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Editorial on the Research Topic

Multi-scale dynamics modeling of brain physiological functions and

pathological mechanisms

1. Introduction

The human brain is an extraordinary organ, sometimes referred to as the most complex

system since it is responsible for our thoughts, emotions, and actions. Understanding how

the brain works and unraveling the mechanisms underlying neurological disorders are long-

outstanding challenges in neuroscience. In this editorial article, we delve into the exciting

realm of multi-scale dynamics modeling of brain physiological functions and pathological

mechanisms. This Research Topic in Frontiers in Neuroscience brings together a collection

of groundbreaking studies that shed light on the complex dynamics of the brain, offering new

insights into both normal brain function and the underlying causes of neurological disorders.

2. Exploring the multi-scale dynamics

As is well known, the brain operates across multiple scales, from the interactions between

individual neurons to the coordination of large-scale networks. Traditional reductionist

approaches have provided valuable insights into specific aspects of the brain function.

However, a comprehensive and holistic understanding of the brain dynamics necessitates

a multi-scale perspective that integrates information across different levels of organization

such as the neuron scale, the neuron network scale, and the brain network scale. Cutting-

edge research employing innovative modeling techniques to capture the complexity of brain

dynamics across various scales (Xu and Kang; Liu and Sun) is showcased here.

Frontiers inNeuroscience 01 frontiersin.org4

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1275481
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1275481&domain=pdf&date_stamp=2023-09-11
mailto:wying36@xjtu.edu.cn
https://doi.org/10.3389/fnins.2023.1275481
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1275481/full
https://www.frontiersin.org/research-topics/45560/multi-scale-dynamics-modeling-of-brain-physiological-functions-and-pathological-mechanisms
https://doi.org/10.3389/fnins.2023.1155362
https://doi.org/10.3389/fnins.2023.1132980
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1275481

3. Unraveling brain physiological
functions

Several articles focus their attention on unraveling

the fundamental physiological functions of the brain. By

combining experimental data with computational models,

researchers have made significant strides in elucidating

the mechanisms underlying sensory perception (Xu and

Kang), memory formation (Liu and Sun), and attention

(Wang et al.). These studies provide valuable insights into

the dynamic interplay between different brain regions and

shed light on the neural mechanisms that give rise to our

cognitive abilities.

4. Unveiling pathological mechanisms

Neurological disorders pose significant challenges to human

health and wellbeing. From this perspective, several articles delve

into the pathological mechanisms underlying conditions such

as epilepsy (Fan et al.; Jiang et al.), Alzheimer’s disease (Li et

al.), acoustic neuroma (Zhang et al.), pituitary adenoma (Wang

et al.), and sleep disorders (Li and Dong). By employing

multi-scale modeling approaches, researchers have made

remarkable progress in unraveling the complex interactions

between genetic, cellular, and network-level abnormalities that

contribute to these disorders. Most importantly, this deeper

understanding opens new avenues for the development of targeted

therapeutic interventions.

5. Bridging the gap between theory
and clinical applications

The studies presented here not only advance our theoretical

understanding of brain dynamics, but also have important

implications for clinical applications (Wang et al.; Xu et

al.; Zhang et al.). By elucidating the mechanisms underlying

neurological disorders, these findings pave the way for the

development of novel diagnostic tools, personalized treatment

strategies, and therapeutic interventions. The integration of

multi-scale modeling with clinical data holds great promise

for improving patient outcomes and transforming the field

of neurology.

6. Conclusions

The multi-scale dynamics modeling of brain physiological

functions and pathological mechanisms represents a paradigm

shift in neuroscience research. This Research Topic in Frontiers

in Neuroscience brings together a diverse range of studies that

push the boundaries of our understanding of the brain. By

integrating knowledge from different scales, these studies provide

a comprehensive picture of brain dynamics and offer new avenues

for tackling neurological disorders. The insights gained from this

research have the potential to transform our approach to brain

health and pave the way for more effective treatments in the future.
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Introduction: The dynamic reconfiguration of network oscillations is connected

with cognitive processes. Changes in how neural networks and signaling pathways

work are crucial to how epilepsy and related conditions develop. Specifically,

there is evidence that prolonged or recurrent seizures may induce or exacerbate

cognitive impairment. However, it still needs to be determined how the seizure brain

configures its functional structure to shape the battle of strong local oscillations vs.

slow global oscillations in the network to impair cognitive function.

Methods: In this paper, we aim to deduce the network mechanisms underlying

seizure-induced cognitive impairment by comparing the evolution of strong local

oscillations with slow global oscillations and their link to the resting state of healthy

controls. Here, we construct a dynamically efficient network of pathological seizures

by calculating the synchrony and directionality of information flow between nine

patients’ SEEG signals. Then, using a pattern-based method, we found hierarchical

modules in the brain’s functional network and measured the functional balance

between the network’s local strong and slow global oscillations.

Results and discussion: According to the findings, a tremendous rise in strong

local oscillations during seizures and an increase in slow global oscillations after

seizures corresponded to the initiation and recovery of cognitive impairment.

Specifically, during the interictal period, local strong and slow global oscillations are

in metastable balance, which is the same as a normal cognitive process and can

be switched easily. During the pre-ictal period, the two show a bimodal pattern of

separate peaks that cannot be easily switched, and some flexibility is lost. During

the seizure period, a single-peak pattern with negative peaks is showcased, and

the network eventually transitions to a very intense strong local oscillation state.

These results shed light on the mechanism behind network oscillations in epilepsy-

induced cognitive impairment. On the other hand, the differential (similarity) of

oscillatory reorganization between the local (non) epileptogenic network and the

global network may be an emergency protective mechanism of the brain, preventing

the spread of pathological information flow to more healthy brain regions.

KEYWORDS

focal epilepsy, effective brain network, oscillatory reorganization, seizures transitions,
cognitive impairment
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1. Introduction

Oscillations arise from neuronal interactions that promote
communication and information processing between regions of
a functional neural network (Engel et al., 2001; Buzsaki and
Draguhn, 2004; Wang et al., 2020; Földi et al., 2021). Recent
studies have shown that network oscillations temporally link neurons
and enhance synaptic plasticity, supporting long-term information
consolidation and is a cognitive process necessary for learning
and memory (Goltsev et al., 2013; Holmes, 2015; Sadaghiani
and Kleinschmidt, 2016). Specifically, tiny timing mistakes in
neuronal or oscillatory activity may be magnified in more extensive
networks, resulting in cognitive impairment (Buzsáki, 2007). This
shows that using network oscillations to investigate cognitive
impairment is a viable treatment strategy. Many studies are
becoming more interested in the impact of network oscillations
on cognitive impairment, focusing on specific frequencies and
amplitudes of oscillation (Wilke et al., 2011; Ibrahim et al.,
2012; Guo et al., 2018). However, the mechanism through which
oscillatory reorganization influences cognitive impairment remains
unknown.

In the present study, we surveyed the mechanisms through
which network oscillations contribute to seizure-induced cognitive
impairment. As a starting point, we investigated the findings
of prior studies on the topic. Previous research has shown a
causal relationship between the pathophysiological mechanisms
that cause seizures and the biology of cognitive impairment, with
oscillations acting as one of the essential links (Jensen et al.,
2007; Guo et al., 2018). Gamma oscillations are closely associated
with sustained learning and memory functions, and oscillation
abnormalities may result in cognitive deficits (Ibrahim et al.,
2012; Guo et al., 2018). Cognitive memory may be disrupted by
seizures caused by intermittent oscillations (Binnie and Marston,
1992; Holmes and Lenck-Santini, 2006; Lévesque et al., 2018). In
epileptic patients, abnormalities in brain connection produced by
oscillations and impaired temporal coding affect cognition (Holmes,
2015). In patients with temporal lobe epilepsy, seizure-evoked
circuits are localized in memory-supporting brain regions, and these
regions generate essential physiological high-frequency oscillations
required for memory processing (Axmacher et al., 2008; Ewell
et al., 2019). However, most research has been limited to specific
oscillations or epileptic disorders. Consequently, little is known
about the systematic contributions of oscillatory reorganization
to cognitive impairment. In addition, several studies have shown
that strong local oscillations are more widespread in neuronal
networks, with the local connection of neurons limiting their
extension (Abela et al., 2014). Slow global oscillations reflect
the integration of neuronal activity across regions of the brain
throughout sensory or cognitive processes. However, recording
technologies have limited investigations of precise mechanisms
(Sheybani et al., 2019). There is no evidence that the encoded
form of slow global oscillations applies to distributed networks
in epileptic diseases. As a result, future research should examine
the effects of oscillatory reorganization on seizures and cognitive
impairment via the joint of strong local oscillations and slow global
oscillations.

Moreover, there may be a mutually suppressive relationship
between strong local oscillations and slow global oscillations. High-
frequency oscillations are connected with local neuronal interactions,

whereas slow rhythmic oscillations at lower frequencies are more
crucial for the long-distance integration of large-scale networks (Von
Stein and Sarnthein, 2000; Donner and Siegel, 2011; Goltsev et al.,
2013; Ibrahim et al., 2013). When α oscillation energy rises in a
specific brain region, neurogenesis in that region generally decreases.
However, oscillatory reorganization’s precise effect on cognitive
impairment has yet to be investigated, and many fundamental
concerns remain unanswered. We have yet to determine, for instance,
what change patterns occur in strong local oscillations under the
effect of seizures, nor whether strong local oscillations play a role
in suppressing slow global oscillations. In this research, we aimed to
answer these crucial questions.

Furthermore, brain function does not originate from isolated
brain regions but through interactions in large-scale networks (van
Diessen et al., 2014), which seem essential for both physiological
and pathological conditions. On the one hand, such connections
might propagate seizures; or instance, interconnected focal regions
may have suffered damage due to peaked wave dissemination,
which often results in widespread cognitive impairment (Harkin
et al., 2007). Alternatively, other research shows that the brain may
have a mechanism to protect healthy brain regions from seizures,
which may cause permanent damage. For instance, seizure cessation
is characterized by somewhat uniform oscillatory suppression
(Truccolo et al., 2014). Intermittent epileptiform discharges have
remote inhibitory effects on cognition (Shamshiri et al., 2017;
Ung et al., 2017; Guo et al., 2018; Watson, 2018). However, the
mechanisms and pathophysiology that control particular functions
have yet to be entirely understood. It is uncertain if the resting or
task state of the healthy brain exists or has been altered in epileptic
patients.

In this research, the pathophysiological mechanisms underlying
epilepsy-induced cognitive impairment may be associated with
the oscillatory reorganization of functional networks. We focus
specifically on the mutually inhibiting effect of strong local
oscillations and slow global oscillations. The experiment was based
on a quantitative analysis of the synchronization and directionality
of information flow between the SEEG signals of nine patients with
pathological epilepsy to create a dynamic network. Previous research
has only used indicators of complex networks, focusing on particular
global or local connection changes. In contrast, we utilize methods
based on characteristic mode to identify hierarchical modules and
quantify strong local oscillations and slow global oscillations in the
network to examine dynamic networks comprehensively. To provide
new information, we identify the particular variation rules of strong
local oscillations versus slow global oscillations during various seizure
phases. These models and findings help characterize an unrecognized
dynamic network oscillatory reorganization mechanism in cognitive
impairment induced by epilepsy.

2. Materials and methods

2.1. Data preparation

In this research, nearly 100 channels (electrodes) of SEEG
data from nine patients hospitalized with refractory focal epilepsy
at the Sanbo Brain Hospital of Capital Medical University were
visually analyzed and extensively exploited to validate our results
independently. The Ethics Committee approved the SMBC of
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Capital Medical University’s study technique, and a negotiated
informed special dispensation was prepared for all participants.
This information cannot be shared with the general public due to
hospital regulations. Furthermore, the sampling frequency was set
at 512 Hz and the average monitoring time was 1 week. Interictal,
preictal, seizure, and post-ictal periods were analyzed to determine
the network features of people with epilepsy. For each patient,
we devised criteria for categorizing the various seizure stages, as
indicated in Table 1. These criteria were based on the clinical seizures
recognized by physicians.

The data for the control group in this study were collected
from the EEG Motion/Image Dataset public dataset (Schalk et al.,
2004), which includes over 1,500 1- and 2-min EEG recordings from
109 volunteers with 64 electrodes. The volunteers were required to
perform a variety of motion and visual tasks. We selected nine data
points from healthy individuals from which we extracted segments of
resting or task-state EEG to compare with patients.

2.2. Statistic method for epileptic effective
brain network

Usually, Pearson correlation coefficients are employed to
establish functional networks for analyzing resting-state brain
network alterations in healthy individuals. However, compared to
FMRI data, the SEEG data employed in this work includes more
complex dynamic changes in transients due to its temporal and
spatial features. Consequently, this research establishes an effective
network based on the statistical method proposed in Quiroga et al.
(2002), which may improve the assessment of the information flow in
the brain network of patients with epilepsy.

We build a dynamic and efficient network by estimating the
synchronization and directionality of developing information flow
to represent pathological epilepsy. Therefore, it is essential to define
events for time series. Here, the events are defined as the local
maximums in the time series, i.e.,{

xtk > xtk+m, m = −M + 1, . . . ,−1, 1, . . . ,M − 1
xtk > xtk±M + h

(1)

where tk is the event occurrence time, M = 10h = 30 are the two
control parameters shaping the event.

Let the event sequences of time series x1 (n) and x2 (n) (total
step length L) be t1r (r = 1, . . . ,m1) and t2s (s = 1, . . . ,m2), where
m1 (� L) and m2(� L) are the total number of event occurrences
in x1 (n) and x2 (n), respectively. The time difference between event
occurrences in various time series is then used to determine the
causality and synchronization of events. In the time delay scale τ,
if an event is recorded in the sequence x1 (n) immediately after an
event occurs in the sequence x2 (n), then it is considered that the
intensity of the causal effect of x1 (n) on x2 (n) will be enhanced by
one step. Conversely, x2 (n) is one step more causality for x1 (n). In
addition, regardless of the sequence of events in x1 (n) and x2 (n),
as long as two related events are observed to occur close enough,
they are considered a simultaneous occurrence, and the amount of
synchronization is correspondingly increased by one step.

eτ
(
x1
|x2)
=

m1∑
r=1

m2∑
s=1

Eτ
rs,E

τ
rs =


1, 0 < t1r − t2s ≤ τ

1
2 , t1r = t2s

0, others
(2)

Remember sequence x2 (n) for x1 (n) event-causal eτ(x1
|x2), the

size of representative sequence x2(n) for x1(n) the causal role of
strength. The global time delay,

τ = min
r=1,...m1,s=1,...,m2

{τrs} ,

τrs =
1
2

min
{
t1r+1 − t1r , t

1
r − t1r−1, t

2
s+1 − t2s , t

2
s − t2s−1

}
(3)

is used to limit the smallest time interval between two adjacent events,
where τrs is the local time delay for each pair of adjacent (temporally
closest) events (r, s), Eτ

rs = 1/2 is such set to prevent from double
counting for the two simultaneous events. On the contrary, eτ(x2

|x1)

quantifies the causality from x1(n) to x2 (n).
Based on eτ

(
x1
|x2) and eτ(x2

|x1), we then define the degree of
simultaneity Qτ and causality qτ for x1(n) and x2(n) as follows:

Qτ
=

eτ
(
x2
|x1)
+ eτ(x1

|x2)
√
m1 ·m2

, qτ
=

eτ
(
x2
|x1)
− eτ(x1

|x2)
√
m1 ·m2

(4)

Both are normalized to 0 ≤ Qτ
≤ 1, − 1 ≤ qτ

≤ 1. Qτ
= 1

when and only when all events in both signals occur together. qτ
=

1 when and only when all events from x1(n) act for all events
from x2 (n).

Second, to examine the evolution trend of synchronization and
causality between the two sequences over time, Qτ and qτ are
evaluated for each time step, while their cumulative consequences are
investigated over time. We define qτ (n) as Equation(5),{

qτ (n) = eτn
(
x2
|x1)
− eτn

(
x1
|x2)

Qτ (n) = eτn
(
x2
|x1)
+ eτn

(
x1
|x2)

eτn
(
x1
|x2)
=

m1∑
r=1

m2∑
s=1

Eτ
rs2

(
n− t1

r
)

(5)

where n = 1, 2, . . . , L is the time point within the series, and 2 is the
step function, i.e., 2 (x) = 1 when x > 0 and 2 (x) = 0 when x ≤ 0.
qτ (n) could be thought of as a random sequence; when the event in
x1 causes the event in x2 to occur, it increases by one step, and vice
versa, it diminishes by one step. The synchronization of progressive
events is defined by Qτ (n) in Equation (5), where Qτ (n) improves by
one step if a pair of events in x1 and x2 occur within the period τ and
remains nearly constant otherwise.

The rate of change of synchronization at time point n is calculated
by averaging the synchronization expansion throughout 1n steps
(1n = 5120 in the current calculation) using dQτ (n) in Equation (6),

dQτ (n) =
Q (n)− Q (n−1n)
√

1n1 ·1n2
, dqτ (n) =

q (n)− q (n−1n)
√

1n1 ·1n2
(6)

where 1n1 and 1n2 correspond to the number of events in x1 and x2

in the band [n−1n, n], respectively. Similarly, we might define the
rate of change of the causal level at time point n as choosing to follow
dqτ (n) in Equation (6), where dQτ (n) > 0 and dqτ (n) > 0 represent
a positive increment of synchronization and causality within 1n
steps, respectively, and < 0 represents a negative escalation within
1 n steps.

Specifically, the synchronization growth rate dQτ (n) and the
causal level change rate dqτ (n) at time point n are determined for
any two nodes i and j in the network whose relevant time series are
xi and xj. The magnitude of the weighted directed action of node i
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TABLE 1 Clinical patient characteristics.

Patient Age (years) Duration (years) Side Electrodes/contacts Recorded seizures Pathology

1 17 12 R 15/124 4 FCD Ia

2 9 5 L 11/116 6 FCD Ib

3 4 7/12 R 13/122 9 FCD IIa

4 7 1 L 10/120 101 FCD IIb + FCD Ic

5 5 3 R 10/108 2 FCD Ib

6 16 3 L and R 15/119 4 FCD Ib + FCD IIb

7 7 5 L 13/116 1 FCD Ib

8 27 12 L 8/108 5 HS.

9 15 9 R 8/117 17 FCD Ib + GMH

FCD, cortical dysplasia; HS, hippocampal sclerosis; GMH, ectopic gray matter.

on node j at time point n is represented by aij(n), which also contains
data on the synchronization level between the two nodes, as described
by Equation (7),

aij (n) =

{
γ · dqτ

ij (n) · dQ
τ
ij (n) , dqτ

ij (n) > 0
0, dqτ

ij (n) ≤ 0
(7)

where the amplification factor γ = 1000 is considered in this
research. Furthermore, it is assumed that there are no self-connecting
rings in the network, i.e., aii (n) = 0, i = 1, 2, . . . , n0, where n0 is the
maximum number of nodes in the network.

2.3. Hierarchical modular division of
functional connection matrix

Wang Rong et al. (Wang et al., 2021) proposed that the activation
and combination of various structural modal interactions in the
eigenmodes lead to generating multiple dynamical modes in the
system by nature. Moreover, in this study, to discover the dynamical
oscillation reorganization law of the directed weighted network,
we propose a new hierarchical eigenmode analysis method that
includes examining complex numbers. In particular, the directed
weighted network and functional connection matrix in Figure 1 is
an epitome of the causal effects network calculation results. Since the
functional connection matrix is asymmetric, the resulting eigenvalues
and eigenvectors must include complex conjugate numbers. It is
well known that the eigenvalues on the exact number field domain
represent the magnitude of the stretching transformation, whereas
the eigenvectors represent the direction. In comparison, the complex
domain adds a rotational transformation. Under the transformation
of polar coordinates, a+ bi becomes r (cosθ+ i ∗ sinθ), where
r =
√
a2 + b2 represents the stretching quantity, and θ = arctan b

a
represents the rotation. Additionally, the complex eigenvector
component m+ ni is multiplied with the corresponding eigenvalue
a+ bi, representing the real rotation of the basis vector ϕ and the
stretching transform q (Hitzer, 2002):

(
a+ bi

)
(m+ ni) = r (cosθ+ i∗sinθ) ∗q (cosϕ+ i∗sinϕ) =

rq [cosθcosϕ− sinθsinϕ+ i∗ (sinθcosϕ+ cosθsinϕ)] =

rq [cos (θ+ ϕ)+ i∗sin (θ+ ϕ)] (8)

On this foundation, we consider the modal lengths of the
eigenvalues and eigenvectors that correspond precisely to the
magnitude of the change in a stretch, which makes more physical
sense than merely considering the real part.

Immediately following, we provide the specific modal analytical
method. First, the eigenvalues are sorted by mode length from largest
to smallest 32

i (i = 1, . . . ,N) and the corresponding eigenvectors
are rearranged. In order to depict the actual global level of slow
oscillations in the brain, the first eigenvector corresponding to the
largest eigenvalue modal length was not divided at the first level. The
global slow oscillations can be expressed as:

Hin =
H1

N
=

32
1M1(1− p1)

N2 (9)

where the parameters and variations can be explained later.
Level 2 eigenvector separated brain regions into three sub-

modules: balance, strong oscillation, and weak oscillation.
After the entire module was divided into three parts, the latter
oscillatory deformation was much higher than the former.
(AVG+ SD,AVG+ 2∗SD) represents a balanced oscillatory
deformation while cognitive patterns are switched more flexibly, and
cognition is at a greater level (complex planes Á and Ä in Figure 1).
(AVG+ 2∗SD, +∞) represent a strong oscillatory deformation
with significant feature differences and shifts. Moreover, the greater
the amplitude of the oscillation, the more it may negatively impair
cognition (complex planes Â and Å in Figure 1). (0,AVG+ SD)

denotes a weakening of the oscillation level and a slowing of
cognition, tending toward a mode that occurs when the oscillation
gets suppressed (complex planes À and Ã in Figure 1). Where AVG
and SDrepresent the set’s mean and standard deviation, respectively,
this set is made up of the modal lengths of all components of the
whole eigenvector. Nonetheless, it is challenging to quantify the
degree of rotation in measures of complex numbers. In this part, we
do not distinguish between the effect of the rotation angle on the
magnitude of oscillations at each level; further explanation will be
given in the Section “4. Discussion.”

As the sequence of functional patterns rises, the FC network
modularizes until it reaches a state of high modularity. In this process,
the case from layer 2 to layer N represents the deformation intensity
of the strong local oscillation, expressed as

Hse =

N∑
i=2

Hi

N
=

N∑
i=2

32
iMi(1− pi)

N2 (10)
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FIGURE 1

Example illustration and detailed description of the eigenmode analysis method. This diagram demonstrates a weighted directed network with four
nodes. This network is then assigned a functional connectivity matrix corresponding to the hundred-dimensional matrix acquired from the real epilepsy
causal effects network. The eigenvalues and eigenvectors of this matrix are then determined. The eigenvectors are then retrieved in modal length, and
their interpretation in the complex plane is provided. The module is subdivided into three submodules based on the modal lengths of the eigenvectors,
and the subfigure at the bottom left depicts the precise meaning and classification links of the hierarchical modularity method to oscillatory dynamic
reorganization.

where Mi is the number of modules within layer i, which is weighted

as Hi =
32

i Mi
N (i = 1, . . . ,N). N is the number of regions in total.

