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Editorial on the Research Topic
Geophysical, climatological and anthropogenic hazards and disaster:
vulnerability, risk assessment, and sustainability

In the contemporary era, the global community grapples with frequent natural and
human-induced threats, spanning from droughts and floods to deforestation, placing a
substantial population at risk of catastrophic destruction and loss of life. Recognizing
the inevitability of natural hazards, the quantification of these events and the
development of reliable forecasts emerge as crucial tools to mitigate their adverse
impacts, contributing to the establishment of a more resilient and secure society. This
Research Topic aims to consolidate existing knowledge on multiple hazards,
emphasizing monitoring and management, with the objective of bridging the gap
between scientific understanding, policy formulation, and community engagement. It
focusses on applications of remote sensing, GIS and precision methodologies for precise
and reliable evaluation of various natural and environmental hazards. Additionally, the
studies underscore the implementation of eco-friendly and sustainable management
approaches to foster resilient societies. The rich contents, both thematic and regional
perspectives, sheds light on the dynamic nature of climate crisis, natural resources,
landscapes, agricultural ecosystems and water systems, across various spatial and
temporal scales. It covers both theoretical and applied aspects, serving as a
comprehensive guide for future research endeavours. The research primarily
focussed on exploring various aspects of hazards and disasters associated with
natural resources covering groundwater depletion, occurrence of drought and
floods, land use/land cover change, soil erosion, landslides, water scarcity and the
investigation of SINDEI framework. The primary objective is to enhance
comprehension of Geospatial Technologies, scrutinizing their interplay with
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hazards, landscapes, land use, water scarcity, forestry, spatial
modeling, artificial intelligence, and the environment to actively
contribute to the sustainable development.

In summary, this Research Topic provides a comprehensive
understanding of both conventional and cutting-edge geospatial
technologies applied in atmospheric, lithospheric, hydrospheric,
biospheric, and socio-economic contexts. Addressing hazards,
disasters, and sustainable development and management, the
compilation proves invaluable for researchers, scientists, non-
governmental organizations (NGOs), academic professionals,
policymakers, and university communities involved in hazard
and disaster resilience, climate change, environmental sciences,
geomorphology, remote sensing, natural resources management,
GIS, hydrology, and soil sciences.

Tang et al. assessed the metropolitan area which plays a crucial
role in shaping city agglomerations in China and is vital for
achieving integrated development within the region. Specifically,
the Guangzhou metropolitan area holds significant importance in
Guangdong Province’s economic development plan. This research
investigates the multi-dimensional perspective of city resilience
within the metropolitan area, focusing on the spatial-temporal
pattern and the factors that influence it. The findings aim to
offer valuable insights and serve as a reference for fostering the
coordinated development of metropolitan areas.

Wang et al. evaluated the risk of debris flow in Shaling Gully
through FLO-2D model and systematic approach. In this paper
hazard zonation at different rainstorm frequencies was determined
using ARCGIS 10.8 software and also highlighted the numerical
simulation was employed to evaluate the efficacy of a retaining dam
inmitigating debris flow, providing technical insights to improve the
safety of downstream structures.

Hoa et al. highlighted a unique perspective to the discourse by
combining knowledge-driven consultation with precise statistical
analysis of geospatial data. This integration considers essential
explanatory factors, leading to a dependable delineation of
landslide-prone areas across both spatial and temporal
dimensions in the tropical monsoon areas.

Liu et al. focused on delineating landslide susceptibility in a
coastal mountainous area of Vietnam through the integration of the
subjective Analytic Hierarchy Process (AHP) and the objective
Shannon Entropy (SE). By combining these methods, the study
provided a substantial advancement in the geographical information
system (GIS)-based zoning of landslide susceptibility in Vietnam.
This advancement enhances the capacity for early warning and
mitigation of catastrophic hazards. Notably, the approach not only
draws on expert knowledge but also incorporates reliable statistical
evidence, offering resilience against potential uncertainties
associated with future climate changes.

Rahman et al. assessed the flood susceptibility map for the SRB
in the eastern Hindu Kush region of Pakistan, utilizing a GIS-based
FR model. Additionally, the research explores how various factors
contributing to floods impact the increased vulnerability to flooding
in the area. The paper assesses the effectiveness of the FR bivariate

statistical model in delineating flood susceptibility in the SRB. The
insights gained from this research offer valuable perspectives for
stakeholders, aiding in the implementation of efficient flood risk
management strategies and promoting sustainable development.

Alam prepared an innovative Modified Mercalli Intensity
(MMI) map, crafted by analyzing the cumulative impact of
80 earthquakes in Bangladesh spanning from BC 810–2015,
covering both Bangladesh and its neighboring regions. The paper
commences with an exploration of earthquake hazard zoning and
preparedness initiatives.

Le et al. evaluated the effectiveness of six machine learning (ML)
algorithms in land surface mapping (LSM) specifically in Inje
County, South Korea. This research serves as a valuable initial
step for exploring the application of ML techniques in LSM not
only in South Korea but also in other geographical areas around the
world as well.

Mohanty et al. made a comparison of traditional decision
support models like AHP and machine learning algorithms in
the evaluation of flood vulnerability and risk within Bhitarkanika
National Park, Odisha, India.

Setiawati et al. explores local climate trends, evaluates their
potential consequences, and analyzes policy interventions in the
Seribu Islands, Indonesia.

Seo et al. comprehensively examines the factors affecting the
behavior of retaining walls in response to ground excavations in
urban areas. The results of this study suggest that the lateral
movement of the wall caused by excavation is closely tied to both
the unit weight and shear strength of the soil.
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The research on spatial-temporal
evolution and influence factors
of urban resilience: A case study
in the Guangzhou metropolitan
area

Bo Tang1* and Zechuang Tan1,2

1School of Resources and Planning, Guangzhou Xinhua University, Guangzhou, China, 2College of
Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China

Resilience city, a new concept of city sustainable development, becomes one of

the important subjects of high-quality development research. Compared to the

traditional urban disaster mitigation approach, resilient cities focus more on the

organizational capacity and coordination within the urban systems. Taking

Guangzhou metropolitan area as an instance, which is featured a highly

developed economy and society and frequently happened hazards and

disturbances, the paper constructs an evaluation index system from four city

subsystems, including economy, society, ecology, and engineering. Meanwhile,

by applying the methods of global entropy weight, variation coefficient,

geographic information system, and obstacle degree model, the paper

explores the time changes, space evolution, and obstacle degree factors of

city resilience in the Guangzhou metropolitan area from 2010 to 2020. The

research results show that: (1) There is a significant change in the time

difference of city comprehensive resilience of the Guangzhou metropolitan

area. The resilience of each city’s resilience subsystem has grown steadily, of

which the development level of economic resilience, social resilience, and

engineering resilience has been steadily improved, and ecology resilience level

shows a slight decline among a steadily increasing. (2) The overall city resilience

of the Guangzhou metropolitan area shows a radial pattern taking Guangzhou

as the core, of which the city economy, society, and engineering resilience

grades mainly show a medium and low resilience level, the ecology resilience

mainly shows a medium and high resilience level, and the general performance

of resilience space distribution level is high in the southeast and low in the

northwest. (3) Social resilience and ecological resilience are the main driving

subsystems in the early and late stages of city resilience development in

Guangzhou metropolitan area during the research period, and engineering

resilience is the main constraint subsystem. (4) Water and soil loss control area

and population density are the main obstacle factors in the early and late stages

of city resilience in the Guangzhou metropolitan area. The density of the city

drainage pipeline and the total import and export volume are the basic

resilience barrier factors. The paper analyzes the spatial-temporal pattern

and influencing factors of city resilience in the metropolitan area from a

multi-dimensional perspective, provides a new thinking and analysis
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framework for the management and sustainability of city resilience in the

metropolitan area, and provides a reference for the coordinated

development of the metropolitan area.

KEYWORDS

urban resilience, spatial-temporal evolution, global entropy weight method, obstacle
degree, Guangzhou metropolitan area

1 Introduction

As the main place for human activities and the energy flow

cycle space carrier, the city is constantly challenged by its systems

and external environment. Meanwhile, the city is a

comprehensive society-economy-ecology system with certain

“Resilience” and is capable of resisting external interference

and reducing disaster losses with its capabilities to make the

system realize a new balance status through adaptation or

recovery (Zhao, et al., 2020). City resilience, an emerging

concept in the field of ecology and environment, mainly

focuses on the relationships between the structural complexity

and functional diversity of the city and nature, economy, and

society (Xu et al., 2018). The research on resilience theory and

resilience city launched early and developed rapidly in foreign

countries. Through exploring the potential problems and risks of

the city system and improving the city’s reaction capability to

uncertain disturbances and shocks, the concept of city resilience

has increasingly been cared for worldwide under the support of

international organizations, government agencies, and private

foundations. The concept analysis, index construction, and

research methods of resilience city in foreign countries are

relatively perfect, and many research achievements have been

obtained in the fields of natural science, engineering technology,

and society economy (Herrera et al., 2016; Lorenz, 2013; Meerow

et al., 2016). Based on this, the paper proposes and plans, and

builds “Resilient City” (Turner et al., 2003) and “Resilient

Community” (Colclough et al., 2021) in a targeted manner,

and actively promotes interdisciplinary research and cross-

field cooperation. The concept of city resilience was proposed

at the American Ecological Academic Year Meeting in 2002.

There is still no broad consensus on its scientific definition,

which is mainly because the composition and characteristics of

the city system are highly different on the global, regional, and

even local scales, and the city system is subject to the disturbance

factors of the external environment with diversity and dynamics

(Müller, 2010), including various natural disasters, public health,

and public safety events. Meanwhile, with global climate change,

cities have begun to vigorously promote carbon peaking and

carbon neutrality, deepen ecological civilization and promote

green and low-carbon lifestyles to improve their ability to cope

with weather and climate extremes and adapt to the adverse

effects of climate change (Osman, 2021). Scholars focus on global

environmental issues caused by different sectors (e.g.,

production, construction, shipping, manufacturing, etc.)

(Zhang et al., 2021; Dulebenets, 2018), actively explore the

mechanisms of energy consumption structure, industrial

development degree, technical equipment, energy efficiency

and other factors on urban ecological environment, and

deepen the study of the resilience of urban ecosystem

(Grzegorz et al., 2021; Liang et al., 2021). In terms of research

content, there are different levels and dimensions involved. For

instance, the City Resilience Index (CRI) published by the

Rockefeller Foundation is a city resilience evaluation system

with a relative influencing power at present (Marjolein and

Bas, 2017). There are four dimensions in CRI: health and

well-being, economy and society, infrastructure construction

and environment, and leadership and strategy, which

combines qualitative and quantitative methods to evaluate and

has a relatively comprehensive index system. Desouza and

Flanery (2013) thought that the deficiencies of the city could

be understood through resilience evaluation. Through three

intervention activities of planning, designing, and managing,

the dynamics and physical factors inside a resilient city could

be influenced. From four perspectives of infrastructure resilience,

policy resilience, economic resilience, and social resilience,

Jabareen (2013) studied multidisciplinary and complex city

resilience. In terms of research methods, attention was paid to

the improvement of the conceptual framework, the index system,

and data analysis (Paulo and Luís, 2019). For instance, the

“Global 100 Resilient Cities” plan puts emphasizes the

complexity and diversity of the system and constructed a

general framework with seven characteristics, including

reflection, resource availability, inclusiveness, integrity,

robustness, surplus, and plasticity, reflecting resilience city to

manage with sudden disturbances and slow pressure (Amirzadeh

et al., 2022). Through establishing an index system to evaluate

community resilience, Simon et alapplied the interview to

determine the index level to evaluate the infrastructure status

of slum communities. This method can be applied to quickly

evaluate community resilience, making the evaluation results

more general and comprehensive (Simon et al., 2016). During the

study of community anti-seismic resilience, Michel et al(2012)

innovatively established a functional model of infrastructure

resilience probability and resilience recovery time to obtain

city infrastructure resilience through quantitative calculation

and analysis. With the continuous accumulation of city big

data and the continuous progress of cloud computing

technology, it is promising that the quantitative evaluation

mode, urban systems abstraction hierarchy (USAH), and
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simulation dynamic analysis method and technology of resilience

city can be realized (Mcclymont et al., 2022).

The theoretical research on resilient cities in China launched

relatively late. In recent years, with the national attention on

public safety, many achievements have been accumulated on the

research ideas, research objects, and research methods of resilient

cities based on different perspectives (Li, 2017). However, it is

still in the initial exploration stage, lacking systematisms and

standardization, and the relevant theoretical framework needs

improvement. In terms of theoretical research, the construction

of a domestic city resilience evaluation index system is mainly

based on the three perspectives of city basic elements, city

resilience characteristics, and the staging process of resilience

development (Ni and Li, 2021). Xu and Shao (2015) made a

comprehensive analysis of the connotation of a resilient city,

what characteristics a resilient city shall have, and how to shape a

city’s resilience, which provides a new idea for managing crisis.

Standing at the perspective of the social ecology system, Sun

et al(2017) analyzed and obtained the city resilience status and

space differentiation characteristics of each region in the Yangtze

River Delta region from four levels, including economy, society,

ecology, and municipal facilities. Wu and Chen (2018) divided

the recovery capacity of resilient cities into four stages, including

resilience recovery, recovery capacity loss, recovery capacity

enhancement, and recovery capacity loss, to reveal its

evolution mechanism and summarize the social significance of

the recovery capacity of the resilient city. In terms of case studies,

taking provinces and city agglomerations as research objects,

scholars mainly evaluated city resilience characteristics and

influencing factors from different research perspectives. Bai

et al(2019) constructed a comprehensive city resilience

measurement index system from four systems, including

economy, society, ecology, and infrastructure to quantitatively

evaluate cities’ resilience above the prefecture level in China. In

terms of research methods, there are prevailing methods,

including the analytic hierarchy process, TOPSIS entropy

weight, cloud model risk matrix, and neural network. The

construction of city resilience reflects the risk awareness and

bottom-line thinking of city development and is the basic

guarantee for constructing a new development pattern and

promoting high-quality city development (Liu, 2021). In

recent years, with the progressive impact of natural disasters

and public health events on cities, research on resilience

regulation and management has been gradually gaining the

attention of scholars. The research objects of city resilience

governance in China mainly focus on city risks, the

construction of a resilience governance system around the

evaluation system, and the resilience governance path centered

on sustainable development (He et al., 2022). The rapid

development of urbanization in China urgently needs to

improve city resilience through city and rural planning. City

resilience can be improved by standing at four dimensions of

nature, function, space, and governance, and combining material

aspects of planning technology and construction standards and

social aspects of social regulation and public participation (Fei

et al., 2014). These resilience management measures have played

an important role in the city’s response to natural disasters and

public health emergencies (Yang et al., 2019).

Standing at the perspective of the city system, foreign

scholars analyze the composition and combination of city

resilience under different scales, pay close attention to the

influence of natural disasters on the city system, and focus on

the study of community resilience of city human settlements.

Domestic scholars pay more attention to resilience evaluation

based on the basic elements of cities. Based on quantitative

statistical analysis methods, they study city resilience

development under different spatial scales and propose

relevant city resilience planning concepts. In conclusion, there

are numerous efforts and work have been performed on city

resilience for concept connotation, theoretical framework, and

evaluation methods at home and abroad, which have obtained

numerous inspirations. The research scale on city resilience is

gradually diversified. In terms of the index system, multi-

disciplinary crossover and integration are conducted to break

through the constraints of “Internal Risks”, and gradually expand

to external factors, including nature, society, economy, and

ecology. However, there is difficulty in reaching a consensus

on the theoretical framework of city resilience, and the rapid

changes and uncertainties of constituent factors, functional

linkage structure, and regional and internal and external

environments of the city have increased the complexity of the

city resilience evaluation systems and evaluation process (Ni and

Li, 2021). Currently, there is still room for improvement in

specific research as follows, including insufficient analysis of

the development process and changing characteristics of city

resilience; the research scales are mostly concentrated at the

macro level (country, province) and micro level (community),

and there are few research on the city resilience of metropolitan

areas in the middle scale field; there are few analysis on the

restrictive factors restricting the comprehensive resilience of

cities, and insufficient attention paid to the regulation and

management of resilience.

With the rapid urbanization process, lagging construction of

supporting facilities, and lack of urban emergency and response

systems and social governance mechanisms, urban vulnerability

is very obvious. Secondly, since the types of risks faced by cities in

different regions vary greatly, a uniform risk management

mechanism cannot effectively mitigate crises. Therefore, it has

become a pressing issue to study how cities can cope with

“uncertainty disturbances” and enhance urban resilience. The

Metropolitan area, an important node in the construction of city

agglomerations in China, is important in realizing area-

integrated and regional coordinated development. The

Guangzhou metropolitan area is a key area in the economic

development plan of Guangdong Province. Evaluating its city

resilience and grasping the development path of city resilience
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can effectively prevent serious losses caused by city public safety

issues. Therefore, adopting the global entropy weight method,

taking time sections of 2010, 2012, 2014, 2016, 2018, and 2020,

and starting from the basic factors of the four resilient

dimensions, including economy, society, ecology, and

engineering, the paper conducts a dynamic spatial-temporal

evolution. Meanwhile, combining with system factor and the

obstacle degree factor of city resilience development in the

Guangzhou metropolitan area, the paper analyzes its influence

mechanism, aiming at providing a reference for the general

development and planning of cities in the Guangzhou

metropolitan area in the future and achieving the

optimization of resource allocation to promote the resilient

development of Guangzhou metropolitan area. Furthermore,

the paper can offer experience and suggestions for the

development of city resilience in other metropolitan areas in

Guangdong Province, as well as a reference for the high-quality

development of cities in Guangdong Province.

2 Study area and data sources

2.1 Study area

Figure 1 shows the study area. The Guangzhou

metropolitan is the largest one of the five major

metropolitan areas in Guangdong Province. It includes six

cities, Guangzhou, Foshan, Zhaoqing, Qingyuan, Yunfu, and

Shaoguan, with a total area of 71,171 km2, accounting for

39.6% of Guangdong Province. By the end of 2020, the

resident population of the Guangzhou metropolitan area

was 41.59 million, and the total Gross Domestic Product

(GDP) was 422,805 billion, accounting for 32.94% and

38.17% respectively of Guangdong Province. The

development within the Guangzhou metropolitan area is

fast, but the economic growth, ecological environment,

social conditions, and infrastructure development are

unbalanced and insufficient. The Guangzhou metropolitan

area will become a core area for developing advanced

manufacturing industries, and strategic emerging industries

and their supporting industries, it is the main area for

Guangdong to move towards high-quality and regional

coordinated development.

2.2 Data sources

The indicator statistics of this study mainly involve six

cities within the Guangzhou metropolitan area and apply the

content of 28 indicator evaluation factors for 6 years in 2010,

2012, 2014, 2016, 2018, and 2020. The specific indicator data

were obtained from 2011, 2013, 2015, 2017, 2019, and

2021 Guangdong Statistical Yearbook, Guangdong Rural

Statistical Yearbook, China Urban Statistical Yearbook, and

each city’s statistical yearbook national economic and social

development statistical bulletin. The ecological environment

condition index is obtained from the environmental quality

and monitoring bulletin of the department of ecology and

environment of Guangdong province (http://gdee.gd.gov.cn/

sthjzs/index.html). The number of Internet broadband access

users has been obtained from the China urban statistical

yearbook and China entrepreneur Investment Club (CEIC)

statistical database (https://www.ceicdata.com/en). In the case

of missing data from individual indicators, the mean value

method is applied to make up the data according to the

adjacent years.

FIGURE 1
Study area.
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3 Methods

3.1 Theoretical framework

Initially applied in the field of mechanical engineering,

resilience was later introduced into ecological research.

Defined as the capability of a system to return to its original

equilibrium state after being subjected to external perturbations,

resilience is used as a term to describe the characteristics of an

ecosystem in its stable form (Li, 2017). At present, the theory of

resilience has evolved from the engineering resilience of single

homeostasis to the ecological resilience of multiple equilibria, and

then to the continuous evolutionary resilience of complex fitness

systems. It encompasses three theories of perturbation, systemic

and adaptive capacity (Yang et al., 2021). The concept of a

resilient city represents the integration of resilience theory

with urban planning and management theory. In definition,

an urban system can resist change, recover stability, and even

reach a new equilibrium state through learning and adaptation,

thus maintaining fundamental structures, critical functions, and

significant features in response to internal disturbances and

external shocks. Through an in-depth study of the theory and

connotation of a resilient city, it is found that it is characterized

mainly by redundancy, dynamic balance, diversity, adaptability,

and others. Redundancy means that when damage is caused to

the essential facilities of the urban system, there are backup

facilities in place to ensure the normal operation of the urban

system under exceptional circumstances. Dynamic equilibrium

means the improvement and disturbance involved in the process

of urban design. As for the overall balance and stability, they

mean that the urban system consists of multiple subsystems that

can withstand different risks. Adaptability is referred to as the

capability of the urban system to deal with various threats

through learning and improvement (Xu et al., 2019). To sum

up, these elements provide general guidance on building the

evaluation index system. At the same time, urban resilience

evaluation plays a role in connecting theory with practice, the

implication of which is two-fold. On the one hand, it is necessary

to focus on the impact of uncertainty perturbations and the

limited capacity of a city; on the other hand, it is essential to

ensure the integrity of urban patterns and the continuity of

functional operation. Urban resilience is inseparable from the

support of the natural system, human system, and environmental

system, including ecological, economic, social, institutional,

facility and disaster dimensions (Zhang and Wang, 2019). As

a territorial spatial organization of fusion, cross-border, and

proximity, the urban resilience of the metropolitan area is

coupled and dynamic. The analysis of the spatial and

temporal evolution of urban resilience and the influencing

factors can help coordination and cooperation within the

metropolitan area, enhance the risk regulation ability of the

metropolitan area, and realize the high-quality development of

the metropolitan area. Figure 2 shows the theoretical basis for the

research method in this study.

3.2 Index system

Urban resilience is a new idea of integrated regional risk

response and governance, focusing on improving the ability of

urban cluster systems to organize themselves, coordinate their

functions, and adapt to uncertainty (Abid, 2016), emphasizing

the plasticity, responsiveness, and evolution of changes in natural

elements and human factors. The current urban resilience

evaluation mainly focuses on three different scales:

community, city, and region, and the evaluation focus of

different scales are different, which leads to differences in the

evaluation system (Shao and Xu 2015; Fang and Wang, 2015).

Based on the concept of the resilient city, concerning

summarizing the current literature research results (Turner

et al., 2003; Marjolein and Bas 2017; Yang et al., 2019), and

combined with the development characteristics of the

FIGURE 2
Research framework.
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Guangzhou metropolitan area and urban elements, the city

resilience evaluation system is constructed from four criteria

layers of economic, social, ecological, and engineering. Table 1 is

the urban resilience evaluation index system in this study.

By identifying and analyzing the factors of each urban

resilience domain, the effect of each element on the

development of urban resilience is explored below:

(1) Economic factors: The economic level of a city is the vane of

its development and determines the development speed of its

emergency system. High economic resilience systems often

support cities with high comprehensive resilience to

guarantee the coordination and adaptability among

subsystems within the town. The economic indicators

represented by GDP per capita can reflect the level of

development of the city society, the degree of action, and

the comprehensive macroeconomic operation; in addition,

the per capita disposable income and the per capita savings

balance can indicate the high standard of living of the

residents and their property reserves, respectively. The

public budget expenditure level reflects the investment in

public utilities. The proportion of tertiary industry to GDP

reflects the layout of the modern service industry in the city,

and the expanding market scale of the tertiary sector can be

the leading force in driving economic growth and absorbing

employment. As the southern gate of China, Guangdong

Province is the frontline of China’s reform and opening up

and an essential window for attracting investment. Its inner

cities, such as Guangzhou, Shenzhen, and Foshan, are

famous for their robust commercial and financial

environment.

(2) Social factors: social stability is the cornerstone of the long-

term stability of the country and the city, and maintaining

urban security and social stability is the top priority for

TABLE 1 Urban resilience evaluation index system in the Guangzhou metropolitan area.

Target layer Criterion
layer

Factor Layer (unit) Indicator properties

Urban Resilience in Guangzhou
Metropolitan Area

Economic
Resilience

E1: DP per capita (yuan) +

E2: Per capita disposable income (yuan) +

E3: The tertiary industry’s share of GDP (%) +

E4: Annual growth rate of fixed asset investment (%) +

E5: Total import and export (hundred million dollars) +

E6: Public budget expenditure (hundred million yuan) +

E7: Savings deposit balance per capita (yuan) +

Social Resilience E8: Population density (people/km2) +

E9: Urban registered unemployment rate (%) −

E10: The proportion of urban and rural essential medical insurance participants
in the permanent population (%)

+

E11: Unemployment insurance as a percentage of employment (%) +

E12: Number of licensed (assistant) physicians per 10,000 people (people) +

E13: Number of hospital beds per 10,000 people(a) +

E14: The fatality rate of production safety accidents in each city’s GDP per
100 million yuan (%)

−

Ecological
Resilience

E15: Per capita park green space (m2) +

E16: Green coverage in built-up areas (%) +

E17: Urban sewage treatment rate (%) +

E18: The rate of harmless treatment of municipal solid waste (%) +

E19: Soil erosion control area (khm2) +

E20: Growth rate of energy consumption per unit of GDP (%) −

E21: Ecological environment condition index +

Engineering
Resilience

E22: Highway mileage per square kilometer (km/km2) +

E23: Urban Drainage Pipe Density (km/km2) +

E24: Electricity consumption per capita (kW·h) +

E25: Total gas supply per capita (people/m3) +

E26: Number of mobile phone users (million households) +

E27: Number of Internet Broadband Access Users (million households) +

E28: Standard operation number of urban public transport vehicles(a) +
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development. Since 2019, the sudden health event

represented by the new crown pneumonia epidemic has

been the primary problem common to all countries

worldwide. The fight against the epidemic has become a

massive test of the world’s governance capacity, in which the

number of licensed (assistant) physicians and the number of

hospital beds directly affect the city’s relief for the infected

population and the stability of the economic and social side

of the city. The urban registered unemployment rate is the

percentage of the registered unemployed population in a

region, which reflects the unemployment status of urban

residents. The ratio of the number of people insured by

unemployment insurance to the number of employed people

and the balance of the number of people insured by urban

and rural basic medical insurance to the resident population

can effectively reflect the ability of urban residents to

effectively manage risk through insurance as a contractual

economic relationship when experiencing unemployment

and suffering from illness. Population density reflects the

basic situation of the number of people per unit area in a

region. The mortality rate of production and safety accidents

with a gross domestic product of 100 million yuan can

effectively reflect the level of investment and attention to

safety production in cities, curbing the occurrence of safety

accidents and maintaining social stability. It is worth noting

that studies have shown that population mobility between

cities, and between rural and urban areas are gradually

becoming an important cause of regional land use,

resource development, environmental change, and public

health, and these are among the important drivers for

studying urban resilience (Morrow, 1999). At the same

time, population mobility also involves the issue of

efficient transfer and sharing of public services, such as

the employment market, housing market, medical and

education system, infrastructure, and security

management (Wang et al., 2012). Therefore, it is

necessary to strengthen the scientific research and analysis

of the mobile population at a later stage and to track and

analyze the important outflow and inflow areas to better

improve urban resilience (Betty et al., 2017).

(3) Ecological environment factors: The ecological environment

is the material basis for human survival and the basic premise

of development. Its ability to resist disasters and the quality

of the green product directly affect the level of human

survival and growth. The per capita park green area and

the greening coverage rate of the built-up regions can reflect

the level of urban residents living environment and quality of

life. The rate of urban sewage treatment and the rate of

harmless treatment of urban domestic waste can indicate the

city’s ability to treat sewage and solid waste, which can help

reduce urban pollutants in the ecological environment,

improve the ecological resilience of the city and establish

an environmentally sustainable city. Guangdong region is

hot and rainy all year round, and soil erosion is joint on

mountain slopes. The area of soil erosion control can

indicate the city’s ability to reduce regional soil erosion

and guarantee the stability of the regional ecological

environment. The growth rate of energy consumption per

unit of GDP reflects the change in energy consumption by

regional living and production, concentrates on the

sustainable development ability of the region, and is an

essential indicator of comprehensive energy utilization

efficiency. The ecological condition index reflects the

multi-level complete ecological level of urban vegetation

cover, biodiversity, and ecosystem stability, and the size of

its index value is positively correlated with ecological

resilience.

(4) Engineering facilities factor: Municipal infrastructure is the

fundamental guarantee for the daily life of urban residents

and is the indispensable material foundation for the survival

TABLE 2 The results of the weights.

Criterion layer Factor layer Total factor weights

Economic Resilience E1(0.1167) 0.0292

E2 (0.1010) 0.0253

E3 (0.1004) 0.0251

E4 (0.0196) 0.0049

E5 (0.3211) 0.0803

E6 (0.2196) 0.0549

E7 (0.1215) 0.0303

Social Resilience E8 (0.4298) 0.1075

E9 (0.0242) 0.0060

E10 (0.0745) 0.0186

E11 (0.2238) 0.0560

E12 (0.0842) 0.0210

E13 (0.1181) 0.0295

E14 (0.0454) 0.0114

Ecological Resilience E15 (0.1621) 0.0405

E16 (0.0820) 0.0205

E17 (0.0433) 0.0108

E18 (0.0711) 0.0178

E19 (0.4559) 0.1140

E20 (0.0357) 0.0089

E21 (0.1499) 0.0375

Engineering Resilience E22 (0.0481) 0.0120

E23 (0.2908) 0.0727

E24 (0.0352) 0.0088

E25 (0.1338) 0.0334

E26 (0.1647) 0.0412

E27 (0.1147) 0.0287

E28 (0.2127) 0.0532
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and development of the city. Guangdong is prone to rain and

floods in summer and the higher the density of urban

drainage pipes, the stronger the city’s resilience to floods.

Information and communication technology and

development is an essential metric for urban resilience

evaluation, which can enhance the ability of urban basic

service facility system and community to cope with external

disturbances (Song, 2020), and the number of cell phone

users and Internet broadband access users better reflect the

level of residents’ condition on essential information

communication and exchange. The total gas supply and

electricity consumption per capita reflect the city’s energy

demand. Road mileage per square kilometer, the number of

urban public transport vehicles standard operation

demonstrates the level of function of urban road traffic

and public transport; it’s within a specific limit, the more

road mileage, the more public transport operations, the

higher the operational efficiency of urban transportation,

the higher the engineering resilience.

3.3 Global entropy weighting method

The global entropy weighting method is based on the

traditional one, adding the time dimension for longitudinal

comparison to determine the index weights. For the analysis

of the original data, the greater the indicator dispersion, the

greater the practical information of the indicator, the greater the

entropy value, the higher the weight value, and vice versa smaller

(Fang and Wang, 2015); the weighting results are shown in

Table 2. The specific steps are as follows:

(1) Building the original matrix

X � {xtij}p×m×n
(1≤ t≤ p, 1≤ i≤m, 1≤ j≤ n) (1)

where Xtij indicates the j th index of the i th city in the t year.

(2) Standardizing the data

Assuming that the evaluation index xtij is a positive index or

negative index, the following can be derived

Positive indicators: atij �
xtij −min(xtij)

max(xtij) −min(xtij)

Negative indicator: atij �
max(xtij) − xtij

max(xtij) −min(xtij)

(2)

(3) Calculate the ratio qtij of the i th city/year to the j th index

qtij �
Xp

ij

∑n
i�1X

p
ij

(3)

(4) Calculate the entropy value ej of the jth index

ej � −k∑
m

i�1
∑
p

j�1
(qtij × ln qtij), k � 1

lpm
, 0≤ e≤ 1 (4)

(5) Calculate the weight wj of the j th index

wj � (1 − ej)/∑n

j�1(1 − ej) (5)

3.4 Coefficient of variation method

CV � σ/AVG (6)

CV represents the coefficient of variation for the city’s

resilience each year during the study period. The higher the

average value of the variable, the more significant the relative

difference, and vice versa. σ indicates the standard deviation of

urban resilience each year during the study period, which can

reflect the degree of dispersion of the data set, and the larger

the value, the more significant the difference between the

original value and the average value; Conversely, the

smaller the value, the smaller the absolute difference (Zhou

et al., 2017). AVG indicates the average urban resilience

each year.

3.5 Obstacle degree analysis

The obstacle degree analyzes the diagnosis of regional urban

resilience development disorders by three indicators: factor

contribution, index deviation, and obstacle degree (Ma et al.,

2014).

(1) Calculating factor contribution

Uj � wj (7)

Uj representing the contribution of the factor, refers to the

degree of influence of a single element on the overall goal, wj is

the weight of the single element on the entire plan.

(2) Calculating the indicator deviation

Vtj � ∑n

i�1(1 − atij) (8)

Vtj indicates the degree of variation of the indicator, which

refers to the gap between the individual indicators in a particular

year and the overall urban resilience goal of the region.

(3) Calculating the degree of obstacle
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Mtj � (Uj × Vtj)/∑n

j�1(Uj × Vtj) × 100% (9)

Mtj is the degree of an obstacle is indicated, which refers to

the influence value of a single index on the level of resilience

development of regional cities in a particular year.

4 Analysis of the results

4.1 Temporal evolution

4.1.1 Economic resilience
The results of the temporal evolution of the economic

resilience degree of the Guangzhou metropolitan area are

shown in Table 3. The standard deviation value of economic

resilience of the Guangzhou metropolitan area also increases

from 0.0478 to 0.0737 from 2010 to 2020, indicating that the

absolute difference in economic resilience of the Guangzhou

metropolitan area gradually expands. The coefficient of variation

of economic resilience of the Guangzhou metropolitan area

shows a decreasing trend year by year during the study

period, with a decrease of nearly 26.06% in 2020 compared

with 2010, indicating that the gap between the economic

resilience of cities within Guangzhou metropolitan area

gradually decreases, but the relative difference is still significant.

Figure 3 shows the temporal changes in economic resilience

in the Guangzhou metropolitan area. Each city’s overall

economic resilience degree shows an upward trend, but the

increase rate of economic resilience degree is more variable.

The cities represented by Guangzhou and Foshan have a

significant increment of economic resilience during the study

period. The overall annual growth rate is around 10%, with a

more stable change. The cities represented by Zhaoqing show

fluctuating changes in their economic resilience growth rates,

with economic resilience growth slowing down during

2014–2016 to a rapid increase in urban economic resilience

during 2016–2018, after which the economic resilience growth

rates slow down to normal levels. Yunfu, Qingyuan, and

Shaoguan have relatively small increments of economic

resilience during the study period. Still, their underlying

economic resilience is low, with an overall annual growth rate

of about 20%, which is a more significant growth rate.

Guangzhou and Foshan, as one of the most developed

regions in the country in terms of the private economy and

foreign trade, are ranked among the top in the Pearl River Delta

region in terms of trade strength and openness intensity. The

enormous total import and export volume can make the area

enter the international market through exporting goods, which

can also create foreign exchange income while making full use of

production capacity and also ease the economic use of some of

the strained resources through imported goods and develop city

economy, to drive the city’s economic resilience to improve.

Shaoguan and Qingyuan, in recent years, relying on the existing

natural environment and humanities and history, and other

tourism resources, vigorously develop the tourism service

economy; the economy has introduced several measures to

promote the development of high-end service industry

clusters, boosting the growth of economic resilience of

measures. In 2012, Zhaoqing New District began construction

through a series of investments, actively strengthening the

industrial chain aggregation and upgrading; Zhaoqing elevated

its gross regional product and tertiary industry development and

became the main driving force of economic resilience

development. The main economic resilience degrees in Yunfu

city during 2010–2014 benefited from the annual growth rate of

fixed asset investment. The per capita savings deposit balance

TABLE 3 Standard deviation and coefficient of variation of economic resilience in the Guangzhou metropolitan area from 2010 to 2020.

Economic resilience Standard deviation Coefficient of variation

2010 0.0453 0.0478 1.0550

2012 0.0564 0.0547 0.9696

2014 0.0625 0.0581 0.9283

2016 0.0706 0.0624 0.8833

2018 0.0855 0.0688 0.8047

2020 0.0944 0.0737 0.7801

FIGURE 3
Temporal change of urban economic resilience in the
Guangzhou metropolitan area.
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and the share of tertiary industry in GDP grow faster in the later

period, reflecting that the focus of economic development in

Yunfu city gradually moves to the tertiary sector as a new

economic resilience growth point.

4.1.2 Social resilience
As depicted in Table 4, social resilience has a higher index in

all years. The social resilience of the Guangzhou metropolitan

area shows a shift from rapid increase to steady improvement

during the study period, rising from 0.0640 in 2010 to 0.1243 in

2020, which is 1.94 times that in 2010. Among them, the highest

average annual growth rate of 31.42% was recorded from 2010 to

2012, and the lowest average growth rate of only 5.56% was

recorded from 2018 to 2020. The standard deviation of social

resilience of the Guangzhou metropolitan area shows a “V” shape

change, decreasing from 0.0587 to 0.0719 from 2010 to 2014 and

then increasing to reach 0.0719 in 2020 gradually, indicating the

absolute difference in social resilience of the Guangzhou

metropolitan area decreases first and then increases. At the

same time, the coefficient of variation of social resilience in

the Guangzhou metropolitan area shows a fluctuating downward

trend, and the coefficient of variation of social resilience reached

the lowest value of 0.5611 in 2014, indicating that the relative

difference in social resilience of Guangzhou metropolitan area

cities fluctuates and changes significantly.

Figure 4 is the temporal change of social resilience. As

depicted in Figure 4, the overall social resilience of each city

showed a steady trend of improvement, but the rate of increase in

social resilience varied widely among cities. As represented by

Zhaoqing, Qingyuan, and Yunfu, the increase rate of social

resilience in these cities showed an explosive increase in the

early period, and the change rate tended to slow down in the

middle and late periods. The annual growth rates of social

resilience in Guangzhou and Foshan are the same during the

study period, both showing a steady increase in the early period, a

constant change in the middle period, and a gradual rise in the

late period; the increment of social resilience in both cities is

significant, but their social resilience base is extensive, with an

overall annual growth rate around 10%. Social resilience of

Shaoguan developed in an “S” curve, with a relatively small

general increment. However, its base social resilience was lower,

with an overall annual growth rate of 10% or less, and the growth

rate was more significant. Each city is influenced by its social

development foundation, and the main contributing factors of

social resilience are different, but the overall change from

pursuing a quantity to quality improvement. For example,

Shaoguan increased focus on health care and primary health

insurance has expanded its social resilience capacity. Guangzhou

and Foshan focus on population density, recognizing that urban

social resilience spirals from concern for groups to individuals to

groups, protecting the safety and health of workers and ensuring

the stable development of social fundamentals. On the other

hand, Qingyuan, Yunfu, and Zhaoqing avoid economic losses

due to disease risks by implementing urban and rural basic

medical insurance coverage and preventing sick members of

society from becoming “sick and poor.”

4.1.3 Ecological resilience
Table 5 is the standard deviation and coefficient of variation

of ecological resilience. As shown in Table 5, the overall trend of

ecological resilience is gradually increasing. From 0.0629 in

2010 to 0.1486 in 2018 and then declined to 0.1447 in 2020,

the overall improvement is 0.0818, which is 2.30 times of 2010,

with the highest average annual growth rate of 37.70% in

2016–2018 and the lowest average annual growth rate

of −2.65% in 2018–2020. The standard deviation value shows

TABLE 4 Standard deviation and coefficient of variation of social resilience in the Guangzhou metropolitan area.

Social resilience Standard deviation Coefficient of variation

2010 0.0640 0.0587 0.9167

2012 0.0841 0.0566 0.6734

2014 0.0933 0.0523 0.5611

2016 0.1072 0.0626 0.5842

2018 0.1176 0.0679 0.5769

2020 0.1242 0.0719 0.5791

FIGURE 4
Temporal change of social resilience in the Guangzhou
metropolitan area.
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a steady increasing trend, from 0.0160 in 2010 to 0.58 in 2020,

with a significant increase, indicating that the absolute difference

in ecological resilience of the Guangzhou metropolitan area

gradually expands. The coefficient of variation of ecological

resilience in the Guangzhou metropolis tan area shows a

fluctuating trend, indicating that the relative differences

between the ecological resilience degrees of cities within the

Guangzhou metropolitan area fluctuate significantly.

Figure 5 is the temporal change of ecological resilience. As

shown in Figure 5, the overall ecological resilience of each city

generally showed a trend of stepwise jumping improvement. The

ecological resilience degree of Yunfu city increased more during

2014–2016, and after that, its ecological resilience degree changed

more steadily; the ecological resilience degrees of Guangzhou,

Foshan, Zhaoqing, Qingyuan, and Shaoguan increased faster

during 2016–2018, and after that, the ecological resilience

degrees of their cities increased and decreased to different

degrees, but the overall changes were not significant. The

increased rate of ecological resilience degree varies widely

among cities. In Qingyuan and Shaoguan, ecological resilience

increased steadily in the first period, decreased to different

degrees in the middle period due to disturbances, and

increased significantly and remained relatively stable later. The

annual growth rates of ecological resilience in Guangzhou and

Zhaoqing were the same, showing a steady increase in the early

stage, a jump in the middle and late stages, and a slight decline in

the late stage, with an average annual growth rate of 22%. The

ecological resilience of Foshan City showed an “S” curve

development, with minor changes in the early and late stages,

a steady increase in the middle stage, and a relatively small

increase overall. Still, its ecological resilience is low, and the

annual average ecological resilience growth rate is around 20%.

During the study period, influenced by the natural primary

environmental conditions, the cities’ green, environmental

protection, and sustainability requirements increased.

Qingyuan, Yunfu, and Shaoguan have a more significant

increase in the ecological and environmental condition index

on the ecological resilience level of the cities, focusing on soil

erosion management. Guangzhou and Foshan are mainly

influenced by the ecological resilience degree from the

harmless treatment rate of urban domestic waste and urban

sewage treatment to the area of green park space per capita,

reflecting the shift of Guangzhou’s concern for ecological

resilience from the macro level of environmental protection

and sustainability to the micro level of human living

environment. Zhaoqing’s ecological resilience degree, on the

other hand, focuses on green park space per capita to the

ecological environment and ecological management

construction of soil erosion, which also reflects China’s

inevitable requirements and development goals for

environmental and resource protection and ecological cities.

4.1.4 Engineering resilience
As shown in Table 6, the evolution of engineering resilience is

in a stepwise development. The engineering resilience degree

increases year by year during 2010–2020, from 0.0327 in 2010 to

0.0817 in 2020, an increase of 0.049, which is 2.49 times that in

2010, and there are two times when the city has a significant

increase in engineering resilience degree, which are the average

annual growth rate of 42.77% from 2010 to 2012 and the average

annual growth rate of 2016–2018 growth rate of 30.88%. Same to

the time-domain changes of the metropolitan area engineering

resilience, the standard deviation values show a stepwise increase,

with more significant gains in 2010–2012 and 2016–2018,

indicating the absolute difference of the Guangzhou

TABLE 5 Standard deviation and coefficient of variation of ecological resilience in the Guangzhou metropolitan area.

Ecological resilience Standard deviation Coefficient of variation

2010 0.0629 0.0160 0.2538

2012 0.0728 0.0192 0.2643

2014 0.0874 0.0225 0.2579

2016 0.1079 0.0336 0.3117

2018 0.1486 0.0394 0.2648

2020 0.1447 0.0358 0.2475

FIGURE 5
Temporal change of ecological resilience in the Guangzhou
metropolitan area.
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metropolitan area engineering resilience has experienced

“expanding-stabilizing-expanding” dynamic change. The

coefficient of variation of engineering resilience in the

Guangzhou metropolitan area shows a trend of small

fluctuation changes, indicating that the relative differences

between the engineering resilience degrees of cities in the

Guangzhou metropolitan area fluctuate significantly, and the

changes in the evolution pattern of time-domain differences are

not noticeable.

Figure 6 is the temporal change of engineering resilience

level. As shown in Figure 6, each city’s engineering resilience

growth pattern shows two patterns of stepped growth and stable

improvement. Guangzhou and Foshan have a stepped growth

pattern, and their annual growth rate of engineering resilience is

significant during 2010–2012, reaching about 40%; the change in

yearly growth rate tends to stabilize in the middle term and then

ushers in a substantial increase in the annual growth rate of

engineering resilience during 2016–2020. Except for Qingyuan in

2010–2012 and Zhaoqing in 2018–2020, where the engineering

toughness declined, the cities represented by Zhaoqing,

Qingyuan, Yunfu and Shaoguan showed a steady increase in

the annual rate of growth in engineering toughness during the

study period, reflecting the increase in the demand for

infrastructure by regional residents and the strengthening of

the local government’s investment in and maintenance of public

facilities. The main contributing factors of engineering resilience

vary among cities with different infrastructure coverage and

perfection during the study period. As an important industrial

city in Guangdong, the degree of supply and security of Shaoguan

for industrial and domestic electricity can considerably bring

considerable industrial infrastructure advantages and contribute

to the city’s engineering resilience. As an important node city in

the Pearl River-Xijiang River Economic Belt, the scale of its road

construction and development and the density of its

transportation network plays a vital role in the circulation of

its urban resource elements and economic development. The

engineering toughness of Guangdong and Florida cities is mainly

concerned with the operation of urban public transportation and

the construction of urban drainage pipes at a later stage to

improve the overall structure of urban flood resistance and

prevention after solving the flow of urban population

elements. The engineering resilience of Qingyuan and

Zhaoqing cities shows concern for infrastructure projects,

such as road mileage, the number of Internet groups, and the

supply management of primary energy for residents and

enterprises.

4.1.5 Comprehensive resilience
As shown in Table 7, the comprehensive resilience shows a

balanced growth during the study period, rising from 0.2049 in

2010 to 0.4449 in 2020, 2.17 times that of 2010, with the highest

average growth rate of 28.69% from 2010 to 2012 and lowest

average growth rate of only 4.46% from 2018 to 2020. The value

of the standard deviation of the comprehensive resilience of the

Guangzhou metropolitan area shows an overall increasing trend

year by year except for a decline in 2014, reaching 0.2017 in 2020,

indicating the absolute difference of the comprehensive resilience

shows an overall increasing development. The coefficient of

variation of social resilience in the Guangzhou metropolitan

area offers a “V-shaped” rebound trend during the study

period, with the coefficient of variation decreasing year by

year from 2010 to 2018, reaching a minimum value of

0.4947 in 2014 and increasing in 2020 after that, indicating

that the relative differences between the comprehensive

resilience of cities within Guangzhou metropolitan area

TABLE 6 Standard deviation and coefficient of variation of engineering resilience in the Guangzhou metropolitan area.

Engineering resilience Standard deviation Coefficient of variation

2010 0.0327 0.0360 1.0992

2012 0.0467 0.0519 1.1101

2014 0.0521 0.0505 0.9679

2016 0.0563 0.0509 0.9042

2018 0.0737 0.0662 0.8984

2020 0.0817 0.0776 0.9504

FIGURE 6
Temporal change of engineering resilience in the Guangzhou
metropolitan area.
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experience a process of The coefficient of variation decreases year

by year from 2010 to 2018, reaching the lowest value of 0.4947 in

2014, and then increases in 2020, indicating that the relative

differences among cities within Guangzhou metropolitan area

experience a process of decreasing and then increasing.

Figure 7 is the temporal change of the comprehensive

resilience level of cities in the Guangzhou Metropolitan Area.

As can be seen from Figure 7, the overall comprehensive

resilience of each city shows a balanced growth trend, but the

increased rate of complete annual resilience varies widely among

cities. Guangzhou and Foshan experienced two rapid and two

stable increases in the growth rate of integrated resilience during

the study period, and the average value of their annual growth

rate of integrated resilience was about 13%. Qingyuan, Yunfu,

Zhaoqing, and Shaoguan, whose overall increase in

comprehensive resilience is relatively tiny, but their essential

comprehensive resilience is lower, with an overall annual growth

rate of 20% or less, the growth rate is more significant.

Figure 8 is the trend of urban comprehensive resilience in the

Guangzhou Metropolitan Area from 2010 to 2020. As shown in

Figure 8, the primary driving subsystem of urban resilience

development is social resilience in the early stage, and

ecological resilience is the primary driving subsystem of

resilience development in the later stage. Under the guidance

of people-oriented and people-centered development ideology,

the people’s growing need for a better life has changed from the

pursuit of a quantity to quality, and maintaining the stability of

social fundamentals has dramatically improved the development

level of urban resilience, which is manifested in the significant

improvement of the city’s public health care, residents’

TABLE 7 Standard deviation and coefficient of variation of comprehensive resilience in the Guangzhou metropolitan area.

Comprehensive resilience Standard deviation Coefficient of variation

2010 0.2049 0.1303 0.6360

2012 0.2599 0.1510 0.5807

2014 0.2953 0.1461 0.4947

2016 0.3420 0.1569 0.4586

2018 0.4254 0.1870 0.4396

2020 0.4449 0.2017 0.4533

FIGURE 7
Temporal change of comprehensive resilience of cities in the
Guangzhou metropolitan area.

FIGURE 8
The trend of urban resilience in the Guangzhou metropolitan area from 2010 to 2020.
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employment work security services and other capabilities,

prompting the people’s sense of national identity and

happiness of life This has led to a significant increase in the

people’s sense of national identity and well-being, which has led

to the development of urban social resilience. In the late stage of

the study period, thanks to the correct assertion that “mountains,

water, forests, fields, lakes, grasses, and sand are a community of

life,” the scientific concept that “Lucid waters and lushmountains

are invaluable assets” and the “river chief system, lake chief

system”. Since the 18th Party Congress, the Guangzhou

metropolitan area has improved significantly in terms of

urban green space system level and ecological environment

condition, and became the primary driving subsystem of the

Guangzhou metropolitan area in 2016, surpassing the social

resilience level. However, engineering resilience is the primary

constraining subsystem for developing urban resilience. As the

lifeline of the urban system, the completeness of the facilities of

urban infrastructure directly affects the resilience level of the

urban system. With the improvement of urban residents’ living

standards, residents have put forward higher requirements for

urban infrastructures such as transportation, energy,

communication, water supply, and drainage, which are

essential for living and production activities. These

contradictions can affect other urban resilience areas in a

chain and thus restrict the development of urban resilience.

4.2 Spatial pattern

According to the changes in economic, social, ecological,

engineering, and comprehensive resilience levels of the

Guangzhou metropolitan area during 2010–2020, the natural

break point method was applied to classify the resilience levels

into five types: low resilience, lower resilience, moderate

resilience, high resilience, and higher resilience, as shown in

Table 8.

4.2.1 Economic resilience
Figure 9 is the spatial evolution of economic resilience. As

can be seen from Figure 9, the economic resilience of cities in the

Guangzhou metropolitan area from 2010 to 2016 is dominated

by lower resilience and low resilience; the economic toughness

level from 2018 to 2020 is dominated by moderate resilience. The

economic resilience level in the region is dominated by lower and

moderate resilience, showing a spatial distribution pattern of

high in the southeast and low in the northwest. From the

geographical location of the cities, the economic resilience

development of Zhaoqing, Qingyuan, and Shaoguan in the

northern region is highly synchronized, mainly due to the

unique geographical advantage of the three cities adjacent to

the highly developed economy of Guangzhou and Foshan,

forming a series of economic cooperation such as the

Guangzhou-Foshan-Zhaoqing economic circle, Guangzhou-

Shaoguan strategic collaboration, and Guangzhou-Qingyuan

special price cooperation zone, which substantially promotes

the related economic development and improve the level of

economic resilience. Guangzhou, as the core city of the

Guangzhou metropolitan area, is far ahead of the surrounding

cities in terms of its level of urban economic resilience

development, which has a radiation-driven effect on the

economic resilience development of the surrounding cities. In

addition, under the background of regional integration

construction, Guangzhou and Foshan break through the

administrative barriers between the two cities through

economic interaction and promote the synergistic

development of Guangzhou and Foshan using industrial

complementation, resource sharing, and shared culture;

therefore, their is also a synchronous effect on the economic

resilience development of the two cities.

4.2.2 Social resilience
Figure 10 is the spatial evolution of social resilience in the

Guangzhou Metropolitan Area from 2010 to 2020. As seen in

Figure 10, the social resilience of cities has steadily improved,

among which the social resilience of Zhaoqing, Qingyuan, and

Shaoguan in the north has improved the most, from lower social

resilience in 2010 to moderate social resilience in 2020. The

spatial distribution of social resilience evolved from high

southeast and low northwest in 2010, to a high east and

familiar west layout in 2014–2016, and then presented a

spatial pattern of high southeast and low northwest in 2020,

with the distribution of the northwest-southeast axis of

Guangzhou-Foshan. Guangzhou and Foshan’s social resilience

level changes synchronized, which is mainly influenced by the

TABLE 8 Classification of urban resilience in the Guangzhou metropolitan area.

Type Lower resilience Low resilience Moderate resilience High resilience Higher resilience

Economic Resilience (0,0.0214) (0.0214,0.0358) (0.0358,0.0765) (0.0765,0.1390) >0.1390
Social Resilience (0,0.0388) (0.0388,0.0650) (0.0650,0.0895) (0.0895,0.1819) >0.1819
Ecological Resilience (0,0.0514) (0.0514,0.0775) (0.0775,0.1078) (0.1078,0.1475) >0.1475
Engineering Resilience (0,0.0162) (0.0162,0.0274) (0.0274,0.0532) (0.0532,0.1046) >0.1046
Comprehensive Resilience (0,0.1648) (0.1648,0.2270) (0.2270,0.3534) (0.3534,0.4519) >0.4519
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role of the Guangzhou-Foshan co-city, the two cities in the

medical insurance, and social security information are

gradually achieving mutual recognition due to the existence of

knowledge-intensive industries in Guangzhou and labor-

intensive industries in Foshan complementary role, prompting

the construction of modern enterprises in Guangzhou and

Foshan to accelerate, providing more jobs for city residents

and stabilizing people’s livelihood. Shaoguan has had a high

level of social resilience development since 2014. It has

implemented primary medical insurance for urban and rural

residents, which has expanded the population covered by

significant diseases and improved medical security.

4.2.3 Ecological resilience
Figure 11 is the Spatial evolution of ecological resilience, as

shown from Figure 11, the spatial pattern of ecological resilience

varies greatly. It differs significantly from the spatial distribution

of urban economic and social resilience. From 2010 to 2012, the

ecological resilience was high in the northwest and low in the

southeast, developed into a north-high-south-low trend in 2014,

and finally evolved into a west-high-east-low distribution pattern

from 2016 to 2020. From the analysis of each city’s ecological

resilience evolution, Guangzhou and Foshan have lower urban

ecological resilience grades, mainly because the two cities belong

to large cities with high population concentration and high

industrial concentration. The metropolitan built-up area

increases year by year, which significantly damages the natural

ecosystem environment, especially Foshan, as the manufacturing

capital and building materials capital in China, its processing and

production activities also cause certain damage to the

environment and weaken the overall ecological resilience.

During the study period, the general urban ecological

resilience level of Shaoguan in the northeastern part of the

metropolitan area gradually increased. Still, its ecological

resilience level decreased from higher to moderate from

2014 to 2016, due to the decrease in ecological construction

treatments for soil erosion. Zhaoqing maintains a high level of

ecological resilience especially since 2010 because Zhaoqing has

established the River Chief System, Lake Chief System, and

Forest Chief System to force industrial transformation

through environmental protection and realize the harmonious

coexistence of humans and nature.

4.2.4 Engineering resilience
As shown in Figure 12, the urban engineering resilience level

of the Guangzhou metropolitan area mainly showed a spatial

distribution of high in the southeast and low in the northwest.

During 2012–2016, the southeast-northwest engineering

resilience development axis was mainly formed, radiating the

engineering resilience level of Zhaoqing and Qingyuan in the

FIGURE 9
Spatial evolution of economic resilience in the Guangzhou metropolitan area in (A) 2010, (B) 2012, (C) 2014, (D) 2016, (E) 2018 and (F) 2020.
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vicinity of Guangzhou-Foshan; in 2018–2020, a symmetrical

distribution of urban engineering resilience level was finally

formed with southeast to the northwest as the axis, and the

distribution pattern of decreasing urban resilience level from

inside to outside along the axis direction was presented.

Zhaoqing and Qingyuan are influenced by the “Guang-Fo-

Zhao economic circle” and Guangzhou-Qingyuan integration

construction, which introduced advanced industries and built

integrated infrastructure (eg: the Guang-Fo-Zhao intercity

railroad and Guangzhou-Qingyuan intercity railroad) to

improve regional transportation operation capacity and

communication technology level, prompting the restricted

resource endowment to be fully utilized and improving the

overall engineering resilience level. The construction of the

Guangzhou-Foshan co-city influences Guangzhou and Foshan,

and the two cities are integrated into the transportation road

network planning and construction. The infrastructure

construction resources are shared, forming a peaceful

development of complementary industrial development

advantages, further making the synchronization development

of urban engineering resilience.

4.2.5 Comprehensive resilience
Figure 13 is the spatial evolution of comprehensive resilience

from 2010 to 2020. As can be seen from Figure 13, the

comprehensive resilience of the cities in the Guangzhou

metropolitan area has increased year by year. 2010–2014, the

comprehensive resilience was mainly lower and low resilience,

with an overall distribution pattern of high in the southeast and

low in the northwest; after that, comprehensive resilience was

mainly moderate and high resilience in 2016, with an overall

spatial layout of high in the south and low in the north; in

2018–2020, which had a temporary increase in 2018 except

Zhaoqing; the comprehensive resilience level in the range was

mainly medium and higher, and generally reverted to the spatial

distribution of high southeast and low northwest. During the

early 2010–2014 period, Zhaoqing, Qingyuan, and Shaoguan had

better development of comprehensive urban resilience, which

was mainly due to the integrated development of economic,

social, ecological, and engineering; Zhaoqing had an outstanding

performance in economic resilience and ecological resilience,

Shaoguan had higher levels of social resilience and ecological

resilience, Qingyuan had high engineering resilience. In late

2016–2020, Yunfu practiced the concept of ecological

civilization development and made full use of ecological

advantages, to improve the city’s comprehensive resilience

level. Zhaoqing was affected by the new crown pneumonia

epidemic in 2020, and its infrastructure development rate

decreased, which decreased the city’s comprehensive resilience

level. As the leading cities in the Guangzhou metropolitan area,

FIGURE 10
Spatial evolution of social resilience in the Guangzhou metropolitan area in (A) 2010, (B) 2012, (C) 2014, (D) 2016, (E) 2018 and (F) 2020.
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Guangzhou and Foshan have a high resilience capacity, which

radiates the simultaneous resilience development of the

surrounding cities and the coordinated development of the

region was enhanced.

4.3 Obstacle degree analysis

4.3.1 Obstacle of subsystems
Table 9 is the resilience obstacle of urban subsystems in the

GuangzhouMetropolitan Area from 2010 to 2020. As can be seen

from Table 9, the engineering factor hinders the development of

urban resilience the most, followed by the economic sector, while

the social and ecological habitat impedes the development of

urban resilience to a relatively small extent.

(1) The economic subsystem obstacle has a slight overall

increase in the barrier degree during 2010–2020, and the

average value of the barrier degree in all years is 27.07%.

Since the international financial crisis in 2008, countries

worldwide have fallen into an economic downturn. The

fundamentals of China’s economy have also undergone

substantial changes, entering a new normal stage of

China’s economic development since 2010. In this

context, the total imports and export in the urban

economic field of the Guangzhou metropolitan area are

affected by the downward pressure of the external

economy, and the growth rate of senses and export slows

down year by year, which has a holding effect on the

economic resilience development of Guangzhou, Foshan

and other large commercial cities.

(2) The social subsystem obstacle shows an overall fluctuating

decline in the degree of barriers during the study period,

except for a significant increase in 2016–2018, with an

average value of 22.58% for the degree of barriers in all

years. The fundamental reason is that influenced by the

transformation of the leading social contradictions in China

since the 19th Party Congress, people’s demands for medical

and employment security, urban living environment, etc.

Have been increasing, from the original order for quantity to

qualitative improvement, and their contradictions have

experienced the spiral of “generation-solution-again.”

Therefore, the hindering effect of social factors on the

development of urban resilience has been maintained at a

high level.

(3) The ecological subsystem obstacle showed a significant

decrease in the barrier degree during the study period,

with a mean value of 21.46% for the barrier degree in all

years. There was polarization in the barrier degree of the

factors in their domains, with the erosion control area factor

FIGURE 11
Spatial evolution of ecological resilience in the Guangzhou metropolitan area in (A) 2010, (B) 2012, (C) 2014, (D) 2016, (E) 2018 and (F) 2020.
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having a more significant constraint on the development of

urban resilience and the rest having a minor restriction.

