanied by disfiguring proptosis and
optic neuropathy (Bahn, 2010). The clinical manifestations of TAO
include chemosis, eyelid retraction, exophthalmos, periorbital pain,
and strabismus. Besides, the course of the disease is described as
Rundle’s curve, which is composed of a one- to 3-year active phase and
a subsequent chronic stable phase (Khong et al., 2016). This
characteristic of TAO can be graded according to the clinical
activity score and the severity grading identified by European
Group on Graves’ orbitopathy (EUGOGO) (Bartalena et al., 2021).
Variations of patterns in patients make TAO diagnosis, evaluation,
and management challenging, which immensely depend on the
profession and experience of well-trained ophthalmologists. AI
applications may act as a supporting role in TAO clinical practice.

This review summarized the research progress and prospective
application of AI in TAO diagnosis and management. The available
studies focused on the identification of characteristic signs, disease
grades, and dysthyroid optic neuropathy (DON); prediction of TAO
progression; therapeutic response to glucocorticoids (GCs) and
decompression surgery; and even protocol formulation of orbital
radiotherapy. Given the prosperity of this “Big Data” era, we
believe that this review could comprehend the current
achievements and accelerate the promising AI applications in
clinical practice, which may help ophthalmologists and
endocrinologists with limited experience.

Application of AI algorithms in detecting
the signs and symptoms of TAO

As mentioned earlier, TAO generally starts with an active course.
In this stage, patients suffer from ocular pain, redness and swelling of
the conjunctiva and eyelids, and, most importantly, progressive
proptosis and vision loss (Mourits et al., 1989). Early intervention,
such as GC pulse therapy, can lead to premature termination of the
active course and the start of a stable phase (Kauppinen-Mäkelin et al.,
2002). Therefore, the early and accurate diagnosis of TAO can benefit
the following management and prognosis. However, a large
proportion of patients with TAO do not approach the department
of ophthalmology, but the department of endocrinology, at the first
visit because of thyroid dysfunction. Also, a few symptoms and signs of
TAO are insidious enough to be missed during the examination. Thus,
an automated diagnostic system assisted by AI algorithms can
significantly increase the clinical efficiency of TAO diagnosis.

Grus et al. (1998) first tested an artificial neural network (ANN) in
TAO. This ANN, a kind of probalistic neural network, contained
input, pattern, summation and output layers, which could recognize
the possible class of samples after training, thus possessing the
diagnostic value. The sera samples were collected from patients
with or without TAO (n = 16:11), Western blot analysis was
performed, and densitometric data were collected. After training,

96.3% of test samples were correctly classified using an ANN,
exceeding the multivariate statistical technique with 85% accuracy.
This initial research enlightened the diagnostic potential provided by
AI methods in TAO, though the autoantibodies detected in this study
were not useful in TAO diagnosis. A few years later, Salvi et al. focused
on the clinical signs and specialist examination of patients with TAO
in two analogical studies (Salvi et al., 2002a; Salvi et al., 2002b). The
samples were both divided into two groups based on disease
progression. The ANN applicated in two studies was a back-
propagation model used for the classification and progression
prediction of TAO, which was constructed with 13 input variables
derived from ophthalmic examinations. The accuracy of classification
and progression prediction was 78.3%–86.2% and 67%–69.2%,
respectively. As to the fundamentals of AI application in TAO
diagnosis, these DL methods still need manual parameters
measured by ophthalmologists or physicians.

After 2 decades of technological updating, advanced face
recognition and automated image processing systems have
increased the possibility for AI application in TAO. An intelligent
diagnostic system for TAO was invented using multiple task-specific
models based on facial images (Huang et al., 2022). Briefly, an entire
facial image was analyzed and cropped into the eye part using
Module I. Ocular dyskinesia and special signs of TAO were
subsequently detected using Modules II and III. This study
recruited 21,840 images from 1560 patients, of which 20% were
used as the test set. The accuracy of eye location and cornea and
sclera segmentation, conducted using Modules I and II, was 0.98,
0.93, and 0.87, respectively. The area under the receiver-operating
characteristic curve (AUROC), sensitivity, and specificity of
detecting signs were 0.93, 87%, and 88% for eyelid retraction;
0.90, 79%, and 86% for eyelid edema; 0.94, 89%, and 90% for
eyelid congestion; 0.91, 83%, and 85% for conjunctival congestion;
and 0.91, 85%, and 79% for ocular dyskinesia, respectively. Besides,
the AUROC of DL networks (ResNet-50, ResNet-101, and
InceptionV3) was 0.91, 0.92, and 0.89, respectively. Compared
with previous models, this automated diagnostic system detected
TAO signs highly accurately just with facial images. Besides, this
system could also be loaded into mobile devices, thus showing the
potential to help patients in areas lacking veteran ophthalmologists
and medical resources.

Karlin et al. (2022) developed another AI platform based on a
DL model to identify TAO using ocular photographs. The training
set contained 1944 facial images, and the testing depended on
additional 344 photographs. In line with the testing results, the
accuracy, specificity, precision, recall, and F1 score of the proposed
platform reached 89.2%, 86.9%, 79.7%, 93.4%, and 86.0%,
respectively. The specific signs of TAO were not separated but
integrated into a component model, thus generating heatmaps to
present the pathological regions in facial images. This DL model
was also compared with a cohort of ophthalmologists in the
diagnosis of TAO. Interestingly, compared with the expert
cohort, the DL ensemble model had higher accuracy (86% vs.
78%) and recall (89% vs. 58%), whereas the specificity was lower
(84% vs. 90%).

In clinical practice, doctors usually spend a lot of time confirming
TAO diagnosis at their first ophthalmologic visits. Even with an expert
with abundant experience in orbital diseases, a TAO diagnosis can
only be confirmed by the comprehensive assessment of the chief
complaints of patients, ocular signs, medical history of dysthyroid, and
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imageological examination (Dolman, 2012). To a certain extent, the
aforementioned studies indicated that the DL classifier using external
ocular photographs might substitute the specialists to provide the
initial diagnosis for patients with TAO and even accurately grade the
activity and severity.

Application of AI algorithms in the orbital
imaging of TAO

Orbital imaging has provided substantial support since the 1980s
in the clinical evaluation of TAO (Hosten et al., 1989). Computed
tomography (CT) scanning and magnetic resonance imaging (MRI)
hold the same importance with their own merits. CT can clearly
present the degree of extraocular muscle enlargement and the
condition of the optic nerve in the orbital apex. The delineated
anatomy of the orbital wall and periorbital structures such as
adjacent sinuses are essential for decompression surgery design
(Cubuk et al., 2018). The benefits of MRI rely on its capacity for
better resolution between muscles and orbital fat, which can help
identify the specific pattern of TAO without radiation (Higashiyama
et al., 2017). These characteristics have promoted the widespread use
of CT and MRI in TAO, and abundant image data have become the
hotbed of AI algorithms.

The research team of Shanghai Jiao Tong University explored the
diagnostic value of two AI models for TAO using CT andMRI images.
Lin et al. (2021) constructed DL algorithms into networks A and B,
which inherited from the Visual Geometry Group (VGG) network and
the Residual Neural Network (ResNet). By recruiting 160 MRI images,
the accuracy, specificity, and sensitivity of network A were 0.863 ±
0.055, 0.896 ± 0.042, and 0.750 ± 0.136, respectively, for differentiating
between active and inactive statuses of patients with TAO. After
optimizing, the sensitivity of network B improved (0.821 ± 0.021),
and the AUC of both networks was 0.922. In another study, 1,435 CT
scans were used for a TAO screening 3D-ResNet model training,
validation, and testing (Song et al., 2021). The results demonstrated
that the AUC, accuracy, sensitivity, and specificity of this AI model
were 0.919, 0.868, 0.878, and 0.865, respectively. Besides, the
performance of this screening algorithm was also satisfactory in the
diagnostic test.

Hanai et al. (2022) focused on extraocular muscle (EOM)
enlargement in patients with TAO. The proposed diagnostic
system was constructed based on deep neural networks
including ResNet-50 and VGG-16. A total of 371 participants
were recruited in this study with their coronal scans, including
about 60% for training, 20% for validation, and the remaining 20%
for test data. The results showed that the AUC, sensitivity, and
specificity of this model for detecting EOM enlargement were
0.946, 92.5%, and 88.6%, respectively, indicating that the
thickness of EOM could be detected using AI algorithms with
high accuracy and speed in TAO.

Lee et al. (2022) developed a convolutional neural network–based
model to assess the severity of TAO by analyzing the axial, coronal,
and sagittal planes of CT images. A total of 288 CT images comprised
mild TAO, moderate-to-severe TAO, and normal controls, which
were divided into four comparable groups. Compared with controls,
the diagnostic AUC of this model was 0.979 ± 0.020 for moderate-to-
severe TAO, 0.895 ± 0.052 for mild TAO, and 0.905 ± 0.029 for three

comparisons. The performance of the proposed model was also better
than that of VGG-16, GoogleNet, and ResNet-50, and even of three
oculoplastic specialists.

DON is significant with respect to the vision-threatening
condition in TAO (Saeed et al., 2018). The optic nerve is
suppressed by pathologically thickened tissues in the orbital
apex, leading to several symptoms such as blurred vision,
decreased color vision, and defect of field vision (Victores and
Takashima, 2016). Early detection and intervention improve the
prognosis. A hybrid model based on a deep convolutional neural
network was proposed to predict DON using CT scans (Wu et al.,
2022). In this model, a specific module was used to preprocess the
image and extract the meaningful features for DON pathologies.
The samples were divided into 87 healthy controls and 91 patients
with TAO, including 42 patients with DON. After training and
testing, the accuracy, specificity, sensitivity, and F1-scrore were
96%, 99.5%, 94%, and 96.4%, respectively. In this study, a DL model
displayed significant advantages in predicting DON in patients
with TAO.

The orbital CT scans and MRI images are the most common
images examined in patients with TAO, as they can be not only
evaluated by radiologists and ophthalmologists but also preprocessed
into available data and then submitted to AI algorithms for further
screening or predicting. The diagnosis, activity and severity grading,
and DON prediction all have important clinical implications for
patients with TAO patients, and AI algorithms, especially DL
models, can provide satisfactory assistance to optimize this
complex process in the future. The summarization of
aforementioned studies in diagnosis and grading of TAO is
presented in Table 1.

Application of AI algorithms in
treating TAO

GC pulse therapy

In accordance with the 2021 EUGOGO guidelines (Bartalena et al.,
2021), intravenous GCs combined with mycophenolate sodium were
nominated as the first-line treatment for moderate-to-severe and
active TAO. The pulse therapy of GCs has been used in TAO
management for decades, and many studies have demonstrated
substantial benefits. Still, about 20%–30% of patients in clinical
trials were unresponsive to GC treatment, even with unbearable
adverse effects (Vannucchi et al., 2014; Zhu et al., 2014). The
general method in a clinic is closely monitoring the initial
outcomes of GC treatment, which determine the subsequent
remedies, to avoid the unworthy risk of overdosed GCs. Thus, a
practical method for response prediction before GC therapy is
required.

Coronal T2-weighted MRI images with fat suppression can clearly
show the cross-sectional morphology and radiomics features of EOMs.
Hu et al. (2022) developed three ML-based models to analyze the
radiomics data of patients with TAO. In this retrospective study,
110 samples were selected, and GC-responsive (n = 62) and
unresponsive (n = 48) cases were equally split into training and
validation sets. A semi-quantitative imaging model was also built
by two experienced doctors, in which the absolute signal intensities of
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EOMs were manually measured and normalized to values of ipsilateral
temporal muscle. The AUCs of the three ML-based models in two sets
(0.968 and 0.916; 0.933 and 0.857; 0.919 and 0.855) were all better than
the performance of the semi-quantitative method (0.805).
Additionally, including the disease duration of TAO into AI
algorithms enhanced the diagnostic ability in their validation
(AUC: 0.952 vs. 0.916), indicating the advantage of the AI model
in predicting the response of patients with TAO to GCs.

Besides the use of MRI, a prospective and observational
protocol was proposed by Wang et al. (2021) for developing a
new prediction model. A total of 278 untreated patients with
moderate-to-severe and active TAO will be recruited into this
trial based on the events per variable method and previous
models. The clinical data and AI-related parameters will be
collected from these volunteers before their standard 12-week
GC pulse therapy. After treatment, the patients will be divided
into GC-responsive/unresponsive groups based on their outcomes
of therapy. The facial morphological changes and traditional
clinical data will be used to develop a new AI model, which can
recognize the best variables for GC-response prediction. This study
is an ongoing project, and the findings can guide on the
individualized GC treatment for TAO.

Orbital radiotherapy

Orbital radiotherapy in alliance with GCs was recommended as
the second-line treatment (Bartalena et al., 2021). The therapeutic
effect of regional irradiation, which seems to have a mutual promoting
effect with GCs (Bartalena et al., 1983; Oeverhaus et al., 2017), was
demonstrated by several randomized controlled trials in TAO
(Prummel et al., 2004). Conventionally, a low dose of 20 Gy was
given for about 2 weeks (Tanda and Bartalena, 2012). Although
adverse events were relatively rare in orbital radiotherapy
(Marcocci et al., 2003), the irradiation target still needs to be
precisely delineated to avoid possible damage to organs at risk (OARs).

Jiang et al. (2021) developed a DL model based on a fully
convolutional network (FCN) to realize the auto-segmentation of
the clinical target volume (CTV) for patients with TAO. Briefly,
CT images from 121 patients with TAO undergoing radiotherapy
were collected for training and testing. The outcomes were set as the
Dice similarity coefficient (DSC) and Hausdorff distance (HD).
Because of two orbits, Jiang et al. suggested treating the two-part
CTV as one target, which was demonstrated to have higher HD values
than the separate method (8.23 ± 2.80 vs. 9.03 ± 2.78). The dosimetric
comparison showed that both algorithms based on the FCN model

TABLE 1 AI algorithms in diagnosis and grading of TAO.

Authors
(Year)

Task Input data type Samples dataset AI model Accuracy AUC

Grus et al.
(1998)

Diagnostic
classification of TAO

IgG autoantibody
repertoires

Sera TAO: 16, controls: 11 The probalistic
neural network

96.3% -

Salvi et al.
(2002a)

Classification and
progression
prediction of TAO

13 clinical eye signs 246 patients with absent or
inactive TAO and 152 patients
with active TAO

A back-propagation
neural model

Classification: 86.2%,
progression
prediction: 67%

-

Salvi et al.
(2002b)

Classification and
progression
prediction of TAO

13 clinical eye signs and
age, gender, smoking
and follow-up interval

129 patients with absent or
inactive TAO and 113 patients
with active TAO, 103 normal
subjects

A back-propagation
neural model

Classification: 78.3%,
progression
prediction: 69.2%

-

Huang et al.
(2022)

Diagnostic system of
TAO and its special
signs

Facial images 21,840 facial images from
1560 patients (3120 eyes)

ResNet-50, ResNet-
101 and
InceptionV3

Eye location: 0.98, cornea:
0.93, sclera: 0.87

ResNet-50: 0.91,
ResNet-101: 0.92,
InceptionV3: 0.89

Karlin et al.
(2022)

Detecting TAO Single front facing
photograph

1944 photographs for training
and 344 images for testing

ResNet-18 89.2%, 86% (compared to
expert cohort)

-

Lin et al.
(2021)

Detecting the active
and inactive phase
of TAO

Orbital MRI images 160 images from 108 patients Deep convolutional
neural network
(DCNN)

0.863 0.922

Song et al.
(2021)

Screening TAO Orbital CT images 1,435 CT scans from 193 patients
and 715 healthy subjects

3D-ResNet 0.868 0.919

Hanai et al.
(2022)

Detection of EOM
enlargement in TAO

Orbital CT images 371 participants (60% for
training, 20% for validation and
20% for testing)

ResNet-50 and
VGG-16

- 0.946

Lee et al.
(2022)

Diagnosis and severity
evaluation of TAO

Orbital CT images 288 CT scans from 200 patients
and 100 controls

CNN Mild TAO: 0.826,
moderate-to-severe
TAO: 0.930, three
comparisons: 0.842

0.895
0.979
0.905

Wu et al.
(2022)

Prediction of
dysthyroid optic
neuropathy (DON)
in TAO

Orbital CT images 178 participants (42 DON,
49 TAO without DON,
87 controls)

DCNN 96% -

EOM, extraocular muscle; DCNN, deep convolutional neural network; DON, dysthyroid optic neuropathy.
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performed better than manual segmentation. In another study (Jiang
et al., 2020), a stacked neural network using adjacent anatomy for
target location was proposed to improve the accuracy of CTV.
Compared with the FCN model, this stacked network increased the
bilateral DSC by 1.7% and 3.4%, but reduced the HD value by 0.6.

Position errors caused by manual or mechanical misconduct are
probable in the actual delivery, except for planned contours before
irradiation (Ezzell et al., 2003). The electronic portal imaging device
(EPID) dosimetry was established for real-time supervision. Zhang
et al. (2021) conducted an interesting study for integrating EPID
measurements and AI algorithms. First, the irradiation plans were
duplicated from 40 patients with TAO to a solid head phantom, and
position errors combined with varying translation errors in different
directions were added to the protocols. The radiomics of EPID
measurements were extracted and analyzed using 3 ML models.
Their AUC values were all above 0.90 for position error detection
and relatively lower (0.76, 0.80, and 0.91) for direction identification.
The research team classified all the position and direction errors into
three types (Dai et al., 2021). The aforementioned ML models plus a
CNN model were also applied to recognize these errors using
radiomics data from EPID transmission maps as inputs. The
classification accuracies of the CNN model performed well in this
competition. Additionally, Liu et al. (2022) developed a deep neural
network (DNN) algorithm with structural similarity difference and
orientation-based loss, which could provide more features and
information from EPID images. A total of 2240 EPID fluence maps
were enrolled and subjected to the DNN model for training and
testing. The proposed model outperformed with a better prediction
accuracy (0.722) than other ML models and previous study results.

The OARs contain lenses, optic nerves, retina, and lacrimal glands
during orbital radiotherapy. AI-based algorithms can optimize the

procedure of restricted irradiation and reduce the potential risks,
which may be beneficial for TAO treatment. Other orbital diseases
requiring radiotherapy, such as mucosa-associated lymphoid tissue
lymphoma and optic nerve sheath meningioma, may also benefit from
AI applications.

Orbital decompression surgery

Orbital decompression surgery was introduced to solve the
conflict between excessive orbital contents and relatively inadequate
orbital volumes by removing parts of the orbital bony wall and fat
(Roncevic and Jackson, 1989). This surgery would serve as a salvage
operation only for uncontrollable exposure keratopathy or DON with
unresponsive GCs (Bartalena et al., 2021). It performs during a later
course of TAO management, when patients step into the inactive
phase with stable disfigurements (Limone et al., 2021).

Yoo et al. (2020) introduced a generative adversarial network
(GAN) model to predict postoperative appearance before
decompression surgery. A GAN could automatically synthesize
medical images by a generator module, which learns to map
samples from a random distribution to the specific distribution
(Iqbal and Ali, 2018). This transformation was conducted based on
the preoperative facial images. In brief, 109 pairs of matched
images were augmented for the proposed GAN model training.
These AI-synthesized images were semblable after their evaluation
compared with the actual postoperative facial images, whereas the
image quality was unsatisfactory. Besides, an additional training
set, containing 76 paired datasets and 1000 GAN-generated
datasets, was used to enhance the ability of the DL classifier
(based on VGG-16) for TAO identification (AUC, 0.872 vs.

TABLE 2 AI algorithms in treatment of TAO.

Authors
(Year)

Task Input data type Samples dataset AI model Accuracy AUC

Hu et al. (2022) Prediction of therapeutic
response to GCs in TAO

Orbital T2-weighted MRI
images

Training (n = 78) and
validation (n = 32) cohorts

LR
DT
SVM

- 0.968, 0.916
0.933, 0.857
0.919, 0.855

Wang et al.
(2021)

Developing a prediction
model for identifying
intravenous GCs response

Traditional clinical
information and PPVs
output by four AI models

278 untreated patients with
moderate-to-severe and
active TAO

Ongoing
study

Ongoing study Ongoing study

Jiang et al.
(2021)

Auto-segmentation of CTV
for TAO patients

Orbital CT images 121 patients undergoing
radiotherapy

FCN - -

Jiang et al.
(2020)

Improving the auto-
segmentation accuracy of
CTV in TAO

Orbital CT images 120 cases with moderate-
to-severe TAO

Stacked
neural
network

- -

Zhang et al.
(2021)

Detecting positioning error
in TAO radiotherapy

Radiomics analysis from
EPID

Treatment plans of
40 patients with TAO

SVM
KNN
XGBoost

- Positioning errors: all
above 0.90; direction
classification: 0.76,
0.91, 0.80

Dai et al.
(2021)

Identifying positioning error
in TAO radiotherapy

Radiomics data from EPID
transmission maps

40 TAO patient
radiotherapy plans

SVM
KNN
XGBoost
CNN

ML 1: 0.532-0.889
ML 2: 0.491-0.949
ML 3: 0.671-0.931
CNN: 0.689-0.949

ML 1: 0.778-0.945
ML 2: 0.682-0.989
ML 3: 0.779-0.990
CNN: 0.832-0.992

Liu et al. (2022) Position error classification
in radiotherapy of TAO

EPID fluence maps 2240 EPID fluence maps DNN 0.722 -

LR, logistic regression; DT, decision tree; SVM, support vector machine; PPV, positive predictive values; FCN, fully convolutional network; EPID, electronic portal imaging device; KNN, k-nearest

neighbors.
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0.957). The overview of discussed studies in treatment of TAO is
exhibited in Table 2.

Application of AI algorithms in privacy
safeguard of TAO

The physiognomic changes in patients can be crucial for a real-
time evaluation of the disease stage in the clinical diagnosis and
management of TAO. The storage of facial images is important,
which can also be used in AI training as mentioned earlier (Huang
et al., 2022; Karlin et al., 2022). The facial privacy of patients was
commonly anonymized by cropping images into a restricted area in
the overwhelming majority of data collection and literature reports.
Regarding ophthalmology, the retained field generally ranged from the
supraorbital arch to the infraorbital margin. However, this pattern
could not elude advanced facial recognition, while dropping some
meaningful clinical information (Clover et al., 2010).

Recently, a creative study on AI-assisted privacy protection was
published in Nature Medicine. Yang et al. (2022) introduced a novel
technology named the digital mask. This mask could be synthesized
with diagnostic information and without recognizable characteristics
in the original face depending on DL algorithms and three-
dimensional reconstruction. They carried out a prospective clinical
trial to evaluate the feasibility of this mask. A total of 420 patients
(from departments dealing with strabismus, pediatric ophthalmology,
TAO, and oculoplasty) were recruited, and 253 were confirmed with
associated ocular diseases through facial diagnosis. According to their
results, all the pixel errors in eyeball and eyelid reconstruction were
about 1%. Cohen’s κ values between 12 ophthalmologists and digital
masks demonstrated high consistency (κ = 0.801 for TAO and
0.845–0934 for other diseases). In the recognition-removal
experiments, the accuracy of recognition by respondents between
cropped pictures and masked images was 91.3% versus 27.3%.

Regarding AI recognition systems, Rank-1 was <0.02 for the three
AI models, indicating the extremely low possibility for the correct
identification of digital masked images. Besides, Yang et al. also
investigated the willingness of patients to share facial images, and
the result confirmed that the proposed digital mask did help.

Discussion

AI applications occupy an increasing important part in clinical
practice owing to their rapidity, precision, and economy. In
ophthalmology, many AI applications have achieved satisfactory
performance in diagnosing and predicting several retinal diseases
based on the contribution of widely used fundus images (Li et al.,
2018b; Nagasato et al., 2018; Peng et al., 2019). Unlike the majority of
ocular diseases, TAO is more specialized and has gained the attention
of fewer ophthalmologists, implying inadequate medical resources for
such patients. The burgeoning AI represents a promising future for
solving this problem.

The diagnosis and grading of TAO are highly comprehensive,
including the summarization of chief complaints and symptoms,
examination of external ocular signs, detection of thyroid function
and immunology, and assessment of orbital images (Smith and
Hegedüs, 2016). Facial images can be easily acquired using
smartphones, and automated AI algorithms can help identify
meaningful signs and provide diagnostic advice. Orbital CT and
MRI scans are broadly used, and the conventional images can be
converted into precise data for AI analysis, thus avoiding variable
subjective interpretation between observers. The response to GC
therapy and the occurrence of DON can also be predicted by AI-
aided image processing with digital standards.

Among these aforementioned studies, we found that developing
AI models to predict the postoperative appearance of orbital
decompression may worth more discussion. In a recent study,

FIGURE 1
The hypothetical pattern of AI applications in TAO clinical practice. The diagnosis and grading of TAO could be deduced by an integrated AI module
based on masked appearance, laboratory index and processed orbital images. The different therapy options could be optimized by AI assistances
automatically.
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Wickwar et al. (2018) conducted a qualitative study about patients’
expectations of orbital decompression surgery. It found that the
inability to completely imagine post-operative appearance caused
some anxieties, which may be greatly ameliorated by AI-
synthesized images. On the other hand, there were different
feelings on whether outcomes of surgery had met patients’
expectations. And possible strabismus or asymmetry may worsen
the situation (Del Monte, 2002). Thus, it would be more
reasonable for this kind of AI-assisted prediction to take these
factors into consideration. Overall, predicting postoperative
appearance by AI models does help propagandize orbital
decompression but still needs to be improved.

AI development in TAO has some challenges. Firstly, the
incidence of TAO can hardly be comparable to other ocular
diseases, especially cataracts and diabetes retinopathy (Shah and
Patel, 2022). CT and MRI examinations are also not as simple as
fundus photography and optical coherence tomography.
Attributed to these two factors the sample size of TAO-related
data is relatively low, substantially hindering the advance of AI
models in this field. Secondly, the exophthalmometry values and
orbital depths are significantly different between races (de Juan
et al., 1980; Tsai et al., 2006), implying that the AI model trained
based on Caucasian data may not be practicable for Chinese Asians,
and extra data collection is needed. Thirdly, some common
problems still exist. Many clinicians are reluctant to use AI
models in their practice due to the lack of understanding and
trust (Maddox et al., 2019), while most patients also prefer to meet
a doctor in reality (Keel et al., 2018). The AI-relevant laws and
social supervision cannot match the present technology. Under this
situation, we suggested that a TAO-related database collaborated
by domestic and international centers would play a vital role in AI
development. Establishing some AI pilot schemes in expert clinics
of TAO could also help the verification and generalization of AI
applications in TAO. Regarding the privacy of patients, the novel
introduced digital mask (Yang et al., 2022) can provide us an
admirable start to build the safeguard.

Although several challenges and problems stand in the way of
AI development in TAO, we still need to embrace this promising
technology. For further studies, it is foreseeable that the integration
of AI models using clinical signs and orbital images can create more
reliable AI-based systems for TAO diagnosis. Using AI algorithms,
we may separate the standard 12-week GC therapy and record
changes from intervals. The AI prediction for GC response can be
more precise with these data and help formulate the individual
treatment options for each patient with TAO. Through all-around

integration, the future scenario of AI applications in TAO may
develop as the flow chart in Figure 1.

Conclusion

In summary, the emerging AI algorithms may potentially
improve the accuracy of TAO diagnosis and reduce the
economic costs for patients to access qualified healthcare
resources. This automated technology can instantly help
optimize therapeutic strategies and surgical design during the
long course of TAO management. We believe that AI algorithms
may become vital in TAO clinical practice soon with the
continuous accumulation of TAO data and an improvement in
computing capacity.
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With the rapid development of computer technology, the application of artificial
intelligence (AI) in ophthalmology research has gained prominence in modern
medicine. Artificial intelligence-related research in ophthalmology previously
focused on the screening and diagnosis of fundus diseases, particularly
diabetic retinopathy, age-related macular degeneration, and glaucoma. Since
fundus images are relatively fixed, their standards are easy to unify. Artificial
intelligence research related to ocular surface diseases has also increased. The
main issue with research on ocular surface diseases is that the images involved are
complex, with many modalities. Therefore, this review aims to summarize current
artificial intelligence research and technologies used to diagnose ocular surface
diseases such as pterygium, keratoconus, infectious keratitis, and dry eye to
identify mature artificial intelligence models that are suitable for research of
ocular surface diseases and potential algorithms that may be used in the future.

KEYWORDS

artificial intelligence, deep learning, machine learning, ocular surface diseases,
convolutional neural network

1 Introduction

Artificial intelligence (AI) is a frontier field of computer science whose goal is to use
computers to solve practical issues (Rahimy, 2018). The concept was introduced at a
workshop at Dartmouth College in 1956 (Lawrence et al., 2016). The conference
discussed the relevant theories and principles of machine simulation intelligence. Since
then, the development of AI has been unstable due to limited technical conditions and levels.
Nevertheless, with the rapid development of computer technology, the application of AI in
medical research has become a hot topic in modern technology. Recently, healthcare has
become one of the frontiers of AI applications, particularly for image-centric subspecialties
such as ophthalmology (Ting et al., 2019), cardiology (Dey et al., 2019), radiology (Saba et al.,
2019), and oncology (Niazi et al., 2019), among others. They adopt big data technology to
collect massive clinical data and images and apply big medical data to AI to guide or assist
doctors in clinical decision-making through the supercomputing power and data mining
ability of cloud computing. AI can obtain disease characteristics from the training set and
apply them to a verification or test set to diagnose the corresponding disease. AI can segment
anatomical structures such as abnormal shapes in the images. AI can also classify images into
different types according to the characteristics of diseases. The algorithms of AI include
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traditional machine learning (ML) algorithm and deep learning
(DL) algorithm. The traditional ML algorithms mainly include
linear regression, logical regression, support vector machine
(SVM), decision tree and random forest (RF) algorithms, and
usually do not involve large-scale neural networks. DL algorithm
mainly uses multimedia data sets (such as images, videos, and
sounds), and usually involves the application of large-scale neural
networks, including artificial neural network (ANN), convolutional
neural network (CNN), and recurrent neural network (RNN).

Previously, most studies on the application of AI in
ophthalmology focused on glaucoma (Devalla et al., 2018;
Kucur et al., 2018; Asaoka et al., 2019; Wang M. et al.,
2019), fundus diseases (Gulshan et al., 2016; Burlina et al.,
2017; Ting et al., 2017; Venhuizen et al., 2018; Nagasato et al.,
2019), and cataracts (Gao et al., 2015; Yang et al., 2016; Long
et al., 2017; Wu et al., 2019; Xu et al., 2020). Compared to
diagnosing retinal diseases, which largely depend on fundus
images acquired from ophthalmoscopy or fundus
photography, multiple examinations are required to
diagnose ocular surface diseases, considering the complexity
of their structural and physiological functions. In recent years,
with the expansion of AI in ophthalmology, increasing
research has applied AI to ocular surface diseases such as
pterygium, keratoconus (KC), infection keratitis, and dry

eye. Herein, we reviewed research on the application of AI
in the field of ocular surface-related diseases to guide clinical
work. The remainder of this paper consists of the following:
Sections 2–7 provides the efficiency of AI in diagnosing ocular
surface diseases, pterygium, KC, infectious keratitis, dry eye,
and other ocular surface diseases.

The image examples of ocular surface diseases and image
modalities to diagnose each corneal disease is presented in
Figure 1. The main image modalities of ocular surface diseases
include anterior segment photograph, pentacam, slit-lamp images
and Keratograph 5M, etc.

2 Search methods

A systematic literature search was performed in PubMed and
Web of science. The goal was to retrieve as many studies as possible
applying ML to ocular surface disease related data. The following
keywords were used: All combinations of “ocular surface,”
“pterygium,” “keratoconus,” “keratitis,” “dry eye,” and
“meibomian gland dysfunction (MGD)” with “artificial
intelligence,” “machine learning,” “deep learning,” “convolutional
neural network,” “decision tree.” No time period limitations were
applied for any of the searches.

FIGURE 1
Ocular surface diseases and image modalities. (A) The main imaging modality of pterygium is anterior segment photograph. (B) The main imaging
modality of keratoconus is pentacam. (C) Themain imagingmodality of infectious keratitis is slit-lamp images. (D) Themain imagingmodality of dry eye is
Keratograph 5M.
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3 AI application in pterygium

Pterygium is a common eye disorder in which abnormal
fibrovascular tissue protrudes from the inner side of the eyes
toward the corneal area (Zulkifley et al., 2019). Since it is
directly linked to excessive exposure to ultraviolet radiation,
farmers and fishermen are the two high-risk groups (Gazzard
et al., 2002; Abdani et al., 2019). This condition can be better
managed when patients know about this disease early.
Moreover, pterygium tissues or lesions encroach on the pupil
area at the latter stage, possibly causing vision impairment
(Tomidokoro et al., 2000; Clearfield et al., 2016; Wang F.
et al., 2021). Currently, the grading of pterygium is mainly
based on the subjective evaluation of doctors. Therefore, AI can
be used to develop an efficient automatic grading system for
pterygium (Hung et al., 2022). In vast rural and remote areas
that lack professional medical resources for ophthalmology, AI
diagnostic technology can provide local patients with a
convenient pterygium screening method, prevent the rush of
patients to county or prefectural hospitals for medical care, and
reduce the burden on patients. Furthermore, it suggests
treatment methods, clarifies the indications for further
surgical treatment, facilitates the timely referral of patients
needing surgery at the grassroots level, and rationally
allocates medical resources. Table 1 mainly reviews AI
applications for the diagnosis of pterygium.

In 2012, Gao et al. (2012) proposed a pterygium detection
system based on color information. Interestingly, the pupil
detection technique, which uses corneal images, achieved 85.38%
accuracy. Similarly, Mesquita and Figueiredo (2012) applied a circle
hough transform to segment the iris. Subsequently, a region-
growing algorithm based on Otsu’s algorithm is applied to the
iris’s segmented area to segment the pterygium tissue. Wan Zaki
et al. (2018) developed an image-processing method based on ASP
using the following four modules to differentiate pterygium from
normal: preprocessing, corneal segmentation, feature extraction,
and classification. Image-processing method performance was
evaluated using a SVM and an ANN. The performance of the
proposed image-processing method generated results of 88.7%,
88.3%, and 95.6% for sensitivity, specificity, and area under the
curve (AUC), respectively. However, the imperfect image setup
should also be noted as a limitation. Abdani et al. (2020) and
Abdani et al. (2021) proposed an automatic pterygium tissue
segmentation using CNN. This is useful for detecting pterygium
from the early stage to the late stage. The overall accuracy of both
studies is high [92.20% (Abdani et al., 2020), 93.30% (Abdani et al.,
2021)].

Zhang et al. (2018) also used a deep DL diagnosis system that
can automatically diagnose various eye diseases based on the
patient’s ASP and provide diagnosis-based targeted treatment
recommendations. Specifically, the last stage provides treatment
advice based on medical experience and AI strictly associated

TABLE 1 Summary of studies focused on computer-aided pterygium diagnosis.

Year Authors Imaging
modality

Image
size

Databases AI
algorithms

AUC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IoU
(%)

2018 Wan Zaki
et al. (2018)

ASP 3,017 Normal and
pterygium

SVM/ANN 95.60 91.27 88.70 88.30 —

2018 Zhang et al.
(2018)

ASP 1,513 Normal, pterygium,
keratitis,

subconjunctival
hemorrhage, and

cataract

CNN/Faster-
RCNN

95.95 >95.00 97.45 71.15 —

2019 Zulkifley
et al. (2019)

ASP 120 Normal and
pterygium

FCNN 97.0 81.10 95.0 98.3 —

2020 Abdani
et al. (2020)

ASP 328 Ranging from early to
late stage of
pterygium

CNN — 92.02 — — 92.02

2021 Xu W. et al.
(2021)

ASP 1,220 Normal, observation
(pterygium) and

operation (pterygium)

DL
(EfficientNet-

B6)

>93.00 94.68 >90.00 >95.00 —

2021 Abdani
et al. (2021)

ASP 328 Ranging from early to
late stage of
pterygium

CNN — 93.30 — — 86.40

2021 Fang et al.
(2022)

ASP 9,443 Pterygium and
referable pterygium

CNN ≥98.50 ≥95.2 ≥94.0 ≥95.30 —

2022 Hung et al.
(2022)

SLI 237 Normal, primary and
recurrent pterygium

DL — 80.00 66.67 81.82 —

2022 Wan et al.
(2022)

ASP 489 Normal, observation
(pterygium) and

operation (pterygium)

DL(U-Net++) 95.86 92.37 90.24 93.51

>86.40 AUC, area under the curve; IoU, intersection over union; ASP, anterior segment photograph; SVM, support vector machine; ANN, artificial neural networks; CNN, convolutional

neural network; Faster-RCNN, faster-region based convolutional neural network; FCNN, fully convolutional neural networks; DL, deep learning; SLI, slit-lamp images.
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with pterygium (accuracy, >95%). Zulkifley et al. (2019)
proposed a DL approach (Pterygium-Net) based on fully
convolutional neural networks (FCNN) with the help of
transfer learning to detect and localize the pterygium
automatically. Pterygium-Net produces high average detection
sensitivity and specificity of 0.95 and 0.983, respectively. As for
pterygium tissue localization, the algorithm achieves
0.811 accuracies with a meager failure rate of 0.053. Xu W.
et al. (2021) developed a unique intelligent diagnosis system
based on DL to diagnose pterygium (Figure 2 depicts the
architectural diagram of EfficientNet-B6, created by Xu et al.).
Experts and the AI diagnosis system categorized the images into
the following three categories: normal, pterygium observation,
and pterygium surgery. Moreover, the accuracy rate of the AI
diagnostic system on the 470 tested images was 94.68%,
diagnostic consistency was high, and kappa values of the three
groups were above 85%. The AI, pterygium diagnosis system, can
not only judge the presence of pterygium but also classify the
severity of pterygium. Fang et al. (2022) evaluated the
performance of a DL algorithm for the detection of the
presence and extent of pterygium based on ASP taken from

slit-lamp and handheld cameras. The AI algorithm could
detect the presence of referable-level pterygium with optimal
sensitivity and specificity. A handheld camera might be a simple
screening tool for detecting reference pterygium.

Hung et al. (2022) proposed a DL system to predict pterygium
recurrence. The AI algorithm shows high specificity (80.00%) but
low sensitivity (66.67%) in predicting pterygium recurrence.
Wan et al. (2022) proposed a DL system for measuring the
pathological progression of pterygium. These are essential for
achieving accurate medical diagnosis and can conveniently assist
ophthalmologists in timely detecting pterygium status and
arranging surgery strategies. In addition to the
abovementioned application of AI to the segmentation and
diagnosis of pterygium, Kim et al. (2022) developed AI
software for quantitative analysis of the immunochemical
image of pterygium. They concluded that the AI software
might improve the reliability and accuracy of evaluating
histopathological specimens obtained after ophthalmological
surgery. The above research shows that the AI model can
achieve satisfactory results in the diagnosis and classification
prediction of pterygium.

FIGURE 2
Architectural diagram of EfficientNet-B6 (Xu W. et al., 2021). (A) Basic architecture. (B) Structure of block 1. (C) Structure of blocks 2–7.
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TABLE 2 Summary of studies focused on computer-aided KC diagnosis.

Year Authors Imaging
modality

Image
size

Databases AI
algorithms

AUC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IoU
(%)

1997 Smolek and Klyce
(1997)

TMS-1 300 KC, KCS, and
others

CNN — 100.00 100.00 100.00 —

2002 Accardo and
Pensiero (2002)

EyeSys 396 Normal, KC, and
others

CNN — 96.70 94.10 97.60 —

2005 Twa et al. (2005) Keratron 244 Normal and KC MLC 97.00 92.00 92.00 93.00 —

2010 Souza et al. (2010) Orbscan II 318 Normal,
astigmatism, KC,

and PRK

SVM/MLP/
RBFNN

>98.00 — 100.00 98.00 —

2012 Arbelaez et al.
(2012)

Sirius 3,502 Normal, SKC,
KC and PRK

SVM — 98.20 95.00 99.30 —

2013 Smadja et al.
(2013)

Galilei 372 Normal, FFKC,
and KC

MLC — — 99.50 100.00 —

2016 Ruiz Hidalgo et al.
(2016)

Pentacam 860 Normal,
astigmatism,
FFKC, KC,
and PRK

SVM/MLC 99.80 98.90 99.10 98.50 —

2016 Kovács et al.
(2016)

Pentacam 135 Normal fellow
eyes with

unilateral KC,
bilateral KC,
and PRK

CNN/MLC 99.00 — 100.00 95.00 —

2018 Yousefi et al.
(2018)

CASIA
AS-OCT

3,156 Normal, FFKC,
mild KC, and
advanced KC

Unsupervised
ML

— — 97.70 94.10 —

2019 Zou et al. (2019) Pentacam 2018 Normal, SKC,
and KC

SVM-RFE/
GBDT

99.82 98.91 76.92 100 —

2019 Dos Santos et al.
(2019)

UHR-OCT 20,160 Normal and KC CNN
(CorneaNet)

— 99.56 >99.30 — >98.50

2019 Issarti et al. (2019) Pentacam 838 Normal and KCS
and mild-

moderate KC

FFN — 96.56 97.78 95.56 —

2019 Kamiya et al.
(2019)

CASIA
AS-OCT

304 Normal and
grade 1–4 KC

CNN — 99.10 100 98.40 —

2019 Lavric and
Valentin (2019)

SyntEyes 400 Normal and KC CNN — 99.33 — — —

2020 Kuo B. I et al.
(2020)

TMS-4+
Pentacam +
Corvis ST

354 Normal, SKC,
and KC

CNN 99.50 95.80 94.40 97.20 —

2020 Abdelmotaal et al.
(2020)

Pentacam 3,218 Normal, SKC,
and KC

CNN/SVM — >95.50 >92.00 >92.00 —

2020 Shi et al. (2020) Pentacam +
UHR-OCT

121 Normal, SKC,
and KC

MLC 100 — 100 100 —

2020 Xie et al. (2020) Pentacam 6,465 Normal,
suspected

irregular cornea,
early KC, KC,
and PRK

CNN/TL 99.90 95.0 97.80 99.20 —

2020 Cao et al. (2020) Pentacam 88 Normal and SKC RF 96.00 87.00 88.00 85.00 —

2021 Cao et al. (2021) Pentacam 267 Normal and SKC RF — 98.00 97.00 98.00 —

2021 Al-Timemy et al.
(2021)

Pentacam 3,794 Normal, KCS,
and KC

CNN/SVM 99.00 97.70 — — —

(Continued on following page)
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4 AI application in KC

KC is a non-inflammatory, asymmetric, ectatic corneal disorder
characterized by progressive thinning and impaired vision (Henein
and Nanavaty, 2017; Mas Tur et al., 2017). Since the signs of
intermediate and advanced KC are quite common, clinical
diagnosis is straightforward (Gomes et al., 2015). Atypical KC
includes KC suspect (KCS), forme fruste KC (FFKC), and
subclinical KC (SKC). Unfortunately, these atypical KC
symptoms and signs are not obvious and are difficult to diagnose
based on general examination results. However, most of the KC
studies analyzed the corneal morphological metrics from Pentacam.
AI-based corneal morphological metrics can provide early KC
detection. Moreover, early AI research on KC relied on corneal

topography data for neural network training to distinguish KC from
other corneal abnormalities such as astigmatism, corneal
transplantation, and post-photorefractive keratectomy (PRK).
Table 2 mainly reviews AI applications for the diagnosis of KC.

The advantage of these AI algorithms lies in the potential to help
clinicians differentiate between KC and normal eyes. In 1997,
Smolek and Klyce (1997) designed a classification neural network
for KC screening to detect the existence of KC or KCS. In total,
10 topographic indices were used as the network inputs. The AI
model showed 100% accuracy, specificity, and sensitivity for the test
set. Accardo and Pensiero (2002) proposed an ANN method to
identify KC from corneal topographies. The results showed a global
sensitivity and specificity of 94.1% (with a KC sensitivity of 100%)
and 97.6% (98.6% for KC alone) in the test set, respectively. This

TABLE 2 (Continued) Summary of studies focused on computer-aided KC diagnosis.

Year Authors Imaging
modality

Image
size

Databases AI
algorithms

AUC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IoU
(%)

2021 Herber et al.
(2021)

Pentacam +
Corvis ST

434 Normal, mild,
moderate, and
advanced KC

eyes

RF 97.00 93.00 91.00 94.00 —

2021 Castro-Luna et al.
(2021)

Pentacam +
Corvis ST

81 Normal and SKC RF — 89.00 86.00 93.00 —

2021 Kamiya et al.
(2021a)

TMS-4 349 Normal and
grade 1–4 KC

CNN 99.70 96.60 98.80 94.40 —

2021 Chen et al. (2021) Pentacam 1926 Normal and
grade 1–4 KC

CNN 94.23 97.85 98.46 90.00 —

2021 Malyugin et al.
(2021)

Pentacam 800 Normal and
grade 1–4 KC

ML/QDA 97.00 97.00 — — —

2021 Ghaderi et al.
(2021)

Pentacam 450 Normal and
grade 1–3 KC

MLP/ANFIS — 98.20 99.10 96.20 —

2021 Kamiya et al.
(2021b)

CASIA
AS-OCT

218 Non-progressive
and

progressive KC

CNN — 84.90 95.50 58.10 —

2021 Kato et al. (2021) Pentacam 274 Non-progressive
and

progressive KC

CNN 81.40 — 77.80 69.60 —

2021 Kundu et al.
(2021)

MS-39 1,122 Normal, VAE,
and KC

RF/ZP 99.70 99.10 98.70 — —

2021 Aatila et al. (2021) CASIA
AS-OCT

12, 242 Normal, FFKC,
mild KC, and
advanced KC

RF 100 98.00 98.00 — —

2022 Mohammadpour
et al. (2022)

Pentacam,
Sirius and
OPD-
Scan III

212 Normal, SKC,
and KC

MLC — 91.24 80.00 96.60 —

2022 Tan et al. (2022) Corvis ST 354 Normal and KC FFN — 99.60 99.30 100 —

2022 Ahn et al. (2022) Pentacam 1,246 Normal, SKC,
and KC

Ensemble — 85.40 96.40 83.10 —

2022 Xu et al. (2022) Pentacam 1,108 Normal, AKC,
and KC

CNN 100 98.77 98.48 98.96 —

KC, keratoconus; KCS, keratoconus suspect; MLC, machine learning classification; PRK, photorefractive keratectomy; MLP, multi-layer perceptron; RBFNN, radial basis function neural

network; SKC, subclinical keratoconus; FFKC, forme fruste keratoconus; AS-OCT, anterior segment optical coherence tomography; ML, machine learning; RFE, recursive feature elimination;

GBDT, gradient boosting decision tree; UHR-OCT, ultra-high-resolution optical coherence tomography; FFN, feedforward neural network; TL, transfer learning; RF, random forest; QDA,

quadratic discriminant analysis; ANFIS, adaptive network-based fuzzy inference system; VAE, very asymmetric ectasia; ZP, zernike polynomials; AKC, asymmetric keratoconus. TMS: A

computer-assisted videokeratoscope (Tomey Corporation, Nagoya, Japan). MS-39: A hybrid tomographer (CSO, Florence, Italy).
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study elevates the potential of AI for the automatic screening of early
KC, pointing out that simultaneously using the topographic
parameters of both eyes improves the discriminative capability of
the ANN. Twa et al. (2005) described applying decision tree
induction, an automated machine learning classification (MLC)
approach, to objectively and quantitatively differentiate between
normal and KC corneal shapes. The results showed an accuracy of
92% and an area under the receiver operating characteristic (ROC)
curve of 0.97. Arbelaez et al. (2012) employed the SVM algorithm to
integrate data from the corneal surfaces and pachymetry into the
model. Interestingly, precision was improved the most when
posterior corneal surface data were included, particularly in SKC
cases. Additionally, this AI approach increases its sensitivity from
89.3% to 96.0%, 92.8% to 95.0%, 75.2% to 92.0%, and 93.1% to 97.2%
in abnormal eyes, eyes with KC, those with SKC, and normal eyes,

respectively. Therefore, the diagnostic accuracy of the AI approach
was further improved by including the posterior corneal surface and
corneal thickness data. Smadja et al. (2013) applied an MLC to
discriminate between normal eyes and KC with 100% sensitivity and
99.5% specificity and between normal and FFKC with 93.6%
sensitivity and 97.2% specificity. The MLC showed excellent
performance in discriminating between normal eyes and FFKC,
thus providing a tool closer to automated medical reasoning. This AI
might undoubtedly enable clinicians to detect FFKC before
refractive surgery. However, its effect requires further validation
since only 372 eyes of 197 patients were included. Similarly, Ruiz
Hidalgo et al. (2016) classified 860 eyes into five groups by
combining 22 parameters obtained from Pentacam measurements
and conducted MLC training. Consequently, the accuracy of the
FFKC versus normal task was 93.1%, with 79.1% sensitivity and

FIGURE 3
Using CorneaNet, the thicknesses of the epithelium, stroma, and Bowman’s layer were computed in a normal and a KC case (Dos Santos et al., 2019).
The healthy case shows close to uniform thicknesses for all three layers. In contrast, for the KC case, the epithelium and stroma are thinner in a specific
region of the cornea, and Bowman’s layer is thicker. (A–C) Thickness calculation in one tomogram. (A)UHR-OCT tomogram of a keratoconus patient, (B)
corresponding labels map computed using CorneaNet. (B) Thicknesses of the three corneal layers computed using the label maps. (D–F) Thickness
maps in a healthy subject case. (G–I) Thickness maps in a keratoconus case. The thickness scale bar is shared by the maps horizontally. Scale bar: 1 mm.
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97.9% specificity for the FFKC discrimination. Considering the
difference between eyes, Kovács et al. (2016) included a “bilateral
data” parameter and used a neural network algorithm for modeling.
This system on bilateral data of the index of height decentration had
a higher accuracy than a single unilateral parameter in
differentiating the eyes of all patients with KC from control eyes
(area under ROC, 0.96 versus 0.88). Yousefi et al. (2018) developed
an unsupervised ML algorithm and applied it to identify and
monitor KC stages. Four hundred and twenty corneal
topographies, elevations, and pachymetric parameters were also
measured. Notably, the specificity of this AI method for
identifying normal eyes from those with KC was 94.1%, and the
sensitivity for identifying KC in normal eyes was 97.7%. Therefore,
this technique can be adopted in corneal clinics and research settings
to better diagnose and monitor changes and improve our
understanding of corneal changes in KC. Zou et al. (2019) also
investigated the diagnosis of healthy corneas, SKC, and KC through
ML modeling using Pentacam data of participants in 2018. The
diagnostic accuracy of this model for SKC and normal corneas was
95.53% and 96.67%, respectively, and the AUC of the validation set
was 99.36%. Conversely, the accuracy of diagnosis of KC and normal
corneas was 98.91%, and the AUC of the validation set was 99.82%.
The diagnostic accuracy of the model was 95.53%, which was
significantly better than the resident’s with 93.55%. Dos Santos
et al. (2019) employed a custom-built ultra-high-resolution OCT
(UHR-OCT) system to scan 72 and 70 normal and KC eyes,
respectively. Overall, 20,160 images were labeled and used for
training in a supervised learning approach. A custom neural
network architecture, CorneaNet [Figure 3 depicts CorneaNet,
created by Dos Santos et al. (2019)], was designed and trained.
This study revealed that CorneaNet could segment both normal and
KC images with high accuracy (validation accuracy, 99.56%).
Interestingly, CorneaNet could detect KC early and, more
generally, examine other diseases that change corneal
morphology. Issarti et al. (2019) established a stable, low-cost
computer-aided diagnosis (CAD) system for early KC detection.
CAD combines a custom-made mathematical model, feedforward
neural network (FFN), and Grossberg-Runge Kutta architecture to
detect and suspect KC clinically. The final diagnostic accuracy
was >95% for KCS, mild KC, and moderate KC. The algorithm
also provides a 70% reduction in computation time while increasing
stability and convergence regarding traditional ML techniques.

Some studies have focused on staging KC severity. Kamiya et al.
(2019) applied the DL of color-coded maps, measured using swept-
source AS-OCT, to evaluate the diagnostic accuracy of KC. They
included a total of 304 eyes [grades 1 (108 eyes), 2 (75 eyes), 3
(42 eyes), and 4 (79 eyes)] according to the Amsler–Krumeich
classification and 239 age-matched healthy eyes. This AI system
effectively discriminated KC from normal corneas (99.1% accuracy)
and further classified the grade of the disease (87.4% accuracy). Two
studies used topography images to detect and stage KC (Kamiya
et al., 2021a; Chen et al., 2021). Both studies had high overall
accuracies [78.5% (Kamiya et al., 2021a), 93% (Chen et al.,
2021)], with better performance on color-coded maps than the
raw topographic indices. Malyugin et al. (2021) trained an ML
model using topography images and visual acuity to classify KC
stages based on the Amsler–Krumeich classification system. The
model’s overall classification accuracy was 97%, highest for stage

4 KC and lowest for FFKC. Another study trained an ensemble CNN
on Pentacam measurements to differentiate between normal eyes
and early, moderate, and advanced KC with a staging accuracy of
98.2% (Ghaderi et al., 2021). Other studies have focused on detecting
KC progression, though each study had varying definitions of
disease progression. The first study trained a CNN model on AS-
OCT images, achieving an 84.9% accuracy in discriminating KC
with and without progression (Kamiya et al., 2021b). Another study
trained an AI model to predict KC progression and the need for
corneal crosslinking using tomography maps and patient age with
an AUC of 0.814 (Kato et al., 2021).

Lavric and Valentin (2019) proposed a corneal detection
algorithm using CNN to analyze and detect KC and obtained an
accuracy rate of 99.33%. Kuo B. I et al. (2020) developed a DL
algorithm for detecting KC based on a computer-assisted
videokeratoscope (TMS-4), Pentacam and Corvis ST. The AI
model has high sensitivity and specificity in identifying KC.
Abdelmotaal et al. (2020) used a domain-specific CNN to
implement DL. The CNN performance was assessed using
standard metrics and detailed error analyses, which include
network activation maps. Accordingly, the CNN categorized four
map-selectable display images, with average accuracies of 0.983 and
0.958 for the training and test sets, respectively. Furthermore, Shi
et al. (2020) created an automated classification system that used
MLC to distinguish clinically unaffected eyes in patients with KC
from a normal population by combining Scheimpflug camera
images and UHR-OCT imaging data. Interestingly, this AI model
dramatically improved the differentiable power to discriminate
between normal eyes and those with SKC (AUC = 0.93). The
epithelial features extracted from the OCT images were the most
valuable for the discrimination process. Cao et al. (2021) developed a
new clinical decision-making system based on ML, automatically
detecting SKC with high accuracy, specificity and sensitivity.
Mohammadpour et al. (2022) developed a classifier based on AI,
which can help detect early keratoconus. Al-Timemy et al. (2021)
trained a hybrid-CNN model to identify features and then used it to
train an SVM to detect KC. The final AI model had a 97.70%
accuracy in differentiating normal from KC eyes and 84.40% in
differentiating normal, KCS, and KC based on the merged
development subset and independent validation subset. Kundu
et al. (2021) established a universal architecture of combining
AS-OCT and AI. It achieves an excellent classification of normal
and KC. This AI model effectively classified very asymmetric ectasia
(VAE) eyes as SKC and FFKC. Tan et al. (2022) developed a novel
method based on biomechanical parameters calculated from raw
corneal dynamic deformation videos to quickly and accurately
diagnose KC using ML (99.6% accuracy). Ahn et al. (2022)
developed and validated a novel AI model to determine a
diagnosis of KC based on basic ophthalmic examinations,
including visual impairment, best-corrected visual acuity,
intraocular pressure (IOP), and autokeratometry. Xu et al. (2022)
developed a deep learning-derived classifier (KerNet) that is helpful
for distinguishing clinically unaffected eyes in patients with
asymmetric keratoconus (AKC) from normal eyes.

Other studies have compared AI algorithms to detect KC. Souza
et al. (2010) used three algorithms: SVM, multi-layer perceptron,
and radial basis function neural networks. Notably, the three
selected classifiers performed optimally, with no significant
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differences between their performance. Cao et al. (2020) found the
RF model outperformed other ML algorithms using tomographic
and demographic data. Herber et al. (2021) found that the RF model
had good accuracy in predicting healthy eyes and various stages of
KC. The accuracy was superior to that of the linear discriminant
analysis model. Castro-Luna et al. (2021) also found that the RF
outperformed the decision tree model (89% accuracy vs. 71%,
respectively), while Aatila et al. (2021) found the RF model to
have the highest accuracy when compared with other ML models
in detecting all classes of KC.

AI has been used to screen potential candidates for refractive
surgery besides detecting KC. For example, Xie et al. (2020)
established a system centered on the AI model Pentacam
InceptionResNetV2 Screening System (PIRSS) to screen normal
corneas, suspected irregular corneas, early stage KC, KC, and PRK
corneas. The PIRSS system achieved an overall detection accuracy
of 95%, similar to that of specialists who were refractive surgeons
(92.8%). Recently, Hosoda et al. (2020) have identified KC-
susceptibility loci by integrating genome-wide association study
(GWAS) with AI, demonstrating that computational techniques
combined with GWAS can help identify hidden relationships

between disease susceptibility genes and potential susceptibility
genes. The above research shows that the AI model is close to an
experienced ophthalmologist in the classification and grading
of KC.

5 AI application in infectious keratitis

Infectious keratitis is one of the most common corneal diseases
that significantly causes visual impairment (Papaioannou et al.,
2016; Austin et al., 2017; Flaxman et al., 2017; Ung et al., 2019).
The disease can be categorized into different types, such as bacterial
keratitis (BK) (Tuft et al., 2022), fungal keratitis (FK) (Sharma et al.,
2022), herpes simplex virus stromal keratitis (HSK) (Banerjee et al.,
2020), or Acanthamoeba keratitis (AK) (de Lacerda and Lira, 2021).
Early detection and timely medical intervention of keratitis can
prevent the disease progression, thus attaining a better prognosis
(Austin et al., 2017; Lin et al., 2019). However, if not diagnosed and
treated promptly, keratitis may lead to significant vision loss and
corneal perforation (Watson et al., 2018). The diagnosis of infectious
keratitis mostly depends on discriminatively identifying the visual

TABLE 3 Summary of studies focused on computer-aided infection keratitis diagnosis.

Year Authors Imaging
modality

Image
size

Databases AI
algorithms

AUC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IoU
(%)

2003 Saini et al.
(2003)

Clinical data 63 Fungal ulcers/
Bacterial ulcers

ANN — 90.70 76.47/100.00 100.00/76.47 —

2017 Sun et al.
(2017)

FSI 48 Corneal ulcers DCNN — 86.00 (Dice) 82.00 99.00 —

2018 Wu et al.
(2018)

CM 378 Normal and FK ARBP/SVM 99.01 99.74 100.00 99.45 —

2019 Liu et al.
(2020)

CM 1,213 Normal and FK DCNN/HMF — 99.95 99.90 100.00 —

2020 Lv et al.
(2020)

CM 2088 Normal and FK ResNet 97.69 93.64 82.56 98.89 —

2020 Kuo M. T
et al. (2020)

SLI 288 FK and others CNN
(DenseNet)

65.00 69.40 71.10 68.40 —

2021 Mayya et al.
(2021)

SLI 540 FK, BK, HSK,
AK, and others

MS-CNN — 88.96 90.67 87.57 —

2021 Xu F. et al.
(2021)

CM 1,089 FK and BK CNN 98.30 94.20 92.70 95.50 —

2021 Xu Y. et al.
(2021)

SLI 115, 408 FK, BK, HSK,
and others

CNN/TL ≥92.00 80.00 — — —

2021 Li Z. et al.
(2021)

SLI 13, 557 Normal, keratitis,
and others

DL
(DenseNet121)

99.80 98.0 97.70 98.20 —

2021 Hung et al.
(2021)

SLI 1,330 FK and BK CNN
(DenseNet161)

85.00 78.60 65.80 87.3 —

2021 Koyama et al.
(2021)

SLI/FSI 4,306 FK, BK, HSK,
and AK

DL/GBDT ≥94.60 ≥90.7 — — —

2022 Zhang et al.
(2022a)

SLI 4,830 FK, BK, HSK,
and AK

CNN ≥86.00 ≥70.27 ≥70.00 — —

2022 Ghosh et al.
(2022)

SLI 2,167 FK and BK CNN 90.40 83.00 77.00 — —

FSI, fluorescein staining image; DCNN, deep convolutional neural network; CM, confocal microscopy; FK, fungal keratitis; ARBP, adaptive robust binary pattern; HMF, histogram matching

fusion; SLI, slit-lamp images; BK, bacterial keratitis; HSK, herpes simplex virus stromal keratitis; AK, acanthamoeba keratitis; MS-CNN, multi-scale convolutional neural network.
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features of the infectious lesion in the cornea by a skilled
ophthalmologist. AI analysis has been introduced into the field of
keratitis diagnosis for automatic real-time identification of abnormal
components in corneal images, thereby assisting ophthalmologists
in rapidly diagnosing infectious keratitis. Table 3 mainly reviews AI
applications for the diagnosis of infectious keratitis.

In 2003, Saini et al. (2003) assessed the usefulness of ANN for
classifying infective keratitis. The trained ANN correctly classified
all 63 and 39 of 43 corneal ulcers in the training and test sets,
respectively. Specificity for bacterial and fungal categories was
76.47% and 100%, respectively. The accuracy of the ANN was
90.7% and was significantly better than that of the
ophthalmologist’s predictions (62.8%). These preliminary results
suggest that using neural networks to interpret corneal ulcers
requires further development. In 2017, Sun et al. (2017)
established a new technique to automatically identify corneal
ulcer sites using fluorescein staining images based on a CNN
that labels each pixel in the staining image as an ulcer or a
non-ulcer. The AI method had a mean Dice overlap of
0.86 compared with the manually delineated gold standard. In
2018, Patel et al. (2018) evaluated the variability of corneal ulcer
measurements between cornea specialists and reduced clinician-
dependent variability using semi-automated segmentation of
ulcers from photographs. Wu et al. (2018) classified normal and
FK images based on the newly proposed texture analysis method,
adaptive robust binary pattern (ARBP), and the SVM,
preprocessed abnormal images to enhance targets and employed
the line segment detector algorithm to detect hyphae. Interestingly,
it could perfectly separate abnormal from normal corneal images
with an accuracy of 99.74%. Liu et al. (2020) proposed a new CNN
framework for automatically diagnosing FK using data
augmentation and image fusion. This study indicated that the
accuracy of conventional AlexNet and VGGNet were 99.35% and
99.14%, those of AlexNet and VGGNet based on mean fusion were
99.80% and 99.83%, and those of AlexNet and VGGNet based on
histogram matching fusion (HMF) were 99.95% and 99.89%.
Additionally, this novel CNN framework perfectly balances

diagnostic performance and computational complexity and can
improve real-time performance in diagnosing FK.

Lv et al. (2020) developed an AI system based on the DL
algorithm for the automated diagnosis of FK in IVCM images.
The AI system exhibited satisfactory diagnostic performance
(93.64% accuracy) and effectively classified FK in various IVCM
images. Xu F. et al. (2021) established an interpretable AI (XAI)
system based on Gradient-weighted Class Activation Mapping
(Grad-CAM) and Guided Grad-CAM and used IVCM images for
FK detection. With better interpretability and explainability, XAI-
assistance assistance increased the accuracy (94.2%) and sensitivity
(92.7%) of competent and novice ophthalmologists significantly
without reducing specificity (95.5%). Two studies used SLI
images to detect FK (Kuo M. T et al., 2020; Mayya et al., 2021).
The diagnostic rate of FK in one study is 69.40% (Kuo M. T et al.,
2020), while that of the other study is 88.96% (Mayya et al., 2021).
Xu Y. et al. (2021) designed a sequential-level deep model to
discriminate infectious corneal diseases effectively by classifying
clinical images based on more than 1,10,000 SLI. The model
achieved a diagnostic accuracy of 80%, much better than the
49.27% diagnostic accuracy of 421 ophthalmologists.
Furthermore, Li Z. et al. (2021) developed an AI system for the
automated classification of keratitis, other corneal abnormalities,
and normal corneas based on 6,567 SLI (Figure 4 depicts the
workflow of the DL system in clinics, which was created by Li
et al.). This AI system showed remarkable performance in cornea
images captured by different digital slit-lamp cameras and a
smartphone with the super macro mode (all AUCs >0.96).
Additionally, the system performed similarly to that of
ophthalmologist specialists in classifying keratitis, cornea with
other abnormalities, and normal corneas.

Furthermore, Hung et al. (2021) applied different CNN to
differentiate between BK and FK using SLI. The DL algorithm
achieved an average accuracy of 80.0%. Additionally, the
diagnostic accuracy for BK and FK ranged from 79.6% to 95.9%
and 26.3% to 65.8%, respectively. Koyama et al. (2021) adopted a DL
architecture for facial recognition and applied it to determine the

FIGURE 4
Workflow of the DL system in clinics for detecting abnormal cornea findings (Li Z. et al., 2021).
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probability score for specific pathogens that cause keratitis. 4,306 SLI
were studied, including 312 images from internet publications on
keratitis caused by bacteria, fungi, acanthamoeba, and HSV. The
developed algorithm had a high overall accuracy; for diagnosis, the
accuracy/AUC for AK, BK, FK, and HSK was 97.9%/0.995, 90.7%/
0.963, 95.0%/0.975, and 92.3%/0.946, respectively. Zhang et al.
(2022a) constructed an early IK-aided diagnosis model
(KeratitisNet) based on DL. The accuracy of KeratitisNet for
diagnosing BK, FK, AK, and HSK was 70.27%, 77.71%, 83.81%,
and 79.31%, and AUC was 0.86, 0.91, 0.96, and 0.98, respectively.
Ghosh et al. (2022) found that compared with the single architecture
model, the CNN with ensemble learning performs best in
distinguishing FK from BK.

In addition to the abovementioned discrimination between
different keratitis types, there is also a study of a fully-automatic
DL-based algorithm for segmenting ocular structures and microbial
keratitis biomarkers on SLI (Loo et al., 2021). Tiwari et al. (2022)

trained a CNN to differentiate active corneal ulcers from healed
scars from SLI. The AI model was tested on internal (India) and
external (the United States) data sets and achieved high performance
(AUCs > 0.94). Koo et al. (2021) reported that the model detects
hyphae more quickly, conveniently, and consistently through DL
using CM images in real-world practice. The performance of this AI
model showed high sensitivity and specificity. The above research
shows different performances in the diagnosis and classification of
different keratitis by AImodel, but basically the accuracy is gradually
improving.

6 AI application in dry eye

Dry eye is one of the most common ocular surface diseases in
clinical practice, characterized by a loss of homeostasis of the tear
film and accompanied by ocular abnormalities, such as tear film

TABLE 4 Summary of studies focused on computer-aided dry eye diagnosis.

Year Authors Imaging
modality

Image
size

Databases AI
algorithms

AUC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IoU
(%)

2017 Peteiro-Barral
et al. (2017)

Tearscope
plus

105 Tear film
classification

SVM/MLC ≥92.00 ≥94.00 ≥84.00 ≥96.00 —

2018 Su et al. (2018) Digital
camera

80 Break-up, non-
break-up, eyelid,
eyelash, and
sclera (TBUT)

DCNN 96.00 98.00 83.00 95.00 —

2019 Wang J. et al.
(2019)

Keratograph
5M

706 MG trophy area CNN — 97.60 — — 95.40

2020 Maruoka et al.
(2020)

CM 137 Normal and
obstructive MGD

Ensemble DL 98.10 — 92.10 98.80 —

2020 Stegmann et al.
(2020)

OCT 6,658 Tear meniscus
segmentation

DCNN — ≥99.20 ≥96.36 ≥99.86 ≥93.16

2021 Chase et al.
(2021)

AS-OCT 27,180 Normal and
dry eye

CNN — 84.62 86.36 82.35 —

2021 Deng et al.
(2021)

Keratograph
5M

528 Tear meniscus
segmentation

FCNN — — ≥84.40 — 82.50

2021 Zhang et al.
(2021)

CM 8,311 Normal,
obstructive and
atrophic MGD

CNN ≥97.30 ≥97.30 ≥88.80 ≥95.40 —

2021 Setu et al.
(2021)

Keratograph
5M

728 MG
segmentation and

morphology
assessment

DL/TL 96.00 84.00 (Dice) 81.00 — —

2021 Wang J. et al.
(2021)

Keratograph
5M

1,443 MG
segmentation and

ghost glands
assessment

DL — — 84.40 71.70 63.00

2021 Dai et al. (2021) Keratograph
5M

120 MG morphologic CNN — — — — 90.77

2022 Zhang et al.
(2022b)

Keratograph
5M

4,006 MG density and
meiboscore

Mask
R-CNN/TL

90.00 — 88.00 81.00 93.00

2022 Vyas et al.
(2022)

TOPCON
DV3 camera

30 Normal, break-
up, blink, or noise

(TBUT)

CNN/TL 80.00 83.00 87.00 89.00 —

TBUT, tear film break-up time; MG, meibomian gland; MGD, meibomian gland dysfunction; FCNN, fully convolutional neural networks. Keratograph 5M: (OCULUS, Arlington, WA), a

clinical instrument that uses an infrared light with wavelength 880 nm for MG imaging.
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instability and hyperosmolarity, ocular surface inflammation and
damage, and neurosensory abnormalities (Craig et al., 2017a; Craig
et al., 2017b; Stapleton et al., 2017). As the most common trigger of
dry eye (Craig et al., 2017b), MGD is associated with many other
ocular diseases (Sullivan et al., 2018; Lekhanont et al., 2019; Llorens-
Quintana et al., 2020) and systemic factors (Arita et al., 2019; Sandra
Johanna et al., 2019; Wang et al., 2020), which affect patients’ quality
of life, causing ocular irritation, ocular surface inflammation, and
visual impairment (Sabeti et al., 2020). Therefore, evaluating the
function of meibomian glands (MGs) in patients with dry eyes is
essential. Furthermore, MG morphology is closely associated with
the severity of MGD, and the MG image index indicates their health
(Giannaccare et al., 2018). Recently, researchers have started
employing image processing and image analysis software such as
ImageJ to perform morphological analysis of the structure of MGs.
However, semi-quantitative analysis requires manual labeling of
each image, which is labor-intensive and inefficient. The efficiency of
AI technology in image recognition is much higher than that of
manual analysis, and the cost is significantly reduced. Table 4 mainly
reviews AI applications for the diagnosis of dry eye.

In 2019, Wang J. et al. (2019) established a DL approach to
digitally segment the MG atrophy area and compute the percentage
atrophy in meibography images. In total, 497 meibography images
were used to train and adjust the DL model, while the remaining
209 images were applied for evaluation. The AI algorithm achieves
95.6% meiboscore grading accuracy on average, significantly

outperforming the specialist by 16.0% and the clinical team by
40.6%. This study presents an accurate and consistent gland atrophy
evaluation method for meibography images based on deep neural
networks and may contribute to an improved understanding of
MGD. However, this AI system could only predict the MG atrophy
region rather than individual MG morphology. In 2020, Maruoka
et al. (2020) evaluated the ability of DL models to detect obstructive
MGD using in vivo confocal microscopy (IVCM) images. For the
single DL model, the AUC, sensitivity, and specificity of diagnosing
obstructive MGD were 0.966%, 94.2%, and 82.1%, respectively, and
for the ensemble DL model, 0.981%, 92.1%, and 98.8%, respectively.
Zhang et al. (2021) developed a DL algorithm to check and classify
IVCM images of MGD automatically. By optimizing the AI
algorithm, the classifier model displayed excellent accuracy. The
sensitivity and specificity of the AI model for obstructive MGD were
88.8% and 95.4%, respectively, and for atrophic MGD, 89.4% and
98.4%, respectively. Furthermore, Zhou et al. (2020) used the
transfer-learning mask R-CNN to build a model. The model
evaluated each image in 0.499 s, whereas the average time for
clinicians was more than 10 s. This study also included
2,304 MG images to construct an MG image database. The
proportion of MGs marked by the model was 53.24% ± 11.09%,
and the artificial marking was 52.13% ± 13.38%. Therefore, this
model can improve the accuracy of examinations, save time, and be
used for clinical auxiliary diagnosis and screening of diseases related
to MGD. Prabhu et al. (2020) proposed an automated algorithm

FIGURE 5
Network structure (Zhang et al., 2022b). (A) The network structure of themodifiedU-netmodel as we reported previously; (B) The network structure
of the ResNet50_U-net model in this study.
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based on DL to segment MGs and evaluated various features for
quantifying these glands. This study also analyzed five clinically
relevant metrics in detail and found that they represented changes
associated with MGD.

In 2021, we proposed a novel MGs extraction method based on
CNN (Dai et al., 2021) with an enhanced mini U-Net. Consequently,
the IoU achieved 0.9077, and repeatability was 100%. The processing
time for each image was 100 ms. We identified a significant and

linear correlation between MG morphology and clinical parameters
using this method. This study provided a new method for
quantifying morphological features of MG obtained by
meibography. Furthermore, we used an advanced AI system
based on ResNet_U-net (Figure 5 depicts the network structure
created by Zhang et al.) to assess the effect of MG density in
diagnosing MGD (Zhang et al., 2022b). The updated AI system
achieved 92% accuracy (IoU) and 100% repeatability in MG

TABLE 5 Comparison table of MG density and meiboscore (Zhang et al., 2022b).

MG density

Upper eyelid (1,620) Lower eyelid (2,386)

Median (IQR) H-value P Median (IQR) H-value P

Meiboscore 0 0.30 (0.25–0.33) 882.932 <0.001 0.19 (0.14–0.23) 596.815 <0.001

Meiboscore 1 0.25 (0.21–0.29) 0.17 (0.13–0.21)

Meiboscore 2 0.15 (0.12–0.18) 0.13 (0.10–0.17)

Meiboscore 3 0.10 (0.06–0.12) 0.07 (0.04–0.11)

MG, meibomian gland; IQR, interquartile range.

FIGURE 6
Overview of the approach (Yeh et al., 2021). The NPID is applied to learn a metric by feeding unla-beled meibography images and then to
discriminate them according to their visual similarity. This approachmeasures atrophy severity and discovers subtle relationships betweenmeibogra-phy
images. There is no required image labeling, serving as ground truth for training.
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segmentation. The AUC was 0.900 for MG density in all eyelids.
Sensitivity and specificity were 88% and 81%, respectively, at a cutoff
value of 0.275. We compared the correspondence between MG
density andmeiboscore, as shown in Table 5. Thus, MG density is an
effective index for MGD, particularly supported by the AI system,
which could replace the meiboscore.

In 2021, Khan et al. (2021) established a model based on
adversarial learning, a conditional generative adversarial network
(C-GAN), to accurately detect, segment, and analyze MG. This
technique significantly improved the inability of existing methods to
quantify irregularities in infrared images of the MG regions.
Additionally, this technique outperformed state-of-the-art results
for detecting and analyzing the dropout area of the MGD. Setu et al.
(2021) proposed an automatic infrared MG segmentation method
based on DL (U-Net). The model was trained and evaluated using
728 anonymized clinical meibography images. The average
precision, recall, and F1 scores were 83%, 81%, and 84% on the
testing dataset, with an AUC value of 0.96, based on the ROC curve
and the Dice coefficient of 84%. Single-image segmentation and
morphometric parameter evaluations had an average of 1.33 s.
Wang J. et al. (2021) developed an automated AI method to
segment individual MG regions in an infrared meibography
image and analyzed their morphological features. The AI
algorithm, on average, achieved 63% mean IoU in segmenting
glands, 84.4% sensitivity and 71.7% specificity in identifying
ghost glands. Yeh et al. (2021) established an unsupervised
feature learning method based on non-parametric instance
discrimination (NPID) to automatically measure MG atrophy
(Figure 6 illustrates an overview of the approach created by Yeh
et al.). 497 meibography images were used for network learning and
tuning, and the remaining 209 images were applied for network
model evaluations. The proposed NPID achieved an average 80.9%
meiboscore grading accuracy, outperforming the clinical team by
25.9%. Therefore, this method may aid in diagnosing and managing
MGD without prior image annotations, which require time and
resources.

Dry eye is complicated to diagnose since there is no single
characteristic symptom or diagnostic measure. Other studies have
employed AI to detect tear film, tear meniscus height (TMH),
corneal morphology and blinking to diagnose dry eye besides the
abovementioned assessment of dry eye by AI detection of MGs
morphology. Diego et al. (Peteiro-Barral et al., 2017) proposed a
method that automatically assessed tear film classification and
demonstrated its effectiveness. This method applied class
binarization and feature selection for optimization purposes. Su
et al. (2018) proposed an automatic method to detect the fluorescent
tear film break-up area using a CNN model and to define its
appearance as CNN-BUT. The sensitivity and specificity of
CNN-BUT in screening patients with dry eye were 0.83 and 0.95,
respectively. Vyas et al. (2022) proposed a tear film break-up time
(TBUT) -based dry eye detection method that detects the presence/
absence of dry eye from TBUT video. This AI system exhibits high
performance in classifying TBUT frames, detecting dry eye, and
severity grading of TBUT video with an accuracy of 83%.

Further, Stegmann et al. (2020) evaluated lower TMH using
OCT by automatically segmenting the image data using AI
algorithms. The AI segmentation times were approximately two
orders of magnitude faster than the previous algorithms.

Chase et al. (2021) developed a CNN algorithm to detect dry eye
using AS-OCT images with good performance (accuracy = 84.62%,
sensitivity = 86.36%, specificity = 82.35%). The epithelial layer and
tear film were the learned areas of the AS-OCT images that
differentiated images with dry eye from normal. The AI model
had a significantly higher accuracy detecting dry eye than corneal
staining, conjunctival staining, and Schirmer’s testing. Deng et al.
(2021) established a method for the automatic quantitation of lower
TMH with FCNN. These neural networks have high performance
owing to the modified encoder with a residual block, which has
better feature extraction than the original U-Net. Additionally, the
overall average IoU for tear meniscus segmentation was 82.5%.
Therefore, the algorithm results of the TMHhad a higher correlation
with the ground truth than manually obtained results. Su et al.
(2020) proposed training a deep CNN model to detect superficial
punctate keratitis (SPK) automatically, and this AI method can be
used to reliably grade the severity of SPK to improve the efficiency
(97% accuracy) of dry eye diagnosis. Through AI analysis, Jing et al.
(2022) have found a significant correlation between corneal nerve
morphological changes in patients with dry eyes and intrinsic
corneal aberrations, particularly higher-order aberrations. Zheng
et al. (2022) established a blink analysis model using AI to generate a
blink profile, which provides a new method for evaluating
incomplete blinking and diagnosing dry eye. The above research
shows that the AI model has achieved remarkable results in the
segmentation of MG morphology in patients with dry eye.

7 AI application in other ocular surface
diseases

AI has also led to many achievements in the auxiliary diagnosis
and treatment of corneal edema, corneal endothelial dystrophy,
corneal nerves, corneal epithelial defects, posterior elastic layer
detachment, corneal perforation, corneal foreign bodies, and
other ocular surface diseases. Veli and Ozcan (2018) established a
cost-effective and portable platform based on contact lenses for the
non-invasive detection of Staphylococcus aureus using a three-
dimensional (3D) holographic reconstruction combined with an
SVM-based ML algorithm. Interestingly, the method is
characterized by low cost and portability, although the study did
not include participants for clinical trials. Eleiwa et al. (2020) created
and validated a DL model based on VGG19 and transferred learning
to diagnose Fuchs endothelial corneal dystrophy. Additionally, Wei
et al. (2020) proposed a DL model for automated sub-basal corneal
nerve fiber segmentation and evaluation using IVCM). The model
achieved an AUC, sensitivity, and specificity of 0.96, 96%, and 75%,
respectively. However, this AI model had limitations in that it was
not externally validated and could consider all parameters in the
IVCM images. Zéboulon et al. (2021) established and verified a novel
automated tool for detecting and visualizing corneal edema using
OCT. This study trained a CNN to classify each pixel in the corneal
OCT images as “normal” or “edema” and to generate colored heat
maps of the result. Additionally, the optimal threshold for
differentiating normal from edematous corneas was 6.8%, with
an accuracy, sensitivity, and specificity of 98.7%, 96.4%, and
100%, respectively. However, the AI model could not
quantitatively analyze the severity of edema, and the principle of
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the model training process output results remains invisible. Li D. F
et al. (2021) developed an image analysis system for AS-OCT
examination results based on DL technology and evaluated its
influence on identifying various corneal pathologies and
quantified indices. Furthermore, the labeled AS-OCT images
were used to train corneal pathology detection and stratification
models based on the deep CNN algorithm. Interestingly, the average
sensitivity and specificity of the corneal pathology detection model
were 96.5% and 96.1%, compared with the results of manual
labeling. Additionally, the average Dice coefficients of the corneal
stratification model for the corneal epithelium and stroma were
0.985 and 0.917, respectively. Deshmukh et al. (2021) developed an
automated segmentation DL algorithm for corneal stromal deposits
in patients with corneal stromal dystrophy. Segmentation on corneal
deposits was accurate via the DL algorithm in the well-controlled
dataset and showed reasonable performance in a real-world setting.
Yoo et al. (2021) developed an AI model to detect conjunctival
melanoma using a digital imaging device such as smartphone
camera. It showed an accuracy of 94.0% using 3D melanoma
phantom images captured using a smartphone camera.

8 Discussion

With the development of modern society and the economy,
people’s health awareness is gradually improving, and the pressure
on ophthalmologists to diagnose and treat will increase. However,
although over 2,00,000 ophthalmologists exist worldwide, there is
currently a severe shortfall in developing countries (Resnikoff et al.,
2012). Furthermore, the number of ophthalmologists is declining in
12% of low-income countries with the lowest ophthalmologist densities
and highest population growth rates (Resnikoff et al., 2020). The timely
emergence of AI has given rise to optimism in the field of
ophthalmology, particularly in areas involving big data and image-
based analysis. DL is a branch of ML that employs multi-layer neurons
with high-dimensional non-linear transformations in performing high-
dimensional data abstraction to extract hidden features (Lecun et al.,
2015). Therefore, with the help of DL, we can input many images as
samples to the computer and allow the computer to automatically learn
the high-dimensional features of the images to determine the intrinsic
relationship between the images and the results. DL establishes an
intrinsic relationship between input and output through multi-layer
CNNmapping, similar to the human learning process. Thus far, various
AI models have been developed, such as CNN, deep neural networks,
deep belief networks, and RNN. These models have been applied in
computer vision, speech recognition, natural language processing, audio
recognition, and bioinformatics with excellent results (Lecun et al.,
1998; Taigman et al., 2014; He et al., 2016). Additionally, using DL to
process and analyze images of ocular surface diseases can significantly
improve accuracy and efficiency, reduce manual analysis costs, and
overcome errors between different experienced annotators. Currently,
different AI models are used for AI applications for different ocular
surface diseases. Among them, CNNmodel accounts for themajority of
the AI applications for pterygium, keratitis and dry eye, while RFmodel
has good accuracy in predicting healthy eyes and KC in all stages in the
AI application for KC.

DL established a method for computers to automatically learn
the hidden features in images and integrate feature learning into

building models, thereby reducing the incompleteness caused by
artificially designed features. Patterns that are invisible to the naked
eye can be picked out. For example, Kermany et al. (2018) trained a
DL system to identify retinal OCT images of patients. Surprisingly,
the system also accurately identified several other characteristics,
including risk factors for heart disease, age, and sex. No one had
previously noticed sex variations in the human retina. However, we
cannot fully understand its feature extraction logic, leading to the AI
“black box” since the DL neural network is very complex and has
poor interpretability challenges (Ahuja and Halperin, 2019).
Therefore, Kermany et al. (2018) used “occlusion testing” in their
study of AI recognition of OCT retinopathy images to study the logic
of AI diagnosis. This involved occluding different parts of OCT
images of the fundus of patients with retinopathy. The AI
erroneously categorized the lesion image as normal after
considering the features of a specific section, implying that these
features are the basis for the AI’s judgment. Similarly, in analyzing
ocular surface diseases using DL models, we can also use occlusion
testing to learn the judgment basis of AI to discover new
morphological evaluation indicators of ocular surface diseases.
An ophthalmic multi-modal diagnostic platform using multiple
modules for targeted examination of target tissues has been
established and applied clinically. With advances in technology, it
may be possible in the future to acquire global three-dimensional
data of the eye simultaneously. Correct reading, analysis and
diagnosis of acquired data require a more comprehensive and in-
depth knowledge base. Compared with human beings, AI has
absolute superiority in integrating information, processing data,
diagnosis speed, etc.

At present, AI still has certain limitations. 1) Most ML methods
have insufficient training and validation sets; therefore, more image
data training is needed to improve accuracy, sensitivity, and
specificity further. 2) The inspection equipment used by different
countries, regions, and medical institutions differ, as do the images
obtained by different inspection equipment regarding color and
resolution, which will inevitably affect image acquisition and
diagnostic accuracies. 3) Current ML methods cannot explain
disease diagnosis, of which the output results are learned only
from the training set. 4) AI cannot learn effectively for some
difficult and rare ocular surface diseases with insufficient data.
Therefore, it is difficult to obtain an effective and correct
diagnosis rate. Although AI still faces certain challenges in model
building, it can assist doctors with objective clinical decisions and lay
the foundation for the accurate treatment of patients. These issues
must be adequately addressed before AI can be translated into
clinical applications in ophthalmology.