Nevertheless, the heterogeneous structure of module sizes causes
variations in the evaluation of separation and integration parameters;
hence, similar to Wang et al. (2021), we also introduce the correction
factor pi =

∑
j

∣∣∣mj −
N
Mi

∣∣∣ /N, where mj(j = 1, . . . ,Mi) is the module

size.
In addition, we set Hsb = Hin −Hse: if Hsb < 0, the brain’s

functional network is biased toward a state of strong local oscillatory
deformation, which has a facilitative effect; if Hsb > 0, which implies
that the network is biased toward a state under which slow global
oscillations cooperate, the structure of the entire network is stable;
if Hsb = 0, a sub-stable balance is reached between strong local
oscillations and slow global oscillations, and the contribution of the
original network to strong local oscillations is roughly equal to the
suppression of strong local oscillations by slow global oscillations.
Every Hsb value is normalized to the range [−1, 1]. The closer Hsb
is to−1, the greater the strong local oscillations and the more excited
the proto-network state. The closer Hsb is to 1, the higher the degree
of slow global oscillation and the greater the suppression of strong
local oscillations.

In conclusion, causality and synchronization were used to assess
the strength of directional propagation of information flow between
two epilepsy network nodes to construct a weighted epilepsy effective
network. Meanwhile, we fed SEEG into this network and analyzed the
output functional connection matrix. Using a modular hierarchical
analysis of the eigenmodes, a dynamic description of the brain
network’s strong local oscillations versus slow global oscillations in
the temporal and spatial dimensions of the patient’s seizures were
constructed. Ultimately, the dynamic reconfiguration of network
oscillations may be the source of cognitive impairment produced
by epilepsy. Figure 2 shows the main flowchart of the whole
research.

3. Results

3.1. Potential reason for cognitive
impairment: Disruption of the balance
between strong local and slow global
oscillations

We discovered that epileptic seizures damage the metastable
balance between local strong and slow global oscillations in large-
scale networks. Specifically, we investigated the Hsb metrics of
healthy individuals, which reflect the metastable balance between
strong local oscillations and slow global oscillations. Figure 3 shows
the fluctuation of the Hsb indication for nine healthy controls
over time. We can observe that the Hsb fluctuates evenly around
0 and is primarily stable around 0. This indicates that healthy
brain networks have balanced oscillatory states and switch between
strong local oscillations and slow global oscillations more frequently,
hence maintaining regular cognitive functional activity. The brain
network’s facilitation of strong local oscillations plays off against the
suppression of strong local oscillations by slow global oscillations, yet
the network is in balance overall. For comparison, we analyzed the
variation of brain network states in epileptic patients.

Patient 1 had the exact opposite features compared to healthy
controls, as shown in Figure 4. The strong local oscillation index Hse
and the slow global oscillation index Hin exhibited rapid, irregular
fluctuations within the range [−1, 1]. Similarly, the balance index
Hsb exhibited the same alterations (Figure 4), which seemed very
distinctive from healthy individuals. The primary data implies that
the disruptive impact of seizures on the metastable balance of strong
local oscillations and slow global oscillations is rather severe. In
addition, both strong local oscillations and slow global oscillations
in the functional network were enhanced after a period of seizure.
In particular, the degree of enhancement is much greater for strong
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FIGURE 2

The entire workflow of the experimental procedure is in this paper. First, the SEEG data are examined, processed, and computed to establish the network
of causal effects. The epilepsy causal impact network then generates a functional connectivity matrix that reflects the synchronization and causality
between SEEG data from various locations. Immediately after this, we conducted a statistical analysis of the functional connectivity matrix using
eigenmode hierarchical analysis to capture the slow global oscillation index vs. the strong local oscillation index for each patient under each data sample.

FIGURE 3

The fluctuations of the Hsb index over time for nine healthy subjects are plotted. Hsb refers to the sub-steady-state equilibrium evaluation index of slow
global oscillations relative to strong local oscillations. If Hsb = 0, the two are in sub-steady state equilibrium; if Hsb < 0, the network state is more skewed
toward strong local oscillations; and if Hsb > 0, slow global oscillations are more robust in the network. Independent of time, it was noted that the
distribution of Hsb in healthy participants centered around 0. Each subplot’s legend numbers reflect the number of healthy subjects, the horizontal axis is
the time series t, and the vertical axis is the Hsb size, normalized to the interval [−1, 1].

local oscillations than for slow global oscillations, and it recovers to
pre-seizure levels after a seizure. As a result, changing strong local
oscillations and slow global oscillations in the functional network

may be a pathogenic mechanism that leads to cognitive impairment.
In contrast, the interictal phase is associated with a decrease in the
flexibility of both strong local oscillations and slow global oscillations.
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We assume that not only is there cognitive impairment during
seizures but also a general divergence between the configuration of
the patient’s network’s functional structure and the course of cognitive
activity in healthy individuals.

3.2. New network oscillation dynamic
reconfiguration discoveries may be
relevant to cognitive impairment
pathophysiology

Hsb changes in the form of the distribution of peak nuclear
density may be a sign of cognitive impairment caused by seizures.
To further validate our conclusion, we investigated the dynamics of
strong local oscillations against slow global oscillations throughout
various seizure phases for each patient. Figure 5 displays the seizure
periods in the Hsb kernel density distribution results for each of the
three patients. This study demonstrates a high degree of similarity
across state transitions, showing that the dynamic hierarchy of
oscillatory reorganization of brain networks varies considerably. The
states are divided into four groups corresponding to Figure 5’s four
colors.

During the interictal phase (Figure 5, first column), the peaks
were single-peaked or equally distributed, showing normal cognitive
function and the ability to transition between local strong and
slow global oscillations. During the pre-ictal phase, the distribution
of strong local oscillations and slow global oscillations showed
a bimodal pattern with independent peaks, suggesting reduced
switching flexibility and good cognitive condition by epileptic
waves (Figure 5, second column). Immediately after and most
notably during the seizure period, the network was significantly
biased toward strong local oscillations, exhibiting a single-peaked
concentration pattern and accumulating negative values, suggesting
almost complete cognitive loss of the brain during seizures (Figure 5,
third column). Cognitive activity returned to normal in the late
seizure phase, when strong local oscillations reverted to a bimodal
pattern or uniform distribution with slow global oscillations, similar
to the interictal phase (Figure 5, fourth column).

In contrast, the oscillatory patterns of the functional network are
often diffused and distributed in states of strong local oscillations
and weak global oscillations. Subsequently, seizures cause them
to be concentrated in hyper-intense strong local oscillations
states, gradually dispersed following the seizure. The increased
concentration of network oscillatory patterns during seizures may
be substantially responsible for the start of cognitive impairment
associated with epilepsy. However, a fascinating phenomenon was
discovered: this decrease in regularity was not absolute. In addition,
the peak distribution of network oscillation patterns for a particular
patient during a specific seizure period was random. However, seizure
variability is not entirely random since the overall trend of attack
change remained consistent between patients. Because of differences
in seizure intensity, duration, and brain network regions, the impact
of these specificities on the results is insignificant.

In order to highlight how changes in the state of strong local
oscillation and slow global oscillation vary between patient episodes,
we estimated the change in the balance state between local strong
and slow global oscillations at the peak for eight patients. The x-axis
coordinate value of the Hsb distribution’s maximum density (blue
dashed line in Figure 6) was drastically decreased and restored

not only after a seizure but also happened many times. This
analysis suggests that seizures cause a significant increase in the
number of strong local oscillations in large-scale brain networks and
that the inhibitory influence of slow global oscillations on strong
local oscillations has almost completely disappeared at this time.
However, after a seizure, protective mechanisms in the brain may
prevent the loss of cognitive overload. The observed pattern of rapid
increases followed by declines in concentration was commonly seen
in patients, validating the generalizability of the concentration as
mentioned above fluctuations. Again, based on patient-specificity, it
is worthwhile to investigate that the indicated characteristics vary in
time of commencement and degree of severity and may occur during
either phase of the episode.

3.3. Pathological mechanisms that prevent
cognitive loss: The oscillatory
reconfiguration of networks at various
sizes

Given that high levels of strong local oscillations are expected
throughout a vast network of distinct patients, we can also
anticipate that network features will not limit these measures.
To assess this, we also identified smaller, more specialized (non-
epileptogenic) local networks for each patient. According to clinical
case reports, each local (non)epileptogenic network included 64 loci
with (non)epileptiform discharges during the interictal and ictal
phases. In addition, Hsb plunge intervals and the exact time and
number of high-level, locally intense oscillations were evaluated.

Figure 7 demonstrates that despite variations in the size and
type of the patient’s functional brain networks, the sudden interval
of Hsb of each patient is the same, and the number of high-level
localized strong oscillations is identical or varies by one. Notably, the
sudden interval of Hsb was more frequent and more prolonged in the
localized epileptogenic network. Thus, whereas seizures considerably
impact the interplay between strong local oscillations and slow global
oscillations within the localized epileptogenic network, high levels
of strong local oscillations do not significantly impair cognitive
performance within the brain network.

Let us consider the emergence of high levels of locally strong
oscillations to represent an extreme cognitive state. It makes sense to
consider the relationship between the period during which high levels
of locally strong oscillations emerge and when they become clinically
apparent. We discovered that the moment of creation of high-level,
local, strong oscillations was random among the various patients and
network types examined in this research (Figure 7). In principle,
the onset of high-level strong local oscillations should correspond
with the clinically characterized onset of a seizure or the number
six. However, high-level local oscillations are more prevalent during
the interictal or pre-ictal phase and less commonly during the late
phase. Therefore, can high-level strong local oscillations be utilized
as a biomarker to identify seizures, and is this information clinically
relevant? Cognitive impairment brought on by high-level strong local
oscillations before seizures? This needs additional investigation.

Few research has compared local non-epileptogenic networks
with epileptogenic networks, another original and novel aspect of our
study. First, we discovered that seizures also impact the local non-
epileptogenic brain network. Although seizures are far less common
in this network than in the localized epileptogenic network, this
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FIGURE 4

Fitted curves of the change in strong local oscillations versus global slow oscillation metrics for patient 1. In each subplot, the green (yellow) curve
represents the global (local) epilepsy network, the red dashed line represents the onset time, the horizontal axis represents the time series t, and the
vertical axis represents the Hsb size, normalized to [−1, 1]. Dramatic swings vary from those of healthy people and are modified by time. (top) the
variation of patient 1’s local strong oscillations Hse over time; (middle) the change of patient 1’s global slow oscillation index Hin over time; and (bottom)
the variation of patient 1’s sub-stable equilibrium index Hsb between strong local and slow global oscillations over time.

FIGURE 5

Distribution of Hsb kernel density of the large-scale network in patients 1, 6, and 9 at different periods of seizures. To further examine the distribution of
peak density changes, we intercepted four segments with the same data points from the time series of Hsb, indicating interictal, pre-ictal, seizure, and
post-ictal phases, corresponding to the four colors from left to right in the figure. kernel density charts for various simultaneous seizure periods for
patients 1, patient 6, and patient 9. In each subplot, the x-axis indicates the magnitude of the normalized Hsb value, the y-axis represents the density
magnitude, and the y-axis labels reflect a time for a particular patient.

network is likely to be more intense. Second, periods with high levels
of strong local oscillations in the local non-epileptogenic network
were much closer to those in the global network (Figure 7). In
conclusion, our findings indicate that networks of varying sizes
exhibit significant levels of robust local oscillations during epileptic
seizures. In response to the severe oscillatory reconfiguration of large-
scale brain networks, the brain often develops pathological protective
mechanisms against cognitive impairment.

4. Discussion

Quantitative evaluation of oscillatory reorganization is now
restricted to the oscillatory frequency range. Understanding how this
research significantly advanced network oscillatory recombination
influences and contributed to seizure-induced cognitive impairment.
The oscillatory reconfiguration of a network comprises both strong
local oscillation and slow global oscillation, as well as the inhibitory
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FIGURE 6

A statistical line chart of the maximal Hsb nucleus density for seizure durations in eight epileptic individuals. On average, we subdivided each seizure
phase into two sections and chose two interictal intervals to examine. Specifically, the x-axis values of each subplot represent several seizure periods:
0–2 for the interictal period 1, 2–4 for the interictal period 2, 4–6 for the pre-ictal period, 6–8 for the seizure period, and 9–10 for the post-ictal period.
In addition, we counted the peaks in the Hsb nucleus density distribution plot during each phase and recorded the Hsb values corresponding to the peaks
together with the density values to create this line graph. The patient number is the title of each subplot, the blue dashed line represents the magnitude
of the maximum density of Hsb values for each time interval, as measured by the left y-axis, and the solid red line represents the maximum density value
for each time interval, as measured by the right y-axis.

and facilitative influences between them. In addition, we analyzed
particular changes in oscillatory reconfiguration at various seizure
periods and network limitation sizes.

Numerous studies have studied the relationship between
oscillations and cognitive impairment. However, there are few
theoretical investigations on the impact of network oscillations on
epilepsy-induced cognitive impairment. Our experimental findings
on network oscillations are consistent with earlier research. During
wakefulness, the human brain reaches a critical condition and
produces many transient α oscillations in global synchronization
(Kim and Lee, 2020). Nevertheless, different brain disturbances
(such as sleep, anesthesia, and trauma) may lead the brain to
depart from the critical state (Hutt et al., 2018). This supports
our hypothesis that, during the resting state, the brain is in
a metastable balance between local strong and slow global
oscillations and that seizures may disturb this balance. Another
investigation has shown intermittent discharges contribute to
cognitive impairment or epileptogenesis (Staley et al., 2005).
Moreover, this investigation revealed that psychopathically elevated
band θ connectivity was related to a greater incidence of seizures
(Ibrahim et al., 2013). This may indicate that significantly amplified
strong local oscillations may be a marker for seizures and
a trigger for the onset of cognitive impairment in epileptic
patients.

Our findings imply that slow global oscillations aid cognitive
recovery after seizures, which is the outcome of a brain-protective

mechanism. In addition, the degree of substantial enhancement
of strong local oscillations was significantly greater in the local
epileptogenic network than in the large-scale network, and the
frequency and number of occurrences of substantial enhancement
of strong local oscillations were more similar to those in the local
non-epileptogenic network, which may be another manifestation of
a brain protective mechanism. Slow oscillatory synchronization has
been shown to contribute to functional connections across widely
dispersed neuronal populations (Llinás et al., 2005). It has been
discovered that abnormal slow-wave activity occurs in the brain
after seizures marked by impaired consciousness (Yang et al., 2012).
These findings are comparable to those we inferred for slow global
oscillations.

The specificity of oscillatory recombination in various epileptic
patients at different periods is of interest to us. Furthermore, several
research might support our findings. For instance, the strength of
network connections may be connected to individual variations in
cognitive function, and spontaneous oscillatory activity may explain
the diversity of task-evoked responses (Boly et al., 2008; Lewis et al.,
2009). Additionally, exceptional results on local non-epileptogenic
networks have been well supported by previous research. In the
kainite mouse model of hippocampal epilepsy, it was shown that
the rapid ripples indicative of epileptic symptoms is not localized to
the lesion, despite being predominant in the lesion (Sheybani et al.,
2018, 2019). Specifically, it has been shown that the time of spike
appearance may connect with various cognitive impairment degrees
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FIGURE 7

Distribution of neural network sizes in nine epilepsy patients. (A) The Hsb plunge interval for each network size is formed by the highest and lowest values
of the blue curve in each subplot of Figure 6, which corresponds to the length of each bar. The y-axis value corresponding to the bottom of each bar on
the graph is the blue curve, which represents the most negligible value of Hsb, while the top represents the highest value of Hsb. The x-axis represents
the patient number, and the y-axis measures the interval maximums and minimums with the interval lengths. (B) Periods during which high-intensity
oscillations occur in networks of various sizes, namely, the most significant decrease followed by a rebound in each subplot of Figure 6’s blue dashed
line. In the graph, the three colors reflect the three network types, the x-axis represents the patient number, and the y-axis denotes the precise time
during which the steepest drop occurred, numbered as in Figure 6 to represent separate seizure episodes. (C) The frequency of high-intensity
oscillations in the various networks, mainly the frequency of the blue dash’s descent and subsequent rebound in each subplot of Figure 6. The x-axis
represents the number of patients, while the y-axis displays the frequency.

and kinds (Fonseca et al., 2007). This also verifies the variability of the
onset of substantial increases in localized slow oscillations.

It has been demonstrated that the physical process of oscillatory
steady-state reverberation generates eigenvectors and eigenvalues
of a system to quantify the eigenvalues implied in the geometry
of external objects and their spectral representations in order to
generate metrics and perform more accurate covariant inversion
transformations (Jolliffe and Cadima, 2016). Moreover, similarly
inside the CNS (Central Nervous System), complex eigenvalues
and complex eigenvectors might indicate the contrast between
covariant sensory and inverted motion vector representations of
external geometry, which compose the system’s functional geometry
(Pellionisz and Llinas, 1985). Our theoretical analysis then applies
more practically to complex eigenvalues and complex eigenvectors.
However, few studies provide a precise geometric understanding of
complex eigenvalues and complex eigenvectors in high-dimensional
spaces. As a result, we need to find an exact expression for the
quantization of rotation angles in these spaces, which necessitates
additional research.

Neurobiological systems that allow language processing are
distinguished by the bidirectional flow of information in directed
networks (Schoffelen et al., 2017). Graph-theoretic analysis of
directed connection estimates more precisely detects the dynamic
connectivity of functional networks in actual epileptic brains
than undirected functional connectivity estimates (Dehaene and
Changeux, 1997), creating new avenues for human connect omics.
Sadly, however, current studies are more based on the role of
Markov blankets on in- and out-degree, multivariate non-parametric
dynamic Granger causality with directed transfer functions to build
directed weighted networks (Lewis et al., 2009; Horvát et al., 2016;

Zafeiriou et al., 2020). Next, graph-theoretic analysis techniques,
such as typical path length, global efficiency, local efficiency, and
clustering coefficients (Rentzeperis and van Leeuwen, 2020; Friston
et al., 2021; Qin et al., 2022), were applied to the network. It is
pleasant to observe that our analysis of directed networks utilizing
the eigenmodal technique is relatively novel. However, we have
yet to devote much effort to enhancing the eigenmodal technique
to accurately represent the properties and dynamics of directed
weighted networks. Our team will likely develop more efficient
approaches and novel, generalizable findings in the future.

Nevertheless, there are still some limitations to consider when
interpreting our results. For instance, we should have considered
the correlation between centrality and node strength. It has been
demonstrated that metrics capturing network node correlations can
correctly identify motion-related regions in the pre-central and post-
central gyri as critical network components and prove the expected
hemispheric asymmetry (Frässle et al., 2021). Due to the private
nature of the epilepsy patient data, the quantity of data in this
research was inadequate to verify the generalizability of the results;
hence, future attempts will focus on examining the commonality
of network oscillatory reconfiguration using data from more public
databases. Second, the current work lacks simulations of kinetic
models to understand further the pathophysiological mechanisms
behind epileptic seizures’ cognitive impairment.

The search for the underlying mechanisms of seizure-induced
cognitive impairment has been a focal issue to which our study
contributes to some extent. In addition, the game interaction between
the network’s strong local and slow global oscillations offers a novel
method to consider the above difficulties. Their combination is
a significant contribution to the study of brain research, which
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might aid in detecting and treating brain illnesses. A deeper and
more specific study of network oscillatory reorganization might be
generalized to studying multiple brain disorders.

5. Conclusion

In conclusion, we investigate the dynamic reorganization of
network oscillations, including significant enhancement of strong
local oscillations during seizures, disruption of the metastable
balance between local strong and slow global oscillations, and
changes in the peak oscillation pattern during different periods of
seizures. All of these may be potential mechanisms for cognitive
impairment caused by seizures. In contrast, enhancing slow global
oscillations after seizures may be a significant indicator of cognitive
recovery. Significantly less dramatic than in the local epileptogenic
network, the substantial enhancement of strong local oscillations
in the global network occurred at periods and times more similar
to those in the local non-epileptogenic network. This may be a
manifestation of a brain protection mechanism. This study provides
an excellent opportunity to characterize better seizure-induced
cognitive impairment and its possible underlying mechanisms,
which may help guide early clinical assessment and treatment
aimed at preventing neuropsychological impairment in various
dynamic brain function networks in epileptic patients. In addition,
it offers a solid foundation for future study on weighted directed
functional networks.
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Objective: The purpose of this study was to study mechanisms of VNS modulation

from a single neuron perspective utilizing a practical observation platform with

single neuron resolution and widefield, real-time imaging coupled with an animal

model simultaneously exposing the cerebral cortex and the hippocampus.

Methods: We utilized the observation platform characterized of widefield of view,

real-time imaging, and high spatiotemporal resolution to obtain the neuronal

activities in the cerebral cortex and the hippocampus during VNS in awake states

and under anesthesia.

Results: Some neurons in the hippocampus were tightly related to VNS

modulation, and varied types of neurons showed distinct responses

to VNS modulation.

Conclusion: We utilized such an observation platform coupled with a novel

animal model to obtain more information on neuron activities in the cerebral

cortex and the hippocampus, providing an effective method to further study the

mechanisms of therapeutic effects modulated by VNS.

KEYWORDS

vagus nerve stimulation, in vivo imaging, hippocampus, cerebral cortex, neuronal activity,
fluorescence microscope

1. Introduction

Vagus nerve stimulation (VNS) is widely used as a treatment for various diseases, such as
epilepsy, migraine, depression, etc. Although VNS therapy was approved by the US Food and
Drug Administration in 1997 as an adjunctive therapy for reducing seizures in patients with
refractory epilepsy, the therapeutic mechanisms remain poorly understood (Johnson and
Wilson, 2018). The cerebral cortex and the hippocampus have been implicated as pivotal in
VNS therapy (Attenello et al., 2016).