Since the implementation of the amendment to the

Environmental Protection Law of China, which was called

the most stringent in history in 2015, Guangzhou

metropolitan area cities have performed outstandingly in

the factors of soil erosion control, per capita park green space

construction, sewage treatment rate and household waste

recycling and harmless treatment, which led to a significant

decrease in the degree of ecological domain factor barriers

within the region and reached the lowest value of 17.64% in

2018, after 2020, the degree of ecological domain barriers in

the metropolitan area increases due to insufficient

investment in the comprehensive environmental

management of soil erosion.

(4) The engineering subsystem obstacle degree increases steadily

during the study period, and the average value of the barrier

degree in all years is 28.87%, which has the most restrictive

effect on the development of urban resilience in the

metropolitan area. Influenced by the density of urban

drainage pipes, public transportation operation, and

mobile communication, the infrastructure of cities in the

Guangzhou metropolitan area fail to meet the daily needs of

citizens, especially in the low density of urban drainage pipes

in the metropolitan area and the failure to realize rainwater

and sewage diversion measures, which leads to the inability

of cities to maximize the role of flood drainage and flood

removal when suffering from heavy rainfall and flooding and

causes particular water pollution in the region.

Environmental pollution problems play a restrictive part

in improving urban engineering resilience.

4.3.2 Obstacle of factors
Table 10 is the major obstacle factors and levels of urban

resilience in the Guangzhou Metropolitan Area from 2010 to

2020. Table 10 shows that the primary obstacle of factors is E19

(erosion control area) in the early stage and E8 (population

density) in the later stage. However, with the increase of local

government’s unprecedented investment in the last period, the

constraining effect on the development of urban resilience

gradually diminishes. E8 (population density) fluctuates and

strengthens over time as an obstacle to the development of

urban resilience, increasing from 10.08% obstacle degree in

2010 to 12.45% in 2020, an increase of 2.37%. The reason for

this phenomenon is mainly due to the influence of the interaction

of the development of cities within the Guangzhou metropolitan

area, for Zhaoqing, Qingyuan, Yunfu and Shaoguan, their E8

(population density) growth is slow due to the siphon effect of the

neighboring mega such as Guangzhou-Foshan, which shows a

severe phenomenon of population loss, making the gap in

FIGURE 12
Spatial evolution of engineering resilience in the Guangzhou metropolitan area in (A) 2010, (B) 2012, (C) 2014, (D) 2016, (E) 2018 and (F) 2020.
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FIGURE 13
Spatial evolution of comprehensive resilience in the Guangzhou metropolitan area in (A) 2010, (B) 2012, (C) 2014, (D) 2016, (E) 2018 and (F)
2020.

TABLE 9 Resilience obstacle of urban subsystems in the Guangzhou metropolitan area from 2010 to 2020.

Type 2010 (%) 2012 (%) 2014 (%) 2016 (%) 2018 (%) 2020 (%)

Economic subsystem obstacle 25.74 26.16 26.60 27.26 28.63 28.03

Social subsystem obstacle 23.40 22.42 22.24 21.71 23.04 22.67

Ecological subsystem obstacle 23.53 23.95 23.08 21.59 17.64 18.97

Engineering subsystem obstacle 27.33 27.47 28.08 29.44 30.69 30.33

TABLE 10 The top 6 major obstacle factors and levels of urban resilience in the Guangzhou Metropolitan Area from 2010 to 2020.

Year The first
obstacle factor

The second
obstacle factor

The third
obstacle factor

The fourth
obstacle factor

The fifth
obstacle factor

The sixth
obstacle factor

2010 E19 (13.99%) E8 (10.08%) E23 (8.59%) E5 (8.20%) E6 (6.30%) E28 (5.76%)

2012 E19 (14.89%) E8 (10.74%) E23 (9.19%) E5 (8.50%) E6 (6.51%) E28 (5.52%)

2014 E19 (14.35%) E8 (11.21%) E23 (9.53%) E5 (8.63%) E6 (6.67%) E28 (5.87%)

2016 E19 (13.38%) E8 (11.04%) E23 (10.16%) E5 (9.36%) E6 (6.73%) E28 (6.18%)

2018 E8 (12.25%) E5 (10.29%) E19 (9.95%) E23 (9.90%) E6 (7.21%) E28 (6.86%)

2020 E8 (12.45%) E19 (12.35%) E5 (10.76%) E23 (9.17%) E28 (7.08%) E6 (6.95%)
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economic development between them and the Guangzhou-

Foshan region further widen, which is not conducive to

coordinated action within the metropolitan area (Wu and

Sun, 2017), and secondly, for Guangzhou and Foshan, their

co-location construction makes their economic volume and

industrial structure more rationalized, which attracts a large

inflow of foreign population and significantly increases E8

(population density), but their ability to optimize the

allocation of urban resources does not fully meet the needs of

unfamiliar people, which leads to a series of urban diseases such

as traffic congestion and housing tension, and restricts the

resilient development of the cities. E23 (density of urban

drainage pipes) and E5 (total import and export) are the

essential resilience obstacle factors of Guangzhou metropolitan

area, which fluctuate and change during the study period, but

generally remain in the top 4 obstacle factors. E5 (total import

and export): With the large proportion of the export-oriented

economy in the Guangzhou metropolitan area, the growth rate of

import and export is slowing down year by year due to the

downward pressure of the external economy, which has a

restraining effect on the economic resilience development of

Guangzhou, Foshan and other large commercial cities.

The critical limiting factors of urban resilience

development in the Guangzhou metropolitan area during

2010–2020 are E6 (public finance budget expenditure) and

E28 (standard number of urban public vehicles operating).

The growth of public finance budget expenditures in cities in

the Guangzhou metropolitan area is relatively stable. Still, the

ability to respond to new social changes in the actual

implementation process is low, affecting the improvement

of urban resilience’s adaptive capacity. For the cities of Yunfu,

Zhaoqing, Qingyuan, and Shaoguan in northern Guangdong,

which were previously in the stage of a rapid transition to

urbanization, there is still a lack of urban public

transportation planning and construction and information

and communication penetration, leading to a series of

underutilized resources and information in the process of

urban development. For Guangzhou and Foshan, with the

promotion of Guangzhou-Foshan co-city construction, the

economic and industrial exchanges between the two cities are

active, and the population frequently flows, the original public

transportation operation system cannot fully meet the needs

of the citizens’ daily production activities and plays a

restraining role in the improvement of urban resilience.

During the study period, the sum of the top 6 significant

barriers to urban resilience in the Guangzhou metropolitan area

has been steadily increasing yearly. The sum of the obstacles has

increased from 52.92% in 2010 to 58.76% in 2020, with an

increase of 5.85% before and after, which fully indicates that

with the development of urban resilience level in the Guangzhou

metropolitan area, the significant barriers of urban resilience.

The regional government should focus on the first six significant

barriers, analyze the impact of specific resilience barriers, prevent

potential problems and external threats, and improve the city’s

overall resilience.

5 Discussions

As the hinterland of human activities and the spatial carrier

of energy circulation, cities have been constantly faced with

threats from hidden dangers and the external environment.

Given the insufficient and unbalanced development of

resilience in Chinese cities, the concept of a “resilient city” is

adopted in this paper to evaluate urban resilience, which provides

a theoretical reference for disaster prevention and control, urban

governance, and the sustainable development of cities by

establishing a scientific index system and conducting a

thorough analysis of the resilience characteristics and

components of cities. According to the relevant literature on

urban resilience evaluation, the influencing factors for economic,

social, ecological, and engineering resilience of the Guangzhou

metropolitan area are identified. On this basis, an urban

resilience assessment model is constructed to explore the

spatial and temporal changes in urban resilience in the

Guangzhou metropolitan area. Besides, an analysis is

conducted regarding the barriers to the development of urban

resilience in the Guangzhou metropolitan area, which

contributes a new perspective to the research on urban

resilience evaluation and sustainable development in those

metropolitan cities. In addition, it also enriches the

connotation of urban resilience research while promoting the

multidisciplinary and cross-disciplinary analyses of resilience

research. However, urban resilience evaluation involves a

comprehensive and complex research process, this paper has

the following shortcomings: Firstly, due to the limited availability

of data, there are some flaws in the resilience evaluation index

system, the impact of indicators such as population mobility,

cultural governance, policies, and institutions on urban resilience

can be analyzed in depth. Secondly, the formation mechanism

and management of resilience are not deeply studied. The

research on the theoretical framework, research methods, and

management of urban resilience can be further supplemented

and deepened at a later stage to enhance the applicability of urban

resilience. In future research, attention will be paid to micro-scale

resilience studies (e.g., communities). Efforts will be made to

explore research content such as identifying vulnerable

populations, constructing healthy community environmental

systems, and quantitative evaluation of community resilience.

At the same time, in face of the impact and challenges of the

Covid-19 pandemic, there is a concern about how to further

improve the resilience system of Chinese metropolitan cities and

realize the restructuring and functional optimization of cities

under multiple risk scenarios to enhance the response capacity of

cities to cope with public risk emergencies and public health

events.
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6 Conclusion and recommendations

6.1 Conclusion

(1) The resilience of each subsystem in an individual city has

improved steadily, and the comprehensive resilience has

been enhanced significantly.

During the study period, the resilience of the Guangzhou

metropolitan area improved steadily in different ways. To be

specific, economic resilience showed a steady improvement,

social resilience improved substantially, ecological resilience

was enhanced at a varying pace, and engineering resilience

improved progressively. The comprehensive urban resilience

of the Guangzhou metropolitan area improved significantly

from 0.2049 in 2010 to 0.4449 in 2020, with the annual

growth rate reaching 17.05% on average. As a measure of the

absolute difference in urban resilience development, the standard

deviation increases by 54.75% from 0.1303 in 2010 to 0.2017 in

2020. The coefficient of variation is used to characterize the

relative difference in the urban resilience level, whose value

shows a “V-shaped” change. From 2010 to 2018, the

coefficient of variation decreased year on year, reaching a

minimum of 0.4396 in 2014. Then, it recovered in 2020,

indicating a steady increase in the absolute difference in

comprehensive resilience between the cities within the

Guangzhou metropolitan area. The relative difference showed

a decreasing trend and then an increasing trend.

(2) The urban resilience in the Guangzhou metropolitan area

shows a spatial pattern of radioactive development with

Guangzhou as the core, with the spatial distribution of

resilience level being typically high in the southeast and

low in the northwest.

Economic, social, engineering, and comprehensive resilience

support the radial improvement of resilience with Guangzhou as

the core. In terms of urban ecological resilience, Guangzhou and

Foshan perform less well. At the same time, Yunfu, Zhaoqing,

and Shaoguan attach more significance to preserving the

ecological environment, reducing soil erosion, strengthening

ecosystem construction, and promoting the spontaneous

resistance and self-healing ability of the local ecosystem for

improved urban ecological resilience. In addition, the level of

urban engineering resilience is low in Yunfu, Zhaoqing,

Qingyuan, and Shaoguan, and the overall improvement of

urban engineering and infrastructure resilience has not yet

been brought into play. There is a disconnect between their

urban engineering resilience levels and those of Guangzhou and

Foshan. Yunfu shows limited growth in terms of per capita GDP,

per capita disposable income, and public budget expenditure,

which constrains the enhancement of its urban economic

resilience, thus leading to a city with limited economic

resilience. In addition, except for ecological resilience, the

spatial distribution of urban subsystem resilience and

comprehensive resilience in the Guangzhou metropolitan area

is high in the southeast and low in the northwest. Among them,

the level of urban economic, social, and engineering resilience is

mainly affected by medium resilience, and ecological resilience is

primarily in the order from medium to high.

(3) Social resilience and ecological resilience as the main driving

subsystems in the early and late stages of urban resilience

improvement, engineering resilience is the primary

constraining subsystem during the study period.

Social resilience, as the primary driving subsystem in the

early stage of urban resilience improvement in the Guangzhou

metropolitan area, is reflected in the shift of people’s growing

need for a better life from the pursuit of a quantity to that quality

under the guidance of people-centered development ideology.

This is manifested in the significant improvement of public

health care, employment, and job security services in the city,

which has played a crucial role in substantially enhancing the

sense of national identity and happiness among people in their

life. As a result, social resilience improves considerably in the city.

In the late stage of the study period, given the advanced assertion

that “mountain, water, forest, lake, lake, grass, and sand are a

community of life,” the scientific ideology that “Lucid waters and

lush mountains are invaluable assets” and the effective initiatives

such as the “river chief system and lake chief system” launched

since the 18th Party Congress, the Guangzhou metropolitan area

has witnessed a significant improvement in terms of urban green

space system and ecological environment. Becoming the primary

driving subsystem in 2016, it surpassed the social resilience level.

Engineering resilience is the primary constraint on the

improvement of urban resilience. Currently, residents have

stronger demands for such urban infrastructures as

transportation, energy, communication, water supply, and

drainage, all of which are essential for living and production

activities. This evidences the development of resilience.

(4) Soil erosion control area and population density are the

primary obstacles in the early and late stages, respectively,

the essential resilience factors include urban drainage pipe

density and total import and export.

Due to the limited capacity of erosion control construction in

the early stage in the Guangzhou metropolitan area, soil erosion

caused by human activities and natural disasters occurs on some

hills and slopes, thus resulting in casualties and property losses.

In the later period, the “siphon effect”manifested in the big cities

imposes certain constraints on the inflow and outflow of the

population. The above resilience factors have improved over

time, and the adverse effect on the development of urban

resilience has become more significant. In addition, the
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6 most significant barriers to urban resilience in the Guangzhou

metropolitan area have been steadily increasing over time, which

indicates that the significant barriers to urban resilience gradually

concentrate with the rise of urban resilience level. Furthermore,

among the urban resilience subsystems, the engineering domain

factor is the most significant constraint on urban resilience

improvement, followed by the economic domain. In contrast,

the social and ecological environments are relatively less

obstructive to improving urban resilience. The overall urban

subsystem domain obstacle degree shows a trapezoidal

distribution from top to bottom.

6.2 Recommendations

(1) Strengthen the overall development of urban system

resilience, highlight the story of resilience in critical

areas, and make up for the shortcomings of resilience.

The current thinking of urban subsystems in coping with

risks and disturbances has changed from a model that

focuses on short-term disaster prevention and mitigation

to a concept that focuses on long-term safety and security.

The embodiment of urban resilience capacity is the result

of the organic action of each urban subsystem

coordinating and cooperating, so the development of

urban resilience should adhere to the idea of

highlighting the key areas and making up the short

boards, taking the outstanding areas of resilience as the

breakthrough of urban resilience development and the

temporary board areas of resilience as the focus of urban

resilience development. Taking Yunfu, Zhaoqing, and

Shaoguan as examples, the ecological resilience of the

cities is high during the study period. The

comprehensive resilience of the town fully proves the

scientific assertion that green water and green

mountains are the silver mountains of gold. As the core

city of the Guangzhou metropolitan area, Guangzhou is

significantly ahead of the surrounding cities in economic,

social, and engineering resilience, but its urban ecological

resilience is poor.

(2) Pay attention to the top-level design of resilient city planning

and construction in the Guangzhou metropolitan area, and

promote the flow of resources and information within the

metropolitan area. In the context of the new development

pattern of the post-epidemic era, with the domestic

circulation as the main body and the domestic and

international double circulation promoting each other, the

resilient urban development of the Guangzhou metropolitan

area should be based on the domestic and foreign

perspectives, taking into account the effect of urban

economy, society, ecology, engineering and other fields

from the policy level, improving institutions and policies

to guarantee the high-quality development of resilient cities

(Jiang and Meng, 2021). Guangzhou, as the core city in the

metropolitan area, should take the initiative to break its

spillover barriers, enhance the flow of resources and

information exchange with neighboring cities, realize the

development of diffusion from point to point, and thenmake

the organic joint resistance to risks and disturbances among

cities in Guangzhou metropolitan area improve (Zhu and

Sun, 2020). At the same time, urban resilience planning and

construction should focus on how to improve the resistance

of the urban system to disasters and risks; rather than

reducing the economic and property losses caused by a

particular disaster, we cannot just pursue zero risk, we

must clearly understand that risk control is required to be

integrated. Power is needed when the risk exceeds the

acceptable level.

(3) To build a scientific and reasonable urban resilience

evaluation system according to local conditions to guide

the planning and construction of resilient cities. Currently,

the urban resilience evaluation index system structure is

similar at all levels in each region, failing to highlight the

characteristics of regional resilience factor development. As

different urban areas face different types of disasters and

other urban resilience background conditions, the

comprehensive resilience capacity of their cities is

additional. Therefore, it is necessary to scientifically

construct the urban resilience index system and

reasonably determine the index weights according to the

actual situation of the evaluation object. In addition, as a new

urban development concept, the ultimate destination of the

resilient city should be in practice and abandon the original

pursuit of large city scale, complex urban functions, and a

high concentration of resources unreasonable phenomenon.

Through rational analysis and evaluation of the current

situation of urban resilience development, digging out the

shortcomings and deficiencies of urban resilience

development, taking into account the effect of each urban

subsystem, actively practicing and exploring urban resilience

planning and construction, striving to avoid, contain and

eliminate risks from the root, and helping to promote the

high-quality development of urban resilience (Zhai et al.,

2022).
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Hazard assessment of potential
debris flow: A case study of Shaling
Gully, Lingshou County, Hebei
Province, China
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The debris flows in the Taihang Mountain region in North China are basically
triggered by rainstorms. Firstly, the debris flow susceptibility of the Shaling Gully,
Lingshou County, Hebei Province, China was analyzed in this paper to evaluate its
hazard and effect on the downstream proposed structures. Secondly, the maximum
flow depth and velocity of the potential debris flow in Shaling Gully were numerically
simulated based on the FLO-2D model, and the simulation results indicate that the
flow depths under the 50-year and 100-year rainstorms will have some effect on the
downstream proposed structures. With debris flow intensity classification, the hazard
of potential debris flow in Shaling Gully was classified. According to the flow depths
and velocities simulated by FLO-2Dmodel, the ARCGIS10.8 software was adopted to
optimize the hazard zones, and therefore the hazard zonation map was established.
With consideration of simulation results under natural conditions and other factors
such as gully feature, a 4 m high and 40m wide retaining dam was designed. The
numerical simulation results show that the retaining dam may decrease the debris
flow hazard to a negligible level, which offers some beneficial reference to the
subsequent engineering design for Shaling Gully.

KEYWORDS

hazard of potential debris flow, FLO-2D, ArcGIS, retaining dam, numerical simulation

1 Introduction

Debris flows are considered to be very dangerous mass movement in the world (Lee and
Widjaja, 2013). In China, the debris flows basically occur in the Loess Plateau region and
northern and southwestern mountains, and those in the northern mountains generally result
from rainstorm. Therefore, the research in the debris flow hazard is important to the hazard
mitigation and prevention due to the wide distribution and severe damage of debris flow.

Researchers in different countries have established various numerical models to interpret,
simulate and predict the debris flow events (Zegers et al., 2020). FLO-2Dmodel based on the non-
Newtonian fluid and central finite difference (O’Brien et al., 1993), and this model was proven to be
effective in terms of Omega parameter (Chang et al., 2017). FLO-2D model as used to numerically
simulate the discharges of debris flow in Huaxi Gully under operational and dam-failure
conditions, respectively (Fang et al., 2019). FLO-2D model was also applied to precisely
simulate the movement and deposition processes (Stancanelli et al., 2017) and estimate the
maximum depth of moving debris flow on the base of NAM model (Wei et al., 2017). FLO-2D
model is also used to simulate terrain changes caused by debris flow caused by rainstorm during
typhoon period (Chen and Wang, 2017). The FLO-2D PRO model is used to analyze the
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sedimentation, velocity, impact force and influence area of debris flow
based on SCS-CNmethod (Zhang et al., 2014). In addition, the sediment
yield of debris flow in Sulin Town, Hualian County, China was estimated
with the FLO-2D model (Hsu et al., 2012). Many scholars also evaluated
the debris flow hazard by the FLO-2Dmodel. For example, the numerical
simulation on the Chengbei Gully in Shanxi Province, China was carried
out with FLO-2D model, and then the hazard zonation was conducted
(Tang et al., 2022). Numerically estimated the depth and scope of debris
flow of Boshui Gully with FLO-2D model under the 100-year and 50-
year rainfall conditions, and provided a method to assess the debris flow
hazard with consideration of solid source and water (Zhang et al., 2022).
Estimated the debris flow hazardwith FLO-2Dmodel, and then classified
the debris flow hazard in Anzhou City, Sichuan Province, China (Deng
et al., 2021). The FLO-2D model was also applied to simulate the
movement process of debris flow of Hou Gully in Shimian County,
Yaan City, China under different cycles, and then the intensity
classification of slag debris flow was established (Deng et al., 2021).
Additionally, the FLO-2D model was used to determine the intensity of
Zhouqu debris flow (Zhang et al., 2018) and obtain the hazard zonation
map of debris flow in Songhe Stream region (Lin et al., 2011).

The hazard of debris flow in Shaling Gully was assessed in this
paper. Firstly, the susceptibility of debris flow was analyzed according
to the field survey data. Secondly, the debris flow was numerically
simulated with FLO-2D model. Thirdly, the hazard zonation at
various rainstorm frequencies was determined by
ARCGIS10.8 software. Finally, the retaining dam for debris flow
mitigation was evaluaged by numerical simualtion, which provided
technical support for the safety of downstream structures.

2 Study area

The Shaling Gully is located in Lingshou County, Shijiazhuang
City, Hebei Province, China, with 18 dendritic branch gullies on two

banks. The main gully is 3.876 km long, and the catchment area is
approximately 4.91 km2. Abundant alluvial, colluvial and man-made
deposits are found in these gullies, and a little residual deposit in some
gullies. Some structures of the lower reservoir of Lingshou pumped-
storage station are just located in the study area, as shown in Figure 1.

The study area is situated in the Taihang Mountain uplift zone, and
25 pre-Quaternary faults are found within 25 km of the study area. These
faults mostly have NE- and NW-strike, partly with NS and EW strike.

The lithology in the study area consists mainly of the Archean biotite
plagioclase-feldspar gneiss of Fangli Formation (Fgn), plagioclase-feldspar
amphibolite of Chejiangou Formation (Ca), andArchean granite gneiss of
Gangnan Formation (Ggn). The Quaternary strata consist basically of the
1 m–2 m thick residual (Q4

edl) gravel soil on themountain peak and slope,
1 m–3 m thick alluvial (Q4

pal) sandy gravel on the gully bottom, 1 m–5 m
thick diluvial (Q4

pl) 0.2 m–0.5 m-diameter gravel soil on the gully banks,
and 1 m–3 m thick (partially about 5 m thick) man-made (Q4

ml) gravel
soil on the upper terrace and gully bottom. The well developed gneissoid
structures are widely found on the gully banks, generally with attitude of
NE60°-80°, SE∠60°–80°.

The warm continental monsoon dominates the study area, with
distinct wet and dry seasons. The average annual precipitation is
497 mm, 64% of which occurs during the period from June to August,
and the average annual evaporation is 1,685.3 mm.

The human activities in the study area involve the abandoned open
mining and artificial deposit on the gully bottom. The mining activities
result in not only some colluvium due to rock cracking but also abundant
slag. The terraces, which are generally located in the midstream and
downstream Shaling Gully, have large scale and loose structure, providing
abundant source for triggering the debris flow during flood season.

3 Methodology

Firstly, the susceptibility of debris flow was analyzed according to
the field survey data and remote sensing interpretation. Secondly, the
FLO-2D model was applied to evaluate the maximum flow depths and

FIGURE 1
Drainage pattern of potential debris flow and location of
engineering structures in Shaling Gully.

FIGURE 2
Flowchart of Hazard assessment of potential debris flow.
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velocities at various rainstorm frequencies. Thirdly, the hazard
zonation at various rainstorm frequencies was determined based on
the debris flow intensity classification, and the effect of debris flow on
the downstream proposed structures was estimated. Finally, the
retaining dam for debris flow mitigation was designed, and the
operational effect of the dam was numerically simulated with FLO-
2D model. The flowchart of hazard assessment is shown in Figure 2.

3.1 Data acquisition

The sophisticated UAV oblique photography is frequently applied
to obtain the data about contour line (Li et al., 2021b, 2021c; Almalki
and Angelides, 2022; Trepekli et al., 2022; Zan et al., 2022). High
definition photos about the region concerned can be taken by high
resolution cameras attached to the UAV, and then the real terrain and
landform about the study area will be achieved by image processing
and information extraction. The UAV behaves better in field survey
due to its high definition, wide survey range, easy operation, few site
limitations and good suitability. In this paper, the 1:5,000 contour lines
obtained by UAV was imported into ARCGIS10.8 to create and
process the DEM data. The distribution and volume of debris flow
source in Shaling Gully were determined by field survey and UAV
technique.

3.2 Susceptibility evaluation

The susceptibility of debris flow is commonly referred to as the
occurrence probability of a debris flow. Currently, the susceptibility is
basically evaluated by the direct index evaluation method, which is a
subjective judgement, or indirect index evaluation method, which is
widely used by most scholars (Li et al., 2020; Sujatha, 2020; Mehmood
et al., 2021; Jingbo et al., 2021). In this paper, the indirect index
evaluation method was selected to estimate the susceptibility of debris
flow in Shaling Gully.

3.3 FLO-2D simulation

FLO-2D, evolved from the diffusive hydrodynamic model, is a
two-dimensional finite difference model that numerically simulates
flood and debris flow (O’Brien et al., 1993). The model discretizes the
surface topography into uniform square-grid elements in terms of
central finite difference routing scheme, and the each grid has
corresponding elevation and Manning’s coefficient. The continuity
equation and motion equations govern the conservation of mass and
momentum, which are expressed as
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where h is the flow depth, i is the rainfall duration, t is fluid movement
time, Vx is the average velocity along x coordinate, Vy is the average
velocity along y coordinate, g is the gravity acceleration, Sfx is the

friction slope component along x coordinate, Sfy is the friction slope
component along y coordinate, Sox is the bed slope along x coordinate,
and Soy is the bed slope along y coordinate.

Besides, the solid particles in the debris flow may collide against
each other during movement, increasing the inertial stresses, and
therefore the effect of particle collision on debris flow movement
should be considered by the following equation:

Sf � Sy + Sv + Std � τy
γmh

+ Kη]
8γmh

2
+ n2]2

h
4
3

(4)

where Sf is the friction slope, Sy is the yield slope, Sv is the viscous
slope, Std is the turbulent-dispersive slope, τy is the yield stress, η is the
viscosity coefficient, γm is the specific gravity of fluid, K is the
resistance parameter for laminar flow, ] is the flow velocity, and n
is the equivalent Manning’s coefficient.

4 Susceptibility assessment of potential
debris flow in Shaling Gully

The indirect index evaluation method always selects the terrain,
source and rainfall as evaluation factors, and then the selected factors
are normalized and weighted (Jun et al., 2017; Li et al., 2021a). In this
paper, the AHP (Analytic Hierarchy Process) method was used to
evaluate these factors (Mehmood et al., 2021).

4.1 Selection of evaluation factors

The occurrence of debris flow are greatly affected by the terrain,
source and rainfall, and the selected factors should be representative
and easily quantified. According to the gully characteristics in the
study area and other scholars’ achievements (Lin et al., 2012; Niu et al.,
2015; Cao et al., 2017; Xiao et al., 2020; Gu et al., 2021), the
susceptibility of debris flow in Shaling Gully was evaluated by eight
factors, namely, catchment area S1, main gully length S2, maximum
elevation difference S3, ravine density S4, average longitudinal slope
ratio S5, loose material length supply ratio S6, loose material volume
S7, and maximum daily (24 h) rainfall S8.

4.2 AHP model

The AHP model for susceptibility assessment of potential debris
flow in Shaling Gully is shown in Figure 3.

The weight of each factor was determine by the importance to its
parent layer, with S1 = 0.0145, S2 = 0.0258, S3 = 0.0487, S4 = 0.0258,
S5 = 0.0487, S6 = 0.3597, S7 = 0.1799, and S8 = 0.3070.

5 Hazard assessment of debris flow
under natural conditions

5.1 Parameter determination

The contour lines measured in the field were converted into DEM
format and then into ASCII format with ARCGIS10.8. The ASCII
format data were imported into FLO-2D, and then the simulation
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domain and grid sizes were appropriately determined. In this paper,
the grid size is 20 m × 20 m, and the calculation region was
subsequently determined and assigned with elevation values.

5.1.1 Resistance parameter for laminar flow and
Manning’s coefficient

The Manning’s coefficient was applied to represent the effect of
ground roughness on debris flow in FLO-2D, and this coefficient is
greatly influenced by the terrain and vegetation. The Manning’s
coefficient was determined jointly by the field survey results, Eq. 5
proposed byWang Yuyi et al., and some research achievements (Chen
et al., 2021; Deng et al., 2021; Zhang et al., 2022). Finally, the
Manning’s coefficient is 0.1 and the resistance parameter for
laminar flow is 2,285.

nc � 0.033R−0.51
ns exp 0.34R0.17

ns( ) ln h (5)

5.1.2 Volumetric sediment concentration
The volumetric sediment concentration was calculated with Eq. 6.

CV � γC − γW
γS − γW

(6)

where CV is the volumetric sediment concentration, γC is the unit
weight of debris flow (g/cm3), γS is the unit weight of solid particles of
debris flow (g/cm3), and γW is the unit weight of water (g/cm3).

Here the calculated CV is 0.35.

5.1.3 Viscosity coefficient
In terms of η � α1eβ1Cv and τy � α2eβ2Cv , if α1, β1, α2, and β2 are

determined, the viscosity coefficient and yield stress Ty will be
achieved. According to field survey results and empirical relations

(Wang et al., 2007; Zhang et al., 2014; Stancanelli et al., 2017; Wei
et al., 2017), these parameters were determined, as listed in
Table 1.

FIGURE 3
AHP model for susceptibility assessment of potential debris flow in Shaling Gully.

TABLE 1 Parameters for FLO-2D.

Parameter n α1 β1 α2 β2 K

Value 0.1 0.00025 15.48 0.03 14.42 2,280

FIGURE 4
Variations of peak discharge of debris flow with time in Shaling
Gully.
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5.2 Inflow node and peak discharge

It is very important to select appropriate inflow nodes for FLO-2D
simulation (Genevois et al., 2022). The zone with abundant loose
deposit was defined as the inflow node according to the field survey
and rainfall data. Because the capturing and erosion of debris flow was
not considered in the FLO-2D simulation, the bulking factor (BF) was
introduced for compensation (Elci et al., 2017). BF is frequently
calculated with Eq. 7. Before numerical simulation, the peak
discharge - time curves at various rainstorm frequencies were
optimized according to peak discharges, BF and generalized
pentagon method, as shown in Figure 4.

BF � 1
1 − Cv

(7)

5.3 Simulation results

For the method of using FLO-2D to assess the hazard of debris
flow, many scholars have verified and achieved good results (Zhang
et al., 2018; Chang et al., 2020; Tang et al., 2022). As this paper is a
potential debris flow, the numerical simulation results are mainly
based on the field investigation, combined with the gully terrain and
material source conditions, through the comparison of theoretical
calculation and numerical simulation results, to determine the
numerical simulation model.

The debris flow is numerically simulated immediately after the
related parameters were input into FLO-2D. The simulation results are
shown in Figure 5, indicating that the maximum flow depths and
velocities have positive correlation to the rainfall. Under the 10-year
and 20-year rainfall conditions, the velocities and flow depths are
generally small, which has minor effect on downstream structures, and
more than 90% of flow depths are less than 1 m, with velocities of
0.5 m/s–1 m/s. Under the 50-year and 100-year rainfall conditions, the
velocities and flow depths increase, and 18.4% of 50-year flow depths
and 26.7% of 100-year flow depths are greater than 1 m, with most
velocities larger than 1 m/s.

5.4 Hazard assessment of debris flow in
Shaling Gully under natural conditions

The hazard of potential debris flow was assessed according to the
maximum flow depths andmaximum velocities simulated by FLO-2D,
and then the effect of debris flow on the downstream structures is
estimated. The classification standard of debris flow intensity in terms
of maximum flow depth and maximum velocity has good suitability
(Lin et al., 2011; Chang et al., 2017; Zhang et al., 2018; Chang et al.,
2020). Table 2 lists the classification standard of debris flow intensity
in Shaling Gully according to the influence on downstream proposed
structures, site terrain and engineering design data.

The hazard of potential debris flow and its effect on the
downstream proposed structures were evaluated in terms of
rainstorm frequencies. For quantitative analysis, the Vh value of
each grid was calculated by the Spatial Join tool of ARCGIS, and
the zones whose parameters are not listed in Table 2 were marked by
special signs. If the hazard zones by ARCGIS were not identical to
those by Hazard plug-in of FLO-2D, those zones were reasonably
evaluated in a qualitative way according to site conditions, empirical
methods and rainfall frequency. The final hazard zonation map of
debris flow in Shaling Gully at vario is obtained. According to the
intensity classification of debris flow and the qualitative and
quantitative classification standards, the hazard zoning of debris
flow under different rainfall frequencies is obtained. The maximum
flow depth in high-hazard zones is more than 2.5 m. Low hazard zones
are all with velocities less than 0.5 m/s or maximum flow depth less
than 0.5 m. The Hv value of the medium hazard zones are between
0.5 m/s2 and 2.5 m/s2.

The simulation results indicate that, under 10-year rainfall
condition, the high, medium and low hazard zones account for

FIGURE 5
Maximum flow depths and velocities at various rainfall frequencies.
(A)(a) Distribution of 10-year maximum flow depth (m) (B)(b) Distribution
of 10-year velocity (m/s), (C)(c) Distribution of 20-year maximum flow
depth (m), (D)(d) Distribution of 20-year velocity (m/s), (E)(e)
Distribution of 50-year maximum flow depth (m), (F)(f) Distribution of
50-year velocity (m/s), (G)(g) Distribution of 100-year maximum flow
depth (m), (H)(h) Distribution of 100-year velocity (m/s).
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2.9%, 9.4%, and 87.7%, respectively. All the engineering structures are
in the low hazard zones, and thus are safety.

Under 20-year rainfall condition, the high, medium and low
hazard zones account for 4.9%, 12.9%, and 82.8%, respectively.
Most engineering structures are in the low hazard zones, but few
in medium hazard zones. According to qualitative analysis, the
medium hazard zones have relatively larger deposition depth and
small velocity, and therefore have generally low hazard to the
structures.

Under 50-year rainfall condition, the high, medium and low
hazard zones account for 18.9%, 21.2%, and 59.9%, respectively.
Most engineering structures are in the low hazard zones, partially
in medium hazard zones, and few in high hazard zones. According to

qualitative analysis, the maximum flow depths increase, and therefore
have some hazard to the structures.

Under 100-year rainfall condition, the high, medium and low
hazard zones account for 26.2%, 22.1%, and 51.7%, respectively. A few
engineering structures in gully outlet are in high hazard zones, and
may be highly threatened by potential debris flow according to
qualitative analysis. Under 100-year rainfall condition, the high,
medium and low hazard zones account for 26.2%, 22.1%, and
51.7%, respectively. A few engineering structures in gully outlet are
in high hazard zones, and may be highly threatened by potential debris
flow according to qualitative analysis.

Generally, the proposed structures may be generally subject to low
hazard under 10-, 20- and 50-year rainfall conditions, but to high

TABLE 2 Classification standard of debris flow.

Intensity Maximum flow depth Relation Product of maximum flow depth and velocity

High h > 2.5 m OR Vh > 2.5 m/s

Medium 0.5 m < h < 2.5 m AND 0.5 m/s < Vh< 2.5 m/s

Low h < 0.5 m AND Vh < 0.5 m/s

FIGURE 6
Hazard zonation of debris flow at various rainfall frequencies. (A)(a)Hazard zonation under 10-year rainfall, (B)(b)Hazard zonation under 20-year rainfall,
(C)(c)Hazard zonation under 50-year rainfall, (D)(d)Hazard zonation under 100-year rainfall.
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hazard under 100-year rainfall condition. Therefore, some retaining
measures should be taken under 100-year rainfall condition. As
frequencies is shown in Figure 6.

6 Design of retaining structures

6.1 Type and location

The research on the prevention and mitigation of debris flow is
conducted many year ago. In China, the integrated technique is
frequently applied for hazard mitigation by combinations of
prevention, treatment, engineering measures, biological structures,
and resource utilization (Gao and Tian, 2020; Zhang et al., 2020),
and the retaining structures are predominately used to control the
debris flow in mountains (Lee et al., 2014; Zhang et al., 2021).

The retaining dam scheme was taken to control the debris flow in
Shaling Gully in terms of construction feasibility and cost by deeply
analyzing the its profile, activity and effect according to on-site survey
and simulation results. The retaining dam is located in the straight
gully section with a rural road, which is suitable for construction.
Furthermore, it can prevent the downstream structures from debris
flow because most unstable soil source is in the midstream and

upstream gully. The retaining dam was designed to be 4 m high
and 50 m wide because the effective sediment retaining volume
depends greatly on the dam height, width and upstream terrain.

6.2 Numerical simulation under retaining
structures conditions

Firstly, the dam location was determined and imported into FLO-
2D. Secondly, the dam model was established with Levee module
(Wang, 2019). Thirdly, the maximum flow depths were calculated by
appropriately setting relative parameters, as shown in Figure 7.

The simulation results show that almost 100% potential debris
flow is blocked by the retaining dam under 10-year and 20-year
rainfall conditions, but small amount of debris flow discharges
under 50-year and 100-year rainfall conditions, posing a little
threat to downstream structures. Due to the dam blockage and
riverbed silting, the flow depths and ranges increase in the
upstream of dam and obviously decrease in the downstream of dam.

Table 3 indicates that the percents of flow depths greater than 1 m
increase remarkably at the back of dam due to riverbed silting. The
dam completely blocks the debris flow under 10-year and 20-year
frequencies and no debris flow occurs at the front of the dam, which

FIGURE 7
Distribution ofmaximum flow depths (m) with retaining dam at various rainfall frequencies (A)Hazard zonationwith dam under 10-year rainfall, (B)Hazard
zonation with dam under 20-year rainfall, (C)Hazard zonation with dam under 50-year rainfall, (D)Hazard zonation with dam under 100-year rainfall.
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has no threat to the downstream structures. In addition, the percents
of flow depths less than 0.5 m increase obviously. Furthermore, the
flow depths are almost less than 1 m at the front of the dam, indicating
that the dam can effectively block the debris flow. Due to the existence
of retaining dam, the debris flow has little hazard to the downstream
structures. The hazard zonations with retaining dam at various rainfall
frequencies are shown in Figure 8.

7 Discussion

Based on FLO-2D model, the hazard zoning of potential debris
flow is obtained by simulating the maximum flow depth and velocity
of potential debris flow. In recent years, as a two-dimensional dynamic
simulation model, FLO-2D has been widely used in the hazard
quantification of debris flow disasters, and has shown satisfactory

TABLE 3 Percent of flow depth before and after retaining dam.

Return period/year Condition < 0.5 m (%) 0.5 m–1 m (%) 1 m–2.5 m (%) > 2.5 m (%)

10 Natural 77.1 17.9 4.0 0.0

Remedial 67.9 21.7 8.0 2.4

20 Natural 67.8 24.9 7.0 0.3

Remedial 42.6 37.6 11.6 8.2

50 Natural 42.4 37.2 16.4 4.0

Remedial 50.4 23.1 17.2 9.3

100 Natural 32.5 34.7 18.6 9.9

Remedial 45.1 26.4 20.8 12.0

FIGURE 8
Hazard zonations with retaining dam at various rainfall frequencies. (A)(a)Hazard zonation with dam under 10-year rainfall, (B)(b)Hazard zonation with
dam under 20-year rainfall, (C)(c)Hazard zonation with dam under 50-year rainfall, (D)(d)Hazard zonation with dam under 100-year rainfall.
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results (Deng et al., 2021; Tang et al., 2022). In the study of regional
debris flow hazard, FLO-2D simulation program can determine the
temporal and spatial distribution of debris flow fluid depth and
velocity. However, in the study of potential debris flow, although
the reasonable velocity and flow depth can be simulated, there is no
debris flow, so the simulation of potential debris flow cannot be
verified in reality. For FLO-2D numerical simulation,
ARCGIS10.8 can be used for correction in hazard zoning. But in
the simulation of FLO-2D, the following assumptions needs to be
done.

(1) Assume that the water pressure distribution is hydrostatic;
(2) The debris flow is stable in the time interval of difference

calculation;
(3) The debris flow satisfies the steady flow retardation equation;
(4) Assume that each grid point has a unique elevation value and

Manning coefficient;
(5) It is assumed that the roughness of debris flow movement surface

in the grid is an average value.

Therefore, grid selection is also very important in FLO-2D
simulation. Based on the existing computer tools and considering
the accuracy requirements of this paper, choose 20 m × 20 m grid size.
If the computer conditions permit, you can also choose a finer grid size
of 20 m. In addition, the erosion and entrainment of debris flow
cannot be considered due to the assumption problem, which is worth
further studying.

8 Conclusion

The debris flow may be triggered in Shaling Gully under
rainstorm due to abundant loose sediment, and its hazard was
assessed in this paper. The maximum flow depths and velocities
under 10-year, 20-year, 50-year, and 100-year rainfall conditions
were numerically simulated, and then the hazard zonations at
various rainfall frequencies were determined according to
the intensity classification standard. Some conclusions are as
follows:

(1) Abundant residual, alluvial and diluvial gravel soil as well as
artificial deposit of mining slag and terraces, which provides solid
material source for triggering debris flow.

(2) The susceptibility of debris flow was estimated to be medium
by direct and indirect methods. Additionally, the maximum
flow depths and velocities were numerically simulated with
FLO-2D.

(3) The hazard of debris flow at various rainfall frequencies were
assessed according to the intensity classification standard of debris
flow. Furthermore, the hazard zonation maps at various rainfall
frequencies were completed by ARCGIS and Hazard module of
FLO-2D, which is beneficial for the design and construction of
downstream structures.

(4) The retaining dam was designed to be 4 m high and 40 m wide
according to the simulation results under natural conditions and
gully features. The numerical simulation by FLO-2D indicates that
the potential debris flow may pose little hazard to downstream
structures under the existence of retaining dam.
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Risk assessment of deep
excavation construction based on
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nonlinear FAHP
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Deep excavation construction safety has become a challenging and crucial aspect
of modern infrastructure engineering, and its risk assessment is frequently carried
out using the Fuzzy Analytic Hierarchy Process (FAHP). However, when using
FAHP to evaluate the risks of deep excavation construction, the results of the
weightings obtained through subjective weighting are heavily influenced by the
subjective factors of the evaluators. In addition, using linear operators to calculate
the risk level can easily cause a weakening effect on the influence of prominent
risk factors, resulting in poor rationality of the evaluation results. To address these
problems, this paper constructs a deep excavation construction risk evaluation
model based on combined weighting and nonlinear FAHP. The WBS-RBS method
is used to guide the construction of the risk evaluation index system for deep
excavation construction. The combined weighting values of subjective and
objective weightings are calculated through the game theory combined
weighting method. The fuzzy relation matrix is constructed using the
membership degree vector obtained from the expert evaluation method.
Nonlinear operators are introduced for comprehensive calculation. According
to themaximummembership degree principle, the final risk level of the excavation
construction is obtained. The newly constructed model is applied to the risk
analysis of the deep excavation construction of the Rongmin Science and
Innovation Park project in Xi’an. The evaluation result for the excavation
construction risk is N= [0.3125, 0.3229, 0.1939, 0.0854, 0.0854], and according
to the maximum membership degree principle, the risk level of the excavation is
classified as Level 2, which is a relatively low risk. Based on the deep excavation
construction of the Rongmin Science and Innovation Park project, this paper
discusses the differences between the new model and the traditional FAHP
evaluation method, further verifies the reliability of the new model, optimizes
the construction plan based on the evaluation results, avoids risks, and determines
its guiding significance.
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1 Introduction

With the continuous increase of high-rise buildings, the
vigorous development of municipal construction and the
utilization of space, a large number of deep excavations have
been created, and their construction safety issues have become a
hotspot and difficulty in current foundation engineering (Fan et al.,
2021). The demand for deep excavations in engineering is
developing towards greater excavation depth, wider excavation
area, and higher technical level. In relatively narrow urban
spaces, improper operation during excavation of deep excavations
can have serious effects on surrounding structures. The construction
phase of deep excavation engineering is of utmost importance in
engineering management, and risk assessment of deep excavation
construction is even more critical.

Currently, some domestic and foreign experts and scholars have
conducted related research and made certain achievements. WANG
(2005) and Huchzermeier (2001) proposed to establish risk analysis-
based management for excavation engineering. Zhou Hongbo et al.
(2022) coupled the evaluation indicators of excavations using theWBS-
RBS method, and analyzed the excavation of subway excavations using
fault tree analysis. Feng et al. (2021) proposed an innovative method
that combines analytic hierarchy process (AHP) with finite element
method (FEM) to assess the potential impact risk of uncertain factors on
the surrounding environment of the bridge excavation. Issa et al. (2022)
introduced and applied an approach to support decision makers in
construction projects by distinguishing among different deep
excavation supporting systems. Meng et al. (2020) analyzed risk
from two aspects—severity of consequences and probability of
occurrence. They divided the severity of consequences into five
indexes, calculated risk using AHP, and established expert weight
index to obtain an objective calculation result from subjective expert
scoring. Zhang G. H. et al. (2020) proposed a comprehensive
methodology for dynamic risk analysis of foundation pit collapse
during construction based on fuzzy Bayesian network (FBN) and
fuzzy analytical hierarchy process (FAHP).

In conclusion, scholars and experts commonly use the Fuzzy
Analytic Hierarchy Process (FAHP) for evaluating the risks of deep
excavation construction, which effectively addresses the fuzziness
and randomness of the evaluation. FAHP often employs the AHP
method for weighting, and there have been abundant research
advancements on AHP in recent years. For instance, Rabin et al.
(2018) modeled and mapped groundwater potential zones using
AHP and GIS technology. Sadhan et al. (2018) utilized AHP,
Knowledge Driven, Fuzzy Logic, and Logistic Regression Four
models to predict flood-prone areas. Xu et al. (2020) proposed a
cloud model-based FAHP for risk assessment of tunnels. Moreover,
Alireza et al. (2021), Shahab et al. (2020), Indrajit et al. (2020), Guo
et al. (2022), Zhao et al. (2021), Song et al. (2021)and other
researchers combined methods such as machine learning,
Numerical simulation, and the N-K model with FAHP approach
to broaden its application scope.

However, there are various problems with existing risk evaluation
models for deep excavations, so it is necessary to establish a scientific
and reasonable risk evaluation model for deep excavations. AHP is
subject to subjective weighting, and the weighting results are heavily
influenced by the evaluators’ subjective factors. To address the
limitations of using a single weighting method to calculate

indicator weights, this paper employs the Analytic Hierarchy
Process (AHP) and Entropy Weight Method to calculate the
subjective and objective weights of the risk evaluation indicators
for deep excavation construction. The combination weights of the
evaluation indicators are obtained by using the Game Theory method
to combine the subjective and objective weights. In order to establish a
scientific and rational risk evaluation indicator system for deep
excavation construction, the Work Breakdown Structure- Risk
Breakdown Structure (WBS-RBS) method is adopted to identify
and construct the risk evaluation indicator system. However, the
Fuzzy Analytic Hierarchy Process (FAHP) using the linear operator to
calculate risk levels cannot address the non-linear problems in deep
excavation construction risk evaluation, which reduces the accuracy of
the final risk evaluation results. To address this issue, this paper
introduces a non-linear operator into the traditional FAHP for risk
evaluation of deep excavation construction. Finally, the newly
developed risk evaluation model based on the combination
weighting and non-linear FAHP is applied to the deep excavation
construction of the Rongmin Science and Technology Innovation
Park project on Gaoxin Second Road in Xi’an City to verify the
scientific and accurate nature of the new model.

2 Construction of risk assessment
indicators for deep excavation
construction based on the WBS-RBS
method

The construction of a reasonable and effective risk assessment
indicator system is the first step in analyzing the risk of deep
excavation construction. The Work Breakdown Structure (WBS)
refers to the overall hierarchical structure of the deep excavation
construction project. The Risk Breakdown Structure (RBS) refers to
the decomposition of possible risk sources into smaller risk factors,
until the risk factors can be ignored (Yang, 2006). Hillson et al.
(2006) were the first to combineWBS and RBS methods by coupling
them to establish an engineering project WBS-RBS risk
identification coupling matrix, highlighting risk factors and
establishing a risk assessment indicator system.

2.1 Developing a work breakdown structure
for the construction of deep excavations

To ensure that the risk assessment indicators for deep excavation
construction are appropriately detailed, expert opinions were
consulted and the construction work was decomposed into a
two-level structure. Based on the construction process of deep
excavations, the first level is divided into five stages, including
preparation for deep excavation construction (W1), enclosure
engineering (W2), drainage engineering (W3), excavation
engineering (W4), and monitoring engineering (W5).

Through an analysis of the characteristics of each stage of deep
excavation construction work, some work procedures that are not
significant enough have been combined and eliminated, resulting in
a breakdown of the first-level structure. The second-level structure
has 15 units. Figure 1 shows the constructed work breakdown
structure for deep excavation construction.
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2.2 Developing a structure for the
breakdown of risk sources in the
construction of deep excavations

The risk sources were also broken down into a two-level
structure, with the first level of risk breakdown including

management risks (R1), technical risks (R2), and surrounding
environmental and geological risks (R3). Based on this, factors
such as extreme weather and personnel safety were considered,
and the first-level structure was further decomposed to establish a
second-level risk factor structure, with 13 units. Figure 2 shows the
constructed risk breakdown structure for deep excavation
construction.

2.3 Developing a risk identification coupling
matrix for the construction of deep
excavations

Based on the work breakdown structure and risk breakdown
structure of deep excavation construction, the second-level units of
both structures were coupled to obtain a coupling matrix for
identifying risks in deep excavation construction (Huang et al.,
2004). The coupling matrix for risk identification in deep
excavation construction is shown in Table 1, where “1”indicates
a risk resulting from the coupling of the two structures, and
“0”indicates no risk. The risks identified in the coupling matrix
for risk identification in deep excavation construction are as
follows.

1) The risk ofW11R11,W11R21,W11R25,W11R31,W11R33 is the
leakage or fracture of underground pipelines; 2) The risk of
W11R13, W12R13, W21R13, W22R13, W23R13, W31R13, W33R13,
W41R13, W42R13, W43R13 is personnel safety accidents; 3) The
risk of W12R25, W21R25, W22R25, W23R25, W31R25, W32R25,
W33R25 is construction quality defects; 4) The risk of W13R11,
W13R13, W13R23 is construction machinery failure; 5) The risk of
W21R21, W21R22,W21R23, W21R24, W21R31 is failure of retaining
structure; 6) The risk ofW23R24 is water seepage in excavation; 7)
The risk of W33R21, W33R22, W33R24 is blowout sand flow caused
by excessive or inadequate precipitation-induced dewatering; 8)
The risk of W22R34, W33R34, W41R24, W41R34, W43R34 is cracking
and tilting of surrounding buildings; 9) The risk of W41R12,
W41R21, W41R25, W41R31 is collapse and sliding of deep
excavation; 10) The risk of W41R22 is upheaval of soil in deep
excavation; 11)The risk of W41R23 is over-excavation of deep
excavation; 12)The risk of W42R11, W42R12, W42R23 is excessive
foundation load; 13)The risk ofW22R21,W22R22,W22R23,W22R24,
W22R31, W43R12, W43R22, W43R23, W43R25 is failure of support
structure; 14)The risk of W51R11, W51R13, W51R26, W52R11,
W52R13, W52R26, W53R11, W53R13, W53R26 is Inadequate
monitoring leading to failure to handle accidents in a timely
manner; 15)The risk of W21R32, W22R32, W41R32 is geological
difficulties hindering construction.

2.4 Developing a system of risk evaluation
indicators for the construction of deep
excavations

Based on the opinions of technical personnel and experts at the
construction site, referring to the coupling matrix for risk
identification in deep excavation construction, an evaluation
index system for the risks in deep excavation construction was
established as shown in Figure 3.

FIGURE 1
Deep excavation construction work decomposition structure
diagram.

FIGURE 2
Decomposition structure of deep excavation construction risk
sources.
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3 Risk assessment for the construction
of deep excavations

3.1 Developing a fuzzy relation matrix

3.1.1 Developing a set of risk factors
The risk factor set of the deep excavation construction risk

assessment index system established through the WBS-RBS method
includes two levels. The first-level indicator layer risk factor set is
D = {D1,D2,D3}, and the second-level factor layer risk factor set

includes D1 = {d11,d12,d13,d14,d15}, D2 = {d21,d22,d23,d24,d25,d26,d27},
and D3 = {d31,d32,d33}.

3.1.2 Developing a set of risk assessment
comments

The risk evaluation comment set for deep excavation
construction is established based on the “The code of
construction project management” (GB/T 50326-2006). The risk
evaluation comment set for deep excavation construction is divided
into five levels from low to high: V = {v1,v2,v3,v4,v5} = {low risk,
relatively low risk, moderate risk, relatively high risk, high risk}.

3.1.3 Building a fuzzy relation matrix using
membership degree vectors

A membership degree vector is constructed for risk assessment
in deep excavation construction using the expert evaluation method
(Xie et al., 2005). A group of experts form an evaluation team and
score each evaluation index in the risk factor set based on the five
levels in the risk evaluation comment set. The membership degree
vector is then organized. The fuzzy relationship matrix S between
the risk evaluation comment set and the risk factor set is constructed
using this vector.

S �

s11 / s1j / s1m

..

.
1 ..

.
1 ..

.

si1 / sij / sim

..

.
1 ..

.
1 ..

.

sn1 / snj / snm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

In the equation, S is the fuzzy relationship matrix between the
risk evaluation comment set and the risk factor set, where 0≤sij≤1,
and sij represents the membership degree of the ith deep excavation
construction risk factor to the jth level risk rating.

TABLE 1 Coupling matrix of deep excavation construction risk identification.

Primary
indicator

Secondary
indicator

W1 W2 W3 W4 W5

W11 W12 W13 W21 W22 W23 W31 W32 W33 W41 W42 W43 W51 W52 W53

R1 R11 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1

R12 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

R13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R2 R21 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0

R22 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0

R23 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0

R24 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0

R25 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0

R26 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

R3 R31 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0

R32 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

R33 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R34 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0

FIGURE 3
Deep excavation construction risk index system.
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3.2 Determination of weight vectors

There are mainly two methods for determining index weights:
subjective weighting and objective weighting. Subjective weighting
relies on the subjective experience of decision-makers or experts to
determine the weight of risk evaluation indicators. However, this
method can be influenced by various factors such as the decision-
maker’s knowledge structure, work experience, and preferences,
which may not fully reflect the importance of risk evaluation
indicators.

Objective weighting determines the weight of risk evaluation
indicators based on the amount of discerning information provided
by the indicators and the relationships between them. However, this
method may ignore the rich experience of experts and scholars, and
the results may not always match the actual situation, with a strong
dependence on the samples.

Compared to subjective and objective weighting, combination
weighting can comprehensively integrate the subjective and
objective weights of each evaluation indicator and reflect the
objective information of the indicators and the subjective
judgment of the evaluators, so it can correctly reflect the actual
weight of each indicator. This paper uses the Analytic Hierarchy
Process (AHP) and entropy method to calculate the subjective and
objective weights of deep excavation construction risk evaluation
indicators respectively. Then, using game theory, the subjective
and objective weights are combined to obtain the composite
weights of deep excavation construction risk evaluation
indicators, which can incorporate the theoretical and empirical
knowledge of experienced experts and judge the importance of
each indicator while avoiding the shortcomings of these two
methods (Shan et al., 2012).

3.2.1 Calculation of subjective weight using
analytic hierarchy process

AHP weighting is a method of determining the relative
importance of different factors by comparing them. AHP
provides pair-wise comparison matrix, through which the
criterions are structured according to their hierarchical order
(Das et al., 2020).

Step 1. Constructing the judgment matrix:
ln (9e/9)~ln (17e/1) was chosen as the scale for constructing

the judgment matrix of risk evaluation indicators for deep
excavation construction due to its improved stability,
rationality, and effectiveness. This method involves comparing
each indicator with all other indicators at the same level,
including itself, to convert abstract subjective understanding
into quantitative data. The specific evaluation criteria for ln
(9e/9)~ln (17e/1) as the scale of the judgment matrix are
listed in Table 2.

Based on a constructed judgment matrix, the maximum
eigenvalue and corresponding eigenvector can be determined by
solving for the matrix’s eigenvectors and eigenvalues. This provides
the maximum eigenvalue λmax and the eigenvector associated with it.

Step 2. Consistency check.
To check the consistency of the constructed judgment matrix, a

consistency ratio (CR) test is performed. If CR<0.10, it indicates that
the constructed judgment matrix has good consistency.

CR � λ max − n

n − 1( )RI (2)

In the equation, n represents the order of the judgment matrix,
and RI is the average random consistency index (Wang et al., 1990),
with specific values shown in Table 3.

Step 3. Calculation of weight vector.
The eigenvector associated with themaximum eigenvalue λmax is

normalized to obtain the subjective weight vector Uk1 passing the
consistency test of the judgment matrix.

3.2.2 Calculation of objective weight using Entropy
Weight Method

Entropy was proposed by R Xlausis as a measure of the
uniformity of the distribution of an ability in space. The entropy
method can be used to calculate the objective weights of various
indicators, providing a basis for multi-index comprehensive
evaluation (Zhang et al., 2017). Compared with subjective
weighting methods, the entropy method has higher accuracy and
stronger objectivity, which can better explain the results obtained
(Zhu et al., 2015). The steps are as follows:

Step 1. Constructing the entropy method judgment matrix:
The original data matrix X � (xij)n×m is formed based on n

evaluation indicators and m samples. In this matrix, i≤ n, j≤m,xi
represents the value of the ith evaluation indicator.

Step 2. Standardization:
Extreme value entropy method was used for normalization.

First, the extreme value method was applied to transform the
original data into dimensionless values, which then underwent
standardization to obtain the judgment matrix R:

rij �
xij −min xij{ }

max xij{ } −min xij{ } (3)

In the formula, rij represents an element of the standardized
judgment matrix R, and min{xij} and max{xij}, represent the
minimum and maximum values, respectively.

Step 3. Handling of zeros in the matrix.
To ensure meaningful logarithmic operations, the

standardized matrix is processed to eliminate zeros by shifting
all elements to the right by a constant value, usually 0.001. The
resulting matrix is R � (rij)n×m, then normalized to obtain matrix
B � (bij)n×m.

Step 4. Determination of entropy value

ej � − 1
ln n

∑
n

i�1
pij lnpij( ) (4)

In the formula, pij � bij/∑
n

i�1
bij,pij represents the probability of

the ith factor being in the jth level of risk, and bij represents an
element of the normalized matrix B.

Step 5. Calculation of entropy weighting Wj

Wj � 1 − ej

∑n
j�1
gj

(5)

After obtaining the entropy weightsWj, they are assembled into
an entropy weight vector Uk2.
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3.2.3 Calculation of combined weight using game
theory method

The combined weighting vector for risk evaluation indicators in
deep excavation construction is obtained by integrating subjective
and objective weights using the game theory method. The game
theory approach takes into account inherent information among
various risk evaluation indicators, which ensures consistency and
harmony among subjective, objective, and combined weights,
minimizes deviations between different weights, and reduces the
impact of subjectivity on risk evaluation results. The process for
determining the combined weight using the game theory method is
as follows (Zhou et al., 2022):

Step 1. Construct the set of basic weight vectors Uk = {Uk1,Uk2,
/,Ukn} (k = 1,2, /,L), where Uk is the set of basic weight vectors,
Uk1,Uk2, /,Ukn are the basic weight vectors that need to be
combined, L is the number of weighting methods used. Any
linear combination of these vectors can be represented as:

U � ∑
L

k�1
αkU

T
k( ) (6)

In the formula, U represents the combined weight vector; αk is
the linear combination coefficient, αk > 0,∑

L

k�1
αk � 1, andUk is the set

of basic weight vectors.
Step 2. Optimize the weight coefficients αk to minimize the

deviation between the combined weight vector U and the basic
weight vectors Uk, that is:

min ∑
L

k�1
αkU

T
k − Uk

���������

���������
2

k � 1, 2,/, L( ) (7)

In the formula,Uk is the set of basic weight vectors, andUT
k is the

transpose matrix of the basic weight vector set Uk.
Step 3. Normalize the weight coefficients (α1, α2,/, αL)

obtained from Eq. 7 using Eq. 8:

α*
k �

αk| |
∑L
k�1

αk| |
(8)

Step 4. The final weight vectorM for the combination of various
evaluation indicators is obtained as follows:

M � ∑
L

k�1
α*k · UT

k( ) (9)

The symbol M represents the final combination weight vector
obtained after weighting and combining, whereM=[m1, m2,/, mn]

3.3 Nonlinear fuzzy comprehensive
evaluation

FAHP method is employed for multi-criteria decision problems
(Das et al., 2019). Traditional AHP method was modified by Van
Laarhoven in 1983 to develop the hierarchical analysis more
accurately by employing fuzzy ratios in place of exact ratios (Van
et al., 1983).

