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Editorial on the Research Topic

Machine learning-based adaptive radiotherapy treatments: From bench
top to bedside
Introduction

Radiation therapy aims to control malignant and less commonly benign diseases while

preserving the surrounding healthy tissues. Standard courses of radiation therapy last up to six

weeks, during which time anatomical changes are often anticipated due to tumor shrinkage and

the day-to-day variations of organ filling and patient positioning. Historically, clinicians have

compensated for these variations by adding generous margins around target volumes to prevent

a geometric miss but at the expense of increased radiation dose to the healthy tissues. One

alternative is adaptive radiotherapy where the patient receives customized treatment based on

the “anatomy of the day.” This approach reduces the need for large margins by directly

accounting for the inter-fraction variations and consequently better spares the healthy tissues.

Adaptive radiotherapy has been an active research area for some time and finally has been

commercialized and implemented in some radiotherapy clinics, due in large part to machine

learning. In this Research Topic “Machine Learning-Based Adaptive Radiotherapy Treatments:

From Bench Top to Bedside”, machine learning applications in various stages of the adaptive

radiotherapy workflow are covered, including image registration, segmentation, treatment

planning, and clinical decision support.
Topics covered in this research topic

AI-driven image segmentation: Naser et al., Domoguen et al., Xia et al.

Treatment-time image processing/correction: Yang et al., Cao et al.

Automated treatment planning: Fredén et al., Pogue et al.

Clinical decision support via dosiomics and radiomics: Kraus et al.
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Online adaptive planning workflow validation: Chen et al.,

Magallon-Baro et al.
Papers included in this research topic

Naser et al. used auto-segmentation to help define the skeletal

muscle index (SMI) and calculate sarcopenia, a prognostic factor for

head-and-neck cancer (HNC) patients. The auto-segmentation

approach substantially improved the efficiency in determining

sarcopenia and proved effective in predicting patient survival. The

proposed model could potentially assist in clinical decision-making for

HNC treatments.

Domoguen et al. designed a deep learning architecture for the task

of auto-segmenting nasopharyngeal carcinoma (NPC) target volumes.

This model is based on UNet-2.5D and has been enhanced with multi-

scale training and semi-supervised pre-training to improve training

efficiency. With a small training/validation dataset, the proposed

method demonstrated improved performance at NPC target volume

segmentations as compared to the current state-of-the-art methods,

indicating efficient use of limited data.

Xia et al. developed an attention-based UNet model to auto-

segment parotid neoplasms, a relatively rare form of HNC. The

authors reported an average Dice similarity coefficient (DSC) of

0.88 for both parotids. The performance of the proposed model was

comparable to human observers (3 radiologists).

Yang et al. compared two approaches for enhancing the image

quality of cone-beam CT (CBCT) images: 1) deformable registration of

planning CT images to CBCT images, and 2) synthetic CT images

derived from CBCT images. The authors found that the auto-

segmented contours based on synthetic CT images achieved

significantly higher DSCs for bladder, rectum, spinal cord, and

femoral heads, compared with contours segmented on deformed

planning CT images. This study validated the efficacy of synthetic

CT images for auto-segmenting pelvic anatomy.

Cao et al. proposed a novel method to eliminate metal artifacts

by synthesizing CT from mega-voltage CBCT (MVCBCT). They

implemented a cycle-consistent generative adversarial network

(CycleGAN) to synthesize metal artifact-free CT images. The

process successfully eliminated metal artifacts. Further, Gamma

analysis of the dose matrices calculated based on planning CT and

synthesized CT confirmed the dose calculation accuracy.

Fredén et al. studied the effects of adaptive radiation therapy on

dose painting treatments. The authors compared the tumor control

probability (TCP) of the adaptive workflow and the conventional

workflow and found that adaptive workflow consistently achieved

target coverage, albeit with marginal improvements in the TCP.

Pogue et al. investigated an automated adaptive planning workflow

for accelerated partial breast irradiation with an emphasis on cardiac

sparing. A commercial adaptive radiotherapy platform, Varian Ethos,

was used to test the workflow. Two physicians evaluated the auto-

generated plans and found at least 95% of cases were clinically

acceptable. Additionally, the auto-generated plans improved cardiac

sparing compared with the previous manual plans.

Kraus et al. developed a model to predict radiation-induced

pneumonitis using both dosiomic features and radiomic features.
Frontiers in Oncology 025
With both sets of features, the model achieved an area under the

ROC curve (AUC) of 0.79, suggesting that the model could effectively

predict pneumonitis before treatment and help guide clinical decision-

making for at-risk patients.

Chen et al. studied the feasibility of using auto-segmented contours

directly for cervical cancer VMAT planning. They evaluated plan

metrics for plans created based on auto segmentations (AS-VMAT)

and compared that with manual segmentations (MS-VMAT) results.

While for most organs at risk (OARs), the difference between AS-

VMAT and MS-VMAT was not significant, MS-VMAT plans

achieved better rectum sparing. The study concluded that auto-

segmented contours, especially for organs in close proximity to the

target volume, need to be examined carefully to ensure plan quality.

Magallon-Baro et al. explored the feasibility of adaptive treatment

planning for pancreas stereotactic body radiotherapy (SBRT) with

contours deformed from planning CTs onto treatment CBCTs. Two

commercial deformable registration methods were tested. Replanning

with unedited, deformed contours resulted in slightly worse results due

to inaccuracies in contours near the target volumes. However, the

automated plans still outperformed the non-adapted plans.

Conclusions and outlook

Adaptive therapy is in a crucial phase, transitioning from the bench

top to the bedside. With the first generation of commercial adaptive

treatment machines and solutions already in some radiation oncology

centers, there is emerging expertise in the clinical implementation of

adaptive planning workflows. This invaluable clinical knowledge from

incorporating adaptive therapy into routine clinical practice will

undoubtedly encourage related research activities to enhance

accuracy and efficiency, which further promotes the clinical

implementation of adaptive therapy. In parallel, researchers are

making strides in developing advanced adaptive treatment

technologies based on information from various imaging modalities.

This Article Collection showcases both the practical aspects of clinical

applications of AI-driven modern adaptive therapy workflows and

cutting-edge technological advancements in this domain. The adaptive

radiotherapy treatments that clinicians have long dreamed of are now

gradually becoming a clinical reality.
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A Comparison Study Between CNN-
Based Deformed Planning CT and
CycleGAN-Based Synthetic CT
Methods for Improving iCBCT
Image Quality
Bo Yang1†, Yankui Chang2†, Yongguang Liang1, Zhiqun Wang1, Xi Pei2,3, Xie George Xu2,4

and Jie Qiu1*

1 Department of Radiation Oncology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing,
China, 2 School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China,
3 Technology Development Department, Anhui Wisdom Technology Co., Ltd., Hefei, China, 4 Department of Radiation
Oncology, First Affiliated Hospital of University of Science and Technology of China, Hefei, China

Purpose: The aim of this study is to compare two methods for improving the
image quality of the Varian Halcyon cone-beam CT (iCBCT) system through the
deformed planning CT (dpCT) based on the convolutional neural network (CNN) and
the synthetic CT (sCT) generation based on the cycle-consistent generative adversarial
network (CycleGAN).

Methods: A total of 190 paired pelvic CT and iCBCT image datasets were included in the
study, out of which 150 were used for model training and the remaining 40 were used for
model testing. For the registration network, we proposed a 3D multi-stage registration
network (MSnet) to deform planning CT images to agree with iCBCT images, and the
contours from CT images were propagated to the corresponding iCBCT images through
a deformation matrix. The overlap between the deformed contours (dpCT) and the fixed
contours (iCBCT) was calculated for purposes of evaluating the registration accuracy. For
the sCT generation, we trained the 2D CycleGAN using the deformation-registered CT-
iCBCT slicers and generated the sCT with corresponding iCBCT image data. Then, on
sCT images, physicians re-delineated the contours that were compared with contours of
manually delineated iCBCT images. The organs for contour comparison included the
bladder, spinal cord, femoral head left, femoral head right, and bone marrow. The dice
similarity coefficient (DSC) was used to evaluate the accuracy of registration and the
accuracy of sCT generation.

Results: The DSC values of the registration and sCT generation were found to be 0.769
and 0.884 for the bladder (p < 0.05), 0.765 and 0.850 for the spinal cord (p < 0.05), 0.918
and 0.923 for the femoral head left (p > 0.05), 0.916 and 0.921 for the femoral head right
(p > 0.05), and 0.878 and 0.916 for the bone marrow (p < 0.05), respectively. When the
bladder volume difference in planning CT and iCBCT scans was more than double, the
May 2022 | Volume 12 | Article 89679517
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accuracy of sCT generation was significantly better than that of registration (DSC of
bladder: 0.859 vs. 0.596, p < 0.05).

Conclusion: The registration and sCT generation could both improve the iCBCT image
quality effectively, and the sCT generation could achieve higher accuracy when the
difference in planning CT and iCBCT was large.
Keywords: iCBCT, registration, sCT generation, pelvic, CycleGAN
INTRODUCTION

Cervical cancer is an important factor that endangers women’s
lives (1), and radiotherapy is one of the main ways to treat
cervical cancer. The most widely used radiotherapy techniques in
clinical practice are IMRT (intensity modulated radiotherapy)
(2) and VMAT (volumetric modulated radiotherapy) (3, 4), both
of which can provide a high dose to the target area while
protecting more organs at risk (OARs). Higher conformity
requires higher accuracy of the patient’s position during
treatment; thus, image-guided radiotherapy (IGRT) is used to
monitor changes in the patient’s position and anatomical
structure during clinical treatment. The acquisition of CT
image again may increase the treatment burden and radiation,
and CBCT image guidance is most widely accepted in clinical
practice. However, the quality of CBCT images is poor due to the
scattering and artifacts, which is typically not enough for dose
calculation and adaptive radiotherapy. The iterative cone beam
CT (iCBCT) combines the statistical reconstruction and Acuros
CTS scattering correction algorithm (5, 6), which can achieve
uniform imaging with less noise and higher quality. Nevertheless,
the artifacts (cavity artifacts, etc.) still exist, which need to
be improved.

In recent years, deep learning-based image processing
methods have been widely applied to the field of medical
imaging, including medical image segmentation (7–9), disease
diagnosis (10, 11), medical image denoising (12), and medical
image translation (13, 14). The development of deep learning
technology has accelerated the process of clinical treatment and
improved the mining of medical image information. For the
inaccuracy of CBCT images, many scholars have made a lot of
contributions to improve the quality of CBCT images based on
deep learning methods; some of them used the planning CT
(pCT) to be registered to the CBCT to obtain deformed planning
CT (dpCT), which was used to approximately replace CBCT as
the current treatment images. Duan et al. (15) proposed a patch-
wise CT-CBCT registration unsupervised model for thoracic
patients; Han et al. (16) used a segmentation similarity loss, in
addition to the image similarity loss, to train the network to
predict the transformation between the pancreatic CT and CBCT
images. Liang et al. (17) developed a deep unsupervised learning
(DUL) framework based on a regional deformable model for
automated prostate contour propagation from pCT to CBCT. In
addition, some scholars tried to generate sCT from CBCT
images, which was used to replace CBCT as the current
treatment images. Zhao et al. (18) used the modified
28
CycleGAN to generate sCT from MV CBCT; the auto-
segmentation and dose calculation based on sCT showed
promising results. Liang et al. (19) compared the CycleGAN
model with other unsupervised learning methods and
demonstrated that CycleGAN (20) outperformed the other
models on sCT generation. Chen et al. (21) retrained the head
model in the pelvic region, and the improvement of the accuracy
proved the generalization feasibility of sCT generation.

However, the registration accuracy of CT-CBCT depends
more on the consistency of pCT and CBCT images.
Deformable image registration (DIR) enabled accurate contour
propagation and dose calculation for head and neck (22), but
obtained lower accuracy in more complex anatomical regions
such as the lung (23) and pelvis (24). Due to the daily
deformation of the patient’s anatomy, especially for cases with
large differences in bladder volumes in cervical cancer patients,
the accuracy of the registration can be greatly compromised. On
the other hand, the sCT generation is obtained from the trained
model parameters, which may produce some fake structure
inconsistent with the CBCT images. Therefore, this study
implemented image registration based on MSnet and sCT
generation based on CycleGAN to better improve the quality
of CBCT images, and analyzed the effect of anatomical structure
changes in pCT and CBCT scans on the accuracy of registration
and sCT generation.

In this paper, we introduce the dataset acquisition and image
processing in Section 2.1, deformable image registration and data
preprocessing in Section 2.2, and the CycleGAN-based CBCT to
sCT generation in Section 2.3. Then, we present the experimental
results in Section 3 and discuss the experimental results and
related research in Section 4.
MATERIALS AND METHODS

Dataset Acquisition and Image Processing
In this study, 115 cases of cervical cancer were retrospectively
collected between June 2021 and October 2021 at Peking Union
Medical College Hospital. The patients ranged in age from 32 to
73 years with a median age of 56 years. Among them, each
patient includes 1–2 sets of pCT and the corresponding
delineation information. The iCBCT was acquired when the
patient underwent radiotherapy for the first time normally.
Moreover, iCBCT could be obtained in each fraction when the
radiotherapy was delivered in the Varian Halcyon 2.0 system. A
total of 190 pairs of CT and first fraction iCBCT images were
May 2022 | Volume 12 | Article 896795
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collected, of which 150 were used for model training, and 40 were
used for model evaluation. The CT images were obtained on
PHILIPS BrillianceTM Bigbore CT, which has a bore with a
diameter of 85 cm. The plane resolution of the CT ranged from
0.962 mm × 0.962 mm to 1.365 mm × 1.365 mm, and the slice
thickness was 5 mm. The iCBCT images were obtained from the
Halcyon system, with a plane resolution ranging from 0.908 mm ×
0.908 mm to 1.035 mm × 1.035 mm and a slice thickness of 2 mm.
The range of iCBCT was mainly concentrated near the tumor
target area, with a length of about 240 mm. Meanwhile, the
scanning range of CT is longer than that of iCBCT and can
completely cover the scanning range of iCBCT.

The data preprocessing was required before DIR and sCT
generation. The common preprocessing is shown in Figure 1,
which included removing couch, resampling, rigid alignment,
and cropping; the specific preprocessing for registration and sCT
generation will be introduced later. Firstly, the skin prediction
model was combined with the image processing of expansion
corrosion, which can quickly and accurately extract the skin
mask. The interference of redundant information outside the
body was removed, and the HU values outside the body were set
to the HU value of the air (−1000). Secondly, the CBCT and CT
images were resampled to 1 mm × 1 mm × 5 mm. Then, the
CBCT images were set as fixed images, and the CT images were
rigidly aligned to the CBCT images based on the ITK rigid
registration method (25, 26). The redundant layers in the CT
images were removed. Finally, the centroid of the skin mask was
set as the image center; 400 × 288 voxels are cropped out of each
layer of the image, which can completely contain the outline of
the body. It should be emphasized that the entire image
preprocessing is fully automatic without manual participation.

Deformable Image Registration
Although common preprocessing was completed, additional data
processing operations for registration required threshold cutoff
Frontiers in Oncology | www.frontiersin.org 39
and normalization. The threshold range of HU values is [−250,
200]; then, the pixel values of the image data were normalized
and mapped to the range of (−1, 1).

The used registration method was a 3D multi-stage cascade
registration network, which was shown in Figure 2 and realized
the registration of pCT images to CBCT images. The network
expected a pair of CT and CBCT images with 400 × 288 × 48 × 2
voxels and output a deformation field with 400 × 288 × 48 × 3
voxels. The network consists of three stages of registration, which
achieved accurate registration from coarse to fine. The network
architecture is shown in Figure 2B, which included two down-
sampling layers and two up-sampling layers. Six ResNet Blocks
(27) were used to increase the depth of the network and make the
model easier to optimize. The loss function of the registration
included the MIND (modality-independent neighborhood
descriptor) loss (LMIND) (28, 29) and smoothing loss (Lsmooth)
(30). The model was trained and tested on Nvidia Geforce RTX
3090. The batch was set to 20 with the model in stage 1, 4 in stage
2, and 1 in stage 3. The training required approximately 24 h for
200 epochs.

CycleGAN-Based CBCT to sCT Generation
Additional data processing operations for sCT generation was
required, which was according to the formula.

x = Tanh
x
400

� �
where the Tanh function was the hyperbolic tangent function,
defined as

Tanh(x) =
ex − e−x

ex + e−x

Because the final activation function of the generator model
was Tanh, the CBCT and CT images were preprocessed by Tanh,
which could improve the accuracy of sCT generation.
FIGURE 1 | Schematic diagram of data preprocessing.
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The architecture of CycleGAN is shown in Figure 3A, which
mainly included two generators (Gcbct-ct and Gct-cbct) and two
discriminators (Dct and Dcbct): Gcbct-ct generated sCT from the
CBCT image, Gct-cbct generated sCBCT from the CT image, Dct
identified the sCT image from the real CT image, and Dcbct
identified the sCBCT image from the real CBCT image. During
the training process, Gcbct-ct would try to generate an sCT that
made Dct indistinguishable as much as possible, and then Gct-cbct
would convert the sCT image generated in the previous step into
the CBCT image, called cycle CBCT, so as to make the CBCT
image and the cycle CBCT image as consistent as possible. We
compared the accuracy of different networks as generators, such as
the U-net (Figure 3B) and Resnet (Figure 3C). The discriminators
used the same architecture as shown in Figure 3D.

The loss function of the sCT generation consisted of three
parts: ① Adversarial Loss Ladv, which could facilitate the
distribution of the synthetic images similar to that of the
images in the target. ② Cycle-consistency Loss Lcycle, which
could serve as an indirect constraint of structure between the
input and synthetic images. ③ Similarity-constraint Loss Lsc,
which used the MIND loss to enforce the structural consistency
between synthetic images and real images. LG is defined as
follows and the hyperparameters l and m were set to 10.

LG = Ladn + lLcycle + mLsc
Frontiers in Oncology | www.frontiersin.org 410
The model was trained and tested on Nvidia Geforce RTX
3090. Verified by extensive experiments, the batch was set to 6,
the initial learning rate was set to 0.002, and the discrimination
rate was set to 0.02. The epoch number was set to 200, and the
learning rate decreased linearly from 0.002 to 0 in last
100 epochs.

Deformable Image Registration Evaluation
In this study, 40 pairs of CBCT and CT images were used to
evaluate the registration. Due to the poor quality of CBCT
images, the distribution of HU values was also different
from CT images; thus, the single-modal similarity measure
was not accurate to evaluate the registration. Firstly, objective
evaluation criteria were used for images, including normalized
mutual information (NMI) and normalized cross-correlation
(NCC). Then, the dice similarity coefficient (DSC) was used to
evaluate the registration accuracy. The manual contours
delineated on CBCT (Mask_CBCT) were used as the ground
truth, the contours on the pCT image were propagated to the
CBCT image (deformed mask, dMask) through the
deformation matrix, and the DSC values of Mask_CBCT
and dMask could reflect the accuracy of the registration.
The organs for contour comparison included the bladder,
spinal cord, femoral head left, femoral head right, and bone
marrow.
A

B

FIGURE 2 | Our proposed registration method. (A) The network flow diagram. (B) The network architecture.
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NMI(I1, I2) = 2
o
I1

i¼1
o
I2

j¼1
P(i, j) log (

P(i, j)
P(i)P(j)

)

( −o
I1

i¼1
P(i) log (P(i))) + ( −o

I2

j¼1
P(j) log (P(j)))

(1)

NCC(I1, I2) =
1

ninjnk
o

ninjnk

x,y,z

(I1(x, y, z) − mI1 )(I2(x, y, z) − mI2 )

(sI1sI2 )
(2)
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DSC(V1,V2) =
2(V1 ∩ V2)
V1 + V2

(3)
I1 and I2 represent two different images, P(i) means the
probability distribution of the variable i, I(x, y, z) means the
HU value of pixels (x, y, z) in image I. ninjnk is the total number
of pixels in image I. µ and s represent the mean and the standard
deviation of the HU value in an image. V1 and V2 represent the
volume of the two contours for comparison, respectively
A

B

D

C

FIGURE 3 | The flowchart and network architecture of sCT generation. (A) Architecture of CycleGAN. (B) U-net Generator. (C) Resnet Generator. (D) Discriminator.
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Synthetic CT Image Quality Evaluation
The sCT evaluation criteria included mean absolute error
(MAE), root mean square error (RMSE), peak signal-to-noise
ratio (PSNR), and structural similarity (SSIM). The
corresponding dpCT image with MSnet was used as the
ground truth.

MAE(I1, I2) =
1

ninjnk
o

ninjnk

x,y,z
I1(x, y, z) − I2(x, y, z)j j (4)

RMSE(I1, I2) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ninjnk
o

ninjnk

x,y,z
I1(x, y, z) − I2(x, y, z)j j2

s
(5)

PSNR(I1, I2) = 10� log10 (
MAX2

RMSE(I1, I2)
2 ) (6)

SSIM(I1, I2) =
(2mI1mI2 + c1)(2sI1,I2 + c2)

(mI12 + mI22 + c1)(sI12 + sI22 + c2)
(7)

MAX was the maximum HU value in the selected image, and
other parameters are similar to the above.

Considering the difference in the anatomical structure of the
pCT and CBCT images, it is not complete to use the above
evaluation criteria to evaluate sCT generation. The DSC was also
used for sCT evaluation. The manual contours delineated on
CBCT (Mask_CBCT) were regarded as the ground truth, and the
physicians re-delineated the contours based on the generated
sCT (Mask_sCT). The overlap between Mask_CBCT and
Mask_sCT was calculated to evaluate the sCT accuracy. The
organs for contour comparison included the bladder, spinal cord,
femoral head left, femoral head right, and bone marrow.
RESULTS

Deformable Image Registration
The DIR result of pCT and CBCT is shown in Table 1. Rigid
registration was used for setup verification in the clinic and used
for rigid alignment in our experiments, and we wanted to observe
further improvement of DIR compared with rigid registration.
MSnet registration was compared with the Elastix B-spline
registration method (31, 32). It could be seen that both MSnet
and the Elastix had improved the registration accuracy to some
degree. In addition to the DSC of the bladder, MSnet was better
Frontiers in Oncology | www.frontiersin.org 612
than the Elastix in the evaluation of various indicators. Figure 4
showed the difference between CT images and CBCT images
before and after registration; MSnet had better skin contour
alignment. In terms of time, it took 0.15 s for MSnet to get the
dpCT for one case, while the Elastix method needed 30–50 s,
about two hundred times faster.

Synthetic CT Generation
Table 2 shows the CBCT image quality improvement from
CBCT images to sCT images, where CBCT images and sCT
images were compared with dpCT by metrics including MAE,
RMSE, PSNR, and SSIM. Figure 5 showed visualization of sCT
generation for one example. It can be seen from the results that
the generator of Resnet with 15 ResNet blocks had a better effect
than the generator of U-net with 5 down-sampling layers, which
had significant improvement over CBCT in various indicators
and less difference with real CT images. The results showed that
the ResNet blocks could use feature combinations at different
levels to improve CBCT image quality more accurately. Limited
by the busy work and manpower, physicians only re-delineated
the contours of organs on the sCT produced by the Resnet, which
was compared with the contours of CBCT. The DSC results are
shown in Table 3. It can be seen from the results that the
accuracy of sCT was higher than the accuracy of registration.
Except for the femoral head left and femoral head right, the
remaining three organs had significant differences, which also
showed that the sCT had higher structural consistency with
CBCT images compared with dpCT. Figure 6 showed the
boxplot of DSC values for registration and sCT generation.

We analyzed the cases with poor registration performance,
and found that these cases’ anatomical structures of pCT and
CBCT were quite different, especially the bladder volume
difference. When the volume difference was large, it was
difficult to achieve good registration performance. Therefore,
we calculated the volume difference of organs in pCT and CBCT
(including the bladder, spinal cord, femoral head left, femoral
head right, and bone marrow), and then statistically summarized
the accuracy of registration and sCT with increasing volume
difference. The results are shown in Table 4, in which it can be
seen that the volume difference of bony structures (femoral head
and pelvic) was small, most of the volume difference is less than
1%, and a small part may have a volume difference of less than
1% due to inconsistent delineation levels between the upper and
lower ends. The main reason for the lower accuracy of the spinal
cord was the different layers delineated in pCT and CBCT
images. The bladder volume difference of pCT and CBCT was
relatively large among the 40 cases in this study, only 9 had a
volume difference of less than 20%, and 11 had a doubled volume
difference (Diff > 100%). The DSC value of registration also
changed from 0.874 to 0.587. The bladder volume difference was
caused by the different degree of bladder filling during pCT scan
and CBCT scan, which may be related to factors such as drinking
water and waiting time. The above results showed that the
volume difference had almost no effect on the accuracy of sCT,
and had relatively little effect on the registration accuracy of bony
structures (femoral head and pelvis). The volume difference had
a great influence on the registration of soft tissues, especially the
TABLE 1 | The registration result of pCT and CBCT (Ave ± Std).

Rigid Elastix MSnet

NMI 0.350 ± 0.034 0.379 ± 0.033 0.397 ± 0.033
NCC 0.959 ± 0.009 0.969 ± 0.008 0.980 ± 0.005
DSC Bladder 0.738 ± 0.120 0.769 ± 0.125 0.755 ± 0.121

Spinal_Cord 0.631 ± 0.145 0.741 ± 0.075 0.765 ± 0.088
Femoral_Head_L 0.882 ± 0.061 0.913 ± 0.022 0.918 ± 0.028
Femoral_Head_R 0.878 ± 0.052 0.891 ± 0.142 0.916 ± 0.022
Bone_Marrow 0.796 ± 0.071 0.858 ± 0.036 0.878 ± 0.031
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bladder in this study. Figure 7 shows the effect of bladder volume
difference on registration and sCT accuracy. With the increase of
bladder volume difference, the delineation accuracy of the
bladder in sCT was relatively stable, but the registration
accuracy had dropped significantly.
DISCUSSION

Due to the poor quality of CBCT images, which were often used
for patient setup correction before radiotherapy in the current
clinical practice, they cannot be used directly for accurate dose
calculation. In this study, we had implemented two ways to
improve the quality of CBCT images, including the registration
of pCT to CBCT and the generation of sCT from CBCT. There
existed many studies on CBCT-based dose calculations and
CBCT-guided adaptive radiotherapy, which demonstrated that
registration and sCT generation were acceptable within error
tolerances (33–38). However, few studies had compared the
accuracy difference of registration and sCT generation when
the anatomical structure changes in pCT and CBCT scans. We
Frontiers in Oncology | www.frontiersin.org 713
conducted this study on cervical cancer cases; 150 pairs of CT
and CBCT images were used for model training and 40
independent pairs were used to compare the accuracy. The
manual contours delineated on CBCT images were regarded as
the ground truth to evaluate the accuracy of registration and
sCT generation.

For deformable image registration, we compared our
proposed registration method (MSnet) with the Elastix B-
spline method. MSnet achieved higher registration accuracy
than the Elastix from the analysis of comprehensive indicators,
and the time was significantly improved. It could be clearly seen
from Figure 4 that MSnet had higher accuracy in the alignment
of skin and bony structures, and Table 1 also presented the same
result. If the bladder volume difference in CT and CBCT images
was large, the registration could not be accurate. For the worst
case, the DSC of bladder was less than 0.5, which might cause
errors on dose calculation and be not eligible for precision
radiotherapy. According to the AAPM TG 132 (39), the DSC
of registration in the range 0.8–0.9 was acceptable. When the
bladder volume difference was more than 50%, the registration
was not satisfied.
TABLE 2 | The result of sCT generation (Ave ± Std).

dpCT-CBCT dpCT-sCT (Resnet) dpCT-sCT (U-net)

MAE(HU) 51.23 ± 13.67 43.98 ± 10.74 46.71 ± 12.71
RMSE 121.09 ± 30.23 117.58 ± 28.22 127.96 ± 30.76
PSNR 20.01 ± 2.74 22.23 ± 2.61 20.00 ± 3.77
SSIM 0.623 ± 0.084 0.680 ± 0.050 0.685 ± 0.055
May 2022 | Volume
dpCT, deformed planning CT with MSnet.
FIGURE 4 | Visualization of registration result. rpCT, rigid planning CT; dpCT1, deformed planning CT with Elastix method; dpCT2, deformed planning CT with MSnet.
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CycleGAN was used to generate sCT from CBCT, which had
aroused the interest of many researchers, including KV CBCT
and MV CBCT. There are also related studies using different
CNN structures as generator models. In this study, the U-net and
Frontiers in Oncology | www.frontiersin.org 814
Resnet were compared as generators to evaluate the accuracy of
sCT; the Resnet achieved higher accuracy on our data for metrics
such as MAE. Therefore, we generated sCT with the Resnet
generator for the testing cases, and the physician re-delineated
TABLE 3 | The comparison of registration and sCT (Ave ± Std).

DSC (sCT, CBCT) DSC (dpCT1, CBCT) p1-values DSC (dpCT2, CBCT) p2-values

Bladder 0.884 ± 0.071 0.769 ± 0.125 p < 0.001 0.755 ± 0.121 <0.001
Spinal_Cord 0.850 ± 0.039 0.741 ± 0.075 p < 0.001 0.765 ± 0.088 <0.001
Femoral_Head_L 0.923 ± 0.010 0.913 ± 0.022 0.011 0.918 ± 0.028 0.265
Femoral_Head_R 0.921 ± 0.023 0.891 ± 0.142 0.217 0.916 ± 0.022 0.238
Bone_Marrow 0.916 ± 0.009 0.858 ± 0.036 p < 0.001 0.878 ± 0.031 <0.001
May 2022 | Volume 12 | Arti
dpCT1, deformed planning CT with Elastix. p1-value, DSC (sCT, CBCT) vs. DSC (dpCT1, CBCT). dpCT2, deformed planning CT with MSnet. p2-value: DSC (sCT, CBCT) vs. DSC
(dpCT2, CBCT).
FIGURE 5 | Visual comparison of dpCT, CBCT, sCT (CycleGAN with Resnet), and sCT (CycleGAN with U-net). The HU difference between two image sets. The HU
histogram comparison of dpCT, CBCT, sCT (CycleGAN with Resnet), and sCT (CycleGAN with U-net).
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the contours on the sCT images. The results in Table 3 show that
the sCT accuracy was comparable with the registration on bony
material, and the sCT had achieved obvious advantages in
bladder and spinal cord. Table 4 further illustrates that the
volume difference had little effect on the delineation accuracy of
the sCT, but gradually reduced the accuracy of the registration.
When the anatomical structure greatly changes, the accuracy of
the sCT is higher than that of the registration.

From the analysis of the above results, the sCTgeneratedbasedon
CBCT was superior to dpCT in terms of anatomical structure
Frontiers in Oncology | www.frontiersin.org 915
similarity with the CBCT structure. If the anatomical difference
between pCT and CBCT was small, there was little difference
between the two methods. Although sCT had higher accuracy, we
thought that if the difference between the pCT and CBCTwas small,
the registration could better reflect the real structure of the case; after
all, it was a real CT image. The sCT was generated by a series of
parameters obtained from continuously optimizing the data in the
training set, which may appear out of nothing compared with the
CBCT image. For example, the cavity artifact in theCBCT imagewas
very serious, and the information of the CBCT images was
FIGURE 6 | Boxplot of DSC values for registration and sCT generation. dpCT1, deformed planning CT with Elastix; dpCT2, deformed planning CT with MSnet.
TABLE 4 | The effect of volume difference on registration and sCT accuracy (DSC: Ave ± Std).

Diff(VCBCT ,VpCT ) Counts dpCT1 dpCT2 sCT

Bladder <20% 9 0.874 ± 0.045 0.874 ± 0.043 0.898 ± 0.034
20%–50% 13 0.846 ± 0.032 0.815 ± 0.029 0.905 ± 0.034
50%–100% 7 0.750 ± 0.046 0.737 ± 0.427 0.858 ± 0.106
>100% 11 0.596 ± 0.079 0.587 ± 0.066 0.859 ± 0.088

Spinal_Cord <20% 13 0.763 ± 0.060 0.805 ± 0.079 0.854 ± 0.031
20%–50% 18 0.768 ± 0.062 0.793 ± 0.041 0.854 ± 0.046
50%–100% 5 0.680 ± 0.043 0.700 ± 0.026 0.848 ± 0.029
>100% 4 0.620 ± 0.023 0.582 ± 0.244 0.814 ± 0.013

Femoral_Head_L <1% 7 0.925 ± 0.012 0.931 ± 0.015 0.924 ± 0.007
1%–3% 14 0.910 ± 0.027 0.902 ± 0.038 0.920 ± 0.011
3%–5% 14 0.905 ± 0.018 0.925 ± 0.017 0.926 ± 0.009
>5% 5 0.927 ± 0.010 0.924 ± 0.013 0.923 ± 0.006

Femoral_Head_R <1% 6 0.911 ± 0.017 0.930 ± 0.018 0.926 ± 0.011
1%–3% 10 0.917 ± 0.022 0.925 ± 0.018 0.926 ± 0.019
3%–5% 14 0.915 ± 0.024 0.913 ± 0.022 0.912 ± 0.024
>5% 10 0.910 ± 0.013 0.901 ± 0.021 0.922 ± 0.025

Bone_Marrow <2% 6 0.863 ± 0.016 0.889 ± 0.019 0.920 ± 0.011
2%–5% 17 0.871 ± 0.020 0.885 ± 0.019 0.917 ± 0.011
5%–10% 11 0.857 ± 0.039 0.885 ± 0.018 0.917 ± 0.005
>10% 6 0.818 ± 0.054 0.834 ± 0.047 0.909 ± 0.006
May 2022 | Volume 12 |
Diff (VCBCT ,VpCT ) =
jVCBCT−VpCT j

MIN(VCBCT ,VpCT )
� 100%

dpCT1, deformed planning CT with Elastix; dpCT2, deformed planning CT with MSnet.

100%.
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insufficient, which may bring errors in the post-processing
correction. In addition, structures such as the bladder and the
prostate were close to each other, and the HU values were also very
similar, which cannot be identified on the sCT in some instance.
Although some studies thought that this situation had little effect on
the dose calculation [11], the errors did exist in anatomical structure.

We had studied two methods to improve the image quality of
CBCT, and if the two methods could be effectively combined, they
may lead to better clinical applications. Note that the difference in
bladder volume between pCT images and CBCT images was a
major factor affecting the registration accuracy, which could be used
as a judgment condition for choosing two methods. We evaluated
the accuracy of auto-segmentation on sCT, and the DSC of bladder
was 0.874 ± 0.072, which can replace the contours on CBCT
approximately. Firstly, we have the pCT images and
corresponding contours. When the CBCT images were obtained
before radiotherapy, the pCT was registered to the CBCT to obtain
the propagated contours, especially the contours of the bladder
(dpCT_bladder). Secondly, the CBCT was transformed to sCT,
which can be used for auto-segmentation; we can get the contours of
bladder on sCT (sCT_bladder). If the DSC of dpCT_bladder and
sCT_bladder was above a certain threshold (e.g., DSC > 0.8), the
dpCT and corresponding contours would be used. If it was below a
certain threshold, the physician would check the auto-segmentation
of the sCT for the current radiotherapy, and the generated sCT can
be used for dose calculation and evaluation of adaptive
radiotherapy. The above process can be done automatically in a
short time (less than 1 min), which can be used for more accurate
dose tracking.

Several limitations should be noted in this study. First, we
selected five OARs to evaluate the accuracy of registration and
Frontiers in Oncology | www.frontiersin.org 1016
sCT generation, but the target was the most important concern
in clinical practice. It was difficult to delineate the target volume,
the small intestine, and rectum on CBCT images due to the
existence of artifacts, which were also controversial as the ground
truth. In future work, the cases with small differences in
anatomical structures can be selected to evaluate the accuracy
of target delineation in the sCT images. Second, the focus of this
study was to compare the accuracy of registration and sCT
generation on structural similarity; the dosimetric differences
would be done in our next work.
CONCLUSION

We proposed two methods to improve the image quality of
CBCT in this study. Both registration and sCT generation can
effectively improve the image quality of CBCT. When the
anatomical structure changes in pCT and CBCT scans were
small, the accuracy of the registration and sCT was equivalent,
and the anatomical structure of CBCT could be better
represented by dpCT. When the anatomical structure changes
were large, the accuracy of the sCT was higher than that of the
registration, and the anatomical structure of CBCT could be
better represented by sCT.
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1 Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for
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Purpose: To investigate the dosimetric impact on target volumes and organs at risk
(OARs) when unmodified auto-segmented OAR contours are directly used in the design of
treatment plans.

Materials and Methods: A total of 127 patients with cervical cancer were collected for
retrospective analysis, including 105 patients in the training set and 22 patients in the
testing set. The 3D U-net architecture was used for model training and auto-segmentation
of nine types of organs at risk. The auto-segmented and manually segmented organ
contours were used for treatment plan optimization to obtain the AS-VMAT (automatic
segmentations VMAT) plan and the MS-VMAT (manual segmentations VMAT) plan,
respectively. Geometric accuracy between the manual and predicted contours were
evaluated using the Dice similarity coefficient (DSC), mean distance-to-agreement (MDA),
and Hausdorff distance (HD). The dose volume histogram (DVH) and the gamma passing
rate were used to identify the dose differences between the AS-VMAT plan and the MS-
VMAT plan.

Results : Average DSC, MDA and HD95 across all OARs were 0.82–0.96, 0.45–3.21 mm,
and 2.30–17.31 mm on the testing set, respectively. The D99% in the rectum and the
Dmean in the spinal cord were 6.04 Gy (P = 0.037) and 0.54 Gy (P = 0.026) higher,
respectively, in the AS-VMAT plans than in the MS-VMAT plans. The V20, V30, and V40 in
the rectum increased by 1.35% (P = 0.027), 1.73% (P = 0.021), and 1.96% (P = 0.008),
respectively, whereas the V10 in the spinal cord increased by 1.93% (P = 0.011). The
differences in other dosimetry parameters were not statistically significant. The gamma
passing rates in the clinical target volume (CTV) were 92.72% and 98.77%, respectively,
using the 2%/2 mm and 3%/3 mm criteria, which satisfied the clinical requirements.
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Conclusions: The dose distributions of target volumes were unaffected when auto-
segmented organ contours were used in the design of treatment plans, whereas the
impact of automated segmentation on the doses to OARs was complicated. We suggest
that the auto-segmented contours of tissues in close proximity to the target volume need
to be carefully checked and corrected when necessary.
Keywords: deep learning, automatic segmentation, dosimetric differences, geometric accuracy, cervical cancer
1 INTRODUCTION

In radiotherapy, automatic delineation of normal tissues based
on deep learning techniques is an increasingly mature technique,
and the automatic delineation of target volumes has been
explored in successive multicentre clinical application studies.
The convolutional neural network (CNN) is superior to most
other algorithms in the segmentation of medical images (1), and,
as a result, it is often used for the automatic delineation of
normal tissues and target volumes (2–5) on computed
tomography (CT) images of the head and neck (6–8), chest
(9), abdomen (10, 11), and pelvic cavity (5, 12–15),
among others.

Radiotherapy is an effective treatment for cervical cancer (16,
17), and delivery of precision radiotherapy requires accurate
contouring of each organ on the patient’s CT images. Manual
segmentation of normal tissues depends on the experience and
ability of the imaging radiologist (18, 19) and has a low efficiency.
The poor contrast of pelvic soft tissues on CT images also presents
challenges for radiologists. With the rapid development of image
segmentation techniques, CNN-based automated organ
contouring on CT images has become increasingly popular for
patients with cervical cancer. Liu et al. (20) used the improved U-
Net model to automatically segment cervical cancer organs at risk
(OARs), and the model prediction was highly consistent with the
OARs delineated by radiation oncologists. Ju et al. (21)
innovatively integrated the Dense Net model with the V-Net
model, enabling accurate, efficient, and automatic delineation of
six OARs on CT images. Qualitative and quantitative studies
conducted by Rhee et al. (5) showed that the auto-contouring tool
based on CNN can be used to generate the segmentation of OARs
and clinical target volume (CTV) for patients with cervical cancer
and achieve clinically acceptable delineation results.

Despite these encouraging results, many challenges remain to
be overcome before auto-segmentation methods can be applied
in clinical practice. First, patients with cervical cancer are treated
in supine or prone positions, and no study has examined whether
different patient positions affect automatic delineations of
normal tissues. Second, there remains room for improvement
in the accuracy of automatic soft tissue segmentation, such as in
colons and rectums. More importantly, existing assessments of
accuracy in automated normal tissue segmentation are limited to
the comparison of geometric accuracy, and few studies have
focused on their relevant dosimetric impact. However, a model
successfully segments the OARs in geometry is not sufficient to
confirm its reliability for clinical application. Fung et al. (22) and
Zhu et al. (23) introduced their dosimetric evaluation methods
220
about dose impact between manually and automatically
segmented OARs. Vinod et al. (24) believed that it is
important to quantify the degree of uncertainty in volume
segmentation, but the resulting impact on dosimetry and
clinical significance is a more relevant endpoint.

Patients with cervical cancer with different therapeutic
positions were included in this study for model training. We
then performed automatic delineation of nine types of normal
tissues and evaluated its geometric accuracy. On this basis, we
discussed the impact of unmodified auto-contouring of tissue
structures on the design and optimization of treatment plans. We
attempted to use experimental data to investigate the following:
1) whether the dose distribution inside the clinical target volume
is affected, and in the case of dose deviations, whether these
deviations are within a clinically acceptable range; and 2)
whether dose deviations to organs at risk are clinically acceptable.
2 MATERIALS AND METHODS

2.1 Case Selection
This study included a total of 127 patients with cervical cancer
who received radiotherapy at Sun Yat-sen University Cancer
Centre between December 2020 and August 2021, including 65
patients in the supine position and 62 patients in the prone
position. None of the included patients underwent intestinal
tract modification surgery. The images were obtained using a
Philips large-aperture CT simulation scanner (Philips Brilliance
Big Bore, Netherlands) at 140 keV voltage and a 3-mm slice
thickness. The size of images for each slice was 512 × 512 and the
number of slices ranged between 140 and 205.

Three clinicians used the Monaco (V5.11) treatment planning
system to manually segment bone structures (including the left
femoral head, the right femoral head, and the pelvis) as well as
tissues and organs (including the spinal cord, the left and right
kidneys, the bladder, the rectum, and the colon) from the
patient’s CT images. Each organ at risk was segmented in strict
accordance with the requirements in the radiation therapy
oncology group (25) guidelines and the delineation results
were reviewed and modified by senior radiation therapists.