In conclusion, AI has great potential to improve the diagnostic
efficiency of ocular surface diseases. The novelty of this study is
evidenced by its contribution to the existing literature, as it is one of
the studies to provide information on research hotspots and trends
in the application of AI in diagnosing ocular surface diseases.
Furthermore, the results reveal that although AI still faces certain
challenges in model building, it can assist doctors with objective
clinical decisions and lay the foundation for the accurate treatment
of patients. Ultimately, AI algorithms and tools in development for o
ocular surface disease are helping us to understand disease
pathogenesis, identify disease biomarkers, and develop novel
treatments for ocular surface disease.
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exophthalmos based orbital CT
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Introduction:Objective, accurate, and efficient measurement of exophthalmos is
imperative for diagnosing orbital diseases that cause abnormal degrees of
exophthalmos (such as thyroid-related eye diseases) and for quantifying
treatment effects.

Methods: To address the limitations of existing clinical methods for measuring
exophthalmos, such as poor reproducibility, low reliability, and subjectivity, we
propose a method that uses deep learning and image processing techniques to
measure the exophthalmos. The proposed method calculates two vertical
distances; the distance from the apex of the anterior surface of the cornea to
the highest protrusion point of the outer edge of the orbit in axial CT images and
the distance from the apex of the anterior surface of the cornea to the highest
protrusion point of the upper and lower outer edges of the orbit in sagittal CT
images.

Results: Based on the dataset used, the results of the present method are in good
agreement with those measured manually by clinicians, achieving a concordance
correlation coefficient (CCC) of 0.9895 and an intraclass correlation coefficient
(ICC) of 0.9698 on axial CT images while achieving a CCC of 0.9902 and an ICC of
0.9773 on sagittal CT images.

Discussion: In summary, our method can provide a fully automatedmeasurement
of the exophthalmos based on orbital CT images. The proposed method is
reproducible, shows high accuracy and objectivity, aids in the diagnosis of
relevant orbital diseases, and can quantify treatment effects.

KEYWORDS

CT images, deep learning, exophthalmos, orbital diseases, thyroid-associated
ophthalmopathy

1 Introduction

The exophthalmos reflects the anterior-posterior position of the eye relative to the orbit
(Segni et al., 2002; Ameri and Fenton, 2004) and is associated with various orbital diseases,
including Graves’ orbitopathy, orbital tumor, and orbital fracture (Burch and Wartofsky,
1993; Bartalena et al., 2000; Alsuhaibani et al., 2011; Guo et al., 2018; Huh et al., 2020; Huang
et al., 2022; Ji et al., 2022). Accurate measurement of exophthalmos can assist in the diagnosis
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of these related diseases (Segni et al., 2002; Lam et al., 2010) and also
quantify the treatment outcome.

Currently, the main clinical methods for measuring
exophthalmos can be classified as exophthalmometer and
computed tomography (CT) methods. The most widely used
method is the Hertel exophthalmometer (Migliori and Gladstone,
1984; Dunsky, 1992), which measures the distance from the lateral
orbital rim to the corneal surface in a direction perpendicular to the
frontal plane as a quantitative indicator of the degree of
exophthalmos (O’Donnell et al., 1999). However, the Hertel
exophthalmometer has low inter- and intraobserver
reproducibility, which in turn affects the reliability of its results
(Frueh et al., 1985; Musch et al., 1985; Dunsky, 1992; Chang et al.,
1995; Kim and Choi, 2001; Sleep and Manners, 2002; Ameri and
Fenton, 2004). Furthermore, this method is not suitable for subjects
with abnormalities, such as severe upper eyelid swelling, ptosis, and
hyper-deviated eyes, because it is greatly influenced by facial tissues
(Na et al., 2019).

Meanwhile, clinicians using CT scans for diagnosing the
degree of exophthalmos measure the relevant distance
manually by dragging the mouse after determining
physiological structures, such as the outer edge of the orbit
and the apex of the anterior surface of the cornea (Nkenke
et al., 2003; Bingham et al., 2016; Na et al., 2019). Such a
manual method of measuring exophthalmos is not only time-
consuming and inefficient but also inevitably subjective to the
clinician, resulting in poor reproducibility of the interobserver
measurements (Huh et al., 2020). Therefore, an objective,
accurate, convenient, and efficient method for measuring
exophthalmos is necessary for the timely diagnosis or
assessment of treatment outcomes for relevant orbital diseases.
The development of image processing and deep learning methods
has provided the basis for automatic, objective, efficient, and
accurate computer-aided diagnosis, and these methods have been
widely applied in a variety of fields—especially in studies related
to the diagnosis of ophthalmic diseases (Zhao et al., 2022).

In this paper, we propose an automated method based on image
processing and deep learning to measure the vertical distance from
the apex of the anterior corneal surface to the lateral orbital rim of
both eyes and the longest line of the superior to the inferior orbital
rim on the axial and sagittal plane of CT images, respectively. The
two distance parameters, related to ocular prominence, can be
measured objectively, accurately, and efficiently without relying
on the clinician. This method can help clinicians diagnose
diseases related to protrusion or depression by measuring the
exophthalmos.

2 Materials and methods

2.1 Data

Ocular CT images were collected from 31 subjects in the
horizontal position and 43 subjects in the sagittal position at the
Shenzhen Eye Hospital and Shenzhen Overseas Chinese Hospital
using a Philips Ingenuity core 129—a Dutch computed tomography
machine with a CT scan thickness of 0.625 mm using the soft tissue
window. For this study, 79 horizontal CT images and 99 sagittal CT

images including the thickest lens were selected by clinicians
empirically.

To train a deep learning network model for automatic eye region
segmentation, we divided 79 axial CT images from 31 CT sequence
images and 99 sagittal CT images from 43 CT sequence images into a
training, validation set, and test set in the ratio of 48:8:23 and 48:8:
43, respectively. The ratio of the number of eyes in the training set,
validation set and test set for axial and sagittal images is 96:16:40 and
96:16:43, respectively.

Two ophthalmology clinician measured the vertical distance of
the line from the apex of the anterior surface of the eye to the most
protruding point of the orbital rim for 23 images of the axial plane
and 43 images of the sagittal plane. A researcher contributed to the
annotation of the ground truth using the “polygon selections” and
“fill” function of the software ImageJ (National Institutes of Health,
Bethesa, MD, United States) to map the mask of the eye region in all
CT images for eye region segmentation by U-Net++ networks.

2.2 Overall approach

In this study, we calculated the vertical distance from the apex of
the anterior corneal surface to the lateral orbital rim of both eyes on
the axial plane of the CT images, as shown in Figure 1. First, the
neural network was trained based on the U-Net++ model for
segmenting the eye region in the axial plane of the CT images,
and then input the remaining CT images not used for training the
model into the segmentation model to obtain a mask of the eye.
Furthermore, the lateral orbital rim region of both eyes was obtained
after a series of image processing steps. Next, the coordinates of the
apex of the anterior corneal surface and themost protruding point of
the lateral orbital rim of both eyes were extracted. Additionally, the
vertical distance of the line from the apex of the anterior corneal
surface to the most protruding point of the upper and lower orbital
rim was calculated, as shown in Figure 2.

Similarly, the neural network must be trained to segment the eye
region based on the U-Net++ model in the sagittal plane of the CT
images while processing the CT images to obtain the upper and
lower orbital rim regions. After extracting the coordinates of the
apex of the anterior corneal surface and themost protruding point of
the upper and lower orbital rim, the vertical distance of the line from
the apex of the anterior corneal surface to the most protruding point
of the upper and lower orbital rim was calculated.

2.3 Segmentation

In order to obtain the best segmentation results, we trained the
models commonly used segmentation networks in clinical practice,
including FCN32 (Long et al., 2015), SegNet (Badrinarayanan et al.,
2017), U-Net (Ronneberger et al., 2015), U-Net++ (Zhou et al.,
2018), and Res-U-Net (Zhang et al., 2018), respectively, using the
dataset of this paper. The U-Net++ model that achieved the best
segmentation performance on the test set was selected for the eye
region segmentation.

We implemented the U-Net++ model for eye region
segmentation. First, the learning rate and decay rate were set
to 0.0001 and 0.99, respectively, Kaiming initialization (He et al.,
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FIGURE 1
Process of calculating the vertical distance from the apex of the anterior surface of the cornea to the lateral orbital rim of both eyes in the axial plane
of the CT image. (A) The original axial plane of the CT image, and after the U-Net++model and Image processing, we can obtain the binary images of the
eye regionmask shown in (B) and the lateral orbital rim region of both eyes shown in (C), respectively. (D) The line from the apex of the anterior surface of
the eye to the apex of the lateral orbital rim is represented by the blue line in (D), and the vertical distance from the apex of the anterior surface of the
eye to the apex of the lateral orbital rim represented by the orange and green lines.

FIGURE 2
The vertical distance from the apex of the anterior surface of the cornea to the longest line between the superior and inferior orbital margins in the
sagittal plane of the CT image. (A) Represents the original sagittal CT image, and after the U-Net++ model and Image processing, we obtain the binary
images of the eye region mask shown in (B) and the upper and lower orbital rim regions shown in (C), and then after locating the coordinates of the
anterior surface apex of the eye and the upper and lower orbital rims, we obtain the line from the apex of the upper and lower orbital rims
represented by the blue line in (D) and the vertical distance of the line from the apex of the anterior surface of the cornea to the upper and lower orbital rim
most protruding points represented by the orange line.
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2015) was used for initializing the weights of the model. Dice loss
(Milletari et al., 2016) was used to compare the model
segmentation results with the ground truth, and the Adam
optimization method (Kingma and Ba, 2014) was applied to
minimize the loss value of the network. We inputted the
original images and ground truth masks from the training and
validation sets to the U-Net++ model. After 200 training
iterations of epochs on a server configured with the GPU
NVIDIA GeForce GTX 3090TI and using the Pytorch (Paszke
et al., 2017) framework, we obtained a network model for
automatic eye region segmentation. The formula for Dice loss
is shown below.

Dice loss � 1 − 2p X ∩ Y| |( )/ X| | + Y| |( )
X represents the eye area mask produced by the neural network
segmentation, and Y represents the ground truth of the eye area
mask input to the neural network.

In addition to the orbital region, we must segment the lateral
orbital rim regions of both eyes in the axial plane as well as the
superior and inferior orbital rim regions in the sagittal plane of the
CT images to extract the coordinates of their most protruding
points. The orbital rim, i.e., the human orbital bone, shows
strong contrast in CT images compared to other tissues, so we
can use traditional image processing methods to extract the skeletal
region.

We first performed threshold segmentation separately with a
grayscale values’ threshold of 200 for the CT images of the two
planar views (as in Figure 3A) empirically. After extracting the
structures with grayscale values greater than 200 (as in Figure 3B),
we eliminated the residual watermark in the CT images, following
threshold segmentation, by performing the morphological opening
(as in Figure 3C). Finally, after eliminating the smaller connected
domains in the images (considered to be noisy), a binary image

containing the lateral orbital rims or the upper and lower orbital
rims of both eyes was obtained (as in Figure 3D).

2.4 Distance calculation

In the axial plane of the CT images, the lateral orbital rims of
both eyes were located in the leftmost third of the CT image and
the rightmost third of the CT image. Furthermore, the most
protruding point can be regarded as the pixel point closest to the
top, i.e., the pixel point with the smallest y-value in the image
coordinate. Therefore, to extract the coordinates of the most
protruding point of the lateral orbital rim of both eyes in the
axial plane of the CT image, we divided the (d) image in Figure 4
into three subplots: left, middle, and right. First, the images were
divided according to the direction of the x-axis in the image
coordinates, and then the pixel points were traversed in the left
and right images in turn. The pixel point with the smallest
y-value in the “white” area of the two subplots was shortlisted as
the coordinate of the most protruding point of the lateral orbital
rim of both eyes, as shown in Figure 4. The entire process is
shown in Figure 4.

In the sagittal plane of the CT images, the upper and lower
orbital margins are located in the upper and lower molecular maps
of the CT image, respectively—their most protruding point can be
regarded as the point closest to the left side of the image, i.e., the
pixel point with the smallest x-value in the image coordinates.
Therefore, we follow an operation similar to that of the axial
plane–the pixel points in the “white” area in the upper and lower
submaps are traversed, respectively, and the point with the smallest
x-value is recorded as the coordinate of the most protruding point of
the upper and lower orbital margins. The entire process is shown in
Figure 5.

FIGURE 3
Image processing of the segmented orbital rim region. (A) The unprocessed CT image and the binary image in (B) are obtained after the threshold
segmentation; the binary image shown in (C) is obtained after the morphological opening operation, and finally, the smaller connected domain is
eliminated to obtain the binary image containing the outer edge of the orbit shown in (D). The first row represents the axial CT image and the second row
the sagittal CT image.
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After obtaining the coordinates of the lateral orbital rims of
both eyes, we obtained the equation of the line passing through
the two points of the lateral orbital rims of both eyes. Similarly,
we obtained the equation of the line passing through the two
points of the upper and lower orbital rims based on the
coordinates of the most protruding points of the upper and
lower orbital rims in the sagittal plane of the CT image.
Subsequently, we traversed the pixel points of the eye region
mask output by the eye region segmentation model and recorded
the point with the smallest x-value among the mask pixel points
as the coordinates of the most protruding point of the anterior
corneal surface vertex. From this, we calculated the vertical
distance from the apex of the anterior corneal surface to the
lateral orbital rim of both eyes in the axial plane of the CT image

and the vertical distance from the apex of the anterior corneal
surface to the upper and lower orbital rims in the sagittal plane of
the CT image. The results of our automated method and the
manual measurements by the physicians were compared.

2.5 Statistical analysis

The Dice coefficient (Dice, 1945), Intersection Over Union
(IOU), precision, and recall were used as metrics to evaluate the
segmentation performance of the model. The metrics were
calculated as shown below.

Dice � 2TP/ FP + 2TP + FN( )

FIGURE 4
The process of obtaining the coordinates of themost protruding point of the lateral orbital rim of both eyes in the axial plane of theCT image. (A) First
row of Panel (B), which is the binary image containing the lateral orbital rim region of both eyes. Subsequently, the coordinates of the most protruding
points (x1, y1), (x2, y2) of the left and right lateral orbital rims can be determined by traversing the two subgraphs separately, and the straight line passing
through the two most protruding points can be visualized by the blue line in (C).

FIGURE 5
The process of obtaining the coordinates of the most protruding points of the upper and lower orbital rim in the sagittal plane of the CT image. (A)
The second row of Figure 4B, which is the binary image containing the upper and lower orbital rim regions, and extracts the submaps of the upper and
lower halves, respectively, to obtain the two submaps as shown in (B). Subsequently, the coordinates of the most protruding points of the superior and
inferior orbital rims can be determined by traversing the two subgraphs separately, and then the straight line passing through the two most
protruding points can be obtained—the straight line is shown in blue in (C).
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IOU � TP/ TP + FN + FP( )
Precision � TP/ TP + FP( )
Recall � TP/ TP + FN( )

The intraclass correlation coefficient (ICC) and the
concordance correlation coefficient (CCC) were used to
demonstrate the concordance between the results of our
automated method and the manual measurements of the
physicians. The two-way mixture model and the absolute
consistency type were chosen for the calculation of the intra-
group correlation coefficients.

3 Results

3.1 Ocular segmentation

We used the segmentation results of 40 eyes in 23 horizontal CT
images and 43 eyes in 43 sagittal CT images to test the ability of the
model to segment eye region. Table 1 shows the segmentation
performance of the five models on the test set data, and Figure 6
shows the visualization of the U-Net++ model segmentation results.
From the results, we observe that the region of the eye was
segmented accurately in both horizontal and sagittal CT images.

TABLE 1 The mean values (standard deviation) of the Dice Coefficient, IOU, Precision, Recall for segmenting the ocular region model in the axial plane and the
sagittal plane of the CT images, respectively.

View Model Dice Recall Precision IOU

The axial plane FCN32 0.8847 (0.0150) 0.8213 (0.0731) 0.9660 (0.0380) 0.7951 (0.0572)

SegNet 0.9684 (0.0163) 0.9802 (0.0118) 0.9577 (0.0329) 0.9382 (0.0295)

U-Net 0.9757 (0.0150) 0.9529 (0.0271) 0.9887 (0.0086) 0.9636 (0.0302)

U-Net++ 0.9805 (0.0059) 0.9829 (0.0090) 0.9782 (0.0140) 0.9617 (0.0112)

Res-U-Net 0.9805 (0.0073) 0.9838 (0.0085) 0.9775 (0.0164) 0.9619 (0.0138)

The sagittal plane FCN32 0.8425 (0.0587) 0.7487 (0.0878) 0.9729 (0.0335) 0.7319 (0.0813)

SegNet 0.9570 (0.0376) 0.9506 (0.0517) 0.9662 (0.0463) 0.9200 (0.0650)

U-Net 0.9770 (0.0135) 0.9804 (0.0170) 0.9740 (0.0224) 0.9553 (0.0248)

U-Net++ 0.9816 (0.0087) 0.9802 (0.0158) 0.9831 (0.0087) 0.9640 (0.0164)

Res-U-Net 0.9505 (0.0809) 0.9273 (0.1201) 0.9849 (0.0299) 0.9150 (0.1223)

FIGURE 6
Visualization segmentation results of the model used to segment the eye region. Row (A) represents the visual segmentation results of the model in
the axial plane of the test set, and row (B) represents the visual segmentation results of themodel in the sagittal plane of the test set. The purple and green
area represent the segmentation masks predicted by the manual and network, respectively. The light blue area is the overlapping part of both, i.e., the
correctly predicted eye area.
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This indicates that this method can accurately locate the vertex
coordinates of the anterior surface of the eye.

3.2 Ocular prominence measurement

For testing, we used the vertical distance from the apex of the
anterior corneal surface to the most protruding point of the
lateral orbital rim of both eyes in 40 eyes from 23 CT images in
the axial plane and the vertical distance from the apex of the
anterior corneal surface to the most protruding point of the
upper and lower orbital rims in 43 eyes from 43 CT images in the

sagittal plane. Table 2 shows the mean values (standard
deviation) of the Exophthalmometric values between the
results measured by the proposed automated method and the
manually measured results. The Bland-Altman plots and the
scatter diagram between the computed results of the proposed
automated method of ocular prominence measurement on the
test set and its corresponding manual measurement by the
physician is shown in Figure 7. Figure 8 shows the results of
the proposed automated method and the manual measurement
by the physician on an axial plane and one sagittal plane of the CT
image, respectively. The results of the statistical analysis between
the measurements using the two methods on all test sets are
shown in Table 3.

From the results of the statistical analysis, it can be observed
that although the Bland-Altman plots diagram as well as the
mean values of the Exophthalmometric values show a stable error
in the results measured by the proposed automated method and
the manually measured results, our method is in good agreement
with the results of the manual measurement by the physician for
both vertical distances. Thus, the accuracy of this method can be
verified.

TABLE 2 The mean values (standard deviation) of the Exophthalmometric
values between the results measured by the proposed automated method and
the manually measured results.

View Manual method Automated method

The axial plane 17.83 (2.85) 18.37 (2.67)

The sagittal plane 8.01 (2.79) 8.48 (2.82)

FIGURE 7
The Bland-Altman plots and the scatter plots between the results on the test set using the automated method proposed in this paper. Row (A)
represents the Bland-Altman plots and row (B) is the scatter plot, column (C) means the results on the axial plane while column (D) is the results on the
sagittal plane. In the scatter plots, the y-axis represents the results calculated by the automatedmethod we proposed in this paper while the x-axis means
the results measured by the doctors.
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4 Discussion

The degree of orbital protrusion is associated with a variety of
orbital diseases, and its accurate quantification is important to
diagnose certain orbital diseases and determine the effectiveness
of their treatment. CT imaging has been used to measure the
prominence of the eye because of its high-resolution accuracy
and ability to analyze multiple views simultaneously (Kim and
Choi, 2001; Nkenke et al., 2003; 2004; Fang et al., 2013). Some
studies have shown that CT image-based ocular prominence
measurements are more accurate (Hallin and Feldon, 1988; Segni
et al., 2002; Nkenke et al., 2003; 2004; Ramli et al., 2015) and

correlate well with measurements using the Hertel ocular
prominence meter (Klingenstein et al., 2022). For special subjects
such as children and those suffering from ptosis, using CT images to
measure ocular prominence is the only feasible method. Currently,
the most common clinical method is to manually measure the
vertical distance from the apex of the anterior corneal surface to
the lateral orbital rim of both eyes on an axial CT image as a measure
of ocular prominence (as shown in Figure 9A ) (“Axial Globe
Position Measurement: A Prospective Multicenter Study by the
International Thyroid Eye Disease Society,” 2016; Nkenke et al.,
2004). However, when the subject’s head is tilted, using only one
plane of view may lead to large errors. In 2019, Na et al. (Na et al.,
2019) proposed a method to represent ocular prominence in sagittal
CT images by measuring the vertical distance of the longest line
connecting the anterior surface apex of the cornea to the superior
orbital rim to the inferior orbital rim (as shown in Figure 9B). The
method proposed by Park et al. has been validated to be comparable
to the Hertel exophthalmometer method with high correlation while
being applicable to subjects with horizontal and vertical strabismus.
Therefore, a exophthalmos measuring method that combines the
two planar views described above would be applicable to a wider
population with guaranteed accuracy.

FIGURE 8
Visualization of measurement results of the proposed automated method and the manual measurement method by the physician on the test set.
Row (A) represents the visualization result of measurement using the proposedmethod, and row (B) is the visualization result of manual measurement by
the physician on the same image.

TABLE 3 Results of statistical analysis of the concordance correlation
coefficient (CCC) and the intraclass correlation coefficient (ICC) between the
results measured by the proposed automated method and the manually
measured results.

View CCC ICC

The axial plane 0.9895 0.9698

The sagittal plane 0.9902 0.9773
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In this paper, we propose a method based on deep learning and
image processing techniques to combine axial and sagittal CT
images for the automatic measurement of exophthalmos. The
experimental results show that our method can achieve accurate
segmentation results with Dice coefficients of 0.976 ± 0.015 and
0.977 ± 0.0135 for the eye region in the axial and sagittal plane of the
CT images, respectively, on the dataset used in this paper, as shown
in Figure 6. We used image processing techniques to segment the
orbital region to achieve accurate localization of the apex of the
anterior surface of the eye and the most protruding point of the
outer edge of the orbit. Based on the results obtained, the CCC and
ICC between the two methods were 0.988 and 0.957 for the axial
plane of the CT images, respectively, and 0.990 and 0.965 for the
sagittal plane of the CT images, respectively—in our dataset of
23 axial and 43 sagittal CT images, which shows high consistency.

The deep learning and digital image processing methods used in
our study can automatically segment the structures of the eye and
orbital rim, and locate the apex of the anterior corneal surface and
the most protruding point of the orbital rim. The process can then
calculate the relevant parameters, ensuring the high accuracy and
reproducibility of this method to a certain extent in our dataset.
Furthermore, the suggested approach can determine the relevant
exophthalmos measurements in both axial and sagittal planes of CT
scans, offering medical professionals a multi-dimensional reference
for diagnosing orbital disorders in patients displaying abnormal
exophthalmos seen only in the axial or sagittal plane. After
conducting a PubMed search using the keywords “proptosis” and
“CT,” we discovered 57 relevant studies published in the past
20 years. However, all of these studies relied on manual drawings
and measurements performed by clinicians or researchers, which
can be remedied by implementing the proposed method.
Additionally, the full automation of the process in this paper not

only minimizes the impact of subjective factors on measurement
results, but also enhances measurement efficiency. On average, the
time required to calculate the vertical distance from the anterior
corneal surface’s apex to the most protruding point of the lateral
orbital rim in axial CT images and the vertical distance from the
anterior corneal surface’s apex to the most protruding points of the
upper and lower orbital rims in sagittal CT images is 0.9 s and 0.75 s,
respectively. This automated method significantly reduces the time
and effort required for eye protrusion measurement compared to
manual methods.

The work in this paper was performed on 2D CT images,
which meets the practical needs of current clinicians for
diagnosis (Kim and Choi, 2001), especially in patients with
eyelid exophthalmos and other conditions (Na et al., 2019). It
is worth mentioning that some research teams have implemented
the quantification of ocular prominence on 3D CT images (Guo
et al., 2017; 2018; Huh et al., 2020; Willaert et al., 2020), but none
of them have been fully automated. However, the mainstream
methods in clinical practice are still dominated by the Hertel
ocular prominence meter method and the lightweight-based 2D
CT image method. The 3D CT image-based ocular prominence
measurement method is complex and time-consuming, and we
will explore other ocular prominence-related parameters (Kim
and Choi, 2001; Campi et al., 2013; Guo et al., 2017; Afanasyeva
et al., 2018; Choi and Lee, 2018) in our future work, for automatic
measurement and validate their practical feasibility in a clinical
setting.

However, the approach in this paper applies to both axial and
sagittal CT images and requires the most protruding point of the
outer edge of the orbit to determine the measurement of the
exophthalmos, which is a limitation in case of some images with
incomplete, missing or displaced outer orbit edges.

FIGURE 9
Two commonly used clinical parameters formeasuring the prominence of the eye based onCT images. (A) The axial plane of the CT image, (A and B)
represent the vertical distance from the apex of the anterior corneal surface to the lateral orbital rim of both eyes, respectively; (B) The sagittal plane of the
CT image, C represents the vertical distance from the apex of the anterior corneal surface to the longest line of the upper and lower orbital rims.
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5 Conclusion

This study introduces an automated approach for assessing eye
prominence in both axial and sagittal CT images of the orbit using
deep learning and image processing techniques. This method
eliminates the need for prior knowledge from clinicians, thereby
reducing their workload. On the experimental dataset, the method
shows satisfactory efficiency, accuracy, reliability, and
reproducibility. This approach has the potential to support the
diagnosis and treatment quantification of related orbital diseases.
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Retinal fluid is associated with
cytokines of aqueous humor in
age-relatedmacular degeneration
using automatic 3-dimensional
quantification
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2School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, China,
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Background: To explain the biological role of cytokines in the eye and the possible
role of cytokines in the pathogenesis of neovascular age-related macular
degeneration (nAMD) by comparing the correlation between cytokine of
aqueous humor concentration and optical coherence tomography (OCT)
retinal fluid.

Methods: Spectral-domain OCT (SD-OCT) images and aqueous humor samples
were collected from 20 nAMD patient’s three clinical visits. Retinal fluid volume in
OCT was automatically quantified using deep learning--Deeplabv3+. Eighteen
cytokines were detected in aqueous humor using the Luminex technology. OCT
fluid volume measurements were correlated with changes in aqueous humor
cytokine levels using Pearson’s correlation coefficient (PCC).

Results: The patients with intraretinal fluid (IRF) showed significantly lower levels
of cytokines, such as C-X-C motif chemokine ligand 2 (CXCL2) (p = 0.03) and
CXCL11 (p = 0.009), compared with the patients without IRF. And the IRF volume
was negatively correlated with CXCL2 (r = −0.407, p = 0.048) and CXCL11
(r = −0.410, p = 0.046) concentration in the patients with IRF. Meanwhile, the
subretinal fluid (SRF) volume was positively correlated with vascular endothelial
growth factor (VEGF) concentration (r = 0.299, p = 0.027) and negatively
correlated with interleukin (IL)-36β concentration (r = −0.295, p = 0.029) in
the patients with SRF.

Conclusion: Decreased level of VEGF was associated with decreased OCT-based
retinal fluid volume in nAMD patients, while increased levels of CXCL2, CXCL11,
and IL-36β were associated with decreased OCT-based retinal fluid volume in
nAMD patients, which may suggest a role for inflammatory cytokines in retinal
morphological changes and pathogenesis of nAMD patients.
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age-related macular degeneration, cytokine, deep learning, optical coherence
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Introduction

As the aging of population in many countries, age-related
degenerative diseases pose significant socio-economic challenges. One
of themajor degenerative diseases affecting the quality of life is age-related
macular degeneration (AMD), affecting 8.7% of the global population
(Wong et al., 2014). AMD can be neovascular or non-neovascular
(Mitchell et al., 2018), of which neovascular AMD (nAMD) can lead
to dramatic visual loss due to the destruction of retinal structure in the
macular area, and permanent blindness in severe cases (Lim et al., 2012).
Chronic inflammation, lipid deposition and oxidative stress are closely
related to AMD pathogenesis (Miller, 2013; Fleckenstein et al., 2021).
However, the specific association between the retinal morphological
changes of AMD and chronic inflammation is still unclear.

Since its introduction, optical coherence tomography (OCT) rapidly
became a widely used imaging technique for the diagnosis and treatment
of a range of eye diseases affecting the choroid and retina (Huang et al.,
1991). OCT imaging is non-invasive and fast to perform, compared with
fundus fluorescein angiography (FFA). Compared to traditional fundus
photography, OCT imaging could provide 2-3 dimensional structural
information about the presence or absence of fluid in the intraretinal,
subretinal, and the space below pigment epithelial layer, which are
considered proxies for leakage (Wilde et al., 2015). OCT based fluid
analyses of intraretinal fluid (IRF), subretinal fluid (SRF), and pigment
epithelial detachment (PED) have proven promising for predicting
functional deficits in nAMD (Klimscha et al., 2017). Previous studies
have shown that retinal fluid change is a reliable OCT biomarker of
nAMD (Schmidt-Erfurth et al., 2020; von der Burchard et al., 2018). The
identification of retinal fluid based on OCT was subjective and time-
consuming, and depended on the experience level of the clinician or
observer, lacking an automatic quantification tool.

The emergence of deep learning has filled the gap in OCT imaging
interpretation of retinal fluid and nAMD disease surveillance (Jin & Ye,
2022). Many studies have used deep learning technology to
automatically detect and quantify baseline features in OCT from
patients with AMD, such as IRF and SRF(Schlegl et al., 2018;
Moraes et al., 2021). Sophie Riedl et al. related retinal fluid volume
to visual acuity and found that the reduction of fluid volume in the
retina was associated with visual recovery (Riedl et al., 2022).
Quantitative retinal fluid volume has been used in many studies to
evaluate the efficacy of anti-VEGF therapy (Schmidt-Erfurth et al., 2020;
Michl et al., 2022). The application prospect of deep learning in OCT
fluid segmentation makes it possible to quantitatively analyze the
association between retinal fluid volume and inflammation.

Abnormal regulation of ocular inflammatory process plays an
important role in the pathogenesis of AMD. The primary treatment
for nAMD remains anti-vascular endothelial growth factor (VEGF)
intravitreal injection, as clinical trials have demonstrated highly
effective and tolerable safety profiles (Gillies et al., 2020; Woo et al.,
2021; Holekamp et al., 2022). Unfortunately, some patients didn’t
respond well to anti-VEGF therapy (Braimah et al., 2018), which
may suggest that other inflammatory cytokines play a role in nAMD
(Takeda et al., 2009). Aqueous humor and vitreous fluid can more
directly and accurately reflect the intraocular inflammation of
nAMD than serum. Previous studies have shown that the
concentrations of many cytokines, including VEGF, angiogenin,
growth-regulated oncogene, interferon γ-inducible protein (IP)-
10 and macrophage inflammatory protein-1β, increased in

aqueous humor and vitreous fluids of nAMD patients compared
with normal subjects (Ambati et al., 2013; Agrawal et al., 2019; Tan
et al., 2020; Zhou et al., 2020). Studies have shown that intravitreal
triamcinolone acetonide can improve visual acuity and fundus
performance in patients with nAMD in the short term (Danis
et al., 2000). Therefore, understanding the relationship between
intraocular cytokines and retinal morphological structure is of great
significance for explaining the pathogenesis of AMD and developing
new therapeutic strategies. However, few studies have linked retinal
fluid to intraocular cytokines (Joo et al., 2021). There has not been a
direct quantitative analysis of the association between retinal fluid
volume and cytokines.

We aimed to explain the biological role played by cytokines in
the eyes, the association between intraocular cytokines and retinal
morphological changes, and the possible role of inflammatory
cytokines in the pathogenesis of nAMD by quantitatively analyze
the association between cytokine concentrations of aqueous humor
and retinal fluid volume based on OCT.

Materials and methods

Study design

This study was a cross-sectional study. The Ethical Committee
of the Second Affiliated Hospital, Zhejiang University School of
Medicine approved the collection and study of human aqueous
humor andOCT images. The patient’s aqueous humor cytokine data
were obtained from another study at our hospital (Chen et al., 2020;
Chen et al., 2021). All patients were treated in accordance with the
Declaration of Helsinki, and informed consent was obtained from all
participants before study participation.

Inclusion/exclusion criteria

20 eyes of 20 consecutive patients with nAMD, who visited the
Eye Center at the Second Affiliated Hospital of Zhejiang University
(Hangzhou, China) from June 2017 to November 2018, were
included in this study. The clinical diagnosis of nAMD was
performed by FFA.

The inclusion criteria for this study were as follows: 1) age above
50 years; 2) First treatment; 3) No complications of other eye
diseases. Exclusion criteria were: 1) pathological myopia; 2)
Treatment history of nAMD, including intravitreal drug
injection, photodynamic therapy, and steroid therapy; 3) Previous
intraocular surgery, except for cataract surgery (which, for nAMD
patients, must have been performed at least 12 months before
inclusion); 4) Active inflammation, diabetes, use of
immunosuppressive drugs and glucocorticoids, and local and
systemic malignancies were excluded from this study.

OCT image collection and annotation

According to the date of three aqueous humor collections, the
patients’ closest OCT examinations to that date were collected. The
days of difference between the two dates was no more than 7 days.
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Therefore, three aqueous humor samples did not match OCT on the
corresponding date. Finally, 57 sets of data matched aqueous humor
cytokine data and OCT images were included in the study. All OCT
images were taken by a spectral-domain OCT B-scan (RTVue XR,
Optovue, Fremont, CA, United States) at 960 × 405 pixels. One OCT
visit consisted of 18 B scan images taken with radiography. We
hoped to accurately obtain the volume of retinal fluid in OCT
images, so we needed to pursue the accuracy of prediction
segmentation of the model, rather than the generalization of the
model. Three images were randomly selected from each patient’s
baseline OCT examination and manually annotated by three
ophthalmologists. They are considered experienced and highly
trained in OCT fluid identification. IRF and SRF were
independently labeled by three ophthalmologists, and
inconsistent labels were determined by a majority after discussion.

Aqueous humor sample collection and
cytokines measurement

All nAMD patients received intravitreal injection of 0.5 mg
ranibizumab for three consecutive months. Aqueous humor samples
were collected three times from each patient, at baseline (before the first
injection), 1 month (before the second injection), and 2 months (before
the third injection). Using Luminex technology (Bio-Rad, Waltham,
MA, United States) on a Bio-Plex MAGPIX system, a total of twenty-
eight cytokines were detected in aqueous humor by amultiplex cytokine
assay Kit (Developed Systems,Minneapolis,MN, United States). Not all
cytokines can be detected in every aqueous humor sample. Finally,
eighteen cytokines that could be detected in specific numbers were
included in the study. To avoid imprecision between trials, cytokines
weremeasured in all patient samples in one trial. Sample concentrations

FIGURE 1
Study design. OCT images and aqueous humor samples are collected from eye centers and paired with each other. OCT images are annotated by
three ophthalmologists. Retinal fluid volume is automatically segmented and quantified using three deep-learning models. Finally, the correlation
between retinal fluid and aqueous humor cytokine levels is analyzed.
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were calculated using multiparameter standard curves for each
cytokine.

Automatic quantification of retinal fluid
volume

We selected three deep learning models that have been relatively
successful in the field of fluid segmentation—HarDNet-MSEG (Huang,
et al., 2021), Deeplabv3+(Chen et al., 2018) and U-Net (Ronneberger
et al., 2015) -- to predict the retinal fluid. To train the model for retinal
fluid segmentation, we first put 48,694 OCT images with 1,000 labeled
images from Second Affiliated Hospital of Xi’an Jiaotong University
(Xibei Hospital) into the network for transfer training. As shown in
Figure 1, we put 1026 OCT images with 60 labeled images in this study
into three deep learningmodels, and all threemodels output the predicted
images. Then the Deeplabv3+ with the relatively good performance was
selected from the three models as the quantitative analysis tool.

3D reconstruction and volumetric algorithm
of fluid

To get the 3D segmentation result, we first placed the current 2D
segmentation result to the corresponding position in the 3D space, and
then used the 3D nearest neighbor interpolation to fill the unknown
regions in the 3D space. Because the value of the segmentation result
mask had a fixed range and wasn’t a continuous value, linear
interpolation cannot be selected for the difference method, and the
nearest neighbor interpolation was selected.

Statistical analysis

All data were presented as either mean or mean ± standard
deviation (SD). Pearson’s Correlation Coefficient (PCC) was used to
quantify the correlation between the cytokine of aqueous humor and
the OCT-based retinal fluid volume. Kolmogorov-Smirnov test was
used to test the normal distribution of all continuous variables.
Cytokine’s concentrations in the aqueous humor were compared
between whether retina fluid presence or not using Student’s t-test.
Due to the skewed distribution of the fluid volume, the fluid volume
was calculated as log base 10 -- lg (fluid volume).

SPSS software (version 25.0) was used for statistical analysis, p <
0.05 was considered statistically significant. Statistical maps were
drawn by GraphPad Prism 8.

Result

Patient characteristics

A total of 57 sets of matched data from 20 eyes in 20 patients were
finally included in the study. As shown inTable 1, the average of nAMD
patient’s age was 66.65 ± 6.98 years (mean ± SD). Fourteen of the
20 nAMD cases (70%) were men, and nine of the 20 eyes (45%) were
right eyes. And the biomarkers based on OCT were automatically
measured by the deep learning model, and fluid volume was quantified.

The average of IRF and SRF volume were 1.47×107 ± 5.57 × 107 μm3

and 3.39×107 ± 5.16 × 107 μm3 (mean ± SD). Due to the skewed
distribution of the fluid volume, the fluid volume was calculated as log
base 10. If the original fluid volume is 0, the logarithm cannot be taken,
which was still regarded as 0. So the average of lgIRF (lgμm3) and lgSRF
(lgμm3) were 2.54 ± 3.12 and 6.78 ± 1.52 (mean ± SD).

Deep learning model performance

The threemodel’s performance is shown in Table 2. TheDeeplabv3+
showed the best performance for IRF segmentation, with the highest dice
coefficient and precision of 0.802 and 0.952. The recall rate ofDeeplabv3+
reached 0.794, which was not much different from the other twomodels.
HarDNet-MSEG showed the best performance in SRF segmentation,
with the dice coefficient and precision respectively reaching the highest
values of 0.682 and 0.901. However, HarDNet-MSEG had poor
performance in IRF segmentation, whose dice coefficient and
precision were only 0.066 and 0.045. Meanwhile, Deeplabv3+ had the
highest recall rate of 0.686 on segmental SRF. The dice coefficient and
precision of Deeplabv3 + were 0.627 and 0.844, which were better than
U-Net. Overall, the Deeplabv3+ model was selected as the tool for
automated quantification of retinal fluid volume.

Comparison of intraocular cytokine
between retinal fluid presence or absence

Patients with nAMD were subdivided by OCT component on
different dates. In the 57 OCT examinations, 24 were found to have IRF
presence and 33 were found IRF absence, while 55 were found to have
SRF presence and two were found SRF absence. The patients with IRF
showed significantly lower levels of inflammatory cytokines, such as
C-X-Cmotif chemokine ligand 2 (CXCL2) (p = 0.03) and CXCL11 (p =
0.009), compared with the patients without IRF (Table 3). Figures 2A, C
shows the results of statistically significant intraocular cytokines in the
presence or absence of IRF. This suggested that IRF was sensitive to
change in intraocular cytokine concentration.

However, we didn’t observe a statistically significant effect of the
presence or absence of SRF on intraocular cytokine concentration

TABLE 1 Demographic and clinical characteristics of the study population.

Age (mean ± SD, years) 66.65 ± 6.98

Gender (n, %)

Male 14 (70)

Female 6 (30)

Laterality of eye (n, %)

OD 9 (45)

OS 11 (55)

OCT feature

IRF volume (mean ± SD, μm3) 1.47×107 ± 5.57×107

lg (IRF volume) 2.54 ± 3.12

SRF volume (mean ± SD, μm3) 3.39×107 ± 5.16×107

lg (SRF volume) 6.78 ± 1.52

Total fluid volume 4.70×107 ± 9.16×107

IRF, intraretinal fluid; SRF, subretinal fluid.
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(Table 4). Since the presence of SRF could not be identified in only two
of the 57 OCT examinations, this statistical result may not be
interpretive.

Associations between intraocular cytokines
and retinal fluid volume based on OCT

To further investigate the associations between the volume of IRF/
SRF and cytokines of aqueous humor, we performed Pearson’s
coefficient correlation analysis in patients with IRF/SRF. Because of
the skewed normal distribution of retinal fluid volume, we took

logarithm of retinal fluid volume for analysis. Among the eighteen
cytokines, the same two cytokines were significantly correlated with IRF
volume in the patients with IRF (Table 3). CXCL2 and CXCL11 were
statistically significantly correlated with IRF (p = 0.048 and p = 0.046).
Moreover, the IRF volume was negatively correlated with CXCL2 (r =
-−0.407, 95% CI: −0.696 to−0.004) and CXCL11 (r = −0.410, 95% CI:
0.698 to-0.008) concentration (Figures 2B, D).

Interestingly, a correlation between aqueous humor cytokines and
SRF volumewas observed in nAMDpatients with SRF (Table 4). VEGF
and interleukin (IL)-36β were statistically significantly correlated with
SRF volume (p = 0.027 and p = 0.029). Moreover, the SRF volume was
positively correlated with VEGF concentration (r = 0.299, 95% CI:

TABLE 2 Quantitative results for the performance of three models.

Method IRF SRF

Dice Precision Recall Dice Precision Recall

HarDNet-MSEG 0.066 0.045 0.886 0.682 0.901 0.680

Deeplabv3+ 0.802 0.952 0.794 0.627 0.844 0.686

U-Net 0.536 0.642 0.818 0.621 0.798 0.736

IRF, intraretinal fluid; SRF, subretinal fluid. That the bold values indicates, the best performance value of the three models in this vertical column of evaluation indicators.

TABLE 3 Comparison of cytokine in the aqueous humor between patients with IRF or not and correlations between cytokine concentrations and IRF volume.

Cytokine in the aqueous humor (mean ±
SD, pg/mL)

IRF lg IRF (IRF presence)

Presence
(n = 24)

Absence
(n = 33)

p-value Pearson’s correlation
coefficient (95% CI)

p-value

IL-6 3.81 ± 3.74 5.02 ± 6.99 0.452 −0.073 (−0.463 to 0.341) 0.735

uPAR 69.23 ± 26.43 69.39 ± 16.04 0.979 −0.058 (−0.451 to 0.354) 0.790

CXCL10/IP-10/CRG-2 58.79 ± 66.47 115.40 ± 278.26 0.342 −0.175 (−0.541 to 0.246) 0.413

Endoglin 167.4 ± 15.20 173.12 ± 19.29 0.241 −0.086 (−0.473 to 0.329) 0.691

VEGF 33.68 ± 28.26 31.76 ± 21.82 0.777 0.038 (−0.371–0.435) 0.861

CXCL2/Gro β 44.87 ± 4.00 49.41 ± 9.21 0.030 −0.407 (-0.696 to-0.004) 0.048

CCL14/HCC-1 3,108.63 ± 1,109.56 3,154.48 ± 1,053.36 0.877 0.019 (−0.387–0.419) 0.929

CCL22/MDC 45.79 ± 2.60 46.70 ± 2.85 0.226 −0.152 (−0.523 to 0.268) 0.478

CCL21/6Ckine 21.29 ± 10.43 21.79 ± 8.32 0.843 0.110 (−0.307–0.491) 0.610

Thrombospondin-2 555.17 ± 161.62 524.02 ± 214.28 0.559 0.267 (−0.153–0.605) 0.207

CXCL11/I-TAC 16.19 ± 1.48 17.42 ± 1.79 0.009 −0.410 (-0.698 to-0.008) 0.046

Angiopoietin-1 78.88 ± 30.74 90.59 ± 43.90 0.276 0.062 (−0.350–0.454) 0.773

IL-36β/IL-1F8 1.26 ± 0.49 2.07 ± 4.10 0.345 −0.269 (−0.607 to 0.150) 0.203

HGF 328.69 ± 167.21 392.85 ± 392.80 0.463 0.009 (−0.396–0.411) 0.967

FGF acidic 33.45 ± 5.82 33.53 ± 7.33 0.967 −0.329 (−0.647 to 0.086) 0.117

PIGF 3.79 ± 1.21 3.35 ± 0.93 0.138 0.331 (−0.084–0.648) 0.114

ANGPTL4 5,178.5 ± 4,920.62 6,070.91 ± 5,702.11 0.547 0.008 (−0.397–0.410) 0.972

Endostatin 54,268.17 ±
16,879.46

56,772.09 ±
16,854.86

0.589 −0.109 (−0.491 to 0.308) 0.611

That the bold values indicates, p < 0.05 for p-values and Pearson’s coefficients.
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0.036–0.523) and negatively correlated with IL-36β concentration
(r = −0.295, 95% CI: −0.520 to−0.032) (Figures 3B, D). At the same
time, we observed the classification of these two cytokines in patients
with or without SRF (Figures 3A, C).

Discussion

In this study, we investigated the association of OCT-based retinal
fluid with various cytokines of aqueous humor. The use of artificial
intelligence to automatically analyze OCT images and allow
quantification of retinal fluid volume is gaining popularity worldwide.
A large number of deep learningmodels have been developed to quantify
fluid volume features in OCT, and the deep learning tool used in our
study reported non-inferior model performance in the field of retinal
fluid segmentation (Lu et al., 2019; Terry et al., 2021). In previous studies,
the central macular thickness based on OCT was associated with
cytokine levels by manual measurement (Joo et al., 2021). Joseph R
Abraham et al. quantified retinal fluid volume using deep learning in
diabetic retinopathy and correlated it with aqueous humor cytokines
(Abraham et al., 2021). Two-dimensional images alone cannot
accurately measure the characteristics of retinal fluid, so we used SD-
OCT volumemodel to quantitatively analyze the volume of retinal fluid.

Deep learning has significant advantages in quantitative analysis of
retinal fluid volume, saving labor cost and time cost. For the first time, we
used deep learning to quantify retinal fluid volume in AMDpatients and
quantitatively associated it with aqueous humor cytokine levels.

The cytokines of aqueous humor and vitreous fluid can better
reflect the disease status of the retina than those in serum. Diagnostic
sampling of vitreous fluids helps in the diagnosis and treatment of
ocular diseases (Funatsu et al., 2006). Obtaining vitreous fluid from a
patient’s eye is riskier than collecting aqueous humor, which can
lead to side effects such as vitreous bleeding and retinal detachment.
Significant correlations have been reported between cytokine levels
in aqueous humor and vitreous fluids (Butler et al., 2020). In our
study, cytokines of aqueous humor rather than serum were
measured and associated with retinal fluid volume based on OCT.

The role of VEGF in AMD has been strongly supported in several
studies (Lee et al., 2018; Yang et al., 2022). VEGF appears to be a major
stimulator of neovascularization growth originating from the retinal
and choroidal vasculature (Marneros, 2021). There have been many
studies showing significant resolution of SRF after anti-VEGF treatment
(Amoaku et al., 2015; Schmidt-Erfurth et al., 2020), suggesting that the
reduction of VEGF was associated with SRF shrinkage. These results
were consistent with our study, in whichwe found that decreasedVEGF
concentration of aqueous humor was associated with reduced SRF

FIGURE 2
Correlations of cytokine in the aqueous humor and IRF based onOCT. The violin plot shows that there were significant differences between CXCL2/
Gro β (A), CXCL11/I-TAC (C) and the presence or absence of IRF. (B, D) In patients with IRF, there was a significant inverse correlation between these two
cytokines and IRF volume based on Pearson’s correlation coefficient. Solid line, linear fitted trend line; Dotted line, 95% confidence interval. *p < 0.05,
**p < 0.01.
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volume in nAMD patients with SRF. However, a few studies have
reported non-resolution of SRF in the patients with AMD despite anti-
VEGF therapy (Hosseini et al., 2021).

The mast cell and macrophage chemokine CXCL2 was found to
control the early stages of neutrophil recruitment during tissue
inflammation (De Filippo et al., 2013). Md Huzzatul Mursalin
et al. found the utility of CXCL2 as a potential target for anti-
inflammatory therapy for intraocular inflammation in mice
(Mursalin et al., 2021). Retinal pigment epithelium dysfunction
caused by abnormal inflammatory responses is associated with
the pathogenesis of AMD (Ambati et al., 2013). Previous studies
have reported that human retinal pigment epithelium cells produce
CXCL11 under inflammatory conditions (Kutty et al., 2015). IL-36β
protected mice from herpes virus infection and had a regulatory
effect on immune function (Milora et al., 2017). Our study was the
first to show that CXCL2 and CXCL11 concentration in aqueous
humor of nAMD patients with IRF is significantly lower than that of
patients without IRF. Meanwhile, in patients with IRF, the
concentration of CXCL2 and CXCL11 was negatively associated
with the volume of IRF based on OCT. We also found that the
concentration of IL-36β was negatively associated with the volume
of SRF based on OCT in patients with SRF. The reduction in IRF and
SRF volume in some sense represents a reduction in the degree of
disease activity. These suggested that chemokines may play a role in

regulating the retinal inflammatory response and macrophage
recruitment may partially prevent the deposition of harmful
substances in the retina. Appropriate concentration of
chemokines can recruit macrophages to gather in the eye,
phagocytic harmful substances and reduce inflammatory
exudation, so the volume of retinal effusion is reduced.

The pathological environment in the eye, such as ischemia, hypoxia
or inflammation, is a pro-angiogenic factor that can lead to the formation
of new blood vessels, and corresponding cytokines are involved in these
processes. Research into the cytokines and retinal fluid volume associated
with AMD pathogenesis may provide new insights into the development
of targeted drugs and more effective AMD therapies.

Our study had certain limitations. The number of patients
included in the study was only 20 patients, although each patient
provided data from three pairs. This was limited by the invasive
procedure of obtaining aqueous humor, which can be obtained only
in patients receiving anti-VEGF therapy. At the same time, there
were fewer data for the absence of SRF, which also led to the
statistical results being not meaningful for interpretation.

In summary, changes in cytokine levels after treatment support
the notion that the intraocular cytokines other than VEGF were
involved in pathogenesis of AMD and morphological changes of
retina. Our study suggested that CXCL2, CXCL11 and IL-36βmight
be some biomarkers or predictors of response to anti-VEGF therapy

TABLE 4 Comparison of cytokine in the aqueous humor between patients with SRF or not and correlations between cytokine concentrations and SRF volume.

Cytokine in the aqueous humor (mean ±
SD, pg/mL)

SRF lg SRF (SRF presence)

Presence
(n = 55)

Absence
(n = 2)

p-value Pearson’s correlation
coefficient (95% CI)

p-value

IL-6 4.61 ± 5.95 1.61 ± 0.00 0.486 0.035 (−0.233–0.297) 0.803

uPAR 69.44 ± 21.41 66.07 ± 3.14 0.827 −0.059 (−0.319 to 0.209) 0.668

CXCL10/IP-10/CRG-2 93.99 ± 221.41 24.84 ± 12.02 0.666 0.057 (−0.212–0.317) 0.680

Endoglin 170.98 ± 18.17 163.40 ± 0.00 0.565 0.001 (−0.265–0.266) 0.996

VEGF 32.21 ± 25.03 42.55 ± 11.6 0.570 0.299 (0.036 to 0.523) 0.027

CXCL2/Gro β 47.50 ± 7.92 47.46 ± 3.05 0.995 0.011 (−0.255–0.276) 0.934

CCL14/HCC-1 3,150.38 ± 1,078.57 2,717.00 ± 961.00 0.584 0.150 (−0.120–0.399) 0.275

CCL22/MDC 46.39 ± 2.81 44.24 ± 0.00 0.291 −0.075 (−0.334 to 0.194) 0.585

CCL21/6Ckine 21.44 ± 9.34 25.29 ± 5.90 0.573 0.027 (−0.240–0.290) 0.848

Thrombospondin-2 537.80 ± 197.59 518.99 ± 61.28 0.895 0.048 (−0.221–0.309) 0.730

CXCL11/I-TAC 16.94 ± 1.79 15.67 ± 0.44 0.325 −0.011 (−0.275 to 0.256) 0.939

Angiopoietin-1 85.55 ± 39.89 88.52 ± 17.78 0.919 0.140 (−0.130–0.391) 0.307

IL-36β/IL-1F8 1.75 ± 3.22 1.16 ± 0.08 0.798 −0.295 (-0.520 to-0.032) 0.029

HGF 370.25 ± 324.44 244.46 ± 3.95 0.592 0.055 (−0.214–0.315) 0.692

FGF acidic 33.67 ± 6.79 28.67 ± 1.34 0.311 0.009 (−0.257–0.273) 0.951

PIGF 3.54 ± 1.09 3.26 ± 0.31 0.720 0.097 (−0.173–0.353) 0.482

ANGPTL4 5,773.27 ± 5,485.33 3,547.00 ± 582.00 0.575 −0.098 (−0.354 to 0.172) 0.478

Endostatin 55,843.29 ±
17,120.05

52,267.00 ±
8,803.00

0.774 0.090 (−0.179–0.347) 0.512

That the bold values indicates, p < 0.05 for p-values and Pearson’s coefficients.
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or corticosteroids, thereby allowing targeted and individualized
therapy guided by cytokine levels.
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Effects of exogenous retinoic acid
on ocular parameters in Guinea
pigs with form deprivation myopia

Yajun Wu1,2,3, Yuliang Feng1,2,3, Jiasong Yang1,2,3, Hua Fan2,3,
Zitong Yu2,3, Xiaolin Xie2,3, Yumeng Dai2,3, Xin Huang4* and
Wensheng Li1,2,3*
1Aier School of Ophthalmology, Central South University, Changsha, Hunan, China, 2Department of
Ophthalmology, Shanghai Aier Ophthalmology Hospital, Shanghai, China, 3Shanghai Aier Eye Institute,
Shanghai, China, 4Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated
Hospital of Nanchang Medical College, Nanchang, Jiangxi, China

Aim: Myopia is a common chronic eye disease, this study is to investigate the
effects of exogenous retinoic acid (RA) on intraocular parameters, especially
choroidal thickness (CT) and retinal thickness (RT), in guinea pigs with form
deprivation myopia (FDM).

Methods: A total of 80 male guinea pigs were divided randomly into 4 groups:
Control, FDM, FDM+ RA, and FDM+Citral groups. The FDM+ RA groupwas given
24 mg/kg RA dissolved in 0.4 mL peanut oil; the FDM + Citral group was given
citral 445 mg/kg dissolved in 0.4 mL peanut oil; The other two groups were given
0.4 mL peanut oil. After 4 weeks, the refractive error (RE), axial length (AL), and
intraocular pressure (IOP) of all guinea pigs weremeasured, and the parameters of
RT and CT were obtained using enhanced depth imaging optical coherence
tomography (EDI-OCT).

Results: After 4 weeks, both the RE and AL in the FDM and FDM + RA groups were
increased, and the RT and CT in both groups were smaller than those in the Control
group (p < 0.05). Only the IOP of the right eye in the FDM + RA group increased
significantly (p < 0.05). The RT of the right eye of the 4 groupswas compared: Control
group > FDM + Citral group > FDM group > FDM + RA group. Compared with the RT
of the left eye and the right eye among the 4 groups, theRTof the right eye in the FDM
and FDM + RA groups was significantly less than that in the left eye (p < 0.05).
Moreover, the CT of the right eye in the Control group was greater than that in the
other three groups (p < 0.0001). There was no significant difference in the CT among
the FDM, FDM + RA, and FDM + Citral groups (p > 0.05). In contrast to the RT results,
the CT results of the left and right eyes in the FDM + Citral group showed statistically
significant differences (p < 0.05).

Conclusion: RA participates in the progression of FDM as a regulatory factor.
Exogenous RA can increase the RE, AL, and IOP of FDM guinea pigs, and might
aggravate the retinal thinning of FDM guinea pigs. Citral can inhibit these changes,
but RA might not affect the thickness of the choroid.

KEYWORDS

choroidal thickness, EDI-OCT, form deprivation myopia, Guinea pigs, myopia, retinal
thickness, retinoic acid
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Introduction

Myopia is the most common refractive error (RE) (Dolgin,
2015), and it’s incidence is still on the rise (Han et al., 2022),
reaching epidemic levels (Medina, 2021). The highest incidence
of myopia in the world is in East Asia, where the rate among children
alone is as high as 7%–30% (Lee et al., 2022), and the prevalence of
myopia in young adults is as high as 80%–90%, among which the
prevalence of high myopia (HM) [diopter (D) < −6 or axial length
(AL) > 26 mm] is approximately 10%–20% (Morgan et al., 2018).
Moreover, among East Asian countries, the prevalence of myopia
among students is particularly severe in China, where it is predicted
that, by 2050, the prevalence of myopia among children and
adolescents aged 3–19 years old might be as high as 84% (Dong
et al., 2020). In addition, the prevalence of myopia among high-
school students in East and Southeast Asia is approximately 30-
times higher than in sub-Saharan Africa (Jonas et al., 2021). The
situation of myopia among adolescents is particularly serious,
especially in East Asian countries. Adolescents (young people
aged 10–19) (Das et al., 2017) are crucial to the future
development and progress of a country, and adolescent eye
health is related to the national health (Shi et al., 2022),
therefore, the high incidence of myopia will bring a burden to
society and families. Thus, to slow down or even prevent the high
incidence rate of myopia, it is necessary to clarify the mechanism of
its occurrence and development, and this is the main direction of
myopia research at present.

Retinoic acid (RA) is an acid derivative of vitamin A, which is
the one-way oxidation product of photosensitive cells in the eye
(Brown et al., 2022a; Brown et al., 2022b), and RA has an
important role in eye development. Citral is a competitive
inhibitor of the key dehydrogenase required for RA
generation. Studies have shown that the retinal RA content of
myopia is significantly higher than that of non-myopia (Brown
et al., 2022a; Brown et al., 2022b). Also, Wang et al. found that the
level of RA and the expression level of Zonula occludens-1 (ZO-
1) and occludin in the retinal pigment epithelium (RPE) –choroid
complex of lens induced myopia (LIM) guinea pigs were
significantly increased, whereas the expression of RA and the
proteins of ZO-1and occludin in LIM guinea pigs treated with RA
antagonists were inhibited (Wang et al., 2014). These studies
show that RA is involved in myopia regulation. However, the
specific role and mechanism of RA in myopia are not clear, as well
as its effects on the retina and choroid.

Furthermore, to evaluate the severity of myopia, it is important
to obtain relevant ophthalmic indicators. Generally, RE and AL are
considered as the most important parameters, and almost all myopia
studies will obtain these two parameters, or at least one of them
(Tideman et al., 2018; Hughes et al., 2020), also, which will be used as
the indicator to evaluate the prevention and control effect of myopia
(Chamberlain et al., 2021). The appearance of imaging instruments
has provided assistance for the acquisition of ophthalmic
parameters. For example, intraocular lens-master (IOL-master),
A-scan, and optical coherence tomography (OCT) can be used
for the acquisition of AL, of which IOL-master is used widely in
clinic, whereas A-scan is used widely in animal research of myopia
(Yang et al., 2021). Enhanced depth imaging OCT (EDI-OCT) can
be used to acquire choroidal images, compared with ordinary OCT,

which focuses on the retina, and it can improve the quality of
choroidal imaging significantly (Sodi et al., 2018a; Sodi et al., 2018b).
Thus, EDI-OCT can be used to obtain clear images of the retina and
choroid, and the built-in software of its detection system can
measure retinal thickness (RT) and choroidal thickness (CT)
manually. Moreover, many studies have proved that myopia can
also affect RT and CT. Zhang et al. (Zhang et al., 2019) measured the
CT of spontaneous myopia guinea pigs, form deprivation myopia
(FDM) guinea pigs, and LIM guinea pigs, finding that the CT of the
three groups decreased in the myopia stage, but increased in the
myopia recovery stage, so they suggested that CT could be used as an
early predictor of myopia. Also, Jonas et al. (Jonas et al., 2019)
believed that axial myopia could lead to thinning of the retina at the
posterior pole, especially around the optic disc, and that AL was
related to the RT around the optic disc, but not to the RT of the
macula. They believed that axial myopia would cause additional
Bruch membrane to be produced in the area behind the equator of
the eye, thus causing thinning of the retina around the optic disc,
whereas the macular area would not be affected. However, the CT
and RT measured in most studies are usually the macular part, not
the periphery of the optic disc (Tian et al., 2021).

At present, although it has been known that RA might be
involved in the occurrence and development of myopia in guinea
pigs, its mechanism is not clear, and no studies have reported the
effect of RA on RT and CT in FDM guinea pigs. Therefore, this
study intends to explore the effect of RA on the intraocular
parameters of guinea pigs with myopia, especially the effects of
RA on peripheral RT and CT of the optic disc in FDM guinea pigs
by using EDI-OCT.

Materials and methods

Animals

A total of 80 male 2-week-old British guinea pigs [Beijing
Weitong Lihua Experimental Animal Technology Co., Ltd.,
China, production license number: SCXK (Beijing) 2021-0011]
were selected. All guinea pigs were kept in a clean environment
at a room temperature of 18–29 °C (daily temperature
difference ≤4 °C) and relative humidity of 40–70%. Inclusion
criteria: 1. male 2-week-old guinea pigs, of body weight
200–220g, and body weight individual value within ± 20% of the
mean; 2. The cornea is clear and transparent, the fundus is normal,
and there is no obvious anisometropia. Exclusion criteria: 1. Guinea
pigs over 2 weeks old; 2. Guinea pigs whose weight is not within the
standard range; 3. Guinea pigs with anisometropia >1D, amblyopia,
and myopia; 4. There are abnormalities in the eyes, such as corneal
trauma or vitreous opacity; 5. Guinea pigs in poor condition and
unable to continue the experiment or were injured or died during the
experiment.

The breeding environment conforms to the national standard
GB14925-2010 of the People’s Republic of China. There was one
cage for every three guinea pigs, with 12/12 h of light alternating
between day and night (light: 07:70 AM to 17:30 PM), all animals
drink and eat freely. The relevant contents and procedures involved
in this test comply with the relevant provisions of the Institutional
Animal Care and Use Committee (IACUC) and have been approved
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by the Ethics Committee of West China-Frontier Pharma Tech Co.,
Ltd., Chengdu, Sichuan, China. The ethics number is: IACUC- SW-
S2022022023-P001-01.

Animal grouping and model establishment

There were 4 groups: Control group, FDM group, FDM + RA
group, and FDM + Citral group. Guinea pigs were divided randomly
according to body weight, with 20 males per group.

The eyes of the control group were not treated. The right eyes of
the guinea pigs in the FDM group, the FDM + RA group, and the
FDM+ Citral group were myopia, and the left eyes were self-control.
The white non-toxic No.6 latex balloon is used to make the head
cover, which covers the right eye of all FDM guinea pigs but does not
compress the cornea and eyelid of the right eye, to ensure that the
right eye can blink freely; at the same time, the left eye, mouth, nose,
and ears are fully exposed. Wearing of the head cover was checked
every 1 day, and any damaged, displaced, and tight head cover was
replaced in time to ensure that the right eye of the guinea pig is
covered continuously but can blink freely. After 4 weeks, the RE,
IOP, and AL of all guinea pigs were measured, and the model was
successful if the AL increased and RE decreased. The FDM + RA
group was given RA by gavage (24 mg/kg dissolved in 0.4 mL peanut
oil, all-trans, Sigma-Aldrich, United States); the FDM + Citral group
was given citral by gavage (445 mg/kg dissolved in 0.4 mL peanut oil,
mixture of cis and trans, Macklin, China) (Yu et al., 2021), starting
at 10 a.m. each time, for 4 weeks, once every 3 days; the other two
groups were given 0.4 mL peanut oil at the same time point.

Retinography and measurement of AL
and IOP

RE and AL of all guinea pigs were measured at the beginning of the
experiment and 4 weeks later (Since these two data are the key to judge
whether guinea pigs successfully induce relative myopia, we measured
them before and after induction to determine the degree of myopia).
The infrared band-light retinoscope (Suzhou 66Vision Technology Co.,
Ltd., China) was used to obtain the RE of all guinea pigs. Compound
topiricamine eye drops were used to dilate the eyes. After three times of
dosing, the eyes were examined in a dark room 15 min later. The RE in
horizontal and vertical positions were detected respectively by an
experienced optometrist at the working distance of 50 cm and

0.25 D, and half of the astigmatism was included in the equivalent
spherical lens (Luo et al., 2017). OD-1 (Kaixin, Xuzhou, China) small
animal A scan was used to measure AL. Aubucaine hydrochloride eye
drops (1–2 drops) were placed on the eye surface of all guinea pigs
3 times, each time at an interval of 5 min. The small animal
measurement mode was used, and the probe was perpendicular to
the pupil area and touched the cornea (avoid pressing), and the value of
the waveform contraction in front of the retina was read as AL, accurate
to 0.01 mm. The measurement was repeated 3 times, and the average
value was taken. The IOP of guinea pigs wasmeasuredwith TONOVET
(TV02) tonometer (Icare, Finland). Each eye was measured 3 times and
the average value was taken.

All guinea pigs were kept awake during the examination of RE,
AL and IOP.

Measurement of retina and choroid images
by EDI-OCT

After 4 weeks, the CT and RT of all guinea pigs were measured
using the EDI mode of OCT (Heidelberg, Germany). All guinea pigs
were kept awake and their eyes were dilated with compound topicamide
eye drops. After pacifying the guinea pigs, their whole body was
wrapped, placed on the OCT examination table, and the eyes to be
examined were exposed, so that the anteroposterior diameter of the eyes
was consistent with the scanning indicator light source. Then, 31 layers
below the optic disc from the bottom to the top was scanned, and the
RT and CT of 1 disc diameter (DD) below the optic disc was measured
using the manual measurement software provided by the detection
system [RT is defined as the inner limiting membrane (ILM) of the
retina to the retinal pigment epithelium (RPE), and the highly reflective
band width outside the RPE is defined as CT (Sodi et al., 2018a; Sodi
et al., 2018b)] (Figure 1).

Statistical analysis

SPSS25.0 (IBM Corp., Armonk, NY, United States) was used for
statistical analysis. All results were expressed as mean ± standard
deviation (SD). The comparison of RE, AL, IOP, CT, and RT
among the four groups was performed by one-way analysis of
variance (ANOVA). The comparison between the left and right eyes
among the groups was performed by paired t-test. p < 0.05 represents a
difference with statistical significance.

FIGURE 1
Structure of retina and choroid under EDI-OCT.
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Results

RE results of Guinea pigs in each group

There was no statistical significance in the comparison of RE
between the four groups before induction (Figures 2A, B). After
4 weeks of induction, the comparison difference of RE in the right
eye of each group was statistically significant, and the FDM+ RA group

had the smallest RE (Figure 2C). In the left eye, the comparison
difference among other groups was statistically significant except
that between FDM group and FDM + Citral group (Figure 2D).

There was no statistically significant difference in RE between
the left and right eyes of each group before induction (Figures 3A, C,
E, G); The RE in the right eye of the Control group changed from
5.58 ± 0.34 to 3.09 ± 0.45 D, the difference of RE between the left and
right eyes was also not statistically significant (Figure 3B); The RE of

FIGURE 2
Comparative results of RE before and after induction in four groups (D). Note. (A), Comparison of RE in the right eye before induction; (B),
Comparison of RE in the left eye before induction; (C), Comparison of RE in the right eye after induction; (D), Comparison of RE in the left eye after
induction; (D), diopter; ns means that the difference is not statistically significant; *Indicates p ≤ 0.05; ** Indicates p ≤ 0.01; *** Indicates p ≤ 0.001; ****
Indicates p ≤ 0.0001.
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FIGURE 3
Comparison of RE between the left and right eyes before and after induction in each group (D). Note. (A), Comparison of RE between left and right
eyes before induction in Control group; (B), Comparison of RE between left and right eyes after induction in Control group; (C), Comparison of RE
between left and right eyes before induction in FDM group; (D), Comparison of RE between left and right eyes after induction in FDM group; (E),
Comparison of RE between left and right eyes before induction in FDM+RA group; (F), Comparison of RE between left and right eyes after induction
in FDM + RA group; (G), Comparison of RE between left and right eyes before induction in FDM + Citral group; (H), Comparison of RE between left and
right eyes after induction in FDM + Citral group; (D), diopter; ns means that the difference is not statistically significant; **** Indicates p ≤ 0.0001.

TABLE 1 RE of left and right eyes of guinea pigs before and after experimental induction (D).

Group (n = 80) Before induced T P After induced T P

L R L-R L R L-R

Control group 5.59 ± 0.35 5.58 ± 0.34 0.01 ± 0.11 0.11 0.9084 3.23 ± 0.64 3.09 ± 0.45 0.15 ± 0.17 0.83 0.4119

FDM group 5.41 ± 0.37 5.46 ± 0.22 −0.05 ± 0.1 0.52 0.6089 2.14 ± 0.44 −2.68 ± 0.26 4.81 ± 0.11 42.18 <0.0001

FDM + RA group 5.45 ± 0.43 5.44 ± 0.33 0.01 ± 0.12 0.10 0.9182 1.60 ± 0.70 −4.84 ± 0.59 6.44 ± 0.21 31.39 <0.0001

FDM + Citral group 5.55 ± 0.38 5.55 ± 0.38 0.00 ± 0.12 0.00 >0.9999 1.34 ± 0.42 −1.85 ± 0.56 3.19 ± 0.16 20.20 <0.0001

F 0.91 0.83 44.16 958.90

P 0.4384 0.4796 <0.0001 <0.0001

Note: R, right eye; L, left eye; D, diopter; RE, refractive error; F, f value; P, p value; T, t value; p < 0.05 means statistically significant difference.
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the right eye of FDM group changed from 5.46 ± 0.22 D to −2.68 ±
0.26 D; The RE of the right eye of FDM + RA group changed from
5.44 ± 0.33 D to −4.84 ± 0.59 D; The RE of the right eye of FDM +
Citral group changed from 5.55 ± 0.38 D to −1.85 ± 0.56 D. There
was statistically significant difference in RE between the left and
right eyes in FDM group (Figure 3D), FDM + RA group (Figure 3F)
and FDM + Citral group (Figure 3H). All details are shown in
Table 1.

AL results of Guinea pigs in each group

There was no statistical difference in the comparison of bilateral
AL between the four groups before induction (Figures 4A, B); After
induction, the difference of AL in the right eye between the four
groups was statistically significant, and the AL in the FDM + RA
group was the largest (Figure 4C); The comparison of left eye AL
between the four groups after induction was statistically significant

FIGURE 4
Comparison of AL results of four groups of guinea pigs (mm). Note. (A), Comparison of AL in the right eye before induction; (B), Comparison of AL in
the left eye before induction; (C), Comparison of AL in the right eye after induction; (D), Comparison of AL in the left eye after induction; (D), diopter; ns
means that the difference is not statistically significant; *Indicates p ≤ 0.05; ** Indicates p ≤ 0.01; *** Indicates p ≤ 0.001; **** Indicates p ≤ 0.0001.
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FIGURE 5
Comparison of AL between the left and right eyes in each group (mm). Note. (A), Comparison of AL between left and right eyes before induction in
Control group; (B), Comparison of AL between left and right eyes after induction in Control group; (C), Comparison of AL between left and right eyes
before induction in FDM group; (D), Comparison of AL between left and right eyes after induction in FDM group; (E), Comparison of AL between left and
right eyes before induction in FDM + RA group; (F), Comparison of AL between left and right eyes after induction in FDM + RA group; (G),
Comparison of AL between left and right eyes before induction in FDM+Citral group; (H), Comparison of AL between left and right eyes after induction in
FDM + Citral group; AL, axial length; ns means that the difference is not statistically significant; **** Indicates p ≤ 0.0001.

TABLE 2 AL of left and right eyes of guinea pigs before and after experimental induction (mm).

Group (n = 80) Before induced T P After induced T P

L R L-R L R L-R

Control group 7.31 ± 0.10 7.33 ± 0.15 −0.02 ± 0.04 0.51 0.6154 7.56 ± 0.07 7.58 ± 0.06 −0.01 ± 0.02 0.65 0.5181

FDM group 7.29 ± 0.08 7.26 ± 0.08 0.03 ± 0.03 1.22 0.2304 7.62 ± 0.15 8.19 ± 0.18 −0.57 ± 0.05 11.46 <0.0001

FDM + RA group 7.33 ± 0.07 7.30 ± 0.05 0.03 ± 0.02 1.41 0.1654 7.93 ± 0.19 8.46 ± 0.21 −0.54 ± 0.06 8.41 <0.0001

FDM + Citral group 7.33 ± 0.07 7.30 ± 0.09 0.03 ± 0.03 1.17 0.2510 7.81 ± 0.22 7.88 ± 0.17 −0.07 ± 0.06 1.16 0.2530

F 0.86 1.84 20.94 106.10

P 0.4678 0.1468 <0.0001 <0.0001

Note: R, right eye; L, left eye; AL, axial length; FDM, form deprivation myopia; RA, retinoic acid; F, f value; P, p value; T, t value; p < 0.05 represents statistically significant difference.
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except for the Control group VS. FDM and FDM + RA group VS.
FDM + Citral group (Figure 4D).

Before induction, there was no statistical difference in AL between
the left and right eyes in each group (Figures 5A, C, E, G); After
induction, only the FDM group and FDM + RA group had statistically
significant differences in AL between the left and right eyes (Figures 5D,
F); There was no statistical difference in AL between the left and right
eyes of the Control group and FDM+Citral group (Figures 5B, H); The
changes in AL for each group are detailed in Table 2.

The result of IOP after induction

The IOP of the right eye in the FDM+RA group was higher than
that in the Control group (p ≤ 0.05), and the difference between the
IOP of the left and right eyes in the FDM-RA group was also
statistically significant (p ≤ 0.01). The IOP of the right eye was
greater than that of the left eye, and there was no statistically
significant difference between the groups and between the left
and right eyes in each group. See Figure 6; Table 3 for details.

FIGURE 6
Comparison of IOP in each group (mmHg). Note. (A), Comparison of IOP in the right eye; (B), Comparison of IOP in the leftt eye; (C), Comparison of
IOP between left and right eyes in Control group; (D), Comparison of IOP between left and right eyes in FDM group; (E), Comparison of IOP between left
and right eyes in FDM + RA group; (F), Comparison of IOP between left and right eyes in FDM + Citral group; IOP, intraocular pressure; ns means that the
difference is not statistically significant; *Indicates p ≤ 0.05; ** Indicates p ≤ 0.01.

Frontiers in Cell and Developmental Biology frontiersin.org08

Wu et al. 10.3389/fcell.2023.1160897

188

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1160897


CT and RT results of Guinea pigs measured
by EDI-OCT

Compared with RT in the right eye of the 4 groups, the
Control group > FDM + Citral group > FDM group > FDM + RA
group, there was no statistical significance between the FDM
group and the FDM + RA group, and the comparison between the
other two groups was statistically significant p < 0.0001
(Figure 7A). Compared with RT in the left eye of the
4 groups, only the Control group VS. FDM + Citral group and
the Control group VS. FDM + RA group showed statistically
significant differences (p < 0.05), while pairwise comparison
among other groups showed no statistically significant
differences (Figure 7B). Compared with the CT of the right
eye of the 4 groups, the CT of the control group was larger
than that of the other three groups, and the difference was
statistically significant (p < 0.0001), there was no statistical
difference between the FDM + Citral group, the FDM group,
and the FDM + RA group (Figure 7C); There was no statistically
significant difference between the FDM + RA VS. FDM + Citral
groups compared with the CT of the left eye in the four groups,
and the differences between the other groups were statistically
significant (Figure 7D). Detailed data are shown in Tables 4, 5.

There was a statistical difference between FDM group and FDM
+ RA group in RT of left and right eyes, and RT of right eye was
significantly less than that of left eye (Figures 8B, C). There was
statistically significant difference between the left and right eye CT of
FDM group and FDM + RA group (Figures 8F, G). In FDM + Citral
group, there was statistical difference in CT between left and right
eyes, and the CT of right eye was significantly smaller than that of
left eye (Figure 8H), but not in RT (Figure 8D). There was no
difference in CT and RT between the left and right eyes between
Control groups (Figures 8A, E).

Discussion

In this study, we discussed the effect of RA on the intraocular
parameters of FDM guinea pigs, and, in particular, analyzed the
RT and CT measured by EDI-OCT in guinea pigs under different
induction factors. We found that the eye axis and refractive
degree of young guinea pigs after form deprivation increased.

The AL of the right eye was 0.57 ± 0.05 mm larger than that of the
control eye and the right eye was myopia (−2.68 ± 0.26 D),
whereas the left eye was still hyperopia (2.14 ± 0.44 D). However,
the retina and choroid did decrease correspondingly (RT in the
right eye was 34.38 ± 3.24 μm smaller than that in the left eye,
whereas CT was 26.48 ± 2.67 μm smaller). Moreover, the degree
of myopia of FDM guinea pigs treated with RA was more serious,
with RE reaching −4.84 ± 0.59 D and AL 8.46 ± 0.21 mm; the RT
of the right eye in the FDM + RA group was 118.90 ± 10.30 μm,
which was smaller than that in the FDM group (125.30 ±
8.13 μm), although the CT results of the two groups were
almost the same (102.10 ± 9.01 μm in FDM group, 102.60 ±
14.10 μm in FDM + RA group). However, the myopia trend
seemed to be alleviated by RA inhibitors. The RE was −1.85 ±
0.56 D, AL was 7.88 ± 0.17 mm, and RT was 146.50 ± 15.29 μm,
however, this did not seem to affect the choroid, its CT was
107.60 ± 12.13 μm, which is far less than 136.90 ± 12.61 μm of the
control group. Furthermore, we found that RA might aggravate
the thinning tendency of the retina in FDM guinea pigs through
the results of EDI-OCT. Although there was no statistically
significant difference between the RT and CT results of the
right eye in the FDM and FDM + RA groups, the RT in the
FDM + RA group was the smallest among the four groups, and the
RT in the FDM + Citral group was significantly greater than that
in the FDM and FDM + RA groups, indicating that RA might
aggravate the retinal thinning trend in FDM. This trend was
suppressed with RA antagonists. However, RA seemed to have no
effect on the change of CT in FDM guinea pigs (there was no
statistical difference in CT among the FDM, FDM + RA, and
FDM + Citral groups). Also, we found that the IOP of FDM
guinea pigs after RA treatment increased and IOP was normal
after citral treatment.

RA is present widely in retina and choroid, which is considered to
be a key signaling molecule regulating eye growth and might be
associated with myopia (Mertz and Wallman, 2000). RA is regulated
mainly by retinalaldehyde dehydrogenase 1 and 2 (RALDH1 and
RALDH2), which are present in the retina and choroid. Harper
et al. found that these two enzymes exist in the choroid and retina
of human eyes, especially in the choroid (Harper et al., 2015). However,
only RALDH2 changes during the recovery of the experimental myopia
model. Summers et al. reported the changes of RALDH2+ cells in the
choroid of the chickmyopiamodel during the recovery stage ofmyopia,

TABLE 3 IOP results of left and right eyes of guinea pigs in each group (mmHg).

Group (n = 80) IOP T P

L R L-R

Control group 15.08 ± 2.60 16.13 ± 2.17 −1.05 ± 0.76 1.38 0.1747

FDM group 17.21 ± 2.18 17.56 ± 4.10 −0.35 ± 0.99 0.35 0.7271

FDM + RA group 15.98 ± 2.90 19.35 ± 4.13 −3.37 ± 1.13 2.99 0.0049

FDM + Citral group 15.29 ± 3.04 16.90 ± 3.93 −1.61 ± 1.04 1.55 0.1277

F 2.73 2.79

P 0.0491 0.0459

Note: R, right eye; L, left eye; IOP, intraocular pressure; FDM, form deprivation myopia; RA, retinoic acid; F, f value; P, p value; T, t value; p < 0.05 represents statistically significant difference.
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finding that the RALDH2+ cells existed mainly in the choroid stroma
and vascular attachment, and would continue to rise during the
recovery stage of myopia. The choroid would also thicken within
4 days of the recovery stage and the trend of RE, AL, and CT
increasing was consistent with the change of RALDH2 (Summers
et al., 2020). In addition, the phenomenon of CT enlargement in the
myopic model has also been reported by Liang et al. who found that the
retina and choroid of chicks would thicken within 6 days of form
deprivation, and then the thickness of the retina would first return to
normal. They found that the concentration of sodium and chlorine in
the retina and choroid of myopic eyes was lower than that of normal

eyes, resulting in tissue edema and increased thickness (Liang et al.,
2004). Our study found that the retina of FDM guinea pigs may be
thickened after 4 weeks of RA induction, but the choroid has no obvious
change, and the CT results of FDM + RA group were even larger than
those of FDM guinea pigs without RA induction (CT of the FDM
group: 102.10 ± 9.01 μm; CT of the FDM + RA group: 102.60 ±
14.10 μm). We speculated that this might be related to the stage of
myopia that the choroid and retina edema occurred during, but the
retina first recovered and became thinner with the aggravation of
myopia. However, it is not clear whether our phenomenon is related
to the mediation of related proteins as other studies have shown.

FIGURE 7
Comparative results of CT and RT in each group (μm). Note. (A), Comparison of RT of right eye; (B), Comparison of RT of left eye; (C), Comparison of
CT of right eye; (D), Comparison of CT of left eye; ns means that the difference is not statistically significant; *Indicates p ≤ 0.05; ** Indicates p ≤ 0.01; ***
Indicates p ≤ 0.001; **** Indicates p ≤ 0.0001.
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In fact, in both FDM and LIMmodels of guinea pigs and chickens,
it has been confirmed that all-trans RA (atRA)will increase (Bitzer et al.,
2000; Huang et al., 2011), whereas, in hyperopiamodels, it will decrease,

although the specific mechanism of RA regulating refractive changes is
not clear. Also, the significant increase of RALDH2 protein production
in the choroid, and the change of its content in the retina might be

TABLE 4 CT results of left and right eyes of guinea pigs in each group measured by EDI-OCT (μm).

Group (n = 80) CT T P

L R L-R

Control group 137.70 ± 9.92 136.90 ± 12.61 0.85 ± 3.59 0.24 0.8140

FDM group 128.60 ± 8.23 102.10 ± 9.01 26.48 ± 2.67 9.94 <0.0001

FDM + RA group 118.20 ± 9.70 102.60 ± 14.10 15.65 ± 3.83 4.09 0.0002

FDM + Citral group 115.20 ± 11.23 107.60 ± 12.13 7.57 ± 3.45 2.20 0.0335

F 22.69 38.05

P <0.0001 <0.0001

Note: R, right eye; L, left eye; FDM, form deprivationmyopia; RA, retinoic acid; CT, choroidal thickness; EDI-OCT, enhanced depth imaging-optical coherence tomography; F, f value; P, p value;

T, t value; p < 0.05 represents statistically significant difference.

FIGURE 8
Comparison of RT and CT between the left and right eyes in each group (μm). Note. (A), Comparison of RT between left and right eyes in Control
group; (B), Comparison of RT between left and right eyes in FDM group; (C), Comparison of RT between left and right eyes in FDM + RA group; (D),
Comparison of RT between left and right eyes in FDM+Citral group; (E), Comparison of CT between left and right eyes in Control group; (F), Comparison
of CT between left and right eyes in FDM group; (G), Comparison of CT between left and right eyes in FDM + RA group; (H), Comparison of CT
between left and right eyes in FDM + Citral group; ns means that the difference is not statistically significant; *Indicates p ≤ 0.05; ** Indicates p ≤ 0.01; ***
Indicates p ≤ 0.001; **** Indicates p ≤ 0.0001.
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related closely to the formation of myopia. In the LIM model, guinea
pigs developed myopia tendency after wearing a −6 D lens for only
2 weeks, and the content of RA and the production of RALDH2 protein
also increased. However, in guinea pigs with myopia recovery, the
protein was reduced in the retina, but not in the choroid, which is
contrary to the results in chicken mentioned earlier (this might be
related to the different myopia mechanisms between chickens and
guinea pigs). This study suggests that RA in the retina and choroid is
involved in the regulation of LIM guinea pigs (Mao et al., 2012).
Nevertheless, although both LIM and FDMmodels form axial myopia,
their mechanisms are not completely the same, and the mechanism of
RA in FDM guinea pigs might also be different from other types of
animal myopia models.

The FDM guinea pig model was selected for our study, which is a
commonly used myopia model because of their docile temperament
and similar eyeball development to humans (Cheng et al., 2014;
Cheng et al., 2015). Studies have reported that the structural changes
to the retina of FDM guinea pigs were observed by light and electron
microscopy. The depth of the vitreous cavity, retina, and sclera of the
RE and AL were thinned after form deprivation, and the activity of
superoxide dismutase (SOD) in FDM eyes was reduced significantly.
They believed that oxygen free radicals might be related to the
formation of FDM (Zi et al., 2020). The results of their study are
similar to the changes of intraocular parameters in our FDM
group. In addition, we can see that the RE, AL of FDM eyes in
guinea pigs are increased compared with those in the FDM group
after RA induction. Although the difference of RT comparison
results was not statistically significant, there was a decreasing
trend. Furthermore, in contrast to the earlier research, we used
OCT technology to collect the structure of the retina and choroid of
living guinea pigs, which can improve the efficiency of experiments.
EDI-OCT can be used clinically to measure CT and RT results of
patients (Park et al., 2013). However, animals have poor compliance
compared with humans because it is difficult for animals to
cooperate closely with instruments for measurement. In addition,
eyeballs are often smaller in animals, which is one of the reasons for
the difficulty in obtaining intraocular parameters of small animals.
Based on the docile characteristics of guinea pigs, in this study, our
guinea pigs were awake for OCT scanning, and we also obtained
retinal and choroid images successfully, reducing the mortality from
anesthesia.