However, the traditional AHPmethod employs a linear operator
to calculate risk levels, which may weaken the importance of certain
indicators. Moreover, the construction process of deep excavations
is full of ambiguity and uncertainty due to various factors, and
extreme situations are inevitable. Linear operators cannot reflect the
actual situation on site. Therefore, a nonlinear fuzzy comprehensive
evaluation method is adopted. The nonlinear fuzzy matrix synthesis
operator used for risk assessment is (Zhang et al., 2005):

f m1, m2/mn; s1, s2/sn;Λ( ) � m1s
λ1
1 +m2s

λ2
2 +/ +mns

λn
n( ) 1

λ

(10)
The symbols used in the equation are: m1, m2,/, mn represents

the weight of the risk indicators in the combination weight vectorM,
where m≥0 and ∑

n

i�1
mi � 1; s1, s2,/, sn are a certain column in the

membership fuzzy evaluation matrix S; Λ represents the coefficient
vector of the degree of salient influence of the indicators; Λ �
[λ1, λ2,/λn] and λi ≥ 1, i � 1, 2/, n; λ � max(λ1, λ2,/λn)。

The criteria for the values of salient influence coefficients are
shown in Table 4.

After obtaining the salient influence coefficients at each level, the
fuzzy judgment matrix is processed to meet the requirements for
using nonlinear operators to synthesize fuzzy matrices. Since si≥1 in
the nonlinear fuzzy evaluation matrix, but the membership degree
values are between [0,1], it is necessary to convert the original fuzzy
judgment matrix. The conversion is shown below:

TABLE 2 Weight scale judging criteria.

Subjective interpretation Quantitative scale

i is equally important as j ln(99 e), (1.000)

i is slightly more important than j ln(117 e), (1.452)

i is noticeably more important than j ln(135 e), (1.956)

i is significantly more important than j ln(153 e), (2.609)

i is extremely more important than j ln(171 e), (3.833)

i is importance falls somewhere in between the above comparisons with j 1.223,1.693,2.253,3.079

TABLE 3 RI comparison table.

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.52 0.89 1.12 1.24 1.36 1.41 1.46
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TABLE 4 Criteria for taking outstanding impact coefficient.

Scale Meaning

1 No significant impact of the indicator factor

1.5 Almost no significant impact of the indicator factor

2.5 Slightly prominent impact of the indicator factor

3.5 Noticeably prominent impact of the indicator factor

4.5 Strongly prominent impact of the indicator factor

5.5 Extremely prominent impact of the indicator factor

2.0,3.0,4.0,5.0 The median between adjacent scales, indicating the scale at times when it falls somewhere in between two adjacent scales

FIGURE 4
Flow chart of deep excavation construction risk assessment.
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sij′ � 10 × sij (11)

The symbol sij’ represents the value of the transformed nonlinear
fuzzy evaluation matrix, whereas the symbol sij represents the value
of the original fuzzy judgment matrix.

3.4 A new model for risk assessment in the
construction of deep excavations

The deep excavation construction risk evaluation model based
on combination weighting and nonlinear FAHP is established
through the above steps. The specific evaluation process is shown
in Figure 4.

4 Case study analysis

4.1 Overview of the case project

The construction risk assessment model for deep excavations
based on the combined weighting-nonlinear FAHP method was
applied to verify the deep excavation construction of the Rongmin
Science and Technology Innovation Park project on High-tech
Second Road in the High-tech Zone of Xi’an City. The strata
involved in the project are divided into 14 layers, including fill
soil, loess-like fine-grained clay, loess, ancient soil, and 10 different
types of fine-grained clay from top to bottom. The construction site
belongs to Category II, and liquefaction of sandy soil can be
disregarded based on geological data. The safety level of the
excavation wall is Level I, the support safety level is Level I, and
the safety level of the deep excavation is also Level I. The excavation
depth is between 7.30 and 12.97 m, which is considered a deep
excavation.

4.2 Weight calculation

4.2.1 Calculation of subjective weight
The subjective weight is determined by using the scale of ln (9e/

9)~ln (17e/1) as the judgment matrix. The importance of the
judgment criteria is compared through expert evaluation to
construct the judgment matrix. Taking the weight of the index
layer as an example, the specific calculation process is as follows:

Step 1. Construct the judgment matrix A for establishing the
evaluation indicators of deep excavation construction risk

A �

1 1/ln
13
5
e( ) 1/ln

10
8
e( )

ln
13
5
e( ) 1 ln

11
7
e( )

ln
10
8
e( ) 1/ln

11
7
e( ) 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

Calculate the maximum eigenvalue λmaxA of 3.0012, and its
corresponding eigenvector: Uk1A=[0.4022,0.7617,0.5080]

Step 2. Perform consistency check, and the matrix A passes
the test.

Step 3. Normalize the eigenvector to obtain the subjective weight
of the index layer. Uk1A

′ � [0.2406, 0.4556, 0.3038].
Similarly, the subjective weight corresponding to each indicator

in the deep excavation construction risk evaluation project is
obtained. The specific subjective weights are shown in Table 5.

4.2.2 Calculation of objective weight
The entropy weight data matrix was obtained from a

questionnaire survey of 11 experts and referred to the research of
Chowdhuri et al. (2019). The 15 factor-level indicators and
3 criterion-level indicators were scored using a percentage-based
scale. Taking objective weighting calculation at the criterion level as
an example:

Step 1. After standardization, the entropy judgment matrix B
with zeros processed values is:

B �

0.5863 0.4001 0.3549
0.5863 0.2001 0.7098
0.9311 0.4001 0.4517
1.0001 0.4001 0.7098
1.0001 0.0001 1.0001
0.0001 0.6001 0.7420
0.5863 0.6001 0.7098
0.8967 0.2001 0.7098
1.0001 0.4001 0.3549
0.2760 1.0001 0.0001
0.5863 0.8001 0.7098

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Step 2. Calculate the determined entropy value ej according to
Eq. 4:

ejD1 � 0.9367
ejD2 � 0.9133
ejD3 � 0.9413

⎫⎪⎬
⎪⎭ (14)

Step 5. Calculate the entropy weight corresponding to each
determined entropy value, and organize them into an entropy
weight vector Uk2B � [0.3033, 0.4154, 0.2813]

Similarly, the entropy weight vector for other indicators can be
obtained and is shown in Table 5.

4.2.3 Calculation of combination weight using
game theory

Calculating the combination weight using game theory first
requires determining the basic weight vector. Taking the
combination of index layer weights as an example, the
calculation process is as follows:

Step 1. Determine the basic weight vectors that need to be
combined:

U ′
k1A � 0.2406, 0.4556, 0.3038[ ]

Uk2B � 0.3033, 0.4154, 0.2813[ ] (15)

Step 2. Optimize the linear coefficients of the combination
weight using Eq. 8 to obtain:

αkA � 1.6685 αkB � 0.6879 (16)
After normalization, the result is:

α*kA � 0.7081 α*
kB � 0.2919 (17)

Frontiers in Earth Science frontiersin.org08

Liu et al. 10.3389/feart.2023.1204721

48

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1204721


Step 3. Calculate the combination weightM of the index layer for
deep excavation construction risk evaluation by using Eq. 9 to
combine the linear coefficients with subjective and objective
weights. The combination weights obtained based on game
theory are shown in Table 5.

The overall weight vector is:

M � 0.2589, 0.4438, 0.2973[ ] (18)
Similarly, the weight vector for the factor layer can be obtained:

Μ1 � 0.1311, 0.3255, 0.1959, 0.1035, 0.2440[ ]
Μ2 � 0.0697, 0.2432, 0.1615, 0.1318, 0.0899, 0.1989, 0.105[ ]
Μ3 � 0.3027, 0.5197, 0.1776[ ]

⎫⎪⎬
⎪⎭
(19)

Based on the calculated weights, it can be seen that technical and
management risks are the biggest risks in the construction of deep
excavations for this project. This is because the geological conditions
of the project are relatively good, and if the construction technology
and management level are in place, risks can be avoided.

4.3 Membership degree calculation

Based on the actual construction situation of the deep
excavation of the Rongmin Science and Technology
Innovation Park project on High-tech Second Road in the
High-tech Zone of Xi’an City, the fuzzy judgment matrix for
the risk assessment of the deep excavation construction was
obtained using the expert evaluation method. Experts rated the
secondary risk projects established in the risk assessment
indicator system through a questionnaire survey. The

membership degree values were obtained after processing the
questionnaire data, as shown in Table 6.

The given text describes the construction of a single-factor
evaluation matrix for the risk factors associated with the deep
excavation construction of the Rongmin Science and Technology
Innovation Park project on High-tech Second Road, according to
Table 6. To perform nonlinear fuzzy comprehensive evaluation, the
matrix is processed using Eq. 11 to obtain evaluation matrices S1~S3
that can be used for nonlinear fuzzy comprehensive calculation.

S1 �

7 2 1 0 0
0 6 2 1 1
7 2 1 0 0
9 1 0 0 0
3 3 2 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

S2 �

9 1 0 0 0
4 3 2 1 1
6 3 2 0 0
5 5 0 0 0
8 2 0 0 0
5 3 2 0 0
7 2 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

S3 �
4 3 3 0 0
0 5 3 1 1
6 3 1 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (22)

4.4 Determination of prominent impact
factors for risk indicators

According to Table 4 and expert opinions, combined with the
actual situation of the deep excavation construction of Rongmin

TABLE 5 Index weights for risk assessment of deep excavation construction.

Index
layer

Subjective
weight

Objective
weight

Combined
weight

Factor
layer

Subjective
weight

Objective
weight

Combined
weight

D1 0.2406 0.3033 0.2589 d11 0.1296 0.1344 0.1311

d12 0.3504 0.2750 0.3255

d13 0.1795 0.2291 0.1959

d14 0.0919 0.1270 0.1035

d15 0.2487 0.2345 0.2440

D2 0.4556 0.4154 0.4438 d21 0.0595 0.0956 0.0697

d22 0.2690 0.1772 0.2432

d23 0.1627 0.1584 0.1615

d24 0.1263 0.1459 0.1318

d25 0.0759 0.1257 0.0899

d26 0.2102 0.1699 0.1989

d27 0.0963 0.1273 0.1050

D3 0.3038 0.2813 0.2973 d31 0.3001 0.3072 0.3027

d32 0.5603 0.4512 0.5197

d33 0.1396 0.2416 0.1776
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Science and Technology Innovation Park on High-tech Second
Road, the prominent impact coefficients of the first-level risk
factors and second-level risk factors are obtained, as shown in
Table 7.

The prominent impact coefficient vectors corresponding to
S1~S3 can be obtained from Table 7 as follows:

Λ1 � 1.5, 5.5, 2.5, 1.5, 4.5[ ]
Λ2 � 1.5, 5.5, 3.5, 3, 2.5, 4.5, 3.5[ ]
Λ3 � 4.5, 5.5, 4[ ]

⎫⎪⎬
⎪⎭ (23)

And the prominent impact coefficient vectors of the indicator
layer

Λ � 4.5, 5.5, 5[ ] (24)

4.5 First-level nonlinear fuzzy
comprehensive evaluation

The factor layer weight vector M1~M3, the nonlinear fuzzy
evaluation judgment matrices S1~S3, and the level-2 risk factor
salient influence coefficient vectors Λ1~Λ3 are inputted into Eq.
10 for nonlinear fuzzy comprehensive evaluation to obtain the
evaluation results N1~N3 for level-2 risk factors. Taking N1 as an
example, the calculation process is as follows:

N1 � f M1, S1,Λ1( ) � 2.1352, 4.8976, 1.7330, 0.9027, 0.9027[ ]
(25)

The calculated N1 is normalized to obtain the result vector of
first-level nonlinear fuzzy comprehensive evaluation for the
construction risk assessment of deep excavations in the Rongmin
Science and Innovation Park project on High-tech Second Road, as
follows:

N1 � 0.2020, 0.4633, 0.1639, 0.0854, 0.0854[ ] (26)

Similarly, the evaluation results for the other level-2 risk factors
in the construction risk assessment of deep excavations in the
Rongmin Science and Innovation Park project on High-tech
Second Road are as follows:

N2 � 0.3550, 0.2818, 0.1892, 0.0870, 0.0870[ ]
N3 � 0.2474, 0.3731, 0.2306, 0.0744, 0.0744[ ]} (27)

4.6 Second-level nonlinear fuzzy
comprehensive evaluation

The N1~N3 are used as new factors to construct a second-level
nonlinear fuzzy comprehensive evaluation matrix
SN � [N1 N2 N3 ]T, and the judgment matrix SN is transformed
into a second-level nonlinear fuzzy comprehensive evaluation
matrix SN′ that can be used for nonlinear fuzzy evaluation
calculation, as shown below:

SN′ �
2.0198 4.6330 1.6394 0.8539 0.8539
3.5498 2.8182 1.8920 0.8700 0.8700
2.4744 3.7313 2.3060 0.7442 0.7442

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (28)

From Table 7, it can be obtained that the salient influence
coefficient vector Λ=[4.5,5.5,5] corresponds to level-1 risk factors in
the construction risk assessment of deep excavations in the Rongmin
Science and Innovation Park project onHigh-tech Second Road, and
the weight vectorM = [0.2589,0.4438,0.2973] corresponds to level-1
risk factors.

By substituting the above results into Eq. 10 for nonlinear fuzzy
comprehensive evaluation, the determined second-level nonlinear
fuzzy comprehensive evaluation result vector N is obtained:

N � f M, SN′,Λ( ) � 3.1011, 3.2038, 1.9241, 0.8471, 0.8471[ ] (29)
The result vector N is normalized to obtain the second-level

nonlinear fuzzy comprehensive evaluation result vector for the

TABLE 6 Membership degree of risk factors.

Risk level d11 d12 d13 d14 d15 d21 d22 d23 d24 d25 d26 d27 d31 d32 d33

Level 1 0.7 0 0.7 0.9 0.3 0.9 0.4 0.6 0.5 0.8 0.5 0.7 0.4 0 0.6

Level 2 0.2 0.6 0.2 0.1 0.3 0.1 0.3 0.3 0.5 0.2 0.3 0.2 0.3 0.5 0.3

Level 3 0.1 0.2 0.1 0 0.2 0 0.2 0.2 0 0 0.2 0.1 0.3 0.3 0.1

Level 4 0 0.1 0 0 0.1 0 0.1 0 0 0 0 0 0 0.1 0

Level 5 0 0.1 0 0 0.1 0 0.1 0 0 0 0 0 0 0.1 0

TABLE 7 Prominent influence coefficients of risk factors.

Primary indicator D1 D2 D3

λ 4.5 5.5 5

Secondary Indicator d11 d12 d13 d14 d15 d21 d22 d23 d24 d25 d26 d27 d31 d32 d33

λ 1.5 5.5 2.5 1.5 4.5 1.5 5.5 3.5 3 2.5 4.5 3.5 4.5 5.5 4
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construction risk assessment of deep excavations in the Rongmin
Science and Innovation Park project on High-tech Second Road:

N � 0.3125, 0.3229, 0.1939, 0.0854, 0.0854[ ] (30)
This vector is the comprehensive evaluation vector of total risk.

Using the maximum membership principle, an overall evaluation of
the construction risk of deep excavations in the Rongmin Science
and Innovation Park project on High-tech Second Road in Xi’an
High-tech Zone is conducted. According to the fuzzy
comprehensive evaluation vector, the risk level of this project is
level-2, with a comment of low risk. The overall risk of deep
excavation construction is relatively small, as long as the
construction quality is qualified and the site management is
orderly, the construction risk of deep excavations for this project
can be controlled. The evaluation result is consistent with the actual
situation, indicating the accuracy of the model.

5 Discussion

To verify the effect of the non-linear operator in the risk
evaluation process of the new model, a traditional FAHP is used
to conduct a risk assessment of the deep excavation construction of
the case project, with reference to Zhang G. et al. (2020) The values
of the prominent influence coefficients are all 1, that is, λi � 1. The
comprehensive evaluation result vector “N′”based on linear FAHP
using the combination weighting method is as follows:

N′ � 0.4040, 0.3392, 0.1748, 0.0410, 0.0410[ ] (31)
Using the linear FAHP method based on the combination

weighting method for comprehensive evaluation, the risk level of
the deep excavation construction is level 1, which is considered low
risk. The introduction of the nonlinear fuzzy comprehensive
evaluation method results in a risk assessment level of level 2,
indicating a lower risk. The comparison between the result vector
N′ and N shows that the risk values of level 1 and level 2 are close.
However, considering the actual engineering situation, the new
model is more accurate because it incorporates prominent
influence factors and considers the impact of technical
management risks on construction safety during the construction
process. Therefore, the new model evaluates the risk level higher.

In response to the risk assessment results, the following
improvements will be made.

(1) The design usage time for deep excavation support will be
extended to 12 months, and the design value for the top load
of the deep excavation will be increased to 20 kPa.

(2) The deep excavation support system will be enhanced with the
use of pumped piles, prestressed anchor cables, and soil nails.

(3) Construction personnel will undergo additional technical
training to enhance their skills.

(4) Construction management will be strengthened to ensure
construction quality and eliminate safety and quality hazards
during the construction process.

(5) Drainage ditches will be constructed outside the pit, and
drainage ditches and sump pumps will be installed inside the
pit to facilitate timely pumping.

(6) Regular monitoring will be carried out, and monitoring
information will be communicated to all units, with
appropriate measures taken as necessary.

After making the improvements to the plan, there were no
accidents during the construction of the deep excavation in
Rongmin Science and Technology Innovation Park on High-tech
Second Road in Xi’an High-tech Zone. This indicates that the
improvements made based on the risk assessment model using a
combination weighting method and nonlinear FAHP were effective,
further demonstrating the rationality and effectiveness of the model.

Currently, this paper has made a innovative attempt to establish
a risk evaluation model for deep excavation construction based on
the combination weighting and non-linear FAHP. The main
limitations of this study are that expert judgments and on-site
data are required for a relatively accurate risk assessment, and
the calculation process is relatively complex and has not yet been
developed into an executable program. In constructing the judgment
matrix, subjective evaluations are required from experts, which may
introduce subjectivity and errors. Looking ahead, this risk evaluation
model can be further expanded by integrating with Geographical
Information System andmachine learning to broaden its application
scope Hong-bo et al., 2009; Malik et al., 2020.

6 Conclusion

(1) The WBS-RBS method is used to identify and construct an
evaluation index system for the construction risks of deep
excavations to ensure that no important factors are
overlooked during the risk identification process and to
obtain a scientifically reasonable risk evaluation index system.

(2) A combination of subjective weights calculated by fuzzy analytic
hierarchy process (AHP) and objective weights calculated by
entropy method using game theory is used to obtain more
reasonable combined weights, avoiding the limitations of both
subjective and objective weighting methods.

(3) Nonlinear operators are used to avoid weakening the influence
of prominent risk factors in the calculation of risk levels using
linear operators in fuzzy AHP, which can lead to reduced
accuracy of the final evaluation results. This helps to make
the results more reasonable.

(4) The new model is applied to the risk assessment of deep
excavation construction in the Rongmin Science and
Innovation Park project on High-tech Second Road in Xi’an.
Based on the evaluation results, the construction plan for the
excavation is optimized. After improving the plan, no accidents
occurred during the construction process of deep excavations
for this project, further demonstrating the instructiveness of the
new model in risk analysis for actual construction of deep
excavations.

(5) A novel risk evaluation model for deep excavation construction
based on the combination weighting and non-linear FAHP has
been established, and its feasibility has been verified through
engineering examples. This model can provide reference and
guidance for safety management of deep excavation
construction in other countries around the world.

Frontiers in Earth Science frontiersin.org11

Liu et al. 10.3389/feart.2023.1204721

51

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1204721


Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

Under the guidance of ZS, DG, and SL wrote this article. During
the writing process, YZ, TZ, JX, and YS provided practical
engineering information and assisted SL in conducting the
questionnaire survey. All authors contributed to the article and
approved the submitted version.

Funding

Shaanxi Province Hanjiang-to weihe river valley water
diversion Joint Fund (2021JLM-52), Science and Technology
Innovation Team of Shaanxi Innovation Capability Support
Plan (No. 2020TD005), The Provincial Natural Science
Foundation of Shaanxi (No. 2021JM-373).

Acknowledgments

The authors would like to express their sincere gratitude for the
contribution of Hanjing-to weihe river valley water diversion project
construction Co., Ltd.

Conflict of interest

YS and JX were employed by China Railway 20th Bureau Group
Limited.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Arabameri, A., Pal, S. C., Rezaie, F., Chakrabortty, R., Ngo, P., Blaschke, T., et al.
(2021). Comparison of multi-criteria and artificial intelligence models for land-
subsidence susceptibility zonation. J. Environ. Manag. 284 (2), 112067. doi:10.1016/j.
jenvman.2021.112067

Band, S. S., Janizadeh, S., Pal, S. C., Saha, A., Mosavi, A., Melesse, A. M., et al. (2020).
Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-
based machine learning algorithms. Remote Sens. 12 (3568), 3568. doi:10.3390/
rs12213568

Chowdhuri, I., Pal, S. C., Arabameri, A., Ngo, P. T. T., Roy, P., Malik, S., et al. (2020).
Ensemble approach to develop landslide susceptibility map in landslide dominated
Sikkim himalayan region, India. Environ. Earth Sci. 79 (20), 476. doi:10.1007/s12665-
020-09227-5

Chowdhuri, I., Pal, S. C., and Chakrabortty, R. (2019). Flood susceptibility mapping
by ensemble evidential belief function and binomial logistic regression model on river
basin of eastern India. Adv. Space Res. 65 (5), 1466–1489. doi:10.1016/j.asr.2019.
12.003

Das, B., and Pal, S. C. (2020). Assessment of groundwater vulnerability to over-
exploitation using mcda, ahp, fuzzy logic and novel ensemble models: A case study of
goghat-i and ii blocks ofWest Bengal, India. Environ. Earth Sci. 79 (5), 104. doi:10.1007/
s12665-020-8843-6

Das, B., and Pal, S. C. (2019). Combination of gis and fuzzy-ahp for delineating
groundwater recharge potential zones in the critical goghat-ii block of West Bengal,
India. HydroResearch 2, 21–30. doi:10.1016/j.hydres.2019.10.001

Fan, S., Song, Z., Xu, T., Wang, K., and Zhang, Y. (2021). Tunnel deformation and
stress response under the bilateral foundation pit construction: A case study. Archives
Civ. Mech. Eng. 21, 109. doi:10.1007/s43452-021-00259-7

Feng, S. X., Lei, H. Y.,Wan, Y. F., Jin, H. Y., and Han, J. (2021). Influencing factors and
control measures of excavation on adjacent bridge foundation based on analytic
hierarchy process and finite element method. Front. Struct. Civ. Eng. 15 (2),
461–477. doi:10.1007/s11709-021-0705-0

Gb/T 50326-2006 (2006). Construction project management specification. GCBZ
Eng. Stand. Netw.

Guo, D. S., Song, Z. P., Xu, T., Zhang, Y. W., and Ding, L. B. (2022). Coupling analysis
of tunnel construction risk in complex geology and construction factors. J. Constr. Eng.
Manag. 148 (9), 13. doi:10.1061/(asce)co.1943-7862.0002360

Hillson, D., Grimaldi, S., and Rafele, C. (2006). Managing project risks using a
cross risk breakdown matrix. Risk Manag. 8 (1), 61–76. doi:10.1057/palgrave.rm.
8250004

Hong-bo, Z. H. O. U., Gao, W.-J., Cai, L.-B., and Zhang, H. (2009). Risk
identification and analysis of subway foundation pit by using fault tree analysis
method based on WBS-RBS. Rock Soil Mech. (09), 2703–2707+2726. doi:10.16285/j.
rsm.2009.09.012

Huang, Y., and Jianxin, H. (2004). Risk pre-diagnosis in urban rail transit engineering
using the WBS-RBS method. Urban rapid transit. Urban Express Rail Transit 13 (04),
9–12. doi:10.3390/su132011507

Huchzermeier, A., and Loch, C. H. (2001). Project management under risk: Using the
real options approach to evaluate flexibility in R.D. Manag. Sci. 47 (1), 85–101. doi:10.
1287/mnsc.47.1.85.10661

Issa, U., Saeed, F., Miky, Y., Alqurashi, M., and Osman, E. (2022). Hybrid AHP-fuzzy
TOPSIS approach for selecting deep excavation support system. Buildings 12 (3), 295.
doi:10.3390/buildings12030295

Laarhoven, P. M. J. V., and Pedrycz, W. (1983). A fuzzy extension of saaty’s priority
theory. Fuzzy Sets Syst. 11 (13), 199–227. doi:10.1016/S0165-0114(83)80082-7

Malik, S., Pal, S. C., Chowdhuri, I., Chakrabortty, R., and Das, B. (2020). Prediction of
highly flood prone areas by gis based heuristic and statistical model in a monsoon
dominated region of bengal basin. Remote Sens. Appl. Soc. Environ. 19, 100343. doi:10.
1016/j.rsase.2020.100343

Meng, G. W., Huang, J. S., Wu, B., Zhu, Y. P., Xu, S. X., and Hao, J. H. (2020).
Risk assessment of deep foundation pit construction based on analytic hierarchy
process and fuzzy mathematics. Adv. Civ. Eng. 2020, 1–12. doi:10.1155/2020/
8840043

Rabin, C., Chandra, P. S., Sadhan, M., and Biswajit, D. (2018). Modeling and mapping
of groundwater potentiality zones using ahp and gis technique: A case study of raniganj
block, paschim bardhaman, West Bengal. Model. Earth Syst. Environ. 4, 1–26. doi:10.
1007/s40808-018-0471-8

Shan, C., Dong, Z., Fan, K., Yang, J., Chen, L. .I. .U., and Fang, Q.1 (2012).
Application of combined weighting method in the calculation of river health
evaluation weights. J. River Sea Univ. Nat. Sci. Ed. (06), 622–628. doi:10.3876/j.
issn.1000-1980.2012.06.005

Song, Z., Su, W., Tian, X., Zhang, Y., and Zhou, G. (2021). Risk analysis of tunnel
construction scheme change based on field monitoring and numerical analysis. Adv.
Civ. Eng. 2021, 1–15. doi:10.1155/2021/8888886

Wang, J., Hou, W., Wang, X., and Riqing, X. U. (2005). “Analysis of accident and
risk sources factors for deep foundation pit,” in Paper presented at the Asia Pacific
Symposium on Safety; 20051102-04; Shaoxing(CN), Shaoxing, China, November
2005.

Wang, L.F., and Xu, S. (1990). Introduction to hierarchical analysis. Beijing, China:
People’s University of China Press.

Xie, J., and Liu, C. (2005). Fuzzy mathematical methods and their applications.
Huazhong, China: Huazhong University of Technology Press.

Xu, T., Song, Z., Guo, D., and Song, Y. (2020). A cloud model-based risk assessment
methodology for tunneling-induced damage to existing tunnel. Adv. Civ. Eng. 2020 (14),
1–11. doi:10.1155/2020/8898362

Frontiers in Earth Science frontiersin.org12

Liu et al. 10.3389/feart.2023.1204721

52

https://doi.org/10.1016/j.jenvman.2021.112067
https://doi.org/10.1016/j.jenvman.2021.112067
https://doi.org/10.3390/rs12213568
https://doi.org/10.3390/rs12213568
https://doi.org/10.1007/s12665-020-09227-5
https://doi.org/10.1007/s12665-020-09227-5
https://doi.org/10.1016/j.asr.2019.12.003
https://doi.org/10.1016/j.asr.2019.12.003
https://doi.org/10.1007/s12665-020-8843-6
https://doi.org/10.1007/s12665-020-8843-6
https://doi.org/10.1016/j.hydres.2019.10.001
https://doi.org/10.1007/s43452-021-00259-7
https://doi.org/10.1007/s11709-021-0705-0
https://doi.org/10.1061/(asce)co.1943-7862.0002360
https://doi.org/10.1057/palgrave.rm.8250004
https://doi.org/10.1057/palgrave.rm.8250004
https://doi.org/10.16285/j.rsm.2009.09.012
https://doi.org/10.16285/j.rsm.2009.09.012
https://doi.org/10.3390/su132011507
https://doi.org/10.1287/mnsc.47.1.85.10661
https://doi.org/10.1287/mnsc.47.1.85.10661
https://doi.org/10.3390/buildings12030295
https://doi.org/10.1016/S0165-0114(83)80082-7
https://doi.org/10.1016/j.rsase.2020.100343
https://doi.org/10.1016/j.rsase.2020.100343
https://doi.org/10.1155/2020/8840043
https://doi.org/10.1155/2020/8840043
https://doi.org/10.1007/s40808-018-0471-8
https://doi.org/10.1007/s40808-018-0471-8
https://doi.org/10.3876/j.issn.1000-1980.2012.06.005
https://doi.org/10.3876/j.issn.1000-1980.2012.06.005
https://doi.org/10.1155/2021/8888886
https://doi.org/10.1155/2020/8898362
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1204721


Yang, Y. (2006). “Work breakdown structures of construction project and its
applications in engineering,”. Doctoral dissertation (Tianjin, China: Tianjin University).

Zhang, A.-L., Zhang, X.-Y., Xu, Y.-J., and yang, C. (2017). Study on modified AHP-
entropy method-based fuzzy comprehensive evaluation of urban utility tunnel
construction schedule risk. Archit. Technol. (09), 922–926. doi:10.13731/j.issn.1000-
4726.2017.09.006

Zhang, G. H., Wang, C. T., Jiao, Y. Y., Wang, H., Qin, W. M., Chen, W., et al. (2020a).
Collapse risk analysis of deep foundation pits in metro stations using a fuzzy bayesian
network and a fuzzy AHP.Math. Problems Eng. 2020, 1–18. doi:10.1155/2020/4214379

Zhang, G., Wang, C., Jiao, Y., Wang, H., Qin, W., Chen, W., et al. (2020b). Collapse
risk analysis of deep foundation pits in metro stations using a fuzzy bayesian network and
a fuzzy ahp. London, United Kingdom: Hindawi Limited.

Zhang, X., and Feng, Y. (2005). A nonlinear fuzzy comprehensive assessment model.
J. Syst. Eng. Electron. (10), 54–59. doi:10.1007/978-3-642-14880-4_53

Zhao, M., Cheng, Y., Song, Z., Wang, T., Zhang, Y., Gong, Y., et al. (2021). Stability
analysis of TBM tunnel undercrossing existing high-speed railway tunnel: A case study
from yangtaishan tunnel of shenzhen metro line 6. Adv. Civ. Eng. 2021, 1–18. doi:10.
1155/2021/6674862

Zhou, Y., Wang, W., Lu, X., and Wang, K. (2022). Combination weighting prediction
modeland application of rock burst disaster based on game theory. China Saf. Sci. J. (07),
105–112. doi:10.16265/j.cnki.issn1003-3033.2022.07.0620

Zhu, X., and Guodong, W. (2015). Exploration of the criteria of goodness of
dimensionless method in entropy method. Statistics Decis. (02), 12–15. doi:10.
13546/j.cnki.tjyjc.2015.02.003

Frontiers in Earth Science frontiersin.org13

Liu et al. 10.3389/feart.2023.1204721

53

https://doi.org/10.13731/j.issn.1000-4726.2017.09.006
https://doi.org/10.13731/j.issn.1000-4726.2017.09.006
https://doi.org/10.1155/2020/4214379
https://doi.org/10.1007/978-3-642-14880-4_53
https://doi.org/10.1155/2021/6674862
https://doi.org/10.1155/2021/6674862
https://doi.org/10.16265/j.cnki.issn1003-3033.2022.07.0620
https://doi.org/10.13546/j.cnki.tjyjc.2015.02.003
https://doi.org/10.13546/j.cnki.tjyjc.2015.02.003
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1204721


GIS-based modeling of landslide
susceptibility zonation by
integrating the frequency ratio
and objective–subjective
weighting approach: a case study
in a tropical monsoon climate
region
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Giang Thi Phuong Thao1 and Nguyen An Binh1*
1Ho Chi Minh City Institute of Resources Geography, Vietnam Academy of Science and Technology,
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Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Accurate detection of landslide spatial patterns is vital in susceptibility, hazard, and
risk disaster mapping. Geographic Information System (GIS)-based quantitative
approaches provide a rigorous procedure for gaining deep insight into natural and
anthropogenic landslides from different scales. This study aims to implement a
comprehensive solution for retrieving the landslide susceptibility index. For that
purpose, a landslide inventory was performed in a tropical monsoon climate
region, with a magnitude of elevation spanning from −65 m to 1,900 m above the
sea, considering 15 fundamental causative factors belonging to the groups of
topography, hydrology, geology, land cover conditions and anthropogenic
activities, and weather. The frequency ratio (FR) was implemented to rank
subclasses in each causative factor. For factor weight estimation, different
approaches were applied, including the subjective-based analytic hierarchy
process (AHP), objective-based Shannon entropy (SE), and a synergy of both
methods (AHP–SE), built on these two approaches. Out of the 271 identified
landslide locations, 70% (196 points) were used for training and the remaining 30%
(71 points) were applied for validation. The results showed that the integrated
AHP–SE outperformed the two individual approaches, with the area under the
receiver operating characteristic curve (AUC) reaching 0.876, following SE (AUC =
0.848) and AHP (AUC = 0.818). In the synergy approach, the climate pattern under
tropical monsoons was confirmed as the most crucial landslide-predisposing
factor. The research contributes to a novel discussion by integrating knowledge-
based consultation and statistical data analysis of accurate geospatial data,
incorporating significant explanatory factors toward a reliable landslide-prone
zonation over space and time dimensions.

KEYWORDS

landslide susceptibility, analytic hierarchy process, Shannon entropy, subjective and
objective weighting, tropical monsoon climate
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1 Introduction

Landslides, caused by the rapid movement of rock and soil,
represent one of the most hazardous geological phenomena, with
significant impacts on both natural systems and human societies
(Highland and Bobrowsky, 2008). In natural environments,
landslides can alter the landscape, disrupt ecosystems, and affect
wildlife habitats. Furthermore, they can trigger other natural
disasters, such as flash floods, and increase soil erosion and
sediment deposits in rivers and streams (Lombardo et al., 2020).
In populated areas, landslides can cause damage to infrastructure,
resulting in significant financial losses and loss of life. The number of
people killed by landslides has increased significantly in the 20th
century due to the growing population density and accompanying
economic activities in areas with a high risk of landslides, and this
trend appears to be continuing in the 21st century (Froude and
Petley, 2018). Moreover, most landslides normally occur in high
mountain areas, and the destruction of landmass has more negative
impacts on sustainable livelihood in rural communities (Mirdda
et al., 2022).

The study of landslide probability has become a mature science,
with various approaches applied at regional (Guo et al., 2023),
continental (Van Den Eeckhaut and Hervás, 2012), and global
scales (Stanley et al., 2021), while also considering the diverse
landscapes of homogeneity (Sbroglia et al., 2018) or heterogeneity
(Wang et al., 2020) in specific areas. The research topic has
contributed to a broader scientific understanding of the Earth’
surface processes, providing a basis for future research and
innovation. Along with landslide inventories and hazard
mapping, landslide susceptibility zonation indicates the
probability or likelihood of a landslide occurring in a specific
area based on different conditioning factors such as geology,
topography, climate, land use, and human activities (Guzzetti
et al., 2006). The fundamental science of landslide sensitivity has
a long heritage since the pioneering research conducted in the late
1960s (Yong et al., 2022). Since the 19th century, geologists and
engineers started to recognize the relationship between geology,
topography, and the likelihood of landslides and then began using
quantitative assessments for landslide probability zonation based on
past landslide event observations (Reichenbach et al., 2018). The
capabilities of the Geographic Information System (GIS) provided a
promising opportunity to determine explicitly landslide-prone
areas, while considering spatial relationships between both
intrinsic and extrinsic factors (Nicu, 2017). Furthermore, the
remote sensing data available in recent years resulted in big
geospatial sources in order to construct a landslide-related
geodatabase, a key point to form different GIS-based approaches
for landslide-prone mapping (Scaioni et al., 2014).

Broadly speaking, predictive models of landslide predisposition
can be distinguished by 1) qualitative, 2) quantitative, 3) hybrid or
semi-qualitative approaches. Generally, quantitative strategies
include a certain degree of objectivity compared to qualitative
strategies. For quantification, there was a broad spectrum of
data-driven methods, including statistics and machine learning
techniques. In statistical analysis, numerous methods were
applied to landslide susceptibility, mostly by frequency ratio (FR)
(Nicu and Asăndulesei, 2018), Weight of Evidence (WoE)
(Razavizadeh et al., 2017), Shannon entropy (SE) (Roodposhti

et al., 2016), and logistic regression (LR) (Budimir et al., 2015).
The technological era of artificial intelligence has witnessed a variety
of machine learning-based methods, such as the traditional
algorithms support vector machine (SVM), random forest (RF),
and recent innovations in deep learning models (Zhang et al., 2022;
Ma et al., 2023). On the other hand, semi-qualitative approaches,
such as the analytic hierarchy process (AHP) (Kayastha et al., 2013),
fuzzy logic (Bui et al., 2015), and weighted linear combination
(WLC) (Li et al., 2022), were also recognized for their significant
applications in landslide probability zonation (Tyagi et al., 2022).

As mentioned previously, for the state-of-the-art machine and
deep learning models, these advanced computational intelligence
methods seem to outperform conventional models. Nevertheless,
there is no standard benchmark for the best modeling due to the
dominant uncertainty in landslide disasters. Updated studies
continued to compare the performance of different landslide
sensitivity models, for instance, knowledge-based versus data-
driven methods (Zhu et al., 2018), multi-criteria decision analysis
(MCDA) against machine learning (Khalil et al., 2022), statistical
analysis and machine learning (Ling et al., 2022), traditional
machine learning and deep learning (Zhang et al., 2022), and
machine learning combined with optimization algorithms (Wang
et al., 2022). Apart from that, the evaluation and selection of
landslide-controlling factors was also an engaging subject.
Unfortunately, there was no widespread guideline for the
selection of landslide conditioning factors. The challenge is each
factor also contributes to landslide risk and different natural
conditions in a specific area, leading to the choice of appropriate
factors to comprehensively describe the study area. In general, these
factors are divided into two main groups: conditioning and
triggering factors (Pourghasemi et al., 2018). Taking the
comparison help to identify the most informative landslide
explanatory factors as well as improve the accuracy landslide
susceptibility model (Gaidzik and Ramírez-Herrera, 2021; Liao
et al., 2022).

One of the major challenges in the procedure of landslide
probability is assigning weights to conditioning factors and
subclasses inside these factors. Weighting is a process used in
landslide susceptibility mapping to determine the relative
importance of different components that contribute to landslide
occurrence (Hodasová and Bednarik, 2021). The two main
approaches for weighting are subjective and objective. Subjective
weighting is mainly based on expert judgment. The approach relies
on the experience and knowledge of consultants to attach weights to
different factors based on their perceived importance. Objective
weighting, on the other hand, is followed by mathematical
calculation. Statistical models are used to determine the weights
of causative factors based on their correlation with landslide
occurrences. Objective estimations are generally considered more
reliable than subjective approaches due to their reliance on scientific
evidence while avoiding personal biases. Despite that, it is common
to use a combination of both subjective and objective methods to
ensure the best results (Wang et al., 2012; Zhou et al., 2016).

Located in southeast Asia, Vietnam is a region with a high
frequency of landslides (Shahabi and Hashim, 2015). As a coastal
country, Vietnam is directly affected by annual devastating
hurricanes originating from the Pacific Ocean. Landslides are
often triggered by heavy rainfall, which is primarily influenced by
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the tropical monsoon climate. This meteorological conditions is
characterized by high temperatures and humidity throughout the
year, with heavy seasonal rainfall occurring mostly from May to
November, transitioning to the dry season from December to April
with a high evaporation rate. With the continuous increasing trend
of climate change, the frequency and magnitude of typhoons have
significantly increased, leading to epic destruction caused by
landslides (Gariano and Guzzetti, 2016). Therefore, landslide
susceptibility zonation is one of the most crucial tasks to reduce
damage to human life and property, while also supporting decision-
making for future planning. Moreover, as a developing country with
a remarkable increase in human population and urbanization in
recent years, Vietnam faces an exacerbation of the risk of landslides
and their consequences.

The literature on landslide susceptibility in Vietnam has
explored various methods, including statistical techniques (Bui
et al., 2015; Kieu and Ngo, 2022; Thanh et al., 2022), machine
learning (Phong et al., 2021), and deep learning (Bui et al., 2020; Dao
et al., 2020; Nhu et al., 2020), which have mostly been applied in the
mountainous regions of the country. Unusual weather patterns have
caused an increase in natural hazards that not only occur more
frequently but also have greater magnitude and are expanding into
coastal mountainous areas. Due to its unique geography, the
Vietnamese Central region’s mainland is usually the first area
affected by tropical cyclones originating in the Pacific Ocean.
Among coastal provinces in Central Vietnam, Quang Nam

(Pham et al., 2022), Quang Ngai (Cong et al., 2020; Long et al.,
2022), and Hue (Long and De Smedt, 2018) were recently in focus
for landslide-prone occurrences. Quang Binh has recently emerged
as a region characterized by significant occurrence of landslides and
flash floods, attributed to heavy precipitation during the rainy
season, complex topography, and unstable geological features.
Despite the frequency of these natural disasters, no systematic
scientific investigation has yet been conducted to elucidate their
underlying causes.

Based on the aforementioned perspectives, we utilized different
techniques to generate landslide susceptibility maps in the coastal
mountainous province Quang Binh, Vietnam. Compared to prior
research, our methodology involved the integration of both the
AHP and SE to reveal the better performance of the predictive
model, emphasizing an underexplored approach by the synergy of
both subjective and objective approaches in the landslide
probability research domain. Formed by comprehensive data
collections of topography, hydrology, geology, land cover
conditions and anthropogenic activities, and weather,
15 independent landslide causative factors were adopted with a
focus on the climate-specific spatial layer. This implies a significant
impact of tropical monsoon climate on landslide events. From the
exemplary area, we identified and analyzed the most influential
factors, along with their respective subcategories. Our study results
have significant scientific and practical implications, serving as a
basis for scientific discourse and development of hazard

FIGURE 1
Location of the study area (A), including distribution of landslide inventory points over Sentinel-2 satellites images’ true color composite (B), and
chart of mean total monthly rainfall from 2018–2021 (C).
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prevention and mitigation plans focused on complex coastal
mountainous regions.

2 Study area

Quang Binh is a coastal mountainous province located in North
Central Vietnam, covering an area of approximately 8,000 km2

(Figure 1). Its geographic coordinates lie between 17°05′02″N to
18°05′12″N latitude and 105°03′55″E to 106°05′37″E longitude. The
topography of Quang Binh is characterized by a narrow, west-to-east
sloping landform, with hills and mountains accounting for 85% of the
total natural area. The province experiences an annual rainfall of
approximately 2,300 mm, with specific monthly precipitation
patterns that mark seasonal transitions between dry and rainy
periods. During the dry season (normally from April to August),
rainfall is typically low, with the lowest value of around 44 mm in
June. Conversely, in the rainy season (normally from September to
March), the total amount of precipitation increases markedly, peaking
at nearly 800 mm in October. Notably, based on our experience, the
excessive intensity of precipitation during September and October may
be a primary condition for triggering flash floods and landslides.

The evolution of landscapes and geological characteristics in
Quang Binh through thousands of centuries resulted in the largest
cave in the world, Son Doong (Limbert et al., 2016). Moreover, the
national park Phong Nha-Ke Bang was recognized by UNESCO as a
World Natural Heritage site for geology and geomorphology,
ecology, and biodiversity (https://whc.unesco.org/en/list/951/).
Under the major land cover of tropical forests, the diversity of
geological features and prevalent escarpments are also recognized as
the main motivation leading to incredible landform-related hazards.

3 Materials and methods

An overview of the landslide susceptibility mapping procedure is
depicted in Figure 2. The mainly practiced steps are 1) landslide
inventory; 2) spatial database construction of landslide conditioning
factors; 3) layer reclassification and ranking the subclasses of
corresponding factors using the FR method; 4) factor weighting
by AHP, SE, and AHP–SE; 5) preparing landslide susceptibility
mapping; and 6) model evaluation. The details of each step are
further described in the following sections.

3.1 Landslide inventory

The landslide inventory is an essential commission for GIS-
based landslide susceptibility modeling (Titti et al., 2021). The
quality and quantity of landslide locations have an impact on the
outcome and accuracy assessment of the predictive model. Satellite
images are valuable sources that support the landslide inventory,
especially in mountainous regions that are difficult to access.
However, dense tropical forests may present challenges and
uncertainty in detecting landslide occurrences based on these
remotely sensed data. Hence, taking advantage of satellite images
for landslide remote detection and ground true validation is essential
for enhancing the truthfulness of the landslide inventory database.
In the present study, we identified 271 landslide points over the
examined area, including historical destructive geological events and
field investigation. The points were first sampled based on numerous
geospatial resources, including high-resolution Earth Engine images,
optical satellite images from Sentinel-2, and thematic maps, which
were then verified in field campaigns during the rainstorm season in

FIGURE 2
Workflow diagram for landslide susceptibility mapping.
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FIGURE 3
Maps of conditioning factors considered in landslide susceptibility models including (A) elevation, (B) slope, (C) aspect, (D) plan curvature, (E)
distance to river, (F) drainage density, (G) TWI, (H) distance to fault, (I) soil, (J) geomorphology, (K) land cover, (L) distance to road, (M) NDVI, (N)
precipitation, and (O) climate.
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2022. As illustrated in Figure 1, the dataset was split into 70%
(196 points) for the training phase and 30% for validation
(71 points).

3.2 Spatial database construction of
landslide causative factors

In the domain of GIS-based landslide susceptibility,
preparing conditioning factors in a consistent spatial database
required outstanding knowledge of not only geographic accuracy
but also of the various types of features to fully reflect the interest
domain. To date, to select landslide-related model variables, it
should be noted that there are no standard guidelines or
regulations for choosing optimal factors, as these are well-
defined based on the specific case and research areas. Among
a plethora of causative factors relating to landslide susceptibility,
we recognized 15 significant factors through state-of-the-art
literature reviews (Pourghasemi et al., 2018; Reichenbach
et al., 2018; Yong et al., 2022). We categorized all factors into
five fundamental groups, 1) topography, 2) hydrology, 3)
geology, 4) land cover conditions and anthropogenic activities,
and 5) weather, as an effort to exhaustively consider the
contribution of related datasets to the disaster. Continuous
data layers were reclassified using Jenks natural breaks
optimization, while discrete data layers were stored in unique
values for further analyses. For the post-processing, the final
raster layers were geometrically corrected according to the World
Geodetic System (WGS), 1984, and the UTM (Universal
Transverse Mercator) Zone 48°N (North), which then
transformed into a 10-m resolution. Figure 3 displays the
maps of all 15 factors after standardization, as mentioned
previously. Detailed descriptions of each group-based
conditioning factor are provided in the following sections.

3.2.1 Group of topography
Topography-based components are one of the most decided

characteristics related to landslide susceptibility. In this respect,
we selected four remarkable factors to describe the terrain of the
research area, i.e., 1) elevation, 2) slope, 3) aspect, and 4) plan
curvature. To generate these topography-based factors, a digital
elevation model (DEM) with an original resolution of 12.5 m
was downloaded from https://asf.alaska.edu/. The DEM was
generated based on products of Phased Array type L-band
Synthetic Aperture Radar (PALSAR) instruments onboard
the Advanced Land Observing Satellite (ALOS).

The distribution of elevation across the considered area offers an
encompassing illustration of the terrain shape. Over the research
area, height values extracted from the DEM ranged from −55 m
under the sea level to 1,971 m above sea level due to the geographical
location of the coastal mountainous region. The Jenks natural breaks
optimization was applied to classify the elevation into five types. The
result strongly indicates that the area is predominantly hilly, and the
very high-altitude domain (>1000 m) only appears in the southeast
(Figure 3A).

Slope is a crucial factor that relates to landslide triggering.
Literature reviews have shown that slope is the most commonly
used parameter in the field of landslide sensitivity spatial modeling

(Pourghasemi et al., 2018). Although a slope of over 30° has been
identified as leading to instability and an increased risk of landslides,
different slope domains also require comprehensive consideration
due to the unique characteristics of the specific region (Moragues
et al., 2021). In the present study, spatial analysis functions were
applied with input from the DEM to derive the slope. Based on the
thematic map shown in Figure 3B, the slope is complex in the west
and becomes flatter while transitioning to the east. It should be
noted that steep slope features (>38°) only cover a small percentage
(4.77%) of the total area.

We also considered the aspect of slope, which indicates the
direction of each slope form. The slope aspect affects solar radiation,
wind exposure, and moisture availability, resulting in different
vegetation growth, soil characteristics, and local microclimates
(Cellek, 2021). Understanding the slope aspect in landslide
susceptibility measurements provides professional knowledge for
tackling natural disasters and further planning. The visual
representation of the slope aspect with a continuous range of
values from 0° to 360° was divided into 10 unique classes,
including north, northeast, east, southeast, south, southwest, west,
northwest, and flat direction (Figure 3C).

The function of the curvature is utilized to showcase the shape of
the slope, where a segment of a surface can exhibit either concavity
or convexity. There are two distinct types of curvature, i.e., planform
and profile. In general, the planform curvature focuses on the lateral
movement of fluid flow, while the profile curvature pertains to the
vertical changes in fluid flow. Here, we only focus on planform
curvature as this was used more than profile curvature in detecting
the probability of landslide occurrences (Pourghasemi et al., 2018).
The range of values obtained by planform curvature analysis is
divided into classes of concave (<−0.05), convex (>0.05), or flat
(−0.05–0.05) across the surface of the study area (Figure 3D).

3.2.2 Group of hydrology
Hydrology plays a required role in landslide susceptibility

prediction. Hydrological elements can influence the stability of
the terrain and trigger landslides. Understanding the interaction
between these hydrological factors and environmental
characteristics can provide valuable information for landslide
hazard management. By incorporating hydrological data into the
landslide model and considering the dynamic nature of these factors,
researchers can improve the accuracy and reliability of landslide
predictive models. Therefore, different variables related to
hydrology are considered in this present research, including 1)
distance to river, 2) drainage density, and 3) Topographic
Wetness Index (TWI).

Distance to river can affect the water content in the soil and
accumulation flow. Landslide occurrences are more likely to happen
in areas located near rivers, especially in mountainous regions (Pal
et al., 2022). Here, Euclidean distance was applied to the river
network geospatial layer and buffered into five different zones
from below 100 m to more than 500 m (Figure 3E).

Apart from distance to river, drainage density refers to the amount
of water draining from a certain area, and a high drainage density can
indicate areas that are prone to landslides. Hydrologists recognized the
vital role of drainage density in relation to a range of factors, including
flash flood severity, sediment load, water concentration, and overall
water balance, within a specific drainage basin (Chapter VIII Stream
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and Drainage Densities, 1985). Consequently, drainage density also
contributed to the landslide process as one of the most significant
variables representing the hydrological group setting. Figure 3F showed
the distribution of six subcategories of drainage density built on the
hydrological network.

Topographic wetness index, also known as the compound
topographic index (CTI), was first introduced by Beven and
Kirkby (1979). The index implies the effects of the spatial
topographic scale on hydrological processes with the assumption
of uniform soil properties. A summary of the application of the TWI
was described in Sørensen et al. (2006); Pal et al. (2022) as proof of
its vital role in hydrological applications. The TWI is often used to
identify areas that are susceptible to landslides due to saturation-
induced soil instability. To obtain the index, we applied the
following equation:

TWI � ln α/ tan β( ), (1)
where α is the scaled flow accumulation and β is the local slope

transfer to the radian unit. Figure 3G showed the distribution of the
TWI values generated based on the DEM, with a range of continuous
values converted to six discrete classes.

3.2.3 Group of geology
Not paying attention to geological-related components would be

a significant limitation in the systematic assessment of landslide
hazards. Given the thematic layer analysis conducted over the study
area, three appropriate conditioning factors were adopted, i.e., 1)
distance to fault, 2) soil, and 3) geomorphology.

Geological lineaments are characterized as one of the main driving
forces leading to land movements, such as active faults, earthquakes, and
geomorphological formation. Particularly in landslide hazards, the
presence of faults can create deformation in the surrounding rock,
which can weaken the material and increase the likelihood of failure.
Additionally, faults can also create pathways for water to infiltrate the
rock, which can further degrade the material and increase its
susceptibility to landslides (Ramli et al., 2010). Thus, we extracted the
geological lineament distribution and performed Euclidean distance
functions with grades of 100-m intervals. The result was then
reclassified into six classes of thematic layers, as represented in Figure 3H.

The soil affects the stability of geological characteristics and, thus,
unequivocally relates to landslide sensitivity. We first prepared the soil
map according to the FAO/UNESCO classification. Moreover, our
national database provided the map representing the details of each soil
class in Acrisols due to the predominance of this group in the
considered area. The final soil map includes eleven units: Epi Lithi
Humic Acrisols (ACu-l1), Calcisols (CLs), Epi Lithi Ferralic Acrisols
(ACf-l1), Leptosols (LPs), Endolithi Ferralic Acrisols (ACf-d2), Hapli
Ferralic Acrisols (ACf-h), Ferric Acrisols (ACfe), other Acrisols (Arenic,
Albic, and Plinthic) (ACs), Fluvisols (FLs), Epi Skeletic Ferralic (ACf-
sk1), and other soil types (Figure 3I).

Geomorphology is also an indisputable factor influencing landslide
susceptibility. The geomorphological map with ten unique
characteristics was obtained from the national geodatabase. Figure 3J
showed the distribution of geomorphological units including slow
gravity slope (I), wash slope (II), landform with origin of stream
flow (III), corroded slope (IV), the remaining surface of pediment
basin (V), quick gravity slope (VI), deluvi–coluvi agglomerating slope

(VII), the remaining surface of peneplain (VIII), others (IX), and karst
landform (X).

3.2.4 Group of land cover conditions and
anthropogenic activities

For selecting candidates related to landslides, the contribution of
the landcover environment and built-up infrastructures should be
emphasized. Accordingly, we adopted three sensitivity factors
belonging to the group of land cover conditions and
anthropogenic activities, namely, 1) land cover; 2) distance to
road; and 3) Normalized Difference Vegetation Index (NDVI).

A land cover map was obtained using the product of ESA
WorldCover version 2.0. The classification procedure was based
on both Synthetic Aperture Radar Sentinel-1 data and Sentinel-2
optical images with a resolution of 10 m globally (Zanaga et al.,
2022). In our examined area, six unique classes were identified with
the largest land cover class, the tree cover (84.63%), following
cropland (6.22%), grassland (3.54%), water bodies (1.95%), built-
up land (1.83%), and bare soil and sparse vegetation (1.83%).
Figure 3K showed the distribution of land cover as mainly forest
cover in hilly and mountainous areas.

Anthropogenic activities, i.e., road construction, can indeed
have a significant impact on the geological structure of a large
basin. With the spatial modeling of landslide sensitivity, it is
necessary to consider the distribution of road networks as one of
the most man-made influenced factors. Compared to plain regions
with stable slopes, the pressure from concrete road constructions can
be particularly intense in mountainous regions. Moreover, the
presence of roadways can also imply other human activities,
leading to further impact on the surrounding landscape (Pal
et al., 2022). Therefore, we applied Euclidean distance estimation
with an interval of 100 m. The resulting map is shown in Figure 3L.

The NDVI is also one of the indicators used to assess the density
of vegetation in tropical climates. Here, we calculated the index
based on the MultiSpectral Instrument (MSI) onboard Sentinel-2, as
shown in Figure 3M. It should be noted that the sensor includes
12 spectral bands with resolutions ranging from 10 m to 60 m. The
red and near-infrared bands (10 m) were used to obtain the NDVI
using the following equation:

NDVI � NIR − RED
NIR + RED

� B8 − B4
B8 + B4

. (2)

3.2.5 Group of weather
Two spatial layers of weather datasets related to landslide

probability are 1) precipitation and 2) climate. Related to the
previously mentioned factor, triggering of landslides in the tropical
monsoon climate zone is often due to heavy rainfall (Funk et al., 2015).
Therefore, remote sensing products of precipitation were processed
through the cloud spatial computing platform Google Earth Engine
using the catalog of ClimateHazards Group InfraRed Precipitation with
Station Data (CHIRPS). These datasets provide daily gridded rainfall
with a resolution of 0.05°. In order to focus on landslide susceptibility in
rainy season, a monthly rainfall map was generated with themean of all
images collected in September 2022, the rainiest period over the
research area (Figure 3N).

Climate is a long-term pattern of weather in a specific region.
Furthermore, climate patterns are the main controlling parameters for
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the amount of precipitation. Aiming to understand the relationship
between typical climates and landslides, we provided a thematic map to
present the main climate patterns in detail. A description of specific
climate patterns is provided in Table 1, and the map is shown in
Figure 3O.

3.3 Frequency ratio

The bivariate statistical FR method was applied to estimate the
landslide densities in all subclasses in each factor. The goal of this
method is to compute the percentage of landslide pixels located in
subcategories of all factors, correcting the associated raters to the
propensity of landslide occurrences (Lee and Talib, 2005). To
perform the estimation, the landslide inventory training dataset
and factor maps were used for obtaining the following equations:

FRi,j �
LSi,j /∑LSi,j
Ni,j /∑Ni,j

, (3)

RFi,j � FRi,j

∑FRi,j
× 100, (4)

where i is the subclass of the considered factor j; LSi,j is the
number of landslide pixels in each class; Ni,j is the number of class
pixels; FRi,j is the frequency ratio; RFi,j is the relative frequency (%).

3.4 Analytic hierarchy process

The subjective approach, AHP, was first introduced in Saaty, 1977
(1980), known as a widely used multi-criteria decision analysis that
allows decision-makers to prioritize and evaluate alternative options

based on multiple criteria. In the field of critical landslide area
assessment, this method provides a robust, yet simple to handle,
complex decision-making problems. It is based on the principle of
pairwise comparison, where the relative importance of a criterion is
assessed in relation to others. Here, the AHP was implemented by a
subjective hierarchical structure that contains 15 landslide causative
factors. Based on judgments of multidisciplinary experts who
collaborated with local officers, pairwise comparisons are then made
to determine their relative importance. These comparisons are repeated
at each level of the hierarchy until an acceptance consistency ratio is
obtained, indicating that the criteria are consistent with others. The final
step involves combining the pairwise comparisons to calculate the
overall weight of individual factors. The metrics in the process,
including Consistency Index (CI) and Consistency Ratio (CR), were
estimated according to the following equation:

CI � λ max − n
n − 1

, (5)

CR � CI
RI
, (6)

where λmax is the maximum eigenvalue of the matrix, n is the
number of considered criteria (n = 15); the random consistency
index (RI) is 1.59, which was used for 15 criteria (Saaty, 1980). The
obtained CR less than 0.1 implies the consistency and acceptance of
the decision-makers’ pairwise comparison matrix.

3.5 Shannon entropy

Initially proposed by Shannon (1948), SE is a well-established
information theory-based method. The basic idea is to give more
weight to events that have higher entropy, as they contain more

TABLE 1 Description of the climate components.

No. Climate components Description

1 Temperature I: 22–24o

II: 20–22o

III: 18–20o

IV: 15–18o

2 Rainfall A: 2,500–2,800 mm

B: 2,000–2,500 mm

C: 1,500–2,000 mm

3 Cold time 0: non winter time

1: 1–3 winter months

2: 4–5 winter months

3: 6–7 winter months

4 Drought condition a: dry season during December to April with slight drought

b: dry season during December to April with moderate drought

c: dry season during January to July with moderate drought

d: dry season during January to July with drought
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uncertainty and information, and less weight to events with lower
entropy. Mainly based on ready-to-use data, the SE formula
measures the average amount of information contained in a
dataset, and the weights are derived from these entropy values.
In risk assessment, the entropy of a hazard event can be used to
determine its likelihood and potential impact. Events with higher
entropy carry more uncertainty and, therefore, have a higher risk
associated with them. Here, we computed the entropy of landslide
susceptibility based on the distribution of detected landslides in the
training dataset to the contributing factors. SE weighting was
estimated using the following equations (Roodposhti et al., 2016;
Agrawal and Dixit, 2022):

Pi,j � FRi,j ÷ ∑m

i�1FRij, (7)

Ej � −1
log2 mj( )

⎛⎝ ⎞⎠ × ∑m

i�1Pijlog2Pij, (8)

Wj
SE � 1 − Ej( )∑n

j�1 1 − Ej( ), (9)

where i is the subclass of the considered factor j, m is the number
of subclasses in each conditioning factor, n is the number of
conditioning factors (n = 15), Pij is the probability density, FRij is
the frequency ratio, Ej is the entropy value, and Wj

SE is the entropy
weight.