2.2 Data Pre-Processing
The 105 sets of CT images obtained were used for model
training, including 52 sets obtained in the supine position and
53 sets obtained in the prone position. To increase the training
sample size, the CT images were cropped into sub-images 100 ×
June 2022 | Volume 12 | Article 908903
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100 × 100 in size, with random positions selected in the whole
body range as the starting points. In addition, 22 sets of CT
images were selected for model testing, including 13 sets
obtained in the supine position and 9 sets obtained in the
prone position.

To highlight the soft tissues, bones, and bladders in the
images, we also added 3 types of images processed with
different window widths and window levels to the original
input sub-images, including soft tissue images: window width =
400, window level = 40; bone images: window width = 1000,
window level = 400; bladder images: window width = 250,
window level = 50. Hence, the input to the training model was:
4 × 100 × 100 × 100. All input images were normalised to the
range of 0–1.

2.3 Model Training
The training labels were filled with one-hot images containing ten
channels according to the manually segmented structures. The one-
hot images were binary class matrices which have zeros everywhere
except where the index of channel matches the corresponding value
of the class number, in which case it will be 1. The 1st channel
represented the undelineated areas; the 2nd channel was marked as
the bladder (bladder); the 3rd channel wasmarked as the left femoral
head (femoral_ joint L); the 4th channel was marked as the right
femoral head (femoral_ joint R); the 5th channel was marked as the
rectum (rectum); the 6th channel was marked as the colon (colon);
the 7th channel was marked as the left kidney (Kidney-L); the 8th

channel was marked as the right kidney (Kidney-R); the 9th channel
was marked as the pelvic bone (PelvicBone); and the 10th channel
was marked as the spinal cord (SpinalCord). The dice similarity
coefficient (DSC) is commonly used to measure the overlap of two
structures (26, 27), and was adopted as the loss function, while the
AdamW (28, 29) optimizer was used to train the CNN network.
The batch size was set to 2 in the training algorithm and the learning
rate was set using the OneCycleLR learning rate scheduler (30), with
the maximum learning rate set to 0.01 and the minimum learning
rate set to 4e-8. Cosine annealing was adopted to schedule the
learning rate and the step size was set to per sample. The model was
trained for a total of 30 epochs and the model parameters were
updated based on the minimum loss value of the evaluation set. The
3D U-net architecture (Figure 1) used in previous studies (31) was
adopted in themodel and a 1 × 1 × 1 convolution kernel was utilised
in the last layer, with SoftMax as the activation function. The
number of image layers with eigenvalues was reduced to 10 before
data output.

2.4 Assessment Indicators
2.4.1 Assessment of Geometrical Differences
The manually segmented organ contours served as “the golden
standard” and the auto-segmentation results were compared
with the manual delineation results to assess the accuracy. The
assessment indicators include the DSC, the Hausdorff Distance
(HD), the 95th percentile of the HD, and the Mean Distance to
Agreement (MDA) (32). The commercial software MIM (V6.9,
MIM Software Inc., Cleveland, OH, USA) and 3D Slicer (V4.8.1)
were used to identify and evaluate the geometrical differences
between the automated and manual segmentation results.
Frontiers in Oncology | www.frontiersin.org 321
2.4.2 Evaluation of Dose Differences
To evaluate the impact of geometrical differences between
automated and manual segmentation on the dosimetric
parameters in treatment plans, we selected 22 patients from
the testing set and performed optimization procedures with
auto-segmented organ contours to obtain new treatment plans
(automatic segmentations VMAT, AS-VMAT); this was
performed without changing the parameter setting of the cost
function for treatment plan optimization and other optimization
parameters. These new treatment plans were compared to those
optimised using manually segmented organ contours (manual
segmentations VMAT, MS-VMAT) to identify the differences in
dose to OARs. The dose differences to OARs were evaluated with
the following parameters: D1%, D2%, Dmean, D98%, D99%, V10,
V20, V30, V40, and V50. Two assessment methods were adopted,
and the specific compared items are shown in Table 1.

The SPSS25.0 software was used for statistical analysis, and the
data were first tested for conformance with a normal distribution.
The paired t-test was performed on the normally distributed data,
while the Wilcoxon signed rank test was performed on the data
that did not conform to a normal distribution. A P-value < 0.05
was considered to be statistically significant.

To evaluate the sensitivity in the detection of dosimetry
differences, the dosimetry results for manually segmented organ
contours in the MS-VMAT plans were used to define the 95%
confidence intervals and the cut-off values of the parameters
evaluating the dosimetry differences in OARs. The number of
cases in which the dosimetry results for the auto-segmented
organ contours/manually segmented organ contours were outside
the confidence interval in the AS-VMAT plan was calculated. The
SPSS 25.0 statistical software was used to calculate the 95%
confidence interval of the evaluation parameters (Formula 1).

CLMC
= mean ± 1:96s (1)

where mean represents the mean value of the evaluation
parameter; s denotes the corresponding standard deviation;
and CL denotes the confidence interval.

To evaluate the CTV coverage, the percent coverage of CTV
V42.75 and CTV V45 in the AS-VMAT plans and the MS-VMAT
plans was evaluated. The dose distributions in the AS-VMAT plans
were compared to those in the MS-VMAT plans to evaluate the
differences in CTV gamma passing rates (2%/2 mm and 3%/3 mm
criteria). The threshold dose was set at 95% of the prescription dose,
because in clinical practice, more attention is paid to tumour control
and normal tissue toxicity in high-dose areas (33).
3 RESULTS

3.1 Results of the Evaluation of
Geometrical Differences
Figure 2 lists the DSC, MDA, HD and HD95 between manual
segmentation and automated segmentation for each organ at risk
in the testing set. The mean DSC (range) between manual
segmentation and automated segmentation for all organs at
risk was 0.91 (0.82–0.96). The automated segmentation results
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were highly similar to those of the manual segmentation results
in the bladder, the femoral head, the kidney, and the pelvic bone,
with a mean DSC of > 0.94. The mean DSCs in the colon and the
rectum were 0.82 and 0.83, respectively. The mean MDA, HD
and HD95 (range) between manual segmentation and automated
segmentation for all organs at risk were 1.17 mm (0.45–3.21
mm), 11.73 mm (4.34–48.72 mm) and 5.32 (2.30–17.31 mm),
respectively. The MDA and the HD95 were the largest in the
colon, with mean values of 3.21 ± 1.26 mm and 48.72 ± 12.60
mm, respectively.

3.2 Results of the Evaluation of
Dose Differences
Figure 3; Supplementary Table A shows that compared to the
dose distribution within manually segmented organ contours in
Frontiers in Oncology | www.frontiersin.org 422
the MS-VMAT plans of 22 patients, the D99% within the auto-
segmented rectum contours and the Dmean within the auto-
segmented spinal cord contours in the AS-VMAT plans were
higher by 6.04 Gy (P = 0.037) and 0.54 Gy (P = 0.026),
respectively. The V20, V30, and V40 in the rectum increased by
1.35% (P = 0.027), 1.73% (P = 0.021), and 1.96% (P = 0.008),
respectively, whereas the V10 in the spinal cord increased by
1.93% (P = 0.011). The differences in other dosimetry parameters
were not statistically significant.

Based on the dose distribution within the manually
segmented organ contours, the dose differences between the
AS-VMAT plans and the MS-VMAT plans were relatively
small. The D99% in the rectum was higher by 0.64 Gy (P =
0.292), with no significant differences. The Dmean in the spinal
cord was higher by 0.53 Gy (P = 0.044). The V40 in the rectum
FIGURE 1 | The structure of 3D U-net network.
TABLE 1 | Specific compared items in the evaluation of dose differences to organs at risk (two evaluation methods).

Evaluation methods ASAP vs. MSMP MSAP vs. MSMP

Structures Automatic segmentations Manual segmentations Manual
segmentations

Manual segmentations

Plans AS-VMAT plans MS-VMAT plans AS-VMAT plans MS-VMAT plans
June 2022 | Volum
ASAP, Automatic Segmentation in AS-VMAT Plan; MSAP, Manual Segmentation in AS-VMAT Plan; MSMP, Manual Segmentation in MS-VMAT Plan; AS-VMAT, automatic segmentations
VMAT; MS-VMAT, manual segmentations VMAT.
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increased by 1.00% (P = 0.034), while the V10 and V20 in the
spinal cord increased by 1.76% (P = 0.015) and 1.59% (P =
0.015), respectively. The differences in other dosimetry
parameters were not statistically significant.

The AS-VMAT plans of 22 cases were used to evaluate the
sensitivity in the detection of dosimetry differences. Among the
results for both automatically and manually segmented organ
contours, the dosimetry results outside the confidence interval
for the bladder (D1%, D2% and V40) and the rectum (D1% and
D2%) were found in 2 cases each. Among the results for auto-
segmented organ contours, the dosimetry results outside the
confidence interval for the rectum (V40), the colon (D1% and
D2%), the right femoral head (V30), the left kidney (Dmean), and
the pelvis (Dmean and V30) were found in 1 case each. Among
the results for manually segmented organ contours, the
dosimetry results outside the confidence interval for the colon
(D1% and D2%), the right femoral head (V30), the left and right
kidneys (Dmean), and the pelvis (Dmean) were found in 1 case
each, with a percentage outside the confidence interval of < 10%.
No dosimetry results were outside the confidence interval for
other evaluation parameters in any of the cases.

Regarding the evaluation of CTV coverage, in the AS-VMAT
plans, the percent coverage of CTV V42.75 and CTV V45 was
99.86% ± 0.33% and 99.47% ± 1.67%, respectively, and the
corresponding percent coverage in the MS-VMAT plans was
99.77% ± 0.75% and 99.53% ± 0.98%, respectively. The mean
Frontiers in Oncology | www.frontiersin.org 523
percent coverage of CTV V42.75 and the mean percent coverage
of CTV V45 were higher by 0.09% (P = 0.453) and lower by
0.06% (P = 0.109), respectively in the AS-VMAT plans compared
to the MS-VMAT plans. Figure 4 shows the correspondence
between the AS-VMAT plans and the MS-VMAT plans in terms
of gamma passing rates in CTV. The mean gamma passing rates
were 92.72% and 98.77%, respectively using the 2%/2 mm and
3%/3 mm criteria, which satisfied the clinical requirements.

Figure 5 shows a comparison between the AS-VMAT plans
and the MS-VMAT plans in terms of CTV and normal tissue
DVHs for one patient with cervical cancer. There was no
significant difference in the dose to CTV between the VMAT
treatment plans optimised with manually segmented organ
contours and those optimised with auto-segmented organ
contours. There were insignificant dose deviations in normal
tissue volume receiving < 30 Gy, such as in the bladder, the
rectum, the pelvis, and the femoral head; there were dose
deviations in the rectal volume receiving 30Gy–40Gy; and
there was basically no dose difference to other normal tissues.
4 DISCUSSION

The convolutional neural network algorithm based on multi-layer
supervised learning features good fault-tolerance, and strong
adaptability and weight-sharing (13, 14, 34, 35). The results
FIGURE 2 | The Dice similarity coefficients (DSC), Mean Distance to Agreement (MDA), Hausdorff Distance (HD) and 95th-percentile of the HD between automated
segmentation and manual segmentation for each organ at risk in the testing set.
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generated by the trained model are reliable and applicable in
clinical practice. We used the 3D U-net model for the auto-
segmentation of nine types of normal tissues. The results
suggested high geometric accuracy of automatic segmentation
for the bladder, the femoral head, the pelvis, and the kidney, with a
Dice value of > 0.94, which is consistent with, or even better than
the results reported previously. The main reasons for this include
the high density of bone structures (the pelvis and the femoral
head) and strong tissue contrast. Indeed, the fluid-filled bladder
can be easily distinguished from adjacent soft tissues, while there is
a clear-cut anatomical position of the kidneys in the human body.

Relatively speaking, auto-segmentation of intestinal tissues,
such as the colon and rectum, has a lower accuracy. Our results
showed that auto-segmentation of the rectum and the colon
featured a larger HD and a Dice value of 0.82 and 0.83 (< 0.9),
respectively. Compared to previous results, Men et al. (14)
reported a Dice value of 0.618 for the segmentation of the colon
using a deep dilated convolutional neural network (DDCNN),
which is lower than our study results; Rhee et al. (5) reported a
Dice value of 0.80 for the segmentation of the rectum based on the
CNNmodel, which is roughly equivalent to our study results; and
Ju et al. (21) reported a Dice value of 0.87 for the segmentation of
the rectum using an innovative fused model Dense V-Network,
Frontiers in Oncology | www.frontiersin.org 624
which is similar to our results. Generally, the Dice value for the
segmentation of intestinal tissues can reach approximately 0.8 if
proper neural networks and learning models are used (including
3D Unet and Dense-V-Network).

Auto-segmentation of intestinal tissues has a lower accuracy
largely because the intestinal tract is a soft tissue with low-contrast
image performance in CT images. For example, in terms of the
rectum, the lower boundary of the rectum is connected to the anal
canal and the boundary between the anal canal and the rectum is
unclear on CT images, which makes it challenging to accurately
identify the position of the lower boundary. In addition, the upper
boundary of the rectum is connected to the sigmoid colon with an
anatomical boundary between the rectum and the sigmoid colon,
but this boundary is difficult to accurately identify via imaging. In
terms of the colon, as we included patients treated in both the prone
and the supine positions, and given that in some patients in the
prone position, the position of the colon was pushed upward,
the colon was not well distinguished from the pulmonary cavity
and the aerated gastric body during auto-segmentation, resulting
in segmentation failure. In addition, the accuracy of auto-
segmentation of intestinal tissues is affected by the amount of
faeces and gas in the intestines, which is a common problem with
other automatic segmentation models when the intestinal organs
FIGURE 3 | The dose differences of DVH parameters between the AS-VMAT plans and the MS-VMAT plans of 22 patients.The black box represents the ASAP vs.
MSMP results, and the red box represents the MSAP vs. MSMP results. ASAP, Automatic Segmentation in AS-VMAT Plan; MSAP, Manual Segmentation in AS-
VMAT Plan; MSMP, Manual Segmentation in MS-VMAT Plan.
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are segmented. The single learning model that we used is well suited
to patients in different therapeutic positions, and there is no need to
construct different learning models for supine positions and prone
positions independently, which is why we included patients treated
in different body positions.

We sought to determine whether we could directly use the
unmodified normal tissue contours in the design of treatment plans
given that the auto-segmented normal tissue contours are highly
similar to manual segmentation results, and whether the dosimetry
results in the optimised treatment plan satisfy the clinical
requirements. As can be seen from the study results, irrespective
of whether the treatment plans were optimised by auto-segmented
or manually segmented normal tissue contours, the dose differences
in the target volumes were relatively small (i.e., the doses to CTV
were highly consistent). In this study, the gamma passing rate was
adopted for quality assurance of treatment plans. Even when using
the strict 2%/2 mm criterion, the gamma passing rates were > 90%,
indicating that the dosimetry results are acceptable for clinical use.

As for the dose differences of automated segmentation of
organs at risk, the situation is more complex and the organs at
risk can be divided into three types:

1) The first type of organs, including the left and right femoral
heads and the left and right kidneys, were located at a distance from
the target volume, andautomated segmentationof their contourswas
accurate. When these auto-segmented normal tissue contours were
directly used for the design of treatment plans, the generated
dosimetry parameters were not significantly different from those of
the MS-VMAT plans. The spinal cord is an exception; although the
spinal cord was located at a distance from the target volume and the
auto-segmented contours were highly similar to those of manually
segmented contours, the differences between the two sets of plans in
terms of Dmean and V10 in the spinal cord were statistically
Frontiers in Oncology | www.frontiersin.org 725
significant due to the excessively small volume of the spinal cord (P
< 0.05). A common problem in cord segmentation was the length of
cord contouredwhich adversely affectedDice andDmeanbut hadno
clinical significance. Specifically, the absolute dose difference in
Dmean was < 0.54 Gy and the volume difference to the V10 was <
2%. Hence, these dosimetry results differences appear to be clinically
acceptable, and the spinal cord is still classifiedas a type Iorganat risk.

2) The second type of organs, including the pelvis and the colon,
overlapped with the target volume on some CT slices. The volume
of the overlap region accounted for a relatively small percentage of
the total organ volume, so the geometrical differences in automated
segmentation results did not result in large dose deviations and did
not affect the dosimetry results in clinical evaluation. The obvious
errors in automated organ segmentation need to be addressed and
corrected, especially errors in areas close to the target volume. The
abovementioned organs are classified as type II organs at risk.

3) The third type of organs, including the rectum and the
bladder, were close to the target volume. The differences between
the MS-VMAT plans and the AS-VMAT plans in terms of the
D98%, D99%, V20, V30, and V40 in the rectum were statistically
significant (P < 0.05). In addition, dosimetry results outside the
confidence interval for the bladder (D1%, D2% and V40) and the
rectum (D1% and D2%) were found in 2 cases each. This may be
because the rectum and the bladder were close to the CTV, even
overlapping in some regions (as shown in Figure 6). Hence, the
geometrical differences in automated segmentation results had a
significant impact on the dose received by high-dose areas.
Meanwhile, the dosimetry results were more sensitive to the
geometric accuracy of automated contouring due to the relatively
small volume of the rectum. Therefore, auto-segmented organ
contours need to be carefully checked, with the errors corrected.
The abovementioned organs are classified as type III organs at risk.
FIGURE 4 | The correspondence between the AS-VMAT plans and the MS-VMAT plans in terms of gamma passing rates in clinical target volume (CTV). The red
dotted line denotes a gamma passing rate of 90%. AS-VMAT, automatic segmentations VMAT; MS-VMAT, manual segmentations VMAT.
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FIGURE 5 | Comparison of the clinical target volume (CTV) and normal tissue DVHs for one patient with cervical cancer. The dotted lines denote the treatment plans
optimised by auto-segmented organ contours (AS-VMAT), whereas the solid lines denote the treatment plans optimised by manually segmented organ contours
(MS-VMAT). AS-VMAT, automatic segmentations VMAT; MS-VMAT, manual segmentations VMAT.
FIGURE 6 | Diagram showing the position of the target volume, the bladder, and the rectum in a patient with cervical cancer. The coloured area denotes the target
volume receiving > 45 Gy. The area marked with the red solid line is the clinical target volume (CTV), the blue solid lines denote the manually segmented contours,
and the yellow solid lines denote the auto-segmented contours.
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Moreover, another factor contributing to the difference in
planned dose lies in the treatment planning system. During the
course of the study, we found that after the treatment plan was
optimised twice under identical optimization conditions for the
same patient (same structures and CT images) in the Monaco
system, the generated sequences of the sub-fields and the
positions of the leaves were not entirely consistent, which
resulted in significant differences in the dose distribution
within low-dose areas.

We attempted to segment the normal tissues in patients with
cervical cancer using deep learning techniques. In addition, we
attempted to analyse which tissues received significantly different
doses when automated segmentation results with high geometric
accuracy were directly used in the design of treatment plans.
Based on the results, we classified the auto-segmented normal
tissues into three types. The auto-segmentation results for some
tissues need to be carefully checked and corrected, while the auto-
segmented contours of other tissues can be almost left
unmodified, thereby saving clinicians a significant amount of
time (an important objective of this study). A similar finding was
reported by Vaasen et al. (36), that most OARs can be left
unedited except under certain circumstances where they were
close to the planning target volume. However, this study still has
its limitations. First, the size of the samples from the testing set
was too small to accurately evaluate the dose differences and
larger sample sizes will provide more statistically significant
results. Second, the analysed patients were collected from the
same medical centre and no multicentre comparison was
performed. Conclusions based on multicentre studies would be
more objective and compelling.
5 CONCLUSIONS

The 3D U-net model can be used for accurate, efficient, and
automated segmentation of organs at risk in patients with
cervical cancer. When auto-segmented organ contours were
used in the design of treatment plans, the dose distributions of
target volumes were not affected, whereas the impact of
Frontiers in Oncology | www.frontiersin.org 927
automated segmentation on the doses to organs at risk was
complicated. We suggest that the auto-segmented contours of
tissues in close proximity to the target volume need to be
carefully checked and corrected when necessary, while auto-
segmented contours of tissues at a distance from the target
volume can be left largely unmodified.
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Impact of Using Unedited CT-Based
DIR-Propagated Autocontours on
Online ART for Pancreatic SBRT
Alba Magallon-Baro*, Maaike T. W. Milder , Patrick V. Granton, Wilhelm den Toom,
Joost J. Nuyttens and Mischa S. Hoogeman

Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands

Purpose: To determine the dosimetric impact of using unedited autocontours in daily plan
adaptation of patients with locally advanced pancreatic cancer (LAPC) treated with
stereotactic body radiotherapy using tumor tracking.

Materials and Methods: The study included 98 daily CT scans of 35 LAPC patients. All
scans were manually contoured (MAN), and included the PTV and main organs-at-risk
(OAR): stomach, duodenum and bowel. Precision and MIM deformable image registration
(DIR) methods followed by contour propagation were used to generate autocontour sets
on the daily CT scans. Autocontours remained unedited, and were compared to MAN on
the whole organs and at 3, 1 and 0.5 cm from the PTV. Manual and autocontoured OAR
were used to generate daily plans using the VOLO™ optimizer, and were compared to
non-adapted plans. Resulting planned doses were compared based on PTV coverage
and OAR dose-constraints.

Results: Overall, both algorithms reported a high agreement between unclipped MAN
and autocontours, but showed worse results when being evaluated on the clipped
structures at 1 cm and 0.5 cm from the PTV. Replanning with unedited autocontours
resulted in better OAR sparing than non-adapted plans for 95% and 84% plans optimized
using Precision and MIM autocontours, respectively, and obeyed OAR constraints in 64%
and 56% of replans.

Conclusion: For the majority of fractions, manual correction of autocontours could be
avoided or be limited to the region closest to the PTV. This practice could further reduce
the overall timings of adaptive radiotherapy workflows for patients with LAPC.

Keywords: pancreas, SBRT, adaptive, replanning, autocontouring
INTRODUCTION

Adaptive radiotherapy (ART) is a desired paradigm in radiation therapy. Its goal is to adjust the
treatment plan to the patient anatomy of the day to compensate for anatomical changes (1, 2). An
online ART workflow has to be time efficient as the patient awaits treatment (1, 3). In recent years,
efforts have been focused on speeding up the ART process through fast treatment plan
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reoptimization techniques and through automatically
segmenting anatomical structures in medical images (3–10).
The latter aims to reduce delineation times, which in ART
remains a crucial point since contouring has been traditionally
performed manually by dedicated and trained staff (11).

Carcinomas located close to radiosensitive and mobile
organs-at-risk (OAR), such as unresectable locally advanced
pancreatic cancer (LAPC), are excellent candidates for ART (4,
8, 9, 12). LAPC is a dose-limited tumor type, whose dosage is
often compromised to protect surrounding organs. To manage
this limitation, stereotactic body radiotherapy (SBRT) has
become a standard of care for LAPC, owing to its capability to
deliver highly conformal doses with steep dose gradients (13–17).
Nonetheless, due to day-to-day OAR mobility, unintended doses
are received by OAR close to the tumor (3, 18). For that reason,
ART is recently being explored for LAPC patients using systems
such as the MRIdian (ViewRay, Oakwook Village, OH) (8, 9, 12,
19, 20), the Elekta Unity (Elekta AB, Stockholm, Sweden) (7, 9,
21), or the Ethos (Varian Medical Systems Inc, Palo Alto, CA)
(22, 23).

In our clinic, LAPC patients are treated on the CyberKnife
(CK) (Accuray Inc, Sunnyvale, USA) using real-time tracking
(24, 25). The CK does not have an integrated 3D imaging system,
but our institute has a unique CT-on-rails in the treatment room
that allows daily imaging (26). Our previous work investigated
the potential trade-offs of applying different fast and quasi-
automated plan adaptation methods on the CK (6).
Nonetheless, a major challenge remains in laborious daily
organ delineation, i.e. contouring.

Automatic contouring methods may offer a solution and are
often based on the propagation of contours from the planning
(pCT) to the fraction CT (FxCT) through deformable image
registration (DIR) (2–4, 7). The use of automatic algorithms not
only speeds up this task, but could also offer consistency to limit
intra- and inter-observed variations. However, due to poor soft
tissue contrast in the abdominal area, autosegmented organ
contours (i.e. autocontours) generally require further manually
editing before being used for daily replanning purposes (3, 27).
Within an ART framework, manual delineation is one of the
most time-consuming steps, but is thought to be essential to
guarantee the quality of the adapted treatment plan. The time
required for delineation delays the start of radiation delivery,
and allows for additional intra-fraction OAR motion to
occur, which can devaluate further the adapted plan. For this
reason, in this study we have explored if manual editing of
daily contours can be avoided while replanning. We have
investigated the impact of using unedited autocontours
generated with two commercially DIR algorithms available in
PrecisionTP (Accuray Inc, Sunnyvale, USA) and in MIM (MIM
Software Inc, Cleveland, USA). The value of replanning directly
on unedited autocontours has been established by: (a)
comparing resulting plans to replans obtained using manual
contours in the optimization, and (b) comparing them to
conventional non-adapted SBRT plans. In addition, we also
quantified the geometric accuracy of both DIR algorithms,
especially close to the target volume.
Frontiers in Oncology | www.frontiersin.org 230
MATERIALS AND METHODS

Patient Data
A total of 35 patients with pancreatic cancer were included in this
study. All patients were diagnosed with inoperable nonmetastatic
LAPC, and presented a stable disease after receiving 8 cycles of
chemotherapy (FOLFIRINOX). They received subsequent
hypofractionated SBRT treatment of 40 Gy in 5 fractions,
prescribed to the 80% isodose line. Patients gave informed
consent to be included in the LAPC-1 Phase II study, which
was approved by the Institutional Review Board (ID:
NL49643.078.14) in accordance with the recommendations of
the Declaration of Helsinki.

The study protocol indicated that each patient received a
planning CT (pCT) and 3 contrast-enhanced in-room daily
scans under instructed end-expiration breath-hold prior to
treatment delivery (FxCT). All scans were acquired after
manually injecting intravenous contrast agent, and by
immobilizing patients using a vacuum bag on the treatment
couch. Patients were recommended to avoid food and drink
intake 2 h before the treatment fraction. In total, 98 FxCT were
collected in this cohort, since only 2 daily CTs were available for
7 out of 35 patients.

The pCTs were delineated by a radiation oncologist (with 10+
years of experience) following the RTOG guidelines on the
abdominal region (28). The gross tumor volume (GTV) was
expanded by 5 mm to generate the clinical target volume (CTV),
which was subsequently expanded by 2 mm to create the
planning target volume (PTV). Additionally, the main organs-
at-risk (stomach, duodenum, bowel, kidneys and liver) were also
manually contoured.

Patients were treated using the CyberKnife M6 system with
synchrony respiratory motion tracking on pre-implanted gold
fiducial markers (24, 25, 29). Each patient had a median of 3
fiducials in or around the pancreatic tumor. The clinical protocol
stated that 95% of the PTV should receive 95% of the prescribed
dose (i.e., 40 Gy/5 fx), although PTV underdosage was allowed to
fulfill OAR constraints. The stomach, duodenum and bowel had
a near-maximum dose constraint of V35 Gy < 0.5 cc. For the
liver, dose-constraint was V20 Gy < 700 cc, for the kidneys, mean
dose < 15 Gy and V15 Gy < 30%, and for the spinal cord, allowed
max dose was < 27.5 Gy.

Delineations on the Daily Scans
Baseline of Manual Contour Set
FxCTs were delineated by the same radiation oncologist that
delineated the pCT scans. The GTV and PTV were rigidly
transferred to FxCTs after applying a fiducial pre-match.
Additional details regarding OAR delineations can be seen in (30).

Autocontour Sets
Contours from the pCT were propagated to FxCTs using the
deformable image registration (DIR) algorithm available in both
PrecisionTP (version 2.0.1.1) and MIM (version 6.9.3). A
summary of each DIR method is available in Supplementary
Materials (A), as well as the procedure followed for parameter
June 2022 | Volume 12 | Article 910792
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selection in MIM DIR. Whereas MIM DIR settings could be
tuned to optimize the resulting contours for our dataset,
Precision DIR settings are fixed and cannot be modified. The
autocontours (AUTO) obtained using Precision DIR (asPREC)
and MIM DIR (asMIM) remained unedited.

Contour Sets Geometrical Comparison
Both autocontours sets (asPREC and asMIM) were geometrically
compared to MAN through the Dice coefficient (DC) (which
describes the overlapping ratio between two volumes), mean
surface distance (MSD), Hausdorff distance (HD) (which
describes the maximum distance between two contour
surfaces) and volumetric difference (VOL_DIFF) between the
automatic vs. manual contours. These 4 accuracy metrics
complement each other by giving an indication of the
volumetric error and the distance between the structures
boundaries, as recommended in Sharp et al. (2) and AAPM
TG-132 (31). All metrics were collected using an in-house
algorithm. Most of these metrics present a skewed distribution,
and hence, median and interquartile range (IQR) parameters
describing the data spread between quartile 1 (Q1) and 3 (Q3)
(i.e. the 25% and 75% percentiles in which the distribution lies),
were collected for the subsequent comparison analysis.

MAN, asPREC and asMIM stomach, duodenum and bowel
structures (the closest OAR to the target and mostly located
within the high dose region), were clipped at 3, 1 and 0.5 cm
from the PTV for geometrical comparison (4–6). The resulting
asPREC and asMIM clipped organs were compared to MAN
clipped structures by means of DC, MSD, HD and
VOL_DIFF metrics.

Since the three gastrointestinal (GIO) organs (i.e. stomach,
duodenum and bowel) have the same dose-constraints in the
clinical protocol, a structure combining the three was created at
each different scenario (whole and clipped GIO at 3, 1 and 0.5
cm). GIO structures were also compared using DC, MSD, HD
Frontiers in Oncology | www.frontiersin.org 331
and VOL_DIFF. No recommendations on a combined GIO
structure are included in the clinical protocol. The GIO
structure was only created to evaluate the geometrical
similarity of the combined organs, while minimizing the effect
of registration errors in the transition between organs (e.g.
stomach to duodenum).

The minimum distance (MIN_DIST) from GTV and PTV to
OARs and the overlapping volume (OVLP) of the expanded PTV
(with 0.5 and 1 cm) with the OAR was also retrieved for MAN,
asPREC and asMIM.

Replanning on MAN, asPREC and
asMIM Contours
Treatment plans were optimized using the VOLO™ optimizer in
PrecisionTP (v2.0.1.1). As detailed in (6), a fast patient-specific
template, including all clinically optimal cost functions used in
the pCT, was generated. These fast templates reproduced the
delivered clinical plans, while using a reduced number of nodes
and OAR clipped at 3 cm from the PTV. These parameter
combinations significantly reduced plan optimization times (6).

The patient-specific templates were used to perform an
automated full inverse planning on the pCT. These planning
doses were rigidly transferred to FxCTs to evaluate non-adapted
(NoAd) doses. We transferred the dose to the FxCT rather than
recalculating it, as in our previous work (6) we saw clinically
irrelevant dose differences in the OAR and in the target volumes
when comparing transferred and recalculated plans. Next, the
template was used to perform a new automated full inverse
planning on the FxCT to generate adapted plans using the
clipped MAN, asPREC and asMIM at 3 cm. The resulting
adapted plans are referenced hereafter as MAN_Rp,
asPREC_Rp and asMIM_Rp, respectively. Figure 1 shows an
example patient with the 4 planned doses that were created and
evaluated on the FxCT scan, as well as the contours used to
optimize each different plan.
B C DA

FIGURE 1 | Example patient FxCT scan with the different structure set and dose distribution used for the dosimetric evaluation. (A) Replanned dose optimized using
manual contours (ground truth). (B) Non-adapted dose with planning anatomy rigidly transferred from the pCT (solid lines). (C) Replanned dose optimized using
contours obtained with Precision DIR (solid lines). (D) Replanned dose using contours from MIM DIR (solid lines). For (B–D) manual contours are also overlaid
(dashed white lines).
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Dosimetric Plan Comparison
The four resulting doses in the FxCT scans (NoAd, MAN_Rp,
asPREC_Rp and asMIM_Rp) were compared based on coverage,
mean and minimum doses of the GTV and PTV, and near-
maximum dose constraints (V35 < 0.5 cc) and mean doses of the
OAR. All four doses were evaluated on the daily MAN contours
during the subsequent dosimetric analysis, although plan
optimization had been done using the planning contours (as in
NoAd) or autocontours (as in asPREC_Rp and asMIM_Rp).
Median and interquartile range (IQR) of these parameters were
abstracted, and were compared using a two-sided Wilcoxon
signed rank test, with a statistically significance defined by a p-
value of < 0.05.

The following plan comparisons were performed. Firstly,
replanned doses (MAN_Rp, asPREC_Rp and asMIM_Rp) were
compared to non-adapted doses (NoAd) to determine the value
of daily plan adaptation with respect to conventional planning.
Secondly, replanned doses optimized using unedited
autosegmented contours (asPREC_Rp and asMIM_Rp) were
compared to replanned doses optimized using MAN, to
determine the impact of inaccuracies in organ delineation on
the replans.

To determine if autocontouring inaccuracies could be
correlated with OAR constraints violations after replanning,
the volumetric differences of auto vs. manual contours (i.e.
VOL_DIFF) were compared between the fractions exceeding
and the fractions not exceeding dose-constraints after
replanning. VOL_DIFF was compared within different
isotropic rings sets at different distances from the PTV: 0-1 vs
1-3 cm, 0-1.5 vs 1.5-3 cm, and 0-2 vs 2-3 cm. A Mann-Whitney
test was performed to assess the differences between rings results.
Statistical significance was set by a p-value < 0.05.
RESULTS

Contour Sets Geometrical Comparison
MAN, asPREC and asMIM contours were compared by means of
DC, MSD, HD and VOL_DIFF on the whole (Table B1) and
clipped OAR (Figure 2 andTable B2), and bymeans ofMIN_DIST
and OVLP between target and OAR volumes (Table 1).

When evaluating the structures as a whole (Table B1), both
algorithms reported high agreements between AUTO and MAN
structures. A median (IQR: Q1, Q3) DC of 0.9 (0.9, 0.9), MSD of 2
(2, 3) mm, HD of 18 (15, 23) mm and VOL_DIFF of -1 (-16, 12) cc
was observed for the combined GIO for asPREC, and a median DC
of 0.9 (0.8, 0.9), MSD of 2 (2, 3) mm, HD of 19 (16, 23) mm and
VOL_DIFF of 13 (-6, 27) cc for asMIM. The liver and kidneys were
the organs reporting best results in both methods, and the bowel the
worst, followed by the stomach and the duodenum.

When evaluating the clipped OAR at different distances from
the PTV (Figure 2 and Table B2), only the stomach, duodenum,
bowel, and the combined GIO structure were considered. AUTO
bowel contours were the structures showing less agreement with
MAN bowels, followed by the duodenum and finally the
stomach. Bowel contours reported the lowest DC, and larger
Frontiers in Oncology | www.frontiersin.org 432
MSD, HD and VOL_DIFF. The GIO structure generally
outperformed individual organ measurements.

The DC in the 4 structures (i.e. stomach, duodenum, bowel and
GIO) decreased closer to the PTV. Depending on the structure
andmethod, DC ranged from 0.7 to 0.9 at 3 cm, and reduced to 0.5
to 0.8 at 0.5 cm distance from the PTV. The MSD showed little
change at the 3 distances from the PTV, oscillating between 1 to 2
mm depending on the structure. The HD decreased for all
structures when evaluated at 3 and 1 cm away of the PTV,
reducing from a median of 18 to 13 mm in the GIO, but
remained similar between 1 and 0.5 cm. Finally, the VOL_DIFF
of AUTO vs. MAN reported similar volumes between MAN and
asPREC. Conversely, asMIM showed positive differences
compared to MAN ranging from 17 to 2 cc between 3 to 0.5 cm.

Generally, asPREC reported higher agreement with MAN
than asMIM. As observed in Figure 2 and Table B2, stomachs
and bowels segmented with MIM were overestimated (i.e.,
positive VOL_DIFF), whereas with Precision both organs were
slightly underestimated (i.e., negative VOL_DIFF). Both
algorithms slightly underestimated the duodenum. Similar
tendencies are observed in Table 1, in which asMIM reported
smaller MIN_DIST to both GTV and PTV compared to MAN
and asPREC, and also reported higher OVLP with the expanded
PTV structure with autosegmented OAR.

Dosimetric Comparison After Replanning
Table 2 summarizes the dosimetric measurements performed in
the non-adapted and adapted plans according to the
different daily contours. After evaluating planned doses
(NoAd) on MAN, 71% (70/98) of the plans resulted in OAR
dose-constraint violations.

Replanning based on MAN, asPREC and asMIM using a
patient template resulted in plans satisfying OAR constraints
(evaluated using MAN) for 93% (91/98), 64% (63/98) and 56%
(55/98) of the fractions. Nonetheless, the V35Gy in unedited
AUTO OARs was significantly lower in all organs compared to
non-adapted plans for both asPREC and asMIM. Compared to
NoAd plans, replanned doses on daily adapted contours (MAN,
asPREC or asMIM) improved V35Gy in all OAR for 100% (98/
98), 95% (93/98) and 84% (82/98) of the fractions. Using
asPREC, the 5 fractions performing worse than NoAd occurred
in 4 patients. Similarly, using asMIM, the 16 fractions
performing worse than NoAD occurred in 14 patients. Median
PTV coverage reduced by 2%, 2.7% and 5.1% compared to
NoAD plans after replanning with MAN, asPREC and
asMIM, respectively.

Table 3 summarizes the differences between replanning using
MAN vs. replanning using AUTO. V35Gy is significantly higher
for the stomach and duodenum in plans based on autocontours
compared to those based on MAN contours. This effect does not
occur in the case of the bowel. Table 3 also shows that the PTV
coverage decreased when using AUTO. This result was not
significant when replanning using asPREC, but was significant
when using asMIM.

Figure 3 shows the dosimetric parameters of adapted plans
based on MAN, asPREC or asMIM vs. non-adapted plans. Dots
located under the unity line (in diagonal) represent the dose
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distributions that improved compared to non-adapted plans.
Similarly, dots located under the horizontal dashed red line at 0.5
cc on the y-axis represent the amount of adapted dose distributions
that fulfilled the dose-constraints after adapting the plans using the
three different contours sets. Figure 3 visually presents the results
from Tables 2, 3: most plans fulfill the dose-constraints for the
three organs after replanning at the cost of PTV coverage.

The correlation between autocontontour geometrical errors
(assessed using VOL_DIFF of AUTO vs. MAN contours) and
OAR violations (i.e., V35 Gy > 0.5 cc) were reported to be
significant on all OAR within the ring of 0 to 1.5 cm from the
PTV and not significant within the ring from 1.5 to 3 cm
(Table 4). Other ring combinations results can be found in
Supl.Mat (Table B3), but reported similar tendencies to Table 4.
In short, large OAR autosegmentation inaccuracies (i.e., showing
negative VOL_DIFF) occurring close to the PTV, appeared to be
Frontiers in Oncology | www.frontiersin.org 533
correlated with OAR violations after replanning. This correlation
disappeared for large geometrical differences occurring at larger
distances (i.e., within 1.5–3 cm ring from the PTV). Tables 4 and
B3 suggest that recontouring efforts should primarily be
addressed to OAR volumes close to the PTV, as this effort
already solves most dose-constraint violations when replanning
while minimizing the editing time involved.
DISCUSSION

Treatments using ART, especially online adaptive replanning,
heavily rely on autosegmentation for a speedy and efficient
workflow. However, current autosegmentation methods
generally lack accuracy in the abdominal region and need to be
followed by time and labor-intensive manual contour correction.
FIGURE 2 | Boxplots showing the differences between Dice coefficient (DC) [top left], mean surface distance (MSD) [top right], volumetric difference between auto
vs. manual contours (VOL_DIFF) [bottom left] and Hausdorff distance (HD) [bottom right] for structures autosegmented with Precision (asPREC in blue) and MIM
(asMIM in orange). Each column of each subfigure distinguishes the boxplots on each structure (stomach, duodenum, bowel and GIO) and for each organ,
distributions are separated for the clipped structures at 3, 1 and 0.5 cm from the PTV.
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TABLE 3 | Median and interquartile range (Q1, Q3) plan parameters of the replanned doses based on autosegmented contours using precision (asPREC) and MIM
(asMIM) vs. replanned doses based on manual contours (MAN).

Structure Parameters Replanning

MAN_Rp asPREC_Rp – MAN_Rp r asMIM_Rp – MAN_Rp r

PTV Coverage (%) 82.5 (75.1, 88.7) -0.5 (-3.5, 1.6) NS -2.7 (-7.4, 0.2) <.001
Dmean (Gy) 42.5 (41.5, 43.7) 0.0 (-0.3, 0.6) NS -0.2 (-1.0, 0.4) 0.04
Dmin (Gy) 26.4 (24.6, 28.0) 0.0 (-0.8, 0.8) NS 0.0 (-1.1, 1.0) NS

GTV Coverage (%) 95.6 (90.7, 98.9) -0.1 (-1.9, 1.1) NS -1.6 (-4.0, 0.0) <.001
Dmean (Gy) 45.3 (44.2, 46.1) 0.3 (-0.2, 0.9) .001 0.0 (-0.8, 0.6) NS

Stomach V35 Gy (cc) 0.0 (0.0, 0.0) 0.0 (0.0, 0.1) <.001 0.0 (0.0, 0.3) <.001
Dmean (Gy) 5.2 (3.2, 7.5) 0.0 (-0.3, 0.4) NS 0.0 (-0.4, 0.5) NS

Duodenum V35 Gy (cc) 0.0 (0.0, 0.0) 0.1 (0.0, 0.4) <.001 0.0 (0.0, 0.4) <.001
Dmean (Gy) 9.5 (4.9, 12.1) -0.2 (-0.6, 0.2) .02 -0.1 (-0.4, 0.3) NS

Bowel V35 Gy (cc) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) NS 0.0 (0.0, 0.0) NS
Dmean (Gy) 1.8 (1.0, 2.6) 0.0 (-0.1, 0.1) NS 0.0 (-0.2, 0.1) .01
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Statistically not significant (NS) for p > 0.05.
TABLE 1 | Median and interquartile range (Q1, Q3) of the minimum distance (MIN_DIST) from GTV and PTV to OARs (stomach, duodenum and bowel), and the
overlapping volume (OVLP) of the expanded PTV (at 0.5 and 1 cm) and OAR.