Additionally, we found that the IOP of FDM guinea pigs after
RA increased, which has never been reported before. However,
myopia is related to glaucoma, and HM is an independent risk factor
for glaucoma (Jonas et al., 2020), and, the higher the degree of
myopia, the higher the risk of glaucoma. In our study, guinea pigs in
the FDM + RA group had the highest degree of myopia in the right
eye. We speculated that this might be the reason for the high IOP in
this group, although it might also be related to the pharmacological
effects of RA.

It should be mentioned that our research has the following
limitations. 1. We have not discussed the changes of choroidal blood
flow in depth. Optical coherence tomography angiography (OCTA)
can determine changes of choroidal blood flow and vascular density,
whereas the degree of myopia is correlated negatively with the
density of choroidal choriochorionic capillaries (Liu et al., 2021;
Li et al., 2022). Unfortunately, our laboratory does not have OCTA
instruments. 2. We analyzed the intraocular parameters of RA acting
on FDM guinea pigs, but did not further study the pharmacological
mechanism. In future research, we will strive to address these
limitations.

Conclusion

Morphological deprivation in guinea pigs results in thinning
of the retina and choroid. Exogenous RA can aggravate the
tendency of myopia in FDM guinea pigs. Meanwhile,
exogenous RA can cause an increase of IOP in FDM guinea
pigs. However, after RA inhibition, the refractive state and AL
of FDM guinea pigs were reduced. At the same time, RA might
aggravate retinal thinning in FDM guinea pigs, although it seems
to have no obvious effect on choroidal thinning. The study of RA
might provide an important breakthrough in understanding the
mechanism of myopia.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

TABLE 5 RT results of left and right eyes of guinea pigs in each group measured by EDI-OCT (μm).

Group (n = 80) RT T P

L R L-R

Control group 162.00 ± 6.41 163.20 ± 7.67 −1.15 ± 2.24 0.51 0.6099

FDM group 159.7 ± 12.39 125.30 ± 8.13 34.38 ± 3.24 10.63 <0.0001

FDM + RA group 150.60 ± 12.76 118.90 ± 10.30 31.66 ± 3.73 8.50 <0.0001

FDM + Citral group 151.40 ± 13.28 146.50 ± 15.29 4.91 ± 4.22 1.16 0.2509

F 5.15 68.09

P 0.0026 <0.0001

Note: R, right eye; L, left eye; FDM, form deprivationmyopia; RA, retinoic acid; RT, retinal thickness; EDI-OCT, enhanced depth imaging-optical coherence tomography; F, f value; P, p value; T,

t value; p < 0.05 represents statistically significant difference.
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As the only blood vessels that can directly be seen in the whole body, pathological
changes in retinal vessels are related to the metabolic state of the whole body and
many systems, which seriously affect the vision and quality of life of patients.
Timely diagnosis and treatment are key to improving vision prognosis. In recent
years, with the rapid development of artificial intelligence, the application of
artificial intelligence in ophthalmology has become increasingly extensive and
in-depth, especially in the field of retinal vascular diseases. Research study results
based on artificial intelligence and fundus images are remarkable and provides a
great possibility for early diagnosis and treatment. This paper reviews the recent
research progress on artificial intelligence in retinal vascular diseases (including
diabetic retinopathy, hypertensive retinopathy, retinal vein occlusion, retinopathy
of prematurity, and age-related macular degeneration). The limitations and
challenges of the research process are also discussed.

KEYWORDS

artificial intelligence, fundus images, diabetic retinopathy, hypertensive retinopathy,
retinal vein occlusion, retinopathy of prematurity, age-related macular degeneration

1 Introduction

In 1956, artificial intelligence (AI) was first proposed. As a branch of computer science,
the purpose of AI is to develop and study computer methods to simulate and expand human
intelligence and perform complex tasks (Hamet and Tremblay, 2017). Machine learning
(ML) is a subfield of AI, where machines learn and mark a large amount of measured data or
features through statistical algorithms to use the generated empirical model to complete the
task (Deo, 2015). ML can perform the classification task, and the classifier needs to learn to
identify the tag features of the research object and then classify the task according to the tag
features, whichmainly depends on the resolution of the selected features. Deep learning (DL)
is a subfield of machine learning, a multilayer neural network, and a machine learning
method (LeCun et al., 2015). DL is powerful and can not only perform classification tasks,
but also extract features. A single deep learning network can perform two tasks
simultaneously, extract the features of a given classification problem, and then classify
them. Compared with ML, DL has a special advantage; that is, with the increase in training
data, the performance of DL will improve, whereas the performance of ML will reach
saturation with the increase in data. The relationship diagrams for AI, ML, and DL are shown
in Figure 1.
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With the rapid development of computer science in recent years,
AI has made significant progress. AI has been applied in the field of
medicine, especially in ophthalmology, and the clinical application
of AI is particularly extensive. AI has been used to develop AI
models for automatic diagnosis, screening, classification and
treatment, especially in ophthalmic diseases such as ocular
surface diseases (Ji et al., 2022b), anterior segment diseases (Ting
et al., 2021), cataracts (Tognetto et al., 2022), glaucoma (Coan et al.,
2023), and retinal diseases (Ting et al., 2019).

Retinal vascular disease (RVD) is a major retinal disease. The
vascular system of the retina is one of the components of the systemic
circulatory system. There are many causes of retinal vascular diseases,
including the effects of local eye diseases and systemic diseases on
retinal vessels, which can be divided into the following categories: 1)
retinal vascular obstructive diseases, such as retinal vein occlusion; 2)
the effects of systemic diseases on retinal vessels, such as diabetes and
hypertension; 3) retinal vascular inflammatory immune diseases,
such as retinal periphlebitis; and 4) retinal vascular abnormalities
and developmental abnormalities, such as retinopathy of prematurity.
Retinal vascular disease can cause irreversible damage to retinal cells
and can seriously affect the vision of patients. If patients are not
treated in time, they will experience serious vision loss or blindness.
Therefore, for patients with retinal vascular disease, early detection,
diagnosis, and treatment are particularly important, but relatively
insufficient resources for ophthalmic diagnosis and treatment greatly
limit the early diagnosis and treatment of retinal vascular diseases. In
recent years, AI has become increasingly used in ophthalmology,
especially in image recognition and processing of retinal vascular
diseases, which provides a new possibility for early diagnosis and
treatment. This review summarizes the research achievements of AI
for the diagnosis of retinal vascular diseases in recent years and
discusses the limitations and challenges of the research.

2 Basic process of the medical artificial
intelligence diagnosis model for
research

Using the AI model by Tong et al. (2020), we drew a basic flow
chart of the AI research model, as shown in Figure 2. First, the

experts mark the collected images, remove the unqualified images in
the labeled images, and randomly divide the remaining qualified
images into a training dataset, validation dataset, and test dataset
according to a certain proportion. Second, the training dataset and
validation dataset are used to train and optimize the AI model to
obtain the best performing AI model. Finally, we used the test
dataset to test the AI model and compare the AI model’s
performance with the experts.

3 Application of artificial intelligence in
retinal vascular diseases

3.1 Application of artificial intelligence in
diabetic retinopathy

Diabetes is a common metabolic disease that causes extensive
damage to many tissues and organs in the body. Diabetic
retinopathy (DR) is one of the most serious microvascular
complications of diabetes and a common cause of blindness (Lim
et al., 2023). The incidence of DR is primarily related to the course of
diabetes and the degree of disease control. The longer the course of
diabetes, the higher the incidence of DR (Huang et al., 2023). At
present, the pathogenesis of DR is unclear, but glucose metabolism
disorder is the root cause of DR (Han et al., 2023). In the early stage
of DR, patients with general ocular symptoms can experience
various visual impairments with the development of the disease,
among which flash sensation and vision loss are the most common
(Grauslund, 2022). Clinically, DR is divided into non-proliferative
diabetic retinopathy (NPDR) and proliferative diabetic retinopathy
(PDR). The most important sign of PDR is retinal
neovascularization (Sheng et al., 2022). According to the severity
of DR, DR is divided into six stages: stage I, microhemangioma and
small hemorrhagic spot; stage II, yellow-white rigid exudation and
hemorrhagic spot; stage III, white cotton velvet spot and
hemorrhagic spot; stage IV, neovascularization or vitreous
hemorrhage; stage V, neovascularization and fiber proliferation;
and stage VI, neovascularization and fiber proliferation,
accompanied by traction retinal detachment (Mehra et al., 2022;
Yang et al., 2022). The treatment of DR mainly includes the
following aspects: 1) strict control of blood glucose levels, which
can slow the occurrence and progression of DR, 2) laser
photocoagulation, 3) vitrectomy and intraocular
photocoagulation, and 4) vitreous injection of anti-VEGF drugs
(Li F. et al., 2022; Wang et al., 2022).

By analyzing the fundus examination images of DR patients, AI
can complete the automatic diagnosis of DR, which is of great
significance in improving the diagnostic and work efficiency of
doctors. Li X. et al. (2022) constructed an intelligent diagnosis model
for DR based on Inception-v4 to assist in the diagnosis of AI. They
used 8,739 fundus images for the AI model training and evaluated
them using the Messidor-2 dataset. In addition, they compared the
performance of the model with that of ophthalmologists. The final
results showed that the AUC, sensitivity, and specificity of the model
were 0.992, 0.925, and 0.961, respectively, which were better than
those of ophthalmologists. To better assist the diagnosis of severe
DR, Zhang et al. (2022a) developed an AI model that can diagnose
DR automatically on the basis of Inception V3 and applied The

FIGURE 1
The relationship of AI, ML, and DL.
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Kaggle public dataset to the development and validation of the AI
model. After validation, the sensitivity, specificity, and AUC of the
model for diagnosing severe DR were 0.925, 0.907, and 0.968,
respectively. Zhao et al. (2022) constructed several DR prediction
models using five different machine learning algorithms (Random
Forest, Logistic Regression, Extreme Gradient Boosting, Support
Vector Machine, K-Nearest Neighbor) and used the eye data of
7,943 patients to train and test the AI model. In addition, they
compared different AI models to predict the performance of DR.
After testing, the performance of the Extreme Gradient Boosting
model was found to be the best, and its AUC, accuracy, sensitivity,
specificity were 0.803, 0.889, 0.740, 0.811, respectively.

To build an AI model that can automatically detect DR, Hassan
et al. (2022) constructed a DR detection model based on the VGG-
16, ResNet-50, and U-Net. They collected 1804 fundus images, used
them to train the AI model, and validated the model on external
datasets. After validation, the accuracy of the model for the DR
diagnosis was 0.9938. Islam et al. (2022) proposed an AI model that
can detect DR based on supervised contrastive learning and used the

APTOS 2019 Blindness Detection dataset and Messidor-2 dataset to
train and test the AI model. After testing, the accuracy of the DR
detection model was 0.9836 and the AUC was 0.9850. Using a deep
learning algorithm, Elgafi et al. (2022) proposed an AI model that
can detect DR using optical coherence tomography (OCT) images.
In this study, 188 OCT images were collected and applied to the
training and validation of the AI models. Finally, the accuracy of the
model was verified to be 0.9681. By learning the characteristic
lesions in the fundus images of DR patients, AI can detect DR,
which can facilitate the early detection of DR patients, thereby
reducing and improving clinical work pressure.

Zhang et al. (2022b) constructed a deep graph correlation
network (DGCN) model through a convolution neural network,
which can automatically classify DR without professional labeling.
In this study, EyePACS-1 andMessidor-2 datasets were used to train
and test the model. Finally, the results showed that the accuracy,
sensitivity, and specificity of the model on the EyePACS-1 dataset
were 0.899, 0.882, and 0.913, respectively, and the accuracy,
sensitivity and specificity of the model on the Messidor-2 dataset

FIGURE 2
Basic flow chart of the AI diagnosis model for research.
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were 0.918, 0.902, and 0.930, respectively. To assist DR classification,
Zhang W. F et al. (2022) developed an AI classification model based
on ResNet-34 and Inception-v3 and used 1,089 fundus images to
train and test the model. After testing, the AUC of the model was
0.958 and the kappa score was 0.860. Katz et al. (2022) constructed
an AI model based on W-net, which can automatically classify DR.
They collected 6,981 fundus images and used them to train and test
the AI model. The final results showed that the accuracy of the
model was 0.989. We summarize the above research, as shown in
Table 1.

3.2 Application of artificial intelligence in
hypertensive retinopathy

Hypertensive retinopathy (HR) is a common retinal vascular
disease caused by long-term hypertension (Ji et al., 2022a). Fundus
changes in HR patients are related to age and disease course. The
older the age of HR patients, the longer the course of the disease and
the higher the incidence of fundus lesions (Cheung et al., 2022). In
the early stage, there is often no obvious change in the fundus of HR
patients. With the progression of the disease, the retinal artery
gradually changes organically, and the wall of the retina begins to
harden, appearing as a copper wire or silver wire (Di Marco et al.,
2022). The diameter of the artery gradually narrows, and the
proportion of arteries and veins gradually decreases (Dziedziak
et al., 2022). Retinal hemorrhage, hard exudation, cotton velvet

spots, and other changes occur in the fundus; and optic disc edema
may occur in severe cases (Liu et al., 2021; Badawi et al., 2022).
According to the progression and severity of the disease, HR is
divided into four grades: grade I, vasoconstriction and narrowing;
grade II, arteriosclerosis; grade III, exudation, cotton velvet spots,
hemorrhage, and extensive microvascular changes; and grade IV
grade III changes and optic disc edema (Wong and Mitchell, 2004;
Tsukikawa and Stacey, 2020). In clinical treatment, lowering blood
pressure is the most fundamental means to prevent and treat fundus
changes. After the effective control of blood pressure, optic disc
edema, retinal edema, hemorrhage, and exudation can be absorbed
and eliminated (Klig, 2008; Del Pinto et al., 2022). If HR patients
have complications such as macular edema, treatment such as
intravitreal injection of anti-VEGF drugs can significantly
improve their vision (Padhy and Kumar, 2018).

In many studies, AI has been used to screen and diagnose HR,
and the AI model constructed in this study showed good screening
and diagnostic performance and has the potential for clinical
application. Han et al. (2021) constructed an AI model to screen
for HR and other common eye diseases based on an anomaly
detection algorithm. In this study, 90,499 fundus photos were
collected and randomly divided into training, validation, and
testing dataset according to a certain proportion, which were
used to develop and evaluate the AI model. After testing, the
AUC, accuracy, sensitivity, and specificity of the HR diagnosis
model were 0.895, 0.8237, 0.8129, and 0.8275, respectively. To
assist clinicians in screening HR, Arsalan et al. (2021)

TABLE 1 Research summary of artificial intelligence in diabetes retinopathy.

Year Country or
region

Authors Task Dataset (disease images) AI algorithm Output

2021 China Li et al. (2022) Diagnosis 8,739 images, Messidor-2 dataset
(8,379 images)

Inception-v4 AUC = 0.992, Sensitivity =
0.925, Specificity = 0.961

2022 China Zhang et al.
(2022a)

Diagnosis The Kaggle public dataset
(4,192 images)

Inception V3 Sensitivity = 0.925,
Specificity = 0.907, AUC =
0.968

2022 China Zhao et al.
(2022)

Diagnosis 7,943 patients’ data (1,692 images) Random Forest, Extreme Gradient
Boosting, Logistic Regression, Support
Vector Machine and K-Nearest Neighbor

AUC = 0.803, Accuracy =
0.889, Sensitivity = 0.740,
Specificity = 0.811

2022 America Hassan et al.
(2022)

Detection 1804 images (920 images) VGG-16, ResNet-50, U-Net Accuracy = 0.9938

2022 Bangladesh Islam et al.
(2022)

Detection APTOS 2019 Blindness Detection
dataset, Messidor-2 dataset
(5068 images)

Supervised competitive learning Accuracy = 0.9836, AUC =
0.9850

2022 Egypt Elgafi et al.
(2022)

Detection 188 images (88 images) Deep learning Accuracy = 0.9681

2022 China Zhang et al.
(2022b)

Grading EyePACS-1, Messidor-2
(5849 images)

Deep graph correlation network EyePACS-1: Accuracy =
0.899, Sensitivity = 0.882,
Specificity = 0.913

Messidor-2: Accuracy =
0.918, Sensitivity = 0.902,
Specificity = 0.930

2022 China Zhang F et al.
(2022)

Grading 1,089 images (1,089 images) ResNet-34, Inception v3 AUC = 0.958, Kappa = 0.860

2021 Israel Katz et al.
(2022)

Grading 6,981 images (6,981 images) W-net Accuracy = 0.989
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constructed an AI screening model using a dual-stream fusion
network (DSF-Net) and a dual-stream aggregation network
(DSA-Net). They evaluated the performance of the model using
the DRIVE, STARE, and CHASE-DB1 dataset. After testing, the
accuracy, sensitivity, specificity, and AUC value for DRIVE were
0.9693, 0.8268, 0.9830, and 0.9842, respectively; for CHASE-DB1
they were, 0.9725, 0.8222, 0.9838, and 0.9815, respectively; and for
STARE they were 0.9700, 0.8607, 0.9800, and 0.9865, respectively.
Arsalan et al. (2019) developed a dual-residual-stream-based vessel
segmentation network (Vess-Net) model on the basis of
convolutional neural networks, which is used to assist HR
diagnosis and to train and test on the open datasets of DRIVE,
CHASE-DB1, and STARE. Finally, the results showed that the
sensitivity, specificity, AUC, and accuracy of the model for
diagnosing HR were 0.8526, 0.9791, 0.9883, and 0.9697,
respectively. Dong et al. (2022) collected 120,002 fundus photos
and used a convolutional neural network to create a retinal AI
diagnosis system (RAIDS) for the diagnosis of 10 types of retinal
diseases, including HR. They randomly divided 120,002 fundus
photos into training, test, and validation datasets and used them
in the training and validation of the system. The accuracy of the
system in identifying HR was verified to be 0.837.

AI is also used in the classification and grading of HR, which is
expected to be used clinically to reduce the pressure on doctors.
Abbas et al. (2021) constructed a HYPER-RETINO system based on
the DenseNet algorithm to assist in the classification of HR. They
collected 1,400 fundus photos and used them for the development
and testing of the system. The sensitivity, specificity, accuracy,
Matthews correlation coefficient, and AUC of the system were
0.905, 0.915, 0.926, 0.61, and 0.915, respectively. Akbar et al.
(2018) constructed an AI model using a DL algorithm (support
vector machine and radial basis function) to assist in screening and

grading of HR. The INSPIRE-AVR, VICAVR, STARE, and AVRDB
datasets were used to develop, train and test the model. After testing,
it was found that the accuracies of the first part of the model on the
INSPIRE-AVR, VICAVR, and AVRDB dataset were 0.9510, 0.9564,
and 0.9809, respectively, and the accuracies of the second part on the
STARE and AVRDB dataset were 0.9593 and 0.9750, respectively.
We summarize the above research, as shown in Table 2.

3.3 Application of artificial intelligence in
retinal vein occlusion

Retinal vein occlusion (RVO) is one of most common retinal
vascular disease, second only to diabetic retinopathy, and more
common in older patients (Ren et al., 2022). The pathogenesis of
RVO is related to many factors such as vascular endothelial damage,
hemodynamic changes, intraocular pressure, and ocular local
compression (Terao et al., 2022; Trovato Battagliola et al., 2022).
In addition, the disease is closely related to arteriosclerosis,
cardiovascular and cerebrovascular diseases, hypertension,
diabetes, and other risk factors (Orskov et al., 2022; Tang et al.,
2022). According to the location of vein occlusion, RVO is mainly
divided into central retinal vein occlusion (CRVO) and branch
retinal vein occlusion (BRVO), of which branch occlusion is the
most common (Miao et al., 2022). In the early stage, the symptoms
are characterized by a sudden loss of vision to varying degrees; mild
patients may have no symptoms or only a little shadow (Pur et al.,
2023), and with the progression of the disease, RVO patients have
serious visual impairment (Zhang X. T et al., 2022; Sood et al., 2022).
Typical fundus changes in RVO patients include retinal
hemorrhage, tortuous retinal vein dilatation, extensive retinal
capillary non-perfusion area, and macular edema (Irgat and

TABLE 2 Research summary of artificial intelligence in hypertensive retinopathy.

Year Country or
region

Authors Task Dataset (disease
images)

AI algorithm Output

2021 China Han et al.
(2021)

Screening 90,499 images
(26,148 images)

Anonymous detection AUC = 0.895, Accuracy = 0.8237, Sensitivity =
0.8129, Specificity = 0.8275

2022 Korea Arsalan et al.
(2021)

Screening DRIVE, START, CHASE-
DB1 (2051 images)

Dual-stream fusion network,
Dual-stream aggregation
network

DRIVE: Accuracy = 0.9693, Sensitivity =
0.8268, Specificity = 0.9830, AUC = 0.9842

CHASE-DB1: Accuracy = 0.9725,
Sensitivity = 0.8222, Specificity = 0.9838,
AUC = 0.9815

START: Accuracy = 0.9700, Sensitivity =
0.8607, Specificity = 0.9800, AUC = 0.9865

2019 Korea Arsalan et al.
(2019)

Diagnosis DRIVE, CHASE-DB1,
STARE (1960 images)

Convolutional neural
networks

Sensitivity = 0.8526, Specificity = 0.9791,
Accuracy = 0.9883, AUC = 0.9697

2022 China Dong et al.
(2022)

Diagnosis 120,002 images
(8,198 images)

Convolutional neural
network

Accuracy = 0.837

2021 Saudi Arabia Abbas et al.
(2021)

Classification 1,400 images (1,000 images) DenseNet Sensitivity = 0.905, Specificity = 0.915,
Accuracy = 0.926, Matthews correlation
coefficient = 0.61, F1-score = 0.92, AUC =
0.915

2017 Pakistan Akbar et al.
(2018)

Classification INSPIRE-AVR, VICAVR,
STARE, and AVRDB
(198 images)

Support vector machine,
Radial basis function

Accuracy: INSPIRE-AVR = 0.9510,
VICAVR = 0.9564, AVRDB = 0.9809,
STARE = 0.9593, AVRDB = 0.9750

Frontiers in Cell and Developmental Biology frontiersin.org05

Ji et al. 10.3389/fcell.2023.1168327

199

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1168327


Ozcura, 2023). Late patients may have complications such as
vitreous hemorrhage, traction retinal detachment, and
neovascular glaucoma, resulting in severe visual acuity loss and
even blindness (Altintas and Ilhan, 2023; Patil et al., 2023). Some
commonly used treatment methods in ophthalmology are mainly
used to prevent and treat complications such as laser
photocoagulation, vitrectomy, vitreous injection of hormones, or
anti-VEGF drugs (Ghanchi et al., 2022; Yin et al., 2022).

As an important clinical assistant tool, AI has been widely used
in the early screening of retinal vein occlusion, and especially in
areas where lacking medical resources, AI can play an important
role. To assist in screening for retinal vein occlusion, Chen J. S et al.
(2021) constructed an AI screening model using four DL algorithms
(ResNet-50, Inception-v3, DenseNet-121, SE-ReNeXt-50). They
collected 8,600 color fundus photos and randomly divided them
into training, validation, and test dataset according to a certain
proportion for the development and testing of AI models. After
testing, the Inception-v3 model’s performance was the best, and its
sensitivity, specificity, F1 score, and AUC were 0.93, 0.99, 0.95, and
0.99, respectively. Nagasato et al. (2019a) constructed two AI models
using the VGG-16 and support vector machine algorithms to detect
branch retinal vein occlusion. They collected 465 ultrawide-field
fundus images for training and validation of AI models and
compared the performance of the two models. The final results
showed that the detection performance of the VGG-16 model was
better than that of support vector machine model, with a sensitivity
of 0.940, a specificity of 0.970, and an AUC of 0.976. Nagasato et al.
(2018) constructed two screening models for CRVO based on the
VGG-16 and support vector machine algorithms. In this study,
363 ultrawide-field fundus images were used to develop and test AI
models, and the screening performance of the two AI models was
compared. The VGG-16 model had the best screening performance,
with a sensitivity of 0.984, specificity of 0.979, and AUC of 0.989.
Anitha et al. (2012) constructed an AI diagnosis model based on
artificial neural networks to assist in the diagnosis of four retinal
diseases, including central retinal vein occlusions. They collected
420 digital retinal images to send and verify their model. The results
showed that the model’s accuracy, sensitivity, and specificity were
0.977, 0.960, and 0.980, respectively. To assist in the diagnosis of
retinal vein occlusion, Kang et al. (2021) developed an AI diagnosis
model based on a convolution neural network, and used the
examination data of 2,992 eyes to develop and train the model.
After testing, the AUC of this model for BRVO was 0.959 and that of
CRVO was 0.988. Abitbol et al. (2022) collected 224 ultra-widefield
color fundus images and constructed an AI model based on the
DenseNet121 network to assist diagnose three types of retinal
vascular diseases such as retinal vein occlusion. Finally, the
accuracy of the model in the diagnosis of RVO was 0.884, and
the AUC was 0.912.

Xu et al. (2022) constructed an AI model based on ResNet18 to
assist in the classification of RVO. In their study, 501 fundus images
were collected for the development and testing of the model. After
testing, the classification accuracy of the model was greater than
0.97, the sensitivity was greater than 0.95, the sensitivity was greater
than 0.97, and the F1 score was greater than 0.97. Zhang X. et al.
(2022) constructed a VGG-CAM network model based on
convolutional neural networks to assist in the diagnosis and
classification of RVO. They used a local image database to train

and test the model and compared it with Resnet-34, Inception-V3,
and MobileNet network models. After testing, the sensitivity,
specificity, Kappa coefficient, and AUC of the model for
diagnosing central RVO were 0.99, 0.96, 0.88, and 0.99,
respectively, and the sensitivity, specificity, Kappa coefficient, and
AUC for diagnosing branch RVO were 0.94, 0.99, 0.97, and 0.99,
respectively. In addition, its diagnostic performance was superior to
that of other network models. It can be seen that in the clinical
classification of retinal vein occlusion, compared with manual
classification, automatic classification has lower cost and higher
efficiency and can play an important role in clinical practice.

In addition, AI can help clinicians diagnose RVO by identifying
and segmenting the characteristic lesions in the images of patients
with RVO, thus reducing the workload of clinicians. Tang et al.
(2021) constructed an AI model using CE-Net to help segment the
non-perfusion area of the retina caused by RVO, thus helping to
evaluate RVO severity. They collected 177 fluorescein angiography
images for training and testing the AI model and enhanced the
performance of the AI model through an adaptive histogram-based
data augmentation method. After testing, the accuracy of the model
was 0.883. To detect the non-perfusion area caused by RVO in
optical coherence tomography angiography (OCTA) images to help
diagnose RVO, Nagasato et al. (2019b) constructed an AI model
based on VGG-16 and support vector machine and collected
322 OCTA images for AI model training and testing. In addition,
they compared the performance of the AI model with the diagnostic
abilities of seven ophthalmologists. After testing, the performance of
the VGG-16 model was better than support vector machine model
and the seven ophthalmologists, and its AUC, sensitivity, and
specificity were 0.986, 0.937, and 0.973, respectively. We
summarize the above research, as shown in Table 3.

3.4 Application of artificial intelligence in
retinopathy of prematurity

Retinopathy of prematurity (ROP), also called retrolental
fibroplasia, is a proliferative retinopathy of immature or low
birth weight infants (Campbell et al., 2022). Most of the infants
were premature with less than 34 weeks of pregnancy, birth weight
less than 1,500 g, history of inhalation of high concentrations of
oxygen, or stunted low birth weight infants (Sabri et al., 2022).
Preterm birth, low birth weight, and inhalation of high
concentrations of oxygen are high-risk factors for ROP
(Ramanathan et al., 2022). The clinical manifestations of children
with ROP vary according to the course of the disease, which is
divided into three areas according to the location of the lesion: area Ⅰ,
a circular area with a radius of 2 times the distance from the optic
disc to the fovea of the macula (Bai et al., 2022); area Ⅱ, a circular
area centered on the optic disc to the sawtooth margin of the nasal
side (Eilts et al., 2023); and areaⅢ, the area excluding areas I and II
(Nisha et al., 2023). According to the severity of the lesion, it was
divided into five stages: stage 1, dividing line stage; stage 2, critical
stage; stage 3, increment stage; stage 4, subpanretinal detachment
stage; and stage 5, panretinal detachment stage (Gensure et al.,
2020). For treatment, stage 1 and stage 2 can disappear naturally, so
they should be observed closely (Scruggs et al., 2020); stage 3 should
be treated with condensation or photocoagulation to prevent
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neovascularization (Barrero-Castillero et al., 2020); and stage 4 and
stage 5 can be treated with a vitrectomy to remove proliferated
fibrovascular tissue. Photocoagulation was performed
simultaneously (Morya et al., 2022). Once ROP occurs, it
progresses rapidly, and the curative effect in advanced cases is
limited; therefore, it is important for children with ROP to be
detected and treated early to avoid serious consequences.

To automatically diagnose ROP, Brown et al. (2018) constructed
a diagnostic model based on U-Net and Inception version 1, and
5,511 retinal images were used to develop and train the AI model. In
addition, they compared the AI model’s diagnostic performance
with that of eight experts. The final results showed that the
sensitivity, specificity, and accuracy of the AI diagnosis model
were 0.93, 0.94, 0.91 respectively, whereas the average accuracy of
the eight experts was 0.82. This shows that the diagnostic
performance of the AI model is superior. Chen Q. et al. (2021)
proposed an AI model on the basis of convolution neural network,
which tcan assist the staging diagnosis of ROP. They collected
10,894 fundus images and divided them into training and testing
dataset. After testing, the AUROC of the model was 0.99, the
AUPRC was 0.98, and the sensitivity was 0.94. Mao et al. (2020)
established an AImodel that can assist in the diagnosis of ROP based
on U-Net and Dense Net and analyzed the progress of ROP. They
used 3,311 fundus images to train and varify the AI model. Finally,
the results showed that the diagnostic specificity of the model was
0.978, the sensitivity was 0.951, and the sensitivity and specificity for
the diagnosis of disease deterioration were 0.924 and 0.974,
respectively. Peng et al. (2022) constructed an ADS-Net model
based on DenseNet121 to assist doctors in the diagnosis of ROP.
In this study, 8,733 fundus images were collected from two datasets

for training and verifying the model. After validation, the accuracy
of the model for diagnosing ROP was 0.9776, recall was 0.9714,
precision was 0.9835, F1-score was 0.9774, and the kappa coefficient
was 0.9552. Based on the above AI research results, it can be found
that AImodel shows superior performance in automatic diagnosis of
ROP by recognizing ophthalmic examination data such as fundus
images, and has the potential to be used in clinical diagnosis and
treatment, which can greatly improve the work efficiency of
clinicians and reduce the work pressure of clinicians.

In recent years, AI model has made a lot of research
achievements in assisting the clinical staging and grading
diagnosis of ROP. In order to assist in the grading and staging of
ROP, Tong et al. (2020) constructed an AI model based on ResNet
and faster region-based convolutional neural network (Faster-
RCNN). In this study, 36,231 retinal images were collected and
randomly divided into training, validation, and testing datasets. In
addition, they compared the classification performance of the AI
model with two retinal experts. The final results showed that, in
terms of ROP classification, the accuracy, sensitivity, specificity, and
F1 scores of the model were 0.903, 0.778, 0.932, and 0.761,
respectively, which were better than the two retinal experts. In
terms of ROP staging, the diagnostic accuracies of stages 1, 2, 3,
4, and 5 were 0.876, 0.942, 0.968, 0.998, and 0.999, respectively. Peng
et al. (2021) used ResNet18, DenseNet121, and EfficientNetB2 to
create an AI model for ROP staging and used 635 retinal images to
train and verify the model. After validation, the recall of the model
was 0.905, precision was 0.9092, the F1 score was 0.9043, accuracy
was 0.9827, and Kappa was 0.9786. To detect early ROP and staging,
Huang et al. (2021) constructed an ROP staging model using a
through convolution neural network. They randomly divided

TABLE 3 Research summary of artificial intelligence in retinal vein occlusion.

Year Country or
region

Authors Task Dataset (disease
images)

AI algorithm Output

2021 China Chen S et al.
(2021)

Screening 8,600 images
(440 images)

ResNet-50, Inception-v3,
DenseNet-121, SE-ReNeXt-50

Sensitivity = 0.93, Specificity = 0.99, F1 = 0.95,
AUC = 0.99

2018 Japan Nagasato et al.
(2019a)

Detection 465 images
(125 images)

VGG-16, Support vector
machine

Sensitivity = 0.940, Specificity = 0.970, AUC =
0.976

2018 Japan Nagasato et al.
(2018)

Screening 363 images
(237 images)

VGG-16, Support vector
machine

Sensitivity = 0.984, Specificity = 0.979, AUC =
0.989

2011 India Anitha et al.
(2012)

Diagnosis 420 images (95 images) Artificial neural networks Accuracy = 0.977, Sensitivity = 0.960,
Specificity = 0.980

2021 Taiwan Kang et al.
(2021)

Diagnosis 2,992 eyes (325 eyes) Convolution neural network AUC of branch retinal vein occlusion = 0.959;
AUC of central retinal vein occlusion = 0.988

2022 France Abitbol et al.
(2022)

Diagnosis 224 images
(169 images)

DenseNet121 Accuracy = 0.884, AUC = 0.912

2022 China Xu et al. (2022) Classification 501 images
(242 images)

ResNet18 Accuracy>0.97

Sensitivity>0.95, F1 score>0.97

2022 China Zhang et al.
(2022a)

Classification Local image database
(Not specified)

Convolutional neural networks Sensitivity = 0.99, Specificity = 0.96, Kappa
coefficient = 0.88, AUC = 0.99

2020 China Tang et al.
(2021)

Division 177 images
(177 images)

CE-Net Accuracy = 0.883

2019 Japan Nagasato et al Detection 322 images
(128 images)

VGG-16, Support vector
machine

AUC = 0.986, Sensitivity = 0.937, Specificity =
0.973
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11,372 fundus images into training and test datasets and used them
to train and test the AI model. The results showed that the accuracy,
sensitivity, and specificity of the model were 0.9223, 0.9614, and
0.9595, respectively. The sensitivity and specificity of stage 1 ROP
were 0.9182 and 0.9450, respectively; the sensitivity and specificity of
stage 2 ROP were 0.8981 and 0.9899, respectively. Li F. et al. (2022)
developed an AI model based on U-Net and Dense Net to assist in
the diagnosis of children with early ROP in stage 1–3. They collected
18,827 retinal images for training and validation dataset. After
validation, the sensitivity and specificity of the model were
0.9593 and 0.9929 for normal images, 0.9021 and 0.9767 for
stage 1 ROP, 0.9275 and 0.9874 for stage 2 ROP, 0.9184 and
0.9929 for stage 3 ROP, respectively. AI model has made many
achievements in the clinical staging and grading diagnosis of ROP.
AI model can help clinicians to grade and stage diagnosis of ROP,
which is more conducive to the early diagnosis and treatment of
ROP patients.

To detect the blood vessels in areas I, II, and III of children with
ROP and to assist in assessing the severity of ROP, Agrawal et al.
(2021) built an AI model by combining U-Net and Circle Hough
Transform. They collected 4,250 fundus images to develop and test
the AImodel, all of which were labeled by ROP experts. After testing,

the model’s accuracy was 0.98. To predict the occurrence and
evaluate the severity of ROP, Wu et al. (2022) constructed an AI
prediction model and AI evaluation model based on OC-Net and
SE-Net. They collected 7,796 retinal images for training and
validation dataset. The results showed that the AUC, accuracy,
sensitivity, and specificity of the OC-Net prediction model were
0.94, 0.333, 1.00, and 0.075, respectively. The AUC, accuracy,
sensitivity, and specificity of the OC-Net prediction model were
0.88, 0.560, 1.00, and 0.353, respectively. We summarize the above
research, as shown in Table 4.

3.5 Application of artificial intelligence in
age-related macular degeneration

Age-related macular degeneration (AMD), also known as senile
macular degeneration, is common in Europe, the United States, and
other developed countries and is the main cause of blindness in the
elderly in developed countries. Its incidence increases with age (Thomas
et al., 2021). At present, the etiology and pathogenesis of AMD are not
clear, and the related risk factors include age, sex, race, heredity,
smoking, malnutrition, metabolic disorders, and retinal light damage

TABLE 4 Research summary of artificial intelligence in retinopathy of prematurity.

Year Country or
region

Authors Task Dataset
(disease
images)

AI algorithm Output

2018 America Brown et al.
(2018)

Diagnosis 5,511 images
(977 images)

U-Net, Inception version 1 Sensitivity = 0.93, Specificity = 0.94, Accuracy = 0.91

2020 America Chen Q. et al.
(2021)

Diagnosis 10,894 images
(1945 images)

Convolution neural network AUROC = 0.99, AUPRC = 0.98, Sensitivity = 0.94

2020 China Mao et al.
(2020)

Diagnosis 3,311 images
(1,393 images)

U-Net, Dense Net Specificity = 0.978, Sensitivity = 0.951

2022 China Peng et al.
(2022)

Diagnosis 8,733 images
(3,684 images)

DenseNet121 Accuracy = 0.9776, Recall = 0.9714, Precision =
0.9835, F1-score = 0.9774, Kappa = 0.9552

2020 China Tong et al.
(2020)

Classification 36,231 images
(36,231 images)

ResNet, Faster region-based
convolutional neural
network

Accuracy = 0.903, Sensitivity = 0.778, Specificity =
0.932, F1 score = 0.761

2021 China Peng et al.
(2021)

Classification 635 images
(332 images)

ResNet18, DenseNet121,
EfficientNetB2

Recall = 0.9055, Precision = 0.9092, F1 score =
0.9043, Accuracy = 0.9827, Kappa = 0.9786

2020 Taiwan Huang et al.
(2021)

Classification 11,372 images
(1,279 images)

Convolution neural network Accuracy = 0.9223, Sensitivity = 0.9614, Specificity =
0.9595, Sensitivity and Specificity of stage 1 ROP =
0.9182, 0.9450, Sensitivity and Specificity of stage
2 ROP = 0.8981,0.9899

2022 China Li and Liu
(2022)

Classification 18,827 images
(3,869 images)

U-Net, Dense Net Sensitivity of diagnosing = 0.9593, Specificity of
diagnosing = 0.9929, Sensitivity and Specificity of
stage 1 ROP = 0.9021, 0.9767, Sensitivity and
Specificity of stage 2 ROP = 0.9275,0.9874,
Sensitivity and Specificity of stage 3 ROP =
0.9184,0.9929

2021 India Agrawal et al.
(2021)

Evaluation 4,250 images
(2,350 images)

U-Net, Circle Hough
Transform

Accuracy = 0.98

2022 China Wu et al.
(2022)

Evaluation 7,796 images
(1984 images)

OC-Net, SE-Net AUC, Accuracy, Sensitivity and Specificity of OC-
Net = 0.94,0.333,1.00, and 0.075, respectively

AUC, Accuracy, Sensitivity and Specificity of SE-
Net = 0.88, 0.560, 1.00, and 0.353, respectively
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(Lombardo et al., 2022; Tao et al., 2023). Most patients with AMD are
more than 50 years old, have both eyes effected at the same time or
successively, and have progressive visual impairment. According to
clinical manifestations and pathological changes, AMD can be divided
into two types: atrophic or non-exudative or dry; exudative or
neovascularization or wet (Gale et al., 2023). The main feature of
atrophic AMD is progressive RPE atrophy, the main changes of the
fundus are vitreous warts and RPE degeneration and atrophy (Zhang
et al., 2023), and the characteristic changes of exudative AMD are
neovascularization under the RPE, subretinal neovascular membrane,
and subretinal hemorrhage (Liberski et al., 2022; Cao et al., 2023). For
treatment, because the etiology of AMD is not clear, there is still no
specific drug treatment or fundamental effective preventive measures;
vitreous injection of anti-VEGF drugs is mainly used for neovascular
AMD (Fabre et al., 2022; Galindo-Camacho et al., 2022).

To assist clinicians in diagnosing age-related macular degeneration
and distinguishing its different types, AI has carried out a lot of research
in this area, with remarkable results. Han et al. (2022) collected
4,749 spectral domain optical coherence tomography (SD-OCT)
images and constructed an AI model that can diagnose neovascular
age-related macular degeneration using three convolution neural
networks (VGG-16, VGG-19, and ResNet). They randomly divided
4,749 images into training and test datasets and used them to develop
and verify the model. In addition, they compared the diagnostic
performance of the model with that of ophthalmologists. The results
showed that the accuracy of the model was 0.874, which was similar to
that of ophthalmologists. To distinguish between different types of
AMD, Tak et al. (2021) constructed a model based on convolutional
neural networks and used 420 Optos wide-field retinal images for
training and validation. The classification accuracy of the model was
found to be 0.88. Chou et al. (2021) constructed a DL model based on
EfficientNet-B3 for the differential diagnosis of neovascular age-related
macular degeneration. They collected 699 fundus photographs for
training and testing the model. After testing, the model showed
good performance with accuracy, sensitivity, specificity, and AUC
values of 0.8367, 0.8076, 0.8472, and 0.8857, respectively. Heo et al.
(2020) constructed an AImodel using the VGG16model to identify the
different types of AMD. In this study, 399 fundus images were used to
train and verify the model, and the discrimination performance of the
model was compared with that of residents. The accuracy of the model
was better than that of the residents, with an accuracy of 0.9086.

In addition to extensive research on the diagnosis and classification
of AMD, AI has been used to predict the severity, disease progression,
and therapeutic effect in patients with age-related macular
degeneration. Ganjdanesh et al. (2022) created a new DL model
(LONGL-Net) based on ResNet-18 to predict the severity and
progression of patients with age-related macular degeneration. They
collected approximately 30,000 color fundus photographs for training
and verifying the model. The average accuracy of the model was 0.905,
and the AUCwas 0.762. Song et al. (2022) constructed anAImodel that
predicted neovascular ANM based on a classified convolution neural
network and a complete convolutional neural network algorithm. In
total, 671 SD-OCT images were used to train and test the model. The
average accuracy of the model was 0.930, the Dice coefficient was 0.873,
the sensitivity was 0.873, and the specificity was 0.922. To predict the
treatment effect and disease progression in patients with neovascular
AMD, Yeh et al. (2022) built anAI predictionmodel using a new type of
deep convolution neural network (Heterogeneous Data Fusion Net).

They collected eye SD-OCT images from 698 patients and used them to
train and test the model. In addition, they compared the predictive
performance of the model with those of the ResNet50 and AlexNet
models. The prediction performance of the model was better than that
of ResNet50 and AlexNet, with an AUC value of 0.989, accuracy of
0.936, sensitivity of 0.933, and specificity of 0.938. Yan et al. (2020)
developed an AI model based on convolutional neural networks to
predict the disease progression in patients with AMD. They collected
31,262 eye OCT images and 52 related mutations. After testing, the
AUC value of themodel for predicting the disease progression was 0.85.

Holomcik et al. (2022) constructed an AI model on U-Net to
automatically segment lesions in fluorescein angiography images of
patients with neovascular AMD. They collected 9,268 images to
develop and test the model. After testing, the F1 score, accuracy, and
recall of the segmented lesion size were 0.65, 0.75, and 0.72,
respectively, and the F1 scores, accuracy, and recall of the leakage
area were 0.73, 0.80, and 0.78, respectively. He et al. (2022) created a
DL model that can detect age-related macular degeneration through
the ResNet-50 model and local outlier factor (LOF) algorithm and
used the UCSD dataset and Duke dataset to train and test the model.
Finally, the accuracy of the model was 0.9987 for the UCSD dataset
and 0.9756 for the Duke dataset. We summarize the above research,
as shown in Table 5.

4 Limitations and challenges

Based on the referenced studies, AI is widely used in retinal vascular
diseases, especially in image recognition and data analysis. Although AI
model shows superior performance in assisting the diagnosis,
identification, screening, staging and grading of retinal vascular
diseases, AI model also faces many limitations and challenges in the
research process, which will seriously affect the further research of
artificial intelligence in retinal vascular diseases and hinder its clinical
application. Below, we list the main limitations and challenges of AI in
research on retinal vascular diseases. 1) Image quality in the dataset
(Aronson, 2022; Gutierrez et al., 2022): The image quality used in AI
research has a significant impact on AI research. The higher the image
quality, the better the performance of the AI model. However, the
quality of the image is related to a variety of factors, such as shooting
equipment, operators, the degree of cooperation of patients and so on.
Therefore, high-quality images should be used asmuch as possible in AI
research. 2) Manual annotations of images in the dataset (Hashimoto
et al., 2020; Betzler et al., 2022): The images in many studies must be
manually annotated, and the accuracy of manual labeling has a
significant impact on the performance of the AI model. This
requires experts in related diseases to label the images to ensure the
validity of the data. 3) Sample size of the dataset (Ji et al., 2022b): The
accuracy of the AI model is related to the sample size. The larger the
sample size, the higher the accuracy of the AI model. The sample size of
the dataset used in some studies was small, which had an impact on the
performance of the AImodel. Therefore, in the study, the sample size of
the dataset should be expanded as much as possible to ensure the
accuracy of the AImodel. 4) Patient heterogeneity (Galante et al., 2023):
Studies on the AI model are likely to be affected by different patient
groups. Differences between patients such as age, sex, race, and region
affect the performance of the AI model. If only one patient group is
included in the data set used in the study, it will seriously affect the
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accuracy and clinical application of theAImodel. 5) Clinical application
of the AI model (Al-Aswad et al., 2022; Wawer Matos et al., 2022):
Although in many studies, AI model shows superior performance in
external verification datasets, due to the great difference between “real
environment” and “research environment”, this will lead to a series of
problems in clinical application of AI model, which will affect the
performance of AI model. 6) Clinicians’ reserve of AI algorithms and
their related knowledge (Tabuchi, 2022; Yang et al., 2023): AI belongs to
a branch of computer science and does not belong to the professional
scope of clinicians, which leads to clinicians’ lack of knowledge about AI
algorithms, their related knowledge, and lack of explanation, which can
easily lead to the “black box phenomenon” and hinder the application of
AI in clinical work.

5 Conclusion

At present, the use of AI technology to assist clinicians in the study
of ophthalmic images and other ophthalmic examinations is a current
major focus. The combination of AI and ophthalmology will greatly
improve the diagnosis of ophthalmic diseases, especially retinal vascular
diseases based on the analysis of fundus images. The diagnosis model
based on AI will be beneficial for the early detection, diagnosis, and
treatment of retinal vascular diseases. Although the application of
artificial intelligence in the field of ophthalmology has made a lot of
research results, but from the overall situation, it is only the beginning.
With further developments in computer science and technology, the
application of AI in the field of ophthalmology will be more and more
widely used in the field of ophthalmology. In addition, with the

deepening of research, in addition to image processing and
recognition, other artificial intelligence technologies will also carry
out related research in the field of ophthalmology, so as to promote
the continuous development of ophthalmology.
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TABLE 5 Research summary of artificial intelligence in age-related macular degeneration.

Year Country or
region

Authors Task Dataset (disease
images)

AI algorithm Output

2022 Korea Han et al. (2022) Diagnosis 4,749 images (2,624 images) VGG-16, VGG-19, ResNet Accuracy = 0.874

2021 America Tak et al. (2021) Classification 420 images (420 images) Convolutional neural networks Accuracy = 0.88

2021 Taiwan Chou et al.
(2021)

Diagnosis 699 images (491 images) EfficientNet-B3 Accuracy = 0.8367, Sensitivity =
0.8076, Specificity = 0.8472, AUC =
0.8857

2020 Korea Heo et al. (2020) Diagnosis 399 images (399 images) VGG16 Accuracy = 0.9086

2022 America Ganjdanesh
et al. (2022)

Prediction 30,000 images
(30,000 images)

ResNet-18 Accuracy = 0.905, AUC = 0.762

2022 China Song et al.
(2022)

Prediction 671 images (671 images) Classified convolution neural
network, complete convolution
neural network

Accuracy = 0.930, Dice
coefficients = 0.873, Sensitivity =
0.873, Specificity = 0.922

2022 Taiwan Yeh et al. (2022) Prediction 698 images (698 images) Deep convolution neural network AUC = 0.989, Accuracy = 0.936,
Sensitivity = 0.933, Specificity =
0.938

2020 America Yan et al. (2020) Prediction 31,262 images, 52 related
mutated genes
(31,262 images)

Convolutional neural networks AUC = 0.85

2022 Austria Holomcik et al.
(2022)

Division 9,268 images (9,268 images) U-Net F1 score = 0.65, Accuracy = 0.75,
Recall = 0.72

2022 China He et al. (2022) Detection UCSD dataset, Duke dataset
(46,421 images)

ResNet-50, Local outlier factor UCSD: Accuracy = 0.9987

Duke: Accuracy = 0.9756
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Using a smartphone app in the
measurement of posture-related
pupil center shift on centration
during corneal refractive surgery
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Purpose: Pupil center is an important anchor point in corneal refractive surgery,
which may affect by body position. This study investigated the feasibility of using a
smartphone application in measurement of posture-related pupil center shifts.

Methods: Images of undilated eyes were captured for 25 participants (age:
18–38 years) at a distance of 40 cm in four body positions (seated, supine,
right lateral, and left lateral) under controlled lighting conditions. During taking
images, a smartphone application was used to guide positioning without head
rotation and tilt. From the images, the location of the pupil center and pupil
diameter with respect to the limbus boundary were measured.

Results: According to the data obtained by the smartphone application, pupil
center was located slightly nasal and superior to the limbus center in the seated
position, and it shifted more nasally and superiorly (p < 0.001, OD 0.54 ± 0.11 mm,
OS 0.57 ± 0.14 mm) in the supine position. When body position switched between
left and right lateral positions, the pupil centers of both eyes shifted along the
direction of gravity (p < 0.05), and no significant shift occurred along the
longitudinal axis. Moreover, pupil constriction was observed when the body
position changed from seated to supine position (p < 0.001, OD 0.64 ±
0.57 mm, OS 0.63 ± 0.58 mm).

Conclusion: Posture-related pupil center shift may be larger than the error
tolerance of centration in corneal refractive surgery, which might be difficult to
measure by the existing instruments. An accessible application is necessary for
evaluating the shift of pupil center and guiding centration during the surgery.

KEYWORDS

pupil, shift, centration, posture, cornea refractive surgery

Introduction

First postulated by Snellen in 1869, corneal refractive surgery has more recently become an
alternative to dependence on contact lenses or spectacles for use in routine daily activities.
Although there are several types of corneal refractive surgery,most involve laser vision correction
(LVC), such as laser in situ keratomileusis (LASIK), laser epithelial keratomileusis (LASEK),
femtosecond laser in situ keratomileusis (FS-LASIK), and small incision lenticule extraction
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(SMILE). Regardless of the treatment, centration remains a critical step
during refractive procedures. Decentration of ablation may be
associated with a significant increase in higher-order aberrations
(HOAs) (Bueeler et al., 2003), decreases in quality of vision and
contrast sensitivity, diplopia (Yap and Kowal, 2001), and night
vision disturbances (Mrochen et al., 2001). Thus, proper centration
of the treatment is essential during corneal refractive procedures.

The pupil center is widely utilized to determine centration
during several corneal refractive procedures, such as LASIK and
FS-LASIK. However, the location of the pupil center may shift. Yang
(Yang et al., 2002) measured the location of the pupil center under
photopic, mesopic and pupil dilation conditions, noting consistent
temporal shifts in this location relative to the geometric corneal
center as the pupil dilated. Another study (Mathur et al., 2014)
reported that luminance and accommodation influence pupil size,
although only the luminance change significantly affected the
location of the pupil center. Moreover, some evidence suggests
that changes in body position also induce pupil center shifts.
Using wavefront measurements, Liu (Liu et al., 2013) observed
such shifts between the seated-dilated state and the supine-
undilated state during laser ablation, suggesting that the pupil
center shifts temporally and superiorly. However, it was unable
to determine whether changes in pupil diameter or body position
induced a shift in the pupil center.

Before corneal refractive surgery, necessary examinations need
be done in the seated position to check the pupil center location
relative to the corneal center for prefect centration during the
surgery. However, the surgery must be applied in the supine
position due to the technical limitation, which may cause
decentration by position-related pupil center shifts. Position-
related pupil center shifts are hard to be measured by existing
instruments, so this study turned to AI technology.

Therefore, a smartphone application is designed for investigating
the pupil center shifts associated with 4 different body positions in this
preliminary study. Although lateral body positions are not relevant to
refractive surgery, the position were included to help postulate
whether the pupil center shift may be related to gravity.

Materials and methods

Participants

The present study was conducted between July 2018 and May
2019, approved by the institutional review boards of each institution

and conducted in accordance with the tenets of the Declaration of
Helsinki. Informed consent was obtained from each participant
following a detailed explanation of the nature and possible
consequences of the study. Twenty-five individuals aged
18–38 years participated (Table 1). Inclusion criteria were as
follows: 1) age ≥ 18 years, 2) clear corneas with no signs of
opacity, and 3) absence of other ocular conditions. Exclusion
criteria were as follows: 1) any corneal and iris anomalies, such
as keratoconus or iritis, and 2) use of any ophthalmic or systemic
medications.

Measurement of pupil shifts in different body
positions

Participants were asked to take four positions (seated, supine,
right lateral, and left lateral), staring directly at the smartphone
camera flash. A photo was captured including both eyes, using a
smartphone application at a distance of 40 cm under the same
illuminant condition. An apparatus was made to ensure that the
distance and location were kept constant during image capture
(Figure 1). Participants were instructed to hold the device, place
their chin on the chinrest, and maintain contact between their
forehead and the forehead bar during the experiment, even in
lateral positions.

The smartphone application was designed for images taken to
guide positioning and minimize head rotation and tilt. A pair of
alignment boxes were plotted on the screen, the distance between
them can be adjusted according to the pupil distance of each
Participant (Figure 1). When taking images, eyes should be
included in boxes with the eyelid margin parallel to horizontal
borders. For good quality images, the limbus and pupil should be
seen clearly, so that the boundaries can be marked without ambiguity.

Image analysis

Image J (Rawak Software, Inc., Germany) was used to mark the
limbus and pupil rim, from which their centers were determined
(Figure 2). Because that the limbus is a fixed biological landmark, the
shifts in pupil center were calculated with respect to limbus center.
We also measured pupil and limbus diameters in pixels, and then
converted those measures to millimeters assuming the iris diameter
is 11.8 mm for all eyes (Bergmanson and Martinez, 2017). The
vector shift of the pupil center was calculated as the square root of
the sum of the squares of the horizontal and vertical shifts.

Data analysis

Analysis was conducted using SPSS (version 23.0; IBM Corp.,
Chicago, IL, United States). The results are expressed as the mean ±
standard deviation (SD). The normality of all data distributions was
confirmed using the Kolmogorov-Smirnov test (all p > 0.05) prior to
further analyses. A two-tailed test was used to compare the
magnitudes of the horizontal and vertical shifts of the pupil
centers in all eyes. The paired-samples t-test was used to evaluate
whether shifts were significantly different between right and left

TABLE 1 Subject characteristics.

Characteristics All subjects included in this study (%)
(n = 25)

Sex

Female 10 (40.0)

Male 15 (60.0)

Ethnicity

Caucasian 7 (28.0)

Asian 17 (68.0)

African American 1 (4.0)
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eyes. Repeated-measures one-way analyses of variance (ANOVA)
with Bonferroni correction were used to evaluate differences
between pupil diameters at each position. The level of statistical
significance was set at p < 0.05.

Results

Pupil center location in the seated and
supine positions

The location of the pupil center in the seated position is shown
in Figure 3. They are slightly superior and nasal relative to the limbus

centers. Considering the limbus center as the origin (0,0), the
average location of the right pupil center was at (0.14 ± 0.09,
0.10 ± 0.13 mm), and the location of the left pupil center was at
(−0.17 ± 0.10, 0.06 ± 0.10 mm) (Table 2). The off-center amplitude
was almost the same for the two eyes (p = 0.997, 0.21 ± 0.10 mm for
the right eye and 0.21 ± 0.07 mm for the left eye).

The pupil center was more nasally and superiorly when the
position changed from seated to supine. On average, the right pupil
center shifted to (0.42 ± 0.12, 0.32 ± 0.12 mm), and the left pupil
center shifted to (−0.48 ± 0.14, 0.27 ± 0.14 mm). The off-center
amplitude was almost the same for both eyes (p = 0.335, 0.54 ±
0.11 mm for the right eye and 0.57 ± 0.14 mm for the left eye).

In terms of the shift of each pupil, the right eyes shifted nasally
by 0.28 ± 0.14 mm and superiorly by 0.21 ± 0.17 mm (p < 0.001),
and the left eyes shifted similarly, nasally by −0.31 ± 0.15 mm and
superiorly by 0.21 ± 0.15 mm (p < 0.001), when body position
changed from seated to supine. Overall, the shift amplitude was
about the same for both eyes (0.38 ± 0.16 mm for the right eye and
0.40 ± 0.15 mm for the left eye, p = 0.579).

Pupil center shifts in the lateral position

The results of pupil shift in lateral position are shown in Figure 4
and Table 2. When the body position changed from the seated to
right lateral position, the X coordinates of both pupil centers shifted
to the right side (0.10 ± 0.14 mm for the right eyes, p = 0.011, and
0.26 ± 0.18 mm for the left eyes, p < 0.001). Similarly, When the
body position changed from the seated to left lateral position, the X
coordinates of both pupil centers significantly shifted to the left side
(0.21 ± 0.15 mm for right eyes, p < 0.001, and 0.13 ± 0.09 mm for the
left eyes, p < 0.001). Interestingly, the nasal shift was larger than
temporal shift for both left and right later positions (p < 0.001). In
other words, the pupil in the upper position dropped down
significantly more than the pupil in the lower position, when the
bodies lied on one side. No significant shift was observed for the Y
coordinates (p > 0.101).

FIGURE 1
The device wasmade to fix the smartphone on the same location at 40 cm from the face. Subjects were asked to hold the device and focused on the
camera flash during the whole process, putting the chin on the chinrest and sticking the forehead to the head holder (A, B). A pair of purple boxes were
plotted on the screen to help guide positioning without head rotation (A).

FIGURE 2
A good quality image is processed using Image J. The limbus and
pupil of one eye can be accurately marked by Image J. Limbus center
was considered as Origin (0, 0), and marked by green cross. Pupil
center was marked by red dot.
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Changes in pupil diameter in different
positions

Interestingly, the pupil diameter in supine position was
significantly than all the other positions (Figure 5). For instance,
the pupil constricted by 0.64 ± 0.57 mm in the right eyes and by 0.63 ±
0.58 mm in the left eyes (p < 0.001) when the body position changed
from seated to supine. There were no significant differences observed
between the seated and right/left lateral positions (p > 0.05).

Discussion

This study aimed to investigated the feasibility of using a
smartphone application in measurement of posture-related
pupil center location and pupil diameter. According to the data
obtained by the application, the pupil center was located slightly
nasally and superiorly with respect to the limbus center when
participants were in the seated position (Liu et al., 2013).
Interestingly, the pupil center shifted more nasally and

FIGURE 3
The pupil center location at seated and supine positions. (A) shows right eyes, and (B) shows left eyes. The coordinates (0, 0) represent the limbus
center. The pupil center location of both eyes located slight superiorly and nasally, which shift more superiorly and nasally at supine position. Temporal,
superior, inferior and nasal represent the direction of both eyes.

TABLE 2 The pupil center location at different positions.

Body position Eye X coordinate Y coordinate Amplitude

Mean ± SD (mm)

Seated OD 0.14 ± 0.09 0.10 ± 0.13 0.21 ± 0.10

OS −0.17 ± 0.10 0.06 ± 0.10 0.21 ± 0.07

Supine OD 0.42 ± 0.12 0.32 ± 0.12 0.54 ± 0.11

OS −0.48 ± 0.14 0.27 ± 0.14 0.57 ± 0.14

Supine-Seated OD 0.28 ± 0.14 (p < 0.001) 0.21 ± 0.17(p < 0.001) 0.38 ± 0.16 (p < 0.001)

OS −0.31 ± 0.15(p < 0.001) 0.21 ± 0.15(p < 0.001) 0.40 ± 0.15 (p < 0.001)

Right lateral-seated OD −0.10 ± 0.14 (p = 0.011) 0.03 ± 0.15 (p = 0.373) 0.19 ± 0.13 (p < 0.001)

OS −0.26 ± 0.18 (p < 0.001) 0.02 ± 0.13 (p = 0.727) 0.31 ± 0.14 (p < 0.001)

Left lateral-seated OD 0.21 ± 0.15 (p < 0.001) 0.06 ± 0.21 (p = 0.101) 0.28 ± 0.18 (p < 0.001)

OS 0.13 ± 0.09 (p = 0.001) 0.04 ± 0.16 (p = 0.294) 0.21 ± 0.10 (p < 0.001)

OD, right eyes; OS, left eyes. Supine-seated position, shifts of pupil center from seated to supine position; right lateral-seated position, shifts of pupil center from seated to right lateral position;

left lateral-seated position, shifts of pupil center from seated to left lateral position.
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superiorly when participants were in the supine position, which is
the body position of patients in corneal refractive surgery. To
investigate what might cause the shift, we also measured the pupil
center location in lateral body positions. The pupil center shift due
to different changes in the body position suggests that gravity
might play a role—the pupils in both eyes shift down if one sits up
(from supine position), shift to left in left lateral position, and shift
right in right lateral position. It has been shown that gravity can
influence vertical eye position and movements as a whole (Pierrot-
Deseilligny, 2009), but we are not aware of any previous work
showing gravity’s impact on sub-structures inside the eyes. It is
even more mysterious that the gravity seemed to affect two eyes

differently—it pulls the two pupils in temporal direction (i.e., in
opposite direction) when one sits up in addition to pulling them in
inferior direction, and it pulls the pupils nasally more than
temporally in lateral body positions.

Moreover, it was also found that the pupil constricted when the
body position changed from seated or lateral to supine. A previous
study (Yang et al., 2002) showed that pupil size change may be
associated with pupil center shift—when pupil diameter changed
from 7.58 mm (dilated condition) to 4.06 mm (photopic condition),
the pupil center shifted inferio-nasally by approximately 0.183 mm
with respect to the limbus center. In our study, the pupil constriction
due to body position change was much smaller than that in Yang’s
study (Yang et al., 2002) only from 3.5 to 2.9 mm. However, but the
pupil center shifted more (about 0.4 mm) and in superior-nasal
direction rather than inferio-nasal direction (Figure 3). The
difference suggests that the mechanism behind the shift may be
different. In other words, the pupil center shift observed in this study
was associated with body position, not due to pupil size change.

Our findings may have implications to corneal refractive
surgery, in which centration of the treatment zone is key to
optimizing visual outcomes, and the pupil center is always used
to determine centration or as an important reference point. Since the
location of the pupil center may be variable depending on body
position, it is a question whether the centration in treatment should
be based on upright or supine position. Previous studies (Porter
et al., 2006) have reported that decentration during LASIK
procedures increases the risk of HOAs postoperatively, which
cannot be well explained by an inconsistency between
preoperative aberration measurements over a dilated pupil and
surgical correction over an undilated pupil. A study by Liu et al.
(2015) found that the postoperative refractive outcomes would
decrease if the deviation between corneal vertex and lenticule

FIGURE 4
The pupil center shift at lateral position [(A) for right eyes and (B) for left eyes]. The coordinates (0, 0) represent the limbus center. When changed
from seated to right lateral, pupil centers of both eyes shift to the right, which means nasal for left eyes and temporal for right eyes. Similarly, when
switched from seated to left lateral, pupil centers of both eyes shift to the left, whichmeans nasal for right eyes and temporal for left eyes. The dotted lines
represent the average shifts at each position.

FIGURE 5
Pupil diameter change in different positions. The horizontal pupil
diameter became constricting when the position changed from
seated to supine (p = 0.09 for right eye, and 0.08 for left eye).
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center was more than 0.3 mm. Because the deviation due to body
position change may reach 0.4 mm, as we found in this study, we
speculate that the pupil center shift induced by changes in body
position may contribute to the increased risk of postoperative
HOAs. Further studies are warranted to confirm if body position
should be taken into consideration when determining the treatment
center.

Interestingly, the pupil diameter became smaller in the supine
position than in the other body positions under similar illumination
conditions. Because the images were captured under the same
photopic conditions with the room lights on and the phone
camera fixed at the same location, changes in pupil diameter
were unlikely to have been influenced by changes in illumination.
Non-luminance-mediated (Joshi et al., 2016) changes in pupil
diameter have been associated with some neuronal activities,
possibly because the supine position evokes pupillary constriction
in both eyes. However, there was no significant difference in pupil
diameter in lateral positions. Further studies are required to
determine the relationship between pupil diameter and body
position.

Limitations

The present study possesses some limitations of note. The pupil
location and pupil diameter were normalized by each participant’s
iris diameter, rather than measured directly. To help readers better
understand the level of pupil shift, the iris diameter for all eyes was
approximated to 12 mm, and the pupil shift was scaled linearly using
the iris diameter as a reference. Such an approximation may cause
4% standard deviation in the pupil shift estimation due to the
variability in iris diameter (11.8 ± 0.5 mm) (Hashemi et al.,
2015). To improve accuracy, future studies should measure
individual’s iris size if it is used as a reference. Another
limitation is that the participants fell within a narrow age range
(18–38 years). Therefore, we could not investigate the effect of age
with a small sample in this preliminary study. Adolescents and older
adults should be included in future studies.

Conclusion

Our findings demonstrated that the smartphone application is
feasible for evaluating the posture-related shift of pupil center and
guiding centration during the surgery. According to the data, the
pupil center shifted nasally and superiorly when the body position
changed from seated to supine. Non-luminance-mediated pupillary
constriction also occurred at the same time. Posture-related pupil
center shift may be larger than the error tolerance of centration in
corneal refractive surgery, which may affect postoperative visual
quality following corneal refractive surgery or any treatment using
the pupil center as a reference. Further studies need to confirm if the

shifts in pupil center location that may occur with changes in body
position should be taken into consideration.
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Quantitative assessment of retinal
microvascular remodeling in eyes
that underwent idiopathic
epiretinal membrane surgery
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Wenzhou, China, 2Department of Ophthalmology, Zhejiang Provincial People’s Hospital, Hangzhou,
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Purpose: To explore the surgical outcomes of the macular microvasculature and
visual function in eyes with idiopathic epiretinal membrane (iERM) using spectral-
domain optical coherence tomography angiography (SD-OCTA).

Methods: This observational, cross-sectional study included 41 participants who
underwent iERM surgery with a 3-month (3M) follow-up. Forty-one healthy eyes
formed the control group. The assessments included best-corrected visual acuity
(BCVA) and mean sensitivity (MS) by microperimetry and SD-OCTA assessment of
vessel tortuosity (VT), vessel density (VD), foveal avascular zone, and retinal
thickness (RT).

Results: The findings showed statistically significant differences in VT, foveal
avascular zone parameters, RT, BCVA, and MS between the iERM and control
groups (p < 0.05). After iERM surgery, the macular VT, SCP VD, and RT decreased
significantly (p < 0.01) while the DCP VD increased (p = 0.029). The BCVA
improved significantly (p < 0.001) and was associated with the MS (rs = −0.377,
p=0.015). MSwas associatedwith the SCP VD and RT at 3M (SCP VD rs = 0.511, p=
0.001; RT rs = 0.456, p = 0.003). In the superior quadrant, the MS improved
significantly (p < 0.001) and the improvement of MS was associated with the
reduction of VT (β = −0.330, p = 0.034).

Conclusion: Microcirculatory remodeling and perfusion recovery were observed
within 3 months after iERM surgery. VT was a novel index for evaluating the
morphology of the retinal microvasculature in eyes with iERM and was associated
with MS in the superior quadrant.

KEYWORDS

idiopathic epiretinal membrane, optical coherence tomography angiography, vessel
tortuosity, vitrectomy, microvascular remodeling

Introduction

Idiopathic epiretinal membrane (iERM) is a common macular disease characterized by
abnormal glial proliferation in the vitreoretinal interface. Proliferative cells in the macular
area, migrating along the surface of the internal limiting membrane (ILM), can cause
wrinkling and retinal traction (Fung et al., 2021). The contraction of the iERM is responsible
for the additional thickening, folding, or puckering, along with vascular distortion, and the
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traction on the retina can alter the morphology of the fovea, leading
to clinical symptoms such as metamorphopsia, blurred vision, and
decreased visual acuity (Steel and Lotery, 2013). Pars plana
vitrectomy, followed by peeling of the membrane and ILM, is the
recommended therapy for treating iERM, which can normalize the
wrinkled retinal surface and thickened macula (Far et al., 2021).

Optical coherence tomography (OCT) is widely applied in the
assessment and diagnosis of macular diseases. However, OCT
cannot be used to visualize retinal blood flow (Koustenis et al.,
2017). OCT angiography (OCTA), a newly introduced imaging
modality based on OCT, is used extensively because of its non-
invasiveness in visualizing the retinal vessels. It provides a detailed
en-face view of each capillary layer. In addition, the high resolution
of the capillary network facilitates better visualization of the retinal
vasculature in multiple layers and more reliable assessments of
vascular features. Previous reports have described OCTA-derived
indexes, including foveal avascular zone (FAZ) parameters, vessel
density (VD), and fractal dimension (Kim and Park, 2021; Mao
et al., 2021).

Normal retinal blood vessels are straight or slightly curved but
may become dilated and tortuous in several conditions, including
angiogenesis, high blood flow, and blood vessel congestion (Hart
et al., 1999). Therefore, vessel tortuosity (VT) was also a meaningful
indicator of microvascular evaluation, which could infer the severity
and the progression of many retinopathies. Previous studies
evaluated VT in sickle cell retinopathy (SCR), (Alam et al., 2019),
diabetic retinopathy (DR) (Alam et al., 2020; Alam et al., 2021), and
familial retinal arteriolar tortuosity (FRAT) (Saraf et al., 2019),
among others. However, few studies have evaluated VT in eyes
with iERM. Additionally, sensitivity based on microperimetry is a
good functional parameter, but it is rarely used in research on
microperimetry assessment for iERM. In contrast with automated
perimetry, it demonstrates better reliability and retest-variability
(Pfau et al., 2021). Only a few studies have combined OCTA with
microperimetry to evaluate retinal changes in eyes with iERM (Feng
et al., 2021; D’Aloisio et al., 2021). Therefore, we aimed to explore
the changes in retinal microvascular architecture and visual function
in the macular region in iERM patients using OCTA images.

Materials and methods

We examined 41 eyes of 41 patients affected by iERM that were
admitted to the Affiliated Eye Hospital of Wenzhou Medical University
between January 2019 and December 2021. All patients underwent 23-
gauge pars plana vitrectomy combined with iERM peeling and non-
foveal-sparing ILM peeling by a senior surgeon (SLJ). Patients with mild
cataract who were older than 55 years old also underwent
phacoemulsification and intraocular lens implantation. Matched for
age, 41 healthy eyes of 41 healthy participants were used as controls.
This study used anonymous retrospective data and did not require active
patient participation or informed consent. All procedures adhered to the
tenets of the Declaration of Helsinki. The study was reviewed and
approved by theMedical Ethics Committee of theAffiliated EyeHospital
of Wenzhou Medical University.

Before and after surgery, all enrolled patients received a
comprehensive ophthalmic evaluation, including the assessment
of best-corrected visual acuity (BCVA), slit-lamp biomicroscopy,

indirect fundus ophthalmoscopy, OCTA, and microperimetry. The
criteria for inclusion were: 1) diagnosis of iERM by retinal experts
based on the results of fundus examination, OCT, and OCTA; and 2)
no previous history of vitreoretinal prior surgery. The criteria for
exclusion were: 1) previous history of ocular diseases such as retinal
vascular occlusions, retinal detachment, trauma, high myopia, and
uveitis; 2) previous history of systemic disorders, including systemic
hypertension and diabetes; and 3) poor image quality (signal
strength index less than 5) due to poor image fixation or obvious
opacity in refracting media, such as severe cataract and leukoplakia.

Image acquisition

All images were acquired with spectral-domain OCTA (SD-
OCTA) (Optovue, Fremont, CA, United States). All the OCTA
images had a field of view of 6 mm × 6 mm. Retinal vasculature was
assessed within two horizontal retinal slabs of the OCTA, including
the superficial capillary plexus (SCP) and deep capillary plexus
(DCP), spanning from the ILM to the superficial inner plexiform
layer and from the deep inner plexiform layer to the outer plexiform
layer, respectively. For each eye, three 6 × 6-mm OCTA volume
scans were acquired at baseline, 1 month (1M), and 3 months (3M)
after surgery.

Image processing

The primary indicators included: 1) VT; 2) SCP VD; 3) retinal
thickness (RT); 4) DCP VD; 5) FAZ area (FAZa), perimeter (FAZp),
and acircularity index (AI). While analyzing the former three
parameters, we considered the temporal, superior, nasal, and inferior
sectors of a circular zone with a diameter of 6 mm. VD, RT, FAZa, and
FAZp were obtained from the built-in image analysis software of the
OCTA device. FAZAI was calculated as themeasured FAZp divided by
the perimeter of the regular circle with the same FAZa.

To calculate VT, we exported the OCTA images of SCP (Figure 1A)
and used ImageJ for further feature extraction and image analysis.
According to the method described previously (Lee et al., 2018), we
converted the original images to 8-bit grayscale images and used the
“Trainable Weka Segmentation” plugin to binarize the vessels. After
image binarization, using the “Skeletonize” plugin and acquiring a thin
track of vessels with a 1-pixel diameter (Figure 1B). The “Analyze
skeleton” plugin in ImageJ was used for the calculation of the length of
vessels, including the actual length of each branch and the imaginary
straight length between the two branch nodes (Figure 1C). VT was
calculated as shown in Figure 1D. If needed, manual segmentation was
performed to assess the entire retina to prevent segmentation errors.
Images with poor quality, such as those with poor contrast due to poor
image fixation or media opacities, were excluded. When erroneous
segmentation results were caused by poor image quality, we
discarded the analysis for obvious failure cases.

Functional assessment

Microperimetry was performed with MP-3 (NIDEK, Gamagori,
Japan) at the baseline and 1M and 3M postoperatively. All patients
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underwent the examination under dim-light conditions. The
fixation target of MP-3 was a red ring with a diameter of 1 with
a white monochromatic background at 31.4 abs. The fovea was
marked by a blue star. An automatic eye tracker was used with a
customized grid of 61 points covering the central 20° centered on the
fovea (approximately 6 mm × 6 mm range). The retinal sensitivities
were approximately 0–36 dB. In this study, the mean sensitivity
(MS) of all 61 points and the MS of the four quadrants of the
15 points were calculated. BCVA was performed using a Snellen
chart, and trained optometrists recorded measurements before and
after the surgery. For statistical analysis, BCVA was converted to a
logarithm of the minimal angle of resolution (logMAR).

Statistical analysis

All statistical analyses were performed using SPSS v26.0 (SPSS
for Windows, Chicago, IL, United States). All quantitative variables
were described as mean ± standard deviation (SD). A Shapiro–Wilk
test was performed to evaluate the departure of each variable from a
normal distribution. The independent-sample t-test was performed
for the difference in age between the groups. The Chi-squared test
was performed for the difference in sex between the groups. The
Wilcoxon signed-rank and Kruskal–Wallis H tests were used to
compare the parameters. Spearman’s Rho correlation coefficient was
used to evaluate the correlations between the anatomical and
functional parameters. Multivariate linear regression was used to
analyze the correlations between the functional and anatomical
variables. p < 0.05 was considered statistically significant.

Results

We included 41 eyes of 41 patients diagnosed with iERM as the
iERM group and 41 healthy eyes of 41 persons as the control
group. During vitrectomy, 39 of 41 eyes were treated by
phacoemulsification for cataracts. One eye was pseudophakic.
One eye did not undergo cataract surgery because the patient
was relatively young with no apparent cataract. No statistically
significant differences were found in age (p = 1.000) and sex (p =
0.557) between the iERM and control groups (see Table 1).

Microvascular remodeling

At baseline, the iERM group had a higher VT, smaller FAZa,
smaller FAZp, larger FAZ AI, and greater RT than the control group
(VT 1.1165 ± 0.0226 vs. 1.1072 ± 0.0129, p = 0.047; FAZa 0.07 ±
0.10 mm2 vs. 0.30 ± 0.11 mm2, p < 0.001; FAZp 1.04 ± 0.53 mm vs.
2.12 ± 0.38 mm, p < 0.001; FAZ AI 1.25 ± 0.20 vs. 1.12 ± 0.06, p <
0.001; RT 359.93 ± 52.58 μm vs. 284.44 ± 15.91 μm, p < 0.001). No
significant differences were found in the SCP VD and DCPVD (SCP
VD 48.06% ± 5.96% vs. 48.51% ± 3.76%, p = 0.856; DCP VD
45.14% ± 6.43% vs. 48.06% ± 5.37%, p = 0.078) (see Table 1).

Compared to the baseline values, there were significant
reductions in VT, SCP VD, and RT in the macular region during
the 3-month follow-up (VT, from 1.1165 ± 0.0226 to 1.0978 ±
0.0239, p < 0.001; SCP VD, from 48.06% ± 5.96% to 45.17% ± 4.11%,
p = 0.002; RT, from 359.93 ± 52.58 μm to 298.24 ± 26.87 μm, p <
0.001). The DCP VD of the macular region increased from 45.14% ±

FIGURE 1
Image processing steps for analyzing vessel tortuosity. (A) OCTA image of the superficial retinal layer of an eye with iERM. (B) Binarized vessel was
skeletonized. (C) The vessel branches and the branch nodes were obtained and the lengths of both actual branches and the imaginary straight lines
between nodes were generated. (D) Vessel tortuosity was calculated as the sum of the branch lengths divided by the sum of the lengths of the imaginary
straight lines. Abbreviations: iERM, idiopathic epiretinal membrane; OCTA, optical coherence tomography angiography.
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6.43% to 48.32% ± 4.86% over 3 months (p = 0.029). No significant
differences were found in the FAZa (p = 0.053), FAZp (p = 0.140),
and FAZ AI (p = 0.228) at 3M relative to the baseline (see Table 2;
Figure 2).

The VT, SCP VD, and RT were divided into four quadrants in
the macular area for further analysis at baseline, 1M, and 3M. At 1M,
VT decreased significantly in the superior, nasal, and inferior
quadrants (all p < 0.05). At 3M, VT also significantly decreased
in the superior, nasal, and inferior quadrants (all p < 0.01). However,
there was no significant improvement in the temporal quadrant at
1M or 3M (p = 0.785, p = 0.134, respectively). The SCP VD
decreased significantly in four quadrants at 1M and 3M (all p <
0.05). Within 3 months, RT showed a steady decline for the entire

macular area and all quadrants (all p < 0.01) (see Table 3; Figures
2A–C; Supplementary Table S1).

At baseline, there were no significant differences in VT (p =
0.114) and RT (p = 0.139) across the four quadrants. The SCP VD
of the temporal quadrant was the lowest among the four quadrants
(p < 0.001). At 3M, there were significant differences in VT, SCP
VD, and RT across the different quadrants (p < 0.001; p < 0.001; p <
0.001). Pairwise comparisons were made among the four
quadrants. The VT of the temporal quadrant was more
tortuous than that of the superior (p < 0.001) and inferior (p <
0.001) quadrants. There were no significant differences between
the VTs of the temporal and nasal quadrants (p = 0.542).
Compared to the other three quadrants, the SCP VD of the

TABLE 1 Comparison of baseline parameters between the iERM (N = 41) and control (N = 41) groups.

Baseline parameter iERM group Control group p-value

Age (year) 66.20 ± 8.68 66.20 ± 8.74 1.000

Sex (M/F) 8/33 6/35 0.557

Anatomical parameters

VT 1.1165 ± 0.0226 1.1072 ± 0.0129 0.047

SCP VD (%) 48.06 ± 5.96 48.51 ± 3.76 0.856

DCP VD (%) 45.14 ± 6.43 48.06 ± 5.37 0.078

FAZa (mm2) 0.07 ± 0.10 0.30 ± 0.11 < 0.001

FAZp (mm) 1.04 ± 0.53 2.12 ± 0.38 < 0.001

FAZ AI 1.25 ± 0.20 1.12 ± 0.06 < 0.001

RT (μm) 359.93 ± 52.58 284.44 ± 15.91 < 0.001

Functional parameters

MS (dB) 22.27 ± 3.87 26.18 ± 1.93 < 0.001

BCVA (logMAR) 0.49 ± 0.38 0.01 ± 0.04 < 0.001

Bold font indicates statistically significance (p < 0.05).

Abbreviations: iERM, idiopathic epiretinal membrane; VT, vessel tortuosity; VD, vessel density; SCP, superficial capillary plexus; DCP, deep capillary plexus; FAZ, foveal avascular zone; FAZa,

FAZ area; FAZp, FAZ perimeter; FAZ AI, FAZ acircularity index; RT, retinal thickness; MS, mean sensitivity; BCVA, best-corrected visual acuity; logMAR, logarithm of the minimal angle of

resolution.

TABLE 2 Comparison of functional and anatomical parameters of the macular region at baseline and 3 months (3M) after surgery in eyes with iERM.

Parameters Baseline 3M p-value

Anatomical parameters

VT 1.1165 ± 0.0226 1.0978 ± 0.0239 < 0.001

SCP VD (%) 48.06 ± 5.96 45.17 ± 4.11 0.002

DCP VD (%) 45.14 ± 6.43 48.32 ± 4.86 0.029

FAZa (mm2) 0.07 ± 0.10 0.08 ± 0.05 0.053

FAZp (mm) 1.04 ± 0.53 1.17 ± 0.38 0.140

FAZ AI 1.25 ± 0.20 1.19 ± 0.13 0.228

RT (μm) 359.93 ± 52.58 298.24 ± 26.87 <0.001

Functional parameters

MS (dB) 22.27 ± 3.87 22.79 ± 2.63 0.451

BCVA (logMAR) 0.49 ± 0.38 0.22 ± 0.26 <0.001

Bold font indicates statistically significance (p < 0.05).

Abbreviations: iERM, idiopathic epiretinal membrane; VT, vessel tortuosity; VD, vessel density; SCP, superficial capillary plexus; DCP, deep capillary plexus; FAZ, foveal avascular zone; FAZa,

FAZ area; FAZp, FAZ perimeter; FAZ AI, FAZ acircularity index; RT, retinal thickness; MS, mean sensitivity; BCVA, best-corrected visual acuity; logMAR, logarithm of the minimal angle of

resolution.
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temporal quadrant was the lowest (superior p = 0.002; nasal p <
0.001; inferior p = 0.015). The RT of the temporal quadrant was
thinner than that of the superior (p = 0.007) and nasal (p < 0.001)
quadrants (see Table 3).

Functional improvement

At baseline, the iERM group had worse MS and BCVA than
those of the control group (MS 22.27 ± 3.87 dB vs. 26.18 ± 1.93 dB,
p < 0.001; BCVA 0.49 ± 0.38 logMAR vs. 0.01 ± 0.04 logMAR, p <
0.001; see Table 1). During the 3-month follow-up after iERM
surgery, the BCVA significantly improved to 0.22 ± 0.26 logMAR
(p < 0.001). TheMS of themacular region showed no difference after
iERM surgery (p = 0.451), but there was a trend of increase (see
Table 2; Figure 2D).

The MS of the superior quadrant significantly improved after
iERM surgery (1M p = 0.043; 3M p = 0.010). In the three other
quadrants, MS showed a trend of increase but with no significant

difference (see Table 2; Figure 2D). Among the four quadrants, there
was no significant difference in MS at baseline (p = 0.860) and 3M
(p = 0.400) (see Table 3).

Correlations between functional and
anatomical parameters

We assessed the correlations between the functional and
anatomical parameters of the macular region at 3M. There was a
significant correlation between the BCVA and the MS at M3
(rs = −0.377, p = 0.015). The BCVA was associated with SCP
VD, but not VT and RT at M3 (VT rs = −0.253, p = 0.111; SCP
VD rs = −0.554, p < 0.001; RT rs = −0.076, p = 0.635). MS was
associated with SCP VD and RT but not VT at M3 (VT rs = 0.077,
p = 0.634; SCPVD rs = 0.511, p = 0.001; RT rs = 0.456, p = 0.003) (see
Supplementary Table S2).

We further analyzed the correlations between the changes in
MS and anatomical parameters in different quadrants during the

FIGURE 2
MS and anatomical parameters of the macular region in eyes with iERM observed at baseline and 1 month (1M) and 3 months (3M) after vitreoretinal
surgery. (A) VT; (B) SCP VD (%); (C) RT (μm); (D)MS (dB). **p < 0.01, *p < 0.05. Abbreviations: iERM, idiopathic epiretinal membrane; VT, vessel tortuosity;
SCP, superficial capillary plexus; VD, vessel density; RT, retinal thickness; MS, mean sensitivity.
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3-month follow-up after iERM surgery (see Figure 3). Using
Spearman’s Rho correlation, a greater increase in MS was
associated with greater reductions of VT and RT in the
superior quadrant (VT, rs = −0.397, p = 0.010; RT,
rs = −0.409, p = 0.008). In the inferior quadrant, a greater
increase in MS was associated with a greater reduction of VT
(rs = −0.349, p = 0.025). No correlation was found between the
changes in VD and MS in the macular region and four quadrants
(all p > 0.05) (see Table 4). Among the anatomical parameters,
changes in VT were related to changes in VD in the temporal
quadrant (rs = 0.350, p = 0.025; see Supplementary Figure S1E).
No significant correlations were found between the changes in
VT, RT, and VD in the macular, superior, nasal, and inferior
quadrants (all p > 0.05; see Supplementary Figure S1).