3.6 The synergy of subjective and objective
weighting approaches

The synergy of both objective and subjective approaches may
enhance the performance of the model and mitigate issues related to
the ill-posedness. Therefore, the data-driven method SE and
knowledge-based method AHP were integrated to derive the
combined weights for each of 15 conditioning factors, as seen in
the following equation (Wang and Zhang, 2018):

Wj
SE−AHP � Wj

SE × Wj
AHP

∑n
j�1
(Wj

SE × Wj
AHP)

(10)

where Wj
SE and Wj

AHP are derived from the objective-based SE and
the subjective-based AHP, respectively; j is the considered factor; n is
the total number of conditioning factors of the landslide
susceptibility model (n = 15).

3.7 Landslide susceptibility mapping

To retrieve the landslide susceptibility index, a summation of the
product of rating subclasses and respective weights of each
conditioning factor is given by the following equation:

LSI � ∑n

j�1Wj × RFR
j , (11)

where n is the number of landslide conditioning factors (n = 15);
Wj is the factor weight obtained by the corresponding methods of
AHP, SE, and AHP–SE; and Rj is the two-dimensional matrix of
factor j that has been reassigned to the RF. The continuous range
value of the landslide susceptibility index is divided into five

probability categories, namely, very low, low, moderate, high, and
very high, using the natural breaks Jenks function.

3.8 Model evaluation

The performance of various models was evaluated using the
receiver operating characteristic (ROC) curve. The primary statistical
metrics employed to measure the model accuracy are true positive rate
(TPR), false positive rate (FPR), and AUC. The TPR, also referred to as
sensitivity, reflects the proportion of correctly classified positive cases
among all positive cases, while the FPR, also known as specificity,
measures the likelihood of a true negative case being classified as
negative. The AUC spans from 0 to 1. A retrieval value of the AUC
closer to 1 results in the better performance of the model:

TPR � TP
TP + FN

� TP
P
, (12)

FPR � TN
TN + FP

� TN
N

, (13)

AUC � ∑TP +∑TN
P +N

, (14)

where true positive (TP) and true negative (TN) are the values of
correct landslide and non-landslide pixels, respectively; true
negative and false positive (FP) are the values of incorrect
landslide and non-landslide pixels, respectively; P and N are the
corresponding total number of landslide and non-landslide pixels.

We also estimate the relative landslide density index to evaluate
the performance of different models in each landslide-sensitive zone,
using the following equation:

R � ni

Ni
( )/∑ ni

Ni
( ) × 100, (15)

where ni and Ni are the numbers of landslide pixels and total pixels
in each susceptibility class, respectively.

4 Results

4.1 Weighting of subclasses and
corresponding conditioning factors

Table 2 showed the FR and RF calculated for subclasses in
landslide-controlling factors. By considering the quantity relationship
between training points (196 points) that appeared in each subcategory
(total of 79,865,948 pixels), higher FR values indicate higher sensitivity
of a class to landslide occurrence compared to the remaining classes
within a predisposing factor. It should be noted that even if a particular
subclass has a small number of landslide inventory points, the FR value
may still be high. This can occur when the percentage of pixels in the
subclass is low relative to the total number of pixels in the thematic
layer. The calculated RF (%) values were then assigned to reclassify
thematic maps of all 15 causative factors as input for the landslide
susceptibility model.

Regarding topographical groups, the highest elevation ranging
from 1,019 m to 1,971 m, slope degree of 17.5–26.8o, east slope
aspect, and convex plan curvature (>0.05) were determined as the
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TABLE 2 Results of the frequency ratio for subclass weighting for the 15 causative factors used in the model.

No. Factor Class Pixel (%) Landslide pixel (%) FR RF

1 Elevation (m) −55–98 33.84 19.39 0.57 7

98–268 25.13 30.61 1.22 15

268–459 17.51 27.04 1.54 19

459–667 13.59 16.33 1.20 15

667–1,019 9.29 4.59 0.49 6

1,019–1,971 0.64 2.04 3.20 39

2 Slope (o) 0–8.29 33.00 5.61 0.17 3

8.29–17.50 23.50 26.02 1.11 20

17.50–26.76 23.16 42.86 1.85 33

26.76–38.71 15.57 19.90 1.28 23

38.71–82.02 4.77 5.61 1.18 21

3 Aspect Flat (−1) 4.14 0.51 0.12 1

North (0–22.5; 337.5–360) 13.08 14.80 1.13 14

Northeast (22.5–67.5) 12.84 17.86 1.39 17

East (67.5–112.5) 11.81 18.88 1.60 19

Southeast (112.5–157.5) 12.30 7.65 0.62 7

South (157.5–202.5) 11.94 13.78 1.15 14

Southwest (202.5–247.5) 12.05 10.20 0.85 10

West (247.5–292.5) 10.32 7.14 0.69 8

Northwest (292.5–337.5) 11.52 9.18 0.80 10

4 Plan curvature Concave (<−0.05) 36.37 34.69 0.95 32

Flat (−0.05–0.05) 25.41 20.92 0.82 28

Convex (>0.05) 38.22 44.39 1.16 40

5 Distance to river (m) <100 21.44 21.94 1.02 16

100–200 15.64 16.84 1.08 17

200–300 11.64 17.35 1.49 24

300–400 8.59 8.67 1.01 16

400–500 6.34 5.61 0.89 14

>500 36.35 29.59 0.81 13

6 Drainage density (km2/km) 0–0.58 42.86 35.71 0.83 14

0.58–1.58 20.41 23.47 1.15 20

1.58–2.68 17.35 21.43 1.24 21

2.68–3.89 11.58 13.27 1.15 20

3.89–5.47 6.09 5.10 0.84 14

5.47–13.48 1.71 1.02 0.60 10

7 TWI 0.64–4.68 25.22 32.65 1.29 29

4.68–6.26 36.02 43.37 1.20 27

6.26–8.37 17.45 18.37 1.05 24

(Continued on following page)
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TABLE 2 (Continued) Results of the frequency ratio for subclass weighting for the 15 causative factors used in the model.

No. Factor Class Pixel (%) Landslide pixel (%) FR RF

8.37–10.74 10.94 2.04 0.19 4

10.74–13.90 9.08 3.06 0.34 8

13.90–23.12 1.29 0.51 0.40 9

8 Distance to fault (m) <100 6.83 6.12 0.90 14

100–200 6.43 5.10 0.79 12

200–300 6.25 9.18 1.47 23

300–400 6.04 8.16 1.35 21

400–500 5.76 5.10 0.89 14

>500 68.69 66.33 0.97 15

9 Soil Other 8.48 0.51 0.06 1

Epi Lithi Humic Acrisols (ACu-l1) 1.21 3.57 2.95 27

Calcisols (CLs) 21.54 9.18 0.43 4

Epi Lithi Ferralic Acrisols (ACf-l1) 40.11 51.02 1.27 12

Leptosols (LPs) 3.10 4.08 1.32 12

Endolithi Ferralic Acrisols (ACf-d2) 9.81 22.96 2.34 21

Hapli Ferralic Acrisols (ACf-h) 3.80 4.08 1.07 10

Ferric Acrisols (ACfe) 2.66 1.02 0.38 3

Other Acrisols (Arenic, Albic, and Plinthic) (ACs) 2.51 0.51 0.20 2

Fluvisols (FLs) 5.04 2.04 0.41 4

Epi Skeletic Ferralic (ACf-sk1) 1.74 1.02 0.59 5

10 Geomorphology Slow gravity slope (I) 22.89 31.12 1.36 12

Wash slope (II) 9.97 18.88 1.89 17

Landform with origin of stream flow (III) 12.40 10.71 0.86 8

Corroded slope (IV) 3.56 6.63 1.86 17

Remaining surface of the pediment basin (V) 2.17 3.57 1.65 15

Quick gravity slope (VI) 7.69 12.76 1.66 15

Deluvi–coluvi agglomerating slope (VII) 2.79 2.04 0.73 7

Remaining surface of the peneplain (VIII) 1.68 0.51 0.30 3

Others (IX) 14.40 0.00 0.00 0

Karst landform (X) 22.45 13.78 0.61 6

11 Land cover Tree cover 84.63 93.88 1.11 33

Grassland 3.54 3.06 0.87 25

Cropland 6.22 0.51 0.08 2

Built-up 1.83 0.51 0.28 8

Bare/sparse vegetation 1.83 0.51 0.28 8

Water bodies 1.95 1.53 0.78 23

12 Distance to road (m) <100 14.63 9.18 0.63 11

100–200 8.04 5.61 0.70 13

(Continued on following page)

Frontiers in Environmental Science frontiersin.org11

Hoa et al. 10.3389/fenvs.2023.1175567

64

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1175567


most influential subclasses. In case of the group set by hydrological
variables, distance to rive spanning 200–300 m, drainage density
between 1.6 and 2.7 km2/km, and the range of the TWI of
0.6–4.7 become more sensitive compared to other corresponding
subcategories. The soil of Epi Lithi Humic Acrisols (ACu-l1), wash
slope and corroded slope, and 400–500 m proximity to the fault gave
the most pressure in the geological group. The group of land cover
conditions and anthropogenic activities witnessed the most
significant susceptibility in subclasses of tree cover, distance to
road of 400–500 m, and a range value of the NDVI,
approximately 0.7 – 0.8. Last, weather-based components
estimated the rainfall amount on average of 15.6–23.3 mm/day,
and two climate patterns (IB1a and IIA2a) are the most impact
subcategories contributing to the landslide probability.

Table 3 represented the AHP order matrix for 15 conditioning
factors, with a range of positive integer values from 1 to 7 applied for
comparison among these aforementioned criteria. The achieved
metrics λ max , CI, and CR are equal to 15.64, 0.045, and 0.028,
respectively, strongly confirmed for the consistency of the matrix.
Relative weights for all factors in the method of the AHP, SE, and
AHP–SE were determined and illustrated in Figure 4. From the
charts, subjective judgment strictly obeys the AHP process, with the
most important causative factors being precipitation and slope. In
contrast, data-based statistics SE accounting for soil and climate
affect much of the landslide susceptibility model. The final ranking,
which incorporated both AHP and SE, identified slope and soil as
the most crucial factors for detection of landslide-prone regions.
When considering all three methods, soil, climate, slope, and

TABLE 2 (Continued) Results of the frequency ratio for subclass weighting for the 15 causative factors used in the model.

No. Factor Class Pixel (%) Landslide pixel (%) FR RF

200–300 5.47 3.06 0.56 10

300–400 4.12 4.59 1.11 20

400–500 3.34 4.59 1.38 25

>500 64.40 72.96 1.13 21

13 NDVI −0.83–0.05 1.47 1.02 0.70 16

0.05–0.29 3.86 2.55 0.66 15

0.29–0.44 5.45 3.57 0.65 15

0.44–0.58 7.82 4.59 0.59 13

0.58–0.73 13.09 9.18 0.70 16

0.73–0.83 68.32 79.08 1.16 26

14 Precipitation (mm/day) 2.78–6.56 1.12 1.02 0.91 16

6.56–11.12 14.84 4.59 0.31 5

11.12–13.27 34.83 37.76 1.08 19

13.27–15.30 25.97 28.06 1.08 19

15.30–17.58 14.71 18.88 1.28 22

17.58–23.27 8.53 9.69 1.14 20

15 Climate IA1a 5.12 4.59 0.90 6

IA1b 20.15 27.04 1.34 9

IB0d 12.79 1.02 0.08 1

IB1a 5.42 8.67 1.60 11

IB1b 20.71 20.92 1.01 7

IB1d 1.53 1.02 0.67 5

IC0d 1.62 0.00 0.00 0

IC1c 2.21 1.53 0.69 5

IIA2a 13.70 21.94 1.60 11

IIB2b 13.65 9.18 0.67 5

IIIA2a 2.79 2.55 0.91 6

IVA3a 0.32 1.53 4.77 33
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precipitation were recognized as the top important factors, with
significantly higher weights than those of the rest. For example, the
lowest weight value for slope in SE was 0.138, while the highest
weight value for climate in AHP–SE was 0.194. The plan curvature
was found to contribute the least to the model, with the lowest
weight assigned to it in all three methods (AHP: 0.009, SE: 0.021, and
AHP–SE: 0.002). Notably, AHP–SE showed a significant difference
between the most crucial factor, climate, and the least important
one, plan curvature, with weight values ranging from 0.002 to 0.194.

4.2 Landslide susceptibility mapping

Figure 5 illustrated the distribution of landslide sensitivity using the
AHP, SE, and the synergy of these two methods. The maps clearly
demonstrated that the most sensitive landslides are located along the
Truong Son mountain range in Vietnam, stretching from the northwest
to the southeast. In contrast, coastal areas showed a very low to low
proportion of landslide occurrences. The polar chart (Figure 5D)
summarized the statistics area of the five levels of landslide
susceptibility based on AHP, SE, and the integrated approach. Overall,
the major landslide-prone areas belong to the high level in all three
methods, on average, accounting for nearly a quarter of the total study
area. In particular, the AHP method showed the highest percentage
(29.83%) of the high landslide-prone category, while the SE method
exhibited slightly different proportions for high and very high levels,
i.e., 28.76% and 26.05%, respectively. The combined approach AHP–SE
resulted in 28.97% for high risk and 21.93% for very high risk zones. The
figures for moderate risk of landslide trigger in the three methods
appeared to be similar, with negligible differences in area percentage,
ranging from the lowest 21.32% (AHP) to the highest 22.70% (SE).

Looking into the classes of low and very low susceptibility, it
is evident that these classes resulted in the smallest percentage of
the susceptibility area compared to the three remaining
categories. In the SE, approximately 11% of the natural area
was identified as having the least landslide probability, and the
number remains unchanged for the level of low sensitivity. Using
the AHP model, the proportions of very low and low levels were
found to be 11.71% and 15.65% of the total area, respectively,
whereas 14% and 13.30% of the area are shown in very low and
low landslide susceptibility degrees according to the combined
method AHP-SE. In comparison to categories of the high
landslide sensitivity class, the statistical data for the level of
very low susceptibility revealed significantly lower values,
i.e., only one-third of the values obtained through the AHP
and the SE method and half the number of the high landslide
sensitivity class identified through the AHP–SE method. By
comparing these three methods, the statistics strongly suggest
that the examined area exhibited landslide predisposition mostly
at high and very high levels.

4.3 Model performance

Figure 6 summarized the performance of the SE, AHP, and the
AHP–SEmethod for landslide susceptibility mapping based on ROC
curves with AUC values and R-index for landslide probability levels.
Overall, all three models were reliable, with the AUC higher than the
random guess (0.5) and classified as a very good prediction (AUC
ranging from 0.8–0.9). Interestingly, the integrated AHP–SEmethod
outperformed both the two individual methods, with the AUC
reaching the highest score of well over 0.87. Objective-based SE

TABLE 3 Pairwise comparison matrix built on AHP method (λmax is the maximum eigenvalue of the matrix, Consistency Index (CI), and Consistency Ratio (CR).

No Factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Elevation 1 1/2 1 3 2 2 2 1/2 1 1 2 2 3 1/2 1

2 Slope 1 2 6 3 3 3 2 2 2 5 3 3 1 3

3 Aspect 1 3 2 1/3 2 1/2 1/3 1 3 2 5 1/2 1/2

4 Plan curvature 1 1/3 1/3 1/2 1/5 1/4 1/3 1 1/3 1 1/5 1/4

5 Distance to river 1 1 1 1/3 1/3 1/2 1 1 1 1/4 1/3

6 Drainage density 1 1 1/2 1/2 1 2 2 2 1/4 1/2

7 TWI 1 1/2 1/2 1/2 2 1 2 1/2 1/2

8 Distance to fault 1 1 2 3 2 3 1 1

9 Soil 1 1 3 3 3 1/3 1/2

10 Geomorphology 1 3 2 3 1/3 1/2

11 Landcover 1 1 1 1/6 1/3

12 Distance to road 1 1 1/4 1/3

13 NDVI 1 1/5 1/3

14 Precipitation 1 2

15 Climate 1

λmax = 15.64, CI = 0.045, CR = 0.028
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was better than subjective-based AHP, i.e., AUC values are nearly
0.85 and 0.81, respectively. Compared to the lowest AUC derived
from the AHP, the synergy of the objective and subjective weighting
method, AHP–SE, led to a notable improvement in the landslide
susceptibility model by approximately 7%. The R-index derived for
very high landslide sensitivity levels in AHP, SE, and AHP–SE maps
is 6̉3.35%, 71.09%, and 78.41%, respectively, indicating the best
prediction of AHP–SE models.

5 Discussion

5.1 Sensitivity analysis of causative factors
and subclasses

Out of the 15 selected factors, the weighting approach
subjectively and objectively resulted in different relative
importance levels. For knowledge-based weighting using AHP,
confirmation for the most important factor, slope, was also found
in different case studies (Kayastha et al., 2013; Mondal and Maiti,
2013; Moragues et al., 2021; Agrawal and Dixit, 2022; Khalil et al.,
2022). Slope is a widely used variable in the field of landslide hazard
zonation (Pourghasemi et al., 2018; Reichenbach et al., 2018).
Notwithstanding, its importance in relation to landslide
sensitivity may vary depending on the specific circumstance.
Recent research settings on different characteristics of the area
found other factors to be more influential, such as land use (Guo
et al., 2023) and lithology (Yalcin, 2008; Pourghasemi et al., 2013).
Particularly in the tropical climate region, precipitation was
recognized as the most significant component related to landslide
sensitivity (Shahabi and Hashim, 2015). Related to the data-driven
methods, the results indicated that calculation based on SE gave the
most important factors of soil. It was also confirmed by the same
method (Devkota et al., 2013; Agrawal and Dixit, 2022). For the
integrated model, climate was the most influential factor in the
landslide susceptibility model, especially in tropical monsoon areas.
The factor was rarely used due to data availability and it is
unnecessary in some general case studies. Here, we aimed to
highlight the impact of the typical climate form under tropical
monsoon areas as one of the key variables leading to the high degree
of landslide triggers. An updated global map of landslide sensitivity
strongly suggested that Southeast Asia, with its classical tropical
environment, has one of the most frequent landslide occurrences
(Stanley et al., 2021).

We also have a deep insight into the contribution of different
landslide conditioning factors, which allows us to suggest the
necessary datasets in regions with the same environmental
conditions. Based on the AHP method, our subjective
knowledge indicated that the top five important factors are soil,
climate, land cover, TWI, and elevation. The AHP-based results
suggested that each fundamental group contains at least one factor
with a significant contribution to the landslide hazard predictive
model. However, approaching data-based statistics, the SE method
has shown that precipitation, slope, distance to fault, climate, and
soil were estimated as the highest weight factors. For the combined
AHP–SE, climate, soil, slope, elevation, and geomorphology
become the highest weight factors of the landslide-prone
predictive model. Considering both individual and integrated
methods, two groups of land cover conditions and
anthropogenic activities and hydrology contributed the least to
the landslide susceptibility model. This is a confirmation for the
most essential group of weather, topography, and geology
compared to the two remaining groups of hydrology and
natural–artificial conditions. The topography group also
contained the most significant factor, slope, and the least
important factor, plan curvature, in all the three methods.

It should be noted that subclasses in conditioning factors
significantly affect the results of landslide susceptibility

FIGURE 4
Assigned weight for (A) subjective-based AHP, (B) objective-
based SE, and (C) integrated AHP and SE.
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FIGURE 5
Maps of landslide susceptibility obtained by the methods of (A) AHP, (B) SE, (C) integration of SE and AHP, and (D) percentage area representing
landslide sensitivity levels following corresponding methods.

FIGURE 6
Performance of SE, AHP, and the integrated approach AHP–SE for landslide susceptibility mapping through (A) ROC curves with AUC values and (B)
R-index of five landslide sensitivity categories.
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modeling, especially for high-weight factors. Figure 7
represented the percentage of landslide inventory validation
recorded in each specific subclass, which analyzed the
relationship between landslide occurrence and different
subclasses in causal factors. In summary, the sensitivity of
landslide over the case study area was observed mostly in
hilly areas (98–268 m), steep slopes (18–27o), slope aspects of
east and northeast, both concave and convex of planform
curvature, distance to river under 100 m, drainage density
below 0.58 km2/km, TWI ranging from 0.64 to 6.26, distance
to fault higher than 500 m, soil class of Epi Lithi Ferralic Acrisols,
geomorphology landform of slow gravity slope, land cover of tree
cover, distance to road higher than 500 m, high NDVI values,
daily rainfall spanning between 11.1 and 13.3 mm/day, and the

climate form of tropical monsoon climate Ia1b separated by dry
seasons (high temperature and moderator drought) and rainy
seasons (from May to November with the total amount of
precipitation 2,500–2,800 mm).

5.2 Effectiveness of modeling strategies

Among the followed methods, AHP is one of the most common
techniques due to its easy approach and implementation (Tyagi
et al., 2022). Even with the subjective limitation, AHP was still
conducted in many applications of case studies (Pourghasemi et al.,
2018; Yong et al., 2022). The method applied in our study was less
accurate than the SE, with no significant difference, however.

FIGURE 7
Percentage of landslide validation data based on each subclass of fifteen considered factors: (A) elevation; (B) slope; (C) aspect; (D) plan curvature;
(E) distance to river; (F) drainage density; (G) TWI; (H) distance to fault; (I) soil; (J) geomorphology; (K) landcover; (L) distance to road; (M) NDVI, (N)
precipitation; and (O) climate.
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Previous experiences also confirmed the slightly lower performance
than that of data-driven methods such as statistical analysis (Panchal
and Shrivastava, 2021) and machine learning models (Khalil et al.,
2022). Nonetheless questions about the requirement of expert
knowledge contributing to the landslide susceptibility model still
remained, with the continuous proposal for different combined
approaches. Various studies demonstrated a better performance
by integration of AHP with different strategies, i.e., WLC (Hung
et al., 2016), FR (Mondal andMaiti, 2013), fuzzy (Agrawal and Dixit,
2022), and evidential belief function (EBF) (Althuwaynee et al.,
2014). Furthermore, incalculable fluctuation of changing climate
leads to ill-posed problems, while depending individually on data-
driven methods (Gariano and Guzzetti, 2016; Zêzere et al., 2017),
thus emphasizing the necessity of knowledge-based contribution in
diverse landslide susceptibility models.

On the other hand, the objective-based weighting approach, SE,
predicted better landslide sensitivity than the AHP with the
confirmation of all the mentioned accuracy metrics. The method
was applied in numerous works as demonstrated for the best model
while being compared to LR (Devkota et al., 2013), Bayesian conditional
probability model (Pourghasemi et al., 2012), AHP (Panchal and
Shrivastava, 2021), statistical information value (Singh et al., 2021),
and FR (Jaafari et al., 2014). These techniques employ mathematical
models to determine criteria weights without incorporating the
subjective preferences of decision-makers, thereby avoiding the
potential influence of personal bias on the final decision outcome.
Despite the fact that weights assigned by the relationship of history
landslide records and thematic layers are explicit and objective, the
method is affected by the resolution of spatial explanatory factors and
both the quality and quantity of landslide inventory data (Zêzere et al.,
2017).

In the light of various combined methods, we deployed the synergy
of AHP and SE, as noticed for the lack of a combination in the field of
landslide susceptibility assessment. Generally, both of the proposal
weighting approaches have self-advantages and disadvantages. The SE
is based on objective data, while the field dataset of landslide occurrences
and the detail or resolution of the thematic layers affect the performance
of the predictive process. The AHP is based on subjective decisions that
may have the tendency of following rigid perspectives or epistemic
uncertainty. To overcome the disadvantages and yield advantages in both
themethods, we integrated subjective and objective approaches to deliver
an optimal weight for each corresponding landslide-controlling factor.
Statistical metrics of the AHP–SEmethod were revealed in this research.
The performance of the combined approach was demonstrated to be
more accurate compared to that of AHP and SE, thus increasing the
reliability of the predictive model.

5.3 Future implementation

In the present study, we involved 15 factors in an effort to consider
the entire prevalent landslide-predisposing aspects of topography,
geology, hydrology, land cover environment and anthropogenic
activities, and weather. However, it is hard to confirm the best
selection of conditioning factors as the task is a major challenge in
hazard prediction modeling. Among hundreds of factors (with their
original name) used in the landslide susceptibility, more than 23 factors
were mostly used (Reichenbach et al., 2018). Analysis of studies during

2005–2016 also indicated the same number of factors used more than
30 times (Pourghasemi et al., 2018). Due to the unavailability of
standard guidelines to select the most effective factors, the optimal
factors are mainly based on landslide type, examined area conditions,
methods applied in available data, and scale requirements (Pourghasemi
et al., 2018). The accuracy of models by adopting different factors was
demonstrated by Gaidzik and Ramírez-Herrera (2021). Therefore,
future implementation should involve quantitative analysis to suggest
themost significant factors and to improve our profound understanding
of how predisposing factors affected landslide susceptibility.

The geospatial data DEM is the main source used to generate
different landslide-related spatial products such as slope, aspect, and
curvature. Although various studies confirmed the unimpacted
topographic product resolution on the performance of landslide
susceptibility models (Tian et al., 2008; Chen et al., 2020),
suggestions for the most congruous raster pixel size of the DEM
were also discussed in detail. Gaidzik and Ramírez-Herrera (2021)
indicated that a finer resolution of topographic data leads to better
prediction; however, the quantity and quality of input data seem to
be important with lower resolution. Lee et al. (2004) concluded that
the proper resolution of 30 m, while constructing the map with
scales ranging from 1:5,000 to 1:50,000 (Tian et al., 2008), implied
that for a changed study area, the size decided the meaningful spatial
resolution, while also mentioning that flat, ridge, and slope foot
terrain shape is more difficult to predict than landslide probability in
the case of lower DEM resolution. In addition, the choice of suitable
methods is also mentioned, for instance, the FR applied in low-
resolution products seemed to be better than the entropy-based
method and WoE (Chen et al., 2020), or the AHP is appropriate in
the medium-resolution scale (1:250,000–1:25,000) (Yong et al.,
2022). Therefore, further analysis needs to be considered for
calculating the spatial resolution of topographic products in
specific conditions of the area and for selecting the most suitable
input data, methodologies, and map scale results.

Apart from the proposed methods already applied in this study,
further experiments should attempt to continue accessing different
methods including statistics, expert-based methods, artificial
intelligence solutions, and a synergy of these methods to choose the
most suitable approach (Chakrabortty et al., 2022). Big data also leads to
the uncertainty of traditional methods due to the complex analysis
process. Combining advanced high-performance machine learning
and deep learning models with big geospatial data may help in
resolving complicated issues and significantly improving the
performance of the landslide model. This could be a potential
solution for the transferability of accurate landslide susceptibility
models over different areas and for temporal analysis.

6 Conclusion

Our study demonstrated the successful prediction of landslide
sensitivity over a Vietnamese coastal mountainous area through the
subclass weighting FR and factor weighting of AHP and SE on
15 independent landslide-causative factors. By combining subjective
and objective approaches, we improved the performance of the
predictive model and provided statistical evidence to support our
findings. Under the perspective of integrating expert-based knowledge
and data-driven methods, we also emphasized the importance of
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considering climate patterns in tropical monsoon areas when assessing
landslide susceptibility. Sensitivity analysis indicated the most impacted
subclass for individual landslide causative variables, providing valuable
insights for the considered area. Notwithstanding the proposed methods,
it showed a promising solution; further research is needed to improve our
understanding related to the influences of different conditioning factors,
input spatial factors, data sampling methods, advanced techniques, and
model transferability for large-scale spatiotemporal analysis. The research
contributed to the field of GIS-based landslide sensitivity zonation in
Vietnam, enabling the potential for early warning of disastrous hazards
and mitigation efforts based on not only knowledge but also statistical
evidence, especially in the context of uncertain future climate changes.
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Frequent flooding can greatly jeopardize local people’s lives, properties,
agriculture, economy, etc. The Swat River Basin (SRB), in the eastern
Hindukush region of Pakistan, is a major flood-prone basin with a long history
of devastating floods and substantial socioeconomic and physical damages. Here
we produced a flood susceptibility map of the SRB, using the frequency ratio (FR)
bivariate statistical model. A database was created that comprised flood inventory
as a dependent variable and causative factors of the flood (slope, elevation,
curvature, drainage density, topographic wetness index, stream power index,
land use land cover, normalized difference vegetation index, and rainfall) as
independent variables and the association between them were quantified. Data
were collected using remote sensing sources, field surveys, and available
literature, and all the studied variables were resampled to 30m resolution and
spatially distributed. The results show that about 26% of areas are very high and
highly susceptible to flooding, 19% are moderate, whereas 55% are low and very
low susceptible to flood in the SRB. Overall, the southern areas of the SRB were
highly susceptible compared to their northern counterparts, while slope,
elevation, and curvature were vital factors in flood susceptibility. Our model’s
success and prediction rates were 91.6% and 90.3%, respectively, based on the
ROC (receiver operating characteristic) curve. The findings of this study will lead to
better management and control of flood risk in the SRB region. The study’s
findings can assist the decision-makers to make appropriate sustainable
management strategies for the mitigation of future damage in the study region.

KEYWORDS

flood susceptibility map, frequency ratio (FR) model, Swat River Basin (SRB), eastern
Hindu Kush region, Pakistan
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1 Introduction

Floods are considered the major natural disasters globally,
posing significant threats to human lives, livelihoods, properties
as well as socio-cultural heritage (Billa et al., 2006; Samanta S. et al.,
2018b; Rentschler et al., 2022; Shen et al., 2022; Liu et al., 2023). The
number of major flood disasters in the last three decades was more
pronounced indicating climate change (Sarkar and Mondal, 2020;
Tariq et al., 2023). Flooding causes more than 2,000 deaths annually
and affects over 75 million people worldwide in different ways (Zou
et al., 2013; Rentschler et al., 2022; Abbas et al., 2023).

Pakistan is among the worst climate change-affected countries,
experiencing extreme hydrometeorological events (Bhatti et al.,
2020; Abbas et al., 2022; Baqa et al., 2022). The recent
catastrophic flooding events are the eye-witness of climate change
in Pakistan (Khan I. et al., 2022a; Shah et al., 2023). The country has
witnessed approximately 25 devastating floods between 1950 and
2020 that killed more than 9,088 people with a total estimated loss of
20 billion USD (Khan et al., 2021; Ahmed et al., 2023). Pakistan was
struck by one of the most devastating floods in its history in
2010 due to brutal monsoon precipitation that caused substantial
damages across the country (Gaurav et al., 2011; Khan et al., 2016;
Farooq et al., 2019), affecting around 20 million people in
78 districts, and killed 1,985 people causing an estimated
9.7 billion USD loss to Pakistan’s economy (F. Ullah et al., 2021;
Ahmed et al., 2023).

In 2012, heavy monsoon rains triggered floods in major parts of
the country, including the Khyber Pakhtunkhwa, Upper Sindh,
Southern Punjab, and Balochistan provinces (Saeed et al., 2021;
Shah et al., 2023). Following these devastating flooding events, the
country was struck by catastrophic flash flooding in August 2013
(Butt et al., 2020). In the recent monsoon floods of 28 August 2022,
Pakistan suffered 1,033 deaths, 949,858 people were affected, over
450,000 residential structures were damaged, 149 bridges were
destroyed, and 110 districts were affected (Crisis24, 2022;
NDMA, 2022; PMD, 2022; ReliefWeb, 2022). Overall, Pakistan
faced about 6 major floods in the last 12 years, i.e., 2010, 2011,
2012, 2013, 2020, and 2022, highlighting Pakistan’s vulnerability to
climate extremes (Ahmed et al., 2023; Majeed et al., 2023).

Although flooding is inevitable and hard to avoid, appropriate
analysis and susceptibility mapping techniques can assess and
manage future floods (Hussain et al., 2021; Henao and Nájera,
2022). Depending upon the flood’s nature, different information and
techniques are required for its assessment and management. These
include information from hydrological, meteorological, geo-
morphological, and socioeconomic sectors. Consequently, flood
susceptibility maps are drawn that greatly assist in flood
mitigation and planning by providing regional planners and
decision-makers with a better understanding of flood attributes
thus, ensuring a sustainable and safe future (Youssef et al., 2016;
Mahmood and Rahman, 2019; Hussain et al., 2021). Identifying
flood-prone locations and mapping the flood hazard areas is key to
its management and/or timely prevention (Hussain et al., 2023b).
Alternatively, selecting areas that have less exposure to flooding may
be an indication of ideal regions for residency and operation
development (Hizbaron et al., 2021).

A plethora of research has been done, which indicates that
accurate flood risk assessment and modeling can help decision-

makers in the development of sustainable risk reduction strategies
(Arnell and Gosling, 2016; Dawood et al., 2021; Malik et al., 2021)
and used both qualitative and quantitative techniques for flood
susceptibility assessment and mapping. Likewise, Saeed et al. (2021)
used Artificial Neural Network (ANN) algorithm to effectively
determine flood-inundated areas in Peshawar Vale with nine
geospatial flood causative factors. A study conducted by
Khoirunisa et al. (2021) used a GIS-based artificial neural
network (GANN) model based on a Back-Propagation Neural
Network (BPNN) to provide flood susceptibility; the proposed
method provided good accuracy in predicting flood susceptibility
of Keelung City, Taiwan. To model and simulate flood-prone
regions of the Johor River Basin, Malaysia, Kia et al. (2012) also
attempted to construct a flood model considering seven flood
causative factors utilizing ANN approaches and geographic
information systems (GIS). Similarly, Ahmadlou et al. (2019)
utilized an adaptive neuro-fuzzy interface system (ANFIS) for
flood susceptibility assessment in contrast with biogeography-
based optimization (BBO) and BAT algorithms. McGrath and
Gohl, (2022) also stressed the impact of meteorological variables
on flood vulnerability mapping using machine learning approaches.
Moreover; Liu et al. (2021) proposed a hybrid model by integrating
fuzzy membership value (FMV) and three machine learning models
of convolutional neural network (CNN), classification and
regression trees (CART), and support vector machine (SVM) for
flood assessment. In another study, Ha et al. (2022) combined
machine learning (ML) and analytical hierarchy process (AHP)
techniques to analyze and map flood hazards, vulnerabilities, and
risks in Quang Binh province, Vietnam. Recently, Liu et al. (2023)
utilized a hybrid approach, combining ResNet-18 and a hydrological
model based on remote sensing data, to create a map of global flood
susceptibility; Majeed et al. (2023) applied an integrated algorithm,
combining the AHP technique and frequency ratio (FR) model to
predict susceptibility to flash floods. The AHP, relative frequency
ratio (RFR), ANFIS, fuzzy variable theory, logistic regression, ANN,
Shannon’s entropy, and others are notable among them. Irrespective
of their inherent pros and cons, the performance of each technique is
dependent on the selected variables as well as the case study
(Tehrany et al., 2014; Hong et al., 2018; Kadam et al., 2018;
Ahmed et al., 2023). In addition, advanced GIS and remote
sensing (RS) techniques are prominently used for flood hazard
calculation and risk analysis modeling (Ali et al., 2016;
Khoirunisa et al., 2021; Tayyab et al., 2021).

GIS and RS are emerging tools that provide various types of
advanced data access and manipulation tools for flood susceptibility
mapping and its forecast with proper justification (Vojtek and
Vojteková, 2019; Rehman et al., 2022). Both GIS and RS images
can assist in assessing flood regions and are effective tools for
creating land use/land cover (LULC) maps and detecting their
changes (Feloni et al., 2020). This technology makes an
incredibly wonderful environment in which various models can
run and modify data to assess the impacts of flooding with coherent
and logical outcomes (Khosravi et al., 2016a). Moreover, these
techniques provide an authentic and simple way to prepare flood
susceptibility maps using the FR model (Sarkar and Mondal, 2020;
Islam et al., 2022). The FRmodel is a profoundly satisfactorymethod
for highly precise hazard evaluation (Althuwaynee et al., 2014; Ullah
and Zhang, 2020; Majeed et al., 2023). Rehman et al. (2022) and Shu
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et al. (2021) define FR as the probability of occurrence of a
phenomenon concerning the absence of a phenomenon. The FR
model is a bivariate statistical model that gives weightage to every
factor class of each variable and assesses its effects on flood
occurrence (Jebur et al., 2014; Ullah and Zhang, 2020; Shah
et al., 2023). It is a foremost well-known bivariate statistical
approach to determine the flood hazard zones (Ullah and Zhang,
2020; Rehman et al., 2022) and potential landslide zones (Wang
et al., 2020; Islam et al., 2022) based on the relationship between
their inventory (dependent) and causative factors (independent). As
a simple and widespread bivariate statistical method, the FRmodel is
commonly used in many research fields, including geosciences,
hazards and disaster management, physical sciences,
environmental sciences, etc., (Althuwaynee et al., 2014;
Arabameri et al., 2019; Rehman et al., 2022; Majeed et al., 2023).
Therefore, it is imperative to assess the degree of vulnerability to
flood hazards and develop a flood susceptibility map to reduce the
potential risks of floods in the future. It is worth mentioning that
flood susceptibility maps are also useful for policymakers and
planners to formulate flood risk management plans (Kia et al.,
2012; Esteves, 2013; Haghizadeh et al., 2017).

Swat River Basin (SRB) is experiencing frequent and intense
floods due to climatic variations and diverse topography. Over the
past few decades, this region has witnessed several catastrophic
flooding events, including the historic 2010 and 2022 floods (Figure
1). However, it is worth stating that a very limited number of studies
on flood susceptibility assessment and/or flood management have
been conducted in the SRB. Considering the SRB’s vulnerability and
exposure to flood hazards, there is an urgent need for flood
susceptibility mapping using advanced techniques and models.

Here we aimed to construct the first-ever flood susceptibility
mapping of the SRB, in the eastern Hindu Kush region of
Pakistan through a GIS-based FR model. Moreover, the study
determined the relative contributions of the selected flood-
causing factors in exacerbating the susceptibility of the region to
flooding. The study also evaluated the efficiency of the FR bivariate
statistical model in mapping the flood susceptibility of the SRB. We
believe that our study could provide valuable information to the
relevant stakeholders for effective flood risk management and
sustainable development.

2 Materials and methods

An integrated approach is adopted to construct a flood
susceptibility map for the SRB, eastern Hindu Kush region,
Pakistan. The flood susceptibility map was developed by
integrating remote sensing and field data on flood causal factors.
The overall methodology consists of seven main steps (Figure 2).
These include; 1) study area, 2) data collection and analysis, 3) flood
inventory map, 4) flood-causing factors, 5) frequency ratio (FR)
model, 6) flood susceptibility mapping, and 7) receiver operating
characteristic (ROC) technique. All these steps are discussed in
detail in the following sections.

2.1 Study area

This study covers the SRB, located in the eastern Hindu Kush
region of Pakistan, with geographical coordinates of 34° 35′60″and

FIGURE 1
Location map of the Swat River Basin (SRB) with elevation.
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35° 43′52″north latitudes and 72° 08′53″and 72° 30′50″east
longitudes (Khan W. et al., 2022; Islam et al., 2022). The region
covers a total area of 5,065.28 km2 (Nasir et al., 2020; Islam et al.,
2022). Across the basin, the northern parts contain high snow-
covered mountains featuring rough territory, while the southern
parts are rather plain having farmland along the riverbank. The
precipitation pattern in the high-altitude northern region is
influenced by winter precipitation received from the
Mediterranean Sea mainly in the form of snow (Ullah et al.,
2018; Rebi et al., 2023), whereas, the lower southern region is
dominated by summer monsoon rainfall (Khan et al., 2020; W;
Ullah et al., 2021). Extremely low winter temperatures facilitate
snow and glacier accumulation while the melting of snow and
glaciers is triggered by high summer temperatures (Hussain et al.,
2023a; Rahman et al., 2019; S; Ullah et al., 2019a; b, 2023).

River Swat originates from the Hindu Kush Mountains and
generally flows from the northern high-elevated areas to the
southern plains (Ahmad et al., 2018; Farooq et al., 2019; Dawood
et al., 2021; Islam et al., 2022). At Kalam, the river Ushu and river
Gabral converge into river Swat, which flows down through the
entire Swat District, joining River Panjkora in District Dir Lower,
and finally outflows into the River Kabul at Nisatta, District
Charsadda. Geomorphologically, the river channel is steep in the
northern area and gentle in the southern part. Due to the physical
terrain, flash floods dominate the upstream areas, and river floods in

the gently sloping low-lying areas of the basin (Mahmood and
Rahman, 2019; Rahman et al., 2019; Nasir et al., 2020) such as
(Figure 1).

The approximate altitude of the basin in the northern area is
5800 m which gradually decreases up to 710 m downstream at
Shamozai valley. Swat River is a natural living space for fish and
birds and a wellspring of irrigation and electric power generation.
Currently, three hydroelectric power plants with a total 123 MW
capacity are operational on water from the river Swat and one more
hydroelectric power plant with a capacity of 740 MW of electricity is
under construction (Dawood et al., 2021). The region experiences
disastrous floods almost yearly, especially in the monsoon season
between June and September. Climate change, complex topography,
and socioeconomic vulnerability in the region intensify the risk of
flooding in the study area (Rahman et al., 2019; Dawood et al., 2021).

SRB is one of the major flood-prone basins in Pakistan (Ahmad
et al., 2015; Nasir et al., 2020). The diverse climatic conditions, complex
topography, and fragile socioeconomic conditions have exacerbated the
risk of flooding in the region (Mahmood and Rahman, 2019). The
region has a long history of devastating floods, which caused substantial
socioeconomic and physical damages (Khan et al., 2021). In 2010, the
monsoon system caused heavy rainfalls, leading to disastrous floods in
various tributaries of the Swat, ultimately destroying whatever stood in
its path (Butt et al., 2020; Hussain et al., 2021). The deadly water surge
started in the mountainous region, while the peculiar terrain of the

FIGURE 2
Flow chart showing steps adopted for the construction of flood susceptibility map in the SRB.
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valley gave this surge an enormous force that destroyed infrastructure,
human settlements, buildings, cropped lands, irrigation networks
highways, and bridges, and made communication inaccessible
(Tehrany et al., 2014; Farooq et al., 2019). It has been reported that
in the 2010 floods, a total of 2,751 families were displaced, 988 houses
and 26 water channels were completely or partially damaged in the
region (Butt et al., 2020). Similarly, on 29 August 2020, a heavy rainfall-
induced flash flood in the Shagram torrent of the SRB, resulted in the
deaths of at least 14 people coupled with complete or partial damages to
45 houses, and over 3 bridges (Nasir et al., 2020). Despite the frequent
and intense occurrence of flooding in the SRB, no suitable measures
have been taken in the region so far to hinder or reduce the losses from
flood hazards.

2.2 Data collection and analysis

To develop a flood susceptibility map of the SRB, various types of
data were collected from several government agencies and official web
sources, as outlined in Table 1. Literature and historical flood data
were collected from the National Disaster Management Authority
(NDMA), Pakistan, Provincial Disaster Management Authority
(PDMA), Khyber Pakhtunkhwa, and Regional Irrigation
Department Swat. The Advanced Spaceborne Thermal Emission
and Reflection Radiometer Digital Elevation Model (ASTER DEM)
with a 30 m spatial resolution was obtained from the official website of
the National Aeronautics and Space Administration (NASA) (www.
search.earthdata.nasa.gov.us). Land use/land cover (LULC) imagery
was downloaded from the Environmental Systems Research Institute
(ESRI) 2020 LULC data. Landsat 8 (OLI) imagery was obtained from
the official website of the United States Geological Survey (USGS)
(https://earthexplorer.usgs.gov), and the average annual rainfall of the
case study was obtained using the Tropical Rainfall Measuring
Mission (TRMM) data, which were retrieved from the NASA
official website (https://gpm.nasa.gov/data) (S. Ullah et al., 2018;
W; Ullah et al., 2019; Arshad et al., 2021). The amalgamation and
analysis of these multiple data sources facilitated the creation of the
flood susceptibility map of the SRB.

2.3 Flood inventory map

To study the correlation between flood-causing factors and flood
occurrence, a database of historical floods and their damages is very

important (Kia et al., 2012; Liu et al., 2021). Appropriate data with
high accuracy are vital to constructing the flood inventory mapping
(Tehrany et al., 2015; Ullah and Zhang, 2020). In the current study, a
flood inventory map was prepared with a total of 170 flood-affected
locations identified in the whole SRB through a field survey using
handheld GPS and satellite imagery. The points of inundation were
validated with historical flood data and previous reports of NDMA
Pakistan, PDMA Khyber Pakhtunkhwa, and Regional Irrigation
Department Swat, Pakistan. The flood-affected locations were
divided into 51 (30%) testing points and 119 (70%) training
points using the geo-statistical tool in ArcGIS 10.2.2 (Figure 3).
The training points were randomly used for the development of the
model whereas; the efficiency of the model was validated with the
testing points.

2.4 Flood-causing factors

To build a comprehensive strategy for assessing flood
susceptibility, it is critical to determine the impact and linkage
between flood-causing factors and flood occurrence (Wang et al.,
2018; El-Magd, 2019; Khoirunisa et al., 2021; Ha et al., 2022). It
should be noted that various natural and anthropogenic factors,
which cause floods in a specific region and the same factors may
not be effective for another region. Therefore, to get reliable
results, the selection of relevant factors is extremely important
(Tehrany et al., 2015; Zhao et al., 2022). A total of nine flood-
causing factors were selected due to their critical roles in causing
flooding in the study region (Ullah and Zhang, 2020; Saeed et al.,
2021). These factors include; slope, elevation, curvature, drainage
density, topographic wetness index (TWI), stream power index
(SPI), LULC, normalized difference vegetation index (NDVI),
and rainfall. These selected factors have been used by various
studies to assess the relationship between flood-causing factors
and flood occurrence in the study area and other regions
(Samanta S. et al., 2018; Sarkar and Mondal, 2020; Thongley
and Vansarochana, 2021). All flood-causing variables were
changed into raster maps and resampled with 30 m × 30 m
resolution (pixel) (Jensen, 2005; Sabatakakis et al., 2013). The
selected factors were reclassified for FR analysis using the popular
natural breaks (Jenks) method by reclassifying (spatial analyst)
tools in ArcGIS 10.2 (Ullah and Zhang, 2020; Majeed et al., 2023).
The selected flood-causing factors are discussed one by one
below.

TABLE 1 Types of data and their sources.

S. No Type of data Source of extracted data Extracted data

I Flood historical data NDMA, PDMA, and Irrigation Department Literature

II ASTER DEM (Grid) 30 m × 30 m
resolution

NASA’s official website https://search.earthdata.
nasa.gov

Hillshade, Slope, Elevation, Curvature, Drainage Density,
and TWI

III LULC data (Grid) 10 m × 10 m resolution ESRI 2020 data, https://livingatlas.arcgis.com/landcover/ Land use/land cover map

IV Landsat8 Imagery (band5, band4) USGS official website https://earthexplorer.usgs.gov NDVI map

V Precipitation (TRMM data) NASA’s official website https://giovanni.gsfc.nasa.gov/
giovanni/

Rainfall map
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2.4.1 Slope
The slope is one of the most important factors in hydrological

studies because it controls surface runoff and water flow intensity
that incites soil erosion and vertical infiltration process (Tehrany
et al., 2015; Khosravi et al., 2016b). The area with a higher slope
gradient has low exposure to flooding while the area with a low slope
gradient is highly exposed to flooding (Liuzzo et al., 2019). We
derived a slope map from the ASTER DEM of 30 m resolution
utilizing the slope tool in ArcGIS and categorized it into five sub-
classes ranging from 0o–75.74o (Figure 4A).

2.4.2 Elevation
The elevation is a prime factor in flood vulnerability assessment

(Rahmati et al., 2016; Das, 2019; Shen et al., 2021). Usually, water
flow is from high-altitude areas towards low-altitude areas, so low-
lying areas may get flooded rapidly. The probability of flooding is
higher in low-elevated areas as compared to the areas of high
elevation (Das, 2018; Liuzzo et al., 2019; Elkhrachy, 2022). The
elevation map of the SRB was prepared from the ASTER DEM using
spatial analyst tools in the ArcGIS environment and split into five
categories. As shown in Figure 4B, the altitude of the study area
ranges from 709 to 5,847 m above mean sea level.

2.4.3 Curvature
Curvature is another extremely necessary factor for flood

mapping. Curvature is the rate at which gradients change in a
specific direction, and the values indicate the morphological feature

of topography (Wang et al., 2015; M Amen et al., 2023). The
curvature map of the SRB was prepared from the ASTER DEM
and divided into three classes; concave, flat, and convex (Figure 4C).
A negative value is allocated to upward concave curvature, a zero
value is allocated to the flat surface whereas, a positive value
indicates a convex curvature (Charlton et al., 2006; Ullah and
Zhang, 2020). Areas of zero values (flat surface) are most
exposed to flooding as compared to the convex and concave
curvature (Nachappa et al., 2020).

2.4.4 Drainage density
Drainage density is characterized as the entire length of the

waterways and streams in a river basin divided by the whole area of
the basin (Rahmati et al., 2016). Areas of higher drainage density
have greater chances of flooding whereas; areas of lower drainage
density have fewer chances of flooding (Paul et al., 2019). Drainage
density measures how well and how poorly the basin is drained by
streams. To calculate the drainage density of the SRB, the stream
order was taken from the ASTER DEM through the line density tool
in the ArcGIS environment and classified into five classes utilizing
the natural break (Jenks) tool (Figure 4D). The following equation
(Eq. (1)) was used to calculate the drainage of the SRB.

Dd � ∑n
1L

A
(1)

Where drainage density is denoted by Dd, the length of
waterways is signified by L, and the total area of the basin is
signified with symbol A.

2.4.5 Topographic wetness index (TWI)
The topographic wetness index (TWI) is another important

factor for flood susceptibility mapping. TWI has a direct relationship
with flood vulnerability (Chapi et al., 2017; Costache, 2019). The
region with high TWI is more vulnerable to flooding whereas, the
region with low TWI is less vulnerable to flooding (Paul et al., 2019).
The TWI was calculated from the ASTER DEM with the following
formula (Eq. 2).

TWI � ln
AS

tan β( )( ) (2)

Where the upstream contributing area is denoted by AS and the
gradient of the slope is denoted by β. The final TWImap was divided
into five classes ranging from 1.96 to 19.73 (Figure 4E).

2.4.6 Stream power index (SPI)
The stream power index (SPI) refers to an estimate of the

erosional power of water flows in a catchment area (Jebur et al.,
2014;Wang et al., 2023). A greater distance to the stream and a lower
SPI increases the chances of flood occurrence (Tehrany et al., 2014;
Wang et al., 2023). The SPI map was constructed with the given
equation (Eq. 3).

SPI � AS tan β (3)
Similar to TWI, the upstream drainage area is denoted by AS,

and the slope gradient (in degrees) is denoted with β. The SPI map of
the case study was prepared in the ArcGIS environment and split
into five classes ranging from −13.82 to 14.54 (Figure 4F).

FIGURE 3
Flood inventory map, showing the training and testing points in
the SRB.
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2.4.7 Land use/land cover (LULC)
Land use/land cover (LULC) is vital in producing water runoff

and causing floods in a catchment area (Khosravi et al., 2016b; Das,
2019; Riazi et al., 2023). The strong nexus between LULC and
flooding is unquestionable since land use and land cover have their
influence on increasing or reducing the flow of water (Samanta S.
et al., 2018; Hussain et al., 2021). The LULC data were collected from
the ESRI 2020 data source of global land use and land cover
published in July 2021 (Areu-Rangel et al., 2019; Karra et al.,

2021; Tariq and Mumtaz, 2022). The LULC data were classified
into ten classes, namely, water bodies, wood trees, grassland, flooded
vegetation, agriculture, scrub/shrub, built-up area, barren land,
snow cover, and clouds (Figure 4G).

2.4.8 Normalized difference vegetation index
(NDVI)

Normalized difference vegetation index (NDVI) is another main
ecological flood-causing factor. The normal value of the NDVI is

FIGURE 4
Spatial distributions of the flood-causing factors in the SRB; (A) Slope, (B) Elevation, (C)Curvature, (D)Drainage density, (E) TWI, (F) SPI, (G) LULC, (H)
NDVI, and (I) Rainfall.
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ranging from −1 to +1 (Khosravi et al., 2016b; Riazi et al., 2023). The
positive NDVI value is considered active vegetation coverage like
dense forest, the value close to zero represents barren areas, while the
negative values are referred to the water body (Wang et al., 2020;
Ziwei et al., 2023). For the preparation of the NDVI map, satellite
data were collected from the Landsat 8 collection 1, of the USGS
department, and the value was calculated with the following formula
(Eq. 4).

NDVI � NIR − Red

NIR + Red
(4)

Where the NIR represents near-infrared light and the Red is the
visible light. The NDVI map of the SRB was categorized into five
sub-categories ranging from −0.26 to 0.62 using the natural break
tool (Figure 4H).

2.4.9 Rainfall
`Heavy rainfall is a common flood-triggering factor. According to

Liuzzo et al. (2019) and Paul et al. (2019), rainfall has a direct
relationship with flood hazards. For rainfall map preparation, the
TRMM data were downloaded for the period 2000–2020 (Arshad
et al., 2021; W; Ullah et al., 2021). The rainfall map of the SRB was
classified into five sub-classes (Figure 4I). Since the TRMM data have
performed well over different climatic regions of Pakistan, including the
study region (Arshad et al., 2021); therefore, we preferred the use of this
dataset over other gridded precipitation products.

2.5 Frequency ratio (FR) model

Flood susceptibility mapping is the foremost important method to
identify the high-risk zone and the factors-affecting floods in a river
basin. Flood is triggered by natural and socioeconomic factors and it is
usual to assume that future floods will be caused by the same causative
factors as the previous floods (Tehrany et al., 2013; Kadam et al., 2018;
Moazzam et al., 2018). The FR model is a quantitative bivariate
statistical analysis technique commonly used for flood and landslide
susceptibility mapping (Tehrany et al., 2015; Islam et al., 2022). The FR
model shows the spatial relationship between flood inventory
(dependent factors) and flood-causing factors (independent factors).
In the current study, the FR bivariate statistical model was used to
prepare the flood susceptibility map of the SRB. The FR value of each
factor was calculated by determining the quantitative relationship
of independent factors with respect to flood occurrence (Pradhan
and Lee, 2010; Khosravi et al., 2016a; Ahmadlou et al., 2019). When
the FR weightage is more than 1, it indicates a strong correlation
whereas, when the weightage is below 1, it shows a weak correlation
between dependent and independent factors (Pradhan and Lee, 2010;
Akgun et al., 2012; Rehman et al., 2022). The FR is characterized as the
percent of the flood locations within the factor class divided by the
percentage of individual class areas. The FR model was calculated with
the following Eq. 5.

FR � FP/P

FA/A (5)

Where FP is the flood point in factor class, P is the total flood
Points, FA is the factor class area, and A is the total area.

After that, the RF was calculated to normalize the FR in
probability ranges (0, 1) using the following Eq. 6.

RF � FRoffactor class

∑FR offactor classes
(6)

After the calculation of RF, the prediction rate (PR) was also
calculated to find the interrelationship between flood-causing
factors and the training data set using the given Eq. 7.

PR � RFmax − RFmin( )
RFmax − RFmin( )Min

(7)

2.6 Flood susceptibility mapping

The flood susceptibility map of the SRB was developed by
calculating and classifying the flood susceptibility index (FSI).
The FSI indicates the degree of susceptibility of the area to flood
occurrences. Areas with greater FSI indicate high susceptibility to
flooding occurrence and vice versa. The FSI was calculated based on
the RF values and PR values, which were determined in the above
Eqs 6, 7, respectively. The calculation of FSI is shown in Eq. 8.

FSI � ∑9

i�1PRi × RFi (8)

In the above equation, 9 indicates flood-causing factors (slope,
elevation, curvature, drainage density, TWI, SPI, LULC, NDVI, and
rainfall). The final flood susceptibility map was categorized into five
categories: very high, high, moderate, low, and very low (Figure 5).

2.7 Receiver operating characteristic (ROC)
technique

The performance and efficiency of the flood susceptibility map
were validated with the ROC technique. The ROC curve is one of the
most effective techniques used for susceptibility map validation
(Chung and Fabbri, 2003; Tehrany et al., 2013; Liuzzo et al.,
2019). The ROC curve was developed with the ArcSDM tool in
ArcGIS 10.2. The training points were used to check the success rate
whereas, the testing points were used for the prediction rate of the
flood (Zhao et al., 2019; Tayyab et al., 2021). The area under the
curve (AUC) for the success and the prediction rates were 0.916 and
0.903, respectively, which are significant and greatly acceptable in
hydrometeorological studies (Sharif et al., 2016; Wang et al., 2023).

3 Results

3.1 Relationship of flood-causing factors and
flood occurrence

We developed a flood susceptibility map of the SRB by
employing FR bivariate statistical model. As shown in Table 2,
the relationship between flood-causing factors and flood occurrence
was assessed using FR values. The slope was classified into five
classes: 0°–12°, 13°–23°, 24°–33°, 34°–44°, and 45°–76°. Overall, FR
weightage had a negative relationship with slope. For example, the
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lower slope class (0°–12°) has a greater FR weightage (4.64). In
contrast, as the slope increased, the FR weightage decreased
gradually until the highest degree slope class (45°–76°) had a zero
FR value. This means that locations with a steep slope are less likely
to flood, and vice versa. In terms of slope spatial pattern, the
northern part of the SRB has a higher slope than the southern
part (Figure 4A). In a nutshell, the northern areas of the SRB are less
prone to flooding than the southern parts.

Furthermore, when the elevation of the area increased, the FR
value declined steadily, resulting in a negative relationship between
the two variables. The first two classes of lowest elevated places
(709–1,577 m and 1,578–2,401 m) have greater FR values (3.42 and
1.07) than the next three higher elevation classes, according to
Table 2. Recent studies show that areas with the highest
elevations are less prone to flooding than those with lower
elevations (Yu et al., 2022; Majeed et al., 2023; Wang et al.,
2023). The regional elevation pattern of the SRB (Figure 4B)

verifies the findings that the high-altitude areas are less
susceptible to flooding. In addition, the curvature map has been
divided into three categories: concave, flat, and convex. Concave,
flat, and convex surfaces had FR values of 0.43, 1.34, and 0.11,
respectively. Floods are more likely to occur in flat areas than in
concave or convex areas, as shown by the FR values and consistent
with the curvature map (Figure 4C).

We further analyzed our data based on drainage density values
and have classified SRB into five major categories (i.e., 0–44, 45–96,
97–158, 159–235, and 236–377). Our analysis indicated a positive
correlation between drainage density and FR values. As an example,
the highest FR value was assigned to class 5 (8.26) followed by class 4
(4.32), class 3 (0.81), class 2 (0.34), and class 1 (0.00). These results
can be confirmed by the spatial distribution of the drainage density
in the study area (Figure 4D). On the other hand, data on the TWI
were obtained and then divided into five classes for analysis. Class
1 had the lowest FR value (0.09) and class 5 had the highest (6.23),

FIGURE 5
Flood susceptibility map, showing susceptible areas in the SRB.
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TABLE 2 Details of the flood-causing factors and their FR values.

Factor Class Points % points Class area % class area FR value RF

Slope 1 81,900 77.12 994,742 16.64 4.64 0.82

2 19,800 18.64 1,292,383 21.62 0.86 0.15

3 2,700 2.54 1,614,896 27.01 0.09 0.02

4 1800 1.69 1,452,839 24.30 0.07 0.01

5 0 0.00 624,220 10.44 0.00 0.00

Elevation 1 81,900 77.12 1,347,456 22.54 3.42 0.74

2 21,600 20.34 1,138,231 19.04 1.07 0.23

3 2,700 2.54 1,021,585 17.09 0.15 0.03

4 0 0.00 1,298,419 21.72 0.00 0.00

5 0 0.00 1,173,389 19.62 0.00 0.00

curvature 1 7,200 6.78 936,437 15.66 0.43 0.23

2 97,200 91.53 4,090,702 68.42 1.34 0.71

3 1800 1.69 951,941 15.92 0.11 0.06

Drainage density 1 0 0.00 2,240,618 37.48 0.00 0.00

2 10,800 10.08 1,786,244 29.88 0.34 0.02

3 16,200 15.13 1,121,793 18.76 0.81 0.06

4 46,800 43.70 605,173 10.12 4.32 0.31

5 33,300 31.09 225,106 3.76 8.26 0.60

TWI 1 2,700 2.54 1,760,650 29.45 0.09 0.01

2 28,800 27.12 2,172,288 36.33 0.75 0.07

3 36,000 33.90 1,306,215 21.85 1.55 0.15

4 17,100 16.10 544,893 9.11 1.77 0.17

5 21,600 20.34 195,076 3.26 6.23 0.60

SPI 1 37,800 35.59 1,612,021 26.96 1.32 0.17

2 26,100 24.58 1,290,763 21.59 1.14 0.15

3 18,900 17.80 1,810,364 30.28 0.59 0.08

4 6,300 5.93 1,038,671 17.37 0.34 0.04

5 17,100 16.10 227,212 3.80 4.24 0.56

LULC 1 7,200 6.78 45,772 0.77 8.86 0.49

2 4,500 4.24 1,198,919 20.05 0.21 0.01

3 0 0.00 36,961 0.62 0.00 0.00

4 0 0.00 9 0.00 0.00 0.00

5 10,800 10.17 219,664 3.67 2.77 0.15

6 16,200 15.25 2,599,766 43.48 0.35 0.02

7 63,000 59.32 638,677 10.68 5.55 0.31

8 4,500 4.24 728,735 12.19 0.35 0.02

9 0 0.00 510,691 8.54 0.00 0.00

10 0 0.00 10 0.00 0.00 0.00

(Continued on following page)
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showing that class 5 is very susceptible to flooding and vice versa
(Figure 4E). In the case of SPI, the map was divided into five classes:
Class 1 (−13.82 to −4.48), class 2 (−4.47 to −0.08), class 3
(0.09–1.86), class 4 (1.87–4.42), and class 5 (4.43–14.54). The
highest FR value (4.24) was allocated to class 5, thus indicating a
direct relationship between the SPI value and the FR weightage.
Interestingly, lower flat areas situated on the southern belt of the
SRB have the lowest SPI, whereas the mountainous and steep slope
areas situated on the northern side of the SRB have higher SPI
(Figure 4F).