Currently, most studies on mechanisms of VNS modulation mainly employ
electrophysiological techniques, fluorescence microscope coupled with neurotransmitter
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probe, and medical imaging equipment such as MRI, PET, and
SPECT (Conway et al., 2006; Vonck et al., 2008; Bartolomei et al.,
2016; Mithani et al., 2019; Collins et al., 2021). Electrophysiological
techniques are characterized by achieving micro-information (e.g.,
electrical signaling of neurons). The advantages of medical imaging
equipment lie in understanding the functional connectivity among
brain regions and the blood flow and metabolism of brain
regions. Fluorescence microscope coupled with neurotransmitter
probe can analyze neurotransmitters released by neurons. Based
on the current studies utilizing these observation technologies,
the potential mechanisms of therapeutic effects induced by
VNS may be as follows: (1) Anti-inflammatory effects of VNS:
Inflammation is a protective response of the body to external
stimuli. Nevertheless, excessive inflammation can induce or
exacerbate various brain diseases such as epilepsy, depression,
etc. (Mehta et al., 2018; Paudel et al., 2018). Many studies have
found that VNS could produce therapeutic effects by reducing
local and systemic inflammatory response, which has proved to be
correlated with the modulation of peripheral release of cytokines
from immune cells, blood–brain barrier (BBB) permeability, and
status of microglia (Kaya et al., 2013; Kaczmarczyk et al., 2017;
Chaudhry et al., 2019). (2) Effects of VNS on central nervous
system: (1) Neurotransmitter of norepinephrine (NE) and Gamma-
Amino Butyric Acid (GABA)-Some studies have demonstrated that
VNS could promote the release of NE in locus coeruleus (LC)
and basolateral amygdala (BLA), and notably enhance extracellular
NE levels in the prefrontal cortex (PFC) and hippocampus,
and VNS-induced antiepileptic effects appeared to be related
to the concentrations of NE in the hippocampus (Raedt et al.,
2011; Manta et al., 2013). Another animal study showed that
VNS took effect through increasing the concentration of NE in
limbic, thalamic and cortical brain regions (Landau et al., 2015).
Additionally, VNS regulated cortical excitability in brain regions
associated with epilepsy, and its therapeutic effects were related to
the normalization of cortical GABAA receptor density (Marrosu
et al., 2003). In a word, the therapeutic effects of VNS were
related to the concentration of NE and GABA in the cerebral
cortex and subcortical structures. (2) BDNF-TrkB pathway and
neuroplasticity: BDNF, a modulator of hippocampal plasticity
and neurogenesis, could play an active role in the prevention
of neuronal death (Hofer and Barde, 1988). Long-term VNS
induced an increase of BDNF expression in the hippocampus,
which was closely related to memory enhancement (Biggio
et al., 2009). Similarly, VNS could activate the BDNF signaling
pathway through a7nAChR, thus enhancing axonal plasticity and
improving long-term neurological rehabilitation (Li et al., 2020).
(3) Electrophysiological activity: abnormal hypersynchronous
discharge of the cerebral cortex was regarded as a characterized
feature of epileptic seizures (Wang et al., 2021). VNS remarkably
suppressed epileptiform activity in EEG recordings by enhancing
the firing rate of NTS neurons. Epileptiform activities in EEG
recordings were obviously inhibited by VNS enhancing the firing
rate of nucleus tractus solitarius (NTS) neurons (He et al., 2013).
(4) Functional connectivity of brain regions: VNS enhanced the
connectivity of thalamus to the anterior cingulate cortex (ACC)
and left island and increased the regional homogeneity of the
right superior or middle temporal gyrus, therefore resulting in
improvement of the clinical manifestations in patients with epilepsy
(Ibrahim et al., 2017). (5) Cerebral blood flow: the neuroprotective

effects of VNS could be correlated with the modulation of cerebral
blood flow (CBF) in brain regions (Conway et al., 2006).

To sum up, the study on mechanisms of VNS modulation
from a single neuron perspective is rare, possibly due to the
lack of such an effective observation platform with single neuron
resolution and widefield of view, real-time imaging, as well as an
animal model simultaneously exposing the cerebral cortex and
the hippocampus. Here, we established this observation platform
as well as a novel mouse model to obtain neuronal activities in
the cerebral cortex and hippocampus during VNS and provide a
new viewpoint to further explore the mechanisms of therapeutic
effects induced by VNS.

2. Materials and methods

2.1. Mouse

All experimental procedures were approved by the Institutional
Animal Care and Use Committee at Tsinghua University, Beijing,
China. We employed Transgenic mouse Ai148(TIT2L-GC6f-ICL-
tTA2)-D× Rasgrf2-2A-dCre (JAX 022864, JAX 030328) expressing
Gcamp6f calcium signaling in the specific layer 2/3 of the
cerebral cortex for the imaging experiments. All experimental
mice were purchased from Animal House of Tsinghua University.
All animals were housed in a laboratory environment on a
regular 12/12 h light/dark cycle at 20–22◦C. Mice had access to
ad libitum food and water and were individually housed after virus
injection, craniotomy, and VNS cuff implantation. All experimental
manipulations were conducted during the light phase.

2.2. Chemicals and apparatus

Isoflurane was purchased from the RWD life science company
(Shenzhen, China). AAV2/9-hSyn-Flex-GCaMP6f-WPRE-pA
(qTiter 1.12e9GC/ml) and AAV2/9-hSyn-Cre-WPRE-pA (qTiter
1.12e9GC/ml) were purchased from Shanghai Taitool Bioscience
Company of China. A programmable stimulus isolator was used
to stimulate the vagus nerve through connecting electrode cuff.
A homemade optical widefield mesoscope was used for Ca2+

imaging with a central wavelength at 473 nm.

2.3. Hippocampus virus injection

For hippocampal imaging, the mouse was secured to a
stereotaxic frame (the RWD life science company of Shenzhen,
China) after anesthesia induction, and the whole injection
procedures were performed in an aseptic environment with
the mouse under 1–2% isoflurane anesthesia (oxygen flow rate:
1 L/min). An approximately 0.8 cm midline incision was made
centered about 0.1 cm behind the bregma. After horizontal
calibration adjustment, we placed the micro syringe needle at the
bregma point and then reset the coordinates to zero. A 0.5 mm
diameter hole was drilled on the right skull region above the
hippocampus (coordination, AP: -2.2 mm; ML: 1.5 mm) to reach
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FIGURE 1

Introduction of in vivo wild-field imaging and vagus nerve stimulation (VNS). (A) Schematic diagram of in vivo imaging and vagus nerve stimulation,
illustrating that the mouse is under overhead objective for in vivo calcium brain imaging and the cuff electrode is positioned around vagus
nerve(blue). (B) Schematic of VNS pulse waveforms and parameters. Biphasic pulse was delivered in trains lasting 10 s (top). VNS was delivered by the
parameter combination of 0.3 mA, 0.1 ms, and 5 Hz (bottom). (C) Photograph of vagus nerve cuff position (top) and bipolar VNS cuff design
(bottom). (D) Photograph of subcutaneous tunnel made in between the ear and eyes from neck incision to the top of the head. (E) Photograph of
the awake mouse with the fixed head post, showing simultaneous exposure of cerebral cortex and hippocampus (blue and green) as well as vagus
stimulation lead pins (yellow) fixed to the rear of the head post using acrylic dental cement.

the dura, then we mixed AAV2/9-hSyn-Flex-GCaMP6f-WPRE-
pA at 1:10,000 dilution (qTiter 1.12e9GC/ml, Shanghai Taitool
Bioscience company, China) and AAV2/9-hSyn-Cre- WPRE-PA
(qTiter 1.9e13 GC/ml, Shanghai Taitool Bioscience company,
China) in a ratio of 1:1. A volume of 200 nl was injected into the
right hippocampal CA1 (coordination, AP: -2.2 mm; ML: 1.5 mm
DV: 1.3 mm) using a thin glass pipette and infusion pump at the
rate of 50 nl/min. After injection, wait for 10 min for the virus to
fully absorb, then we retracted the pipette and sutured the incision
by absorbable suture (8–0). The mouse was returned to their cage
for at least 2 weeks before surgical procedures.

2.4. Surgery procedures

The Surgical instruments were sterilized by autoclave for
30 min prior to each surgical procedure. All surgical procedures
were performed in an aseptic environment with mice under 1–
2% isoflurane anesthesia (oxygen flow rate: 1 L/min). Isoflurane
anesthetic gas (1% in oxygen) was used for the entire duration
of all surgeries. The temperature of the mouse was maintained
between 36.5 and 37.5◦C using a homeothermic blanket system.
Craniotomy and cylinder implantation above hippocampus CA1.
For widefield imaging, we cut the skin between and around
the bilateral ears and eyes to expose enough skull space. After
horizontal calibration adjustment, we placed the syringe (1 ml
volume) needle at the bregma point and then reset the coordinates
to zero. After Removing the syringe to a safe location, a trapezoid
shape window (8 mm × 10 mm) was made overlying the dorsal
cortex using a handheld dental drill. The skull was removed to

expose the dura, and the gel foam particles soaked in sterile saline
were gently applied on the dura to stop the slight bleeding. Wait
until all bleeding was entirely stopped, then Carefully remove the
gel foam particles not to disturb the clotting process. Two skull
nails were implanted, respectively, in the front and back of the
cranial window on the skull in order to secure the glass coverslip.
Locating the coordinate of the hippocampus (AP: -2.2 mm; ML:
1.5 mm), the cortex above the hippocampus was aspirated until
reaching the CA1 layer of the hippocampus featured of regular
stripes was exposed. After the bleeding was completely stopped and
the wound was cleaned, a cylinder lens was implanted above CA1
(AP: -2.2 mm; ML: 1.5 mm; DV: –1.3 mm), and then a trapezoid
shape glass coverslip was laid over the cranial window and sealed
with surgical glue. After 10 min, when the surgical glue around the
cranial window was solid, a thin layer of dental acrylic cement was
placed around the edges of the glass to solidify it. A semicircular
aluminum alloy head post was placed on the edge of the cranial
window, ensuring that it was parallel to the glass coverslip. It was
then fixed with dental acrylic cement. We applied dental acrylic
cement throughout the exposed skull surface and across a small
rim of the coverslip to secure it. Cervical vagus nerve cuff electrode
implantation. Two platinum-iridium wires were fixed 1 mm apart
to biocompatible micro silicone tube. The end of the two lead wires
was connected to pins, which were used to connect the cuff to the
stimulator. After isoflurane induction, the mouse was placed in
a supine position; the surgical site was shaved and cleaned with
scrubs of iodophor and alcohol. Under anesthesia, a 1.5–2 cm
incision was made from manubrium to jawline along the scalp
midline on the ventral aspect of the neck using micro-scissors. With
micro scissors and blunt-tipped forceps, the submaxillary gland
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FIGURE 2

Comparison of simultaneous wide-field calcium imaging of cerebral cortex and hippocampus CA1 in vivo in awake states. (A) Photograph illustrating
simultaneous wide-field calcium imaging in vivo of the cerebral cortex and the hippocampus CA1. Scale bar, 1 mm. (B) Coronal slice of the mouse
illustrating the hippocampus CA1 right beneath cylinder (blue) corresponding to the red square in panel (A). (C) A field of the enlarged view of
neurons (labeled 1–10) in layer 2/3 of cerebral cortex indicated with the yellow square in (A), Scale bar, 100 µm. (D) A field of the enlarged view of
neurons (labeled 1–10) of hippocampus CA1 indicated with the red square in (A), Scale bar, 100 µm. (E) Normalized fluorescence signals fluctuation
(1F/F0) for neurons (labeled 1–10) shown in panel (C). (F) Normalized fluorescence signals fluctuation (1F/F0) for neurons (labeled 1–10) shown in
panel (E).

and connective tissue overlying the left cervical vagus nerve was
retracted, and the nerve was separated from the vessels within the
carotid sheath. After using a small pair of surgical retractors to hold
the muscles apart, a 4–5 mm segment of the left cervical vagus nerve
was dissected from the carotid sheath. The cuff electrode was placed
around the vagus nerve and secured with suture ensuring that the
electrode wires had circumferential or near-circumferential contact
with the nerve. The muscles were placed back in their original
position, and an absorbable suture (8–0) was used to secure the
cuff in position. A subcutaneous tunnel was made in between the
ear and eyes from the neck incision to the top of the head, which
allowed passing the cuff leads to the skull. Lead pins were fixed
to the previously implanted head post using acrylic dental cement.
The submaxillary gland was placed back to its original position, and
finally the neck incision and the incision of the head’s subcutaneous
tunnel were sutured closed.

2.5. Vagus nerve stimulation parameters

The animal’s head was fixed to the mouse holder. In all
experiments, the intertrain interval was set at 50 s, and each
pulse train lasted for 10 s. VNS was delivered by the parameter
combination of 0.3 mA, 0.1 ms, and 5 Hz. The parameters
occurred three times in a session of cerebral cortical and
hippocampus axon imaging.

2.6. Data analysis

Widefield images of the cerebral cortex and the hippocampus
were aligned to the Allen institute common coordinate framework
(CCF) map using structural landmarks and MATLAB code
developed by Drs. Matt Kaufman and Shreya Saxena. Widefield
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FIGURE 3

Curve diagram of calcium signaling of neurons in the cerebral
cortex and hippocampal CA1 in awake states during VNS. (A) Curve
diagram of calcium signaling of neurons in the cerebral cortex
during VNS. (B) Curve diagram of calcium signaling of neurons in
the hippocampal CA1 during VNS. Narrow gray rectangles indicate
time of each VNS application (lasting 10 s). Y-axis indicates neuron
numbers.

fluorescence signals were normalized pixel by pixel by the following
equation ∆F/F0 = (Fi-F0)/F0, where Fi is the raw fluorescence of
the ith video frame, and F0 is the mean of the fluorescence baseline.
Origin 8.0 was used to analyze the statistical data.

3. Results

3.1. Establishment of experimental
observation platform and mouse model

3.1.1. Experimental observation platform
In order to further in vivo explore complex neuronal activities

of the brain by observation of macroscopic multiple brain regions
combined with microscopic neurons, we set up this observation
platform (widefield mesoscope) to research the effects of VNS
modulation on brain neuronal activities in awake states and under
anesthesia. The observation platform’s excitation source is a CW
laser (MBL-III-473–100 mW, CNI) at a central wavelength of
473 nm. The laser beam is expanded to 12 mm by a beam expander
(BE) and a pair of 4f-system lenses. After being focused, then being
reflected by a micro prism, the beam passes through an excitation
objective and excites neuron fluorescence of the cerebral cortex
and hippocampal CA1 region of the mouse. The fluorescence is

FIGURE 4

Characteristics of calcium signaling of neurons in the cerebral
cortex and hippocampal CA1 under isoflurane anesthesia during
VNS. (A) Curve diagram of calcium signaling of neurons in the
cerebral cortex during VNS. (B) Curve diagram of calcium signaling
of neurons in the hippocampal CA1 during VNS. Narrow gray
rectangles indicate time of each VNS application (lasting 10 s).
Y-axis indicates neuron numbers.

collected by an epifluorescence setup including the same objective,
a tube lens (MVPLAPO 1X, Olympus), a filter and an sCMOS.
The FOV of the equipment is 6.6 mm and each pixel in the
sCMOS corresponds to 3.25 µm on the image plane with two times
magnification and 6.5 µm pixel size (Figure 1A). The equipment
is characterized of single-cell resolution, widefield of view, and
real-time observation.

3.1.2. Establishment of mouse model for
simultaneous in vivo imaging of cerebral cortex
and hippocampal CA1 region

The experimental mouse model in previous studies was mainly
related to small bone window craniotomy, exposing the cerebral
cortex with a size of about 3–4 mm in diameter. There was short
of an experimental animal model that simultaneously exposed
large-scale cerebral cortex and hippocampal CA1 region. In our
experiment, we first selected the rasgrf-Cre-Ai148D gene mouse
expressing Gcamp6f calcium signaling in the specific layer 2/3
of the cerebral cortex to inject GCamp6f virus into the right
hippocampal CA1 region. After 2 weeks, we performed a large-
scale craniotomy and cylinder implantation above the hippocampal
CA1 region, simultaneously exposing the cerebral cortex (range:
6 mm × 8 mm) and the right hippocampal CA1 region (range:
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FIGURE 5

Characteristics of calcium signaling of neurons in the hippocampal CA1. (A left) The hippocampal CA1 region (white square: 1.8mm × 1.8mm); (right)
two typical neurons extracted from hippocampal CA1 (orange arrow and blue arrow). (B) The curve diagram of neuronal activities of the two
neurons (blue curve and orange curve corresponding to blue arrow and orange arrow shown in (A), respectively). Narrow gray rectangles indicate
time of each VNS application (lasting 10 s). Y-axis indicates neuron numbers.

1.8 mm × 1.8 mm) (Figure 1E), which provided observation of
the cerebral cortex and the hippocampal CA1 simultaneously. In
a word, we established a new and original animal model for further
exploring brain activities.

3.1.3. Vagus nerve electrode implantation
In our experiment, we selected the left vagus nerve of the mouse

for vagus nerve stimulation electrode implantation (Figure 1C
top). We designed and customized the vagus nerve electrode
(Figure 1C bottom) according to the size of the mouse vagus
nerve. Bipolar VNS cuff can be firmly fixed to cervical vagus
nerve and a subcutaneous tunnel was made in between the ear
and eyes from the neck incision to the top of the head, which
allowed passing the cuff leads to the rear of head post. Lead pins
were fixed to the previously implanted head post using acrylic
dental cement (Figure 1D). Our mouse model had the following
advantages: (1) VNS cuff was firmly fixed to vagus nerve and not
easy to fall off, and the electrode wire was buried under the skin,
which protected the electrode wire from damage. (2) It avoided
the adverse effects caused by exposed electrode wire on the daily

behavior of the mouse. (3) Our mouse model could survive for
a long time, providing an ideal model for various experimental
designs and long-term research on brain activity. In this study, we
chose a VNS stimulus parameter within the commonly used range
(Figure 1B).

3.2. Characteristics of calcium signaling
of neurons in cerebral cortex and
hippocampal CA1 region in awake states

Before the experiment, we first positioned the mouse beneath
the widefield camera to make it familiar with the surrounding
environment. After 10 min, when the mouse was accustomed to
the surrounding environment, we used the observation equipment
to obtain the characteristics of calcium signaling of neurons
located in layer 2/3 of the cerebral cortex and the hippocampus
CA1 of the mouse in awake states. We found that neurons of
the cerebral cortex and the hippocampus CA1 had spontaneous
neuronal activities (Figure 2A). Then, we randomly extracted 10
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neurons from near the junction of motor cortex and somatosensory
cortex (yellow square, Figure 2C) and the hippocampal CA1 (red
square, Figure 2D), respectively. Further analysis showed the single
neuron’s characteristic curve of Gcamp6f calcium signaling. The
calcium signaling curve of neurons of the cerebral cortex and
the hippocampal CA1 showed that, compared to neurons of the
hippocampal CA1 (Figure 2F), neurons of the cerebral cortex had
higher calcium signaling intensity and faster response frequency.
The result indicated that the neurons of the cerebral cortex were
more active in awake states (Figure 2E). The perfused brain slice
showed that the cylinder was right above the hippocampal CA1,
and the observation position was appropriate (Figure 2B).

3.3. Characteristics of calcium signaling
of neurons in cerebral cortex and
hippocampal CA1 in awake states during
VNS

We stimulated with trains of biphasic pulses lasting 10 s.
Experimental results demonstrated that neuronal activities were
not tightly correlated with VNS. In other words, neuronal
calcium signaling in the cerebral cortex and the hippocampal
CA1 was not significantly changed during VNS, compared to the
pre-VNS baseline (Figures 3A, B). Owing to being head-fixed
beneath the widefield camera, the limbs and mouth of the mouse
had vigorous activities, which could induce neuronal activities.
Therefore, we speculated that no significant difference in neuronal
activities between during VNS and pre-VNS baseline was associated
with relatively small stimulation parameters or intense neuronal
activities induced by body movement. That is, the intensity of
neuronal activities induced by VNS was significantly lower than
the intensity of neuronal activities induced by body movement.
Consequently, the neuronal activities induced by VNS were covered
by the neuronal activities elicited by body movement, resulting in
the finding showing no significant changes in neuronal activities
induced by VNS.

3.4. Characteristics of calcium signaling
of neurons in cerebral cortex and
hippocampal CA1 under isoflurane
anesthesia during VNS

In order to remove the disturbance of neuronal activities
elicited by noticeable limb movement in awake states, we used
isoflurane anesthetics to regulate the mouse into anesthesia. The
mouse inhaled oxygen through a mask connected to an anesthesia
machine at a flow rate of 1.2 L/min. VNS was delivered when
the mouse was under anesthesia without limb movement. In the
initial stage of anesthesia, we observed that, neuronal activities in
the cerebral cortex were rapidly inhibited (Figure 4A); however,
neuronal activities in the hippocampal CA1 were not significantly
inhibited. Meanwhile, we also found that the activities of several
neurons in the hippocampal CA1 were tightly related to VNS. With
the anesthesia deepening, neuronal activities in the hippocampal
CA1 vanished and were no longer activated by VNS (Figure 4B).

Therefore, we concluded that, at least in the hippocampal CA1
region, some neuronal activities were regulated by VNS.

3.5. Correlation between neuronal
activities in the hippocampal CA1 and
VNS

The results above showed that the activities of several neurons
in the hippocampal CA1 were tightly correlated with VNS
(Figure 5A). We further extracted two typical neurons to achieve
the curve of neuronal calcium signaling. We analyzed that one
neuron (orange curve) showed inhibition characteristics, and the
other neuron (blue curve) showed activation characteristics in
response to VNS application (Figure 5B). Therefore, we speculated
that different types of neurons had varied responses to VNS
application.

4. Discussion

vagus nerve stimulation (VNS) is widely used as a treatment
for epilepsy, migraine, depression, etc., since VNS therapy was
approved by the US Food and Drug Administration in 1997
as an adjunctive therapy for reducing seizures in patients
with refractory epilepsy (Johnson and Wilson, 2018). Despite
its broad and growing application, the mechanisms by which
VNS exerts its clinical benefits are still little known, especially
the mechanisms in regulation of neurons. Here, we set up
this observation platform, which is characterized of single-cell
resolution, widefield of view, and real-time observation, to research
the effects of VNS modulation on brain neuronal activities from
a combination of macroscope and microscope perspective in
awake and anesthetized states. Moreover, we established a new
and original mouse model, exposing large-scale cerebral cortex
(range: 6 mm × 8 mm) and hippocampal CA1 region (range:
1.8 mm × 1.8 cm), to simultaneously achieve in vivo, real-time
imaging of cerebral cortex and subcortical region (hippocampal
CA1). Utilizing our observation platform and mouse model, we
observed that the cerebral cortex and the hippocampal CA1 existed
spontaneous neuronal activities, respectively, which showed varied
characteristics from each other in awake states. Moreover, we
observed that neuronal calcium signaling in the cerebral cortex
and the hippocampal CA1 was not significantly changed during
VNS in awake states, possibly due to low-intensity stimulations
or disturbance of body movement. In order to eliminate the
disturbance of body movement, we achieved neuronal activities
in the cerebral cortex and the hippocampal CA1 during VNS in
anesthetized states. The analysis indicated that at least the activities
of several neurons in the hippocampal CA1 were tightly correlated
with VNS, and two of these neurons showed distinct characteristics.