Metric Method Stomach Duodenum Bowel

MAN 2.1 (-0.3, 6.9) -0.3 (-0.8, 4.3) 9.4 (3.4, 15.0)
MIN_DIST asPREC 2.3 (-0.6, 7.1) 0.0 (-1.7, 5.4) 9.7 (3.1, 20.8)
GTV – OAR [mm] asMIM 1.2 (-1.5, 6.4) -0.2 (-2.2, 4.6) 8.5 (0.5, 16.9)

(asPREC – MAN) -0.3 (-1.3, 1.3) -0.5 (-1.4, 1.2) 0.4 (-1.5, 4.0)
(asMIM – MAN) -0.9 (-2.9, 0.4) -0.9 (-2.1, 0.4) -0.8 (-3.2, 2.0)
MAN -4.2 (-6.5, 0.4) -6.4 (-7.4, -1.5) 3.1 (-2.6, 8.8)

MIN_DIST asPREC -4.0 (-6.9, 1.1) -6.0 (-8.1, -1.0) 3.3 (-2.4, 14.2)
PTV – OAR [mm] asMIM -5.1 (-7.9, -0.1) -6.5 (-8.6, -1.8) 2.3 (-5.5, 10.8)

(asPREC – MAN) -0.1 (-1.2, 1.3) -0.4 (-1.2, 1.2) 0.6 (-1.3, 3.6)
(asMIM – MAN) -0.8 (-3.1, 0.6) -0.8 (-2.2, 0.4) -0.6 (-3.3, 1.9)
MAN 3.4 (0.6, 8.2) 5.8 (1.5, 14.6) 0.0 (0.0, 1.6)

OVLP asPREC 3.0 (0.5, 9.1) 5.6 (1.2, 16.5) 0.0 (0.0, 1.9)
PTV_0.5cm - OAR [cc] asMIM 4.3 (0.8, 12.1) 6.6 (1.8, 17.3) 0.3 (0.0, 3.4)

(asPREC – MAN) 0.0 (-0.4, 0.8) 0.0 (-1.2, 0.9) 0.0 (-0.4, 0.2)
(asMIM – MAN) 0.2 (-0.3, 2.7) 0.0 (-0.9, 1.5) 0.0 (0.0, 1.4)
MAN 9.5 (4.2, 18.7) 13.3 (4.4, 27.7) 1.7 (0.0, 6.7)

OVLP asPREC 9.2 (2.9, 19.2) 12.2 (4.7, 29.6) 2.4 (0.0, 8.1)
PTV_1cm - OAR [cc] asMIM 10.1 (4.4, 23.9) 13.4 (5.4, 29.7) 2.8 (0.0, 11.9)

(asPREC – MAN) 0.0 (-1.0, 1.5) -0.4 (-2.1, 1.5) 0.0 (-1.2, 1.7)
(asMIM – MAN) 0.3 (-0.5, 3.8) 0.0 (-1.8, 1.9) 0.2 (-0.1, 4.4)
Results are presented for both manual (MAN), and autosegmented contours using Precision (asPREC) and MIM (asMIM), as well as the difference between auto and manual contours.
TABLE 2 | Median and interquartile range (Q1, Q3) plan parameters of the replanned doses based on manual (MAN), and autosegmented contours using precision
(asPREC) and MIM (asMIM) vs. non-adapted planned doses (NoAd).

Structure Parameters No adaptation (NoAd) Replanning

MAN_Rp – NoAd r asPREC_Rp – NoAd r asMIM_Rp – NoAd r

PTV Coverage (%) 83.8 (78.0, 90.7) -2.0 (-4.6, 0.1) <.001 -2.7 (-4.5, -0.6) <.001 -5.1 (-8.4, -2.6) <.001
Dmean (Gy) 43.1 (42.2, 44.1) -0.5 (-1.0, 0.0) <.001 -0.3 (-0.7, 0.0) <.001 -0.7 (-1.2, -0.1) <.001
Dmin (Gy) 26.7 (25.5, 28.2) -0.5 (-1.6, 0.3) <.001 -0.7 (-1.4, 0.1) <.001 -0.5 (-1.5, 0.2) <.001

GTV Coverage (%) 95.7 (91.1, 99.0) -0.1 (-2.1, 0.6) 0.02 -0.4 (-1.9, 0.1) <.001 -1.6 (-5.2, 0.0) <.001
Dmean (Gy) 45.8 (45.0, 46.5) -0.5 (-1.0, 0.0) <.001 -0.1 (-0.7, 0.2) <.001 -0.5 (-1.2, 0.1) <.001

Stomach V35 Gy (cc) 0.2 (0.0, 0.8) -0.2 (-0.8, 0.0) <.001 -0.1 (-0.7, 0.0) <.001 -0.1 (-0.4, 0.0) <.001
Dmean (Gy) 5.4 (3.3, 7.4) -0.1 (-0.5, 0.5) NS -0.0 (-0.5, 0.5) NS -0.1 (-0.5, 0.4) NS

Duodenum V35 Gy (cc) 0.5 (0.1, 1.2) -0.4 (-1.0, 0.0) <.001 -0.2 (-0.7, 0.0) <.001 -0.2 (-0.5, 0.0) <.001
Dmean (Gy) 9.7 (5.7, 12.7) -0.3 (-1.1, 0.3) <.001 -0.4 (-1.0, -0.1) <.001 -0.4 (-0.9, 0.1) <.001

Bowel V35 Gy (cc) 0.0 (0.0, 0.3) 0.0 (-0.3, 0.0) <.001 0.0 (-0.1, 0.0) <.001 0.0 (-0.1, 0.0) <.001
Dmean (Gy) 1.9 (1.3, 2.6) -0.1 (-0.3, 0.1) <.001 -0.2 (-0.3, 0.0) <.001 -0.2 (-0.3, 0.0) <.001
Statistically not significant (NS) for p > 0.05.
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FIGURE 3 | Pair-point comparison of OAR V35Gy parameter on non-adapted vs. adapted plans using manual and autosegmented contours with Precision
(asPREC) and MIM (asMIM) on the stomach (A), duodenum (B), bowel (C). Dashed lines depict OAR dose-constraints (V35Gy < 0.5 cc). In (D), PTV coverage
boxplot comparison of non-adapted (NoAd – red) vs. replanned doses: MAN_Rp (green), asPREC_Rp (blue) and asMIM_Rp (orange).

Magallon-Baro et al. Autocontouring in ART for Pancreatic SBRT
In this study, we have quantified autocontouring quality of two
commercially available software tools in the upper abdomen, and
assessed the use of the resulting contours without further editing
in daily replanning. Replanning with unedited contours resulted
in better OAR sparing than non-adapted plans in 95% and 84%
of plans optimized using Precision and MIM autocontours,
Frontiers in Oncology | www.frontiersin.org 735
respectively. For a large proportion of these fractions, resulting
replanned doses stayed within OAR constraints (64% of plans
when using Precision DIR, and 56% when using MIM DIR).
Although autosegmentation inaccuracies can be located all over
the OARs, the errors located closer to the PTV structure have the
largest impact on OAR doses when replanning. These results
June 2022 | Volume 12 | Article 910792
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TABLE 4 | Median and interquartile range (Q1, Q3) of the volumetric difference of auto and manual contours in fractions violating and non-violating dose-constraints
(V35Gy > 0.5cc) in the stomach, duodenum and bowel after replanning using precision (asPREC) and MIM (asMIM) autocontours.

Structure Method Distance to PTV VOL_DIFF (AUTO – MAN) [cc]

Do not violate(V35 < 0.5 cc) Violate(V35 > 0.5 cc) r

Stomach asPREC Ring 0 – 1.5 cm 0.3 (-1.6, 2.0) -10.9 (-13.6, -3.1) .002
Ring 1.5 – 3 cm -1.9 (-7.2, 2.3) -17.9 (-25.6, 3.4) NS

asMIM Ring 0 – 1.5 cm 1.7 (-0.0, 6.2) -6.2 (-10.2, 1.1) <.001
Ring 1.5 – 3 cm 1.0 (-4.2, 4.6) -1.0 (-11.7, 8.1) NS

Duodenum asPREC Ring 0 – 1.5 cm 0.2 (-2.3, 2.8) -2.9 (-6.1, -1.1) .001
Ring 1.5 – 3 cm -0.1 (-5.6, 1.7) 0.2 (-2.2, 4.8) NS

asMIM Ring 0 – 1.5 cm 0.5 (-2.2, 2.7) -3.0 (-7.4, 0.5) .007
Ring 1.5 – 3 cm -0.4 (-7.1, 2.1) 0.3 (-6.7, 2.3) NS

Bowel asPREC Ring 0 – 1.5 cm 0.5 (-1.5, 6.4) -7.8 (-11.9, -4.9) <.001
Ring 1.5 – 3 cm 0.5 (-10.7, 8.2) -6.0 (-10.1, -2.8) NS

asMIM Ring 0 – 1.5 cm 1.0 (-0.8, 12.0) -6.2 (-6.6, -3.4) .017
Ring 1.5 – 3 cm 6.6 (-3.7, 27.9) 2.5 (1.3, 4.5) NS

Results are presented for the contour evaluated in the ring from 0 to 1.5 cm from the PTV vs. the ring from 1.5 to 3 cm from the PTV. Statistically not significant (NS) for p > 0.05.

Magallon-Baro et al. Autocontouring in ART for Pancreatic SBRT
suggest that manual editing of autosegmented OAR can be
avoided in many fractions, but if applied, it can be limited to
the region closest to the PTV to reduce the overall time of the
ART workflow when treating patients with LAPC. Our research
suggests that a cut-off limit of 1.5 cm could be sufficient, but an
exact cut-off point requires further research and will be treatment
protocol dependent.

A similar study was recently published using unedited
contours for daily online ART in prostate patients using the
Ethos system (32). In this study, the authors evaluated the gain of
adapted plans with unedited contours vs. non-adapted plans.
They report that 96% of their fractions would have required
manual editing of the generated contours, but that 100% of the
fractions achieved higher CTV coverage based on autocontours
than using non-adapted plans. Similar to our work, the authors
show that autocontouring methods are still inaccurate and
require manual editing, but they also show that replanning on
unedited contours is already beneficial compared to treating
patient with non-adapted plans.

The added value of our work is that we also evaluated the
dosimetric differences between adapted plans using manually
corrected contours vs. using autocontours, hence, we also
measured the potential gain in plan quality if autocontours are
edited before replanning.

Regarding the geometrical analysis performed in our data, as
expected, there were differences between manual and
autocontours in the low and high dose region (within 3 cm
from the PTV). Dice coefficient degraded when getting closer to
the PTV. This is in part a natural expectation from this metric, as
reports the overlapping ratio between 2 structures. The smaller
the evaluated volumes, the more impact segmentation
inaccuracies have. The Hausdorff distance measurement,
reporting the maximum distance between 2 volumes, remains
constant at different distances from the PTV, what reassures that
there are relevant inaccuracies occurring close to the tumor.

Generally, contours propagated by Precision DIR showed a
slightly higher agreement with manual contours than with MIM
DIR, which tended to overestimate OARs (Figure 2, Table B2),
and get closer to the tumor (Table 1). Consequently, asMIM_Rp
Frontiers in Oncology | www.frontiersin.org 836
dose distributions more often exceeded dose-constraints and lost
more PTV coverage than asPREC_Rp. This difference between
autocontour quality might be because Precision DIR optimizes
the deformation vector field using localized patches within the
image instead of the global image as done by MIM DIR (33–35)
(see Supl.Mat-A).

Daily recontouring has traditionally relied on intra-patient
contour propagation (as in this study) or atlas-based methods
also using DIR (2, 3). Alternative autosegmentation methods are
described in the literature, including artificial intelligence (AI).
AI-based methods have shown improved accuracy and efficiency
compared to traditional methods while being computationally
very fast (36, 37). Several studies have shown improvements in
different treatment sites (e.g. head-and-neck (38–40), prostate
(39, 41), rectum (42), whole body (43)). However, abdominal
organs present additional challenges including strong
interpatient variability, bowel loop displacements and hollow
organs, which causes AI studies still report similar results to
those achieved in our current study (10, 44–46). Additionally, all
studies focus on reporting autosegmentation accuracy on whole
organ structures, whereas our results suggest mainly the accuracy
close to the target influences plan quality.

Regarding replanning, manually corrected contours achieved
the best results in OAR sparing compared to non-adapted plans
(100% FxCT). However, replanning directly on unedited
structures also improved OAR sparing for the large majority of
fractions: 95% (93/98 FxCT) for Precision, and 84% (82/98
FxCT) for MIM. The corresponding 5 and 16 fractions in
which plans based on autocontours increased OAR dose
compared to non-adapted plans belonged to 4 and 14 patients,
respectively. When looking further into the cases in which this
phenomenon occurred (see two example cases in Figure C1 in
Supl. Mat.), we noticed that manual contours were closer to the
PTV than autosegmented contours, resulting in large
inaccuracies close to the PTV for AUTO. Replanning on the
autosegmented contours results in large dose violations, as the
manual contours lie in the high dose area. Nonetheless, this poses
a relatively small dosimetric risk for the patient especially taking
into account that we analyzed single fractions rather than the
June 2022 | Volume 12 | Article 910792
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total treatment dose, in which the effect of dose violations
occurring in one single fraction, as in the case for the majority
of our reported violations, is likely to be reduced.

Although OAR dose decreased when using unedited
contours, the number of fractions obeying OAR constraints
reduced compared to plans based on corrected contours. Also,
PTV coverage generally decreased in fractions needing
replanning. This similarly occurred when using MAN or
asPREC, and slightly more often when using asMIM. Mostly,
this was explained due to daily OAR moving closer to the high
dose region or an increased OAR overlap with the PTV.

Our proposed implementation of ART is based on CT images
and uses commercially available software. Although we are still in
process of clinically implementing online adaptive replanning, we
have performed end-to-end tests to mimic a clinical workflow. A
complete adaptive procedure can be completed within 45 min,
excluding treatment delivery, with room for improvement in
delineation time. Similar to other publications, depending on the
treatment site, editing of the contours on the FxCT – even when
limited to a distance of 3 cm from the PTV - can take up a
considerable amount of time in the entire procedure (around 10
min (4, 22, 27, 47)). The time of our total procedure is however in
line with procedures performed on the MR-Linac (9, 12, 27), but is
considerably longer than an online workflow on the Ethos system
(22, 23). An inherent advantage of CyberKnife treatments is the
excellent intra-fraction, both respiratory and non-respiratory,
motion tracking. Currently this is lacking in the MR-Unity and
Ethos systems leading to a possible increase in target size. The
MRIdian is compensating for intra-fraction respiratory motion by
means of gating.

Another limitation of our work is that we have a relatively
small cohort group for this study. A validation involving an
independent dataset potentially from other institutes should be
performed to verify the relevance of our findings in pancreatic
cancer. Although MR-Linacs and the Ethos systems rely on
different imaging modalities, we believe our results could be
transferred to other systems. For instance, similar trends were
already observed in the work of Moazzezi et al. about online ART
using unedited contours in prostate patients using the Ethos
system (32). However, the complexity of the procedure might
increase as the amount of elements involved also increases, e.g.
generating correct Hounsfield Units.

Finally, intrafraction OARmotion has not been accounted for
in this study. In our clinic, we use Synchrony respiratory motion
tracking to mitigate the effect of intrafraction motion of the
target, of which the accuracy has been reported elsewhere (25).
Generally, intrafraction OAR variations while tracking are
expected to be smaller than interfraction variations. Replans
based on unedited contours already correct for interfraction
OAR variations and generally outperform non-adapted plans
in this study. We believe intrafraction OAR variations will have a
smaller impact on the replans.

In conclusion, autosegmentation methods applying contour
propagation after DIR in the abdominal region result in contours
requiring manual correction. However, replanning on the
unedited daily contours generally resulted in higher organ
Frontiers in Oncology | www.frontiersin.org 937
sparing than treating with a conventional SBRT scheme. In the
majority of fractions, it even resulted in plans obeying the tight
OAR dose constraints of our clinical protocol. In a large number
of fractions, manual editing of automatic contours could,
therefore, be avoided or at least restricted to contour sections
in close proximity to the PTV, reducing the time required for
online adaptive treatments for pancreatic cancer patients.
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Deep learning auto-
segmentation of cervical
skeletal muscle for sarcopenia
analysis in patients with head
and neck cancer

Mohamed A. Naser1, Kareem A. Wahid1, Aaron J. Grossberg2,
Brennan Olson3, Rishab Jain2, Dina El-Habashy1,4, Cem Dede1,
Vivian Salama1, Moamen Abobakr1, Abdallah S. R. Mohamed1,
Renjie He1, Joel Jaskari5, Jaakko Sahlsten5, Kimmo Kaski5

and Clifton D. Fuller1*

1Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center,
Houston, TX, United States, 2Department of Radiation Medicine, Oregon Health & Science
University, Portland, OR, United States, 3Medical Scientist Training Program, Oregon Health &
Science University, Portland, OR, United States, 4Department of Clinical Oncology, Menoufia
University Shibin El Kom, Shibin El Kom, Egypt, 5Department of Computer Science, Aalto University
School of Science, Espoo, Finland
Background/Purpose: Sarcopenia is a prognostic factor in patients with head

and neck cancer (HNC). Sarcopenia can be determined using the skeletal

muscle index (SMI) calculated from cervical neck skeletal muscle (SM)

segmentations. However, SM segmentation requires manual input, which is

time-consuming and variable. Therefore, we developed a fully-automated

approach to segment cervical vertebra SM.

Materials/Methods: 390 HNC patients with contrast-enhanced CT scans were

utilized (300-training, 90-testing). Ground-truth single-slice SM segmentations at

the C3 vertebra were manually generated. A multi-stage deep learning pipeline

was developed, where a 3D ResUNet auto-segmented the C3 section (33 mm

window), the middle slice of the section was auto-selected, and a 2D ResUNet

auto-segmented the auto-selected slice. Both the 3D and 2D approaches trained

five sub-models (5-fold cross-validation) and combined sub-model predictions on

the test set using majority vote ensembling. Model performance was primarily

determined using the Dice similarity coefficient (DSC). Predicted SMI was

calculated using the auto-segmented SM cross-sectional area. Finally, using

established SMI cutoffs, we performed a Kaplan-Meier analysis to determine

associations with overall survival.

Results: Mean test set DSC of the 3D and 2D models were 0.96 and 0.95,

respectively. Predicted SMI had high correlation to the ground-truth SMI in

males and females (r>0.96). Predicted SMI stratified patients for overall survival

in males (log-rank p = 0.01) but not females (log-rank p = 0.07), consistent with

ground-truth SMI.
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Conclusion: We developed a high-performance, multi-stage, fully-automated

approach to segment cervical vertebra SM. Our study is an essential step towards

fully-automated sarcopenia-related decision-making in patients with HNC.
KEYWORDS

auto-segmentation, deep learning, skeletal muscle index, head and neck cancer, sarcopenia
Introduction

Sarcopenia – the excessive loss of skeletal muscle (SM) mass

and function – is a common and debilitating phenomenon in head

and neck cancer (HNC) patients (1). Weight loss is frequent in

HNC due to nutritional deficiencies induced by tumor geometry

affecting normal tissues (2) and/or side effects caused by therapeutic

interventions (3). Although the link between treatment-associated

weight loss and survival in HNC is unclear (4), sarcopenia has been

strongly associated with oncologic outcomes and late radiation-

induced toxicities (5–7). Notably, in a recent meta-analysis of HNC

patients by Surov et al. (5), sarcopenia was significantly associated

with lower overall survival (hazard ratio = 1.64, p < 0.00001) and

disease-free survival (hazard ratio = 2.00, p < 0.00001). Therefore,

sarcopenia prediction is of paramount importance in patients

with HNC.

Sarcopenia can be identified using different diagnostic criteria

(8). One quantitative method investigated in various studies is using

a threshold based on the skeletal muscle index (SMI), the cross-

sectional area of skeletal muscle measured on axial imaging

normalized to the square of the patient’s height (9). The SMI is

most commonly calculated and referenced using CT imaging of

abdominal musculature (10–14). However, abdominal imaging is

not available for all HNC patients. Importantly, Swartz et al. (15),

van Rijn-Dekker et al. (6), and Olson et al. (16) have recently

suggested the C3 cervical vertebra musculature cross-sectional area

may also be used to quantify sarcopenia accurately.

Current approaches to generate C3 musculature

segmentations needed for SMI calculation rely on either semi-

automated or completely manual segmentation (6), which can

be time-consuming, introduce unnecessary errors, and suffer

from interobserver variability. A fully-automated approach

would be an attractive alternative to the current manual/semi-

automated standard. Deep learning, which has found success in

medical image segmentation (17–20), may be an ideal choice for

fully-automated segmentation of SM. Several recent studies have

utilized deep learning methods for automated SM measurement

based on abdominal CT scans with reasonable performance (21–
t; HNC, head and neck cancer;

MI, skeletal muscle index.
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26). However, to date, no studies have attempted to automate the

SMI calculation workflow based on head and neck imaging.

The primary objective of this study was to develop a fully-

automated approach to segment skeletal muscle at the C3

vertebral level for use in SMI calculations. These calculations

could be directly used to determine sarcopenia status for

predicting prognostic outcomes. To achieve this goal, we

developed and implemented a two-stage deep learning system

that utilizes 3D and 2D ResUNets to detect the C3 vertebra and

segment the corresponding C3 musculature, respectively. We

show that our approach can faithfully generate segmentations

comparable to ground-truth human-generated segmentations.

By fully automating the sarcopenia determination workflow, we

can ensure rapid, reproducible, and accurate measurements for

use in clinical decision-making.
Materials and methods

Patient and imaging data

495 patients from the head and neck squamous cell carcinoma

(HNSCC) publicly available dataset collection on The Cancer

Imaging Archive (TCIA) (27–29) were retrospectively collected in

2021. All patients had a histopathologically-proven diagnosis of

squamous cell carcinoma of the oropharynx and were treated with

curative-intent intensity-modulated radiotherapy. DICOM-

formatted contrast-enhanced CT scans were acquired from the

TCIA databases (27–29). Of the 495 patients available in the

HNSCC collection, 396 were selected due to their inclusion of the

C3 vertebrae on imaging. Subsequently, 6 patients were removed

due to image reconstruction errors (n=1), image processing errors

(n=1), or oblique image orientations (n=4), leading to a final set of

390 patients used in this analysis. The clinical and demographic

characteristics of these patients are shown in Table 1. The majority

of patients were male (86.6%) with base of tongue tumors (51.6%).

SM (paraspinal and sternocleidomastoid muscles) was manually

segmented for each CT image in one slice (2D image) at the level of

the C3 vertebra. The segmentations were performed using

sliceOmatic, version 5.0 (Tomovision) using previously published

Hounsfield unit thresholds to define muscle and fat (12, 30);
frontiersin.org
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specifically, a range of -29 to +150 Hounsfield units was used to

initially define SM followed by manual corrections. No pathological

tissue was located in the segmented SM. The single-slice 2D CT

images selected for segmentation and the corresponding SM

segmentation masks were exported as DICOM files and tag files,

respectively. Segmentations are made publicly available on Figshare

(doi: 10.6084/m9.figshare.18480917); additional information on the

dataset used in this analysis can be found in the corresponding data

descriptor (31).
Image processing

The DICOM 3D volumetric and single-slice 2D CT images

were converted to Neuroimaging Informatics Technology

Initiative (NIfTI) format using the DICOM processing toolkit

DICOMRTTool v. 0.3.21 (32). The SM segmentation. tag files
Frontiers in Oncology 03
42
were converted to NIfTI format using an in-house Python script.

The NIfTI files for the single-slice 2D CT images and SM

segmentation were used to train the 2D segmentation model

(described below). The 2D CT slice location in the C3 vertebra

was extracted from the DICOM file, which was then used to

generate the ground-truth segmentation mask for the C3 section,

defined as a volume 33 mm in thickness centered at the location

of the 2D CT slice. The tissue regions in the 3D CT images were

distinguished from the background by thresholding the images

using a value of greater than -500 Hounsfield units with any air

gaps within the tissue region filled to generate a binary mask for

the external boundaries. The generated external boundary masks

and the locations of the 2D CT slices were used to create the

ground-truth C3 section segmentations to train the 3D model

(described below). As we have described elsewhere (33), all the

images and masks were resampled to a fixed image resolution of

1 mm across all dimensions. The CT intensities were truncated

in the range of [−250, 250] Hounsfield units to increase soft

tissue contrast and then normalized to the range of [-1, 1] scale

(Figures 1A, B). We used the Medical Open Network for AI

(MONAI) (34) software transformation functions to rescale and

normalize images.
Segmentation model

We used a multi-stage deep learning convolutional neural

network approach for SM segmentation. Our approach was based

on the UNet architecture with residual connections (ResUNet)

included in the MONAI software package, as we have described in

previous publications (33, 35). In the first stage of our approach

(Figure 1C), a 3D ResUNet model auto-segmented the C3 vertebra

section (33 mm), which was then followed by auto-selection of the

middle slice of the section. In the second stage of our approach

(Figure 1D), a 2D ResUNet model auto-segmented the SM on the

auto-selected slice of the C3 section. Additional details of our

architecture are described in Appendix A.
Model implementation

We randomly split the data into 300 patients for training and

90 patients for testing. For training, we used a 5-fold cross-

validation approach where the 300 patients from the training

data were divided into five non-overlapping sets. Each set (60

patients) was used for model validation while the 240 patients in

the remaining sets were used for training, i.e., each set was used

once for testing and four times for training, leading to five sub-

models. The processed CT and corresponding masks for 3D

ResUNet model and 2D ResUNet models (C3 section and SM,

respectively) were randomly cropped to four random fixed-sized

regions (patches) of size (96, 96, 96) and (96, 96) per patch per

patient, respectively. Additional details on the model
TABLE 1 Clinical demographics of patients whose data were used in
this study.

Characteristic Count

Age (median, range) 57 (28–87)

Sex

Male 337

Female 52

Tumor subsite

Base of tongue 201

Glossopharyngeal sulcus 9

Soft palate 6

Tonsil 157

Not otherwise specified 16

HPV status

Negative 36

Positive 215

Unknown 138

T-category

T1 77

T2 166

T3 91

T4 55

N-category

N0 36

N1 44

N2 301

N3 8

AJCC stage (7th ed)

I 3

II 12

III 57

IV 317
AJCC, American Joint Committee on Cancer. One patient did not have clinical
information from The Cancer Imaging Archive so was not included in this table.
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implementation are described in Appendix A. We implemented

additional data augmentation to both image and mask patches to

minimize overfitting, including random horizontal flips of 50%

and random affine transformations with an axial rotation range

of 12 degrees and a scale range of 10%. We used the Adam

optimizer for computing the parameter updates and the soft

Dice loss function. The models were trained for 300 iterations

with a learning rate of 2×10-4 for the first 250 iterations and

1×10-4 for the remaining 50 iterations. The values for the Adam

optimizer coefficients b1 and b2 were 0.9 and 0.999, respectively.
Data augmentation and loss functions were provided by the

MONAI framework (34). The final segmentations on the test set

for both models were obtained by a majority vote on a pixel-by-

pixel basis for all predicted segmentation masks by the 5-fold

cross-validation sub-models (model ensemble), as described in a

previous study (33).
Model validation

For both the 3D ResUNet and 2D ResUNet models, we

evaluated the performance on the corresponding cross-

validation sets as well as the final ensemble segmentation on
Frontiers in Oncology 04
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the test set using the Dice similarity coefficient (DSC) (36).

Specific to the 3D model, we also evaluated the accuracy of the

C3 section segmentation by quantifying the absolute difference

between the slice locations of the mid-section of the C3 section

predicted by the 3D model and the 2D CT ground-truth image

(in mm). Specific to the 2D model, we compared the SM cross-

sectional areas obtained using the SM ground-truth

segmentation with 1. the 2D model predicted SM

segmentations on the same ground-truth CT image (Pred_GT)

and 2. the 2D model predicted SM segmentations on the slices

auto-selected by the 3D model (Pred_C3). We evaluated the

correlation between the SM cross-sectional areas using the

Pearson correlation coefficient; we also used a two-sided

Wilcoxon signed-rank test to determine if these SM values

were significantly different. Additionally, to derive the SMI, we

normalized the SM cross-sectional areas (in cm2) with the

patients’ heights (in m2). We then examined the correlation

between the SMI values produced by the ground-truth and deep

learning segmentations using the Pearson correlation coefficient;

we also used a two-sidedWilcoxon signed-rank test to determine

if these SMI values were significantly different. Based on

previous work by Swartz et al. (15) and van Rijn-Dekker et al.

(6), we used Equation 1 to calculate the cross-sectional area
FIGURE 1

An illustration of the workflow used for skeletal muscle (SM) auto-segmentation at the C3 vertebra. (A) Overlays of the ground-truth SM
segmentation and the original CT images. (B) Overlays of the ground-truth SM segmentation and the processed CT images. (C) An illustration of
the workflow used to auto-select a single CT slice at the C3 vertebra for SM auto-segmentation. The auto-selected slice is the middle slice of
the auto-segmented C3 section (33 mm in height) using a 3D ResUNet applied to the 3D volumetric CT image. (D) Auto-segmentation of SM
using a selected C3 vertebra CT image using a 2D ResUNet model.
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(CSA) at the L3 lumbar level based on the CSA at the C3 cervical

level and subsequently Equation 2 to calculate the lumbar SMI:

CSA   at   L3   cm2
� �

=   27:304 + 1:363 ∗CSA   at  C3   cm2
� �

− 0:671 ∗ age   yearsð Þ + 0:640

∗weight   kgð Þ + 26:422 ∗ sex sex = 1 for female,    2 for maleð Þ
(Eq:1)

Lumbar SMI  
cm2

m2

� �
=
CSA   at   L3   cm2

� �
height2 m2ð Þ (Eq:2)

Based on previous work by Prado et al. (30), SMI thresholds

of 52.4 cm2/m2 (males) and 38.5 cm2/m2 (females) were applied

to lumbar SMI derived from SM ground-truth and deep learning

segmentations to stratify patients by sarcopenia status (‘normal’

and ‘depleted’muscle); body composition related measurements

in the training and testing sets are shown in Appendix B. These

stratifications were then used for Kaplan-Meier analysis to

determine associations between sarcopenia status and overall

survival probabilities. To determine the sarcopenia status for the

whole data set (i.e., 390 patients), we implemented Kaplan-Meier

analysis on the 5-fold cross-validation data and the test data. We

aggregated the SMI estimated for each cross-validation fold (i.e.,
Frontiers in Oncology 05
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60 patients per fold) using the corresponding trained 3D and 2D

models in addition to the SMI for the test data using the average

predictions of the five cross-validation models.
Results

3D ResUNet model performance: C3
section auto-segmentation

The performance of the 3D ResUNet model for segmenting the

C3 section of the neck is summarized in Figure 2A. When assessing

the performance of each individual sub-model from our 5-fold

cross-validation, the DSCs calculated between the predicted region

segmentations and the ground-truth region segmentations were

high and consistent between all training folds, with a mean (±

standard deviation) DSC of 0.95 ± 0.01.When combining the cross-

validation fold predictions using our ensemble approach, the

performance on the test set increased to 0.96 ± 0.06. The middle

slices of the predicted 3D regional segmentations for the test set

were mostly within 4 mm of the ground-truth segmentation slice

locations, with the greatest number of patients being within 1 mm

(Figure 2B); the maximum outlier was at a distance of 10 mm.
FIGURE 2

3D ResUNet model performance for segmentation of C3 vertebra section. (A) Boxplots of the Dice similarity coefficient (DSC) distributions for
the 5-fold cross-validation data sets (Set 1 to Set 5 – 60 patients each) and the test data (90 patients). (B) Histogram of the absolute difference
(in mm) of the C3 slice location at the middle slice of the auto-segmented C3 section and the location of the ground-truth manually
segmented CT slice. Illustrative examples overlaying the C3 ground-truth segmentations (red) (33 mm centered at the ground-truth manually
segmented CT slice) and predicted segmentations (yellow) on the CT images with different DSC values (low – 0.75 (C), medium – 0.88 (D), and
high – 0.98 (E) performance compared to the mean DSC value of 0.95). The middle slice at the center of mass of the segmented C3 region was
auto-selected for further skeletal muscle auto-segmentation by the 2D ResUNet model.
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Examples of test set predictions for cases with low, medium, and

high performance compared to the mean DSC are shown in

Figures 2C–E. As can be visually confirmed, the low-

performance case still generated a segmentation such that the

middle slice was contained in the C3 region.
2D ResUNet model performance: SM
auto-segmentation

The performance of our 2D ResUNet model for segmenting the

C3 vertebra SM is summarized in Figure 3A. The DSCs calculated

between the model-predicted segmentations and the ground-truth

segmentations were high and consistent between all training folds,

with a mean DSC of 0.95 ± 0.002. When combining the cross-

validation fold predictions using our ensemble approach, the mean

DSC performance on the test set remained consistent at 0.95 ± 0.02.
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The cross-sectional areas derived from the 2D model predictions

using both the ground-truth slice locations and auto-selected slice

locations from the 3D ResUNet model were highly correlated to the

cross-sectional areas derived from the ground-truth segmentations

(Figure 3B). The predicted areas using the ground-truth slice

locations had a Pearson r=0.98 (p < 0.0001) and nonsignificant

Wilcoxon test (p=0.43). Similarly, the predicted areas using the

auto-selected slice locations had a Pearson r=0.98 (p < 0.0001) and

nonsignificant Wilcoxon test (p=0.22). Examples of test set

predictions for cases with low, medium, and high performance

compared to the mean DSC for predictions using ground-truth slice

location are shown in Figures 3C–E. As can be visually confirmed,

the low-performance case successfully generated a segmentation for

musculature that was not included in the ground-truth

segmentation. Moreover, the predictions using the auto-selected

slice location from the 3D ResUNet model yielded virtually

indistinguishable results for the low-performance and medium-
FIGURE 3

2D ResUNet model performance for segmentation of C3 skeletal muscle (SM). (A) Boxplots of the Dice similarity coefficient (DSC) distributions for
the 5-fold cross-validation datasets (Set 1 to Set 5 – 60 patients each) and the test data (90 patients). (B) A scatter plot of the SM cross-sectional
area using the ground-truth manual segmentation (x-axis) and the SM cross-sectional areas (y-axis) using predicted segmentations of the 2D
ResUNet applied to the ground-truth CT image slice (Pred_GT) and the auto-selected CT image slice using the C3 section auto-segmentation
(Pred_C3). Illustrative examples overlaying the skeletal muscle (SM) ground-truth segmentations (red) and predicted segmentations (yellow) on the
same ground-truth CT images (C-E) and auto-selected CT images (F, G) with different DSC values (low – 0.88, medium - 0.95, and high – 0.98
compared to the mean estimated DSC value of 0.95). The auto-selected CT image for the high-performance example was identical to the ground-
truth image and therefore provided the same segmentation as shown in panel C (H) Histogram of percentage difference of SM cross-sectional
areas between ground-truth segmentations compared to the predicted SM cross-sectional areas (DA%) corresponding to the model using ground-
truth slice location (red) or auto-selected slice location (blue).
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performance cases (Figures 3F, G) and identical results for the

high-performance case (Figure 3E). Finally, when investigating the

percentage difference in cross-sectional areas between the model-

generated and ground-truth segmentations, there was no significant

difference when using the ground-truth slice location or the auto-

selected slice location (p=0.37) (Figure 3H).
SMI measurement comparisons

We compared SMI values for test set patients calculated using

ground-truth SM segmentations with predicted SMI values

calculated using SM segmentations generated from our 2D

ResUNet models using the ground-truth slice location

(Figure 4A) or auto-selected slice location (Figure 4B). Both

model SM segmentations led to predicted SMI values that were

highly correlated to the ground-truth SMI values. The predicted

SMI values using the ground-truth slice location for males and

females both had a Pearson r=0.98 (p < 0.0001) and nonsignificant

Wilcoxon signed-rank tests (p=0.17 and p=0.43, respectively)

compared to ground-truth SMI values. Similarly, the predicted

SMI values using the auto-selected slice location for males and

females had Pearson r values of 0.97 and 0.96, respectively (both p <

0.0001) and nonsignificant Wilcoxon signed-rank tests (p=0.19 and

p=0.98, respectively) compared to the ground-truth SMI values.
Survival analysis

The results of the overall survival analysis based on sarcopenia

thresholds are shown in Figure 5. Independent of the method of

SMI calculation (GT, Pred_GT, or Pred_C3), there were significant

differences in overall survival of males between those with normal

and depleted muscle tissue (Figures 5A–C), while females exhibited

no significant differences (Figures 5D–F). Hazard ratios (95%
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confidence intervals) in males for GT, Pred_GT, and Pred_C3

were 1.82 (1.1-3.0), 1.95 (1.18-3.22), and 1.97 (1.19-3.25),

respectively. Hazard ratios (95% confidence intervals) in females

for GT, Pred_GT, and Pred_C3 were 2.76 (0.59-13.02), 3.4 (0.73-

15.83), and 3.72 (0.8-17.31), respectively.
Discussion

In this study, we utilized a multi-stage deep learning approach

to segment the C3 region of the head and neck, auto-select a single

representative slice, and auto-segment the corresponding SM. Our

approach determined slice location and segmented SM with high

accuracy when compared to ground-truth segmentations. By fully

automating this workflow, we have enabled more rapid testing and

application of sarcopenia-related clinical decision-making. To our

knowledge, this is the first study to fully automate sarcopenia

prediction based on non-abdominal HNC imaging.

Weutilizedboth2Dand3DResUNetmodels inourapproach.By

decomposing the C3 detection and SM segmentation problem into

two separate tasks, we ensure that accurate representations of patient

anatomy are identified by the models (C3 region) and subsequently

maximize performance for SM segmentation. While previous SM

auto-segmentation studies often required specific slices as model

inputs (21, 26) or utilized separate pre-processing software (23, 25),

multi-stagedeep learningmethodshave recently been adapted in this

domain as well (22, 24). Both the 2D and 3D ResUNet models that

make up our segmentation pipeline had high performance, with

mean DSC values in the test set above 0.95. Importantly, the

performance of our C3 SM segmentation model is comparable to

that of previous L3 SM deep learning segmentation models, which

also demonstrate test set DSCs of ~0.95 (21–26).Moreover, for cases

with relatively low performance, we visually confirmed that results

were reasonable, i.e., the auto-selected slice was still containedwithin

the C3 region for the 3D model, and the correct musculature was
BA

FIGURE 4

Scatter plots of the skeletal muscle index (SMI) values determined for test set patients (stratified by gender) using the ground-truth manual
segmentation (x-axis) and those determined using predicted segmentations of the 2D ResUNet (y-axis) using (A) the ground-truth CT image
slice (Pred_GT) and (B) the auto-selected CT image slice using the C3 section auto-segmentation (Pred_C3).
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segmented on the 2Dmodel. Importantly, we also showed minimal

differences in the 2D SM segmentation model regardless of how the

slice location was determined, indicating the model is robust to the

specific C3 slice location. Consistent with quantitative measures of

segmentationperformance,usingourdeep learningsegmentations to

calculate SMI demonstrated a high correlation with ground-truth

SMI independent of gender stratification.

A recent meta-analysis by Surov et al. calculated the cumulative

prevalence of sarcopenia in HNC patients at 42% (5), highlighting

the clinical need for accurate quantification of sarcopenia. Several

previous studies have demonstrated that SMI values can be used to

stratify patients into sarcopenia subgroups that are strongly

associated with prognostic outcomes (5–7). Using lumbar SMI

conversion equations previously derived by Swartz et al. (15) and

van Rijn-Dekker et al. (6) combined with validated SMI thresholds

(12), we demonstrated that calculations based on our deep learning

segmentations predict similar overall survival outcomes as

calculations based on ground-truth segmentations. Moreover, p-

values for all methods were significant for males but not females.

These results are consistent with recent literature byOlson et al. (16)

which emphasized that sarcopenia was associated with poor

survival outcomes in males but not in females. Our results

suggest that our automated methods are dependable for use in

prognostic outcome prediction.

While our study presents encouraging results towards full

automation of sarcopenia-related clinical decision-making for HNC

patients, there were some limitations. First, we only tested ourmethod

on pre-therapy images. Importantly, some studies have suggested

prognostic evidence for sarcopenia measurements based on

alternative or additional timepoints (e.g., body composition changes)

(7, 37). Therefore, further confirmatory work is needed to ensure our

methodscanbeusedaccuratelyandreproducibly for intra-therapyand
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post-therapy imaging. Additionally, when defining sarcopenia using

SMI cutoffs, we have relied on historically accepted thresholds in

literature,but several recentdevelopments instandardizingSMIvalues,

e.g., through body mass index (38), have been proposed that warrant

further exploration. We must also note that while no universal

consensus on sarcopenia definitions currently exists, European

consensus guidelines (39) emphasize the importance of evaluating

muscle performance and strength in addition to muscle mass;

therefore, by European consensus guidelines we have only

investigated “presarcopenia” in this analysis. Moreover, we have

limited our analysis to CT images as CT is the most common

imaging modality for HNC radiotherapy treatment planning.

However, the use of additional modalities for SM segmentation, i.e.,

MRI, as has been utilized in other studies (40),maywarrant additional

auto-segmentation investigations. Finally, while we believe current

model performance is satisfactory for clinical applications as

demonstrated by comparisons with ground-truth segmentations and

SMImeasures, different architectural choices or ensemble approaches

could be further explored to improve performance.
Conclusions

In summary, using open-source toolkits and public data, we

applied 3D and 2D deep learning approaches to head and neck CT

images to develop an end-to-end automated workflow for SM

segmentation at the C3 vertebral level. When evaluated on

independent test data, our fully-automated approach yielded mean

DSCs of up to 0.96 for segmenting the C3 vertebra region and 0.95 for

segmenting the corresponding SM. Cross-sectional areas and

calculated SMI values derived from our approach were highly

correlated to ground-truth (r>0.95), indicating their potential clinical
FIGURE 5

Kaplan-Meier plots showing overall survival probabilities (test and validation set combined, 390 patients) as a function of time in days for estimated
skeletal muscle (SM) index (normal vs depleted) in male (A-C) and female (D-F) patients using the ground-truth SM segmentation (GT) (A, D), auto-
segmented SM using the ground-truth slice location (Pred_GT) (B, E), and auto-segmented SM using the auto-selected slice location (Pred_C3) (C, F).
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acceptability. Moreover, our methods can be reliably combined with

validated SMI thresholds for use in prognostic stratification.Our study

is an essential first step towards fully-automated workflows for

sarcopenia-related clinical-decision making. Future studies should

consider incorporating additional imaging timepoints and modalities

for automated sarcopenia prediction.
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Purpose:Dose painting (DP) is a radiation therapy (RT) strategy for patients with

heterogeneous tumors delivering higher dose to radiation resistant regions and

less to sensitive ones, thus aiming to maximize tumor control with limited side

effects. The success of DP treatments is influenced by the spatial accuracy in

dose delivery. Adaptive RT (ART) workflows can reduce the overall geometric

dose delivery uncertainty. The purpose of this study is to dosimetrically

compare ART and non-adaptive conventional RT workflows for delivery of

DP prescriptions in the treatment of prostate cancer (PCa).