Similarly, the data obtained on land use/land cover (LULC) was
classified into ten distinct classes: water bodies, wood trees,
grassland, flooded vegetation, agriculture, scrub/shrub, build-up
area, bare land, snow cover, and cloud (Figure 4E). According to
our findings, the highest FR value was assigned to water bodies
(8.86), followed by build-up areas (5.55) and agriculture areas (2.77).
We further retrieved and analyzed data regarding the normalized
difference vegetation index (NDVI) of the SRB. Of the total 5 NDVI
classes, excluding the first class, the FR value was positive for the
remaining four classes. The highest FR values were allocated to class
2, and class 3 (2.35, and 1.19, respectively). Besides, the rainfall data
were divided into five classes, the highest FR values were calculated
to be 1.62, 1.83, and 1.02, for classes 1, 2, and 3, respectively
(Figure 4I).

3.2 Flood susceptibility index (FSI)

Overall, the FSI values in our study revealed a broad range,
ranging from 2,896 to 97,44. The map was categorized into five
classes based on the natural break technique, namely, very low
(2,896 to 16,996), low (16,997 to 27,581), moderate (27,582 to
39,280), high (39,281 to 59,142), and very high (59,143 to
97,440) (Figure 5). Our findings generally indicate that very high
and high flood-susceptible areas are those situated in the southern
plain areas along the river banks. In contrast, the northern parts of
the SRB have a relatively steep slope, high elevation, convex
curvature, high SPI and NDVI, vegetation land cover, low
drainage density, and TWI with a minimum tendency of rainfall,

which can be attributed to their lower susceptibility to flood hazards.
Furthermore, our findings indicate that approximately 26% of the
study area is characterized as being at a very high or high
susceptibility to flooding, 19% as moderate, while the remaining
55% is classified as having low or very low susceptibility to flooding
in the SRB. (Figure 6).

3.3 Validation of flood susceptibility map

The validity of the flood susceptibility model was assessed
through a rigorous process of comparing the flood inventory
data, which represents past flood occurrences, with the newly
developed flood susceptibility map. In the validation process,
flood testing points (30%) that have not been used for the
preparation of the FR model are generally considered as the

TABLE 2 (Continued) Details of the flood-causing factors and their FR values.

Factor Class Points % points Class area % class area FR value RF

NDVI 1 3,600 3.39 1,225,636 20.50 0.17 0.03

2 37,800 35.59 907,311 15.17 2.35 0.44

3 26,100 24.58 1,232,992 20.62 1.19 0.22

4 26,100 24.58 1,470,790 24.60 1.00 0.19

5 12,600 11.86 1,142,460 19.11 0.62 0.12

Rainfall 1 57,600 53.78 1,978,334 33.23 1.62 0.29

2 18,000 16.81 545,959 9.17 1.83 0.33

3 9,900 9.24 540,975 9.09 1.02 0.18

4 8,100 7.56 624,725 10.49 0.72 0.13

5 13,500 12.61 2,264,041 38.03 0.33 0.06

FIGURE 6
Percentage of the flood susceptible area in the SRB.
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future flood location. It is noteworthy that the AUC value of the
success rate was 91.6% and the prediction rate was 90.3%,
respectively (Figure 7). These results demonstrate the
effectiveness of the flood susceptibility model in predicting the
likelihood of future floods and provide valuable insights for flood
risk management and mitigation.

3.4 Contributions of flood-causing factors in
flood susceptibility

Overall, the study provides valuable insights into the factors that
contribute to flood susceptibility in the SRB. As shown in Table 3,
the slope with the highest PR value (3.01) has emerged as the
foremost contributor to flood susceptibility in the study area.
Moreover, elevation and curvature have the second and third
highest PR values at the rate of 2.71 and 2.41, respectively,
suggesting their prominent roles in flood susceptibility. In
contrast, rainfall is considered the least flood-contributing factor
bearing 1 PR value. The overall results infer that the susceptibility of
the SRB in general, and low-lying southern flat areas in particular,
are more dependent on the topographic and meteorological
conditions in northern mountainous regions. The spatial pattern

of flood susceptibility indicates that the areas located in the southern
plain along the river banks are highly susceptible to floods.

4 Discussion

In this work, we created a flood susceptibility map of the SRB in
the Eastern Hindukush region of Pakistan by applying a GIS-based
bivariate statistical model, and further leveraged the correlation
between various flood-causing variables and the occurrence of
floods in the area. To achieve our desired goals, data were
obtained and analyzed on a total of nine independent variables
(slope, elevation, curvature, drainage density, TWI, SPI, LULC,
NDVI, and rainfall).

Consistent with several previous reports by Sarkar and
Mondal, (2020) and Ullah and Zhang, (2020), our analysis
showed a negative correlation between slope and flood
occurrence, highlighting the fact that low-lying areas in the
southern parts of the SRB are highly susceptible to floods.
Similarly, elevation was found inversely proportional to flood
susceptibility, indicating that elevated areas with steep slopes are
relatively less susceptible to flood hazards compared to their
counterparts. These findings are largely concordant with similar
previous reports (Samanta R. K. et al., 2018; Majeed et al., 2023).
Based on our curvature map, we have found that floods are more
likely to hit flat areas in contrast to concave or convex areas. For
example, we have seen maximum areas in the SRB are flat
surfaces, especially the areas nearby the river and tributaries,
thus making them highly susceptible to flooding. This is
understandable as topography or curvature of the area plays
an important role in flood susceptibility. Our analysis together
with a set of literature (Khosravi et al., 2016b; Das, 2019; M Amen
et al., 2023) has confirmed that flat areas are relatively more
susceptible to floods than convex or concave areas. Our results
also support earlier studies, reporting about 83% of floods on flat
and/or convex surfaces (Ullah and Zhang, 2020; Amen et al.,
2023).

Drainage density is an important flood-causing factor and has a
direct relationship with flooding as it depends on surface runoff
(Tehrany et al., 2015; Kadam et al., 2018). The likelihood of flooding
is increasing as the drainage density increases and the likelihood of
flood is decreasing with decreasing drainage density (Ullah and
Zhang, 2020; Ha et al., 2022). Consistent with these findings and as
confirmed by our spatial distribution of the drainage density data,
we uncovered a direct relationship between floods and drainage
density, substantiating previous reports. TWI represents the soil
moisture status of an area and the saturated source of topography. It
is a very important factor for the prediction of future floods because
there is a direct relationship between TWI and flood occurrence
(Sarkar and Mondal, 2020). Our analysis found that TWI was
positively associated with floods in the SRB, thus supporting all
previous assertions (Khoirunisa et al., 2021). The designated
relationship between the SPI value and the FR weightage shows
that lower flat areas situated in the southern belt of SRB have low SPI
whereas, the mountainous and steep slope areas have high SPI. This
is in line with a previous study warranting that flooding is more
likely to occur in an area with a lower SPI (Arnell and Gosling, 2016;
Wang et al., 2023).

FIGURE 7
ROC curve for validation of flood susceptibility map of the SRB;
(A) Success curve and (B) Prediction curve.
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There is a solid relationship between LULC and flood since land
use strongly influences decreasing and increasing surface runoff
(Ahmad et al., 2018; Ziwei et al., 2023). A LULC pattern determines
the type of land use by individuals and natural processes (Ullah et al.,
2019b). The area where there is no vegetation covers bear more
probability of flooding and soil erosion, and the areas are considered
highly vulnerable to floods. Consistently, we have found that areas,
such as agricultural land, and built-up areas were highly likely to face
flooding. This suggests that rapid urbanization in the southern flat
areas is greatly responsible for changes in hydrological processes and
disturbing drainage networks, ultimately resulting in flooding (Butt
et al., 2020). Likewise, ever-growing croplands along the river banks
are highly susceptible to flooding (Youssef et al., 2016).

The NDVI is another key flood-causing factor in the way that
lower NDVI weights indicate high flood susceptibility while higher
NDVI weights represent a lower risk of flooding (Ullah et al., 2019b;
Rehman et al., 2022). Alternatively, the lowest NDVI values
represent unhealthy vegetation, mostly occupying the elevated
snowcapped northern areas (Shrestha et al., 2020; Ziwei et al.,
2023). Based on the NDVI measurements, our analysis revealed
that all, except one, classes are highly flood susceptible. Rainfall is
undoubtedly the most common cause of floods in any area where
sudden and heavy rainfall can exceed the capability of an area and
thus lead to floods (Samanta R. K. et al., 2018). Using rainfall data
from NASA, we found that southern parts of the SRB were
comparatively more susceptible to floods than its northern
territories. This is because SRB has semi-arid climatic conditions
where the rainfall pattern in lower southern parts is influenced by
the summer monsoon, while in upper northern parts, the rainfall
pattern is dominated by the winter rainfall, occurring due to the
western disturbance of the Mediterranean Sea (Khan et al., 2020;
Wang et al., 2020; Hussain et al., 2021; Xu et al., 2022).

Furthermore, we calculated FSI by translating FR and PR values
for all variables under our investigation. Overall, the FSI value
ranged from 2,896 to 97,440. The resulting flood susceptibility
map showed that very high and high flood susceptible areas were
mostly situated in the southern plain areas and along the river banks.
Thus, people living in the low-lying southern parts and along the
river banks are more exposed to both riverine and flash floods. It
should be noted that the southern parts of the SRB have lower slope

angles, less elevation, flat curvature, lower SPI, and NDVI, improper
land use, high drainage density, and TWI with maximum rainfall
intensity, which could be the possible reasons for their higher
susceptibility to floods. On the other hand, the northern parts of
the SRB have a relatively steep slope, high elevation, convex
curvature, high SPI and NDVI, vegetation land cover, low
drainage density, and TWI with a minimum tendency of rainfall,
which can be attributed to their lower susceptibility to flooding
hazards. The results further show that about 26% of areas are very
high and highly susceptible to flooding, 19% are moderate whereas
55% are low and very low susceptible to flood in the SRB. The AUC
value of the prediction rate was 90.3% and that of the success rate
was 91.6%, which is highly acceptable and important in
hydrometeorological studies (Sharif et al., 2016; Tayyab et al.,
2021; Wang et al., 2023).

The prediction rate (PR) of every flood-causing factor was
calculated in order to find out the maximum and minimum
contribution of an individual factor in exacerbating flood
susceptibility in the SRB (Ullah and Zhang, 2020; Wang et al.,
2020; Hussain et al., 2021). Collectively, the slope has the highest PR
values (3.01), showing that the slope is the prime contributor to
exacerbating the susceptibility of the study area to flooding.
Moreover, elevation and curvature have the second and third-
highest PR values at the rate of 2.71 and 2.41, respectively. This
suggests that both elevation and curvature also significantly
contributed to flood susceptibility in the SRB. Rainfall, however,
emerged as the least flood-contributing factor bearing 1 PR value.
This is not surprising as a similar study by (Ullah and Zhang, 2020)
identified rainfall as the least contributor to flooding in the Panjkora
river basin.

5 Conclusion

The present work generated a GIS-based flood susceptibility
mapping of the SRB using the FR bivariate statistical model. The
results indicate that flood susceptibility of the SRB in general, and
low-lying southern flat areas in particular, are more dependent
on the topographic and meteorological conditions of the
northern mountainous regions. The spatial pattern of flood

TABLE 3 PR values of flood-causing factors, and their contributions to flood Susceptibility.

Factors Min RF Max RF Max-min RF (Max-min) Min RF PR value

Slope 0.00 0.82 0.82 0.27 3.01

Elevation 0.00 0.74 0.74 0.27 2.71

Curvature 0.06 0.71 0.66 0.27 2.41

Drainage Density 0.00 0.60 0.60 0.27 2.21

TWI 0.01 0.60 0.59 0.27 2.18

SPI 0.04 0.56 0.51 0.27 1.88

LULC 0.00 0.49 0.49 0.27 1.80

NDVI 0.03 0.44 0.41 0.27 1.51

Rainfall 0.06 0.33 0.27 0.27 1.00
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susceptibility shows that highly susceptible areas were primarily
located along the river banks and in the southern plain of the
SRB. Based on the ROC curve, the efficiency of the model was
found to be high with a success rate of 91.6% and a prediction rate
of 90.3%. Of the nine independent variables; slope, elevation, and
curvature played an intensifying role in increasing flood
susceptibility in the SRB. The findings of this study provide
useful information for land-use planners, engineers, decision-
makers, and relevant authorities to effectively manage flood
hazards in the SRB. The findings of this study could be used
as leverage for developing flood risk assessment plans, devising
mitigation measures, establishing early warning systems, etc., in
the study region. Based on the study findings, we recommend the
adaptation of a comprehensive approach that integrates multiple
flood management and mitigation strategies, including risk
assessment, evacuation plans, early warning systems, resilient
infrastructures, and construction of dams and levees, to minimize
flood risks in the study SRB. Although this study provides a
comprehensive and diligent assessment of flood susceptibility in
the SRB, future research should use high-resolution satellite
imagery and other cutting-edge analytical techniques like ML,
CNN, and ANN algorithms to enhance the effectiveness,
accuracy, and reliability of the model outputs.
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A Modified Mercalli Intensity map
of Bangladesh: a proposal for
zoning of earthquake hazard
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Bangladesh is vulnerable to a variety of natural hazards including frequent tropical
cyclones, floods and, less commonly, earthquakes and tsunamis. The country has
developed an effective response mechanism for frequently experiencing hazards.
However, at the same time, the nation has not developed an effective response
mechanism for earthquake as a result of limited experiences with this type of
hazard in the recent past. This research constructs a new catalogue consisting of
144 earthquakes (between 810BC and 2015) occurring within Bangladesh and the
adjacent region. From this new catalogue, the effects of earthquakes are available
for 80 events which are used in order to construct the geography of hazard in
Bangladesh. The construction of a detailed Modified Mercalli Intensity (MMI) map
using the new earthquake data suggests that this will be useful for supporting
future risk reduction efforts in Bangladesh. Specifically, the findings support the
revision of the current seismic zoning map of Bangladesh to include Chittagong
andDhaka in the high-risk zone for effective earthquake risk reduction. Finally, this
research concludes that analyses of long-term data helps to identify new hazard
exposure and develop knowledge that is useful to formulate new disaster risk
reduction policies and rectify existing know zones in Bangladesh.

KEYWORDS

earthquake, hazard, intensity, risk, data, Bangladesh

1 Introduction

Bangladesh has developed a well-planned disaster responses and mitigation
mechanisms for tropical cyclones and floods, however, the mitigation programme
for earthquake risk reduction is still in progress. Bangladesh is susceptible to
earthquakes due to its location between active seismic zones within and adjacent to
the nation. Earthquakes occurring from the adjacent region of Bangladesh has
significantly affected this country (Alam and Dominey-Howes, 2014; Alam and
Dominey-Howes, 2016). The present seismic zoning map and policies to mitigate the
effects of the earthquake hazard in Bangladesh have been developed based on those
earthquakes occurring only after 1885, neglecting the potential for large earthquakes
from adjacent active faults, particularly the detachment thrust (Choudhury, 2005).
Bangladesh is a heavily densely populated country having over 1,000 people per km2 and
fragile infrastructure in major city areas. There is no Modified Mercally Intensity map to
identify areas of social risk based on long-term hazard data. Therefore, more detailed
archival research is required to identify high risk areas based upon available earthquake
hazards in Bangladesh and adjacent regions.

In order to construct geographies of the earthquake hazard, it is necessary to understand the
sources of hazards that originate in the region of Bangladesh. TheHimalayanMountains are located

OPEN ACCESS

EDITED BY

Sandipan Das,
Symbiosis International University, India

REVIEWED BY

Andrea Tertulliani,
National Institute of Geophysics and
Volcanology (INGV), Italy
Voltaire Alvarado Peterson,
University of Concepcion, Chile

*CORRESPONDENCE

Edris Alam,
ealam@ra.ac.ae

RECEIVED 15 March 2023
ACCEPTED 03 July 2023
PUBLISHED 27 July 2023

CITATION

Alam E (2023), A Modified Mercalli
Intensity map of Bangladesh: a proposal
for zoning of earthquake hazard.
Front. Earth Sci. 11:1187176.
doi: 10.3389/feart.2023.1187176

COPYRIGHT

© 2023 Alam. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 27 July 2023
DOI 10.3389/feart.2023.1187176

91

https://www.frontiersin.org/articles/10.3389/feart.2023.1187176/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1187176/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1187176/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1187176&domain=pdf&date_stamp=2023-07-27
mailto:ealam@ra.ac.ae
mailto:ealam@ra.ac.ae
https://doi.org/10.3389/feart.2023.1187176
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1187176


200 km from the northern border of Bangladesh. Between theHimalayan
Mountains and Bangladesh, theDauki Fault and the Assam Seismic Fault
are located (Figure 1). Additionally, the Bogra Fault System (BGF), the
JamunaFault (JF), theMadhupur Fault (MF) and the Sylhet Fault (SF) are
located within Bangladesh (Figure 1). To the south, the country is
bordered by the Bay of Bengal. The Arakan Subduction Zone (ASZ)
along the northern end of the Bay of Bengal extends up to the SE
Bangladesh. It is a tropical low-lying country having a long funnel shaped
coast (Figure 1). Bangladesh has experienced earthquakes those
originated from within and adjacent seismic sources in recent and
distant past.

The country is affected by earthquakes originating in India and
Myanmar. In order to construct a complete geography of the hazard,
it is necessary to consider active seismic sources from the adjacent
countries particularly adjoining Bangladesh (Figure 1). The research
proposes a new Modified Mercalli Intensity map which has been

developed based upon the average effects of 80 earthquakes in
Bangladesh occurring between BC810 and 2015 in Bangladesh
and adjacent regions.

This paper begins with discussing earthquake hazard zoning and
preparation activities. This is followed by a review of data sources
used for this research. The methods of the new MMI map
construction are detailed and illustrated followed by a
presentation of the results. The last sections discuss the
significance of the findings and detail the conclusions.

2 Earthquake hazard zoning and
preparation activities in Bangladesh

In the late 1970s and early 1980s, was a period were many
bridges, buildings and industrial structures constructed

FIGURE 1
Location of Bangladesh in relation to regional active fault sources and the primary physiographic units: Tertiary Hills, Pleistocene uplands (the Barind
and Madhupur terrace) and Recent sediments. The red solid contour lines show the demarcation of different zones from the mean sea level. The green
box shows the location of the Bengal Basin. Key features include ASZ, Arakan Subduction Zone; BD, Bengal Delta; BFS, Bogra Fault System; BR,
Brahmaputra River; BT, Barind Tract; BS, Barisal; CC, Chittagong coast; CTFB, Chittagong-Tripura fold belt; DF, Dauki Fault; DK, Dhaka; FT, Faridpur
Through; GH, Garo Hills; GR, Ganges River; HF, Haluaghat Fault; HT, Hatiya Through; JF, Jamuna Fault; JH, Jaintia Hills; KH, Khasi Hills; LH, Lalmai Hills;
MF, Madhupur Fault; MT, Madhupur Tract; MR, Meghna River; MS, Mymensingh; RH, Rajshahi; SF, Sylhet Fault; SL, Sylhet Hills and SP, Shillong Pleateau
(Source: map prepared adapting tectonic elements from Alam et al., 2003; Ali and Choudhury, 2001; Khan, 2012; Mukherjee et al., 2009).
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throughout Bangladesh. Following this, the assessment of
seismic risk in different regions in the country was a great
concern of engineers and scientists (Ali and Choudhury, 2001).
Research was undertaken to identify areas liable to severe
seismic effects in Bangladesh (Kamal, 2008; Sarker et al.,
2010). The seismic zoning maps of Bangladesh have been
revised continuously with the revised standing orders on
disasters which was published in 2010, emphasised the need
for mapping areas liable to earthquake damage. To understand
the effectiveness of program and policies in relation to
earthquake risk reduction, it is necessary to review relevant
policies and how they align. Earthquake hazard management
includes three key initiatives a) seismic zoning and introduction
of building codes, b) seismic and geomagnetic observatories and
c) public education and awareness. The first two initiatives are
much relevant to the background of this study have been
detailed in the following sections.

2.1 Seismic zoning and introduction of
building codes

The Geological Survey of India developed the first seismic
zoning map for the sub-continent in 1935. North, north-east and
south-east regions of Bangladesh had been included in the severe
seismic risk zone of the Geological Survey of India map (Figure 2).
After Bangladesh became an independent country in 1971,
separating from Pakistan the mid 1970s, saw large industrial
complexes (e.g., fertilizer factories et al.) built and designed
which demanded a sophisticated investigation of seismic risk (Ali
and Choudhury, 2001). The 12 May 1977 earthquake (Ms 5.7) along
Bangladesh-India border further reaffirmed this requirement to be
incorporated in their design. Consequently, in June 1977, the
Government of Bangladesh formed a committee of experts to
undertake seismic zoning of Bangladesh and formulate policy
options. The committee reviewed all the available information,

FIGURE 2
Indian sub-continent seismic zone map which was prepared by the Geological Survey of India in 1935 (Source: redrawn from Ali and Choudhury,
2001).

Frontiers in Earth Science frontiersin.org03

Alam 10.3389/feart.2023.1187176

93

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1187176


revised seismic risk maps and outlined the newly established
building codes for earthquake resistant designs. In 1992, this
exercise was repeated, with policies, rules and laws embracing
new research and knowledge in earthquake zones and engineer
and construction practices. Furthermore, seismic risk maps and
building codes were revised to provide improved guidelines for
earthquake resistant design. For this mapping exercise, Bangladesh
was divided into three zones (Figure 3): Zone 3 (liable to severe
damage); Zone 2 (liable to moderate damage); and Zone 1 (liable to
slight damage).

2.2 Seismic and geomagnetic observatories

The Bangladesh Meteorological Department established an
observatory in Chittagong in 1954, with facilities for seismic and
geomagnetic observations (Ali and Choudhury, 2001). Until 2007,
this was the only seismic observatory in Bangladesh. Although in
1977 the committee of experts recommended the establishment of a
minimum of three observatories throughout the country, it has
taken over 30 years to establish such observatories which are located

in Sylhet, Rangpur and Gazipur (Figure 3) including the
modernisation of the Chittagong centre in 2007. Currently in
Bangladesh, different institutions such as Dhaka University Earth
Observatory (DUEO), Bangladesh University of Engineering and
Technology (BUET), Geological Survey of Bangladesh (GSB) and
Bangladesh Meteorological Department (BMD) operate seismic
monitoring networks separately of each other.

Efforts to identify areas of high seismic risk in Bangladesh have
been in progress for some time (Kamal, 2008; Sarker et al., 2010). A
number of UN funded projects have worked and been continued to
work retrofitting in Dhaka, Sylhet and Mymensingh. There is also
still an outstanding need to identify and retrofit fragile buildings in
Dhaka and other major cities of Bangladesh (Paul and Bhuiyan,
2010). The pre 2012, policies and practices, which are based on
tropical cyclones and floods, may not be adequate to mitigate the
consequences of earthquake and tsunamis. However, the drafted
disaster management policies of 2012, have initiated several effective
measures for earthquake risk reduction. These include:

• enhancing institutional capacity to mitigate earthquake risk,
updating building codes, purchasing equipment for the fire

FIGURE 3
The current seismic zoningmap of Bangladesh indicating probable earthquake zone coefficients. The g value equals maximum ground acceleration
that can be expected based upon historic earthquakes over the last 200 years. Zone 1 includes NE of Bangladesh and Sylhet City lies within this zone. Zone
2 includes Dhaka and Chittagong cities. Zone 3 includes SW Bangladesh (Source: redrawn from Ali and Choudhury, 2001).
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service and civil defense department to effectively respond in
the post disaster period;

• generating awareness among people about earthquake hazard
and risk and arranging training for volunteers;

• developing seismic hazard risk maps for urban areas (for
example, Dhaka, Chittagong, Sylhet and Rangpur);

• retrofitting fragile buildings in the above urban areas and
developing guidelines for people about the retrofitting;

• developing a program of actions to mitigate consequences of
earthquake occurrence in local level urban administration. For
example, forming disaster management committee and
volunteer teams for awareness generation and operating
search, rescue operations with highest participation of local
people;

• enhancing earthquake hazard response mechanisms in
institutions (Hospital, school and garments);

• conducting research about earthquake hazard and risk; and
• enhancing efficient and professional management team in
post disaster rehabilitation.

The review of the work of the Ministry of Disaster
Management and Relief, and Disaster Management
Department suggests that the Government of Bangladesh is
still working towards identifying earthquake prone areas and
improving DRR for earthquake related hazards. In order to
develop an effective earthquake risk reduction program, it is
necessary to review past hazard events and their geographical
distribution and impacts in Bangladesh. This research will
show how reviewing long-term earthquake data can help
accurately identify appropriate seismic risk mapping in
Bangladesh.

3 Data sources and methods

The records of Bangladesh earthquakes can be classified
according to four types of data sources: geological,
archaeological, historical and instrumental data. Each type of
record has been collected from existing recognised and published
sources. In order to develop a comprehensive earthquake
catalogue, data sources were obtained from online global
earthquake databases e.g., the National Geophysical Data
Center (NGDC, 2012) and Geoscience Australia (GA),
(Geoscience Australia, 2011a), International Seismological
Centre (ISC, 2023), Incorporated Research Institutions for
Seismology (IRIS, 2023), the Novosibirsk Tsunami Laboratory,
Russia (NTL), regional catalogue (i.e., Oldham, 1883), annals,
chronicles, diaries, letters, travellers, published earthquake
catalogues, articles in the peer reviewed literature, books,
reports, newspaper articles, local historical books, institutional
and administrative memoirs and the historical archive from the
India Office Records of the British Library and Royal Society,
London. Whilst this research focuses on identifying events that
have affected Bangladesh, it has broadened the study to include
the area located between Latitude 18.5°S to 28.15°N and
Longitude 87° E to 95.5° E to ensure the comprehensive
coverage of the study area and adjacent seismically active
regions (Figure 1).

3.1 Recording and conversion of earthquake
magnitudes

While collecting and collating earthquake magnitudes from
secondary sources listed below Table 1, it has been noted several
challenges relating to the use of different magnitude scales and the
lack of any magnitude scale for some events. On occasion, a source
provides Modified Mercalli Intensity (MMI) values for the effects of
an earthquake. However, when neither an MMI or magnitude scale
was provided, it has been attempted to collect and review the effects
of the earthquakes if available. After careful analysis of the effects,
this has been converted to the MMI scale and a new MMI value has
been provided in Table 1. In this study, when a source material item
has been consulted, it is considered to be a secondary source. For
example, for the 1764 event, this study has consulted several sources
(Anon., 1897; Chandra, 1977; Nandy, 1994), which are considered as
secondary sources. Nandy (1994) referred to Campbell (1809) from
where information was collected for this particular event. At this
stage, this study is not able to consult Campbell (1809) and consider
this reference as a primary source for that event. Hence, primary
sources are those that this study has not yet consulted for a particular
event and secondary sources are those that this has consulted.

For quantification and graphical presentation of the
earthquakes, the size of earthquakes should be classified based on
their magnitude or intensity scales. For the new earthquake
catalogue presented in Table 1, the size of earthquakes was
provided in magnitude scales by most source materials. The
conversion of earthquake scales from either “magnitude” to
“intensity” or vice versa, could distort the actual values of the size
of each earthquake. In some cases, intensity values were recorded
from secondary sources (Table 1). For example, for the
1676 earthquake (Even #13 in Table 1), an intensity value of
7 was provided by the source document; this intensity value has
been converted to 5.7 on the magnitude scale. This conversion of the
intensity values of earthquakes to magnitude measured on the
Richter scale were performed using the magnitude and intensity
relationship (see supplementary material Table 1) provided by the
Missouri Department of Environmental Resources (Gere and Shah,
1984). It should be borne in mind that MMI values are often skewed
to higher values by locations with higher shaking susceptibility,
certain types of soil texture, or locations with buildings that respond
to a particular ground shaking frequency in disastrous ways
(Ambraseys and Douglas, 2004). As such, converted magnitude
from the MMI that has been provided in Table 1 should be treated
with caution for the purpose of reuse and further research to more
accurately refine theseMMIs is required but was beyond the scope of
this research.

3.2 Cross checking and validation of data

A total of 99 source documents were consulted to assist with
development of the new earthquake catalogue (Table 1). However,
inconsistencies in citations, differences in the date of events,
differences in magnitude and intensity were identified.
Accordingly, it was necessary to employ a rigorous system for
cross-checking and validating data. This has been achieved by
cross-checking multiple sources and performing a content
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TABLE 1 A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

1* 810BC-
400

* * India: Assam 26.1 92.56 * * * * * * * - 99 Radiocarbon
dating of
sediments
calibrated age
810BC-400

2 535BC-
530

* * India: Assam 26.1 92.56 * * * * * * * - 99 Radiocarbon
dating of
sediments
calibrated age
535BC-530

3 645–980 * * India: Assam 26.1 92.56 * * * * * * * - 99 Radiocarbon
dating of
sediments
calibrated age
645BC-980

4 825–835 * * India: Assam 26.1 92.56 8 * * * * * * - 5, 15, 99 The earthquake
destroy temples
and palaces in
Assam

5 1440–1470 * * Bangladesh 25.15 90.3 * * * * * * * - 30 The
radiocarbon
age of charcoals
shows date as
1440–1470

6 1548 * * India and
Bangladesh

26 94 7 9 * * * * * 45 30, 42, 52, 98 The first
recorded
earthquake in
Bangladesh.
Sylhet and
Chittagong
were violently
shaken

7 1596 * * India: Assam 26.1 92.56 7 9 * * * * * - 92

8 1601 * * India: Assam 26.1 92.56 * * * * * - 92

9 1642 * * India: Assam 26.1 92.56 6 * * * * * * - 22, 42, 46, 92 Most severe
damage
occurred in
Bangladesh

(Continued on following page)
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TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

10 1649 * * India: Assam 26.1 92.56 3 3 * * * * * - 46

11 1663 2 19 India: Assam 26.1 92.56 8 * * * * * - 42, 92, 96,
97, 98

The earthquake
was so
devastative that
Mir Jumla is
believed to
have fled
Assam

12 1664 * * Bangladesh 25 90 Mw 7.79 * * * * * - 30, 51 The earthquake
may be relevant
to the activity
of the Dauki
Fault

13 1676 9/10 * Bangladesh 22.22 91.48 5.7 7 * * * * * - 46 Chittagong was
destroyed by an
earthquake and
severe tropical
cyclone

14 1679 1 28 Myanmar 19.42 93.57 7 9 * * * * * - 46 The earthquake
was very severe
and affected a
wide area of
Arakan, Bengal
and India

15 1696 * * India: Assam 26.1 92.56 * * * * * * - 92 The reign of
King Rudra
Singha
experienced
earthquakes
twice in
1696 and 1749

16 1749 * * India: Assam 26.1 92.56 * * * * * - 92 -

17 1750 * * Myanmar
coast

18.5 93.4 5.7 7 * * * * * 1 1, 16 The earthquake
may have
caused
eruptions of
mud volcanoes

(Continued on following page)

Fro
n
tie

rs
in

E
arth

Scie
n
ce

fro
n
tie

rsin
.o
rg

A
lam

10
.3
3
8
9
/fe

art.2
0
2
3
.118

7176

97

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1187176


TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

18 1762 4 2 Bangladesh:
Chittagong

22 92 8 11 * 200 * * * 6,
8,9,11,16,
17, 18,
19, 20

1, 2, 3, 4, 7, 34,
40,43, 50, 52,
77, 79,80,
91, 93

Alam et al.
(2012)
concluded the
earthquake
caused local
tsunamis and
huge effects on
social
infrastructures

19 1762 7 13 India:
Kolkata

22.3 88.2 4.3 5 (71) * * * * * - 10, 20, 71 -

20 1764 6 4 Bangladesh-
India: on the
bank of the
Ganga River

24 88 6 8 (10,71) * * * * * 70 10, 21, 71 Many houses
destroyed and
large number
of people and
cattle were
killed (21)

21 1772 * * India: Assam 26.1 92.56 Ms 6.5 * * * * * * - 93 The
earthquakes
damaged the
part of Assam

22 1775 4 10 Bangladesh:
Dhaka

23.38 90.25 4.3 5 * * * * * - 42, 98 Severe
earthquake felt
in Dhaka

23 1787 * * Bangladesh 24.26 89.43 7 10 * * * * * - 46, 54, 98 The earthquake
caused shifting
of river courses

24 1808 4 13 India:
Kolkata

22.6 88.4 4.3 5 (10) * * * * * - 10, 20, 71 Cracks in house
walls were
observed

25 1810 4 1 India:
Kolkata

22.3 88.2 3.7 4 (10) * * * * * - 10, 20, 71 The earthquake
felt very
severely in
Kolkata

26 1810 5 13 India:
Kolkata

22.3 88.2 4.3 5 (10) * * * * * - 10, 20, 71 -

(Continued on following page)
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TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

27 1811 2 1 India:
Kolkata

22.3 88.2 5 6 (10) * * * * * - 10, 20, 71 -

28 1812 5 11 Bangladesh Dhaka 6 8 * * * * * - 42, 98 The earthquake
felt violently in
Sylhet

29 1816 7 11 India:
Kolkata

22.3 88.2 3.7 4 (10) * * * * * - 10, 20, 71 -

30 1822 4 3 Bangladesh 24.3 90.5 7.1 (99) 8 (10) * * * * * 55 20, 71, 98 Several shocks
felt in Bengal

31 1822 8 16 India:
Kolkata

22.3 88.2 5 6 (10) * * * * * 56 10, 20, 71 Walls of houses
were moved
from north to
south

32 1823 4 3 Kolkata 22.3 88.2 4.3 5 (10) * * * * * 10, 20, 71 -

33 1823 11 26 Kolkata 22.3 88.2 4.3 5 (10) * * * * * 57 10, 20, 71 Accompanied
by
subterranean
noises

34 1825 1 8 Bangladesh 24.4 90.33 4.3 5 * * * * * 57, 58 20 -

35 1827 1 India:
Kolkata

22.3 88.2 4.3 5 (10) * * * * * 10, 20, 71 -

36 1827 1 19 India:
Kolkata

22.3 88.2 4.3 5 (10) * * * * * 60 10, 20, 71 -

37 1828 7 8 India:
Kolkata

22.32 88.23 5.7 7 (10) * * * * * 61 10, 20 -

38 1828 9 18 India:
Kolkata

22.3 88.2 4.3 5 (10) * * * * * 62 10, 20, 71 -

39 1828 10 8 Bangladesh:
Dhaka

23.42 90.24 5 * * * * * 62 20 Four distinct
shocks in
successions

40 1829 9 18 India:
Kolkata

22.3 88.2 5 6 (10) * * * * * 63 10, 20, 71 -

(Continued on following page)
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TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

41 1830 12 31 Bangladesh:
Chittagong

22.47 91.59 6.5 * * * * * * 64 20, 48 Very violent
earthquake and
all houses were
seriously
cracked

42 1832 India: Assam 26.1 92.56 6.5 * * * * * * - 93 The
earthquakes
damaged the
part of Assam

43 1834 7 8 Bangladesh:
Rangpur

25.33 89.1 6 8 (10) * * * * * 74 10, 20, 71 -

44 1834 7 21 Bangladesh:
Rangpur

25.33 89.1 6 8 (10) * * * * * 74 10, 20, 71 -

45 1842 5 21 India: Bengal 25 87 5.7 7 (10) * * * * * 73 10, 20, 71 -

46 1842 5 23 India: Bengal 25 87 4.3 5 (10) * * * * * 73 10, 20, 71 -

47 1842 10 23 Bangladesh:
Chittagong

22.47 91.59 4.3 5 * * * * * 73 20 Motion east to
west

48 1842 11 11 Bangladesh 24 89.2 Mw 7.3 9 (10) * * * * * 44 10, 20, 71,
73, 98

Felt also
sharply at sea

49 1843 10 30 Myanmar:
Ramree and
Cheduba

18.5 94.1 6 8 * * * * * 67 20 Very sharp at
Gukiong, on
sea, 145 miles
to south

50 1845 7 24 India:
Serampore,
Kolkata

22.7 88.4 4.3 5 * * * * * - 10, 20, 71 -

51 1945 7 26 India:
Serampore

22.7 88.4 4.3 5 * * * * * - 10, 20, 98 -

52 1845 8 6 India:
Guwahati,
Sylhet

22.7 88.4 Mw 7.1 (99) 7 (10) * * * * * - 7, 10, 20, 71 -

53 1846 10 18 Bangladesh 23.52 90.23 Ms 6.2 * * * * * * Friend of
India

7, 20 Masonry
buildings were
cracked in
every direction
in Dhaka

(Continued on following page)
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TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

54 1848 India: Assam 26.1 92.56 5.7 7 * * * * * - 93 The earthquake
damaged the
part of Assam

55 1848 2 20 India:
Kolkata

22.3 88.2 4.3 5 (10) * * * * * Friend of
India

20, 71 -

56 1848 11 30 India:
Kolkata

22.3 88.2 3.7 4 (10) * * * * * Friend of
India

10, 20, 71 -

57 1849 1 22 India:
Kolkata

22.3 88.2 3.7 4 (10) * * * * * 105 10, 20, 71 -

58 1851 1 8 Bangladesh:
Chittagong

22.47 91.59 5.7 7 * * * * * Hooker’s
Journal
vol. 2

20 Motion
apparently
from south

59 1851 2 9 India:
Kolkata

22.3 88.2 5.7 (71) 7 (10) * * * * * Friend of
India

10, 20 -

60 1852 2 9 India:
Kolkata

22.3 88.2 3.7 4 (10) * * * * * - 10, 20 -

61 1852 8 9 Bangladesh:
Dhaka

23.43 90.24 4.3 5 * * * * * Perry 20 Oscillation
lasted
15 seconds

62 1861 2 16 India:
Kolkata

22.3 88.2 5.7 7 (10) * * * * * Friend of
India

10, 20 Water in tanks
rose about
0.3 m above its
level

63 1861 4 18 India:
Kolkata

22.3 88.2 3.7 4 (10) * * * * * - 10, 20, 71 -

64 1864 1 5 Bangladesh:
Dhaka

23.42 90.24 4 * * * * * * Friend of
India

10, 20 Houses much
shaken

65 1864 or
1865

* * Bangladesh:
Chittagong

22.22 91.50 5.7 7 * * * * * - 41 A violent shock
of an
earthquake in
the year
1764 or 1765,
triggered mud
volcanoes

(Continued on following page)
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TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

66 1865 11 17 Bangladesh:
Jessore

23.2 89.2 4.3 5 (10) * * * * * Official
Record

10, 20, 71 -

67 1865 12 19 Bangladesh 23.23 91.13 5.5 * * * * * - 7, 20, 37, 91 Many buildings
were cracked in
Chittagong

68 1866 1 6 Bangladesh:
Chittagong

22.22 91.48 3.7 4 * * * * * Friend of
India

10, 20 Light shock

69 1866 5 23 India: Bengal 25 87 5.6 (71) 8 (10) * * * * * Friend of
India

7, 10, 20, 71 Some houses
fell down

70 1869 1 10 India: Assam 24.75 93.25 Mw 7.3 * * * * * - 51, 93,97,98 -

71 1869 6 9 India:
Kolkata

22.3 88.2 4.3 (71) 5 (10) * * * * * - 10, 20, 71 -

72 1870 4 22 Bangladesh:
Dhaka

23.42 90.24 5.5 * * * * * Times 7 -

73 1874 5 Bangladesh:
Bhola

22 89 * * * * * * * - 82, 83 -

74 1876 12 13 Bangladesh 23.42 90.25 4.3 5 * * * * * - 85, 98 It was felt in
Dhaka

75 1885 7 14 Bangladesh 24.8 89.5 Mw 6.9 7 (10) * 75 * * * - 1, 7, 10, 28, 47,
51, 71, 85, 86

The felt areas
extended in the
entire
northeast India
and Myanmar

76 1891 6 17 Bangladesh:
Sirajganj

20.5 86.55 5 5 (10) * * * * * - 7, 10 -

77 1897 6 12 India: Assam 26 91 Ms 8.7 * 60 1626 * * * 9, 11, 12,
13, 14,
18, 23

1, 7, 21, 24, 25,
33, 40, 49, 68,
73, 87, 91, 92

A great tidal
wave swept up
the
Brahmaputra
River over
250 miles
from sea

(Continued on following page)
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TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

78 1906 9 29 India:
Kolkata

22.3 88.2 5 (71) 6 (10) * * * * * 78 10, 71 -

79 1906 12 6 India:
Kolkata

22.3 88.2 5 (71) 6 (10) * * * * * 78 10, 71 -

80 1918 7 8 Bangladesh 24.5 91.7 Ms 7.6 * 14 9 50 * * - 1, 25, 81, 76,
92, 98

Severe damage
in Srimangal,
but minor
effects in
Dhaka

81 1923 9 9 Bangladesh 25.18 91 Ms 7.1 * * 50 * * * - 40, 88, 92,
95, 98

The earthquake
caused heavy
damage in
Mymensingh

82 1930 7 2 India: Assam 25.8 90.2 Ms 7.1 * * 1 * * * - 1, 28, 92, 94 The earthquake
caused major
damage in the
eastern
Rangpur
district

83 1930 9 24 Bangladesh 24.9 93.86 Mw 6.18 * * * * * * - 89 -

84 1932 3 24 Bangladesh:
North

25 90 Ms 5.7 * * * * * * - 10, 38, 40, 71 -

85 1932 3 27 Bangladesh 24.3 92 Mw 5.7 * * * * * * - 40, 89 -

86 1932 9 11 India 26.3 92 Mw 5.8 * * * * * * - 40, 89 -

87 1933 3 6 Bangladesh 26 90.3 Mw 5.9 * * * * * * - 89 -

88 1934 1 15 Bihar-Nepal 26.5 86.5 Ms 8.4 * * * * * * - 76, 88 The earthquake
caused damage
in Rangpur

89 1935 3 21 Bangladesh:
Pabna

24 89.14 Mw 5.8 * * * * * * 27 10, 71, 89, 98 -

90 1941 1 21 Bhutan 27 92 Mw 6.43 * * * * * * - 40, 89 -

(Continued on following page)
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TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

91 1950 8 15 India: Assam 28.12 94.05 Mw 6 * * * * * * - 29, 31, 32,
42, 89

Water bodies in
Dhaka
remained in a
state of
agitation for an
hour

92 1954 3 22 Myanmar 24.5 95.3 Ms 7.4 * * * * * * - 1, 26, 98 In Dhaka
residents wake
up and ran
outdoor

93 1957 7 1 India-
Myanmar
border

25 94 Ms 7 * * * * * * - 92 -

94 1957 12 6 Bangladesh:
Dhaka

24 90 * * * * * * 10 11 -

95 1964 2 27 Myanmar 21.7 94.4 Mw 6.1 * * * - 89, 90 -

96 1965 6 11 Bhutan 27.12 91.36 Mb 5.1 * * * * * * - 40, 38 -

97 1967 9 6 Bangladesh 24.6 91.42 Mw 5.1 * * * * * * - 40, 89 -

98 1967 9 15 Bhutan 27.24 91.48 Mw 5.8 * * * * * * - 40, 89 -

99 1967 11 14 Bangladesh 25 91.3 Mw 5.3 * * * * * * - 40, 89 -

100 1968 12 27 Bangladesh 24.06 91.36 Mw 5.4 * * * * * * - 40, 89 -

101 1969 5 11 Bhutan 27.42 90.12 5 * * * * * * - 40 -

102 1970 7 25 Bangladesh 25.42 88.3 Mw 5.4 * * * * * * - 40, 89 -

103 1970 8 28 Bangladesh 24.42 91.42 Mw 5.3 * * * * * * - 40, 89 -

104 1971 2 2 Bangladesh 23.48 91.48 Mw 5.4 * * * * * * 40, 89 -

105 1972 11 6 India: Assam 27 88.42 Mb 4.8 * * * * * * - 40, 38 -

106 1974 9 21 India: Assam 25.42 90.54 Mb 4.8 * * * * * * - 40, 89 -

107 1976 6 23 Bangladesh 21.24 88.42 Mb 5.3 * * * * * * - 40, 89 Water
movement in
sea adjacent to
the Chittagong
coast was
observed by
local people

(Continued on following page)
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TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

108 1977 5 8 Bangladesh 24.89 92.25 Mb 5.6 * * * * * * - The earthquake
had led to
cracking of at
least
5 buildings in
Sylhet

109 1977 5 12 Bangladesh-
Myanmar
border

21.75 92.99 Ms 5.7 * * * 200 * * - 89, 98 Cracks were
developed in
buildings in
Chittagong and
numerous
people were
injured

110 1979 4 11 Bangladesh 25.9 88.8 Mb 4.8 * * * * * * 72 71, 89 -

111 1984 5 21 Bangladesh 23.42 91.3 Mb 5.3 * * * * * 40, 89 -

112 1984 9 30 Bangladesh 23.42 91.3 Mb 5.1 * * * * * * - 40, 89 -

113 1984 12 31 India: Assam 24.64 92.89 Mw 6 * * * * * * - 89, 93 -

114 1988 2 6 Bangladesh:
Sylhet

24.68 91.57 Ms 5.8 * 2 100 * * - 1 -

115 1988 8 6 Myanmar 25.14 95.12 Ms 7.3 * 2 12 * * - 93 -

116 1988 8 21 India-Nepal
border

26.7 86.8 Ms 7.8 * 998 * * * * - 36,98 Seismic seiches
observed in
many rivers
including
capsizing boats
in the Jamuna
River killing
2 people and
missing almost
30 people

117 1989 6 12 Bangladesh:
Banaripara

21.86 89.76 Ms 5.1 * 6 1 * * 38, 39 1 -

118 1993 6 12 Bangladesh:
South

21.83 89.7 5.7 (71) * * * * * * - 71 -

(Continued on following page)
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TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

119 1997 5 8 Bangladesh 24.89 92.25 Mw 6.0 (89)

Mb 5.6
* 34 * * * * - 75, 84 The earthquake

had led to
cracking in at
least
5 buildings in
Sylhet

120 1997 11 21 India-
Bangladesh
border:
Chittagong

22.21 92.7 Mw 6.1 * 54 23 200 * 1 39 1, 20, 42, 48,
65, 89, 95

The collapse of
buildings and
deaths
occurred in
Chittagong

121 1999 7 22 Bangladesh:
Moheskhali
Island

21.54 91.89 Mb 5.2
(89) Ms

4.2 (35)

* 10 6 200 * 700 39 1, 35, 48, 75, 93 Houses cracked
and in some
cases collapsed

122 2000 1 3 India-
Bangladesh
border

22.13 92.77 Mb 4.6 * 33 * * * * 39 1 -

123 2000 1 19 Bangladesh Ms 4.5 * * * 100 * - 98 Few buildings
in areas of old
Dhaka city
were damaged

124 2003 7 26 Bangladesh:
Borkal

22.85 92.31 Mw 5.7 * 10 3 25 * 500 39 1, 48, 53, 89, 98 Transformer of
power supply
exploded in
Chittagong

125 2007 5 20 India 27.15 88.44 Mw 4.9 * * * * * * - 40, 89 -

126 2007 8 11 India: Assam 26.27 89.24 Mb 5 * * * * * * - 40, 89 -

127 2007 9 19 India 25.18 90.59 Mb 5.1 * * * * * * - 40, 89 -

128 2007 11 7 Bangladesh:
Bandarban,
Chittagong,
Rangamati

22.15 92.38 Ms 5.1 * 29 * 10 * * 39 1 -

129 2008 1 12 Bangladesh:
Rangamati

22.76 92.33 Mb 5 * 34 * * * * 39 1, 89 -

130 2008 3 13 Bhutan 27.46 91 4.5 * * * * * * - 58 -

131 2008 5 29 India 26.24 91.46 Mb 4.5 * * * * * * - 40, 89 -

(Continued on following page)
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TABLE 1 (Continued) A catalogue of historical and palaeoseismic evidence of earthquake in Bangladesh and adjacent regions between BC810 and AD2015.

Event
number

Year Month Day Earthquake locations Earthquake parameters Earthquake effects Primary Secondary Comments

Magnitude Intensity Focal
depth

Deaths Injuries Damage
(in m
US $)

House
destroyed/
damaged

Location
names

Lat Long

132 2008 7 5 India 26.07 91.39 Ms 5.1 * * * * * * - 40, 38 -

133 2008 9 20 Bangladesh:
Sylhet

23.5 91.07 Mb 4.5 * * * * * * - 40, 89 -

134 2009 1 6 Bangladesh 24.11 89.25 Mb 4.7 * * * * * * - 40, 89 -

135 2009 2 27 Bangladesh 20.29 89.31 Mb 4.8 * * * * * * - 40, 89 -

136 2009 7 13 India 26.09 89.39 Ms 4.5 * * * * * * - 40, 38 -

137 2009 9 21 Bhutan 27.4 91.36 Mw 6.1 * * * * * * - 1, 40, 89 -

138 2009 10 30 Bhutan 27.29 91.46 Mw 5.1 * * * * * - 40, 89 -

139 2009 12 31 Bhutan 27.31 91.15 Mb 5.3 * * * * * - 1, 40 -

140 2010 9 11 India 25.52 90.39 Mb 5.2 * * * * * * - 1, 40 -

141 2011 9 18 India: Sikkim 27.73 88.15 Mw 6.9 * * 97 * * * - 1, 89 -

142 2012 3 18 Bangladesh 23.66 90.26 Mb 4.5 * * 44 * * * - 89 People in
Dhaka and
adjacent
district got
panic

143 2015 4 25 Nepal:
Gorkha

28.15 84.70 Mw 7.8 15 8200 17,866 1 -

144 2015 5 12 Nepal:
Dolakha

27.83 86.07 Mw 7.3 15 117 2800 1 -

Note: Asterisk (*) indicates no information available.

Reference # and detail of primary and secondary sources for each earthquake event referred to in columns 15 and 16.

1. National Geophysical Data Center (NGDC), (2012), 2. Gulston, (1763), 3. Verelst, (1763), 4. Hirst, (1763), 5. Banerji, (1923), 6. Nutalaya, et al. (1985), 7. Milne, (1911), 8. Bapat, et al. (1983), 9. Chaudbury, (1965), 10. Chandra, (1977), 11. Singh, (1966), 12. Davidson,

(1936), 13. Lomnitz, C., (1974), 14. Bath, (1973), 15. Chaudhury, (1964), 16. Berninghausen, (1966), 17. Benerji, (1957), 18. Wei, and Zhuoli, (1987), 19. Lyell, (1875), 20. Oldham, (1883), 21. Anon., (1897a). 22. Rizvi, (1970), 23. Richter, (1958), 24. Anon., (1897b), 25.

Pervez and Ram, (1997), 26. Duda, (1965), 27. Gutenberg and Richter (1965), 28. Khan and Chouan, (1996), 29. Murty and Rafiq (1991), 30. Morino, (2011), 31. Tandon, (1950), 32. Tillotson, (1951), 33. Curray, (1982), 34. Rennell and Banks, (1781), 35. Ansary, et al.

(2000), 36. Anon., (1988), 37. Islamabadi, (1987), 38. ISC, (2023) 39. NEIC (2023), 40. BMD (2011), 41. Hunter, (1876), 42. Islam, (2004), 43. Fergusson, (1863), 44. Mandal, et al. (2000), 45. United Nations Office for the Coordination of Humanitarian Affairs (1993), 46.

Iyengar, et al. (1999), 47. Middlemiss, (1885), 48. Alam, et al. (2006), 49. Hough, et al. (2005), 50. Alam, et al. (2012), 51. Ambraseys and Douglas (2004), 52. Steckler, et al. (2008), 53. Khan (2010), 54. Kamaluddin and Rahman, (1985), 63. Anon., (1843b), 65. Khan,

(2004), 66. Anon., (1843a), 67. Anon., (1844), 68. Ambraseys, (2000), 69. Anon., (1849), 70. Campbell (1809), 71. Nandy, (1994), 72. Singh and Shankar, (1992), 73. Anon., (2023), 75. Paul and Bhuiyan, (2010), 76. Gupta, (1993), 77. Gupta and Gahalaut, (2009), 78.

Mithal and Srivastava (1962), 79. Webster, (1911), 80. Smith, (1844), 81. Ali and Choudhury, (2001), 82. Rastogi and Jaiswal (2006), 83. Jaiswal, et al. (2008), 84. Sharfuddin, (2010), 85. Rizvi, (1969), 86. Khan and Hossain, (2005), 87. Bilham and England, (2001), 88.

Geoscience Australia, (2011b), 89. USGS (2023), 90. IRIS (2023), 91. Rizvi, (1970), 92. Chakrabarti and Gosh, (2011), 93. Martin, and Szeliga, (2010), 94. Choudhury, (2005), 95. Dasgupta, (2011), 97. Gait (1906), 98. Akhter, (2010), 99. Rajendran, et al. (2004).
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analysis. This process verifies the date of occurrence of an event,
explores inconsistencies in citations and identifies problems relating
to magnitudes of earthquakes and evaluates likely effects. The new
catalogue Table 1 is the output of this process.

3.3 Data analysis

To construct a geography of earthquake hazards in Bangladesh, the
locations of earthquake epicenters are presented in a series of maps to
reveal hazards and risks in Bangladesh. A newMMImap is constructed
by using the content analysis of 47 source documents for 80 earthquake
events occurring in Bangladesh and adjacent regions. Arc GIS was used
to construct this map. The presentation and analysis of these
earthquakes provides much better earthquake hazard geographies
and associated risks in Bangladesh than has previously been available.

4 Results and discussion

In the following sections, it has been introduced key aspects of
data, and discussed spatial-temporal distributions of earthquake
events in the entire study region and analysed earthquake hazard
geographies in Bangladesh.

A total of 144 earthquakes have been identified in the study
region between 810BC and AD 2015. Of these events (Table 1) one
earthquake (event # 5) was identified from archaeological sources,
four earthquakes (event # 1, 2, 4, and 8) were identified from
geological sources, the remaining 94 events were identified from
historical and instrumental sources. The catalogue comprises the
event number, the event date, earthquake locations (including
coordinates and geographical location names), earthquake
parameters (magnitude, intensity and focal depth), earthquake
effects (deaths, injuries, damage in million US $ and house
destroyed) information about primary and secondary sources for
the event and key comments about earthquakes.

4.1 Earthquakes in and adjacent to
Bangladesh

A total of 144 earthquakes are reported to have affected
Bangladesh and the adjacent region (Table 1). The locations of
these earthquakes are shown in Figures 4, 5. Evidence for three
paleoseismic events in 810-400BC, 535-530BC and AD645-980
became available through the geological investigation of the great
AD1897 earthquake in Assam (Rajendran et al., 2004). Banerji
(1923) and Chaudhury (1964) found the evidence of the AD825-

FIGURE 4
Earthquake distribution in Bangladesh and adjacent regions from BC810 to AD1900. The dates of all of the major events are labelled in map. High
magnitude earthquakes are located in the active seismic areas in Bangladesh and adjacent India and Myanmar. ASZ, Arakan Subduction Zone; BFS, Bogra
Fault System; CCF, Chittagong Cox’s Bazar Fault; DF, Dauki Fault; HF, Haluaghat Fault; JF, Jamuna Fault and SF, Sylhet Fault (Source: base map adapted
from Mukherjee et al., 2009).
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FIGURE 5
Earthquake distribution in Bangladesh and adjacent regions areas from 1900 to 2015. The dates of all of the major events are labelled in map. High
magnitude earthquakes are located in the active seismic areas in Bangladesh and adjacent India and Myanmar. ASZ, Arakan Subduction Zone; BFS, Bogra
Fault System; CCF, Chittagong Cox’s Bazar Fault; DF, Dauki Fault; HF, Haluaghat Fault; JF, Jamuna Fault and SF, Sylhet Fault (Source: base map adapted
from Mukherjee et al., 2009).

FIGURE 6
The types of impacts caused by earthquakes in Bangladesh (Source: reports numbers at the bottomof Table 1 #s 2, 3, 4, 5, 10, 11, 15, 21, 22, 23, 26, 47,
48, 50, 51, 52, 53, 54, 55, 56, 61, 62, 64, 65, 69, 70, 71, 75, 77, 80, 81, 83, 86, 99, 104, 111, 112, 114, 116, 127, 140, 143, 150, 151, 152, 153, 159, 161, 162, 163, 164,
165, 166, 167, 168).
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835 earthquake by conducting archaeological investigation in
Assam. The geological records of the AD1440-1470 earthquake
emerged from the work of Morino et al. (2011) at Mymensingh.
Analysis of earthquakes generated in Bangladesh and adjacent areas
indicate that the 1762, 1885 and 1897 earthquakes in Bangladesh
caused widespread damage. A repeat of similar earthquakes from
any of the active seismic sources could cause damage, destruction
and death within major population centres in Bangladesh. The
effects of recent earthquakes occurring in 1977, 1997, 1999, 2003,
and 2007 suggest that lesser magnitude earthquakes could cause
significant damage to urban centres that are home to large highly
exposed and huge vulnerable communities.

4.2 The construction of a new MMI map for
Bangladesh

Analysis of the 47 reports (see list of reports below Figure 6) that
contain information relating to the effects of 80 earthquakes suggest that

severe damage occurred to bamboo houses and masonry buildings in
Bangladesh. Disturbances of inland water bodies were also observed in
Bangladesh. Co-seismic subsidence, uplift, landslides and compaction
were associated with the 1762 earthquake (Alam and Dominey-Howes,
2014). Subsidence and uplift are evidence of neotectonic activity in
Bangladesh and adjacent areas (Khan and Chouan, 1996; Hoque and
Alam, 1997;Das et al., 2010). The existing flowof the JamunaRiver came
into its present course only after the 1787 earthquake (Kamaluddin and
Rahman, 1985; Bandyopadhyay et al., 2021; Richards et al., 2021). Before
the shift of its course, it flowed further east by its original name ‘Old
Brahmraputra’ before meeting the Meghna River (Rennell and Banks,
1781; Richards et al., 2021). Additionally, the uplift of the Madhupur
surface was possibly associated with the occurrence of the
1762 earthquake (Fergusson, 1863).

The effects of earthquakes reports are obtained for 80 events
(Table 1 events # 8, 9, 14,16, 17, 21, 23, 37, 38, 39, 42, 43, 44, 55, 64, 69,
74, 76, 79, 84, 85, 95, 97, 98, 107, 108, 161, 119, 153, 165, 168, 170, 178,
190, 191,196, 204, 209, 217, 236, 245, 260, 262, 268, 269, 274, 278, 282,
322, 333, 341, 363, 378, 382, 396, 401, 407, 408, 411, 426, 428, 429, 430,
439, 441, 442, 445, 446, 447, 452, 457, 459, 460, 475, 503, 512, 536, 561,
562). An analysis of 47 reports on 80 earthquakes suggests that in eight
(i.e., Bandarban, Kurigram, Kishoreganj, Mymensingh, Sunamganj,
Sirajganj, Sylhet, and Tangail) of 64 districts, the effects were over IX
on the MMI scale (Figure 7). These districts are located in the
northern region of Bangladesh and are close to the Bogra Fault
System, Dauki Fault, Haluaghat Fault, Jamuna Fault, Madhupur
Fault, Sylhet Fault, and Himalayan seismic sources. The results of
the highest risk districts based on the effects of earthquakes measured
on the MMI scale coincide with the current seismic zoning map of
Bangladesh (Figure 2).