4.1. Experimental observation platform
and mouse model

Previous studies on the mechanisms underlying VNS
modulation centered on either macroscopic multiple brain regions
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or microstructures. The macroscopic observation methods mainly
utilized devices, including MRI, PET, and SPECT (Conway et al.,
2006; Malbert et al., 2019; Borgmann et al., 2021), whose major
advantages lay in the power to observe the functional connectivity
of multiple brain regions. The microscopic observation methods
primarily utilized electrophysiology and optical fiber photometry,
which took advantage of observing microstructures such as cells
or neurons (Jaseja, 2010; Laricchiuta et al., 2021). However, few
studies effectively combined the two observation technology to
decipher complex brain neuronal activities in vivo. Therefore,
we applied this observation platform that combined macro- and
microscopic observation, which was characterized of widefield of
view (6.6 mm), real-time observation, and single-cell resolution,
to further study neuronal activities elicited by VNS. In addition,
previous studies have shown that epilepsy and depression were
related to the cerebral cortex and subcortical regions (e.g.,
hippicampus) (Rosso et al., 2020; Wang et al., 2021). Owing to the
anatomical location of hippocampus beneath the cerebral cortex,
it was challenging to directly observe the hippocampus CA1 for
more neuronal activities. Few studies have demonstrated a mouse
model simultaneously exposing large-scale cerebral cortex and
hippocampus CA1 to study brain activities. However, some studies
utilized optical fiber implanted into the corresponding regions
to observe synchronous neuronal activities in the motor region
of the cerebral cortex and the hippocampus CA1 (Dong et al.,
2020). It was challenging to obtain a larger region of neuronal
signaling due to the observation scope being confined to a focal
point. Our study established an experimental mouse model to
simultaneously expose large-scale cerebral cortex (6 mm × 8 mm)
and hippocampal CA1 region (1.8 mm× 1.8 mm). Taken together,
we set up an experimental observation platform combined with a
novel animal model to further explore neuronal activities in the
cerebral cortex and hippocampus.

4.2. Characteristics of calcium signaling
of neurons in cerebral cortex and
hippocampal CA1 in awake states during
VNS

Some studies demonstrated that cortical activation was to be
dose-dependent. Low-intensity stimulation parameters that evoked
little to no arousal change similarly did not elicit detectable
changes in cortical excitation, whereas high-intensity stimulation
parameters that elicited pupil dilation, whisking, and/or wheel
movement also induced large increases in cortical neuronal calcium
signaling (Collins et al., 2021; Mridha et al., 2021). In our
experiment, neuronal activities in the cerebral cortex and the
hippocampal CA1 were not significantly changed during VNS
compared to pre-VNS baseline. Therefore, we speculated that
neuronal activities in response to VNS application were weak
due to relatively small stimulation parameters and the intensity
of neuronal activities induced by VNS was much lower than the
intensity of neuronal activities elicited by vigorous limb movement.
So, there was no significant difference in neuronal activities
between during VNS and pre-VNS baseline. Furthermore, the
effects of VNS modulation varied among different parameters, and
enhancement of performance of behavior tasks and cortical map

plasticity was strongest in response to intermediate intensity of
stimulation (Ghacibeh et al., 2006; Lai and David, 2021). Therefore,
we concluded that there might be an individual difference in the
effects of VNS modulation, and the optimal parameters were crucial
to VNS application.

4.3. Characteristics of calcium signaling
of neurons in cerebral cortex and
hippocampal CA1 under anesthesia
during VNS

To completely remove any contribution of limb movement-
related activities to neuronal calcium signaling, we anesthetized
mice with isoflurane. At the onset of anesthesia, neuronal activities
in the cerebral cortex were rapidly inhibited; however, neuronal
activities in the hippocampal CA1 were not significantly inhibited.
Meanwhile, we also found that the activities of several neurons
in the hippocampal CA1 were tightly related to VNS. With
the anesthesia deepening, neuronal activities in the hippocampal
CA1 vanished and were no longer activated by VNS. Therefore,
we concluded that, at least in the hippocampal CA1, some
neuronal activities were modulated by VNS. In previous studies,
Arousal state or sleep disturbances and learning impairment related
to hippocampus abnormality occurred across many forms of
epilepsy, migraine, and depression, conditions for which VNS has
been found to be a useful treatment option (Sedigh-Sarvestani
et al., 2014; Gumusyayla et al., 2016; Sun et al., 2017). In an
animal study, the finding was that the significant deviations
from normal calcium dynamics in CA1 arose before (33 min,
on average) the onset of motor convulsions and the intense
calcium waves could directly lead to acute cellular damage in live
animals (Berdyyeva et al., 2016). Combined with these previous
findings, we draw a conclusion that the therapeutic effects of
VNS could be partially explained by the modulation of neuronal
activities in the hippocampal CA1. Additionally, we further
extracted two typical neurons to obtain the curve of neuronal
calcium signaling, by which we analyzed that one neuron showed
inhibition characteristics and the other neuron showed activation
characteristics in response to VNS application. Anatomical and
physiological studies have previously demonstrated that VNS
may excite cortical neurons through neuromodulatory pathways,
including those releasing acetylcholine (Ach) or NE (Dorr and
Debonnel, 2006; Roosevelt et al., 2006). Fibers carrying information
from the vagus nerve synapse in the nucleus of the solitary tract
projected to the noradrenergic LC. Then projections from LC
were sent throughout the brain, including to subcortical structures,
such as the basal forebrain (BF), thalamus, and cerebral cortex
(Kim et al., 2016; Rho et al., 2018). Therefore, we speculated that
various neurons existed in the hippocampal CA1, which had varied
responses to VNS application.

5. Conclusion

Taken together, we utilized this experimental observation
platform coupled with a novel animal model to simultaneously
obtain further information from neurons in the cerebral cortex
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and the hippocampal CA1, which provided an effective means for
further studying mechanisms of VNS modulation. Meanwhile, our
experiment shed light on mechanisms of VNS modulation from a
single neuron level, providing a new perspective on mechanisms
of VNS modulation. Combined with previous studies’ findings,
we summarized that selection of stimulation parameters was vital
to the therapeutic effects of VNS modulation, and different types
of neurons in the hippocampal CA1 had varied responses to
VNS modulation. Next, future studies may focus on individualized
VNS parameters and various types of neurons in the cerebral and
the hippocampal, ultimately contributing to improved therapeutic
effects of VNS modulation for clinical diseases.
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Background: K-complex detection traditionally relied on expert clinicians, which

is time-consuming and onerous. Various automatic k-complex detection-

based machine learning methods are presented. However, these methods

always su�ered from imbalanced datasets, which impede the subsequent

processing steps.

New method: In this study, an e�cient method for k-complex detection

using electroencephalogram (EEG)-based multi-domain features extraction and

selectionmethod coupledwith a RUSBoosted treemodel is presented. EEG signals

are first decomposed using a tunable Q-factor wavelet transform (TQWT). Then,

multi-domain features based on TQWT are pulled out from TQWT sub-bands,

and a self-adaptive feature set is obtained from a feature selection based on the

consistency-based filter for the detection of k-complexes. Finally, the RUSBoosted

tree model is used to perform k-complex detection.

Results: Experimental outcomes manifest the e�cacy of our proposed scheme

in terms of the average performance of recall measure, AUC, and F10-score. The

proposed method yields 92.41 ± 7.47%, 95.4 ± 4.32%, and 83.13 ± 8.59% for

k-complex detection in Scenario 1 and also achieves similar results in Scenario 2.

Comparison to state-of-the-art methods: The RUSBoosted tree model was

compared with three other machine learning classifiers [i.e., linear discriminant

analysis (LDA), logistic regression, and linear support vector machine (SVM)].

The performance based on the kappa coe�cient, recall measure, and F10-score

provided evidence that the proposed model surpassed other algorithms in the

detection of the k-complexes, especially for the recall measure.

Conclusion: In summary, the RUSBoosted tree model presents a promising

performance in dealing with highly imbalanced data. It can be an e�ective tool

for doctors and neurologists to diagnose and treat sleep disorders.

KEYWORDS

k-complexes detection, electroencephalogram (EEG), multi-domain features extraction,

tunable-Q factor wavelet transform, RUSBoosted tree model
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1. Introduction

In addition to monitoring sleep disorder disease, sleep analysis

hinged on an electroencephalogram (EEG) can also play a critical

role in people’s mental and physical health (Al-Salman et al.,

2021, 2022b). K-complex, as one of the most prominent transient

waveforms in sleep stage 2, is usually utilized for sleep research and

clinical diagnosis (Al-Salman et al., 2019b; Latreille et al., 2020).

Due to this significance, the determination of the k-complex in

an epoch is extremely important for sleep experts. K-complex,

which was first discovered in Loomis et al. (1938), is a transient

waveform of more than ±75mV for a first negative sharp wave

immediately followed by a slower positive component, and it was

also reported that the frequency scales focus on 12–14Hz waves

(Richard and Lengellé, 1998). The duration of k-complexes was

between 1 and 2 s, and other studies reported that the maximum

duration is between 1 and 3 s (Al-salman et al., 2018; Al-Salman

et al., 2019b). In general, k-complex detection based on sleep

specialist visually scored is regarded as the gold standard. However,

it is time-consuming, subjective, and onerous (Lajnef et al., 2015).

Thus, more andmore researchers focus on developing an automatic

k-complex detectionmethod to speed up diagnosis and alleviate the

burden of neurologists.

A large number of studies on the automated detection of

the k-complexes have been developed, which focus on feature

extraction, feature selection, and pattern recognition stages. Some

studies presented the literature concerning feature extraction, such

as temporal information (Hassan and Bhuiyan, 2016a, 2017a; Al-

Salman et al., 2022a), spectral estimation (Herman et al., 2008;

Hassan and Subasi, 2016), and chaotic information estimation

(Peker, 2016; Al-salman et al., 2018; Al-Salman et al., 2019a; Nawaz

et al., 2020). Aykut et al. employed features based on amplitude

and duration properties of the k-complex waveform, and the results

were evaluated with the ROC analysis which proved up to 91%

success in detecting the k-complex (Erdamar et al., 2012). Hassan

et al. presented a method of analyzing EEG waveforms based

on the spectral features computed from tunable Q-factor wavelet

transform (TQWT) sub-bands, and the reported results were

significantly better than the existing results (Hassan and Bhuiyan,

2016b). The scheme based on TQWT and bootstrap aggregating

for EEG signals was developed, and the results showed that the

proposed method is superior in terms of sensitivity, specificity, and

accuracy (Hassan et al., 2016). Tokhmpash et al. used the TQWT

method to transform EEG signals, and then various features were

extracted from the TQWT sub-bands. The empirical results showed

the high efficiency of the proposed method in the analyzing of EEG

signals (Tokhmpash et al., 2021). The TQWT is also applied to

decompose an EEG signal into various sub-bands at different levels;

the findings showed that the proposed scheme with estimating

the Hjorth parameters preserves efficiency and is appropriate for

the automated identification of EEG signals (Geetika et al., 2022).

Some time and frequency analysis methods based on variational

mode decomposition were utilized to determine the k-complex,

and the highest average accuracy was obtained at 92.29% (Yücelbaş

et al., 2017). Wessam proposed an efficient method based on

fractal dimension to detect k-complexes from EEG signals, and

the findings revealed that the proposed method yields better

classification results than other existing methods (Al-Salman et al.,

2019b).

However, to the best of our knowledge, one of the state-of-

the-art linear or non-linear features in the detection of k-complex

has not been undertaken yet. Hence, selecting optimal feature sets

plays an essential role in the k-complex detection system. In recent

years, various methods have been applied successfully in many

fields to realize the optimal feature subset selection (Xu et al., 2020;

Jainendra et al., 2021). Moreover, pattern recognition techniques

also offer a great potential to analyze EEG signals more effectively,

which is typically based on supervised or unsupervised approaches

(Hassan and Bhuiyan, 2017b; Zhang et al., 2022). Rakesh et al.

put forward a fuzzy neural network for k-complex and achieved

better results with an accuracy of 87.65% and a sensitivity of 94.04%

(Ranjan et al., 2018). Ankit et al. presented a sparse optimization

method, and the authors concluded that the proposed method is

promising for the practical detection of k-complex (Parekh et al.,

2015). Huy et al. proposed a hybrid-synergic machine learning

method to detect k-complex, and the results indicate that the

performance of the proposedmodel was at least as good as a human

expert (Vu et al., 2012). The ensemble model combining a least

square support vector machine, k-means, and naive Bayes is used

to identify the detection of the k-complex. The results demonstrate

that the proposed approach is efficient in EEG signals (Al-Salman

et al., 2019b).

To build a reliable detection model, adequate volumes

of k-complexes and non-k-complex datasets are necessary.

Unfortunately, the number of epochs obtained from EEG signals

with non–k-complexes is greater to a larger degree than that of

those with k-complexes. Considering that most classifiers have a

strong ability to predict instances with majority volumes while

having a weak ability to predict instances belonging to the minority

volumes. Hence, the problem to classify imbalanced data effectively

is becoming the biggest challenge in k-complex detection.

In this study, to develop and present a procedure of k-

complex detection in an epoch, a robust method for the

imbalance dataset was proposed based on TQWT coupled

with the RUSBoosted tree classifier. The block diagram of

the proposed methodology is depicted in Figure 1. Each EEG

signal of 30min was filtered with a fourth-order pass-band

Butterworth filter at 0.5–30Hz to smooth the EEG signal and

remove the environment noise caused by muscle activity and

eye movement. Then, the EEG signal was segmented into epochs

of 0.5 s with an overlapping of 0.4 s, each epoch corresponding

to a signal state for k-complex or non–k-complex. The multi-

domain features (time, spectral, and chaotic theory) were extracted

from each sub-bands of epoch based on TQWT decomposing.

To minimize the complexity and reduce the dimensionality of

features, the feature selection method based on search-based

feature selection consistency (SFS consistency) is employed before

classification. For further analysis, the RUSBoosted tree algorithm

was implemented to improve the performance in recall for the

imbalanced dataset.
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FIGURE 1

Schematic outline of the proposed computer-assisted k-complex detection scheme.

FIGURE 2

Filtered EEG signal (the blue line is EEG signals with k-complex, and

the red line represents EEG signals with non–k-complex).

2. Materials and methods

2.1. The EEG recordings

The EEG dataset analyzed in this study was acquired from 10

subjects (aged 28.1 ± 9.95 years, which consists of four men and

six women). All were recorded at a sleep laboratory of a Belgium

hospital (Brussels, Belgium) at a sampling frequency of 200Hz,

and can be found online at https://zenodo.org/record/2650142.

The waveform of k-complex and non–k-complex is presented in

Figure 2. The EEG recordings were visually scored by two experts

with the specified recommendation (Devuyst et al., 2010). As the

duration time of the k-complex is about 0.5–2 s, the EEG signals

were divided into segments for k-complex detection using the

sliding window technique (Siuly et al., 2011; Al-Salman et al., 2021).

Based on previous empirically-based studies, the window size was

selected as 0.5 s with an overlap of 0.4 s in this study (Al-Salman

et al., 2019c). The multi-domain features based on the analysis of

the EEG signals were employed to represent k-complex and non–k-

complex from each 0.5 s EEG segment. All the analyses were carried

out based on the Cz-A1 channel.

For the DREAMS database, only five of the 10 subjects are

annotated by two experts, and the rest are annotated by expert 1.

In this study, two different evaluation scenarios were used. The

first scenario considers the annotations marked by expert 1 for

all subjects, and the second scenario consists of the annotations

marked by expert 2 for the five subjects. Table 1 presents the

number of k-complex by the experts for Scenarios 1 and 2 in the

DREAMS database. It is found that the number of k-complex by the

first expert is dramatically greater than the number by the second

expert. Therefore, the choice of different scenarios has a direct

influence on the results and can be used to verify the performance

of the proposed method.

2.2. Tunable Q-factor wavelet transform
(TQWT)

The tunable Q-factor wavelet transform, which is proposed by

Selesnick (2011), is a flexible discrete wavelet transform (DWT).

Similar to the DWT, TQWT employs a two-channel filter bank,

which consists of a low-pass filter with parameter α and a high-pass

filter with parameter β , to decompose EEG signal into transient

components and sustained components using adjustable Q-factors.

It can be expressed mathematically as Equations 1, 2. For further

analysis, the sustained component’s output of the low-pass filter is

regarded as the input signal for the next two-channel filter bank.

The transient components’ output of the high-pass filter for each

layer is deemed as the output signal. One simple example of wavelet

transform with J level is illustrated in Figure 3.

H
J
L =

{

∏J−1
j=0 HL

(

ω/αj
)

|ω| ≤ αJπ

0 αJπ ≤ |ω| ≤ π
(1)

H
J
H

=

{

HH

(

ω/αJ−1
)
∏J−2

j=0 HL

(

ω/αj
)

(1− β) αJ−1π ≤ |ω| ≤ αJ−1π

0 others

(2)

Here,

HL = θ

(

ω+(β−1)π
α+β−1

)

HH = θ

(

απ−ω
α+β−1

)

θ (t) = 0.5 (1+ cos (t))
√
2− cos (t)

(3)

Q-factor: This parameter determines the width of the band-

pass filter. TQWT decomposition achieves flexibility by tuning

and adapting this parameter of the wavelet transform. The higher

the Q-factor is, the more effective the extraction of the sustained
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TABLE 1 Number of k-complex in each EEG recording.

Subject Scenario 1 Scenario 2

Number of segments
with k-complex

Number of segments
without k-complex

Number of segments
with k-complex

Number of segments
without k-complex

ID1 263 17,733 95 17,901

ID2 299 17,697 41 17,955

ID3 104 17,892 14 17,982

ID4 661 17,335 60 17,936

ID5 285 17,711 98 17,898

ID6 204 17,792 / /

ID7 87 17,909 / /

ID8 36 17,960 / /

ID9 26 17,970 / /

ID10 117 17,879 / /

FIGURE 3

Wavelet transform with J level using a two-channel filter bank, which consists of the low-pass filter and high-pass filter.

components. Meanwhile, the decomposing waveform based on

a lower Q-factor is suitable for extracting the features of the

transient component.

Number of decomposition levels (J): If the number of filter

bands is denoted by J, an input signal will be decomposed

into J+1 sub-bands. Among these bands, J sub-bands were

obtained from the high-pass filter of each level filter band,

and one came from the low-pass filter of the final level

filter band. With the increase of the decomposition level,

the time domain waveform becomes wider, and the features

increase dramatically.

Taking into consideration various ranges of motivation, the

TQWT is used in the proposed scheme (Hassan and Bhuiyan,

2016b). First of all, considering that k-complex waves are

characterized by the appearance of multifarious rhythms, TQWT

can improve localization in the frequency domain by varying

the Q-factor. Hence, this decomposition method is suitable for

spectral analysis. Second, the filters employed in TQWT are

more computationally efficient in the frequency domain (Selesnick,

2011). Third, EEG is a non-stationary signal and its chaos

properties alter between k-complex and non–k-complex. TQWT

decomposition can also give the wave in the time domain; hence,

it has emerged as a powerful technique in both time features

and chaos features for EEG analysis (Fraiwan et al., 2010). These

superiorities verified that the TQWT decomposition is an effective

tool for the analysis of EEG and hence it is employed in the

proposed scheme.

2.3. Multi-domain feature extraction from
TQWT sub-bands

To derive salient features from the raw EEG data that can

effectively reflect the epochs to the respective k-complex is the

main objective of the feature extraction stage of the EEG-based

k-complex detection system. Hence, a multi-domain method,

based on time domain estimation, spectral estimation, and chaotic

analysis, was employed to extract the representative features from

each 5 s EEG epoch. A total of 25 hybrid features were extracted

from each sub-band.
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FIGURE 4

Multi-domain features extraction framework.

The extraction feature methods based on the time domain

have been proven to be an efficient method for analyzing the

characteristics of EEG signals (Vidaurre et al., 2009). Though it is

widely used in speech and audio signal classification (Chu et al.,

2009), spectral features have been used for EEG signals (Hassan and

Bhuiyan, 2016b). These features are typically calculated by applying

a fast Fourier transform (FFT) to short-time window segments of

EEG signals followed by further processing. Considering that the

property of EEG signals is somewhat chaotic, in addition to the

traditional features of the EEG signal, the chaotic features based

on non-linear dynamical analysis are also highly recommended

to investigate the dynamic characteristics of EEG (Li et al., 2017;

Nawaz et al., 2020). In the current study, 12 time domain features,

seven spectral features, and six chaotic features are extracted for

further analysis, as shown in Figure 4.

We have computed the feature vector for each EEG sub-

bands based on TQWT decomposition. As the decomposed EEG

signals with J+1 sub-bands, the feature vector of J+1 sub-bands

on each epoch is computed to construct a 25∗(J+1)-dimensional

feature vector.

2.4. Search-based feature selection using
consistency measures

Considering that reducing the dimensionality of feature sets

may be improving the performance in reducing costs and

enhancing the ability of comprehensibility, another effective step

in the detection system for k-complex is to find optimal feature

subsets. Selection features based on search-based feature selection

(SFS) analyses were used in this study to research and select the

important features. The following context briefly illustrates the

selection features (Dash and Liu, 2003; Hernández-Pereira et al.,

2016).

The SFS method based on the consistency filter, as one of

the most effective methods, traverses all the candidate subsets to

find the best one using the evaluation measures based on the

independence of an inductive algorithm (shown in Figure 5). The

evaluation measure evaluates the attributes of selected features

according to the inconsistency rate (IR). If the IR for current

selection features is smaller than the pre-selection features, current

selection features are deemed as the selected features. Although

SFS has the disadvantage in time-consuming, it does not need the

stopping criterion or a pre-specified threshold.

2.5. RUSBoosted tree model for the
k-complex detection

The distribution across k-complex or not is highly skewed:

non–k-complexes have more epochs than those k-complexes.

Therefore, the detection problem for the imbalanced dataset is a

major challenge for k-complex detection. The RUSBoosted tree

model, as an efficient way to overcome this problem, can improve

the prediction performance by reducing bias between positive and

negative samples at the expense of a slight decrease in the large

group sets (Khoshnevis and Sankar, 2020; Jain and Ganesan, 2021;

Noor et al., 2022).

The present research fused a random under-sampling (RUS)

technique and adaptive boosting (AdaBoost) algorithm with a

decision tree as the RUSBoosted tree model, as shown in Figure 6.

First of all, to obtain the balanced distribution, the under-sampling
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FIGURE 5

Scheme of SFS. The dimension of feature subsets is reduced based

on features selected by SFS, and the selected features are used for

further analysis.

method was implemented to deal with the minority and majority

class size for the imbalanced training dataset. Second, considering

the AdaBoost algorithm’s ability to reduce bias and variance

mistakes, it is employed to tackle problems involving imbalanced

datasets. Hence, the RUS technique along with AdaBoost is utilized

by combining an ensemble of decision trees as a classifier for

further analysis.

In this study, the parameters (i.e., the number of classifiers was

selected as 30 for the model, with a maximum number of splits of

20 and a learning rate of 0.1) were melded into the RUSBoosted tree

for the detection of k-complex.

2.6. Performance evaluation

First, statistical hypothesis testing is performed to validate the

relevance and suitability of features according to discriminatory

capability are statistically significant or not. If the features are

not statistically significant, they have to be ignored for negative

influence on performance. To estimate the significant level of k-

complexes and non–k-complexes, we perform a one-way analysis of

variance (ANOVA). The difference is considered to be statistically

significant if the p-value is <0.05 at a 95% confidence level.