Materials and methods: We performed a planning and treatment simulation

study of four study arms. Adaptive and conventional workflows were tested in

combination with DP and Homogeneous dose. We used image data from 5

PCa patients that had been treated on the Elekta Unity MR linac; the patients

had been imaged in treatment position before each treatment fraction (7 in

total). The local radiation sensitivity from apparent diffusion coefficient maps of

15 high-risk PCa patients was modelled in a previous study. these maps were

used as input for optimization of DP plans aiming for maximization of tumor

control probability (TCP) under rectum dose constraints. A range of prostate

doses were planned for the homogeneous arms. Adaptive plans were

replanned based on the anatomy-of-the-day, whereas conventional plans

were planned using a pre-treatment image and subsequently recalculated on

the anatomy-of-the-day. The dose from 7 fractions was accumulated using

dose mapping. The endpoints studied were the TCP and dose-volume

histogram metrics for organs at risk.

Results: Accumulated DP doses (adaptive and conventional) resulted in high

TCP, between 96-99%. The largest difference between adaptive and

conventional DP was 2.6 percentage points (in favor of adaptive DP). An

analysis of the dose per fraction revealed substantial target misses for one

patient in the conventional workflow that—if systematic—could jeopardize the

TCP. Compared to homogeneous prescriptions with equal mean prostate

dose, DP resulted in slightly higher TCP.
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Conclusion: Compared to homogeneous dose, DP maintains or marginally

increases the TCP. Adaptive DP workflows could avoid target misses compared

to conventional workflows.
KEYWORDS

dose painting, dose-response modeling, adaptive radiation therapy, prostate cancer,
MR-linac
1 Introduction

When a tumor’s radiation sensitivity is heterogeneous,

radiation therapy (RT) with conventional homogeneous dose

prescriptions will not maximize the tumor’s response per

delivered radiant energy (“integral dose”). Under the

assumption that individual cancer cells respond independently

to each other, several authors have shown theoretically that

stronger curative effects per delivered dose is achieved by

prescribing higher dose to radiation resistant tumor sub-

volumes and less to sensitive ones (1, 2). With an overall

reduction of dose, it is assumed that the overall risk for side

effects can be reduced. The approach of differentiating the tumor

dose over its sub-volumes requires that pretreatment functional

imaging (3) can be used to spatially map a quantity that

correlates with radiation sensitivity. The spatial differentiation

of dose prescriptions on a per voxel basis has been referred to as

‘dose painting by numbers’ (DPBN) (4). By building upon the

work of Vogelius et al. (5), Grönlund et al. (6) developed a

failure-driven DPBN formalism incorporating clinical endpoint

data and information from functional imaging. Their formalism

was applied to prostate cancer (PCa) in a simulation study based

on imaging of the apparent diffusion coefficient (ADC) with

MRI (7) for which they used a correlation between ADC and an

assumed Gleason score (GS) (8) as an intermediate step for

scoring and modelling dose-response variations. The tumor

dose-response was then modelled based on treatment failure

frequencies versus biopsied GS from a retrospective study of

patients treated with homogeneous dose (9, 10). The feasibility

of delivering spatially differentiated DPBN plans for PCa

patients was investigated in a follow up simulation study

considering dose delivery uncertainties (11). They also

concluded that the potential of dose painting increases as the

geometric uncertainties of treatment delivery decrease.

The MR-linac (MRL) enables an adaptive workflow taking

advantage of the soft-tissue contrast of magnetic resonance

imaging (12). A key feature of the MRL is the ability to

perform plan adaptation prior to each given fraction based on

imaging of the patient in treatment position. The present work

aims to investigate if the reduced geometric uncertainties

obtained by adaptive RT (ART) can increase the potential of
02
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dose painting compared to conventional, non-adaptive,

treatment workflows. To this end, we present a treatment

simulation study where the DPBN formalism for PCa by

Grönlund et al. (7, 11) is combined with adaptive workflow

features provided by the Elekta Unity MRL system (13). For

reference we also included study arms with homogeneous dose

escalation. The more peaked dose distributions used in prostate

SBRT (14) could be interesting as reference as well. However, to

avoid bias caused by the arbitrariness of SBRT dose max

locations we preferred homogeneous dose arms as reference.

As primary endpoint we used the calculated tumor control

probability (TCP), and as secondary endpoints dose-volume

histogram (DVH) based metrics for the dose to organs at risk

(OARs). Previous studies have investigated adaptive dose

painting strategies for head and neck cancers (15), but to our

knowledge the present simulation study is the first to combine

DPBN with daily replanning for PCa.
2 Materials and methods

2.1 Overview of study design

In the present treatment simulation study, we investigate if an

adaptive RT workflow can increase the potential of dose painting

in terms of TCP and/or reduced dose to risk organs. For planning

and treatment simulation we used a research version of a

commercial treatment planning system (TPS) (RayStation

10.1.130.16, RaySearch Laboratories, Stockholm, Sweden)

together with purpose designed scripts. We simulated two

different dose prescription strategies (homogeneous dose vs.

DPBN) combined with two different treatment delivery

workflows (conventional vs. adaptive), i.e., in total four study

arms labelled: Homo-conv for homogeneous dose with

conventional delivery, Homo-adap for homogenous dose

with adaptive delivery, DPBN-conv for dose painting by

numbers with conventional delivery, and DPBN-adap for dose

painting by numbers with adaptive delivery. The DPBN-conv and

DPBN-adap plans were constrained by rectum dose-volume

criteria, but no upper limit was set on the dose to individual

voxels of the prostate, i.e. these plans had the planning aim ‘treat-
frontiersin.org
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to-tolerance’. The homogeneous dose plans were optimized

towards fixed target dose, aiming at high target coverage while

keeping the dose to the rectum as low as possible. For the

homogeneous arms we thus implemented target coverage

constraints together with rectum objectives. We optimized a set

of homogeneous plans with a range of target dose levels to study

the relationship between target dose, rectum load, and tumor

control, and to set the DPBN plans in a clinical context. Our study

design differs from that of Grönlund et al. (11) who kept the mean

dose to the prostate equal between the homogeneous and dose

painted plans; moreover, they only simulated conventional

treatment flows. The resulting TCP and rectum DVH metrics

were calculated based on the accumulated dose from simulated

full treatment courses; these metrics were used to compare the

four study arms. Table 1 summarizes the key parameters for the

study arms. A more detailed description is given in the

following sctions.
2.2 Patient data and case generation

For this project we had access to two sets of patient data

from which we constructed 75 fictive PCa cases by fusing image

data sets from the two groups. The first set consisted of images

for 5 intermediate-risk PCa patients that had been treated to 42.7

Gy with hypofractionation (6.1 Gy×7 fx) on the Elekta Unity

MRL at Akademiska sjukhuset ethical approval reference

number: 2019–03050 (Uppsala, Sweden). For each of these 5

patients (A1-A5) we had access to one reference T2w MRI

(acquired prior to treatment) and 7 fractions of T2wMRI, as well

as the corresponding structure sets including the prostate,

seminal vesicles (SV), rectum, bladder, anal canal, penile bulb,

and femoral heads. The intrapatient anatomical variations

captured in these 8 image sets allowed us to simulate a full

hypofractionated treatment course of 7 fractions. We selected 15

patients included in the PARAPLY phase 2 trial with Umeå
Frontiers in Oncology 03
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board ethical approval reference numbers 2013/154-31 and

2015/ 75-32 from the high-risk PCa patient group included in

Grönlund’s previous works (7, 11) and used the ADC maps of

their prostates. These 15 ADCmaps were registered and fused to

each of the 5 patient reference geometries from the MRL patient

group through deformable image registration (DIR), resulting in

planning reference ADCmaps for 15×5 = 75 fictive PCa cases. In

this work, a case is defined as the combination of a specific patient

anatomy and a single realistic prostate ADC (spatial) distribution

for a high-risk PCa. The thus fitted ADC maps were then

through a subsequent intrapatient DIR operation assigned to

each fraction’s geometry, thus assuming that the pre-treatment

ADC values were invariantly determining the Gleason values

over the full treatment course. All ADC distributions were

visually checked after the transformations to minimize the risk

for artifacts entering into the image data flow. In addition, the

mean and spread of the ADC distributions were evaluated both

before and after a deformation for validation. A schematic

overview of the process is shown in Figure 1.
2.3 Treatment simulation of a case

An overview of the simulation flow for the four study arms is

shown in Figure 2. The main operations include generation of a

treatment plan, modelling of the geometric uncertainties, and

finally dose accumulation over all treatment fractions for

endpoint calculation of the TCP and DVH metrics.

2.3.1 Setup of treatment plans
Optimized treatment plans were created for all four study

arms and for each of the 75 cases. All were planned for

hypofractionation (7 fractions), with 7-field IMRT (static

MLC, 70 segments in total). The gantry angles were set equal

to those clinically used for the MRL treatments. The Homo-adap

and DPBN-adap plans were optimized on the anatomy-of-the-
TABLE 1 The four study arms simulated.

Homo-conv homogeneous doseconventional delivery Homo-adap homogeneous doseadaptive delivery

Plan generation Reference plan Plan of the day

Margin 6 mm 3 mm

Target constraints D98% > 0.95Dp, D2%< 1.05Dp, Dp є{43.89,44.89,…,60.89}Gy

Rectum objectives V33Gy<30%, V38Gy<15%, V41Gy<10%

DPBN-conv dose paintingconventional delivery DPBN-adap dose paintingadaptive delivery
Plan generation Reference plan Plan of the day

Minimax optimization 6 mm 3 mm

Target goal Maximize TCP

Rectum constraints V33Gy<30%, V38Gy<15%, V41Gy<10%
For the two arms with homogeneous dose, the plans were designed based on rectum dose objectives that can be violated with a penalty in favor of covering the target with the homogeneous
prescription dose Dp, while for the dose painting by numbers plans, we used rectum dose constraints that cannot be violated.
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day, whereas the conventional Homo-conv and DPBN-conv

plans were planned on each patient’s reference geometry. The

conventional plans were subsequently recalculated on each

fraction image based on rigid CTV-to-CTV translations to
Frontiers in Oncology 04
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simulate treatments with the field setup translated based on

gold marker registrations. For the conventional plans, the

isocenter was set at the volumetric center of the prostate CTV.

For the adaptive plans, we extracted the isocenters from the
FIGURE 1

Data from two different patient groups were combined to generate images to represent 75 test cases. For the 5 patients from the group
consisting of intermediate-risk PCa patients treated on Elekta Unity MRL (i.e., ‘MRL group’), we had 1 reference geometry and 7 fraction
geometries. From the second group, we had ADC maps of 15 high-risk PCa patients. The bottom part of the figure shows the process of
deforming the ADC maps for patients of the high-risk PCa group to the reference geometry for a patient from the MRL group. The (deformed)
reference ADC maps were subsequently deformed to fit the 7 fraction geometries. Patients in the MRL group are labelled A1-A5.
FIGURE 2

Process chart for treatment simulation of a patient case showing the key differences between the four simulated study arms. The CTV to PTV
margins for the two treatment workflows were 3 mm vs 6 mm, respectively. Conventional plans (Homo-conv, DPBN-conv) were optimized
using the reference geometry and were subsequently recalculated on the anatomy-of-the-day. Adaptive plans (Homo-adap, DPBN-adap) were
optimized using the anatomy-of-the-day. The 7 fraction doses were exported and finally accumulated on the reference geometry to facilitate
evaluation of primary TCP- and secondary DVH endpoints.
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clinical MRL plans as the fixed isocenter cannot in general be

placed in the target volume. Dose calculations were performed

with Monte Carlo (1% uncertainty, 3 mm voxel size).

Appropriate tissue compositions and densities were assigned

to the body and bony anatomy to facilitate the calculation of

dose. As the patient couch of Elekta Unity is highly attenuating,

the bed was included in the dose calculations for the MRL

workflow, and the angle intervals with the highest change in

attenuation were avoided as per clinical practice. Magnetic field

effects modelled as described by Malkov and Rogers (16) had

been added to the Monte Carlo engine of the TPS (17).

2.3.2 Modelling of the geometric uncertainties
A major advantage of adaptive workflows is the ability to

compensate at plan generation for interfraction organ

deformations. The increased accuracy for adaptive workflow

patients has two benefits: 1) the margins added to form the

planning target volume (PTV) for generation of homogeneous

plans can be reduced to lower the risk of inducing normal tissue

toxicities, and 2) it has been shown that larger TCP increases can

be obtained through dose painting when geometric dose delivery

uncertainties are small (11).

We divided the overall geometric uncertainty of the two

treatment workflows into subcomponents and assigned to each

an estimate of the standard deviation (SD) based on published

data. For both workflows, these subcomponents included the

residual positioning errors resulting from intrafraction motion

(SD 1 mm) (18), interobserver target delineation variations (SD

1 mm) (19), and an estimate of the finite precision of the

treatment machine (1 mm). The residual effect of interfraction

prostate deformation was only considered for the conventional

workflow for which it was assigned an SD of 1 mm (20); in the

adaptive workflow, prostate deformation was taken into account

via redelineation of the prostate on the anatomy-of-the-day. For

the conventional workflows, we also added the combined effect

of image registration- and table translation uncertainties, which

was estimated to have an SD of 1 mm (19). The SD of different

components were added in quadrature and used as input to

margin calculations based on van Herk’s margin formula (21) in

which systematic uncertainties (preparation errors) are denoted

by S and random uncertainties (daily patient setup variations)

are denoted by sigma Since we planned for hypofractionation (7

fractions), we used van Herk’s formula

M  Seff ,seffð Þ  = 2:5  Seff + 0:7seff (1)

with effective uncertainty components (22, 23), adjusted to

consider the finite number of treatment fractions N:

S2
eff = S2 +

s 2

N
,                s 2

eff =  s 2 1 −
1
N

� �
:   (2)

The resulting (isotropic) prostate margins calculated with

equations (1, 2) for the adaptive and conventional workflows
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were 3 mm and 6 mm, respectively. For the SV, we used the

lower (LR: 5, AP: 7, SI: 7 mm) and upper limit (LR: 6, AP: 9, SI: 9

mm) of the anisotropic margins specified in the ESTRO

reference (20) for the adaptive and conventional workflows,

respectively. Homogeneous plans were optimized with standard

CTV-to-PTV margins whereas DPBN plans were created using

minimax optimization (24) with “robustness distances” set to the

same values as the CTV-to-PTV margins; the minimax

optimizer generates a set of treatment scenarios with patient

setup displacements along three axes, and aims to find a plan

which is optimal for the worst case of these scenarios (i.e., a plan

which is robust to geometric uncertainties). For each

objective, the software allows it to be set as ‘robust’ or not, i.e.

evaluated for all the scenarios. We selected only the TCP

objective as robust.

2.3.3 Homogeneous dose prescriptions
We were interested to see whether DPBN, limited by normal

tissue constraints, would be superior to homogeneous dose

escalation. Dose escalation to the prostate is in general limited

by gastrointestinal (GI) toxicities (e.g. diarrhea, rectal bleeding,

proctitis), genitourinary (GU) toxicities (e.g. dysuria, hematuria,

obstruction) and erectile dysfunction (25). A set of

homogeneous plans were generated with prostate prescription

doses ranging from 43.89 Gy up to 60.89 Gy in increments of 1

Gy, where 43.89 Gy (EQD2 = 91.6 Gy1.93) corresponds to the

dose level used in the previous works of Grönlund et al. (7, 11).

In total, 7x18 homogeneous adaptive plans and 18 homogeneous

conventional plans were optimized for each of the 5 patient

anatomies. The 7x18+18 homogeneous plans were assigned to

each of the 15 cases corresponding to the particular patient

anatomy. The homogeneous plans per patient anatomy could be

reused because no ADC information was used for planning of

the homogeneous dose arms, Homo-conv and Homo-adap. For

target dose uniformity, we used dose-volume constraints

requiring that 98% of the target volume receives at least 95%

of the prescribed dose, and that at most 2% of the volume

receives doses larger than 105% of the prescribed dose.

2.3.4 Dose painting prescriptions
For the DPBN plans, the Grönlund et al. (11) TCP

formalism (summarized briefly in Appendix A) was used to

maximize the TCP subject to rectum constraints. The ADC

maps were downsampled to the resolution of the dose grid, and

subsequently transformed to Gleason score probabilities through

a ‘low precision’ ADC-to-Gleason mapping constructed by

Grönlund et al. (7, 11).

2.3.5 Dose to risk organs
Dose to the OARs other than the rectum could be held below

the clinically set tolerance levels (femoral heads: D2%<30 Gy,

bladder: Dmean<34 Gy) using a single ‘dose falloff’ objective
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(effectively aiming for a tight dose gradient around the target

volume). For the rectum, we implemented the three volume-at-

dose (VaD) metrics (V33Gy < 30%, V38Gy < 15%, V41Gy < 10%,

where VD is the volume of the organ receiving doses larger than

D) as objectives during homogeneous plan generation, and as

constraints during DPBN plan generation. Rectum objectives

were used in the homogeneous arms since rectum constraints

could potentially conflict with the imposed target coverage

constraints. We used these rectum DVH metrics since they are

clinically implemented for plan evaluation at our clinic,

Akademiska sjukhuset (Uppsala, Sweden). For all study arms,

we complemented the clinically used evaluation criteria with D2%

<42.7 Gy (soft) objectives to limit high doses in the rectum,

bladder and remaining normal tissues whenever possible (target

goals were prioritized).

2.3.6 Evaluation of TCP and DVH endpoints
based on accumulated dose from a full
treatment course

For each case and study arm, we evaluated the TCP and

rectum DVH endpoints based on the accumulated dose from 7

fractions. Biological dose (EQD2) was accumulated to calculate

TCP according to Grönlund’s formalism described in Appendix

A. To be consistent with Grönlund’s earlier work we used an a/b
ratio of 1.93 Gy to calculate EQD2 (7). As input to the TCP

calculations, we used the accumulated EQD2, the down sampled

reference ADC map, and assigned to the full vesicle volume a

Gleason score of 6, which is the lowest risk category in the TCP

model (this assumption was made since we did not have any

ADC information for the SV). The vesicle volume was included

in the TCP formalism to be able to evaluate the effect of potential

SV target loss (for all study arms, the SVs were prescribed a near-

min dose of 43.89 Gy corresponding to an SV control probability

larger than 99%). Physical dose was accumulated to generate

cumulative DVHs. Out of the OARs, we decided to mainly focus

on the rectum since it is the most dose limiting organ for PCa.

2.3.7 Deformable image registrations for
mapping fraction doses to a common
reference frame

For each case the dose was accumulated through mapping of

all fraction doses to the patient’s reference frame via the geometric

transformation determined by a DIR. The result of the DIR

consists of a rigid transformation matrix describing rotations

and translations and a displacement vector field (DVF)

describing the deformations. The ‘hybrid DIR’ option in the

TPS was used to calculate DIRs between the reference- and each

of the 7 fraction geometries. ‘Hybrid DIR’ is based on the

ANACONDA algorithm (26) and employs three non-linear

terms: an image similarity term, a grid regularization term, and

a term considering the similarity between structures delineated in

the two geometries. The prostate CTV, SV, rectum, and bladder
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were selected as ‘controlling ROIs’ (RayStation term for

registration guiding structures) with weight 0.8.

The accumulated dose accuracy is sensitive to uncertainties

in the DIR (27) and therefore it is important to assess the

registration quality. To this end, we calculated the DICE score

(DSC) (28) and Hausdorff distance (29) for the prostate CTV,

SV, rectum, and bladder. Both measures quantify the

‘similarity’ (i.e., agreement) between structures defined in

two different reference frames. A dosimetric evaluation was

also performed to assess the quality of the registrations for the

purpose of dose accumulation. This was done by comparing

(per fraction) rectum VaD evaluated before and after

dose mapping.
3 Results

In the present work we sought to investigate the potential

benefit of plan adaptation for prescriptions based on DPBN. The

study arms based on homogeneous prescriptions were used for

reference to set the dose painting results in a clinical context. In

Figures 3, (4) reference plans—showcasing the different study

arms—for 1 of the 75 patient cases are presented together with

the ADC map used to generate the particular DPBN plans.

Compared to the homogeneous dose plans, the DPBN plans

have distinct high dose regions that follow a low ADC structure.

According to the model, low ADC structures are indicative of

radiation resistant foci.

We begin the presentation of the results with a section

comparing the overall difference in TCP- and rectum DVH

endpoints calculated for the conventional- and adaptive dose

painting arms, DPBN-conv and DPBN-adap. In the following

section, these results are then grouped according to patient

anatomy and compared against the results from homogeneous

dose escalation in Homo-conv and Homo-adap. The results

presented in the first two sections were calculated based on the

accumulated dose from a full treatment course, and it is evident

that rectum constraints were violated despite our intention to

‘treat-to-tolerance’. Therefore, we break down the endpoint

calculation per fraction in the third section to eliminate the

role of dose mapping uncertainties that might confound

potential differences between the conventional and adaptive

workflows. In the fourth section, we then illustrate two

mechanisms for the apparent rectum constraint violations.

One of these mechanisms is inherent to the conventional

arms, for which the use of non-representative rectum volumes

can explain the observed constraint violations; the second

mechanism deals with the complex task of accumulating dose

to non-rigid organs that experience substantial volume changes

over the treatment course. In the last section, we present the

similarity measures calculated to analyze the quality of the

deformable image registrations.
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FIGURE 3

In the top 2x2 panels, transverse 2D-slices of 4 reference (i.e., not dose accumulated) plans are presented—showcasing the 4 respective study
arms—for 1 of the 75 patient cases. The lower left panel shows the corresponding slice of the ADC map used to generate the DPBN plans. The
lower right panel shows the prostate voxel dose (percentage deviation of 56 Gy) as a function of ADC (percentage deviation of ADCmean=1046
10-6mm2s-1) for the DPBN-adap reference plan.
FIGURE 4

Rectum VaD as a function mean prostate dose. Each row corresponds to one of the five patient anatomies A1-A5 with A1 uppermost. The three
columns correspond to V33Gy, V38Gy, V41Gy, respectively. Rectum constraints are indicated by dotted lines (V33Gy<30%, V38Gy<15%, V41Gy<10%).
Homo-conv: red solid line, Homo-adap: green solid line, DPBN-conv: squares, DPBN-adap: circles. The squares/circles correspond to the 15
cases per anatomy and are color coded according to their mean Gleason score, as estimated through an ADC-to-Gleason-score probability
mapping (the colormap scale is shown in Figure 5).
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3.1 Conventional versus adaptive
dose painting

Using the accumulated dose from 7 fractions, the

conventionally and adaptively dose painted arms resulted in

high tumor control probability for all cases (TCP: 96-99%). The

difference per case between the two workflows was small; the

mean difference was 0.5 percentage points, and the maximum

difference was 2.6 percentage points. The adaptively dose

painted arm resulted, on average, in lower rectal doses.

However, analyzed per case, both negative and positive

differences in rectum DVH metrics were observed (e.g., the

difference in V41Gy ranged between -7.9 and 4.5 percentage

points; a negative difference implies that the adaptive workflow

resulted in lower rectum dose). Table 2 summarizes the

condensed DPBN results.
3.2 Homogeneous dose escalation
versus dose painting to tolerance

Rectal doses varied slowly as a function of mean prostate dose

in the homogeneously dose escalated arms. In other words, the

mean prostate dose could be escalated without substantially

increasing the rectum load (in terms of the clinically used

evaluation criteria). Figure 4 shows the rectal doses as a function

of mean prostate dose for all four study arms, presented separately

for the five patient anatomies A1-A5. The DPBN arms resulted in

equal or lower rectal doses for a givenmean prostate dose compared

to the homogeneous arms. For anatomies A3-A5, the DPBN-adap

arm was successful in ‘treating-to-tolerance’, since at least one of the

three rectum VaD metrics lies precisely on the tolerance limit and
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the other VaD metrics lie on or below the set tolerance limits. For

anatomy A1, the rectum VaD metrics for the 15 DPBN-adap cases

lie well below all three tolerance limits, and we thus failed to ‘treat-

to-tolerance’. On the other end, all rectum constraints were violated

for the 15 DPBN-adap cases belonging to anatomy A2. Note,

however, that these results were based on the accumulated dose

from 7 fractions; we further explore these results in the following

sections. A further interesting observation from Figure 4 is that the

conventionally planned arms resulted in lower rectal doses

compared to the adaptively planned arms for cases belonging to

A3 and A4. To summarize, the outcome with regards to rectal doses

from adaptive and conventional workflows depends to a large

extent on the particular patient anatomy; moreover, dose painting

is at least non-inferior to homogeneous dose and has the potential

to decrease the rectum load. We did not prioritize near-maximum

doses (D2%) for OARs in the optimization since we adopted the

clinically used evaluation OAR criteria (30); however, condensed

D2% results for the four study arms are presented in Table 3.

The dose-response curves (i.e., the TCP as a function of mean

prostate dose) for the homogeneously dose escalated arms are

presented separately for the five patient anatomies A1-A5 in

Figure 5 together with the resulting TCP from conventional and

adaptive dose painting. Note that 15 dose-response curves were

calculated for each anatomy using the same homogeneous dose but

with different ADC maps; the resulting TCP is a function of dose,

ADC, and implicitly a function of tumor volume (since the

calculation is a product over the prostate voxels). The volume

dependence explains why the dose-response curves are different for

the five patient anatomies even though the same set of 15 ADC

distributions were used. In the TCP model used, low ADC values

indicate a high probability for high Gleason scores, and thus a worse

prognosis. As is evident from Figure 5, the DPBN arms resulted in
TABLE 3 Comparison of near-maximum doses (D2%) for the four study arms.

Homo-conv DPBN-conv DPBN-adap Homo-adap

TCP (%) 97.9 [95.3, 99.5] 98.6 [96.4, 99.3] 99.1 [98.7, 99.4] 98.3 [95.3, 99.5]

Prostate Dmean (Gy) 55 [54, 56] 56 [52, 60] 56 [51, 60] 56 [55, 57]

Prostate D2% (Gy) 58 [57, 59] 61 [56, 65] 61 [56, 64] 58 [56, 59]

Rectum D2% (Gy) 50 [47, 53] 49 [45, 55] 50 [46, 55] 51 [49, 54]

Bladder D2% (Gy) 50 [47, 55] 46 [41, 59] 45 [41, 52] 50 [47, 53]
In this comparison, a single dose level per anatomy was selected for the homogeneous arms, corresponding to the mean DPBN dose. Data is presented as mean [min, max].
TABLE 2 Comparison of the calculated endpoints for DPBN-conv and DPBN-adap.

DPBN-conv DPBN-adap D : adap-conv

TCP (%) 98.6 [96.4, 99.3] 99.1 [98.7, 99.4] 0.5 [-0.3, 2.6]

Rectum V33Gy (%) 26 [17, 39] 24 [17, 34] -1.7 [-13.8, 9.4]

Rectum V38Gy (%) 15 [8, 24] 14 [9, 21] -1.2 [-11.1, 6.1]

Rectum V41Gy (%) 11 [5, 17] 10 [6, 15] -0.9 [-7.9, 4.5]
The last column (D) shows the difference in endpoints evaluated per case. Data are presented as mean [min, max].
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mean prostate doses located in the flat region of the dose-response

curves. In this region there are diminishing marginal returns for

additional increases in dose (i.e., the dose-response gradient is

small); this explains why there is a spread in DPBN mean

prostate doses resulting in similar TCP (approximately 99%) for

all cases; the TPS optimizer pushed high Gleason score cases

towards higher doses, since the marginal return is greater for

these cases.

In Figure 5, the cases are color coded according to their

mean Gleason score, as determined through an ADC-to-Gleason

score mapping. The homogeneously dose escalated arms can be

compared against the DPBN arms; DPBN is superior if the TCP

for the corresponding case lies above the (homogeneous) dose-

response curve at equal mean dose. For most cases, DPBN-adap

and DPBN-conv was superior to homogeneous dose, except for

some cases belonging to anatomy A4 for which DPBN-conv

resulted in lower TCP. DPBN-adap resulted in better or similar

TCP compared to DPBN-conv, with the largest difference

observed for cases belonging to anatomy A4.
3.3 Breakdown of endpoint calculations
per treatment fraction for the
DPBN arms

The endpoints calculated based on accumulated dose from 7

fractions resulted in several rectum constraint violations even

though we imposed hard constraints in the optimization. This
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was not expected for the DPBN-adap arm; the failure to meet

these constraints was attributed to the dose mapping procedure.

To eliminate any uncertainty associated with dose mapping, we

calculated TCP and rectum DVH endpoints for each treatment

fraction. Since the TCP model and DVH metrics are based on

the total dose from 7 fractions, we scaled the fraction doses

accordingly prior to the endpoint calculations. In Figure 6, the

difference between DPBN-adap and DPBN-conv in TCP and

rectum V41Gy is shown for all cases and treatment fractions; the

results have been grouped according to anatomy A1-A5 (for

each anatomy there are 15x7 = 105 data points). The analysis

reveals a marked difference between DPBN-adap and DPBN-

conv for some fractions belonging to anatomy A3, for which the

difference in fraction specific TCP was larger than 95 percentage

points. For most cases and treatment fractions, the difference in

TCP was small. It appears that the difference in rectum load

between the two workflows depends to a large extent on

patient anatomy.

For cases belonging to A3, for which the adaptive workflow

resulted in higher rectum load, the increase in rectum load

resulted from adaptive avoidance of target misses to maintain

the high TCP of ~99%. A target miss in the conventional workflow

is illustrated in Figure 7. For the particular case illustrated, the

nominal reference TCP was 98.6%, whereas the TCP for fraction 5

was 2.5% (the corresponding DPBN-adap fraction resulted in 99%

TCP). The target misses suggest that the conventional margins

used were insufficient to account for the interfraction prostate

rotations- and deformations of anatomy A3.
FIGURE 5

TCP as a function of mean prostate dose. Each panel corresponds to one of five patient anatomies (A1-A5). For each anatomy there are 15
cases corresponding to different prostate ADC maps. The cases are color coded according to their mean Gleason score, as estimated through
an ADC-to-Gleason-score probability mapping. For a given mean prostate dose, DPBN is superior to homogeneous dose if the associated
marker lies above the solid line (e.g., for cases belonging to A4, DPBN-conv markers are observed below the corresponding solid lines).
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3.4 Two mechanisms explaining rectum
constraint violations in the DPBN arms

Since hard rectum constraints were violated for several cases

despite the intention to treat-to-tolerance, we wanted to explain
Frontiers in Oncology 10
60
how this came about, and at the same time verify that no

mistakes had entered the simulation pipeline. To this end, we

looked at two separate operations in the pipeline: 1) recalculation

of DPBN-conv plans, and 2) dose mapping of DPBN-adap plans

to the reference geometry. As our analysis reveals, the optimized
FIGURE 6

Comparison of rectum V41Gy and TCP between DPBN-adap and DPBN-conv. The results have been grouped according to patient anatomy A1-
A5. The right and left panel contain the same data but have different horizontal scales. For anatomies A3 and A4 the difference in TCP between
the two workflows was relatively large. DPBN-adap resulted in higher rectum dose for A3 and A4, but ‘used’ the extra rectum load to avoid
target misses. DV41Gy=(V41Gy)adap-(V41Gy)conv, DfractionTCP=fractionTCPadap-fractionTCPconv, pp = percentage points.
FIGURE 7

The upper panels show an obvious target miss in the DPBN-conv arm for patient anatomy A3 in fraction 5. The fraction specific CTV-5 is clearly
outside of the conventional PTV-conv. The fraction specific TCP, calculated as if the fraction in question was delivered for an entire treatment,
was 2.5% compared to 98.6% in the reference plan (DPBN-conv)R. The lower panels show the biological dose (EQD2) that was planned (DPBN-
conv)R (lower left panel) and delivered in fraction 5 (DPBN-conv)5 (lower right panel) to each voxel of the prostate, as a function of predicted
Gleason score. The corresponding DPBN-adap plan resulted in 99% TCP.
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treatment plans in fact met the imposed rectum constraints

(illustrated in Figures 8 and 9, respectively), but the two

operations independently altered the planned rectum DVH

metrics. In Figure 11, the relationship between rectal volume

changes, and the change in rectum DVH metrics is illustrated.

The recalculation operation—which simulates the delivery of a

conventional reference plan on the anatomy-of-the-day—makes

apparent the complexity and limitations in planning and

evaluating treatments using dose-volume metrics for organs

that experience significant volume changes during the course

of therapy; for consistency between planned and delivered dose,

the reference geometry must be representative of the whole

treatment course.

The dose mapping operation was implemented to be able to

accumulate dose at the voxel level, and ultimately to evaluate the

total dose from a full (simulated) treatment course. By

comparing each fraction dose before and after dose mapping,

we found that the rectum DVH metrics were not robust to such

transformations (Figure 9). Accumulation of dose to organs that

experience significant volume changes during the course of

therapy is a difficult problem that needs attention.

3.4.1 Evaluation of deformable image
registrations using Dice score and
Hausdorff distance

Dose accumulation using DIR may lead to inaccurate

dosimetric evaluation of treatments due to geometric errors in

the DIR. Therefore, the DIRs were checked using two common

geometrical properties, the DSC and Hausdorff distance.

Figure 10 shows the level of agreement for the prostate CTV

and rectum structures for each treatment fraction and patient

anatomy. The relatively low DSC values and large Hausdorff

distances of the rectum for patient A2 can help explain why the

change in V41Gy (as illustrated in Figure 11) after dose mapping
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was relatively large for cases belonging to patient A2 (for which

the rectum size doubled in one fraction compared to reference).

An explanation for the fact that contours do not agree perfectly

may be the use of multiple, potentially conflicting, guiding

structures, and the fact that we used a combination of guiding

structures and image information. It is important to note that,

even in the case of perfect registration of structures (high DSC

and low Hausdorff distance), the change in rectum DVHmetrics

may still be substantial.
4 Discussion

A motivation behind our study were the results from the

simulation study by Grönlund et al. (11) showing that there is a

relationship between geometric dose delivery uncertainties and

the potential TCP gains from dose painting. Adaptive RT is one

possible strategy to reduce those uncertainties. Given the

simulations with daily replanning in the present study, only

small differences in terms of TCP were observed between

adaptive and conventional dose painting. However, a notable

difference was observed for some treatment fractions where the

target was partially missed in the conventional workflow. Such

target misses—especially if they are systematic—could very well

compromise tumor control and ultimately the outcome for the

patient motivating the use of positional feedback and

adaptive measures.

TCP gains from dose escalation (in the studied range of 44 Gy

to 60 Gy) were substantially larger compared to the TCP gains

observed from dose painting alone; the flatness of the dose-response

curve at high target doses yields diminishing returns for the

additional cost of redistributing the dose using local radiation

sensitivity information. The demonstrated gains are likely

clinically insignificant but compared to homogeneous dose
FIGURE 8

Rectum VaD for the conventional dose painted reference plans (DPBN-conv)REFERENCE and the recalculated fraction doses DPBN-conv. Rectum
constrains (indicated by the vertical dotted lines) were violated for the evaluated fraction doses, even though the constraints were met in the
nominal reference plans.
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escalation, dose painting prescriptions have the potential to decrease

dose to the rectum while achieving similar or slightly larger

probability for tumor control. Similar advances are likely also for

prostate SBRT where narrow margins and steeper dose gradients

are adopted to spare the rectum, while peaked dose distributions

(higher dose maximum inside the PTV) are likely to increase TCP.

However, the positions of dose maxima do not—in general—

coincide with radiation resistant foci.

A different approach to lowering rectal doses (and reducing

target motion) is to utilize a displacement device (e.g., hydrogel)

to physically increase the space between the prostate and rectum

(31, 32) but we have not considered such means in our planning

study. The rectum DVH metrics used in this work were adapted
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from a clinical protocol with a homogeneous prescription dose

of 42.7 Gy. The validity in using these metrics during dose

escalation can be questioned. Moreover, the use of relative

rectum VaD, as inherited from the current clinical practice,

could potentially contribute to suboptimal results for the

adaptive arms; an increased rectum volume a particular day

(compared to reference) would allow for an increased absolute

rectum volume receiving dose that day. On the contrary,

conventional planning is oblivious to future gastrointestinal

states. In other words, information about potential

interfraction rectum deformations is unknown at the time of

conventional planning, potentially resulting in lower-than-

planned rectum doses and target misses. In our fraction-by-
FIGURE 9

Rectum VaD for the adaptive dose painted fraction doses DPBN-adap and the corresponding mapped fraction doses (DPBN-adap)MAPPED.
Rectum constrains (indicated by the vertical dotted lines) were violated after dose mapping.
FIGURE 10

Relative change in rectum V41Gy as a function of relative change in rectum volume (compared to the reference rectum volume delineated on
the pre-treatment image). The 75 cases have been grouped according to anatomy A1-A5. The left panel shows the effect of recalculating the
conventional dose painted reference plans on each fraction geometry, whereas the right panel shows the effect of mapping the adaptive dose
painted fraction doses to the reference geometry.
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fraction analysis we indeed observed such results: for cases

belonging to two of the patient anatomies, adaptive dose

painting resulted in higher rectum doses compared to

conventional dose painting; for these cases the extra rectum

load was balanced by a relatively high TCP increase due to

adaptive avoidance of target misses. Additionally, for some cases,

substantial loss of SV target coverage was observed in the

conventional workflow, whereas in the adaptive workflow loss

of target coverage could be avoided. For patient anatomy A5, the

SV target coverage (V95%) was as low as 53% in one fraction in

the homogeneous conventional workflow (prostate prescription

dose 44 Gy), whereas the adaptive workflow resulted in an SV

target coverage of V95%=98%. The corresponding control

probabilities of the vesicle volume were 85% and 100% for the

conventional and adaptive workflow, respectively.

The combination of using ADC maps from one set of

patients and applying them to a second set of patients enabled

the current study (to our knowledge, this approach has not been

used by others). However, the mapping of ADC values from one

patient using DIR to a second patient results in a new ADC map

due to the different shapes and sizes of the CTVs. The geometric

accuracy of the DIRs was checked but the deformed ADC maps

used for optimization of DPBN plans were hence not from actual

patients. Nevertheless, the resulting ADC maps were visually

checked, and the ADC histograms were compared before and

after deformation (to ensure that the distributions of ADC

values were consistent). We thus conclude that the spatial

ADC distributions were realistic enough to investigate the

potential of different dose painting strategies. The accuracy

and precision with which functional imaging can be used to

map out radiation resistant foci will influence the potential of

DPBN strategies to increase TCP (11); the model used in this
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work has inherent limitations related to the uncertainty range of

the ADC-to-Gleason mapping function. Further studies,

exploring the potential of DPBN, should be conducted in

parallel with technological advances in functional imaging and

emerging knowledge on potential biomarkers for identifying

radiation resistant foci.

The use of relative rectum volumes may confound the

relationship between rectal wall doses and induced rectal

toxicities. Future studies should be set up to improve the

limitations related to the use of relative volumes; perhaps, in

the era of daily replanning, one should focus on the matter that

matters (e.g., the rectal wall) instead of scoring dose to feces.

Future studies should also investigate the potential benefit of

dose painting at different target dose levels along the dose-

response curve since at low mean doses—where the gradient of

the dose-response curve is higher—larger increases in TCP can

in theory be achieved with DPBN (7).
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Appendix A

Grönlund's TCP formalism

We applied the failure-driven TCP model for PCa derived by

Grönlund et al. (7, 11). They defined TCP in terms of

recurrence-free survival at five years using GS as a single

variable for dose-response differentiation. Clinical endpoint

and GS data from a patient cohort treated with photons (2 Gy

x 25) and protons (5 Gy x 4) were used to derive TCP model

parameter values. The total dose was converted to EQD2

assuming an alpha/beta ratio of 1.93 Gy. GS is related to the

risk of recurrence (33) and is determined through histological

assessment of prostate biopsies sampled prior to treatment as per

routine clinical practice. GS is used as a prognostic tool together

with the TNM system and prostate-specific antigen (PSA)

concentration in blood to classify the cancer into low-,

intermediate, or high-risk PCa. For a full derivation of the

model, see Grönlund’s previous work (7). In brief, the total

control probability is given by a product of voxel control

probabilities according to

TCP =
Y

j VCPj, j  ϵ  CTV ;

i. e. it is assumed that potential bystander effects can be

neglected. To establish a direct link between image intensities

and TCP they used published correlations between ADC and GS

to construct a mapping from ADC to Gleason probabilities

according to

p GkjADC) =
p ADCjGkð Þ

omp ADCjGmð Þ
�
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here p(ADC|Gk) are lognormal distributions of ADC values

for each Gleason score category.Gk The 25th and 75th

percentiles of the lognormal distributions were set to

correspond to the uncertainty ranges found in the work by

Turkbey et al. (8). The voxel control probability TCPj of the j:th

voxel is given by a geometric average

VCPj dj, ADC
� �

=
Y
k

R(dj,Gk)
p GkjADC)ð Þvk

 

ver a set of dose-response functions R(dj, Gk)defined as

R dj,Gk

� �
= 1=(1 +

D50 Gkð Þ  
dj

)4g50

,here dj is the dose delivered to voxel j, vj is the fractional

volume of the voxel within the prostate contour, D50(Gk) is the

dose level corresponding to 50% control probability, and g50 is
the normalized dose-response gradient (assumed to be

independent of GS) evaluated at D50. These parameter values

were derived based on the assumption of a linear relationship

between GS and voxel control probability at the homogeneous

dose level prescribed to the patient cohort under study (EQD2 =

91.6 Gy1.93). Normal tissue voxels were treated as Gleason

score 6.