The damage intensity caused by earthquakes in Chittagong was
rated VIII on theMMI scale. The highMMI value for Chittagong is due
to the effects of historical and recent earthquakes that occurred in 1762,
1842, 1851, 1997, 1999, 2003, 2007, and 2008. Chittagong is located
along the Arakan Subduction Zone and is close to seismic sources in
Myanmar. The damage intensity reached VI on the MMI scale in
Dhaka. Although, Dhaka city is comparatively far from seismic sources,
the fragile infrastructure and fluvial delta experienced a multitude of
different types of effects from earthquakes occurring from adjacent
sources. The MMI in the SW districts were 5 or below indicating that
they were prone to less damage.

5 Conclusion

This research documented and analysed geological,
archaeological and documentary records of earthquakes in
Bangladesh to better understand and quantify the hazard–a first
step towards improved earthquake risk reduction. The key finding
from this research reveals that using long-term hazard data in
conjunction with spatial analysis could provide an opportunity to
detect areas of high earthquake occurrences. However, records are
only available for greater magnitude (7 and above) earthquakes of
1762, 1885, and 1997. No detailed records are available for lesser
magnitude earthquakes. This research also supports the revision of
current seismic zoning map of Bangladesh to include Chittagong
and Dhaka in the high-risk zone for effective earthquake risk
reduction. Finally, this research concludes that analyses of long-

FIGURE 7
An MMI map of the average effects of 80 earthquakes in
Bangladesh occurring between BC810 and AD2015 in Bangladesh and
adjacent regions. BB, Bandarban; BE, Bagerhat; BG, Bogra; BH, Bhola;
BR, Barguna; BS, Barisal; CB, Cox’s Bazar; CD, Chuadanga; CG,
ChapaiNawabganj; CL, Comilla; CP, Chandpur; CTG, Chittagong; DK,
Dhaka; DP, Dinajpur; FN, Feni; FP, Faridpur; GB, Gaibanda; GJ,
Gopalganj; GP, Gazipur, HG, Habiganj; JD, Jhenidah; JP, Jaipurhat; JL,
Jamalpur; JS, Jessore; JK, Jhalkati; KC, Khagrachari; KG, Kishoreganj;
LP, Lakshmipur; LH, Lalmonirhat; KH, Khulna; KM, Kurigram; KS, Kustia;
MA, Magura; MB, Moulvibazar; MG, Munshiganj; MP, Madaripur; MS,
Mymensingh; MH, Meherpur; NA, Narayanganj; NH, Noakhali; NK,
Netrokona; NN, Noaganj; NT, Nattore; NP, Nilphamari; NR, Narail; NS,
Narshingdi; PB, Pabna; PG, Panchgarh; PJ, Pirojpur; PK, Patuakhali; RB,
Rajbari; RJ, Rajshahi; RM, Rangamati; RP, Rangpur; SG, Sunamganj; SJ,
Sunamganj; SH, Sylhet; SK, Satkhira; SP, Shariatpur; TG, Tangail; TN,
Thakurgaon (Source: reports numbers at the bottom of Table 1 #s 2, 3,
4, 5, 10, 11, 15, 20, 21, 22, 24, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 46,
47, 48, 49, 51, 52, 53, 54, 56, 68, 71, 72, 79, 84, 85, 86, 87, 91, 93, 94, 95,
96, 97, 98, 99).
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term data help identify new hazard exposure and develop knowledge
that can be useful to formulate new disaster risk reduction policies
and rectify existing ones in Bangladesh.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

The author confirms being the sole contributor of this work and
has approved it for publication.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Akhter, S. H. (2010). “Earthquakes of Dhaka,” in Environment of capital Dhaka - plants
wildlife gardens parks air water and earthquake. Editors M. A. Islam, S. U. Ahmed, and
A. K. M. Rabbani (Ramna, Dhaka, Bangladesh: Asiatic Society of Bangladesh), 401–426.

Alam, E., and Dominey-Howes, D. (2016). A catalogue of earthquakes between 810BC and
2012 for the Bay of Bengal. Nat. Hazards 81 (3), 2031–2102. doi:10.1007/s11069-016-2174-7

Alam, E., and Dominey-Howes, D. (2014). An analysis of the AD1762 earthquake and
tsunami in SE Bangladesh. Nat. Hazards 70 (1), 903–933. doi:10.1007/s11069-013-0841-5

Alam, E., Dominey-Howes, D., Goff, J., and Chagué-Goff, C. (2012). Tsunamis of the
northeast Indian ocean with a particular focus on the Bay of bengal region—a synthesis
and review Indian ocean with a particular focus on the Bay of bengal region– a synthesis
and review. Earth-Science Rev. 114 (1–2), 175–193. doi:10.1016/j.earscirev.2012.05.002

Alam, M., Alam, M. M., Curray, J. R., Chowdhury, M. L. R., and Gani, M. R. (2003).
An overview of the sedimentary geology of the Bengal Basin in relation to the regional
tectonic framework and basin-fill history. Sediment. Geol. 155, 179–208. doi:10.1016/
s0037-0738(02)00180-x

Alam,M. J., Bhuiyan,M. A. R., and Islam,M. R. “Seismic structural assessment of damaged
Chittagong public library building during 27 July 2003 earthquake,” in Proceedings of the 4th
International Conference on Earthquake Engineering, Taipei, Taiwan, October 2006.

Ali, M. H., and Choudhury, J. R. (2001). “Assessment of seismic hazard in Bangladesh,” in
Disaster in Bangladesh: Selected readings. Disaster research training and management centre.
Editor K. Nizamuddin (Dhaka, Bangladesh: University of Dhaka), 197.

Ambraseys, N., and Douglas, J. (2004). Magnitude calibration of north Indian
earthquakes. Geophys. J. Int. 159, 165–206. doi:10.1111/j.1365-246x.2004.02323.x

Ambraseys, N. (2000). Reappraisal of north-Indian earthquakes at the turn of the 20th
century. Curr. Sci. 79 (9), 1237–1250.

Anon (1897b). Cablegraphic news. KalgoorieWestern argus. Parkes, Australia:
National Library of Australia, 19.

Anon (1988). Earthquake in Bihar-Nepal: Felt in entire country. Bangladesh:
Bangladesh Observer.

Anon (1897a). Earthquakes in India. Lawrence, New Zealand: Tuapeka Times, 1.

Anon (1843b). Journal of the asiatic society of bengal. Calcutta, India: Bishop’s College Press.

Anon (1844). Journal of the asiatic society of bengal. Calcutta, India: Bishop’s College Press.

Anon (1849). Journal of the asiatic society of bengal. Calcutta, India: Baptist Mission Press.

Anon (1843a). The asiatic journal and monthly register for British and foreign India,
China and australasia. Leadenhall Street, London: Parbury, Allen, and Company, 25.

Anon (2023). The journal of asiatic society of bengal. Huay Ya, Chonburi Province,
Thailand: White Lotus Press, 1053.

Ansary,M.A.,Al-Hussaini, T.M., and Sharfuddin,M. (2000). “Damage assessment of july 22,
1999moheskhali earthquake, Bangladesh,” in Proceedings of the 8thASCE specialty conference
on probabilistic mechanics and structural reliability, Indiana, USA, July 2000, 22–26.

Bandyopadhyay, S., Das, S., and Kar, N. S. (2021). Avulsion of the Brahmaputra in
Bangladesh during the 18th–19th century: A review based on cartographic and literary
evidence. Geomorphology 384, 107696. doi:10.1016/j.geomorph.2021.107696

Banerji, R. D. (1923). Annual report. Archaeological society of India. Calcutta, India:
Central Publication Branch, 80–81.

Bapat, A., Kulkarni, R. C., and Guha, S. K. (1983). Catalogue of earthquake in India
and Neighborhood from historical period up to 1979. Roorkee, India: Indian Society of
Earthquake Technology, 211.

Bath, M. (1973). Introduction to Seismology. New York, NY, USA: Halsted Press, 395.

Benerji, S. K. (1957). Earthquakes in the himalayan region. Jadavpur, Calcutta, India:
Indian Association for the Cultivation of Science, 64.

Berninghausen, W. H. (1966). Tsunamis and seismic seiches reported from regions
adjacent to the Indian Ocean. Bull. Seismol. Soc. Am. 56, 69–74. doi:10.1785/
bssa0560010069

Bilham, R., and England, P. (2001). Plateau ‘pop-up’ in the great 1897 Assam
earthquake. Nature 40, 806–809. doi:10.1038/35071057

Bmd (2011). Earthquake data in and around Bangladesh from 1918 to 2010.
Bangladesh meteorological department (BMD), meteorological complex, agargaon,
Dhaka, government of the people’s republic of Bangladesh. Web access at http://
www.bmd.gov.bd/Earthquake.php.

Campbell, L. D. (1809). A view of the history of hindustan and of the politics, commerce
and literature of asia. London, UK: The Asiatic Society.

Chakrabarti, P. G. D., and Gosh, C. (2011). National workshop on earthquake risk
management in the north east region Guwahati, Assam, India: National Institute of
Disaster Management, 24–25.

Chandra, U. (1977). Earthquakes of Peninsular India-A seismotectonic study. Bull.
Seismol. Soc. Am. 67 (5), 387–1413.

Chaudbury, M. H. (1965). “Seismology in India,” in Individual studies by participants
to the international Institute of Seismology and earthquake engineering (Tokyo, Japan:
International Institute of Seismology and Earthquake Engineering), 14–33.

Chaudhury, P. D. (1964). Archaeology in Assam. Gauhati, India: Dept. of
Archaeology, 77.

Choudhury, J. R. (2005). Earthquake-tsunami: The threat looms. Independent
weekend. Dhaka, Bangladesh: Free Press Ltd.

Curray, J. R., Emmel, F. J., Moore, D. G., and Raitt, E. W. (1982). “Structure, tectonics and
geological history of the north-eastern Indian Ocean,” in The Ocean basin and margin.
Editors A. E. M. Nairn, and F. G. Stchli (New York, NY, USA: Plenum Press), 399–450.

Das, J. D., Saraf, A. K., and Shujat, Y. (2010). A remote sensing technique for
identifying geometry and geomorphological features of the Indo-Burman frontal fold
belt. Int. J. Remote Sens. 31 (61), 4481–4503. doi:10.1080/01431160903154366

Dasgupta, S. “Earthquake geology, geomorphology and hazard scenario in northeast
India: An appraisal,” in Proceedings of the National workshop on earthquake mitigation
strategy in northeast, Guwahati, Assam, February 2011, 24–29.

Davidson, C. (1936). Great earthquakes. London, United Kingdom: Thomas Murty
and Co., 286.

Duda, S. J. (1965). Secular seismic energy release in the circum-Pacific belt.
Tectonophysics 2 (5), 409–452. doi:10.1016/0040-1951(65)90035-1

Fergusson, J. (1863). On recent changes in the delta of the Ganges. Q. J. Geol. Soc.
Lond. 19, 321–354. doi:10.1144/gsl.jgs.1863.019.01-02.35

Gait, E. A. (1906). A history of Assam. Darjeeling, India: Thacker, Spink and Co., 383.

Geoscience Australia (2011a). Earthquake@Geoscience Australia. Symonston,
Canberra, Australian: Geoscience Australia.

Geoscience Australia (2011b). Earthquake@Geoscience Australia. Available:http://
www.ga.gov.au/earthquakes/searchQuake.do?(Accessed 28th June, 2011).

Gere, J. M., and Shah, H. C. (1984). Terra non firma: Understanding and preparing for
earthquakes. New York, NY, USA: W. H. Freeman, 204.

Frontiers in Earth Science frontiersin.org21

Alam 10.3389/feart.2023.1187176

111

https://doi.org/10.1007/s11069-016-2174-7
https://doi.org/10.1007/s11069-013-0841-5
https://doi.org/10.1016/j.earscirev.2012.05.002
https://doi.org/10.1016/s0037-0738(02)00180-x
https://doi.org/10.1016/s0037-0738(02)00180-x
https://doi.org/10.1111/j.1365-246x.2004.02323.x
https://doi.org/10.1016/j.geomorph.2021.107696
https://doi.org/10.1785/bssa0560010069
https://doi.org/10.1785/bssa0560010069
https://doi.org/10.1038/35071057
http://www.bmd.gov.bd/Earthquake.php
http://www.bmd.gov.bd/Earthquake.php
https://doi.org/10.1080/01431160903154366
https://doi.org/10.1016/0040-1951(65)90035-1
https://doi.org/10.1144/gsl.jgs.1863.019.01-02.35
http://www.ga.gov.au/earthquakes/searchQuake.do?
http://www.ga.gov.au/earthquakes/searchQuake.do?
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1187176


Gulston, E. (1763). An account of an earthquake at chattigaon: Translated from the
Persian bymr. Edward gulston, in the service of the honourable east India company, and
communicated by him to the reverend mr. Hirst. Philos. Trans. 53, 1683–1775.

Gupta, H., and Gahalaut, V. (2009). Is the northern Bay of bengal tsunamigenic? Bull.
Seismol. Soc. Am. 99 (6), 3496–3501. doi:10.1785/0120080379

Gupta, H. K. (1993). Seismic hazard assessment in the Alpine belt from Iran to Burma.
Ann. Di Geofis. 36 (3-4), 61–82.

Gutenberg, B., and Richter, C. F. (1965). Seismicity of the earth and associated
phenomena. New York, NY, USA: Princeton University Press, Hafner Publishing
Company, 310.

Hirst, W. (1763). An account of an earthquake in the east indies, of two eclipses of the
sun and moon, observed at Calcutta. Philosophical Trans. 53, 1683–1775.

Hoque, M., and Alam, M. (1997). Subsidence in the lower deltaic areas of Bangladesh.
Mar. Geod. 20 (1), 105–120. doi:10.1080/01490419709388098

Hough, S. E., Bilham, R., Ambraseys, N., and Feldl, N. (2005). Revisiting the
1897 shilong and 1905 kangra earthquake in the northern India: Site response,
moho reflections and a triggered earthquake. Curr. Sci. 88 (10), 1632–1638.

Hunter, W. W. (1876). “A statistical account of bengal,” in Chittagong hill tracts, and
districts of Chittagong, noakhali, tripperah, hill tripperah (London,UK: Trübner andCo.), 444.

Iris (2023). Seismic event data. Seismological facility for the advancement of geoscience.
access on 14 May 2023 at https://ds.iris.edu/ds/nodes/dmc/data/types/events/.

Isc (2023). ISC bulletin: Event catalogue search. International seismological centre
(ISC). accessed on 19 May 2023 at http://www.isc.ac.uk/iscbulletin/search/catalogue/.

Islam, S. I. (2004). Banglapedia: National encyclopedia of Bangladesh. Dhaka,
Bangladesh: Asiatic Society of Bangladesh.

Islamabadi, A. (1987). Chattragram smwarani (A memorial in Chittagong) (in
Bengali). Chittagong, Bangladesh: Azadi Printers Limited, 159.

Iyengar, R. N., Sharma, D., and Siddiqi, J. M. (1999). Earthquake history of India in
medieval times. Indian J. Hist. Sci. 34 (3), 181–237.

Jaiswal, R., Rastogi, B. K., andMurty, T. S. (2008). Tsunamigenic sources in the Indian
ocean. Sci. Tsunami Hazards 27 (2), 32–53.

Kamal, A. S. M. M. (2008). Seismic hazard assessment for Chittagong city
corporation area, Bangladesh. Int. Geol. Congr. Oslo, 6–14. doi:10.4172/2167-
0587.1000154

Kamaluddin, A. F. M., and Rahman, K. M. (1985). “The pattern of the structures of
rural employment in Bangladesh – a study of the thanas in Sirajganj,” in Geographical
essays (New Delhi, India: Inter India Publications).

Khan, A. A., and Chouan, R. K. S. (1996). The crustal dynamics and the tectonic trends in
the Bengal Basin. J. Geodyn. 22 (3-4), 267–286. doi:10.1016/0264-3707(96)00022-1

Khan, A. A. (2004). Earthquake vulnerability and hazard assessment in the active
collision margin of Bangladesh with special reference to Dhaka, Chittagong, and Sylhet
triangular region. Bangladesh: Research Report Ministry of Science and Information
and Communication Technology Government of Bangladesh, 96.

Khan, A. A. (2010). Earthquake, tsunami and geology of Bangladesh. Dhaka,
Bangladesh: University Grant Commission of Bangladesh, 331.

Khan, A. A., and Hossain, M. M. (2005). Recurrence of 1885 bengal earthquake and
hazard vulnerability status of Dhaka metropoliton city, Bangladesh. Orient. Geogr. 49
(2), 205–216.

Khan, A. A. (2012). Seismogenic sources in the Bay of Bengal vis-à-vis potential for
tsunami generation and its impact in the northern Bay of Bengal coast.Nat. Hazards 61,
1127–1141. doi:10.1007/s11069-011-9970-x

Lomnitz, C. (1974).Global tectonics and earthquake risk. Amsterdam, Netherlands: Elsevier.

Lyell, S. C. (1875). .Principles of geology London, UK: Murray, 1–179.

Mandal, P., Rastogi, B. K., and Gupta, H. K. (2000). Recent Indian earthquakes. Curr.
Sci. 79 (9), 368–379.

Martin, S., and Szeliga, W. (2010). A catalog of felt intensity data for 570 earthquakes in
India from 1636 to 2009. Bull. Seismol. Soc. Am. 100 (2), 562–569. doi:10.1785/0120080328

Middlemiss, C. S. (1885). Reports on the bengal earthquake of july 14th, 1885. Rec.
Geol. Surv. India 18, 200–221.

Milne, J. “Catalogue of destructive earthquakes,” in Proceedings of the 81st meeting of the
British Association for the Advancement of Science, Portsmouth, London, 1911, 649–740.

Mithal, R. S., and Srivastava, L. S. (1962). “Seismicity of the area around Baraundi,
Bihar,” in Proc. Symp. Earthquake eng (Roorkee, India: University of Roorkee), 527–538.

Morino, M., Kamal, A. S. M. M., Muslim, D., Ali, R. M. E., Kamal, M. A., Rahman, M.
Z., et al. (2011). Seismic event of the Dauki Fault in 16th century confirmed by trench
investigation at gabrakhari village, Haluaghat, Mymensingh, Bangladesh. J. Asian Earth
Sci. 42, 492–498. doi:10.1016/j.jseaes.2011.05.002

Mukherjee, M., Fryar, A. E., and Thomas, W. A. (2009). Geologic, geomorphic and
hydrologic framework and evolution of the Bengal basin, India and Bangladesh. J. Asian
Earth Sci. 34, 227–244. doi:10.1016/j.jseaes.2008.05.011

Murty, T. S., and Rafiq, R. (1991). A tentative list of tsunamis in the marginal seas of
the north Indian Ocean. Nat. Hazards 4 (1), 81–83. doi:10.1007/bf00126560

Nandy, D. R. (1994). Earthquake hazard potential of central and south Bengal Basin.
Indian J. Earth Sci. 21 (2), 59–64.

Neic (2023). Earthquake events. NOAA national centres for environmental
information (NEIC). access on 21 May 2023 at https://www.ngdc.noaa.gov/hazel/
view/hazards/earthquake/search.

Ngdc (2012). Global significant earthquake database from 2000 B.C. to present.
Available: http://www.ngdc.noaa.gov/hazard/earthqk.shtml (Accessed June 1, 2012).

Nutalaya, S., Sodsri, S., and Arnold, E. P. (1985). Series on Seismology. Thailand:
Southeast Asia Association of Seismology and Earthquake Engineering and U. S.
Geological Survey.

Oldham, R. D. (1883). A catalogue of Indian earthquakes from the earliest time to the
end of A.D 1869. Memoirs Geol. Surv. India 19 (3), 163–215.

Paul, B. K., and Bhuiyan, R. H. (2010). Urban earthquake hazard: Perceived seismic
risk and preparedness in Dhaka city, Bangladesh.Disasters 34 (2), 337–359. doi:10.1111/
j.1467-7717.2009.01132.x

Pervez, I. A., and Ram, A. (1997). Probabilistic assessment of earthquake hazards in
the North-East Indian peninsula and Hindukush regions. Pure Appl. Geophys. 149 (4),
731–746. doi:10.1007/s000240050049

Rajendran, C. P., Rajendran, K., Duarah, B. P., Baruah, S., and Earnest, A. (2004).
Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong,
northeast India, earthquake: Implications for regional tectonism. Tectonics 23
(TC4009), 419–429. doi:10.1029/2003tc001605

Rastogi, B. K., and Jaiswal, R. K. (2006). A catalogue of tsunamis in the Indian Ocean.
Sci. Tsunami Hazards 25 (3), 128–143.

Rennell, J., and Banks, J. (1781). An account of the Ganges and burrampooter rivers.
Philosophical Trans. R. Soc. Lond. 71, 87–114.

Richards, K., Brammer, H., and Saunders, L. P. (2021). The historical avulsion of the
Tista River, and its relationship to the Brahmaputra: Map and archive evidence from
1750 to 1835. Geogr. J. 187 (3), 253–268. doi:10.1111/geoj.12391

Richter, C. F. (1958). Elementary Seismology. San Francisco, CA, USA: W. H.
Freeman, 768.

Rizvi, S. N. H. (1970). Bangladesh district gazetteers, Sylhet. Dhaka, Bangladesh:
Government of the People’s Republic of Bangladesh.

RizviS.N.H. (1969). East Pakistan district gazetteers: Dacca. Dhaka, Bangladesh: East
Pakistan Government Press, 353.

Sarker, J. K., Ansary, M. A., Rahman, M. S., and Safiullah, A. M. M. (2010). Seismic
hazard assessment for Mymensingh, Bangladesh. Environ. Earth Sci. 60 (3), 643–653.
doi:10.1007/s12665-009-0204-4

Sharfuddin, M. (2010). “Earthquake hazard analysis for Bangladesh,”. MSc Thesis
(Dhaka, Bangladesh: Department of Civil Engineering, Bangladesh University of
Engineering and Technology).

Singh, K. (1966). Earthquakes in India and neighbourhood. Indian J. Meteorology
Geophys. 4 (17), 521–528. doi:10.54302/mausam.v17i4.5753

Singh, V. P., and Shankar, D. (1992). On the seismicity and tectonic activity of the
Bengal Basin. Mausam 43, 371–378. doi:10.54302/mausam.v43i4.3504

Smith, R. B. (1844). Memoir on Indian earthquakes, Part III. J. Asiatic Soc. Bengal 156,
964–983.

Steckler, M. S., Akhter, S. H., and Seeber, L. (2008). Collision of the
ganges–brahmaputra delta with the Burma arc: Implications for earthquake hazard.
Earth Planet. Sci. Lett. 273, 367–378. doi:10.1016/j.epsl.2008.07.009

Tandon, A. N. (1950). The very great earthquake of August 15, 1950. Sci. Cult. 16 (4), 14.

Tillotson, E. (1951). The great Assam earthquake of august 15, 1950. Nature 167,
128–130. doi:10.1038/167128a0

United Nations Office for the Coordination of Humanitarian Affairs (1993). India
earthquake september 1993, UNDHA situation reports. New York, United States: United
Nations Office for the Coordination of Humanitarian Affairs, 1–8.

Usgs (2023). Earthquake hazard program. United states geological Survey (USGS).
accessed on 17 May 2023 at https://earthquake.usgs.gov/data/comcat/.

Verelst (1763). An account of the earthquakes that have been felt in the province of
islamabad, with the damages attending them, from 2nd to the 19th of april, 1762:
Translated from the Persian, and communicated to henry vansittart, esq; president and
governor of fort william in bengal, by mr. Verelst, chief of the hon. East India company’s
Affairs at islamabad. Philos. Trans. 53, 1683–1775.

Webster, J. E. (1911). Eastern bengal and Assam district gazetteer: Noakhali.
Allahabad, India: The Pioneer Press, 107.

Wei, L., Nengqian, J., and Zhuoli, L. (1987). Deformation and displacement fields
of the Himalayan arc, seismicity and large earthquake hazards in its eastern
segment and vicinity. Tectonophysics 138 (1), 93–107. doi:10.1016/0040-
1951(87)90068-0

Frontiers in Earth Science frontiersin.org22

Alam 10.3389/feart.2023.1187176

112

https://doi.org/10.1785/0120080379
https://doi.org/10.1080/01490419709388098
https://ds.iris.edu/ds/nodes/dmc/data/types/events/
http://www.isc.ac.uk/iscbulletin/search/catalogue/
https://doi.org/10.4172/2167-0587.1000154
https://doi.org/10.4172/2167-0587.1000154
https://doi.org/10.1016/0264-3707(96)00022-1
https://doi.org/10.1007/s11069-011-9970-x
https://doi.org/10.1785/0120080328
https://doi.org/10.1016/j.jseaes.2011.05.002
https://doi.org/10.1016/j.jseaes.2008.05.011
https://doi.org/10.1007/bf00126560
https://www.ngdc.noaa.gov/hazel/view/hazards/earthquake/search
https://www.ngdc.noaa.gov/hazel/view/hazards/earthquake/search
http://www.ngdc.noaa.gov/hazard/earthqk.shtml
https://doi.org/10.1111/j.1467-7717.2009.01132.x
https://doi.org/10.1111/j.1467-7717.2009.01132.x
https://doi.org/10.1007/s000240050049
https://doi.org/10.1029/2003tc001605
https://doi.org/10.1111/geoj.12391
https://doi.org/10.1007/s12665-009-0204-4
https://doi.org/10.54302/mausam.v17i4.5753
https://doi.org/10.54302/mausam.v43i4.3504
https://doi.org/10.1016/j.epsl.2008.07.009
https://doi.org/10.1038/167128a0
https://earthquake.usgs.gov/data/comcat/
https://doi.org/10.1016/0040-1951(87)90068-0
https://doi.org/10.1016/0040-1951(87)90068-0
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1187176


Machine learning for
high-resolution landslide
susceptibility mapping: case study
in Inje County, South Korea

Xuan-Hien Le1,2, Song Eu3, Chanul Choi1, Duc Hai Nguyen2,
Minho Yeon1 and Giha Lee1*
1Department of Advanced Science and Technology Convergence, Kyungpook National University,
Sangju, Republic of Korea, 2Faculty of Water Resources Engineering, Thuyloi University, Hanoi, Vietnam,
3Department of Forest Environment and Conservation, National Institute of Forest Science, Seoul,
Republic of Korea

Landslides are a major natural hazard that can significantly damage infrastructure
and cause loss of life. In South Korea, the current landslide susceptibility mapping
(LSM) approach is mainly based on statistical techniques (logistic regression (LR)
analysis). According to previous studies, this method has achieved an accuracy of
approximately 75.2%. In this paper, we expand upon this traditional approach by
comparing the performance of sixmachine learning (ML) algorithms for LSM in Inje
County, South Korea. The study employed a combination of geographical data
gathered from 2005 to 2019 to train and evaluate six algorithms, including LR,
Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Random Forest (RF), and Extreme Gradient Boosting (XGB). The
effectiveness of these models was measured by various criteria, such as the
percentage of correct classification (PCC) score, F1 score, and Kappa score.
The results demonstrated that the PCC and F1 scores of the six models fell
between [0.869–0.941] and [0.857–0.940], respectively. RF and XGB had the
highest PCC and F1 scores of 0.939 and 0.941, respectively. This study indicates
that ML can be a valuable technique for high-resolution LSM in South Korea
instead of the current approach.

KEYWORDS

disaster management, extreme gradient boosting (XGB), feature importance, landslide,
landslide probability, landslide susceptibility mapping (LSM), random forest (RF), risk map

1 Introduction

Landslides are a typical natural disaster that can occur anywhere on the earth and have
devastating consequences, including loss of lives and harm to society and the economy
(Highland and Bobrowsky, 2008; Biswas et al., 2022). The Republic of Korea, hereafter
referred to as South Korea, is particularly susceptible to landslide-induced catastrophes. In
South Korea, landslides are primarily concentrated in the summer, when approximately 60%
of the annual rainfall occurs due to the Asian Monsoon. Climate change has intensified this
pattern, evidenced by the nearly doubled mean annual landslide-damaged area, from
276.6 ha/year in 1981–2000 to about 527.6 ha/year in 2001–2020 (Korea Forest Service,
2021). Despite the great efforts, including installing check dams to prevent fatalities and
property loss since 1986, several landslide disasters have often inflicted severe damage. One
of the fatal landslides in 2011 killed 43 people due to landslide-induced debris flows in Seoul
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and Chuncheon, with an estimated damage of 824 ha (Kim et al.,
2011). Moreover, 2020 experienced a prolonged monsoon period of
54 days, the third-longest in the recorded weather history of South
Korea, which resulted in 1,343 ha of damaged area and nine fatalities
(Lee et al., 2021).

Identifying landslide-prone areas and implementing measures
to prevent or mitigate their impacts necessitates a practical landslide
susceptibility assessment (Huabin et al., 2005; Chikalamo et al.,
2020). This evaluation includes an examination of numerous
elements that might contribute to landslides, such as land use,
rainfall, slope, rainfall, and geology (Pourghasemi et al., 2018).
The involvement of fluvial processes and the hydro-geomorphic
characteristics they generate is one crucial component that might
contribute to the danger of landslides (Tran et al., 2022). These
water-moving activities can change the terrain in ways that raise the
danger of landslides. LSM is central to understanding the risk
associated with landslides in various regions. By conducting an
LSM, we can better understand the frequency and location of
landslides and take steps to lessen the danger of these disasters
(Eker et al., 2015; Maes et al., 2017).

Over the past decades, researchers have developed a myriad of
techniques to gauge the potential for landslides. However,
constructing an effective LSM presents several challenges,
primarily related to the completeness and quality of the
incoming data (Pardeshi et al., 2013; Chae et al., 2017). The
effectiveness of an LSM significantly depends on the data quality
it is based upon. Yet, such data might be marred by incompleteness,
inaccuracies, or spatial inconsistencies, resulting in reduced map
accuracy (Thirugnanam et al., 2020; Caleca et al., 2022). Historically,
diverse methods ranging from geomorphological assessments to
statistical models have been employed to predict landslide-prone
zones (Cardinali et al., 2002). While pivotal, these methods have
challenges, ranging from extensive ground truthing to dependency
on consistent spatial data (Lombardo et al., 2020; Shano et al., 2020).
Due to their inherently dynamic nature, landslide-causing
conditions can differ dramatically across temporal and spatial
scales, making it arduous to pinpoint the likelihood of landslides
in a given location (Atkinson and Massari, 2011). There may also be
a lack of resources and technology available to monitor areas
continuously for potential landslides, particularly in remote or
inaccessible regions (Zêzere et al., 2017; Piciullo et al., 2018).
This can make identifying the circumstances that could lead to a
landslide on time challenging. Furthermore, the traditional
statistical models used to construct LSMs are based on statistical
relationships and assumptions that may not always hold in reality,
resulting in uncertainty in the predictions made by the model (Lee
and Min, 2001; Huang et al., 2020).

LSM utilizes a variety of strategies, such as statistical methods
and ML algorithms, to predict potential landslide zones (Stanley
et al., 2021; Rahman et al., 2022). One such statistical technique is LR
analysis, which assesses the association between a dependent
variable (e.g., occurrence or absence of landslides) and several
independent elements (e.g., land use, slope, and geology) (Lee,
2005; Woo et al., 2014). This technique is attractive due to its
ability to handle multiple independent variables and its probabilistic
outcome, offering a likelihood of occurrence for landslides in specific
areas (Reichenbach et al., 2018). Another frequently applied
statistical method in LSM is bivariate statistical analysis (Mersha

and Meten, 2020). Bivariate analysis examines the relationship
between two variables—landslides and slope inclination—to
uncover patterns and trends. This analysis’s simplicity and ability
to identify statistically significant associations between landslide
occurrence and influencing factors make it a valuable tool in
LSM (Yalcin, 2008; Hong et al., 2019). These statistical
techniques have garnered popularity due to their simplicity and
capability to handle multiple variables, as they often operate under
assumptions of linearity and independence among predictors. Such
assumptions can restrict their predictive power in complex natural
terrains (Yalcin et al., 2011).

Recently, ML techniques have emerged as powerful tools in
LSM due to their ability to analyze large volumes of data, identify
hidden patterns and relationships that may not be evident to
human analysts (Lv et al., 2022; Wang et al., 2023). Common
models employed for LSM include decision trees (DTs), RF,
SVM, and neural networks (Azarafza et al., 2021; Wang et al.,
2021). DTs are a form of ML technique that includes building a
tree-like model of decisions based on various variables or
attributes. This model is designed to forecast the chance of
landslides occurring across multiple territory regions (Kadavi
et al., 2019). RFs include ensembling a group of DTs and utilizing
their aggregate forecasts to produce more accurate predictions
about the risk of landslides happening (Dou et al., 2019; Sahin
et al., 2020). SVMs estimate the likelihood of landslides occurring
in various parts of the region by locating the hyperplane in a
high-dimensional space that maximum separates distinct classes
(Pham et al., 2016; Ye et al., 2023). These ML algorithms can be
beneficial for detecting locations at high risk of landslides and
developing strategies to mitigate this risk (Youssef and
Pourghasemi, 2021). Despite its efficacy, each algorithm
presents its strengths and challenges. The success of these
algorithms largely depends on the nature of the data and the
research context (Merghadi et al., 2020; Ado et al., 2022).
Therefore, it is essential to compare the performance of
several ML algorithms to identify the most effective approach
for a given study area.

In South Korea, LSM relies on the statistical technique of LR
analysis, which has an accuracy rate of approximately 75.2% (Lee
et al., 2015). Although LR has been helpful, it has certain limitations,
mainly when modeling non-linear interactions. This has motivated
the exploration of alternative ML techniques, each presenting
unique strengths: GNB’s probabilistic approach, KNN’s
adaptability to non-linear data boundaries, SVM’s prowess in
high-dimensional spaces, and the ensemble capabilities of RF and
XGB that efficiently capture complex data relationships. However,
comprehensive comparative studies on these ML algorithms,
especially in the South Korean setting, are limited due to past
restrictions in accessing high-resolution data.

This study aims to fill this gap by investigating the performance of
6 ML algorithms for high-resolution LSM in Inje County, Gangwon,
SouthKorea, an area characterized by steep terrain and a high frequency
of landslides (Lee et al., 2016). The novelty of this study lies in its
comprehensive comparison of the performance of 6 ML algorithms,
providing a more extensive analysis than previous research in the South
Korean context. This study also leverages high-resolution data to
provide a detailed evaluation of each algorithm’s performance,
addressing previous limitations in data availability.
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This article discusses the following important research
questions: 1) What is the overall accuracy of the ML algorithms
for predicting landslide susceptibility? 2) How do the ML algorithms
perform for specific assessment criteria like recall, precision, and F1
score? 3) How do the ML algorithms perform across different
landslide susceptibility classes? 4) How does the effectiveness of
the ML algorithms compare to that of other methods, such as the
traditional statistic method? 5) What are the critical factors
influencing the performance of the ML techniques in the
research area?

By identifying the most effective ML algorithms for LSM in
South Korea, this study aims to contribute to developing more
accurate and reliable landslide risk assessment models. These can
underpin informed decision-making in disaster management,
ultimately mitigating the impacts of landslide disasters. The
remainder of the article is structured as follows: The Material
and Methods section presents the data sources, the selection and
implementation of the ML algorithms, and the evaluation of
algorithm performance. The Results section describes the
research results, and the Discussion section discusses the

implications of the findings. The Conclusion section summarizes
the key findings and provides recommendations for further study.
The schematic diagram of this study is illustrated in Figure 1.

2 Materials and methods

2.1 Study area

Landslides are ground movements caused by the movement of
slope-forming elements comprising rock, soil, vegetation, and water
downward and outward. These movements can range from slow
creep to rapid and destructive slides, often activated by factors like
precipitation, geological attributes, human activity, or a combination
of these triggers.

This investigation is centered in Inje County, Gangwon
Province, South Korea. Situated in the eastern segment of the
Korean Peninsula, Inje County is distinctly characterized by its
steep terrains, predisposing it to a heightened risk of landslides (Yoo
et al., 2009). These geophysical phenomena not only carry the

FIGURE 1
Flowchart of this study.
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potential to damage infrastructure severely but also to impede
transportation networks and critically impact local community
livelihoods (Kadavi et al., 2019). Recently, Inje County has
witnessed an uptick in the frequency and magnitude of landslide
events, a pattern emerging from an intricate interplay of natural and
anthropogenic influences. Intense meteorological events like heavy
monsoons and shifts in land use patterns have amplified these
landslide occurrences (Lee et al., 2015). Notably, the county is
especially susceptible to landslides triggered by heavy rainfall
events, typical during the monsoon phase (Lee et al., 2015).
Figure 2 presents the study area.

For LSM, the input data quality and the selection of the
appropriate modeling approach are among the components that
have the most significant impact on the accuracy of the map (Yalcin,
2008). Because landslides are the slope’s movement or the slope’s
instability and their control parameters, the fundamental causes of
landslides are typically connected to geology, hydrology,
morphology, and anthropogenic activities (Ayalew and
Yamagishi, 2005). As a result, it is crucial to identify the

causative conditions for landslides in prone areas. Despite this,
there is no universally accepted technique or approach for
identifying effectiveness variables in LSM (Pourghasemi et al.,
2018), and identifying these elements differs from one research
to the next.

For this study, guided by recommendations from the National
Institute of Forest Science, South Korea, we gathered data spanning
ten distinct types selected as input attributes for the modeling
process. These data sources included soil depth (SD), tree
diameter (TD), forest condition (FC), bedrock (BR), curvature
(CU), azimuth (AZ), topographic wetness index (TWI),
catchment length (CL), catchment area (CA), and slope (SL). All
variables have been compiled into a high-resolution raster grid
format corresponding to a grid cell size of 10 m× 10 m. In
addition, information on past landslide occurrences was also
collected from the Korean Meteorological Administration
database. All data were processed and analyzed using geographic
information systems software. Figure 3 depicts a map of several
conditions contributing to landslide occurrence in the region.

FIGURE 2
Location of the studied region.
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2.2 Data pre-processing

As previously highlighted, the ten factors collected in this research
are rasterized with an impressive 10 m resolution. In addition to these
datasets, we collected and processed data on landslide inventory for
2005–2019. It can be said that this is the most important dataset for
studies on building LSM based on ML algorithms. This entire dataset
was measured and analyzed by surveys at locations immediately after
a landslide from aerial images, drones, and field trips. The pre-
processing of this dataset for the ML models is marked by several
integral phases. The landslide inventory dataset is first rasterized to
match the grid cell size of the ten factors mentioned in this study,
which is 10 m×10 m. This high resolution indicates that a single
landslide event can be identified across multiple neighboring cells and
the number of landslide-affected cells depending on the scale and size
of the respective landslide event. Following rasterization, cell locations
affected by landslides are carefully identified, inventoried, and labeled.
Ten different data types are then stacked on the digitized landslide
data. Once layered, data from all the superimposed layers is extracted
for each grid cell. Based on their data attributes, these cells are
systematically classified as landslides or non-landslides.

After processing and analyzing the data, it was found that
approximately 7,188 grid cells recorded landslides, significantly
lower than the number of grid cells that did not. The imbalance
between these data classes is a typical problem in practice and can
result in biased algorithms that perform poorly on the minority class

(Fernández et al., 2018). This occurs because ML models may learn
to classify the majority class correctly while ignoring or incorrectly
classifying the minority class (Ma and He, 2013). To solve this
problem and boost the effectiveness of the ML models, this study
applied several solutions, such as the Tomek Links technique and the
Near Miss algorithm, to resample the data. The following
subsections go into further depth about these approaches. After
processing, the final dataset had 14,376 samples, comprising
7,188 landslide samples and 7,188 non-landslide samples.

2.2.1 Tomek Links technique
The Tomek Links technique is a data pre-processing technique

frequently utilized to improve the efficiency of ML algorithms. It is
based on the idea that a pair of samples near one other and belonging
to distinct classes are termed Tomek Links (Tomek, 1976). This
technique removes samples from the majority class for each pairing
while expanding the gap between the two categories. This can be
useful as noise and outliers often negatively affect the model’s
accuracy and reliability. This approach could be applied to any
ML issue, including classification, regression, and clustering.
Figure 4 depicts the resampling procedure of the Tomek Links
techniques.

2.2.2 NearMiss algorithm
The NearMiss algorithm is commonly employed to boost the

effectiveness of ML algorithms, especially for imbalanced datasets.

FIGURE 3
Several factor maps cause landslides.
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An imbalanced dataset is one in which the number of samples in one
category differs considerably from the number of samples in the
other. This frequently results in poor performance of ML
algorithms, as the minority class is often underrepresented and
may not be adequately learned by the model.

The NearMiss algorithm tackles this issue by selecting a subset of
samples from the majority group that is similar to samples from the
minority group based on a distance measure like Euclidean distance
(Zhang and Mani, 2003). The NearMiss algorithm has three
variants: NearMiss1, NearMiss2, and NearMiss3.
NearMiss1 chooses samples from the majority group nearest to
the minority group. NearMiss-2 and NearMiss-3 select samples
from the majority group that are furthest from the majority group
and closest to the minority group, respectively. Figure 5 depicts the
resampling procedure of the Near Miss algorithms.

2.3 ML algorithms

This study used 6 ML algorithms to classify areas as prone to
landslides or not prone to landslides based on a set of input features.
Each algorithm has its assumptions, strengths, and limits, and we
chose various algorithms to provide robust and reliable results. In

addition, the cross-validation technique was utilized to analyze the
performance of each algorithm and select the best-performing
algorithm based on a range of evaluation criteria, for instance,
PCC, recall, precision, and F1 score. Before using ML algorithms
to LSM, it is necessary first to gather a collection of labeled data, in
which both the input characteristics and the landslide susceptibility
(either “1″or “0″) are already established. ML models are then
trained using the aforementioned labeled data via appropriate
optimization algorithms.

2.3.1 LR
LR is a simple and popular classification method using linear

regression and the logistic function as its primary building blocks
(Cramer, 2002). In the context of LSM, LR is utilized to classify areas
as either prone or not prone to landslides based on a collection of
input features that are known to be associated with landslides. These
elements may include geological and topographic characteristics,
land use, land cover, and environmental factors like precipitation
and slope angle. The LR objective is to find the line that best matches
the data points and demarcates the two distinct groups of “landslide”
and “non-landslide”. The output is a probability that ranges between
0 and 1, which is utilized to categorize the data into one of the two
options. For instance, if the likelihood is higher than 0.5, the data is

FIGURE 4
Illustration of Tomek Links technique.

FIGURE 5
Illustration of NearMiss algorithm.
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classified as potentially affected by landslides. Still, if the probability
is lower than 0.5, the data is categorized as not having the potential
to be affected by landslides. Figure 6A briefly illustrates the LR
algorithm. The probability of the event occurring is expressed as:

p x( ) � 1

1 + e− β0+β1x1+β2x2+...+βnxn( ) (1)

Where β0, β1,. . . are the coefficients and x1, x2,. . . are the
predictor variables

2.3.2 GNB
GNB classification algorithm is based on Bayesian probability

theory and follows a Gaussian normal distribution, making it
suitable for continuous data classification tasks. It is a
straightforward and commonly adopted approach, mainly when
the dataset is large. The method assumes that the input
characteristics are independent of one other, called the “naive”
assumption. This indicates that the probability of each factor is
computed independently without considering the probabilities of
the other characteristics. Through the use of the maximum
likelihood estimate, it is possible to learn the possibility of the
input characteristics given the various classes. The output is the
likelihood that the data belong to each category, and the prediction is
taken from the type with the highest probability. GNB can be
sensitive to the assumptions of independence and normalcy of
the features, even though it is a straightforward and efficient
classification method that performs well on a wide range of
datasets. Figure 6B briefly illustrates the GNB algorithm. Given a
feature vector X � (x1, x2, ..., xn), the probability that a sample
belongs to class Ck is given by:

P Ck X|( ) � P X Ck|( )P Ck( )
P X( ) (2)

2.3.3 KNN
KNN is an ML algorithm used for classification tasks. The core

of this technique is rooted in the principle of instance-based
learning, wherein the categorization of a new data point is
established based on its similarity to prior data points within the

training dataset (Cover and Hart, 1967). The technique uses a
distance metric, for instance, Euclidean or Manhattan distance, to
estimate the distance from the new data point to all points. The K
closest points to the latest data are then selected, where K is a value
determined by the user. The new data point is assigned to the
category with the highest frequency among the K nearest points.
KNN is a prevalent choice for classification jobs because of its
simplicity and performance on various input formats. Figure 7A
briefly illustrates the KNN algorithm. The distance between two
points x and y in the Euclidean space is:

d x, y( ) �
���������������������������������
x1 − y1( )2 + x2 − y2( )2 + . . . + xn − yn( )2

√
(3)

2.3.4 SVM
SVM is a powerful and versatile classification algorithm that

works by finding the hyperplane that maximally separates various
classes in the feature space (Cortes and Vapnik, 1995). The
fundamental of SVM is finding a decision margin that maximally
divides the data points into multiple classifications. A set of support
vectors defines the decision boundary, the data points in the training
dataset nearest to the hyperplane. The relative position of the
support vectors determines the hyperplane position. The SVM
output is a score that indicates the likelihood of the data
belonging to one class or the other. SVM is a powerful and
effective classification technique suited for a wide range of
datasets, although it can be computationally expensive when the
training set is large. Figure 7B briefly illustrates the SVM algorithm.
The decision function is:

f x( ) � 〈ω, x〉 + b (4)
Where ω is the normal vector to the hyperplane and b is the

offset.

2.3.5 RF
RF is a classification algorithm incorporating numerous DT

predictions to make more accurate and robust predictions (Tin
Kam, 1998; Breiman, 2001). A DT is a tree-shaped model in which
each node represents an individual characteristic, each branch a

FIGURE 6
Illustration for (A) LR algorithm and (B) GNB algorithm.
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particular choice, and each leaf node a distinct category or value. RF
generates a collection of DT by bootstrapping a sample of the data
and randomly picking a sample of the input data for every split. This
means that each DT is constructed by drawing from a distinct
sample of the data and a unique subset of the input variables. In

classification tasks, RF determines the final classification by taking
the unweighted average of the predictions made by individual DTs
and selecting the most commonly predicted category. RF is a robust
and efficient method resistant to overfitting and can be used on
various datasets. Figure 8A briefly illustrates the RF algorithm. The
classification decision is made by majority voting:

YRF � f YT1,YT2, ...,YTn( ) (5)
Where YTi is the prediction of the ith tree.

2.3.6 XGB
XGB is a well-known gradient-boosting technique that may be

applied to classification and regression applications (Chen and
Guestrin, 2016). It is based on DT and is meant to form an
ensemble of DTs to make predictions based on data that has not
been seen before. An optimization approach that minimizes the loss
function generates a set of decision trees in XGB. This means the
DTs are formed to reduce the gap between the observed and
estimated values. XGB is a robust and efficient technique for
classification and regression work. It is a popular algorithm
because of its strong performance on a diverse range of data
formats and its capacity to deal with categorical and numerical
characteristics. Figure 8B briefly illustrates the XGB algorithm.
Given a differentiable loss function L(y, F(x)), where y is the
actual value and F(x) is the prediction, the prediction model is
updated iteratively:

Ft x( ) � Ft−1 x( ) + η∑n

i�1f i x( ) (6)

Where fi(x) is the prediction of the ith base leaner (typically a
DT), and η is the learning rate.

2.4 Hyperparameter tuning and model
validation

This study employed the grid search strategy for hyperparameter
tuning, a widely used approach that can effectively enhance the

FIGURE 7
Illustration for (A) KNN algorithm and (B) SVM algorithm.

FIGURE 8
Illustration for (A) RF algorithm and (B) XGB algorithm.

Frontiers in Earth Science frontiersin.org08

Le et al. 10.3389/feart.2023.1268501

120

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1268501


accuracy and reliability of the resulting LSMs. As its applicability to
small to medium-sized datasets, this method trains and evaluates an
ML algorithm for each set of hyperparameters defined within a
specified grid. For each model, the Python scikit-learn library
facilitates the implementation of the grid search method.

The final processed dataset for this study contained 14,376 samples,
with a balanced distribution of landslide and non-landslide instances
(7,188 each). By maintaining a balanced dataset, potential model bias is
mitigated, and the generalizability of prediction tasks is improved. The
dataset is separated into training and testing subsets, representing 80%
and 20% of the total dataset. Thus, the training set includes
11,500 samples (5,750 landslides and 5,750 non-landslides), while
the testing set consists of 2,876 samples (1,438 landslides and
1,438 non-landslides). A 5-fold cross-validation is performed
throughout the grid search procedure to fine-tune the models. This
ensures that the findings are not overly optimistic and can be
generalized to unseen data. The selected parameters for each ML
model used in the grid search are detailed in Table 1.

2.5 Performance measures

Assessing algorithm performance is a crucial stage in using ML
algorithms for LSM. It helps to identify the most accurate and
reliable algorithm for a given study and can provide valuable insights
into the strengths and limitations of the algorithms. This study used
various evaluation criteria, including PCC, precision, recall, and F1
score. PCCmeasures how well the model correctly classifies the data,
whereas recall estimates the proportion of true positive (TP)
predictions over total observed positive events. Precision
measures how well the model avoids false positives (FP), and the
F1 score is the harmonic average of precision and recall. We
estimated these evaluation metrics using a confusion matrix,

which compares each case’s predicted and actual values. A
confusion matrix comprises four main components: TP, FP, true
negatives (TN), and false negatives (FN). In this case, TP and RN
stand for the number of samples rightly categorized as positive and
negative. In contrast, FP and FN refer to the number of samples
wrongly classified as positive and negative. The following is a
description of these criteria.

Pr ecision � TP
TP + FP

(7)

Recall � TP
TP + FN

(8)

F1 score � 2*Pr ecision*Recall
Precision + Recall

(9)

PCC � TP + TN
TP + FP + TN + FN

(10)

PV � TP + FP( ). TP + FN( ) + FN + TN( ). FP + TN( )
TP + FP + TN + FN( )2 (11)

KC � PCC − PV
1 − PV

(12)

Where PCC means the percentage of correct classification (or
accuracy), PV implies the probability of random agreement, and KC
represents the Kappa coefficient.

3 Results

3.1 Comparison of six ML algorithms

To compare the performance of 6 ML algorithms for LSM in
Inje County, South Korea, we use several evaluation metrics,

TABLE 1 Parameter settings of each ML model used in the grid search.

Algorithm Parameter Value range Optimal value

LR C 0.01, 0.1, 1, 10, 100 10

max_iter 100, 1,000, 10000 100

KNN n_neighbors [2, 30] 6

weights uniform, distance distance

GNB var_smoothing [0, 1] 0.0029

SVM C 0.1, 1, 10, 100 100

kernel linear, poly, rbf, sigmoid rbf

gama scale, auto scale

RF n_estimators 50, 100, 200 100

max_depth 10, 50, 100 50

max_features auto, sqrt auto

XGB n_estimators 50, 100, 200 100

max_depth 10, 50 10

max_features auto, sqrt, log2 sqrt

TABLE 2 Performance statistics of six models.

Metrics LR GNB KNN SVM RF XGB

PCC 0.869 0.870 0.921 0.918 0.939 0.941

F1 Score 0.865 0.857 0.918 0.915 0.939 0.940

KC 0.738 0.739 0.843 0.836 0.878 0.881

FIGURE 9
Performance of six algorithms in terms of classification.
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including PCC, F1 score, and KC. The results of these evaluations are
presented in Table 2 and Figures 9, 10 below.

All algorithms generally have relatively high PCC, F1 score, and
KC values, indicating that they all performwell overall. However, the
performance of the various models differs slightly. RF and XGB
algorithms had the highest PCC values, with 0.939 and 0.941,
respectively. These models can correctly classify landslide-prone
areas with a high percentage, indicating that they can detect zones
with an increased susceptibility to landslides. Regarding the F1 score
metric, these models can balance the precision and recall well, as the
corresponding values for RF and XGB were 0.939 and 0.940,
respectively. This is important as it will reduce the number of
FNs and FPs. The KC metric also revealed a strong agreement
between the predictions of these models and actual observations,
and the models are not just labeling all areas as landslide-prone. The
best values for this metric were 0.878 and 0.881, belonging to RF and
XGB algorithms.

In contrast, the PCC and F1 score values of the LR and GNBwere
lower than those of the other algorithms (0.869 and 0.87,
respectively), and their KC values were also lower (0.738 and
0.739, respectively), which indicated that they might not perform
as well as the other models. This might be because these models are
simple, and they may be incapable of capturing the complex
relationships between the input variables and the landslide
sensitivity, as well as other models such as RF or XGB. It is
worth noting that the KNN and SVM algorithms also performed
pretty well, with PCC, F1 score, and KC values of 0.921, 0.918, and
0.843 for the KNN, and 0.918, 0.915, and 0.836 for the SVM,
respectively. These models were capable of recognizing regions
with a high risk of landslides. However, they are not as good as
RF and XGB regarding balancing the precision, recall, and
agreement between the model predictions and the observations.

Figure 10 illustrates the classification performance for the
landslide class of the ML models corresponding to the PCC,
precision, and recall criteria. Similar to the previous evaluation,
the LR and GNB models had lower accuracy and recall values, with
the earlier having scores of 0.894 and 0.947, while the latter had
numbers of 0.837 and 0.783, respectively. The KNN and SVM
algorithms depicted a similar pattern, with precision and recall
scores of 0.956 and 0.884 for KNN and corresponding numbers

for SVM of 0.947 and 0.886, respectively. XGB had the highest
precision value of 0.953 compared to other models, indicating its
proficiency in identifying TPs and having a low FP rate. On the other
hand, RF had the highest recall value of 0.929, demonstrating its
ability to identify TP and low FN rates.

3.2 Robustness and sensitivity analysis

To offer a more thorough assessment of the robustness of RF
and XGB models, an analysis of the confusion matrix and feature
importance was performed and shown in Figure 11, Figure 12.

Figure 11 illustrates the confusion matrix details for both
models. Out of 2,876 samples, the RF model yielded 1,365 TNs,
1,336 TPs, 73 FPs, and 102 FNs. In contrast, the XGBmodel resulted
in 1,373 TNs, 1,332 TPs, 65 FPs, and 106 FNs. Regarding PCC, both
the RF and XGB exhibited remarkable performance, registering
classification accuracies of 93.9% and 94.1%, respectively. The
precision and recall metrics underscore their efficacy, with RF
showing 94.8% and 92.9%, respectively, whereas XGB showcased
95.3% and 92.6%.

Feature importance is a metric of how much each factor
contributes to the predictions made by the model. According to
the data presented in Figure 12, the variable considered to be of
the utmost significance in both the RF and the XGB models was SD
(soil depth), which had a value of 0.246 and 0.285, respectively. This
means that soil depth was the most influencing variable when
determining landslide susceptibility in the research region. The
second most significant variable in the RF algorithm was CU, with
a value of 0.133, followed by TWI, with 0.144. In the case of the XGB
model, the CA variable was the second most important variable,
followed by the TWI variable, which had values of 0.144 and 0.125. BR
was the component with the lowest importance score in both models,
with a value of 0.032 in RF and 0.038 in XGB models.

3.3 LSM of Inje area

The LSM generated by the RF and XGB algorithms were
displayed in Figure 13, Figure 14, respectively. These maps were
based on the likelihood of landslides occurring for each grid cell,
which ranges from 0 to 1. As seen in these Figures, the LSM is
segmented into five levels following the categorization used by the
National Institute of Forest Science in South Korea. Among them,
level 4, with a range of probability [0.5–0.7], and level 5, with a range
of probability [0.7–1.0], are considered the most dangerous warning
levels. The visualized results of the two algorithms revealed a slight
difference in the landslide probability estimation for grid cells. This
distinction was particularly noticeable when comparing level 1
(0–0.1) and level 3. In contrast, there was not much difference
between the other levels, notably levels 4 and 5, each with a
significant possibility of landslides.

3.4 Current approach for LSM in South Korea

The current approach for LSM in South Korea focuses primarily
on using statistical techniques, particularly logistic regression

FIGURE 10
Classification performance of six models in terms of landslide
class.

Frontiers in Earth Science frontiersin.org10

Le et al. 10.3389/feart.2023.1268501

122

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1268501


analysis, to identify the association between input factors (Woo
et al., 2014). The following equations are used to calculate the
probability of a landslide hazard at a specific site. The LSM for
the Inje area was developed from these equations, as shown in
Figure 15.

X � −2.596 + 0.069*SL − 0.022*CL + 0.011*CU
+0.734*TWI − 0.594*TD + 0.006*SD
+AZ + BR + FC (13)

P � eX

1 + eX
(14)

According to Lee et al. (2015), this methodology achieved an
average accuracy of approximately 75.2%. When comparing this
method to theML approach presented in Section 3.1, the accuracy of
ML models was about 92% on average, which was a significant
improvement over the process that is currently being used. The PCC
and F1 scores of the 6 ML models range from 0.869 to 0.941 and
0.857 to 0.940, respectively. Among the six algorithms, RF and XGB
performed best, with accuracy and F1 values of [0.939–0.941]. The
results of this study indicated that using ML algorithms for LSM can
lead to more accurate and higher-resolution LSMs. It is essential to
point out that one of the benefits of adopting anML technique is that

it is capable of handling complicated interactions between input
variables and landslide susceptibility. These types of relationships
may be difficult to capture using statistical methods. Additionally,
the use of ML algorithms provides a valuable alternative to the
current statistical approach in South Korea.

4 Discussion

The ability of ML algorithms to enhance LSM in contexts such as
Inje County, South Korea, has been substantiated in this study. The
RF and XGB models performed particularly well in correctly
identifying landslide-prone areas, while KNN and SVM

FIGURE 11
Confusion matrix for RF and XGB.

FIGURE 12
Variable importance of RF and XGB.

FIGURE 13
LSM using RF algorithm.
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performed well. Nonetheless, algorithm selection for such
applications should be based on performance metrics and factors
like ease of implementation, model interpretability, and inherent
limitations (Zhou et al., 2021; Liu et al., 2023).

The poorer performance exhibited by LR and GNB resonates
with prior literature on their inherent limitations. For instance, LR

assumes a linear relation between predictor and response variables,
which often is not true in complex natural phenomena like
landslides (Pham et al., 2016). Additionally, its sensitivity to
outliers and imbalanced datasets hampers its ability to capture
intricate non-linear associations (Akinci and Zeybek, 2021).
Similarly, while GNB’s simplicity and computational efficiency
are well acknowledged, its assumption of input independence
often leads to its suboptimal performance, consistent with our
findings and those of Azarafza et al. (2021).

The comparable performance of KNN and SVM echoes prior
works. KNN, though simple in its construct and devoid of data
distribution assumptions, suffers when processing power is limited,
given its requirement to compute distances between every training
and new data point. The sensitivity of KNN to the choice of ‘K’ has
been reported by studies such as Sameen et al. (2020). SVM’s
strength lies in its ability to grapple with high-dimensional data
and intricate non-linear predictor-response relationships (Yao et al.,
2008). However, SVM’s sensitivity to kernel function choices and
the regularization value, as corroborated in our study, is a limitation
noted by Huang and Zhao (2018).

According to the findings of this research, the 2 ML
algorithms most useful for LSM are RF and XGB. Both
algorithms have the advantage of being capable of handling
high-dimensional data and non-linear correlations between
input characteristics and output. RF’s resilience to data noise
and outliers has been highlighted by Dou et al. (2019), whereas
XGB’s speed and robustness to missing data are mentioned in
Biswas et al. (2022). However, the potential computational
intensiveness of RF and the sometimes opaque results of XGB,
as observed in our study, are consistent with the findings of
Merghadi et al. (2020). Despite these limitations, both these
models hold promise for LSM, and the choice between them
should be reasonable, considering data characteristics and the
study’s objectives.

Adopting the ML-based approach for LSM holds substantial
practical implications for regions like South Korea. Enhanced
predictive accuracy not only aids in more effective resource
allocation for disaster prevention but also offers a robust
foundation for policymaking at both local and national scales.
Proactively identifying high-risk zones, authorities can prioritize
infrastructure development, design better evacuation strategies, and
optimize disaster response protocols. This research thus paves the
way for an integrated, data-driven approach to landslide
management, potentially safeguarding communities and
infrastructures against the devastating impacts of unforeseen
landslides.

Despite the promising outcomes of this research, it is crucial
to recognize its limitations. Data availability restricted our
study to a specific timeframe and region, potentially affecting
broader generalizations. Moreover, while the chosen ML
algorithms offer advanced predictions, their complexity could
pose challenges in real-time applications or when adapting to
other regions with distinct geological characteristics. Future
research could explore integrating diverse datasets for better
model training and investigating simpler yet efficient
algorithms. Additionally, cross-regional studies would be
invaluable in assessing the universal applicability of the ML-
based LSM approach.

FIGURE 14
LSM using XGB algorithm.