Second, to evaluate the detection ability of the proposed

method, some metrics based on the confusion matrix (shown in

Table 2) were used. In Table 2, TP describes the situation that both

the actual k-complexes and predicted states are yes. FN represent

the situation that predicted k-complexes as no while actual k-

complexes as yes. FP means the actual state is not k-complexes,

which is adverse to the predicted label based on an algorithm. TN

means the situation that both the actual k-complexes and predicted

states are no.

To evaluate the performance of the detection algorithm,

Cohen’s kappa coefficient, recall, and F-measure are computed. In

FIGURE 6

Flowchart for the RUSBoost implementation.

TABLE 2 Confusion matrix of the k-complex detection problem.

Predicted k-complexes

Yes No

Actual

k-complexes

Yes True positive

(TP)

False negative

(FN)

No False positive

(FP)

True negative

(TN)

addition to these metrics, the area under the ROC curve (AUC) was

also used to estimate the performance of a classifier. Further details

about the metrics are provided in the following paragraphs.

The kappa coefficient, calculated based confusion matrix, as a

measurement for consistency tests, can also be used to measure

classification accuracy. It is defined as Equation 4 as follows:

kappa =
TP+TN

TP+FN+FP+TN − Pe

1− Pe
(4)

Here, Pe is obtained as follows:

Pe =
∑

i sum(M(i, :))× sum(M(:, i))

(
∑

M)2
;M is confusion matrix (5)
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FIGURE 7

Variation of kappa and recall value with J for the detection of k-complexes.

FIGURE 8

Variation of kappa and recall value with Q for the detection of k-complexes.

Recall measure, which is also called sensitivity measurement,

reflects the proportion of the actual positive prediction.

It can be expressed mathematically from Equation 6

as follows:

Recall =
TP

TP + FN
(6)
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TABLE 3 The P-value of the proposed features computed from various TQWT sub-bands indicates the di�erence in features between k-complex and

non–k-complex.

Features Sub-band 1 Sub-band 2 Sub-band 3 Sub-band 4

Time features Maximum 0.023802 0.000803 NaN 0.87868

Mean 0.291217 0.702964 0.308926 0.458965

Standard deviation 0.010885 0.007884 0.546545 0.861432

Skewness 0.008726 0.000836 NaN 0.881254

Kurtosis 0.05654 0.72175 0.048551 0.731241

Shape factor 0.001473 0.008128 0.548529 0.816636

Crest factor 0.00672 0.000878 NaN 0.916789

Impulse factor 0.037651 0.092862 0.01697 0.206266

Margin factor 0.000359 0.008451 0.031723 0.683969

Short energy 9.47E-17 2.54E-16 0.279627 0.01927

Zero-crossing rate 1.68E-13 4.13E-27 2.52E-10 9.76E-19

Time centroid 6.49E-22 1.36E-08 5.27E-05 0.951018

Spectral features Band energy ratio 0.956247 0.007944 0.889128 0.289102

Spectral flux 0.004931 0.733733 0.797405 0.780187

Spectral centroid 0.008618 6.77E-01 0.793363 0.002373

Band width of SC 0.709624 0.946816 0.363672 0.023152

Spectral flatness

measurement

0.561545 0.701588 0.077005 0.263733

Spectral roll-off 0.594201 8.66E-05 7.65E-05 2.65E-11

Spectral irregularity 0.01874 0.127941 0.000109 5.51E-07

Chaotic features Correlation dimension 0.087149 6.52E-01 0.395171 0.000795

Kolmogorov entropy 0.346332 0.309228 0.309228 0.865964

Largest Lyapunov

exponent

7.69E-01 0.007019 0.031744 0.890812

Lyapunov exponent

spectrum

0.318448 0.318448 0.813963 0.988225

Box dimension 0.803216 1.88E-09 0.00112 2.02E-17

Generalized dimension 1.51E-09 2.39E-13 7.73E-24 7.73E-24

It is noted that the features with not statistically significant are highlighted in bold.

F-measure is the top priority measurement in analyzing the

overlapping between the two sets. It can be defined by weighted

recall and precision, and β reflects the relative importance.

Fβ =
(1+ β2)× Precision× Recall

(

β2 × Precision
)

+ Recall
(7)

If the parameter of β > 1, it means that recall has more

influence on F-measure. 0 < β < 1 reflects that precision has

a broader effect on F-measure, compared with recall. β = 1

represents the measurement degenerates into standard F-measure.

It is noted that β = 10 is selected.

To further illustrate the effectiveness of features selected using

a feature selection-based consistency-based filter, the separability

analysis using Fisher criteria was applied, which is obtained from

Equation 9 as follows:

JF = tr(S−1
w Sm) (8)

Here, Sw and Sm represent the within-class and between-class

scattermatrix, respectively. tr(S)means the trace of squarematrix S.

To evaluate the performance of the proposed method, the 5-

fold cross-validation method is utilized. The k-complex segments

and non–k-complex segments are divided into five groups,

respectively. For each time, the training dataset consists of four k-

complex groups and four non–k-complex, while the resting groups

are deemed as testing groups. All groups are tested in turn. In this

study, the overall performance is computed over the five iterations.

3. Results and discussion

3.1. Parameter selection for TQWT

The selected optimal parameters to decompose the EEG epoch

are J and Q. The detection performance (kappa measures and recall

value) based on the aforementioned procedure of feature extraction
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FIGURE 9

Illustration of the comparison for AUC and time in all features and selected features. Each box represents the 25–75th percentiles, the central line is

the median value, and the tiny vertical lines extend to the most extreme data not considered outliers, which are plotted individually.

and selection has been analyzed sequentially for incremental values

of Q range from 1 to 10 with an increment of one. Figures 7, 8 depict

the influence of parameters on detection performance for the k-

complex. It is observed from Figure 7 that the optimal parameter

of J is 3, in which the best kappa measures and recall value are

achieved. The optimal value for J is determined in the same way.

From our experimental analyses, as shown in Figure 8, it has been

observed that the best matrices are achieved for Q= 4.

3.2. Quality evaluation for feature
extraction and selection

In this section, the results of all the features computed from

various TQWT sub-bands were present in terms of significance, as

shown in Table 3. The test is performed at a 95% confidence level.

It can be observed from Table 3 that the features highlighted in

bold are not significant (p > 0.05), and a difference is statistically

significant if p ≤ 0.05. The results show that the performance

of time domain features to classify k-complex was significantly

better than other features for sub-bands 1 and 2. In sub-band

3, spectral features significantly outperformed time and chaotic

features. However, the statistical performance of time features in

sub-band 4 was the worst in all three kinds of features. Based on

these results, we can conclude that not all of the sub-bands features

achieved good discriminatory capability for k-complex detection.

Hence, it is necessary to select some of these features to improve the

k-complex detection performance and decrease time consumption.

We investigate the AUC and time performance for two

different feature sets, namely all features and selected features. The

comparisons of the performance are shown in Figure 9. It is evident

that the AUC based on selection features is slightly incremented

than all feature sets. Compared with the performance of all feature

sets, there is a dramatic decrement in time comparison for selected

feature sets.

In this study, we also investigate the separability of the two

different feature sets using JF . The larger the value of JF is, the

more separable the features are. Figure 10 presents the value of

JF and compares different feature sets (all features or selected

features are used). It is evident that the JF based on selected

features is higher, which confirmed that the selected features can

characterize the k-complex effectively. It can be confirmed by the

inferences drawn from Figure 9. According to these results, the

feature selection method was more effective, particularly in AUC,

time comparison, and separability estimation. Furthermore, the

experimental outcomes presented in Figures 9, 10 confirm that the

feature selection method is more effective.

3.3. Performance for various classification
models

For this research, we have verified several classificationmethods

such as linear discriminant analysis (LDA), logistic regression,

linear support vector machine (linear SVM), and RUSBoosted tree.

Figure 11A indicates the receiver operating characteristic (ROC)

curve for different classification methods. According to the results,

the line in the upper left represents better performance in the

detection of k-complexes. The area under the curve (AUC) of

1 indicates a perfect classification performance. Although this
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comparison is for the data set of subject 1, it has to be noticed that

the k-complex classification can be improved using RUSBoosted

tree methods. Figure 11B demonstrates a box plot of the area under

the curve (AUC) for different pattern recognition methods. The

AUC was obtained as 0.931 ± 0.085, 0.814 ± 0.166, 0.925 ±
0.127, and 0.954 ± 0.043 for LDA, logistic regression, linear SVM,

and RUSBoosted tree, respectively. According to these results, we

conclude that the AUC of the RUSBoosted tree is significantly better

than others.

FIGURE 10

Comparison of JF values between all features and feature selection

for k-complex detection.

The purpose of this investigation is to establish the suitability

of the RUSBoosted tree algorithm for imbalanced dataset problems.

The performance of the RUSBoosted tree algorithm is investigated

for several traditionally state-of-the-art classifiers including LDA,

logistic regression, and linear SVM. For further evaluation,

Figure 12 reports the performance of some of these classifiers

for the proposed scheme. The kappa coefficient, recall measure,

AUC, and F10-score were used to evaluate the effectiveness

of the proposed scheme. The proposed method achieved an

average performance of recall measure, AUC, and F10-score of

92.34 ± 7.06%, 95.4 ± 4.32%, and 83.59 ± 8.23%, respectively.

Depending on the results, the performance based on the kappa

coefficient, recall measure, and F10-score provided evidence that

the RUSBoosted tree surpassed other algorithms in the detection

of the k-complexes. However, the performances based on the

kappa coefficient using the RUSBoosted tree (54.22 ± 4.04%) are

slightly worse than linear discriminant analysis (59.26 ± 14.67%).

In summary, the prediction results confirmed a superiority value

for different metrics and a balanced classification performance.

It also indicated that the prediction algorithm based on the

RUSBoosted tree model was tending to outperform than the

traditional classifiers, especially for the minority classes.

3.4. Performance comparison of the
proposed method based on the ratio of
segment number

To verify the performance of the proposed methods, the

execution time, recall, and F10 scores are used. Figure 13 presents

the execution time of the RUSBoosted tree model and the others

classifiers. For further analysis, we assume that the number of the

FIGURE 11

(A) Evaluation of the ROC curves (the plot of sensitivity vs. (1-specificity) for distinguishing k-complexes) for subjects 1. (B) Comparison of AUC for

di�erent methods.
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FIGURE 12

Performance comparison of the proposed method with di�erent

machine learning algorithms for the detection of k-complexes [LDA

(red diamond), logistic regression (green circle), linear SVM (blue

diamond), and RUSBoosted tree (pink star)]. Error bars correspond

to the standard error of the mean.

segments of the k-complex is fixed at 263, and the number of

the segments of the non–k-complex is outnumbering k-complex

(the number of segments of the non–k-complex increased from

1 to 10 times compared to the number of the segments of k-

complex, and the number of segments was selected randomly

from the database). The time to train the classification model was

deemed as execution time. According to Figure 13, the slowest

execution time was recorded with the RUSBoosted tree model

compared with other classifiers. Along with the increasing number

of segments, the execution time is also increased dramatically. In

addition, the performance was also compared with the other three

classifiers based on recall and F10 scores. Figure 14 achieves the

results that the proposedmethod is slightly increased along with the

increase in the ratio of the number of the segments between non–

k-complex and k-complex. While the other classifiers’ performance

significantly decreased. High F10 values mean that the proposed

method is inclined to small samples. From these results, we can get

the conclusion that the proposed method was suitable to deal with

the imbalanced dataset.

3.5. Comparison with existing methods
based on Scenario 1

According to previously reported methods, some of the

automatic k-complex detection methods have been estimated using

the same database as discussed in Section 2.1. In Table 4, the

proposed method is compared with existing methods. Krohne

et al. (2014) detected k-complexes using wavelet transformation

combined with feature thresholds with the same database. In this

study, pseudo-k-complexes were identified from each EEG segment

and then the feature threshold method was used to reject false

positives. A mean recall of 74% was achieved. Parekh et al. (2015)

FIGURE 13

Relationship between the execution time and ratio of segment

numbers for subject 1 (the number of k-complex is fixed as 263, and

the segment number of non–k-complex is multiple of the number

of k-complex from 1 to 10).

reported their results of the k-complex detection using a fast non-

linear optimization algorithm, an average recall and kappa of 61%

and 0.54 were achieved, respectively. Another study was made by

Ranjan et al. (2018), in which a fuzzy algorithm combined with

an artificial neural network was used to detect k-complex, they

reported an average accuracy and specificity of 87.65 and 76.2%,

respectively. A fractal dimension coupled with an undirected graph

features technique was utilized by Al-Salman et al. (2019b) to

detect k-complexes. The accuracy and specificity of 97 and 94.7%

were reported, and the performance was highest than others.

Oliveira et al. (2020) focused on designing a multitaper-based k-

complex detection method in EEG signals and achieved a recall of

85.1%. The proposed method outperforms the other methods in

almost all performance metrics (accuracy and specificity), except

the method of fractal dimension coupled with undirected graph

features (Al-Salman et al., 2019b). In terms of recall and kappa,

the proposed method achieves the highest performance. These

results demonstrated that the proposed method achieved a better

performance in terms of detection performance.

3.6. Comparison based on di�erent
scenarios

As already mentioned, some of the automatic k-complex

detection methods have been proposed and compared with the

proposed method with the regard to the scenarios previously

discussed, as shown in Table 5. In Scenario 1, the proposedmethods

achieved a mean accuracy of 92.19 ± 3.9% and a mean recall

of 92.41 ± 7.47%. The proposed method achieved a dramatically

better recall than others (Devuyst et al., 2010; Yazdani et al., 2018;

Oliveira et al., 2020), but slightly worse accuracy. A higher recall

value indicates that the proposed method is able to detect the most

of small samples (true k-complex marked by an expert).
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FIGURE 14

Relationship between the performance-based kappa and F10 and the ratio of segments number for subject 1 (the number of k-complex is fixed as

263, and the segment number of non–k-complex is multiple of the number of k-complex from 1 to 10).

TABLE 4 Performance comparisons between the proposed method and other di�erent detection methods with the same datasets based on Scenario 1.

Methods Accuracy (%) Recall (%) Specificity (%) Kappa (%)

Wavelet transformation (Krohne et al., 2014) / 74 / /

Spare optimization (Parekh et al., 2015) / 61 / 54

Fuzzy neural network (Ranjan et al., 2018) 87.65 / 76.2 /

Short-term event extraction algorithm (Yazdani et al., 2018) / 67.79 / /

Fractal dimension coupled with undirected graph features (Al-Salman

et al., 2019b)

97 / 94.7 /

Multitaper-based method (Oliveira et al., 2020) / 85.1 / /

Proposed methods 92.18 92.41 92.41 54.54

The bold value indicates the best performances are highlighted compared with other methods.

TABLE 5 Performance comparisons between the proposed method and other existing methods for Scenarios 1 and 2.

Methods Scenario 1 Scenario 2

Accuracy (%) Recall (%) Accuracy (%) Recall (%)

Devuyst et al. (2010) 98.59 61.72 99.29 60.94

Yazdani et al. (2018) 98.78 67.79 99.3 73.02

Oliveira et al. (2020) / 85.1± 5.05 / 77.2± 15.5

Proposed methods 92.19± 3.9 92.41± 7.47 87.95± 6.16 80.85± 11.33

The bold value indicates the best performances are highlighted compared with other methods.

In Scenario 2, compared to previous studies, the trade-off

accuracy and recall obtained from the proposed method are similar

to those obtained in Scenario 1. Compared to Scenario 1, the

mean accuracy and recall are smaller, i.e., 87.95 ± 6.16% and 80.85

Frontiers inNeuroscience 12 frontiersin.org39

https://doi.org/10.3389/fnins.2023.1108059
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li and Dong 10.3389/fnins.2023.1108059

± 11.33%, respectively. The reason why the recall and accuracy

decrease for the scenario may be that the second expert marked

few labels as k-complex compared to expert 1. It is consistent with

Table 1. It is denoted that the proposed method was effective to

detect the k-complex.

4. Conclusion

This study developed a k-complex detection scheme,

consisting of TQWT, multi-domain features, feature selection,

and RUSBoosted tree algorithm to overcome the shortages of the

existing classification–misclassification of classifier training from

the imbalanced data. According to the results, the highest recall

value was achieved for the proposed scheme. The results denoted

that the methods could be worth utilizing in the automatic identify

the k-complex for sleep specialists. It has been evidenced that

the proposed scheme is comparable to or better than the state-

of-the-art classifiers. The results also show that the ability of the

RUSBoosted tree model to deal with the imbalanced classification

problems compared with the state-of-art methods is quite well. In

general, according to the experimental outcomes, we can conclude

that the proposed scheme can relieve physicians of the burden of

visually inspecting a large volume of EEG data.

However, the study suffers from several drawbacks. First, it is

necessary for researchers to locate the locations of the k-complex

in the related epochs. Second, the proposed scheme relied on a

single channel to detect k-complex. While as one of the important

features of brain activity, the interaction between brain regions is

not fully utilized.
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Spatial integration of dendrites in
fast-spiking basket cells

Ming Liu and Xiaojuan Sun*

School of Science, Beijing University of Posts and Telecommunications, Beijing, China

Dendrites of fast-spiking basket cells (FS BCs) impact neural circuit functions in

brain with both supralinear and sublinear integration strategies. Diverse spatial

synaptic inputs and active properties of dendrites lead to distinct neuronal firing

patterns. How the FS BCs with this bi-modal dendritic integration respond to

di�erent spatial dispersion of synaptic inputs remains unclear. In this study, we

construct a multi-compartmental model of FS BC and analyze neuronal firings

following simulated synaptic protocols from fully clustered to fully dispersed.

Under these stimulation protocols, we find that supralinear dendrites dominate

somatic firing of FS BC, while the preference for dispersing is due to sublinear

dendrites. Moreover, we find that dendritic diameter and Ca2+-permeable AMPA

conductance play an important role in it, while A-type K+ channel and NMDA

conductance have little e�ect. The obtained results may give some implications

for understanding dendritic computation.

KEYWORDS

fast-spiking basket cells, compartmental model, dendritic non-linearity, spatial

integration, hippocampus

1. Introduction

Across all cortical circuits, GABAergic interneurons represent a minority yet serve

a critical impact on modulating circuit functions (Hu et al., 2014). They set a limited

time window for synaptic integration and plasticity in principal neurons and coordinate

synchronous activity during neuronal oscillations (Buzsaki and Draguhn, 2004; Hu et al.,

2010; Chiovini et al., 2014). As one particular type of GABAergic interneuron, fast-spiking

basket cells (FS BCs) can be distinguished by their morphological properties, expression

of molecular markers, and functional characteristics (Hu et al., 2014). For fast-spiking

basket cells, their action potentials present short duration and fast-spiking phenotype

(Jonas et al., 2004), and synapses located on their dendrites contain GluR2-lacking Ca2+-

permeable AMPA (cp-AMPA) receptors and low levels of NMDA receptors (Geiger et al.,

1997; Adesnik and Nicoll, 2007; Freund and Katona, 2007; Povysheva et al., 2013). Among

them, cp-AMPARs possess faster deactivation kinetics (Geiger et al., 1995; Isaac et al., 2007),

and FS BCs with cp-AMPA conductances in rat prefrontal cortex are reported to exhibit

prominent synaptic facilitation (Wang and Gao, 2010). These features above make FS BCs

essential regulators of network oscillations (Jiang et al., 2016) and memory consolidation

(Xia et al., 2017). Due to these essential roles that FS BCs played in the brain, investigating

the information processing mechanisms in them is vital for understanding the correlated

brain functions.

Dendritic integration, a fundamental part of neuronal information processing, is

classified into linear, sublinear, and supralinear integration. Previous studies have revealed

that dendrites of interneurons exhibit mostly linear or sublinear integration (Tzilivaki et al.,

2022), and dendrites of some CA1 interneurons could show supralinear integration (Katona

et al., 2011). Except for these neurons, dendritic integration has also been discussed in
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other neurons, such as granule cells (Krueppel et al., 2011), etc.

Neuronal response to spatiotemporal synaptic inputs depends

heavily on the type of dendritic integration. In CA1 pyramidal

neurons with supralinear integration, stimulations on synapses

clustered within a branch can cause more robust responses than on

dispersed allocated synapses (Poirazi et al., 2003). While for other

neuron types with sublinear dendrites, their response is usually

sensitive to scattered synaptic inputs (Cazé et al., 2013). Meanwhile,

the dendritic integration mode can affect the output precision

(Gasparini and Magee, 2006) and further neural oscillation (Wang,

2010).

Dendritic integration has been found to be related to neuronal

physiological properties (Araya et al., 2006; Vervaeke et al.,

2012; Kamijo et al., 2014; Mueller and Egger, 2020; Di Maio,

2021). For example, narrow dendritic diameters produce more

significant local input impedance, thus inducing prominent

sublinear integration in stellate cells (Abrahamsson et al., 2012).

Sodium ion channels and NMDA receptors are the main

amplification mechanism for supralinear integration of pyramidal

neurons (Nevian et al., 2007). Alike, dendritic properties such as

fast inactivating K+ current (Shibata et al., 2000) and dendritic

morphology (Hartveit et al., 2022), or synaptic conductances can

affect spatial integration and the first spike latency, which together

provide precise mediation of the postsynaptic neurons.

Previous studies on spatial integration mainly focused on fully

clustered (Carter et al., 2007; Gökçe et al., 2016; Dembrow and

Spain, 2022) or fully dispersed (Farinella et al., 2014) synaptic

inputs, without paying attention to the intermediate state, which is

difficult to realize in the experiment, thus hindering understanding

of the specific connection mode in the brain. Recently, supralinear

and sublinear integration coexisting(bi-modal integration) on the

same dendrite of FS BCs has been reported (Tzilivaki et al.,

2019). They reveal that FS BCs present dispersed preference

due to the specific morphological features, A-type potassium

channels, and the existence of sublinear dendrites. Nevertheless, the

underlyingmechanisms in FS BCs to transform discriminate spatial

synaptic inputs and the role of the two non-linear dendrites in it

remain elusive.

In this paper, we aim to investigate how supralinear and

sublinear dendrites of FS BCs influence their responses to synaptic

inputs with different spatial dispersion. Using a biophysically-

detailed compartmental model of a CA3 fast-spiking basket cell,

under the knowledge of sublinear dendrites making FS BCs

prefer dispersed spatial synaptic inputs as reported by Tzilivaki

et al. (2019), we further find that supralinear dendrites play a

dominant role in FS BCs’ firing response. Responses of FS BCs

to spatial synaptic inputs stimulus of the whole dendritic tree are

consistent with that to the supralinear dendrites stimulus only.

And this result is independent of the proportion of sublinear

dendrites to supralinear dendrites. To understand the mechanisms

of this spatial integration, we alter several biophysical properties

in dendrites. We find that dendritic diameter varies somatic

response in a nonmonotonic way and is the determining factor

in regulating the precise firing of FS BCs. Then, we apply the

same spatial simulation protocols after blocking cp-AMPA and

NMDA synapses separately. The results demonstrate that cp-

AMPA receptors improve the integration capacity immensely,

while the presence of NMDA currents is insufficient for active

dendritic spikes. Our findings may provide insights into the role

of spatial integration in interneurons, leading to the speed and

temporal precision operation of GABA release and the regulation

of interneurons in memory updating further.