In contrast to previous studies by Grönlund et al. (7, 11) we

included the seminal vesicles in the TCP model to be able to

include the effects of potential loss of target coverage. In previous

studies, the seminal vesicles were simply assumed to be

controlled by the dose level they received (i.e. TCPves=100%).

In the present work, we treated the full SV volume as GS 6 by

assigning to each SV voxel the highest possible ADC value in the

ADC-to-Gleason mapping range.
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Purpose: To develop a metal artifact reduction (MAR) algorithm and eliminate

the adverse effects of metal artifacts on imaging diagnosis and radiotherapy

dose calculations.

Methods: Cycle-consistent adversarial network (CycleGAN) was used to generate

synthetic CT (sCT) images frommegavoltage cone beamCT (MVCBCT) images. In

this study, there were 140 head cases with paired CT and MVCBCT images, from

which 97 metal-free cases were used for training. Based on the trained model,

metal-free sCT (sCT_MF) images and metal-containing sCT (sCT_M) images were

generated from the MVCBCT images of 29 metal-free cases and 14 metal cases,

respectively. Then, the sCT_MF and sCT_M images were quantitatively evaluated

for imaging and dosimetry accuracy.

Results: The structural similarity (SSIM) index of the sCT_MF and metal-free CT

(CT_MF) images were 0.9484, and the peak signal-to-noise ratio (PSNR) was

31.4 dB. Compared with the CT images, the sCT_MF images had similar relative

electron density (RED) and dose distribution, and their gamma pass rate (1 mm/

1%) reached 97.99% ± 1.14%. The sCT_M images had high tissue resolution with

no metal artifacts, and the RED distribution accuracy in the range of 1.003 to

1.056 was improved significantly. The RED and dose corrections were most

significant for the planning target volume (PTV), mandible and oral cavity. The

maximum correction of Dmean and D50 for the oral cavity reached 90 cGy.

Conclusions: Accurate sCT_M imageswere generated fromMVCBCT images based

on CycleGAN, which eliminated the metal artifacts in clinical images completely and

corrected the RED and dose distributions accurately for clinical application.
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tomography, MVCBCT, sCT CycleGAN, metal artifact reduction, radiotherapy dosimetry
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Introduction

Metal artifacts are a common problem in kilovoltage CT

images and radiation therapy. In the process of CT scanning,

when X-rays pass through metal implants, such as metal

dentures and metal hip joints in patients, erroneous X-ray

projections will be produced due to the combined effects of

beam hardening, scattering, photon starvation, noise

enhancement, volume effects and other factors (1, 2), resulting

in bright and dark stripes and radial areas in the reconstructed

images; these are known as metal artifacts. Metal artifacts not

only affect the diagnosis and the accurate delineations of the

tumour target volume and normal tissues but also introduce

dose calculation errors in radiation therapy by reducing the

accuracy of relative electron densities (RED), which endanger

the efficacy and safety of radiotherapy for patients (3–5).

Traditional metal artifact reduction (MAR) algorithms

mainly include the interpolation method and iterative method

(6–8), which often introduce new artifacts into images, resulting

in image distortion (9–12). In recent years, deep learning

technology has developed rapidly and has been widely applied

in the field of image processing; it has provided new ideas for

MAR in CT images. Yu et al. combined the traditional MAR

method with a convolutional neural network (CNN) and

achieved a higher accuracy than the traditional MAR method

(13). Zhang et al. corrected metal artifacts in cervical CT images

by using a CNN-based method (14). Zhu et al. trained U-Net

based on a digital anthropomorphic head phantom and verified

its MAR effect through PMMA phantoms containing aluminium

rods and copper rods (15). Wang et al. developed an

interpretable network model named InDuDoNet by combining

sinogram and image data and embedding imaging geometric

constraints in training (16). Yu et al. also designed a new deep

learning framework by combining the advantages of the

sinogram and image learning to obtain MAR images through

multiple filtered back-projection reconstruction of the

sinogram (17).

All the above studies are supervised methods that require

paired CT images with the same anatomical structure, one with

and the other without metal artifacts, for model training.

However, it is clinically impractical to obtain such pairs of

images. To obtain paired data, some studies used simulated

phantoms for model training (15), and other studies artificially

generated metal artifacts on metal-free CT images through

theoretical calculations (13, 14, 16, 17). A simulated phantom

is very different from the real human body, and the artificially

generated metal artifacts cannot accurately simulate the real

physical mechanisms of CT imaging. Therefore, the above two

methods have poor generalization ability to real patient data

(13–17). To solve the problem of the lack of paired training data,

Liao et al. proposed an unsupervised network model named

ADN, which used unpaired data for training (18), and its
Frontiers in Oncology 02
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generalization ability was significantly improved compared to

the supervised models that used synthetic data. Nevertheless,

metal artifacts on CT images of real patients are still clearly

residual and cannot be completely eliminated

This study aims to completely eliminate metal artifacts in CT

images based on paired data from real patients. Compared with

CT images, MVCBCT images have higher noise and lower soft

tissue resolution, but the higher X-ray energy greatly reduces the

photon starvation and radiation hardening effects, making the

metal artifacts almost negligible, and this feature can be applied

to MAR in CT images (19–21). In this work, we proposed a

novel MAR approach using paired MVCBCT images and

planning CT images. First, paired metal-free MVCBCT

(MV_MF) images and metal-free planning CT (CT_MF)

images were used for training the cycle-consistent adversarial

network (CycleGAN) model. Then, synthetic metal-free CT

(sCT_MF) images were generated from MV_MF images in the

test dataset and compared with CT_MF images in terms of

image quality, the RED distributions of organs at risk (OARs)

and the dose calculation in radiation therapy. Finally, metal cases

were used to evaluate the effect of MAR. The synthetic metal-

containing CT (sCT_M) images were generated from the metal-

containing MVCBCT (MV_M) images and compared with

metal-containing CT (CT_M) images. The comparison of

sCT_M and CT_M images was implemented with imaging

and dosimetry to evaluate the radiation dosimetry

improvement in the generated sCT_M images.
Materials and methods

As illustrated in Figure 1, the process of this research was

mainly divided into four stages. First, the CT images and

MVCBCT images of the same patient were elastically

registered in the registration stage. For metal-free images in

the training set, CT numbers range from -1000 HU to 3000 HU

for CT and from -1000 HU to 1400 HU for MV. Next, the

CycleGAN model was trained using the metal-free images to

generate sCT_MF images from MV_MF images. Then, in the

third stage, the accuracy of the generated sCT_MF images was

evaluated with imaging and dosimetry to judge whether the sCT

images generated by the model were accurate enough to perform

MAR. Finally, in the MAR stage, based on the well-trained

CycleGAN model, metal-artifacts-free sCT_M images were

generated from MV_M images; then, the metal pixels in the

CT_M images were copied to the corresponding pixel positions

in the sCT_M images. Specifically, the CT numbers in the

MV_M images exceeding 1400 HU were modified to 1400

HU, and the sCT_M images without added metal pixels were

generated through the CycleGAN model. In the works of Liao

et al. and Wang et al., 2500 HU was used as the threshold of

metal segmentation in CT images (16, 18). However, bright
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FIGURE 1

Schematic diagram of metal artifact correction based on MVCBCT and CycleGAN. The process of this research was divided into the registration
stage, CycleGAN training stage, evaluation stage and MAR stage.
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metal artifacts may still exist in the metal region segmented by

this method. We observed that there is almost no metal artifact

in the MVCBCT images and the CT number of metal is not less

than 300 HU. Therefore, in order to reduce the metal artifacts

contained in the segmented metal regions as much as possible,

we identified the intersection regions with HU values greater

than 2500 in the CT_M images and greater than 300 in the

MV_M images as the metal regions. The final MAR images were

obtained by copying the CT numbers of the metal pixels in the

CT_M images into the previously generated sCT_M images.
Data acquisition and preprocessing

Metal dentures have diverse materials and complex shapes.

When their size is large or RED is high, severe metal artifacts

appear in CT images, destroying the image quality and the

accuracy of RED information. Therefore, the correction of metal

artifacts caused by metal dentures has good clinical application

value. In this study, CT and MVCBCT images of head cancer

patients were obtained from the dataset.

Paired planning CT images and MVCBCT images of 126

patients without metal dentures and 14 patients with metal

dentures were collected in this study, and the scans included

the head. The CT images were derived from a Siemens

SOMATOM Spirit helical CT scanner (tube voltage of 130 kV,

slice thickness of 3 mm, 16-bit image output). The paired

MVCBCT images were obtained in the first fraction (Siemens

Artiste Medical Electron Linear Accelerator, 6 MV, 0.54

mm×0 . 54 mm×0 . 54 mm) . The image s f rom the

temporomandibular joint to the mandible were selected for

training and evaluation. The images from ninety-seven

patients without metal in their scans were randomly selected

for model training; these data included 1762 paired planning CT

slices and MVCBCT slices. The remaining images of the 29

metal-free patients (457 slices) were used as the metal-free test

set, and the 14 patients with metal dentures (86 slices) were used

as the metal test set.

Data preprocessing was required before model input. First,

the Elastix multiresolution B-spline registration method (22, 23)

was used to elastically align the CT images andMVCBCT images

of the same patient. Then, the images were resampled to 1

mm×1 mm and cropped to 256×256 pixels. Then, the hyperbolic

tangent function (Tanh) was used to scale the CT values to (–

1,1), and is defined as Tanh(x)  =    e
x−e−x

ex+e−x . Before being processed

by Tanh, the HU values of the CT images and MVCBCT images

were scaled linearly with three methods as follows:

1) X(MVCBCT) = Tanh(HU(MVCBCT)/400) and X(CT) =

Tanh(HU(CT)/400).

2) X(MVCBCT) = Tanh(HU(MVCBCT)/150) and X(CT) =

Tanh(HU(CT)/300).

3) X(MVCBCT) = Tanh(HU(MVCBCT)−800/400) and X

(CT) = Tanh(HU(CT)−1600/960).
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Processed by the above three methods, these data were used

for model training separately to obtain three groups of results,

named P1, P2 and P3.
CycleGAN-based unsupervised model

Although the paired CT and MVCBCT images were selected

as training data, there were still problems in supervised pixel-to-

pixel learning. The setup error between the two scans, the

differences in the mouth opening size and image distortions

caused by elastic registration may introduce differences into the

CT images and MVCBCT images. Therefore, this study used

CycleGAN for unsupervised learning because pixel-level

correspondence is not necessary.

Generative adversarial networks (GANs) are unsupervised

deep learning models that mainly include a generator (G) and a

discriminator (D). A trained GA-B could generate image A’,

which has the structure of image A and the style of image B.

CycleGAN models (24) include two generators and two

discriminators and add cycle-consistency loss for training.

CycleGAN has been widely used for interconversion between

different types of medical images (25–30). The structure of

CycleGAN used in this study is consistent with that reported

in the literature (24), and the model structure is shown in

Figure 1. ResUNet (31) was used as the generator, and the

Adam optimizer was selected to train the model with a batch size

of 6 on one NVIDIA Quadro RTX 6000 GPU. The learning rate

was constant at 0.0002 for the first 100 epochs of training and

attenuated by 1% per epoch for the last 100 epochs. A previous

study showed that paired data have better performance than

unpaired data when using CycleGAN to generate sCT (32).

Therefore, this study used deformation-registered paired data

for training.
Imaging evaluation

Compared to the planning CT images, the image quality of

synthetic CT images was evaluated by the peak signal-to-noise

ratio (PSNR) and structural similarity (SSIM) index.

PSNR I1, I2ð Þ = 10� log10
MAX2

RMSE(I1, I2)
2

� �
(1)

SSIM I1, I2ð Þ = 2mI1mI2 + c1
� �

2sI1,I2 + c2
� �

m2
I1
+ m2

I2
+ c1

� �
s 2
I1
+ s 2

I2
+ c2

� � (2)

To compute the dose using CT images in photon

radiotherapy, the CT numbers need to be converted to RED

values through the CT-ED conversion curve. Since the CT-ED

curves are very different between CT images and MVCBCT

images, it is necessary to compare their RED values rather than
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their CT numbers. The CIRS 062 electron density phantom was

used to obtain CT numbers corresponding to the RED values in

the range of 0 to 1.456. The correspondence between CT

numbers and RED values of different metals was obtained

through the head part of a CIRS ATOM 701-B dosimetry

anthropomorphic phantom with aluminium alloy (RED: 2.43),

titanium alloy (RED: 3.73) and stainless steel (RED: 6.83) plugs.

In addition, the RED distributions of OARs in CT images

were analysed. The main OARs affected by metal artifacts, such

as the mandible, oral cavity, parotid gland and spinal cord, were

delineated, and their RED distributions were compared with

those in the MVCBCT images and sCT images.
Dosimetry evaluation

The target volume was redelineated according to the

anatomical structure of each patient in the test set with

reference to the actual target volume position of NPC patients.

In the treatment planning system (TPS), the same prescription

dose (PTV: 6000 cGy) was used to produce a dynamic intensity-

modulated plan (Eclipse 15.6, AXB algorithm) on the CT

images, and then the plan was copied to the corresponding

sCT images. Finally, the global gamma pass rates and the three-

dimensional dose distribution difference of the target area and

the OARs were compared. The gamma pass rates between the

radiotherapy plans of sCT images and CT images were

calculated using PTW Verisoft software, version 6.0 (PTW,

Frieburg, Germany), and the criteria included 2 mm/2% and 1

mm/1% (distance error/dose error), respectively. V95%, V100%,

V110% (Vx% means the percentage of volume receiving at least

x% of the prescription dose), D5, D95 (Dx means the doses to x

% of the volume), Dmean (mean dose of the volume) for the
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PTV, D2 and Dmean for the mandible, D50 and Dmean for the

oral cavity and parotid gland, and D0.1 cc (dose to 0.1 cc

volume) for the spinal cord were investigated.

The significance test of the RED and dosimetry data was

performed using IBM SPSS Statistics 26 software. Paired and

unpaired t tests were used for normally distributed data, and the

Mann-Whitney U test was used for nonnormally distributed

unpaired data (33).
Results

Figure 2 shows the effects of different preprocessing methods

(P1, P2 and P3) on sCT image quality. For organs such as the

mandible and teeth, more uniform CT numbers and higher

similarity with the CT_MF images were achieved using sCT_

MF_P3 compared with sCT_MF_P1 and sCT_MF_P2. The CT

numbers of teeth for CT_MF, sCT_MF_P1, sCT_MF_P2 and

sCT_MF_P3 were 1473 ± 554 HU, 1726 ± 863 HU, 2003 ± 995

HU and 1476 ± 481 HU, respectively. The CT numbers of the

mandible were 838 ± 494 HU, 891 ± 631 HU, 917 ± 417 HU and

848 ± 425 HU, respectively. Table 1 shows a comparison of the

accuracy of sCT_MF images with different preprocessing

methods in the ranges of [-200, 400] HU, [400, 800] HU, [800,

3000] HU and [-1000, 3000] HU. sCT_MF_P2 performed best at

[-200, 400] HU, sCT_MF_P1 performed best at [400, 800] HU,

and sCT_MF_P3 performed best at [800, 3000] HU. Obviously,

different image preprocessing methods have their own

advantages in different CT number ranges. Therefore, the

three trained models with different preprocessing methods

were combined to produce the new sCT_MF (sCT_MF_P4),

which used the part of sCT_MF_P2 below 400 HU, the part of

sCT_MF_P1 at [400, 800] HU and the part of sCT_MF_P3 over
FIGURE 2

Visualized differences of CT_MF and sCT_MF images with different preprocessing methods. The display windows for the first and second rows
were [0, 3000] HU and [-360, 440] HU, respectively. Blue lines represent the contour of the teeth, and red lines represent the contour of the
mandible. The images in the first to fifth columns were CT_MF, sCT_MF_P1, sCT_MF_P2, sCT_MF_P3 and sCT_MF_P4, respectively. Different
image preprocessing methods have their own advantages in different CT number ranges, and sCT_MF_P4 performs best.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1024160
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cao et al. 10.3389/fonc.2022.1024160
800 HU. The accuracy of the sCT_MF_P4 image was improved

significantly (PSNR: 31.4 ± 1.3 dB; SSIM: 0.9484 ± 0.0090). It

should be noted that the generated sCT_MF and sCT_M images

in the following were processed by the combined P4 method.

The RED comparison of CT, MVCBCT and sCT images is

shown in Figure 3. In Figure 3A, the difference in the RED values

of CT_MF and sCT_MF images was significantly smaller than

that of CT_MF and MV_MF images, especially in soft tissues.

Figure 3F and part A in Figure 3E show that the RED curves of

CT_MF and sCT_MF images were almost coincident, while the

curves of CT_MF and MV _MF images were quite different. The

RED distributions of OARs for CT_MF and sCT_MF images

were almost the same (Figure 4), and the difference was not

statistically significant (P > 0.05 in Table 2). Compared with the

large difference in the RED values of CT_MF and MV_MF

images, the RED values of the main OARs in sCT_MF images

were sufficiently accurate to be used for radiotherapy

dose calculations.

The dose distributions based on CT_MF and sCT_MF

images were slightly different, as shown in Figure 5A. The

gamma pass rates of the sCT_MF-based plans were 99.72% ±

0.29% (2 mm/2%) and 97.99% ± 1.14% (1 mm/1%) compared to

the CT_MF-based plans. The blue part in Figure 6 shows the

absolute dose errors of CT_MF and sCT_MF images, which

were 8.9 ± 6.2 cGy, 11.9 ± 8.1 cGy, 9.3 ± 7.2 cGy, 0.04% ± 0.06%,

0.32% ± 0.28% and 0.76% ± 0.77% for Dmean, D5, D95, V95,

V100%, and V110% of the PTV, respectively. For the mandible

(D2 and Dmean) and oral cavity (D50 and Dmean), the

maximum differences were all less than 40 cGy, and the

average difference was approximately 10 cGy. For the parotid

(D50 and Dmean) and spinal cord (D0.1 cc), the max differences

were all less than 20 cGy, and the average difference was

approximately 7 cGy. The above results demonstrate that the

dose distribution of sCT_MF images was consistent with that of

CT_MF images, which proves the accuracy of our proposed

method for generat ing synthet ic CT images from

MVCBCT images.

LI (34) and NMAR (35) are widely used approaches to MAR.

Supplementary figure 1 and Supplementary figure 2 show the

qualitative comparisons of our MAR method with the LI and

NMAR methods on the clinical data and phantom data,

respectively. It is clear that our method completely eliminates
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metal artifacts in both clinical data and phantom data, whereas

both the LI and NMAR methods not only fail to completely

eliminate metal artifacts, but also create a large number of new

artifacts in the images. For MAR of CT_M images, metal artifacts

with varying severities were completely removed from sCT_M

images (Figures 3B–3D). The sCT_M images had comparable

quality to metal-artifact-free CT_MF images. Notably, according

to the RED differences in Figures 3B–3D, the RED information

corrupted by metal artifacts was corrected in the sCT_M images,

and the RED difference in the area away from themetal artifacts was

very small. It was evident from Figure 3F and parts B-D in Figure 3E

that the difference in the RED values of the CT_M and sCT_M

images was larger than that of the CT_MF and sCT_MF images. In

Figure 4, the RED values of the CT_M and sCT_M images were

1.350 ± 0.254 and 1.355 ± 0.230 for the mandible (P = 0.813), 1.060

± 0.081 and 1.032 ± 0.016 for the oral cavity (P< 0.001), 0.987 ±

0.036 and 0.994 ± 0.027 for the parotid (P = 0.174), and 1.029 ±

0.015 and 1.020 ± 0.010 for the spinal cord (P = 0.006), respectively.

The dose distributions based on CT_M and sCT_M images

are shown in Figures 5B–5D, and the gamma pass rates of the

sCT_M-based plans were 99.55% ± 0.35% (2 mm/2%) and

96.55% ± 1.54% (1 mm/1%) compared to the CT_M-based

plans. The green part in Figure 6 shows the absolute dose

errors from the CT_M and sCT_M images, which were 22.1 ±

17.9 cGy, 28.1 ± 20.8 cGy, 19.3 ± 19.0 cGy, 0.05% ± 0.07%, 0.37%

± 0.46% and 1.37% ± 1.46% for Dmean, D5, D95, V95%, V100%,

and V110% of the PTV, respectively. For the PTV (Dmean, D5),

mandible (Dmean), oral cavity (D50 and Dmean) and parotid

(D50 and Dmean), the absolute dose errors of the sCT_M and

CT_M images were statistically significant compared to the

absolute errors of the sCT_MF and CT_MF images (Figure 6C

and Table 3). The dose difference in the spinal cord far away

from metal artifacts was not statistically significant (6.7 ± 3.5 vs.

11.7 ± 8.1, P > 0.05 in Table 3).
Discussion

In this study, a novel approach, in which the advantages of

the CycleGAN model and the characteristics of negligible metal

artifacts in MVCBCT images were integrated, was proposed to

address the MAR task. The results suggested that our proposed
TABLE 1 The evaluation of sCT_MF images with different preprocessing methods (PSNR (dB)/SSIM).

CT number range(HU) sCT_MF_P1 sCT_MF_P2 sCT_MF_P3 sCT_MF_P4

-1000~3000 30.0/0.9459 28.2/0.9435 30.7/0.9345 31.4/0.9484

-200~400 23.9/0.8599 24.2/0.8689 22.6/0.8395 /

400~800 22.8/0.9558 22.2/0.9534 21.4/0.9470 /

800~3000 27.9/0.9652 24.9/0.9555 33.0/0.9701 /
sCT_MF_P1, metal-free sCT images obtained by the prepossessing method named P1; sCT_MF_P2, metal-free sCT images obtained by the prepossessing method named P2; sCT_MF_P3,
metal-free sCT images obtained by the prepossessing method named P3; metal-free sCT images obtained by the combined prepossessing method named P4. The best PSNR and SSIM values
in different HU ranges of sCT_MF images are marked in bold.
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method could be used to completely remove metal artifacts in

original CT images and correct the destroyed RED distributions,

and hence a more accurate dose calculation for radiotherapy can

be produced.

Different normalization methods in preprocessing could

affect the accuracy of sCT images, as shown in Figure 2. The

difference between the P1, P2 and P3 methods was mainly

because the main range of the CT numbers involved in the

training stage varied with the preprocessing methods. Therefore,
Frontiers in Oncology 07
73
the three trained models with different preprocessing methods

were combined to produce the final sCT images.

TPS requires images to be calibrated for RED values before

dose calculations are performed (36). Considering the large gap

between the CT-ED curves of CT and MVCBCT images (19), it

is not intuitive to directly compare the difference in CT numbers

when evaluating image quality in the study by Zhao et al. (37).

Therefore, our image evaluation approach mainly focused on the

RED values.
FIGURE 3

RED comparison of CT, MVCBCT and sCT images. (A) Metal-free images. (B-D) Metal-containing images. (E) RED distribution curves for the blue
lines in (A–D). (F) RED histograms of the images. The display window for CT, MVCBCT and sCT images was [-360, 440] HU. The RED
distributions of CT_MF and sCT_MF images were almost coincident, and the metal artifacts were completely eliminated in sCT_M images after
the MAR stage.
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In the results, we analysed the image quality and dose

calculation accuracy of the generated sCT images for the test

sets with and without metal. Since we cannot obtain ground

truth images for the clinical metal-containing images, in

previous studies, quantitative evaluation could only be

performed on synthetic data or simulated phantoms (13–18).

In our study, we indirectly realized the quantitative evaluation of

the MAR effect on clinical images through the quantitative

evaluation of the sCT_MF images and the statistical analysis of

sCT_MF and sCT_M images. The model was trained with paired

CT_MF and MV_MF images, and CT_MF and sCT_MF images

had high consistency in terms of image quality, RED values and

dose distributions. The PSNR and SSIM values for the CT_MF

and sCT_MF images comparison were 31.4 ± 1.3 and 0.9484 ±

0.0090, respectively, which are comparable to Liang et al.’s study
Frontiers in Oncology 08
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(30.65 ± 1.36/0.85 ± 0.03), Vinas et al.’s study (29.7 ± 2.7/0.927 ±

0.028), Harms et al.’s study (PSNR: 32.3 ± 5.9) and Chen et al.’s

study (30.75 ± 3.89/0.9642 ± 0.0186) for head patient images (25,

27, 38, 39). The gamma pass rates (1 mm/1%) of the sCT_MF-

based plans (97.99% ± 1.14%) were better than those obtained in

Liang et al.’s study (96.26% ± 3.59%) and Li et al.’s study (95.5%

± 1.6%) (25, 40). Therefore, we believe that the sCT_M images

generated from MV_M images were sufficiently accurate to

evaluate the effect of MAR.

In previous studies, the excellent MAR performance on

simulated images could not be sustained on clinical images.

Qualitative analyses showed that artifacts remained in images

after MAR, and the image quality was also degraded (13, 14, 16–

18). In contrast, metal artifacts in clinical images were eliminated

completely in our study (Figure 3). Furthermore, quantitative
B

C D

A

FIGURE 4

Comparison of RED distributions for OARs. (A) Mandible. (B) Oral cavity. (C) Parotid. (D) Spinal cord. The numbers marked in the figure are the
average ± standard deviation. The RED values of the main OARs in sCT_MF images were accurate, and the inaccurate RED values caused by
metal artifacts in CT_M images were corrected in sCT_M images after the MAR stage.
TABLE 2 P value comparison of RED distributions for OARs.

OARs CT_MF vs. sCT_MFa CT_M vs .sCT_Ma CT_MF vs .CT_Mb CT_MF vs .sCT_Mb

Mandible 0.055 0.813 < 0.001* < 0.001*

Oral Cavity 0.805 < 0.001* < 0.001* 0.509

Parotid 0.499 0.174 0.355 0.744

Spinal Cord 0.056 0.006* < 0.001* 0.512
a: Paired-sample T test. b: Independent-sample T test.*: Statistically significant differences (P< 0.05). RED, Relative electron density; OARs, organs at risk; CT_MF, metal-free CT images;
CT_M, metal-containing CT images; sCT_MF, metal-free sCT images; sCT_M, metal-containing sCT images.
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assessments of the MAR effect on clinical images were performed.

The MV_M images were almost identical to the MV_MF images

since the metal artifacts were barely visible (Figures 3B–3D). In

the soft tissue region near the teeth, the RED distribution curves of

CT_MF images were smooth, while those of CT_M images were

not (Figure 3E). Some RED values were high (pink arrows) in

CT_M images due to bright metal artifacts, while others (green
Frontiers in Oncology 09
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arrows) were low due to dark metal artifacts. On the other hand,

the curves in the corresponding areas in sCT_M images were as

smooth as those in CT_MF images, which means that the RED

values were accurately corrected in sCT_M images. In Figure 3F,

the RED histograms of the CT_M and sCT_M images had

obvious differences, especially in the RED value range of 1.003

to 1.056 (green arrow). This may be because metal artifacts mainly
FIGURE 5

Dosimetric comparison of CT and sCT images. (A) Metal-free images. (B–D) Metal-containing images. The display window for the CT and sCT
images was [-360, 440] HU. The dose distribution of sCT_MF images was consistent with that of CT_MF images, and there were obvious dose
differences between CT_M and sCT_M images in the area with serious metal artifacts.
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destroy RED values in the range of 1.003 to 1.056, while the

damage is corrected in sCT_M images.

The RED distributions of OARs were different because of the

different distances from the metal artifacts. Influenced by the metal
Frontiers in Oncology 10
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artifacts, there were many pixels with low RED values in the

mandible of CT_M images, and these pixels were corrected in the

sCT_M images (Figure 4A). Due to the proximity to metal

dentures, the RED values of the oral cavity in CT_M images were
B

C

A

FIGURE 6

Comparison of the absolute dose errors for the PTV and OARs. (A) Dose difference (cGy) of the PTV. (B) Volume difference (%) of the PTV.
(C) Dose difference (cGy) of the OARs. The numbers marked in the figure are the average ± standard deviation. Compared with metal-free
cases, the average and standard deviation of the dose differences for the PTV and OARs doubled for cases with metal artifacts.
TABLE 3 The difference significance test between the absolute dose errors of sCT_M and CT_M images and the absolute errors of sCT_MF and
CT_MF images for the PTV and OARs.

Structures Dosimetry Parameter Test Method P Value

PTV Dmean T 0.047*

D5 T 0.038*

D95 T 0.142

V95% U 0.487

V100% U 0.781

V110% U 0.517

Mandible D2 U 0.089

Dmean U 0.009*

Oral Cavity Dmean U 0.002*

D50 U < 0.001*

Parotid Dmean T 0.047*

D50 U 0.036*

Spinal Cord D0.1 cc T 0.079
fron
T: Independent-sample T test for normally distributed data. U: Independent-sample Mann-Whitney U Test for nonnormally distributed data. *: Statistically significant differences (P< 0.05).
PTV, planning target volume; OARs, organs at risk; CT_MF, metal-free CT images; CT_M, metal-containing CT images; sCT_MF, metal-free sCT images; sCT_M, metal-containing sCT
images; Vx%, the percentage of volume receiving at least x% of the prescription dose; Dx, the doses to x% of the volume; Dmean, mean dose of the volume; D0.1 cc, dose to 0.1 cc volume.
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greatly affected by the metal artifacts (CT_MF vs. CT_M, P< 0.001

in Table 2), with a significantly higher mean and standard deviation

(Figure 4B) and a large number of outliers that were too high or too

low. The RED values of the oral cavity were almost consistent in the

sCT_M and CT_MF images (P = 0.509 in Table 2), and there was a

significant difference in the values of CT_M and sCT_M images

(P< 0.001 in Table 2), which further proved the accuracy of RED

correction for the oral cavity in sCT_M images. As shown in

Table 2, the spinal cord and oral cavity had similar significance test

results, which also proves that the RED values of the spinal cord

were accurately corrected in sCT_M images.

For dose calculation, the gamma pass rates of sCT_M and

CT_M images were lower than those of sCT_MF and CT_MF

images, which was the results of MAR. As shown in Figures 5B–

5D, there were obvious dose differences between CT_M and

sCT_M images in the area with serious metal artifacts (elliptical

dotted lines), and the maximum correction of the point dose

could reach more than 5% of the total dose. Compared with

metal-free cases, the average and standard deviation of the dose

differences for the PTV and OARs doubled for cases with metal

artifacts (Figure 6). The accuracy of the sCT_M-based dose

calculation showed statistically significant improvements in the

PTV and OARs (Table 3).

Finally, there are some works that need to be improved. The

RED difference of the bone and tooth areas of the CT_MF and

sCT_MF images was significantly greater than that of soft

tissues. The results showed that the combination of multiple

preprocessing methods could improve the accuracy of sCT

images with high RED values, and this will be further

researched in our next work.
Conclusion

We proposed a novel MAR approach to complete the MAR

task. In this approach, the advantages of the CycleGAN model

and the characteristics of negligible metal artifacts in MVCBCT

images are integrated. The model was trained on paired metal-

free CT andMVCBCT images and generated metal-artifacts-free

sCT images from metal-containing MVCBCT images to convert

the task of MAR to the task of generating sCT images from

MVCBCT images. The metal artifacts were completely removed

in the sCT_M images, and the inaccurate RED values were

corrected, which could significantly improve the accuracy of

disease diagnosis and radiotherapy dose calculation.
Frontiers in Oncology 11
77
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding authors.
Author contributions

ZC conceived the experiments. XG collected the clinical

dataset. ZC, GL and YP designed the study and analyzed the

result. ZC, XG, YC, GL and YP participated in writing

manuscript. All authors contributed to the article and

approved the submitted version.
Funding

Hefei Municipal Health Commission (CN) Applied

Medicine Research Project (key project: hwk2018zd012)
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.1024160/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.1024160/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.1024160/full#supplementary-material
https://doi.org/10.3389/fonc.2022.1024160
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cao et al. 10.3389/fonc.2022.1024160
References
1. De Man B, Nuyts J, Dupont P, Marchal G, Suetens P. Metal streak artifacts in
X-ray computed tomography: a simulation study. IEEE Trans Nucl Sci (1999)
46:691–6. doi: 10.1109/NSSMIC.1998.773898

2. Laukamp KR, Zopfs D, Lennartz S, Pennig L, Maintz D, Borggrefe J, et al.
Metal artifacts in patients with large dental implants and bridges: combination of
metal artifact reduction algorithms and virtual monoenergetic images provides an
approach to handle even strongest artifacts. Eur Radiol (2019) 29:4228–38.
doi: 10.1007/s00330-018-5928-7

3. Bazalova M, Beaulieu L, Palefsky S, Verhaegen F. Correction of CT artifacts
and its influence on Monte Carlo dose calculations. Med Phys (2007) 34:2119–32.
doi: 10.1118/1.2736777

4. Wei J, Sandison GA, Hsi WC, Ringor M, Lu X. Dosimetric impact of a CT
metal artefact suppression algorithm for proton, electron and photon therapies.
Phys Med Biol (2006) 51:5183–97. doi: 10.1088/0031-9155/51/20/007

5. Gao L, Li C, Lu Z, Xie K, Lin T, Sui J, et al. Comparison of different treatment
planning approaches using VMAT for head and neck cancer patients with metallic
dental fillings. Radiat Med Prot (2021) 2:128–33. doi: 10.1016/j.radmp.2021.05.002

6. Yu H, Zeng K, Bharkhada DK, Wang G, Madsen MT, Saba O, et al. A
segmentation-based method for metal artifact reduction. Acad Radiol (2007)
14:495–504. doi: 10.1016/j.acra.2006.12.015

7. Fleischmann D, Boas FE. Computed tomography–old ideas and new
technology. Eur Radiol (2011) 21:510–7. doi: 10.1007/s00330-011-2056-z

8. Gao L, Sui J, Lin T, Xie K, Ni X. Metal artifact reduction method based on
noncoplanar scanning in CBCT imaging. IEEE Access (2020) 8:7236–43.
doi: 10.1109/ACCESS.2019.2962386

9. Xia D, Roeske JC, Yu L, Pelizzari CA, Mundt AJ, Pan X. A hybrid approach to
reducing computed tomography metal artifacts in intracavitary brachytherapy.
Brachytherapy (2005) 4:18–23. doi: 10.1016/j.brachy.2004.11.001

10. Boas FE, Fleischmann D. Evaluation of two iterative techniques for reducing
metal artifacts in computed tomography. Radiology (2011) 259:894–902.
doi: 10.1148/radiol.11101782

11. Yazdi M, Lari MA, Bernier G, Beaulieu L. An opposite view data
replacement approach for reducing artifacts due to metallic dental objects:
Reducing artifacts due to metallic dental objects. Med Phys (2011) 38:2275–81.
doi: 10.1118/1.3566016

12. Kalender WA, Watzke O. A pragmatic approach to metal artifact reduction
in CT: merging of metal artifact reduced images. Eur Radiol (2004) 14:849–56.
doi: 10.1007/s00330-004-2263-y

13. Zhang Y, Yu H. Convolutional neural network based metal artifact
reduction in X-ray computed tomography. IEEE Trans Med Imaging (2018)
37:1370–81. doi: 10.1109/TMI.2018.2823083

14. Huang X, Wang J, Tang F, Zhong T, Zhang Y. Metal artifact reduction on
cervical CT images by deep residual learning. BioMed Eng Online (2018) 17:175.
doi: 10.1186/s12938-018-0609-y

15. Zhu L, Han Y, Li L, Xi X, Zhu M, Yan B. Metal artifact reduction for X-ray
computed tomography using U-net in image domain. IEEE Access (2019) 7:98743–
54. doi: 10.1109/ACCESS.2019.2930302

16. Wang H, Li Y, Zhang H, Chen J, Ma K, Meng D, et al. InDuDoNet: An
interpretable dual domain network for CT metal artifact reduction. In: Medical
image computing and computer assisted intervention – MICCAI 2021. Cham:
Springer International Publishing (2021). p. pp 107–118. doi: 10.1007/978-3-
030-87231-1_11

17. Yu L, Zhang Z, Li X, Ren H, Zhao W, Xing L. Metal artifact reduction in 2D
CT images with self-supervised cross-domain learning. Phys Med Biol (2021)
66:175003. doi: 10.1088/1361-6560/ac195c

18. Liao H, Lin W-A, Zhou SK, Luo J. ADN: Artifact disentanglement network
for unsupervised metal artifact reduction. IEEE Trans Med Imaging (2020) 39:634–
43. doi: 10.1109/TMI.2019.2933425

19. Paudel MR, Mackenzie M, Fallone BG, Rathee S. Clinical evaluation of
normalized metal artifact reduction in kVCT using MVCT prior images (MVCT-
NMAR) for radiation therapy treatment planning. Int J Radiat Oncol (2014)
89:682–9. doi: 10.1016/j.ijrobp.2014.02.040

20. Gao L, Sun H, Ni X, Fang M, Cao Z, Lin T. Metal artifact reduction through
MVCBCT and kVCT in radiotherapy. Sci Rep (2016) 6:37608. doi: 10.1038/
srep37608
Frontiers in Oncology 12
78
21. Paudel M, Kirvan P, Fallone B, Rathee S. SU-DD-A3-04: Evaluation of metal
artifact reduction using MVCT and model based image reconstruction. Med Phys
(2010) 37:3091–1. doi: 10.1118/1.3467997

22. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. Elastix: A toolbox
for intensity-based medical image registration. IEEE Trans Med Imaging (2010)
29:196–205. doi: 10.1109/TMI.2009.2035616

23. Shamonin DP, Bron EE, Lelieveldt BPF, Smits M, Klein S, Staring M. Fast
parallel image registration on CPU and GPU for diagnostic classification of
alzheimer’s disease. Front Neuroinform (2013) 7:50. doi: 10.3389/fninf.2013.00050

24. Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-Image translation using
cycle-consistent adversarial networks. In: IEEE International conference on computer
vision (ICCV). Venice: IEEE (2017). p. pp 2242–2251. doi: 10.1109/ICCV.2017.244

25. Liang X, Chen L, Nguyen D, Zhou Z, Gu X, Yang M, et al. Generating
synthesized computed tomography (CT) from cone-beam computed tomography
(CBCT) using CycleGAN for adaptive radiation therapy. Phys Med Biol (2019)
64:125002. doi: 10.1088/1361-6560/ab22f9

26. Sun H, Fan R, Li C, Lu Z, Xie K, Ni X, et al. Imaging study of pseudo-CT
synthesized from cone-beam CT based on 3D CycleGAN in radiotherapy. Front
Oncol (2021) 11:603844. doi: 10.3389/fonc.2021.603844

27. Vinas L, Scholey J, Descovich M, Kearney V, Sudhyadhom A. Improved
contrast and noise of megavoltage computed tomography (MVCT) through cycle-
consistent generative machine learning. Med Phys (2021) 48:676–90. doi: 10.1002/
mp.14616

28. Sun H, Xi Q, Fan R, Sun J, Xie K, Ni X, et al. Synthesis of pseudo-CT images
from pelvic MRI images based on an MD-CycleGAN model for radiotherapy. Phys
Med Biol (2022) 67:035006. doi: 10.1088/1361-6560/ac4123

29. Yang H, Sun J, Carass A, Zhao C, Lee J, Prince JL, et al. Unsupervised MR-
to-CT synthesis using structure-constrained CycleGAN. IEEE Trans Med Imaging
(2020) 39:4249–61. doi: 10.1109/TMI.2020.3015379

30. Yang B, Chang Y, Liang Y, Wang Z, Pei X, Xu X, et al. A comparison study
between CNN-based deformed planning CT and CycleGAN-based synthetic CT
methods for improving iCBCT image quality. Front Oncol (2022) 12:896795.
doi: 10.3389/fonc.2022.896795

31. Xiao X, Lian S, Luo Z, Li S. (2018). Weighted res-UNet for high-quality
retina vessel segmentation, in: 2018 9th International Conference on Information
Technology in Medicine and Education (ITME), (Hangzhou, China: IEEE) 327–
331. doi: 10.1109/ITME.2018.00080

32. Liu Y, Lei Y, Wang T, Fu Y, Tang X, CurranWJ, et al. CBCT-based synthetic
CT generation using deep-attention cycleGAN for pancreatic adaptive
radiotherapy. Med Phys (2020) 47:2472–83. doi: 10.1002/mp.14121

33. Bannas P, Li Y, Motosugi U, Li K, Lubner M, Chen GH, et al. Prior image
constrained compressed sensing metal artifact reduction (PICCS-MAR): 2D and
3D image quality improvement with hip prostheses at CT colonography. Eur
Radiol (2016) 26:2039–46. doi: 10.1007/s00330-015-4044-1

34. Kalender WA, Hebel R, Ebersberger J. Reduction of CT artifacts caused by
metallic implants. Radiology (1987) 164:576–7. doi: 10.1148/radiology.164.2.3602406

35. Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Normalized metal
artifact reduction (NMAR) in computed tomography. Med Phys (2010) 37:5482–
93. doi: 10.1118/1.3484090

36. Morin O, Chen J, Aubin M, Gillis A, Aubry JF, Bose S, et al. Dose calculation
using megavoltage cone-beam CT. Int J Radiat Oncol (2007) 67:1201–10.
doi: 10.1016/j.ijrobp.2006.10.048

37. Zhao J, Chen Z, Wang J, Xia F, Peng J, Hu Y, et al. MV CBCT-based
synthetic CT generation using a deep learning method for rectal cancer adaptive
radiotherapy. Front Oncol (2021) 11:655325. doi: 10.3389/fonc.2021.655325

38. Harms J, Lei Y, Wang T, Zhang R, Zhou J, Tang X, et al. Paired cycle-GAN-
based image correction for quantitative cone-beam computed tomography. Med
Phys (2019) 46:3998–4009. doi: 10.1002/mp.13656

39. Chen L, Liang X, Shen C, Nguyen D, Jiang S, Wang J. Synthetic CT
generation from CBCT images via unsupervised deep learning. Phys Med Biol
(2021) 66:115019. doi: 10.1088/1361-6560/ac01b6

40. Li Y, Zhu J, Liu Z, Teng J, Xie Q, Zhang L, et al. A preliminary study of using
a deep convolution neural network to generate synthesized CT images based on
CBCT for adaptive radiotherapy of nasopharyngeal carcinoma. Phys Med Biol
(2019) 64:145010. doi: 10.1088/1361-6560/ab2770
frontiersin.org

https://doi.org/10.1109/NSSMIC.1998.773898
https://doi.org/10.1007/s00330-018-5928-7
https://doi.org/10.1118/1.2736777
https://doi.org/10.1088/0031-9155/51/20/007
https://doi.org/10.1016/j.radmp.2021.05.002
https://doi.org/10.1016/j.acra.2006.12.015
https://doi.org/10.1007/s00330-011-2056-z
https://doi.org/10.1109/ACCESS.2019.2962386
https://doi.org/10.1016/j.brachy.2004.11.001
https://doi.org/10.1148/radiol.11101782
https://doi.org/10.1118/1.3566016
https://doi.org/10.1007/s00330-004-2263-y
https://doi.org/10.1109/TMI.2018.2823083
https://doi.org/10.1186/s12938-018-0609-y
https://doi.org/10.1109/ACCESS.2019.2930302
https://doi.org/10.1007/978-3-030-87231-1_11
https://doi.org/10.1007/978-3-030-87231-1_11
https://doi.org/10.1088/1361-6560/ac195c
https://doi.org/10.1109/TMI.2019.2933425
https://doi.org/10.1016/j.ijrobp.2014.02.040
https://doi.org/10.1038/srep37608
https://doi.org/10.1038/srep37608
https://doi.org/10.1118/1.3467997
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.3389/fninf.2013.00050
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1088/1361-6560/ab22f9
https://doi.org/10.3389/fonc.2021.603844
https://doi.org/10.1002/mp.14616
https://doi.org/10.1002/mp.14616
https://doi.org/10.1088/1361-6560/ac4123
https://doi.org/10.1109/TMI.2020.3015379
https://doi.org/10.3389/fonc.2022.896795
https://doi.org/10.1109/ITME.2018.00080
https://doi.org/10.1002/mp.14121
https://doi.org/10.1007/s00330-015-4044-1
https://doi.org/10.1148/radiology.164.2.3602406
https://doi.org/10.1118/1.3484090
https://doi.org/10.1016/j.ijrobp.2006.10.048
https://doi.org/10.3389/fonc.2021.655325
https://doi.org/10.1002/mp.13656
https://doi.org/10.1088/1361-6560/ac01b6
https://doi.org/10.1088/1361-6560/ab2770
https://doi.org/10.3389/fonc.2022.1024160
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Xiaodong Wu,
The University of Iowa, United States

REVIEWED BY

Ziyue Xu,
Nvidia, United States
Lichun Zhang,
The University of Iowa, United States

*CORRESPONDENCE

Jansen Keith L. Domoguen
jldomoguen@up.edu.ph

SPECIALTY SECTION

This article was submitted to
Radiation Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 28 June 2022
ACCEPTED 17 October 2022

PUBLISHED 11 November 2022

CITATION

Domoguen JKL, Manuel JA, Cañal JPA
and Naval PC Jr (2022) Automatic
segmentation of nasopharyngeal
carcinoma on CT images using
efficient UNet‐2.5D ensemble
with semi‐supervised pretext
task pretraining.
Front. Oncol. 12:980312.
doi: 10.3389/fonc.2022.980312

COPYRIGHT

© 2022 Domoguen, Manuel, Cañal and
Naval. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 11 November 2022

DOI 10.3389/fonc.2022.980312
Automatic segmentation of
nasopharyngeal carcinoma on
CT images using efficient UNet‐
2.5D ensemble with semi‐
supervised pretext task
pretraining

Jansen Keith L. Domoguen1*, Jen-Jen A. Manuel2,
Johanna Patricia A. Cañal2 and Prospero C. Naval Jr1

1Computer Vision and Machine Intelligence Group, Department of Computer Science, University of
the Philippines-Diliman, Quezon City, Philippines, 2Division of Radiation Oncology, Department of
Radiology, University of the Philippines-Philippine General Hospital, Manila, Philippines
Nasopharyngeal carcinoma (NPC) is primarily treated with radiation therapy.