FIGURE 15
LSM using LR analysis.
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5 Conclusion

The application of 6 ML algorithms for LSM in Inje County,
South Korea, has revealed distinct efficiencies among the algorithms.
RF and XG perform particularly well in accurately classifying
landslide-prone areas, balancing precision and recall, and having
PCC values up to about 94%. The KNN and SVM models with a
PCC score of roughly 92% also performed well in correctly
classifying landslide-prone areas. The two models, LR and GNB,
have the lowest efficiency, corresponding to a PCC value of only
about 87%. Despite this, the results demonstrate that the ML
approach is superior to the existing statistical approach with
logistic regression, which has an accuracy of about 75.2%.

This study provides a valuable starting point for further research
into usingML techniques for LSM in South Korea and other regions.
The RF and XGB models are highly recommended for LSM usage in
South Korea. However, it is essential to consider the trade-offs
between the performance and simplicity of implementation and
interoperability. The efficiency of algorithms differs from location to
region for various reasons, including geomorphology, land uses, and
other factors.

The broader implications of this finding can potentially reshape
disaster management policies in South Korea. A shift from
traditional models to ML-based LSMs can facilitate more
accurate predictions, allowing authorities to pre-emptively
address and mitigate landslide risks in vulnerable zones. This
study will substantially impact the understanding of landslide
risk in Inje County. It will be valuable in developing effective
mitigation techniques for landslides in the place.
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The vulnerability and flood risk assessment of Bhitarkanika National Park in Odisha,
India, was conducted using a data-driven approachand amachine-based embedded
decision support system. The park, located in the estuaries of the Brahmani, Baitarani,
Dharma, and Mahanadi river systems, is home to India’s second-largest mangrove
environment and the world’s most active and diverse saline wetland. To evaluate its
vulnerability and risk, various threatswere considered,with a focus onfloods. Satellite
imageries, such as Landsat 8 OLI, SRTM digital elevation model, open street map,
Google pro image, referencemap, field survey, and other ancillary data, were utilized
to develop vulnerability and risk indicators. These indicators were then reclassified
into ‘Cost’ and ‘Benefit’ categories for better understanding. The factors were
standardized using the max-min standardization method before being fed into
the vulnerability and risk model. Initially, an analytical hierarchy approach was
used to develop the model, which was later compared with machine learning
algorithms (e.g., SVM) and uncertainty analysis indices (e.g., overall accuracy,
kappa, map quality, etc.). The results showed that the SVM-RBF machine learning
algorithm outperformed the traditional geostatistical model (AHP), with an overall
accuracy of 99.54% for flood risk mapping compared to AHP’s 91.12%. The final
output reveals that a large areaof BhitarkanikaNational park falls under high flood risk
zone. The Eastern coastal regions ofGovindapur, Kanhupur, Chinchri, Gobardhanpur
and Barunei fall under high risk zone of tidal floods, The Northern and western
regions of Ramachandrapur, Jaganathpur, Kamalpur, Subarnapur, Paramanandapur,
etc., Fall under high risk region of riverine floods. The study also revealed that the
areas coveredwithmangroves have a higher elevation and hence are repellent to any
kind of flood. In the event of a flood high priority conservation measures should be
taken along all high flood risk areas. This study is helpful for decision-making and
carrying out programs for the conservation of natural resources and flood
management in the national park and reserve forest for ecological sustainability
to support sustainable development goals (e.g., SDGs-14, 15).
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1 Introduction

In countries with subtropical climates like India, flash floods
are a common occurrence, especially during the monsoon
season. This particular sort of flood happens quickly, setting
it apart from other natural disasters that result in significant
economic loss and human casualties (Ruidas et al., 2022).
National Parks play a vital role in conserving the world’s
biodiversity, food security, and human health (Fernández and
Lutz, 2010; Li et al., 2012; Heidari, 2014; Wang et al., 2019). The
values of National Parks range from protecting natural habitats
and associated flora and fauna to maintaining the
environmental stability of its surrounding regions (Taylor
et al., 2011; Dawod et al., 2012; Schumann et al., 2018;
Yadollahie, 2019; Ullah and Zhang, 2020). The vulnerability
assessment has been one of the most discussed topics in recent
eras for the physical, biological, and social systems(Ouma and
Tateishi, 2014; Pourali et al., 2016; Bandi et al., 2019;
Langlentombi and Kumar, 2021). The vulnerability of a
system can be defined as the susceptibility to disturbances
determined by exposure to perturbations, sensitivity to
concerns, and the capacity to adapt (Nelson et al., 2010).
Bhitarkanika National Park is a Ramsar site with India’s
second-largest mangrove forest. It is known for its
mangroves, migratory birds, turtles, estuarine crocodiles, and
innumerable creeks and is one of Odisha’s best biodiversity
hotspots. This unique habitat consists of 62 mangrove species,
28 species of mammals, 280 species of birds, and 47 species of
amphibians and reptiles. It also includes the largest population
of saltwater crocodiles in India(Khan et al., 2020).

Excess water allocation for industries has become a
significant cause of concern for Bhitarkanika national park.
This extra allocation reduces freshwater discharge to the sea
(Hallegatte et al., 2013). The lack of normal freshwater flow in
the area has led to increased saline ingression upstream,
negatively impacting the local flora, fauna, and the livelihoods
of fishermen and farmers who depend on the Brahmani river.
Additionally, the region faces recurring challenges such as
floods, forest fires, and overfishing. Overfishing, in particular,
creates a food shortage for estuarine crocodiles and other species
in the area. The reduction in water discharge also has a direct
impact on the mangroves, which in turn affects the Gahirmatha
marine sanctuary within the national park. The increased water
salinity may prompt saltwater crocodiles to migrate from the
core sanctuary area to upstream regions, leading to conflicts
between humans and animals and causing disruptions for local
residents.

According to the Census data, in 1991, there were
311 villages with a population of 118,951 inhabitants in the
area. However, by 2011, the number of villages had increased to
312, with a population of 145,320. The total area covered by
these villages was 672 square kilometers, resulting in a
population density of 216 people per square kilometre. This
level of population density is relatively high for a National Park.
The flood hazards not only impact the ecosystem and natural
landscape of the area but also have adverse effects on human

settlements and their occupations (Dewan et al., 2007; Hallegatte
et al., 2013; Stefanidis and Stathis, 2013; Rahmati et al., 2016;
Farhadi and Najafzadeh, 2021; Parsian et al., 2021; SAMI et al.,
2021). The delicate ecosystem is under extreme pressure because
of the population increase.

Bhitarkanika National Park is situated between the
Brahmani and Baitarani rivers, which experience annual
flooding due to heavy rainfall in the area and the discharge
of floodwater from the Rengali Dam. Being located on the east
coast of Odisha, the park is highly susceptible to cyclones,
which result in storm surges and subsequent flooding of the
shorelines. During Cyclone Yaas in 2021, coastal fishing
villages in BNP were severely affected by tidal floods caused
by storm surges, resulting in significant damage to houses. The
majority of the population in the area relies on fishing,
agriculture, and apiculture for their livelihoods. Fishing
communities have settled near riverbanks and congregated
in fishing villages along the coast, putting themselves at
immediate risk during flooding events.

It is not only the human population that is affected by these
calamities; the wildlife in the area is also impacted. The estuaries in
the main mangrove area of BNP are home to approximately
1,700 estuarine crocodiles. During floods, their feeding grounds
become submerged, leading them to migrate outside the estuaries
and into river channels that pass through nearby villages. This
migration poses a significant risk to both the crocodiles and the
villagers.

Given the exponential increase in the number of flash flood
events, identifying flood-prone areas has become a top priority.
Mapping flash flood susceptibility can help mitigate the worst
impacts of such risk phenomena. Therefore, there is an urgent
need to develop accurate models for predicting flood susceptibility,
which can aid in the creation of more effective flood management
measures (Ruidas et al., 2022).

The main objective of this study is to compare traditional
decision support models like AHP with machine learning
algorithms for flood vulnerability and risk assessment in the
Bhitarkanika National park. This study studied data-driven
approaches (e.g., Sentinel 2A Multispectral, SRTM digital
elevation model, open street map, Google Pro image,
reference map, field survey, and other ancillary data and
machine-based data approaches. The study is divided into
seven sections, e.g., introduction, study area, datasets and
software, methods, results and discussion, conclusion and
recommendation, and references.

2 Selection of the study area

The Bhitarkanika National Park is situated between 86°46′to
87°01′East longitude and 20° 30′to 20° 48′North latitude in
Brahmani and Baitarani deltaic region of the district of
Kendrapara, Odisha, in the east coast of India (Figure 1). This
area has been declared a proposed sanctuary since 1975 because of
its ecological, faunal, floral, geomorphologic and biological
association and importance. On its eastern side lies the Bay
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of Bengal; to its north is the river Dhamara; to its west is the land
mass of Kendrapada District and to its south lies the Mahanadi
river.

The rich alluvial deposits and gently sloping topography
of Bhitarkanika support rich flora and fauna and are well known
for their ecological and biological diversity. Mangroves cover a
core area of 145 sq. km. This core area was declared a National
Park in 1998 (Kumar et al., 2015). In 2002, Bhitarkanika was
designated as a “Ramsar site,” recognizing its status as a
Wetland of International Importance due to its abundant
biodiversity and ecological significance. The park can be
accessed via two entry points: Rajnagar and Chandbali.
Rajnagar is approximately 130 km away from the state
capital, Bhubaneswar, while Chandbali is about 150 km away.

Bhubaneswar is well-connected by rail and air to other cities in
India, making it convenient for visitors to reach Bhitarkanika
National Park.

3 Methodology

3.1 Datasets and software

In this study, Landsat TM5 and Landsat8 OLI satellite data
were obtained from Google Earth Engine using JavaScript
codes. The Shuttle Radar Topography Mission (SRTM) Void
filled Digital Elevation Model was obtained from the USGS Earth
Explorer portal (Table 1). Digital Elevation Model (DEM) is the

FIGURE 1
Study area map.

TABLE 1 Datasets used.

S. No. Satellite/Digital elevation model Resolution (meter) Spectral bands Date of acquisition

1 Landsat 8 OLI 30 9 2021-05-18

2 Landsat TM 30 7 2000-01-10

3 SRTM DEM 30 1 2000-02-11

This study used QGIS, 3.16, ArcGIS, 10.8, google earth engine, Google Earth Pro, Open Street map, android-based GPS, microsoft office, etc.
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digital representation of the land surface elevation and hydro-
geomorphic parameters with respect to any reference datum
widely used in flood disaster and risk modeling (Li et al.,
2012; Stefanidis and Stathis, 2013; Balasubramanian, 2017;
Ullah and Zhang, 2020). The SRTM DEM of the year
2000 was used for generating various flood vulnerability and
risk indicators like elevation, slope, and water depth, etc., and
further processing these to form the vulnerability and risk map
(Ouma and Tateishi, 2014; Pourali et al., 2016; Rahmati et al.,
2016; Schumann et al., 2018; Bandi et al., 2019; Zhang et al.,
2019). In addition, google earth image, open street map, and field
survey (2022) were used to assess the models accurately.

3.2 Methods

The following methods were employed to achieve the main
objective of this study (Figure 2). The main objective of this study is
to compare traditional decision support models like AHP with the
machine learning algorithm for flood vulnerability and risk
assessment in the Bhitarkanika National Park (BNP). The
methods are explained below as follows.

3.2.1 Background of machine learning algorithms
Machine Learning Algorithms like SVM, RF, Decision Tree,

etc., have turned out to be efficient methods for research
in today’s date due to their impeccable accuracy and
reliability. Support Vector Machine (SVM) is a type of
supervised machine learning that can effectively identify
intricate patterns in noisy and complex datasets, and due to
their simplicity and adaptability, they can achieve balanced
predictive accuracy even in situations where there are limited
samples (Hongmao, 2016). Random Forests (RF) improve
prediction accuracy and efficiency by randomly selecting
features for each decision split, reducing correlation between
trees, and increasing the diversity of the model(Breiman, 2001).
Decision Tree (DT) is an inductive algorithm used for
classification and prediction, where classification rules are
represented as decision trees derived from a set of disorderly
and irregular instances, and the tree is constructed in a top-
down recursive manner by comparing attributes between
internal nodes and making decisions based on different
attributes, ultimately leading to a conclusion at the leaf nodes
(Dai et al., 2016). The significant advancements in machine
learning and artificial intelligence, including logistic regression,

FIGURE 2
Methodology flowchart.
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decision trees, artificial neural networks, random forests, and
support vector machines, have gained immense importance due
to their ability to handle large datasets and deliver high levels of
accuracy (Ruidas et al., 2021).

Several researchers have used ML algorithms to create
remarkable research projects in variety of sectors such as
(Ruidas et al., 2022) in Hydrogeochemical Evaluation of
Groundwater Aquifers (Ruidas et al., 2022), in water
resources vulnerability assessment (Ruidas et al., 2022), in
flood-susceptibility assessment (Ruidas et al., 2021), in
Characterization of groundwater potential zones (Jaydhar
et al., 2022), in Hydrogeochemical evaluation and health
risk from arsenic and fluoride, etc.

The use of ML algorithms in disaster prediction,
Vulnerability and risk assessment, mitigation has become a
sought-after procedure in the current scenario and this
research has used the same to generate comprehensive risk
and vulnerability zones of the fragile Bhitarkanika National
Park region. Pham et al. (2019) in their research used hybrid
machine learning models, including bagging (BA), random
subspace (RS), and rotation forest (RF), with alternating
decision tree (ADTree) as base classifier for the spatial
prediction of Landslides (Parvin et al., 2022). in their study
used 3 ML models, namely, Bayesian logistic regression (BLR),
the artificial neural networks (ANN), and the deep learning
neural networks (DLNNs) for flood vulnerability assessment in a
densely urbanized city. Opella and Hernandez (2019) in their
study generated flood susceptibility and probability map using
SVM and obtained a robust flood map that clearly outperforms
the traditional methods. Xiong et al. (2019) in their study
adopted SVM model for flash flood vulnerability assessment
and mapping in China.This study uses the SVM-RBF model
to generate a robust vulnerability and risk Map of the
Bhitarkanika National Park region taking in view previous
studies, which have used the same model for its impeccable
accuracy. The map generated using SVM-RBF exhibits an
accuracy of 99.54% with a complementing Kappa Index of
99.18% compared to the 91.12% accuracy using traditional
AHP, thus solidifying the SVM-RBF model as a formidable
classification ML classification.

3.2.2 Pre-processing
Pre-processing of data, such as satellite imagery and digital

elevation models (DEM), is crucial for the processing,
analysis, and modeling in this study. In order to map the land
use and land cover (LULC) of Bhitarkanika National Park,
satellite imagery underwent pre-processing steps including
band stacking, clipping, mosaicking, and normalization using
the min-max scaler. These pre-processing tasks were performed
using QGIS. Similarly, the SRTM DEM was pre-processed using
both ArcGIS and QGIS. The DEM was initially clipped to the
study area by applying a mask. Auto co-registration and filling
techniques were then employed using the hydrology toolbox
in ArcGIS and QGIS to ensure alignment with the LULC data
and to address sinkholes, which are often not captured by
satellites. The DEM was further reclassified to generate an
elevation map, and the slope was calculated using the Arc
Toolbox.

These pre-processing steps were undertaken to ensure the data
was appropriately prepared for subsequent analysis and modeling in
the study.

3.2.3 Land use/land cover classification
Land use and land cover change have become central to

current strategies for managing natural resources and
monitoring environmental changes(Kaul and Sopan, 2012).
The standard land use and land cover (LULC) classes
(Table 2) were selected based on the literature review and
local LULC classification scheme. Based on the previous
literature it was observed that uniform LULC classification
scheme is missing in disaster study (Hao et al., 2022).
Landsat 8 Operational Land Imager (OLI) and Landsat
5 Thematic Mapper (TM) images of 2021 and 2000,
respectively, with cloud cover of less than 2%, were obtained
from the google earth engine using JavaScript codes. Further
processing was done in QGIS, including feature extraction(e.g.,
NDVI, NDBI, etc.), classification, post-processing, accuracy
assessment, and change analysis.

The Normalized difference Vegetation Index (NDVI) is widely
used in classifying land use/cover which was calculated using
following formula (Ruidas et al., 2021):

NDVI � NIR − RED

NIR + RED
(1)

The value of the NDVI varies in between +1 and −1. NDVI is
equal to +1 shows healthy vegetation while −1 shows waterbodies. In
addition, Normalized Difference Built-up Index provide vivid
information of the built-up which was calculated using following
formula (He et al., 2010).

NDBI � Band5 − Band4
Band5 + Band4

(2)

Higher the value of NDVI shows more the built-up
information which lower values shows vegetation and other
land use classes.

Table 2 shows the training and test samples used for the training
and validation of the classification model.

There are various types of classifiers in machine learning (ML).
This study uses the SVM classifier with Radial Basis Function
(SVM-RBF) via the OTB toolbox to generate LULC maps
and the flood risk map (Deroliya et al., 2022). This is because
machine learning algorithms outperform any complex decision-
making compared to other traditional algorithms(Farhadi and

TABLE 2 Training and test samples.

LULC_ID LULC_CLASS Training samples Test samples

1 Built-up 50 50

2 Mangroves 50 50

3 Agriculture 50 50

4 Water Bodies 50 50

5 Barren Land 50 50
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Najafzadeh, 2021; Deroliya et al., 2022). This study selected SVM-
RBF because this algorithm is robust for complex problems
compared to the other machine learning algorithms such as
Random Forest, Decision Tree, etc (Ruidas et al., 2021; Ruidas
et al., 2022). Two LULC maps (e.g., 2021 and 2000) were generated
using the image classifier function in the OTB tool. The accuracy
assessment of all the maps generated using ML was done by
computing their confusion matrix using the OTB tool. Change
detection analysis, one of the import approaches, is incorporated
with the flood risk analysis (Gharagozlou et al., 2011; Lawal et al.,
2014) carried out between the 2000 and 2021 LULC maps using the
post-processing algorithm and Raster Unique Values Report
function in QGIS.

3.2.4 Flood depth calculation
When floods hit inhabited areas, significant losses are usually

registered in terms of both impacts on people (i.e., fatalities
and injuries) and economic impacts on urban areas,
commercial and productive sites, infrastructures, and
agriculture. To properly assess these, several parameters are
needed, among which flood depth is one of the most
important as it governs the models used to compute damages
in economic terms(Cian et al., 2018). In this study, the Raster
calculator was used in ArcGIS to analyze flood/water depth
manually. The inundation depth is estimated to be 2.5 m
through multiple literature reviews and field surveys. Based on
the last 20 years’ flood inundation information, the binary mask
was created as one and none flooded area as zero.

Output Raster � DEMxBinaryMask (3)
The result gave the elevation values of DEM for areas, which are

flooded, and zeros for non-flooded areas. Consequently, the highest
elevation value represents the water table.

WaterDepth � Value water table x BinaryMask (4)
Where, value water table � 2.5m

The resultant raster thus obtained represents the Water/Flood
depth of the study area.

3.2.5 Euclidean distance from the coast and river
The shortest straight-line distance connects all sites or the

Euclidean distance (Zhang, 2019). Geoprocessing analysis is
performed to fill sinks (pits) and to generate data on flow
direction, flow accumulation, catchments, streams, stream
segments, and watersheds. These data are then used to develop a
vector representation of catchments and drainage lines from selected
points that can then be used in network analysis (Soni, 2012). To
calculate the Euclidean distance from the river, the process begins
with stream delineation using the hydrology toolbox in ArcGIS. This
involves using the fill tool followed by the flow direction tool, which
determines the downslope direction of each cell and helps identify
the flow paths of the streams. The flow accumulation tool is then
applied to estimate cumulative flow, representing the total weight of
cells flowing into each downslope cell. By setting a threshold value,
the number of streams included in the final layer can be controlled.
Lower threshold values result in more streams, while higher values
reduce the number of streams.

Once the streams are delineated, the Euclidean distance tool is
used to calculate the distance from the stream. Similarly, the
coastline of BNP is manually digitized, and the Euclidean
distance tool is applied to determine the distance from the
coast. These steps enable the calculation of the Euclidean
distance from both the river and the coastline, providing
valuable information for further analysis and modeling in the
study.

3.2.6 Flood hazard mapping
The goal of flood hazard assessment is to understand the

probability that a flood of a particular intensity will occur over
an extended period of time. Hazard assessment aims to estimate this
probability over periods of years to decades to support risk
management activities(Wright, 2015). Intensity is typically
defined as the sum of flood depth and horizontal flood extent.
However, depending on the circumstance, other intensity
parameters like flow velocity and flood duration may also be
significant (Stefanidis and Stathis, 2013; Farhadi and Najafzadeh,
2021; Deroliya et al., 2022). Hydrological models like water depth
and other factors like frequency and area of Impact were used to
estimate the flood hazard.

HS � FS xAIS x IS (5)Where,
HS = Hazard Score
FS = Frequency Score
AIS = Area of Impact Score
IS = Intensity Score

3.2.7 Vulnerability mapping
Aside from flood danger, another critical factor in flood risk

is flood vulnerability. Understanding a system’s vulnerability
will help you predict how floods may damage it. Examples of
potential systems include physical structures like homes or
bridges that might sustain damage or destruction, a company
or service whose supply chain might be disrupted, or a
community that might experience fatalities, property losses,
and detrimental health effects following a flood(Wright, 2015).

TABLE 3 Indicators.

Cost indicator Benefit indicators

Water Depth Elevation, Slope, Distance from Coast, Distance from River

TABLE 4 Normalised weight.

Indicators Normalized weight

Elevation (F1) 0.30

Distance from River (F2) 0.30

Distance from coast(F3) 0.15

Water Depth(F4) 0.15

Slope (F5) 0.10

Total 1.00
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Various indicators are used to estimate the vulnerability of
BNP. The indicators used are elevation, slope, water depth,
distance from the coast, and distance from the river (Stefanidis
and Stathis, 2013; Farhadi and Najafzadeh, 2021). The
indicators have been reclassified into ‘Cost’ and ‘Benefit’ to
better understand the assessment (Table 3).

Further, all the cost and benefits indicators are normalised, and
the AHP model was applied to achieve flood vulnerability of BNP
using formula 6-7 in the raster calculator tool in ArcGIS.

1. Normalisation

The practice of making specific data that are separated by time
periods identical, such as atmospheric correction or pixel
resampling, so that an acceptable change may be observed
without being impacted by other factors is referred to as
normalisation.

Cost indicator:

Normalisation � 1 − Indicator − indicator min

indicator max – indicator min
(6)

Benefit Indicator:

Normalisation � Indicator − indicator min

indicator max – indicator min
(7)

2. Analytic Hierarchy Process- Weight Overlay Analysis

Analytic Hierarchy Process (AHP) is a robust multi-criteria
decision-making (MCDM) was used to achieve the weight of the
factors for the overall decision-making (Ouma and Tateishi, 2014;
Rahmati et al., 2016; Kumar et al., 2021; Parsian et al., 2021). This
model is widely used in raster-based GIS overlay analysis in several
applications such as land suitability analysis, flood risk and
vulnerability analysis, zoning, and site suitability analysis
(Mustak et al., 2018). In AHP, the following sub-processes were
employed to derive the weight of the indicators (Stefanidis and

FIGURE 3
LULC maps, 2000 and 2021.

TABLE 5 LULC statistics.

LULC ID LULC
class

Area in sq. Km
(2000)

Percentage of area
(2000) (%)

Area in sq. Km
(2021)

Percentage of area
(2021) (%)

Change
in (%)

1 Built-Up 1.94 0.3 13.84 2.8 2.5

2 Mangroves 139.49 28.40 165.74 33.75 5.3

3 Agriculture 183.60 37.39 136.00 27.69 9.7

4 Waterbodies 88.31 17.9 67.50 13.74 4.2

5 Barren land 77.89 15.86 108.22 22.04 6.1
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Stathis, 2013), e.g., 1) selection of indicators and arrange in the
square-matrix, 2) indicators were compared, and relative
importance given based on the Saaty’s nine-point scale of
absolute number, 3) normalized weight of the individual
indicator was derived using the geometric mean method
(Table 4). The weighted overlay analysis is one of the most
used methods to address multi-criteria issues like site selection,
land suitability analysis, and assessing model appropriateness
(Kumar et al., 2021).

The sum of the normalized weight is 1. After the calculation of
weights, raster calculator was used to derive the final vulnerability index
VI), which varies from 0 to 1 using the following Formula 6. The VI,
equal to 0, shows low vulnerability, while 1 shows high vulnerability.

Vulnerability � F1 x 0.3( ) + F2x 0.3( ) + F3x 0.15( )(
+ F4 x 0.15( ) + F5x 0.1( )) (8)

The final output raster is symbolised using the quartile method,
and the resultant raster is the vulnerability map.

FIGURE 4
Water/flood depth map.

TABLE 6 Water depth statistics.

ID Class (m) Flood hazard Area in sq. km Percentage (%)

1 0 No Hazard 383.92 78.00

2 0.5 Low 47.00 9.5

3 1.5 Medium 5.18 1.05

4 2.5 High 55.14 11.23
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3.2.8 Flood risk mapping
The most common approach to define flood risk is that it is the

product of hazard, i.e., the physical and statistical aspects of the
actual flooding (e.g., the return period of the flood, extent, and depth
of inundation, and flow velocity), and the vulnerability, i.e., the
exposure of people and assets to floods and the susceptibility of the
elements at risk to suffer from flood damage(Serda et al., 2002). After

calculating the Flood Hazard and flood vulnerability, it becomes
relatively simpler to calculate the Flood Risk.

FloodRisk � FloodHazard xFloodVulnerability (9)
The hazard and vulnerability maps produced before are

normalised first and then multiplied using the raster
calculator tool. The resultant raster gives us the flood risk

FIGURE 5
Elevation Map.

TABLE 7 Elevation statistics.

Elevation in meter Flood hazard Area sq. km Percentage (%)

0-4 High 233.37 47.5

4-6 Medium 148.58 30.14

6-23 Low 109.27 22.36
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map of BNP, which is further classified into High, Medium, and
low based on the corresponding intensity value.

4 Results and discussions

4.1 Land use land cover

The below figures show the Land Use Land Cover of BNP in
2000 and 2021, respectively. A stark difference can be seen in the
LULC maps of 2000 and 2021. The difference is explained in detail in
Figure 3 and Table 5.

Over the years, significant changes have been observed in the
areal extent of various classes. The built-up area has experienced
exponential growth, expanding from 1.94 Sq. km in 2000 to nearly
14 Sq. km in 2021. This alarming trend highlights the

encroachment of human settlements and related activities into
this biosphere reserve. The increase in built-up areas not only
signifies a rise in population but also amplifies the vulnerability to
floods by intensifying the hazard factor. However, it is worth
noting that the area covered by mangroves has seen a positive
development, expanding by 26.25 Sq. km. This growth can be
attributed to the conservation efforts of the Government of Odisha,
as well as the active involvement of local forest dwellers and
naturalists.

The area under agriculture has significantly decreased due to
salinity ingress, leading to an increase in barren land. This
decline in agricultural activities is a result of the rapid growth
of aquaculture activities in BNP and salinity ingress. The
number of aquaculture ponds in BNP has been increasing at
an alarming rate. The maps above illustrate the significant
expansion of aquaculture ponds in just 20 years, primarily
concentrated in the north-eastern areas of the national park.
Interestingly, as the number of artificial aquaculture ponds has
risen, the area covered by water bodies has decreased by
approximately 20 sq. km. This reduction is attributed to the
drying up of estuaries on the eastern coast near the Gahirmatha
Marine Sanctuary, which can be attributed to anthropogenic
activities and climate change.

4.2 Cost indicators

4.2.1 Flood/water depth
As observed from the resultant map, a substantial area of

BNP has a water depth of 0 m constituting to 383.92 sq. km and
78% of the total area (Figure 4). This area represents
minimal flood hazard. An area of 47 sq. km or 9.5% of the
total area has a water depth of 1 m representing low flood
hazard. A water depth of 1.5 m is observed across 5.18 sq. km
or 1.05% of the area representing a medium flood hazard.
The Brahmani and Dharma river systems, as well as the
areas of Ramchandrapur, Jagannathpur, Padmanavpur,
Narayanpur, Saradaprasad, Paramanandpur, and Mohanpur,
exhibit a water depth of more than 2.5 m covering an area
of 55.14 sq. km or 11.23% of the total area (Table 6).
These areas are most prone to flooding and have a high flood
hazard.

4.3 Benefit indicators

4.3.1 Elevation
BNP has a maximum elevation of 23 m. The lower the

elevation higher is the risk of getting affected by flood and

FIGURE 6
Slope Map.

TABLE 8 Slope statistics.

Slope class (degree) Flood hazard Area sq. km Percentage (%)

0-1.39 High 131.15 26.71

1.39-2.09 Medium 188.14 38.31

2.09-19.72 Low 171.71 34.97
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vice versa. As observed in the elevation map, all the areas under
mangrove vegetation have a medium to high elevation, which
makes these areas resilient to flooding (Figure 5; Table 7). The
areas surrounding the mangroves and the riverbanks
subsequently have lower elevations. The areas near the coast
also have a lower elevation, excluding those covered by
mangroves.

4.3.2 Slope
The slope is the most crucial aspect of hydrology since

it directly affects surface runoff and floods. Since low-
elevation locations often have a gentle or low-level slope (0-
1.39 m), they are more susceptible to flooding and waterlogging
because steep slopes generate more incredible velocity than
flat or gentle slopes and may dispose of runoff more quickly.
Runoff from a level or gently sloping land is collected and released
gradually. In contrast to high-gradient slopes, low-gradient slopes

at lower reaches are more susceptible to flooding (Ramesh and
Iqbal, 2022).

The BNP area has varied slope values and is unevenly distributed
(Figure 6; Table 8). A large area of the national park appears to have
low-medium slope values (1.39-2.09°). High slope values (2.09-
19.72 m) appear to be scarce and scattered.

4.3.3 Distance from the river
The result was obtained using the Euclidean distance tool in

ArcGIS. The BNP area is bordered by three rivers: Brahmani,
Baitarani, and Dharma. The Dharma River is formed at the
confluence of the Brahmani and Baitarani Rivers. The Brahmani
River covers a significant portion of the riverine area within BNP. It
both surrounds and cuts through the national park, eventually
flowing into the Bay of Bengal. As a result, many areas in BNP
are located near the riverbanks and are susceptible to flooding. The
geography of BNP is characterized by its surrounded by rivers and
the ocean on all sides.

.The map produced is classified into three classes: High
Proximity (<956.4 m), Medium Proximity (956.40-2646.30 m),
and Low Proximity (>2646.30 m) (Figure 7; Table 9). The map
displays the surrounding areas of Praharajpur, Gobardhanpur,
Raj Nagar, Ramchandrapur, Govindpur, Subarnapur, as well as
the central villages of Balabhdrapur, Purushottampur, Gupti,
Padmanavpur, Jaganaathpur, and others. These areas are
situated along the riverbanks of the Brahmani and Dharma
rivers, making them highly proximate to these water bodies.

4.3.4 Distance from the coast
The Bay of Bengal lines the whole eastern area of BNP.

This Proximity to the sea makes the coastal areas of BNP
extremely vulnerable to tidal floods, especially during
storm surges and tsunamis. Added to that, the Bay of Bengal is
very prone to cyclones. The Gahirmatha Marine Sanctuary
is shielded from such degradation due to the presence
of mangroves. The map produced is classified into three classes:
High Proximity (<4418.60 m), Medium Proximity(4418.60-
8764.90 m), and Low Proximity (>8764.90 m). The coastal
areas of Paramanandapur, Karanjia, Kanhupur, Gupti, Barunei,
Satabhaya, Pentha, Jamboo, Batighar, Suniti, Kansarbadadandua,
Ramanagar, and Baulakani all fall under the high proximity
class and are highly vulnerable to tidal floods (Figure 8; Table 10).

4.4 Flood hazard

Thismap indicates all areas with a high flood hazard and those with
a low flood hazard. The higher the flood hazard greater the probability
of flood and vice versa. This map is classified into five classes—Streams,

FIGURE 7
Distance from river.

TABLE 9 Distance from the river statistics.

Distance class (metre) Flood hazard Area in sq. km Percentage (%)

High Proximity High 159.85 32.4

Medium Proximity Medium 164.95 33.4

Low Proximity Low 166.24 34.2
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High, Medium, Low, and no hazard. As can be seen from the resulting
image, an area of 55.18 sq. km (11.23% of the total area) is covered by
the Brahmani and Dharma river systems, as well as the localities of
Ramchandrapur, Jagannathpur, Padmanavpur, Narayanpur,
Saradaprasad, Paramanandpur, and Mohanpur, these regions have a
high flood hazard hence are the most flood-prone regions (Figure 9;
Table 11). An area of 4.11 sq. km or 0.8% of the total area falls under the
medium hazard region and exhibits a moderate threat of floods. Low
flood hazard areas include the localities of Sailendra Nagar, Baghamari,
Birabhanjapur, Govindapur, Kanhupur, etc., covering an area of
34.08 sq. km and 6.9% of the total area. A sizeable portion of the
BNP is 383.39 Sq. km or 78% of the entire area has no flood hazard.

4.5 Flood vulnerability

The above map represents the area of BNP classified in
terms of vulnerability to flooding. It is classified into four

classes: waterbodies, high, medium, and low, represented by
blue, Red, Yellow, and Green, respectively. As the map
indicates, a substantial part of BNP is under a high
vulnerability zone. The eastern coast along the Bay of Bengal
and the northern and eastern regions of BNP is the most
vulnerable zones of BNP.

The High vulnerability areas include the villages of Karanjia,
Praharajpur, Pentha Beach, Jaudia Teisi Mauza, Nuagan,
Paramanandapur, Kanhupur, Satavaya, Bagapatia, Balunga
Patia, Gupti, Rajrajeshwaripur, Jagannathpur, Padmanavpur,
Balarampur, Junus Nagar, Sila pokhari, Purusottampur,
Narayanapur, Sir Rajendrapur, Banipal, Pravati, Ahirajpur,
Sailendra Sarai and Trilochanpur (Figure 10; Table 12). This
zone covers an area of 118.68 Sq. Km and 24.28% of the
total area. The medium vulnerability zone covers an area of
165.94 Sq. km and 33.9% of the entire area. This zone
includes villages like Subarnpur, Birabhanjapur, Badapal,
Bimisnagar, Chakradharpur, Balarampur, etc. The low
vulnerability region covers an area of 137.43 Sq. Km and
28.12% of the total area and mainly includes the mangrove
forests of BNP.

4.6 Flood risk

The study findings reveal that a significant portion of
the BNP area falls within a high flood-risk zone. The map
provided in Figure 13 classifies the area into four categories:
Waterbodies, High, Medium, and Low, represented by the
colours Blue, Red, Yellow, and Green, respectively. The
Bhitarkanika National Park region has a low elevation and a
gentle slope, with the Brahmani River and the Bay of Bengal
surrounding it on all sides. This geographical configuration puts
BNP at a heightened risk of floods and coastal areas being
submerged due to future sea-level rise. The study indicates
that the eastern regions of BNP, particularly those near the
riverbanks or the coast, are classified as high flood-risk zones.
The coastal villages of Govindapur, Kanhupur, Mohanpur,
Paramanandapur, Satavaya, Bankua, Nuagan, Baghadiya,
Jaudiya, Joginatha, and Sailendra Sarai are located within
these high-risk regions, susceptible to tidal floods and sea-
level rise. This is further proven in other studies that coastal
region of BNP are projected to be submerged due to sea-level rise
by the year 2050 (Mishra et al., 2021).

These villages, such as Saradaprasad, Trilochanpur,
Kamalpur, Badhadia, Subarnpur, Sailendra Nagar, Talchua,
Sourendrapur, Baghamari, Narayanpur, Sir Rajendrapur,
Pravati, Gopaljew Patana, Ajagar Patia, Purusottampur,
Junus Nagar, Panchu Palli, Ramachandrapur, Ghadiamal,
Padmanavpur, Jagannathpur, Balarampur, Jharpada,

FIGURE 8
Distance from coast.

TABLE 10 Distance from the coast statistics.

Class Flood hazard Area in sq. km Percentage (%)

High Proximity High 164.42 33.5

Medium Proximity Medium 161.44 32.94

Low Proximity Low 165.47 33.7
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Rajagarh, parts of Rajnagar, Praharajpur, and Kadalichua, are
all located along the banks of the Brahmani and Dharma Rivers.
These villages are situated within the high-risk zone for riverine
floods. Additionally, villages like Balarampur, Gajrajpur,
Mahinsasur, Gobindapur, Amanapari, Bhitargarh, Sribantapur,
Tikayat Nagar, Rabindrapur, and others fall within the medium

flood risk zone. This zone covers an area of 171.51 sq. km,
accounting for 35.10% of the total area. These areas have a
moderate risk of flooding, but they also have the potential to
transition into high-risk zones in the coming years.

The mangrove forests in BNP, located primarily along the
estuaries, have the highest elevation. These areas experience
daily fluctuations in water levels during high and low tides,
making them naturally resistant to floods. Instead, these
mangrove areas serve as a protective barrier, shielding the
nearby regions from storms and floods. As a result, the
majority of the low flood risk zone comprises mangrove
forests along BNP and Gahirmatha WLS. Other villages in
the area, such as Barunei, Kantia Khai, Rajendranarayanpur,
Krishnanagar, Kanaknagar, Baghua, Dighi, Madhupur, and
others, also fall within this low-risk zone and are not
immediately susceptible to floods. This low-risk zone covers
an area of 132.39 Sq. km and constitute 27.09% of the total area
(Figure 11; Table 13).

FIGURE 9
Flood hazard map.

TABLE 11 Flood hazard statistics.

Hazard level Area in sq. Km Percentage (%)

Streams 55.18 11.23

High 14.24 2.9

Medium 4.11 0.8

Low 34.08 6.9

No Hazard 383.39 78.08
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FIGURE 10
Vulnerability map using AHP-weight overlay analysis.

TABLE 12 Vulnerability statistics.

Vulnerability classes Flood risk Area in sq. km Percentage (%)

Waterbodies N/A 66.48 13.60

High High 118.68 24.28

Medium Medium 165.94 33.90

Low Low 137.43 28.12
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4.7 Flood risk mapping using machine
learning

Figure 12 has been generated using machine learning
algorithms (SVM-RBF). This output provides better results than
the results obtained using conventional methods. The risk zones
created using this method are more distinctive and easier
to interpret. The flood risk map developed by machine
learning algorithms provides accurate in terms of overall
accuracy and kappa value (Table 14). In addition, the
machine learning-based flood risk map shows better visual
quality regarding zoning, smoothness and aerial extent as
compared to conventional methods (Figure 11; Figure 12;
Figure 13; Table 13).

The below figure shows a side-by-side comparison of
both maps.

In today’s time machine-learning algorithms due to their
association with Artificial Intelligence (AI) are widely used for
vulnerability mapping as seen in a number of studies(Avand
et al., 2021; Liu et al., 2021; Ghosh et al., 2022). The result of the
present study shows that machine-learning algorithms
outperform Weight Overlay Analysis methods based on the
map’s precision, kappa index, and overall quality. This is clearly
showcased in the accuracy assessment conducted using the OTB
tool. It has been proved repeatedly in other studies too that SVM
is the most reliable ML algorithm for flood zonation(Wu et al.,
2019; Xiong et al., 2019).

5 Mitigation strategies and conclusion

5.1 Mitigation for human settlement

Given the significant economic investment needed for
flood mitigation measures globally, as well as the unique
nature of floods requiring targeted strategies, it is crucial to
pay considerable attention to the performance of these
strategies and their optimal design under diverse and
complex environmental conditions. This emphasis on
performance evaluation and optimal design is of utmost
importance to ensure effective and efficient flood mitigation
efforts (Binns, 2020). It is fundamental to determine
which measures are the most effective in optimising the
response to floods in local communities(Genovese and
Thaler, 2020).

This study provides a comprehensive understanding of
the vulnerable and risk-prone regions within Bhitarkanika
National Park (BNP). It reveals that a significant portion of
BNP is classified as a high flood risk zone, necessitating
immediate actions and mitigation measures. Coastal villages
such as Govindapur, Kanhupur, Mohanpur, Paramanandapur,
Satavaya, Bankua, Nuagan, Baghadiya, Jaudiya, Joginatha,
Sailendra Sarai, Purusottampur, Junus Nagar, Panchu Palli,
Ramachandrapur, Ghadiamal, Padmanavpur, Jagannathpur,
Balarampur, Jharpada, Rajagarh, and Raj Nagar are located
in high-risk areas prone to tidal and riverine floods. These
areas have high population densities and require the
establishment of proper flood and storm centres. It is
essential to educate the residents about first aid and provide
them with training in disaster resilience. Additionally, these

FIGURE 11
Flood risk map using AHP-weight overlay analysis.

TABLE 13 Flood risk statistics.

Flood risk classes Flood risk Flood risk using AHP Flood risk using machine learning

Area in sq. km Percentage (%) Area in sq. km Percentage (%)

Waterbodies N/A 66.30 13.50% 62.01 12.60%

High High 118.40 24.23% 188.33 38.35%

Medium Medium 171.51 35.10% 107.41 21.87%

Low Low 132.39 27.09% 133.54 27.19%
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villages should have well-connected road networks to nearby
regional centres to ensure the timely arrival of emergency
supplies during floods. Considering the potential submergence
of coastal fishing villages due to rising sea levels in the
coming decades, proper resettlement planning must be
carried out in advance. Adequate relief and compensation
should be provided to the residents of these fishing
villages and nearby agricultural villages in the event of
flood damage.

5.2 Conservation of ecology

The mangrove forest area in Bhitarkanika National Park
has been steadily increasing thanks to the effective mitigation
measures implemented by the Odisha Forest Department.
Despite challenges such as illegal apiculture activities
leading to forest fires, the mangrove area has expanded
from 139.49 sq. km in 2000 to nearly 166 sq. km in 2021.

The forest department has been successful in addressing
threats such as overfishing, poaching, and shifting
cultivation, thereby stabilizing the mangrove ecosystem. On
the other hand, the area under agriculture has experienced a
significant decrease due to the expansion of aquaculture
activities and salinity ingress in agricultural areas.
Aquaculture has seen exponential growth in the past
2 decades due to its profitability. Numerous aquaculture
ponds are being established along the national park area,
posing a potential threat in the future. Salinity ingress from
nearby estuaries is also a major factor contributing to the
decline in agricultural activities as it negatively affects soil
fertility.

The saltwater crocodile population in the BNP area is
thriving, which is a positive sign for the biosphere reserve.
However, this has also resulted in an increase in human-animal
conflicts. During floods, crocodiles often venture out of the
main estuary area and into nearby rivers, posing a risk to local
villagers. It is crucial to implement measures to mitigate these
conflicts and ensure the safety of both humans and crocodiles.
Additionally, the study highlights the need to declare the
Gahirmatha WLS area as a no-fishing zone with strict
enforcement to protect the turtles. This will help preserve
the biodiversity and maintain the ecological balance in the
region. Furthermore, the study demonstrates that machine
learning techniques outperform Weight Overlay Analysis
techniques in terms of accuracy. The Weight Overlay
Analysis map achieved an accuracy of 91.12%, while the
machine learning map achieved an accuracy of 99.54%. This
indicates that the machine learning approach provides a clearer
and more accurate representation of the flood risk zones
in BNP.

The Bhitarkanika National Park area experiences annual
floods, yet there has been a lack of comprehensive studies that
intricately delineate the flood risk zones in this ecologically
important region. This study fills that gap by clearly identifying
the flood-prone areas within the fragile BNP region and
proposing potential mitigation measures aligned with the
Sustainable Development Goals (SDGs). Implementing
proper mitigation strategies in the high-risk zones identified
in the study can help minimize damage to both human lives and
wildlife. The National Disaster Management Authority
(NDMA) and the Government of Odisha can utilize this
study to make Bhitarkanika National Park more resilient to
flood-related damages and to promote harmonious coexistence
between humans and animals. Additionally, the study
demonstrates that the SVM-RBF algorithm is a superior
method for flood risk zoning, surpassing the traditional AHP
method. This finding encourages the widespread adoption of
the SVM-RBF algorithm in future studies, further enhancing
flood risk assessment and management efforts.

FIGURE 12
Risk map using machine learning.

TABLE 14 Flood risk comparison.

Methods used Kappa index (%) Overall accuracy (%)

Risk map using AHP-Weight Overlay Analysis 87.41 91.12

Risk Map using Machine Learning-SVM-RBF 99.19 99.54
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Jakarta, the biggest city in Indonesia, has one district that consists of hundreds of
islands that face severe climate hazards called the Seribu Islands complex. This
study explores the evidence of local climate trends, the potential impact, and its
policy intervention on Seribu Islands, which are classified as small island states and
widely recognized as being especially at risk from climate change, threatening
their economic and social growth. Long-term in-situ climate data, satellite data,
interviews with local stakeholders, and literature reviews were utilized to conduct
an exploratory descriptive analysis. The result revealed that Seribu Island
experienced a 2.2°C increase in minimum temperature from 1980 until 2021,
3.5-fold of the frequency of extreme temperature and precipitation, 4.17 mm/year
of sea level rise, and 10.8 ha land expansion in the densest island. Moreover, about
67% of the inhabitant’s islands were occupied by built-up areas that cover more
than 50% of the region. Further, under the worst-case SLR scenario, about 58.4%
of the area will be affected, and about 29 islands will disappear. This evidence was
also reinforced by every single local respondent’s viewpoint who felt that climate
change is occurring in the region. Even though the region faces a severe threat of
climate change, the issue of climate change adaptation has not been
mainstreamed yet into their local policy. Therefore, the urgency of a real-time
climate ground station, a real-time early warning system, and establishing a
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Regional Disaster Management Agency (BPBD) at the district level have yet to be
addressed. Furthermore, the knowledge gained from such case studies is outlined,
along with some scientific evidence that may assist small island states in better
fostering the opportunities provided by climate change adaptation.

KEYWORDS

Seribu islands, climate change, longterm climate data, anthropogenic pressure, climate
change adaptation, land expansion

1 Introduction

Climate change has been recognized as a severe concern,
threatening people’s lives by generated hazards and
environmental deterioration (Fujimori et al., 2019). Policies
regarding climate change are widely acknowledged as a viable
approach to address global warming, which includes a set of
rules or tactics developed by a nation or state/province (Meckling
and Allan, 2020). In the past few years, more nations have developed
applicable climate policies focused on their local or international
needs, aiming to create a resilient society for future generations.
Thus, various policy measures can be utilized to combat climate
change, including legislation, monetary interventions such as taxes
and levies, financial aid in subsidies, volunteerism strategies, and
educational initiatives (Zheng et al., 2023).

Various policy measures have multiple functions in addressing
the effects of climate change. Economic tools, for example, primarily
manage financial difficulties by providing funds, subsidies, tax
breaks, credits, and direct investment. Legislative instruments, on
the other hand, are focused on improving energy use efficiency and
increasing renewable energy generation by obligatory criteria like
norms, standards, and obligation schemes (Liu et al., 2019). While
the threat of climate change grows, policies have been reinforced and
improved. Yet, some nations are constrained by the present policy
combination. For example, Brazil employed mixed policies for
climate change adaptation, but instead of promoting sustainable
production and climate risk management, it frequently encourages
the accomplishment of societal vulnerability targets (Milhorance
et al., 2020). Another study revealed that most adaptation strategies
demonstrated “one-size-fits-all governance arrangements,” which
were mostly voluntary activities, lacked a coordination hub and
relied on sectoral self-interest, and those policies are insufficient to
tackle complex issues such as climate change (Clar and Steurer,
2019). Local conditions, a limited choice of policy tools, a lack of
robust supervisory procedures, poor awareness of environmental
protection, and a missing political will can all lead to policy setbacks
(Sokolowski and Heffron, 2022).

Indonesia is listed as one of the most vulnerable countries
regarding climate risk, with a high vulnerability to flooding and
extreme temperatures (Neumann et al., 2015). Moreover, recent
studies revealed that nine growing cities in Indonesia are exposed to
serious sea level rise (SLR) and floods (Nagu et al., 2016); for
instance, the SLR in Ternate City leads to sea salt intrusion of
groundwater and a decline in the supply of clean water (Gaborit,
2022). Another study also revealed that there is a 1.37% decline in
the number of foreign visitors to Indonesia for every 1% increase in
temperature and relative humidity (Susanto et al., 2020), which is a
significant loss for the country since six percent of Indonesia’s GDP

came from tourism (World Travel and Tourism Council, 2019).
Moreover, climate change also affects public health in the country,
whereas Sumatra has experienced an increase in respiratory illnesses
during the past 20 years due to the complex linkages of soil degradation,
deforestation, and climatic change (Gan et al., 2021). Also, the severity
of these threats is projected to increase in the future (The World Bank
Group and Asian Development Bank, 2021). In addition, by 2050,
Indonesia is projected to experience a loss of 8.6 billion USD, or 1.3% of
the current Indonesian GDP (USAID, 2016). Besides, without effective
adaptation, this country will face permanent flooding by 2070,
impacting millions of people (The World Bank Group and Asian
Development Bank, 2021). Therefore, addressing the climate change
impact becomes a severe issue.

Seribu Islands district is a group of small islands located in the
capital city of Indonesia, Jakarta. The territory consists of 116 islands
which are located 30 km away from the northern part of Jakarta. This
district has about 28 thousand inhabitants by 2021 who shared a total
land area of 8.7 km2 (BPS Seribu Islands, 2022). Its nominal Gross
Regional Domestic Product (GRDP) at Current Market Prices in
2021 was 0.5 billion USD which equals 0.28% of Jakarta’s GRDP.
Moreover, in the past 5 years, mining and quarrying (i.e., 77%) remain
the highest contributor to the GRDP in the region, followed by
agriculture, forestry, and fishing (5.4%) (BPS Seribu Islands, 2022).
Mining and quarrying mainly involved oil, gas, and geothermal in the
islands. In recent years, the hospitality industry has been developed,
with a total number of visitors in 2021 of 159 thousand people (BPS
Seribu Islands, 2022), but still, it is not the region’s primary revenue.

Even though the region is within the territory of Jakarta
Province, all of the population lived in the rural, remote islands.
Also, among five districts in Jakarta city, Seribu Islands has the
highest poverty rate (i.e., 15%) and the lowest human development
index (BPS DKI Jakarta, 2021). Therefore, like other small island
developing States, Seribu Islands are very vulnerable to the adverse
impact of climate change due to its geographic conditions and socio-
economic aspects (Enssle and Kabisch, 2020). Extreme weather
events such as drought, heat stress, ocean acidification, tropical
cyclones and related storm surge, shifting patterns of precipitation,
sea level rise, and coastal flooding endanger inhabitants’ livelihoods
and impact all economic sectors (Change, 2014). In other words,
climate change is an obstacle to economic and social development in
a region. Moreover, research conducted by ICCR (2010) stated that
Indonesia experienced SLR with an average rate of 6 mm/year, and it
is almost threefold than the global SLR rate (2.2 mm/year). Also, six
islands (i.e., Ubi Besar Island, Ubi Kecil Island, Salak Island,
Nyamuk Besar Island, Dakun Island, and Anyer Kecil) were
reported disappeared in the region due to the abrasion (Kompas,
2015). Consequently, appropriate mitigation and adaptation plans
are critical to human resilience and survival against climate change.
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Most of the studies in Seribu Islands focused on benthic
habitat and mangrove biodiversity (Johan et al., 2015;
Cahyarini et al., 2016; Draisma et al., 2018), marine pollution
and particular natural disasters (Lestari et al., 2022) in this region
and those topics were explored in separate issues. However,
almost no paper conducted integrated studies on the local
evidence of climate change and its related impact on the
communities in this area. Therefore, this research explores the
local realities of climate change evidence, potential impact, and
local preparedness in the Seribu Islands by utilizing climate
dataset, satellite imageries, literature review on policy
documents and deep interview with local stakeholders. This
type of research will assist policymakers in developing
development plans by incorporating scientific assessment
through a multidisciplinary approach.

2 Materials and methods

This study is an exploratory analysis that integrated four main
data sets; the time series climate data, satellite data, interview and
field survey and literature review (Figure 1). The climate data set
was used to determine the trend of temperature and rainfall
patterns over the 41 years period in the study area. We utilized
the climate dataset in Kemayoran Station (i.e., the longest and
closest climate data station near Jakarta Bay), Jakarta (Figure 2)
because there is no available long term in-situ climate dataset
within the Seribu Islands complex (i.e., the government just
installed the Automatic Weather System within the islands in
June 2020) (DKI Jakarta Government, 2023). The satellite data
set was used to analyze the possible impact of climate change and

anthropogenic pressure in the region. The literature review was
utilized to record the historical trend of climate-related hazard in
the area, to determine the potential impact on society, and to
identify the national and local policies of each hazard type in the
small islands. While interview with local stakeholders were used
as a validation for the finding and to explore more on their
personal experience on climate change along with their capacity
and adaptation effort. Moreover, field survey was conducted to
map the native land of the densest island by considering local
resident perception. Table 1 shows the list of the data set used in
this study.

2.1 Study area

Figure 2 shows the area coverage of the study area of the Seribu
Islands. This administrative map was obtained from Indonesian
Geospatial Agency in 2010. Based on the figure, Seribu Islands
consists of 106 islands with names and 8 islands without names. The
area of the islands ranged from 0.04 ha to 59.9 ha with an average area of
8.7 ha. Therefore, there are no rivers or springs on the Seribu Islands,
which are sources of surface hydrology.Despite the size of the island being
relatively small, most of this region was categorized as a low-lying area
where the elevation ranged from 0 to 31.88m with an average of 3.9 m
above sea level (DEMNAS, 2018). Since it is located in the tropical region
the temperature is almost similar throughout the year. The annual
average rainfall and wind speed were 1888.74mm and 4–10m/s,
respectively (BPS Seribu Islands, 2022). The highest precipitation rate
and wind speed mainly occurred during the West monsoon (November
to April), while dry condition occurs in the East Monsson (June to
September). The monsoon condition affects the daily life of local

FIGURE 1
Flow chart for research methodology. DEM and SLA stands for Digital Elevation Model and Sea level Anomaly.
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communities in the regions that mostly relies their job on natural
resources.

Seribu Islands has two main sub-districts: The North Seribu
Islands and The South Seribu Islands. The population in the North is
higher than in the South, but the population density in the South is
higher than in the North (BPS Seribu Islands, 2022). Moreover, the
population has increased by 30% from 2009 until 2021 (BPS DKI
Jakarta, 2022), which means the population will double by 2045.
This condition put heavy anthropogenic pressure on these small
islands, affecting the coastal ecosystem and local communities.

2.2 Climate analysis

This paper utilized long-term daily climate data sets such as
minimum temperature, average temperature, and maximum
temperature from the Kemayoran climate station in Jakarta
(Table 1). To visualize the trend of the air temperature in the
study area, we conducted a moving average analysis with three

types of time scales (i.e., monthly, 12-month scale, and 60-month
scales) and calculated the frequency of extreme temperature
(i.e., percentile 90 and percentile 99). Moreover, in order to
know the significant of the temperature trend, we utilized Mann-
Kendal (MK) Test. Detailed on how to calculate the MK test can
refer the equation from Kandya et al., 2021. This MK test is non-
parametric test that has been suggested by the world meteorological
organization (World Meteorological Organization, 2012b) due to its
data distribution and outlier consideration (Nashwan and Shahid.
2018).

Since the precipitation amount and pattern have seasonal
variation, we conducted the standardized precipitation Index
(SPI) under the WMO 2012a methodology (WMO, 2012a) and
the frequency of extreme precipitation (i.e., percentile 99) to
determine the wet and dry levels and the possible impact.
Moreover, we estimated the trend of sea level anomaly
(SLA), as an impact of the anthropogenic global warming,
around Seribu Islands by using satellite multi-mission
altimeter data from the E. U. Copernicus Marine and

FIGURE 2
Map of the study area at Seribu Islands Complex, Jakarta. Basemap of Seribu Islands Complex: Sentinel 2A- 24 April 2021 and Sentinel 2B-28 July
2021.
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Environment Monitoring Service (CMEMS) (Table 1). This
CMEMS dataset was recommended by Fenoglio-Marc et al.
(2012) following the validity of the SLA trend from the
dataset with the in-situ data from deep-water tide gauges
around western Maritime Continent. For the shallow-water
area, such as Seribu Islands, despite the overestimation of the
SLA trend by the satellite data over the tide-gauges’s, their range
of uncertainties remain overlapped (Nurmaulia et al., 2010).

2.3 Potentially affected area

In this paper, we used five SLR scenarios; 1 m, 2 m, 3 m, 4 m,
and 5 m, and utilized geographic information system (GIS)
software (ArcGIS 10.8.2) to extract the inundation zone
based on the DEM data set. We utilized this scenario because
it was previously applied by the world bank for a global impact
assessment report (Dasgupta et al., 2009; Pickering et al., 2017),
and it also was due to the variation of the elevation of the region
of interest. The dimension of the potentially affected area will be

the percentage of the affected area, number of populations, and
number of missing islands.

2.4 Land cover and land expansion analysis

In this paper land cover analysis and land expansion analysis
was conducted by digitizing the feature using Google Earth Pro. We
utilized the latest recorded image of Google earth time slider in order
to digitize the land cover (Detailed in Supplementary Table A6). The
land cover analysis was only conducted in the inhabitant islands (ten
islands), while land expansion analysis only was conducted in the
most-dense island in the region (Panggang Island). Meanwhile for
land expansion we did field survey for mapping the original land
area based on local communities’ perception (i.e., people who live
more than 30 years within the region) and we digitized in the Google
Earth Pro of the oldest very high-resolution image (2009) and the
newest high - resolution image in the targeted areas (2022) (Table 1).
Finally, all the dataset then converted to shapefile and proceed for
land calculation in the Arc. GIS 10.8.2.

TABLE 1 The detailed dataset used in this study.

No Category Parameter Time range Source

1 Climate data set at
Kemayoran station

Daily minimum temperature 1980–2021 Data online BMKG https://dataonline.bmkg.go.id/home

Daily average temperature

Daily maximum temperature

Daily precipitation

2 Satellite data set Digital elevation model (DEM): 8 m of spatial resolution 2018 DEM nasional (DEMNAS) https://tanahair.indonesia.go.
id/demnas/#/demnas

Sea Level Rise: 0.25 degree of spatial resolution, with the
specific area of (6S to 5S, 106E to 107E)

1993–2022 Copernicus marine environment monitoring service
(CMEMS) https://marine.copernicus.eu/

Land use: Google Earth time slider 2015–2022 Google Earth pro https://www.google.com/earth/versions/
Detail in Supplementary Table A6

Land Expansion in Panggang Island: Google Earth yime
slider

Dec 11, 2009 and
Mar 10, 2022

Google Earth pro https://www.google.com/earth/versions/

Base map study area sentinel 2B: 10 meters of spatial
resolution

July 28, 2021 Copernicus open access hub https://scihub.copernicus.eu/
dhus/#/home

Base map study area sentinel 2A: 10 meters of spatial
resolution

April 24, 2021

3 Original land area GPS data point of land area based on local community
knowledge

25-29 July 2023 Field survey using Handheld GPSMAP 86i-Garmin

4 Literature review Climate-related hazards 2015–2022 Supplementary Table A2 S1

National and local policy 2010–2023 Google search engine with the following keywords: RPJMD
DKI Jakarta, RPJMD Kepulauan Seribu, Reinstra DKI
Jakarta, Reinstra Kepulauan Seribu, Kebijakan Banjir rob,
Kebijakan Kebakaran Hutan, Kebijakan angin putting
beliung, Kebijakan abrasi, KLHK, Taman nasional,
mangrove, ekosistem pesisir (Table 3)

5 Interview -Discussion with the national and local authorities in the
Islands
-Interview with 21 local communities in four islands
(Pramuka Islands, Panggang Islands, Kelapa Island and
Pari Island)

July 23–29, 2023 Supplementary Table A5
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2.5 Policy analysis

For the policy study, an assessment of the literature was carried
out using the Google search engine. In this study, we didn’t use a

scientific internet search engine to find the grey literature since most
action plans usually exist in governmental development plan
documents, governmental regulations, or project reports.
Additionally, we limited our keyword searches to Bahasa

FIGURE 3
The minimum temperature (A), average temperature (B), and maximum temperature (C) trend from 1980 to 2021 in the study area.
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FIGURE 4
The frequency of annual extreme temperature in the study area. The extreme temperature was defined as the top 1% (P99) and top 10% (PP90) of the
hottest daily maximum temperature during the study period.

FIGURE 5
Standardized Precipitation Index (SPI) from 1980 to 2020 with 12-month scale (blue) and 60-month scale (red).