2. Materials and methods

2.1. Compartmental modeling

Compartmental model of the CA3 fast-spiking basket

cell is implemented and run within the NEURON simulation

environment (Hines and Carnevale, 1997). The detailed

dendritic morphology model J31a.CNG.swc is obtained from

the NeuroMorpho.org database uploaded by Tukker et al. (2013),

consisting of 217 compartments. Dendrites distance from soma

less than 100 µm is defined as proximal dendrites, otherwise

as distal dendrites (Hu et al., 2014). Axonal compartments of

B13a.CNG.swc in the same brain area is adopted since the lack of

axons in the J31a model. And segment number of all compartments

is set the same as the number of synaptic inputs.

Passive cable properties and active conductance of ionic

channels in the model are all based on experimental data

(Supplementary Tables 1, 2) (Goldberg et al., 2003; Hu et al.,

2010; Konstantoudaki et al., 2014). Fast Na+ ion channels (Hu

et al., 2014) and delayed rectifier K+ current are inserted into

all compartments. Slow inactivation K+, two Ca2+-dependent

potassium, and h currents are inserted only in soma. Other

channels such as A-type K+ are for proximal and distal dendrites,

while L-, N-, and T-type Ca2+ currents are added to each dendritic

and somatic compartment. Meanwhile, all compartments include a

calcium buffering mechanism except axon (Konstantoudaki et al.,

2014). For synaptic inputs, synapses with Ca2+ permeable AMPA

(cp-AMPA) and NMDA receptors are considered, and inhibitory

synapses are not considered in our simulation due to the very low

ratio of them in all incoming inputs (Freund and Katona, 2007;

Hu et al., 2014). Values of all synaptic weights are consistent with

Tzilivaki et al. (2019).

2.2. Spatial simulation protocols

In all simulation protocols, 20 pairs of cp-AMPA and NMDA

synapses are randomly located on the dendrites with an average

diameter being less than 1.2 µm are activated by a 50 Hz Poisson

spike train (Emri et al., 2001). In the following, if not specialized,

all the dendrites refer to those with diameters less than 1.2 µm.

In order to study the different roles of supralinear and sublinear

dendrites on the response of FS BCs, synaptic stimulations are put

into the whole dendrites, only supralinear dendrites or sublinear

dendrites, respectively. And the locations of the activated synapses

change from fully clustered on a single dendritic branch to fully

dispersed on the whole dendritic tree, among which the selected

compartment for dispersing is random. The results obtained in

this paper are the average over N since simulation protocols repeat

N times. Here, N is the number of non-linear dendrites when
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the activated synapses are located on the whole dendrites, and is

the number of supralinear/sublinear dendrites when the activated

synapses are located only on supralinear/sublinear dendrites.

3. Results

3.1. Preference of FS BCs to dispersed
spatial synaptic inputs

Unlike the former opinion that dendrites integrate signals

linearly, fast-spiking basket cells have been authenticated to

perform both supralinear and sublinear computations. To

investigate the different roles of supralinear and sublinear dendrites

on the response of FS BCs, we need to identify each dendrite of FS

BCs to be supralinear or sublinear. Toward this goal, we stimulate

gradually increasing cp-AMPA and NMDA synaptic inputs(from

1 to 20 pairs) to each dendrite and block sodium channels in soma

and axon to avoid backpropagation effects. By comparing the actual

EPSP (measured EPSP) recorded in soma with linearly summed

EPSP (expected EPSP), dendritic compartments are labeled as

supralinear/sublinear if measured EPSP is larger/less than the

expected EPSP, as shown in Figure 1. And we find that the studied

FS BC has 151 supralinear dendrites and 17 sublinear ones.

Dendritic integration plays important role in neuronal

responses to different spatial synaptic inputs (Tran-Van-Minh et al.,

2015). We implement diverse spatial synaptic input patterns on

selected dendrites to investigate the roles of different non-linear

dendrites in FS BCs’ responses (see “Methods”). As shown in

Figure 2A, synaptic inputs are placed randomly on dendrites from

fully clustered to fully dispersed. Responses of FS BC to synaptic

inputs subjected to the whole dendrites, to only supralinear or

sublinear dendrites are exhibited by blue, red, and orange lines in

Figures 2B, C, respectively. The firing rate of the whole dendritic

tree increased from an average of 0.79 ± 3.2Hz to a maximum

of 35.6 ± 4.3Hz. In Figures 2B, C, both somatic firing rate and

peak amplitude of FS BC’s spike train increase with synaptic inputs’

dispersity when active synapses are located at the whole dendrites

or only on supralinear dendrites. For active synapses located at

only sublinear dendrites, the somatic firing rate doesn’t change

too much, and peak amplitude increases while can’t reach the

peak value as supralinear dendrites. It indicates that supralinear

dendrites prefer dispersed synaptic inputs with the existence of

sublinear ones, and they play a dominant role since the trajectories

are similar for synaptic inputs putting only on supralinear dendrites

and the whole dendrites. With the variation of peak amplitude, it

can be seen that dendritic spikes occurring on supralinear dendrites

make the membrane potential of soma come to the peak (Goldberg

et al., 2003), not sublinear ones.

The ratio of supralinear dendrites over the number of sublinear

dendrites of our model is about 8.88. To test whether this cluster-

disperse response is related to the ratio of the non-linear dendrites,

we repeat the same simulation protocols on another FS basket cell

with more sublinear dendrites than supralinear dendrites (ratio =

0.25). Results show that although the ratio is diametrically changed,

this cell also prefers dispersed synaptic inputs (Figure 2D), and

supralinear dendrites play a dominant role in this preference too.

It indicates that FS BCs’ preference for dispersed synaptic inputs

with the existence of sublinear ones is independent of the nonl-

inear dendrites’ ratio. This independence property may provide a

way for us to deduce the spatial dispersion of synaptic inputs from

the firing rate of FS BCs.

In summary, under simulated synaptic protocols from fully

clustered to fully dispersed, we find that supralinear dendrites play

a dominant role in the somatic firings of FS BCs. They can trigger

and transmit enough dendritic spikes to the soma. Meanwhile, the

preference of FS BCs for dispersed synaptic inputs is due to the

existence of sublinear dendrites.

3.2. Dendritic diameters play a crucial role
in the spatial responses of FS BCs

Dendritic morphology and A-type potassium channels have

been reported to contribute to the dispersed preference in FS BCs

(Hu et al., 2014). To explore their impact on responses of FS

BCs under spatial synaptic inputs, we repeat the above simulation

protocols after increasing the dendritic diameter to 2 µm. As

shown in Figure 3A, compared with the data on the right side

that dendritic diameters are unchanged, the somatic firing rate

with spatial synaptic inputs located on the whole dendrites tends

to concentrate to lower values, ranging from 3.4 Hz to 17.54 Hz.

And its nonmonotonic variation tendency is still consistent with

the one under stimulations only on the supralinear dendrites,

even though somatic firing rate increases with a dispersion of

spatial synaptic inputs put only on sublinear dendrites (Figure 3B).

This diversity is also reflected in peak amplitude. As shown in

Figure 3C, whether synapses are activated in the whole dendrites or

supralinear/sublinear dendrites, the membrane potential of soma

can always reach the peak and the difference becomes smaller than

the results shown in Figure 2C. It also reveals that the narrow

diameter of dendrites may hamper the response produced by

clustered inputs, while a large diameter may reduce the response

produced by dispersed inputs.

To more intuitively reflect the changing response in different

non-linear dendrites, we use Student’s t-test for statistically

compared. Variations between the two non-linear dendrites are

significant(p = 0.00011), where the median in the sublinear

dendrites is larger than 10 (Figure 3D). Together these results

further confirm that supralinear dendrites dominate the firing in FS

BCs, and dendritic diameter plays a vital role in the spatial response

of FS BCs which is also an essential factor in determining the firing

properties of sublinear dendrites.

To further test the impacts of dendritic morphology on EPSP-

spike coupling, we analyze the first spike latency for synaptic inputs

located on the whole, the supralinear dendrites, and sublinear

dendrites respectively. First spike latency is defined as the interval

between the onset of the simulation and the peak of the first

spike. Under control conditions (diameter of dendrites doesn’t

change), the dependence of first spike latency on dispersion for

spatial synaptic inputs on the whole dendrites is still consistent

with the ones on the supralinear dendrites. And the nonmonotonic

dependence of first spike latency on dispersion (Figure 4A, blue and

red dotted line) is different from the increasing one for inputs on

only sublinear dendrites (Figure 4A, yellow dotted line). When the
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FIGURE 1

(A) Input-output relationships from supralinear and sublinear dendrites in FS BC model. Increasing numbers of synapses(from 1 to 20 pairs) activate

on each compartment. The x-axis presents the linear summed EPSP, while the y-axis shows the actual EPSP amplitude recorded in the soma. The

gray line indicates linear summation. (B) Morphological reconstructions of the modeled FS BC with supralinear (red) and sublinear (yellow) dendrites.

The removed dendritic branches are also colored according to the actual integrated properties in each compartment, but the removed dendritic

branches are not considered in subsequent simulations.

FIGURE 2

(A) Schematic diagram of spatial simulation protocols. Twenty pairs of synapses randomly located on selected dendrites from fully clustered to fully

dispersed (blue dots represent the stimulation site). All processes cycle for N times (N is the number of stimulated branches). Output is recorded in

the soma. (B) Left: Traces of the somatic firing rate in the whole dendrites (blue line), supralinear dendrites (red line), and sublinear dendrites (yellow

line) under the spatial simulation protocol. Every shaded area denotes the corresponding standard deviation. Right: Example of somatic membrane

potentials on a selected dendrite (every three dispersion degrees). (C) Peak membrane potential record in the whole dendritic tree, supralinear

dendrites, and sublinear dendrites. (D) Somatic firing rate of two neuron models. Cell1 represents the neuron with a ratio of supralinear dendrites to

sublinear dendrites of 8.88 (blue); cell2 represents the neuron with a ratio of 0.25 (green). Inset denotes the histogram of the number of non-linear

dendrites in two neurons (blue: supralinear, green: sublinear).
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FIGURE 3

Dendritic morphology a�ect notably on the cluster-disperse spatial responses. (A) Firing rate evoked in the neuron after and before changing the

diameter. The points located at the right side of the figure are the somatic firing rate under the normal condition when the dendritic diameters have

not changed. All the following parts are the same. (B) Traces of firing rate in the whole dendrites and di�erent non-linear dendrites after changing the

diameter. (C) Peak membrane potential record in the whole dendrites and other non-linear dendrites under 2 µm diameter. (D) Box plot and scatter

plot of the di�erences in firing rate between the normal condition and changing the diameter in two non-linear dendrites. Red: supralinear dendrites,

yellow: sublinear dendrites.

FIGURE 4

(A) First spike latency before (dotted lines) and after (solid lines) changing the diameter. (B) Peak dV/dt against dispersion of synaptic inputs calculated

before (blue) and after (red) changing the diameter. (C) Detailed di�erentiated membrane potential (dV/dt) traces under fully clustered and fully

dispersed, insets are the enlarged image. The line color is consistent with the legend color in (B).

dendritic diameter changes to 2 µm, the dependence of first spike

latency has changed conversely. For example, first spike latency

decreases with dispersion (Figure 4A, yellow solid line), which is

contrary to the one under control condition. And for the other

two cases, first spike latency decreases first and then increases

with dispersion (Figure 4A, blue and red solid line), which is also

different from the ones increasing first and then decreasing for

the control condition (Figure 4A, blue and red dotted line). These

obtained results indicate that dendritic diameter could alter signal

transfer efficiency in FS BCs.

Peak of the derivation membrane potential(dV/dt) versus

degree of dispersion can provide another perspective of

investigation (Losonczy and Magee, 2006). The blue line in

Figure 4B shows that the peak dV/dt rises gradually under control

conditions. After increasing the dendritic diameter to 2 µm, the

peak dV/dt is more eminent at lower dispersion, and then it clips to

a lower value (Figure 4B, red line). Figure 4C presents the variation

of dV/dt for fully clustered or dispersed stimulations. For fully

clustered synaptic stimulation, dV/dt with the diameter being

2 µm fluctuates much more greatly than the one under control

condition (Figure 4C, left), while vice versa for fully dispersed

synaptic stimulation (Figure 4C, right). These results indicate that

dendritic diameter is associated with the peak dV/dt, notably for

higher dispersion stimulation.

A-type K+ channels are reported to be an important factor for

controlling neuronal response. To investigate their contribution

to the response of the studied FS BC to spatial synaptic inputs

with different dispersions, we repeat the simulation protocols after

setting the conductance of A-type K+ channels to zero. As shown

in Figure 5A, the somatic firing rate for inputs on the whole

dendrites increases slightly after blocking the A-type K+ channels.

The difference in Figure 5B reflects somatic firing rises more in the

supralinear dendrites than sublinear dendrites. Therefore A-type

K+ channels contribute little effect on the cluster-disperse response.

In summary, these simulations demonstrate that the

specific morphology features of FS BCs conduct the

discrepancy in the cluster-disperse integration of different

non-linear dendrites and play a key element in controlling

the release timing precisely, while A-type K+ channels present

minor effects.
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FIGURE 5

A-type K+ channel a�ect little on the cluster-disperse spatial

responses. (A) Firing rate evoked in the neuron after and before

blocking A-type K+ channels. (B) Box plot and scatter plot of the

di�erences in firing rate between the normal condition and blocking

the A-type K+ channel in two non-linear dendrites. Red: supralinear

dendrites, yellow: sublinear dendrites.

3.3. Synaptic conductances determine
responses and output precision of FS BCs
to spatial synaptic inputs

Since the type of excitatory synapses influences synaptic

integration, we reason that they may also act to the cluster-disperse

spatial responses of FS BC (Schiller et al., 2000). To test this,

we apply synapses consisting of only cp-AMPA or NMDA under

the same stimulation protocols. For simulations involving NMDA-

only, the neuron barely generates action potentials and the somatic

firing rate range from 0.26 ± 1.2 Hz to 4.15 ± 5.6 Hz, which

decreases from beta wave to alpha wave (Figure 6A). Same as

Figure 3B, the disperse-sensitive response disappears. While the

tendency is still increased first and then decreased, the difference

between the two ends becomes smaller (Figure 6B). Noticed when

synapses are added to the sublinear dendrites only, the somatic

firing rate does not increase with the dispersion, this suggests

that synaptic conductance does not affect the characteristics of

sublinear dendrites. For peak amplitude, its maximum decreases to

nearly zero (Figure 6C) as compared to the one under the control

condition as exhibited in Figure 2C. Variation of dependence of

peak amplitude on stimulation dispersion could explain why the

somatic firing rate drops to alpha bands. The difference shown in

Figure 6D reveals when synapses contain NMDA only, dendritic

spikes on the supralinear dendrites reduce a lot, which indicates the

necessity of cp-AMPA conductances for dendritic spikes.

When synapses contain cp-AMPA only, somatic firing in

the whole dendrites increases significantly, from 1.65 Hz of

minimum to 55.7 Hz, which is consistent with the supralinear

and sublinear dendrites (Figures 7A, B). Meanwhile, the variation

of peak amplitude with dispersion reveals the dispersion needed

for reaching the maximum value of peak amplitude is lower

(Figure 7C). In addition to several outliers at low dispersion,

Figure 7D further presents a strong and uniform influence of

cp-AMPA on the supralinear dendrites rather than the sublinear

dendrites. These results demonstrate that cp-AMPA conductance

is required for the dispersion-sensitive properties of FS BCs,

which point out that it becomes another crucial element in spatial

integration by inducing dendritic spikes.

Synaptic conductances also affect the temporal input-output

relationship of neurons (Wang and Liu, 2010; Di Maio et al.,

2021). As illustrated in Figure 8, compared with the dotted lines

in Figure 4A, the change of nonmonotonic trajectory in both cases

is the same as that under normal conditions, which increases first

and then decreases. When NMDA conductance is added only, the

latency of the first spike is longer, and the existence of 0 in sublinear

dendrites is due to the absence of firing (Figure 8A, solid yellow

line). However, no matter how the first spike latency changes under

different conditions, sublinear dendrites still react contrastively to

others.

The calculation of peak dV/dt increases following the blockade

of NMDA receptors, corresponding with the change of somatic

outputs (Figure 8B, green line). In contrast, for NMDA-only

conductance, the peak dV/dt decreases with the degree of

dispersion (Figure 8B, blue line). Altogether these data indicate that

cp-AMPA synapses can further reduce the transmission threshold

of the dendritic spike, while the threshold increases sharply with

NMDA inputs only.

In summary, we find that the faster kinetics of cp-AMPA

synapses influences the response of spatial dispersion inputs in FS

BCs. They can regulate both the summation and timing of dendritic

spikes and further affect neuronal firing. On the other hand, NMDA

conductance has a minor effect on this cluster-disperse response,

and more effects may have to be studied on a longer time scale.

4. Discussion

Dendritic integration is one of the critical components of

neuronal computation, and different type of integration leads to

diverse spatial response (Kastellakis et al., 2015; Li and Gulledge,

2021). Exciting new findings show that the dendrites of fast-

spiking basket cells in the hippocampus present both supralinear

and sublinear integration (Tzilivaki et al., 2019) (Figure 1). How

this bi-modal dendritic integration responds to synaptic inputs

from fully clustered to fully dispersed of have not been previously

examined. Here, using a compartmental model, we investigate how

the supralinear and sublinear dendrites in FS BCs participate in

the process of transforming the cluster-disperse patterns of synaptic

inputs into outputs.

Our results demonstrate that supralinear dendrites play a

dominant role in FS BCs’ response to the cluster-disperse synaptic

inputs, they dominate the somatic firing by generating dendritic

spikes, and sublinear branches compute the disperse preference

(Figure 2). Neurons employ a variety of mechanisms to combat

spatial variability in synaptic inputs, and dendritic properties

can significantly affect the ability of synaptic input to generate,

propagate, and time action potentials (Psarrou et al., 2014).

Similar to previous studies in other neurons, we find that

dendritic morphology is the main cause of this diversity of spatial

integration in non-linear dendrites (Single and Borst, 1998; Ran

et al., 2020). Larger diameters diminish the disperse-sensitive

responses in a nonmonotonic way of the whole and supralinear
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FIGURE 6

NMDA-only synapses on spatial responses. (A) Plot of firing rate in the whole dendrites for synaptic inputs having NMDA-only (same as the blue line

in B) and normal condition. (B) Traces of firing rate with dispersion in the whole dendrites and two non-linear dendrites with NMDA synapses only. (C)

Peak membrane potential with NMDA synapses only. (D) Box plot with scatter plot of the di�erences in firing rate between the normal condition and

blocking cp-AMPA synapses in two non-linear dendrites.

FIGURE 7

Cp-AMPA-only synapses on spatial responses. (A) Plot of firing rate in the whole dendrites for synaptic inputs having cp-AMPA only and normal

condition. (B) Traces of firing rate with dispersion in the whole dendrites and two non-linear dendrites with cp-AMPA synapses only. (C) Peak

membrane potential record in the whole dendrites and di�erent non-linear dendrites with cp-AMPA synapses only. (D) Box plot with scatter plot of

the di�erences in firing rate between the normal condition and blocking NMDA synapses in two non-linear dendrites. There are several outliers in the

di�erence of supralinear dendrites.

FIGURE 8

(A) First spike latency when applied NMDA synapses only (solid lines) and cp-AMPA synapses only(dotted line). Colors indicate as in legend. (B) Plot of

peak dV/dt against dispersion of synaptic inputs. Colors (blue, green, and gray) indicate NMDA, cp-AMPA, and both cp-AMPA and NMDA synaptic

synapses, respectively.
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dendrites, while intensely increasing the firing in the sublinear

dendrites (Figure 3). As the dendritic diameter is a morphological

parameter of the neuron itself, the firing properties in sublinear

dendrites completely change when the dendritic diameter alters

to an abnormal value. Besides the firing rate, precise temporal

propagation is essential in signal transfer, time course of synapses

defines the time window for the firing of basket cells and their

influence on the pyramidal neurons (London et al., 2002; Molineux

et al., 2005; Wlodarczyk et al., 2013). The relationship between

the first-spike latency and morphology shows an intriguing

result on non-linear dendrites, supporting that this particular

morphology of FS BCs determines its accurate timing transmission

of information (Figure 4). Unlike previous studies, although K+

channels influence neuronal responses (Misonou et al., 2005;

Tzilivaki et al., 2019), blocking the A-type K+ channels in themodel

has a minor influence on the cluster-disperse responses (Figure 5).

Still, specificity in this model can not be ruled out.

The gating properties of cp-AMPA or NMDA receptors can

also affect the participation of different non-linear dendrites in

spatial integration (Mcbain and Dingledine, 1993; Isaac et al.,

2007). Among them, cp-AMPARs mediate excitatory postsynaptic

current raises and decays rapidly (Carter and Regehr, 2002; Walker

et al., 2002), the EPSP arriving at the soma has a relatively short

half-duration (Angulo et al., 1999; Jonas et al., 2004). Separately

blocking the synaptic conductance in the model, we observe

that activating NMDA synapses only causes minor somatic firing

and peak amplitude (Figure 6). Meanwhile, cp-AMPA current can

effectively enhance somatic response and involve the sensitivity

for dispersed synaptic input (Figure 7). The results on non-linear

dendrites show that supralinear dendrites are more easily affected

by synaptic conductance, and unlike changing the diameter,

the firing property of the sublinear dendrites doesn’t change.

As dendritic spike initiation is associated with the rising rate

of the somatic voltage response (Gasparini et al., 2004), and

the local dendritic spike threshold becomes more depolarized

as dV/dt decreases, we find that the specific morphology and

cp-AMPA conductance will provide the required level of rapid

dendritic depolarization (Figures 4B, 8B) (Golding and Spruston,

1998; Gasparini and Magee, 2006). These findings may support

the essential role of increased cp-AMPAR transition induced by

plasticity-related events in memory consolidation, retrieval, and

updating (Torquatto et al., 2019).

Once action potential in GABAergic interneurons occurs will

trigger GABA release (Martina et al., 2000). This process needs

temporal and spatial integration precision. As for basket cells, they

densely target the perisomatic region and will thus control the

firing possibility of the pyramidal cell (Piskorowski and Chevaleyre,

2012). Therefore, how FS BCs spatially filter synaptic inputs is

critical to their function in the operation of neuronal networks.

Our work provides insight into the responses of FS BCs to

spatial dispersion inputs, demonstrating the superiority of their

specific morphology and cp-AMPA current on neuronal outputs.

These results are likely necessary to generate precise signals for

the temporal coding of information and control spike-timing-

dependent plasticity at glutamatergic synapses.
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Altered hemispheric asymmetry of 
attentional networks in patients 
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Background: Emerging evidence has been reported of attentional dysfunction 
in pituitary adenoma patients. However, the effect of pituitary adenomas on 
lateralized attention network efficiency remained to be clear. Thus, the present 
study aimed to investigate the impairment of lateralized attention networks in 
patients with pituitary adenoma.