Accurate delineation of target volumes and organs at risk is important.

However, manual delineation is time-consuming, variable, and subjective

depending on the experience of the radiation oncologist. This work explores

the use of deep learning methods to automate the segmentation of NPC

primary gross tumor volume (GTVp) in planning computer tomography (CT)

images. A total of sixty-three (63) patients diagnosed with NPCwere included in

this study. Although a number of studies applied have shown the effectiveness

of deep learning methods in medical imaging, their high performance has

mainly been due to the wide availability of data. In contrast, the data for NPC is

scarce and inaccessible. To tackle this problem, we propose two sequential

approaches. First we propose a much simpler architecture which follows the

UNet design but using 2D convolutional network for 3D segmentation. We find

that this specific architecture is much more effective in the segmentation of

GTV in NPC. We highlight its efficacy over other more popular and modern

architecture by achieving significantly higher performance. Moreover to further

improve performance, we trained the model using multi-scale dataset to

create an ensemble of models. However, the performance of the model is

ultimately dependent on the availability of labelled data. Hence building on top

of this proposed architecture, we employ the use of semi-supervised learning

by proposing the use of a combined pre-text tasks. Specifically we use the

combination of 3D rotation and 3D relative-patch location pre-texts tasks to

pretrain the feature extractor. We use an additional 50 CT images of healthy

patients which have no annotation or labels. By semi-supervised pretraining the

feature extractor can be frozen after pretraining which essentially makes it

much more efficient in terms of the number of parameters since only the

decoder is trained. Finally it is not only efficient in terms of parameters but also

data, which is shown when the pretrained model with only portion of the
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labelled training data was able to achieve very close performance to the model

trained with the full labelled data.
KEYWORDS

nasopharyngeal carcinoma, automatic volume segmentation, deep learning,
radiotherapy, semi-supervised learning, pretext tasks
1 Introduction

Nasopharyngeal carcinoma is rare among Caucasians but

one of the more common head and neck cancers found among

Asians and North Africans (1). Standard treatment involves

combination chemotherapy and radiotherapy. Surgery is

generally done as salvage after treatment inadequacies or

failures. Over the past few decades and with improved

digitalization, radiation therapy has become more and more

precise. This came about because of precision in both cross-

sectional diagnostic imaging (CT and MRI) and radiation

delivery. Precision is the key. In the process of radiotherapy,

one of the most critical steps is contouring of the tumor. After

all, if the target is incorrect or imprecise in any way, the

subsequent treatment planning and treatment delivery will be

incorrect and imprecise too.

With the advent of artificial intelligence, there is now

software available for auto-contouring. All commercially

available treatment planning systems contain software that can

auto-contour normal structures or organs. At the present, much

research is being done into auto-contouring the gross tumor

volume (GTV), many of them coming out of China. Since

nasopharyngeal carcinoma is considered endemic in China, it

is logical that resources are being poured into creating artificial

intelligence that can map nasopharyngeal tumors on CT scans

and MRIs.

There are at least 6 studies that have dealt with auto-

contouring of nasopharyngeal tumors using cross-sectional

imaging, both CT scan and MRI (2–6). Work by (2) was one

of the earliest works who applied deep learning methods on the

segmentation of NPC. They proposed a modified UNet

architecture where the downsampling and upsampling layers

have similar number of parameters to ensure that the output

resolution is exactly the same as the input. Moreover, their work

also analyzed the performance of deep neural networks across

different tumors stages as well as predicting gross nodal volumes.

They observed significant performance degradation as the tumor

stage increases and a much lower performance for gross nodal

volumes. In contrast to our work, we don’t distinguish tumor

stage for our performance analysis. Work by (3) proposed a

novel 3D convolutional network which uses cascaded multi-

scale local enhancement for convolutional networks. Specifically
02
80
they adopted the 3D Res-UNet as their backbone network and

employed a multi-scale dilated convolutional block to enhance

extracted receptive field and improve focus on the target tumor

especially its boundary. This is then integrated to a central

localization cascade model to concentrate on the gross tumor

volume for fine segmentation. The work by (4) is most similar to

ours as they also employed ensemble model based on multi-scale

sampling, however they employed a projection block and

attention block to improve the extracted representation. The

projection block is similar to the popular “SqueezeExcite” (7)

method used to improve the learned representation. However, in

this case they squeeze the feature maps across the three

dimensions which they later combined via summation

operation across the spatial dimension and finally a projection

to the depth dimension which recovers the original shape of the

feature map. The attention module is a spatial attention block

that focuses and refines extracted representation especially for

very small tumors which is common in NPC. Despite the

addition of more sophisticated blocks, we find their method

under performs compared to purely using the UNet-2.5D which

uses much fewer learning parameters. Although the work by (6)

used magnetic resonance images in contrast to CT scans, they

demonstrated that by combining the T1-weighted (T1W) and

T2-weighted (T2W) MRI images of each patient provides

significant performance boost. These two sequences were

combined by their proposed dense connectivity embedding,

which essentially fuses the feature maps of each modes across

the layers in the encoder. Furthermore, a convolutional block is

introduced to process the fused embedding which will then act

as a skip connections to their corresponding decoder block in a

UNet architecture. While MRI would instinctively be the better

imaging modality to become the basis for auto-contouring, MRI

is not always readily available in all countries, especially

developing countries.

The use of deep learning in medical imaging has become a

popular alternative for practitioners to automatically generate

accurate target delineation. Furthermore, it does not only resolve

the time-consuming and tedious task of manual contouring but

can also alleviate the problem of inter-observer variability by

generating more robust predictions since it learns from different

sources. This problem occurs when radiation oncologists

disagree on the delineated gross tumor volume brought by the
frontiersin.org

https://doi.org/10.3389/fonc.2022.980312
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Domoguen et al. 10.3389/fonc.2022.980312
inherent subjectivity of the annotation process itself. This

depends on variety of factors notably years of experience of

the practitioner. However, though deep learning models have the

potential to generate significant benefits in the medical imaging

field, it is also a poor field to apply these methods to. This is

because data in this field are notoriously difficult and expensive

to collect. And when this is coupled with the fact that deep

learning models are only as good as the quantity and quality of

the data you have, then the objective is to not only generate

accurate models but also models that can perform well when

there are few data. To this end, we employ self-supervised

learning (SSL). SSL method has become the mainstream

approach in mitigating problems regarding data scarcity when

utilizing deep learning in the medical setting. It is able to

leverage unannotated scans by using a predefined pre-text

tasks (self-supervision task) which is used to train a feature-

extractor or the encoder network. Ideally, this pre-text task

should be able to help the encoder network or the feature

extractor learn features and representations such as the generic

structure, texture, and other salient features that can be re-used

during the downstream task or the actual target task which is in

our case the segmentation of GTV in NPC. Hence it will require

much fewer annotated data during the downstream task making

it data efficient. For our work, we used an equal number of

unannotated and annotated NPC CT scans. In contrast with

other works which used single pre-text task during SSL

pretraining we used multiple pre-text tasks to pre-train our

encoder network. Specifically we use a combination of relative-

positional location (RPL) and rotation methods to pre-train our

encoder network. This encoder network can then be frozen and

attached to a decoder network used for the segmentation task.

The goal is that by employing SSL pretraining, the feature

extractor will be in a much better starting position to easily

learn the diverse morphologies and sizes of the gross tumor

volume even with much fewer data.

Self-supervised learning in medical images (8–14) is usually

an extension of the self-supervised techniques used in 2D natural

images. The seminal work by (15) proposed different pretext tasks

for 3D medical image that were originally based on 2D images.

Multiple pretext tasks specialized for 3D medical images are

proposed such as: contrastive predictive coding, rotation

prediction, jigsaw puzzles, relative patch location, and exemplar

methods. The predictive coding pretext task first divides an input

3D cube into smaller cubes which are individually encoded by the

network. Given a set of consecutive encoded cubes, the network

must find and choose the next consecutive cube out of a set

potential cubes based on their encoding. Hence, in order to

accomplish this task, the network must be forced to learn the

specific fine-grain morphology and structure of the volume in

order to correctly predict the next adjacent cube. And because this

uses contrastive learning (16), the encoding or representation of

adjacent cubes are much closer than cubes that are farther away.

This conforms with the actual input volume where adjacent
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volumes have very similar features. The important consideration

here is that the network was able to learn and distinguish the

feature, structure and morphology of the volume even without

labels by doing this pretext task. This is essentially the same case

with all pretext tasks, for rotation it randomly rotates the volume

from a predefined class of orientation, then the network must

predict the specific orientation but in order to correctly predict the

orientation it must understand the structure of the volume. For

relative-patch location, it randomly crops an input volume then

divides the volume further into 27 non-overlapping cubes. It then

uses the central cube to predict the location of a cube randomly

queried which has a total of 26 possible locations or classes. In our

work we employ the relative patch location and rotation pre-text

tasks for our proposed SSL since they are much simpler and were

able to produce significantly higher performance over the other

pretext tasks. More recent work by (17) proposed a spatially

guided self-supervised clustering network (SGSCN) for

downstream medical image segmentation. They proposed using

multiple loss functions to train a network in an end-to-end

manner in order to group image pixels that are spatially

connected and thus have similar representations. In addition, a

context-based consistency loss is used to better learn the

boundaries and shape of the target volume. Finally work by (18)

proposed the use of auxiliary tasks for task-level consistency as an

SSL approach. Specifically two auxiliary tasks are used where one

task is responsible for foreground-background reconstruction

aimed for in-formation segmentation while the other task

employs a mean-teacher architecture to perform signed distance

field (SDF) prediction to enforce shape constraints. All these SSL

methods were proposed mainly to address the limited availability

of labeled data while exploiting abundance of unlabeled data.

Similar to ours we propose an SSL approach that uses a

combination of pretext tasks to help a feature extractor learn

representations from unlabeled dataset that are highly relevant to

its downstream segmentation task.

Filipino oncologists have always been aware of the high

number of cases of nasopharyngeal carcinoma in the Philippines

based on their individual experiences in their own clinics and

hospitals. The true number cannot be verified because of the

absence of a government-run nationwide cancer registry.

Because of the number of patients with nasopharyngeal

carcinoma at our institution and the consequent volume of

imaging data, we felt that it would be a good venue for the

creation of auto-segmentation/auto-contouring software for

radiation oncology use. Moreover, since modern deep learning

methods are notoriously hungry for labelled data, we introduce a

self-supervised method to compliment the development and

training of our proposed deep learning method. This will

mitigate overfitting introduced due to very few labelled data

thereby improving performance as well as allows it to exploit

unlabeled data which are often much more abundant than

labelled data. This cuts costs in terms of the resources and

time required to label more data to improve model performance.
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Collaboration between researchers from the Department of

Computer Science of the College of Engineering and the

Division of Radiation Oncology of the Department of

Radiology of the UP-Philippine General Hospital resulted in

this study that set out to create a software that could accurately

contour nasopharyngeal tumors on appropriately acquired CT

scan images.
2 Methods

2.1 Network architecture

The primary network architecture used in this work is the

UNet-2.5D (4) network based on the UNet3D (19). This is

shown in Figure 1 where the main difference compared with

UNet-3D lies in the 2D convolutional block that UNet-2.5D

uses. Following (19) our architecture consists of nine

convolutional blocks where each block consists of two

convolutional layers interleaved with Batch Normalization (20)

and RELU non-linearity (21).

The difference between UNet-3D and UNet-2.5D is the

dimension of the convolutional layer. UNet-3D uses 3D

convolutional layer across its block whereas UNet-2.5D utilizes

2D except for the center or bottleneck block which uses 3D

convolution. In general, the performance of a model is better

with higher number of parameters and convolutions. However,

this is not the case as we will show in our results. The simpler

and lighter UNet-2.5D network – in terms of number of

parameters and operations – significantly outperforms the

UNet-3D network. This is because heavier networks such as
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UNet-3D require more data as there are more parameters

to train.

In a setting where limited data are available such as our case

(i.e., NPC CT images), the parameters will easily overfit the

training data making the model unable to generalize its

prediction to test data.
2.2 Multi-scale training

In general, training time is proportional to the size of the

data fed to the model before it converges. In our case, the GTV in

NPC is smaller relative to the entire patient’s body. Hence

instead of feeding the entire volume as input to the model, we

cropped the input volume along the x, y, and z directions as

suggested by (4) using multiple scales encompassing the GTV.

Five scales are extracted to generate five datasets. These are

extra-small, small, medium, large, and extra-large. The smallest

scale is randomly cropped across x, y, and z direction to extract a

volume that contains the smallest spatial resolution and depth.

By extracting the smallest volume, we ensure that we extract only

the local information of the structure and feature of that given

volume. The largest scale, on the other hand, captures almost the

entire volume with the information extracted mostly globally.

The crop-size used to extract the data for each scale

decreases in a fixed percentage as the scale decreases from

extra-large to extra-small. Along the z direction, the length

(number of slices) of the original input volume is cropped

beginning at 90% with constant decrement of 10% as the scale

decreases. For the x, y dimension, the patch for the large-scale

starts at 100% of the resolution (i.e., 512 x 512 pixels) then cuts
FIGURE 1

The main deep neural network architecture used in our work. It follows the same UNet architecture but with the main use of 3x3x1
convolutions instead of 3x3x3 convolutions employed for 3D volume segmentation. We highlight its effectiveness when used in data-scarce
setting as it is less likely to overfit.
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with decrement of 15% as the scale decreases. This can be seen in

Figure 2. Each of the five datasets generated is then used to train

a corresponding model.

During testing, the outputs of the five trained models given

the same input are aggregated to produce a single result.

Empirically, this produces a much more robust result

compared to simply using a single model because each model

is specialized to a certain scale. Since the features of NPC varies

widely in terms of size and shape, models trained using the

small-scale and large-scale datasets perform better in detecting

tumors that are small and large, respectively.

The rationale behind using multi-scale training is

specializing each model to a certain feature or context of the

volume. As it will be shown, this approach achieves significantly

superior results compared to training a single model.
2.3 Ensemble of models

Five models were trained using the five scaled dataset

obtained via multi-scale cropping: extra-small, small, medium,

large, extra-large. During the evaluation/testing stage, we used a

fixed and uncropped raw CT input scans to evaluate the

performance of each of the five models. Each of the models

was to make a separate prediction in the form of probability

maps. To create a model ensemble, the probability maps from all

the five models for a specific input are averaged to produce a

single probability map. This will be used to create the final

segmentation mask.

Using this model ensemble approach produces a more

robust prediction. Moreover, model ensembles also boost

model performance compared to using a single model. This is

due to having richer and more diverse predictions from each

model that is specialized to a specific scale. The drawback of this

approach, however is the higher computer and memory
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requirements. To mitigate this, the UNet-2.5D is used since it

only uses a single 3D convolution with 2D convolution for the

rest of the layers. This architecture is much more lightweight and

less computationally intensive than 3D convolutions
2.4 Semi-supervised pretraining

2.4.1 Pretext tasks for self-supervised learning
The main pretext tasks used in this work are shown in

Figure 3 which were introduced by (15), these are relative patch

location and rotation pretext tasks. The rotation pre-text task

shown in Figure 3B, is one of the simplest pretext tasks and

therefore can easily be implemented in any setting. The goal of

the rotation pretext task is to simply predict the angle of rotation

for an input data that was rotated for a specific angle. We fix the

possible angles of rotation to 0°, 90°, 180°and 270°. Since there

are three axis of rotations, there will be a total of 10 possible

angles (since 0°is redundant for the three axis) for an 3D input

image. Hence this pretext task is essentially a multi-class (10

classes) classification task where each class consists of a

particular rotation angle for a specific axis. The goal is by

predicting the 3D rotation of each volume, the encoder

network will be forced to learn the structure of the volume

and hence relevant features that can be re-used when making

downstream segmentation tasks. However due to its simplicity,

the features learned at convergence of the rotation pretext task

may not be enough in providing the necessary features for the

downstream segmentation task.

To mitigate this insufficiency, we combine the relative patch

location (RPL) pretext task shown in Figure 3A, which consists

of predicting the location of a query patch relative to a fixed

anchor patch. This self-supervision task enables the model to

learn a much richer structural and finer grained information

within the data. This is crucial for 3D segmentation task since it
FIGURE 2

An input CT scan showing three different scales of the same scan: small, middle, large. Five scales were generated to create the multi-scale
training data.
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needs to understand the structure and spatial features of the

input to correctly predict each voxels. Discretely, the RPL pretext

task is implemented by dividing a 3D input image into a 3×3×3

grid to create a total of 27 non-overlapping patches {xi∈{1,…,N}}.

The central patch xcwill be used as the fixed anchor patch and a

query patch xqwill be randomly sampled from the remaining set

of patches {{yn}. The pretext task trains an encoder model to

learn the location of the query patch with respect to the central

patch by predicting a location yˆq. Since there are total of 26

patches (central patch is excluded), the encoder will be trained

using a multi-class (26 classes) classification similar to the

rotation pretext task. In this case it is predicting the class

location instead of the angle of rotation. However, it is

different in that it needs to fuse both the query and anchor

patch together and make the location prediction based on this

fused information. This is further shown in the following

equation:

LRPL = −o
K

k=1

log p(yqjŷ q, ynf g) (1)

where yqcorresponds to the groundtruth location of

the patch.

2.4.2 Combining pretext tasks for richer
representation

We combined the two pretext tasks shown above in order to

force the encoder to learn a synergy in the feature representation

that is extracted from each image. This is because the encoder

needs to learn how to combine, segregate and choose the

representations that are most relevant for the two tasks. And

since each pretext task have varying objective, the representation

should be compact and sufficient for the two tasks. Moreover, by
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using two pretext tasks simultaneously, the encoder will need to

learn rich and diverse representations that will be much more

useful for the downstream task. Since this is purely self-

supervised, training our encoder network is much more data

and parameter efficient. This is because it can leverage the use of

unlabeled CT scans while using lighter network. The schematic

of our SSL approach is shown in Figure 4 where each image is fed

to two pre-processing blocks before being fed simultaneously to

the encoder network. The overall loss function therefore is

shown below:

L = aLRPL + (1 − a)LRot (2)

where a is the weighting factor to balance and control the

contribution of each pretext task.

2.4.3 Efficient model ensemble
Although model ensemble have been very effective in

improving the performance and robustness of the model by

relying on independent weak learners in traditional machine

learning, it is usually impractical to use it directly in deep

learning. As was discussed above, to create the model ensemble,

five models are trained on five different scales of the dataset which

generates five trained models. This can be computationally

prohibitive especially in very deep network which can be more

expensive than the performance boost it provides. Our proposed

SSL approach can help mitigate this since we can essentially freeze

and re-use the encoder network that was pretrained during the

SSL. We can have essentially a single unified encoder network

while only training or finetuning the decoder of each model in the

ensemble. A diagram of this approach is shown in Figure 5. This

makes our method much more parameter efficient during both

training and inference.
A

B

FIGURE 3

(A) Relative patch location is a pretext task used to pretrain the feature extractor. In practice, the task is a multi-class classification which
predicts the location of a query patch. (B) Rotation pretext task is also casted as a multi-class classification but with rotations as the class.
frontiersin.org

https://doi.org/10.3389/fonc.2022.980312
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Domoguen et al. 10.3389/fonc.2022.980312
3 Materials and methods

3.1 Clinical material

At the outset, it was decided that we would attempt to create

an auto-segmentation or auto-contouring program using

nasopharyngeal tumors. With nasopharyngeal tumors, the

tumors are confined to a single anatomic space and, there is

no need to account for movement, swallowing and breathing.

Additionally, nasopharyngeal cancers are relatively common in

the Philippines, making this work impactful.

A review of census of nasopharyngeal cancer patients at the

Division of Radiation Oncology was done, covering May 2017—

when operations of the linear accelerator started — until

February 2020 — just before the start of the COVID

lockdown. A total of 79 patient records were retrieved.

Patients who were less than 18 years of age and had non-

carcinoma tumors, i.e. lymphomas, sarcomas, were excluded

from consideration. The images of the remaining 63 patients —

44 males and 19 females ranging in age from 18 to 73 and

covering all tumor stages — were used in this paper. Individual

patient consent was waived because of the use of just the images

and the retrospective nature of this study. A total of 50 healthy

patients were also collected to be used for the semi-supervised

pretraining of the encoder network.

Shown in Table 1 are the baseline characteristics of the 63

NPC patients included in this study. Fifty-three (53) of these

patients were randomly selected to be used in the training and

validation of our models. The remaining ten (10) patients were

utilized during testing. Majority of patients included in the study

were male. More than half of patients had T4 disease based on

the American Joint Committee on Cancer (AJCC) Cancer

Staging Manual Eight edition for nasopharyngeal carcinoma.
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Simulation computed tomography (CT) images with

contrast were acquired using a SOMATOM Emotion 16

(Siemens Healthineers). All patients were positioned in supine

and immobilized using a head, neck, and shoulder thermoplastic

mask. Scanning range was from vertex to carina. Obtained CT

images were reconstructed using a matrix of 512 × 512 with

thickness of 3.0 mm. Delineation of the primary gross tumor

volume on CT images was then performed by an experienced

radiation oncologist. The contoured images — all in DICOM

format — were anonymized before being subjected to computer

“training.” Ten (10) image sets were randomly chosen and used

initially for testing. The remaining fifty-three (53) image sets

were used in the training and validation of the software model.

For training to commence on these images, these had to be in a

suitable format to be processed by the proposed deep learning

model. The array volumes (3D tensor) were extracted from the

DICOM files, ensuring isotropic resolution. A uniform

resolution of 1.0 ×1.0×3.0mm3 was enforced. The Hounsfield

Units (HU) of all images (originally ranging from -1024 to 3071)

were truncated and normalized to [-150, 500]. All values above

and below this range were set to zero.
3.2 Data preprocessing and
augmentation

3.2.1 Data preprocessing
The actual raw data that is frequently used by radiation

oncologists are in a DICOM (22) format and while it is

extremely useful in their specialized software tools, it cannot

be directly processed by our deep learning model. It needs to be

cleaned and transformed to a suitable format for training and

inference. The first step is the extraction of the array volume (3D
FIGURE 4

Proposed combination of semi-supervised learning pre-text tasks.
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tensor) from the DICOM files and ensuring an isotropic

resolution. Although the thickness of each patient’s CT scan

are all 3.0 mm, the x,y pixel spacing range varies from patients to

patient. We therefore enforce a uniform resolution of 1.0

×1.0×3.0mm3 for the x, y, z spacing by uniform interpolation.

Afterwards, since the raw array values of the DICOM files are in

Hounsfield unit which ranges between -1024 and 3071 HU for

each voxel, we truncate and normalize their values. We find that

for body and NPC, they have a distinct distribution of

Hounsfield values. We therefore truncated the Hounsfield

values to [-150,500] where outside these range are all

automatically set to zero. This are then finally normalized

to [0,1].
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3.2.2 Data augmentation
Since we have very little training data, there is a high chance

that the model may overfit hence we employ different data

augmentation techniques that can increase data samples and

thus improve model performance. We employ the most effective

data augmentation techniques: rotation, flipping, cropping and

transposing which are randomly applied across the x,y,z

dimension for each batch size iteration during training.

Flipping is also especially important as observed by (23),

which highlighted that it improves the model’s robustness on

different tumor shapes and which is especially important for our

use case because NPC has many different shapes.
3.3 Evaluation metrics

There are a total of eight evaluation metrics used in the

experiment, the primary performance evaluation metric and

most commonly used ones are the Dice-Similarity Coefficient

(DSC) and Intersection-OverUnion (IOU) metrics. Both metrics

measure the same overlap between the groundtruth and the

predicted mask and have a range between 0 and 1 where 0 means

totally no overlap and 1 means perfect overlap. Though it may be

tempting to view both metrics functionally equivalent, their

distinction arises when taking their average values across set of

samples. Specifically, IOU score penalizes wrong predictions

much more than DSC. Thus IOU score can be thought of as

measuring the lower bound of the model performance while the
FIGURE 5

Architecture of model ensemble with a single encoder network while finetuning three decoder networks. Note that the encoder is frozen and
thus will not be affected during finetuning.
TABLE 1 Demographic characteristics of the NPC patients included
in the study.

Characteristics Total number of patients
n = 63

Median age (range) 45 (18 – 73)

Sex

Male 44

Female 19

T classification

T1 6

T2 10

T3 14

T4 33
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DSC measures the average model performance across the test

data. We can expect therefore that IOU usually outputs a

significantly lower score compared to DSC. This is highlighted

later in the section.

The two other metrics are grouped under the distance metric

which measures the distance between two sets that contain point

coordinates from both the groundtruth and points predicted by

the segmentation model. These metrics are the Average

Symmetric Surface Distance (ASSD) and the Hausdorff

Distance. The ASSD determines the average difference (24)

between the surface of the predicted and groundtruth volumes.

The surface points from both the prediction and groundtruth

surfaces are sampled from a set of points that are not part of a

predefined neighborhood. These points can be thought of as the

outlier or the gap with respect to the groundtruth surface. The

closest distance of each of these outlier points are then taken

against the points in the other surface. The average distance of

these points will be the ASSD which will be in a mm unit. ASSD

score will be 0mm for perfect segmentation, with increasing

score corresponding to worsening performance of the model.

The Hausdorff Distance is similar to the ASSD except that it does

not measure the average distance between outliers of two

surfaces, but rather measures the maximum distance of

randomly samples points from the two volumes to create two

sets. The Hausdorff Distance is then the maximum distance from

a point in one set to the closest point in the other set. Again the

lower the distance, the closer the points between the groundtruth

and predicted volumes are.

The final four metrics are: sensitivity, relative volume error,

and positive predictive value (PPV). These are the most

commonly used metrics for medical image segmentation in

deep learning. The sensitivity, also referred to as true positive

rate quantifies the model’s ability to correctly detect the voxels

that is indeed an NPC or tumor. It measures the proportion of

voxels in the volume that are truly tumors and are correctly

detected by the model. Finally the PPV is simply the ratio of

voxels that were correctly identified as tumors to the voxels that

were identified to be tumors. Or essentially it is the probability

that the voxels that were predicted as tumors are indeed tumors.
3.4 Post-processing

Post-processing involves the aggregation of the individual

model prediction in the ensemble and a heuristic-based post-

processing to further refine the prediction. It has been observed

that the aggregated output from the model ensemble still have

some residual volumes that are sparsely distributed and are not

attached from the largest volume prediction. Since it is assumed

that we are only predicting the primary tumor volume, the final

prediction should only have a single large solid volume. Hence

we first perform a series of morphological operation (i.e., erosion

and dilation) to remove the edges in the volume. Afterwards, for
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each 2D-slice of the volume, a contour search is applied to get

only the largest 2D contiguous mask and removing the

remaining 2D contours. This operation is applied across all

the slice in a volume essentially taking only the largest connected

region as the final volume prediction.
3.5 K-fold cross validation and
implementation details

Since there are a total of 63 patients, we performed 7-fold

cross-validation where 54 patients are used for training and

validation and the remaining 9 patients will be used for

evaluation for the final model. The final performance is

averaged across the seven folds. During the training run,

training validation data for each fold is split 80/20 respectively,

where the validation is used to tune the hyperparameters. After

finding the optimal hyperparameters, the training and validation

data are combined to generate a final model which will be

evaluated on the test dataset.

All the experiments were implemented using the Pytorch

deep learning framework using NVIDIA RTX 2080Ti Graphical

Processing Unit (GPU) 11GB. The ADAM (25) optimizer was

employed to train our deep learning network using an initial

learning rate of 1 × 10−3 and with a decay factor of 1 × 10−4 for

every 150 epochs. The whole training-validation run takes a total

of 900 epochs using 32 batchsize for each iteration. Moreover,

random cropping is done where volume of patches is randomly

extracted from each patient volume and fed to the network. This

approach mitigates the memory constraint in the GPU and

speeds up loss convergence. This is applied for the whole five-

scaled dataset to generate five pretrained models for inference

and testing.
4 Results and discussion

4.1 Method comparison

We evaluate first our proposed approach(UNet-2.5D)

against different architectures commonly employed for medical

image segmentation. The other architectures tested are UNet-

3D, VNet and the UNet + Project Excite(PE) + Attention

Module(AM) by (4) proposed specifically for the segmentation

of GTV in NPC. We show that with the simpler UNet-2.5D

architecture, it significantly outperforms the generic UNet

architectures as well as the network proposed by (4).

Moreover, we compare our method on popular architectures

that has gained state-of-the-art performance on multiple

benchmark dataset. One is the Generic Autodidactic Models or

Genesis model proposed by (26). The Genesis model aims to

provide a generic source model that can be transferred on

different application-specific target task. It achieved broad
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performance improvement over different medical segmentation

benchmark dataset from chest to brain data. In our case we use

their pretrained UGenesis model trained on chest CT as our base

model then finetune it to our dataset. Another very popular

method that achieved multiple SOTA results is the no-new-Unet

or nnUNet by (27). They have shown that for a fully optimized

network, “architectural tweaking” provides no improvement in

the segmentation performance, and the influence of non-

architectural aspects in segmentation methods is much more

impactful. nnUNet offers an end-to-end automated pipeline that

is adaptable to any medical dataset. It has an automated pipeline

for preprocessing, data augmentation, and post-processing. It can

also automatically infer important hyperparameters such as

normalization, resampling and batchsize optimized for the

given dataset. For our case, we employ the nnUNet for all the

three available architecture types: 2D, Fully 3D and Low

Resolution 3D. We use the same seven-fold cross validation for

all the evaluation runs.

Except for nnUNet, all the different segmentation methods

made use of themedium-scale preprocessed data as their training

set. This is because data preprocessing from raw data is part of

nnUNet’s automated pipeline.

The quantitative results for DSC, IOU, PPV and RVE are

shown in Table 2. These values are the average value (and

standard deviation) from the seven fold cross-validation

discussed above. Results show that UNet-2.5D network

generally outperforms the other methods except in PPV. Since

the bulk of the convolutional blocks used in our network is 2D

convolutions, this may suggest that for the segmentation of gross

tumor volume in NPC, the across-slice or depth-wise

information does not really improve the performance. This

also means that the 2D spatial information is more than

enough to achieve high predictive performance. Moreover, it

seems adding 3D information in predicting each voxel may

actually hurt the segmentation performance as shown in VNet

and UNet-3D architectures. This may be due to the structural

characteristics of the NPC tumor itself, which has a random and

irregular tumor structure. Aside from not adding any

performance benefits, the added parameters using 3D
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convolution will only hurt performance because of overfitting.

This makes the proposed approach not only much more

powerful in segmenting NPC tumors but more efficient as it

mostly uses 2D convolution with a single 3D convolution at the

bottleneck region of the network.

Although the method proposed by (4) was able to achieve

the highest PPV in Table 2, the addition of Projection-Excitation

and Attention-Module blocks did not significantly achieve high

performance on the other metrics.

Our method was also compared on other nnUNet and

UGenesis family which were all outperformed by our method.

The nnUNet “3D low resolution” variant was able to achieve the

highest DSC score but generally under performed in relative to

even the generic networks. UGenesis with the use of a pretrained

model significantly underperformed across all the metrics. This

is probably due to overfitting as the number of parameters and

network architecture of UGenesis is much deeper.

Results for ASSD, Hausdorff distance and sensitivity for the

different architectures are shown in Table 3. Compared to Table 2,

our method was only able to decisively outperform other methods

in the sensitivity metric. The highest performance for the ASSD

and Hausdorff metrics were achieved generally by the nnUNet

family although our method is still relatively competitive

especially in ASSD metric where our method is statistically

equal when taking into account their standard deviation.
4.2 Ensemble results

As discussed above in order to create a more robust, less

data-scale dependent model as well as to boost performance, we

generated five versions of the training dataset with different

scales and generated five models to create an ensemble of model.

We used our proposed architecture for the architecture of all the

five models which we have established to be superior on majority

of metrics in Tables 2, 3. These five models constituted the

model ensemble. The performance of each model in the

ensemble is shown in Table 4. As shown, models have

different performance across different data scale. Notably the
TABLE 2 Comparative result of different deep neural network architectures for DSC, IOU, PPV and RVE.

Method DSC (%) ↑ IOU (%) ↑ PPV (%) ↑ RVE (%) ↓

UNet-3D 66.01 ± 5.29 43.54 ± 3.49 86.03 ± 6.89 55.14 ± 4.42

VNet 64.25 ± 7.06 46.74 ± 5.13 70.23 ± 7.71 59.55 ± 0.86

UNet-2.5D+PE +AM 67.54 ± 2.16 51.15 ± 1.63 90.32 ± 2.87 38.21 ± 1.22

UGenesis 58.30 ± 7.31 41.68 ± 5.22 83.35 ± 10.44 45.24 ± 5.67

nnUNet-2D 63.14 ± 5.52 52.68 ± 4.61 63.69 ± 5.57 12.57 ± 1.10

nnUNet-3D Full 65.50 ± 8.43 54.65 ± 7.03 66.01 ± 8.50 13.05 ± 1.68

nnUNet-3D Low Res. 66.22 ± 7.94 55.25 ± 6.63 66.80 ± 8.01 13.19 ± 1.58

UNet-2.5D (Ours) 72.47 ± 4.10 60.46 ± 3.42 73.09 ± 4.14 14.43 ± 0.82
f

↑ means that higher means better while ↓ symbol means lower is better.
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model trained with medium-scale outperformed the rest of the

models including the aggregated ensemble performance for

the DSC and RVE metrics, while the model trained on extra-

small scale data achieved the best performance for the IOU

metric. This means that some data scales offer the optimal

information for different metrics, such as tumor’s structure,

topology and texture which are more likely to be emphasized

in a specific data scale. The optimal inference therefore can be

obtained by averaging and combining the predictions of the five

models. In a way by coming the predictions, the voxel tumor that

were missed by one model because it was trained on small scale

dataset may be found by model trained on the large-scale

dataset. This is very useful especially in the case of NPC

segmentation where the GTV have diverse morphology and

sizes. This mimics a kind of majority voting for a specific voxel

across the models which makes it much more robust. This also

offers a kind of confidence for the model prediction.

Furthermore, this allows us to measure uncertainty of

model prediction.

We also evaluated the performance of each model in the

ensemble for ASSD, Hausdorff distance and sensitivity. The

highest performance for ASSD and Hausdorff metrics where

conclusively achieved by the ensemble-model. This makes sense

since most of the uncertainty and difference in segmentation

occurs around the boundary of the GTV. By using the prediction

of the ensemble model, the boundary predictions have more

confidence (when majority of models predict that a boundary

voxel is a GTV) and false positive predictions are removed

(when only a single model predicts that a voxel is a GTV).

Although the ensemble model was not able to achieve the best

performance for the sensitivity it is still relatively close

and competitive.
4.3 Semi-supervised learning
pretraining results

As mentioned in the discussion above, we used a semi-

supervised learning method through the combined Rotation
Frontiers in Oncology 11
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+RPL pretext tasks training to generate an encoder block that

can extract sufficient representation even with few data.

Moreover as the encoder block is assumed to be capable to

extract sufficient representation for segmentation performance

we can therefore freeze the encoder block during finetuning for

the GTV segmentation. This effectively means that we will only

finetune and train the decoder block which is very efficient

especially when employing multi-scale training for model

ensemble. This is quantitatively shown in the number of

network parameters that needs to be trained when using a full

model compared when the encoder is frozen, as shown

in Table 5.

The number of parameters for the full UNet-2.5D network is

more than 4x the number of parameters compared to when the

encoder is frozen which makes sense since the encoder or feature

extractor is the backbone network. This efficiency is further

increased when doing a full ensemble model as we do not need to

create separate encoders across different models trained on

different data scale since we can re-use the frozen encoder.

Since the power of a network depends directly on the number of

parameters that it can use to model the data, performance will

naturally degrade if you use fewer parameters however since the

encoder was pre-trained, the knowledge it gained during the

pretext task is very useful and transferable during

the segmentation of GTV and there might no significant

performance degradation. In our case, we observed minimal

performance degradation compared to the performance shown

in Tables 4, 6, which we performed the same exact evaluation.

These results are shown in Tables 7, 8. For Table 7, there is very

small performance degradation in the model ensemble

performance for DSC and RVE metrics. In fact for the IOU

and PPV metric, the model ensemble performance with the SSL-

trained encoder achieves higher performance albeit slight

increase. Hence this method is not only much more parameter

efficient but is actually on par with the performance of a

full model.

The model ensemble performance of the SSL-trained

encoder in the distance metrics shown in Table 8 shows a

relatively steeper performance degradation. For the ASSD and
TABLE 3 Comparative results using distance metric as another measure between predicted and groundtruth contours.

Method ASSD (mm) ↓ Hausdorff (mm) ↓ Sensitivity (%) ↑

UNet-3D 7.55 ± 0.61 27.83 ± 2.23 59.56 ± 4.77

VNet 7.84 ± 0.86 33.28 ± 3.65 50.61 ± 5.45

UNet-2.5D+PE +AM 5.42 ± 0.17 25.52 ± 0.81 55.87 ± 1.78

UGenesis 6.15 ± 0.77 25.61 ± 3.21 49.86 ± 6.25

nnUNet-2D 3.31 ± 0.28 14.58 ± 1.27 63.91 ± 5.59

nnUNet-3D Full 3.43 ± 0.44 15.12 ± 1.95 66.29 ± 8.83

nnUNet-3D Low Res. 3.47 ± 0.42 15.29 ± 1.83 67.03 ± 8.04

UNet-2.5D (Ours) 3.79 ± 0.21 16.73 ± 0.94 73.35 ± 4.15%
↑ means that higher means better while ↓ symbol means lower is better.
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Hausdorff metrics, the full model previously achieved 4.22mm

and 15.73mm respectively while the SSL-trained encoder

degraded to 6.49mm and 16.22mm. However in the sensitivity

metric, SSL-trained encoder outperformed the sensitivity value

achieved in the previous model-ensemble, 72.65% vs. 71.43%.

Aside from parameter efficiency, a more important benefits

that the SSL-trained encoder can provide is data efficiency. More

specifically labelled data efficiency which means that a model can

achieve a specific level of performance with only a fraction or

portion of the data. This has a greater practical advantage both to

the doctors and annotators. They can save much more time and

effort in generating, collecting and actually annotating data if the

model requires much fewer data to achieve a specific baseline

performance. We test to see the effectiveness of using SSL-

trained encoder in achieving data efficiency. To see this we use

different portions of the labelled data for training and evaluate

their DSC. Moreover we compare the performance of the SSL-

trained encoder to the full model to essentially see whether the

use of SSL-trained model is indeed data efficient. The

quantitative results for this experiment are shown in Table 9

which shows that an SSL-trained network with frozen encoder

significantly outperforms the full model especially with very

limited number of data as highlighted when the portion of

labelled data is 10% and 30%, the SSL-trained frozen encoder

was able to outperform the full model by 38.64% and 31.08%

higher performance respectively. This shrinks as the number of

data increases which is later outperformed by the full model

when the full dataset is available. Again, the full model is using

more than 4x the number of parameters compared to the SSL-

trained network with frozen encoder. This effectively highlights

the usefulness of using SSL-trained frozen encoder.
Frontiers in Oncology 12
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5 Conclusion and recommendations

Nasopharyngeal carcinoma, a cancer common in Asia and

Africa, is currently treated with a combination of chemotherapy

and radiotherapy. To achieve precise radiation treatments,

accurate target delineation is critical but not always easy,

especially in the head and neck area where not only the gross

tumor volume requires delineation and contouring, but also the

lymph node drainage areas and the numerous organs at risk.