Univariate linear regression showed that an improvement in
MS was associated with the reduction of VT in the superior
(standard β = −0.317, p = 0.043) and inferior (standard
β = −0.378, p = 0.015) quadrants, but not the macular region
and temporal and nasal quadrants (all p > 0.05). Using
multivariate linear regression, the improvement of MS was
associated with the reduction of VT in the temporal (standard
β = −0.322, p = 0.044), superior (standard β = −0.330, p = 0.034),
and inferior (standard β = −0.480, p = 0.003) quadrants but not in
the macular region and nasal quadrant (all p > 0.05). No
correlation was found between the changes in SCP VD and
RT with MS in the macular region and four quadrants (all p >
0.05) (see Table 5).

Discussion

Our study assessed the impact of iERM surgery on retinal
microvasculature. We showed that surgery may improve the
structure of the retinal microcirculation over 3 months or even
1 month. We quantified and analyzed the vascular tortuosity of the
retina in iERM using SD-OCTA. Previous studies have demonstrated
that VT may be useful in differentiating the progression of DR (Klein
et al., 2018; Alam et al., 2021). However, research examining VT in eyes
with iERM has been limited. To our knowledge, this is the first study on
vascular tortuosity and sensitivity in four quadrants before and after
surgery for iERM. To obtain a more detailed and visually intuitive view,
we focused on themicrovascular characteristics of SCP. Additionally, the
traction of ERMmay alter the OCTA signal quality of DCP status, and it
is necessary to prevent ERM-related projection artifacts.

Surgical treatment for ERM can release traction in the
vitreoretinal interface, leading to vascular restoration and
remodeling. Tangential and vertical macular tractions from ERM
were considered the reason for vessel translocation and tortuosity
(Yagi et al., 2012), which was supported by our observations that the
VT in the eyes with iERM was higher than those in healthy eyes.
With the release of tractional force generated from the ERM after
removing preretinal tissue, the surgery facilitates the recovery of the
main retinal vessels and capillaries to their original position. The VT
significantly decreased after surgical treatment in this study, which
may have contributed to the improvement of macular
microcirculation. Consistent with the study by Miyazawa et al.

FIGURE 3
Correlations between the changes in anatomical parameters and the change inMS in the superior and inferior quadrants during the 3-month follow-
up. The first column shows correlations among the changes in anatomical parameters and MS in the superior (A) and inferior (E) quadrants using
Spearman’s Rho correlation. The color and size of the circle reflect the correlation tendency, degree, and significance. Only significant correlations with
p < 0.05 are shown. The first row shows correlations of VT change (B), VD change (C), and RT change (D) with MS change in the superior quadrant
using univariate linear regression. The second row shows correlations of VT change (F), VD change (G), and RT change (H)with MS change in the inferior
quadrant using univariate linear regression. The solid line represents the regression line, and the dashed lines represent the 95% confidence interval of the
regression line. Abbreviations: VT, vessel tortuosity; VD, vessel density; RT, retinal thickness; MS, mean sensitivity.
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(Miyazawa et al., 2022), more linearized vessels were found
postoperatively.

Previous study demonstrated that FAZ would be enlarged and
rounded after surgery (Hirata et al., 2019; Ersoz et al., 2021). This
study obtained consistent results, and we suggested that the changes
in FAZ were also manifestations of vascular restoration and
remodeling after the release of traction. The formation of iERM
may cause the centripetal contraction of retinal layers, accompanied
by vascular displacement and contortion, which may contribute to
the reduction of the FAZ area and the progressive deterioration of
the standard circular shape of the FAZ. Our patients show more
extensive AI than the controls, with smaller FAZa and FAZp. After
ERM surgery, we still observed a decrease in AI yielding a more
circular shape, although this was not statistically significant.
Therefore, FAZ can reflect surgical efficacy at the end of
peripheral blood circulation. Removing the retinal pucker can
facilitate revascularization and resolve central vessel crowding
and deformation.

Notably, there were different anatomic remodeling patterns
among the four quadrants in the macular area. We found that
VT and MS showed no significant improvement postoperatively in
the temporal quadrant (see Figures 4A, B). A reason may be that the
nerve fiber layer was thinner, and the ganglion cells were fewer in the

temporal retina than in other areas, which seemed more vulnerable
to mechanical damage such as ILM peeling. Beyond that, the
temporal blood vessels located at the end of retinal
microcirculation may be more susceptible to the loss of structural
support after membrane removal. As a result, the vessel network of
the temporal region may be more disorganized, which may affect
functional recovery. Conversely, the nasal macular area, localized at
the proximal end to the optic disc, may be relatively stable and less
influenced due to the high stability of the optic disc.

The most pronounced effect of VT was observed in the superior
quadrant after treatment (see Figures 4C, D). The change in MS was
associated with the change in VT in the superior and inferior
quadrants using multivariate linear regression. However, the MS
only improved significantly in the superior quadrant. Several studies
have reported functional and structural asymmetries in the superior
and inferior retina. In terms of functionality, the superior macular
region may be more active. Some authors have found that the
amplitudes of electroretinograms and the contrast sensitivity of
the intermediate spatial frequencies are larger in the superior
macular region than in the inferior macular region (Miyake
et al., 1989; Silva et al., 2010), which suggests functional
superiority of the upper retina. Secondly, there were anatomic
differences between the superior and inferior retina. Earlier

TABLE 3 Comparison of MS and anatomical parameters of different quadrants at baseline and 3 months (3M) after surgery in eyes with iERM.

Parameters Baseline 3M P1-value

VT

Temporal 1.0957 ± 0.0219 1.1105 ± 0.1070 0.134

Superior 1.0962 ± 0.0214 1.0831 ± 0.0249 <0.001

Nasal 1.0993 ± 0.0153 1.0906 ± 0.0212 0.001

Inferior 1.0914 ± 0.0199 1.0830 ± 0.0236 0.001

P2-value 0.114 <0.001

SCP VD (%)

Temporal 44.02 ± 6.18 41.48 ± 4.75 0.024

Superior 47.72 ± 6.31 44.56 ± 5.36 0.007

Nasal 49.82 ± 7.26 47.11 ± 4.68 0.013

Inferior 47.57 ± 6.77 43.98 ± 4.42 0.001

P2-value <0.001 <0.001

RT (μm)

Temporal 366.81 ± 76.93 286.33 ± 30.33 <0.001

Superior 387.06 ± 74.05 306.71 ± 29.51 <0.001

Nasal 388.79 ± 56.41 332.34 ± 28.68 <0.001

Inferior 357.69 ± 78.07 299.42 ± 28.97 <0.001

P2-value 0.076 <0.001

MS (dB)

Temporal 22.52 ± 4.05 22.46 ± 4.33 0.717

Superior 22.00 ± 4.18 23.61 ± 2.26 0.010

Nasal 22.27 ± 4.25 22.98 ± 2.46 0.488

Inferior 22.43 ± 3.72 22.72 ± 2.52 0.928

P2-value 0.860 0.400

P1-value was obtained from the comparison of parameters at baseline and 3 months postoperatively.

P2-value was obtained from the comparison of parameters for the four quadrants.

Bold font indicates statistically significance (p < 0.05).

Abbreviations: iERM, idiopathic epiretinal membrane; VT, vessel tortuosity; VD, vessel density; SCP, superficial capillary plexus; RT, retinal thickness; MS, mean sensitivity.

Frontiers in Cell and Developmental Biology frontiersin.org07

Shen et al. 10.3389/fcell.2023.1164529

221

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1164529


TABLE 4 Correlation between the change in MS and anatomical parameters in different quadrants during the 3-month follow-up after iERM surgery using
Spearman’s Rho correlation.

Quadrant Anatomical parameters rs p-value

Macular VT change −0.130 0.418

SCP VD change −0.022 0.892

RT change −0.032 0.844

Temporal VT change 0.009 0.955

SCP VD change 0.085 0.596

RT change −0.007 0.963

Superior VT change −0.397 0.010

SCP VD change 0.180 0.259

RT change −0.409 0.008

Nasal VT change 0.151 0.347

SCP VD change −0.098 0.540

RT change −0.107 0.504

Inferior VT change −0.349 0.025

SCP VD change −0.114 0.478

RT change 0.202 0.205

Bold font indicates statistically significance (p < 0.05).

Abbreviations: iERM, idiopathic epiretinal membrane; VT, vessel tortuosity; VD, vessel density; SCP, superficial capillary plexus; RT, retinal thickness; MS, mean sensitivity.

TABLE 5 Correlation between the change in MS and anatomical parameters in different quadrants during the 3-month follow-up after iERM surgery using
multivariate linear regression.

Quadrant Anatomical parameters Standard β p-value Adjusted R-square

Macular VT change −0.020 0.905 −0.076

SCP VD change −0.063 0.707

RT change −0.003 0.988

Temporal VT change −0.322 0.044 0.052

SCP VD change 0.171 0.281

RT change −0.057 0.716

Superior VT change −0.330 0.034 0.104

SCP VD change 0.064 0.672

RT change −0.255 0.098

Nasal VT change −0.067 0.691 −0.063

SCP VD change −0.099 0.555

RT change −0.067 0.684

Inferior VT change −0.480 0.003 0.195

SCP VD change −0.274 0.076

RT change 0.261 0.080

Bold font indicates statistically significance (p < 0.05).

Abbreviations: iERM, idiopathic epiretinal membrane; VT, vessel tortuosity; VD, vessel density; SCP, superficial capillary plexus; RT, retinal thickness; MS, mean sensitivity.
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studies found ganglion cell and rod density were higher in the upper
retina (Curcio and Allen, 1990; Curcio et al., 1990) and a recent
study indicated that the blood flow in the superior retina was higher
than that of the inferior retina (Tomita et al., 2020). Similar to these
findings, our results showed appreciable MS improvement only in
the superior quadrant. Taken together, the superior retina may show
better vascular morphological restoration and blood flow
reperfusion.

Our study presented a novel index for evaluating structural
remodeling and blood flow perfusion. Additionally, we found the
RT became thinner after surgery; however, the tortuosity of
vessels in SCP reduced, which may also be the reason for the
VD reduction in SCP. With the distorted and disorganized vessels
tending to be normal, the resistance in the superficial vascular bed
reduced, and the density decreased subsequently. Furthermore,
the perfusion increased in DCP, suggesting the recovery of the
anomalous tortuous capillaries dragged by the ERM and the
improvement of blood flow in deep layers. Notably, the
sensitivity improved after surgery, and MS was positively
associated with RT and SCP VD 3 months after surgery. These
may be because of retinal microstructural restoration and vascular
perfusion after resolving the force exerted by the ERM, followed
by the improvement of cell function. Several researchers have
shown improvement of MS and BCVA in eyes with iERM
postoperatively (Osada et al., 2020; Feng et al., 2021; Blautain
et al., 2022). Consistent with these previous studies, visual acuity
improved significantly and was associated with MS

postoperatively in this study. As an example, Supplementary
Figure S2 shows the images of a patient with iERM who had
vessel remodeling in SCP and improved MS. However, the MS
only showed a slight but non-statistically significant upward
trend, which may be due to the limited sample size.
Furthermore, anatomical features may recover relatively
quickly, while visual function may demonstrate a chronic
recovery course. This has already received our attention and
will be further perfected and supplemented in subsequent studies.

There were several limitations of this study. First, the sample
size was limited. Second, we only reported short-term outcomes,
and long-term changes should be explored. Third, we focused on
the vessels of the SCP to prevent or minimize artifacts, and
future research on the microvascular characteristics of DCP is
required.

Conclusion

This study showed microvascular remodeling and perfusion
recovery with a decrease in VT. BCVA improved significantly
after iERM surgery and was associated with MS. In the superior
macular quadrant, the reduction of VT was associated with the
improvement of MS. Thus, VT may be a novel index for the
morphology of the retinal microvasculature.
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The rapid development of computer science over the past few decades has
led to unprecedented progress in the field of artificial intelligence (AI). Its
wide application in ophthalmology, especially image processing and data
analysis, is particularly extensive and its performance excellent. In recent
years, AI has been increasingly applied in optometry with remarkable
results. This review is a summary of the application progress of different AI
models and algorithms used in optometry (for problems such as myopia,
strabismus, amblyopia, keratoconus, and intraocular lens) and includes a
discussion of the limitations and challenges associated with its application
in this field.

KEYWORDS

artificial intelligence, optometry, myopia, strabismus, amblyopia, corneal conus, artificial
lens

1 Introduction

Artificial intelligence (AI) is a relatively new technology that endows machines with
human behavior, thinking, and emotional abilities and can liberate human beings from
tedious physical and mental labor and assist in the production and development of fields
such as the economy, culture, and social life. AI, as a subfield of computer science,
simulates human intelligence using algorithms that are developed using computers to
engage in human work (Nuzzi et al., 2021). Machine learning (ML) is a research field of
AI, which is a technology that allows computer systems to learn automatically from data
and improve performance. Deep learning (DL) is a research field of ML, which is a
representation learning algorithm based on artificial neural network. The relationship
between AI, ML, and DL is shown in Figure 1. Current, commonly used AI algorithms
include ML, DL, artificial neural networks, deep neural networks (DNNs), convolutional
neural networks (CNNs), and migration learning. Over the past few years, the great
development of computer science and technology has led to accelerated evolution in the
field of AI, accelerating its application in medicine, especially ophthalmology. The first
ophthalmic AI device, IDx-DR, was approved for listing with landmark significance on
11 April 2018, opening a new chapter on the combination of AI with ophthalmology.
Since then, the application of AI in the ophthalmology has entered a new stage of
development, leading to a series of satisfactory research results in the diagnosis,
classification, recognition, and screening of ophthalmic diseases, such as diabetic
retinopathy (Deepa et al., 2022; Hardas et al., 2022; Zhang et al., 2022), age-related
macular degeneration (Glaret Subin and Muthukannan, 2022; Sotoudeh-Paima et al.,

OPEN ACCESS

EDITED BY

Yanwu Xu,
Baidu, China

REVIEWED BY

Jinhai Huang,
Fudan University, China
Yifan Xiang,
Sun Yat-sen University, China
Tae Keun Yoo,
B&VIIT Eye center/Refractive surgery & AI
Center, Republic of Korea
Qi Dai,
Wenzhou Medical University, China

*CORRESPONDENCE

Qin Jiang,
jqin710@vip.sina.com

Keran Li,
kathykeran860327@126.com

†These authors share first authorship

RECEIVED 27 February 2023
ACCEPTED 17 April 2023
PUBLISHED 28 April 2023

CITATION

Wang S, Ji Y, Bai W, Ji Y, Li J, Yao Y,
Zhang Z, Jiang Q and Li K (2023),
Advances in artificial intelligence models
and algorithms in the field of optometry.
Front. Cell Dev. Biol. 11:1170068.
doi: 10.3389/fcell.2023.1170068

COPYRIGHT

© 2023 Wang, Ji, Bai, Ji, Li, Yao, Zhang,
Jiang and Li. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Review
PUBLISHED 28 April 2023
DOI 10.3389/fcell.2023.1170068

225

https://www.frontiersin.org/articles/10.3389/fcell.2023.1170068/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1170068/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1170068/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1170068&domain=pdf&date_stamp=2023-04-28
mailto:jqin710@vip.sina.com
mailto:jqin710@vip.sina.com
mailto:kathykeran860327@126.com
mailto:kathykeran860327@126.com
https://doi.org/10.3389/fcell.2023.1170068
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1170068


2022; Wang et al., 2022), retinopathy of prematurity (Coyner
et al., 2022; Li et al., 2022; Wu et al., 2022), glaucoma (Dong et al.,
2022; Li et al., 2022; Xiong et al., 2022), and retinal vein occlusion
(Miao et al., 2022; Ren et al., 2022; Zhang et al., 2022).

The term optometry originated in the ancient Greek words
optos (“see”) and metron (“measure”), indicating that it is closely
related to “eyes” and “vision.” At the beginning of the 20th century,
visual optics was defined as “studying the philosophy of light and
vision,” and included a deep understanding of the connotation of the
relationship between “light” and “vision”; By the middle of the 20th
century, people understood optical vision as “the art of determining
the visual state of normal people or correcting the abnormal state
through glasses,” and the understanding and correction of vision
became more specific. After hundreds of years of evolution and
development, optometry has since developed rapidly. In terms of
composition, the field of optometry mainly includes emmetropia,
myopia, hyperopia, presbyopia, astigmatism, anisometropia,
strabismus, amblyopia and so on, as shown in Figure 2. The
continuous increase in the application of AI in the
ophthalmology in recent years has achieved many remarkable
research results. Here, we aimed to review the recent research
results of using AI in the field of ophthalmic optometry over the
past few years, with the challenges and limitations of AI in
optometry applications discussed.

2 Application of AI models and
algorithms in the field of optometry

In this section, we mainly review the research progress of AI in
the field of optometry in the past 5 years. AI has carried out a lot of
research in the field of optometry, especially in the diagnosis,
screening and treatment of diseases. In recent years, with the
continuous development and improvement of AI technology, the
research of AI in the field of optics has become more in-depth and
extensive. In order to better describe the basic flow of AI research, we

FIGURE 1
Relationship between AI, ML, and DL.

FIGURE 2
The basic composition of the field of optometry.
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take the DL model in Zheng et al. (2021) as an example, the basic
flow of AI model research is illustrated in Figure 3. The process of
developing an AI model involves deleting low-quality images and
randomly dividing the remaining high-quality images into training
and verification sets, with which the training set is optimized to
obtain the best possible AI model and the performance is verified
using the verification set.

2.1 Application of AI models and algorithms
in myopia

Myopia is a type of ametropia in which parallel light is focused
on the front of the retina through the intraocular refractive medium
and thus a clear image is not formed on the retina. The problem
occurs mainly during childhood and early adulthood (Morgan et al.,
2018). Although there is still much to learn about the etiology of
myopia, the general consensus is that genetic, environmental, and
biochemical variables play a role in the development of myopia.
Myopia in children is mostly caused by a decline in outdoor playtime
and an increase in time spent staring at screens. The mechanism of
myopia progression mainly includes: 1) accommodative lag, 2)
retinal peripheral defocus theory, 3) scleral thinning and ocular
axial lengthening caused by extracellular matrix remodeling, 4)
changes in the level of retinal nerve growth factor and
inflammatory factors, etc. According to recent studies, alterations
in the choroid’s thickness and function are also variables in the
evolution of myopia. The choroid may operate as a barrier to the
diffusion of endogenous growth hormones that encourage axial
elongation. Adults over 50 can also develop nuclear myopia due

to cataracts (Amirsolaimani et al., 2017; Bullimore and Brennan,
2019; Wong et al., 2021). The issue is thus a public health problem of
widespread concern. High and pathological myopia can significantly
increase the incidence of retinal detachment, myopic macular
degeneration, macular choroidal neovascularization, and other
diseases. According to statistics, more than 150 million people
worldwide suffer from moderate to severe visual impairment due
to uncorrected ametropia (Baird et al., 2020; Blindness G.B.D, 2021).
At present, the main treatment methods are drug therapy (such as
atropine eye drops), instrumental correction (such as frame glasses
and keratoscopes), and surgical treatment (such as femtosecond
pulsed or excimer lasers) (Li and Yam, 2019; Weiss and Park, 2019;
Tsai et al., 2021). However, the complex causes and the large number
of people affected renders large-scale screening and stratified
analysis of myopia difficult, and the serious complications that
are associated with the problem are generally not detected early
enough for suitable intervention. It is therefore important that high-
risk groups for high myopia are accurately identified and treated in a
timely and effective manner to delay the progression of the disease.
The development of AI for medical use has led to remarkable results
in myopia prediction, diagnosis, screening, follow-up, and treatment
(Gunasekeran et al., 2021). It can achieve effective data management
and analysis, deeply excavating the inherent mechanisms by which
myopia develops, and the big data storage function associated with
AI is conducive to the accumulation of numerous individual
experiences, thus playing an important auxiliary role in diagnosis
and classification.

One development in the use of AI to diagnose myopia was made
by Varadarajan et al. (2018), who constructed a DLmodel based on a
residual network and a soft-attention layer and used it to analyze

FIGURE 3
Basic flow chart illustrating AI model research.
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226 870 fundus images. The model can predict spherical diopters,
cylindrical diopters, and equivalent spherical equivalents by
analyzing millions of parameters such as picture pixel values to
judge the ametropia situation. A total of 39 757 fundus images were
used to validate the model. The results showed average absolute
errors of 0.56 D and 0.91 D, respectively, for the two data sets,
realizing a technical leap in accurately predicting refractive errors
from retinal fundus images. Lin et al. (2018) established an AI model
that can predict myopia in children on the basis of a random forest
algorithm using refractive data for 132 457 children from the
electronic medical record database at eight eye centers, which
were applied to training and verification. The model predicts
myopia in children under 18 years of age by analyzing data such
as age, spherical equivalent, and the annual myopia progression rate.
The results showed an AUC between 0.940 and 0.985 for high
myopia within 3 years, 0.856 and 0.901 within 5 years, and 0.801 and
0.837 within 8 years, indicating that the model can accurately predict
the incidence of high myopia in school-age children at specific
points in the future. In a studying the prediction of axial myopia,
Tang et al. (2020) used six different ML algorithms to build an AI
model that can predict axial length in children and optimized the AI
model using cross-sectional datasets. The axial length for the
children was predicted by analyzing variables such as sex, age,
central corneal thickness, spherical equivalent error, K-means,
and the black-and-white corneal diameter for 1,011 myopic
children aged 6–18 years old. The results indicated that robust
linear regression model had the best prediction result for eye-axis
length, with an R 2 of 0.87, proving that the algorithm could be used
to estimate the physiological components of eye axis growth and
provide data support for separating non-physiological components
from eye axis elongation for other therapeutic methods. To better
predict adolescent myopia, Yang et al. (2020) used a support vector
machine to establish a prediction model for juvenile myopia, using
data from 3,112 pupils (including heredity, eye habit, environment,
and diet) and constructed a dataset for training and testing the
model using univariate and multivariate correlation analyses. The
results showed an accuracy, specificity, sensitivity, and AUC of 0.93,
0.94, 0.94, and 0.98, respectively, for predicting myopia, proving that
the model can comprehensively analyze several causes of myopia
and can be used to help formulate myopia prevention and control
policies. These studies indicate that AI has opened up a novel
prediction model for myopia prediction through image and
related data analysis that has high accuracy, is feasible for clinical
application, and provides new ideas for myopia prevention and
control. Foo et al. (2023) developed a deep learning system to
identify children at risk of developing high myopia. In this study
three distinct algorithms were derived (image, clinical and mix
models) to predict the development of high myopia in
adolescents after 5 years. 7,456 baseline fundus images were used
for training and verification, 821 images with clinical data for
external validation. Results showed that this DLS achieved a high
accuracy with AUC all above 0.90, and can prevent the progression
and complications of myopia in adulthood, help ophthalmologists to
make clinical decisions.

Through analyzing eye images, AI can thus assist in the
diagnosis and classification of myopia, improving the diagnostic
efficiency and aiding ophthalmologists in screening for large-scale
myopia while also facilitating the long-term follow-up of patients

with high myopia, reducing the heavy burden caused by visual
impairment and even blindness that can result from myopia.
Sogawa et al. (2020) constructed several models using different
DL algorithms (VGG16, VGG19, DenseNet121, InceptionV3 and
ResNet50) and used them to analyze 910 eye optical coherence
tomography (OCT) images. The experimental results showed that
the AUC, sensitivity, and specificity for the DL model were 0.970,
0.906, and 0.942; the average correct classification rate for high
myopia, myopic choroidal neovascularization, and retinoschisis
images of 0.889 shows the feasibility of using these algorithm
models in screening for single diseases and provides support for
preventing vision loss in patients with myopic macular
degeneration. To assist diagnosis of myopia in the clinical, Yang
et al. (2020) constructed an AI diagnosis model using deep
convolutional neural networks (DCNNs) and the VGG-Face
algorithm. In this study, the eye appearance images of
2,350 children aged 6–18 years were collected from three angles;
front, side, 45° anterior side, and spherical equivalent refraction
was used to determine the refraction state of each eye from the
images. The AUC, sensitivity, and specificity of the model for the
diagnosis of myopia were 0.9270, 0.8113, and 0.8642, respectively,
after training and verification, rendering vision screening possible
without the need for examination, thus providing a more
convenient method for routine vision screening. Hemelings
et al. (2021) used the CNN to construct a DL model that can
diagnose pathological myopia and used 1,200 color fundus images
for the model training and testing. The final results showed that the
AUC of the model for the diagnosis of pathological myopia was
0.9867. Li et al. (2023) collected 1,200 retinal fundus images to
train a novel deep learning model on the basis of MyopiaDETR
algorithm. This model using 2D fundus images as input, which can
diagnose and discriminate different kinds of myopia such as
normal myopia (NM), high myopia (HM) and pathological
myopia (PM) through the analysis of the images. Besides, it has
significant advantages over the traditional algorithms in terms of
the accuracy and speed of the diagnosis. The results showed
excellent localization and classification performance in the
diagnosis of PM, reaching AP50 of 0.8632. Li et al. (2022)
collected 412 OCT macular images of patients with high
myopia and constructed an AI model based on the
InceptionResnetV2 algorithm to identify four visual threats:
retinoschisis, macular hole, retinal detachment, and pathological
myopic choroidal neovascularization. The results showed an AUC
of between 0.961 and 0.999 for the model, with both sensitivity and
specificity reaching >0.90. These results show that AI is
particularly accurate in diagnosing myopia and its
complications and indicate that it can play an important role in
large-scale myopia screening.

Refractive surgery, which can be divided into corneal refractive
surgery and intraocular refractive surgery, is used to correct
refractive errors in adult patients with stable myopia. At present,
corneal refractive surgery comprises laser epithelial keratomileusis
(LASEK), laser in situ keratomileusis (LASIK), and small-incision
lens extraction (SMILE). Intraocular surgery includes lens
implantation and cataract surgery. Some progress has also been
made in the application of AI to preoperative screening and surgical
planning for refractive surgery. Xie et al. (2020) constructed a DL
model based on the InceptionResNetV2 algorithm used
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6,465 corneal tomography images (including axial curvature,
anterior corneal topography, posterior corneal topography, and
corneal thickness) to train and test the model to screen
potentially suitable patients for refractive surgery, with a
screening accuracy of 0.947. Yoo et al. (2020) developed an ML
model based on a multiclass XGBoost model that can select the best
refractive surgery for patients with myopia. The algorithm can
automatically extract 80 features from corneal topography and
convert the numbers from the image into textual data. Eye
examination data were collected from 18 480 myopic patients
who planned to undergo refractive surgery and divided into the
LASEK, LASIK, SMILE, and contraindication groups. The results
showed accuracies of 0.810 and 0.789 for the internal and external
verification datasets, respectively, indicating that it can synthesize
ophthalmic data and select themost suitable operation plan at expert
level. Wan et al. (2023) constructed a Deep learning model on basic
of Resnet50 and XG Boost algorithms, aiming to Predict the early
postoperative visual acuity after small-incision lenticule extraction
surgery. In this study, 10,176 laser scanning images from the surgical
videos were collected for training, and patients were classified by
good or poor recovery. The results turned out with the accuracy of
0.96, AUC value of the DL model was 0.962–0.998. This model
enables accurate prediction of early postoperative vision and
complications only through surgical videos and pictures, which
has an important influence on the application of AI in refractive
surgery.

Contact lens Contact lens is a common adjuvant therapeutic
tool in the field of optometry, includes rigid contact lens, soft
contact lens and Orthokeratology (OK). Orthokeratology is a
crucial component of clinical myopia management since it is a
successful myopia control strategy. Nowadays, Orthokeratology
(OK) is second only to muscarinic antagonists in terms of
effectiveness in reducing childhood myopia. AI-assisted
contact lens therapy is gradually becoming popular. In order
to predict the curvature of orthokeratology lens, Fan et al. (2022)
construct a machine learning model based on Linear Regression
(Robust), Support Vector Machines (linear), Bagged Trees,
Gaussian processes algorithms. Using sex, age, horizontal
visible iris diameter (HVID), spherical refraction (SER),
anterior chamber depth (ACD), axial length (AL) etc., of
1,271 patients with myopia as input variables, to estimate the
alignment curve (AC) curvature of orthokeratology lens. Results
indicated that the linear SVM and Gaussian process machine
learning models achieves best performance, the R-squared values
for the output AC1K1, AC1K2 and AC2K1 values were 0.91, 0.84,
and 0.73. Prediction of orthokeratology lens curvature based on
the ML model can reduce the number of lens trials, improve
efficiency and accuracy, and reduce the probability of cross-
infection caused by the test lens. By analyzing the clinical data
of 1,037 Chinese myopic adolescents, Fan et al. (2021), developed
a ML model on basic of Support vector machines (SVMs),
Gaussian processes, Linear Regression (Robust) algorithms.
This model is able to predict the return zone depth (RZD)
and landing zone angle (LZA) of four quadrants of corneal
refractive therapy (CRT) lenses under different combinations
of age, sex and ocular parameters. Results showed that this model
achieved higher accuracy, and is easier to use and faster to
implement compared to the traditional sliding card method.

To predict the treatment effect of orthokeratology, Fang et al.
(2023) developed a ML model based on Logistic least absolute
shrinkage and selection operator (LASSO) regression algorithm.
The study collected the ocular parameters and clinical
characteristics of 91 patients undergoing ortho-k treatment. It
turned out that factors such as, lens wearing time, age, axial
length, outdoor activity time, and white-to-white distance were
strongly associated with treatment effects, with AUC values
0.949 and C-statistic of the predictive model was 0.821. This
demonstrates how the MLmodel-based prediction of contact lens
efficacy can help clinicians make clinical judgments and select
more suitable treatment alternatives for patients. The above
studies are summarized in Table 1.

Myopia as a common refractive problem exists widely in
adolescents and adults. Myopia tends to progress rapidly in
adolescence. Variable degrees of fundus changes will also be
present in individuals with high myopic in addition to vision
loss, floaters, and flash sensations. The risk of retinal detachment,
hiatus, fundus hemorrhage, and neovascularization is
significantly higher than it is in healthy individuals. Therefore,
early prediction and diagnosis of different types of myopia are of
great significance for myopia treatment and prevention of
complications. The prediction, classification diagnosis and
auxiliary treatment of myopia based on artificial intelligence
can greatly improve the diagnosis and treatment efficiency and
accuracy of clinicians, and play an important role in the large-
scale screening of myopia.

2.2 Application of AI models and algorithms
in strabismus

Strabismus refers to any clinical phenomenon of visual axis
deviation that can be caused by binocular abnormalities,
neuromuscular abnormalities in eye movement control, or
various other mechanical limitations (Sousa de Almeida et al.,
2015). Strabismus can be divided into different types according
to fusion state, eye movement and fixation, eye position, and age of
occurrence (Castanes, 2003; Mojon-Azzi et al., 2011), and is
commonly associated with visual development in children.
Studies have shown that a prevalence of is 2%–4% for strabismus
in children worldwide, which is significantly higher than observed in
adults (Chia et al., 2010). One of the main issues with strabismus is
that it can lead to abnormal visual functions such as strabismic
amblyopia and seriously endanger the physical and mental health of
infants and children, rendering timely diagnosis and treatment
particularly important (Kelkar et al., 2015; Debert et al., 2016).
At present, the common examination methods for strabismus in
clinics include masking and cover-uncover tests, alternate cover
tests, prism and cover tests, corneal reflection methods,
synoptophore examinations, diagnostic strabismus tests, and eye
movement traction tests (Chia et al., 2007; Wang et al., 2018; Yoo
et al., 2019). Traditional strabismus diagnosis methods usually
require manual examination by ophthalmologists, which is time-
consuming and labor-intensive with subjective results. The
application of AI technology in strabismus amblyopia has
achieved muchand is thus expected to improve the current state
of diagnosis and treatment for strabismus amblyopia.
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TABLE 1 Application summary of different AI models and algorithms used in myopia.

Authors Task Sample size AI algorithms Output

Varadarajan et al.
(2018)

Prediction 266627 images Residual network, Soft-attention layer Average absolute error of two datasets = 0.56 D, 0.91 D

Lin et al. (2018) Prediction 132
457 individuals

Random forest AUC for 3 years = 0.940–0.985

AUC for 5 years = 0.856–0.901

AUC for 8 years = 0.801–0.837

Tang et al. (2020) Prediction 1,011 individuals Linear Regression (linear) R2 of robust linear expression model = 0.87

Linear Regression (Robust)

SVM (linear)

SVM (Quadratic)

SVM (Cubic)

Bagged Trees

Yang et al. (2020) Prediction 3,112 individuals SVM Accuracy = 0.93

Specificity = 0.94

Sensitivity = 0.94

AUC = 0.98

Foo et al. (2023) Prediction 7,456 images image, clinical and mix (image + clinical)
models

Image models

AUC of Primary dataset = 0.93–0.95

AUC of Test dataset = 0.91–0.93

Clinical models

AUC of Primary dataset = 0.90–0.97

AUC of Test dataset = 0.93–0.94

Mixed (image + clinical) models: AUC of Primary dataset = 0.97

Test dataset = 0.97–0.98

Sogawa et al.
(2020)

Classification 910 images VGG16 AUC = 0.970

VGG19 Sensitivity = 0.906

DenseNet121 Specificity = 0.942

InceptionV3ResNet50 Accuracy = 0.889

Yang et al. (2020) Diagnosis 2,350 individuals DCNN AUC = 0.9270, sensitivity = 0.8113

VGG-Face specificity = 0.8642

Hemelings et al.
(2021)

Diagnosis 1,200 images CNN AUC = 0.9867

Li et al. (2023) Diagnosis 1,200 images MyopiaDETR A PAP50 = 0.8632

Li et al. (2022) Classification 412 images InceptionResnetV2 AUC = 0.961–0.999

Sensitivity >0.90, Specificity >0.90

Xie et al. (2020) Screening 6,465 images InceptionResNetV2 Accuracy = 0.947

Yoo et al. (2020) Surgery 18,480 individuals Multiclass XGBoost Accuracy of internal validation dataset = 0.81

Accuracy of external validation datasets = 0.789

Wan et al. (2023) Prediction 10176 images Resnet50 Accuracy = 0.96

XG Boost AUC = 0.962–0.998

(Continued on following page)
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Kang et al. (2022) constructed a DL model based on the U-Net
network that can segment the cornea and scleral limbus and then
classify the segmented eye region to realize automatic strabismus
detection using 828 gaze photographs of strabismus patients with
different eye positions used to train and verify the model. After
verification, an accuracy of 0.9984 was obtained for corneal
segmentation using the model, with a sensitivity of 0.9747,
specificity of 0.9990, diameter similarity coefficient (DSC) of
0.9688, while the accuracy of limbal segmentation was 0.9992,
with a sensitivity of 0.9563, specificity of 0.9996, and DSC of
0.9571. To develop a DL system that can assist in diagnosing
strabismus, Mao et al. constructed a system based on
InceptionResNetV2 using 5,797 corneal light reflection photos to
develop, train, and verify the system (Mao et al., 2021). The system
diagnoses strabismus by identifying different gaze states in reflective
corneal photos. After training and testing, the experimental results
showed sensitivity, specificity, and AUC of 0.991, 0.983 and
0.998 respectively, for the system. Another app that was
developed by de de Figueiredo et al. (2021) based on the
Resnet50 neural network can diagnose strabismus by identifying
the different gaze positions of patients. The app was developed using
gaze photos from 110 patients and the overall accuracy in the
diagnosis of strabismus was between 0.42 and 0.92, with
precision between 0.28 and 0.84. The above studies show that the
AI model performs well in the auxiliary diagnosis of strabismus and
has the potential for clinical application, where it may improve the
accuracy of strabismus diagnosis and reduce the work pressure of
clinicians.

Zheng et al. (2021) used a convolutional neural network and
three deep convolution neural networks (Faster R-CNN, VGG16,
Inception-V3, and Xception) to construct a DL model that can
detect strabismus through the gaze of children using 7,530 primary
gaze photos to develop, train, and verify the model. After external
verification, a sensitivity of 0.940 was with a specificity of 0.993,
AUC of 0.990, and accuracy of 0.950, for the model, which is better
than that acquired by clinicians. Chen et al. (2018) constructed a DL
model that can recognize strabismus using six different convolution
neural networks (AlexNet, VGG-S, VGG-M, VGG-16, VGG-F,
VGG-19). They collected gaze deviation images from 42 subjects
and used them to train and verify the model. The results indicated

that VGG-S had the best performance in recognizing strabismus,
with a specificity of 0.960 and sensitivity of 0.941. Huang et al. (2022)
constructed a strabismus screening and classification method based
on the ResNet-12 network and used positive facial images from
60 subjects to train and test. This method identifies eye position in
frontal facial images to diagnose strabismus and resulted in
accuracy, sensitivity, and specificity for screening and
classification values of 0.805, 0.768, and 0.842, respectively. To
better assist in strabismus screening, Huang et al. (2021)
constructed a DL model for strabismus screening based on the
convolution neural network with 60 frontal facial images for training
and verification. The experimental results showed that sample mean
and standard deviation values for normal images of 1.073 ±
0.014 and 0.039, respectively, while those for strabismus images
were 1.924 ± 0.169 and 0.472, respectively. The results of the above
AI model in strabismus screening and recognition indicate that AI
will likely be applied to strabismus screening in the future. The
development of remote diagnosis methods for strabismus also
overcomes limitations surrounding spatial distance, which is also
significant for early detection and treatment in ophthalmopathy.

Liu et al. (2019) developed a DLmodel based on a support vector
machine that can predict the time it will take for a patient to achieve
visual function following strabismus surgery from the deviation
angle of the eye position 1 day and 6 months after the operation. In
this study, using the surgical data of 132 patients to train and test the
model and a prediction accuracy of 0.821 was achieved. To aid
patients with strabismus in selecting the best surgical treatment
strategy, Almeida et al. (2015) proposed an AI method based on
support vector regression, with the clinical data of 88 strabismus
patients used to train and verify the method. This method can be
used to decide the best surgical treatment strategies for strabismus
patients according to the deviation degree, deviation type, visual
acuity data, diopter, and fundus examination data of strabismus
patients. Finally, the results showed that the average error in the
proposed surgical treatment strategy was 0.5 mm for recoil and
0.7 for resection for medial rectus surgery while the mean error was
0.6 for recoil and 0.8 for resection in lateral rectus surgery, indicating
that this method is feasible for use in planning strabismus surgery.
Lou et al. (2022) constructed a novel recurrent residual CNN with
global attention gate based on GAR2U-Net to automatically evaluate

TABLE 1 (Continued) Application summary of different AI models and algorithms used in myopia.

Authors Task Sample size AI algorithms Output

Fan et al. (2021) Prediction 1,271 individuals Linear Regression (Robust) R-squared values for the output AC1K1, AC1K2 and
AC2K1 values = 0.91, 0.84, 0.73

SVM (linear)

Bagged Trees

Gaussian processes

Fan et al. (2021) Prediction 1,037 individuals SVM (SVMs) R values for the nasal, temporal, superior and inferior LZA =
0.843, 0.693, 0.866, 0.762, RZD = 0.970, 0.964, 0.975, 0.964

Gaussian processes

Linear Regression (Robust)

Fang et al. (2023) Prediction 91 individuals Logistic least absolute shrinkage and selection
operator (LASSO) regression

AUC = 0.949

95%CI:0.815, 0.827
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the Inferior oblique overaction (IOOA). This study included
106 eyes of 72 consecutive patients, and the height difference
between the inferior corneal limbus of both eyes were measured.
The results showed significant correlations measurements and
clinical gradings. The new method allows for objective, accurate
and reproducible IOOA measurements and has obvious advantages
such as low cost, easy acquisition and wide measurement range
compared with conventional methods. The above studies are
summarized in Table 2.

Strabismus as a common eye disease, if not timely diagnosis and
treatment, may lead to significant vision loss or even blindness.
More importantly, strabismus will bring serious psychological
burden to patients, resulting in many adverse consequences.
Therefore, it is very important for timely diagnosis and treatment
of strabismus. The above AI studies show that AI can play an
important role in the diagnosis of strabismus. It can not only
diagnose strabismus without ophthalmologist, but also
significantly reduce the cost of diagnosis.

TABLE 2 Application summary of different AI models and algorithms used for strabismus.

Authors Task Sample size AI algorithms Output

Kang et al. (2022) Diagnosis 828 images U-Net Accuracy = 0.9984

Sensitivity = 0.9747

Specificity = 0.9990

DSC = 0.9688

Mao et al. (2021) Diagnosis 5,797 images InceptionResNetV2 Sensitivity = 0.991

Specificity = 0.983

AUC = 0.998

de Figueiredo et al. (2021) Diagnosis 110 individuals Resnet50 Accuracy = 0.42–0.92

Precision = 0.28–0.84

Zheng et al. (2021) Detection 7,530 images Faster R-CNN Sensitivity = 0.940

VGG16 Specificity = 0.993

Inception-V3,Xception AUC = 0.990

Accuracy = 0.950

Chen et al. (2018) Detection 42 individuals AlexNet Specificity = 0.960

VGG-F

VGG-M

VGG-S Sensitivity = 0.941

VGG-16

VGG-19

Huang et al. (2022) Detection 60 individuals ResNet-12 Accuracy = 0.805

Sensitivity = 0.768

Specificity = 0.842

Huang et al. (2021) Detection 60 images CNN The sample mean and standard deviation of normal images = 1.073 ± 0.014, 0.039

The sample mean and standard deviation of strabismus images = 1.924 ± 0.169,
0.472

Liu et al. (2019) Prediction 132 individuals SVM Accuracy = 0.821

Almeida et al. (2015) Prediction 88 individuals Support Vector Regression The average error for recoil = 0.5 mm

The average error for resection = 0.7 mm

The mean error for recoil = 0.6 mm

The mean error for resection = 0.8 mm

Lou et al. (2022) Prediction 106 eyes GAR2U-Net Kendall’s tau: 0.721; 95% confidence interval: 0.652 to 0.779; p < 0.001
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2.3 Application of AI models and algorithms
in keratoconus

Keratoconus (KC) is a non-inflammatory corneal disease
characterized by thinning of the corneal stroma, anterior
protrusion, and irregular astigmatism. Thinning occurs in or
near the center of the cornea, with subtemporal thinning the
most common (Romero-Jiménez et al., 2013; Sharif et al.,
2018). The prevalence rate of KC is approximately 1/2000–1/
500, and it usually occurs during puberty, generally in one eye,
with early symptoms including blurred vision and photophobia.
Visual acuity declines progressively as the disease progresses, with
irregular corneal astigmatism, monocular diplopia, and even
irreversible vision loss observed (Jones-Jordan et al., 2013;
Mostovoy et al., 2018; Flockerzi et al., 2021). The etiology and
causes of this disease have not yet been clarified; however, studies
have suggested that it may be related to structural changes in the
corneal collagen tissue (Kankariya et al., 2013). Early diagnosis of
KC is difficult, and is generally made by comprehensive analysis of
the corneal topography and biomechanical characteristics during
evaluation (Randleman et al., 2008; Santodomingo-Rubido et al.,
2022). Currently, contact lenses, corneal cross-linking treatment,
keratoplasty, and several other methods are used to treat the
disorder (Godefrooij et al., 2017; Röck et al., 2018; Ferdi et al.,
2019); however, corneal transplantation can lead to rejection,
complicated cataracts, iris atrophy, secondary glaucoma, and
other problems (Shah et al., 2010). Therefore, the early
detection of KC and timely intervention are of great
significance in controlling the progress of the disease and
maintaining good vision. AI models that are useful in
diagnosing KC have so far been established using SVM,
decision tree, CNN, multilayer perception neutral networks
(MLPNN), and feed forward neural networks (FNN), all of
which have been found helpful in the early diagnosis of KC
(artificial intelligence and corneal diseases, 2022).

Combining corneal topography with AI was found useful in
improving the accuracy of KC diagnosis. Using three types of
convolution neural networks (ResNet152, VGG16Net, Inception
v3), Kuo et al. (2020) constructed a DLmodel that can diagnose KC
and 359 corneal topographic maps were used to train and verify the
model. The results showed sensitivities and specificities
of >0.90 for all the CNN models, of which ResNet152 exhibited
the best diagnostic performance with an AUC value of 0.995. Al-
Timemy et al. (2021) constructed an AI model that can diagnose
KC based on the hybrid DL algorithm using 3,794 corneal images
(divided into normal cornea, suspected KC, and keratoconus).
According to data describing the anterior and posterior
eccentricity, anterior and posterior sagittal arc, and corneal
thickness, corneal features were extracted for training and
verification of the AI model, with results indicating AUC values
of 0.99 and 0.93 and accuracies of 0.988 and 0.815, respectively, for
KC. Compared with the previous single CNN model, which is
sometimes highly sensitive to slight disturbances in the pixels
comprising the input image, the hybrid algorithm provides more
reliable results. Zéboulon et al. (2020) established an ML model
based on a CNN to diagnose KC. They collected 3,000 corneal
topography maps (normal corneal topography, KC topography,
and corneal topography with a history of refractive surgery) and

used the data of anterior corneal height map, posterior corneal
height map, anterior keratometry map, and corneal thickness map
for training and testing. After testing, the results showed that the
accuracy of the model was as high as 0.993 in diagnosing KC, and
thus has potential for application in clinical practice. Kamiya et al.
(2021) constructed a DL model for diagnosing normal corneas and
KC based on the VGG-16 neural network, using 519 corneal
topographic images that were coded by color to train and test
the model. The results showed that the model performed well in
diagnosing KC, with an accuracy of 0.966, sensitivity of 0.988, and
specificity of 0.944. Using CNNs, Kato et al. (2021) constructed an
AI model that could predict the progress of KC. In this study,
274 corneal tomography images were collected and before and
after anterior keratogram and corneal thickness images combined
to form the training set and test set of DL model. measured to form
the training and test sets for the DL model. The results showed that
AUC, sensitivity, and specificity values of 0.81, 0.78, and 0.70,
respectively, for predicting KC progression. The above research
results illustrate the usefulness of using AI for the auxiliary
diagnosis of KC, for which it can significantly improve the
accuracy of a diagnosis, save time, and provide the best
treatment for patients.

AI can help ophthalmologists effectively distinguish KC from
normal corneas and classify diseases by analyzing the corneal
shape and thickness, among other parameters. In order to assist
KC classification, Feng et al. (2021) created a DL algorithm
(KerNet algorithm). They used 854 corneal images together
with original data such as the anterior and posterior surface
curvature, anterior and posterior surface topography, and
corneal thickness to form a numerical matrix for the training
and verification of the algorithm. The results showed that the
algorithm could achieve better results than the most advanced
methods in detecting and classifying KC, especially subclinical
KC, with an accuracy of 0.95. To distinguish KC from subclinical
KC and normal cornea, Abdelmotaal et al. (2020) constructed a
DL model based on a CNN and collected 3,218 corneal images for
training and testing. The model can be realized using a single
image for highly accurate KC classification, with an average of
0.983, and the fact that less computing resources are required
renders this model advantageous in terms of applicability to large-
scale disease screening without sufficient data. Aatila et al. (2021)
constructed some DL models using a variety of algorithms
(random forest classifier, Gaussian naive Bayes classifier, K
neighbors classifier, logistic regression, linear discriminant
analysis, decision tree classifier, and support vector machine)
for the classification of KC. They used 12 242 corneal
topography maps to compare the classification performance of
the different DL models. The results indicated that random forest
had the best classification performance, with an accuracy as high
as 0.95. Cao et al. (2020) constructed an AI model that can
distinguish subclinical KC from non-KC based on a variety of
DL algorithms (random forest, decision tree, logistic regression,
support vector machine, linear discriminant analysis, multilayer
perceptron neural network, lasso regression, and k-nearest
neighbor). Corneal parameters of 49 subclinical KC and
39 control eyes were analyzed, with diagnostic results showing
an AUC of 0.97 for the random forest random forest model. This
indicates that selecting a combination of important parameters
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from a larger set of parameters would lead to more objective and
effective KC screening when constructing a ML model, rendering
it a useful tool in clinical practice. The above studies are
summarized in Table 3.

Late keratoconus often leads to severe vision loss or even
blindness in patients. Early and timely treatment can effectively
alleviate the progression of keratoconus and protect patients’ vision.
Therefore, for patients with keratoconus, early diagnosis and timely
treatment are very important. The above AI studies show that AI has
carried out a lot of research in the diagnosis, classification and
prediction of keratoconus, and the AI model has shown good
performance. AI model can provide great help to doctors in the
clinical diagnosis of keratoconus, and automatically complete the
relevant diagnosis and treatment work, so as to reduce the workload
of doctors, which has important clinical significance to improve the
efficiency of doctors.

2.4 Application of AI models and algorithms
in the preoperative measurement and effect
prediction of intraocular lenses

An intraocular lens (IOL) is a special lens made of synthetic
materials that can replace the human lens (Lundström et al., 2018).
The development of cataract surgery and the demand for high visual
quality has meant that cataract surgery has evolved from visual
rehabilitation to accurate refractive surgery with high visual quality
(Piovella et al., 2019). The choice of intraocular lens has also
gradually diversified from unifocal to functional intraocular
lenses (Simon et al., 2014). The postoperative visual acuity of
patients depends to a large extent on accurate biometric and IOL
diopter calculations prior to operating. However, the changes that
occur in the intraocular structure of some patients before surgery
renders calculation of the IOL diopter difficult, and postoperative

TABLE 3 Application summary of different AI models and algorithms in keratoconus.

Authors Task Sample
size

AI algorithms Output

Kuo et al. (2020) Diagnosis 359 images ResNet152 AUC = 0.995

VGG16Net

Inception v3

Al-Timemy et al.
(2021)

Diagnosis 3,794 images unsupervised machine learning AUC = 0.99, 0.93

Accuracy = 0.988,0.815

Zéboulon et al. (2020) Diagnosis 3,000 images CNN Accuracy = 0.993

Kamiya et al. (2021) Diagnosis 519 images VGG-16 Accuracy = 0.966, Sensitivity = 0.988,
Specificity = 0.944

Kato et al. (2021) Prediction 274 images CNN AUC = 0.81

Sensitivity = 0.78

Specificity = 0.70

Feng et al. (2021) Classification 854 images KerNet Accuracy = 0.95

Abdelmotaal et al.
(2020)

Detection 3,218 images CNN Accuracy = 0.983

Aatila et al. (2021) Classification 12242 images Random forest classifier Accuracy = 0.95

Gaussian naive bayes classifier

K neighbors classifier

Logistic regression

Linear discriminant analysis

Decision tree classifier

SVM

Cao et al. (2020) Classification 88 images Random forest, Decision tree, Logistic regression, Support
vector machine

Accuracy = 0.97

Linear discriminant analysis

Multilayer perceptron neural network

Lasso regression

K-nearest neighbor
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complications can easily occur in surgery for issues such as high
myopia (Savini and Hoffer, 2018; Yao et al., 2021). In addition, the
abnormal position of the IOL that can result from various factors
will seriously affect visual quality after surgery (Wang et al., 2022). In
recent years, IOL calculation methods based on AI have shown good
performance and been proved able to effectively improve the
accuracy of IOL diopter calculations (Wang et al., 2016; Melles
et al., 2019; Nemeth et al., 2022). At the same time, a variety of
methods such as slit-lamp photography, slit-lamp video
photography, and OCT can be combined to determine the
location of the IOL (Mura et al., 2010; Omoto et al., 2022).

Using AI in designing the IOL calculation formula can improve
the accuracy of the calculation according to the characteristics of
different patients so that better visual quality can be obtained
following surgery. Mori et al. (2021) constructed an ML model
based on a support vector regression algorithm to adapt the diopter
calculation method for intraocular lens in a specific patient
population to improve the accuracy of the calculation. By
analyzing the clinical data for 11 611 eyes with a single
monofocal IOL implantation model, the constants of the SRK/T
and Haigis formulas were optimized and the support vector
regression algorithm was used to adapt the SRK/T, Haigis, Hill-
RBF, and Barrett Universal II formulas. The results showed a smaller
average error in the optimized formula for calculating the IOL
diopter than that obtained using the other formulas (p < 0.001). To
improve the accuracy in calculating the IOL degree for high myopia,
Wei et al. (2020) developed an AI calculation model based on the
XGBoost regression algorithm. They collected data from 1,564 high
myopia eyes for training and verification and combined a constant
IOL diopter with the Barrett Universal II formula and other data,
they developed a new IOL calculation method. The results showing
significant decreases in the median absolute and median square
errors as compared to those obtained under the BUII formula (p ≤
0.001), and the proportion of eyes with prediction errors
within ±0.25D increased significantly. Cabeza-Gil et al. (2020)
proposed two intraocular lens calculation models based on the
DNN algorithm to calculate the biomechanical stability of IOL
which were then verified using data from 37,161 cases. Six
parameters (length, width, thickness, opening angle of the haptic,
tactility, and haptic-optic junction in the reference data) were used
to enhance the consistency of patient characteristics so as to improve
the success rate of the operation. The results showed Pearson’s r
values of 0.995 and 0.992 for the two models; indicating good
performance. Clarke and Kapelner (2020) designed a more
accurate diopter calculation model for the intraocular lens,
Bayesian Additive Regression Trees (BART), which was based on
theML algorithm. They collectedmeasurement data from 5,331 eyes
divided into training and verification subsets based on the specific
characteristics of patients and their eyes. The results showed an
average absolute error of 0.204 D, proving that the diopter of the
intraocular lens calculated by this model was more accurate than
that obtained by other commonly used formulas.

The calculation formula for the IOL has undergone several
generations of evolution at different times. The first-generation
formula is based only on regression data, while the second-
generation formula includes the influencing factor of axis length
and the third-generation formula refers to optics and IOL position
factors. Methods for formula optimization are now more abundant,

and combined with artificial intelligence, the accuracy of IOL
calculation has been much improved. Guillaume et al. (2021)
constructed an ML model based on the multiple linear regression
algorithm to improve the IOL formula and constructed the new
PEARL-DGS formula to calculate the diopter of IOLs by analyzing
the data of 4,242 intraocular lens implants. The examination data of
another 677 eyes were collected and compared with the K6 and
Olsen, EVO 2.0, RBF 3.0, and BUII formulas, with results showing
the smallest calculation error when using the PEARL-DGS formula
with an error range of ±0.382 D, which indicates that completely
retraining the formula, rather than the conventional constant
adjustment, can allow adaption to the habits of doctors and the
characteristics of specific patient groups. Ladas et al. (2021)
constructed an AI model based on DL algorithms (extreme
gradient boosting, support vector regression, artificial neural
network) to optimize the existing diopter calculation formula for
intraocular lens and develop a new hybrid formula based on AI.
They analyzed the eye data of 1,391 patients who underwent IOL
implantation, with the factor axial length, anterior chamber depth,
lens thickness, sex, age, and postoperative significant diopter
considered, and determined both the average absolute error in
each IOL formula and the number of eyes that predicted diopter
within 0.5 D. After AI optimization, the average percentage of eyes
within ±0.5 D predicted by the SRK formula increased to 14%, the
Holladay 1 formula increased by 9.3% and the LSF formula
increased by 5.3% (p < 0.05), while in terms of average absolute
error, the predicted diopter of optimized SRK formula decreased to
0.14 D, the Holladay 1 formula decreased to 0.08D and the LSF
formula decreased to0.04D.

In the process of intraocular lens implantation, the influence
that location and the size of the anterior and posterior space have on
visual quality and postoperative complications can easily be ignored.
An IOL localization method based on AI can effectively solve this
problem. Schwarzenbacher et al. (2022) used a CNN to construct a
DL model that can automatically divide the IOL, Retrolental, and
Berger’s space and analyze the spatial resolution to accurately locate
the target structure. In the study, a total of 92 eye OCT images were
used to train and varify the model, with results indicating Precision,
Recall, and Dice scores of 0.97, 0.90, and 0.93, respectively,
indicating that the model has high accuracy in locating the IOL.
This is the first time that this type of algorithm has been proposed to
automatically segment the posterior structure of the anterior
segment. To evaluate the position of the IOL in three-
dimensional space, Xin et al. (2020) constructed an AI evaluation
model based on a region-based fully convolutional network
(R-FCN), with 86 AS-OCT images used to train and verify the
model. The results showed an evaluation efficiency of 0.910 for the
model, with intraclass correlation coefficients (ICC) of 0.867 and
0.901 for reliability and repeatability, respectively, evaluating the
location of the IOL in a three-dimensional space to provide data
support for the design of a better functional IOL. The above studies
are summarized in Table 4.

Intraocular lens implantation is a common method of ocular
surgery. Patients’ postoperative visual acuity is highly correlated
with their accurate preoperative biometric features and IOL diopter
calculation. AI-based IOL diopter calculation can effectively
improve the accuracy and help solve some cases with
complicated intraocular structure. In addition, artificial
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intelligence can assist in determining the location of IOL
implantation, which plays an important role in improving
patients’ visual quality and reducing postoperative complications.

2.5 Application of AI models and algorithms
in amblyopia

Amblyopia is a decrease in monocular or binocular best-
corrected visual acuity that leads to abnormal visual experiences
(monocular strabismus, anisometropia, high ametropia, and form
deprivation) during visual development (Kates and Beal, 2021).
Factors that cause amblyopia include ametropia, strabismus,
anisometropia, ptosis, lens opacity, and form deprivation (Paff
et al., 2010; Rajavi et al., 2012; Barrett et al., 2013). According to
its etiology, amblyopia is mainly divided into strabismic,
anisometropic, ametropic, and form deprivation amblyopia
(Maurer and K. S., 2018; Birch, 2013). Amblyopia can be mild,
moderate, or severe. The main manifestations of amblyopia are
lower than normal best-corrected visual acuity, crowding,
paracentric fixation, prolonged PVEP latency, and decreased
amplitude of visual evoked potentials (Lempert, 2006; Hess and
Thompson, 2015). At present, the main treatment strategy for
amblyopia is to remove the factors that cause deprivation as soon
as possible, with cataract treatment, complete ptosis correction, the
use of appropriate corrective glasses, covering healthy eyes, and
optical drug suppression therapy all used (Birch et al., 2021;
Boniquet-Sanchez and Sabater-Cruz, 2021; Meier and Tarczy-
Hornoch, 2022). According to the law of visual development,
early detection, diagnosis, and intervention are particularly
important for patients with amblyopia, and can significantly
improve the therapeutic effects (Holmes and Levi, 2018).

Murali et al. (2020) constructed a DL model based on a CNN
for screening the risk factors for amblyopia in children. This model
can identify biological characteristics such as corneal light
reflection, iris center position, pupil radius, and ratio of eye
radius to iris diameter from the facial image, allowing easy
screening of the risk factors in children. They collected facial
images of 54 participants to train and test the model, with
results indicating an accuracy of 0.796, sensitivity of 0.882,
specificity of 0.756, and an F-score of 0.732. Murali et al. (2021)
collected facial images of 654 participants (randomly divided into
training and verification sets) and constructed a DL model that
could screen and identify the risk factors of amblyopia in children
based on a convolution neural network. After verification, the
values of 0.908, 0.836, and 0.859, respectively, for accuracy,
sensitivity, and specificity indicate that the use of DL to analyze
photographic images is an effective alternative method for
screening risk factors in children with amblyopia. The above
studies show that using AI to recognize the biological features
of children’s facial images allows accurate detection of the risk
factors for amblyopia, which is of great significance for amblyopic
children. The above studies are summarized in Table 5.

Amblyopia is a common eye disease in children. for amblyopic
children, the therapeutic effect is closely related to age, and the
younger the age, the better the therapeutic effect. In addition, early
treatment not only has a short course of treatment, but also has a
significantly higher cure rate. Therefore, it is particularly important
to screen the risk factors of amblyopia in children. Through the
above research, we can see that AI shows a good performance in the
screening of risk factors of amblyopia in children. Its use in the
screening of risk factors of amblyopia in children can not only save
manpower, material and financial resources, but also is of great
significance for the early treatment of children with amblyopia.

TABLE 4 Application of different AI models and algorithms in intraocular lens calculation and postoperative prediction.

Authors Task Sample size AI algorithms Output

Mori et al. (2021) Optimization 11611 eyes Support vector regression The average calculation error of IOL diopter calculated by the optimized
formula is smaller than that of other formulas (p < 0.001)

Wei et al. (2020) Design 1,564 eyes XGBoost regression Median absolute errors and median square errors decreased significantly (p <
0.001)

Cabeza-Gil et al. (2020) Design 37161 individuals DNN Pearson’s r of two models = 0.995 and 0.992

Clarke and Kapelner
(2020)

Design 5,331 eyes Bayesian Additive Regression
Trees

The average absolute error = 0.204 D

Debellemanière et al.
(2021)

Optimization 4,919 eyes Multiple linear regression The error range = ± 0.382 D

Ladas et al. (2021) Optimization 1,391 eyes Support vector regression The accuracy rate of each calculation formula is improved after optimization

Extreme gradient boosting

ANN

Schwarzenbacher et al.
(2022)

Location 92 images CNN Precision = 0.97

Recall = 0.90

Dice score = 0.93

Xin et al. (2020) Assessment 86 images Region-based fully
convolutional network

Intragroup correlation coefficient of reliability = 0.867

Intragroup correlation coefficient of repeatability = 0.901
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3 Limitations and challenges

As can be seen from the above studies, AI has been widely used
in optometry. Many AI models and algorithms have shown
superior performance in the diagnosis, identification, screening,
prediction, and treatment of disease with satisfactory results
achieved. However, there remain many challenges and
limitations that are likely to seriously affect further research and
the application of AI in the field of optometry. For example, 1) The
quality of the image in the data set (Ting et al., 2019; Xie et al.,
2020). The datasets used in some studies are public, and include
many poor-quality images. Because the research results of the AI
model are closely related to image quality, this issue will
significantly impact the AI model, resulting in inaccurate results.
2) Sample size (Chen et al., 2018; Huang et al., 2021; Gutierrez et al.,
2022; Huang et al., 2022). The small sample size in some studies is
likely to affect the stability of the AI model, affecting the reliability
of the results. For example, in some AI studies of strabismus,
amblyopia and other diseases, the sample size in the data set is
small, which will have a certain impact on the performance of the
final AI model. 3) External verification of the algorithm (Wawer
Matos et al., 2022; Wong et al., 2022). Some AI models have
excellent performance in training and verification; however,
there is a huge gap between the “real environment” and the
“research environment”, which may lead to performance
degradation and produce unstable results when such AI models
are applied to clinical diagnosis and treatment. For example, in the
research of strabismus, keratoconus and other diseases, many AI
models are verified only on external data sets, but not in the “real
environment.” 4) Validity of the datasets (Ting et al., 2019; Ng et al.,
2021). The images used in many studies need to be annotated, with
strict requirements for labeling l. The validity of the data used is
particularly important for the research results of an AI model. For
example, in some studies, the task of image annotation is completed
by residents, which may be difficult to ensure the accuracy of image
annotation, thus affecting the performance of the AI model. 5)
Interpretability of AI algorithms (Al-Aswad et al., 2022; Betzler
et al., 2022). Because AI belongs to a subfield of computer science,
many clinical medical staff have little AI-related knowledge, which
leads to incorrect interpretation in the process of clinical
application, resulting in the so-called “black box phenomenon.”
6) AI model may lead to medical legal problems (Ji et al., 2022). No

one is perfect, and artificial intelligence cannot be 100% accurate.
When the diagnosis of the AI model is wrong or even has serious
consequences, how to determine its behavior? Who should bear the
consequences? These will become some thorny medical legal issues.
7) The privacy and security of patients (Murdoch, 2021). Medical
data focus on patients’ health, disease status, biological genes and
other information, once leaked, the consequences are
unimaginable. The privacy security problems of medical artificial
intelligence are as follows: do patients fully get their informed
consent in the process of data collection? In the event of a privacy
leak, who will be held responsible? Who has the right to get
information about a patient’s health or disease? These are all
important and urgent problems to be solved. 8) The lack of legal
protection related to AI technology. In recent years, the rapid
development of AI technology has greatly changed our lives.
However, the legislative process for artificial intelligence is
relatively slow. Artificial intelligence needs to have
corresponding laws and regulations in all aspects of research
and development, development and production process, and
stipulate the ownership of responsibility and the direction of
development; artificial intelligence (especially deep learning) if
there is no legal escort, will seriously affect its development and
application.

4 Conclusion

Through the above AI research, it can be found that many
research achievements have been made in the application of AI in
the field of optics, and the application prospect is very broad, which
can bring reform and progress to the field of optics in many aspects.
Intelligent systems based on different AI algorithms can help
ophthalmologists better diagnose and treat diseases in the field of
optometry according to patients’ eye clinical data and personal data,
which has important clinical significance. But for clinical medical
staff, only this is far from enough. Because this shallow clinical
application plays a more auxiliary role, such as reducing the
repetitive physical labor of clinical medical personnel, improving
the accuracy of diagnosis and so on. If we want to fully apply AI to
ophthalmic clinic, AI must have more functions. It can not only
complete the assigned tasks, but also develop more technologies and
methods according to the characteristics of each task. In addition, AI

TABLE 5 Application summary of different AI models and algorithms in amblyopia.

Authors Task Sample size AI algorithms Output

Murali et al. (2020) Detection 54 images CNN Accuracy = 0.796

Sensitivity = 0.882

Specificity = 0.756

F-Score = 0.732

Murali et al. (2021) Detection 654 images CNN Accuracy = 0.908

Sensitivity = 0.836

Specificity = 0.945

F-Score = 0.859
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also needs to pay more attention to those unsolved technologies and
challenges, so as to better promote the clinical application of AI in
ophthalmology.

As mentioned in this review, AI can complete specified tasks by
building algorithm models and DL networks, particularly image
recognition, classification, diagnosis, and data analysis. Although
there are still several challenges associated with AI modeling, it can
provide doctors with objective clinical decisions, laying the
foundation for accurate treatment. There is an urgent need for
future research into the unknown aspects of target diseases, which
combined with application, could instigate targeted and high-quality
research. Simultaneously, the introduction and application of a
number of standardized norms are that can further improve the
quality of AI medical research and promote AI products will provide
great advantages in the diagnosis and treatment of optometry-
related diseases as soon as possible.
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The application of artificial
intelligence in glaucoma diagnosis
and prediction
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Artificial intelligence is a multidisciplinary and collaborative science, the ability of
deep learning for image feature extraction and processing gives it a unique
advantage in dealing with problems in ophthalmology. The deep learning
system can assist ophthalmologists in diagnosing characteristic fundus lesions
in glaucoma, such as retinal nerve fiber layer defects, optic nerve head damage,
optic disc hemorrhage, etc. Early detection of these lesions can help delay
structural damage, protect visual function, and reduce visual field damage. The
development of deep learning led to the emergence of deep convolutional neural
networks, which are pushing the integration of artificial intelligence with testing
devices such as visual field meters, fundus imaging and optical coherence
tomography to drive more rapid advances in clinical glaucoma diagnosis and
prediction techniques. This article details advances in artificial intelligence
combined with visual field, fundus photography, and optical coherence
tomography in the field of glaucoma diagnosis and prediction, some of which
are familiar and some not widely known. Then it further explores the challenges at
this stage and the prospects for future clinical applications. In the future, the deep
cooperation between artificial intelligence and medical technology will make the
datasets and clinical application rules more standardized, and glaucoma diagnosis
and prediction tools will be simplified in a single direction, which will benefit
multiple ethnic groups.

KEYWORDS

Glaucoma, artificial Intelligence, visual field, optical coherence tomography, fundus
photographs

1 Introduction

Glaucoma alludes to a chronic neurodegenerative disease that is associated with
progressive loss of optic disc edge, retinal nerve fiber layer (RNFL) thinning and
ganglion cell damage. It has been the second most common cause of blindness globally
(Davis et al., 2016; GBD, 2019 Blindness and Vision Impairment Collaborators, 2021). The
number of people with glaucoma (aged 40-80 years) worldwide was estimated to be
76.0 million in 2020 and 111.8 million in 2040 (Tham et al., 2014). Because of the
progressive and insidious nature of glaucoma, early diagnosis is extremely vital to
prevent disease progression and permanent vision loss. However, identifying glaucoma is
a complicated process that requires multiple examinations and clinical expertise, which
would be time-consuming and labor-intensive. In resource-constrained and geopolitically
disadvantaged places, this process is beset by several challenges, such as a lack of healthcare
infrastructure, inadequate follow-up, and poor therapy adherence (Nduaguba and Lee, 2006;
Santos Martins et al., 2021). Considering that many potential glaucoma patients are at risk of
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future vision persecution or even blindness, early identification of
glaucoma and improvement of diagnostic practices are topics that
modern ophthalmologists are constantly striving for. The emergence
of artificial intelligence (AI) technology and its integration with
ophthalmology has solved this problem to some extent.

AI is expected to equip ophthalmologists with revolutionary
automated methods for diagnosing and managing ocular illnesses. It
is a multidisciplinary science that allows machines to simulate
human cognitive processes such as learning, reasoning, problem
solving, information processing, social awareness, and general
intelligence (Hamet and Tremblay, 2017). It has the powerful
data processing capability to analyze data and predict
development trends autonomously. For autonomous diagnosis of
characteristic fundus lesions of glaucoma, such as retinal nerve fiber
layer defects, optic nerve head injury, and optic disc hemorrhage, it
has unique advantages. Artificial intelligence encompasses machine
learning, which learns and improves itself automatically from data,
without the need for human-written programs to specify rules and
logic. Machine learning in turn includes deep learning (DL). Deep
learning, a development of machine learning within the field of AI,
analyzes data using layered algorithmic frameworks. The
architecture was inspired by the biological neural networks of
animal brains (LeCun et al., 2015; Thompson et al., 2020). DL
has relatively mature applications in bioengineering and smart
medicine, and there are already successful cases in
ophthalmology. In 2018 the U.S. Food and Drug Administration
approved the first fully autonomous AI algorithm IDx-DR for the
detection of diabetic retinopathy (Abràmoff et al., 2018), which has

greatly advanced the development and dissemination of DL in the
clinical setting. Recently, DL is evolving day by day, new network
structures convolutional neural networks (CNN) have already made
prominent contributions in a number of disciplines including
dermatology (Combalia et al., 2022), cardiovascular disease risk
prediction (Padmanabhan et al., 2019), radiology and
ophthalmology (Setio et al., 2016; Xu et al., 2020b; Benet and
Pellicer-Valero, 2022). Promising to provide ophthalmologists
with novel tools for the diagnosis and treatment of ocular
diseases. Figure 1 depicts a schematic diagram of a deep learning
model with CNN structure to process images. With these technical
conditions, ophthalmologists can greatly reduce the cumbersome
process during diagnosis and treatment, decrease manpower
resources for interpreting auxiliary examinations, and increase
the ability to capture subtle lesions that are not discernible to
human eyes.

Enhanced computing power expanded storage capacity, and
compilation of medical data allow for broader applications andmore
accurate diagnostic methods for AI technology in the direction of
disease screening and ancillary test judgment. In ophthalmology,
due to the reliance on ancillary examination images and the
requirement for various diagnostic evidence, AI is uniquely
positioned to analyze and interpret glaucoma intraocular
pressure, visual field (VF), optical coherence tomography (OCT)
and retinal fundus images (Devalla et al., 2020). Detection systems
using AI can overcome the stress of the healthcare resource shortage
due to an aging population (Chan et al., 2016), provide mass
screening at low cost, especially for regions lacking medical care

FIGURE 1
Schematic diagram of how the CNNmodel is generated and how it works. The flowchart below shows the process of constructing and evaluating a
deep learning model with CNN structure. The schematic above depicts the process of how a CNN model works. After inputting an image, convolution
and pooling are performed to extract the image features. Fully connected layers are used to classify the features, with all computations converging to the
final model prediction in the output layer.
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professionals, and can provide full-cycle health monitoring for
patients in a high-quality and efficient manner (Balyen and Peto,
2019). The current functional and structural tests commonly used in
glaucoma diagnosis include VF detection, retinal fundus
photography and OCT, so in this review article we detail the
combination of these tests with AI for glaucoma diagnosis and
prediction, as well as some of the other techniques under
development for their current applications in research and
clinical practice. We further explore the limitations and potential
challenges, as well as the prospects for future applications in the
hope of providing new perspectives for scholars in this field to
contemplate.

2 Diagnostic model of glaucoma

2.1 Visual fields

In the clinical setting, VFs are widely used as the gold standard
for diagnosing whether a patient is glaucomatous, and the Standard
Automated Perimetry (SAP) remains the primary tool for
diagnosing and tracking functional changes in the disease. SAP
assessment of functional impairment rates is extremely important
for establishing patient prognosis and treatment aggressiveness.
However, this test is often influenced by a variety of subjective
factors, such as patient attention fatigue or poor doctor-patient
cooperation, which can readily influence the ultimate judgment of
disease progression. AI systems combined with some advanced
testing devices for review, such as the frequency-doubling
perimetry, Humphrey Matrix 24-2 test, short-wavelength
automated perimetry, and Heidelberg edge perimetry, can yield
accuracy gains at lower cost and higher efficiency. Deep learning
models use VFs collected from various healthcare facilities,
commonly use total deviation plots, mean deviation values, and
pattern deviation probability plots. Data samples with excessive
false-positive and false-negative rates were excluded when collecting
this VF information. Additional features of glaucoma patients were
also collected as an assist and the plots were processed tomake lesion
features more susceptible to detection. The relevant information is
extracted and used as variables in the classifiers to train algorithms
for diagnosing or predicting glaucoma conditions. A fewmodels also
incorporate numerical pattern deviation plots and numerical
displays to assist in training. Results obtained can be compared
with clinicians’ judgments to verify their validity.

In 2014 (Asaoka et al., 2014) developed a Random Forests
machine-learning method in order to distinguish the VFs of
preperimetric open angle glaucoma eyes. After achieving good
results in the area under the receiver operating characteristic
curve (ROC) and significant total deviation differences with this
method, studies combining AI with VF detection to diagnose
glaucoma are beginning to gain traction. After that, other
researchers developed a CNN system using the vision geometrical
group (VGG) network structure (Li et al., 2018a). The VGG network
is first pre-trained on the ImageNet dataset, then the output
dimension of the penultimate layer is modified with the last layer
output two-dimensional (2D) vector, and all parameters of the
network are initialized and updated. The network is compared
with the results of rule-based methods (like Advanced Glaucoma

Intervention Study criteria and Glaucoma Staging System criteria)
and non-deep machine learning algorithms (like random forest).
With an accuracy of 0.876, specificity of 0.826, and sensitivity of
0.932, the CNN far exceeded several other types of AI visual field
algorithms, showing good glaucomatous VF discrimination. The
results demonstrate the advantages of the CNN algorithm for
applications. However, one thing to note is that this study only
used pattern deviation images as input objects and early glaucoma
may not be identified, and the capabilities of DL models need to be
expanded to diagnose more types of glaucoma.

Convolutional long short-term memory neural networks for
glaucoma progression detection have also been trained and
combined with clinical data (Dixit et al., 2021). This neural
network extracts spatiotemporal features of glaucoma
progression, and the researchers used a longitudinal dataset
containing VF as well as clinical data to improve the evaluation
of the model. The researchers utilized two machine learning models
that defined progression using algorithms such as VF index slope,
pointwise linear regression, and mean deviation slope. And one was
trained using clinical data containing information such as cup-to-
disc ratio, intraocular pressure and central corneal thickness. The
long short-term memory neural network had an accuracy of 91%–

93%, and the model trained using clinical data showed a higher AUC
than the model trained using only the VF dataset. Creating clinically
accessible diagnostic interfaces and windows is also essential. Huang
et al. (Huang et al., 2022) developed a fine-grained grading deep
learning system and an interactive diagnostic aid interface has been
created for clinical implementation. Two DL models Humphrey
Field Analyzer (HFA) data (FGG-H) and Octopus data (FGG-O)
were constructed both using the Residual Neural Network (ResNet)
structure, where the FGG-O was initialized with the final parameters
of FGG-H preprocessed with HFA data from the Harvard dataset,
and they added identity mapping over CNN to grade glaucoma with
high accuracy. The fine-grained grading deep learning system
achieves almost the same accuracy as ophthalmology clinicians
and provides a user-friendly interface for patients and physicians
to perform the test. In addition, a smartphone application-based DL
system has been developed (Li et al., 2020a), which applies optical
character recognition techniques to extract data points in the VF and
uses CNNmodels to modify the original ResNet18 to detect changes
in the VF, resulting in the “iGlaucoma” mobile software. The DL
system outperformed 6 ophthalmologists for different patterns in all
three test sets and recognition pattern deviation probability map
regions, showing its promise for clinical applicability.

Glaucoma diagnosis by VFmeasurement has become a common
practice in clinical, and AI will have considerable potential in the
field of automated VFmeasurement. However, the clinical generality
of DL models from different studies, as well as the size of external
test datasets and manual screening methods, affect the application
of DL.

2.2 Fundus image

Artificial intelligence applied to fundus photography is a hot
topic for researchers recently, because this methodology is able to
perform targeted screening in different areas with simple devices,
which makes the detection of early fundus lesions more convenient.
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Thus its mode of combining with AI for diagnosis has received
attention from the initial detection of diabetic retinopathy (Gulshan
et al., 2016; Abràmoff et al., 2018), and gradually applied to the
diagnosis of glaucoma. AI focuses on problems including
segmentation and detection of the optic nerve head, optic disc
and RNFL to achieve accurate analyses of glaucoma fundus
photographs. The early role of AI in glaucoma was comparatively
simple, such as robust algorithms for quickly locating the optic disc
region (Wang et al., 2017). This efficient kernelized least squares
classifier extracts optic disc locations using vascular alignment, and
its detection results on two digital retinal image datasets show that it
has high Geometric Dilution Precision and speed. Then more DL
systems and multi-integrated CNN models came out of the
woodwork.

Among the numerous neural network structures for diagnosing
glaucoma fundus photographs, the one more widely used is the
ResNet structure. This DL model classifies fundus photographs with
anatomical features of the upper and lower portions of the optic disc
which are commonly used when diagnosing, with reduced training
time. In 2018, (Christopher et al., 2018) used the transfer learning
ResNet architecture to generate a DL algorithm that identifies
glaucomatous optic neuropathy (GON). A subsequent study (Li
et al., 2020b) using a DL model relying on ResNet101 demonstrated
that identifying color fundus images with the neuroretinal rim
region, RNFL defect areas (superior or inferior) and combining it
with medical history information could better identify GON.
However, several false negative results still affect the accuracy of
the assay, e.g., pathologic or high myopia, age-related macular
degeneration and diabetic retinopathy (Li et al., 2018b). The deep
residual learning algorithm ResNet10 developed by Shibata et al.
(2018) verified the accuracy of diagnosing glaucoma in high myopic
eyes. It obtained an AUC value of 97.1% in the “G” (glaucoma) and
“N” (normal eyes) groups and 96.4% in the “mG” (high myopia and
glaucoma) and “mN” (high myopia and non-glaucoma) groups,
which is markedly stronger than the residents (AUC 72.6%–91.2%).
Recently, this network architecture has also been used in primary
open-angle glaucoma (Fan et al., 2022). Experts took advantage of
VF and optic disc information from 1,636 participants collected by
the ocular hypertension treatment study over an average of 10 years
to train the ResNet50 model and achieve high specificity on the test
set beyond the study endpoint committee. To facilitate patient
applications, DL algorithms have also been developed for
smartphones using ResNet6 (Nakahara et al., 2022), which
requires an accompanying D-Eye lens for fundus photo capture.
Although it has some effectiveness in advanced glaucoma, its usage
requires the flash to be continuously lit for 1 min against a dilated
eye, which needs to be updated.

Several other neural network structures with different
characteristics have also been employed for glaucoma detection.
Deep convolutional neural algorithms in the Inception-v3
architecture identify optic nerve head features and GON from
fundus images to facilitate early glaucoma referral diagnostic
decisions (Phene et al., 2019). This algorithm was trained on
individual pathological features and GON wholeness based on
86,618 fundus photographs and demonstrated AUCs between
0.855 and 0.945 on three test sets. Distinct from the traditional
U-Net network, the SA module, namely, Scale-Attention Deep
Learning Network, is inserted into the bridging connection to

capture more scale features to interpret different structures and
functions in retinal tissues (Hu et al., 2021). It can effectively
segment 2D small sample retinal fundus images in order to
determine glaucomatous fundus lesions. Another cycle generative
adversarial network (CycleGAN) (Yoo et al., 2022) can connect
information from the retro-ocular segment to the pre-ocular
segment for detecting closed-angle glaucoma and has found that
shallow anterior chamber depth is characterized by brighter areas
around the optic disc and macula. Alternatively, one may choose to
skillfully apply CycleGAN in combination with U-Net for retinal
lesion localization (Zhang et al., 2022), where CycleGAN generates
more available images and U-Net acts as a generator against the
discriminator to generate the optimal solution, collaborating with
the classifier to distinguish the domain of the input image. This
demonstrates that a combination of different AI tools can improve
diagnostic performance.

The ensemble model with its superior performance over the
single model is now also highly preferred. Compared to a single
model, the ensemble model combines the advantages of different AI
image analyses as well as complements each other’s shortcomings. In
2020, (Ko et al., 2020) built an ensemble model TVGH-CNN
merging a VGGNet-based CNN model and an SVM classifier to
detect GON. For the easy-to-miss features of AI based on optic disc
segmentation, such as increased vertical CorelDRAW and thinning
of the upper and lower neuroretinal edges, it is possible to select a
model via confidence scores, with SVM selected for low confidence
in CNN, to achieve mid-to-late stage diagnosis of glaucoma. It
achieved 95.0% accuracy and 94.2% specificity in the Drishti GS
dataset. However, the classification accuracy is low and the
generalizability is not high. But this method of assigning
confidence scores provides a new way of thinking about the
integration of models. Modeling several different neural networks
to form an integrated system to automatically grade the severity of
glaucoma is also a way forward for an ensemble system (Cho et al.,
2021). Recently, a study has utilized a multimodal model to analyze
the vertical cup-to-disc ratio and mean RNFL thickness to identify
glaucoma in a myopic population (Lim et al., 2022). Where random
forest, SVM, logistic regression, Ada-boost, k-nearest neighbors and
a dense neural network were linked, and the images were categorized
with the Xception model. This DL system was followed up with a
web page for screening and telemedicine, covering a sizeable
glaucoma suspect population.

Artificial intelligence scholars have focused on the convenience
and trustworthiness of fundus photography, which can be
implemented in less medically privileged areas, and have
explored the possibilities of the combination of two technologies
for accurate and efficient glaucoma diagnosis. This technology is
now evolving from a single neural network to an ensemble model.
Simple optic disc segmentation and vascular localization can
determine whether disease is present or absent in GON detection
and RNFL thickness measurement for grading glaucoma and
identifying new fundus features.

2.3 OCT

Compared to fundus imaging, OCT has superior sensitivity and
specificity. Recent innovations in OCT equipment have brought
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high-quality analytical data to the development of AI. Spectral
domain OCT (SD-OCT) and scanning source OCT (SS-OCT)
have improved axial resolution, enabling faster and more
accurate acquisition of morphological features at the posterior
end of the eye. Anterior segment OCT (AS-OCT) allows
assessment of atrial angle opening and closing, anterior chamber
depth as well as iris and lens to obtain biometric parameters (Ran
et al., 2021). In contrast to traditional machine learning models, the
DLmodel does not require segmentation and it can use the rawOCT
data to classify and identify areas of lesion that are not readily
detectable to humans.

Nowadays SD-OCT is widely used in ophthalmology. A three-
dimensional (3D) deep learning algorithm allows combination
with SD-OCT to scan degeneration of the glaucomatous optic
nerve head. Figure 2 shows the SD-OCT performing fundus scans
using 3D capabilities. The first 3D deep learning system (Ran et al.,
2019) which utilizes ResNet structures for glaucomatous lesion
analyses in optic nerve head volume data collected by SD-OCT.
Compared to 2D models, it uses 3D deep learning algorithms to
obtain better results. Its diagnosis relies on accurate segmentation
of the retinal layers, as well as quantification of the RNFL and
macular ganglion cell complex. Later scholars (Noury et al., 2022)
attempted to formulate a 3D convolutional neural network and
trained it to discriminate glaucoma on datasets from Stanford
University, Hong Kong, India, and Nepalese sources, responding
to its good judgment in OCT images of different ethnic groups. For
glaucoma diagnosis, the lamina cribrosa region is highlighted. This
is consistent with clinical parameters like cup diameter/volume or
rim area/volume. Other scholars wanted to develop a multi-task
3D deep learning model to detect GON and other fundus lesions

like myopia in relation to glaucoma diagnosis (Ran et al., 2022).
ResNet architecture was developed with multi-input CNNs and
multi-channel variational autoencoders, which were applied for
internal and external validation, with results outperforming RNFL
thickness. CNNs have been trained before by using the macular
RNFL thickness and ganglion cell complex layer thickness on
images (Asaoka et al., 2019), which performed better than
random forest and SVM. Rather than being limited by errors in
manual classification of subjective markers, it saves even more
manpower and time (Medeiros et al., 2021). Subsequently,
researchers have attempted to develop a model for predicting
the development of glaucoma by combining fundus
photographs with OCT in a “machine-to-machine” model
(Medeiros et al., 2019). This model continues to use the
ResNet34 architecture to consecutively predict the mean RNFL
thickness, achieving a mean absolute error (MAE) of 7.39 μm.
RNFL thickness values for all sectors “CNNA” combined with
temporal sectors “CNNT” using SD-OCT circle scans can also be
used to measure the central 10° visual field map in glaucoma
patients (Kamalipour et al., 2023). Or AI can use the additional
information collected by SD-OCT to form an overall DL model to
evaluate visual function, such as ganglion cell layer, ganglion cell-
inner plexiform layer, inner plexiform layer and macular ganglion
cell layer (Christopher et al., 2021). Lee et al. (Lee et al., 2020a)
developed a hybrid deep learning model algorithm that utilized
Inception-ResNet-v2 to extract features and paired it with SVM for
regression and classification problems. The results with red-free
RNFL photographs measurement macular ganglion cell-inner
plexiform layer thickness showed a correlation coefficient of r =
0.739 and a consistency metric of MAE = 4.76 µm with the true

FIGURE 2
SD-OCT utilizes 3D capabilities for fundus scanning. Generating 3D fundus images by volume scanning and linear scanning of the feature site (A).
Optic disc region (B). Macular region.
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measurements. This suggests that hybrid DL models also hold
good promise for applications in OCT.