Methods: Eighteen pituitary adenoma patients (PA group) and 20 healthy 
controls (HCs) were included in this study. Both behavioral results and event-
related potentials (ERPs) were acquired while subjects performed the Lateralized 
Attention Network Test (LANT).

Results: Behavioral performances indicated the PA group had a slower reaction 
time and a similar error rate relative to the HCs group. Meanwhile, significantly 
increased executive control network efficiency suggested the dysfunction of 
inhibition control in PA patients. Regarding ERP results, there were no group 
differences in the alerting and orienting networks. The target-related P3 was 
significantly reduced in the PA group, suggesting an impairment of executive 
control function and attentional resources allocation. Moreover, the mean 
amplitude of P3 was significantly lateralized to the right hemisphere, and 
interacted with the visual field, exhibiting that the right hemisphere dominated the 
bilateral visual field, whereas the left hemisphere dominated the left visual field. 
In the specific high-conflict condition, the pattern of hemispheric asymmetry in 
the PA group was altered due to a mixed effect resulting from the compensatory 
recruitment of attentional resources in the left central parietal area and the 
destructive effects of hyperprolactinemia.

Conclusion: These findings suggested that, in the lateralized condition, the 
decreased P3  in the right central parietal area and the diminished hemispheric 
asymmetry under high conflict load, may serve as the potential biomarkers of 
attentional dysfunction in patients with pituitary adenoma.

KEYWORDS

event-related potentials, lateralized attention network test, hemispheric asymmetry, 
alerting, orienting, executive control, pituitary adenoma
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1. Introduction

Pituitary adenoma (PA) is one of the common benign intracranial 
tumors of the central nervous system, accounting for almost 15% of all 
cases (Hauser et  al., 2019; Melmed, 2020). Emerging studies have 
established cognitive impairments in executive control, attention, and 
working memory both before and after surgery in patients with pituitary 
adenoma (Psaras et al., 2011; Butterbrod et al., 2019; Pertichetti et al., 
2020), but the underlying neurophysiological mechanisms remain 
unclear. The physical compression, treatment strategy, surgical approach, 
and especially abnormal hormone levels may be responsible for the 
impairment of cognitive function (Peace et al., 1997, 1998; de Oliveira 
et al., 2008; Tooze et al., 2009; Tooze and Sheehan, 2018). In Yao’s opinion 
(Yao et al., 2017), prolactinoma patients exhibited decreased gray matter 
volume (GMV) in the left hippocampus, left orbitofrontal cortex, right 
middle frontal cortex, and right inferior frontal cortex, providing 
seminal evidence for deficits in verbal memory and executive control in 
patients with prolactinoma. The dysfunction of attention and inhibition 
control has been extensively examined in patients with pituitary 
adenomas based on neuropsychological scales and behavioral outcomes 
(Müssig et al., 2011; Pertichetti et al., 2020). To our knowledge, however, 
there have been few studies investigating the lateralized attentional 
networks in PA patients systematically.

According to the classical attention network theory, proposed by 
Posner and colleagues (Posner and Petersen, 1990; Petersen and 
Posner, 2012; Posner et al., 2019), the attention network has been 
divided into alerting, orienting, and executive control networks: 
Alerting refers to the state of obtaining and maintaining vigilance to 
upcoming information. This network may be associated with the right 
hemisphere (RH), frontal, parietal, and thalamic regions, and 
influenced by the norepinephrinergic system. Orienting network is for 
selecting specific information from the environment by focusing on 
one modality or location. Orienting is related to the cholinergic 
system and is associated with the frontal eye field (FEF), intraparietal 
sulcus (IPS), and other areas. Executive control network plays a major 
role in monitoring and resolving task-related conflicts, including error 
decision-making, and planning. This network primarily involved the 
dorsal anterior cingulate cortex and the lateral prefrontal cortex and 
corresponded to the dopaminergic system.

Despite their bilateral distribution, studies have shown that 
attentional functions might be dominated in the right hemisphere, 
particularly in the right parietal area (Mesulam, 1999; Brooks et al., 
2014). Furthermore, for visuospatial attention, attending to one side 
of the visual stimuli typically corresponds to the activation of 
contralateral parietal areas. Based on the above findings and the ANT 
paradigm, Greene and colleagues proposed the LANT paradigm to 
assess the hemispheric asymmetry in each attention network as well 
as the attentional volume of each hemisphere (Greene et al., 2008). The 
LANT paradigm revealed the hemispheric lateralization of each 
attention network by rotating the original up and down target stimuli 
by 90° and presenting to the left and right visual fields (LVF, RVF). 
Previous studies of attentional networks indicated that multiple 
disorders, including mild traumatic brain injury (Chen et al., 2021) 
and attention deficit hyperactivity disorder (ADHD) (Adólfsdóttir 
et al., 2008; Lundervold et al., 2011), have the potential to impair 
attentional networks. Apart from a few studies related to stroke 
(Russell-Giller et al., 2021) and cerebral small vessel disease (Cao 
et  al., 2020), to the best of our knowledge, systematic and 

comprehensive investigations based on the theory of the lateralized 
attention network in patients with pituitary adenoma were limited.

Referring to the comparable Attention Network Test (ANT) 
studies (Fan et al., 2002, 2005; Neuhaus et al., 2010; Williams et al., 
2016), the cue-N1 component was associated with alerting and 
orienting networks. N1 was defined as an early visual attention 
component that appeared 150–250 ms after the cue stimulus and was 
distributed in the parietal and occipital regions. N1 was considered an 
early visual processing of stimulus properties, and the amplitude 
increased when the visual stimulus appeared in the attended spatial 
location. Furthermore, N1 also reflected the facilitation of early 
preattentive processing (Kaufman et al., 2016). Target-P3 components 
were associated with the executive control network and typically 
appeared around 250-500 ms after target presentation. P3 originated 
in the anterior cingulate gyrus and was located in the central parietal 
region, which mirrored the response inhibition process and attentional 
resource allocation (Polich, 2004, 2007).

In summary, in the present study, the LANT paradigm and ERPs 
were combined to investigate the hemispheric lateralization of 
attention networks in patients with pituitary adenoma. 
We hypothesized that (1) PA patients have significantly decreased 
behavioral and ERP results in attention networks; (2) Attention 
networks might be exhibited hemispheric asymmetry in two groups; 
(3) The pattern of hemispheric asymmetry in PA patients might 
be different from that in HCs; and (4) The serum prolactin (PRL) level 
may impair attention networks in patients with pituitary adenoma.

2. Materials and methods

2.1. Participants

Twenty patients with pituitary adenoma and 25 healthy adults 
matched for gender, age, and education were recruited from the General 
Hospital of Central Theater Command. Inclusion criteria for the PA 
group were: (1) Age: 16–55 years old; (2) Right-handedness; (3) 
Education: more than 6 years; (4) Tumor size: less than 30 mm; (5) 
Vision: normal or corrected visual acuity and visual field (VF); and (6) 
Pathological diagnosed with pituitary adenoma. Exclusion criteria for 
the PA group were: (1) Recurrent pituitary adenoma or pituitary 
apoplexy and (2) Had taken dopaminergic inhibitors such as 
bromocriptine or radiation therapy such as gamma knife before surgery. 
Common exclusion criteria for both groups were as follows: (1) Had 
taken neurological and psychotropic drugs such as dipipanone; (2) 
History of drug or alcohol abuse in the past 3 months before surgery; (5) 
Female subjects who were menstruating. Informed consent was obtained 
from all subjects, and the study was approved by the ethics committee of 
the General Hospital of Central Theater Command ([2018] 003–1).

2.2. Procedure and stimulus

The revised lateralized attention network test which was originally 
designed by Green et al. was conducted to measure the efficiency of 
attention networks within each hemisphere. Each trial, as shown in 
Figure 1, was first presented with a 400-1,600 ms random fixation on 
a white background and was followed by a 100 ms cue stimulus 
presented randomly. A cue-to-target interval of 400 ms was then 
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presented to avoid the overlap between two adjacent ERP components. 
The target was presented up to 1700 ms until the subject made a 
response. A blank screen with fixation was presented at the end of the 
trial. Each trial lasted for 4,000 ms, and the subject was instructed to 
respond to the target as quickly as possible. The cue stimuli comprised 
five conditions: No cue, Central cue, Double cue, and Left and Right 
spatial cue. All spatial cues used in this study were validated, i.e., the 
target always appeared in the cued visual field. Each target stimulus 
was composed of a matrix of five arrows, the arrow array was displayed 
at 1.62° to the left or right of fixation, as well as 1.72° of each vertical 
side. The central arrow was flanked by arrows in the same direction as 
the target (Congruent condition), or in the opposite direction from 
the target (Incongruent). In comparison to the congruent conditions, 
the incongruent target induced stronger conflict interference, which, 
in turn, required more attentional resources. There was one practice 
block and four experimental blocks, with a 2 min break between each 
section. The experimental block consisted of 32 conditions: 4 warning 
cues (No cue, Central cue, Double cue, Spatial cue) × 2 target locations 
(Left or Right) × 2 flanker types (Congruent, Incongruent) × 2 target 
directions (Up or Down). The presentation was randomly selected, 
and each block contained 3 circles, for a total of 32 × 3 = 96 trials. 
Briefly, the whole experiment contained 4 × 96 = 384 valid recorded 
trials, which were divided into 16 condition combinations (4 cue × 2 
flanker × 2 visual field), each combination consisted of 24 trials for the 
averaging of EEG epochs. Twenty-four trials covering each condition 
were randomly presented for practice until the accuracy reached over 
90. The whole experiment took approximately 35 min in total.

The cue and target stimuli were presented using E-prime 2.0 
software (Psychology Software Tools, Inc., Sharpsburg, PA, 
United States) on a 17-inch Dell monitor which was placed 60 cm 
away from the eyes. In a semi-dark, quiet room, all participants were 
instructed to quickly respond using the same hand’s middle or index 

finger. The mouse was rotated 90° and the target direction 
corresponded to the upward and downward buttons. Response hand 
was counterbalanced with a fixed order of “right–left–right–left” 
across four experimental blocks, which minimized the impact of 
motor reaction on the hemispheric attentional functions.

2.3. Behavioral measures

Efficiencies of hemispheric attention networks were measured by 
comparing reaction time (RT) and error rate (ER) across conditions. 
Noted that responses longer than 1700 ms or shorter than 200 ms were 
considered delayed responses or expectancy effects and should 
be excluded. Therefore, lateralized network effects were calculated 
using the following equations, and the error rates were calculated by 
the same RT formula.

(1) Right alerting effect = RTno cue – RTdouble cue (right target)
(2) Left alerting effect = RTno cue – RTdouble cue (left target)
(3) Right orienting effect = RTcentral cue – RTright spatial cue (right target)
(4) Left orienting effect = RTcentral cue – RTleft spatial cue (left target)
(5) Right executive control effect = RTincongruent flanker – RTcongruent flanker 

(right target)
(6) Left executive control effect = RTincongruent flanker – RTcongruent flanker 

(left target)

2.4. EEG recording and analysis

A 64-channel EEG data was recorded by ANT Neuro’s eegoTM 
mylab EEG system and the electrode distribution was matched to the 
international 10–20 system. Online EEG acquisition was performed 
with eegoTM acquisition software, with a sampling rate of 1,000 Hz 
and an online bandpass of 0.3–100 Hz. The impedance was reduced 
below 10 KΩ, and all electrodes were referenced to the CPz electrode. 
Offline EEG data was analyzed with MATLAB 2020b platform and 
was performed with a bandpass of 1–40 Hz, as well as a notch filter at 
50 Hz to remove alternative interferences. All EEG data were 
segmented from 200 ms pre-stimulus to 1,000 ms post-stimulus, and 
the baseline was corrected by the mean amplitude of the 200 ms 
pre-stimulus. Artifacts were removed by independent component 
analysis (Chaumon et  al., 2015). EEG data were re-referenced to 
average reference, and EEG epochs were then separately extracted and 
averaged across conditions for each subject. Finally, the mean 
amplitude of ERP component was extracted for visualization of the 
topographic map and further statistical analysis.

2.5. Serum hormone levels assessment

In patients with pituitary adenoma, rapid peripheral venous blood 
samples were taken at 8:00–9:30 am to minimize the effect of hormonal 
circadian rhythms. Chemiluminescent immunoassays (Roche, Cobas 
8,000, Switzerland) were used to determine the serum prolactin level 
(ng/ml). Serum was also diluted 1:100 if necessary to rule out 
hook effects.

FIGURE 1

The schematic of the Lateralized Attention Network Test (LANT). 
(A) Four cue conditions: No cue, Double cue, Central cue, and 
Spatial cue. (B) Two target conditions: Congruent and Incongruent 
targets. (C) The procedure of a single trial.

54

https://doi.org/10.3389/fnins.2023.1198409
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1198409

Frontiers in Neuroscience 04 frontiersin.org

2.6. Statistical analysis

Behavioral and EEG data were analyzed using the statistical 
software SPSS 27.0. The demographic characteristics of the two groups 
were compared by independent samples t-test (e.g., age, education) 
and Chi-square test (gender). Behavioral data were extracted and 
summarized for each condition, and the mean reaction time and the 
mean error rate of the subjects were computed. Condition-level 
analysis: All data were included in a 4-way repeated-measures 
ANOVA for further analysis. 4 Cue (No cue, Central cue, Double cue, 
Spatial cue) × 2 Target (Congruent, Incongruent) × 2 Visual field (Left 
and Right) × 2 Group (PA and HCs). Network-level analysis: A 2-way 
repeated-measures ANOVA (2 Visual field × 2 Group) was conducted 
for each network based on the network effect results.

The EEG segments were averaged separately for 4 cues and 2 
target stimuli. Alerting network: The mean amplitude of N1 in the 
averaged left (P7) and right (P8) parietal regions was extracted and 
included in a 2-way repeated-measures ANOVA (2 Cue type × 2 
Group). Orienting network: The same N1 component was used to 
measure the orienting effect. Given the cue stimuli were presented in 
both visual fields, the factors of visual field (LVF, RVF) and hemisphere 
(Left hemisphere (LH), Right hemisphere (RH)) were included in a 
3-way repeated-measures ANOVA (3 Cue type × 2 hemisphere × 2 
group). Executive control network: Resembling the orienting network, 
the visual field, and the hemisphere factors were added in a 4-way 
repeated-measures ANOVA (2 Target type × 2 visual field × 2 
hemisphere × 2 group). Multivariate test results were examined if 
violations of sphericity. Post-hoc simple effect results were corrected 
by the Bonferroni approach. At the same time, a Spearman correlation 
analysis was performed to investigate the relationship between serum 
PRL levels and attentional function. α = 0.05.

3. Results

3.1. Demographic characteristics

Twenty patients with pituitary adenomas were recruited in this 
study, and 2 were excluded because of excessive artifacts in the EEG 
data. Twenty-five healthy controls were recruited, 1 was excluded due 
to high error rates, and 4 were excluded due to poor data quality. 
Ultimately, 18 patients and 20 healthy controls matched for age, sex, 
and education were included in this study. Detailed characteristics are 
shown in Table 1.

3.2. Behavioral results

3.2.1. Condition-level analysis
RT: A 2 group × 4 cue × 2 flanker ×2 visual field 4-way repeated-

measures ANOVA was conducted to investigate the group differences 
across conditions. A main group effect was found [F (1,36) = 13.815, 
p = 0.001], Post-hoc analysis revealed that the reaction time in the PA 
group was longer than HCs. [PA: (713.840 ± 21.851) ms; HCs: 
(601.888 ± 20.730) ms]. Meanwhile, there was a significant main effect 
of cue and flanker condition [Cue: F (3,34) = 247.788, p < 0.001; 
Flanker: F (1,36) = 299.561, p < 0.001]. Further analysis indicated a 
significant group interaction effect with cue and flanker. [Cue*Group: 

F (3,34) = 2.966, p = 0.046; Flanker*Group: F (1,36) = 18.533, 
p < 0.001]. Simple analysis suggested that RTs were significantly longer 
in the PA group for all types of cues and flankers (p < 0.01).

ER: Resembling ANOVA was conducted, and the results revealed 
a significant main cue effect [F (3,108) = 6.264, p < 0.001] and main 
flanker effect [F (1,36) = 12.615, p = 0.001]. For both groups, the 
ANOVAs revealed a flanker × cue interaction effect. [F (3,108) = 2.736, 
p = 0.047]. In contrast, there was no significant difference between two 
groups [F (1,36) = 0.625, p = 0.434].

3.2.2. Network-level analysis
RT: The ANOVA of alerting network exhibited a significant main 

group effect. [F (1,36) = 8.460, p = 0.006], with the HCs group showing 
greater network efficiency than the PA group [PA: (33.041 ± 4.884) ms; 
HCs: (52.624 ± 4.634) ms]. The main visual field effect was significant 
[F (1,36) = 7.003, p = 0.012], showing a left visual field bias in alerting 
network efficiency [R: (35.157 ± 4.528) ms; L: (50.507 ± 4.357) ms]. For 
the orienting network, both main group effect and group interaction 
effects were not reached significant differences. [F (1,36) = 0.434, 
p = 0.514]. Concerning the executive control network, a significant 
difference was found between the two groups [F (1,36) = 17.251, 
p < 0.001], with the PA group having a significantly greater efficiency. 
[PA: (104.924 ± 7.872) ms; HCs: (59.858 ± 7.468) ms].

ER: For each attentional subnetwork, no significant main effects 
or interaction effects were found in the ER analysis. [Alert: F 
(1,36) = 0.045, p = 0.832; Orient: F (1,36) = 0.037, p = 0.849; Executive: 
F (1,36) = 0.339, p = 0.564].

3.3. Electrophysiological results

3.3.1. Alerting (no cue vs. double cue)
The waveforms of ERPs evoked by no cue and double cue are 

depicted in Figure 2. The mean amplitudes of cue-locked N1 in the 
time window of 180–230 ms were averaged and extracted for both 
temporoparietal regions (P7, P8). Data were calculated for a 2 group 
(PA vs. HCs) × 2 cue (No cue vs. Double cue) repeated-measures 
ANOVA. Although the results indicated that both groups showed the 
main cue effect [F (1,36) = 85.585, p < 0.001], no group differences 
were found in the alerting network [F (1,36) = 0.115, p = 0.736].

3.3.2. Orienting (central cue vs. spatial cue)
Figure 3 shows ERPs evoked by central and spatial cues in two 

groups. Given the lateralization of the orienting network, bilateral 
temporoparietal regions (Left-P7, Right-P8) were considered for 
extracting the mean amplitude of N1 within the defined time window 
of 180–230 ms. The ANOVA results showed a significant cue effect 

TABLE 1 Comparison of the demographic characteristics in both groups.

HCs Patients p

N 20 18 /

Females/Males 8/12 12/6 0.100

Age (years) 

(M ± SD)

34.55 ± 11.048 38.78 ± 10.619 0.238

Education 

(years) (M ± SD)

14.45 ± 3.332 12.67 ± 3.531 0.118
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and a Cue×Hemisphere interaction [Cue: F (2,35) = 13.493, p < 0.001; 
Cue*Hemisphere: F (2,35) = 70.476, p < 0.001]. Post-hoc simple effect 
analysis revealed a larger N1 amplitude in the central cue compared 
to the two spatial cues [Central cue: (−2.122 ± 0.311) μV; Right cue: 
(−1.643 ± 0.243) μV; Left cue: (−1.442 ± 0.245) μV]. Regarding the 
interaction effects, in the central cue condition, a similar distribution 
of N1 was found in both left and right hemispheres [F (1,36) = 0.693, 
p = 0.411], whereas the unilateral visual field orienting response 
(spatial cue) elicited contralateral parietal activation [Right cue: F 
(1,36) = 42.566, p < 0.001; Left cue: F (1,36) = 42.565, p < 0.001]. In 
contrast, no group effect was found in the orienting network [F 
(1,36) = 0.017, p = 0.898], suggesting that comparable orienting 
functions were elicited in both groups.

3.3.3. Executive control (incongruent vs. 
congruent)

The incongruent and congruent conditions are shown in 
Figure 4. We defined the time window of P3 as 290–400 ms based 
on the peak latency. To further examine the distribution of P3 in 
both hemispheres, P1 and P3 were categorized as the left central 
parietal area (LCP), and P2 and P4 were categorized as the right 
central parietal area (RCP). The ANOVA results indicated that there 
was a significant main group effect and a flanker×group interaction 
[Group: F (1,36) = 6.854, p = 0.013; Flanker*Group: F (1,36) = 5.283, 
p = 0.027]. Post-hoc analysis revealed that the P3 amplitude of the 

HCs was larger than that of the PA [HCs: (1.179 ± 0.284) μV; PA: 
(0.098 ± 0.300) μV], and both flanker conditions exhibited an 
increase in the amplitude of P3 in the HCs compared to the PA 
group [Incon: F (1,36) = 4.796, p = 0.035; Con: F (1,36) = 9.065, 
p = 0.005]. Notably, a significant main effect of the hemisphere has 
been observed in the ANOVA results and interacted with the visual 
field [Hemisphere: F (1,36) = 7.162, p = 0.011; VF*Hemisphere: F 
(1,36) = 11.254, p = 0.002]. Simple effect analysis showed significant 
lateralization of the right hemispheric which indicated a larger P3 
amplitude in the RCP compared with the LCP [LH: (0.426 ± 0.229) 
μV; RH: (0.851 ± 0.213) μV]. Moreover, no difference in P3 
distribution was observed when the target presented in the LVF [F 
(1,36) = 0.091, p = 0.764], while significant RCP-biased P3 
distribution was observed when the target presented in the RVF [F 
(1,36) = 18.479, p < 0.001], showing an asymmetric 
distribution of P3.

Furthermore, a significant main group effect was found in the 
flanker×VF × hemisphere interaction [F (1,36) = 7.544, p = 0.009], and 
a further simple effect analysis indicated that regardless of the flanker 
conditions and the different visual fields, HCs elicited a larger mean 
P3 amplitude in the RCP compared to the PA group (p < 0.05). 
Considering the incongruent right visual field, a consistent RCP 
dominance of the P3 was found in the HCs [F (1,36) = 16.431, 
p < 0.001], whereas a uniform distribution of P3 was found in the PA 
group [F (1,36) = 3.669, p = 0.063].

FIGURE 2

Alerting-related N1 components as measured at averaged P7 and P8 electrodes and topographic voltage maps for two groups. (A) Grand-averaged N1 
components at averaged P7 and P8 electrodes. PA group: red lines; HCs group: blue lines; No cue condition: solid lines; Double cue condition: dashed 
lines. (B) Topographic voltage maps in the no cue condition for both groups. (C) Topographic voltage maps in the double cue condition for both 
groups.
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3.4. Correlation analysis results

In the PA group, a bivariate Spearman correlation analysis was 
performed between the serum PRL level and mean amplitude of P3 
across conditions. The results revealed that a positive correlation was 
observed between the serum PRL level and the P3 amplitude of the 
LCP in the incongruent RVF conditions (r = 0.498, p = 0.035; Figure 5).