Target delineation on CT scan images takes time, knowledge and

experience. Automatic segmentation can make this task more

objective and efficient.

The use of deep learning is a continuously progressing

direction in advancing modern medical imaging. This work

hopes to be an addition in advancing this goal. Although data

scarcity has always been an issue especially in the medical field,

we have been able to design and create a deep learning model

that is able to perform automatic contouring of gross tumor

volume of nasopharyngeal cancer (NPC).

Compared with other architectures, our proposed method is

able to significantly outperform other architectures in

segmenting NPC. Furthermore, our method is much more

efficient as it uses only 2D convolution compared to 3D

convolutions used by other architectures.

This highlights that in NPC, 2D convolution is enough and

may suggest that across slice information does not only improve

performance but degrades it. This may be a result of NPC’s

structure and topology, in that it forms no regular pattern in its

structure but are random and irregular. Hence, the across-slice

information adds little information to the model during training.

Moreover, we also leverage a multi-scale training data using

five different scales. This allowed us to generate an ensemble of

models that is more robust than the individual model. More

importantly we have employed the use of semi-supervised

learning through the combined rotation and relative-patch-

location pre-text tasks to pretrain and freeze an encoder

network. This made it 4 times more efficient in terms of the

number of parameters required as well as very data efficient. We

have shown that even with a portion of labelled data we are able
TABLE 5 UNet-2.5D parameter comparison.

Network setting Number of parameters

Full Model 3,845,058

Decoder Only (Frozen Encoder) 895,122
TABLE 4 Model ensemble performance for DSC, IOU, PPV and RVE, where each data scale corresponds to a separate and unique model trained
on that specific data scale.

Model ensemble performance

Data-scale DSC (%) ↑ IOU (%) ↑ PPV (%) ↑ RVE (%) ↓

Extra-Small 69.85 ± 4.06 61.23 ± 3.56 74.18 ± 4.31 16.56 ± 0.96

Small 72.13 ± 3.20 58.93 ± 2.62 76.32 ± 3.39 15.15 ± 0.67

Medium 72.47 ± 4.10 60.46 ± 3.42 73.01 ± 4.14 14.44 ± 0.82

Large 71.06 ± 3.31 58.12 ± 2.71 67.86 ± 3.16 26.35 ± 1.41

Extra-Large 66.41 ± 6.44 54.62 ± 5.30 68.92 ± 6.68 16.10 ± 1.56

Ensemble Model 72.02 ± 4.13% 60.87 ± 3.40 74.61 ± 4.19 15.97 ± 0.83
f

↑ means that higher means better while ↓ symbol means lower is better.
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to reach close performance by a model trained from scratch but

using all the training. This has a much greater practical usage in

terms of the time and resources needed to collect and annotate

the data. Moreover it allows one to exploit and take advantage of
Frontiers in Oncology 13
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the abundant data of healthy patients. We believe for future

works, that achieving higher performance with fewer data will

gradually become the central focus of researchers as use of

medical data tightens.
TABLE 6 Distance metric results of the model ensemble for each data scale highlighting the effectiveness of the model ensemble.

Model ensemble performance with distance metric

UNet-2.5D-Scale ASSD (mm) ↓ Hausdorff (mm) ↓ Sensitivity (%) ↑

Extra-Small Scale 3.87 ± 0.22 21.98 ± 1.28 67.69 ± 3.93

Small 4.28 ± 0.19 27.70 ± 1.23 69.80 ± 3.01

Medium 3.79 ± 0.21 16.73 ± 0.95 73.35 ± 4.15

Large 4.64 ± 0.21 22.04 ± 1.03 77.74 ± 3.62

Extra-Large 7.07 ± 0.68 21.21 ± 2.05 65.72 ± 6.37

Ensemble-Model 4.22 ± 0.29 15.73 ± 0.89 71.43 ± 4.20
↑ means that higher means better while ↓ symbol means lower is better.
TABLE 7 Model ensemble performance for DSC, IOU, PPV and RVE using a single unified SSL-pretrained encoder hence, effectively training only
the decoder block.

Ensemble performance with a frozen SSL-Pretrained encoder

Data-Scale DSC (%) ↑ IOU (%) ↑ PPV (%) ↑ RVE (%) ↓

Extra-Small 71.05 ± 2.32 62.28 ± 2.04 75.46 ± 2.46 16.84 ± 0.55

Small 71.68 ± 2.55 58.56 ± 2.09 75.84 ± 2.70 15.05 ± 0.54

Medium 71.76 ± 2.48 59.87 ± 2.07 72.38 ± 2.51 14.29 ± 0.49

Large 70.97 ± 3.17 58.06 ± 2.59 67.80 ± 3.03 30.32 ± 1.35

Extra-Large 65.18 ± 4.87 53.61 ± 4.01 67.64 ± 5.05 15.80 ± 1.18

Ensemble Average 71.16 ± 2.93 61.62 ± 2.44 75.59 ± 2.95 15.37 ± 0.52
f

↑ means that higher means betterwhile ↓ symbol means lower is better.
TABLE 9 The DSC segmentation performance using the medium-scale dataset for SSL-trained encoder vs. full model.

% of labelled data frozen encoder (%) Full model (%) Percentage difference

20% 64.18 ± 2.35 46.29 ± 1.70 +38.64%

30% 64.95 ± 2.07 49.55 ± 1.58 +31.08%

50% 68.89 ± 2.93 61.75 ± 2.62 +11.56%

100% 71.76 ± 2.48 72.47 ± 4.10 -0.98%
TABLE 8 Distance metric performance results using a single unified encoder block for multiple decoder for a specific data scale.

Distance metric performance with a Frozen SSL-Pretrained encoder

UNet-2.5D-Scale ASSD (mm) ↓ Hausdorff (mm) ↓ Sensitivity (%) ↑

Extra-Small Scale 3.93 ± 0.13 22.36 ± 0.73 68.86 ± 2.25

Small 5.23 ± 0.15 28.70 ± 0.98 69.36 ± 2.47

Medium 3.56 ± 0.13 15.57 ± 0.57 72.64 ± 2.51

Large 4.14 ± 0.20 20.42 ± 0.85 78.38 ± 3.47

Extra-Large 8.47 ± 0.78 20.82 ± 1.55 64.51 ± 4.82

Ensemble-Average 6.49 ± 0.37 16.22 ± 0.64 72.65 ± 3.08
↑ means that higher means better while ↓ symbol means lower is better.
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Aparotidneoplasm is anuncommoncondition thatonly accounts for less than3%

of all head and neck cancers, and they make up less than 0.3% of all new cancers

diagnosedannually.Due to their nonspecific imaging featuresandheterogeneous

nature, accurate preoperative diagnosis remains a challenge. Automatic parotid

tumor segmentation may help physicians evaluate these tumors. Two hundred

eighty-five patients diagnosed with benign or malignant parotid tumors were

enrolled in this study. Parotid and tumor tissueswere segmented by 3 radiologists

on T1-weighted (T1w), T2-weighted (T2w) and T1-weighted contrast-enhanced

(T1wC) MR images. These images were randomly divided into two datasets,

including a training dataset (90%) and an validation dataset (10%). A 10-fold

cross-validation was performed to assess the performance. An attention base

U-net for parotid tumor autosegmentation was created on the MRI T1w, T2 and

T1wC images. The resultswereevaluated in a separate dataset, and themeanDice

similarity coefficient (DICE) for bothparotidswas0.88. ThemeanDICE for left and

right tumors was 0.85 and 0.86, respectively. These results indicate that the

performance of this model corresponds with the radiologist’s manual

segmentation. In conclusion, an attention base U-net for parotid tumor

autosegmentation may assist physicians to evaluate parotid gland tumors.

KEYWORDS

parotid, auto-segmentation, artificial intelligence (AI), neoplasms, diagnosis
Introduction

Parotid tumors are uncommon neoplasms, accounting for less than 3% of all head and

neck cancers (1). Unfortunately, a lack of early detectionmay lead to tumor progression, and

nearly 20% of untreated polymorphic adenomas will become malignant tumors (2). In

addition, 80% of salivary gland tumors occur in the parotid gland, of which 21% to 64% are
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malignant (3). Due to the absence of specific imaging findings

(parotid tumormayhavedifferent appearance inMR images), their

heterogeneous clinical nature, accurate diagnosis before surgery

remains a challenge (4).

Similar to lung nodule detection, automatic parotid tumor

segmentation may facilitate physicians evaluating these parotid

tumors. It can be used to inspect the MRI image and highlight

the tumor region. At the same time, with the progress of

quantitative image analysis technology, we can construct a

quantitative imaging model of parotid gland tumors through

accurate and consistent automatic segmentation of tumors,

which can be used to predict the pathological type and

prognosis of the patients (5).

In this study, we developed and assessed an autosegmentation

model for parotid tumors that can be used to improve the imaging

evaluation of these conditions. This proposed model was also

compared to other model architectures. Since we combined three

MRI sequences, the value of each MRI sequence was investigated.

Methods

The study workflow is presented in Figure 1. Patient parotid

MR images were exported from PACS. Parotid and tumor tissues

were segmented by 3 radiologists based onT1-weighted (T1w), T2-

weighted (T2w) and T1-weighted contrast-enhanced (T1wC) MR

images. A 10-fold cross-validation was performed to assess the

segmentation performance. These images were randomly divided

into two datasets, including a training dataset (90%) and an

validation dataset (10%). The autosegmentation model was

trained on the training dataset, and its performance was then

tested on the validation dataset. This retrospective study was

approved by the Institutional Review Board of Fudan University

Shanghai Cancer Center and Taizhou Municipal Hospital, and all

methods were performed in accordance with the guidelines and

regulations of this ethics board. The Hospital Ethics Committee

agreed to the informed consent waiver.

Patients and MRI image acquisition

Two hundred eighty-five patients diagnosed with benign or

malignant parotid tumors from two institutions were enrolled in

this study. Among these patients, 185 were male and 100 were

female; the mean age of the patients was 52.4 years (range, 21–93

years). These patients were treated from 2014 to 2018. All

patients received surgical resection and had a pathology

report. The patient characteristics are shown in Table 1. All

patients received a parotid site MRI scan before treatment. Three

MR scanners were used to acquire these images, and details of

the image parameters are shown in Table 2. The scan parameters

were based on our parotid image protocol and were adjusted

during scanning based on image quality by the MRI operator.
Abbreviations: DICE, Dice similarity coefficient.
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Tumor and parotid manual delineation

Parotid tumors were distinguished on axial thin-Section

T1w, T2w and T1wC MR images and segmented by three

experienced radiologists (>5 years of experience) in MIM

(version 6.8.10, Cleveland, US). These three series were

registered and fused before segmentation. The radiologists

were required to distinguish the pathology type of the parotid

tumor before delineation. Each radiologist segmented

approximately 90 patients. To make the delineation between

different radiologists consistent, all delineations were reviewed

by one senior radiologist (more than 10 years’ experience). To

improve the performance of the tumor delineation, the parotids

were also segmented.

The attention U-net

A 2D U-Net with an attention module was used in this task.

This network was inspired by the application of an attention

mechanism to medical image deep learning-based segmentation

(6–8). The basic structure of the model is shown in Figure 2. The

input (512 x 512 x 3) was obtained from MR images. The

channels were combined from the T1w, T2w and T1wC

sequences. The output (512 x 512 x 4) contained 4 channels

for 4 ROIs, including the left parotid, right parotid, left tumor

and right tumor. The U-net was constituted by encoder and

decoder parts. The encoder part was constituted by 12 convolution

blocks and 4max pooling blocks. The convolution block had a 3x3

convolution layer, batch normalization layer and rectified linear

unit (ReLU) layer. The maximum pooling layer was used to

downsample the features. Similarly, the decoder part was

constituted by many convolution blocks and upsampling blocks.

The convolutionblockwas the sameas the encoderpart, usinga3x3

convolution layer, batch normalization layer and rectified linear

unit (ReLU) layer. The skip connection was used to connect the

encoder and decoder parts with the same feature map size. An

attention gate was placed in these skip connections to improve the

segmentation results. Because the slices thickness (4~7.2 mm) was

larger than the pixel size (0.4~1mm), MR images were not be

resampled to isotropy resolution. And

The tumor and parotid tissues were relatively small compared

to the entire image size. The attention mechanism was used to

create amodel focusedon local regions that extractedmore relevant

features from the featuremaps. Amaskwith pixel values between 0

and 1 was generated by a sigmoid activation function. By

multiplying the mask by feature maps, the region of interest

remainedunchanged, and the restof the featuremapwas set tozero.

Model training

Before input into the model, the gray value of the MR images

was centralized to0.5 and scaled to [0, 1].No spatial resamplingwas

performed in the preprocessing stage. We used the original pixels,
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which means that different patients may have different pixel

spacings. The loss used in this phase was 1- DICE index. The

wholemodelwas trained for 200epochswitha learning rateof 1e-4,

and the optimizer was RMSprop. The training procedure took

approximately 20 h to complete on one 2080 ti GPU (Nvidia, Santa

Clara, CA). The Python deep learning library pytoch (version 1.5)

was applied to establish this autosegmentation system.
Next, a data augmentation method was performed. Two

argumentation processes were implemented: gray level

disturbance and shape disturbance. For gray disturbance, the

gray value of the MR image was multiplied by a random number

[0.9~1.1], and a random number [-0.1~0.1] was added. This

random number was added to the normalized image. For shape

disturbance, MR images and binary contour images were

deformed using affine transformation. The augmentation

method was the same as that in our previous study (9).
FIGURE 1

The whole study workflow. The parotid MR images were randomly divided into two datasets, including training and evaluation. Then, the
performance was assessed on the validation dataset. Tenfold cross-validation was used to obtain a reliable result.
TABLE 1 Patient characteristics.

Characteristics

Age 52.4 (21~93) years

Sex Male 185 (65%)

Female 100 (35%)

Pathology Type Warthin tumor 62 (21.5%)

Pleomorphic adenoma 90 (31.4%)

Adenocarcinoma 80 (28.0%)

Basal cell adenoma 6 (2.0%)

Lymphoma 30 (10.1%)

Others 20 (7.0%)

Site Left 127 (44.6%)

Right 140 (49.1%)

Both 18 (6.3%)
frontiersin.org

https://doi.org/10.3389/fonc.2022.1028382
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xia et al. 10.3389/fonc.2022.1028382
Meanwhile, to increase the training samples, we mirrored images

(and adjusted for the corresponding left and right labels) with a

probability of 0.5.

To investigate the impact of eachMRI sequence, 6models with

different image sequence combinationswere trained and evaluated,

includingT1wonly, T2wonly, T1wConly, T1w+T2w, T1w+T1wC

and T2w+T1wC.

Comparison to other models

Three other models, including DeepLab Version 3 (10),

attention U-Net (11) and PSPNet (12), were trained on the same

dataset. Somemodifications were performed, such as changing the

output channels and changing the softmax function to a sigmoid
Frontiers in Oncology 04
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function. The same training hyperparameters were used, and all

models converged after 200 epoch iterations.

Performance evaluation

Four indices were calculated for performance evaluation,

including the Dice similarity coefficient (DICE), the Jaccard

similarity coefficient (JACCARD), the 95% percentile of

Hausdorff distance (HD95) and the average Hausdorff distance

(AHD). The DICE and JACCARD are computed by the following:

DICE  =  2 A ∩ Bj j= Aj j + Bj jð Þ (1)

JACCARD  =   A ∩ Bj jð Þ=( A ∪ Bj j) (2)
TABLE 2 MR scan parameters.

Signa HDxt (GE) Verio (SIEMENS) Skyra (SIEMENS)

Patients 218 (76.5%) 34 (11.9%) 33 (11.6%)

T1-weighted TR (Repetition Time) 280~540 ms 450~620 ms 250~1560 ms

TE (Echo Time) 8.5~10.4 ms 12~16 ms 2.5~12 ms

T2-weighted TR (Repetition Time) 2740~3600 ms 2500~5240 ms 2500~5790 ms

TE (Echo Time) 84~88 ms 78~91 ms 78~83 ms

T1-weighted contrast enhanced TR (Repetition Time) 175~280 ms 4.1~6.0 ms 3.7~6.0 ms

TE (Echo Time) 1.8~3.4 ms 1.5~2.5 ms 1.4~2.4 ms

Contrast Agent Gadopentetic acid Gadopentetic acid Gadopentetic acid

Slice Thickness 5~7 mm 4.5~7.2 mm 4.0~6.0 mm

Pixel size 0.4~0.6 mm 0.65~0.97 mm 0.4~0.85 mm
FIGURE 2

The structure of the attention-based U-Net. The input of the network is three MR images, and the output of the network is the four segmentations.
The attention gate structure is shown in the left corner.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1028382
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xia et al. 10.3389/fonc.2022.1028382
where A represents the volume of the manual segmentation, B

represents the volume of the autosegmentation, | · | denotes the

volume of truth or predicted ROIs, |A∩B| indicates the volume

sharedbyAandBand |A∪B| represents the total volumeofAandB.

Larger DICE and JACCARD values indicate more accurate results.

Results

Segmentation results

A 10-fold cross-validation was used in this study. A total of

256 (90%) patients were used for model training, and 29 (10%)

patients were used for model evaluation and performance

assessment. Training was converged after 200 epoch iterations.

The results of the validation dataset are shown in Figure 3. It can

be observed that the performance of the validation dataset has a

relatively large variation.

For the results of the cross-validation, the mean DICE for

both parotids was 0.88, and the mean DICE for left and right

tumors was 0.85 and 0.86, respectively. The mean JACCARD for

left and right parotids was 0.79. The mean JACCARD for left
Frontiers in Oncology 05
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and right tumors was 0.78 and 0.80, respectively. The 95% ranges

for left and right parotid DICE were 0.77-0.94 and 0.75-0.95,

respectively. The 95% ranges for left and right tumor DICE were

0.37-1.00 and 0.30-1.00, respectively. Detailed values of these

results are provided in Supplementary Table S1. Figure 4

demonstrates a result on a left parotid tumor patient.
Comparison to other models

The performance of three other models, including DeepLab

Version 3 (10), attention U-Net (11) and PSPNet (12), is

presented in Table 3. Since all of the models were trained on

the same training dataset, this comparison provides insight into

the performance of the proposed model.
The impact of MRI sequences

The performance of models with different MRI sequences is

presented in Table 4. For parotid gland segmentation, one MRI
A B

DC

FIGURE 3

Results of the validation dataset. The horizontal lines indicate themedian values. (A) The DICE value for the training and validation dataset. (B) JACCARD value
for the training and validation datasets. (C) The HD95 value for the training and validation datasets. (D) The AHD value for the training and validation datasets.
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sequence can achieve segmentation performance similar to that

of a combination of three MRI sequences. However, for tumor

segmentation, combining three image sequences can provide the

best performance. Among the three MRI sequences, T1w

performed better than the other two.
Discussion

In this study, we implemented an attention base U-net for

parotid tumor autosegmentation on MRI T1w, T2w and T1wC

images. For a rare tumor, the entire dataset was relatively large,

including 285 patients, and multiple MRI scanners were used for

image acquisition. All whole imageswere acquired over the course of

4 years with many adjustments to the scan parameters. We believe

these images are representativeofmostparotid tumorMRIscenarios.

An attention mechanism was applied to optimize the

extracted spatial information of the feature maps in our study

(13). Here, we used a mask with pixel values between 0 and 1

that was generated by transformation, and then feature maps

were multiplied by the mask. The region of interest remained
Frontiers in Oncology 06
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unchanged, and the rest of the feature map was set to zero

because the regions of the parotid and tumor tissues were

relatively small compared to the other organs. This will

facilitate model training to focus on critical regions and

provide improved results. Compared to the original attention

U-Net, our proposed model extracts the gate feature from the

bottom of the network. This architecture may help the network

focus consistently on only a small region. For hyper-parameters

tuning, the major parameters were learning rate. We have use 3

different learn rate (1e-2, 1e-3 and 1e-4), the results showed that

1e-4 can provide the stable results (Figure S1).

There are some differences in the difficulty of organs and tumors

delineating.Organ delineation is a relatively simple task. Compare to

other’s study, our research on the performance of parotid gland

segmentation is similar (DICE = 0.88) (14, 15). Few studies have

reported using MR imaging for parotid gland autosegmentation.

Kieselmann et al. performed atlas-based autosegmentation for

parotids (14). The DICE values for Kieselmann’s study were 0.83

and 0.84 for the left and right parotid, respectively. Nuo et al. used

deep learning technology on a low-field MR segment of the parotid

gland and found that the best performance was 0.85 (15). Compared
FIGURE 4

An example of the results. a1, b1 and c1 represent one slice of the MR images; a2, b2 and c2 represent the results of autosegmentation; a3, b3
and c3 represent the results of manual segmentation; a4, b4 and c4 show the comparison of the tumor segmentation.
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TABLE 3 The comparison with other models.

Model Right parotid Left parotid Right tumor Left tumor

DICE 95% CI DICE 95% CI DICE 95% CI DICE 95% CI

DeepLab V3 0.87 [0.65-0.98] 0.85 [0.63-0.95] 0.77 [0.51-0.95] 0.83 [0.45-0.93]

Attention U-Net 0.88 [0.73-0.96] 0.86 [0.71-0.94] 0.84 [0.35-1.00] 0.81 [0.45-1.00]

PSPNet 0.87 [0.72-0.90] 0.85 [0.78-0.89] 0.78 [0.25-1.00] 0.85 [0.38-1.00]

Proposed Model 0.88 [0.75-0.95] 0.88 [0.77-0.94] 0.85 [0.30-1.00] 0.86 [0.37-1.00]
Frontiers in Oncology
 07
100
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CI, confidence interval.
TABLE 4 The comparison between different MRI sequences.

MRI Sequences Right parotid Left parotid Right tumor Left tumor

DICE 95% CI DICE 95% CI DICE 95% CI DICE 95% CI

T1w 0.88 [0.74-0.95] 0.86 [0.74-0.92] 0.82 [0.30-1.00] 0.81 [0.37-1.00]

T1wC 0.84 [0.73-0.92] 0.82 [0.69-0.90] 0.71 [0.14-1.00] 0.73 [0.12-1.00]

T2w 0.88 [0.74-0.95] 0.88 [0.72-0.93] 0.81 [0.30-1.00] 0.79 [0.31-1.00]

T1w+T1wC 0.88 [0.75-0.94] 0.85 [0.75-0.92] 0.78 [0.30-1.00] 0.84 [0.53-1.00]

T1w+T2w 0.88 [0.74-0.95] 0.87 [0.75-0.93] 0.84 [0.30-1.00] 0.83 [0.43-0.94]

T1wC+T2w 0.88 [0.75-0.93] 0.85 [0.76-0.94] 0.75 [0.20-1.00] 0.78 [0.30-0.95]

T1w+T1wC+T2w
Proposed

0.88 [0.75-0.95] 0.88 [0.77-0.94] 0.85 [0.30-1.00] 0.86 [0.37-1.00]
CI, confidence interval.
FIGURE 5

An outlier example. The yellow and red lines represent the right and left parotid. The pink and cyan colored filling represents the right and left tumor.
a1, b1 and c1 represent one slice of MR images; a2, b2 and c2 represent original manual segmentation. The right tumor was not delineated correctly;
a3, b3 and c3 represent the results of autosegmentation; a4, b4 and c4 represent the corrected segmentation by manual delineation by physicians.
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with these studies, our data were delineated by radiologists with the

same protocol on both the training and validation data. The data

consistency was relatively good.

Parotid tumor delineation is a relatively difficult task. The

main problem is the lack of training samples and the lack of

consistent delineation standards (16). Parotid tumor delineation

is challenging in medical image segmentation due to the

infrequency of this disease, which physician may not have

enough experience to precisely delineate the tumor. Even after

carefully reviewed the manual segmentation, there still exist

some uncertainty in the manual delineation. Figure 5 shows a

patient with a DICE of 0.127 for a right tumor. After carefully

checking the data and reviewing this patient’s history, we found

that the delineation in training dataset only segmented part of

the tumor, while this patient exhibited a bilateral diffuse MALT

(mucosa-associated lymphoid tissue, mucosa-associated

lymphoid tissue) lesion. Given this, our model correctly

marked the entire tumor, and in this case, the tumor

comprised nearly the entire parotid.

There is an overfitting between training and validation. We

believe this degree of overfitting is acceptable. While the

deviation of performance between different patients still large.

For example, the 95% CI of DICE was [0.30-1.00] for of right

tumor. This phenomenon indicates that training sample may too

small to cover different types of parotid tumors. And the training

dataset also may have some uncertainty in delineation.

For the clinical application, because the parotid cancer is a

rare cancer, physicians may not have enough experience to

assess tumor-infiltrating area. Tumor autosegmentaion may

help physicians to do this. Further researches may require to

demonstrate the benefit of this model.

There are some limitations to this study. First, we did not

validate our model on an external dataset, which might be

valuable for providing reliability information. However,

because there were 3 MR scanners were used to acquire these

images, and the parameters of image protocol were changed

during 4 years, using cross validation can precisely estimate the

model performance. Second, we combined three images, T1w,

T2w and T1wC. For routine diagnostic purposes, some of these

images may not be acquired, and a model accounting for missing

data may need to be developed in the future.
Conclusion

An attention base U-net for parotid tumor autosegmentation

may assist physicians to evaluate parotid gland tumors.
Frontiers in Oncology 08
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Leveraging intelligent
optimization for automated,
cardiac-sparing accelerated
partial breast treatment planning

Joel A. Pogue*, Carlos E. Cardenas, Yanan Cao,
Richard A. Popple, Michael Soike, Drexell Hunter Boggs,
Dennis N. Stanley and Joseph Harms

Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham,
AL, United States
Background: Accelerated partial breast irradiation (APBI) yields similar rates of

recurrence and cosmetic outcomes as compared to whole breast radiation

therapy (RT) when patients and treatment techniques are appropriately selected.

APBI combined with stereotactic body radiation therapy (SBRT) is a promising

technique for precisely delivering high levels of radiation while avoiding uninvolved

breast tissue. Here we investigate the feasibility of automatically generating high

quality APBI plans in the Ethos adaptive workspace with a specific emphasis on

sparing the heart.

Methods: Nine patients (10 target volumes) were utilized to iteratively tune an

Ethos APBI planning template for automatic plan generation. Twenty patients

previously treated on a TrueBeam Edge accelerator were then automatically

replanned using this template without manual intervention or reoptimization.

The unbiased validation cohort Ethos plans were benchmarked via adherence to

planning objectives, a comparison of DVH and quality indices against the clinical

Edge plans, and qualitative reviews by two board-certified radiation oncologists.

Results: 85% (17/20) of automated validation cohort plans met all planning

objectives; three plans did not achieve the contralateral lung V1.5Gy objective,

but all other objectives were achieved. Compared to the Eclipse generated plans,

the proposed Ethos template generated plans with greater evaluation planning

target volume (PTV_Eval) V100% coverage (p = 0.01), significantly decreased heart

V1.5Gy (p< 0.001), and increased contralateral breast V5Gy, skin D0.01cc, and

RTOG conformity index (p = 0.03, p = 0.03, and p = 0.01, respectively). However,

only the reduction in heart dose was significant after correcting for multiple

testing. Physicist-selected plans were deemed clinically acceptable without

modification for 75% and 90% of plans by physicians A and B, respectively.

Physicians A and B scored at least one automatically generated plan as clinically

acceptable for 100% and 95% of planning intents, respectively.
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Conclusions: Standard left- and right-sided planning templates automatically

generated APBI plans of comparable quality to manually generated plans treated

on a stereotactic linear accelerator, with a significant reduction in heart dose

compared to Eclipse generated plans. The methods presented in this work

elucidate an approach for generating automated, cardiac-sparing APBI

treatment plans for daily adaptive RT with high efficiency.
KEYWORDS

APBI, Ethos, automated planning, cardiac-sparing breast radiotherapy, intelligent
optimization, adaptive radiotherapy (ART)
1 Introduction

The incidence rate of early stage breast cancer is steadily

increasing due to improved detection and screening strategies (1).

Equivalent overall survival rates of lumpectomy followed by external

beam radiation therapy (RT) compared to mastectomy have been

shown (2), and post-lumpectomy pathologic analysis by Vicini et al.

demonstrated that residual disease occurred within 1cm of the

lumpectomy cavity for more than 90% of patients (3). Until

recently, external beam accelerated partial breast irradiation (APBI)

has been less preferred to brachytherapy APBI due to the large

planning target volume (PTV) margins necessary to account for

set-up uncertainty, resulting in increased healthy tissue exposure

and inferior cosmetic outcomes relative to whole breast RT (4).

However, technical improvements in patient immobilization,

imaging, and dosimetry have more recently piqued interest in

stereotactic body radiation therapy (SBRT), which allows for

reduced margins and steeper dose fall-off outside of the target.

To that end, Vermeulen et al. observed no toxicities ≥ grade 3 for

46 stage 1 patients receiving supine SBRT treatment with a 2mm PTV

expansion (5, 6). Additionally, Timmerman et al. published methods

and cosmetic outcomes for a 75 patient, five arm dose-escalation

SBRT trial in which high rates of good or excellent cosmesis were

achieved (7, 8). Livi et al. demonstrated that compared to

conventionally fractionated (50Gy in 25 fractions) breast treatment,

intensity modulated radiation therapy (IMRT) based PBI resulted in

significantly fewer short and long term toxicities and improved

cosmetic satisfaction compared to whole breast RT using 1cm PTV

margins (9). Based on these findings, our institution initiated the UAB

RAD 1802 trial (Pilot Trial of LINAC Based Stereotactic Body

Radiotherapy for Early Stage Breast Cancer Patients Eligible for

Post-Operative Accelerated Partial Breast Irradiation (APBI);

clinicaltrials.gov identifier NCT03643861). The purpose was to

combine the SBRT techniques and accelerated fractionation

schemes, which were previously exclusively utilized on the

Cyberknife platform, with the IMRT capabilities of a traditional

linear accelerator. Methods and preliminary findings for the first 23

patients (16 prone, 7 supine) have since been published (10).

While novel platforms such as RapidPlan and HyperArc (Varian

Medical Systems) have provided a means of automating planning

processes (11, 12), many institutions still heavily rely on iterative,
02104
manual planning (13, 14). Developing alternatives to manual

planning would be ideal as the time required to train personnel and

manually generate high-quality treatment plans remains costly (15).

Furthermore, planning skill varies greatly by planner and site (16, 17),

manual plan constraints and optimization structures are often

inconsistent, and time limitations greatly impact the quality of

manual plans. Thus, the aim of automation is to increase plan

consistency, reduce planning time, and maintain or improve plan

quality. Popular forms of automation include, but are not limited to,

knowledge-based planning (KBP) (18–22), multi-criteria

optimization (MCO) (23, 24), and template-based planning (25–28).

There have been few studies showing effective automated

planning implementation for the Ethos system. The Ethos (Varian

Medical Systems, Palo Alto, CA) is an independent treatment

planning system (TPS) that utilizes a unique Intelligent

Optimization Engine (IOE) that is designed to mimic the way a

skilled planner generates treatment plans. The IOE attempts to

minimize the impact of planner ability on final treatment plan

quality, reducing interpatient plan quality variation (29). While the

IOE was designed to reduce the need for the iterative planner

interactions, we have found that plan quality can be highly

heterogeneous without adequate tuning of a treatment planning

template. To the authors’ knowledge, there is only a single study

outlining planning for stereotactic radiation therapy using the IOE

(30). This study by Byrne et al. focused on treatment in the brain and

lungs, where the planning focus is on plan conformity and dose falloff.

However, for stereotactic APBI planning, sparing of proximal organs-

at-risk can be just as important as conformity and dose falloff. Because

of this, the template proposed by Byrne et al. is not easily translatable

for APBI planning. Thus, the primary endpoint of the proposed work

is to develop a treatment planning template which creates clinically

acceptable treatment plans for stereotactic APBI in a fully automated

fashion, which can easily be disseminated in XML format to any

institution wishing to treat APBI using the Ethos. Clinical

acceptability will be judged by adherence to published clinical trial

guidelines created with traditional planning techniques and via

evaluation by radiation oncologists with experience treating linear-

accelerator based APBI. As a secondary endpoint, the automatically-

generated plans will be compared to previously treated plans using

standard dose-volume histogram metrics used to evaluate overall

plan quality
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2 Methods and materials

2.1 Cohort description

29 patients (30 plans due to one patient with bilateral disease)

previously receiving supine APBI treatment for early stage breast

cancer (stages 0-2) at our institution between 2019 and 2022 were

utilized in this Institutional Review Board (IRB-1207033005)

approved study. Nine patients (10 plans) were used to iteratively

tune an optimization template and an independent 20 patient cohort

was utilized to validate the template via automatic replanning without

intervention or reoptimization. Seven patients met RAD 1802

inclusion criteria and were simulated and contoured according to

trial protocol. Inclusion criteria consisted of age ≥ 50, estrogen

receptor (ER) positive, and negative margins of at least 2mm for

invasive histology or 3mm for ductal carcinoma in situ, carcinoma in

situ, or T1 disease. Patients receiving neoadjuvant chemotherapy or

having multifocal cancer, pure invasive lobular histology, surgical

margins< 2mm, a lumpectomy cavity within 5mm of the body

contour, or unclear cavity delineation on the planning scan were

excluded. Additionally, patients with evaluation PTV (PTV_Eval)

volumes exceeding 124cc were excluded based on fat necrosis

observed by Timmerman et al. above this threshold (8). 23 patients

were not included in the RAD 1802 study, but were simulated,

contoured, and planned with the same methods and intent. For all

patients, an isotropic 1cm gross tumor volume (GTV) expansion was

utilized for clinical target volume (CTV) generation and an isotropic

3mm CTV expansion was utilized for PTV generation. PTV_Eval

volumes were created by carving out the PTV at anatomical

boundaries (i.e., lung, rib, chest wall, and 5mm from the skin).

PTV_Eval volume ranged from 28.6cc to 217.9cc, with an average

of 85.2cc. Patients were prescribed 30Gy in five fractions, with an

average 98.3% of the PTV_Eval receiving 30Gy in the original clinical

plans. Patient characteristics are summarized in Table 1.
2.2 Treatment planning

Nine patients previously treated on the Ethos were selected for

our tuning cohort (one bilateral patient, four left breast plans, six right

breast plans). The tuning cohort was used to establish an Ethos

planning template that generated plans meeting RAD 1802 treatment

planning goals (Table 2) through iterative planning and fine-tuning of

the optimization objectives. A particular emphasis was placed on

lowering heart dose to the extent possible while maintaining

otherwise similar plan quality to clinical plans. Twenty patients

originally receiving supine RT on a Varian TrueBeam Edge were

assigned to the validation cohort (seven left breast, thirteen right

breast), and were automatically planned using the template resulting

from the tuning cohort. Clinically approved Eclipse contours were

exported from Eclipse to Ethos and were used for plan generation

without modification (i.e., the manually-generated Eclipse lung

contour was used in optimization instead of the Ethos auto-

contoured lung volume). Ethos validation cohort plans were not

reoptimized or renormalized prior to evaluation and were thus

evaluated “as-is”.
Frontiers in Oncology 03105
Clinical Edge plans were originally calculated with Acuros XB

(AXB version 15.5.11, Varian Medical Systems) with heterogeneity

correction on and dose-to-water selected. Because Ethos

automatically calculates with AXB, dose-to-medium (version

16.1.0), all 20 Edge plans were recalculated using dose-to-medium

prior to plan comparison. Recalculations preserved beam geometries

and field weightings, but plans were re-normalized to the clinically

accepted PTV_Eval prescription isodose coverage. A 2.5mm grid was

used for dose calculation in both TPS. The Varian TrueBeam Edge is a

stereotactic linear accelerator equipped with a 10MV flattening filter

free (FFF) beam, high definition MLCs (HDMLC: 0.25cm in the

center, 0.50cm in the periphery), and a maximum dose rate of 2400

MU/min. The Ethos is a CBCT-guided adaptive capable rotational

linear accelerator equipped with a 6MV FFF beam, dual stacked and

staggered MLC banks as its primary form of collimation, and a

maximum dose rate of 800 MU/min (29).

The Ethos pre-defined planning geometries selected for this work

include equidistant 9- and 12-field IMRT plans, an ipsilateral 7-field

IMRT plan, a 2 full-arc VMAT plan, and a 2 half-arc (180-degree arc

span) VMAT plan. While Eclipse optimization is dictated by an

internal cost function that varies with assigned priority number, Ethos

plans are optimized according to the ascending order of planning

objectives submitted in the dose preview workspace. The optimum

plan geometry generated from each intent was selected by the

reviewing physicist based on adherence to RAD 1802 objectives.

Selected Ethos plans were exported to Eclipse, where they were

benchmarked dosimetrically against clinically delivered Edge plans.
TABLE 1 Patient cohort description.

Descriptor median (range)

Age (years) 67 (50 - 85)

Laterality 11 left, 19 right

GTV volume (cc) 10.6 (3.0 - 43.9)

CTV volume (cc) 57.1 (15.0 – 165.6)

PTV_Eval volume (cc) 82.9 (28.6 – 217.9)
TABLE 2 APBI planning goals utilized in this study.

Plan metric Constraint

PTV V100% (%) ≥ 95.0

Ipsilateral breast V30Gy (%) < 20.0

Ipsilateral breast V15Gy (%) < 40.0

Contralateral breast V5Gy (%) < 20.0

Heart V1.5Gy (%)
< 5.0 (right)
< 40.0 (left)

Ipsilateral lung V9Gy (%) < 10.0

Contralateral lung V1.5Gy (%) < 10.0

Skin D0.01cc (Gy) < 39.5

Rib D0.01cc (Gy) < 43.0

RTOG CI < 1.30
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Eclipse and Ethos objective metrics and dose volume histograms

(DVH) were extracted via the Eclipse Scripting Application

Programming Interface (version 16.1). In addition to presenting the

RTOG CI (30), high dose spillage (8) and Paddick gradient index (GI)

(31) values were calculated to enable a more holistic plan quality

evaluation. The CI, high-dose spillage, and GI are defined in

equations (1) – (3).

RTOG CI   =
PIV
TV

(1)

High dose spillage   ( % )   =   100 ∗
PIV105% − TV105%

TV
(2)

Paddick GI   =
PIV50%

PIV
(3)

Here PIV and TV are the prescription isodose volume and treated

volume (i.e., PTV_Eval volume), respectively. Subscripts specify the

isodose volumes evaluated if different than 100%. The Wilcoxon

paired, non-parametric test was utilized to test for significant

difference between Eclipse and Ethos plan metrics. When

conducting multiple tests on the same dependent variable, the

likelihood of observing a significant result by pure chance increases.

Thus, a Bonferroni correction was applied to adjust for multiple

testing, and p< 0.004 is considered significant (a = 0.05/12). Statistical

analyses were performed in the Python ScyPy library without removal

of outliers.
2.3 Physician review

Two board certified radiation oncologists specializing in

accelerated partial breast treatment qualitatively evaluated all

twenty automatically generated Ethos validation cohort plans

according to a previously-utilized in-house grading scheme, which

is outlined in Table 3 (32). To avoid scoring bias, the physicians were

not shown the Ethos optimization template before evaluation; in

addition, the physicists did not provide feedback or respond to

physicians during evaluation, nor were the physicians aware of the

cardiac-sparing emphasis of this study. Rather, the physicians graded

each plan based on their past clinical experience and their unique

interpretation of the scoring criteria. Physicians were not provided

case-specific information and performed evaluations solely with

anonymous patient identifiers. In cases where plans selected by the
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physicist would require modification prior to treatment (i.e., a

clinically unacceptable physician score of 1-3), the physicians were

asked to evaluate their preferred alternative geometry plan for clinical

acceptability. The proportion of planning intents that automatically

generated at least one plan that the physician deemed clinically

acceptable without re-optimization was then evaluated.
3 Results

3.1 Planning template and intent

From each APBI planning intent submitted in Ethos, five plans

with varying geometries were automatically generated. A total of 110

intent and intent revisions were created in this work, equating to the

generation and evaluation of 550 unique APBI plans. Ninety intents

were required to iteratively plan the nine patient tuning cohort, and

the twenty validation cohort patients were each only planned with

one unbiased intent. When plans were optimized solely using the

RAD 1802 dosimetric objectives in Table 2, many plans failed to meet

planning goals. Thus, the planning template in Table 4 was iteratively

procured to maximize the likelihood of achieving all planning

objectives. The left sided template is shown as an example, but the

right sided template is included in Supplementary Material. Both

templates in XML format are available upon request for easy

reproduction of this work by other researchers.

The template prioritizes GTV coverage the highest, followed by

PTV coverage and heart avoidance. The contralateral lung V1.5Gy

was given lower priority in the right-sided than in the left-sided

template because heart metrics were more challenging to meet for left

sided treatments. This lead the optimizer to spill low dose into the

contralateral lung in the absence of a higher priority objective. The left

and right templates were identical besides the contralateral lung

V1.5Gy constraint. The PTV was cropped out of the ipsilateral

breast to avoid conflicting objectives prior to optimization (i.e.,

asking the optimizer to irradiate the PTV but spare the breast +

PTV). The entire ipsilateral breast (including PTV) was designated as

a report only structure and was thus not optimized. The template

contains three rings constituting seven objectives focused solely on

conformity, fall-off, and limiting high dose spillage. The inner,

middle, and outer rings are derived from (0 - 0.5)cm, (0.5 - 1.0)cm,

and (1.0 – 3.0)cm PTV_Eval expansions inside of the

Body, respectively.
TABLE 3 Physician qualitative review grading scheme.

Score Description

5 Use as-is. Clinically acceptable plan that could be used for treatment without change.

4 Minor edits that are unnecessary. Reviewer prefers stylistic changes but considers current plan acceptable for treatment.

3
Minor edits that are necessary. Reviewer would require changes prior to treatment and the changes, in the judgment of the reviewer, can be implemented by
minimal editing of the objectives.

2
Major edits. Reviewer would require changes prior to treatment and the changes in the judgment of the reviewer would require significant modification of the
objectives.