Traditional detection of the preocular segment using AS-OCT
depends on the ophthalmologist’s refinement of the image and
identification of the scleral spur. Artificial intelligence can
automatically perform the extraction of features from AS-OCT
such as thick peripheral iris roll, plateau iris and expanded lens
vault in the anterior segment and reduce the errors caused by
manual recognition through feature extraction. This AI system
can detect anterior chamber angles more accurately than other
auto-angle closure detection systems. Figure 3 shows the
comparison of AS-OCT with other imaging modalities of the
anterior segment. By placing long short-term memory neural
networks, which captures temporal information in images, in the
last pooling layer of a trained ResNet model (Hao et al., 2022), a DL
model was constructed to process image data and investigate the
relationship between dynamic iris changes and primary angle-
closure glaucoma. Xu et al. (Xu et al., 2019) formulated three
competing multiclass CNNs to compute binary probabilities of
atrial angle closure (Shaffer class 0 or 1). In the end the
ResNet18 classifier obtained superior performance. It helps
clinical judgment of angle opening and closing by using accurate
calculation power, which saves time and improves accuracy. The DL
model also allows for the development of an automated digital
gonioscopy system to simulate static and dynamic goniometry at a
level not inferior to that of a clinician (Li et al., 2022b). Alternatively,
a sliding window-based regression task for locating the anterior
atrial angle can be created to automatically perform angle detection
using three parallel sub-networks to process data and extract image
features (e.g., anterior segmental allostructure, iris structure, atrial

angle structure) from the AS-OCT output. The Chinese American
Eye Study has utilized this theory to develop a DL model for
detecting the atrial angle that has been tested in communities of
different ethnicities (Randhawa et al., 2021). AS-OCT combined
with AI can also analyze features that are not noticed by humans to
facilitate the adoption of unsupervised learning. For example, setting
the latent space size of the β-variational autoencoder to 6 and the
beta value to 53 in the study by Shon et al. (2022a); Shon et al.,
2022b) enables the extraction of low-dimensional latent variables,
which can then be converted into shallow and understandable
features.

As the machines are updated, new features are being created to
fill the gaps in the development of modern OCT, which can be
combined with a variety of ophthalmic examination instruments to
detect multiple diseases simultaneously and even explore the
pathogenesis of glaucoma in the microscopic cellular world. For
example, an hybrid deep learning model can be linked with a single
wide-field OCT for quadrant analysis to differentiate glaucoma
(Muhammad et al., 2017), the custom DL architecture LightOCT
can classify various diseases of the eye in public datasets (Butola
et al., 2020), and SS-OCT is combined with a DL model to detect
peripheral anterior adhesions (Yang et al., 2021). Zadeh et al.
(Soltanian-Zadeh et al., 2021) used adaptive optical AO-OCT
with weakly supervised deep learning WeakGCSeg to
automatically segment cells in order to study the cellular level
characteristics of retinal ganglion cells, using click-points weak
supervision to generate a fast, high-throughput detection system.

From the perspective of public health, OCT belongs to a
category of expensive testing equipment, which is not as widely
tested everywhere on a large scale as fundus imaging. But because of
its precision, it is ideally suited to provide AI with more specific
ocular features, and because of the addition of AI, it also makes OCT
technologymore labor efficient. They complement each other. In the
future, it is likely that SD-OCT with its universality and AS-OCT
with its immediacy will have a large market share in the field of
glaucoma research. But other OCT techniques will receive more
attention and exploration on the strength of their unique ability to
retrieve information. Table 1 shows the deep learning studies for
glaucoma diagnosis using OCT images as input.

3 Prediction models in glaucoma

Keeping track of a patient’s progress can be of great significance
in preventing blindness and delaying the condition. Glaucoma
requires close monitoring of longitudinal case information by
doctors and timely medical intervention to salvage the nerve and
VF damage caused by high intraocular pressure. Although
prediction and diagnosis are similar by virtue of the detection
tools, the conception of the DL model extraction, analysis and
output content is not identical. They target different sites and
severity of lesions in different periods of glaucoma, and the
methods of analyses used are not uniform. It is widely known
that glaucoma is closely related to VF, so the prediction of
glaucoma in all aspects is largely focused on the prediction of VF
as well. However, it has undergone some processes to be perfected.
Some researchers (Eslami et al., 2023) investigated the accuracy of
the previously emerged CNN model and recurrent neural network

FIGURE 3
Using Anterior segment OCT (AS-OCT) in comparison with other
imaging of the anterior segment of the eye. Examples of the preocular
segment using ocular surface photography (first row), ultrasound
biomicroscopy (second row), and AS-OCT scan (third row).
Vertical column (A). Normal eye (B). Angle-closure eye.
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TABLE 1 Summary table of deep learning studies for glaucoma diagnosis with OCT images as input.

References Year Model Dataset Aim Result

Ran et al. 2019 ResNet GON/No GON detect GON Primary validation: AUROC:
0·969, sensitivity: 89%,
specificity: 96%, accuracy: 91%

— — Training, testing, and
primary validation
dataset

2926/1951 — External validation: AUROC:
0·893–0·897, sensitivities: 78%–
90%, specificities: 79%–86%,
accuracies: 80%–86%

— — External validation
dataset

1434/610 — —

Noury et al. 2022 DiagFind Glaucoma/Non-glaucoma manifest glaucoma AUC: perimetric glaucoma

Stanford: 0.91

Hong Kong: 0.80

India: 0.94

Nepal: 0.87

— — Training 1022/542 — —

— — Validation 142/61 — —

— — Test 453/241 — —

— — External validation
dataset

1642/1035 — —

Ran et al. 2022 ResNet yes GON and yes MF/no GON and yes MF/yes
GON and no MF/no GON and no MF

GON AUROC

MF GON: Internal validation 0.949

External testing dataset
0.890–0.950

— — Training 1679/890/629/721 — MF: 0.855–0.896

— — Tuning 195/163/32/70 — —

— — Internal validation 205/114/36/99 — —

— — External testing dataset 1347/515/677/777 — —

Asaoka et al. 2019 Deep learning Glaucoma/Non-glaucoma early glaucoma AUC

Pretraining: 93.7%

Without pretraining:
76.6%–78.8%

Pretraining 1371/193 — —

Training 94/84 — —

Test 114/82 — —

Medeiros et al. 2021 ResNet50 86 123 progressive glaucomatous
changes over time

AUC: 0.86

Medeiros et al. 2019 ResNet34 Normal/Suspect/Glaucoma quantify glaucomatous
structural damage

MAE: 7.39 μm

AUC: predictions: 0.944

actual measurements: 0.940

— — Training 3982/13 410/9136 — —

— — Test 877/3345/2070 — —

Kamalipour et al. 2023 CNNA Normal/Suspect/Glaucoma estimate central 10° visual field MAE

CNNA: 4.04 dB

(Continued on following page)
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TABLE 1 (Continued) Summary table of deep learning studies for glaucoma diagnosis with OCT images as input.

References Year Model Dataset Aim Result

— CNNT Training and Validation 174/367/623 — —

— LR Test 20/71/110 — —

Christopher et al. 2021 ResNet50 10-2 Visual Field/24-2 Visual Field estimating visual function 10-2

R2 MD:0.82

PSD: 0.69

MAE MD: 1.9 dB

— — Training 2131/277 — 24-2

R2 MD:0.79

PSD: 0.68

MAE MD: 2.1 dB

— — Test 2674/325 — —

Lee et al. 2020a HDLM Normal/Suspect/Glaucoma predicts macular ganglion cell-
inner plexiform layer thickness

MAE: 4.76 μm

— — 292/109/388 — —

Hao et al. 2022 ResNet + LSTM Glaucoma/Non-glaucoma angle-closure screening AUC

Casia dataset: Images 0.766;
Original videos 0.820; Aligned
videos 0.905.

— — 159/210 — Zeiss dataset: Images 0.767;
Original videos 0.837; Aligned
videos 0.919

Xu et al. 2019 ResNet18 Open angle/Closed angle detect gonioscopic angle
closure and primary angle
closure disease

AUC: gonioscopic angle: 0.928

disease: 0.952

— — Cross-validation 1632/1764 — —

— — Test 311/329 — —

Li et al. 2022b ResNet34 Task I/Task II Task I (1) narrow iridocorneal
angles

Task I

AUC: 0.943, sensitivity: 0.867,
and specificity: 0.878

— — Training 4515/378 Task II (2) peripheral anterior
synechiae

Task II

AUC: 0.902, sensitivity: 0.900,
and specificity: 0.890

— — Internal validation 1101/376 — —

— — External testing 2222/102 — —

Randhawa et al. 2021 ResNet18 Open angle/Closed angle detect gonioscopic angle
closure

AUC: 0.894–0.922

— — CHES train 1764/1632 — —

— — CHES test 329/311 — —

— — Singapore 570/9595 — —

— — USC 66/234 — —

Shon et al. 2022a β-VAE Training 1692 extract a low-dimensional
latent structure

mean values of visual field
index: 86.4%

mean deviation: −5.33 dB

(Continued on following page)
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model in predicting VF changes over time. Although exerting
some power, both models showed errors in predicting patients
with severe glaucoma, like grossly underestimating the degree of
deterioration in VFs loss and working poor in patients with
large changes in VFs at baseline and follow-up. These may affect
the clinical applicability. The generalized Variational

Autoencoder DL model (Berchuck et al., 2019) ameliorates
these problems to some extent. It uses a lower dimensional
latent space representation of a higher dimensional VF image to
output a resultant prediction via an arbitrary non-linear
mapping. It was learned and tested on 29,161 VFs with good
results.

TABLE 1 (Continued) Summary table of deep learning studies for glaucoma diagnosis with OCT images as input.

References Year Model Dataset Aim Result

— — Validation 419 — —

Shon et al. 2022b VAE Training 1692 Analysis the latent structure Among the symmetrical latent
variables, the first three and the
last demonstrated easily
recognized features.

— — Validation 419 — —

Muhammad et al. 2017 HDLM Glaucoma/Health or suspects Distinguish glaucoma eyes accuracy: 63.7%–93.1%

— — 57 eye/45 eye — —

Butola et al. 2020 LightOCT Choroidal neovascularization/Diabetic macular
edema/Drusen/Normal

Distinguish glaucoma eyes accuracy: 96%

— — Training 27 206/11 349/8617/
51 140

— —

— — Test 250/250/250/250 — —

Yang et al. 2021 InceptionResNetV2 Open angle/Closed angle detect the static gonioscopic
angle closure and peripheral
anterior synechia

static gonioscopic angle closure

AUC: 0.963 sensitivity: 0.929

specificity: 0.877

— — Training 3 4705/1 5945 — appositional from synechial
angle closure

AUC: 0.873

Sensitivity: 0.846

Specificity 0.764

— — Validation 8037/3254 — —

— — Test 7860/3024 — —

Soltanian-Zadeh
et al.

2021 WeakGCSeg Training samples/Testing samples Cell-level quantitative features
of retinal ganglion cells

WeakGCSeg is on par with or
superior to human experts and is
superior to other state-of-the-art
networks.

— — Subject 1 (IU/IU) Healthy: 7:14/1:2 — —

— — Subject 2 (IU/IU) Healthy: 7:14/1:1 — —

— — Subject 3 (FDA/FDA) Healthy: 3:4-5/1:
1-2

— —

Glaucoma: 4:8/
1:2

— — Subject 4 (IU/FDA Healthy: 8:16/4:6 — —

FDA/IU Healthy: 4:6/8:16

IU + FDA/IU + FDA) Healthy: 9:
16–17/9:16–17

C ResNet residual network, GON, glaucomatous optic neuropathy; AUROC, area under the receiver operating characteristic; AUC, area under curve; MF,myopic features; MAEmean absolute

error; CNN, convolutional neural network; LR, ordinary least squares linear regression models; MD, mean deviation; PSD, pattern standard deviation; HDLM, hybrid deep learning method;

LSTM, long short-termmemory; CHES, the Chinese American Eye Study; USC, the University of Southern California; VAE variational auto-encoder; IU, the Indiana University; FDA, the U.S.,

food and drug administration.
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In subsequent studies, the researchers predicted the course of
glaucoma by using various auxiliary tests in the AI analyses to
predict VF changes. In previous years, scholars first used fundus
photographs to predict the progression of glaucoma (Thakur
et al., 2020). They found the AUC predicted from fundus
photographs 4-7 years before onset was 0.77, 1-3 years
predicted 0.88, and 0.95 for post-onset diagnosis. The closer
to the time of onset the more obvious the lesion is the easier it is
to detect by AI. Additional studies (Lee et al., 2020b) have
transformed qualitative structural data (optic disc photograph)
into quantitative functional data (standard automated perimetry,
mean deviation), predicting standard automated VF
measurements from single-field optic disc photographs. A
neural architecture search network (NASNet) was used to
extract fundus features and predict VF progression. There are
other studies that have used machine-to-machine approaches,
such as (Lee et al., 2021) who trained deep learning algorithms in
OCT images to predict longitudinal changes in RNFL thickness
on fundus images to explore whether it could predict the future
development of glaucomatous VFs. A longitudinal survival
model was used for this retrospective cohort study, controlling
for other confounding factors (e.g., age, mean intraocular
pressure, etc.), and the DL system still accurately predicted
regression in glaucoma. The ResNet6 architecture allows the
exploitation of a multiple linear regression model that, after
pre-training on a larger dataset followed by fine-tuning and
transfer learning, can also perform well on a smaller training
set, achieving a smaller mean absolute error, which is
advantageous when applied to VF prediction for fundus
imaging. These technologies will also gradually come into our
lives, with a glaucoma prediction system for smartphones already
in development (Li et al., 2022a).

The application of OCT images to predict glaucoma also focuses
on the evaluation of the VFs. Predicting changes in the HFA 10-
2 visual field based on macular retinal layer thickness measured by
SD-OCT, and HFA 24-2 test values, both ResNet and VGG
algorithms can be applied (Christopher et al., 2020; Asano et al.,
2021). It is also possible to analyze RNFL, ganglion cell layer and
inner plexiform layer, outer segment and retinal pigment epithelium
using the unsupervised learning pattern-based regularization
method to determine the 10° central field of view (Hashimoto
et al., 2021). Or use tensor regression (CNN-TR) (Xu et al.,
2020a) to develop a model with higher-order multiple regression
to reduce the number of parameters and improve accuracy. It
replaces fully connected neural networks and vectorisation
operations and has the relative advantage of predicting the
central 10° field of view. In addition to SD-OCT, SS-OCT can
also be employed. SS-OCT (Park et al., 2020) combined with the
Inception architecture allows for VF prediction, but with decreasing
accuracy as glaucoma progresses. Supplementary Table S1
summarizes the deep learning studies used for glaucoma prediction.

At the current stage, prediction of structures and functions is not
yet complete and multimodal detection tools are still being bred. To
get a better trend, it is necessary to combine structure and function,
collect more clinically relevant data from patients and incorporate
multiple perspectives to analyze the outlook for disease progression.
For future clinical applications, it may be more promising to
investigate early prediction before the onset of the disease.

4 Limitations and further
advancements

4.1 Limitations

With the introduction of artificially intelligent diagnostic and
predictive models, our review opens a door to a new approach to the
detection of glaucoma. The logic behind studying these technologies
is that they allow for direct clinical diagnosis, the timely
identification of patients requiring referral or surgical
intervention is critical for glaucoma specialists, and AI can assist
with such steps to reduce the loss of vision and VFs in patients.
Today’s epidemic of SARS-CoV-2 and the crowding of medical
resources are challenging the healthcare system, requiring AI to
combine with medicine to facilitate each other’s development and
provide more sophisticated technology for increased medical needs.
Visualization of the AI analysis reveals that its segmentation and
judgments are often in most of the same locations as those used by
ophthalmologists in their diagnoses, but also in some of the features
that have not been identified by humans. This will be a key
component of future developments, which will better reveal the
pathological mechanisms of disease and obtain more information
from the raw images. Yet the growth of AI in recent years has also
revealed a number of problems.

1) Standard dataset creation It is about whether AI can be
developed or even have practical effects. Firstly, the dataset is
homogeneous in terms of features. Because the datasets being
used are publicly available (Camara et al., 2022), the classification
of images lacks specificity that is often consistent with
homogeneous diseases or populations, making it difficult to
ensure the fairness of the validated results. Secondly, the
utilization of clinical data is very low. Although there have
been some studies that have utilized clinical features of
disease with some personalization, AI still has low usage of
clinical records, resulting in little information for grading
prognosis of diseases. Third, the quality of images varies.
Public datasets are often created for large-scale disease
screening or treatment evaluation, and their images may be
all-encompassing but lack classification and labeling. The
quality of photography also varies, with no uniform standards
to regulate it. Private datasets tended to be difficult to access and
had insufficient images (<10,000). Finally, the AI developed by
different datasets lacks comparability. DL models trained and
tested with large datasets are not necessarily more accurate than
with small datasets (Zheng et al., 2019). Moreover, transfer
learning without adjustment is likely to fail in the real world,
and the AUC is not as reliable and will be higher in smaller
datasets.

2) Standardized norms and guidelines Any medical instrument
must undergo multiple rounds of experimental validation and
production of manuals for reference before it can be clinically
applied. So does AI. However, we only hear the call of the market,
but do not see the preparation for it. Although some countries
have already proposed specifications (Bossuyt et al., 2003), an
international consensus standard is needed to face the rapidly
evolving AI systems. The definition of criteria for accuracy and
specificity, the uniformity of testing, the fixed population to
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which it can be applied, and the long-term follow-up system
make up a complete evaluation system.

3) Single and simple usage Glaucoma is a complex
neurodegenerative disease that requires both structural and
functional evidence for a definitive diagnosis. The numerous
and lengthy tests are burdens for both doctors and patients, and
AI has not yet evolved to a point where a definitive diagnosis can
be made with simple one method; it can only improve on one of
the existing tests to a certain extent, which is the direction to be
considered in the future.

4) Multi-ethnic applications Although technology has no borders,
people of different nationalities have different physiques. How
the invented AI can serve more people to expand its popularity, if
it has good sensitivity and specificity in different people, requires
more cross-border, multi-center experimental studies.

5) Black Box Theory In clinical work, it is difficult to gain patients’
trust if they cannot understand the treatment tools, and only
conclusions can be drawn about the new disease features
explored by CNNs, without complete clarity of the inference
process. The “black box” nature of AI makes it uninterpretable,
and even with the application of feature visualization techniques
such as Class Activation Mapping, the completed analysis
process of a CNN is still not available. This is the area that
needs to continue exploration.

4.2 Further advancements

Anything that develops faces more than one type of problem,
but this is exactly the prospect necessary for growth. There are
already some scientific answers to the questions we discussed, for
example, for dataset updates, articles have been reported using
Generative Adversarial Networks to modify synthetic real images
to enrich existing datasets without compromising patient privacy.
Regarding image quality it has also been reported that CycleGAN’s
tool can eliminate artifact interference. The existing research in AI
shows that there is a great interest in new disease features perceived
by DL models, which may be an important clue to investigate the
source of the disease and deserves to be studied in depth. In response
to the issues raised, dataset optimization, including the
establishment of multicenter, large sample, and high validity
datasets is the determined growth prospect. Simplification of the
existing diagnostic methods in a single way, so that the created AI
system serves more diverse people is also a development direction to
be worked on. Uniform rules and guidelines for assisted
development require global consultation and exchange of ideas.
Apart from the aforementioned, we believe that the development of
telemedicine and virtual reality technology will become a hot
prospect for ophthalmology and even the whole medical field
under the conditions of today’s social communication networks
and electronic equipment hardware. There has been some progress
in the research of AI and telemedicine (Nikolaidou and Tsaousis,
2021), and the integration with virtual reality technology (Ma et al.,
2022) is still on the rise. In addition, glaucoma is a genetically linked
genetic disorder and should be subject to early genetic screening and
referral for further precise diagnosis and intervention. Genetic

diagnosis combined with AI technology development is another
way to obtain critical evidence that improves diagnostic efficiency
and allows for better patient prognosis. These fields of research will
certainly bring the technology of AI for glaucoma diagnosis and
prediction to maturity and canonicalization.

5 Conclusion

Artificial intelligence is evolving rapidly in the field of
ophthalmology, and since previous reviews on glaucoma with AI
are not perfect, we have written this targeted review to explore the
development of AI models in the field of glaucoma diagnosis and
prediction in recent years, especially the revolution of DL models.
We present the current state of research and found that scholars
have mainly used HFA, fundus photography and OCT, which are
commonly used in ophthalmology to collect image data. Using
network structures such as ResNet, VGG, U-Net, Inception,
CycleGAN and ensemble convolutional neural that can explore
deeply to extract image features. Dataset quality, uniform rules
and guidelines, single and simple usage, multi-ethnic applications
and black box effect will be the critical issues to be addressed. Issues
such as genetic screening for glaucoma and telemedicine could be
promising opportunities.
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Joint conditional generative
adversarial networks for eyelash
artifact removal in ultra-wide-field
fundus images
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Tao Tan5, Xiayu Xu6,7, Quanyong Yi2* and Yitian Zhao1,2*
1Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo, China, 2The Affiliated Ningbo Eye Hospital of Wenzhou Medical
University, Ningbo, China, 3Faculty of Electrical Engineering and Computer Science, Ningbo University,
Ningbo, China, 4School of Cyber Science and Engineering, Ningbo University of Technology, Ningbo,
China, 5Faulty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China, 6The Key
Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and
Technology, Xi’an Jiaotong University, Xi’an, China, 7Zhejiang Research Institute of Xi’an Jiaotong
University, Hangzhou, China

Background: Ultra-Wide-Field (UWF) fundus imaging is an essential diagnostic
tool for identifying ophthalmologic diseases, as it captures detailed retinal
structures within a wider field of view (FOV). However, the presence of
eyelashes along the edge of the eyelids can cast shadows and obscure the
view of fundus imaging, which hinders reliable interpretation and subsequent
screening of fundus diseases. Despite its limitations, there are currently no
effective methods or datasets available for removing eyelash artifacts from
UWF fundus images. This research aims to develop an effective approach for
eyelash artifact removal and thus improve the visual quality of UWF fundus images
for accurate analysis and diagnosis.

Methods: To address this issue, we first constructed two UWF fundus datasets: the
paired synthetic eyelashes (PSE) dataset and the unpaired real eyelashes (uPRE)
dataset. Then we proposed a deep learning architecture called Joint Conditional
Generative Adversarial Networks (JcGAN) to remove eyelash artifacts from UWF
fundus images. JcGAN employs a shared generator with two discriminators for
joint learning of both real and synthetic eyelash artifacts. Furthermore, we
designed a background refinement module that refines background
information and is trained with the generator in an end-to-end manner.

Results: Experimental results on both PSE and uPRE datasets demonstrate the
superiority of the proposed JcGAN over several state-of-the-art deep learning
approaches. Comparedwith the best existingmethod, JcGAN improves PSNR and
SSIM by 4.82% and 0.23%, respectively. In addition, we also verified that eyelash
artifact removal via JcGAN could significantly improve vessel segmentation
performance in UWF fundus images. Assessment via vessel segmentation
illustrates that the sensitivity, Dice coefficient and area under curve (AUC) of
ResU-Net have respectively increased by 3.64%, 1.54%, and 1.43% after eyelash
artifact removal using JcGAN.

Conclusion: The proposed JcGAN effectively removes eyelash artifacts in UWF
images, resulting in improved visibility of retinal vessels. Our method can facilitate
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better processing and analysis of retinal vessels and has the potential to improve
diagnostic outcomes.

KEYWORDS

retina, ultra-wide-field fundus images, artifact removal, conditional GAN, vessel
segmentation

1 Introduction

Ultra-Wide-Field (UWF) fundus images are a new type of
retinal colour fundus image with ultra wide angle characteristics,
which can cover 200° Patel et al. (2020) of the retinal fundus in a
single image. It has significant advantages over conventional colour
fundus images in screening and detecting retina-related diseases
such as diabetic retinopathy. However, the imaging characteristics of
UWF fundus images often lead to problems with eyelash artefacts in
UWF fundus images. As shown in Figure 1, eyelash artefacts obscure
the site of the lesion and some of the blood vessels, making it difficult
to clearly distinguish key information. In the diagnosis of clinical
disease, eyelash artefacts are a serious problem in terms of image
quality and pose a significant diagnostic challenge to physicians
Kornberg et al. (2016); Ajlan et al. (2020).

To reduce the effect of eyelash artifacts, some physical methods
are often applied to the UWF imaging acquisition. These methods
include manually pulling up the eyelid, retracting eyelashes via
cotton bud Cheng et al. (2008), holding down eyelashes via
disposable eyelid speculum (EzSpec) Inoue et al. (2013) and
expanding eyelids with the eyelid clamper Ozawa et al. (2020),
etc. Although these methods can reduce the appearance of eyelash
artifacts to a certain extent, they are not able to completely solve the
problem of eyelash artifacts, and these methods bring new
challenges during surgical inspections Inoue et al. (2013).
Therefore, eyelash artifact has always plagued doctors as a
problem with the interpretation of UWF images. In recent years,
researchers have found that eyelash artifact is a serious interference
problem in the study of UWF images such as lesion detection and
blood vessel segmentation Yoo et al. (2020); Li et al. (2020, 2019), as
shown in Figure 1. Given the adverse effects of eyelash artifacts on
both clinical diagnosis and computer vision tasks, it is necessary to
develop an automatic and effective method for removing eyelash
artifacts from UWF images.

To the best of our knowledge, there is no automatic algorithm
that has been proposed for eyelash artifact removal of UWF images.
The main reason is that it is difficult to obtain corresponding image
pairs eyelashes/eyelashes-free, and super-sized images are very
important for model design and training strategy is no small
challenge. At present, the task of removing shadow occlusion Fan
et al. (2019) in natural image processing is similar to the task of
removing eyelash artifacts in UWF images, both of which are
dedicated to removing occlusion artifacts and recovering
occluded information Chen et al. (2021). However, compared
with natural images, it is more difficult to remove eyelash
artifacts in UWF images Matsui et al. (2019). For example, the
features of eyelash artifacts are complex and diverse, with large
differences, and the structures of blood vessels and lesions are
relatively small. Hence, the difficulties of fully automatic UWF
image eyelash removal methods: On the one hand, relying on an

image acquisition process like natural images, it is impossible to
obtain paired UWF images (i.e., images with eyelashes and
corresponding eyelash-free labels) for supervised learning. On the
other hand, eyelash artifacts in UWF images are usually highly
complex and diverse, which makes it difficult to preserve some fine
structures such as blood vessels/lesions in the eyelash artifact area
for further analysis. Most of the UWF images currently available
contain eyelashes, only a small part contains no eyelashes at all and a
few contain few eyelashes, and there are no matching image pairs of
eyelashes/eyelashes-free at all. Secondly, when designing the model,
it is necessary to take into account the removal of eyelashes and the
recovery of the information occluded by the eyelashes Mackenzie
et al. (2007), and what method to use for training large-size images is
also a problem that needs to be considered.

In response to the problems raised above, this paper proposes a
Joint Conditional Generative Adversarial Network (JcGAN) to
remove eyelash artifacts from UWF images and constructs to two
UWF image datasets: synthetic eyelashes (SEL) and real eyelashes
(REL). The joint conditional generative adversarial network (See
Figure 2) adopts the combination of conditional adversarial network
and adversarial network and uses two sets of data sets as input to
train the same generator, which not only trains the generator to
remove synthetic eyelashes but also trains the generator to remove
real eyelashes ability. Connect a background refinement module
after the generator to ensure background integrity.

The proposed method extends considerably our previous work
Sha et al. (2022), which was trained only on the paired samples with
synthetic eyelash artifacts generated from the proposed Eyelash
Growing Model. In this work, we first extended our synthetic
dataset in a manner contrary to Eyelash Growing Model, where
paired samples were obtained by manually erasing eyelash artifacts
from real UWF images. Secondly, we have collected an unpaired
dataset, which consists of real UWF images with and without eyelash
artifacts. In order to fully utilize the unpaired samples and thus further
enhance the generalization performance on real UWF images with
eyelash artifacts, we have also improved the architecture by
introducing one additional discriminator into the generative
adversarial network, which shares the generator with the original
one. Different from the original discriminator, the additional
discriminator aims at distinguishing between real samples without
eyelash artifacts and the ones generated from real samples with
eyelash artifacts. To this end, the additional discriminator could
constrain the generator to improve the performance of eyelash
artifact removal on the real UWF images. Overall, the
contributions of our work can be summarized as follows:

• For the first time in the UWF fundus imaging field, we
construct two datasets for eyelash artifact removal, which
respectively consist of paired images with/without synthetic
eyelash artifacts and unpaired images with/without real eyelash
artifacts.
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• We develop a deep learning architecture called Joint
conditional Generative Adversarial Networks (JcGAN), which
adopts one shared generator with two discriminators for jointly
removing real and synthetic eyelash artifacts and utilizes a
background refinement module to refine background information.

• We apply the proposed JcGAN on the datasets for eyelash
artifact removal. Both quantitative and qualitative results
demonstrate the superiority of the proposed JcGAN in
eliminating eyelash artifacts and its performance gains to the
vessel segmentation task.

2 Related works

2.1 GAN and CGAN

Generative Adversarial Network (GAN) was first proposed by
Ian Goodfellow Goodfellow et al. (2014). It is a framework for
estimating generative models through an adversarial process,
including a generative model G that captures data distribution
and a discriminant model D that estimates the probability that
samples come from training data rather than G-generated data. The
training goal of generative model G is to generate images similar to
the target domain to greatly increase the error probability of
discriminant model D, while the training goal of discriminant

model D is to greatly reduce the probability of discriminatory
errors. A minimax game process is the so-called generative
confrontation. The generative adversarial model is only a
mapping from the source domain to the target domain, and
cannot specify a fixed target, which is caused by the lack of
target guidance. Conditional generative adversarial network
(CGAN) Mirza and Osindero (2014) is to add prior conditions
to both the generator and the discriminator based on the generative
adversarial network, so that a conditional model is formed into the
guidance of additional conditions. This extra condition is diverse, it
can be class labels or other patterns of data, guided by the extra
condition, we can generate a fixed single target for the generator.

2.2 Eyelash artifact removal from UWF
images

Since the availability of UWF images, the range of fundus
examinations has been greatly improved and the efficiency of
fundus screening has been increased, providing an efficient
method of screening for a wide range of eye diseases. However,
the existence of eyelash artifacts has increased the difficulty of
automatic UWF image examination. At present, methods of
removing eyelash artifacts from UWF images are limited to
physical avoidance methods of the shooting process. Inoue et al.

FIGURE 1
Detailed illustration of eyelash artifacts obscuring lesions and blood vessels. (A) The eyelash artifact obscures the lesion information. (B)Ground truth
of the lesion in (A). (C) The eyelash artifact obscures the vessel information. (D) Ground truth of the vessel in (C)
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(2013) have invented a disposable eyelid mirror (EzSpec), a flexible
translucent speculum that keeps the eye open to misalignment and
covers a wider eyelash area, but the use process requires topical
anesthesia, which is expensive and not universal. Ozawa et al. (2020)
invented an eyelid clamp to circumvent the problem of eyelash
artifacts during UWF images to capture. It is a face-worn tool that
keeps the eyes open by applying pressure in the eyelid area, but the
avoidance effect of eyelash artifacts is not obvious. In addition, there
are some small ways to avoid eyelashes in the process of taking UWF
images, such as using tape to stick eyelashes, using cotton swabs to
converge eyelashes, or pulling up eyelashes directly by hand, etc.
However, these methods The effect of avoiding eyelashes is not
obvious, and it is not easy to operate and control. Therefore, the
problem of eyelash artifacts in UWF images has always been a
disturbing factor of UWF images.

2.3 Shadow removal

The problem of eyelash artifact occlusion in UWF images is
similar to the problem of shadow removal of natural images.
However, the automatic algorithm for eyelash artifact removal of
UWF images has not been studied before, while the automatic
removal algorithms for the task of natural image shadow removal
have been extensively explored. In general, image shadow
removal algorithms can be divided into traditional methods
and deep learning based methods. The traditional methods
were developed based on image gradient Finlayson et al.
(2005); Gryka et al. (2015), lighting information Yang et al.
(2012); Zhang et al. (2015), and region attributes Guo et al.
(2012). Deep learning based methods mainly include
supervised learning models Zhang et al. (2019); Liu et al.
(2020) and unsupervised learning models Hu et al. (2019b).

Previous methods remove shadows by modeling the image as
a combination of shadow and shadow-free components Arbel and
Hel-Or (2010); Finlayson et al. (2009, 2002), or by shifting colors
from shadow-free to shadow regions Shor and Lischinski (2008);
Wu and Tang (2005); Xiao et al. (2013). Due to the limitations of
the underlying models in those methods, they are usually unable
to handle shadows in complex real-world scenes Khan et al.
(2015). Following that, researchers explored statistical
modeling methods to discover and remove shadows using
features such as intensity Gong and Cosker (2014), color Guo
et al. (2012), texture Khan et al. (2014), and gradient Finlayson
et al. (2005); Gryka et al. (2015). However, these handcrafted
features are hard to represent the complex features of shadows.
Therefore, Khan et al. (2015) propose a method of using a
convolutional neural network (CNN) to detect shadows and
then using a Bayesian model to remove shadows. Qu et al.
(2017) develop three sub-networks to extract features of
multiple views separately, and embedded all sub-networks into
a complete framework for shadow removal. Wang et al. (2018)
used one conditional generative adversarial network (CGAN) to
detect shadows and another CGAN to remove shadows. Hu et al.
(2019a) explore orientation-aware spatial context methods to
detect and remove shadows. However, these methods are
trained in paired images, which are limited by paired datasets.
To get rid of the dependence on paired data, Hu et al. (2019b)
propose a Mask Shadow GAN framework based on Cycle GAN
Zhu et al. (2017), which utilizes unpaired data to learn the
mapping from unshadowed domains to shadowed domains
and vice versa Of course. Later Liu et al. (2021) develop the
LG Shadow Net framework to improve the Mask Shadow GAN
Hu et al. (2019b) by introducing a brightness-guided strategy that
uses the learned brightness features to guide the learning of
shadow removal.

FIGURE 2
We propose Joint Conditional Generative Adversarial Networks (JcGAN) for eyelash artifact removal from UWF images. The network includes a
generator G, two discriminators D1 and D2 and a background refinementmodule called Ref. The generator G and the discriminator D1 form a conditional
generative adversarial network that takes the synthetic eyelashes (SEL) dataset as input. The generator G and the discriminator D2 form a generative
adversarial network that takes the real eyelashes (REL) dataset as input.
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3 Datasets

To the best of our knowledge, there is no research using deep
learning methods for eyelash artifact removal of UWF images. Also,
there is no publicly available dataset on eyelash artifacts in UWF
images. This paper constructs two new datasets of eyelash artifacts in
UWF images. The first is the paired synthetic eyelashes (PSE) dataset
and the second are the unpaired real eyelashes (uPRE) dataset.
Table 1 presents the details of the two datasets. All data used in this
paper were collected from the affiliated Ningbo Eye Hospital of
Wenzhou Medical University and Ningbo People’s Hospital at
Ningbo, China. The acquisition device was an Optos fundus
camera (Optos PLC, Dunfermline, Scotland). Prior to
examination, written informed consents were obtained from
subjects in accordance to the tenets of Declaration of Helsinki.
The PSE dataset consists of 7025 pairs of eyelash and eyelash-free
images with a size of 1024 × 1024, where the eyelashes are from the
eyelash growing model Sha et al. (2022). We used 5975 pairs of
images as the training set and 1050 pairs of images as the test set. The
uPRE dataset includes 3687 each of eyelash images and eyelash-free
images with a size of 1024 × 1024, where the eyelashes are from the
patients themselves. We used 3037 pairs of images as the training set
and 650 pairs of images as the test set.

3.1 Paired synthetic eyelashes dataset

In practice, it is difficult to obtain paired eyelash/eyelash-free
UWF images by controlling the eyelash variables during image

acquisition, as is in the case of ISTD Wang et al. (2018).
Previously, we proposed an eyelash growing model in the
DelashNet Sha et al. (2022) method to solve the above problem.
Since the lash removal performance can be easily affected by the
reliability of the eyelash growing model, we additionally set up more
realistic data pairs into the training set to better guide the model. To
this end, we respectively adopted forward and reverse synthesis
methods to generate the pairwise dataset for eyelash artifact
removal. For the forward synthesis method, the eyelash growing
model was developed to simulate eyelash features and generate
synthetic eyelashes, followed by a fusion procedure to combine
eyelash-free UWF images. For the reverse synthesis method,
Photoshop is used to manually erase eyelash artifacts from UWF
images and thus generate eyelash-free images. The forward synthesis
method fails to simulate the complicated characteristics of eyelash
artifacts, thus hinders the model’s capability of identifying and
eliminating real eyelash artifacts. Conversely, the reverse
synthesis method preserves the authenticity of the eyelash
artifacts, but this process may distort the background. The paired
data generated in the above two ways construct the Paired Synthetic
Eyelashes (PSE) Dataset in this work.

3.2 Unpaired real eyelashes dataset

A UWF image contains both eyelash information and eyelash-
free information. Therefore, UWF image patches with eyelashes and
without eyelashes can be separately obtained by cropping the entire
image. We cropped the large size (3900 × 3072) UWF images into

FIGURE 3
Illustration of the architecture of our proposed JcGAN-Net.
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several small-size patches for training. The cropped patch size is also
an important issue that needs to be considered. If the size is too
small, less global information can be preserved. While if the size is
too large, it will be impossible to achieve high computational
efficiency. Therefore, we finally use patch size of 1024 × 1024 for
data training. Although the data with eyelashes and without
eyelashes are not completely matched, the construction basis of
this real data set is still of great significance to our follow-up model
design.

4 Proposed method

In this section, we introduce the proposed architecture called
JcGAN, for eyelash artifact removal in UWF fundus images. The
overall framework of JcGAN is illustrated in Figure 3. It adopts one
shared generator with two discriminators and learns to translate
those images with eyelash artifacts into artifact-free ones via
adversarial training jointly with paired and unpaired samples.
JcGAN also introduce an additional background refinement
module into an end-to-end process, in order to further restore
background information obscured by eyelash artifacts.

4.1 Architecture

Our JcGAN consists of two generative adversarial networks
with one shared generator G and an addtional background
refinement module (BRM), as shown in Figure 3. The
generator G tries to generate the corresponding artifact-free
image from the input image with synthetic or real eyelash
artifacts, and the discriminator D1 (D2) attempts to distinguish
between real artifact-free images and the ones generated from
synthetic (real) samples. In order to further restore background
details covered by eyelash artifacts, the background refinement
module (BRM) is applied to refine the generated results from the
generator G via end-to-end training.

Both the generator G and background refinement module
(BRM) adopts the same U-shape structure, which contains eight
encoder-decoder layers with symmetric skip connections
Ronneberger et al. (2015). All encoder layers employ 4 × 4
convolution with stride 2 followed by Batch Normalization (BN)
and Leaky ReLU, except the last encoder layer with ReLU instead
and no BN. For the first seven decoder layers, we utilize 4 × 4
transposed convolution with stride 2 followed by BN and ReLU. The
last decoder layer also removes BN and outputs the final result
through Tanh function.

For both discriminators D1 and D2, we construct a network
with five 4 × 4 convolutional layers, where stride is set to 2 in the
first three layers and 1 in the last two layers. BN is used in the 2nd-

4th layers. All layers introduce Leaky ReLU except the last layer.
Finally, the discriminator network outputs a confidence map via
Sigmoid function, where each pixel represents the probability that
the corresponding local region of the input image is identified as
coming from a real artifact-free sample.

4.2 Loss function

In order to effectively constrain the proposed JcGAN, we employ
the joint adversarial training strategy to optimize the architecture
end-to-end based on both paired and unpaired samples. Finally, we
construct the loss function including conditional adversarial loss,
unconditional adversarial loss and refinement loss.

• Conditional adversarial loss For a synthetic pair of
corruption/artifact-free samples (xp/yp), the generator G takes
xp and random noise vector z as input and attempts to produce
the fake result (denoted as G (z, xp)) which is close to yp as
possible, while the discriminator D1 attempts to classify between
the real pair (xp, yp) and the fake pair (xp, G (z, xp)). Through the
competition between G and D1, JcGAN can learn the
mapping from corruption images to the corresponding
artifact-free ones. Thus the conditional adversarial loss Lca can
be expressed as:

Lca G,D1( ) � Exp,yp~pPSE xp,yp( ) logD1 xp, yp( )[ ]
+Exp~pPSE xp( ),z~pz z( ) log 1 −D1 xp, G z, xp( )( )([ ]

(1)

In addition, we also introduce L1 distance to further minimize
the discrepancy between the generated image G (z, xp) and the real
artifact-free image yp:

L1 G( ) � Exp,yp~pPSE xp,yp( ),z~pz z( )‖yp − G z, xp( )‖1 (2)

• Unconditional adversarial loss For unpaired corruption/
artifact-free samples (xu/yu), the generator G also takes xu as
input and attempts to produce the fake result (denoted as G (z,
xu)), while the discriminator D2 attempts to identify whether one
given image is real or fake artifact-free image. The competition
betweenG andD2 could promote the perceptual quality of generated
images from G. Therefore, the unconditional adversarial loss Luca

can be denoted as:

Luca G,D2( ) � Eyu~puPRE yu( ) logD2 yu( )[ ]
+Exu~puPRE xu( ),z~pz z( ) log 1 −D2 G z, xu( )( )([ ]

(3)

• Refinement loss In order to constrain background refinement
module (denoted as R) to produce refined artifact-free results more
precisely, we adopt L1 distance as refinement loss:

Lref G, R( ) � Exp,yp~pPSE xp,yp( ),z~pz z( )‖yp − R G z, xp( )( )‖1 (4)

Finally, the total loss function of the proposed JcGAN is
defined as:

Ltotal G,D1, D2, R( ) � Lca G,D1( ) + L1 G( )
+Luca G,D2( ) + Lref G, R( ) (5)

where λ1 and λ2 represent the weighted parameters of L1 distance
and refinement loss.

TABLE 1 Details of the two datasets PSE and uPRE.

Datasets Amount Content of images Type

PSE 7025 eyelash/eyelash-free pair

uPRE 3687 eyelash/eyelash-free unpair
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5 Experimental setup

In this section, we describe the experimental setups, including
the evaluation metrics, data ablation, module ablation and
comparative experiments.

5.1 Implementation settings

The proposed JcGAN was implemented with PyTorch library,
and the experiments were conducted on two NVIDIA GPUs
(Tesla V100 with 32 GB). All training images were resized to
1024 × 1024, and a random horizontal flipping was applied
for data augmentation. Adam optimization was applied to
train the model, with epochs of 200, the initial learning rate of
0.0002 and batch size of 15. The weighted parameters in the final
objective function were experimentally set as: λ1 = 100 and
λ2 = 10.

5.2 Evaluation criteria

We verify the synthesic data and real data separately. For
synthesic paired data, the traditional image enhancement Maini
and Aggarwal (2010) evaluation criteria are used to calculate PSNR
and SSIM Hore and Ziou (2010):

• Peak Signal to Noise Ratio (PSNR);

PSNR � 10 × log
2n − 1( )2
MSE

( ) (6)

whereMSE Sara et al. (2019) is the mean squared error between the
original image and the processed image.

• Structural Similarity (SSIM);

SSIM x, y( ) � 2μxμy + c1( ) 2δxy + c2( )
μ2x + μ2y + c1( ) δ2x + δ2y + c2( ) (7)

where μx is the mean of x, μy is the mean of y, δx is the variance of x,
δy is the variance of y, and δxy is the covariance of x and y.
c1 � (κ1L)2, c2 � (κ2L)2 is a constant used to maintain stability.
L is the dynamic range of pixel values. κ1 = 0.01, κ2 = 0.02. Structural
similarity ranges from −1 to 1. When the two images are identical,
the value of SSIM is equal to 1.For the real unpaired data, we use the
equivalent numbers of looks in the local area to evaluate the
smoothness of the processed image. Additionally, we use the

performance on the validation vessel segmentation task as an
indirect evaluation metric.

• Equivalent numbers of looks (ENL) Vespe and Greidanus
(2012);

ENL � μ2

δ2
(8)

where μ is the mean of the local area of the image, δ is the variance of
the local area of the image. ENL is commonly used to measure the
speckle suppression of different SAR/OCT image filters. When the
ENL value is bigger, it indicates the image is smoothed well.

• Resunet was used to train a vessel segmentation network,
which was indirectly validated by the effect on vessel
segmentation performance before and after eyelash artifact
removal.

5.3 Data ablation

As mentioned above, two datasets including PSE and uPRE are
used for evaluation. The PSE dataset consists of two parts, PSE part 1
(PSE1) from the eyelash growing model and PSE part 2 (PSE2) from
manual erasure. PSE1 is characterized by the fact that the synthetic
eyelashes can only approximate the key information of the real
eyelashes to some extent, but cannot completely model the real
eyelashes. PSE2 is used to compensate PSE1 by including paired
eyelash information from realstic UWF images. To verify the
effectiveness of the two data generation approaches, we conduct
the data ablation experiments as follows. We designed three
experiments to verify the performance of the three dataset
combinations respectively. (i) The combination of PSE1 dataset
and uPRE dataset. (ii) The combination of PSE2 dataset and uPRE
dataset. (iii) The combination of PSE dataset and uPRE dataset.

We used the data of the above three combinations to train three
models. For each model, we also tested the three sets of data: PSE1,

TABLE 2 The values of the PSNR and SSIM tests of our 3×3 groups.

Methods PSNR SSIM

PSE1 PSE2 PSE PSE1 PSE2 PSE

PSE1+uPRE 39.270 37.488 40.125 0.9640 0.9304 0.9585

PSE2+uPRE 35.935 38.972 38.073 0.9475 0.9253 0.9462

PSE + uPRE 40.182 38.943 43.692 0.9652 0.9353 0.9729

FIGURE 4
Comparison of ENL before and after the real eyelash artifact
removal, where the blue bar represents the ENL value of the eyelash
artifact area before eyelash artifact removal, and the orange bar
represents the ENL value of the same area after eyelash artifact
removal.
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PSE2 and PSE. Therefore, in the experiment of data ablation, we
have completed a total of 3 × 3 data testing. Table 2 shows the values
of the PSNR and SSIM of the 3 × 3 groups. The results show that the
training method using the third data combination achieves the best
results. The results show that the model trained on the PSE + uPRE
data achieves the best results. First of all, the PSE1 does not simulate
all the information of real eyelashes. Adding the PSE2 reduce the
effects of lacking of synthetic eyelashes. Second, the ground truth
from PSE2 data has limitations with inaccurate backgrounds.
Adding accurate ground truth from the PSE1 can compensate
this issue in the PSE2. At the same time, we use the uPRE
dataset to verify the effects of the three models. As shown in
Figure 4, the ENL results of the real data have been improved to
a certain extent.

As shown in Figure 4, all three different data resulted in
improved ENL after eyelash removal, among which the
combination of PSE2+uPRE achieved the largest improvement,
and the combination of PSE + uPRE achieved the second rank.
For the test results of synthetic eyelashes data, the combination of
PSE + uPRE achieved the best results, which met our expectations.
While for the test results of the real eyelash data, the combination of

PSE + uPRE has not achieved the best results in the test of real
eyelash data. We know that ENL only calculates the local area of
eyelash artifact. Therefore, in order to fully verify the performance of
these three sets of data, it is necessary to compare them in a
larger area.

Figure 5 shows the test results on three sets of training data.
From the figure, we can see that the results of the PSE + uPRE
training data are significantly better than the results of the other two
groups. It removes most of the artifacts and preserves the
background much better. Thus, we take the PSE1+PSE2 data as
the final PSE dataset.

5.4 Module ablation

The JcGAN proposed in this paper includes three sub-nets: a
conditional generative adversarial Mirza and Osindero (2014) sub-
net (cGAN-sub) composed of generator G and discriminator D1, a
generative adversarial Goodfellow et al. (2014) sub-net (GAN-sub)
composed of generator G and discriminator D2, and a background
refinement sub-net (Ref-sub). To verify the contributions of each

FIGURE 5
Visual representation of a data ablation experiment.(A–C) represent three different pictures, the first column shows the original picture, the second
column shows the test results of PSE + uPRE training, and the third column shows the test results of PSE2 + uPRE training, the fourth column shows the
test results of the PSE1 + uPRE training.
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sub-net to the overall JcGAN network, we design module ablation
experiments as follows.

According to the combination of different sub-net, we conduct a
total of four module ablation experiments. 1) The conditional
generative adversarial sub-net (cGAN-sub) is used as the baseline
of the JcGAN network framework. Hence, we first design
experiments to train the conditional generative adversarial sub-
net to verify the effectiveness of the baseline module. 2) Based on the
conditional generative adversarial sub-net (cGAN-sub), we
separately add the background refinement sub-net (Ref-sub) to
verify the utility of the background refinement sub-net on model
performance. 3) Based on the conditional generative adversarial sub-
net (cGAN-sub), we separately add the generative adversarial sub-
net (GAN-sub) to verify the utility of the generative adversarial sub-
net on model performance. 4) Finally, we add a generative
adversarial sub-net (GAN-sub) and a background refinement
sub-net (Ref-sub) on the baseline, i.e., our complete JcGAN
network framework, to verify the effectiveness of all sub-networks.

After completing the above four experiments, we use the PSE
dataset and the uPRE dataset to verify the results respectively.
Table 3 shows the PSNR and SSIM values on the PSE dataset.

It is obvious from Table 3 that our method achieves competitive
performance on the PSE dataset. The baseline of our model (cGAN-
sub) has achieved significant breakthroughs in PSNR and SSIM
values. The value of PSNR is as high as 39.1357, which is due to the

high resolution Takahashi et al. (2019) of UWF images. Initially, we
design Ref-sub as a background refinement sub-network in the
overall framework of JcGAN, in order to ensure that the background
occluded Audet and Cooperstock (2007) by eyelash artifacts can be
fully recovered while eyelash artifacts are removed. Now, after
adding Ref-sub on the basis of cGAN-sub, the values of PSNR
and SSIM are further improved, which shows that Ref-sub plays an
active role. After verifying the effectiveness of cGAN-sub and Ref-
sub, we further verify the effectiveness of GAN-sub. Adding GAN-
sub on the basis of cGAN-sub means that the joint idea of our
JcGAN network is applied. The two datasets train the same
generator alternatively so that this generator has the ability to
remove synthetic eyelashes and real eyelashes. As shown in the
results, our joint strategy achieve competitive performance on the
PSE dataset. Finally, the test results of the JcGAN network also show
that each sub-network in our whole framework plays an active role,
and combining the three sub-networks can produce the best results.

After being evaluated on the PSE Dataset, we also validate our
method on the uPRE dataset. We used the local area of eyelash
artifact removal to calculate the ENL value. Figure 6 shows the ENL
values of the eyelash occluded area before and after eyelash artifact
removal.

As shown in Figure 6, the combination of different sub-networks
improves the value of ENL. In particular, the addition of the Ref-sub
subnet has greatly improved the value of ENL. This shows that our
Ref-sub sub-network effectively recovers the background of the
eyelash artifact part. The JcGAN network framework improves
the value of ENL the most, which also strongly proves that our
joint strategy is also successful in the artifact removal of real
eyelashes.

6 Discussion

6.1 Comparative analysis

To verify the effectiveness of our method, we selected several
methods similar to ours for comparative experiments. Currently, no
deep learning method has been proposed for artifact removal in
ultra-widefield fundus images. Therefore, we selectively choose
several classical GAN network related methods Pix2Pix Isola
et al. (2017) and cycleGAN Zhu et al. (2017) and some natural
image shadow removal methods ST-CGAN Wang et al. (2018) and
Mask-ShadowGANHu et al. (2019b) as comparison methods in our

TABLE 3 The values of PSNR and SSIM tested on the PSE dataset for themodule
ablation experiments.

Methods PSNR SSIM

cGAN-sub 39.1357 0.9519

cGAN-sub + Ref-sub 42.1008 0.9640

cGAN-sub + GAN-sub 40.8884 0.9697

JcGAN 43.6922 0.9729

FIGURE 6
Comparison of ENL before and after the real eyelash artifact
removal, where the blue bar represents the ENL value of the eyelash
artifact area before eyelash artifact removal, and the orange bar
represents the ENL value of the same area after eyelash artifact
removal.

TABLE 4 The values of PSNR and SSIM tested on the PSE Dataset for the
comparative experiments.

Methods PSNR SSIM

Pix2Pix 34.1901 0.9281

Mask-ShadowGAN 37.2841 0.9462

CycleGAN 37.8026 0.9442

ST-CGAN 41.6814 0.9707

JcGAN 43.6922 0.9729
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analysis. We trained the above methods sequentially and tested each
method using PSE dataset and uPRE dataset, as shown in Table 4.

The results show that our method achieves remarkable
performance on the PSE Dataset. Our proposed JcGAN method
achieves a high PSNR value of 43.6922 and a SSIM value of 0.9729,
the highest among all methods. Compared with the best existing

method, JcGAN improves PSNR and SSIM by 4.82% and 0.23%,
respectively. At the same time, we compare the visual effects of the
PSE Dataset test, and our method also achieves the best results, as
shown in Figure 7. From Figure 7 we can see that our method
achieves the best results in both eyelash artifact removal and
background restoration. Compared with our method, none of the
other methods completely remove eyelash artifacts. Among them,
ST-CGAN has problems in the process of background recovery,
which leads to information loss in the test image. Similarly, we
perform the results validation of different methods on the uPRE
dataset. We calculated the position ENL value of the local area of the
eyelash artifact removal part for different methods. A comparison of
ENL value results for different methods on the uPRE Dataset is
shown in Figure 8. From Figure 8, we can see that our method
JcGAN achieves the largest improvement in ENL value, which shows
that our method restores the smooth background in the region
removed for eyelash artifacts. Figure 9 shows a visual comparison of
the results of different methods on the REL dataset.

6.2 Application to UWF image segmentation

To verify that our proposed eyelash artifact removal algorithm
can promote better processing and analysis of retinal vessels, a
dedicated experiment for vessel segmentation in UWF images is
performed. The corresponding segmentation results are shown in
Figure 10, and sensitivity (SEN), Dice and area under curve (AUC)

FIGURE 7
Comparison of the results of different methods on the PSE Dataset. Our method removes the most eyelash artifacts and restores the most realistic
background information.

FIGURE 8
Comparison of ENL before and after the real eyelash artifact
removal, where the blue bar represents the ENL value of the eyelash
artifact area before eyelash artifact removal, and the orange bar
represents the ENL value of the same area after eyelash artifact
removal.
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FIGURE 9
Comparison of the results of different methods on the uPRE Dataset. Our method removes the most eyelash artifacts and restores the most realistic
background information.

FIGURE 10
Vessel segmentation results. (A)Original image (B) Eyelash Removal image (C) Ground truth (D) The segmentation result of eyelash removal image
(E) The segmentation result of original image. The red in (E) represents the wrong segmentation of eyelashes as blood vessels.
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are shown in Table 5. ResU-Net Diakogiannis et al. (2020) is adopted
as the segmentation network. 406 eyelash-free images are used to
train ResU-Net. For the trained segmentation model, the original
image with eyelashes and the image processed by JcGAN are used
for testing respectively. Assessment via vessel segmentation
illustrates that the SEN, Dice and AUC of ResU-Net have
respectively increased by 3.64%, 1.54%, and 1.43% after eyelash
artifact removal using JcGAN, as shown in Table 5. As shown in
Figure 10; Table 5, the eyelash-removed images have better
performance on the vessel segmentation task than the original
images. The images processed by our JcGAN network
successfully solved the problem that eyelashes were incorrectly
segmented as blood vessels, and improved the overall
segmentation performance.

6.3 Summary

Artifacts caused by eyelash occlusions hinder high-quality
inspection on retinopathy at wide range in UWF fundus images.
In this work, we tackle the issue of eyelash artifacts existing in
UWF fundus images with deep learning technique for the first
time. We firstly collect UWF fundus images and construct two
eyelash datasets called paired synthetic eyelashes (PSE) and
unpaired real eyelashes (uPRE) respectively. Based on the two
datasets, we have proposed a deep learning approach called Joint
conditional Generative Adversarial Networks (JcGAN) to
eliminate eyelash artifacts in UWF fundus images. The
proposed JcGAN could jointly learn the mapping from images
with real or synthetic eyelash artifacts to artifact-free ones via two
generative adversarial networks with a shared generator. In
addition, a background refinement module is trained with the
generator in an end-to-end manner to further recover the detailed
information of regions corrupted by eyelash artifacts. The
experimental results on both PSE and uPRE dataset show that
our eyelash artifact removal approach have achieved the best
performance. Compared with other deep learning methods, our
JcGAN can remove eyelash artifacts more effectively and achieve
higher visual effect. Furthermore, JcGAN can significantly
facilitate vessel segmentation in UWF fundus images due to
the improved visibility of vessels obscured by eyelash artifacts.
In the future, we will consider exploring a more appropriate
method to construct paired synthetic eyelash samples and
introducing prior knowledge of eyelash artifacts into the deep
learning model. Furthermore, we will apply our approach to
lesion segmentation tasks (e.g., identifying hemorrhages and
exudates) as a preprocessing procedure to verify the
effectiveness of eyelash artifact removal.
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TABLE 5 The results of the eyelashes removal image and the original image on
the blood vessel segmentation index.

Methods ResU-net

SEN Dice AUC

Original image 0.4663 0.5124 0.8783

Eyelash Removal image 0.4833 0.5203 0.8909
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Accurate retinal vessel segmentation from fundus images is essential for eye
disease diagnosis. Many deep learning methods have shown great performance in
this task but still struggle with limited annotated data. To alleviate this issue, we
propose an Attention-Guided Cascaded Network (AGC-Net) that learns more
valuable vessel features from a few fundus images. Attention-guided cascaded
network consists of two stages: the coarse stage produces a rough vessel
prediction map from the fundus image, and the fine stage refines the missing
vessel details from this map. In attention-guided cascaded network, we
incorporate an inter-stage attention module (ISAM) to cascade the backbone
of these two stages, which helps the fine stage focus on vessel regions for better
refinement. We also propose Pixel-Importance-Balance Loss (PIB Loss) to train
the model, which avoids gradient domination by non-vascular pixels during
backpropagation. We evaluate our methods on two mainstream fundus image
datasets (i.e., DRIVE and CHASE-DB1) and achieve AUCs of 0.9882 and 0.9914,
respectively. Experimental results show that our method outperforms other state-
of-the-art methods in performance.

KEYWORDS

retinal vessel segmentation, deep learning, attention mechanism, U-net, pixel-wise loss

1 Introduction

Retinal vessel analysis is a non-invasive and cost-effective test that ophthalmologists and
other specialists routinely use (Chatziralli et al., 2012; Ji et al., 2023). Physicians can diagnose
and track many diseases (e.g., macular degeneration, hypertension, diabetes) by looking at
morphologic information related to retinal vessels (e.g., curvature, length, and width)
because these diseases cause morphologic changes in the retinal vessels (Olafsdottir
et al., 2011). The segmentation of retinal vessels is an essential foundation for the
quantitative analysis of fundus images. Since manual segmentation is time-consuming,
labor-intensive, and relies on professionals’ subjective judgment, many researchers have
turned to computer-aided intervention to achieve automatic retinal vessel segmentation
(Zhao et al., 2022a; Zhao et al., 2022b).

Automatic retinal vessel segmentation is an important research problem in the field of
computer vision, and its main purpose is to separate vascular and non-vascular regions from
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fundus images. Solving this problem is of great significance for
clinical diagnosis and research in the field of ophthalmology.
Because it can promote the early detection and treatment of eye
diseases, and provide clinicians with a fast, accurate, and reliable
analysis method. However, due to the complexity and variability of
fundus images, finding every vessel without introducing too many
false positives is difficult, especially for thin vessels. When improper
imaging illumination, sensor noise, and other factors are considered,
things become even more complicated because vital vessel
information may be lost as a result. In Figure 1, for example,
there is usually over-illumination near the optic disc, causing
some vessels near the optic disc to lose feature information. Thin
vessels are typically found in darker, lower contrast areas, and their
width is only one or a few pixels when compared to thick vessels, so
they are easily overlooked. To address these challenges, many
methods for automatic retinal vessel segmentation have been
proposed in the past few decades. For example, the blood vessel
tracking method (Yin et al., 2012; Tolias and Panas, 1998; Chutatape
et al., 1998) begins by selecting a starting point in the fundus image
and utilizes a specific tracking strategy to progressively extend along
the blood vessel path, culminating in a comprehensive segmentation
of the blood vessels. The method based on morphology (Sazak et al.,
2019; (Zana and Klein, 2001) performs some morphological
operator processing (such as erosion, dilation, opening and
closing operations, etc.) on the fundus image to realize the
segmentation of blood vessels. In addition, methods based on
traditional machine learning (Ricci and Perfetti, 2007; Staal et al.,
2004; Lupascu et al., 2010) manually extract vascular features (such
as shape, texture, etc.), and send these features to classifiers (such as
support vector machines, decision trees, etc.) for training to achieve
segmentation. Although these traditional retinal vessel segmentation
methods have certain advantages and applicability, there are still
limitations in the processing of fundus image noise,
generalization, etc.

Due to the powerful feature extraction ability of the
convolutional neural network, it has gradually become the
mainstream method for segmentation tasks (Khandouzi et al.,
2022). Fully convolutional network (Long et al., 2015) is a
pioneering work using a convolutional neural network in

image segmentation. It discards the fully connected layers of
the Very deep convolutional networks (Simonyan and Zisserman,
2014), and the entire network uses convolution operations for
feature extraction, followed by upsampling of the feature maps to
restore the original resolution. However, FCN is not sensitive to
the details of objects in the image, resulting in the loss of edge
details of many objects. Subsequently, based on the idea of an
encoder-decoder structure, Ronneberger et al. (2015) proposed
U-Net, which made up for the lack of details of FCN to a certain
extent by using skip connection operation, and gradually became
the mainstreammodel in the field of medical image segmentation.
In recent years, many U-Net based variants (Jin et al., 2019; Guo
et al., 2021a; Alom et al., 2019; Guo et al., 2021b; Wang et al.,
2020b; Wu et al., 2021; Zhang et al., 2019) for the task of retinal
vessel segmentation have emerged, but they suffer from
insufficient vessel information and features due to the limited
number of fundus images with dense annotations in the public
dataset [e.g., DRIVE (Staal et al., 2004), CHASE_DB1 (Owen
et al., 2009)]. In this case, some studies (Wang et al., 2020a; Xia
et al., 2018; Li et al., 2020) have shown that the coarse-to-fine
segmentation architecture is beneficial for extracting more
vascular information from limited fundus images. However,
these works simply transfer vessel feature maps (such as
concatenation or addition) between coarse and fine stages,
which makes the fine stage unable to align vessel regions for
better refinement and leads to suboptimal performance. To
address this problem, we propose an Attention-Guided
Cascaded Network (AGC-Net), which can learn more valuable
vascular information from limited retinal fundus images. AGC-
Net consists of two identical U-shaped backbones for coarse and
fine representation learning. Specifically, the coarse-stage
backbone generates a rough vessel probability map from the
fundus image. In contrast, the fine-stage backbone acts as a
post-processing module to further refine missing vessel details
from this map. This coarse-to-fine representation learning can
allow those misclassified pixels to be corrected, especially those
blood vessel pixels whose predicted probability value is slightly
lower than the segmentation threshold (usually taken as 0.5).
Then, we incorporate an inter-stage attention module (ISAM) to

FIGURE 1
A fundus retinal image from the DRIVE database, containing thin blood vessels with low contrast (A) and over-illuminated optic disc (B).

Frontiers in Cell and Developmental Biology frontiersin.org02

Su et al. 10.3389/fcell.2023.1196191

269

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1196191


cascade the two-stage backbone in AGC-Net. ISAM uses a multi-
scale spatial attention mechanism to promote fine-stage
backbone focus on vessel regions for better refinement.

Furthermore, deep learning-based segmentation models are
typically trained using pixel-wise loss (e.g., Cross Entropy Loss).
It creates a loss by comparing the per-pixel difference between the
vessel probability map generated by the segmentation model and the
Ground Truths labeled by human experts and then uses that loss for
gradient computation and backpropagation. In the pixel-wise loss,
each pixel is treated with equal importance (i.e., the loss weights are
all 1.0) and the loss is calculated separately for each pixel. However,
when the ratio of background pixels and blood vessel pixels in the
retinal image is seriously unbalanced (the ratio is about 8:2), pixel-
wise loss makes the optimization of the segmentation results severely
affected by the background, which leads to inaccurate blood vessel
segmentation. To prevent the gradient from being dominated by
many background pixels during backpropagation, we propose a
Pixel-Importance-Balance Loss (PIB Loss) for training the blood
vessel segmentation model. It scales the loss weights for each pixel
according to the number of vessels around them. Our primary
contributions are as follows:

1. We propose AGC-Net, a deep learning-based segmentation
model for retinal vessel segmentation that aims to improve
segmentation results from limited fundus data by allowing
misclassified pixels to be corrected.

2. We propose ISAM to cascade two backbones in AGC-Net, which
intends to enable the fine-stage backbone to focus more
effectively on vascular regions for better refinement.

3. We propose PIB Loss for training vessel segmentation model,
which can prevent the gradient from being dominated by many
background pixels during backpropagation.

The remainder of this paper is structured as follows. Section 2
reviews the studies related to retinal image vessel segmentation.
Section 3 describes our method. Data and experimental details are
described in Section 4. Section 5 evaluates our approach
quantitatively and qualitatively and presents experimental results.
Finally, in Section 6, we conclude.

2 Related works

In the past decades, many automatic retinal segmentation
algorithms have been proposed, and they can be broadly
classified into three categories.

The first class of algorithms is designed using traditional
computer vision methods for vessel segmentation and is based on
the inherent morphological prior knowledge of retinal vessels. For
example, threshold-based methods (Roychowdhury et al., 2015;
Zardadi et al., 2016), filter-based methods (Mendonca and
Campilho, 2006; Fraz et al., 2012a; Zhang et al., 2015) and vessel
tracking-based methods (Nayebifar and Moghaddam, 2013;
Vázquez et al., 2013). Roychowdhury et al. (2015) designed an
iterative adaptive thresholding method to improve the robustness of
vessel segmentation. Oliveira et al. (2016) enhanced the vessels by
combining three filters: the matched filter, the Gabor Wavelet filter,
and Frangi’s filter. Zhang et al. (2010) detected blood vessels by

thresholding the response of the retinal image to the matched filter
and later adjusted the threshold by the image’s response to the first-
order derivative of Gaussian. Nayebifar and Moghaddam (2013)
used least-cost matching, global graph optimization, and Dijkstra’s
algorithm to track vessels as a way to ensure vessel continuity.
Traditional algorithms based on morphological priors are relatively
simple in principle, but they are unsupervised methods that lack
label constraints with annotations and produce less accurate vessel
segmentation results.

The second class of algorithms is based on traditional machine
learning approaches, identifying blood vessel pixels by feeding
manually designed features to a trained classifier. Staal et al.
(2004) created feature vectors from blood vessel centerlines and
then classified them using a k-nearest neighbor classifier. Simple
feature vectors were created based on the texture, local intensity,
spatial properties, and geometry of blood vessels, and some
researchers (Fraz et al., 2012b; Memari et al., 2017; Lupascu
et al., 2010) tried to use ensemble learning methods (e.g.,
Bagging and Boosting) to classify blood vessel pixels. Ricci et al.
(Staal et al., 2004) used linear detectors and support vector machines
to complete the segmentation representation of blood vessels. The
performance of traditional machine learning-based methods is
heavily influenced by manually designed features. However, these
features are typically defined empirically, resulting in bias and poor
generalization performance.

The third class of algorithms is the deep learning-based
approach, which automatically extracts blood vessel features
rather than manually designed features through powerful
convolutional neural networks. U-Net (Ronneberger et al.,
2015) has become the most widely used model in the medical
field of image segmentation, and several U-Net variants have
made significant progress in retinal vessel segmentation. Alom
et al. (2019) used the idea of recurrent neural networks and
proposed a recurrent convolution in U- Net instead of a normal
convolution to effectively accumulate more vessel features. Jin
et al. (2019) integrated deformable convolution into U-Net. This
convolution operation can adaptively adjust the receptive field
according to the scale and shape of blood vessels to better capture
various retinal blood vessels. SA-UNet (Guo et al., 2021b) and
CAR-UNet (Guo et al., 2021a), proposed by Guo et al.,
respectively introduce attention mechanisms of spatial
dimension and channel dimension in U-Net to improve the
vessel segmentation performance of U-Net. IterNet (Li et al.,
2020) and CTF-Net (Wang et al., 2020a) have shown that vessel
segmentation performance can be improved based on cascades
using multiple U-Nets, and we will implement a similar strategy
in our method.

3 Methodology

This study aims to accurately segment retinal vessels in fundus
images using deep learning methods. Inspired by IterNet (Li et al.,
2020) and CBAM (Woo et al., 2018), we propose our model AGC-
Net by combining their advantages. As shown in Figure 2, the model
is implemented based on a U-shape architecture and consists of
three main ideas: residual convolution block, inter-stage attention
module, and cascaded refinement structure design. In addition, we
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also propose PIB Loss for model training. We detail the proposed
model and loss function below.

3.1 Network architecture

Figure 2 shows our proposed AGC-Net vessel segmentation
model. The model consists of a representation learning cascade of
coarse and fine stages and aims to use the fine stage as a post-
processing module to give pixels misclassified by the coarse stage a
chance to relearn. Specifically, first, the fundus image passes through
the backbone of the coarse stage to generate a rough vessel
prediction probability map as an intermediate output. Then,
ISAM (See Figure 4) uses a multi-scale attention mechanism on
this intermediate output to generate feature maps of enhanced vessel
regions. Finally, feature maps of enhanced vessel regions and fundus
images are concatenated as the input of the fine-stage backbone to
generate the final refined vessel segmentation map.

Both stages are equipped with a U-shaped backbone for their
respective learning tasks. The U-backbone is an encoder and
decoder structure that generates multi-scale vessel feature maps
to identify vessels of different lengths. Specifically, the encoder
extracts the vascular features of the fundus image through a
residual convolution block (See Figure 3). Each block includes a
convolutional layer, a batch normalization layer, and a ReLU
activation layer, and we use residual connections to speed up the
convergence of the model. To obtain a larger receptive field,
downsampling is necessary. This operation is implemented by a
convolution with stride 2. At each downsampling stage, the size of
the feature map is halved, and the number of channels is doubled.
Since too much downsampling will lose the spatial information of
vessels, there are only two downsampling stages in the backbone,

each with 32, 64, and 128 channels. In the decoder part, we upsample
the vessel feature map by bilinear interpolation and compensate for
the lost spatial information of the vessel by skip connections to
receive the feature map of the encoder. Finally, through a 1 ×
1 convolution and a Sigmoid layer, we get the final vessel
segmentation.

Since AGC-Net is composed of two backbone network
cascades, it may suffer from the gradient disappearance
problem due to the increase in network depth. In response to
this problem, inspired by DSN (Lee et al., 2015), in addition to
adding the main supervision path to the network’s final output,
we also add an auxiliary supervision path to the intermediate
output of the backbone in the coarse stage. During training, the
loss functions of these two supervised paths are weighted into the
overall loss function, which helps gradient backpropagation back
to shallower layers and speeds up model convergence.
Specifically, we compare the predicted probability maps
outputted from the backbone of the two stages with the
ground truth and compute the loss for backpropagation using
the PIB loss (see Section 5.3), as shown in the following figure:

Loss � Lossmain + γLossauxl

Lossmain � PIB PMf,GT( )
Lossauxl � PIB PMc, GT( )

where Lossmain and Lossauxl are the losses generated by the backbone
of the fine stage and coarse stage, respectively, and the weight λ
represents the trade-off between the two losses, which we set as 1.0 in
the experiments. PIB represents the proposed PIB loss, and PMf,
PMc and GT are respectively the predicted probability map of the
coarse stage, the predicted probability map of the fine stage, and the
ground truths.

FIGURE 2
Network architecture of the proposed AGC-Net.

Frontiers in Cell and Developmental Biology frontiersin.org04

Su et al. 10.3389/fcell.2023.1196191

271

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1196191


3.2 Inter-stage attention module

ISAM is proposed to enhance the vessel region of the
intermediate output, which can facilitate the fine-stage backbone
to focus on vessel regions for better refinement.

As shown in Figure 4, we assume that the ISAM has an input
resolution of Fin ∈ RH×W×C, we first apply average and maximum
pooling operations to Fin along the channel axis to obtain spatial
feature descriptors Favg ∈ RH×W×1 and F max ∈ RH×W×1, as shown in
the following equation:

Favg ∈ RH×W×1 � avgPool Fin( )
F max ∈ RH×W×1 � maxPool Fin( )

Subsequently, to enhance the vessel region of Fin, we concatenate
these two spatial feature descriptors and use 3 × 3 convolution
kernels with different dilation rates to model the neighborhood
relationship of pixels. We add the results of the modeling and then
use the sigmoid operation to generate the attention map
sWeights ∈ RH×W×1, as shown below:

sWeights � σ(BN(φ3,rate�1 Favg; F max[ ]( ) + φ3,rate�2 Favg; F max[ ]( )
+φ3,rate�3 Favg; F max[ ]( )))

Among them, σ represents Sigmoid activation, BN represents
Batch Normalization, and φ3,rate�N represents the 3 ×
3 convolution with a dilation rate of N. It is worth mentioning
that in the above process, the purpose of using convolution
operations with different dilation rates is to integrate multi-
scale context information when calculating the importance of
pixels, to better encode the emphasized or suppressed positions.
Finally, we obtain the ISAM output Fout ∈ RH×W×C based on the
obtained spatial attention map and scaled feature map Fin, as
shown in the following equation:

Fout � sWeights ⊗ Fin

where ⊗ denotes pixel-wise product.

3.3 Pixel-importance-balance loss

There are three types of pixels in fundus images:
background, thick vessels, and thin vessels. Their proportions
in the fundus image vary from high to low. To balance the
contributions of these three types of pixels in loss computation,
we scale their loss weights according to the number of vessel
pixels in their neighborhood. Specifically, for background

FIGURE 3
Residual convolution block.

FIGURE 4
Diagram of the proposed Inter-Stage Attention Module (ISAM).
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pixels, we think that only background pixels near blood vessels
need to be emphasized, as this can force the model to keep the
predicted blood vessel thickness consistent with the thickness
in the ground truth. Therefore, the loss weights of background
pixels should be proportional to the number of blood
vessel pixels in their neighborhood. As for blood vessel
pixels, if they belong to thick blood vessels, they will be
surrounded by more blood vessel pixels in the fundus
image, and fewer if they belong to thin blood vessels.
Therefore, to balance the contributions of these two kinds of
vessel pixels, the loss weights of vessel pixels should be inversely
proportional to the number of vessel pixels in their
neighborhood.

Algorithm 1 shows the calculation process of loss weights
for different types of pixels in PIB loss. Firstly, the background
pixels and vessel pixels of the Ground Truth are represented by
0 and 1. Secondly, the importance loss weight for each pixel is
calculated as follows: with the pixel as the center, the number of
pixels with value 1 (i.e., the number of surrounding vessel
pixels) present in a box separated by 2 pixels is counted as
num. Thirdly, if the pixel belongs to a vessel, it is converted into
a loss weight by an inverse proportional function -num*0.04 + 2
(see Figure 5, red line), which emphasizes thin blood vessels; if
the pixel belongs to the background, it is converted into loss
weights by a direct proportional function num*0.04 + 1 (see
Figure 5, green line), as shown below:

Loss weight Yij( ) � − ∑i+2
p�i−2∑j+2

q�j−2Ypq( )*0.04 + 2 if yij � 1

∑i+2
p�i−2∑j+2

q�j−2Ypq( )*0.04 + 1 if yij � 0

⎧⎪⎪⎨⎪⎪⎩
Finally, the obtained loss weights are combined with the Cross

Entropy, as shown below:

PIB Loss P, Y( ) � −∑weight Yij( ) · log Pij( ) if Yij � 1

−∑weight Yij( ) · log 1 − Pij( ) if Yij � 0

⎧⎨⎩

Algorithm 1. Loss weight calculation process of Our PIB Loss.

4 Experimental configuration

4.1 Dataset and augmentation

We evaluate the proposed method using two publicly available
datasets (DRIVE1 and CHASE_DB12). Specific information about
these two databases is shown in Table 1. It should be noted that the
original size of the two datasets is not suitable for our network, so we
adjusted its size by zero padding around it, but the size was cropped
to the initial size during evaluation. (See Table 1, Crop size). For the
DRIVE dataset, the official data division is adopted, which means
20 training images were used for model training and 20 test images
were used for performance evaluation. The CHASE_DB1 dataset has
no official data division, so we follow the previous work (Alom et al.,
2019; Wang et al., 2020b), using the first 20 images for model
training, and the remaining 8 images for model evaluation.
Furthermore, since the number of training images is limited to
20, some data augmentation methods are required. We use four data
augmentation methods (see Table 1, Augmentation methods) for
both datasets to generate randomly modified samples during the
training process.

4.2 Evaluation metrics

To evaluate our method, we compare the segmentation results to
the corresponding Ground Truths and classify the outcomes of each
pixel comparison into True Positive (TP), False Positive (FP), False
Negative (FN), and True Negative (TN). Themodel’s performance is

FIGURE 5
The relationship between the loss weight of a pixel and the
number of blood vessel pixels around it, where the red function is used
for vessel pixels and the green function is used for background pixels.

1 DRIVE: http://www.isi.uu.nl/Research/Databases/DRIVE/

2 CHASE_DB1: https://blogs.kingston.ac.uk/retinal/chasedb1/
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then evaluated using sensitivity (SE), F1 score (F1), and accuracy
(ACC), which are defined as:

SE � TP

TP + FN

SP � TN

TN + FP

ACC � TP + TN

TP + TN + FP + FN

F1 � 2TP
2TP + FP + FN

The closer the value of these evaluation metrics are to 1, the
better the prediction. Furthermore, receiver operating characteristic
(ROC) curves and the area under the ROC curve (AUC) were used
to evaluate the performance of our model. The ROC curve was
calculated as the variation of the TP and FP rate for different values
of a changing threshold.

4.3 Implementation details

Our method is built on the PyTorch3 framework and all
experiments were run on an NVIDIA RTX3090 with 24 GB of
memory. We did not use any pre-trained models, and the entire
training process was end-to-end without any post-processing. For
the hyperparameter settings, the batch size was set to 2 for both
datasets, and the network was optimized using an Adam (Kingma
and Ba, 2014) optimizer with an initial learning rate of 1e-3. The
total number of learning epochs was set to 200, and a learning rate
decay by the factor 0.1 was performed at epochs 150 and 190. We
used the best epoch of results for testing.

5 Results and discussions

5.1 Segmentation performance on two
databases

Figure 6 shows the training process of AGC-Ne in DRIVE and
CHASE_DB1, where the blue line represents the loss change curve

on the training set, and the orange line represents the loss change
curve on the test set. We can observe that on the two data sets, the
loss of AGC-Net on the training set and the test set can converge
well, and the loss of the test set can be comparable to that of the
training set. This shows that AGC-Net can adapt well to unseen data
and has good generalization ability.

We present in Figure 7 some test images of the two datasets,
their ground truth values, and the predictions generated by AGC-
Net using these images. As can be seen from the figure, AGC-Net
detects most retinal vessels on fundus images, including thin vessels
with low contrast and thick vessels with over-illumination.
Furthermore, the vessel thickness in our model predictions is
consistent with the ground truth. Most of the spatial information
of retinal vessels is preserved, such as vessel connectivity,
bifurcations, and edges.

We also quantitatively evaluate AGC-Net on the two datasets
separately. Table 2 presents the five metric values of our method on
the two datasets. The table shows that on the two data sets, the SE,
SP, ACC, F1, and AUC of AGC-Net can reach 0.8251/0.8499,
0.9844/0.9854, 0.9704/0.9767, 0.8301/0.8213 and 0.9881/
0.9917 respectively. This demonstrates that our proposed AGC-
Net model can generate accurate and meaningful retinal vessel
segmentation, providing doctors valuable auxiliary diagnostic
information in clinical practice.

5.2 Ablation studies

As shown in Figure 2, AGC-Net can be regarded as a
segmentation network composed of Cascade Design (CD),
Auxiliary Supervision (AS), Inter-Stage Attention Module
(ISAM), and Pixel-Importance-Balance Loss (PIBL). In this
section, we conduct ablation studies to verify the effectiveness of
these crucial components in AGC-Net and evaluate the impact of
each component on the vessel segmentation results. We use Res-
UNet (Xiao et al., 2018) with an initial channel number of 32 and
only two downsampling stages as a baseline and gradually add the
above crucial components. All experiments are performed with the
same hyperparameter configuration. Table 3 shows the quantitative
comparison of network configurations that incorporate different
crucial components.

From Index 2 in Table 3, we can see that when we simply add
another backbone to the baseline for cascading, SE, ACC, F1, and
AUC all suffer a decline. This shows that adding the cascade

TABLE 1 The specific information of DRIVE and CHASE_DB1 datasets.

Datasets DRIVE CHASE_DB1

Form A diabetic retinal disease screening study in the Netherlands Comprehensive health study of 200 primary schools in the United Kingdom

Imaging equipment Canon CR5 non-mydriatic 3CCD camera NIDEK NM-200D Handy Fundus Camera

Total number 40 28

Train/Test number 20/20 20/8

Resolution (pixel) 584 × 565 999 × 960

Pad size 592 × 592 1008 × 1008

Augmentation methods 1) Random horizontal and vertical flip. 2) Random rotation. 3) color jittering.

3 https://pytorch.org/
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design will bring optimization problems caused by increased
network depth. That is, the gradient cannot be backpropagated
well. As seen in Index 3, this problem can be solved after we add

auxiliary supervision. Adding auxiliary supervision enables the
cascaded design to further improve the baseline performance,
among which SE, ACC, F1, and AUC are increased by 0.72%,
0.05%, 0.33%, and 0.08% compared with the baseline,
respectively. Then, if we continue to add ISAM, by comparing
index 3 and index 4 in the table, we find that SE, ACC and
F1 continue to grow by 0.44%, 0.01%, and 0.13%, respectively.
And when we don’t add ISAM but use PIB loss to train the
network with index 3, by comparing index 3 and index 5 in the
table, the SE and F1 of the network also improve, increasing by
2.81% and 0.16%, respectively, but SP and ACC have a slight

FIGURE 6
The training process of AGC-Net on two datasets. (A) DRIVE, (B) CHASE_DB1.

FIGURE 7
Example segmentation results on two datasets.

TABLE 2 Performance of the proposed AGC-Net on DRIVE and CHASE_
DB1 datasets.

Datasets SE SP ACC F1 AUC

DRIVE 0.8251 0.9844 0.9704 0.8301 0.9881

CHASE_DB1 0.8499 0.9854 0.9767 0.8213 0.9917
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drop. Finally, when we use both ISAM and PIB loss, SE, F1 and
AUC reach the highest values of 82.51, 83.01, and 98.81 in
Table 3, which are 3.56%, 0.74%, and 0.09% higher than the
baseline, respectively. This is higher than the improvement

obtained by adding ISAM or PIB loss alone, which shows that
the two are compatible with each other and can promote
performance improvement. But the SP reached the lowest
value of 98.44%. The highest SE and the lowest SP reflect that

TABLE 3 Ablation studies with different network configurations.

Index Baseline CD AS ISAM PIBL SE (%) SP (%) ACC (%) F1 (%) AUC (%)

1 √ 78.95 98.75 97.01 82.27 98.72

2 √ √ 78.36 98.78 96.99 82.00 98.66

3 √ √ √ 79.67 98.73 97.06 82.60 98.80

4 √ √ √ √ 80.11 98.70 97.07 82.73 98.80

5 √ √ √ √ 81.79 98.48 97.02 82.76 98.80

6 √ √ √ √ √ 82.51 98.44 97.04 83.01 98.81

Baseline: Res-UNet; CD, Cascade Design; AS, Auxiliary Supervision; ISAM, Inter-Stage Attention Module; and PIBL, Pixel-Importance-Balance Loss. The value in bold is the highest value

under that metric.