Frontiers in Environmental Science frontiersin.org07

Setiawati et al. 10.3389/fenvs.2023.1280268

152

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1280268


Indonesia as the primary language since we focused on national and
local policy intervention in disaster risk reduction. The following
keywords were used in this study: RPJMD DKI Jakarta, RPJMD
Kepulauan Seribu, Reinstra DKI Jakarta, Reinstra Kepulauan Seribu,
Kebijakan Banjir rob, Kebijakan Kebakaran Hutan, Kebijakan angin
putting beliung, Kebijakan abrasi, KLHK, Taman nasional,
mangrove, ekosistem pesisir. Moreover, we also did a research
dissemination and discussion to three representative of
Kepulauan Seribu local authorities and one representative of the
national park and deep interviews with 21 local communities in four
islands (Panggang, Pramuka, Pari, and Kelapa Islands) from
23–29 July 2023 to qualitatively validate our climate hazard
analysis and to know what kind of local authorities/communities
action had been taken to tackle those disasters.

3 Results

3.1 Trends in temperature

Figure 3 shows the air temperature trend over 41 years period
within the study area. As shown in the figure, the annual minimum,
average, and maximum air temperature ranged from 23.9°C to
25.8°C, 26.1°C–29.9°C and 29°C–34.5°C, respectively. Morever,
based on the Man Kendall test, it can be inferred that the
minimum, average and maximum temperature over the study

period has statistically significant of increasing trend at 99%
confidence level Supplementary Table A3. Moreover, Based on
the linear regression of the 60-month scale of moving average
analysis, the minimum temperature (Figure 3A) and average
temperature (Figure 2B) have a strong tendency of an increasing
trend with a correlation coefficient of 0.97 and 0.84, respectively.
Meanwhile, the maximum temperature (Figure 3C) depicts a low
tendency of warming trend with a coefficient correlation of 0.53,
respectively. Also, the study area’s minimum and average
temperatures experienced an increasing trend of 0.05°C/year and
0.03°C/year. It means, from the initial year (1980) until 2021, the
study area experienced a 1.4°C increase in average temperature and
2.2°C in minimum temperature, respectively.

Figure 4 depicts the annual frequency of extreme temperatures
that occurred in Seribu Islands. The P99 and P90 define as the
frequency of the top one percent (i.e., ≥35.2°C) and 10% (≥34°C)
hottest temperature during the study period. Based on Figure 4,
almost every year, the study area experienced an extreme
temperature of P90 and P99 with an average of 36 times/year
and four times/year. However, the frequency of extreme
temperatures (P90 and P99) is more frequent after the year 2002,
with the peak occurrences in 2014 (i.e., P90 ~ 107 times/year and
P99~30 times/year). Moreover, compared with the period of
1980–2001, the millennium period shows 150% and 324% of
P90 and P99 more frequently, which means the frequency of
potential natural disasters might double/triple. Also, based on the

FIGURE 6
Monthly sea level anomaly (SLA) for the period of 1993–2022 from the CMEMS satellite altimeter dataset averaged around Seribu Islands area (6S to
5S, 106E to 107E). Red line is the long-term trend of the monthly SLA based on linear regression with its equation below it. The yearly trend is also
presented with its range of uncertainty at 95% confidence level. Sigma is the standard deviation of the detrended SLA.

TABLE 2 Impact of sea level rise (SLR) in the study area. The calculation based on DEMNAS dataset.

SLR scenario The affected area (%) Number of islands that 100% inundated People affected

Scenario 1 m 25.8 20 7285.92

Scenario 2 m 32.7 21 9234.48

Scenario 3 m 41.3 24 11663.12

Scenario 4 m 49.6 24 14007.04

Scenario 5 m 58.4 29 16492.16
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MK test depicted that the extreme temperature has statistically
increasing trend over 41 years in the study area at confidence
level of 95% (Supplementary Table A3).

3.2 Trends in Standardized Precipitation
Index

Figure 5 describes the wetness and the drought level in a certain
period in Seribu Islands. The range of 12-month scale of the SPI
index ranged from-3 to +3.5, which defined that the study area
experienced extreme dryness (≤-2) and extreme wetness (≥+2). The
annual extreme dry occurred in 1997/1998 and 2015/2016, while the
extreme wetness occurred in 2013/2014 and 2020/2021. Moreover,
the study area experienced a long-term wetness period (red color)
from 2007 to 2021, where from 2013 to 2021 experienced three
periods of extreme wetness. Meanwhile, from 1997 until 2013, the
region continuously experienced moderate to extreme dryness levels

(red color). Moreover, in the period between 1980 and 1996, the
study area depicts a normal condition (i.e., -1≤SPI≤1).

3.3 Sea level anomaly

Figure 6 shows SLA trend within the study area for 29 years
based on CMEMS dataset. The figure shows that the study area
experienced an increase of SLA of 4.17 ± 0.83 mm/year from
1993 to 2022 (Figure 6). The result generally indicated future
SLA increases and showed a slow-rising trend. Furthermore,
this research area has seen a rise in sea level of almost 150.8 mm
since 1993. This number looks very small, but when it occurs
during the spring tide or during the storm surge, the impact is
adverse for the local communities (i.e., it exceeds 250 mm).
Moreover, since the turn of the century, the global sea level has
risen by around 178 mm, and by the end of the century, SLR
may have risen by 0.3–1.8 m (Jevrejeva et al., 2016).

FIGURE 7
Simulation of inundation area from various SLR scenarios in Harapan dan Kelapa Islands. Basemap: DEMNAS 2018 with spatial resolution of 8 m
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3.4 Impact of sea level rise

Therefore, we simulated the potential impact using some worst-
case scenarios as introduced by Dasgupta et al., 2009; Pickering et al.,
2017. Table 2 depicts the summary of SLR impact in Seribu Islands,
and Figure 7 shows the simulations in three inhabitants islands
(i.e., Harapan, Kelapa, and Kelapa Dua Island) under five SLR
scenario. The result revealed that under a 1 m SLR scenario,
25.8% of the Seribu Islands area would be inundated, affecting
about seven thousand people. Moreover, under this scenario, about
20 islands will disappear within the study area. Additionally, under a
5 m SLR scenario, about 29 islands will disappear, with about
16.5 thousand people will be affected.

Figure 7 depicts a simulation of nine islands in the study area;
three have inhabitants. The blue color indicates the inundated area,
while the grey gradation color presents the basemap of DEM.
Among the three islands, Kelapa Islands has the highest
population, followed by Harapan Island and Kelapa Dua Islands.
In Kelapa Islands, under a 1 m SLR scenario, around 16.7% area will
be inundated. Meanwhile, under a 2 m SLR scenario, nearly 43% of
the site will be permanently inundated, which means about
2703 people would be severely affected. Moreover, in Harapan
Island and Kelapa Dua Island, nearly 83% and 93% of the areas
would be permanently inundated under the 3 m SLR scenario.

Kelapa, Kelapa Dua, and Harapan Islands were known as one of
the main tourist destinations, especially for domestic visitors around
Jakarta Capital City. For instance, in 2021, even during the
pandemic, domestic visitors reached 22,251 people in those
islands (BPS Seribu Islands 2022). Therefore, having permanent
inundation on that island would create a massive economic loss for
the coastal communities (i.e., major job losses, loss of properties, and
massive migration to the mainland). Moreover, under the worst-case
scenario (5 m), those three inhabitants’ islands would disappear, and the
condition would create the mainland of Jakarta city severely affected by
sea level rise, storm surge, and salt intrusion due to no natural
protection anymore.

3.5 Experience of local communities toward
climate change

Figure 8 shows the descriptive statistics on how local
communities experience the climate change along its capacity
to cope the problem within the Seribu Island Complex. Based on
the interview from 21 respondent from four different islands, all
the respondent experienced the change of climate whereas most
of them experience changing seasonality/unpredictable
weathers followed by extreme heat, erratic winds and

FIGURE 8
Personal experience of local communities towards climate change, climate hazards, adaptation effort, and its capacity to do the adaptation.
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frequent climate hazards. Moreover, tidal flooding and tornados
were the most common severe climate hazards faced by the local
inhabitants. Since the climate hazards were frequent hit the
islands, the local communities did the adaptation effort as
follows: pay attention with the movement of tornados,
evacuate in the safer place and modifying the house
structure. However, not all local communities are resilient of
climate severe climate hazards since 45% and 35% of the
respondent does not have saving and job alternative and 4%
responded did not have access to early warning system.
Furthermore, nearly half of respondent received the early
warning system from Whatssapp group followed by BMKG
information and Windy application.

3.6 National and local regulations on
minimizing the impact of climate hazards

Table 3 depicts the national and local policy/commitment on
mitigating the climate hazards within the study area. In this
study, the climate hazards was referred to threats posed by the
climate and weather condition such as tidal flooding, cyclone,
tornados, flooding, forest fires etc. (Setiawati et al., 2023a).
According to the Table 3, the regulation regarding specified
climate hazard preventing and mitigating program mostly
issued by the national government such as forest fire, tidal
flooding and extreme weather. In case of abrasion and tidal
flooding, the provincial government put an extra effort to

TABLE 3 Summary of the national and local policy of each hazard type in the Seribu Islands.

Scale Policy document Notes/Action program Type of climate hazard Source

National Government Regulation (PP) Number 64 of
2010

Disaster Mitigation in Coastal Areas and
Small Islands

Tidal flooding, tornados, landslides,
flooding, storm surge, abrasion, forest fire

Government Regulation
(2010)

National Perka BNPB No. 1 of 2012 General guidelines for disaster-resilient
villages

Tidal flooding, tornados, landslides,
flooding, storm surge, abrasion, forest fire

BNPB (2012)

National Ministry of Public Works And People’s
Housing Strategic Plan For 2020–2024

Mainly focused on the main island of the
northern part of Java. The small island has
not yet become a national target

Tidal Flooding PUPR (2020)

National Regulation of The Minister of Environment
and Forestry No. p.7/Menlhk/Setjen/Otl.0/
1/2016

The Seribu Islands National Park
Management Section is in charge of
controlling forest fires

Forest Fire KLHK (2016)

National Perka BMKG (Meteorological,
Climatological, and Geophysical Agency of
Republic of Indonesia) No. Kep. 009 of 2010

Standard operational procedures for
implementing early warning, reporting, and
dissemination of extreme weather
information

Tornados, cyclone, flash flood BMKG Regulation No.9
(2010)

Province Mid-term Development Plan (RPJMD) of
DKI Jakarta 2017–2022

Tidal flooding has become one of the
strategic issues for DKI Jakarta Province

Tidal Flooding Jakarta (2018a)

Extended the conservation of marine
ecosystem area by 2.5 Ha in Seribu Islands

Tidal Flooding, Tornados, abrasion,
storm surge

Province Mid-Term Development Plan (RPJMD) of
DKI Jakarta Province 2023–2028

Disaster resilience has become the top
strategic issue within DKI Jakarta Province

Tidal flooding, tornados, landslides,
flooding, storm surge, abrasion, forest fire

Jakarta (2018b)

In 2020, 31 Automatic Weather System
(AWS) was installed in DKI Jakarta,
including in the Seribu Islands

Tidal flooding, tornados, landslides,
flooding, storm surge

As of June 2021, Mangrove planting has
reached 54.28% or around 38,000 trees in
Seribu Islands

Tidal Flooding, Tornados, abrasion,
storm surge

The Seribu Islands serve as a center for
ecological conservation

Tidal Flooding, Tornados, abrasion,
storm surge

Biodiversity Management Program
(Kehati) in Seribu Islands
Indicator: Percentage of Green Open Space
Managed by District Administration)

Tidal Flooding, Tornados, abrasion,
storm surge

Preventing Coastal Abrasion in Seribu
Islands

Abrasion

Disaster mitigation program Tidal flooding, tornados, landslides,
flooding, storm surge, abrasion, forest fire

Regency Mid-term Strategic Plan (Reinstra) of Seribu
Islands Regency 2017–2022

Mitigation efforts in natural disaster Tidal flooding, tornados, landslides,
flooding, storm surge, abrasion, forest fire

Seribu Island
Government (2018)

Regency Mid-term Strategic Plan (Reinstra) of Seribu
Islands Regency 2023–2026

Mitigation efforts in natural disaster Tidal flooding, tornados, landslides,
flooding, storm surge, abrasion, forest fire

Seribu Island
Government (2023)
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FIGURE 9
The Land expansion of Panggang Island from 1992 to 2022. Basemap: ESRI and Maxar, Earthstar Geographics and GIS User Community.

TABLE 4 The built-up area coverage in the inhabitants (local communities and oil company) islands.

Island name Green space (Ha) Build up area (Ha) Built-up (%)

Pari 44.14 9.20 17.65

Lancang Besar 15.24 16.58 56.88

Untung Jawa 23.77 13.1 35.68

Tidung Besar 28.787 30.38 47.67

Pramuka 9.01 19.03 67.87

Kelapa and Harapan 13.53 36.93 73.19

Panggang 0.70 16.63 95.96

Payung Besar 27.59 1.33 4.6

Kelapa Dua 2.76 2.71 49.54

Pabelokan (oil company) 7.31 6.18 45.81
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tackle the problem within Seribu Islands complex; whereas
they put tidal flooding as the top priority issues and various
provincial government program to reduce the risk of those
hazards. However, at the district level development program,
they mainly worked on the general disaster management such
as providing the basic needs after the disaster, raising
awareness, cross-sectoral coordination during/after the
disaster, and conducting data collection. According to Mid-
term Strategic Plan (Reinstra) of Seribu Islands Regency
2023–2026, there is two main climate hazards that pose
severe impacts within the region; tornados and tidal
flooding. However, the specific national regulation or
provincial mid-term development program have not
addressed this issue yet.

4 Discussion

4.1 Increasing trend of air temperature

The primary objective of this study was to reveal the local
evidence of climate change and its potential impact on the Seribu
Islands. The study shows that these islands were exposed to a
significant increase in air temperatures and the frequency of
extreme temperatures during the study period (Figures 3, 4). The
IPCC, 2022 suggests limiting the warming temperature to below 2°C
by 2030. However, the study area experienced a warming
temperature of 2.2°C by 2021 (Figure 3A) and without any
significant policy change, the temperature will continue to
increase. This warming temperature also exist in other small
islands region in the tropical region, such as Bintan Island
(Setiawati et al., 2023b); Mauritius Island (Doorga, 2022);
Carribian SIDS (Taylor et al., 2018) and other small Island states
(Nurse et al., 2001). The study also revealed that the frequency of
extreme temperatures of P99 since 2002 was almost 3.5-fold more
often than in the year between 1980 and 2001 (Figure 4). This
condition implies that the pilot study will face more frequent and
severe climate-related hazards.

We also interviewed local communities in four islands
within the region, and 60% of the respondents said that it is
tough to live within the islands without air conditioner (AC)
(Figure 8). Also, the weather is getting hotter, even at night.
Moreover, 80% of Panggang and Kelapa Islands respondents
confirmed that the weather is getting hotter and uncomfortable
both day and night, which caused increasing electricity bills.
The increase in the minimum and the extreme temperatures
significantly contribute to heat stress. Obradovich et al. (2017)
stated that the increasing minimum temperature causes
insufficient sleep to the 765 thousand respondents of US
citizens. This sleep deprivation has an implication for lower
productivity at work (McKibben et al., 2010), increasing
Posttraumatic Stress Disorder (PTSD) severity (Brown et al.,
2011), and the mortality rate (Cappuccio, 2010). Moreover, a
recent study by Samaniego-Rascón et al. (2019) revealed that
compared to typical days, the extreme heat stress level could
accelerate the risk of death by 43%, where the elderly
population, people without education, and outdoor workers
are among the most vulnerable inhabitants. Considering the

socio-economic condition of the islands where 82.7% of
inappropriate roof types that were worsening the indoor
temperature environment (BPS Seribu Islands 2022), 94.7%
of outdoor workers (BPS Seribu Islands 2022), and 17% of
the vulnerable age group (BPS Seribu Islands., 2022), the
region has big exposure and sensitive demographic condition
toward thermal stress (Setiawati et al., 2023a).

4.2 Change in precipitation and mean sea
level

Despite the extreme heat stress, the study area is also vulnerable
to frequent coastal flooding, drought and tornados, as shown in
Supplementary Tables A2, A5. According to the SPI index of 60-
month scales, the study area experience long-term moderate to
extreme wetness from 2007 until 2021 and moderate to extreme
dryness from 1997 to 2004 (Figure 5). Previous study also revealed
that extreme precipitation significantly influences island countries
and is frequently linked to flooding and tropical storms (Khouaki
et al., 2017; IPCC 2018). This condition is also supported by the
Supplementary Table A1, which states that extreme precipitation is
more frequent from 2013 until 2021. Moreover, the study area also
faced a slow onset phenomenon called an increasing trend sea level
anomaly (Figure 6).

These conditions imply that the study area also faced frequent
climate-related hazards during recent years, particularly coastal
flooding and tornados (Supplementary Table A2). Moreover, all
respondents in the Pari Islands stated that they experienced frequent
coastal flooding (5–8 times a year) recently, with the worst flooding
in 2022, where the inundation depth ranged from 10 cm to 130 cm
(Supplementary Table A2). Also, nearly 80% respondents in Pari
Islands confirmed that there is massive abrasion of terrestrial land in
Pari Island due to the sea level rise (Supplementary Table A5). The
local respondent also stated that the sea level rise, abrasion and
coastal flooding in this island decreased the water quality for
freshwater supply, increased the cost for having the water
(i.e., purchasing reverse osmosis water and bottle water), and
killed the terrestrial plant. This condition also reported by
previous studies which states that the ratio of fresh water
availability and water demand decreased by 67%, while water
quality decreased significantly (Wulan et al., 2023).

On the other hand, in Kelapa Island, all the respondents
experienced tornados in recent years, whereas last year, they
experienced three times a year. Most of the respondents said that
in the past, there was no such frequent coastal flooding and tornados
on Pari Island and Kelapa Island, and they could predict the west
and east monsoon seasons. However, after 2000, they could not
expect the season anymore (Figure 8), so it is hard for them to plan
proper fishing activities, do home business for women, have more
risk to go to the sea for the fisherman, and increase fishing capital
costs. Increasing extreme condition, unpredictable season and slow
onset phenomenon (i.e., abrasion and sea level rise) also faced others
small island region such as Bintan Islands (Setiawati et al., 2023b),
Solomon Islands (Albert et al., 2016), Micronesia (Nunn et al., 2017),
Carribian Islands (Oberle et al., 2017).

Seribu Islands consist of 116 islands, but in this paper, we only
analyze 114 islands (Figure 2) due to data limitations of DEM
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dataset. The land area ranged from 0.05 ha to 59.9 ha, and
among 114 islands, only two islands have a land area larger than
50 ha, and only 10 islands have inhabitants. The small island
states are the most vulnerable to climate change considering
their size, elevation, and climate variability. As the SLR scenario
of 2 m (Table 2), the islands with inhabitants will mostly be
inundated since the average elevation of those islands is 2.4 m
above the sea level, and under the 3 m SLR scenario, all
inhabitant’s islands will be fully inundated (Figure 7). Since
those islands have low-land areas with mostly dense built-up
areas (Table 4), the area will face an economic loss due to
frequent coastal flooding or other related climate hazards.
Particularly, Panggang Island, Harapan Island, Kelapa Island,
Pramuka Island, Pabelokan Island, Tidung Besar, Lancang
Besar and Kelapa Dua face a serious impact of climate
change because the built-up area occupancy was over 45%,
respectively (Table 4). Those local communities not only
have an economic loss due to the direct impact but will also
face cascading effects such as waterborne diseases, respiratory
diseases, etc. (Setiawati et al., 2023a).

4.3 Adaptation measures by local authorities
and communities

As stated above, the Seribu Islands face a severe risk of
climate change (Figures 3–8; Tables 2, 4). Moreover, the mid-
term strategic plan document (Reinstra) for 2017–2022 and
Reinstra for 2023–2026 stated that climate-related hazards are
the primary challenge of the mid-term development plan
within the region (Seribu Island Government, 2018; Seribu
Island Government, 2023). Therefore, tackling climate-
related hazards was one of the main strategic issues in this
area. However, the association between the issue, policy
direction, and action to reduce natural disaster risk was not
coherent. That incoherency was clearly stated in the
performance indicators for each stated program/action
(Seribu Island Government, 2018; Seribu Island Government,
2023). For instance, the index of public satisfaction with public
services and the number of disaster victims who received fast
food are the main indicators for the disaster mitigation
program (Seribu Islands Government 2020), which is only
short-term problem-solving. Mainstreaming the issue of
natural disaster mitigation in the Reinstra is a good start,
but achieving resilient communities toward climate change
through those actions was not enough.

As a small island district with high exposure to climate
change hazards, this region should have its own Regional
Disaster Management Agency (BPBD) and not only rely on
BPBD Jakarta main island since Seribu Islands has different
geographic features and challenges. So, having its own BPBD is
necessary so that the region has its own local assessment of
potential risk due to the disaster and has good planning both for
prevention and mitigation of climate hazards as other small
island districts did in Indonesia (e.g., Bintan, Natuna, East
Flores, etc.). Moreover, in the Jakarta Midterm Development
Planning Agenda of 2017–2022 (RPJMD), the issue of climate-
related hazards only focused on the main island of Jakarta

Province, and the issue of climate change only focused on
mitigation (reducing greenhouse gasses emissions) without
considering the adaptation action (Jakarta., 2018a; Jakarta,
2018b). The neglect of adaptation issues can be seen from
the unavailability the long-term of in situ climate data
measurement stations within the island complex which can
record daily temperature, precipitation, wind speed, tide, and
humidity. This in-situ climate data is crucial since the area is an
archipelagic district that the communities have to commute on a
daily basis by vessel where accurate weather prediction is
necessary for safety reasons. Moreover, having local climate
data is also essential for developing an early warning system
for climatic hazards, which benefits local communities,
commercial entities, and tourists. Developing a proper early
warning system is highly suggested by the IPCC Working
Group 1 and II (Lal et al., 2012).

Despite the unavailability of the District level of BPBD, the
provincial government put a lot of effort into tackling the
climate change impact on the Seribu Islands in the current
RPJMD (Table 3), which includes hard infrastructure
(i.e., installed Automatic Weather System, coastal abrasion
program, tidal flood mitigation program), ecosystem-based
approach (i.e., mangrove planting, deciding the region as
center for ecological conservation) and soft technique
(i.e., rising awareness, strengthening the adaptive capacity for
local authorities). Seribu Islands have two main climate hazards:
tidal flooding and tornados (Seribu Island Government. 2023).
However, most of the effort from the local authorities was to
tackle tidal flooding and abrasion; this commitment was
reflected by the construction of concrete sea walls along the
inhabitant islands (Table 3), building a breakwater, constructing
infiltration wells, constructing water canals, constructing
rainwater tanks, creating portable pumps for tidal flood
defences, creating vertical drainage to handle local rainfall,
and creating floodgates to regulate tides (Supplementary
Table A5). However, national and local governments did not
pay serious attention to tornados that frequently hit the Seribu
Utara sub-district, even though this disaster caused severe
damage in 2008, 2012, 2014, 2016, 2017, and 2018
(Supplementary Table A2).

As mentioned above, the study area also experienced the abrasion
which indicated by the shoreline changes. For example, in Tidung Island,
the abrasion caused a 6.4 ha land mass loss from 1913 to 2007 (Farhan
and Lim, 2011). Moreover, in the Western and Eastern land area of Pari
Island was lost about 4.1 ha from 1999 to 2017 (Farhan and Lim, 2011).
Therefore, to overcome the problem the local authorities built the
concrete seawall and breakwater and national and local authorities as
well as local communities did massive mangrove planting in Pramuka
island, Rambut Island and Pari Island. Even the mangrove planting was
targeted by the local government in the RPJMD 2023–2026 and this is
part of ecosystem-based approach (EBA) to climate change adaptation.
This EBA is a sustainable way to minimize the risk of climate change and
increase the resilience of the local communities (Colls et al., 2009). A
proper mangrove planting is one of the ideal adaptation strategies since it
does not have no-regret strategies, a flexible approach (one program can
achieve multiple targets), involve local communities, multi-partner
strategy development, and apply an adaptive management approach
(Colls et al., 2009).
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4.4 Challenges on local adaptation

The Seribu Islands experienced abrasion and did land
expansion, particularly in the densely populated island
(i.e., Panggang Island). No residents want to migrate outside
the island, while population growth in these locations is high
with very dense area (Table 4). So, the local communities did
self-reclamation using organic rubbish and reef stone, which
has been taking place for over 30 years (Figure 9,
Supplementary Tables A4, A5). Therefore, the land area was
expanded nearly 165% from 1992 to 2022, as shown in Figure 9.
Before 2009, land reclamation was conducted on both sides
(West and East). Still, since 2009, they reclaimed the land
toward the east since the eastern side has yet to be built by
the seawall, and the depth of the beach is relatively shallow.
When the local government does not act decisively to stop the
reclamation, most of the benthic habitat around the area
(i.e., seagrass and coral reef) will disappear in the future and
be replaced by the built-up areas.

Moreover, the under-control self-reclamation sacrifices the ideal
marine ecosystem health in the region, which also influences the
surrounding island communities for their economic income. For
instance, the sand area (underwater) on Panggang Island was
reduced significantly and transformed into seagrass, followed by
deep sea water, and disappeared (Ningsih et al., 2021). Moreover,
since 2000, the seaweed cultivation business in Panggang and
Pramuka Island has entirely stopped because the yield has
decreased due to the poor quality of the environment (Bahri
et al., 2017) (Supplementary Table A5).

Due to the island’s small size, the high exposure to climate
hazards, and the locals’ unwillingness to leave the area, Seribu
Island residents have had to adapt intensively by maintaining or
expanding their islands to prevent them from being eroded by
sea waves. Pramuka Island and Pari Island are two islands that
decided to grow mangroves since 2004 to prevent abrasion and
retain silt (Supplementary Table A5). In contrast, Panggang
Island takes particularly active measures to complete its
reclamation (Figure 9, Supplementary Table A4). Also, locals
attempt to diversify their employment in the previously
dominated fishing industry service sector (Figure 8). Without
considering any consequences, the local community’s
adaptation is categorized as a reaction to incidental activity
(Shahid et al., 2021).

Local authorities put climate change as the severe challenge for
Seribu Islands in their mid-term development planning agenda.
However, there needed to be more consistency between the effort
taken and the severe climate hazard the local communities faced.
For instance, tornadoes in the Northern part of Seribu Island are
crucial hazards that need to be addressed to reduce the risk;
however, local authorities did not mention specific efforts in
their development planning agenda. Moreover, massive
mangrove planting that has been carried out since 2004 needs
to be evaluated. Some local communities complained they could
not see the sea scenery and enjoy the cool weather because dense
mangrove forests blocked it. Moreover, law enforcement on illegal
self-reclamation by reef stone must be realized since fringing reefs,
coral reefs, and seagrass are vital to reducing the force of waves and
currents around the coastal region.

5 Conclusion

This paper highlights the importance of understanding the
effects of climate change on small islands and identifying
appropriate local solutions. Based on the long-term climate
data and spatial analysis results, Seribu Island faces a severe
threat of climate change, such as accelerating air temperature,
frequent extreme events, increasing SLR, massive land expansion
in Panggang Island and under the worst-case scenarios one-
quarter of the islands complex will be fully inundated in the
future. The analysis of the significant threat of climate change
within the study area helps us to 1) identify the main climate
hazards faced by the local inhabitants in different islands and 2)
urge the need for real-time weather station within the islands
complex along with the real-time early warning system 3) urge the
need of having district-level BPBD 4) align local populations’
needs for additional land with those of natural capital, protect
natural ecosystems, and use their ecosystem services to face
climate change. A limitation of the present study was the
unavailability of a long-term climate data ground station
within the islands complex; therefore, we utilized the closest
station to the study area. Moreover, we only involved twenty-
one local communities who were spread over four islands, one
national authorities and three local authorities as our objective
was to obtain a thorough understanding of their individual
experiences of climate change and its capacity to cope with the
problem rather than to reach statistical significance. For future
research, it is necessary to have more quantitative analysis for
future projections of climate data sets and combine it with the
socio-economic vulnerability analysis. Then, an integrated risk
assessment that considers the role of natural capital, climate
change scenarios, and local communities within the study area
could be built for future studies.
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Geotechnical factors influencing
earth retaining wall deformation
during excavations
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This study aims to identify and evaluate the significance of the key design factors
that impact the stability of Earth retainingwall anchor-supported structures during
excavations in urban areas. Although there are many previous studies on the
deformation of Earth retaining walls during excavation, there is a lack of
verification studies that quantitatively examine the stability of various
influencing factors such as wall, ground characteristics, and external
influencing factors. To this end, finite-element analyses were conducted, and
their results were compared and validated with field measurements. These
comparisons demonstrated that the numerical modeling technique employed
in this study effectively simulates the wall’s behavior under excavation conditions.
Subsequently, the impact of the main design factors, including ground properties,
external conditions, and structural stiffness, on the behavior of the wall was
quantitatively assessed by applying variation ratios. The findings indicate that
the horizontal displacement of the wall, induced by excavation, is significantly
dependent on the unit weight and shear strength of the soil. Conversely, the
groundwater level location, surcharge load, and structural stiffness exhibit a
relatively minor effect. Finally, the variability of the main design parameters was
investigated, considering the specific ground layer where the wall is installed,
revealing distinct influences of these variables across different ground layers.
Consequently, it is expected that the importance of the influencing geotechnical
factors will be selected and used for predicting the behavior of Earth retaining
walls and actual design, which will help to efficient wall design.

KEYWORDS

Earth retaining wall, excavation, deformation, parametric study, finite-element method

1 Introduction

Although the advance in civil engineering technologies has led to a decrease in the
number of work accidents at construction sites, collapse-type accidents during Earth
retaining wall excavations continue to occur with some frequency. This can be attributed
to various factors, including the inherent uncertainty in the properties of the ground
compared to those of other structures and the scale of the excavation.

In the design of Earth retaining wall, prediction methods for lateral displacement have
been applied by conventional researches. It is essential to accurately predict the behavior of
the ground and wall according to the excavation for the efficient design of the Earth retaining
wall, and the change of the ground and the wall displacement during the step-by-step
excavation should also be accurately predicted in advance and considered in the design
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(Hsiung, 2009; Khoiri and Ou, 2013; Bhatkar et al., 2017; Dong et al.,
2018). The methods used for design are studied for clay or sandy
ground, so it is difficult to predict wall displacement under various
ground conditions. During construction, the stability of the Earth
retaining wall is evaluated by the wall displacement measured by
instrumentation (Ran et al., 2011; Fearnhead et al., 2014; Wu et al.,
2015). However, there is a difference between the predicted
displacement and the actual displacement during construction
due to the fundamental problem that the methods proposed by
conventional researches cannot properly describe the site conditions
with various characteristics (Dmochowski and szolomicki 2021).
The factors affecting the wall displacement during excavation are
influenced by several parameters such as groundmaterial properties,
external influences such as groundwater level (GL) and surcharge
load at the back and structure stiffness (Do and Ou, 2020; Zhang
et al., 2020).

Previous researchers have conducted numerous studies on the
behavior of retaining walls during the excavation of the surrounding
ground. Caspe (1966) investigated wall displacement and Poisson’s
ratio in a viscous clay ground, Peck (1969) studied settlement
characteristics based on actual measurements, Bowles (1996)
proposed a simplified method, and Clough and O’Rourke (1990)
used field measurements and the finite-element method to analyze
settlement levels considering the separation between different
ground layers. Yoo et al. (2000) conducted a study in Korea
analyzing wall displacement and surrounding ground behavior at
three stages of the excavation process: pre-excavation, excavation,
and support beam removal. Other studies on the response of
adjacent structures to ground displacement caused by excavation
include Boscardin and Cording’s (1989) investigation of the effect of
horizontal ground displacement on the deformation of adjacent
structures, Son and Cording (2005, 2007) research on the

TABLE 1 Parametric numerical analyses.

Condition Soil properties Retaining wall Support Water level

Parametric Unit weight Types Anchor Steady state flow

Cohesion

Friction angle Stiffness Strut

Poisson’s ratio Embedded depth Raker

Young’s modulus Empty

FIGURE 1
FEM model implemented in Plaxis 2D.
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relationship between ground settlement, deformation rate, and
damage level in adjacent structures, and Lee et al. (2007)
assessment of damage risk to adjacent buildings during
excavation by combining the Peck and Bowles methods.

Peck (1969) demonstrated that ground settlement depends on the
stiffness of the soil, showing that stiffer soils, such as sandy soil and
hard clay, exhibit lower settlement compared to softer soils like soft to
medium clay. Clough and Tsui (1974) and Mana and Clough (1981)
found that the overall behavior of the ground depends on soil stiffness,
with lateral displacement rates and magnitudes increasing as the risk
of uplift augments or the excavation failure safety factor approaches
one. Song and Yoo (2018) conducted an indoor model experiment to
analyze the impact of groundwater levels (GLs) on retaining walls
during excavation. Their findings revealed that as the GL increased,
wall displacement increased while wall stiffness decreased. Park and
Joung (2020) conducted a numerical study on the excavation width
and deformation characteristics of retaining walls, identifying the
extent of mutual interference caused by Earth pressure using two-
dimensional numerical analyses. St John (1975) determined that
compared to three-dimensional simulations, two-dimensional
analyses tend to overestimate the deformation of retaining walls in
stiff clay excavations. Naylor and Pande (1981) compared three- and
two-dimensional analyses and found that, while ground settlement
did not differ significantly between the two analyses, the horizontal
wall displacement was approximately twice as large in the three-
dimensional analysis. Jeong and Kim (2009) confirmed the suitability
of the three-dimensional numerical methods for considering the
characteristics of retaining walls and support materials. They
suggested that the depth to consider in the analysis should be set
at more than twice the excavation depth to achieve more accurate
results in three-dimensional numerical analysis. Yoo and Kim (2000)

examined the influence of factors such as ground stiffness, wall
bending stiffness, and over-excavation on the behavior of retaining
walls using indoor model experiments and finite-element analysis.
The results revealed that the behavior of retaining walls is highly
affected by the construction process, the stiffness of wall components,
and whether over-excavation occurs. Reducing the installation gap
proved more effective in suppressing wall displacement than
increasing the stiffness of the support structure. The influence area
of settlement expanded as the degree of over-excavation increased,
with the maximum settlement reaching approximately 70% of the
maximum horizontal wall displacement.

Chen et al. (2014) conducted a three-dimensional numerical
analysis to study changes in effective horizontal stress and interstitial
water pressure during the installation of a diaphragm wall. The
installation of diaphragm walls in soft ground resulted in significant
ground settlement, reduced ground stress, and changes in interstitial
water pressure (Ng, 1992; Symons and Carder, 1993; Powrie and
Kantartzi, 1996; Poh and Wong, 1998). These changes in ground
conditions depend on factors such as the thickness and length of the
basement continuation wall, soil type, and construction techniques.
Schäfer and Triantafylidis (2004, 2006) analyzed the effects of deep
excavation on the behavior and stress evolution of basement
continuation walls in normally consolidated clay (NC) and found
significant stress evolution in the ground prior to construction.

The behavior of Earth retaining walls is influenced by various
factors, including soil type, excavation shape, wall type, support system,

FIGURE 2
CIP and H-pile wall section transformation.

TABLE 4 Interface reduction factor.

Soil/Material Rinter

Sandy soil/Steel material 2/3

Cohesive soil/Steel material 0.5

Sandy soil/Concrete 0.8–1.0

Cohesive soil/Concrete 0.7–1.0

Soil/Geogrid 1.0

Soil/Geotextile 0.5–0.9

TABLE 3 Material properties.

Type Properties

Cast-in-place (CIP) wall Diameter, D = 0.5 m

Young’s modulus, E = 2.8 × 103 kPa

H-pile Dimensionsa, H-300 mm x 305 mm × 15 mm × 15 mm

Horizontal spacing, SH = 1.8 m

Young’s modulus, E = 2.1 × 104 kPa

aH-pile size description: H-height x flange widthxweb thicknessxflange thickness.

TABLE 2 Soil properties.

Soil type γ
(kN/m3)

E (MPa) c (kPa) Φ (°) ν Rinter

Fill layer 17 16.8 0 26 0.3 0.67

Sedimentary
layer

18 19.2 0 28

Weathered soil 18 24.0 10 28

Weathered rock 20 100.0 30 33 1.0

Soft rock 23 500.0 40 35
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and construction technique (Ou et al., 1993; Poh and Wong, 1998;
Wong and Poh, 2000; Zhang et al., 2015, 2018). Additionally, the impact
of deep excavation on ground behavior is contingent upon the length
and depth of the wall, the depth of the support layer, and the stiffness of
the support material (Ou et al., 1993; Goh et al., 2020). Recent studies
have focused on corner joints of retaining walls, employing three-
dimensional numerical analyses. Tanner Blackburn and Finno (2007)
observed that horizontal deformation and ground settlement increase

from the corner to the center of the retaining walls. Hsieh and Ou
(1998) reported a reduction of 20%–60% in horizontal wall
displacement at the corner compared to the maximum settlement at
the center. In addition, a recent study analyzed the factors affecting the
behavior of embedded retaining wall through inverse analysis. Through
inverse analysis of post-construction monitoring data, it was reported
that the nonlinear soil stiffness has the largest impact on wall
deformation in stiff clay condition (Foo et al., 2023).

FIGURE 3
Numerical simulation procedure: (A) Initial, (B) Installed H-pile, (C) First excavation, (D) Second excavation, (E) Final excavation.
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As mentioned above, there are many previous studies on the
deformation of Earth retaining walls during excavation, however
there is lack of validation study that examines the stability of
various influencing factors such as wall, soil properties, and external
influencing factors. This study aims to thoroughly analyze the factors
that influence the response of retaining walls during ground excavations
based on the results obtained from numerical analyses of a single
process at an earthwork excavation site. Prior to the numerical analyses,
the results obtained from field applications and finite-element analysis
were compared to validate the numerical modeling scheme used for
analyzing the wall behavior. The finite-element analyses were
conducted setting as parameters the factors that affect the horizontal
displacement of the wall during excavation, including ground material
properties, external influences (such as GL location and surcharge load
at the back), and structural stiffness. Subsequently, the significance of
these influencing factors was determined by analyzing the behavior
characteristics of the wall and the magnitude of deformation due to
excavation, and the results were utilized to predict the horizontal wall
displacement during the design process.

2 Methodology

2.1 Elastic-plastic beam-on-foundation and
finite-element analysis (FEA)

Among the analysis methods used for stability assessment of
continuous underground walls, the elastic-plastic beam-on-

foundation analysis method is commonly employed in design
due to the simplicity and minimal expertise requirements for the
input data. However, this method combines the wall and ground
after analyzing separately their structural failure points.
Consequently, accurately calculating the active failure surface,
while considering the effects of the wall, Earth anchors, and
surrounding ground, becomes challenging, particularly in inverse
analysis scenarios such as when determining the cause of retaining
wall collapses. To address this limitation, this study adopts the finite-
element method (FEM), which incorporates the shear strength
reduction method to automatically consider changes in the active
failure surface. This is achieved by performing a continuum analysis
that accounts for the excavation and construction stages.
Accordingly, the influencing factors for the elastic-plastic beam-
on-foundation analysis method and the FEM model were selected
differently. The input data required to characterize the geotechnical
properties for the elastic-plastic beam-on-foundation analysis
included the wet unit weight, underwater unit weight, adhesion,
internal friction angle, and coefficient of transverse ground reaction
force (Ks). On the other hand, the geotechnical properties utilized
for the finite-element analysis included the wet unit weight,
underwater unit weight, adhesion, internal friction angle, and
elastic modulus (E). Previous research results Jeong and Kim
(2009) have indicated that the elastic-plastic beam-on-foundation
analysis method has the disadvantage of not being able to
simultaneously consider the resistance of the structure and the
ground at each analysis point. Consequently, it does not account
for the continuity of the analysis or the soil-structure interaction.

FIGURE 4
Influence factor for retaining wall and Earth anchor in 2D FE model.
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Notably, the difference between the transverse ground reaction force
coefficient and elastic modulus represents a significant distinction
between the two analysis methods.

2.2 Selection of influence factors

The excavation site data were based on field measurements,
whereas the basic data were selected using the input values from
SUNEX, a beam–column program widely used in practical
applications. The ground properties considered were the type,
wet unit weight, underwater unit weight, adhesion, internal
friction angle, transverse ground reaction coefficient, depth, layer
thickness, and average N-value. To account for water pressure on the
wall during design, the initial GL was expressed from the ground
surface.

The input properties, such as elastic modulus, cross-sectional
area, and cross-sectional secondary moment, were based on the
same values as those used for vertical walls. Regarding the anchors,
the initial tensile force is known to impact the final behavior of the
wall. The pouring of the building wall, which occurs after excavation
is completed, has negligible contribution to the stability evaluation
of the wall. Dependent on its location and size, the background load
influences the horizontal displacement of the wall during excavation
and can act as an external force along with the GL (Ou et al., 1993;
Goh et al., 2020). Based on a literature review and field data, four
major influencing factors were selected for this study. The types of
wall and support materials were reviewed according to their axial
and bending stiffnesses (EA and EI, respectively). It is important to

note that the nature of the analysis program used in the design led to
variations from the actual site conditions. Therefore, the behavior of
each type of wall and support material was analyzed by considering
the quantitative variations, rather than analyzing each type
separately using different methods. Table 1 lists the influencing
factors considered in the analysis.

2.3 Numerical modeling

The numerical analysis utilizes the commercial FE software
PLAXIS 2D (2022). The typical 2D FE model used in this study
is shown in Figure 1. The soil and rock are composed of 15-node
triangular elements, while the retaining wall is modeled using 5-
node plate elements. The model employs fourth-order interpolation
for displacements and twelve Gauss points for numerical integration
(stress points). The interfaces consist of five pairs of 10-node
interface elements that can connect with 15-node soil elements.
The numerical model has a total height equal to the height of the
retaining wall (L) plus an additional 1.0L below the retaining toe
level, and extends three times the excavation width (H) from the
retaining wall center. These dimensions were chosen to minimize
boundary effects on the retaining wall’s behavior. A finer mesh was
used near the retaining wall and surrounding soil interface, while a
coarser mesh was used further away. The typical retaining wall had a
width of 0.3 m and a length of 12 m. The bearing end of the wall was
on weathered rock and continued into a layer of sand. The mesh
consisted of 40,110 nodes and 4,848 fifteen-node triangular
elements. Assuming a rigid, unyielding strata, such as a rock

FIGURE 5
Horizontal displacement for Sections (A,B).
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layer, the vertical boundaries are allowed to move only in the vertical
direction, while the bottom boundary is fixed in both the horizontal
and vertical directions.

The conditions for the finite-element analysis were as follows.
TheMohr–Coulomb (M–C)model, commonly used in practice, was
applied to the ground model, while an elastic model was employed

for the retaining wall. Underground anchors were modeled using
node-to-node anchor elements and embedded piles. The ground and
structural properties used in the finite-element analysis are listed in
Tables 2, 3.

Although the cast-in-place (CIP) wall consists of a continuous
arrangement of concrete columns with rebars and H-piles, the

FIGURE 6
Results of numerical analysis of soil properties: (A) unit weight; (B) cohesion, (C) friction angle; and (D) elastic modulus.
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analysis was performed in two-dimensional plane strain due to the
characteristics of a continuous wall where the differences in stiffness
among the concrete columns are minimal. The equivalent physical
properties were calculated using Equation (1) to replace the elastic
modulus (E) and sectional secondary moment (I) of the continuous
wall. In Figure 2, the earth-membrane wall represents a unit width
of 1 m.

EpIp × Np × EcIc × Nc � EaIa

where,

Ep = modulus of elasticity of H-pile (kPa);
Ip = cross-sectional secondary moment of H-pile (m4);
Np = number of H-piles per unit width;

FIGURE 7
Results of numerical analysis of external force and structure stiffness: (A) surcharge loading, (B) initial GL, (C) wall stiffness, and (D) strut stiffness.
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TABLE 5 Comparison of the shear strain for Earth retaining wall with variation ratio changes (Shear strain for theminimum andmaximum changes of variation rate
by influencing factor under the geometric conditions shown in Figure 4).

Factors Minimum variation ratio 0.8 Maximum variation ratio 1.2

Unit weight

Cohesion

Friction angle

Elastic modulus

Surcharge loading

(Continued on following page)

Frontiers in Earth Science frontiersin.org09

Seo et al. 10.3389/feart.2023.1263997

171

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1263997


Ec = modulus of elasticity of the concrete wall (kPa); and
Ic = secondary moment of a concrete wall section (m4).

For the analysis area, the boundary conditions were defined as
vertical displacement constraints for the lower boundary,
horizontal displacement constraints for the left and right
boundaries, and a free surface for the upper boundary along the
axial direction of the global coordinate system. After the
construction of the earth-membrane wall, the ground area
inside the wall entered a stress-relieved state due to excavation.
To simulate the separation behavior between the ground and wall,
an interface element was applied. The interface element allowed for
modeling the relative displacement between the soil and wall.
Without the use of the interface element, the ground near the
wall did not settle due to the arching effect between the elements.
Table 4 summarizes the strength reduction factors for each soil and
structural material when employing the interface element.

A step-by-step analysis was conducted to examine the
displacement and external stability of the retaining wall in
accordance with the actual construction stages. The construction
stages were simulated as follows: Step 1: H-pile construction, Step 2:
step-by-step excavation, Step 3: anchor installation, Step 4:
repetition of Steps 2 and 3, and final excavation, based on the
construction system at the site, as shown in Figure 3.

2.4 Numerical analysis with influence factors

To analyze the influencing factors, specific influence factor selection
and analysis cases were determined, as illustrated in Figure 4.
Verification was previously conducted using field measurement data,
and an additional analysis was carried out. When subdividing the
influencing factors, the ground physical properties encompassed unit
weight, adhesion, friction angle, and elastic modulus, with the analysis

TABLE 5 (Continued) Comparison of the shear strain for Earth retaining wall with variation ratio changes (Shear strain for the minimum and maximum changes of
variation rate by influencing factor under the geometric conditions shown in Figure 4).

Factors Minimum variation ratio 0.8 Maximum variation ratio 1.2

Initial GL

wall stiffness

strut stiffness
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performed considering the magnitude of the surcharge load at the back.
Additionally, the GL required adjustment based on the step-by-step
analysis. However, for this project, only the initial GL (−3.2 m) was
selected and reviewed, and the influence factor analysis was conducted
by varying the position of the GL accordingly. Lastly, the stiffness of the
Earth wall was chosen as an influencing factor, and the EA andEI values
were analyzed.

For the influence factor analysis method, a representative cross-
section was selected based on validated field cases, and weights were
assigned to each factor for assessment. To ensure the properties of
the influencing factors remained within a reasonable range, the
assigned weights were limited. In other words, the range is chosen to
ensure that no exceptional properties are assigned. The analysis was
conducted using the same properties as those used for validation. In
this study, each influence factor was assigned a weight ranging from
80% to 120%, and a variation ratio of 0.8–1.2 was applied to examine
the effect on the horizontal displacement of the retaining wall.

3 Test results

3.1 Validation of numerical analysis

This section presents the comparison and analysis of the
behavioral characteristics of the Earth shield excavation method
based on field application cases, along with the verification of the
validity of the 2D finite-element analysis technique and
beam–column analysis employed in this study. The parameters
and properties of the retaining wall and ground structures used
in the numerical analysis were consistent with those employed in the
field. Verification was conducted for Sites A and B, and the results of
the field measurement and numerical analysis are depicted in
Figure 5, illustrating the horizontal displacement of the retaining
wall caused by ground excavation. As observed in the figure, the
horizontal displacement resulting from step-by-step excavation
progressively increased. For the validation, specific representative
cross-sections of Sites A and B were selected, and the field
measurements were based on the inclinometer readings from
those cross-sections. The inclinometers were measured on a bi-
weekly basis and the measurement reports for these sites were
utilized.

However, the maximum horizontal displacements for Sites A
and B, at the final stage of excavation, were measured at 10.86 mm
and 10.13 mm, respectively. These values fall within the allowable
standard (δh,max < 0.2%H, where H represents the excavation
depth). With increasing excavation depth, the finite-element
analysis indicated a continuous increase in displacement, while
the Elastic-Plastic Beam-on-Foundation analysis exhibited a
tendency to decrease to approximately 0.0 mm. This disparity
can be attributed to the fact that beam–column analysis is a
one-dimensional approach, lacking the continuity analysis that
considers the interaction between the ground and the structure.
Consequently, it is inferred that as the excavation stage progressed,
the combined force of the member force and Earth pressure on the
upper analysis point of the wall became excessive in the
beam–column analysis.

As a result, it was found that the finite-element analysis results
were generally similar to the actual inclinometer measurements

compared to the results of beam–column analysis. In fact, even if
the inverse analysis is performed, it is a very demanding task to
perfectly match the numerical analysis results with the measured
values, and it is difficult to consider all site conditions such as
ground material properties. This numerical analysis is a
conservative result of the 2D analysis, and Figure 5A shows
that the measured values at the final excavation stage are in
error at 2 m and 4 m. In addition, it is judged that the
calculation of ground properties does not reflect 100% of the
actual ground properties. However, the validity of the finite
element analysis was confirmed by the maximum displacement
and the shape of the deformation profile of the wall.

3.2 Results of influence factors analysis

The numerical analysis results were utilized to compare the
horizontal displacement of the wall for each influencing factor, as
depicted in Figure 6. In terms of unit weight, it was observed that
the horizontal displacement tended to increase with an increase in

FIGURE 8
Relationship between variation ratio and maximum
displacement: (A) soil properties and (B) external force and structural
stiffness.
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weight. This can be attributed to the larger load on the wall
resulting from the higher unit weight. For adhesion and friction
angle, factors indicating the shear strength of the ground, the
horizontal displacement decreased with increasing values due to
the improved ground stiffness. Notably, the friction angle had a
more pronounced effect on the horizontal displacement of the wall
compared to the adhesion force. This finding can be attributed to
the presence of a fill layer in most excavation sites, where adhesion
force is absent. As indicated in Table 2, the absence of adhesion in
the fill and sedimentary layers confirms their minimal impact on
the wall relative to the friction angle. In regard to the elastic
modulus, its impact was smaller than that of unit weight and
friction angle, but still greater than that of adhesion. Based on these
results, the priority of the influencing factors in terms of subgrade
properties was determined as follows: friction angle > unit
weight > elastic modulus > adhesion. The effects of surcharge
load and initial GL, which can be categorized as external
influencing factors, were found to be smaller compared to those
of the ground material. Specifically, the horizontal displacement of
the wall exhibited similar behavior regardless of the size of the
surcharge load. Concerning the initial GL, it was observed that a
higher initial GL led to larger horizontal displacement of the wall,
attributed to the water pressure exerted on the wall (Figure 7B).

The results related to the stiffness of the structure are presented in
Figures 7C, D, indicating that the horizontal displacement of the
wall was not significantly affected. While the stiffness of the
members may have a substantial impact when considering
member forces, the horizontal displacement of the wall is
primarily influenced by the ground properties rather than the
stiffness of the members. This is in line with the results of a
research case analyzed through reverse analysis of an actual
embedded retaining wall (Foo et al., 2023). In this study, each
influencing factor was quantitatively analyzed and prioritized to
provide information that can be used in actual design. Table 5
shows the shear strain results when the variation ratio for each
influencing factor is set to the minimum (0.8) and maximum (1.2),
and it is helpful to visually understand the effect of the change of
each factor on the retaining walls.

4 Discussion

4.1 Sensitivity analysis of influencing factors

The sensitivity of the influencing factors was examined based on
the displacement changes of the retaining wall as described in the

FIGURE 9
Relationship between variation ratio and maximum displacement by soil layer: (A) unit weight; (B) cohesion; (C) friction angle; and (D) elastic
modulus.
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previous section. Figure 8 illustrates the maximum displacement of
the retaining wall in relation to the variation ratio of each influencing
factor, including both increasing and decreasing ratios based on a
reference ratio of one. As depicted in Figure 8A, the displacement
demonstrated a substantial increase with an increase in unit weight.
Conversely, as cohesion and elastic modulus values increased, the
displacement exhibited a linear decrease. The friction angle displayed
a significant impact on wall displacement, particularly when the value
fell below the design constant. This finding is consistent with the
results of the finite-element analysis conducted in this study, which
demonstrated the direct influence of shear strength and friction angle
on wall behavior, attributable to the M–C model. It should be noted
that while this study focused on sandy soil and rocky ground, the
impact of adhesion force is likely to be more pronounced in clay
ground, unlike in the current investigation. Figure 8B reveals that an
increase in the surcharge load and initial GL of the backfill ground
corresponded to a decrease in the strength of the wall and support.
This suggests that the influence of wall stiffness and support material

strength, which directly affect the design of the excavation for
retaining walls, is considered insignificant due to the role of the
temporary structure (support material). However, the initial GL and
surcharge load, acting as external loads, exhibited a substantial effect
on the wall behavior.

4.2 Analyzing influencing factors by ground
type

This study revealed that the variations in influencing factors
had different effects depending on the soil type. Figure 9 illustrates
the maximum displacement generated by each ground type as the
variation ratio of the influencing factors changes. It can be
observed that the extent of maximum displacement differs for
each subgrade layer as the subgrade properties vary. When the
variation ratio of unit weight is set to 0.8, indicating a 20%
reduction from the design constant, the sedimentary layer

FIGURE 10
Variability of retaining wall displacement with soil type and influencing factors: (A) soil type and (B) external force and structural stiffness.
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exhibits the highest maximum displacement. The unit weights of
the fill layer and the sedimentary layer, which are significantly
lower in magnitude, measure 13.6 kN/m3 and 14.4 kN/m3,
respectively. The lower degree of displacement change can be
attributed to the presence of anchors constructed in the upper
fill layer. Furthermore, it was observed that the maximum
horizontal displacement occurs outside the range of anchor
support during excavation with a maximum depth of 6.9 m. In
terms of cohesion variability, no significant differences were
observed among the various ground types, and the impact was
negligible in weathered rock. Conversely, similar to unit weight,
the friction angle exhibited a substantial effect on wall behavior as
it increased or decreased compared to the design constant.
Notably, in the fill layer, a significant change in maximum wall
displacement occurs when the friction angle deviates more than
10% from the design constant. Furthermore, when the friction
angle exceeds 1.2 times the design constant, the maximum
displacement is observed in the sedimentary layer. This suggests
that a decrease of more than 10% in the friction angle of the fill
layer leads to a substantial displacement of 23°, exceeding the
typical range of ground properties and resulting in displacements
greater than 10 mm. In the sediment layer, with a 20% reduction in
the design constant, the friction angle measures 22.4°, resulting in a
wall displacement of approximately 12 mm. The relatively smaller
displacement observed when the friction angle exceeds 1.2 times
can be attributed to the influence of unit weight due to the presence
of anchors in the upper fill layer. The effect of changes in elastic
modulus value was found to be similar across the various ground
types.

4.3 Coefficient of variation for influencing
factors

Figure 10A displays the distribution of displacement data for the
retaining wall based on the variation ratio of subgrade properties
according to the subgrade type. The displacement values for each
subgrade layer, as influenced by the variations in the four subgrade
properties, follow the order of fill, sedimentary, weathered soil, and
weathered rock. Regardless of the subgrade material, the average
displacement value decreases from the fill layer to the weathered
rock layer as the depth of excavation increases. The friction angle
exerts the most significant influence among the subgrade properties,
and outliers in displacement values can be observed in the
sedimentary and weathered soil layers. In terms of the impact
degree of subgrade type, the displacement value changes for unit
weight and friction angle appear significant in the fill and
sedimentary layers, while the overall subgrade material seems to
be evenly affected in the weathered soil and weathered rock layers.
Figure 10B presents the displacement data for the retaining wall
according to ground type, considering external forces (surcharge
pressure and initial GL) and structural stiffness. Unlike the results
based on ground properties, it is challenging to discern specific
variations in data distribution for influencing factors or ground
types. However, the largest data distribution is observed in the
weathered soil layer.

To assess the variability of data, we calculated the coefficient of
variation (CV), a unitless measure widely used in various research

fields to demonstrate data variation. The CV is obtained by
dividing the standard deviation of the sample by the arithmetic
mean. When units differ or data exhibit significant scale
differences, the CV provides a means to compare variation
equality. Figure 11 illustrates the CV for various influencing
factors and subgrade types. Figure 11A displays the CV for all
influencing factors, revealing similar variations except for the
ground physical properties. The CV for subgrade material is
greater compared to other influencing factors. The fill layer and
sedimentary layer exhibit high variability in unit weight and
friction angle, suggesting that these two properties significantly
influence wall displacement in these ground types. In the
weathered soil layer, the variability of all four geotechnical
properties is similar, indicating that each property influences
wall displacement. The weathered rock layer, located at the
deepest level, demonstrates overall low variability. Unlike the
other layers, the weathered rock layer exhibits a high CV for
unit weight and elastic modulus.

The results proposed in this paper can be applied to the
calculation of geotechnical properties in the design stage of
masonry walls. In the actual masonry wall design stage, the

FIGURE 11
Coefficient of variation (CV) with influencing factors and soil
type: (A) CV for influencing factors and (B) CV for soil properties and
layers.
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geotechnical properties are calculated based on the SPT N value for
convenience, which is difficult to fully reflect the actual
geotechnical properties. Therefore, it is believed that a more
reliable wall design can be achieved if a minimum geotechnical
investigation is performed for the influential factors as shown in
Figure 11A.

5 Conclusion

This study aimed to analyze the key design factors influencing
the stability of retaining wall-anchor-support structures during
excavation in urban areas by considering field application results
and conducting finite-element analysis. Based on the findings, the
following conclusions can be drawn:

1) The finite-element analysis provided more accurate results
compared to the conventional beam–column analysis in terms
of considering soil pressure and displacement during ground
excavation. The beam–column analysis, being one-
dimensional, yielded a displacement of approximately
0 mm at the top of the wall, which does not correspond to
the actual value. This discrepancy arises due to the excessive
application of combined anchor force and Earth pressure as
the excavation stage progressed. In contrast, the finite-
element analysis accounted for the interaction between the
ground and the structure, resulting in more realistic
displacement values.

2) The selected influencing factors for the excavation of retaining
walls included ground properties, external loads (such as GL and
surcharge load), and structural stiffness. Variation ratios ranging
from 0.8 to 1.2 were used to compare the quantitative results. The
analysis revealed that an increase in unit weight and shear
strength of the ground led to a decrease in the maximum
horizontal displacement of the wall. On the other hand, the
position of the GL, surcharge load, and structural stiffness had a
negligible effect on wall displacement.

3) Sensitivity analysis of the influencing factors demonstrated that
unit weight exhibited a positive correlation with ground
properties, while cohesion, friction angle, and elastic modulus
showed a negative correlation. Furthermore, the surcharge load
and initial GL exhibited a positive correlation, whereas the
stiffness exhibited a negative correlation. Of particular note is
the friction angle, which proved to be a critical design variable as
even small changes in its value resulted in significant variations
in wall displacement.

4) The CV analysis highlighted the significance of the friction angle,
unit weight, and elastic modulus as influential variables
impacting the behavior of earth-membrane walls due to their
substantial variability. The analysis also revealed that the fill layer
exhibited variability in both friction angle and unit weight, while
the weathered soil layer demonstrated uniform variability across
all ground properties. Therefore, accurate property calculations
for the corresponding ground layer are essential for the precise
design of retaining walls.

5) A quantitative analysis of geotechnical factors affecting wall
displacement during excavation was conducted to determine
the ranking of factors with large influence. The calculation of

ground physical parameters during the design phase of an actual
Earth retaining wall is thought to be possible using this
conclusion. Currently, there are limitations in considering the
actual ground physical properties by calculating the ground
physical properties based on SPT N-values in the design.
Based on the findings of this study, it is determined that if a
minimal ground survey is carried out for highly influential
ground features, a more dependable wall design may be
feasible. In conclusion, it is determined that by carrying out a
design based on the accurate calculation of parameters, it is
possible to design economically while providing stability by
changing the cross section of the wall and the type of support
material (anchor, strut etc.).

6) Although there are many previous studies on the deformation of
Earth retaining walls during excavation, there is lack of
validation study that examines the stability of various
influencing factors such as wall, soil properties, and external
influencing factors. Furthermore, there is no study that
prioritizes these factors and presents them as a basis for Earth
retaining wall design. Based on the results obtained at a specific
site, this study conducted an examination of the influence for
geotechnical parameters. In addition, based on an actual field
case, this study conducted an influence factor analysis on one
typical site for Earth retaining walls using a variety of
combinations of wall types, ground conditions, and support
material types. In order to execute the analysis properly,
different wall types and ground conditions should be taken
into consideration. However, because there are limitless
combinations of these circumstances, this study concentrated
on site characteristics and wall construction techniques that are
primarily employed in South Korea. Further study is expected to
be able to offer data that may be used to enhance the actual
design effectiveness of various Earth retaining wall construction
techniques.
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