1 Unusable. The plan quality is so poor that it is deemed unsafe to deliver, i.e. would likely result in harm to the patient.
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3.2 Plan selection

The twenty patient validation cohort was originally treated on the

Edge using 6-field (n = 1), 8-field (n = 1), and 9-field IMRT (n = 5), as

well as 2 partial VMAT arcs (n = 13). Validation cohort plan

geometries chosen by the physicist to benchmark against the

clinical Edge plans are as follows: seven equidistant 9-field plans

(35%), four equidistant 12-field plans (20%), five ipsilateral 7-field

plans (25%), three VMAT plans with 2 partial arcs (15%), and one

VMAT plan with 2 full-arcs (5%). Because sparing the heart is a

primary emphasis of this study, Figure 1 shows Ethos and Eclipse

axial, sagittal, and coronal dose distributions (1Gy – 38Gy) for the

manually generated plan with the highest heart V1.5Gy metric. As is

visually evident, the Ethos IOE automatically produces an equidistant
Frontiers in Oncology 05107
9-field IMRT plan with significant cardiac sparing relative to the

manual lateral 6-field IMRT plan.
3.3 Dosimetry evaluation

The proposed template automatically generated plans meeting all

RAD 1802 objectives for 85% (17/20) of plans without reoptimization.

Three initially-selected plans failed to meet the contralateral lung

V1.5Gy constraint. No other constraints were violated in any

validation cohort plan. 90% (18/20) of the manually generated

clinical Edge plans met all objectives; one plan had less than 95% of

the PTV receiving prescription dose and one plan exceeded the

contralateral lung V1.5Gy constraint. Boxplots showing validation
TABLE 4 Ethos left-sided APBI planning template. The skin was generated using a 3mm inward expansion of the body surface.

Priority Structure Planning Goal Acceptable Variation

1

GTV V30Gy ≥ 100% V30Gy ≥ 99%

GTV D100% ≥ 30.05Gy D100% ≥ 30Gy

CTV V30Gy ≥ 99% V30Gy ≥ 98%

Heart V1.5Gy ≤ 3% V1.5Gy ≤ 5%

PTV_Eval V28.5Gy ≥ 99% V28.5Gy ≥ 98%

Heart Dmean ≤ 1.5Gy Dmean ≤ 2.0Gy

Heart V7Gy ≤ 0.5% V7Gy ≤ 10%

Heart D0.03cc ≤ 12Gy D0.03cc ≤ 15Gy

PTV_Eval V30Gy ≥ 97.5% V30Gy ≥ 95%

PTV_Eval D0.03cc ≤ 37Gy D0.03cc ≤ 39Gy

Rib V30Gy ≤ 0.80cc V30Gy ≤ 1.00cc

_Lung_R V1.5Gy ≤ 5% V1.5Gy ≤ 10%

2

_Lung_L V9Gy ≤ 5% V9Gy ≤ 10%

_Lung_L V5Gy ≤ 15% V5Gy ≤ 20%

_RingInner V30Gy ≤ 6% V30Gy ≤ 8%

_RingInner D0.03cc ≤ 30Gy D0.03cc ≤ 30Gy

_RingInner Dmean ≤ 20Gy Dmean ≤ 22Gy

_Lung_L V15Gy ≤ 1% _

_RingMiddle D0.03cc ≤ 20Gy D0.03cc ≤ 21Gy

_RingMiddle Dmean ≤ 11.5Gy Dmean ≤ 20.0Gy

_Breast_L - PTV_Eval V15Gy ≤ 15% V15Gy ≤ 40%

_RingOuter Dmean ≤ 4.5Gy Dmean ≤ 14Gy

_RingOuter D0.03cc ≤ 14Gy D0.03cc ≤ 15Gy

_Breast_L - PTV_Eval V20Gy ≤ 5% V20Gy ≤ 30%

_Breast_L - PTV_Eval V30Gy ≤ 2% V30Gy ≤ 20%

_Breast_R V5Gy ≤ 15% V5Gy ≤ 20%

_Breast_R V15Gy ≤ 0.02cc V15Gy ≤ 0.03cc

Skin D0.01cc ≤ 37.5Gy D0.01cc ≤ 39.5Gy

Skin V36.5Gy ≤ 8cc V36.5Gy ≤ 10cc
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cohort metric summaries for Ethos and Eclipse are displayed in

Figure 2. Ethos plans had greater PTV_Eval V100% coverage (p =

0.01), decreased heart V1.5Gy (p< 0.001), but increased contralateral

breast V5Gy and skin D0.01cc. (p = 0.03 and p = 0.03 respectively).

Although several metrics have medians and interquartile ranges

(IQR) that differ, only the heart V1.5Gy distributions are

significantly different when a Bonferroni correction is applied to

adjust for multiple hypothesis testing. The Eclipse left sided heart

V1.5Gy IQR and maximum value and are 21.7% and 29.3%,

respectively, whereas they are 0.4% and 0.5% for Ethos. The

minimum Eclipse right sided heart V1.5Gy metric is 1.4% while the

maximum Ethos V1.5Gy metric is 0.6%.

All Ethos and Eclipse plans easily met the 1.30 CI planning

objective; one Ethos outlier was much greater than all other plans and

one Eclipse plan had a CI of 0.95 due to 92.7% PTV_Eval coverage.

The median Eclipse and Ethos CI were 1.05 and 1.06, respectively.

100% of the Eclipse and Ethos plans met the 15% high-dose spillage

constraint planning suggested in the Timmerman study (8). There is

little discernable difference in high-dose spillage and GI distributions

between both TPS when outliers are excluded. Ethos plans generally

had more compact high-dose spillage values, but a greater GI IQR.

The median Ethos GI was lower, but mean values were similar. While

Eclipse CI values were lower than Ethos (p = 0.01), there were no

significant quality metric differences between both TPS.

Validation cohort mean DVHs with standard deviation bounds

are presented for both TPS in Figure 3. The inferior/superior triangle

tips illustrate planning objectives and the insets elucidate DVH

difference between both TPS (i.e., Ethos volume minus Eclipse

volume as a function of dose). Ethos had superior PTV coverage

between approximately 29.5Gy and 31.50Gy, but a lower portion of

the target received above 105% of prescription dose, which is

generally preferred for SBRT. Ethos significantly spares the heart

above 0.25Gy, and on average, the heart volume receiving 1Gy was
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10.8% less for automated Ethos plans. All left sided Ethos plans were

substantially below the right sided planning objective. While the

ipsilateral breast DVH curves are similar for high doses, Ethos

spares the breast below approximately 11Gy, with a reduction of

3% breast volume receiving 6Gy. Ethos automated plans had overall

higher ipsilateral lung dose above 2.5Gy, but the discrepancy between

plan types was at most 1.4%. The template presented here generated

plans with generally inferior contralateral breast dose; 3.4% additional

volume received 2.3Gy. Because the Ethos planning approach heavily

spared the heart, automated planning also resulted in much lower

contralateral lung dose, with 6.5% less volume receiving 1Gy

on average.
3.4 Qualitative evaluation

The physician score summary for physicist-selected Ethos

validation cohort plans is shown in Table 5. Physicians A and B

considered 75% (15/20) and 90% (18/20) of plans clinically

acceptable (scores of 4 or 5) without modification, respectively.

75% of the selected plans (15/20) received a clinically acceptable

score from both reviewing physicians. The mode scores of

physicians A and B are 4 and 5, respectively. When physicians

scored the physicist-selected plan 3 or lower, they then evaluated

the alternate plan geometries generated from the same treatment

intent and scored the plan they favored most. The five plans

receiving a score of 3 from physician A received one 4 and four

5s when alternate plans were evaluated. The two plans receiving a

score of 3 from physician B received one 3 and one 4 when

alternate plans were evaluated. Thus, at least one plan of

treatable quality was automatically generated using the proposed

planning approach for 100% of intents for physician A and 95% of

intents for physician B.
FIGURE 1

Axial, coronal, and sagittal dose distributions of the manual plan with the highest heart V1.5Gy metric for both Eclipse and Ethos. The Eclipse and Ethos
plans utilize 6 lateral fields and 9 equidistant fields, respectively. The planning target volume and heart were contoured in red and pink, respectively.
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Four plans received a score of 3 from physician A due to the

lateral extent of 15Gy streaking prevalent in IMRT plans. One plan

received a 3 because physician A preferred the contralateral breast

and lung V5Gy be further reduced given favorable patient anatomy.

Both plans receiving a score of 3 from physician B were penalized due

to lateral extent of 15Gy streaking. However, physician B further

specified that they would have considered whole breast treatment

over APBI for the plan receiving a score of 3 even after alternate plan

evaluation, primarily due to challenging anatomy and target location.
4 Discussion

In this work, we evaluated APBI plans automatically generated

from a standard planning approach in the Ethos adaptive workspace;

nine patients (ten plans) were iteratively re-planned until desired

quality was achieved and twenty validation cohort patients were only

planned once using the resulting template. 85% of selected validation

cohort plans met all planning objectives with significant reduction in

heart dose, and physicians A and B scored 75% and 90% of physicist-

selected plans as clinically acceptable, respectively. Physicians A and B

deemed at least one automatically generated plan clinically acceptable,
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without modification, 100% and 95% of the time, respectively. This

study showed that high quality APBI treatment plans can be created

in an automated process with a well-tuned template. Although we do

not measure planning times prospectively, our team estimates that

creation of a clinically acceptable treatment plan takes between 1 and

4 hours of active planner time for one case. With the proposed

template, a plan can be created from scratch with around 5 minutes of

active time to set up and approximately an hour of passive time for

optimization and dose calculation running as a background process.

Additionally, we have shown that automated plans were of similar

quality to manual plans while simultaneously reducing heart dose.

Four patients in this study with PTV_Eval volumes > 124cc (two

in the tuning cohort, two in the validation cohort) received APBI

treatment despite failing to meet RAD 1802 inclusion criteria. The

treating physician for these cases, who is also the RAD 1802 principal

investigator, was comfortable exceeding this threshold due to

personal APBI experience, and because these patients had larger

breasts or were receiving re-irradiation. Ipsilateral breast V30Gy

and V15Gy objectives were achieved for all four patients.

While Ethos contralateral lung dose was on average significantly

less than Eclipse dose due to heart avoidance, there were three outlier

plans with high contralateral lung dose. 1/13 right-sided plans and 2/7
FIGURE 2

Boxplots summarizing manual Eclipse and automated Ethos validation cohort planning metrics. Open and closed circles indicate outlier and mean
values, respectively. Significance values for the difference between TPS metric distributions were obtained via the Wilcoxon signed rank test and are
stratified as follows: ns (not significant): (0.004, p, 1.00]; *: (0, p, 0.004].
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left-sided plans did not meet the V1.5Gy objective, suggesting that the

template may be further improved by increasing the priority of

contralateral lung planning goals, especially for the left-sided

template. However, the effects of this change in priority require

further dosimetric investigation and physician evaluation, as this

may affect dose contribution to the ipsilateral lung or contralateral

breast, or both. The priority adjustment described above should be

considered if contralateral lung dose constraints are exceeded during
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clinical implementation. Additionally, as this template is being used

for adaptive radiation therapy, it is possible that the dose the patient

receives to the contralateral lung is lower than the initial plan based

on changes in daily anatomy

Significant effort has been dedicated to sparing the heart in lung

RT due to high levels of proximal dose (33, 34), but it has also been

observed that breast RT induces cardiac toxicity linearly with no

apparent dose threshold. Increased risk in major coronary events
TABLE 5 Qualitative scoring summary of plans selected by the physicist for physicians A and B.

Physician
Score

1 2 3 4 5

A 0 0 5 11 4

B 0 0 2 6 12
FIGURE 3

Population DVH comparison of Eclipse manual and Ethos automatic plans. Shaded areas show the mean ± standard deviation of all validation cohort
data, and the inferior/superior point of triangles illustrate RAD 1802 planning objectives. Insets show the difference between mean population DVHs (i.e.,
Ethos mean volume minus Eclipse mean volume). Inset axes were sized for optimal visualization.
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between 7.4% and 19% per additional Gy of mean heart dose have

been reported for breast RT (35–37). The initial clinically-treated

plans for comparison in this work were of high-quality, with cardiac

dose levels below the UAB RAD 1802 objectives for all 20 validation

cohort plans. Drawing from the data published by Darby et al, which

showed that risk of major coronary events increased linearly with

mean heart dose with no apparent threshold (35), it becomes

imperative that the planner continue to minimize heart dose, even

well below acceptable levels (i.e., V1.5Gy< 5% and 40% for right and

left-sided targets, respectively (8, 10)), so long as the net effect on

target coverage and sparing of other OARs is not detrimental. To that

end, the authors argue that leveraging the Ethos to spare even 1Gy is

clinically meaningful, so long as other Ethos plan characteristics are

similar in quality to manual Eclipse plans. As shown in Figure 3, the

template-generated plans led to reductions in heart dose above 0.5 Gy

relative to the Eclipse plans. It should also be mentioned that the OAR

dose being spared would be greater were the 6Gy x 5 hypo-

fractionated scheme converted to 2Gy equivalent fractions.

Furthermore, the Ethos platform allows for RT plan adaption based

on daily cone beam CT (CBCT) anatomy (38, 39), which could allow

for further reduced doses due to daily re-optimization.

Ethos plans were slightly, but consistently, less conformal than

Eclipse plans. While some of this discrepancy may be attributed to

template design and optimizer differences, it is due at least in part to

tertiary collimation width. The double banked, 10mm width Ethos

MLC bank is staggered, effectively producing 5mm width MLCs. The

Edge has 2.5mm central HDMLC leaves, resulting in twice the

collimation resolution. It is reasonable to assume that Ethos plans

would see some measurable reduction in CI and high-dose spillage

were the MLC width halved. However, Automated Ethos plans had

superior CI values (1.07± 0.05) compared to the 30Gy arm published

by Timmerman et al. using the Cyberknife (1.22 ± 0.10) (7). It is also

important to note that the mean Ethos validation cohort target

volume was smaller than the mean 30Gy arm Cyberknife cohort

target volume (Ethos: 77.6cc; Cyberknife: 80.9cc), and CI typically

decreases with increasing target size. Thus, the authors argue that the

automated plans presented here, while slightly less conformal than

Edge plans, are still of high-quality. Further studies are required to

deconflate the effects of the different collimators and optimization

engine on Ethos plan quality.

The upper Ethos outlier for CI and high dose spillage

originated from one plan. This plan presented challenging and

abnormal patient anatomy which elucidates a fundamental

limitation of this study: fixed beam geometries. The target of

interest was the smallest PTV_Eval in the validation cohort and

located medially in the upper, inner breast quadrant. The standard

field geometries failed to address the patient-specific anatomy; the

2 partial arc and lateral IMRT field geometries span angles from 0°

to 180°, clockwise, and the equidistant 9 and 12-field IMRT

geometries only space fields every 40° and 30°, respectively.

Given the very medial nature of this target, it would have

benefitted from partial arcs or densely placed lateral IMRT fields

ranging from -90° to 90°. This example highlights that the

proposed template does not negate the need for dosimetrist

involvement or patient-specific anatomy review; it is expected

that abnormal target location or anatomy will require beam

geometry modification prior to planning in some instances.
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Both reviewing physicians performed a slice-by-slice evaluation of

all validation cohort plans. Physicians considered disease extent and

location, anatomy favorability, dose distribution shape, and PTV

undercoverage in addition to verifying satisfactory DVH metrics.

IMRT plan geometries tended to have comparable or even improved

GI relative to VMAT, leading the reviewing physicist to select many

IMRT plans for further evaluation. However, physician A strongly

preferred the consolidated shape of VMAT 15Gy isodose lines

compared to IMRT, which tended to exhibit greater lateral extent

but similar volume. Physician B was not as opposed to 15Gy

streaking, except in more serious cases. This highlights the role of

personal preference when reviewing plans qualitatively. While we

observed stylistic differences in plan evaluation between the two

physician raters, the template provides a mechanism to standardize

practices across practitioners, resulting in a large majority of

evaluated plans considered acceptable during qualitative review. A

future prospective analysis will elucidate if any changes are made after

the proposed template is clinically commissioned for use outside of

this study.

Artificial intelligence (AI) promises to revolutionize every aspect

in radiation oncology care, and has already made a profound impact

in enabling the clinical implementation of online adaptive

radiotherapies (40, 41). From automated contouring (42–44) to

radiotherapy dose estimations (45–47), AI applications are playing

a key role increasing efficiency and, often times, improving quality of

care through more consistent radiotherapy (48). For example, studies

have shown that auto-contouring can significantly save contouring

time, providing the critical time savings needed to minimize patient

motion during online adaptive treatment design and delivery (49).

While most clinical applications currently focus on efficiency

improvements, we can expect that in the near future clinical teams

will be supported by various AI-driven clinical support systems to

compliment decision-making during adaptive treatment’s design and

delivery. In the current study, we evaluate radiotherapy treatment

plans generated using Varian’s IOE, which uses an artificial

intelligence driven optimization process to automatically generate

radiotherapy treatment plans. Our study shows that this novel

optimization engine provides high-quality APBI treatment plans for

a large majority of cases (with no planner interaction) after defining a

robust planning template through a data-driven iterative approach.

APBI treatments were transitioned from the Edge to the Ethos in

2021 at our institution, and APBI treatment for 17 patients has been

successfully completed in the Ethos adaptive workspace. During the

first course of adaptive treatment on the Ethos, we noticed that the

GTV location, volume, and shape changed from simulation to first

fraction, and between each subsequent fraction. Consequently,

adapted plans significantly spared OARs compared to scheduled

plans (i.e., initial treatment-approved plans recalculated onto daily

CBCT anatomy). Therefore, even though automated Ethos plans are

overall similar in quality to manual Eclipse plans, the added benefit of

daily CBCT based adaption vastly outweighs whatever slight

deficiencies might exist in the proposed Ethos planning approach

(i.e., higher Ethos contralateral breast dose). The impact of daily

adaptation on both plan quality and patient outcomes warrants

further investigation. Other future projects include implementing

the APBI template presented here into our clinical workflow and

continuing to generate planning templates for other sites.
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The manuscript presented here, including study design and analysis,

was developed for consistency with recently published RATING

guidelines for generating high-quality planning studies (RAdiotherapy

Treatment plannINg study Guidelines) (50). The authors’ self-assessment

score was 94% (195/207) and the accompanying grading template is

added to the Supplementary Material.

Although APBI planning is challenging due to proximity of many

OARs and the need for conformity and steep dose gradients, the

Ethos templates investigated in this work automatically generate

high-quality left- or right-sided APBI plans. Ethos plans had similar

target coverage, reduced heart dose, and otherwise similar OAR dose

to manual Eclipse plans. 85% of validation cohort plans met all

planning objectives, and only the contralateral lung V1.5Gy objective

was violated for any plan. Physicians A and B scored at least one plan

from each intent of clinically acceptable quality, without

reoptimization, 100% and 95% of the time, respectively. Therefore,

the approach summarized here enables consistent and high-quality

generation of Ethos APBI plans with a specific emphasis on

minimizing heart dose.
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Introduction: Pneumonitis is a relevant side effect after radiotherapy (RT) and

immunotherapy with checkpoint inhibitors (ICIs). Since the effect is radiation

dose dependent, the risk increases for high fractional doses as applied for

stereotactic body radiation therapy (SBRT) and might even be enhanced for

the combination of SBRT with ICI therapy. Hence, patient individual pre-

treatment prediction of post-treatment pneumonitis (PTP) might be able to

support clinical decision making. Dosimetric factors, however, use limited

information and, thus, cannot exploit the full potential of pneumonitis prediction.

Methods:We investigated dosiomics and radiomics model based approaches for

PTP prediction after thoracic SBRT with and without ICI therapy. To overcome

potential influences of different fractionation schemes, we converted physical

doses to 2 Gy equivalent doses (EQD2) and compared both results. In total, four

single feature models (dosiomics, radiomics, dosimetric, clinical factors) were

tested and five combinations of those (dosimetric+clinical factors, dosiomics

+radiomics, dosiomics+dosimetric+clinical factors, radiomics+dosimetric

+clinical factors, radiomics+dosiomics+dosimetric+clinical factors). After

feature extraction, a feature reduction was performed using pearson

intercorrelation coefficient and the Boruta algorithm within 1000-fold

bootstrapping runs. Four different machine learning models and the

combination of those were trained and tested within 100 iterations of 5-fold

nested cross validation.

Results: Results were analysed using the area under the receiver operating

characteristic curve (AUC). We found the combination of dosiomics and radiomics

features to outperform all other models with AUCradiomics+dosiomics, D = 0.79
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(95% confidence interval 0.78-0.80) and AUCradiomics+dosiomics, EQD2 = 0.77 (0.76-

0.78) for physical dose and EQD2, respectively. ICI therapy did not impact the

prediction result (AUC ≤ 0.5). Clinical and dosimetric features for the total lung did

not improve the prediction outcome.

Conclusion: Our results suggest that combined dosiomics and radiomics

analysis can improve PTP prediction in patients treated with lung SBRT. We

conclude that pre-treatment prediction could support clinical decision making

on an individual patient basis with or without ICI therapy.
KEYWORDS

pneumonitis, SBRT (stereotactic body radiation therapy), radiomics, dosiomics, immune
checkpoint inhibition, model based prediction, lung cancer
1 Introduction

High precision stereotactic body radiation therapy (SBRT) is

common standard for treatment of early stage inoperable lung

cancer as well as for pulmonary oligo-metastases with excellent

local control and an acceptable toxicity profile (1–4). While

immunotherapy including checkpoint inhibitors (ICIs)

substantially improved the outcome for early lung cancer patients

with regard to local tumor control and overall survival (5), the

impact of combination with thoracic radiotherapy remains unclear

with regard to the development of side effects. PTP is a rather

frequent and dose limiting side effect of both, radiation and ICI

therapy. As the development of PTP is dose dependent, the risk

increases for high fractional doses as applied by SBRT (6). In

contrast to the majority of data in the literature, there is also

evidence of increased all grade pneumonitis rates (5, 7, 8) after

combined radioimmunotherapy with ICIs. This might be of

relevance for decision making with regard to further therapeutic

options on a patient individual basis.

The applied radiation dose is the most important factor for

radiation-dependent pneumonitis. Dose volume histograms

(DVHs), however, cannot account for the spatial distribution of

the dose and potential effects on the tissue. Thus, prediction of the

risk for the development of PTP relying on the spatial distribution

could gain clinical advantage for individual patient treatment. Apart

from conventional dosimetric approaches, sophisticated methods

such as machine learning gain more and more importance for

radiation oncology. In recent years, it has been shown that spatial

quantitative features assessing the image grey-level distribution

extracted from medical imaging data (radiomics) allow for

unprecedented predictions of clinical endpoints including patient

survival, disease progression, tumor characterization, tumor

response and tumor detection (9–17). Analysis using spatial

features of the dose distribution or image grey-level distributions,

referred to as dosiomics (18–22) or radiomics (23–25) and even the

combination of both (26, 27) have also been successfully

investigated for prediction of lung toxicity after thoracic

radiotherapy in previous studies.
02115
The radiomics features based on pretreatment computed

tomography (CT) data showed improvement to predict high grade

radiation pneumonitis after definitive radiotherapy (23, 25) and after

SBRT (24). Several studies investigated lung toxicity prediction for

normofractionated radio(chemo)therapy (RCT). Liang et al.

compared dosiomics prediction of radiation pneumonitis after

primary thoracic radiotherapy with dosimetric and normal tissue

control possibility (NTCP)models and found dosiomics to surpass all

other methods (20). In a similar approach, Bourbonne et al. also

found dosiomics models to outperform clinical and dosimetric

models for prediction of lung toxicity (18). Additionally,

combination of radiomics and dosiomics models could even

improve the prediction of radiation pneumonitis (26) and for

SBRT, other studies support these findings. Jiang et al., additionally

revealed improved prediction by machine learning models using

dosiomics for different anatomical regions of interest (27), however

only for normofractionated radiation schemes. Adachi et al. also

tested dosiomics against dosimetric models and against a hybrid

model of both resulting in best prediction of radiation pneumonitis

achieved with the dosiomics model (19).

These studies investigated PTP prediction after normofractionated

R(C)T or SBRT using radiomics and dosiomics combined or dosiomics,

respectively. In addition to the above summarized findings, with this

study, we aim to find the potential value for the occurrence of PTP after

thoracic SBRT using the combination of radiomics and dosiomics

analysis of 3D dose distributions and CT data. Additionally, we

investigate the potential impact of combined radioimmunotherapy

with ICIs.
2 Methods

2.1 Clinical factors

A total of 110 cases of primary lung cancer or pulmonary

metastases received SBRT between 2010 and 2021. All patients

provided written informed consent before enrollment. Dose and

fractionation schemes varied with fraction doses ranging between
frontiersin.org
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5 Gy and 15 Gy. Patient data involving patient age, sex, karnofsky

performance index (KPI), tumor location and size, previous

chemotherapy and ICI therapy within 50 days around SBRT.

The occurrence of post-treatment pneumonitis (PTP) of all

grades according to the Common Terminology Criteria for

Adverse Events version 5.0 (28) was detected in follow-up CT

scans and from corresponding clinical findings (e.g. dyspnea,

cough, pain) during follow-up visits monitored in the patient

files. An overview of the patient data is provided in Figure 1.
2.2 CT and dose data

Radiotherapy planning CTs, 3D dose distributions, lung and

treatment volume segmentations as well as dose volume histogram

(DVH) data were selected from the radiotherapy treatment planning

system Eclipse (Varian, Paolo Alto). Patients received a 4D-CT prior

to radiotherapy. A gross tumor volume (GTV) was delineated on ten

phase CTs. Subsequently, an internal target volume was generated

which encompasses the GTV across all ten 4D-CT phases. An

additional margin of up to 5 mm was added to the internal target

volume resulting in the planning target volume (PTV).

Dosimetric data for the total lung included mean dose, the

volume receiving at least 5 Gy (V5) and V10, V15, V20, V30, V40,

V50, accordingly (29). Required post processing of the

segmentation data was performed using the open source platform

3D Slicer (30) and the Radiation Therapy toolkit (31). To take the

impact of different fractionation schemes into account, physical

dose distributions as extracted from Eclipse were converted into 2

Gy fractions equivalent doses (EQD2) on a voxel basis using an in-

house developed Matlab tool (32) according to equation (1) where

D is the sum dose over all fractions, d is the fraction dose, and a
b is

equal to 3 for lung tissue. Dose outside the lung was not considered.

EQD2 = D
d + a

b

2 + a
b

" #
(1)
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2.3 Feature extraction

From each volume of interest (total lung minus GTV, ipsilateral

lung minus GTV, PTV + 2cm isotropic margin) 104 radiomics and

dosiomics features were extracted from the planning CT and 3D

dose distributions using the open-source library Pyradiomics in

Python (see Supplemental Table 1 for a list of all features) leading to

312 features, respectively (33). 3D dose maps were treated as images

with Gy values as grey-levels. Feature reduction was performed

within 1000-fold bootstrapping using pearson intercorrelation

coefficient with a cut-off value of 0.7 (arbitrarily chosen to allow

sufficient input features for all feature sets) and the Boruta

algorithm as previously described (34). In brief, the Boruta

algorithm iteratively removes features that appear unimportant

for the prediction of the PTP in comparison to synthetic random

features (35). The features were ranked according to the frequency

of selection overall bootstrap runs. The final feature set was defined

as the top-ranking features. The final feature number per model was

defined as the median feature number selected over all bootstrap

runs. For combined models, the preselected features from each

group were used as input for the same procedure.
2.4 Machine learning models

The entire process flow is depicted in Figure 2. Three single

predictive models (radiomics, dosiomics, clinical factors) and five

combined models (dosiomics + radiomics, DVH + clinical factors,

radiomics + DVH + clinical data, dosiomics + DVH + clinical

data, all) were investigated for the physical dose and EQD2 dose

distributions. Different machine learning models with in-built

feature reduction including random forest (rf), logistic elastic

net regression (glmnet), support vector machine (svmRadial),

and logitBoost were trained and tested using 100 iterations of 5-

fold nested cross validation in R according to Deist et al. (36).

This led to training/test splits of 88:22 and 70:18 in the outer and
FIGURE 1

Patient data groups. Patient mean age and standard deviations are provided. Prescription doses are given in mean values and standard deviations of
equivalent uniform doses for an a/b of 10 Gy (EQD210). The number of patients who received prior chemotherapy (CTx) is provided.
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inner folds, respectively. Due to class imbalance, Synthetic

Minority Oversampling Technique (SMOTE) resampling was

applied based on the R DMwR package (37) introducing data

augmentation of the minority class via generation of synthetic

samples using a k-nearest neighbor approach and undersampling

of the majority class. Due to the small event number, a k-value of

3 was chosen for the k-nearest neighbor procedure. The ratio of

oversampling and undersampling was empirically optimized

leading to “perc.over” and “perc.under” equaling to the default

value of 200%. For comparison, all machine learning models were

also calculated without any weighting or SMOTE resampling (see

Supplemental Table 3). Hyperparameter optimization was

performed within the inner folds using grid search (see

Supplemental Table 4 for Hyperparameter Space). Single feature

models (e.g. ICI) were modeled using logistic regression. The

entire process flow is depicted in Figure 2. Model performance

was analysed using the area under the receiver operating

characteristic curve (AUC) on the test sets of the outer folds.
Frontiers in Oncology 04117
Data is presented as mean values and confidence intervals with a

confidence level of 95%. For comparison of different classifiers

used, AUC values were calculated for each dataset and repetition

and were ranked by ordering between numbers ranging from 1 to

4 for the four different single predictive models. Data is presented

in box and scatterplots as ranked AUC values with each point

representing the result of one outer validation fold.
3 Results

3.1 Comparison of classifiers

Comparison of different classifiers revealed rf to perform best

for all models tested resulting in a mean AUC rank value of 1.08 and

1.20 for physical dose and EQD2 analysis. Figure 3 shows the

ranked AUC values for all applied classifiers. Based on these

findings, for the following analyzes, we chose rf.
FIGURE 2

Process flow. Clinical, Computed Tomography (CT) and 3D dose volume and dose volume histogram (DVH) data is used for feature extraction. PTP
prediction is performed testing different classifiers such as random forest (rf), logistic elastic net regression (glmnet), support vector machine
(svmRadial), and logitBoost and 5-fold nested cross validation approach and Synthetic Minority Oversampling. Four single models and five combined
models are analyzed.
FIGURE 3

Ranked mean AUC values for all classifiers and models tested. Subscripted D and EQD2 refer to physical dose and EQD2, respectively.
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3.2 Clinical factors

A summary of the clinical parameters collected and the patient

groups is given in Table 1 and Figure 1. Most tumors occurred in

the right upper lung (30 (27.3%)). A total of 10% of patients

received additional ICI therapy. Five patients received primary

lung cancer treatment, however, all in a metastasized stage, and

six were treated due to metastases. Most of the patients (95%) did

not receive previous chemotherapy. Pneumonitis occurred in 24

(21.8%) of all patients, 12.5% (3) of them received additional ICI

therapy and 87.5% (21) did not receive additional ICI therapy.
Frontiers in Oncology 05118
3.3 Feature extraction

All features used for feature extraction are listed in Supplement

Table 1. The reduced extracted features for all models tested are

provided in Supplement Table 2. There was no correlation between

ICI and the selected features within the model combining all

features. In total, four clinical features were extracted and

ranked as follows: tumor size, patient age, tumor location and

patient sex. From dosimetric parameters, only V50 and V5 were

selected for physical dose and EQD2 features, respectively.

Combining both models resulted just in the combination of all

single feature models.

Across all model analyzes, 17 to 33 features were found. The

most relevant features are listed in Table 2.
3.4 Prediction model performance

3.4.1 Single feature models
For both, physical dose and EQD2, dosiomics models predicted

PTP better than random with AUCdosiomics, EQD2 = 0.68 (0.67-0.70)

and AUCdosiomics,D = 0.70 (0.68-0.71), respectively. The radiomics

model achieved the highest predictive value (AUCradiomics,D = 0.73

(0.72-0.74)). Other classifiers resulted in worse predictive results

depicted in Figure 4. DVH parameters achieved PTP prediction

yielding no better than random (AUC = 0.43 (0.42-0.46)). Clinical

data and ICI therapy status was not predictive for the development

of PTP, independent from the applied classifier (AUC = 0.45 (0.44-

0.47) and AUC = 0.46 (0.42-0.44)), respectively.

3.4.2 Combined feature models
For the combination of radiomics and dosiomics, PTP was

predicted better than random with AUCradiomics+dosiomics, D = 0.79

(0.78-0.80) and AUCradiomics+dosiomics, EQD2 = 0.77 (0.76-0.78) for

both, physical dose and EQD2, respectively. Combination with

other models including ICI therapy and clinical data did not

improve the prediction model. Results are depicted in Figure 5.
4 Discussion

Our results indicate that additional ICI therapy has no impact

on the prediction of PTP after thoracic SBRT. PTP prediction can

be improved by combining radiomics and dosiomics features. This

combination outperformed radiomics-only and dosiomics-only

models as well as DVH and clinical parameters and can improve

prediction of PTP after thoracic SBRT.

In our work, the dosiomics feature model surpassed all clinical

and DVH models with an AUC of 0.70 and 0.68 for physical dose

and EQD2. These results are well in line with findings in the current

literature. For example, in the study of Liang et al. dosiomics

analysis with an AUC of 0.78 also resulted in favorable results

when compared to dosimetric and NTCP factors (20). Importantly,

in our study, prediction of PTP after thoracic SBRT could even be

improved when dosiomics features were combined with radiomics
TABLE 1 Clinical factors.

Characteristic Value Value [%]

Age

Mean ± SD 72 ± 10.48

Range 33-90

Sex

Male 69 62.7

Female 41 37.3

KPI

Mean ± SD 95 ± 5.90

Range 80-100

Tumor size

Mean ± SD 61162.1 cc ± 75582 cc

Range 4601.3 cc-524554 cc

Location

RUL 30 27.3

RML 2 1.8

RLL 25 22.7

LUL 36 32.7

LLL 11 10.0

RC 3 2.7

LC 3 2.7

SBRT+ICI

Yes 11 10.0

No 99 90.0

Prior CTx

Yes 5 4.5

No 105 95.5

Pneumonitis

Yes 24 21.8

No 85 77.3
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features, which has not been previously shown for patients receiving

lung SBRT. Two other works studying patients receiving lung RCT

showed combined radiomics and dosiomics models to

outperformed single feature class models with an AUC of 0.68

and 0.88 for radiomics and dosiomics combination models,

respectively (26, 38). Jiang et al. found the combination of

radiomics, dosimetrics, age and tumor T stage to result in a

further increased AUC of 0.94.

The total performance of our model with a maximum AUC of

0.79 for the combined radiomics/dosiomics model is well in line
Frontiers in Oncology 06119
with other studies on PTP prediction (20, 24, 26). A few studies,

however, achieved larger predictive AUC values above 0.90.

Several reasons may explain this fact: 1) The majority of other

studies tested prediction of grade ≥ 2 pneumonitis, whereas we

tested prediction of all grades of pneumonitis. The reason for this

choice of data inclusion was triggered by unknown potential

interfering effects associated with the combination of SBRT with

immunotherapy that should not be overseen at this stage. Hence,

we considered any detectable lung damage or symptom associated

with pneumonitis worthwhile to include in our data set. 2) We
TABLE 2 Features ranked in the order of frequency they have been selected after feature reduction for all models tested.

Model Number of reduced features Ranked features

Radiomics 21 PTV_original_shape_Sphericity

Total_Lung_original_glcm_Idn

Ispilateral_Lung_original_glcm_InverseVariance

DosiomicsD 17 PTV_original_shape_Sphericity

Total_Lung_original_shape_Flatness

PTV_original_glcm_Idmn

DosiomicsEQD2 17 PTV_original_shape_Sphericity

Total_Lung_original_shape_Flatness

PTV_original_glcm_Idmn

Radiomics + DosiomicsD 28 PTV_original_shape_Sphericity

PTV_original_glszm_SmallAreaLowGrayLevelEmphasis

Ipsilateral_Lung_original_glcm_InverseVariance

Radiomics + DosiomicsEQD2 28 PTV_original_shape_Sphericity

PTV_original_glcm_Idmn

Ispilateral_Lung_original_glcm_InverseVariance

Radiomics + Clinical Factors + DVH 27 PTV_original_shape_Sphericity

Total_Lung_original_glcm_Idn

Ispilateral_Lung_original_glcm_InverseVariance

DosiomicsD + Clinical factors + DVH 22 PTV_original_shape_Sphericity

Total_Lung_original_shape_Flatness

Total_Lung_original_shape_Elongation

DosiomicsEQD2 + Clinical factors + DVH 22 PTV_original_shape_Sphericity

Total_Lung_original_shape_Flatness

Total_Lung_original_shape_Elongation

Radiomics +DosiomicsD + Clinical factors + DVH 33 PTV_original_shape_Sphericity

PTV_original_glszm_SmallAreaLowGrayLevelEmphasis

Ispilateral_Lung_original_glcm_InverseVariance

Radiomics +DosiomicsDEQD2 + Clinical factors + DVH 33 PTV_original_shape_Sphericity

PTV_original_glcm_Idmn

Ispilateral_Lung_original_glcm_InverseVariance
Subscripted EQD2 refers to the equivalent dose in 2 Gy fractions and D to the physical dose.
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applied a sophisticated nested cross validation approach

separating the validation cohorts for hyperparameter

optimization from the actual testing cohort. By iterating the

process 100 times, statistical robustness was achieved. This

procedure reduces the risk of overly optimistic results that may

derive from small test sets or simple cross validation approaches

(18, 19, 27).

The DVH features extracted were expected to be comparable

with commonly known dosimetric risk factors for radiation

pneumonitis such as mean lung dose, the lung volume receiving a

dose of 10 Gy and 20 Gy, V10 and V20, respectively. Palma et al.

found V20 to be predictive for grade ≥ 2 radiation pneumonitis after

radiochemotherapy (39). Tsujino et al. found V20 and Fay et al. V30

and mean lung dose to be most predictive for symptomatic

radiation pneumonitis after radiotherapy (40, 41). However, in

our study only V50 and V5 were selected by feature extraction

and did not predict PTP better than random (AUC< 0.5) in contrast

to previous works (18, 19, 24). Different from other studies, we

included all grades of pneumonitis into our analysis which could

lead to differing dosimetric parameters or even missing correlation

of common dosimetric parameters and the development of PTP. In

our study, the highest grade of PTP observed was grade 2 in three

patient cases and out of these one received additional ICI therapy.
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Due to the retrospective character of this investigation, the

probability of misgrading increases. Our SBRT fractionation

schemes cover a rather large range including single doses with a

minimum of 5 Gy and lower total doses addressed to treat

metastatic disease less likely to cause PTP.

Addition of clinical factors did not improve the prediction of

pneumonitis. Likewise, Krafft et al. observed clinical characteristics

to not improve the prediction model for high grade pneumonitis

after definitive radiotherapy with conventional fractionation (23).

We converted doses to 2 Gy equivalent doses in order to

compare different fractionation schemes applied and compared

prediction outcome for dosiomics models based on physical dose

and biological dosiomics features. As expected, results were

comparable with a mean AUC of 0.7 and 0.68 for single

dosiomics features analysis using physical dose and EQDs,

respectively. This is well in line with findings in the literature

(42). However, EQD2 could not further improve the prediction

leading to the conclusion that conversion into EQD2 might be

unnecessary for PTP prediction.

Development of machine learning models in a dataset of 110

patients is a challenging task, especially when considering the

observed imbalance of the predicted outcome. To be able to test

our medical hypothesis with regard to the comparison of the
FIGURE 5

Area under the receiver operating characteristic curves (AUCs) heat maps as prediction substitute for PTP for physical Dose and EQD2 using random
forest classifier and logistic regression for single feature models.
FIGURE 4

Box and Scatterplots showing area under the receiver operating characteristic curves (AUCs) rank values (lower being better) for different classifiers
used over all datasets and repetitions for physical (a) and EQD2 dosiomics analysis (b).
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predictive values of different feature sets, we decided for several

technical steps to allow for optimal training and testing the

limitations and reduce the risk of overfitting: 1) we compared

multiple machine learning algorithms to determine the algorithm

best suited to learn from the small dataset; 2) we applied a cross

validation approach with 5 folds to ensure a minimum of samples

in the patients subgroups; 3) we applied SMOTE to decrease the

influence of the imbalanced outcome variable; 4) we applied

multiple feature reduction steps to reduce the feature space to

the most predictive features per feature set; 5) no assumption of

the optimal number of features was made beforehand; 6) we

applied a nested-cross validation approach allowing for repeated

testing on unseen data, completely independent of the data used

for hyperparameter optimization. Finally, our models achieved

good predictive performances in the range of multiple previous

works as discussed above. Comparison of the results calculated

without any weighting or SMOTE resampling did not change the

presented result. Thus, the choice of data augmentation did not

alter the relevant comparison of the analyzed models. Importantly,

all prediction models were trained and tested simultaneously using

the same technical principles and patient subsets down to the

internal cross validation folds, guaranteeing optimal

comparability. As consequence, the limitations of the model

development were the same for all models – allowing for a fair

comparison of the predictive value of the underlying feature sets.

Obvious limitations of this study are the retrospective character

of data collection. Prospective data could improve the data quality

with regard to PTP definition. Patients in this study receiving ICI

therapy where all in a metastasized tumor stage. Clearly, this could

lead to an imbalance between the SBRT only and the SBRT plus ICI

group with slightly enhanced PTP rates (27.3% vs. 21.2%) in the

combined therapy group. Additionally, there is a lack of patients

included in the ICI group resulting a paucity of PTP events. Very

few patients were diagnosed with pneumonitis grade ≥ 2, which

could limit the clinical relevance of the prediction results. In our

study, we decided to include all grade pneumonitis. One reason for

this choice was to account for unknown effects occurring during

combined radioimmunotherapy, and another reason was the

uncertainty of grading coming along with retrospective data

collection. Further, we did not apply external test data. External

validation, however, is necessary to demonstrate reproducibility of

models which is planned in future.
5 Conclusions

We demonstrated the potential of combining radiomics and

dosiomics features to improve the prediction of PTP after thoracic

SBRT. Clinical factors and dosimetric features did not further

improve the prediction in this study. Additional immunotherapy

with ICIs did not impact the prediction of PTP after

thoracic SBRT.

These results could contribute to the prevention of pneumonitis

by improvement of clinical decision making prior to thoracic SBRT

with and without immunotherapy with ICIs.
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