FIGURE 8
Example segmentation results for different network configurations on the DRIVE dataset. Baseline: Res-UNet; CD, Cascade Design; AS, Auxiliary
Supervision; ISAM, Inter-Stage Attention Module, and PIBL, Pixel-Importance-Balance Loss.
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our method further enhances the vessel extraction ability but
inevitably introduces some false positives, which is acceptable
(Moccia et al., 2018).

Furthermore, we plot some heatmaps generated using Grad-
CAM (Selvaraju et al., 2017) in Supplementary Figure S1. In the
heatmap, the redder the region’s color, the more the network pays
attention to the feature of the region when predicting blood vessels.
From Supplementary Figure S1, we can observe that the blood vessel
area has been emphasized after adding ISAM to the network. This
demonstrates that ISAM can promote fine-stage backbones in the
network to focus on vascular regions and perform better refinement.

We present example segmentation results of different network
configurations in ablation studies in Figure 8 and further zoom in on
some vessel regions under each image for qualitative comparison. As
can be seen from the figure, the baseline after adding all the
important components works best for the effect of vessel
segmentation. This shows the necessity of every critical component.

5.3 Comparison with the state-of-the-art
methods

In this section, we compare the proposed method with some
popular vessel segmentation methods, including U-Net
(Ronneberger et al., 2015), IterNet (Li et al., 2020), and SA-UNet
(Guo et al., 2021b). To test the results of these vessel segmentation
methods, we used their public codes on the DRIVE and CHASE_
DB1 datasets for training and evaluation. The Receiver Operating
Characteristic (ROC) curves and AUC values of the four models on
the two datasets are shown in Figure 9. The figure shows that
compared with the suboptimal method, the AUC values obtained by
AGC-Net have increased by 0.20% and 0.03% on the two data sets,
respectively. Considering that these popular methods already have
high performance (i.e., AUC values very close to 1.0), this
improvement means that many vessel pixels can now be correctly
classified.

In addition, we also compare some state-of-the-art methods in the
literature, including R2UNet (Alom et al., 2019), DUNet (Jin et al.,

2019), NFN+ (Wu et al., 2020), CAR-UNet (Guo et al., 2021a), RVSeg-
Net (Wang et al., 2020b), SCS-Net (Wu et al., 2021), AG-Net (Zhang
et al., 2019) and FR-UNet (Liu et al., 2022). Only the four methods in
the previous paragraph come from our reproduced results, and the
results of all other methods come from the corresponding papers. The
results on the DRIVE dataset are listed in Table 4. Among all the
compared methods, our method ranks second in ACC, F1 and AUC,
and is very close to the first-ranked method (FR-UNet). Specifically,
among these metrics, for the ACC value, our method achieves 0.9704,
which is only 0.01% lower than FR-UNet. In addition, the AUC value
and F1 value reached 0.9881 and 0.8301, respectively. In all comparison
methods, same as FR-UNet, these two values exceed the values of
0.98 and 0.83. For the other twometrics SE and SP, the results obtained
by AGC-Net are also comparable to other state-of-the-art methods. SE
is usually interpreted as the model’s ability to correctly detect all
vascular regions in retinal images. The SE obtained by our method
can reach 0.8251, which is 1.05% lower than FR-UNet (0.8356).
Nevertheless, this is still much higher than some other methods
based on coarse-to-fine architectures [such as NFN+ (0.7796), CAR-
UNet (0.8135) and IterNet (0.7921)]. The difference between AGC-Net
and other methods based on coarse-to-fine architecture is that we use
ISAM to enhance the container area of the intermediate output, which
enables the backbone of the fine stage to better refine the container,
resulting in higher SE value. SP is often interpreted as the localization
ability of retinal vessel segmentation models. This ability refers to the
ability to unerringly identify non-vascular regions as blood vessels. The
SP of our method can reach 0.9844, which is 0.3% lower than the top-
ranked IterNet (0.9874). We believe this is due to our method detecting
more blood vessels, but inevitably introducing some false positives.
Since the goal of the retinal vessel segmentation task is to detect asmany
vessels as possible, a relatively low SP is acceptable.

Table 5 shows the results of the different methods on the CHASE_
DB1 dataset. It should be noted that the data partitioning methods of
DUNet and NFN + are different from ours. Therefore, for the sake of
fairness, we do not compare the results of these twomethods. Unlike the
case on the DRIVE dataset, on this dataset, our proposed AGC-Net
exceeds FR-UNet and achieves 0.9767, 0.8213, and 0.9917 in ACC,
F1 and AUC, respectively, which are the best results among all

FIGURE 9
ROC curves and AUC value of different models on two Datasets. (A): DRIVE, (B): CHASE_DB1.
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compared methods. Among these metrics, the AUC value best reflects
the comprehensive performance of the model segmentation. In this
experiment, our method reached 0.9917, which is very close to 1.0,
which shows the good robustness of AGC-Net. For the ACC and
F1 values, our method outperforms FR-UNet by 0.19% and 0.62%,
respectively. FR-UNet is a segmentation framework that maintains full-
resolution representation learning to retain more spatial information
lost due to downsampling. However, the fundus images on the
CHASE_DB1 dataset are already of high resolution (999 × 960) and
have sufficient spatial information, which makes the advantage of FR-
UNet on this dataset diminished. In addition, we can observe that some
segmentation methods based on the same coarse-to-fine architecture
also have higher ACC values than FR-UNet (0.9748), such as IterNet
(0.9766) and CAR-UNet (0.9751). This suggests that for some high-

resolution fundus images, a segmentation method based on the coarse-
to-fine architecture may be a better choice. For the SEmetric, AGC-Net
achieves 0.8499, which ranks third among all compared methods and
outperforms othermethods based on coarse-to-fine architecture. This is
because we designed amore reasonable loss function and used ISAM to
promote the fine stage to achieve better refinement.

Through qualitative comparisons on the two datasets, we find
that both AGC-Net can guarantee the improvement of
comprehensive segmentation performance and maintain a high
SE without introducing too many false positives. Therefore,
compared to other methods, we believe that AGC-Net can better
cope with the vessel segmentation task.

Especially when we compare the segmentation results of
different methods in Figure 10, the advantages of AGC-Net are

TABLE 4 Performance comparison of the DRIVE dataset.

Method Year SE SP ACC F1 AUC

U-Net Ronneberger et al. (2015) 2015 0.7776 0.9867 0.9681 0.8108 0.9766

R2UNet Alom et al. (2019) 2018 0.7792 0.9813 0.9556 0.8171 0.9784

DUNet Jin et al. (2019) 2019 0.7963 0.9800 0.9566 0.8237 0.9802

AG-Net Zhang et al. (2019) 2019 0.8100 0.9848 0.9692 — 0.9856

IterNet Li et al. (2020) 2019 0.7921 0.9874 0.9699 0.8244 0.9861

NFN+ Wu et al. (2020) 2020 0.7796 0.9813 0.9582 0.8295 0.9830

RVSeg-Net Wang et al. (2020b) 2020 0.8107 0.9845 0.9681 — 0.9817

SCS-Net Wu et al. (2021) 2021 0.8289 0.9838 0.9697 — 0.9837

SA-UNet Guo et al. (2021b) 2021 0.8264 0.9823 0.9687 0.8224 0.9861

CAR-UNet Guo et al. (2021a) 2022 0.8135 0.9849 0.9699 — 0.9852

FR-UNet Liu et al. (2022) 2022 0.8356 0.9837 0.9705 0.8316 0.9889

AGC-Net (Our) 2023 0.8251 0.9844 0.9704 0.8301 0.9881

The value in bold is the highest value under that metric.

TABLE 5 Performance comparison on the CHASE_DB1 dataset.

Method Year SE SP ACC F1 AUC

U-Net Ronneberger et al. (2015) 2015 0.7961 0.9863 0.9746 0.7974 0.9808

R2UNet Alom et al. (2019) 2018 0.7756 0.9820 0.9634 0.7928 0.9815

AG-Net Zhang et al. (2019) 2019 0.8186 0.9848 0.9743 — 0.9863

IterNet Li et al. (2020) 2019 0.8141 0.9878 0.9766 0.8165 0.9910

RVSeg-Net Wang et al. (2020b) 2020 0.8069 0.9836 0.9726 — 0.9833

SCS-Net Wu et al. (2021) 2021 0.8365 0.9839 0.9744 — 0.9867

SA-UNet Guo et al. (2021b) 2021 0.8651 0.9814 0.9740 0.8076 0.9893

CAR-UNet Guo et al. (2021a) 2022 0.8439 0.9839 0.9751 — 0.9898

FR-UNet Liu et al. (2022) 2023 0.8798 0.9814 0.9748 0.8151 0.9913

AGC-Net (Our) 2023 0.8499 0.9854 0.9767 0.8213 0.9917

The value in bold is the highest value under that metric.
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more prominent. It can be seen from the figure that the blood vessel
segmentation results obtained by other methods lack sufficient
semantic information, and the blood vessels are broken. The
segmentation result of our method is closer to the ground truth,
as it identifies some blood vessels that other methods cannot
identify, including over-illuminated blood vessels and low-
contrast thin blood vessels, and the connectivity of blood vessels
is better. There are three reasons for the superior performance of
AGC-Net on visual effects: First, the fine stage in the AGC-Net
framework gives those misclassified vessel pixels a chance to be
corrected. Second, ISAM improves the degree of attention of the
fine-stage backbone to the vessel region, which achieves a better
refinement effect. Third, the PIB loss scales the loss weights per pixel
so that certain key pixels contribute more to the gradient. The
advantages of AGC-Net in qualitative comparison with other
methods can provide doctors or experts with more useful
vascular information in practical applications. This can facilitate
early detection and treatment of eye diseases.

For the problem of imbalance between foreground pixels and
background pixels in fundus images, PIB Loss is very effective. We
recommend that other researchers use PIB Loss to improve
performance when training blood vessel segmentation models. If
other researchers are designing a segmentation model based on a
coarse-to-fine architecture, we suggest using ISAM to improve the
refinement effect of the fine stage.

5.4 Limitations

Although our method performs very well compared to other
methods, several limitations exist. First, the proposal of PIB

Loss can significantly alleviate the problem of an unbalanced
ratio of foreground pixels and background pixels in fundus
images. However, due to the selection of pixel distance (we fixed
it as a box with a distance of 2 pixels in the method) coupled
with the proportional function, PIB Loss still needs to be flexible
enough. This limit exploring the effect of pixel distances of 3 or
more pixels on experimental results. In future work, we plan to
decouple the pixel distance and proportional function of PIB
Loss and explore the impact of more pixel distances on
experiments. Second, although our method has segmented
more blood vessels than other methods, there are still breaks
or unrecognized phenomena for some extremely small blood
vessels. This is attributed to the amount of training data being
too small (usually only around 20 capacity), which leads to poor
generalization on these extremely small blood vessels. We plan
to explore more effective data augmentation techniques in
future work.

6 Conclusion

Our paper presents a novel method for segmenting retinal vessels,
which are essential for diagnosing and treating eye diseases. The
proposed method designs a coarse-to-fine network with a two-stage
strategy: the first stage generates a rough vessel prediction map, and the
second stage corrects themisclassified pixels in this map. The coarse-to-
fine network uses a novel inter-stage attention module to adjust the
importance of vessel regions in the intermediate output for better
refinement. In addition, we design a novel PIB loss for network
training to address the problem of pixel ratio imbalance in fundus
images. PIB avoids the gradient being dominated by many background

FIGURE 10
Example segmentation results of different models on two datasets. From left to right are image, ground truth, prediction result of AGC-Net,
prediction result of U-Net, prediction result of SA-UNet, and prediction result of IterNet. From top to bottom are the DRIVE dataset and the CHASE_
DB1 dataset.
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pixels by scaling the loss weight of each pixel, which is of great help to
improve the blood vessel segmentation effect.We evaluated ourmethod
on two public datasets and found that it outperformed several state-of-
the-art methods with high performance.
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Oxygen-saturation-related
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Purpose: To develop a computational method for oxygen-saturation-related
functional parameter analysis of retinal vessels based on traditional color
fundus photography, and to explore their characteristic alterations in type
2 diabetes mellitus (DM).

Methods: 50 type 2 DM patients with no-clinically detectable retinopathy (NDR)
and 50 healthy subjects were enrolled in the study. An optical density ratio (ODR)
extraction algorithm based on the separation of oxygen-sensitive and oxygen-
insensitive channels in color fundus photography was proposed. With precise
vascular network segmentation and arteriovenous labeling, ODRs were acquired
from different vascular subgroups, and the global ODR variability (ODRv) was
calculated. Student’s t-test was used to analyze the differences of the functional
parameters between groups, and regression analysis and receiver operating
characteristic (ROC) curves were used to explore the discrimination efficiency
of DM patients from healthy subjects based on these functional parameters.

Results: There was no significant difference in the baseline characteristics
between the NDR and healthy normal groups. The ODRs of all vascular
subgroups except the micro venule were significantly higher (p<0.05,
respectively) while ODRv was significantly lower (p<0.001) in NDR group than
that in healthy normal group. In the regression analysis, the increased ODRs
except micro venule and decreased ODRv were significantly correlated with the
incidence of DM, and the C-statistic for discrimination DM with all ODR is 0.777
(95% CI 0.687-0.867, p<0.001).

Conclusion: A computational method to extract the retinal vascular oxygen-
saturation-related optical density ratios (ODRs) with single color fundus
photography was developed, and increased ODRs and decreased ODRv of
retinal vessels could be new potential image biomarkers of DM.

KEYWORDS

fundus photography, diabetes mellitus, retina vessel segmentation, oxygen saturation
level, light reflection analysis
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1 Introduction

The eye is a structurally advanced optical organ with a complex
vascular network. The maintenance of retinal function is critically
dependent on the normal functioning of the blood-retinal barrier
(Kaur et al., 2008; O’Leary and Campbell, 2023). Fundus diseases
and related systematic diseases can cause functional changes in the
fundus such as ischemia and hypoxia, which can damage the blood-
retinal barrier, leading to retinal vascular permeability changes,
hemorrhage, exudation, neovascularization, and other lesions
(Pournaras et al., 2008; Ascunce et al., 2023; Monickaraj et al.,
2023). Diabetes mellitus (DM) is a common endocrine metabolic
disease with its microvascular complications in the eye that can
result in diabetic retinopathy (DR), which is the leading cause of
blindness in working-age people (Bourne et al., 2021; Steinmetz
et al., 2021). Hypoxia is considered to be the core pathogenesis of
DR besides of hyperglycemia in retinal blood vessels caused by DM
(Hardarson, 2013). Hypoxia along with hyperglycemia stimulate
vascular endothelium and eventually lead to vascular endothelial cell
dysfunction, which in turn leads to the occurrence of DR. (Hardarson
and Stefánsson, 2012; Khoobehi et al., 2013). Therefore, it is equally
important to detect retinal oxygen saturation as well as blood glucose in
DM patients, which can help to prompt the potential occurrence of DR
and avoid further visual impairment.

Retinal vessel is the only vascular system in the body that can be
observed in vivo (Hanssen et al., 2022), and non-invasive imaging
technique is the first choice for retinal vascular oxygen saturation
measurement. Nevertheless, there are only limited imaging
instruments available to measure retinal oxygen saturation, in which
dual-wavelength retinal oximetry is a promising technique. By
measuring the light of different wavelengths reflected from the eye,
it takes advantage of the light absorption variations between
oxyhemoglobin and hemoglobin, and a calculation can be made that
correlates directly to the retinal vascular oxygenation (Beach, 2014;
Jeppesen and Bek, 2019; Garg et al., 2021). Previous studies using retinal
oximetry have found that the oxygen saturation of retinal vessels in DR
is significantly higher than that in normal subjects, and increases with
the severity of DR (Hardarson and Stefánsson, 2012; Khoobehi et al.,
2013; Jørgensen and Bek, 2014). Retinal oximetry has also been used to
monitor retinal oxygen saturation in other eye diseases such as central
retinal vein occlusion (CRVO) and glaucoma, showing varying degrees
of increase in retinal oxygen saturation (Stefánsson et al., 2019).
However, despite its potential, retinal oximetry is not widely used in
ophthalmology clinics due to its recent commercialization.

Traditional color fundus cameras are the most commonly
used equipment for fundus examination and disease screening
(Karlsson et al., 2021). Their broad-spectrum cameras use
complementary metal-oxide semiconductor (CMOS) or charge
couple device (CCD) photoreceptors covered with red-green-blue
(RGB) filters (Malvar et al., 2004). Thus, oxygen-sensitive and
insensitive wavelengths reflected from retina vessels, which
corresponds to different oxyhemoglobin and hemoglobin light
absorptions, are generally received in the red and green channels,
respectively, allowing for the estimation of blood oxygen
function by extracting light absorption information from these
channels.

In this study, we aim to develop a computational method for
analyzing oxygen-saturation-related functional parameters with

traditional color fundus photography based on precise vessel
segmentation and light absorption analysis, providing an easy-to-
apply image analysis algorithm for traditional color fundus cameras.
With that, we also explore the characteristic alterations of retinal
vascular oxygen function in type 2 DM patients to look for new
potential image biomarkers for the monitoring of DM.

2 Methods

2.1 Ethics

This was a retrospective observational study. The project underwent a
formal administrative review and was determined to be methodologically
validated according to the institutional policy of Zhongshan Ophthalmic
Center, Sun Yat-sen University. Therefore, this study was considered not
to be a human subject’s study, but the study was still reviewed by
Institutional Review Board to avoid information leakage during data
processing (protocol number: 2017KYPJ104).

2.2 Population

We included 50 patients with type 2 diabetes mellitus (DM) and a
normal group of 50 age- and sex-matched healthy normal subjects
between 1 January 2019 and 15 May 2021. All the subjects were adults.
We extracted the age and sex information of the subjects from the
medical records for intergroup matching and determined whether the
subjects are patients with type 2 DM or not. To assess the existence of
diabetic retinopathy, standard seven-fields fundus photographs were
obtained with a mydriasis-free digital fundus camera (RetiCam 3100,
SYSEYE, China). Patients with clinically detectable retinopathy, or with
a history of ocular disease, inflammation, trauma, or any intraocular
surgery were excluded. Further exclusion criteria include related
systemic diseases, such as Alzheimer’s disease, hypertension or lung
disease. The healthy normal group should alsomeet the above exclusion
criteria in addition to no diabetes.

2.3 Vessel segmentation and labeling

Only the 50° fundus photography centered on the macula are
analyzed. Figure 1 shows the flowchart for the processing of the region
of interest (ROI) of retinal vessels. To extract the retinal vascular network,
we employed an intelligent automatic vascular segmentation method,
details of which are available in our earlier publication (Wang et al., 2021;
2023). Briefly, the original fundus color photographs (Figure 1A) were
processed with an enhanced U-net by employing a multipath attention
network model (MA-net) for improved vessel segmentation, achieving an
area under the curve (AUC) of 0.9838 for segment accuracy (Wang et al.,
2023). Blood vessel junctions on the obtained retinal vascular binarization
network (Figure 1B)were detected then through a convolutionmethod on
vessel skeleton, facilitating the vessel segments extraction (Figure 1C). The
arteriovenous labeling of the segmented vessels was further processed
based on an intra-image regularization classifier (Figure 1D) (Xu et al.,
2017).

To ensure the calculation of the oxygen-saturated-related
functional parameter of retinal vessels, the red and green

Frontiers in Cell and Developmental Biology frontiersin.org02

Zhang et al. 10.3389/fcell.2023.1195873

283

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1195873


channels (Figures 1E,F) composing the original fundus color
photography were extracted through channel separation. By
multiplying them with the binarized vessel segments map,
oxygen-sensitive and insensitive wavelengths reflected from the
retinal vascular areas were obtained (Figures 1G,H), of which
each vessel segment was marked as the intravascular regions of
interest (IROI, Figure 1I). To obtain the light reflection information
of the retinal background around the vessel segment, a range of one
vessel diameter is extended outward along the blood vessel segment
outlines, which was marked as the extravascular region of interest
(EROI, Figure 1J).

2.4 Optical density ratio extraction

According to the EROI and IROI of blood vessels, the optical
density (OD) values were calculated for every three pixels along
the vascular central line (Formula 1), the red channel is used as
the oxygen sensitive channel, and the green channel represents
the oxygen insensitive channel, and the optical density ratio
(ODR) of the two is defined as the blood oxygen-saturation-
related parameter (Formula 2) (Tiedeman et al., 1998; Beach
et al., 1999).

OD � log10
OEROI

OIROI
(1)

ODR � ODred

ODgreen
(2)

In order to study the differences of different types of blood
vessels, all branch vessels output ODR according to the labeling of
arteries and veins, and distinguish between main and micro vessels
referring to the setting of commercial retinal oximeter (Stefánsson
et al., 2017), i.e., ≥6pixel diameter (1pixel≈12.69 μm in this study)

was defined as main vessels and <6pixel diameter was defined as
micro vessels. Finally, ODR outputs the results according to all
vessels (All), all arteriole (A), main arteriole (main A), micro
arteriole (mic A), all venule (V), main venule (main V), and
micro venule (mic V).

In addition to the ODR of each vascular subgroup, we also average
the absolute value of the difference of ODR between all adjacent
blocks of pixels and define it as ODR variability (ODRv, Formula 3).

ODRv � ∑ODRn − ODRn−1| |
n − 1

(3)

2.5 Statistical analysis

Student’s t-test or chi-square test used to compare the
differences between Normal and DM groups. All data were
recorded as mean ± standard deviation (SD). Data distribution
was analyzed by the Kolmogorov–Smirnov test to determine
normally distributed data (P > 0.05). Logistics regression was
used to analyze the relationship between ODR and DM in each
vascular subgroup and to generate ROC curve to evaluate the
diagnostic efficiency of retinal vascular function parameters. All
statistical analyses were performed using SPSS software (25.0; IBM
Corporation, Armonk, NY). GraphPad Prism 9.0 was used for data
visualization.

3 Results

There is no difference in the age and sex between the 50 healthy
volunteers in Normal group and the 50 patients in DM group
(Table 1).

FIGURE 1
Region of interest extraction process. (A) Original color fundus photography. (B) Retinal vascular binarization network. (C) Retinal vessel segments
map. (D) Arterial and venous labeling. (E,F) Green and red image channels extracted from the original fundus image. (G,H) Green and red channel of the
vessel segments map. (I,J) Intravascular region of interest (IROI) and extravascular region of interest (EROI).
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Table 1 alsodemonstrates the ODR for all vascular subgroups,
ODRv, as well as the t-statistic and p-values. In both healthy normal
group and DM group, A ODR is higher than V ODR (mean ± SD, A
vs. V, Normal: 0.713 ± 0.057 vs. 0.708 ± 0.063; DM: 0.755 ± 0.083 vs.
0.754 ± 0.082), main A ODR is higher than main V ODR (Normal:
0.728 ± 0.056 vs. 0.717 ± 0.058; DM: 0.773 ± 0.083 vs. 0.761 ± 0.082)
and micro A is higher than micro V ODR (Normal: 0.634 ± 0.068 vs.
0.599 ± 0.082; DM: 0.672 ± 0.096 vs. 0.627 ± 0.117), which means
that ODR is positively correlated with blood oxygen saturation.
Compared to Normal group, ODR is significantly increased in all
vascular subgroups except micro venular in DM group (p< 0.05,
respectively). ODRv is significantly decreased in DM
group (p< 0.001).

As shown in the logistics regression results in Table 2, higher
ODRs are significantly associated with the occurrence of DM,

especially in main A (OR 1.953, 95% CI 1.252-3.046) and main V
(OR 1.908, 95% CI 1.227-2.968), and also in micro A (OR 1.604,
1.047-2.455). While Lower ODRv (OR 0.381, 95% CI 0.210-0.693)
is significantly associated with the occurrence of DM. The
C-statistic for the discrimination of DM from the healthy
normal group combining all the acquired oxygen-saturation-
related functional parameters is 0.777 (95% CI 0.687-0.867,
p< 0.001) (Figure 2).

4 Discussion

In this study, we present a computational approach for
extracting oxygen-saturation-related functional parameters
through precise vascular segmentation and light reflection

TABLE 1 Clinical parameters and ODR of study subjects.

Normal DM T-statistic p value

No, of subject 50 50

Age, yrs 43.4 (4.5) 43.9 (4.8) −0.555 0.58

Sex, female, no (%) 23 (46%) 24 (48%) NA 0.55

Duration of diabetes, yrs / 4.16 (4.03)

Fasting plasma glucose, mmol/L / 8.89 (4.55)

Optical density ratio, ODR

All vessels 0.711 (0.060) 0.754 (0.082) −3.037 0.03

All arteriole 0.713 (0.057) 0.755 (0.083) −2.997 0.04

All venule 0.709 (0.063) 0.754 (0.082) −3.037 0.03

Main arteriole 0.728 (0.056) 0.773 (0.083) −3.199 0.02

Main venule 0.717 (0.058) 0.761 (0.082) −3.092 0.03

Micro arteriole 0.634 (0.068) 0.672 (0.096) −2.263 0.026

Micro venule 0.599 (0.082) 0.627 (0.117) −1.405 0.164

Variability (ODRv) 0.273 (0.025) 0.236 (0.059) 3.915 <0.001

a. Student’s t-test or chi-square test used to compare difference between groups.

TABLE 2 Variables in the equation of the logistics regression.

OR 95% CI p value

Lower Upper

All vessels 1.885 1.214 2.925 0.005

All arteriole 1.863 1.201 2.891 0.006

All venule 1.884 1.215 2.923 0.005

Main arteriole 1.953 1.252 3.046 0.020

Main venule 1.908 1.227 2.968 0.004

Micro arteriole 1.604 1.047 2.455 0.030

Micro venule 1.334 0.889 2.002 0.166

Variability 0.381 0.210 0.693 0.002

a. Logical regression was used to analyze the relationship between ODR, and DM, in each vascular subgroup and variability.
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channel analysis using single traditional color fundus photography.
By applying this method to the comprehensive analysis of the fundus
images acquired from normal individuals and patients with type
2 diabetes, we revealed that the retinal vascular ODRs were increased
while the ODR variability was reduced significantly in DM patients,
providing new potential image biomarkers for the management
of DM.

The successful extraction of retinal vascular ODRs with color
fundus photography offers a new protocol for retinal vascular
function evaluation, providing additional quantitative functional
information based on the most commonly used fundus imaging
tools in clinical settings. Compared to the current existed retinal
oximetry, which only reveals oxygen saturation level in main
retinal vessels and requires subjects to withstand long light
exposure time (Hardarson, 2013), our method achieves
information in microvascular level without any additional
hardware implementation, which ensures its convenience and
accessibility with greatly reduced cost. These advantages suggest
extensive potential application value in the diagnosis and
screening of retinal diseases.

In our study, we have shown that the increase of proposed
oxygen-saturation-related ODRs were statistically significant at
the stage of DM, which could be related to the stronger affinity of
glycosylated hemoglobin to oxygen in DM (Graham et al., 1980;
van Kampen and Zijlstra, 1983). Indeed, former studies using
retinal oximetry have found obvious increase in retinal oxygen
saturation level during DR, especially in proliferative DR, but no
significant change was shown in DM stage before (Khoobehi
et al., 2013). This indicates that our newly proposed ODRs might
be more sensitive parameters than that of commercial
retinal oximetry in finding alterations in blood oxygen
function. Moreover, our exploration of ODR in the

microvascular groups revealing significant increase in micro
arterioles of DM patients further proves the high sensitivity of
our method.

We have proposed and analyzed the ODR variability for the first
time on the basis of extracted ODR of the full retinal vascular
network and found it to be significantly decreased in DM patients
compared to normal subjects. While glycosylated hemoglobin has
higher affinity to oxygen (Graham et al., 1980), it damps the oxygen-
release capacity (Ditzel, 1972) of retinal blood, results in reduced
oxygen saturation variations. Studies have also found that the retinal
blood flow velocity increases in DM patients (Landa et al., 2011),
meaning less oxygen release time of blood in retinal vessels, further
reduced the ODR variability.

Our method suffers limited retinal vessel resolution and
imaging depth due to the physical nature of fundus
photography. Only the superficial retinal vessels can be
analyzed without 3-dimensional (3D) illustration. The same
limitations also exist in current commercial retinal oximetry.
Recently, visible-light optical coherence tomography based
techniques for retinal oxygen saturation measurement have
been gradually proposed (Pi et al., 2020; Poddar and Basu,
2020), achieving high resolution 3D imaging of retinal vascular
oxygen function information (Pi et al., 2020), although most of
these studies are still in laboratorial stage.

Our attempt to distinguish DM from normal subjects with all
the extracted functional ODR parameters showed a relative low C
statistic result (AUC = 0.777), which is not sufficient for DM
diagnosis or screening. Since our previous study found that the
morphological parameters of retinal vessels in DM patients also
changed significantly (Li et al., 2021), further combining
functional and morphological parameters of retinal blood
vessels and multi-center studies or follow-up studies may help
us better understand the changes in retinal blood vessel
characteristics during the occurrence and development of DM
and even DR, so as to diagnose DM or DR More accurately.
Furthermore, applying our method to other eye diseases related to
retinal vascular oxygen function alterations such as glaucoma
(Vandewalle et al., 2014), central retinal vein occlusion
(Hardarson and Stefánsson, 2010), age-related macular
degeneration (Geirsdottir et al., 2014), etc. in the future would
further demonstrate the reliability and universality of our
method.
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FIGURE 2
ROC curves of predictive discrimination for DM.
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Purpose: Thyroid-associated ophthalmopathy (TAO) is an autoimmune disease
that affects the orbit and is the most prevalent extra-thyroidal complication of
Graves’ disease. Previous neuroimaging studies have focused on abnormal static
regional activity and functional connectivity in patients with TAO. However, the
characteristics of local brain activity over time are poorly understood. This study
aimed to investigate alterations in the dynamic amplitude of low-frequency
fluctuation (dALFF) in patients with active TAO and to distinguish patients with
TAO from healthy controls (HCs) using a support vector machine (SVM) classifier.

Methods: A total of 21 patients with TAO and 21 HCs underwent resting-state
functional magnetic resonance imaging scans. dALFFs were calculated in
conjunction with sliding window approaches to assess dynamic regional brain
activity and to compare the groups. Then, we used SVM, a machine learning
algorithm, to determinewhether dALFFmapsmay be used as diagnostic indicators
for TAO.

Results: Compared with HCs, patients with active TAO showed decreased dALFF
in the right calcarine, lingual gyrus, superior parietal lobule, and precuneus. The
SVM model showed an accuracy of 45.24%–47.62% and area under the curve of
0.35–0.44 in distinguishing TAO from HCs. No correlation was found between
clinical variables and regional dALFF.

Conclusion: Patients with active TAO showed altered dALFF in the visual cortex
and the ventral and dorsal visual pathways, providing further details on the
pathogenesis of TAO.

KEYWORDS

thyroid-associated ophthalmopathy, active phase, visual dysfunction, dynamic amplitude
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1 Introduction

Thyroid-associated ophthalmopathy (TAO), commonly known
as Graves’ ophthalmopathy, is an autoimmune disease that affects
the orbit and is the most prevalent extra-thyroidal complication of
Graves’ disease. The main pathological changes of TAO were
extraocular muscle swelling and periorbital fat increase. Although
the pathogenesis is not fully understood, the thyroid-stimulating
hormone receptor (TSHR) is considered the main target of the
autoimmune reaction (Hiromatsu et al., 2014). The activation of
autoantibodies against TSHR mediates inhibiting, interfering with,
or stimulating intracellular signal transduction. In patients with
TAO, an over-expression of TSHR is observed in the thyroid,
extraocular muscles, and retrobulbar tissue, particularly in orbital
fibroblasts, leading to extraocular muscle swelling, expansion of the
orbital adipose tissue, and high intraocular pressure. Long-lasting
orbital edema causes the extraocular muscles to fibrose and/or
atrophy, which results in restrictive strabismus (Weiler, 2017).
The swelling of extraocular muscles directly compresses the optic
nerve at the orbital apex. The orbital fat expands, resulting in overt
exophthalmos, which may lead to stretching and injury of the optic
nerve. Compression and circulatory obstruction of optic nerve fibers
may lead to denervated atrophy (Bartalena et al., 2021; Song et al.,
2022).

The course of TAO includes an active and an inactive phase
(Weiler, 2017). In the active stage, TAO has severe inflammatory
lymphocyte infiltration, edema, and fibroblast proliferation in
orbital tissues (Hiromatsu et al., 2014) and presents typical eye
symptoms, including exophthalmos and diplopia, which can lead to
retinal damage, optic neuropathy, and even blindness in severe cases
(Bartalena et al., 2021). Active immunosuppression intervention
may be helpful to limit the destructive and fibrotic consequences of
the immune cascade and release aggravation of eye symptoms. In the
chronic stage, orbital residual fibrosis persists, and there is little
response to medical treatment that requires surgery. Therefore,
understanding the pathological mechanism of active TAO is
helpful to save vision at an early stage.

Neuroimaging studies demonstrated that the abnormal brain
structural and functional changes were associated with the visual
and cognitive impairments in TAO. For example, diffusion tension
imaging studies showed significantly decreased fractional anisotropy
(FA) in the optic nerve in TAO that correlated negatively with visual
field defects and positively with clinical activity scores (CAS) (Ozkan
et al., 2015), “NO SPECS” classification, and extraocular muscle
thickness (Lee et al., 2018). Compared with healthy controls (HCs),
patients with active TAO had cortical thinning in the left lateral
occipital sulcus, left fusiform gyrus, right precuneus, right superior
frontal cingulate, right superior periparietal gyrus, right paracentral
gyrus, right postcentral gyrus, and right insula (Silkiss and Wade,
2016) but increased gray matter volume (GMV) in the right inferior
frontal gyrus, left superior frontal gyrus (SFG), left orbital SFG, left
orbital middle frontal gyrus, left precuneus, and left postcentral
gyrus (Luo et al., 2022). Resting-state functional MRI (rs-fMRI)
studies demonstrated decreased amplitudes of low-frequency
fluctuations (ALFFs) in the left middle occipital gyrus (MOG),
superior occipital gyrus, and precuneus (Chen et al., 2021c),
decreased fractional ALFF (fALFF) in the right calcarine, and
increased fALFF in the right inferior temporal gyrus and left

posterior cingulate cortex in active TAO relative to HCs (Zhu
et al., 2022). The microvascular density of the optic nerve head
was negatively correlated with fALFF in the right calcarine, while it
was positively correlated with fALFF in the posterior cingulate
cortex (Zhu et al., 2022). Another study found decreased regional
homogeneity in the right MOG and the right angular gyrus, reduced
ALFF in the right superior occipital gyrus and bilateral precuneus,
decreased voxel-mirrored homotopic connectivity (VMHC)
between calcarine, angular gyri, and MOG, and decreased
functional connectivity between the calcarine/lingual gyri and the
contralateral middle temporal gyrus (MTG) (Qi et al., 2021, 2022;
Wen et al., 2022). There are a few neuroimaging results focused on
the neural activity differences between active and inactive TAO. A
direct comparison of the active and inactive phases of TAO found
increased GMV in the right MTG, left SFG, and left precuneus (Luo
et al., 2022), as well as increased ALFF in bilateral precuneus (Chen
et al., 2021c). ALFF values in the bilateral precuneus were positively
correlated with CAS and mini-mental state examination (MMSE)
scores and negatively correlated with disease duration (Chen et al.,
2021c). Moreover, in the hyperthyroid condition, gray matter
volumes were increased in the right cerebellum lobule VI and
decreased in the bilateral visual cortex and cerebellum lobules
I–IV, the ALFF was decreased in the right posterior cingulate
cortex, and the FC was increased in the bilateral anterior insula,
posterior insula, and cerebellum anterior lobe, compared to the
euthyroid condition, again suggesting a crucial role for the
cerebellum in the mediation of TH effects (Gobel et al., 2020).
Thus, these studies have demonstrated that patients with active TAO
may provide evidence of the pathological mechanisms underlying
active TAO.

fMRI can non-invasively measure neuronal activity,
deepening our understanding of visual processing and
perception. Previous studies assumed that the BOLD signal
was static during the fMRI scanning. However, recent research
has proposed that neural activity is dynamic over time (Liu and
Duyn, 2013). Evidence from task-based fMRI and
electrophysiology research showed that functional activities
and connectivity may show dynamic changes in the time scale
of several seconds to several minutes (Liegeois et al., 2017).
Compared with static analysis by using the average functional
activity or connectivity, dynamic analysis is helpful to observe the
details in static analysis and can provide a deeper understanding
of the basic mechanism of brain activity and connectivity. The
ALFF method calculates the power within the effective frequency
range (0.01–0.08 Hz) of each voxel in the brain and reflects the
spontaneous activity of neurons at rest (Biswal et al., 2010).
Dynamic ALFF (dALFF) is an extension of ALFF, which studies
the temporal variability of brain activity and provides
information on the changes in ALFF with time by combining
the sliding window method. The decrease in dALFF represents
functional impairment, while the increase in dALFF represents
unstable neural activity. The support vector machine (SVM)
model is a focused area of machine learning in recent years
and shows its advantages in small samples, especially when the
sample size is far less than the feature dimension. Combining
dALFF and SVM classification analysis has been applied in
various disease conditions, such as comitant exotropia (Chen
et al., 2022a), transient ischemic attack (Ma et al., 2021), and
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Parkinson’s disease (Zhang et al., 2019), and showed good
performance to distinguish patients and healthy controls.

Our hypotheses show that the dynamic changes in spontaneous
brain activity may present a disease-related pattern in patients with
TAO. In the present study, we aimed to investigate dynamic
alterations in local resting-state metrics and to explore whether
dALFF could be used as a diagnostic tool for TAO.

2 Methods

2.1 Ethics approval

This cross-sectional study was approved by the Research Ethics
Committee of Jiangxi Provincial People’s Hospital and adhered to
the guidelines of the Declaration of Helsinki. All patients with TAO
and HCs provided written informed consent before participation.

2.2 Participants

The pool of patients with TAO and HCs was identical to that
reported in previous studies (Qi et al., 2021, 2022; Wen et al., 2022).
A total of 21 patients with TAO (seven females’ mean age, 54.17 ±
4.83 years) were enrolled from the Departments of Ophthalmology
and Endocrinology, Jiangxi Provincial People’s Hospital.

Patients in the active phase of TAOwho were right-handed were
included in the TAO group. The diagnosis of TAO was made by two
experienced ophthalmologists according to the diagnostic criteria
for Graves’ ophthalmopathy (Bartley and Gorman, 1995),
measuring visual acuity, visual field, color vision, and the pupil
reflex. The disease activity of TAO was evaluated according to the
modified 7-point Mourits’ CAS, and the active phase was defined by
a CAS equal to or greater than 3 (Bartalena et al., 2021). The
exclusion criteria for the TAO and HC groups were as follows: (1)
severe TAOwith dysthyroid optic neuropathy; (2) symptoms caused
by other ocular diseases, such as glaucoma, vitreous hemorrhage,
high myopia, strabismus, cataract, and optic neuritis; (2) history of
eye trauma or surgery; (3) history of neurological and psychiatric
disorders; (4) alcohol or drug abuse; and (5) contraindications to
MRI, such as claustrophobia or implanted pacemakers.

A total of 21 HCs (seven females’ mean age: 55.17 ± 5.37 years)
matched for age, sex, handedness, and educational level were also
recruited. HCs were psychologically healthy, with no history of
TAO, and had normal or corrected-to-normal vision. The exclusion
criteria for the TAO and HC groups were as follows: (1) symptoms
caused by other ocular diseases, such as glaucoma, vitreous
hemorrhage, high myopia, and strabismus; (2) history of eye
trauma or surgery; (3) history of neurological and psychiatric
disorders; (4) alcohol or drug abuse; and (5) contraindications to
MRI, such as claustrophobia or implanted pacemakers.

2.3 Clinical assessment

All patients underwent comprehensive eye examinations that
included measuring intraocular pressure (IOP), eyeball
protrusion, best-corrected visual acuity (BCVA), and

performing slit lamp examinations and retinal fundoscopy. In
addition, the TAO duration was confirmed by self-reports from
patients and was determined as the interval between the onset of
TAO-related clinical symptoms and the date of the MRI
examination.

2.4 MRI data acquisition

MRI scanning was performed on a 3-T MR scanner (Discovery
750W System; GE Healthcare, Chicago, IL, United States) with an 8-
channel head coil. Foam pads were placed on both sides of the jaw to
limit head movements, and earplugs were used to attenuate noise
during scanning. During data acquisition, all participants were asked
to close their eyes, stay awake, and not to think about anything in
particular.

High-resolution T1-weighted images covering the whole brain
were acquired with a magnetization-prepared rapid gradient echo
(MPRAGE) sequence, with the following parameters: repetition
time (TR) = 8.5 ms, echo time (TE) = 3.3 ms, flip angle = 12°,
slice thickness = 1.0 mm, slice gap = 0 mm, voxel size = 1 × 1 ×
1 mm3, field of view (FOV) = 240 × 240 mm2, matrix size = 256 ×
256, and sagittal slice number = 176. Rs-fMRI involved a gradient-
recalled echo (GRE) planar imaging sequence, with the following
parameters: TR = 2000 ms, TE = 25 ms, flip angle = 90°, FOV = 240 ×
240 mm2, matrix size = 64 × 64, voxel size = 3.6 × 3.6 × 3.6 mm3,
axial slice number = 35, and volume numbers = 240. T2-weighted
imaging and T2 fluid-attenuated inversion recovery images were
acquired to exclude brain lesions. The total scanning time for each
subject was 15 min.

2.5 fMRI data preprocessing

rs-fMRI data were preprocessed using the toolbox for Data
Processing & Analysis of Brain Imaging (DPABI; http://www.
rfmri.org/dpabi) and Statistical Parametric Mapping 8 (SPM8,
http://www.fil.ion.ucl.ac.uk) implemented in MATLAB (2013a;
MathWorks, Natick, MA, United States). Preprocessing included
the following steps: (1) Original DICOM-format files were
converted into the NIfTI format. (2) The first 10 time points for
each subject were removed due to the signal reaching equilibrium
and the participants adapting to scanning noise. (3) Slice-timing and
motion correction were performed; subjects with a maximum
displacement of less than 1.5 mm in any cardinal direction (x, y,
z) and a maximum spin (x, y, z) of less than 1.5 were included in the
following analysis. (4) Each T1 image was co-registered to the mean
functional image and was segmented into gray matter, white matter,
and cerebrospinal fluid using the Diffeomorphic Anatomical
Registration Through Exponentiated Lie Algebra approach
(Ashburner, 2007). (5) Functional images were normalized to the
Montreal Neurological Institute space, resampled with a voxel size of
3 × 3 × 3 mm, and smoothed with a Gaussian kernel with a full-
width at half maximum of 6 mm. This was followed by (6)
detrending and (7) applying a temporal filter (0.01–0.08 Hz) to
reduce the influence of low-frequency drift and high-frequency
noise. Subsequently, the images were used to compute the
dALFF maps.
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2.6 Calculation of dALFF

To obtain ALFF values, the time series for each voxel were
transformed to the frequency domain using a fast Fourier transform,
and the power spectrum was then obtained using DPABI software.
The square root of the power spectrum was z-transformed using
Fisher’s r-to-z transformation to reduce the global effects of
variability across participants.

The sliding window method was applied to evaluate the dALFF
for each participant using the Temporal Dynamic Analysis (TDA)
toolkit in DPABI software. The sliding window length affected the
dALFF: the minimum window length should be larger than 1/fmin,
where fmin is the minimum frequency of time series (Leonardi and
Van De Ville, 2015). Liao et al. (2019) also found that when the step
size of the sliding window is fixed, the variance of dALFF decreases
with the increase in the sliding window length; when the window
length is kept at 50 TRs, the variance of dALFF is constant with the
increase in the step size. Previous studies have shown that a window
length of 50 TRs (100 s) is the optimal parameter to keep a balance
between capturing rapidly shifting dynamic activity and achieving
reliable brain activity estimation. Therefore, we chose 50 TRs as the
sliding window length and 1 TRs as the step size to calculate the
dALFF of each participant, which is in accordance with the methods
of Liu et al. (2021) and Cui et al. (2020). The ALFF map was
computed within each window, generating a set of ALFF maps for
each participant. The standard deviation (SD) divided by the global
mean value of the ALFF at each voxel across each window was
calculated to assess the temporal variability of the ALFF, which is
defined as dALFF.

2.7 Validation analysis

To verify our findings on the dALFF variability obtained using a
sliding window length of 50 times the TR, we performed auxiliary
analyses with different sliding window lengths. We recalculated the
main results using window lengths of 30 and 80 times the TR, which is
in accordance with themethods of Liu et al. (2021) and Cui et al. (2020).

2.8 Support vector machine analysis

Weperformedmachine learning analyses using the SVM algorithm
to determine whether dALFF maps can be used as potential diagnostic
indicators of TAO. Using the Pattern Recognition for Neuroimaging
Toolbox (Schrouff et al., 2013), the dALFF values of brain regions that
differed between the groups were used as classification features. Then,
leave-one-out cross-validation (LOOCV) was used to validate the SVM
classifier. The accuracy, sensitivity, and specificity were used to quantify
the performance of classification methods. The receiver operating
characteristic curves and the corresponding areas under the curve
(AUCs) were generated to assess the classification efficiency.

2.9 Statistical analysis

SPSS software (v22.0; IBM Corp., Armonk, NY, United States)
was used to analyze clinical variables. p-values <0.05 were

considered statistically significant. One-sample t-tests were
performed in the Statistical Parametric Mapping software to
assess the intragroup z-values of dALFF maps. Then, with age,
sex, and total intracranial volume as covariates, the individual
z-maps were entered into a two-sample t-test to identify
differences between groups. The Gaussian random field method
(Worsley et al., 1996) was used to correct for multiple comparisons,
with a cluster-level p < 0.05 as statistically significant, corresponding
to a two-tailed voxel level of p < 0.01.

2.10 Correlation analysis

Pearson correlation analysis was applied to determine the
relationship between mean dALFF values and clinical factors in
TAO, such as the severity of the disease, BCVA, and IOP. p-values
below 0.05 were considered statistically significant.

3 Results

3.1 Demographics and disease
characteristics

Sex, age, and educational level did not significantly differ
between the TAO and HC groups (p = 1, p = 0.75, and p = 0.86,
respectively). In comparison with HCs, the TAO group showed
significantly worse BCVA (p < 0.05) and higher IOP (p < 0.001) in
both eyes. Table 1 lists demographic and disease characteristics of
the study sample.

3.2 dALFF in TAO and HC groups

Setting the window length to 50 TR and the sliding step to 1 TR
produced the main findings. Then, these were validated using
different sliding window lengths. The spatial distributions of
mean dALFF in the TAO and HC groups with window lengths
of 30×, 50×, and 80× TR are shown in Figure 1.

With a window length of ×50 TR and a sliding step of 1 TR,
patients with TAO had significantly lower dALFF in two
locations in the right hemisphere (calcarine gyrus
[Brodmann’s area (BA) 17,18] and lingual gyrus [BA 18]),
compared with HCs (Table 2, Figure 2B). Similarly, with
window lengths of ×30 and ×80 TR, patients with TAO
showed significantly lower dALFF in three locations in the
right hemisphere (calcarine gyrus [BA 17,18], precuneus [BA
7], and superior parietal lobule (SPL; BA 7]) compared with HCs
(Table 2, Figure 2A, Figure 2C).

3.3 Support vector machine classification

Setting the window length to ×30, ×50, or ×80 TR with a sliding
step of 1 TR, the SVM classification of dALFF achieved overall
accuracies of 45.24%, 47.62%, and 45.24% and AUCs of 0.44, 0.37,
and 0.35, respectively, for distinguishing between patients with TAO
and HCs (Figure 3).
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TABLE 1 Characteristics of participants in TAO and HC groups.

Condition TAO group HC group t p

Gender (male/female) 14/7 14/7 N/A 1

Age (years) 54.17 ± 4.83 55.17 ± 5.37 −0.348 0.75

Duration (months) 11.25 ± 4.42 - - -

Education 11.17 ± 2.64 11.42 ± 1.95 −0.269 0.86

BCVA-OD 0.67 ± 0.35 1.14 ± 0.15 −4.462 0.026*

BCVA-OS 0.64 ± 0.29 1.06 ± 0.23 −4.297 0.023*

IOP-OD 25.81 ± 2.35 15.33 ± 1.20 −5.554 <0.001*

IOP-OS 25.62 ± 2.32 15.10 ± 1.11 −5.560 <0.001*

Notes: Independent sample t-test for the normally distributed continuous data (means ± SD). Chi-squared test for sex. *p < 0.05 indicated statistically significant. TAO, thyroid-associated

ophthalmopathy; HC, healthy control; BCVA, best-corrected visual acuity; OD, oculus dexter; OS, oculus sinister; IOP, intraocular pressure.

FIGURE 1
Distribution of dALFF using the following three distinct sliding window parameter settings in the typical frequency band (0.01–0.08 Hz) in TAO (left
column) and HC (right column) groups: (A)window length of 30 TRs (60 s), (B)window length of 50 TRs (100 s), and (C)window length of 80 TRs (160 s).
dALFF, dynamic amplitude of low-frequency fluctuation; TAO, thyroid-associated ophthalmopathy; HC, healthy control; L, left; R, right.
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3.4 Correlation analysis

There was no correlation between mean dALFF values and
disease duration, BCVA, or IOP in patients with TAO.

4 Discussion

This study used dALFF analysis to investigate the temporal
variability in local brain activity in patients with TAO. Compared
with HCs, patients with TAO exhibited decreased dALFF in several
posterior brain regions in the right hemisphere such as the calcarine
gyrus (BA 17,18) and lingual gyrus (BA 18). We used other sliding
window lengths to verify our findings and found that the temporal
variability of dALFF in the right calcarine was highly reproducible
across different window lengths. In addition, dALFF in the right
precuneus (BA 7) and right SPL (BA 7) in TAO was reduced by
using window lengths equal to 30 and 80 TRs. Unfortunately, the
dALFF variability in these regions could not be used to classify
patients with TAO and HCs, achieving an accuracy of 45.24%–

47.62% and AUC of 0.35–0.44, because AUCs of 0.5–0.7 indicate low
accuracy and 0.7–0.9 represents higher accuracy. Indeed, no
correlation was found between the clinical variables and the
dALFF of these brain regions. Nonetheless, the present study
emphasized the significance of considering dynamic local brain
activity in TAO.

We found that the spatial pattern of temporal variability of
dALFF in the right calcarine was highly reproducible across different
window lengths. The calcarine is regarded as the part of the primary
visual cortex (V1). On the one hand, it receives visual inputs from
the retina via thalamic relays and is associated with visual field
defects and blurred vision. On the other hand, it receives visual
information from the lateral geniculate body and is the core
component of binocular vision, creating depth perception
(Weiler, 2017). Dysfunction in the primary visual cortex is a
common finding among various eye diseases such as glaucoma

(Chen et al., 2022b), diabetic retinopathy (Huang et al., 2021),
exotropia and amblyopia (Liang et al., 2016; Chen J. et al., 2021),
and optic neuropathy (Sujanthan et al., 2022). Compared with HCs,
patients with active TAO demonstrated decreased fALFF in the right
calcarine (Zhu et al., 2022) and decreased FC between hemispheric
calcarine gyri (Qi et al., 2022; Wen et al., 2022). The microvascular
density of the optic nerve head has been negatively correlated with
fALFF in the right calcarine (Zhu et al., 2022). Patients with TAO
and in the euthyroid status showed decreased fALFF in the bilateral
calcarine (Chen et al., 2021d) and decreased VMHC in lingual gyri/
calcarine (Chen et al., 2021b). The VMHC of the lingual gyri/
calcarine was positively correlated with visual acuity (Chen et al.,
2021b). Moreover, patients with hyperthyroidism and without
orbital symptoms showed reduced GMV in the bilateral
calcarine, suggesting a preclinical stage of TAO (Zhang et al.,
2014). However, no particular differences were observed in the
calcarine gyrus in patients with inactive TAO, relative to HCs or
patients with active TAO (Chen et al., 2021c; Luo et al., 2022). In the
present study, patients with active TAO consistently demonstrated
decreased dALFF variability in the right calcarine (BA 17, 18);
findings obtained from three different sliding window values
of ×30, ×50, and ×80 TRs were in line with the aforementioned
studies. Altogether, static and dynamic dysfunctions of the calcarine
might be promising indicators in TAO, which may be associated
with impaired retinal projection and binocular fusion.

The visual pathway consists of ventral and dorsal streams. The
ventral stream originates from V1 and projects to the inferior temporal
cortex. The lingual gyrus is a key hub in the ventral stream and is
commonly known as the ventral occipitotemporal region (lingual,
fusiform, and parahippocampal gyri) and participates in face
recognition (Dinkelacker et al., 2011). In the present study, dALFF
was lower in the right lingual gyrus in active TAO patients than that in
HCs, which is consistent with the previous finding of reduced FC
between the contralateral MTG and bilateral calcarine/lingual gyri
(Wen et al., 2022). This suggested that the ventral stream, which
processes faces, was impaired (Reisch et al., 2022).

TABLE 2 Brian regions with significant differences in dALFF values between TAO and HC groups (voxel-level p < 0.01 for Gaussian random field correction, cluster-
level p < 0.05).

Region Brodmann’s areas Side MNI coordinate Peak T Cluster size

x y z

TAO < HC, with a window size of 30 TRs and sliding step of 1 TR

Calcarine 17, 18 R 21 −87 0 −3.30 40

Superior parietal lobule 7 R 30 −57 60 −4.42 47

Precuneus 7 R 9 −66 63 −3.60 40

TAO < HC, with a window size of 50 TRs and sliding step of 1 TR

Calcarine 17, 18 R 21 −75 12 −3.79 50

Lingual gyrus 18 R 34 −60 0 −3.41 40

TAO < HC, with a window size of 80 TRs and sliding step of 1 TR

Calcarine 17, 18 R 21 −75 12 −3.63 40

Superior parietal lobule 7 R 27 −81 51 −3.40 11

Precuneus 7 R 6 −72 57 −3.91 36

dALFF, dynamic amplitude of low-frequency fluctuation; TAO, thyroid-associated ophthalmopathy; HC, healthy control; MNI, Montreal Neurological Institute; GFR, Gaussian random field

theory; TR, time of repetition; R, right.
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The dorsal visual stream starts from V1 and projects to the
posterior parietal cortex, which is important for binocular vision
fusion, and has predominant advantages in decoding the disparities

present in 3D images. The SPL forms the association cortex of the
parietal lobe and is responsible for visual-motor coordination
(Wolpert et al., 1998). Located medial to the SPL, the precuneus

FIGURE 2
Brain regions with significant differences in dALFF between TAO andHC groups using the following three distinct slidingwindow parameter settings:
(A) window length of 30 TRs (60 s), (B) window length of 50 TRs (100 s), and (C) window length of 80 TRs (160 s). The histogram shows the mean and
standard deviation of dALFF values in these regions in TAO and HC groups. dALFF, dynamic amplitude of low-frequency fluctuation; TAO, thyroid-
associated ophthalmopathy; HC, healthy control; LING, lingual gyrus; CAL, calcarine; PreCun, precuneus; SPL, superior parietal lobule; TR, time of
repetition; L, left; R, right.
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FIGURE 3
Classification results using SVM based on dALFF values using the following three distinct sliding window parameter settings: (A) window length of
30 TRs (60 s), (B)window length of 50 TRs (100 s), and (C)window length of 80 TRs (160 s). The left column of images shows a 10-fold in the class 1 (TAO
group) and class 2 (HC group), and the right column shows the ROC curve of the SVM classifier with AUC values of 0.44, 0.37, and 0.35, respectively.
dALFF, dynamic amplitude of low-frequency fluctuation; TAO, thyroid-associated ophthalmopathy; HC, healthy control; ROC, receiver operating
characteristic; SVM, support vector machine; AUC, area under the curve.
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is a component of the dorsal stream as well as the default mode
network. It receives visual information from cortical area V5, which
plays an important role in visuospatial imagination and plot
memory extraction (Cavanna and Trimble, 2006). Most previous
imaging studies have shown that the structure and function of the
precuneus changed in TAO. However, there have been
inconsistencies in the results. Compared with HCs, the right
precuneus of patients with active TAO was atrophied, which
indicated cognitive impairment (Silkiss and Wade, 2016). In
contrast, compared with HCs and patients with inactive TAO,
the GMV of the left precuneus of patients with active TAO was
increased. The GMV of the right precuneus was positively correlated
with CAS, left exophthalmos, and quality of life in thyroid eye
disease (TED-QOL), while it was negatively correlated with right eye
visual acuity (Luo et al., 2022). Qi et al. (2021) found that ALFF of
the bilateral precuneus was lower in patients with active TAO, while
Chen et al. (2021c) did not find differences between patients with
active TAO and HCs. The ALFF in the right precuneus in TAO was
positively correlated with CAS and MMSE scores but negatively
correlated with disease duration (Chen et al., 2021c). Our study
found decreased dALFF in the right precuneus and speculated that it
was related to the slow processing speed of visual spatial
information. In future studies, more attention needs to be paid to
the importance of the precuneus in TAO.

In the present study, the SVM classification was adopted, and
dALFF was used as a feature to distinguish patients with active TAO
from HCs. Unfortunately, the dALFF variability in these regions
only achieved an accuracy of 45.24%–47.62% and AUCs of
0.35–0.44, indicating poor accuracy. Hence, which indicator
could be most sensitive to detecting TAO-related brain changes
has to be determined yet.

There were some limitations to the present study. First, the
sample size was small. Second, this study recruited patients with
active TAO to explore TAO-specific brain functional changes
without controlling for levels of thyroid hormones. Changes in
thyroid hormone have short- and long-term effects on brain
function (Gobel et al., 2020). Other studies that recruited patients
with TAO and in a hematologically euthyroid state (Chen et al.,
2021d; Jiang et al., 2022; Zhou et al., 2022), or those that performed
longitudinal monitoring of thyroid hormone levels, may provide
additional evidence for understanding the role of thyroid hormones
in the visual and cognitive impairments seen in TAO.

In conclusion, this study found that in the pathogenesis of TAO,
the dALFF in visual cortex and ventral and dorsal pathways
decreased. This might indicate that patients with TAO may need
to consider neuroprotective therapy in the future.
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Background: Artificial intelligence (AI) is used in ophthalmological disease
screening and diagnostics, medical image diagnostics, and predicting late-
disease progression rates. We reviewed all AI publications associated with
macular edema (ME) research Between 2011 and 2022 and performed
modeling, quantitative, and qualitative investigations.

Methods:On 1st February 2023, we screened theWeb of Science Core Collection
for AI applications related to ME, from which 297 studies were identified and
analyzed (2011–2022). We collected information on: publications, institutions,
country/region, keywords, journal name, references, and research hotspots.
Literature clustering networks and Frontier knowledge bases were investigated
using bibliometrix-BiblioShiny, VOSviewer, and CiteSpace bibliometric platforms.
We used the R “bibliometrix” package to synopsize our observations, enumerate
keywords, visualize collaboration networks between countries/regions, and
generate a topic trends plot. VOSviewer was used to examine cooperation
between institutions and identify citation relationships between journals. We
used CiteSpace to identify clustering keywords over the timeline and identify
keywords with the strongest citation bursts.

Results: In total, 47 countries published AI studies related to ME; the United States
had the highest H-index, thus the greatest influence. China and the United States
cooperated most closely between all countries. Also, 613 institutions generated
publications - the Medical University of Vienna had the highest number of studies.
This publication record and H-index meant the university was the most influential
in the ME field. Reference clusters were also categorized into 10 headings: retinal
Optical Coherence Tomography (OCT) fluid detection, convolutional network
models, deep learning (DL)-based single-shot predictions, retinal vascular disease,
diabetic retinopathy (DR), convolutional neural networks (CNNs), automated
macular pathology diagnosis, dry age-related macular degeneration (DARMD),
class weight, and advanced DL architecture systems. Frontier keywords were
represented by diabetic macular edema (DME) (2021–2022).

Conclusion: Our review of the AI-related ME literature was comprehensive,
systematic, and objective, and identified future trends and current hotspots.
With increased DL outputs, the ME research focus has gradually shifted from
manual ME examinations to automatic ME detection and associated symptoms. In

OPEN ACCESS

EDITED BY

Xiaomeng Li,
Hong Kong University of Science and
Technology, Hong Kong, SAR China

REVIEWED BY

Yongjin Zhou,
Shenzhen University, China
Qiang Ao,
Sichuan University, China

*CORRESPONDENCE

Weihua Yang,
benben0606@139.com

Shaochong Zhang,
zhangshaochong@gzzoc.com

Yan Lou,
ylou04@cmu.edu.cn

RECEIVED 14 April 2023
ACCEPTED 02 May 2023
PUBLISHED 15 May 2023

CITATION

Feng H, Chen J, Zhang Z, Lou Y, Zhang S
and Yang W (2023), A bibliometric
analysis of artificial intelligence
applications in macular edema: exploring
research hotspots and Frontiers.
Front. Cell Dev. Biol. 11:1174936.
doi: 10.3389/fcell.2023.1174936

COPYRIGHT

© 2023 Feng, Chen, Zhang, Lou, Zhang
and Yang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 15 May 2023
DOI 10.3389/fcell.2023.1174936

299

https://www.frontiersin.org/articles/10.3389/fcell.2023.1174936/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1174936/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1174936/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1174936/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1174936&domain=pdf&date_stamp=2023-05-15
mailto:benben0606@139.com
mailto:benben0606@139.com
mailto:zhangshaochong@gzzoc.com
mailto:zhangshaochong@gzzoc.com
mailto:ylou04@cmu.edu.cn
mailto:ylou04@cmu.edu.cn
https://doi.org/10.3389/fcell.2023.1174936
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1174936


this review, we present a comprehensive and dynamic overview of AI in ME and
identify future research areas.

KEYWORDS

bibliometric analysis, deep learning, artificial intelligence,macular edema, ophthalmology,
machine learning

1 Introduction

Macular edema (ME) is a common, critical disease caused by
retinal vein occlusion, diabetic retinopathy (DR), chronic uveitis,
and eye injury, of which, macular lesions are the leading cause of
disease. Clinically significant ME is manifested by retinal thickening
which impacts the macula center, is defined by central retinal
thickness >250–300 μm, and examined using Optical Coherence
Tomography (OCT) (Hee et al., 1995). ME also involves fluid
accumulation in retinal layers which is a common morphological
manifestation in different retinal diseases (Daruich et al., 2018).
Therefore, it is vital to quantitatively analyze ME research areas, the
disease status quo, and future prospects related to disease
progression.

Bibliometrics is used to analyze different knowledge carriers
using mathematics and statistics (Cancino et al., 2017). It evaluates
development trends in target disciplines/scientific fields by
analyzing database and document characteristics to identify
research hotspots and key research directions. In recent years,
bibliometric analysis have been successfully used in orthopedics,
ophthalmology, and gynecology (Qiu et al., 2018; Huang et al., 2020;

He J. et al., 2021). Additionally, the approach is invaluable for
writing guidelines, making clinical decisions, and importantly,
treating different diseases. However, bibliometric analyses related
to ME in ophthalmology remains under-studied (Narotsky et al.,
2012; Seriwala et al., 2015; Khan et al., 2016), therefore, we
systematically investigated this research area to characterize the
status quo and identify research hotspots.

2 Materials and methods

On 1st February 2023, we downloaded data from the Web of
Science Core Collection (2011–2022) using: “machine learning”
OR “deep learning” OR “convolutional neural network*” OR
“CNN*” OR “Recurrent neural network*” OR “RNN” OR “Fully
Convolutional Network*” OR “FCN*” search terms. The parallel
search subject was ME and relevant studies included basic
information on: authors, abstracts, keywords, titles,
institutions, journals, countries/regions, and references.
Indexed database studies were included, but meeting
abstracts, book chapters, data papers, proceedings, editorials,

FIGURE 1
Study flow chart showing bibliometric analyses and selection criteria of macular edema studies.
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and repeat articles, and unpublished studies containing limited
data were excluded. A summary of this process is shown
(Figure 1).

We also examined publication characteristics: keywords,
institutions, countries/regions, and journals. We also used the
H-index which evaluates the scientific value of research and
measures author/journal scientific productivity (Eyre-Walker and
Stoletzki, 2013). To represent collaborative networks across
journals/institutes/countries/keywords and facilitate co-occurrence
investigations, we used R language bibliometrics software (Massimo
Aria and Corrado Cuccurullo), CiteSpace (Drexel University, PA,
United States), and VOSviewer (Leiden University, Holland). The R
language bibliometric package is widely used in statistical
computation and graphics (Aria and Cuccurullo, 2017) and was
used to extract the top 10 keywords and cluster them into themes/
evolution/hierarchical clustering/topic trends. From collaborative
data, we used the VOSviewer to provide a comprehensive and
detailed view of bibliometric maps. We also generated a
cooperation relationship diagram between institutions and also a
reference relationship diagram between foresight to analyze
cooperation outputs between institutions and reference
relationships between disciplines. CiteSpace was used to
investigate knowledge from the literature and visualize data
(Chen, 2004). We also generated knowledge maps, performed
discipline evolution analyses, and determined burst keywords
(BKs) to identify recurrent keywords.

3 Results

3.1 Study distribution (year of publication)

We observed that AI in ME research commenced in 2011. From
2011 to 2022, we identified 297 papers and identified AI-associated ME
publication trends (Figure 2). While this type of research emerged in
2011, it fell silent from 2012 to 2015. However, from 2016, in-depth
learning approaches combined with ophthalmology led to increased
ME research outputs, and paper outputs increased year on year
suggesting an important research trend had been established.

3.2 Institutes/countries/regions

Forty-seven countries/regions published ME studies - the top
10 countries (Table 1) and collaborations (Figures 3, 4) are indicated.
China published the most studies (101), then the United States (73),
India (48), and the United Kingdom (23). Some countries
(United States, China, and the United Kingdom) showed high
centrality (dark blue—Figure 3) suggesting important regional
roles in/contributions to ME research. H index is a mixed
quantitative index, which can be used to evaluate the quantity
and level of academic output of a country or institution. Because
the United States has the highest H-index, it has the greatest
influence in the field of macular edema.

FIGURE 2
Macular edema publications; publication trends between 2011 and 2022 (publication years).
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In total, 613 institutes generated ME publications; the top ten are
shown (Table 1). Institutions are also outlined (Figure 5). The Medical
University of Vienna had the most publications (15), followed by the
National University of Singapore (12), the University of California (12),
and the Singapore National Eye Center (11).

We also cataloged research institutions with outstanding
contributions to the ME field (Figure 5) using VOSviewer.
Regional institutional distributions showed distinct aggregation
effects, indicating that academic research was concentrated to a
few countries. From a literature perspective, most institutions were
based in universities and scientific research institutions and
generally reflected the ME research status. A possible reason

could be that the ME research field is highly academic in nature
and not currently economically feasible, thus enterprises and other
institutions may currently eschew the field. The Medical University
of Vienna and the National University of Singapore were major
prominent organizations which had significant ME research
outputs.

3.3 Journals

Across all academic fields, knowledge exchange in/between
fields is often reflected in reference relationships between

TABLE 1 Top ten institutions and countries/regions.

Rank Countries/Regions Count Citations H-index Institutions Count H-index

1 China 101 3,286 23 Medical University Of Vienna 15 11

2 United States 73 7,302 28 National University Of Singapore 12 10

3 India 48 4,026 14 University Of California System 12 7

4 England 23 1,419 10 Singapore National Eye Center 11 9

5 Singapore 21 718 11 Shanghal Jiao Tong University 10 6

6 Saudi Arabia 18 157 7 Egyptian Knowledge Bank EKB 9 3

7 Australia 17 613 8 Indian Institute Of Technology System IIT System 9 7

8 Austria 17 1,011 11 Isfahan University Medical Science 9 5

9 Pakistan 15 157 8 Shantou University 9 4

10 Iran 14 349 7 Cleveland Clinic Foundation 8 6

FIGURE 3
Collaboration map showing how countries/regions contributed to/collaborated on macular edema publications.
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academic journals. Citing papers are knowledge frontiers, while
referenced papers are knowledge bases. As indicated (Figure 6;
Table 2), the major journals contributing to ME research
included, Biomed Opt Express, Ieee T Med Imaging,
Ophthalmology, Med Image Anal, and Invest Ophth Vis
Sci—with high centrality, these were the most popular journals
publishing ME research.

A journal dual-map overlay (Figure 7) showed citing (left) and
cited (right) journals, while citation associations were indicated by
colored lines—these investigations demonstrated that studies in
computer/medicine/molecular journals were typically cited in
ophthalmology/mathematics/clinical journals.

3.4 References

Reference analysis is an important index in bibliometric—typically,
often-cited studies significantly impact certain research areas. Therefore,
we used Citespace to cluster references from data to generate a reference
clustering diagram (with a timeline) to analyze ME research.

A co-citation reference network was used to assess the relevance
of studies (Figure 8). Cluster setting: g-index K = 5 and #years/slice =
1. The modularity Q score was 0.8306 (>0.5), thus the network was
adequately split into loosely coupled clusters. Theweightedmean silhouette
score was 0.9621 (>0.5), thus cluster homogeneity was reasonable.

Index items, as cluster markers, were extracted from studies. The
largest clusters were cluster #0 “retinal oct fluid detection” (Lee et al.,
2017; Venhuizen et al., 2018; Girish et al., 2019), cluster #1
“convolutional network model” (Gargeya and Leng, 2017; Porwal
et al., 2020; Singh and Gorantla, 2020; Dai et al., 2021), cluster #2
“deep learning-based single-shot prediction” (Rasti et al., 2018; Das
et al., 2019; Tsuji et al., 2020), cluster #3 “retinal vascular disease”

(Karri et al., 2017; Ehlers et al., 2019; Figueiredo et al., 2020; Rasti
et al., 2020), cluster #4 “diabetic retinopathy” (Ting et al., 2017;
Raumviboonsuk et al., 2019; Ting et al., 2019), cluster #5
“convolutional neural network” (Kermany et al., 2018; Hwang
et al., 2019), cluster #6 “automated macular pathology diagnosis”
(Chang and Lin, 2011), cluster #7 “dry age-related macular
degeneration” (Kafieh et al., 2013; Srinivasan et al., 2014a; Rathke
et al., 2014; Karri et al., 2016), cluster #8 “class weight”(Wan et al.,
2018; Li et al., 2019b; Huang et al., 2019), and cluster #9 “recent
advanced deep learning architecture” (Schmidt-Erfurth et al., 2018;
Bogunovic et al., 2019; Gu et al., 2019; Lu et al., 2019).

3.5 Keywords

Keyword analyses help summarize research themes and explore
research hotspots and trends in a given field. The top 20 keywords
fromME studies are shown (Table 3). Temporal trend/hotspot shifts
(from seven keywords with the strongest citation burst) in
2016–2019; BKs were Image Analysis (2016–2019), OCT Imaging
(2017–2019), Layer Segmentation (2017–2019), and Age Related
Macular Degeneration (AMD) (2017–2019). BKs in 2020–2022 were
validation (2020), system (2020), and the hotspot, Diabetic Macular
Edema (DME) (2021–2022). (Figure 9).

4 Discussion

4.1 General data

Between 2011 and 2022, 297 ME studies, conforming to
inclusion/exclusion criteria and search terms, were identified.

FIGURE 4
Diagram showing how the most cited countries/regions contributed to/collaborated on macular edema publications.
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China generated the most studies (101, 34.007%), with the
United States in second place (73, 24.579%). Two of the top ten
institutions were in China. The most common ME publication
journal, and the major contributor to ME research, was
BIOMEDICAL OPTICS EXPRESS. The top study (cited
2,936 times) was by Gulshan et al. in JAMA-JOURNAL OF THE
AMERICAN MEDICAL ASSOCIATION (Gulshan et al., 2016).
The second top study (cited 1,474 times) was by Kermany et al. in
CELL (Kermany et al., 2018).

4.2 Knowledge base

Previously DL-related technologies and associations with ME
generated several major achievements. When co-cited references
were clustered (Figure 8), key clustering nodes were used to
identify knowledge bases in ME research: #0 “retinal oct fluid
detection,” #1 “convolutional network model,” #2 “deep
learning-based single-shot prediction,” #3 “retinal vascular
disease,” #4 “diabetic retinopathy,” #5 “convolutional neural
network,” #6 “automated macular pathology diagnosis,” #7
“dry age-related macular degeneration,” #8 “class weight,” and

#9 “recent advanced deep learning architecture.” In the following
sections, we outline knowledge bases according to different
clusters.

#0 “Retinal OCT fluid detection”; Lee et al. (2017) generated a
model formulated on encoding and decoding mechanism and
outlined improved segmentation intraretinal fluid (IRF)
methods, which showed good IRF segmentation results in
OCT images. Roy et al. (2017) developed an AI approach
(Relay Net) which segmented multiple retinal layers and
generated fluid bag descriptions in OCT eye images. The
model displayed excellent performance in object segmentation.
Fundus dropsy can lead to ME. These methods were used to
segment retinal fundus dropsy and automatically detected ME in
OCT and affected segmented parts.
#1 “Convolutional network model”; Gargeya and Leng. (2017)
designed a convolution network model to facilitate automatic DR
recognition. Abramoff et al. (2016) compared this convolutional
network with other automatic detection methods (IDx-DR X2.1)
to automatically detect DR, mainly evaluating the analysis
software that IDx-DR X2.1 runs on the server maintained and
controlled by IDx. Porwal et al. (2020) generated a dataset for

FIGURE 5
Institutional cooperation/contributions to publications.
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Indian populations with DR which provided normal retinal and
typical DR structures at pixel levels. Image information was also
provided for DR and DME severity, and facilitated image
algorithm development and evaluations for early DR
detection. DR is one of the most common diabetic
microvascular complications. Retinal microvascular leakage
and occlusions caused by chronic progressive diabetes causes
different fundus diseases. DR is one of the main inducements of
ME. Importantly, automated DR screening combined with a
convolutional network model can effectively and economically
prevent ME.
#2 “Deep learning-based single-shot prediction”; Rasti et al.
(2018) used a DL-based single-shot prediction method
(MCME) to predict macular OCT categories. The model
performed category predictions based on minimum
preprocessing requirements and helped to automatically
classify macular OCT in clinical settings. The method by
Srinivasan et al. (2014b) automatically detected diabetic ME
and DARMD in OCT images. Using Histogram of Oriented
Gradient descriptors and SVMs to classify spectral domain-OCT
images, the method may be used to remotely diagnose some
ophthalmic diseases.
#3 “Retinal vascular disease”; Karri et al. (2017) used a DL
technique to identify DME or DARMD in retinal vascular

diseases from OCT images. The strategy used transfer learning
and the pre-trained GoogLeNet as a classification model to allow
for faster convergence with less data. Li et al. (2019a) combined
four classification models to automatically detect four retinal
vascular diseases in OCT images: choroidal neovascularization,
DME, DRUSEN, and NORMAL. The method had a classification
accuracy = 0.973, which met or exceeded ophthalmologist
expectations.
#4 “Diabetic retinopathy”; a DL system by Ting et al. (2017) was
used to rapidly and accurately screen DR and related eye diseases.
Abramoff et al. (2018) diagnostically evaluated an autonomous
AI system (mtmDR) to automatically detect DR and DME; the
approach improved early DR detection rates and reduced pain
induced by vision loss and blindness. Thus, to some extent, these
methods helped limit ME.
#5 “CNN” is one of the representative DL algorithms (Gu et al.,
2018). Gulshan et al. (2016) developed a CNN algorithm to detect
DR in retinal fundus images and detect referential diagnostic
retinopathy. Kermany et al. (2018) formulated an effective
transfer learning algorithm which processed medical images
and identified key pathology traits in images. The algorithm
was primarily used to analyze retinal OCT images, while
combination with a CNN helped clinicians effectively
diagnose ME.

FIGURE 6
Network map showing how cited journals contributed to publications.
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TABLE 2 Top ten macular edema artificial intelligence citations.

Rank Source titles Title of References Count Interpretation of findings

1 Jama-Journal Of The American Medical
Association

Development and Validation of a Deep Learning
Algorithm for Detection of Diabetic Retinopathy

in Retinal Fundus Photographs

2,919 Detecting diabetic retinopathy (DR) using deep
learning (DL)

2 Cell Identifying Medical Diagnoses and Treatable
Diseases by Image-Based Deep Learning

1,465 Using an artificial intelligence (AI) algorithm for
retinal optical coherence tomography (OCT)

image diagnoses

3 Nature Medicine Clinically applicable deep learning for diagnosis
and referral in retinal disease

952 Establishing a referral recommendation
framework based on DL algorithms for retinal

diseases which endanger vision

4 Investigative Ophthalmology and Visual Science Improved Automated Detection of Diabetic
Retinopathy on a Publicly Available Dataset

Through Integration of Deep Learning

460 Using a convolutional network method to
automatically detect DR when compared with
other automated detection methods (IDx

DR X2.1)

5 Biomedical Optics Express Automatic segmentation of nine retinal layer
boundaries in OCT images of non-exudative
AMD patients using deep learning and graph

search

306 A new framework automatically segmenting
nine-layer boundaries in retinal OCT images

6 Biomedical Optics Express ReLayNet: retinal layer and fluid segmentation of
macular optical coherence tomography using

fully convolutional networks

297 A Relay Net strategy to segment multiple retinal
layers and delineate fluid pockets in OCT images

7 Progress In Retinal and Eye Research Artificial intelligence in retina 278 Introducing AI to the retina

8 Ophthalmology Fully Automated Detection and Quantification
of Macular Fluid in OCT Using Deep Learning

233 A DL method which automatically detects and
quantifies intra retinal cystic and subretinal fluid

9 Biomedical Optics Express Deep-learning based, automated segmentation
of macular edema in optical coherence

tomography

181 A segmentation method based on DL and
segmented intraretinal fluid

10 Progress in Retinal and Eye Research Deep learning in ophthalmology: The technical
and clinical considerations

171 Technologies and considerations are outlined for
the construction of DL algorithms in
ophthalmological/clinical settings

FIGURE 7
Dual-map overlay showing journal contributions to studies.
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#6 “Automated macular pathology diagnosis”; Chang and Lin
(2011) introduced a software package for SVM
algorithms—the LIBSVM library—which is one of the most

widely used SVM software programs. The algorithm
effectively supported automatic macular pathological
diagnoses using SVM.

FIGURE 8
Reference co-citation map showing macular edema studies (2011–2022).

TABLE 3 The top 20 keywords and associated strength data.

Rank Keyword Occurrence Link strength Rank Keyword Occurrence Link strength

1 Optical coherence tomography 110 356 11 Diabetic-retinopathy 35 108

2 Diabetic macular edema 94 329 12 Automated detection 32 138

3 Deep learning 87 337 13 Images 32 106

4 Macular edema 75 226 14 Artificial intelligence 30 136

5 Diabetic retinopathy 62 225 15 Ranibizumab 30 86

6 Degeneration 57 208 16 Retina 28 120

7 Classification 52 196 17 Prevalence 26 85

8 Segmentation 50 182 18 Fluid 25 86

9 Retinopathy 48 212 19 Diseases 24 113

10 Validation 37 156 20 Machine learning 24 96
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#7 “Dry age-related macular degeneration”; Chiu et al. (2015)
designed a method to automatically segment diabetic ME in OCT
images. The authors first estimated fluid and retinal layer
positions using a classification method based on kernel
regression, and then used classification estimates to accurately
segment retinal layer boundaries using dynamic programming
frameworks and graph theory. The method was the first to be
validated, fully-automated, seven-layered, and fluid segmented
for analyzing severe real-world DME images. Karri et al. (2016)
generated a structured learning algorithm which enhanced layer
specific-edge detection in OCT retinal images. Simultaneously,
the algorithm identified layers and corresponding edges so that
layer-specific edge computation were calculated to within 1 s.
#8 “Class weight”; Huang et al. (2019) formulated a layer-guided
CNN to classify OCT retinal images. The method was divided
into; 1), a segmentation network (ReLayNet) extracted
segmentation maps from retinal layers, and 2), two disease
related layers (RPE-BrM and ILM-RPE) were taken from layer
segmentation graphs. The network may be applied to other
retinal diseases (macular hole and macular telangiectasia) and
also retinopathy detection and segmentation.
#9 “Recent advances in deep learning architecture”; Bogunovic
et al. (2019) reviewed the standards and models used in retinal
OCT fluid detection and segmentation, and showed that >50% of
clinical teams selected UNet and its derivative model structure as
a basic network architecture to segment OCT images. Schlegl
et al. (2018) generated a DL strategy to automatically quantify
and detect subretinal fluid (SRF) and intra-retinal cystic fluid
(IRC). The method included a CNN with encoder/decoder
architecture, which identified IRC and SRF. In the ME
research field, codec structures (similar to UNet) have become
popular DL network architecture approaches.

4.3 Frontiers and hotspots

Keywords typically highlight research ideas, while BKs reflect
research frontiers and trends. Citespace captured BKs and

identified ME research frontiers; e.g., DME in 2021–2022. We
forecast these words will highlight future research frontiers ME
research.

DME represents retinal thickening or hard exudative deposition
caused by extracellular fluid accumulation in the optic disc diameter,
in the macular fovea. OCT image are important tools for diagnosing
diabetic macular disease, and AI-related methods for identifying and
segmenting disease related ME diabetes in OCT image are key
modalities for clinicians who treat and screen diseases and help
reduce medical costs.

When AI correlation methods were used to assess OCT images,
(Sunija et al., 2021; Nazir et al., 2021; Tayal et al., 2021; Wu et al.,
2021; Atteia et al., 2021) used DL to automatically recognize ME-
related lesions in OCT images. Similarly, He et al. provided accurate
image support for doctors when diagnosing ME by layering retinas
in images.

Sunija et al. (2021) used a lightweight DL algorithms to
determine if patients had DME from OCT images. The algorithm
network comprised six deep CNN layers and had accuracy and recall
rates of 99.69% and 99.69%, respectively.

He Y. et al. (2021) formulated a unified framework for
segmenting structured layer surfaces which generated
continuous structured and smooth layer surfaces, with
ordered topology, in an end-to-end DL strategy. DME was
effectively observed by layering the retinal surface, and
generating sub-pixel surface positions in single feed-forward
propagation with full connection layers, thereby improving
segmentation accuracy.

Nazir et al. (2021) proposed an automatic DR and DME
screening method. The algorithm used DenseNet-100 as the basic
CNN architecture and was greatly improved. The approach also
extracted representative information from low-intensity/noisy
images and accurately classified them.

The diagnostic method by Tayal et al. (2021) automatically
detected DME and used three different CNN models (five, seven,
and nine layer approaches) to classify and recognize four eye
diseases. The strategy generated high F1 scores, accuracy and
sensitivity outputs, and greatly reduced detection times.

FIGURE 9
Keywords with the strongest citation bursts in macular edema studies (2011–2022).
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Wu et al. (2021) developed a DL model to detect morphological
DME patterns based on OCT images using a VGG-16 network
strategy. The model was trained using ME manifestations in OCT
images (diffused retinal thickening, cystoid ME, and serous retinal
detachment) and greatly facilitated disease diagnostics.

Atteia et al. (2021) formulated a transfer-based stacked
autoencoder neural network system, which used four standard
pre-training depth networks to extract information from small
input datasets. With a maximum classification accuracy = 96.8%
and specificity = 95.5%, the approach allowed clinicians to
automatically detect and diagnose DME.

5 Conclusion

We performed a bibliometric investigation of ME research
related to DL, machine learning, FCN, CNN, RNN, and other AI
fields. We identified the ME knowledge base, future trends, and
current research hotspots. The knowledge base included: retinal
OCT fluid detection, convolutional network models, DL-based
single-shot predictions, retinal vascular disease, DR, CNNs,
automated macular pathology diagnosis, DARMD, class
weight, and recent advances in DL architecture. DME was also
identified as a future research trend and Frontier. The current
research focuses on disease classification in OCT images,
segmentation and segmentation of disease regions based on
OCT images.

Our study had some limitations; we only identified studies
between 2011 and 2022, therefore, some research may have been
missed, thus we possibly and inadvertently introduced publication
bias into our investigation which impacted our conclusion.
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Impacts of gender and age on
meibomian gland in aged people
using artificial intelligence
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Purpose: To evaluate the effects of age and gender on meibomian gland (MG)
parameters and the associations among MG parameters in aged people using a
deep-learning based artificial intelligence (AI).

Methods: A total of 119 subjects aged ≥60 were enrolled. Subjects completed an
ocular surface disease index (OSDI) questionnaire, received ocular surface
examinations including Meibography images captured by Keratograph 5M,
diagnosis of meibomian gland dysfunction (MGD) and assessment of lid margin
and meibum. Images were analyzed using an AI system to evaluate the MG area,
density, number, height, width and tortuosity.

Results: The mean age of the subjects was 71.61 ± 7.36 years. The prevalence of
severe MGD andmeibomian gland loss (MGL) increased with age, as well as the lid
margin abnormities. Gender differences of MG morphological parameters were
most significant in subjects less than 70 years old. The MG morphological
parameters detected by AI system had strong relationship with the traditional
manual evaluation ofMGL and lidmargin parameters. Lidmargin abnormities were
significantly correlated with MG height and MGL. OSDI was related to MGL, MG
area, MG height, plugging and lipid extrusion test (LET). Male subjects, especially
the ones who smoke or drink, had severe lid margin abnormities, and significantly
decreased MG number, height, and area than the females.

Conclusion: The AI system is a reliable and high-efficient method for evaluating
MGmorphology and function. MGmorphological abnormities developedwith age
and were worse in the aging males, and smoking and drinking were risk factors.

KEYWORDS

meibomian glands, meibomian gland dysfunction, meibography, artificial intelligence,
aging

1 Introduction

Meibomian gland dysfunction (MGD) is a chronic and diffuse disease in the meibomian
glands (MG), which is the major type of evaporative dry eye disease (DED) and commonly
seen in eye clinic. It is characterized by terminal duct obstruction with or without the
abnormity of the glandular secretion, and usually accompanied by different levels of
meibomian gland loss (MGL) (Nelson et al., 2011). Among the diverse intrinsic and
external factors contributing to MGD, aging is a major one due to the development of
meibomian glands atrophy with structural and functional abnormities (Schaumberg et al.,
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2011; Yeotikar et al., 2016; Arita et al., 2017). Furthermore, the sex
hormone receptor has been found in ocular surface, through which
sex hormone regulates metabolism, gene expression and tear
secretion (Schirra et al., 2005; Suzuki et al., 2008; Versura et al.,
2015). Some population-based studies have found that the
prevalence of MGD in males is higher than that in females at
any age (Viso et al., 2011; Siak et al., 2012; Hashemi et al., 2017;
Hashemi et al., 2021). And abnormal lid margin and MG
morphology are more common in aging males (Den et al., 2006).
The effect of hormones on the ocular surface is still controversial,
since the deficiency of estrogen promotes the occurrence of dry eye
disease in females (Grasso et al., 2021; Hat et al., 2023). To analyze
the influence of gender on the MGs, we evaluated the MG
morphology and MGL level of different genders in the current
study, and the risk factors of smoking and drinking were also taken
into consideration.

At present, there has been many studies on MGD in the
elderly, but few on the changes of MG parameters. Nowadays the
clinical diagnosis of MGD still lacks objective evaluations, and
depends on the subjective judgment. Recently, the technology of
meibography has been constantly developed, and is able to
provide objective means to evaluate MG status using artificial
intelligence (AI) (Adil et al., 2019; Deng et al., 2021; Xiao et al.,
2021; Liu et al., 2022; Zhang et al., 2022). In order to obtain
objective results, we evaluated the relationship of MG
parameters identified by AI with age and gender in the
current study. We enrolled the aged people on a hospital-
based group. After collecting meibography and eye surface
examination, the deep learning model developed in our early
study (Liu et al., 2022; Zhang et al., 2022) was used to identify
gland parameters, including gland area, area density, number,
height, width and tortuosity. The associations between AI-
reported MG parameters and traditional values of MGL, lid
margin abnormities were assessed, as well as the age and gender
effects on MGD.

2 Materials and methods

2.1 Subjects

In this prospective cross-sectional study, a total of 119 subjects
aged at ≥ 60 years were recruited from the outpatient department of
the Eye Hospital of Wenzhou Medical University between
September 2020 and May 2021. The exclusion criteria included:
ocular or systemic diseases associated with dry eye disease such as
Sjögren’s syndrome, graft versus host disease, collagen angiopathy,
except MGD; any active eye disease such as infection and acute
glaucoma; a previous history of ophthalmologic surgery; structure
abnormity of the eyelid, conjunctiva and cornea; history of contact
lens wear within 6 months; history of systemic or ocular medication
treatment within 6 months such as hormones, antiallergic drugs,
immunosuppressants, except artificial tears without preservatives.
The whole procedure of the study was approved by the Institutional
Review Board of Wenzhou Medical University and adhered to the
tenets of the Declaration of Helsinki (No. 2020-096-K-83), and the
written informed consent was obtained from all subjects before
participating in the study.

All the subjects were examined by Binge Huang. Only the right
eyes were evaluated. The examinations were conducted in sequence:
1) completing an ocular surface disease index (OSDI) questionnaire;
2) noninvasive meibography by Keratograph 5M (K5M; Oculus
Optikgeräte GmbH,Wetzlar, Germany); 3) slit-lamp biomicroscopy
including diagnosis and staging of MGD and assessment of lid
margin and meibum.

2.2 Diagnosis and staging of MGD

The subjects were diagnosed with normal, asymptomatic MGD
and MGD based on the “Expert consensus of diagnosis and
treatment of meibomian gland dysfunction in China (2017)”
(China branch of Asian dry eye Association et al., 2017), in
which subjects with asymptomatic MGD were not diagnosed as
MGD. Patients with MGD were divided into 3 stages according to
condition of lid margin, meibomian gland orifices and meibum
based on the clinical judgment of the same ophthalmologist.

2.3 Meibography collection and MG
parameters detection

Meibography images of the upper and lower lids were conducted
by the noncontact infrared camera system in the K5M. The MGL
score was graded according to the meibography results as 0 (no loss
of meibomian glands), 1 (area loss was less than one third of the total
meibomian gland area), 2 (area loss was between one third and two
thirds), and 3 (area loss was more than two thirds). Both of the upper
and lower lid were examined and the total summing score was used
for analysis. And the participants were then divided into two groups
depending on the score of MGL: the low MGL group (LMGL) with
meiboscore <3, and the high MGL group (HMGL) with
meiboscore ≥3. Images of upper lid were analyzed based on a
novel MG morphology analytic system we developed recently
(Zhang et al., 2022). This AI system automatically segmented
MGs and quantitatively analyzed the MGs’ morphological
features (gland area, density, number, height, width and tortuosity).

2.4 Lid margin and meibum assessment

The lid margin and meibum examinations were conducted
according to the Arita R et al.’s grading methods (Arita et al.,
2016). Lid margin telangiectasia was graded as 0 (no sign of
telangiectasia), 1 (mild sign), 2 (moderate sign affecting <1/2 of
the lid margin) and 3 (severe sign affecting ≥1/2 of the lid margin).
Lid margin irregularity on the mucocutaneous junction was graded
as 0 (marx line (ML) does not touch the meibomian orifice (MO)), 1
(parts of ML touch MOs), 2 (ML crosses MOs), 3 (ML touches the
lid margin side of MOs). Lid margin thickness was assessed as 0 (no
thickening), 1 (mild thickening) and 2 (severe thickening). MO
plugging was graded as 0 (no sign of plugging), 1 (mild covering on
the MOs), 2 (moderate plugging and hunch), 3 (severe plugging or
atrophy). Lipid extrusion test (LET) was used to evaluate the degree
of ease with whichmeibum could be expressed and the scores of LET
at the central area of both upper and lower lid were added together:
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grade 0, clear meibum readily expressed; grade 1, cloudy meibum
expressed with mild pressure; grade 2, cloudy meibum expressed
with more than moderate pressure; 3, meibum could not be
expressed even with strong pressure (Shimazaki et al., 1998). The
meibum quality from the 8 MOs at the central area of the lower lid
was assessed: grade 0, clear meibum expressed with digital pressure;
grade 1, cloudy meibum expressed; grade 2, cloudy meibum
expressed with granules; 3, thick meibum expressed. The scores
of the 8 MOs were summed for analysis.

2.5 Statistical analysis

Statistical analysis was performed using the SPSS statistics 26.0
(IBM corp., Armonk, NY, USA). Values were expressed as the
mean ± standard deviation (SD) or range or median
(interquartile range [IQR]). Normal distribution of data was
tested using Shapiro Wilk test. Independent sample t-test and
one-way ANOVA with LSD correction were used for comparison
when the variance was homogeneous, or otherwise the Mann-
Whitney U rank test. Spearman correlation analysis was
conducted to evaluate the strengths of association between the
parameters. Differences in prevalence among categorical variables
were compared using the Chi Square test. Two-tailed p < 0.05 was
considered as a statistically significant difference.

3 Results

A total of 119 aging subjects (119 eyes; 46 males, 73 females)
were identified. The mean age of the participants was 71.61 ± 7.36
(mean ± standard deviation) years (range: 60-89 years). 95.8%
subjects were initially diagnosed with dry eye syndrome based on

the OSDI score (26.98 ± 10.27 points) (Grubbs et al., 2014). There
was no significant difference between genders (male: 26.780 ±
12.220, female: 27.110 ± 8.905, p = 0.873) in OSDI score.
Figure 1 shows the workflow of the deep learning model for
predicting morphological parameters from K5M images and
provides two typical cases of predicted meibomian gland
segmentation and parameters estimation for the upper lids. The
tarsus segmentation model was based on Mask R-CNN (He et al.,
2020). The ResNet50_U-net was reported previously (Zhang et al.,
2022).

3.1 The associations between MG
parameters

The correlations between the AI reported meibomian gland
morphology parameters (MG area, density, number, height, width
and tortuosity), lid margin parameters (telangiectasia, irregularity,
thickening, plugging and LET), meibum score, MGL and OSDI
score were evaluated (Figure 2). Among the MG morphology
parameters, the MG height showed the strongest correlation with
all the lid margin parameters (r < −0.212, p < 0.020); MG area was
relevant with plugging (r = −0.19, p = 0.038); MG density was
relevant with irregularity (r = −0.185, p = 0.044), thickening
(r = −0.165, p = 0.008) and LET (r = −0.164 p = 0.032). OSDI
score had relations with MGL (r = 0.261, p = 0.004), MG area
(r = −0.205, p = 0.025), MG height (r = −0.233, p = 0.011), plugging
(r = 0.255, p = 0.005) and LET (r = 0.240, p = 0.009), but not
significant withMG density (r = −0.170, p = 0.064). Furthermore, we
found MGL were highly correlated with MG area (r = −0.686, p <
0.001), density (r = −0.689, p < 0.001), number (r = −0.531, p <
0.001), height (r = −0.707, p < 0.001), tortuosity (r = 0.193, p =
0.036), telangiectasia (r = 0.262, p = 0.004), irregularity (r = 0.368,

FIGURE 1
Overall pipeline of the deep learning-based artificial intelligence for predicting morphological parameters from K5M images. (A1) an original
meibography image of the upper lid from a normal subject, (B1) an original meibography image of the upper lid from a patient with HMGL, (A2/B2) the AI
predicted boundaries of the tarsus, (A3/A4/B3/B4) the AI predicted segmentation MGs. Notes: ROI, region of interest; MG, meibomian gland.
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FIGURE 2
Spearman Correlation of MG parameters and OSDI. Notes: MG, meibomian gland; LET, lipid extrusion test; MGL, meibomian gland loss; OSDI,
Ocular Surface Disease Index questionnaire. * p < 0.05; ** p < 0.01; *** p < 0.001.

TABLE 1 Spearman Correlation of MG parameters with age (mean ± standard deviation).

60-69 (N = 52) 70-79 (N = 50) 80-89 (N = 17) R P

Morphological parameters

Area 44580.596 ± 20039.422 43229.740 ± 22284.460 33976.235 ± 21592.014 −0.100 0.280

Density 0.154 ± 0.065 0.140 ± 0.068 0.127 ± 0.073 −0.102 0.269

Number 15.620 ± 3.986 14.880 ± 5.583 12.120 ± 5.555 −0.208 0.023

Height 134.103 ± 36.834 131.940 ± 45.13 116.180 ± 39.801 −0.113 0.220

Width 20.072 ± 3.899 20.897 ± 3.822 21.446 ± 4.360 0.145 0.116

Tortuosity 0.312 ± 0.071 0.321 ± 0.166 0.280 ± 0.070 −0.078 0.396

Lid margin abnormality parameters

Telangiectasia 0.870 ± 0.627 1.460 ± 0.908 1.410 ± 0.795 0.229 0.012

Irregularity 0.730 ± 1.012 1.180 ± 0.873 1.290 ± 1.105 0.341 <0.001
Thickening 0.250 ± 0.519 0.600 ± 0.670 0.470 ± 0.514 0.266 0.003

Plugging 0.750 ± 0.837 1.280 ± 1.031 1.650 ± 1.115 0.291 0.001

LET 1.400 ± 1.287 1.500 ± 1.298 1.060 ± 1.435 −0.020 0.831

Others

Meibum Score 9.310 ± 5.147 9.420 ± 5.897 11.880 ± 5.611 0.114 0.215

MGL 2.810 ± 1.522 3.380 ± 1.772 3.530 ± 1.700 0.235 0.010

Notes: MG, meibomian gland; LET, lipid extrusion test; MGL, meibomian gland loss.
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p < 0.001), thickening (r = 0.301, p < 0.001), plugging (r = 0.374, p <
0.001), LET (r = 0.300, p < 0.001), meibum score (r = 0.208, p =
0.023). Thus, AI system is able to output reliable MG morphology
parameters, which have strong association with the traditional
manual evaluation of MGL and lid margin parameters but are
more efficient and objective.

3.2 Age was a risk factor for MGD and MGL

Among the meibomian gland parameters, the number of MGs
degenerated with age significantly, which decreased from 15.62 ±
3.99 in subjects aged 60-69 years to 12.12 ± 5.56 in those aged 80-
89 years (r = −0.208, p = 0.023) (Table 1). And the MGL level and
parameters of the lid margin including the telangiectasia,
irregularity, thickening and plugging, also aggravated with age
with significant correlations (r ≥ 0.229, p ≤ 0.012) (Table 1).

With age grows, the severity of MGD increases. The percentage
of severe MGD (level Ⅱ and Ⅲ) was highest in subjects aged 80-

89 years (9.6% in 60-69, 32.0% in 70-79, 35.2% in 80-89, see
Figure 3A), and the MG parameters including gland area,
density, number and height, decreased with the MGD level
increased (Figure 3B). Besides, there was a strong correlation
between MGD severity and age (r = 0.350, p < 0.001), and the
proportion of HMGL subjects also increased with age (Figure 4A).
Themean age of patients with LMGLwas 69.49 ± 6.61, and themean
age of patients with HMGL was 73.1 ± 7.54 (p = 0.008). And the
gland area, density, number and height, were much lower in HMGL
subjects than the LMGL group (p < 0.001) (Figure 4B).

3.3 MG morphology differs in aging males
and females

AI found that there were significant differences in MG number,
height, and area between the aging males and females, and the values
were all much lower in the male group (p < 0.001) (Figure 5).
Correspondingly, the MGL and lid margin parameters including

FIGURE 3
Percent of different severity of MGD in different gender and age groups (A) andmean ± standard deviation of MGmorphological parameters in each
severity group (B). Notes: MGD, meibomian gland dysfunction. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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telangiectasia, irregularity, thickening, plugging, were also severely
higher in the males (p ≤ 0.034) (Figure 5). Among the 46 male
subjects, 22 (47.8%) were diagnosed with MGD, of which 34.8%
were moderate or severe; of the 73 female subjects, 30 (41.1%) were
MGD, in which 15.0% were moderate or severe (Figure 3A). The
severity of male MGD was significantly higher than that of female
(Chi square test: χ2 = 7.899, p = 0.048). These results demonstrated
that the MG morphology and function were significantly worse in
aging males compared with the females. And with the severity of
MGD increases, the AI reported values of MG area, density, number
and height decreases significantly (p < 0.05).

Besides, the ratio of HMGL subjects was much higher in males
(36/46, 78.26%) than that in the females (34/73, 46.6%) (Chi square
test: χ2 = 11.696, p = 0.001) (Figure 4A). And in different age groups,
the differences in MGmorphology, lid margin parameters and MGL
level were significant between the males and females, and they were
the most marvelous in the 70-79 years age groups (Figure 6).

Then we found that smoking and drinking were both risk factors
associated with the worse MG presentations in the males. The aging
males who smoke showed significant higher levels of lid margin

thickening (p = 0.006) and plugging (p < 0.001), and the ones who
drinks presented greater meibum score (p = 0.006) (Figure 7).

4 Discussion

Although many standardized grading scales have been
developed to assess the morphology severity of MGs at present
(Arita et al., 2009; Daniel et al., 2019; Wang et al., 2022), the scores
are based on the subjective judgment of the examiner. AI has been
found of excellent accuracy, efficiency and consistency to evaluate
MG parameters, helping to diagnosis and even preclinical diagnosis
of MGD (Fasanella et al., 2016; Xiao et al., 2021; Zhang et al., 2021).
The current study explored the influence of age and gender on MG
morphology and correlations among MG parameters in the elderly
based on an AI system.

Recently, the development and combination of meibography and
AI technology have provided the possibility for objective and efficient
identification of MG parameters (Deng et al., 2021). K5M is a non-
invasive infrared meibography used routinely in clinical to evaluate

FIGURE 4
Percent of HMGL andHMGL in different gender and age groups (A) andmean ± standard deviation of MGmorphological parameters in each severity
group (B). Notes: MGL, meibomian gland loss; LMGL, low MGL; HMGL, high MGL. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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morphology of MGs. It could generate the MG results in 1 min
without any discomfort. Koh et al. (Koh et al., 2012) firstly reported an
algorithm to output MG results from K5M images in 2012,
incorporating a deep learning model to differentiate healthy and
unhealthy MGs to help diagnoses of MGD. Nowadays AI has been

consistently developed and is able to detect various MG parameters
and minimize the influence of artifacts (Maruoka et al., 2020; Deng
et al., 2021). In the current study, we applied a deep learning model,
which was reported previously (Liu et al., 2022; Zhang et al., 2022) to
segment MGs from images and compute MG parameters. The

FIGURE 5
Comparison of MG parameters between male and female groups. Bar plots with mean ± standard deviation were used to show scale variables and
violin plots were used to show ordinal variables. * p < 0.05; ** p < 0.01; *** p < 0.001.
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proposed MG density can diagnose MGD with high sensitivity
and specificity. The results show that the area, density, number
and height of MGs present strong negative correlation coefficient
with the subjective parameter of MGL, indicating that the AI
generated MG parameters are reliable consistent with the
traditional evaluation of MGL. In addition, the values of MG
area, density, number and height were uniformly associated with
the severity of MGD. However, there was a discrepancy in our
results that the MG morphological parameters of normal and
asymptomatic MGD group were lower than those of mild MGD
group. It was possible that some patients with significant
abnormal morphology of MG or MGL, may report no
symptoms and were diagnosed as non-MGD.

The decreases in MG height, width and number lead to MGL,
and lid margin abnormalities are also associated with MGL
development (Arita et al., 2008; Ha et al., 2021). Our results
found that, lid margin telangiectasia, irregularity, thickening,
plugging and LET were significantly correlated with MG height
andMGL level but notMGwidth or number, demonstrating that the
MG height might be more sensitive to reflect MGL in patients with
abnormal lid margin. In addition, we found MG density may have

higher correlation with the change of lid margin parameters than
MG area. These results indicate that the MG height and density have
more clinical significance than other parameters, and may be helpful
for the diagnosis and severity assessment of MGD.

The OSDI is a 12-item questionnaire designed to assess
ocular symptoms related to dry eye disease and their effect on
vision function. Our results found that OSDI was associated to
MGL, MG area, MG height, lid margin plugging and LET.
However, it was of no difference between the males and
females, but the MG parameters and the severity of MGD and
MGL were significantly different between them. The reasons for
these discrepancies are unclear. Daniel et al. (Daniel et al., 2019,
Daniel et al., 2020) found no morphological features of MG
related to OSDI in patients with moderate to severe dry eye
disease. Adil et al. (Adil et al., 2019) also found OSDI did not
correlate with any MG morphologic parameter in MGD patients,
however the OSDI at different meibogrades had statistical
differences. Their results were not contradictory to ours on
the base of different design and subjects.

Sex hormones modulate gene expression in MGs and play an
important role in ocular surface health (Schirra et al., 2005; Suzuki

FIGURE 6
Comparison of meibomian gland and ocular surface parameters of males and females in different age groups. * p < 0.05; ** p < 0.01; *** p < 0.001.

FIGURE 7
The influence of smoking on the (A) thicken of MGs and (B) the plugging of MOs, and (C) drinking on themeibum score in aging males. * p < 0.05; **
p < 0.01; *** p < 0.001; **** p < 0.0001.
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et al., 2008). Epidemiological data shows the prevalence rates of
MGD ranging from 39% to 68% in Asia, and mainly in the elderly
and male (Siak et al., 2012; Alghamdi et al., 2016; Hashemi et al.,
2017). In the current study, the prevalence of symptomatic MGD
and HMGL in aging males were much higher than that in the
females. And most of the MG parameters of aging males were
worse than those of the females. Studies have shown that
androgens promote meibum secretion, which leads to higher
incidence of dry eye disease in women and obstructive MGD in
older men (Schirra et al., 2005). The effect of estrogen on the
ocular surface is still controversial. It is generally accepted that
excessive exposure and deficiency of estrogen promote the
occurrence of dry eye disease (Schirra et al., 2009; Versura
et al., 2015). So we speculated that the habits of smoking and
drinking may play a more important role on MGD and MGL
development, since the subjects who smoke in the male group had
significant higher levels of lid margin thickening and plugging,
and the ones who drinks had greater meibum score. None of the
females in the current study had the habit of smoking or drinking.
Similarly, it was reported that smoking index was significantly
correlated with the scores of lid margin abnormality and meibum
(Wang et al., 2016), and smoking is associated with dry eye and
MGD (Carreira et al., 2022).

Several previous studies have reported the prevalence of MGD
increases with age (Siak et al., 2012; Alghamdi et al., 2016; Hashemi
et al., 2017), which was consistent with our results. And in the aging
people over 60 years old, MG function became severely worse with
age climbs, especially for the lid margin abnormities, MGL level and
MG number, which was in accordance with previous reports (Arita
et al., 2008; Ban et al., 2013). In addition, the sample size of the
current study could be enlarged in the following investigations to
exert stronger conclusions, and we aim to improve the AI system to
reduce the impact of artifacts and exploring more MG parameters of
clinical value in the next step.

Collectively, the AI system is a reliable and fast method for
evaluatingMG parameters. Using this method, we found gender and
age influenced various MG parameters, and were risk factors for the
health of MGs in the elderly.
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Introduction: The purpose of this study is to assess the relationship between
retinal vascular characteristics and cognitive function using artificial intelligence
techniques to obtain fully automated quantitative measurements of retinal
vascular morphological parameters.

Methods: A deep learning-based semantic segmentation network ResNet101-UNet
was used to construct a vascular segmentationmodel for fully automated quantitative
measurement of retinal vascular parameters on fundus photographs. Retinal
photographs centered on the optic disc of 3107 participants (aged 50–93 years)
from the Beijing Eye Study 2011, a population-based cross-sectional study, were
analyzed. The main parameters included the retinal vascular branching angle, vascular
fractal dimension, vascular diameter, vascular tortuosity, and vascular density.
Cognitive function was assessed using the Mini-Mental State Examination (MMSE).

Results: The results showed that themeanMMSE score was 26.34 ± 3.64 (median:
27; range: 2–30). Among the participants, 414 (13.3%) were classified as having
cognitive impairment (MMSE score < 24), 296 (9.5%) were classified as mild
cognitive impairment (MMSE: 19–23), 98 (3.2%) were classified as moderate
cognitive impairment (MMSE: 10–18), and 20 (0.6%) were classified as severe
cognitive impairment (MMSE < 10). Compared with the normal cognitive function
group, the retinal venular average diameter was significantly larger (p= 0.013), and
the retinal vascular fractal dimension and vascular density were significantly
smaller (both p < 0.001) in the mild cognitive impairment group. The retinal
arteriole-to-venular ratio (p = 0.003) and vascular fractal dimension (p = 0.033)
were significantly decreased in the severe cognitive impairment group compared
to the mild cognitive impairment group. In the multivariate analysis, better
cognition (i.e., higher MMSE score) was significantly associated with higher
retinal vascular fractal dimension (b = 0.134, p = 0.043) and higher retinal
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vascular density (b = 0.152, p = 0.023) after adjustment for age, best corrected
visual acuity (BCVA) (logMAR) and education level.

Discussion: In conclusion, our findings derived from an artificial intelligence-based
fully automated retinal vascular parameter measurement method showed that
several retinal vascular morphological parameters were correlated with cognitive
impairment. The decrease in retinal vascular fractal dimension and decreased
vascular density may serve as candidate biomarkers for early identification of
cognitive impairment. The observed reduction in the retinal arteriole-to-venular
ratio occurs in the late stages of cognitive impairment.

KEYWORDS

artificial intelligence, deep learning, retinal vascular, cognitive function, cognitive
impairment

Introduction

Cognitive impairment is the most common neurodegenerative
disorder. Severe cognitive impairment that leads to Alzheimer’s
disease and dementia ultimately manifests as an extensive loss of
cognitive ability and imposes a tremendous burden on patients,
economies, healthcare systems, and society (Prince et al., 2013;
Alzheimer’s Association, 2022). The prevalence of cognitive
impairment is high globally, its pathogenesis is complex, and
there are no effective treatments currently available. However,
evidence-based preventative methods to delay the development
and progression of the disease have been proposed. Therefore, it
is particularly important to diagnose and prevent cognitive
impairments at an early stage (Yu et al., 2020). Currently, the
diagnosis of cognitive impairment relies on the detection of
serum and protein biomarkers, examination of cerebrospinal
fluid (CSF), and positron emission tomography (PET) scans. As
a result of their high cost, high level of risk to patients posed by
invasive procedures, high level of technical difficulty, and
considerable time costs, these diagnostic procedures are not
appropriate for early large-scale screening of the disease (Jack
et al., 2018; Polanco et al., 2018; Fish et al., 2019). Consequently,
it is essential to discover effective, noninvasive, easy-to-implement,
and cost-efficient biomarkers that can identify individuals with
cognitive impairment in its early stages to allow timely
interventions to prevent or delay the onset of dementia.

Vascular diseases are a risk factor for cognitive impairment (Reitz
et al., 2011; Ngolab et al., 2019). Previous studies have demonstrated that
vascular risk factors affecting the cerebral microcirculationmay also play
a significant role in cognitive impairment (Czakó et al., 2020; Sur et al.,
2020). In the majority of cases characterized by cognitive impairment,
variations in cerebral microvascular characteristics, such as increased
tortuosity and arteriolar narrowing, and their association with
degenerative changes have been reported (Liesz, 2019; O’Neill et al.,
2021). There are many similarities between the retina and the brain,
including their physiological characteristics, embryological origins,
cellular resemblances, precise neuron cell layers, and microvasculature
(Xie et al., 2023). As a window to the brain, the retina offers an excellent
opportunity for researchers to investigate the pathogenesis of numerous
ophthalmic and neurodegenerative diseases (Snyder et al., 2021; Zhang
et al., 2021). Accumulating reports of retinal imaging utilizing various
imaging techniques have revealed a correlation between retinal vascular
alterations and the incidence of cognitive impairment (Patton et al., 2005;

Ravi Teja et al., 2017; Ngolab et al., 2019; Wu et al., 2020). However, it
has been determined that some of the findings of these reports are
inconsistent, and so the relationship between retinal vascular parameters
(e.g., retinal vascular diameter, retinal vascular tortuosity, etc.) and
cognitive function remains controversial. We therefore conducted a
study to further clarify the relationship between retinal vascular
parameters and cognitive function.

Retinal fundus photography is a valuable technique for the quick
assessment of retinal vascular characteristics. In the last two decades,
computer programs developed for medical imaging have made it
possible to perform a number of computer-based measurements on
retinal fundus photography and ultimately demonstrate a
relationship between retinal vascular changes and clinical
characteristics (Cheung et al., 2011a; Dervenis et al., 2019). With
the help of computer-assisted analysis programs, characteristics of
the retinal vasculature, including fractal dimension, tortuosity, and
vessel caliber, can be assessed quantitatively (Cheung et al., 2011b).
Nevertheless, until recently, the majority of quantitative
measurements have been carried out with the assistance of
semiautomated retinal vessel measurements software, such as
SIVA, IVAN, and VAMPIRE (Trucco et al., 2015; Chan et al.,
2017; Czakó et al., 2020). These methods involve manual input and
adjustment by qualified technicians, are time-consuming and prone
to error, and are therefore inefficient (McGrory et al., 2018; Mautuit
et al., 2022).

In recent years, deep learning algorithms have proven superior
performance in assessing diabetic retinopathy and other retinal
characteristics (Ting et al., 2017; Dong et al., 2022). In this study,
we developed a deep learning model to perform fully automated
segmentation of retinal vessels and quantitatively evaluate retinal
vessel parameters, including retinal vessel diameter, retinal vessel
curvature, retinal vessel fractal dimension, retinal vessel density, etc.
We described retinal vascular characteristics that may serve as
candidate biomarkers for the early identification of cognitive
impairment as well as for the progression of the disease.

Materials and methods

Study population

The Beijing Eye Study 2011 is a cross-sectional population-based
study that was conducted in five communities in the urban district in

Frontiers in Cell and Developmental Biology frontiersin.org02

Shi et al. 10.3389/fcell.2023.1174984

322

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1174984


northern central Beijing and in three communities in the village area
in southern Beijing. A detailed description of the population and the
design of the study has been provided previously (Liu et al., 2010;
Yan et al., 2015). Among 4,403 eligible individuals, 3,468 individuals
[response rate: 78.8%; females: 1,963 (56.6%); mean age: 64.6 ±
9.8 years; median age: 64 years; age range: 50–93 years] participated
in the study. The Medical Ethics Committee of Beijing Tongren
Hospital approved the study protocol, and all participants gave
informed written consent in accordance with the Declaration of
Helsinki. The ethics committee confirmed that all methods were
performed in accordance with the relevant guidelines and
regulations.

Ophthalmic and general examinations

All examinations were conducted in the communities at either
schoolhouses or community houses. Participants in the study were
interviewed by trained research technicians and completed
standardized questionnaires. The interview included standardized
questions on demographics and socioeconomic factors, such as age,
sex, education level, current smoking status, and systemic disease
histories, such as arterial hypertension, diabetes mellitus,
cardiovascular disease, and infarction (including both myocardial
infarction and brain infarction). The education levels of participants
were classified as “illiteracy,” “partial illiteracy with knowledge of

FIGURE 1
A flow chart of participant inclusion and exclusion criteria.

FIGURE 2
Diagram of retinal vessel segmentation. (A) Original image. (B) Image after pre-processing: regions of interest (ROI) were extracted, denoised,
normalized, and enhanced. (C) Retinal vessel images obtained by segmentation.
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some Chinese words,” “primary school education,” “middle school
education,” and “college or higher education.”

The ophthalmic examination included measurement of best
corrected visual acuity (BCVA) (logMAR), slit lamp-assisted
biomicroscopy of the anterior segment of the eye, and fundus
photographs centered on the optic disc (nonstereoscopic
photograph of 45° of the central fundus; fundus camera type
CR6-45NM; Canon Inc., Tokyo, Japan).

Cognitive function was assessed as a cognitive function score
using the Mini-Mental State Examination (MMSE) (Folstein et al.,
1975; Crum et al., 1993). The MMSE is a widely used and validated
screening tool for detecting cognitive impairment. In clinical
practice, it exhibits moderate to high sensitivity and specificity. It
is particularly useful when comparing individuals across a wide age
range (Folstein et al., 1975; Tombaugh and McIntyre, 1992).
Cognitive impairment was defined as an MMSE score < 24, in
line with previous studies that have demonstrated good sensitivity
and specificity at this cut point. Further grading of cognitive
impairment was performed. Mild cognitive impairment was

defined as an MMSE score ranging between 19 and 23 points,
moderate cognitive impairment was defined as an MMSE score
ranging between 10 and 18 points, and severe cognitive impairment
was defined as anMMSE score < 10 (Folstein et al., 1975; Tombaugh
and McIntyre, 1992; Liew et al., 2009; Jonas et al., 2018).

A patient was included if he or she could be evaluated with
questionnaires and MMSE scales. The exclusion criteria were as
follows: unclear bilateral fundus photographs of the eyes (inability to
clearly visualize the optic disc and retinal vasculature) that could not
be analyzed; and inability to evaluate the patient with questionnaires
and MMSE scales (Figure 1). The data of all the right eyes were
included in the current study. If a clear fundus photograph of the
right eye could not be obtained, the data from the left eye were
included.

Quantitative measurements of retinal
vascular parameters based on artificial
intelligence automatic analysis technology

Participants’ color fundus photographs centered on the optic
disc were analyzed. Included in the measurements were the
retinal vascular branching angle, vascular fractal dimension,
vascular average diameter, vascular average tortuosity, and
retinal vascular density; the vascular average diameter and
vascular average tortuosity were analyzed further in the
annular regions 0.5–1.0 papillary diameter (PD) (C1),
1.0–1.5 PD (C2), 1.5–2.0 PD (C3), and 2.0–2.5 PD (C4) from
the optic disc border. The vascular fractal dimension indicates
the branching complexity of the retinal vascular network,
reflecting the distribution of blood throughout the entire
retinal circulation, with larger values indicating branching
complexity (Liew et al., 2008). The retinal vascular average
tortuosity indicates the degree of bend in retinal vessels. A
smaller value indicates a flatter retinal vessel (Vilela et al.,
2021). The annular area close to the optic disc provides a
better measure of the diameter of the central retinal arterioles
and venules. The annular region further from the optic disc,
where there are more retinal vascular branches, can better
demonstrate the branching complexity of the retinal vascular
network and the degree of curvature of the retinal vessels.

FIGURE 3
Identification of retinal arteries and veins.

FIGURE 4
The process of labeling fundus photographs.
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In this study, we developed a computer image processing
method using deep learning and computer vision technology to
automatically segment retinal vessels and optic disc features on color
fundus images based on the principle of human visual bionics and
then extracted the centerline of blood vessels. Through the fusion of
deep learning and computer vision technology, morphological
parameters such as vascular diameter, vascular tortuosity,
vascular fractal dimension, vascular branching angle, and
vascular density can be calculated.

Preprocessing of images

To enhance the fundus images, regions of interest (ROI) were
extracted, denoised, normalized, and enhanced (Xu et al., 2019; Shao
et al., 2021). After the channel separation of the image, the threshold
segmentation method was used on the red (R) channel to obtain the
preselected ROI. The threshold for the ROI preselection area was used as
1/3 of the average grey value of the R channel. Afterward, the preselected

area was filtered based on its location, area, roundness, and other
attributes. In order to filter the area, we selected the largest area in
the ROI preselection area. Then, the boundary was determined using
morphological operations (image opening operations) to obtain the final
ROI. On the color fundus image, this area represented the effective
fundus retinal imaging area, which reduced the interference of invalid
areas such as the background on the subsequent feature recognition and
segmentation process. In the following step, the noise was removed by
applying a low-pass filter (median filtering) to reduce the noise resulting
from the camera’s imaging procedures. Furthermore, the color,
brightness, and size of the images were normalized by mean
calibration and resampling to minimize the variability between
images. Mean calibration means adjusting the mean value of
brightness and color of each image to the mean of the statistical
values of all images. Resampling is the linear difference method used
to scale all images to a uniform size. Additionally, the images were
enhanced using the contrast-limited adaptive histogram equalization
(CLAHE) algorithm, which enhanced the retinal features on the images
(Figure 2B).

FIGURE 5
Diagram of optic disc segmentation. (A) Original image (B): The target detection frame of the optic disc is obtained. (C) The boundary of the optic
disc is determined. (D) The minimum outer circle is fitted to the segmented optic disc area.

TABLE 1 Results of retinal vascular and optic disc segmentation accuracy evaluation.

Category Accuracy (Acc) Sensitivity Specificity Intersection ratio (IoU) DICE

Retinal vascular segmentation 0.966 0.888 0.974 0.711 0.832

Optic disc segmentation 0.998 0.969 0.999 0.939 0.972
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Segmentation of retinal vessels

In this study, we use a deep learning-based semantic
segmentation network ResNet101-UNet to construct a retinal
vessel segmentation model, which adopts a cross-layer
connectivity architecture and is capable of extracting vessel
features at different scales (Ronneberger et al., 2015). A
semiautomatic machine-assisted annotation method is employed
to annotate the sample. First, the color image is converted into
grayscale according to the following formula.

Gray � R × 0.299 + G × 0.587 + B × 0.144

And then the resulting grayscale image is segmented using the
Otsu algorithm to obtain the dark region. As a next step, the
segmented dark region is filtered based on the brightness and
morphology of the blood vessels on the fundus image to obtain
the preselected blood vessel region. For the extracted retinal vascular
regions, we used a trained deep learning semantic segmentation
model to distinguish between arteries and veins. Arterial vessels and
venous vessels are distinguished and identified by the corresponding
vessel color and brightness, as well as the connection and topological
relationship between the vessels. Two senior attending
ophthalmologists then manually corrected the segmentation, with
one performing the initial correction and the other reviewing and
performing any additional correction, to obtain the final image of
the blood vessel sample (Figures 3, 4).

The labeled 755 case samples were divided into training and
validation sets at a ratio of 655:100. The training set is input into the
ResNet101-UNet network for model training, and the loss value of
the network model is calculated with the validation set. The model
parameters are adjusted and optimized according to the loss value.
The training is stopped when the loss value no longer decreases to

obtain the final vessel segmentation model. This model is then used
to segment the blood vessels (Figure 2).

Optic disc segmentation

In this study, optic disc segmentation was divided into two steps.
First, the optic disc is detected using the deep learning object
detection method to determine its location. The object detection
model consists of single shot detection (SSD), and the backbone of
the network structure is ResNet50. The model is trained with
2,000 training samples from the publicly available online Kaggle
competition dataset to obtain the optic disc detection model and to
ultimately obtain the object detection frame of the optic disc. The
center point of the object detection frame is used as the center point
of the optic disc. Afterward, the boundary of the optic disc is
determined based on the visual attention mechanism. The center
point determined by optic disc localization is used as the origin for
performing a polar coordinate transformation on the fundus image.
On the polar coordinate image, the edge detection operator is
employed to determine the edge of the optic disc in polar
coordinates. Then, the image is inversely transformed to finally
obtain the edge of the optic disc in the image coordinate system to
achieve detailed segmentation of the optic disc. Finally, the
minimum outer circle is fitted to the segmented optic disc area.
The center of the outer circle is used to locate the center point of the
final optic disc, and the diameter of the optic disc is defined by the
diameter of the outer circle (Figure 5).

Accuracy evaluation of retinal vessel
segmentation and optic disc segmentation

A sample of 100 manually annotated and reviewed color
fundus images was used for the test, with each fundus image

FIGURE 6
Schematic diagram of vascular diameter measurement.

FIGURE 7
Schematic diagram of vascular tortuosity measurement. The
curvature of each retinal vessel at a certain interval was measured and
the average curvature to the points on the centerline of the vessel was
calculated as the vascular average tortuosity.
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labeled separately for the retinal vessels and optic disc. Each
manually annotated image was reviewed and corrected by two
physicians, one for initial annotation or correction and the other
for review and further correction. The automatic segmentation
results of the model were compared with the manual annotation
results. In units of pixels, accuracy (Acc), sensitivity, specificity,
intersection over union (IoU), and DICE coefficients were
calculated according to the following formulas. The results are
shown in Table 1.

Acc � TP + TN

TP + TN + FP + FN

Sensitivity � TP

TP + FN

Specificity � TN

TN + FP

IoU � TP

TP + FP + FN

DICE � 2 × TP

FP + 2 × TP + FN

Note:
TP (True Positives): The prediction indicates that the sample is

positive, and the prediction is accurate.
TN (True Negatives): The prediction indicates that the sample is

negative, and the prediction is accurate.
FP (False Positives): The prediction indicates that the sample is

positive, but the prediction is incorrect.
FN (False Negatives): The prediction indicates that the sample is

negative, but the prediction is incorrect.

Calculation of vascular fractal dimension

This study focuses on calculating the vascular fractal dimension.
The fractal dimension was calculated on the segmented images. The
fundus images were divided into several grids with different edge
lengths (ε). In the grid corresponding to each edge length, the
number of grid boxes intersecting retinal vessels was calculated as
(N). The number of grid boxes intersecting with retinal vessels in
each case and the inverse of its side length was fitted to a straight line
in logarithm form, and the resulting slope of the line was the fractal
dimension, which is calculated as follows.

dimbox � lim
ε→0

logN ε( )
log 1/ε( )

FIGURE 8
Schematic diagram of vascular branch angle measurement.

TABLE 2 Participant summary characteristics.

Patient characteristics ALL (n = 3107) Normal cognition (n = 2693) Cognitive impairment (n = 414) p-value

Age (years, Mean ± SD) 64.18 ± 9.75 63.41 ± 9.37 69.15 ± 10.69 <0.001

Male, n (%) 1,351 (43.5%) 1,235 (45.9%) 116 (28.0%) <0.001

BCVA (logMAR) (Mean ± SD) 0.94 ± 0.22 0.97 ± 0.19 0.76 ± 0.27 <0.001

Education, middle school, college or higher, n (%) 2,216 (74.1%) 2,172 (83.5%) 44 (11.3%) <0.001

Currently smoking, yes, n (%) 628 (21.0%) 530 (20.4%) 98 (25.3%) 0.027

BMI (kg/m2, Mean ± SD) 25.59 ± 3.85 25.53 ± 3.77 26.01 ± 4.30 0.035

Hypertension, yes, n (%) 1,426 (50.7%) 1,190 (48.6%) 236 (64.8%) <0.001

Diabetes, yes, n (%) 362 (13.8%) 322 (13.9%) 40 (12.9%) 0.644

Cardiovascular disease, yes, n (%) 507 (18.3%) 434 (17.8%) 73 (21.2%) 0.128

Infarction, yes, n (%) 204 (6.9%) 172 (6.7%) 32 (8.6%) 0.173

MMSE score (Mean ± SD) 26.36 ± 3.64 27.43 ± 1.98 19.36 ± 4.21 <0.001

Values are n (%) for categorical variables and mean ± SD for continuous variables. p values were calculated by independent samples t and chi-squared tests.

Abbreviations: BCVA, best corrected visual acuity; BMI, body mass index; MMSE, mini–mental state examination; SD, standard deviation.

p < 0.05 was considered statistically significant.

The bold values are to highlight p < 0.05.
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TABLE 3 Retinal vascular characteristics stratified by cognitive function.

Characteristics All
(N = 3107)

Normal
cognition
(n = 2693,
86.7%)

Mild
cognitive
impairment
(n = 296,
9.5%)

Moderate
cognitive
impairment
(n = 98,
3.2%)

Severe
cognitive
impairment
(n = 20, 0.6%)

p-value Post hoc
comparisons

Post
hoc
p-value

Retinal vascular
average diameter (um),
mean ± SD

59.703 ± 4.457 59.475 ± 4.100 60.890 ± 5.871 61.697 ± 6.542 64.120 ± 7.396 <0.001 Normal cognition
vs. Mild cognitive
impairment

<0.001

Normal cognition
vs. Moderate
cognitive
impairment

0.001

Normal cognition
vs. Severe cognitive
impairment

0.038

Retinal arteriolar
average diameter (um),
mean ± SD

49.348 ± 3.798 49.314 ± 3.601 49.527 ± 5.091 49.898 ± 4.493 48.843 ± 4.537 0.246 —

Retinal venular average
diameter (um),
mean ± SD

70.359 ± 5.834 70.157 ± 5.577 71.373 ± 6.784 71.887 ± 8.121 75.858 ± 7.534 <0.001 Normal cognition
vs. Mild cognitive
impairment

0.013

Normal cognition
vs. Severe cognitive
impairment

0.006

Arteriole-to-venular
ratio, mean ± SD

0.704 ± 0.059 0.705 ± 0.056 0.698 ± 0.073 0.694 ± 0.072 0.648 ± 0.071 <0.001 Normal cognition
vs. Severe cognitive
impairment

0.001

Mild cognitive
impairment vs.
Severe cognitive
impairment

0.003

Moderate cognitive
impairment vs.
Severe cognitive
impairment

0.036

Retinal vascular fractal
dimension, mean ± SD

1.512 ± 0.098 1.521 ± 0.074 1.471 ± 0.166 1.434 ± 0.206 1.401 ± 0.242 <0.001 Normal cognition
vs. Mild cognitive
impairment

<0.001

Normal cognition
vs. Moderate

<0.001

Normal cognition
vs. Severe

<0.001

Mild cognitive
impairment vs.
Moderate cognitive
impairment

0.001

Mild cognitive
impairment vs.
Severe cognitive
impairment

0.033

Retinal vascular
branching angle (°),
mean ± SD

55.484 ± 9.457 55.646 ± 9.458 54.660 ± 9.049 53.311 ± 10.129 54.496 ± 10.634 0.058 —

aRetinal vascular
tortuosity, mean ± SD

0.794 ± 0.163 0.788 ± 0.160 0.840 ± 0.173 0.797 ± 0.187 0.881 ± 0.213 <0.001 Normal cognition
vs. Mild cognitive
impairment

<0.001

Mild cognitive
impairment vs.
Moderate cognitive
impairment

0.047

(Continued on following page)
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Calculation of retinal vascular density

The retinal vascular density is a quantitative representation of
the state and coverage of fundus blood flow and has important
clinical significance for detecting the occurrence, progression, and
diagnosis of fundus diseases. Retinal vascular density refers to the
retinal vascular area per unit fundus area; that is, in a certain area,
the ratio of the area of the retinal vasculature to the area of the
fundus on the photograph can be expressed as:

ρ � S′
S

where S′ is the extraction area of the retinal vasculature and S is the
area of the fundus.

Measurement of retinal vascular average
diameter

Using the retinal vessel image obtained by segmentation, a
bidirectional morphological erosion operation was applied based on
the vessel boundary to determine the vessel centerline. At a certain step
interval along the vessel centerline, the straight line orthogonal to the
tangent line to a point on the centerline could be found. The orthogonal
straight line intersects the vessel boundary at two points. The Euclidean
distance d between those two points was calculated, and d is the vascular
diameter corresponding to the point. The vessel diameter is calculated at
5-pixel intervals in the vessel direction The average retinal vascular
diameter refers to the average of the vascular diameters corresponding
to the points on the centerline. With the center of the optic disc as the
reference origin and the diameter of the optic disc as the reference
distance, the average value of the vascular diameter corresponding to
the points on the centerline of the vessels in different regions was
calculated, which was taken as the average vascular diameter value of

the region. Finally, the optic disc diameter of 1.5 mm was used as a
reference for unit conversion of the vascular diameter values (Figure 6).

Measurement of retinal vascular tortuosity

The curvature corresponding to each point on the centerline of
the vessel was calculated based on the following formula.

Points B and C are identified on either side of point A such that
their distances on the line from point A are equal, i.e., AB

� � AC
� · RA

is the radius of the external circle of △ABC composed of points A, B,
and C, and CA is the curvature of the vessel at point A (Figure 7).

RA � a

2 sinA

CA � 1
RA

The curvature is calculated for each point on the vessel except for
25 pixels at the ends of the vessel (as the conditions for calculation
are not met). The average curvature to the points on the centerline of
the vessel was calculated as the vascular average tortuosity. Retinal
vascular tortuosity was calculated as the average of the curvatures of
each retinal vessel at a certain interval for all the extracted retinal
vessels. Using the center of the optic disc as the reference origin and
the diameter of the optic disc as the reference distance, the average
tortuosity in different regions (C1, C2, C3, and C4 as mentioned
above) was calculated (Figure 7).

Measurement of retinal vascular branching
angle

In this study, the branching angle of the vessel was calculated as the
average angle between the main vessel and the branch vessels. Within a

TABLE 3 (Continued) Retinal vascular characteristics stratified by cognitive function.

Characteristics All
(N = 3107)

Normal
cognition
(n = 2693,
86.7%)

Mild
cognitive
impairment
(n = 296,
9.5%)

Moderate
cognitive
impairment
(n = 98,
3.2%)

Severe
cognitive
impairment
(n = 20, 0.6%)

p-value Post hoc
comparisons

Post
hoc
p-value

Retinal vascular
density, mean ± SD

0.086 ± 0.020 0.088 ± 0.018 0.079 ± 0.027 0.071 ± 0.026 0.067 ± 0.029 <0.001 Normal cognition
vs. Mild cognitive
impairment

<0.001

Normal cognition
vs. Moderate
cognitive
impairment

<0.001

Normal cognition
vs. Severe cognitive
impairment

0.001

Mild cognitive
impairment vs.
Moderate cognitive
impairment

0.001

Values are n (%) for categorical variables and mean ± SD for continuous variables. p values were calculated by the Kruskal–Wallis test.

Abbreviations: SD, standard deviation.
aTortuosity values were multiplied by 1000 to be shown in Table.

p < 0.05 was considered statistically significant.

The bold values are to highlight p < 0.05.
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distance of 2 PD from the optic disc boundary, the retina was divided
into upper and lower halves using the optic disc as a reference, and the
vessel with the largest diameter was taken as themain vessel in each half.
Based on the centerline of the vessel, the number of neighboring pixels
corresponding to each pixel point on the centerline of the main vessel
was calculated based on the 8-neighborhood algorithm, and the point
with three neighboring pixels was selected as the branching point. Using
the branching point as the starting point, a point 10 pixels away
from the branching point was extracted from the centerline of the
main vessel and the centerline of the corresponding branch vessel, and
a straight line was fitted to each of them, after which the angle between

the two lines was measured and calculated as the angle at the branching
point. All the angles on the main vessel within 2 PD from the optic
disc boundary were obtained, and the average value of all the angles
were calculated and output as the retinal vascular branching angle
(Figure 8).

Statistical analysis

Statistical analyses were performed in Statistical Package for
Social Science (SPSS, version 25.0, IBM Corp., Armonk, New York,

TABLE 4 Retinal vascular characteristics stratified by cognitive function in individuals with and without hypertension.

Characteristics All
(n = 3107)

Normal
cognition
(n = 2693,
86.7%)

Mild cognitive
impairment
(n = 296, 9.5%)

Moderate
cognitive
impairment
(n = 98, 3.2%)

Severe cognitive
impairment
(n = 20, 0.6%)

p-value

With hypertension n = 1426 n = 1190, 83.5% n = 176, 12.3% n = 49, 3.4% n = 11, 0.8%

Retinal vascular average
diameter (um), mean ± SD

59.860 ± 4.638 59.527 ± 4.253 61.125 ± 5.758 62.649 ± 6.137 64.807 ± 8.099 <0.001

Retinal arteriolar average
diameter (um), mean ± SD

49.074 ± 3.926 49.043 ± 3.664 49.099 ± 5.239 49.936 ± 4.573 48.310 ± 5.307 0.171

Retinal venular average
diameter (um), mean ± SD

70.625 ± 6.083 70.343 ± 5.803 71.581 ± 7.006 73.105 ± 7.583 76.247 ± 7.691 0.001

Arteriole-to-venular ratio,
mean ± SD

0.698 ± 0.060 0.700 ± 0.056 0.688 ± 0.077 0.688 ± 0.080 0.637 ± 0.078 0.014

Retinal vascular fractal
dimension, mean ± SD

1.502 ± 0.109 1.512 ± 0.081 1.456 ± 0.187 1.461 ± 0.144 1.338 ± 0.313 <0.001

Retinal vascular branching
angle (°), mean ± SD

55.540 ± 9.568 55.691 ± 9.571 54.587 ± 8.879 55.058 ± 11.135 54.524 ± 12.958 0.485

aRetinal vascular tortuosity,
mean ± SD

0.809 ± 0.170 0.801 ± 0.168 0.857 ± 0.183 0.828 ± 0.165 0.844 ± 0.179 <0.001

Retinal vascular density,
mean ± SD

0.083 ± 0.021 0.085 ± 0.019 0.077 ± 0.028 0.072 ± 0.023 0.062 ± 0.033 <0.001

Without hypertension n = 1,389 n = 1,261, 90.8% n = 90, 6.5% n = 32, 2.3% n = 6, 0.4%

Retinal vascular average
diameter (um), mean ± SD

59.549 ± 4.110 59.431 ± 3.954 60.995 ± 4.945 59.591 ± 5.867 62.352 ± 6.990 0.010

Retinal arteriolar average
diameter (um), mean ± SD

49.639 ± 3.594 49.565 ± 3.515 50.486 ± 4.363 50.051 ± 4.071 50.266 ± 3.930 0.072

Retinal venular average
diameter (um), mean ± SD

70.076 ± 5.523 70.002 ± 5.330 71.030 ± 6.323 69.625 ± 8.846 73.740 ± 8.657 0.375

Arteriole-to-venular ratio,
mean ± SD

0.711 ± 0.057 0.710 ± 0.056 0.715 ± 0.069 0.704 ± 0.057 0.686 ± 0.064 0.323

Retinal vascular fractal
dimension, mean ± SD

1.525 ± 0.067 1.528 ± 0.059 1.501 ± 0.099 1.462 ± 0.162 1.514 ± 0.032 <0.001

Retinal vascular branching
angle (°), mean ± SD

55.672 ± 9.361 55.814 ± 9.376 55.192 ± 9.237 51.322 ± 8.153 55.064 ± 10.638 0.067

aRetinal vascular tortuosity,
mean ± SD

0.776 ± 0.153 0.773 ± 0.149 0.810 ± 0.158 0.756 ± 0.214 0.919 ± 0.260 0.013

Retinal vascular density,
mean ± SD

0.090 ± 0.018 0.090 ± 0.017 0.084 ± 0.024 0.073 ± 0.025 0.084 ± 0.013 <0.001

Values are n (%) for categorical variables and mean ± SD for continuous variables. p values were calculated by the Kruskal–Wallis test.

Abbreviations: SD, standard deviation.
aTortuosity values were multiplied by 1000 in order to be shown in Table.

p < 0.05 was considered statistically significant.

The bold values are to highlight p < 0.05.
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United States) and GraphPad Prism 9.4.0 (GraphPad Software, San
Diego, CA, United States). Population summary measures and retinal
vascular parameters are described using the mean and SD for
continuous variables or frequencies and percentages for categorical
variables. Independent samples t-tests and chi-squared tests were used
to compare the differences in participant characteristics between
participants with and without cognitive impairment. The Kruskal‒
Wallis test was used to determine the differences in retinal vascular
parameters in the whole area and four annular zones among the four

groups. Then, post hoc multiple comparisons (Bonferroni correction)
were performed to determine pairwise differences. Furthermore, we
included a multivariate linear regression analysis to test associations
between theMMSE score and retinal vascular parameters. TheMMSE
score was defined as a dependent parameter, and the parameters that
were significantly associated with MMSE were appropriately selected
as independent parameters. All p values were two-sided, and p <
0.05 indicated statistical significance. Ninety-five percent confidence
intervals are presented.

TABLE 5 Retinal vascular characteristics stratified by cognitive function in different sexes.

Characteristics All
(n = 3107)

Normal
cognition
(n = 2693,
86.7%)

Mild cognitive
impairment
(n = 296, 9.5%)

Moderate cognitive
impairment
(n = 98, 3.2%)

Severe cognitive
impairment
(n = 20, 0.6%)

p-value

Male n = 1351 n = 1235, 91.4% n = 81, 6.0% n = 27, 2.0% n = 8, 0.6%

Retinal vascular average diameter
(um), mean ± SD

59.786 ± 4.372 59.647 ± 4.203 60.571 ± 4.876 63.175 ± 6.883 63.185 ± 8.586 0.008

Retinal arteriolar average
diameter (um), mean ± SD

49.223 ± 3.720 49.201 ± 3.620 49.728 ± 4.628 49.186 ± 4.702 47.731 ± 5.537 0.329

Retinal venular average diameter
(um), mean ± SD

70.418 ± 5.650 70.312 ± 5.562 70.625 ± 5.499 74.154 ± 8.033 73.531 ± 8.367 0.104

Arteriole-to-venular ratio,
mean ± SD

0.702 ± 0.056 0.702 ± 0.055 0.705 ± 0.058 0.669 ± 0.080 0.656 ± 0.101 0.031

Retinal vascular fractal
dimension, mean ± SD

1.516 ± 0.080 1.521 ± 0.060 1.480 ± 0.129 1.386 ± 0.289 1.411 ± 0.158 <0.001

Retinal vascular branching angle
(°), mean ± SD

56.347 ± 8.983 56.361 ± 8.953 56.433 ± 9.261 54.739 ± 8.774 58.795 ± 13.472 0.904

aRetinal vascular tortuosity,
mean ± SD

0.784 ± 0.151 0.781 ± 0.148 0.832 ± 0.180 0.769 ± 0.155 0.816 ± 0.170 0.027

Retinal vascular density,
mean ± SD

0.086 ± 0.019 0.087 ± 0.018 0.078 ± 0.025 0.069 ± 0.024 0.059 ± 0.033 <0.001

Female n = 1756 n = 1458, 83.0% n = 215, 12.2% n = 71, 4.0% n = 12, 0.7%

Retinal vascular average diameter
(um), mean ± SD

59.639 ± 4.522 59.327 ± 4.006 61.010 ± 6.212 61.175 ± 6.387 64.799 ± 6.755 <0.001

Retinal arteriolar average
diameter (um), mean ± SD

49.446 ± 3.856 49.411 ± 3.583 49.449 ± 5.267 50.161 ± 4.421 49.652 ± 3.727 0.427

Retinal venular average diameter
(um), mean ± SD

70.313 ± 5.974 70.026 ± 5.587 71.656 ± 7.204 71.088 ± 8.058 77.551 ± 6.758 <0.001

Arteriole-to-venular ratio,
mean ± SD

0.706 ± 0.060 0.708 ± 0.057 0.695 ± 0.078 0.703 ± 0.067 0.642 ± 0.043 <0.001

Retinal vascular fractal
dimension, mean ± SD

1.510 ± 0.109 1.520 ± 0.085 1.468 ± 0.178 1.452 ± 0.164 1.394 ± 0.293 <0.001

Retinal vascular branching angle
(°), mean ± SD

54.807 ± 9.762 55.032 ± 9.833 53.968 ± 8.894 52.775 ± 10.607 52.152 ± 8.547 0.120

aRetinal vascular tortuosity,
mean ± SD

0.801 ± 0.172 0.794 ± 0.169 0.843 ± 0.170 0.806 ± 0.197 0.928 ± 0.237 <0.001

Retinal vascular density,
mean ± SD

0.087 ± 0.021 0.088 ± 0.019 0.080 ± 0.028 0.071 ± 0.027 0.073 ± 0.025 <0.001

Values are n (%) for categorical variables and mean ± SD for continuous variables. p values were calculated by the Kruskal–Wallis test.

Abbreviations: SD, standard deviation.
aTortuosity values were multiplied by 1000 in order to be shown in Table.

p < 0.05 was considered statistically significant.

The bold values are to highlight p < 0.05.
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TABLE 6 Retinal vascular characteristics stratified by cognitive function in different age groups.

Characteristics All
(n = 3107)

Normal
cognition
(n = 2693,
86.7%)

Mild cognitive
impairment
(n = 296, 9.5%)

Moderate cognitive
impairment
(n = 98, 3.2%)

Severe cognitive
impairment
(n = 20, 0.6%)

p-value

Age: 50–64 years n = 1692 n = 1540,
91.0%

n = 127, 7.5% n = 23, 1.4% n = 2, 0.1%

Retinal vascular average diameter
(um), mean ± SD

58.743 ± 3.499 58.714 ± 3.443 59.179 ± 4.137 58.580 ± 3.422 55.784 ± 1.233 0.316

Retinal arteriolar average
diameter (um), mean ± SD

48.950 ± 3.089 48.951 ± 3.066 49.149 ± 3.279 47.800 ± 3.509 48.397 ± 3.236 0.554

Retinal venular average diameter
(um), mean ± SD

69.480 ± 4.934 69.446 ± 4.952 69.865 ± 4.700 70.073 ± 5.085 64.631 ± 0.453 0.158

Arteriole-to-venular ratio,
mean ± SD

0.707 ± 0.051 0.707 ± 0.052 0.706 ± 0.048 0.683 ± 0.042 0.749 ± 0.055 0.120

Retinal vascular fractal
dimension, mean ± SD

1.543 ± 0.046 1.544 ± 0.044 1.537 ± 0.070 1.537 ± 0.042 1.542 ± 0.012 <0.001

Retinal vascular branching angle
(°), mean ± SD

55.730 ± 9.026 55.799 ± 9.065 55.152 ± 8.614 54.666 ± 8.751 50.626 ± 11.496 0.739

aRetinal vascular tortuosity,
mean ± SD

0.805 ± 0.164 0.801 ± 0.162 0.841 ± 0.164 0.874 ± 0.248 0.756 ± 0.062 0.011

Retinal vascular density,
mean ± SD

0.095 ± 0.013 0.095 ± 0.012 0.094 ± 0.017 0.092 ± 0.018 0.092 ± 0.003 0.736

Age: 65–79 years n = 1188 n = 999, 84.1% n = 137, 11.5% n = 44, 3.7% n = 8, 0.7%

Retinal vascular average diameter
(um), mean ± SD

60.671 ± 4.780 60.357 ± 4.528 62.212 ± 5.726 62.915 ± 5.702 62.460 ± 5.407 <0.001

Retinal arteriolar average
diameter (um), mean ± SD

49.838 ± 4.349 49.768 ± 4.147 50.034 ± 5.620 50.971 ± 4.473 49.580 ± 4.185 0.146

Retinal venular average diameter
(um), mean ± SD

71.239 ± 6.308 71.034 ± 6.119 72.073 ± 6.970 72.752 ± 8.020 74.997 ± 5.738 0.044

Arteriole-to-venular ratio,
mean ± SD

0.702 ± 0.065 0.703 ± 0.061 0.697 ± 0.084 0.700 ± 0.083 0.663 ± 0.059 0.162

Retinal vascular fractal
dimension, mean ± SD

1.489 ± 0.103 1.497 ± 0.083 1.446 ± 0.172 1.427 ± 0.167 1.499 ± 0.020 <0.001

Retinal vascular branching angle
(°), mean ± SD

55.236 ± 9.869 55.384 ± 9.856 54.403 ± 9.059 53.644 ± 12.144 57.308 ± 11.674 0.569

aRetinal vascular tortuosity,
mean ± SD

0.783 ± 0.161 0.774 ± 0.158 0.844 ± 0.175 0.777 ± 0.125 0.867 ± 0.241 <0.001

Retinal vascular density,
mean ± SD

0.079 ± 0.021 0.080 ± 0.019 0.072 ± 0.027 0.064 ± 0.025 0.079 ± 0.010 <0.001

Age: ≥80 years n = 227 n = 154, 67.8% n = 32, 14.1% n = 31, 13.7% n = 10, 4.4%

Retinal vascular average diameter
(um), mean ± SD

61.904 ± 6.775 61.411 ± 5.337 62.182 ± 9.757 62.473 ± 8.682 67.447 ± 8.044 0.083

Retinal arteriolar average
diameter (um), mean ± SD

49.812 ± 5.085 50.039 ± 4.311 48.860 ± 8.164 50.103 ± 4.802 48.287 ± 5.361 0.886

Retinal venular average diameter
(um), mean ± SD

72.423 ± 8.019 71.639 ± 6.668 74.626 ± 10.879 72.111 ± 10.095 79.119 ± 7.393 0.024

Arteriole-to-venular ratio,
mean ± SD

0.689 ± 0.073 0.697 ± 0.063 0.664 ± 0.100 0.694 ± 0.077 0.612 ± 0.060 0.005

Retinal vascular fractal
dimension, mean ± SD

1.407 ± 0.198 1.441 ± 0.134 1.318 ± 0.260 1.364 ± 0.290 1.294 ± 0.313 0.002

Retinal vascular branching angle
(°), mean ± SD

54.839 ± 10.512 55.798 ± 10.767 53.426 ± 11.209 51.689 ± 8.007 52.389 ± 9.990 0.174

(Continued on following page)
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Results

Demographic characteristics

Among the 3,468 participants, 3,107 individuals (89.6%) [1,351
(43.5%) male] for whom fundus photographs centered on the optic
disc and measurements of cognitive function were available were
included in the current study. Participants had a mean age of 64.18 ±
9.75 years (median: 63 years; range: 50–93 years) and 74.1% had an
education level classified as middle school education or college or
higher education. The characteristics of the study population are
summarized in detail in Table 2. Participants with cognitive
impairment were more likely to be older, female, and a current

smoker and to have lower BCVA (logMAR), less education, a higher
BMI, and a higher prevalence of hypertension than participants
without cognitive impairment.

Retinal vascular characteristics in
participants with different cognitive
functions

The mean MMSE score was 26.34 ± 3.64 (median: 27; range:
2–30). Out of the 3,107 study participants, 414 (13.3%) individuals
were classified as having cognitive impairment with an MMSE
score < 24. A total of 296 (9.5%) of these individuals were

TABLE 6 (Continued) Retinal vascular characteristics stratified by cognitive function in different age groups.

Characteristics All
(n = 3107)

Normal
cognition
(n = 2693,
86.7%)

Mild cognitive
impairment
(n = 296, 9.5%)

Moderate cognitive
impairment
(n = 98, 3.2%)

Severe cognitive
impairment
(n = 20, 0.6%)

p-value

aRetinal vascular tortuosity,
mean ± SD

0.765 ± 0.158 0.747 ± 0.131 0.814 ± 0.199 0.762 ± 0.193 0.921 ± 0.213 0.039

Retinal vascular density,
mean ± SD

0.062 ± 0.025 0.066 ± 0.023 0.048 ± 0.027 0.062 ± 0.022 0.051 ± 0.034 0.004

Values are n (%) for categorical variables and mean ± SD for continuous variables. p values were calculated by Kruskal–Wallis test.

Abbreviations: SD, standard deviation.
aTortuosity values were multiplied by 1000 to be shown in Table.

p < 0.05 was considered statistically significant.

The bold values are to highlight p < 0.05.

FIGURE 9
Comparisons of retinal vascular average diameter and retinal vascular tortuosity in four annular zones in different groups (*p < 0.05, **p < 0.01). (A)
Retinal vascular average diameter in four annular zones in different groups. (B) Retinal arteriolar average diameter in four annular zones in different
groups. (C) Retinal venular average diameter in four annular zones in different groups. (D) Arteriole to venular ratio in four annular zones in different
groups. (E) Retinal vascular tortuosity in four annular zones in different groups.
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classified as having mild cognitive impairment (MMSE score range:
19–23), 98 (3.2%) individuals were classified as having moderate
cognitive impairment (MMSE score range: 10–18), and 20 (0.6%)
individuals were classified as having severe cognitive impairment
(MMSE score < 10).

Retinal vascular characteristics of the participants with different
cognitive functions are detailed in Table 3. Between the normal
cognition group and the mild cognitive impairment group,
significant differences existed in retinal vascular average diameter
(p < 0.001), retinal venular average diameter (p = 0.013), retinal
vascular fractal dimension (p < 0.001), retinal vascular tortuosity
(p < 0.001), and retinal vascular density (p < 0.001). Comparison of
the different stages of cognitive impairment showed there were
significant differences in the arteriole-to-venular ratio (mild
cognitive impairment vs. severe cognitive impairment, p = 0.003;
moderate cognitive impairment vs. severe cognitive impairment, p =
0.036), retinal vascular fractal dimension (mild cognitive
impairment vs. moderate cognitive impairment, p = 0.001; mild
cognitive impairment vs. severe cognitive impairment, p = 0.033),
and retinal vascular density (mild cognitive impairment vs.
moderate cognitive impairment, p = 0.001).

To further analyses the relationship between retinal vascular
parameters and cognitive function in individuals with different
sexes, ages and hypertensive status, we conducted subgroup
analyses to assess the relationship between retinal vascular
parameters and cognitive impairment in individuals with and
without hypertension, in individuals of different sexes, and in
individuals of different age groups. The results are described in
detail in Tables 4–6, respectively.

Regional characteristics of retinal vascular
alterations

The retinal vascular average diameter and retinal vascular
tortuosity in four annular zones were further analyzed. Among
the four annuli, the retinal vascular average diameter and retinal

vascular tortuosity were significantly larger in the mild cognitive
impairment group than in the normal cognition group (Figures 9A,
E). In the C1 annuli, the arteriole-to-venular ratio was significantly
lower in the severe cognitive impairment group than in the other
three groups (Figure 9D). No significant differences in retinal
arteriolar average diameter and venular average diameter were
found within the four annuli (Figures 9B, C).

Correlation between retinal vascular
parameters and MMSE score

In the multivariate analysis, we first used the MMSE score as a
dependent variable and all significantly associated systemic
parameters (p < 0.05) as independent variables. Since the MMSE
was affected by demographic factors, mostly by age and educational
level, both parameters were included in the multivariate analysis in
the present study (Jonas et al., 2018).

Second, we removed those parameters indicating a high degree
of collinearity and parameters that were no longer significantly
associated with theMMSE score (p > 0.05), including sex (p = 0.258),
hypertension (p = 0.635), infarction (p = 0.708), current smoking
(p = 0.417) and BMI (p = 0.121). After adjustment for age, BCVA
(logMAR), and education level, a better MMSE score was
significantly associated with a higher retinal vascular fractal
dimension and higher retinal vascular density. For every 1 SD
increase in the retinal vascular fractal dimension, the MMSE
score increased by 0.134 points. (B = 0.134, 95% CI: 0.004~0.263,
p = 0.043). For every 1 SD increase in the retinal vascular density, the
MMSE score increased by 0.152 points. (B = 0.152, 95% CI:
0.021~0.283, p = 0.023) (Table 7).

Discussion

In this study, we performed fully automated retinal vessel
segmentation and quantitative measurement of retinal vascular

TABLE 7 Associations (multivariate analysis) between the cognitive function score and retinal vascular parameters.

Parameter Regression
coefficient B

Standard error Standardized coefficient
beta

t 95% CI p value

aRetinal vascular average diameter −0.097 0.055 −0.027 −1.756 −0.206~0.011 0.079

aRetinal arteriolar average
diameter

−0.053 0.052 −0.015 −1.023 −0.156~0.049 0.307

aRetinal venular average diameter −0.022 0.053 −0.006 −0.416 −0.126~0.082 0.677

aArteriole-to-venular ratio −0.032 0.052 −0.009 −0.619 −0.134~0.070 0.536

aRetinal vascular fractal dimension 0.134 0.066 0.034 2.028 0.004~0.263 0.043

aRetinal vascular branching angle 0.009 0.051 0.003 0.173 −0.091~0.109 0.863

aRetinal vascular tortuosity −0.048 0.052 −0.014 −0.925 −0.150~0.054 0.355

aRetinal vascular density 0.152 0.067 0.042 2.282 0.021~0.283 0.023

Abbreviations: CI, confidence interval.
aThe retinal vascular parameters were transformed into standardized Z-scores before inclusion in regression models.

Adjustment: age, education, best corrected visual acuity (logMAR).

p < 0.05 was considered statistically significant.

The bold values are to highlight p < 0.05.
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parameters on color fundus photographs using artificial intelligence
algorithms. With our fully automated quantitative results, this study
demonstrated that alterations in retinal vascular parameters such as
retinal vascular diameter, vascular fractal dimension, and vascular
curvature are associated with cognitive impairment in a population-
based cohort.

Previously, most of the quantitative measurements used for the
analysis of retinal vascular parameters were semiautomated by
computer-aided analysis programs, such as SIVA, IVAN, and
VAMPIRE(Cheung et al., 2011b; Ong et al., 2013; McGrory
et al., 2018; Mautuit et al., 2022). These methods require manual
labeling and correction of the segmentation of the optic disc and
retinal vessels. It takes a trained operator 20–30 min to correct the
segmentation of each fundus image, and inevitably subjective bias
will be introduced (Cheung et al., 2021b; Cheung et al., 2022). A
variety of deep learning models for retinal vessel segmentation have
emerged in recent years, and different deep learning models for
vessel segmentation have sensitivities of approximately 0.72–0.95,
specificities of 0.80–0.98, and accuracies of 0.91–0.98 (Chen et al.,
2021). These studies, however, did not perform simultaneous
quantitative measurements on the basis of vessel segmentation.
Cheung et al. (2021b) developed a Singapore I Vessel Analyzer
deep-learning system (SIVA-DLS) to automatically measure retinal
vessel caliber. However, this system cannot detect other valuable
retinal vascular parameters, such as vascular fractal dimension and
retinal vascular tortuosity, at the same time. Shi et al. (2022)
performed a meaningful study, in which they developed an
artificial intelligence system for fully automated vessel
segmentation and quantification of the retinal microvasculature.
Sixteen basic parameters were included in the study. However,
parameters such as vascular fractal dimension and vessel density,
which are also of great importance, were not included. Wiseman
et al. (2023) quantified retinal vessel density (VD) and branching
complexity on optical coherence tomography angiography (OCTA).
They found that retinal microvascular abnormalities exhibited on
OCTA were associated with cerebral small vessel disease.

In this study, we constructed a vessel segmentation model based
on the deep learning semantic segmentation network ResNet101-
UNet, which can complete the process of optic disc segmentation
and retinal vessel segmentation in a few seconds. This model is
effective in reducing human error and has good sensitivity,
specificity, and accuracy. In addition, based on retinal vessel
segmentation, a fully automated detection method can then be
used to quantitatively analyze the characteristics of the retinal
microvascular system, deeply integrating deep learning and
computer vision technologies to extract morphological
information about all the vasculature in color fundus
photographs, providing accurate measurements of retinal vascular
branching angle, vascular fractal dimension, vascular average
diameter, vascular average tortuosity, and other parameters.

Because age-related eye conditions (such as age-related macular
degeneration and glaucoma) are common in older individuals, we
intentionally included fundus photographs of patients with
concomitant eye disease to increase applicability. Moreover,
excluding eyes with these conditions may also introduce selection
bias, as research indicates that cognitively impaired patients are
more likely to have age-related macular degeneration and glaucoma
(Lee et al., 2019; Cheung et al., 2021a).

In previous studies, research on the relationship between retinal
vessel diameter and cognitive impairment has yielded mixed results.
Liew et al. (2009) analyzed fundus photographs of the Blue
Mountains Eye Study population and revealed that retinal
venular dilation was associated with significant cognitive
impairment, particularly in older persons with hypertension. In
contrast, the Circulatory Risk in Communities Study reported that
generalized arteriolar narrowing and a total number of retinal
abnormalities may be useful markers for identifying persons at
higher risk of disabling dementia (Jinnouchi et al., 2017).
Recently, fully automated measurements of retinal arteriolar and
venular calibers from retinal fundus images were estimated by
Cheung et al. (2022) using a deep-learning system. They
indicated that narrower retinal arteriolar caliber and wider retinal
venular caliber are associated with an increased risk of cognitive
decline. However, another study based on the Northern Ireland
Cohort for the Longitudinal Study of Aging (NICOLA) showed that
there were no associations between central retinal venular measures
and mild cognitive impairment (O’Neill et al., 2021). The different
findings may be due to inconsistent approaches to the definition of
cognitive impairment or inconsistencies in the range of fundus
photographs used to measure retinal vascular parameters.

Our study showed that the average retinal vascular diameter was
increased in the cognitive impairment group compared to those with
normal cognitive function. Separate analyses of retinal arteriolar
average diameter and venular average diameter revealed that retinal
arteriolar average diameter was not associated with cognitive
impairment. In addition, the increase in retinal vascular average
diameter mainly occurred in the venules. Evidence suggests that
cognitive decline and related diseases may be associated with a wider
retinal venular diameter (Yim-Lui Cheung et al., 2010; Simen et al.,
2011), which is indicative of systemic inflammation, endothelial
dysfunction, and abnormal blood-brain barriers (Nguyen and
Wong, 2006; Wong et al., 2006).

In the present study, we found that retinal vascular fractal
dimension and retinal vascular density may be more relevant
candidate biomarkers for the early diagnosis of cognitive
impairment than retinal vascular diameter. In individuals with
cognitive impairment, the retinal vascular fractal dimension is
decreased, and retinal vascular density is reduced. Similarly,
Cheung et al. (2014) observed that Alzheimer’s disease (AD)
patients had sparser retinal microvascular networks than
controls, suggesting that retinal microvascular function is
impaired in AD individuals. Ong et al. (2014) also indicated that
reduced retinal arteriolar and venular fractal dimensions are
associated with an increased risk of mild and moderate cognitive
impairment. In a recent study, Xie et al. (2023) evaluated the
association between changes in retinal microvasculature and
Alzheimer’s disease and mild cognitive impairment using deep
segmentation of OCTA images. They also revealed that the mild
cognitive impairment group in their study had a reduced vascular
fractal dimension compared with the control group.We performed a
multiple linear regression analysis and found that retinal fractal
dimension and retinal vascular density were positively correlated
with the MMSE score. For every 1 SD increase in retinal fractal
dimension, the MMSE increased by 0.134 points, and for every 1 SD
increase in retinal vessel density, the MMSE increased by
0.152 points.
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We analyzed the underlying reasons for the decrease in retinal
vascular fractal dimension and retinal vascular density in a
cognitively dysfunctional population. The fractal dimension of
the retinal vasculature is an indicator of the complexity of the
vascular branches, reflecting the distribution of blood throughout
the retinal circulation, with larger values indicating a more complex
distribution. When the fractal dimension of retinal vessels decreases,
the sparse distribution of retinal vessels may represent the same
alterations in the microvasculature of the brain (Nadal et al., 2020),
indicating inadequate cerebral blood perfusion, which triggers
activity in hypoxia-induced pathways that leads to pathological
changes in tau, ultimately leading to the development and
progression of cognitive impairment and even Alzheimer’s
disease (Koike et al., 2011; Sabayan et al., 2012; Love and Miners,
2016).

We performed a post hoc test to compare pairs of the group with
normal cognitive function and the groups with different stages of
cognitive impairment. The results showed that there were significant
differences in retinal venous diameter, vascular tortuosity, retinal
vascular fractal dimension, and vascular density between the
normal and mildly cognitively dysfunctional groups. On the other
hand, between groups with different degrees of cognitive impairment,
the severe cognitive impairment group had a reduced arteriole-to-
venular ratio and a decreased retinal vascular fractal dimension
compared to the mild and moderate cognitive impairment groups.
These findings suggest that alterations in retinal venular average
diameter, retinal vascular tortuosity, retinal vascular fractal
dimension, and retinal vascular density may be early indicators of
cognitive impairment, while reduced arteriole-to-venular ratio and
decreased fractal dimension may be indicators of the progression of
cognitive impairment.

We performed a zonation analysis on the retinal vascular
parameters. Within the four annular regions C1-C4, the average
vascular diameter, as well as the vascular tortuosity, were
significantly different between the normal cognitive function
group and the mild cognitive impairment group, suggesting
that an increase in these two parameters within each region
may occur in the early stages of cognitive impairment. Within
the C1 zone, compared to that in the severe cognitive impairment
group, the arteriole-to-venular ratio was significantly greater in
the normal cognitive function group, the mild cognitive
impairment group, and the moderate cognitive impairment
group. The significant decrease in the arteriole-to-venular
ratio in the severe cognitive impairment group suggested that
the decrease in the arteriole-to-venular ratio of the central retinal
vessels around the optic disc occurred late in the progression of
cognitive impairment.

Our research has several advantages. First, computer
intelligence-assisted measurement of vascular characteristics was
used in this study to explore the relationship between retinal
vascular characteristics and cognitive impairment based on the
numerical indicators obtained. Compared with previous
computer-aided detection of retinal vessels, the greatest
breakthrough of this study is the automatic detection and
segmentation of retinal vessels followed by the automatic
calculation of vascular characteristic parameters, thus realizing a
fully automated process of vascular parameter measurement. The
fully automated process saves considerable time, reduces manpower

costs, and avoids the subjective errors introduced by manual
measurement or machine-assisted manual measurement. Second,
we included data from population-based studies with large samples.
In addition, we selected fundus images centered on the optic disc,
which provide valuable information on the nasal vessels of the
retina. Furthermore, we graded cognitive impairment and
investigated the retinal vasculature in different regions to identify
more accurate candidate biomarkers for early identification and late
progression of cognitive impairment.

Potential limitations should be mentioned. First, it should be
noted that 45° photographs of the central fundus were used for
this study. The photographs included a limited area, which
rendered it impossible to measure the peripheral vessels that
are more susceptible to variations. Second, in the zonation
analysis, we only performed the annular zones and did not
divide them by quadrant, which may have yielded some
meaningful results. We have only performed a zonal analysis
of retinal vascular diameter and vascular tortuosity, without
including retinal vascular fractal dimension and vascular
density, which might have provided more meaningful
information. Moreover, as this was a cross-sectional study, it
was not possible to determine a potential causal relationship
between the alterations in retinal vascular parameters and the
decline in cognitive function.

In conclusion, we developed a vascular segmentation model
based on deep learning algorithms to fully automate the
quantitative measurement of retinal vascular parameters on
fundus photographs. In this study, we demonstrated that an
assessment of retinal vascular parameters with this model
provided information on the risk of cognitive decline. The
decrease in retinal vascular fractal dimension and decreased
vascular density may serve as candidate biomarkers for early
identification of cognitive impairment. The reduction in the
retinal arteriole-to-venular ratio occurs in the late stages of
cognitive impairment.
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Effects of orthokeratology lenses
on tear film and tarsal glands and
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Introduction: To investigate the effects of an orthokeratology lens on the tear film
and tarsal glands and myopia control in children with unilateral myopia using an
intelligent analysis model.

Methods: We retrospectively reviewed the medical records from November
2020 to November 2022 of 68 pediatric patients with unilateral myopia in
Fujian Provincial Hospital who had been wearing an orthokeratology lens for
more than 1 year. The 68myopic eyes were included in the treatment group, while
the 68 healthy, untreated contralateral eyes were included in the control
group. Tear film break-up times (TBUTs) were compared between the two
groups at various intervals, and an intelligent analysis model was used to
compare the deformation coefficients of 10 meibomian glands in the central
area and the different positions of the glands in the two groups after 12 months of
treatment. Changes in axial length and equivalent spherical power were also
compared between the groups before and after 12 months of treatment.

Results: In the treatment group, TBUTs differed significantly between 1 and
12 months after treatment, although no significant differences from baseline
were observed at 3 or 6 months. No significant differences in TBUTs were
observed at any time point in the control group. After 12 months of treatment,
significant between-group differences were observed for glands 2, 3, 4, 5, 6, 7, 8,
and 10 (numbered from the temporal to nasal regions). The treatment group also
exhibited significant differences in deformation coefficients at different detection
positions in the central region, with glands 5 and 6 exhibiting the highest
deformation coefficients. Increases in axial length and equivalent spherical
power were significantly greater in the control group than in the treatment
group after 12 months of treatment.

Discussion: Wearing orthokeratology lenses at night can effectively control
myopia progression in children with unilateral myopia. However, long-term use
of these lenses may lead to meibomian gland deformation and impact tear film
function, and the extent of deformation may vary at different positions in the
central region.
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1 Introduction

In recent decades, technological advancements have introduced
a variety of electronic products and children’s toys that are viewed
within a close range and have become ubiquitous in daily life. The
childhood developmental period is a critical window for both
cognitive and physical growth. Increased emphasis on
educational attainment has resulted in a high frequency of close-
range eye behaviors (e.g., reading, mobile device usage, and
computer usage). When coupled with improper reading and
writing postures, this can lead both eyes to develop different
degrees of myopia during eye development. Accordingly, one eye
may develop myopia earlier than the other, resulting in unilateral
myopia. Children with unilateral myopia present with overload of
the myopic eye when viewing near objects, which can aggravate the
progression of myopia and lead to symptoms of ocular fatigue due to
decreased coordination between the eyes. If the difference in the
refractive error between the two eyes is greater than 2.5 D, fine
motor impairments can be observed, and children can find it
difficult to adapt to wearing frame glasses, thereby affecting
quality of life.

The orthokeratology lens, which is a reverse geometry lens made
of highly gas permeable rigid material, is worn by patients on the
corneal surface during sleep. The central region of the cornea is
flattened by the positive pressure of the base curve at the central
region of the lens, allowing epithelial cells to accumulate at the
reverse curve through migration, thereby effectively halting the
development of myopia. At present, the orthokeratology lens is
an effective method for controlling disease progression in children
with low to moderate myopia, and the strategy has recently gained
attention given the relative comfort of the lens and low risk of
complications (Müller et al., 2016). In addition to delaying myopia
progression during adolescence, several studies have demonstrated
(Ren et al., 2016; Xie and Guo, 2016) that orthokeratology lenses
help to control the rapid growth of the eye axis and negate the need
for frame glasses. However, long-term use of an orthokeratology lens
may exert detrimental effects on the tear film and tarsal glands via
mechanical irritation or hypoxic interference.

To address this gap in knowledge and determine the
effectiveness of myopia control, the present retrospective study
was designed to investigate the effects of orthokeratology lenses
on the tear film and tarsal glands in children with unilateral myopia.
To achieve this aim, we analyzed complete data of pediatric patients
treated at our hospital who had been wearing an orthokeratology
lens in one eye continuously for more than 12 months using an
intelligent analysis model.

2 Materials and methods

2.1 General information

We reviewed the medical records from November 2020 to
November 2022 of 68 pediatric patients with unilateral myopia
treated in the Department of Ophthalmology of Fujian Provincial

Hospital. The myopic eyes of patients treated using an
orthokeratology lens were included in the treatment group
(68 eyes), in which the mean spherical equivalent was −1.92 ±
1.21 D, whereas the healthy, untreated contralateral eyes were
included in the control group (68 eyes), in which the mean
spherical equivalent was +1.06 ± 0.68 D. The inclusion criteria
were as follows: a) age of 8–14 years, b) more than 1 year of complete
data for review, c) diagnosis of unilateral myopia with a spherical
equivalent of −1.00 to 6.00 D in the myopic eye, d) best corrected
visual acuity ≥5.0 in both eyes, and e) normal intraocular pressure
and fundus in both eyes. The exclusion criteria were as follows: a)
organic eye disease; b) corneal diseases, moderate or severe allergic
conjunctivitis, dry eye disease, or keratoconus; c) poor compliance
and/or inability to be followed up according to medical advice; d)
combined use of other myopia interventions, such as low-dose
atropine and defocus lenses; and e) contraindications to
orthokeratology lens use. The risks and potential complications
of wearing the orthokeratology lens were explained in detail to
the patients and guardians before treatment, and consent was
obtained for fitting. The study was approved by the Ethics
Committee (K2020-03-124) of the hospital, and the parents or
guardians of the enrolled patients signed an informed consent form.

2.2 Methods

2.2.1 Fitting for the orthokeratology lens
All patients underwent appropriate eye examinations prior to

enrolment and fitting, including naked eye vision examination, best
corrected visual acuity, mydriatic retinophotoscopy, specular
microscopy, corneal topography, IOLMaster examination, slit
lamp examination, tear film break-up time (TBUT) estimation,
and infrared photography of the tarsal glands. Patients eligible
for the orthokeratology lens were screened with reference to the
inclusion criteria. A suitable trial orthokeratology lens was selected
for try-on and evaluation based on the corneal diameter and corneal
topography of each patient. After 30 min of trial fitting, the dynamic
and static fit of the lens was evaluated, and the parameters of the trial
lens were adjusted until the ideal fit was achieved. A lens with ideal
fit was defined as a well-centered lens with 1–2 mm ofmobility when
blinking, with all curves stained to standard. All patients were
instructed by the same optometrist on the standard methods of
lens removal, placement, and care. The minimum and maximum
durations of nighttime lens wear were set to 8 h and 10 h,
respectively.

2.2.2 Method of constructing an intelligent model
for the tarsal glands

UNet++ was introduced to construct a tarsal gland
segmentation model and provide a workflow for automatic gland
segmentation, as shown in Figure 1. We considered tarsal gland
segmentation as a binary classification problem at each pixel of an
image. Tarsal gland segmentation was divided into two stages
(training and segmentation) and included the following three
modules.
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2.2.2.1 Data augmentation module
In this module, an automatic data augmentation strategy was

introduced to randomly select N of 11 types of data augmentation
methods (e.g., cropping, flipping, cutting, translation, rotation,
equalization, contrast adjustment, brightness adjustment),
following which the corresponding magnitude of
transformation, M, for these N types was selected. Eventually,
we set N to 2 and the selection range for M to 1–10 based on
experimental findings. The data augmentation module used for
this study did not require a manually designed data augmentation
strategy, could provide adequate data samples for the gland
segmentation model, and enhanced the generalizability of the
model.

2.2.2.2 Gland segmentation module
The infrared images of the tarsal glands were grayscale

images, which do not contain rich semantic information. Our
preliminary analyses indicated that it would be inappropriate to
use a complex network model. Proposed in 2015, the UNet model
(Ronneberger et al., 2015) was designed specifically for

application in medical image segmentation. UNet uses hop
connections to merge the superficial and deep semantic
feature maps to overcome the information loss caused by
subsampling, thereby significantly improving the accuracy of
medical image segmentation. UNet++ is an improved version
of UNet in which the hop connections have been redesigned to
further reduce the semantic gap in merging the features between
encoder and decoder. This module was used to introduce the
UNet++ model as the main network for automatic gland
segmentation.

2.2.2.3 Gland analysis module
After segmenting the tarsal glands, a small portion of the

automatically segmented images can be processed again to
capture missed areas or select additional areas using the editing
tool in the software. After perfecting the tarsal gland images, the
parameters of the gland model were analyzed, and the deformation
coefficients of the glands (reflecting the degree of gland
deformation) were automatically calculated. The deformation
coefficient was calculated as follows:

FIGURE 1
The procedure for meibomian gland segmentation based on UNet++.
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pa × pb

length central( )2 ×
��������������∑n

i�1 wi − wavg( )2√
n

+ 1⎛⎜⎜⎝ ⎞⎟⎟⎠

The formula for calculating the deformation coefficient of the
gland was established and improved upon based on the arc-string
ratio model (Figure 2). Here, pa refers to the length of the left side of
the gland, pb refers to the length of the right side of the gland, wi

refers to the diameter of the gland taken after each step, wavg refers
to the average diameter of the gland, length (central) refers to the
length of the central line, n refers to the number of diameters taken
by the gland, the minimum value of the formula is 1, and the
deformation coefficients are dimensionless units.

2.3 Observational indicators

All enrolled patients underwent an eye examination before
treatment (when the custom-made orthokeratology lens arrived),
which was considered the starting point of the observation period.
Follow-ups were conducted 1, 3, 6, and 12 months after initiating
treatment. Indicators evaluated in this study included TBUT, axial
length, and spherical equivalent, as well as adverse reactions during
the treatment period.

2.3.1 TBUT
The inferior conjunctival sacs of both eyes were lightly

touched with a fluorescein sodium strip that had been
moistened with saline. The patient was asked to blink three
times to allow the cornea to make full contact with the

fluorescein, and the corneal condition was observed under
cobalt blue light with a slit lamp. During the examination, the
patient was advised not to blink until a black spot appeared on the
cornea. The time taken for the first black spot to appear during
the examination was recorded, and the measurement was
repeated three times to obtain an average value.

2.3.2 Tarsal gland deformation coefficient
Changes in the morphology of each tarsal gland were analyzed

using the intelligent model. In this study, the deformation
coefficients of 10 glands in the central regions of the upper
eyelids of both eyes were calculated after 12 months of treatment.
Using the midline of the overall tarsal gland area of each patient’s
upper eyelid as the center, values were calculated for five glands
extending towards the nasal and temporal sides, respectively,
resulting in a total of 10 glands for analysis. The 10 glands were
numbered such that the first tarsal gland at the temporal side was
considered gland 1, while the first tarsal gland on the nasal side was
considered gland 10.

2.3.3 Axial length
IOLMaster was used to examine axial length, and the

measurement was repeated five times to obtain an average value.

2.3.4 Spherical equivalent
The patients were administered 1% compound tropicamide

eye drops to fully paralyze the ciliary muscle. Treated eyes
underwent optometry using an automatic computerized
refractometer while the orthokeratology lens was in place,
while control eyes underwent the same assessment on the

FIGURE 2
Prediction images to be edited.
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naked eye. The measurement was repeated five times to obtain an
average spherical equivalent value.

2.4 Statistical analysis

Data were statistically analyzed using SPSS 22.0 software.
Independent samples t-tests were used to compare the average
values of the two groups at each time point. Paired t-tests were
used to compare the average values of the same group at different
time points. Paired samples t-tests were also used to evaluate the
deformation coefficients of the 10 tarsal glands in the central region
in the two groups after 12 months of treatment. A one-way analysis
of variance (ANOVA) was used to evaluate the deformation
coefficients of the tarsal glands at different examination locations
in each of the two groups. The measurement data of both groups
were expressed as mean ± standard deviation (x ± s), whereas the
count data were expressed as proportions (%). A difference was
considered statistically significant when p < 0.05.

3 Results

Data were retrospectively analyzed for 68 patients (30 boys,
38 girls; mean age: 11.12 ± 0.76 years; age range: 8–14 years). The
characteristics of the included patients are summarized in Table 1.

3.1 TBUT

In the treatment group, there were no statistically significant
differences in TBUT from baseline at 3 or 6 months after treatment
(p > 0.05). However, TBUTs differed significantly between 1 and
12 months after treatment (p < 0.05). No significant differences in
TBUT from baseline were observed at any time point in the control
group (p > 0.05) (Table 2).

3.2 Differences in Deformation Coefficients
of 10 glands in the central regions of the
upper eyelids between the Two Groups

Significant between-group differences in deformation coefficients
were observed for glands 2, 3, 4, 5, 6, 7, 8, and 10 in the central region
(p < 0.05). In all cases, deformation coefficients were higher in the
treatment group than in the control group (Table 3).

3.3 Differences in Deformation Coefficients
of 10 glands in the central regions of the
upper eyelids at Different Examination Sites

3.3.1 Treatment group
Within the treatment group, significant differences in gland

deformation coefficients were observed across different examination
sites. Deformation coefficients for glands 5 and 6 were higher than
those for glands 3 and 4, while deformation coefficients for glands
3 and 4 were higher than those for glands 1, 2, 8, 9, and 10 (Table 4;
Figure 3).

TABLE 1 Patient information.

Patient information Number of cases

Sex Female 38

Male 30

Residence Urban 52

Rural 16

Myopic eye Right 29

Left 39

Premature infant Yes 10

No 58

Family history of unilateral myopia Yes 4

No 64

TABLE 2 Comparison of tear film break-up time before and at 1, 3, 6, and 12 months after treatment initiation in the treatment and control groups.

Time point Group TBUT t p

Pre-treatment Post-treatment

1 month Treatment group 10.50 ± 1.40 6.50 ± 0.97 45.445 .000

Control group 10.98 ± 1.62 10.12 ± 1.5 0.764 .272

3 months Treatment group 10.50 ± 1.40 10.00 ± 0.82 1.785 .079

Control group 10.98 ± 1.62 10.58 ± 1.81 .268 .725

6 months Treatment group 10.50 ± 1.40 9.67 ± 1.5 1.132 .128

Control group 10.98 ± 1.62 10.77 ± 1.87 .000 1.000

12 months Treatment group 10.50 ± 1.40 7.17 ± 1.36 29.807 .000

Control group 10.98 ± 1.62 10.85 ± 1.35 .000 1.000

Data are expressed as mean ± standard deviation.

TBUT, tear film break-up time.
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3.3.2 Control group
Within the control group, significant differences in gland

deformation coefficients were also observed at different
examination sites (p < 0.05). The deformation coefficient of
gland 6 was higher than the deformation coefficients for glands
1, 2, 3, 4, 5, 7, 8, 9, and 10, while the deformation coefficients for
glands 3, 5, and 8 were higher than the deformation coefficient for
gland 10 (Table 5; Figure 4).

3.4 Axial length

In both groups, axial length increased with time after treatment.
However, after 12 months of treatment, the degree of increase in
axial length was significantly lower in the treatment group (0.15 ±
0.13 mm) than in the control group (0.39 ± 0.23 mm) (p < 0.05)
(Table 6).

3.5 Spherical equivalent

After 12 months of treatment, the spherical equivalent increased
in 20 eyes (29.4%) in the treatment group, whereas it increased in
58 eyes (85.3%) in the control group, and the difference in the
spherical equivalent between the two groups was statistically
significant (p < 0.05) (Table 7).

4 Discussion

The prevalence of myopia among school-age children in East
Asia is extremely high compared with other regions. The
prevalence of myopia among school-age children in East Asia is
extremely high compared with other regions (Grzybowski A et al.,
2020). In clinical practice, most affected children present with
bilateral myopia. However, poor eye habits and other

TABLE 3 Differences in gland deformation coefficients between the groups.

Paired difference t Significance
(two-tailed)

Average
value

Standard
deviation

Standard
error of the

mean

95% confidence
interval for
difference

Upper
limit

Lower
limit

Pair
1

Deformation coefficient of gland 1 in the
treatment group—deformation coefficient of

gland 1 in the control group

0.121 0.384 0.064 −0.009 0.251 1.888 0.067

Pair
2

Deformation coefficient of gland 2 in the
treatment group—deformation coefficient of

gland 2 in the control group

0.420 1.016 0.169 0.076 0.764 2.481 0.018

Pair
3

Deformation coefficient of gland 3 in the
treatment group—deformation coefficient of

gland 3 in the control group

1.207 1.544 0.257 0.685 1.730 4.691 0.000

Pair
4

Deformation coefficient of gland 4 in the
treatment group—deformation coefficient of

gland 4 in the control group

2.195 2.919 0.487 1.208 3.183 4.512 0.000

Pair
5

Deformation coefficient of gland 5 in the
treatment group—deformation coefficient of

gland 5 in the control group

4.563 3.536 0.589 3.367 5.759 7.744 0.000

Pair
6

Deformation coefficient of gland 6 in the
treatment group—deformation coefficient of

gland 6 in the control group

4.960 5.345 0.891 3.152 6.769 5.569 0.000

Pair
7

Deformation coefficient of gland 7 in the
treatment group—deformation coefficient of

gland 7 in the control group

2.205 2.062 0.344 1.508 2.903 6.417 0.000

Pair
8

Deformation coefficient of gland 8 in the
treatment group—deformation coefficient of

gland 8 in the control group

0.634 1.165 0.194 0.240 1.028 3.266 0.002

Pair
9

Deformation coefficient of gland 9 in the
treatment group—deformation coefficient of

gland 9 in the control group

0.077 0.439 0.073 −0.072 0.225 1.049 0.301

Pair
10

Deformation coefficient of gland 10 in the
treatment group—deformation coefficient of

gland 10 in the control group

0.268 0.343 0.057 0.151 0.384 4.677 0.000
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environmental factors (e.g., masking the eyes on one side when
writing and tilting the body when reading/writing) can lead to
inconsistencies in the distance between each eye and the viewing
material. Such factors may also contribute to differences in visual
acuity between the eyes (Shi et al., 2021) and an increase in the
number of adolescents with unilateral myopia presenting with
anisometropia. For children who have unilateral myopia with
anisometropia, differences in refractive error can lead to
contradictory eye adjustments and an imbalance in image size.
At present, the two most common correction materials are frame
glasses and orthokeratology lenses. While frame glasses are widely
accepted by patients and parents in clinical practice given their
convenience and low cost, correction with frame glasses is

associated with problems such as imbalanced visual quality and
difficulty in fusion, which will continue to increase the refractive
error of myopia. In contrast, the orthokeratology lens exerts its
effects via nighttime wear. In addition to controlling the rate of
increase in the refractive error of myopia, orthokeratology lenses
can reduce the overall refractive error of myopic eyes and improve
both visual quality and fusion function in the two eyes during
adolescence. Therefore, orthokeratology lens treatment has
become the preferred correction method for adolescents who
have unilateral myopia with anisometropia. Some studies have
also shown that orthokeratology lenses are the best means to
control myopia among the available non-surgical treatment
methods (Walline et al., 2020).

TABLE 4 Differences in gland deformation coefficients at different detection sites in the treatment group.

Examination site Average
value

Standard
deviation

95% confidence
interval for the average
value

F Significance Least significant
difference (LSD)

Upper
limit

Lower
limit

Gland 1 1.983 0.454 1.830 2.137 29.003 0.000 5, 6 > 3, 4 > 1, 2, 8, 9, 10

Gland 2 2.179 0.963 1.853 2.505

Gland 3 3.285 1.270 2.855 3.714

Gland 4 4.120 2.894 3.141 5.099

Gland 5 6.608 3.424 5.449 7.767

Gland 6 7.447 4.500 5.925 8.970

Gland 7 4.176 2.136 3.453 4.899

Gland 8 2.684 1.248 2.261 3.106

Gland 9 1.852 0.469 1.693 2.011

Gland 10 1.890 0.457 1.736 2.045

FIGURE 3
Differences in gland deformation coefficients at different detection locations in the treatment group.
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TABLE 5 Differences in gland deformation coefficients at different detection sites in the control group.

Examination site Average
value

Standard
deviation

95% confidence
interval for the average

value

F Significance Least significant
difference (LSD)

Upper
limit

Lower
limit

Gland 1 1.862 0.404 1.726 1.999 3.011 0.002 6 > 1.2,3,4,5,7,8,9,10;3, 5, 8 > 10

Gland 2 1.759 0.335 1.646 1.873

Gland 3 2.077 0.426 1.933 2.222

Gland 4 1.925 0.447 1.773 2.076

Gland 5 2.045 0.411 1.906 2.184

Gland 6 2.487 2.328 1.699 3.274

Gland 7 1.971 0.275 1.878 2.063

Gland 8 2.050 0.437 1.902 2.197

Gland 9 1.775 0.359 1.653 1.897

Gland 10 1.622 0.284 1.527 1.718

FIGURE 4
Differences in gland deformation coefficients at different detection locations in the control group.

TABLE 6 Axial length before and after treatment in the two groups at 12 months.

Change within 12 months of treatment

Increase in axial length Treatment group 0.14 ± 0.08

Control group 0.42 ± 0.17

t −11.393

p <0.01

Data are expressed as mean ± standard deviation.
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Despite these results, Yang et al. (2021) find that Short-term
OOKmay reduce the stability of the tear film and increase damage to
the corneal epithelium. Long-term OOK could induce ocular
inflammation through the disruption of meibomian glands.
However, Na et al. (2016) reported no significant changes in tear
film stability after treatment with an orthokeratology lens. While
TBUT was the main observational indicator in their study, the
results were largely influenced by the subjective nature of the
examinations and patient cooperation. To ensure more objective
analyses, each patient/parent was informed of the examination
precautions and the standard of cooperation required during
examination. In the current study, the treatment group exhibited
a significant reduction in TBUT from baseline at 1 month after
treatment. This may be because the initial shaping begins in the early
stage of lens wear, in which the corneal epithelial cells begin to
migrate and distribute. This in turn leads to an uneven corneal
surface, which affects the uniform distribution of tear film and
reduces tear film stability. In contrast, TBUTs at 3 and 6 months
after treatment initiation did not significantly differ from baseline.
This may have been due to improvements in tear film stability
following stabilization of the corneal shape, resulting in restoration
of tear film function during treatment. However, some studies have
found that long-term use of an orthokeratology lens may lead to
altered tarsal gland function (Walline et al., 2020). Others have
similarly concluded (Zhu and Huang, 2016; Zhou et al., 2019) that
wearing an orthokeratology lens for 1 year exerts certain effects on
the tarsal glands and that the frequency with which tear film
function is examined should be increased. Gad et al. (2019) also
noted that changes in the number and function of goblet cells and
changes in the inflammatory response of the ocular surface may
contribute to decreased tear film stability during long-term
treatment with an orthokeratology lens. These findings are in
accordance with the significant change in the TBUT after
12 months of treatment in our patients.

In clinical practice, although children undergoing long-term
treatment with an orthokeratology lens often present no significant
atrophy of the tarsal glands, other morphological changes such as
distortion may emerge. Lin et al. (2020) recently reported significant
correlations of tarsal gland tortuosity with the meiboscore and
meibum expressibility score, suggesting that changes in the
morphology of the tarsal glands can affect their function.
However, at present, clinical examinations do not allow for a
more accurate quantitative assessment of the tarsal glands.
Therefore, we constructed an intelligent analysis model based on
deep learning methods to analyze the deformation coefficients of the
tarsal glands after processing and segmenting the infrared
photographic report. After a preliminary test of this method, Our

team, Lin et al. (2022), found that the average accuracy of the
algorithm was 94.31%, with an average sensitivity of 82.15%, an
average specificity of 96.13%, and an average intersection ratio of
65.55%. Based on this tarsal gland segmentation algorithm, we
developed a quantitative tarsal gland analysis model that can
quantitatively analyze data from each tarsal gland in the upper
eyelid. However, in the current study, data were collected for only
10 tarsal glands in the central region of the upper eyelid, mainly
because it is easier to collect complete data for the upper eyelid than
for the lower eyelid, and the images are clearer. Further, The glands
in the central region play a major role in maintaining the stability of
the microenvironment at the ocular surface.

After 12 months of treatment with an orthokeratology lens, we
observed significant between-group differences in the deformation
coefficients of the 10 tarsal glands in the central region, with the
deformation coefficients being significantly higher in the treatment
group than in the control group. This result suggests that long-term
use of an orthokeratology lens exerts certain effects on tarsal gland
morphology. In addition, although there were certain differences
between the 10 tarsal glands at different sites in both groups, the box
plots indicated that the average deformation coefficients of the
10 glands in the central region were closer to each other in the
control group. In the treatment group, the average deformation
coefficients of the glands near the center were significantly higher
than those of the glands near the periphery. This may be related to
the positioning of the orthokeratology lens at the central cornea. Yu
et al. (2022) reported increased atrophy of the meibomian glands in
the lower eyelid in children wearing orthokeratology lenses. During
sleep, a certain amount of pressure is exerted not only on the cornea
but also on the tarsal glands owing to the mechanics of the
orthokeratology lens, which may lead to morphological changes
in the glands closer to the central area. In the future, based on the
results of this study, for children with OK lenses, it is recommended
that additional images of the tarsal gland be taken at the time of
outpatient follow-up and that the main focus be on morphological
changes of the tarsal gland in the central region.

The refractive error of the human eye is closely related to both
corneal curvature and axial length. An increase in negative refractive
error is mainly related to an increase in axial length when the corneal
curvature remains unchanged (Alhussain et al., 2022). In this study,
both the treatment and control groups exhibited an increase in axial
length after 12 months. After 12 months of treatment with an
orthokeratology lens, the average increase in axial length in the
treatment group was 0.15 ± 0.13 mm, which was significantly less
than that in the control group. The smaller change in axial length in
the treatment group may be explained by a reduction in the average
corneal curvature in the central region of the cornea through

TABLE 7 Spherical equivalent before and after treatment in the two groups at 12 months.

Change within 12 months of treatment

Change in spherical equivalent Treatment group 0.04 ± 0.16

Control group 0.56 ± 0.36

t −10.168

p <0.01

Data are expressed as mean ± standard deviation.
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positive pressure exerted by the base curve of the lens. Light passing
through the central region is then better concentrated at the fovea of
the macula. The siphon principle of the reverse curve causes the
corneal epithelial cells to migrate and accumulate at the reverse
curve region, and the incident rays passing through this region are
focused in front of the peripheral retina. This then forms a myopic
defocus that inhibits the increase in axial length. Although the rate of
increase in axial length was slower in the treatment group than in the
control group of the present study, axial length was significantly
longer in the treatment group than in the control group at each time
point during the 12-month treatment period. This suggests that for
the same patient, the axial length increases with an increase in
negative refractive error, provided that the difference in corneal
curvature between the two eyes is insignificant.

In clinical practice, orthokeratology lenses are usually replaced
each year. If each parameter (including corneal topography
positioning, corneal condition, and changes in the eye axis)
remains stable at this time, many parents will choose to have
their child fitted for a new orthokeratology lens. Therefore, the
change in spherical equivalent after pupil dilation following use of
the lens is often used to assess myopia control after 1 year of
treatment. For this reason, we also chose to compare changes in
the spherical equivalent after lens use between the treatment and
control groups. While eyes in the control group were not initially
myopic, as the treatment group wore the orthokeratology lens for a
long period of time, the changes in spherical equivalent became
much higher in the control group than in the treatment group. This
finding is in accordance with the significantly greater increase in
axial length observed in the control group.

This study has some limitations. Given the retrospective nature
of the analysis, we were unable to evaluate infrared photographic
data of the tarsal glands when the patients first wore the
orthokeratology lens, and the abnormal morphological changes in
the tarsal glands of the ipsilateral eyes before and after 1 year of
wearing the lens were not further compared. These relationships
should be examined in future studies.

5 Conclusion

In children with anisometropia, unilateral treatment with an
orthokeratology lens was effective in controlling increases in axial
length and negative refractive error in the myopic eye, thereby
delaying the progression of myopia. Increases in axial length and
negative refractive error were greater in the contralateral non-
myopic eyes. The TBUT of myopic eyes tended to decrease with
long-term use of the orthokeratology lens. Using an intelligent
model to analyze the deformation coefficients, we found that long-
term orthokeratology lens use significantly influenced morphological
changes in the 10 tarsal glands in the central region, exerting a relatively
greater effect on the glands closer to the central region. Given these
results, children undergoing single-eye treatment with an
orthokeratology lens should be closely followed up for changes in
spherical equivalent, axial length, tarsal glandmorphology, and tear film
function in both eyes to ensure that any abnormalities are detected and
addressed using appropriate interventions in a timely manner. This will
not only help to control the increase in the axial length of the non-

myopic eye as early as possible but also ensure better comfort and
reduce the likelihood of complications with long-term use.
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Deep learning for detecting
visually impaired cataracts using
fundus images

He Xie1†, Zhongwen Li2†, Chengchao Wu3, Yitian Zhao2,4,
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Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of
Sciences, Ningbo, China, 5Department of Ophthalmology, Wenzhou Hospital of Integrated Traditional
Chinese and Western Medicine, Wenzhou, China

Purpose: To develop a visual function-based deep learning system (DLS) using
fundus images to screen for visually impaired cataracts.

Materials and methods: A total of 8,395 fundus images (5,245 subjects) with
corresponding visual function parameters collected from three clinical centers
were used to develop and evaluate a DLS for classifying non-cataracts, mild
cataracts, and visually impaired cataracts. Three deep learning algorithms
(DenseNet121, Inception V3, and ResNet50) were leveraged to train models to
obtain the best one for the system. The performance of the system was evaluated
using the area under the receiver operating characteristic curve (AUC), sensitivity,
and specificity.

Results: The AUC of the best algorithm (DenseNet121) on the internal test dataset
and the two external test datasets were 0.998 (95% CI, 0.996–0.999) to 0.999
(95% CI, 0.998–1.000),0.938 (95% CI, 0.924–0.951) to 0.966 (95% CI,
0.946–0.983) and 0.937 (95% CI, 0.918–0.953) to 0.977 (95% CI,
0.962–0.989), respectively. In the comparison between the system and
cataract specialists, better performance was observed in the system for
detecting visually impaired cataracts (p < 0.05).

Conclusion: Our study shows the potential of a function-focused screening tool
to identify visually impaired cataracts from fundus images, enabling timely patient
referral to tertiary eye hospitals.
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1 Introduction

Worldwide, the incidence of visual impairment is increasing
(GBD, 2019 Blindness and Vision Impairment Collaborators,
2021), which is an important public health problem, with
cataracts being the leading cause of visual impairment
(Flaxman et al., 2017). According to recent research, among
the 2.2 billion people who suffer from visual impairment
worldwide, 134 million are blind, and 571 million have
moderate-to-severe visual impairment in 2020 due to cataracts
(Bourne et al., 2017; Flaxman et al., 2017). In low- and middle-
income countries, especially in Southeast Asia and Africa,
cataracts lead to higher rates of visual impairment than in
high-income countries due to limited healthcare and financial
resources (Lam et al., 2015). The World Health Organization
(WHO) has adopted a 30 percent increase in effective coverage of
cataract surgery as a new global target for eye care by 2030
(WHO, 2021). Therefore, there is an urgent need to facilitate and
expedite cataract screening capabilities, especially for
underserved populations.

Traditional cataract screening requires a professional
ophthalmologist to assess the lens through a slit-lamp
microscope (Gali et al., 2019) and grading methods based on
the lens opacity classification system LOCS II (Chylack et al.,
1989) or LOCS III (Chylack et al., 1993) (Lens Opacities
Classification System, LOCS) and Wisconsin cataract grading
system (Wong et al., 2013), which limits the efficiency of large-
scale cataract screening. A simple and effective model for
screening and referral remains a key challenge for the
sustainable implementation of cataract screening programs. To
enhance community screening for retinal disease in some
countries (Lian et al., 2016; Verbraak et al., 2019), they have
implemented telemedicine or artificial intelligence analysis of
fundus images acquired by non-specialists. Grading the
assessment of cataracts by fundus images may also be an
effective solution. Abdul-Rahman used Fourier analysis to
quantify optical degradation in fundus images, which was
shown to be correlated well with the LOCS III (Abdul-
Rahman et al., 2008).

Several studies have developed deep learning systems (DLSs)
to grade the severity of cataracts based on the blurriness of fundus
images. According to the visibility of the optic disk or retinal
vessels of the fundus images, they classified cataracts into 3, four
or 5 grades (Xiong et al., 2017; Zhang et al., 2019; Xu et al., 2020;
Yue Zhou and Li, 2020). Considering that visual acuity is one of
the most common indicators for evaluating the impact of
cataracts on patients, it would be more meaningful to establish
a visual function-based cataract grading system (WHO, 2020).
This functional cataract screening program is more targeted for
cataract patients, which can reduce the excessive referral of
people with mild visual impairment and reduce the pressure
on tertiary eye hospitals.

In this study, we developed a visual function-based DLS for
populations based on fundus images, especially for the screening
of visually impaired cataracts. In addition, we used images
taken by different types of fundus cameras from three
institutions to evaluate the effectiveness and generalizability of
the system.

2 Materials and Methods

2.1 Image datasets

In this retrospectively study, a total of 6,997 fundus images
(4,346 subjects) collected from Zhejiang Eye Hospital at Wenzhou
(ZEHWZ) between September 2020 and March 2021 were used to
develop the DLS. The ZEHWZ dataset included cataract patients
whose best corrected decimal visual acuity (BCDVA) was good
(>0.6) within 1 month after cataract surgery and non-cataract
patients without refractive media opacities. The fundus images
were captured without mydriasis before surgery. The exclusion
criteria were traumatic cataracts, congenital cataracts and lens
dislocation, corneal diseases, asteroid hyalosis, vitreous
haemorrhage, and severe retinal and optic nerve diseases. Poor
quality and unreadable images were also excluded: images out of
focus; images underexposed; images overexposed; incomplete
images with more than 1/3 peripheral halo.

Two additional datasets, including 1,398 fundus images
obtained from two other institutions retrospectively, adopted the
same inclusion criteria and exclusion criteria as ZEHWZ for external
testing. One was derived from the inpatient department at Zhejiang
Eye Hospital at Hangzhou (ZEHHZ), consisting of 1,097 images
from 730 individuals; the other was derived from outpatient clinics
and the inpatient department at Ningbo Eye Hospital (NEH),
consisting of 301 images from 169 individuals.

This study adhered to the principles of the Declaration of
Helsinki and was approved by the Ethics Committee of Zhejiang
Eye Hospital at Wenzhou (Number, 2022-008-K-06-01). Due to the
retrospective study design and the use of fully anonymized fundus
images, the need for informed patient consent was waived by the
review committee.

2.2 Criteria of cataract classification

The diagnosis of each fundus image was diagnosed by two
cataract specialists based on the previous medical records and the
results of the ophthalmology examination. If there was a difference
between the two cataract specialists, there would be a third senior
cataract specialists for diagnosis. All fundus images with a definitive
diagnosis were screened for quality control. Poor quality and
unrecognizable images were excluded.

All fundus images were classified into three categories: non-
cataracts, mild cataracts, and visually impaired cataracts. Non-
cataracts were defined as patients with transparent lenses and
without refractive media opacities. Mild cataracts were defined as
cataracts with mild vision impairment with BCDVA ≥0.3, and
visually impaired cataracts were defined as cataracts with
moderate-to-severe vision impairment or blindness with
BCDVA < 0.3. Typical examples of non-cataract and cataract
fundus images are displayed in Figure 1.

2.3 Image preprocessing

During image preprocessing, each image was uniformly scaled
down to 224 × 224 pixels, and the pixel values were normalized
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FIGURE 1
Typical examples of fundus images of non-cataracts, mild cataracts, and visually impaired cataracts (A)Non-cataracts (B) The cataract with BCDVA=
0.8 (C) The cataract with BCDVA = 0.5 (D) The cataract with BCDVA = 0.3 (E) The cataract with BCDVA = 0.1 (F) The cataract with BCDVA = HM/BE.

FIGURE 2
Flow chart for the development and evaluation of the DLS. ZEHWZ = Zhejiang Eye Hospital at Wenzhou; ZEHHZ = Zhejiang Eye Hospital at
Hangzhou; NEH = Ningbo Eye Hospital.
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between 0 and 1. Then, data augmentation techniques were applied
to increase the diversity of the dataset and thereby alleviate the
overfitting problem during deep learning training. The new samples
were generated by a simple transformation of the original image,
simulating “real world” acquisition conditions. Random cropping,
rotation of 90°, and horizontal and vertical flipping were applied to
the images of the training dataset to increase the sample size to six
times the original size (from 4,901 to 29,406).

2.4 Development and evaluation of the DLS

The fundus images drawn from the ZEHWZ dataset were
randomly divided into training, validation, and internal test
datasets at a ratio of 70%:15%:15%. The training and validation
datasets were used to develop the system, and the test dataset was
used to evaluate the performance of the system. Images from the
same person were only assigned to a single dataset to prevent deep
learning leaks and biased evaluations.

To find the best deep learning model for distinguishing non-
cataracts, mild cataracts, and visually impaired cataracts, three
convolutional neural network (CNN) architectures (DenseNet121,
Inception-v3, and ResNet50) were compared. The parameters of the
CNN were initialized with weights pretrained for ImageNet
classification.

The deep learning models were trained using PyTorch (version
1.6.0) as the backend. Using the Adaptive Estimation of Moments
(ADAM) optimizer, the initial learning rate was 0.001, β1 was 0.9,
β2 was 0.999, and the weight decay was 1e-4. Eachmodel was trained
for 80 epochs. During the training, the validation loss was evaluated
on the validation dataset after each epoch and used as a reference for
model selection. Each time the validation loss was reduced, the
model state and corresponding weight matrix were saved. The
model state with the lowest validation loss was saved as the final
state of the model for the test dataset.

The diagnostic performance of the three-class classification
model was then evaluated on two independent external test
datasets. The development and evaluation process of the system
is shown in Figure 2. Using the t-distributed stochastic neighbour
embedding (t-SNE) technique, the embedding features of each class
learned by the model were displayed in a two-dimensional space.

2.5 Visualization heatmap

To understand which areas of fundus images were most likely to
be used by deep learning models to generate decisions for this
system, we use the Gradient-weighted Class Activation Mapping
(GradCAM) technique to generate heatmaps. This technique uses
the gradients of any target concept, flowing into the final
convolutional layer to produce a localization map highlighting
the important regions in the image for predicting the concept
(Ramprasaath et al., 2020). Hotter colours represent the regions
with more contribution to the predicted output, while cooler colours
may indicate relatively less contribution to the predicted output.
Using this method, heatmaps were generated to illustrate the basic
principles of DLSs in differentiating between non-cataracts, mild
cataracts, and visually impaired cataracts.

2.6 Characteristics of misclassification by
the deep learning system

A senior cataract specialists who had not been involved in the
initial diagnosis reviewed the characteristics of all images
misclassified by the DenseNet121 algorithm and analysed the
possible causes of misclassification in combination with the
corresponding BCDVA.

2.7 DLS versus cataract specialists

To assess our DLS in the context of cataract detection, we
recruited two cataract specialists with 3 and 10 years of clinical
experience. The ZEHHZ dataset was employed to compare the
performance of the best system (DenseNet121) to that of the
cataract specialists with the reference standard. The system and
specialists independently classified each image into one of the
following three categories: non-cataracts, mild cataracts, and
visually impaired cataracts. Notably, to reflect the level of
experience of the cataract specialists in normal clinical practice,
they were not told that they were competing with an AI-based
system to avoid competition bias.

2.8 Statistical analysis

The performance of the deep learning system for the
classification of non-cataracts, mild cataracts, and visually
impaired cataracts was evaluated by employing the one-versus-
rest tactic and calculating the AUC, sensitivity, specificity, and
accuracy. Statistical analysis was performed using Python 3.7.8
(Wilmington, Delaware, United States of America). The 95%
confidence intervals (CIs) for sensitivity, specificity, and accuracy
were calculated by the Wilson scoring method using the Stats model
package (version 0.11.1), and those for the area under the receiver
operating characteristic (ROC) curve (AUC) were calculated using
an empirical bootstrap procedure with 1,000 repetitions. We plotted
the receiver operating characteristic (ROC) curve to demonstrate the
capability of the system by plotting the ratio of true positive cases
(sensitivity) to false positive cases (1-specificity) using the Scikit-
learn (version 0.23.2) and Matplotlib (version 3.3.1) packages; a
larger AUC indicated better performance. Unweighted Cohen’s
kappa coefficients were calculated to compare the results of the
system to a reference standard. Differences in sensitivity, specificity,
and accuracy between systems and the cataract specialists were
analysed using the McNemar test. All statistical tests were two-sided
with a significance level of 0.05.

3 Results

3.1 Characteristics of the datasets

After removing 515 poor-quality images, a total of
8,395 qualified images (3,569 images of non-cataracts,
3,245 images of mild cataracts, and 1,581 images of visually
impaired cataracts) from 5,245 individuals were used to develop
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and externally evaluate the DLS. Further information on the datasets
from ZEHWZ, ZEHHZ, and NEH is summarized in Table 1.

3.2 Performance of different deep learning
algorithms on the internal test dataset

This study used three classical deep learning algorithms,
DenseNet121, ResNet50, and Inception-v3, to train the models.
The t-SNE technique showed that the features of each category
learned by the DenseNet121 algorithm were more separable than
those learned by ResNet50 and Inception-v3 (Figure 3A). The
performance of the three algorithms on the internal test dataset
is shown in Figures 3B,C, which indicates that the best algorithmwas
DenseNet121. More information, including the accuracy, sensitivity,
and specificity of the algorithms, is presented in Table 2.

The best algorithm achieved an AUC of 0.999 (95% confidence
interval [CI], 0.998–1.000), a sensitivity of 98.3% (95% CI,
97.1–99.5), and a specificity of 98.8% (95% CI (97.9–99.7)) in
detecting non-cataracts. The best algorithm discriminated mild
cataracts from non-cataracts and visually impaired cataracts with
an AUC of 0.958 (95% CI, 0.946–0.968), a sensitivity of 83.2% (95%
CI, 79.5–86.9), and a specificity of 94.1% (95% CI, 92.3–95.9). The
best algorithm discriminated visually impaired cataracts from non-
cataracts and mild cataracts with an AUC of 0.956 (95% CI,
0.944–0.968), a sensitivity of 84.7% (95% CI, 79.8–89.7), and a
specificity of 93.1% (95% CI, 91.4–94.8). Based on the reference
standard of the internal test dataset, the unweighted Cohen’s kappa
coefficient of the best algorithm, DenseNet121, was 0.845
(0.817–0.873).

3.3 Performance of the different deep
learning algorithms on the external test
datasets

The performance of the DenseNet121, ResNet50, and Inception-
v3 algorithms for cataract validation on the external test dataset is

shown in Figure 4, confirming that DenseNet121 achieved the best
performance. The t-SNE technique also indicated that the features of
each category learned by the DenseNet121 algorithm were more
separable than those learned by Inception-v3 and ResNet50
(Figure 4A–D).

For the ZEHHZ dataset, the system based on
DenseNet121 achieved AUCs of 0.998 (95% CI, 0.996–0.999),
0.938 (95% CI, 0.924–0.951), and 0.937 (95% CI, 0.918–0.953) in
the classification of non-cataracts, mild cataracts, and visually
impaired cataracts, respectively. In the NEH dataset, the system
based on DenseNet121 achieved AUCs of 0.998 (95% CI,
0.995–1.000), 0.966 (95% CI, 0.946–0.983), and 0.977 (95% CI,
0.962–0.989) in the classification of non-cataracts, mild cataracts,
and visually impaired cataracts, respectively.

The details on the classification performance of the three
algorithms with the external datasets are shown in Table 2. In
the ZEHHZ dataset, the accuracies of the best algorithm
(DenseNet121) in the detection of non-cataracts, mild cataracts,
and visually impaired cataracts were 97.3% (95% CI, 96.3–98.2),
85.5% (95% CI, 83.4–87.6), and 88.2% (95% CI, 86.3–90.1),
respectively. In the NEH dataset, the accuracies of the best
algorithm in the detection of non-cataracts, mild cataracts, and
visually impaired cataracts were 98.7% (95% CI, 97.4–100.0), 89.7%
(95% CI, 86.3–93.1), and 91.0% (95% CI, 87.8–94.3), respectively.

Based on the reference standards of the ZEHHZ and NEH
datasets, the unweighted Cohen’s kappa coefficients of the best
algorithm, DenseNet121, were 0.762 (0.728–0.796) and 0.845
(0.793–0.897), respectively.

3.4 Heatmaps

We use heatmaps to provide insights into regions of the fundus
images that might influence the algorithm’s prediction. Based on the
heatmaps shown in Figure 5, we observed that the regions
highlighted by the algorithm matched well with the clear features
on the fundus image. For the fundus images of the non-cataracts, the
region highlighted by the heatmaps was relatively consistent: large

TABLE 1 Summary of datasets.

Item ZEHWZ dataset ZEHHZ dataset NEH dataset

Total no. of images 7,349 1,211 350

Total no. of qualified images 6,997 1,097 301

No. of subjects 4,346 730 169

Age, mean/range (years) 46.54/5–92 50.70/3–92 48.04/4–87

No. (%) of women 2,333/53.68 425/58.22 99/58.58

Camera model Canon CR-2 PLUS AF (Japan) Canon CR-2 (Japan) RetiCam 3,100 (China)

Training Set (70%) 4,901 Validation Set (15%) 1,048 Test Set (15%) 1,048

Non-cataracts No. (%) 2,141 (43.68) 458 (43.70) 458 (43.70) 405 (36.92) 107 (35.55)

Mild cataracts No. (%) 1808 (36.89) 387 (36.93) 387 (36.93) 560 (51.05) 103 (34.22)

Visually impaired cataracts No. (%) 952 (19.42) 203 (19.37) 203 (19.37) 132 (12.03) 91 (30.23)

ZEHWZ = zhejiang eye hospital at wenzhou; ZEHHZ = zhejiang eye hospital at hangzhou; NEH , ningbo eye hospital.
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range, circular, and centred. For the fundus images of mild cataracts,
the regions highlighted by the heatmaps are smaller, eccentric, oval,
and around the optic disk, For the fundus images of visually
impaired cataracts, the regions highlighted by the heatmaps are
irregular. Figure 5 shows typical heatmaps of non-cataracts, mild
cataracts, and visually impaired cataracts, respectively.

3.5 Classification errors

In the internal and external test datasets, a total of 293 images
(11.98% of the total 2,446) were inconsistent with the diagnostic
reference standard by the DenseNet121 algorithm. In the non-
cataracts group (970 images), 38 images (3.92%) were

misclassified as mild cataracts by the system, 89.47% (34 images)
of which were misclassified due to dark shooting, the region
highlighted by the heatmaps was eccentric and oval, as the mild
cataracts, for the images were slightly darker, slightly defocused or
surrounded by the halo. In the mild cataracts group (1,050 images),
11 images (1.05%) were misclassified as non-cataracts by the system
due to clarity of the fundus images, most of the patients are early
cortical or nuclear cataracts, the highlighted region of the heatmaps
show large range, circular, and centred, as the non-cataracts. 167
(15.90%) images were misclassified as visually impaired cataracts by
the system, of which 65.27% images had relatively poor BCDVA
(BCDVA < 0.5) with blurred fundus images and 10.78% had good
BCDVA (BCDVA between 0.8–1.0) with advanced cortical opacity,
whose fundus images were blurred, the highlighted region of the

FIGURE 3
Performance of deep learning algorithms in the internal test dataset from Zhejiang Eye Hospital at Wenzhou (A) Visualization by t-distributed
stochastic neighbour embedding (t-SNE) of the separability for the features learned by deep learning algorithms. Different coloured point clouds
represent the different categories (B) Confusion matrices describing the accuracies of three deep learning algorithms (C) Receiver operating
characteristic curves indicating the performance of each algorithm for detecting non-cataracts, mild cataracts, and visually impaired cataracts.
“Normal” indicates non-cataracts. “Mild” indicates mild cataract. “Severe” indicates visually impairing cataract.
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TABLE 2 Performance of three deep learning algorithms in the internal and external test datasets.

One-vs.-rest
classification

ZEHWZ internal test dataset ZEHHZ external test dataset NEH external test dataset

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

Normal vs mild + severe

DenseNet121 98.3% (97.1–99.5) 98.8% (97.9–99.7) 98.6% (97.8–99.3) 93.3% (90.9–95.8) 99.6% (99.1–100.0) 97.3% (96.3–98.2) 97.2% (94.1–100.0) 99.5% (98.5–100.0) 98.7% (97.4–100.0)

ResNet50 97.8% (96.5–99.2) 98.3% (97.3–99.3) 98.1% (97.3–98.9) 86.2% (82.8–89.5) 99.7% (99.3–100.0) 94.7% (93.4–96.0) 96.3% (92.7–99.9) 99.0% (97.5–100.0) 98.0% (96.4–99.6)

Inception-v3 98.3% (97.1–99.5) 96.9% (95.6–98.3) 97.5% (96.6–98.5) 93.1% (90.6–95.6) 96.4% (95.0–97.8) 95.2% (93.9–96.4) 94.4% (90.0–98.8) 92.3% (88.5–96.0) 93.0% (90.1–95.9)

Mild vs normal + severe

DenseNet121 83.2% (79.5–86.9) 94.1% (92.3–95.9) 90.1% (88.3–91.9) 82.1% (79.0–85.3) 89.0% (86.4–91.7) 85.5% (83.4–87.6) 87.4% (81.0–93.8) 90.9% (86.9–94.9) 89.7% (86.3–93.1)

ResNet50 83.2% (79.5–86.9) 92.6% (90.6–94.6) 89.1% (87.2–91.0) 83.9% (80.9–87.0) 83.6% (80.5–86.7) 83.8% (81.6–86.0) 88.3% (82.2–94.5) 88.9% (84.5–93.3) 88.7% (85.1–92.3)

Inception-v3 80.1% (76.1–84.1) 92.7% (90.8–94.7) 88.1% (86.1–90.0) 80.4% (77.1–83.6) 88.5% (85.8–91.2) 84.3% (82.2–86.5) 72.8% (64.2–81.4) 88.4% (83.9–92.8) 83.1% (73.3–89.3)

Severe vs normal + mild

DenseNet121 84.7% (79.8–89.7) 93.1% (91.4–94.8) 91.5% (89.8–93.2) 75.8% (68.4–83.1) 89.9% (88.1–91.8) 88.2% (86.3–90.1) 83.5% (75.9–91.1) 94.3% (91.1–97.4) 91.0% (87.8–94.3)

ResNet50 80.3% (74.8–85.8) 93.0% (91.3–94.7) 90.6% (88.8–92.3) 74.2% (66.8–81.7) 91.2% (89.4–93.0) 89.2% (87.3–91.0) 81.3% (73.3–89.3) 93.8% (90.6–97.1) 90.0% (86.6–93.4)

Inception-v3 80.8% (75.4–86.2) 93.5% (91.8–95.2) 91.0% (89.3–92.8) 75.8% (68.4–83.1) 90.9% (89.1–92.7) 89.1% (87.2–90.9) 80.2% (72.0–88.4) 95.2% (92.4–98.1) 90.7% (87.4–94.0)

ZEHWZ = zhejiang eye hospital at wenzhou; ZEHHZ = zhejiang eye hospital at hangzhou; NEH = ningbo eye hospital.

“Normal” indicates non-cataracts. “Mild” indicates mild cataracts. “Severe” indicates visually impaired cataracts.
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FIGURE 4
Confusionmatrices and receiver operating characteristic (ROC) curves for three deep learning algorithms performance in two external test datasets.
The t-distributed stochastic neighbour embedding (t-SNE) (A–D) presenting the separability for the features learned by deep learning algorithms in
ZEHHZ and NEH external test datasets. Confusion matrices (B–E) describing the accuracies of two deep learning algorithms in the ZEHHZ and NEH
external test datasets. ROC curves (C–F) indicating the performance of each algorithm for discriminating among non-cataracts, mild cataracts, and
visually impaired cataracts in the ZEHHZ and NEH external test datasets. The performance of two cataract specialists were also indicated (C). ZEHHZ,
Zhejiang Eye Hospital at Hangzhou. NEH, Ningbo Eye Hospital. “Normal” indicates non-cataracts. “Mild” indicates mild cataract. “Severe” indicates visually
impaired cataract.
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FIGURE 5
Saliency maps highlighting regions that the algorithm focuses on when making classification (A) Non-cataracts (B) mild cataracts (C) visually
impaired cataracts. Each category is shown in a pair of an original image (left) and a corresponding heatmap (right). In these heatmaps, hotter areas
(i.e., reds and oranges) are indicative of regions with increased contributions towards the predicted output, and colder regions (blues and greens) might
be indicative of relatively less contribution. For each subgroup, each set of two images (from two different eyes) consistently shows the same region
or feature highlighted by the algorithm.

FIGURE 6
Details of deep learning system error classification in internal and external test datasets. (A) Themisclassfication of the non-cataracts group; (B) The
misclassfication of the mild cataracts group; (C) The misclassfication of the visually impaired cataracts group.
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heatmaps was irregular, as the visually impaired cataracts. In the
visually impaired cataracts group (426 images), 77 images (18.08%)
were systematically misclassified as mild cataracts, the heatmaps
show the characteristic of the mild cataracts: smaller, eccentric, oval,
and around the optic disk, because among these classification errors,

most cataracts’ BCDVAs were not too bad (89.61% of the Images
had BCDVA ≥0.1). The misclassification BCDVA situation of the
DLS is shown in Figure 6. Figure 7 shows typical example of
misclassified images of “non-cataract” incorrectly classified as
“mild cataract”, misclassified images of “mild cataract”

FIGURE 7
Typical examples of misclassified images by the DLS (A) Images of “non-cataract” incorrectly classified as “mild cataract”. The fundus image was
around by the halo (B) Images of “mild cataract” incorrectly classified as “non-cataract”. The patient had cataracts in the early stage, BCDVA = 1.0 (C)
Images of “mild cataract” incorrectly classified as “visually impaired cataract”. The patient had advanced cortical opacity, BCDVA = 0.6 (D) Images of “mild
cataract” incorrectly classified as “visually impaired cataract”. Patients with small pupils reduced the amount of light entering their eyes (BCDVA =
0.4) (E) Images of “visually impaired cataract” incorrectly classified as “mild cataract”. The patient had a small-scale posterior subcapsular area,
BCDVA = 0.16.
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incorrectly classified as “non-cataract”, images of “mild cataract”
incorrectly classified as “visually impaired cataract”, and images of
“visually impaired cataract” incorrectly classified as “mild cataract”,
respectively.

3.6 Comparison of the deep learning system
and cataract specialists

In the ZEHHZ dataset, for the classification of non-cataracts,
mild cataracts, and visually impaired cataracts, the cataract specialist
with 3 years of experience achieved accuracies of 98.7% (98.1–99.4),
84.9% (82.7–87.0), and 86.1% (84.1–88.2), respectively, the senior
cataract specialist with 10 years of experience achieved accuracies of
97.3% (96.3–98.2), 83.5% (81.3–85.7) and 86.2% (84.2–88.3),
respectively, and the DLS achieved accuracies of 97.3%
(96.3–98.2), 85.5% (83.4–87.6) and 88.2% (86.3–90.1),
respectively. Our system had comparable performance to that of
cataract specialists in classifying non-cataracts and mild cataracts
and had better performance in classifying visually impaired cataracts
(p < 0.05) (Table 3 and Figure 4C).

4 Discussion

We developed a single-modality DLS using only fundus images
to detect both mild cataracts and visually impaired cataracts in the
general population. Our main finding was that the system based on a
convolutional neural network could discriminate among non-
cataracts, mild cataracts, and visually impaired cataracts, and the
DenseNet121 algorithm had the best performance. In the internal
and two external test datasets, the AUCs of the system based on the
best algorithm were 0.998–0.999, 0.938–0.966, and 0.937–0.977,
respectively, which demonstrated the broad generalizability of
our system. In addition, the unweighted Cohen’s kappa
coefficients were 0.762–0.845, which showed good consistency
between the outcomes of the DLS and the reference standard,

further substantiating the effectiveness of our system. Moreover,
our system has better performance in classifying visually impaired
cataracts than cataract specialists.

The visual function-centric DLS in this study can serve as a
simple, automated, and comprehensive cataract screening
deployment tool. This system only needs to input fundus images
and does not require other time-consuming and labour-intensive
professional ophthalmic operations to obtain the severity of the
patients’ cataract and the range of the best corrected visual acuity. Its
simplicity can be used as an effective tool for community screening
options, especially in resource-poor regions. It can not only screen
for cataracts and but also can tell patients about their eye health.
Moreover, visually impaired cataracts can be screened out and
referred to tertiary eye hospitals.

With the increase in fundus disease-based primary care
programs and community screening programs (Lin et al., 2021;
Ruamviboonsuk et al., 2022), fundus photography is a routine
examination procedure, and the cataract algorithm of this study
can be used as an add-on algorithm to these existing devices with
minimal additional cost to achieve more disease screening functions.
In addition, the blurring of some fundus images caused by severe
cataracts is a common cause of ungradable fundus disease (Scanlon
et al., 2005). Our algorithm can screen out the fundus images of non-
cataracts and mild cataracts because the fundus images of these two
groups have relatively high definition, which can improve the
accuracy of intelligent screening of fundus diseases and reduce
the burden of unnecessary manual classification, enabling more
effective referrals and improving the capacity of the existing
screening programs for eye diseases. The visually impaired
cataracts selected by the algorithm can be referred to a tertiary
eye hospital for treatment. The workflow is shown in Figure 8.

Most of the previous studies on deep learning algorithms for
cataracts based on fundus images focused on the artificial
classification of the blurriness of the fundus images (Xiong et al.,
2017; Zhang et al., 2019; Xu et al., 2020; Yue Zhou and Li, 2020). The
annotations are subjective, and there is no accurate corresponding
clinical guiding significance. In these studies, the application of these

TABLE 3 Performance comparison of DenseNet121 with cataract specialists in the ZEHHZ dataset.

DenseNet121 Specialists A Specialists B P1 P2

Normal vs mild + severe

Sensitivity (95% CI) 93.3% (90.9–95.8) 99.0% (98.0–100.0) 99.8% (99.3–100.0) 0.000 0.000

Specificity (95% CI) 99.6% (99.1–100.0) 98.6% (97.7–99.4) 95.8% (94.3–97.3) 0.065 0.000

Accuracy (95% CI) 97.3% (96.3–98.2) 98.7% (98.1–99.4) 97.3% (96.3–98.2) 0.014 1.000

Mild vs normal + severe

Sensitivity (95% CI) 82.1% (79.0–85.3) 77.0% (73.5–80.5) 73.6% (69.9–77.2) 0.001 0.000

Specificity (95% CI) 89.0% (86.4–91.7) 93.1% (91.0–95.3) 93.9% (91.8–95.9) 0.002 0.000

Accuracy (95% CI) 85.5% (83.4–87.6) 84.9% (82.7–87.0) 83.5% (81.3–85.7) 0.576 0.074

Severe vs normal + mild

Sensitivity (95% CI) 75.8% (68.4–83.1) 75.0% (67.6–82.4) 75.8% (68.4–83.1) 1.000 1.000

Specificity (95% CI) 89.9% (88.1–91.8) 87.7% (85.6–89.7) 87.7% (85.6–89.7) 0.005 0.006

Accuracy (95% CI) 88.2% (86.3–90.1) 86.1% (84.1–88.2) 86.2% (84.2–88.3) 0.012 0.019

ZEHHZ = Zhejiang Eye Hospital at Hangzhou. P1 refers to the p-value that was calculated between the deep learning system and cataract specialist A using the two-sided McNemar test.

P2 refers to the p-value that was calculated between the deep learning system and cataract specialist B using the two-sidedMcNemar test. Cataract specialist A has 3 years of clinical experience.

Cataract specialist B has 10 years of clinical experience. “Normal” indicates non-cataracts. “Mild” indicates mild cataract. “Severe” indicates visually impairing cataract.
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algorithms did not meet the actual situation and needs of the
communities, and most of the previous studies did not consider
the state of visual function. Recently, Tham et al. (2022) developed
an algorithm for the automatic detection of visually significant
cataracts with an AUC of 0.916–0.966. However, their algorithm
can only distinguish visually significant cataracts from mild
cataracts in cataract patients, but our algorithm can further
classify non-cataracts from cataracts, which is of great
significance for cataract screening and eye health guidance in
communities. At the same time, our algorithm can also
distinguish mild cataracts from non-cataracts. Although the
patients only need regular follow-up and observation, we can
give them some suggestions for controlling and delaying the
progression of cataracts, for numerous studies had found that the
risk factors for cataract formation had been associated with lifestyle
and systemic diseases, include smoking, ultra-violet light exposure,
alcohol intake, nutritional status, diabetes mellitus, hypertension,
obesity, chronic kidney disease and autoimmune disease (Ang and
Afshari, 2021). Therefore, we can advise the patients to choose a
healthy lifestyle and control systemic diseases, such as controling
blood sugar well. In addition, in our research, we compared three
different CNN algorithms: DenseNet121, ResNet50, and Inception-
v3. Among them, Densenet121 is the most accurate algorithm. It has
a variety of advantages used in their study when compared to two
other algorithms: alleviating the vanishing-gradient problem,
strengthening feature propagation, encouraging feature reuse, and
substantially improving parameter efficiency (Huang et al., 2019).

Reducing false negative misclassification of visually impaired
cataracts is critical to avoid missing cataract patients who should be
referred to tertiary eye centres for surgical intervention. A total of
18.08% (77/970) of visually impaired cataracts were misclassified as
mild cataracts. Analysis of the misclassified fundus images found

that 89.61% (69/77) of them had moderate visual impairment (0.1 ≤
BCDVA<0.3). The optometry to get BCDVA is subjective and
requires the patient’s cooperation. Some cataract patients with
relatively poor visual acuity might give up their efforts to see
some small optotypes. Therefore, the actual visual acuity of the
patients may be slightly better than the checked visual acuity.
Additionally, this misclassification may be caused by a small-
scale posterior subcapsular cataract. This type of cataract has a
greater impact on visual acuity, while its small-scale turbidity has
less impact on the quality of fundus images (Stifter et al., 2005).
Reducing false positive cataract results for visually impaired
cataracts is also an important consideration in community
screening programs to avoid unnecessary referrals. In this study,
65.27% (109/178) of patients incorrectly diagnosed with cataracts
had BCDVA < 0.5. In some countries, the population in need of
cataract surgery is defined as having BCDVA<0.5, with cataracts as
the main cause of vision impairment or blindness (WHO, 2021).
Referral of these patients would not waste medical resources. Some
patients with advanced cortical opacity have poor contrast
sensitivity, although their visual acuity is good (Maraini et al.,
1994). Therefore, these false positives may still need to be
referred to a tertiary eye centre and cannot be completely
considered incorrect referrals.

This study has several limitations. First, we did not investigate
the influence of corneal diseases and vitreous haemorrhage on
fundus images. However, the incidence of spontaneous vitreous
haemorrhage and corneal opacity in the general population is low,
0.007% (Manuchehri and Kirkby, 2003) and 3.7% (Mukhija et al.,
2020), respectively. If the patient has corneal opacity or vitreous
haemorrhage, he or she must go to the hospital for further
examination, and the recommendation given by the system
would still apply. Second, the optometry is affected by patient

FIGURE 8
Deployment of the DLS in the existing fundus disease screening workflow.
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compliance. Therefore, misclassification due to subjective
measurement errors cannot be completely ruled out.

We developed and evaluated a novel single-modality, fundus
image-based DLS for the detection of cataracts, especially visually
impaired cataracts. The performance of the DLS is comparable to
that of the experienced cataract specialist, indicating that this DLS
can not only be used to screen cataract patients but also facilitate a
timelier and more accurate referral of visually impaired cataract
patients from communities to tertiary eye hospitals.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by This study adhered to the principles of the Declaration
of Helsinki and was approved by the Ethics Committee of Zhejiang
Eye Hospital at Wenzhou (Number, 2022-008-K-06-01). Due to the
retrospective study design and the use of fully anonymized fundus
images, the need for informed patient consent was waived by the
review committee. Written informed consent from the participants’
legal guardian/next of kin was not required to participate in this
study in accordance with the national legislation and the
institutional requirements. Written informed consent was not
obtained from the individual(s) for the publication of any
potentially identifiable images or data included in this article.

Author contributions

Conception and design: HX, ZL, QZ, JJ, and WC. Funding
obtainment: WC. Provision of study data: WC and HX. Collection

and assembly of data: CW, ZW, CL, QG, andMW. Data analysis and
interpretation: HX, ZL, JJ, CW, WC, and YZ. Manuscript writing:
All authors contributed to the article and approved the submitted
version.

Funding

This study received funding from the National Key R&D
Programme of China (grant no. 2019YFC0840708), the National
Natural Science Foundation of China (grant no. 81970770), the
Medical Health Science and Technology Project of Zhejiang
Provincial Health Commission (2019KY466), the National
Natural Science Foundation of China (grant no. 62276210),
the Natural Science Basic Research Program of Shaanxi
(grant no. 2022JM-380) and the Wenzhou Science and
Technology Foundation (grant no. Y20211005). The funding
organizations played no role in the study design, data
collection and analysis, decision to publish, or preparation of
the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abdul-Rahman, A. M., Molteno, T., and Molteno, A. C. (2008). Fourier analysis of
digital retinal images in estimation of cataract severity. Clin. Exp. Ophthalmol. 36 (7),
637–645. doi:10.1111/j.1442-9071.2008.01819.x

Ang, M. J., and Afshari, N. A. (2021). Cataract and systemic disease: A review. Clin.
Exp. Ophthalmol. 49 (2), 118–127. doi:10.1111/ceo.13892

Bourne, R. R. A., Flaxman, S. R., Braithwaite, T., Cicinelli, M. V., Das, A., Jonas, J. B.,
et al. (2017). Magnitude, temporal trends, and projections of the global prevalence of
blindness and distance and near vision impairment: A systematic review and meta-
analysis. Lancet Glob. health 5 (9), e888–e897. doi:10.1016/S2214-109X(17)30293-0

Chylack, L. T., Jr., Leske, M. C., McCarthy, D., Khu, P., Kashiwagi, T., and Sperduto,
R. (1989). Lens opacities classification system II (LOCS II). Archives Ophthalmol. 107
(7), 991–997. doi:10.1001/archopht.1989.01070020053028

Chylack, L. T., Jr., Wolfe, J. K., Singer, D. M., Leske, M. C., Bullimore, M. A., Bailey, I.
L., et al. (1993). The lens opacities classification system III. The longitudinal study of
cataract study group. Archives Ophthalmol. 111 (6), 831–836. doi:10.1001/archopht.
1993.01090060119035

Flaxman, S. R., Bourne, R. R. A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli,
M. V., et al. (2017). Global causes of blindness and distance vision impairment 1990-
2020: A systematic review and meta-analysis. Lancet Glob. health 5 (12), e1221–e1234.
doi:10.1016/S2214-109X(17)30393-5

Gali, H. E., Sella, R., and Afshari, N. A. (2019). Cataract grading systems: A review of
past and present. Curr. Opin. Ophthalmol. 30 (1), 13–18. doi:10.1097/ICU.
0000000000000542

GBD 2019 Blindness and Vision Impairment Collaborators (2021). Trends in
prevalence of blindness and distance and near vision impairment over 30 years: An
analysis for the global burden of disease study. Lancet Glob. health 9 (2), e130–e143.
doi:10.1016/S2214-109X(20)30425-3

Huang, G., Liu, Z., Pleiss, G., Van Der Maaten, L., and Weinberger, K. (2019).
Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach.
Intell. 44, 8704–8716. doi:10.1109/TPAMI.2019.2918284

Lam, D., Rao, S. K., Ratra, V., Liu, Y., Mitchell, P., King, J., et al. (2015). Cataract. Nat.
Rev. Dis. Prim. 1, 15014. doi:10.1038/nrdp.2015.14

Lian, J. X., Gangwani, R. A., McGhee, S. M., Chan, C. K., Lam, C. L., Primary Health
Care, G., et al. (2016). Systematic screening for diabetic retinopathy (DR) in Hong Kong:
Prevalence of DR and visual impairment among diabetic population. Br. J. Ophthalmol.
100 (2), 151–155. doi:10.1136/bjophthalmol-2015-307382

Lin, D., Xiong, J., Liu, C., Zhao, L., Li, Z., Yu, S., et al. (2021). Application of
comprehensive artificial intelligence retinal Expert (CARE) system: A national real-
world evidence study. Lancet Digit. Health 3 (8), e486–e495. doi:10.1016/S2589-
7500(21)00086-8

Frontiers in Cell and Developmental Biology frontiersin.org13

Xie et al. 10.3389/fcell.2023.1197239

362

https://doi.org/10.1111/j.1442-9071.2008.01819.x
https://doi.org/10.1111/ceo.13892
https://doi.org/10.1016/S2214-109X(17)30293-0
https://doi.org/10.1001/archopht.1989.01070020053028
https://doi.org/10.1001/archopht.1993.01090060119035
https://doi.org/10.1001/archopht.1993.01090060119035
https://doi.org/10.1016/S2214-109X(17)30393-5
https://doi.org/10.1097/ICU.0000000000000542
https://doi.org/10.1097/ICU.0000000000000542
https://doi.org/10.1016/S2214-109X(20)30425-3
https://doi.org/10.1109/TPAMI.2019.2918284
https://doi.org/10.1038/nrdp.2015.14
https://doi.org/10.1136/bjophthalmol-2015-307382
https://doi.org/10.1016/S2589-7500(21)00086-8
https://doi.org/10.1016/S2589-7500(21)00086-8
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1197239


Manuchehri, K., and Kirkby, G. (2003). Vitreous haemorrhage in elderly patients:
Management and prevention. Drugs Aging 20 (9), 655–661. doi:10.2165/00002512-
200320090-00003

Maraini, G., Rosmini, F., Graziosi, P., Tomba, M. C., Bonacini, M., Cotichini, R., et al.
(1994). Influence of type and severity of pure forms of age-related cataract on visual
acuity and contrast sensitivity. Italian American Cataract Study Group. Invest.
Ophthalmol. Vis. Sci. 35 (1), 262–267.

Mukhija, R., Gupta, N., Vashist, P., Tandon, R., and Gupta, S. K. (2020). Population-
based assessment of visual impairment and pattern of corneal disease: Results from the
CORE (corneal opacity rural epidemiological) study. Br. J. Ophthalmol. 104 (7),
994–998. doi:10.1136/bjophthalmol-2019-314720

Ramprasaath, R., Selvaraju, M. C., Das, A., Vedantam, R., Parikh, D., and Batra, D.
(2020). Grad-CAM: Visual explanations from deep networks via gradient-based
localization. Int. J. Comput. Vis. 128, 336–359. doi:10.1007/s11263-019-01228-7

Ruamviboonsuk, P., Tiwari, R., Sayres, R., Nganthavee, V., Hemarat, K., Kongprayoon,
A., et al. (2022). Real-time diabetic retinopathy screening by deep learning in a multisite
national screening programme: A prospective interventional cohort study. Lancet Digit.
Health 4 (4), e235–e244. doi:10.1016/S2589-7500(22)00017-6

Scanlon, P. H., Foy, C., Malhotra, R., and Aldington, S. J. (2005). The influence of age,
duration of diabetes, cataract, and pupil size on image quality in digital photographic
retinal screening. Diabetes Care 28 (10), 2448–2453. doi:10.2337/diacare.28.10.2448

Stifter, E., Sacu, S., Benesch, T., andWeghaupt, H. (2005). Impairment of visual acuity
and reading performance and the relationship with cataract type and density. Invest.
Ophthalmol. Vis. Sci. 46 (6), 2071–2075. doi:10.1167/iovs.04-0890

Tham, Y. C., Goh, J. H. L., Anees, A., Lei, X., Rim, T. H., Chee, M. L., et al. (2022).
Detecting visually significant cataract using retinal photograph-based deep learning.
Nat. Aging 2, 264–271. doi:10.1038/s43587-022-00171-6

Verbraak, F. D., Abramoff, M. D., Bausch, G. C. F., Klaver, C., Nijpels, G.,
Schlingemann, R. O., et al. (2019). Diagnostic accuracy of a device for the
automated detection of diabetic retinopathy in a primary care setting. Diabetes Care
42 (4), 651–656. doi:10.2337/dc18-0148

WHO (2020). Discussion Paper Proposed global targets for 2030 on integrated
people-centred eye care World Health Organization. Available at: https://cdn.who.int/
media/docs/default-source/blindness-and-visual-impairment/discussion-paper-eye-
care-indicators-and-proposed-targets-11-11-20.pdf?sfvrsn=ff4dad2_2.

WHO (2021). Integrated people-centred eye care, including preventable vision
impairment and blindness Global targets for 2030. World Health Organization
Available at: https://apps.who.int/gb/ebwha/pdf_files/WHA74/A_9-en.pdf.

Wong, W. L., Li, X., Li, J., Cheng, C. Y., Lamoureux, E. L., Wang, J. J., et al. (2013).
Cataract conversion assessment using lens opacity classification system III and
Wisconsin cataract grading system. Invest. Ophthalmol. Vis. Sci. 54 (1), 280–287.
doi:10.1167/iovs.12-10657

Xiong, L., Li, H., and Xu, L. (2017). An approach to evaluate blurriness in retinal
images with vitreous opacity for cataract diagnosis. J. Healthc. Eng. 2017, 5645498.
doi:10.1155/2017/5645498

Xu, X., Zhang, L., Li, J., Guan, Y., and Zhang, L. (2020). A hybrid global-local
representation CNN model for automatic cataract grading. IEEE J. Biomed. health Inf.
24 (2), 556–567. doi:10.1109/JBHI.2019.2914690

Yue Zhou, G. L., and Li, H. (2020). Automatic cataract classification using deep neural
network with discrete state transition. IEEE Trans. Med. Imaging 39 (2), 436–446.
doi:10.1109/TMI.2019.2928229

Zhang, H., Niu, K., Xiong, Y., Yang, W., He, Z., and Song, H. (2019). Automatic
cataract grading methods based on deep learning. Comput. methods programs Biomed.
182, 104978. doi:10.1016/j.cmpb.2019.07.006

Frontiers in Cell and Developmental Biology frontiersin.org14

Xie et al. 10.3389/fcell.2023.1197239

363

https://doi.org/10.2165/00002512-200320090-00003
https://doi.org/10.2165/00002512-200320090-00003
https://doi.org/10.1136/bjophthalmol-2019-314720
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1016/S2589-7500(22)00017-6
https://doi.org/10.2337/diacare.28.10.2448
https://doi.org/10.1167/iovs.04-0890
https://doi.org/10.1038/s43587-022-00171-6
https://doi.org/10.2337/dc18-0148
https://cdn.who.int/media/docs/default-source/blindness-and-visual-impairment/discussion-paper-eye-care-indicators-and-proposed-targets-11-11-20.pdf?sfvrsn=ff4dad2_2
https://cdn.who.int/media/docs/default-source/blindness-and-visual-impairment/discussion-paper-eye-care-indicators-and-proposed-targets-11-11-20.pdf?sfvrsn=ff4dad2_2
https://cdn.who.int/media/docs/default-source/blindness-and-visual-impairment/discussion-paper-eye-care-indicators-and-proposed-targets-11-11-20.pdf?sfvrsn=ff4dad2_2
https://apps.who.int/gb/ebwha/pdf_files/WHA74/A_9-en.pdf
https://doi.org/10.1167/iovs.12-10657
https://doi.org/10.1155/2017/5645498
https://doi.org/10.1109/JBHI.2019.2914690
https://doi.org/10.1109/TMI.2019.2928229
https://doi.org/10.1016/j.cmpb.2019.07.006
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1197239


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores the fundamental biological processes 

of life, covering intracellular and extracellular 

dynamics.

The world’s most cited developmental biology 

journal, advancing our understanding of the 

fundamental processes of life. It explores a wide 

spectrum of cell and developmental biology, 

covering intracellular and extracellular dynamics.

Discover the latest 
Research Topics

See more 

Frontiers in
Cell and Developmental Biology

https://www.frontiersin.org/journals/cell-and-developmental-biology/research-topics

	Cover  
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Artificial intelligence applications in chronic ocular diseases
	Table of contents
	Editorial: Artificial intelligence applications in chronic ocular diseases
	Introduction
	Ocular surface and orbital diseases
	Eye orbit and eyelids
	Meibomian gland
	Cornea

	Myopia
	Glaucoma
	Cataracts
	Retinal diseases
	Fundus vasculature disorders
	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Accuracy and feasibility with AI-assisted OCT in retinal disorder community screening
	Introduction
	Materials and methods
	Participants’ enrollment
	Community screening

	AI auto-detection
	Ophthalmologist diagnosis
	Statistical analysis

	Results
	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Artificial intelligence-based pathologic myopia identification system in the ophthalmology residency training program
	Introduction
	Materials and methods
	Participant enrollment and assignment
	Ophthalmology-client, the AI-aided diagnosis platform for PM
	AI-based PM identification system
	Conduction of the traditional lecture
	Residents’ evaluations
	Data analysis

	Results
	Baseline characteristics
	Pre-lecture scores of residents’ performance in each group
	Improvement of residents’ performance in each group
	Comparison of junior and senior residents’ performance between three groups

	Residents’ satisfaction
	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Choroidal layer segmentation in OCT images by a boundary enhancement network
	1 Introduction
	2 Related work
	2.1 Choroid segmentation
	2.2 Choroidal thickness analysis
	2.3 Boundary segmentation

	3 Methods
	3.1 Soft point map construction
	3.2 Boundary enhancement module
	3.2.1 Feature extraction branch
	3.2.2 Channel enhancement branch
	3.2.3 Boundary activation branch
	3.3 Loss function
	3.3.1 Segmentation loss
	3.3.2 Boundary perceptual loss

	4 Experiment settings
	4.1 Dateset
	4.2 Implementation
	4.3 Quantitative evaluation metrics

	5 Results
	5.1 Qualitative results
	5.2 Quantitative results
	5.3 Ablation study

	6 Clinic applications
	7 Discussion and conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Orbital and eyelid diseases: The next breakthrough in artificial intelligence?
	Introduction
	What is artificial intelligence?

	Artificial intelligence technology applied to orbital computed tomography/magnetic resonance imaging images
	Automatic identification and segmentation of anatomical structures from orbital computed tomography/magnetic resonance imaging
	Automatic diagnosis and grading of orbital and eyelid diseases based on orbital computed tomography/magnetic resonance imag ...

	Artificial intelligence technology based on external ocular photographs
	Automatic measurements of eyelid morphologic parameters from external ocular photographs
	Artificial intelligence diagnosis and prediction based on external ocular photographs

	Artificial intelligence-based techniques using other image data types
	Discussion
	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Effectiveness of reducing corneal astigmatism after combined high-frequency LDV Z8 femtosecond laser-assisted phacoemulsifi ...
	Introduction
	Patients and methods
	Patients
	Corneal astigmatism measurements
	Preoperative femtosecond laser arcuate keratotomy planning
	Surgical technique
	Data and statistical analysis
	Changes in keratometry
	Astigmatism vector analysis
	FSAK nomograms

	Statistical analysis

	Results
	Changes in keratometric astigmatism
	Astigmatism vector analysis
	Femtosecond laser arcuate keratotomy nomograms

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Meibomian gland morphological changes in ocular herpes zoster patients based on AI analysis
	Introduction
	Materials and methods
	Subjects
	AI model and morphology analysis
	Statistical analysis

	Results
	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Is histogram manipulation always beneficial when trying to improve model performance across devices? Experiments using a Me ...
	Introduction
	Related works
	Materials
	Methods
	Image preprocessing
	MG segmentation network
	MG loss rate calculation

	Results
	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References

	Reduced macula microvascular densities may be an early indicator for diabetic peripheral neuropathy
	Introduction
	Materials and methods
	Participants
	Ophthalmic examinations
	OCTA imaging
	Deep learning algorithm on macular microvasculature
	Statistical analysis

	Results
	Demographic characteristics among three groups
	Changes in VLD among the three groups

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Advances in artificial intelligence applications for ocular surface diseases diagnosis
	1 Introduction
	2 Application of AI in ocular surface disease diagnoses
	2.1 Application of AI in keratitis diagnosis
	2.2 Application of AI in keratoconus diagnosis
	2.3 Application of AI in the diagnosis of dry eye
	2.4 Application of AI in pterygium diagnosis

	3 Limitations and challenges
	4 Prospects for the future
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Artificial intelligence technology for myopia challenges: A review
	Introduction
	Commonly used AI technology and evaluation metrics in myopia
	AI technology for myopia risk prediction
	AI technology for myopia screening and diagnosis
	Deep learning for automatic detection and classification of myopia-related fundus changes
	Deep learning for automatic segmentation of myopia-related fundus changes

	AI technology in the study of myopia pathogenesis
	Deep learning for investigating myopia-related morphological changes
	Conventional machine learning for exploring myopia-related genes

	AI technology in myopia treatment
	Discussion
	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Prospective clinical study of retinal microvascular alteration after ICL implantation
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 OCT angiography
	2.3 Statistical analysis

	3 Result
	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Research progress and application of artificial intelligence in thyroid associated ophthalmopathy
	Introduction
	Application of AI algorithms in detecting the signs and symptoms of TAO
	Application of AI algorithms in the orbital imaging of TAO
	Application of AI algorithms in treating TAO
	GC pulse therapy
	Orbital radiotherapy
	Orbital decompression surgery

	Application of AI algorithms in privacy safeguard of TAO
	Discussion
	Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Artificial intelligence-assisted diagnosis of ocular surface diseases
	1 Introduction
	2 Search methods
	3 AI application in pterygium
	4 AI application in KC
	5 AI application in infectious keratitis
	6 AI application in dry eye
	7 AI application in other ocular surface diseases
	8 Discussion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Automatic measurement of exophthalmos based orbital CT images using deep learning
	1 Introduction
	2 Materials and methods
	2.1 Data
	2.2 Overall approach
	2.3 Segmentation
	2.4 Distance calculation
	2.5 Statistical analysis

	3 Results
	3.1 Ocular segmentation
	3.2 Ocular prominence measurement

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Retinal fluid is associated with cytokines of aqueous humor in age-related macular degeneration using automatic 3-dimension ...
	Introduction
	Materials and methods
	Study design
	Inclusion/exclusion criteria
	OCT image collection and annotation
	Aqueous humor sample collection and cytokines measurement
	Automatic quantification of retinal fluid volume
	3D reconstruction and volumetric algorithm of fluid
	Statistical analysis

	Result
	Patient characteristics
	Deep learning model performance
	Comparison of intraocular cytokine between retinal fluid presence or absence
	Associations between intraocular cytokines and retinal fluid volume based on OCT

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Effects of exogenous retinoic acid on ocular parameters in Guinea pigs with form deprivation myopia
	Introduction
	Materials and methods
	Animals
	Animal grouping and model establishment
	Retinography and measurement of AL and IOP
	Measurement of retina and choroid images by EDI-OCT
	Statistical analysis

	Results
	RE results of Guinea pigs in each group
	AL results of Guinea pigs in each group
	The result of IOP after induction
	CT and RT results of Guinea pigs measured by EDI-OCT

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Research progress on diagnosing retinal vascular diseases based on artificial intelligence and fundus images
	1 Introduction
	2 Basic process of the medical artificial intelligence diagnosis model for research
	3 Application of artificial intelligence in retinal vascular diseases
	3.1 Application of artificial intelligence in diabetic retinopathy
	3.2 Application of artificial intelligence in hypertensive retinopathy
	3.3 Application of artificial intelligence in retinal vein occlusion
	3.4 Application of artificial intelligence in retinopathy of prematurity
	3.5 Application of artificial intelligence in age-related macular degeneration

	4 Limitations and challenges
	5 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Using a smartphone app in the measurement of posture-related pupil center shift on centration during corneal refractive surgery
	Introduction
	Materials and methods
	Participants
	Measurement of pupil shifts in different body positions
	Image analysis
	Data analysis

	Results
	Pupil center location in the seated and supine positions
	Pupil center shifts in the lateral position
	Changes in pupil diameter in different positions

	Discussion
	Limitations
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Quantitative assessment of retinal microvascular remodeling in eyes that underwent idiopathic epiretinal membrane surgery
	Introduction
	Materials and methods
	Image acquisition
	Image processing
	Functional assessment
	Statistical analysis

	Results
	Microvascular remodeling
	Functional improvement
	Correlations between functional and anatomical parameters

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Advances in artificial intelligence models and algorithms in the field of optometry
	1 Introduction
	2 Application of AI models and algorithms in the field of optometry
	2.1 Application of AI models and algorithms in myopia
	2.2 Application of AI models and algorithms in strabismus
	2.3 Application of AI models and algorithms in keratoconus
	2.4 Application of AI models and algorithms in the preoperative measurement and effect prediction of intraocular lenses
	2.5 Application of AI models and algorithms in amblyopia

	3 Limitations and challenges
	4 Conclusion
	5 Resource identification initiative
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	The application of artificial intelligence in glaucoma diagnosis and prediction
	1 Introduction
	2 Diagnostic model of glaucoma
	2.1 Visual fields
	2.2 Fundus image
	2.3 OCT

	3 Prediction models in glaucoma
	4 Limitations and further advancements
	4.1 Limitations
	4.2 Further advancements

	5 Conclusion
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Joint conditional generative adversarial networks for eyelash artifact removal in ultra-wide-field fundus images
	1 Introduction
	2 Related works
	2.1 GAN and CGAN
	2.2 Eyelash artifact removal from UWF images
	2.3 Shadow removal

	3 Datasets
	3.1 Paired synthetic eyelashes dataset
	3.2 Unpaired real eyelashes dataset

	4 Proposed method
	4.1 Architecture
	4.2 Loss function

	5 Experimental setup
	5.1 Implementation settings
	5.2 Evaluation criteria
	5.3 Data ablation
	5.4 Module ablation

	6 Discussion
	6.1 Comparative analysis
	6.2 Application to UWF image segmentation
	6.3 Summary

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Attention-guided cascaded network with pixel-importance-balance loss for retinal vessel segmentation
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Network architecture
	3.2 Inter-stage attention module
	3.3 Pixel-importance-balance loss

	4 Experimental configuration
	4.1 Dataset and augmentation
	4.2 Evaluation metrics
	4.3 Implementation details

	5 Results and discussions
	5.1 Segmentation performance on two databases
	5.2 Ablation studies
	5.3 Comparison with the state-of-the-art methods
	5.4 Limitations

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary Material
	References

	Oxygen-saturation-related functional parameter as a biomarker for diabetes mellitus—extraction method and clinical validation
	1 Introduction
	2 Methods
	2.1 Ethics
	2.2 Population
	2.3 Vessel segmentation and labeling
	2.4 Optical density ratio extraction
	2.5 Statistical analysis

	3 Results
	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Disrupted dynamic amplitude of low-frequency fluctuations in patients with active thyroid-associated ophthalmopathy
	1 Introduction
	2 Methods
	2.1 Ethics approval
	2.2 Participants
	2.3 Clinical assessment
	2.4 MRI data acquisition
	2.5 fMRI data preprocessing
	2.6 Calculation of dALFF
	2.7 Validation analysis
	2.8 Support vector machine analysis
	2.9 Statistical analysis
	2.10 Correlation analysis

	3 Results
	3.1 Demographics and disease characteristics
	3.2 dALFF in TAO and HC groups
	3.3 Support vector machine classification
	3.4 Correlation analysis

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	A bibliometric analysis of artificial intelligence applications in macular edema: exploring research hotspots and Frontiers
	1 Introduction
	2 Materials and methods
	3 Results
	3.1 Study distribution (year of publication)
	3.2 Institutes/countries/regions
	3.3 Journals
	3.4 References
	3.5 Keywords

	4 Discussion
	4.1 General data
	4.2 Knowledge base
	4.3 Frontiers and hotspots

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of Interest
	Publisher’s note
	Supplementary material
	References

	Impacts of gender and age on meibomian gland in aged people using artificial intelligence
	1 Introduction
	2 Materials and methods
	2.1 Subjects
	2.2 Diagnosis and staging of MGD
	2.3 Meibography collection and MG parameters detection
	2.4 Lid margin and meibum assessment
	2.5 Statistical analysis

	3 Results
	3.1 The associations between MG parameters
	3.2 Age was a risk factor for MGD and MGL
	3.3 MG morphology differs in aging males and females

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Relationships between quantitative retinal microvascular characteristics and cognitive function based on automated artifici ...
	Introduction
	Materials and methods
	Study population
	Ophthalmic and general examinations
	Quantitative measurements of retinal vascular parameters based on artificial intelligence automatic analysis technology
	Preprocessing of images
	Segmentation of retinal vessels
	Optic disc segmentation
	Accuracy evaluation of retinal vessel segmentation and optic disc segmentation
	Calculation of vascular fractal dimension
	Calculation of retinal vascular density
	Measurement of retinal vascular average diameter
	Measurement of retinal vascular tortuosity
	Measurement of retinal vascular branching angle
	Statistical analysis

	Results
	Demographic characteristics
	Retinal vascular characteristics in participants with different cognitive functions
	Regional characteristics of retinal vascular alterations
	Correlation between retinal vascular parameters and MMSE score

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Effects of orthokeratology lenses on tear film and tarsal glands and control of unilateral myopia in children
	1 Introduction
	2 Materials and methods
	2.1 General information
	2.2 Methods
	2.2.1 Fitting for the orthokeratology lens
	2.2.2 Method of constructing an intelligent model for the tarsal glands
	2.2.2.1 Data augmentation module
	2.2.2.2 Gland segmentation module
	2.2.2.3 Gland analysis module

	2.3 Observational indicators
	2.3.1 TBUT
	2.3.2 Tarsal gland deformation coefficient
	2.3.3 Axial length
	2.3.4 Spherical equivalent

	2.4 Statistical analysis

	3 Results
	3.1 TBUT
	3.2 Differences in Deformation Coefficients of 10 glands in the central regions of the upper eyelids between the Two Groups
	3.3 Differences in Deformation Coefficients of 10 glands in the central regions of the upper eyelids at Different Examinati ...
	3.3.1 Treatment group
	3.3.2 Control group

	3.4 Axial length
	3.5 Spherical equivalent

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Deep learning for detecting visually impaired cataracts using fundus images
	1 Introduction
	2 Materials and Methods
	2.1 Image datasets
	2.2 Criteria of cataract classification
	2.3 Image preprocessing
	2.4 Development and evaluation of the DLS
	2.5 Visualization heatmap
	2.6 Characteristics of misclassification by the deep learning system
	2.7 DLS versus cataract specialists
	2.8 Statistical analysis

	3 Results
	3.1 Characteristics of the datasets
	3.2 Performance of different deep learning algorithms on the internal test dataset
	3.3 Performance of the different deep learning algorithms on the external test datasets
	3.4 Heatmaps
	3.5 Classification errors
	3.6 Comparison of the deep learning system and cataract specialists

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Back Cover