3.5. Exploration results

Behavioral findings depicted increased efficiency of the 
executive control network in the PA group. Reversed P3 results were 
demonstrated, suggesting executive dysfunction in the PA group. 
Thus, to resolve the conflict results, we conducted another 2 visual 
field × 2 flanker × 2 group, 3-way repeated-measures ANOVA. The 
results revealed a main group effect and a significant flanker×group 
interaction [Group: F (1,36) = 14.671, p < 0.001; Flanker*Group: F 
(1,36) = 17.251, p < 0.001]. Simple effect analysis results exhibited a 
prolonged RT in the PA group [PA: (716.488 ± 21.729) ms; HCs: 
(601.762 ± 20.614) ms]. Furthermore, PA patients responded more 
slowly than HCs in both flanker conditions [Incon: F (1,36) = 18.902, 
p < 0.001; Con: F (1,36) = 9.925, p = 0.003]. In contrast, the target 

effect size (RTincon - RTcon) was significantly larger in the PA group 
relative to the HCs group [PA: (104.924 ± 7.872) ms; HCs: 
(59.858 ± 7.468) ms].

4. Discussion

We combined a lateralized attention network paradigm with 
event-related potential techniques to examine the impairment and 
lateralization of each attention subnetwork in pituitary adenoma 
patients. In terms of behavioral performance, the temporal and spatial 
cue effects, as well as the flanker effect, could be evoked significantly 
by the LANT task. In line with previous findings based on ANT and 
LANT paradigms (Greene et al., 2008; Neuhaus et al., 2010; Thiebaut 
de Schotten et al., 2011), the decreased reaction time reflected the 
facilitatory effect of temporal and spatial cues on target responses. 
Both groups exhibited similar error rates in each subnetwork, but the 
PA group showed prolonged RTs in all conditions relative to HCs. To 
maintain relatively high accuracy for the same cue and target stimuli, 
excessed attentional resources have to pay for conflict resolution. 
Thus, we  believed that the pituitary adenoma was more likely to 
impair global attentional processing, which has been demonstrated in 
previous studies (Chen et al., 2022).

FIGURE 3

Orienting-related N1 components as measured at averaged P7 and P8 electrodes and topographic voltage maps for two groups. (A) Grand-averaged 
N1 components and topographic voltage maps in the central, right, and left spatial cue conditions for the PA group. Central cue: red line; Right spatial 
cue: blue line; Left spatial cue: green line. (B) Grand-averaged N1 components and topographic voltage maps in the central, right, and left spatial cue 
conditions for the HCs group. Central cue: red line; Right spatial cue: blue line; Left spatial cue: green line.
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Network efficiency results revealed that the PA group had lower 
alerting network efficiency but higher executive control network 
efficiency relative to the HCs. Given the differences in the visual field, 
a significant LVF alerting effect was found in the PA group. Although 
some studies have shown a significant LVF-RH dominance for alerting 
(Heilman and Van Den Abell, 1979; Funnell et  al., 2003), these 

warning cues were only presented on the unilateral visual field instead 
of bilateral visual fields. In line with the present study, the results of 
Asanowicz (Asanowicz et al., 2012) indicated no visual field differences 
in the alerting network efficiency, which was induced by a revised 
LANT paradigm. Therefore, the visual field differences in alerting 
network in the PA group could be explained by the small sample size 
and the heterogeneity of tumor types. Regarding the inconsistent 
alerting network results in the N1, we hypothesized that RT was an 
indicator that measured alerting indirectly, Because RT reflected the 
full stages of cognition from receiving warning signals, arousing the 
alerting state to making a response ultimately. ERPs, on the other 
hand, can capture and quantify the alerting state specifically, and may 
not be predicted accurately by the behavioral results.

Although greater executive control efficiency was found in the PA 
group compared to HCs, further results from the ANOVA revealed 
that the PA group had prolonged RTs in both flanker conditions, and 
the difference was still greater than the HCs. Whereas the PA group 
responded slower in both target conditions, and significantly longer 
RTs were observed in the PA group when an incongruent condition 
was presented. Thus, we believed that the smaller efficiency of the 
executive control network indicated greater executive functions, 
which was consistent with previous evidence explained by the right 
hemisphere specialization in executive functions (Milham et al., 2001; 
Asanowicz et  al., 2012). Overall, we  hypothesized that greater 

FIGURE 4

Executive-related P3 components as measured at the Pz electrode, and lateralized topographic voltage maps between groups and conditions. 
(A) Grand averaged P3 components from the Pz electrode in both flanker conditions. PA group: red lines; HCs group: blue lines; Incongruent 
condition: solid lines; Congruent condition: dashed lines. (B) Lateralized topographic voltage maps between two groups in (1) Incongruent left spatial 
condition, (2) Incongruent right spatial condition, (3) Congruent left spatial condition, and (4) Congruent right spatial condition.

FIGURE 5

The correlation between serum PRL level and mean amplitudes of 
the left central parietal P3 in the incongruent right spatial condition 
for the PA group.
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efficiency of the executive control network corresponded to worse 
executive functions, indicating dysfunction of inhibition control in the 
PA group.

P3 modulated the inhibition control processes to the target 
stimuli, as well as the allocation of attentional resources (Polich, 
2007; Kratz et al., 2011). In the HCs, the direction of P3 evoked by 
the target was opposite to RT, with larger P3 amplitudes 
corresponding to shorter RTs, which may be  interpreted as task 
difficulty (Polich, 1987). More difficult tasks required greater 
attentional demands and evoked smaller P3 components, in other 
words, decreased P3 components mirrored the limitation of 
attentional capacity. Therefore, reduced P3 amplitudes across 
conditions in the PA group were indicative of executive control 
dysfunction and decreased attention allocation, which was 
supported by previous findings in PA patients (Tooze et al., 2009). 
The LANT task provided a notable advantage for investigating the 
lateralization of attention networks. The stimuli in the ANT task 
were presented on the midline, thus no visual field differences were 
induced, whereas the stimuli in the LANT task were presented in 
both visual fields and might be  induced by the hemispheric 
differences in the P3 component. Studies have found a right 
hemisphere dominance in executive functions, whereas the left 
hemisphere has been shown to play an important role in semantic 
information processing (MacLeod, 1991; Russell-Giller et al., 2021). 
Therefore, the RCP distribution of the P3 component in the present 
study supported the RH dominance theory of executive function. 
Furthermore, the ANOVA results also exhibited a significant 
VF × hemisphere interaction, which indicated that the RH 
dominated the bilateral visual field information, while the LH only 
predominantly processed the left visual field information. The 
interaction results partially supported the theory of hemispheric 
lateralization (Nobre et al., 1997). Indeed, studies with a rapid serial 
visual presentation (RSVP) task have demonstrated that larger RH 
P3 was evoked in the RVF, whereas the LVF predominantly evoked 
the P3  in the LH, indicating a significant ipsilateral activation 
(Zhang et al., 2022). Further efforts at lateralization were needed to 
interpret the potential VF asymmetry of the executive 
control network.

Surprisingly, the 4-way (Flanker×VF × Hemisphere×Group) 
ANOVA ERPs results showed a main group effect in the pattern of 
hemispheric asymmetry when the flanker factor was included. Unlike 
the HCs group with a right hemispheric dominance when an 
incongruent target presented on the RVF, the PA group manifested a 
bilateral distribution of the P3. One reasonable interpretation was that 
reduced RCP capacity to RVF stimuli led to a compensatory activation 
in the LCP, highlighting the recruitment of resources from the 
non-task-dominant hemisphere. This view was consistent with Paitel’s 
findings for age-related alteration in inhibitory control, whereas 
compensatory recruitment occurred at low-moderate task demands, 
which was indicative of depleted neural reserves (Paitel and Nielson, 
2021). However, different from the stop-signal task (SST), the P3 
component evoked by LANT was correlated with the allocation of 
attentional resources and conflict resolution. Therefore, under high 
attentional demand, additional contralateral hemispheric resources of 
attention were recruited for task response, leading to enhanced 
activation in the LCP and the absence of RH dominance. In Weissman 
and Welcome’s view (Weissman and Banich, 2000; Welcome and 
Chiarello, 2008), increasing task difficulty required the recruitment of 

both hemispheres, resulting in an attenuated hemispheric asymmetry. 
Overall, to overcome the decreased attentional function in the RCP 
under high conflict conditions, attentional resources in the LCP were 
required in patients with pituitary adenomas, which led to the 
elimination of the RH-dominated pattern.

This pattern of contralateral activation in the orienting network 
was consistent with previous evidence (Hill-Jarrett et  al., 2015). 
Unfortunately, however, the pattern of N1 activation was similar in 
both groups, suggesting that PA patients may preserve adequate 
orienting function. Retinal eccentricity modulated attentional 
demands (Beaton and Blakemore, 1981; Asanowicz et al., 2012), and 
larger eccentricities may make targets difficult to discriminate and 
require additional attentional resources. Therefore, in the present 
study, cues and target stimuli may not be presented peripherally 
enough for allocating resources in orienting. The greater horizontal 
distance of stimuli presentation and increased differentiation of 
orienting networks between groups may be beneficial for the further 
investigation in functional status of orienting networks in 
PA patients.

Lastly, a significant negative correlation between serum PRL levels 
and executive functions was found in prolactinoma patients, 
suggesting the toxic effect of hyperprolactinemia on cognitive 
functions (Yao et al., 2017; Chen et al., 2022). Meanwhile, the absence 
of lateralization in the PA group may result from compound factors 
that mainly contained the compensatory effect of LH and the 
destructive effect of hyperprolactinemia. The former enhanced the 
recruitment of attentional resources, and the latter may attenuate the 
standard lateralized activation pattern and reduce the efficiency of the 
executive control network.

5. Conclusion

The present study provided behavioral and electrophysiological 
evidence of alteration in lateralized attention networks evoked by the 
LANT paradigm in patients with pituitary adenoma. No ERP 
differences were found in alerting and orienting network, except for a 
specialized pattern of contralateral activation in orienting N1 
component. More importantly, the executive network P3 exhibited 
lateralization to RH, and decreased P3 amplitude in the PA group 
revealed impairment of inhibition control and reduced attentional 
resource allocation. Moreover, attenuated hemispheric asymmetry of 
P3 was observed in PA patients, which may be attributed to the mixed 
effect including the compensatory recruitment of attentional resources 
in LCP and the destructive effects of hyperprolactinemia. These 
findings suggested that, in the lateralized condition, the decreased 
P3 in the RCP and the diminished hemispheric asymmetry under 
high conflict load, may serve as the potential biomarkers of attentional 
dysfunction in patients with pituitary adenoma. In addition, the 
findings above provide further evidence for functional recovery in 
post-surgery pituitary adenoma patients.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding authors.

59

https://doi.org/10.3389/fnins.2023.1198409
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1198409

Frontiers in Neuroscience 09 frontiersin.org

Ethics statement

The studies involving human participants were reviewed and 
approved by the Ethics Committee of the General Hospital of 
Central Theater Command. Written informed consent to participate 
in this study was provided by the participants’ legal guardian/
next of kin.

Author contributions

SW proposed and performed the present study, and 
contributed to collecting and analyzing the experimental data, as 
well as writing the manuscript. ZF reviewed the manuscript and 
suggested article revisions. YS contributed to collecting data and 
writing code. MZ provided clinical guidance. AC and CC 
contributed to designing the experiment. JS supervised and 
funded the present study. All authors contributed to the article 
and approved the submitted version.

Funding

The funding of the present study was provided by the National 
Natural Science Foundation of China (81870863).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Adólfsdóttir, S., Sørensen, L., and Lundervold, A. J. (2008). The attention network test: 

a characteristic pattern of deficits in children with ADHD. Behav. Brain Funct. 4:9. doi: 
10.1186/1744-9081-4-9

Asanowicz, D., Marzecová, A., Jaśkowski, P., and Wolski, P. (2012). Hemispheric 
asymmetry in the efficiency of attentional networks. Brain Cogn. 79, 117–128. doi: 
10.1016/j.bandc.2012.02.014

Beaton, A., and Blakemore, C. (1981). Orientation selectivity of the human visual 
system as a function of retinal eccentricity and visual hemifield. Perception 10, 273–282. 
doi: 10.1068/p100273

Brooks, J. L., Della Sala, S., and Darling, S. (2014). Representational pseudoneglect: a 
review. Neuropsychol. Rev. 24, 148–165. doi: 10.1007/s11065-013-9245-2

Butterbrod, E., Gehring, K., Voormolen, E. H., Depauw, P., Nieuwlaat, W. A., 
Rutten, G. M., et al. (2019). Cognitive functioning in patients with nonfunctioning 
pituitary adenoma before and after endoscopic endonasal transsphenoidal surgery. J. 
Neurosurg. 133, 709–716. doi: 10.3171/2019.5.Jns19595

Cao, S., Zhang, J., Wang, Z., Pan, W., Tian, Y., Hu, P., et al. (2020). Laterality of 
Attentional networks in patients with cerebral small vessel disease. Front. Aging Neurosci. 
12:21. doi: 10.3389/fnagi.2020.00021

Chaumon, M., Bishop, D. V., and Busch, N. A. (2015). A practical guide to the 
selection of independent components of the electroencephalogram for artifact 
correction. J. Neurosci. Methods 250, 47–63. doi: 10.1016/j.jneumeth.2015.02.025

Chen, A., Cao, C., Liu, B., Wang, S., Wu, S., Xu, G., et al. (2022). Hyperprolactinemia 
associated with Attentional processing and interference control impairments in patients 
with Prolactinomas. Brain Sci. 12:1091. doi: 10.3390/brainsci12081091

Chen, A., Zhang, Z., Cao, C., Lu, J., Wu, S., Ma, S., et al. (2021). Altered attention 
network in paratroopers exposed to repetitive subconcussion: evidence based on 
behavioral and event-related potential results. J. Neurotrauma 38, 3306–3314. doi: 
10.1089/neu.2021.0253

de Oliveira, C., Naliato, E., Dutra Violante, A. H., Caldas, D., Lamounier Filho, A., 
Rezende Loureiro, C., et al. (2008). Quality of life in women with microprolactinoma 
treated with dopamine agonists. Pituitary 11, 247–254. doi: 10.1007/s11102-008-0091-9

Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., and Posner, M. I. (2005). The 
activation of attentional networks. NeuroImage 26, 471–479. doi: 10.1016/j.
neuroimage.2005.02.004

Fan, J., McCandliss, B. D., Sommer, T., Raz, A., and Posner, M. I. (2002). Testing the 
efficiency and independence of attentional networks. J. Cogn. Neurosci. 14, 340–347. doi: 
10.1162/089892902317361886

Funnell, M. G., Corballis, P. M., and Gazzaniga, M. S. (2003). Temporal discrimination 
in the split brain. Brain Cogn. 53, 218–222. doi: 10.1016/s0278-2626(03)00113-1

Greene, D. J., Barnea, A., Herzberg, K., Rassis, A., Neta, M., Raz, A., et al. (2008). 
Measuring attention in the hemispheres: the lateralized attention network test (LANT). 
Brain Cogn. 66, 21–31. doi: 10.1016/j.bandc.2007.05.003

Hauser, B. M., Lau, A., Gupta, S., Bi, W. L., and Dunn, I. F. (2019). The Epigenomics 
of pituitary adenoma. Front Endocrinol (Lausanne) 10:290. doi: 10.3389/
fendo.2019.00290

Heilman, K. M., and Van Den Abell, T. (1979). Right hemispheric dominance for 
mediating cerebral activation. Neuropsychologia 17, 315–321. doi: 
10.1016/0028-3932(79)90077-0

Hill-Jarrett, T. G., Gravano, J. T., Sozda, C. N., and Perlstein, W. M. (2015). Visuospatial 
attention after traumatic brain injury: the role of hemispheric specialization. Brain Inj. 
29, 1617–1629. doi: 10.3109/02699052.2015.1075155

Kaufman, D. A., Sozda, C. N., Dotson, V. M., and Perlstein, W. M. (2016). An event-
related potential investigation of the effects of age on alerting, orienting, and executive 
function. Front. Aging Neurosci. 8:99. doi: 10.3389/fnagi.2016.00099

Kratz, O., Studer, P., Malcherek, S., Erbe, K., Moll, G. H., and Heinrich, H. (2011). 
Attentional processes in children with ADHD: an event-related potential study using 
the attention network test. Int. J. Psychophysiol. 81, 82–90. doi: 10.1016/j.
ijpsycho.2011.05.008

Lundervold, A. J., Adolfsdottir, S., Halleland, H., Halmøy, A., Plessen, K., and 
Haavik, J. (2011). Attention network test in adults with ADHD--the impact of affective 
fluctuations. Behav. Brain Funct. 7:27. doi: 10.1186/1744-9081-7-27

MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative 
review. Psychol. Bull. 109, 163–203. doi: 10.1037/0033-2909.109.2.163

Melmed, S. (2020). Pituitary-tumor Endocrinopathies. N. Engl. J. Med. 382, 937–950. 
doi: 10.1056/NEJMra1810772

Mesulam, M. M. (1999). Spatial attention and neglect: parietal, frontal and cingulate 
contributions to the mental representation and attentional targeting of salient 
extrapersonal events. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 354, 1325–1346. doi: 
10.1098/rstb.1999.0482

Milham, M. P., Banich, M. T., Webb, A., Barad, V., Cohen, N. J., Wszalek, T., et al. 
(2001). The relative involvement of anterior cingulate and prefrontal cortex in attentional 
control depends on nature of conflict. Brain Res. Cogn. Brain Res. 12, 467–473. doi: 
10.1016/s0926-6410(01)00076-3

Müssig, K., Besemer, B., Saur, R., Klingberg, S., Häring, H. U., Gallwitz, B., et al. 
(2011). Deteriorated executive functions in patients with successful surgery for pituitary 
adenomas compared with other chronically ill patients. J. Int. Neuropsychol. Soc. 17, 
369–375. doi: 10.1017/s1355617710001645

Neuhaus, A. H., Urbanek, C., Opgen-Rhein, C., Hahn, E., Ta, T. M., Koehler, S., et al. 
(2010). Event-related potentials associated with attention network test. Int. J. 
Psychophysiol. 76, 72–79. doi: 10.1016/j.ijpsycho.2010.02.005

Nobre, A. C., Sebestyen, G. N., Gitelman, D. R., Mesulam, M. M., Frackowiak, R. S., 
and Frith, C. D. (1997). Functional localization of the system for visuospatial attention 
using positron emission tomography. Brain 120, 515–533. doi: 10.1093/brain/120.3.515

Paitel, E. R., and Nielson, K. A. (2021). Temporal dynamics of event-related potentials 
during inhibitory control characterize age-related neural compensation. Symmetry 
(Basel) 13:2323. doi: 10.3390/sym13122323

Peace, K. A., Orme, S. M., Padayatty, S. J., Godfrey, H. P., and Belchetz, P. E. (1998). 
Cognitive dysfunction in patients with pituitary tumour who have been treated with 
transfrontal or transsphenoidal surgery or medication. Clin. Endocrinol. 49, 391–396. 
doi: 10.1046/j.1365-2265.1998.00543.x

60

https://doi.org/10.3389/fnins.2023.1198409
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1186/1744-9081-4-9
https://doi.org/10.1016/j.bandc.2012.02.014
https://doi.org/10.1068/p100273
https://doi.org/10.1007/s11065-013-9245-2
https://doi.org/10.3171/2019.5.Jns19595
https://doi.org/10.3389/fnagi.2020.00021
https://doi.org/10.1016/j.jneumeth.2015.02.025
https://doi.org/10.3390/brainsci12081091
https://doi.org/10.1089/neu.2021.0253
https://doi.org/10.1007/s11102-008-0091-9
https://doi.org/10.1016/j.neuroimage.2005.02.004
https://doi.org/10.1016/j.neuroimage.2005.02.004
https://doi.org/10.1162/089892902317361886
https://doi.org/10.1016/s0278-2626(03)00113-1
https://doi.org/10.1016/j.bandc.2007.05.003
https://doi.org/10.3389/fendo.2019.00290
https://doi.org/10.3389/fendo.2019.00290
https://doi.org/10.1016/0028-3932(79)90077-0
https://doi.org/10.3109/02699052.2015.1075155
https://doi.org/10.3389/fnagi.2016.00099
https://doi.org/10.1016/j.ijpsycho.2011.05.008
https://doi.org/10.1016/j.ijpsycho.2011.05.008
https://doi.org/10.1186/1744-9081-7-27
https://doi.org/10.1037/0033-2909.109.2.163
https://doi.org/10.1056/NEJMra1810772
https://doi.org/10.1098/rstb.1999.0482
https://doi.org/10.1016/s0926-6410(01)00076-3
https://doi.org/10.1017/s1355617710001645
https://doi.org/10.1016/j.ijpsycho.2010.02.005
https://doi.org/10.1093/brain/120.3.515
https://doi.org/10.3390/sym13122323
https://doi.org/10.1046/j.1365-2265.1998.00543.x


Wang et al. 10.3389/fnins.2023.1198409

Frontiers in Neuroscience 10 frontiersin.org

Peace, K. A., Orme, S. M., Thompson, A. R., Padayatty, S., Ellis, A. W., and 
Belchetz, P. E. (1997). Cognitive dysfunction in patients treated for pituitary tumours. 
J. Clin. Exp. Neuropsychol. 19, 1–6. doi: 10.1080/01688639708403831

Pertichetti, M., Serioli, S., Belotti, F., Mattavelli, D., Schreiber, A., Cappelli, C., et al. 
(2020). Pituitary adenomas and neuropsychological status: a systematic literature review. 
Neurosurg. Rev. 43, 1065–1078. doi: 10.1007/s10143-019-01134-z

Petersen, S. E., and Posner, M. I. (2012). The attention system of the human brain: 
20 years after. Annu. Rev. Neurosci. 35, 73–89. doi: 10.1146/annurev-
neuro-062111-150525

Polich, J. (1987). Task difficulty, probability, and inter-stimulus interval as 
determinants of P300 from auditory stimuli. Electroencephalogr. Clin. Neurophysiol. 68, 
311–320. doi: 10.1016/0168-5597(87)90052-9

Polich, J. (2004). Clinical application of the P300 event-related brain potential. Phys. 
Med. Rehabil. Clin. N. Am. 15, 133–161. doi: 10.1016/s1047-9651(03)00109-8

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin. 
Neurophysiol. 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019

Posner, M. I., and Petersen, S. E. (1990). The attention system of the human brain. 
Annu. Rev. Neurosci. 13, 25–42. doi: 10.1146/annurev.ne.13.030190.000325

Posner, M. I., Rothbart, M. K., and Ghassemzadeh, H. (2019). Restoring attention 
networks. Yale J. Biol. Med. 92, 139–143.

Psaras, T., Milian, M., Hattermann, V., Gerlach, C., and Honegger, J. (2011). Executive 
functions recover earlier than episodic memory after microsurgical transsphenoidal 
resection of pituitary tumors in adult patients – a longitudinal study. J. Clin. Neurosci. 
18, 1340–1345. doi: 10.1016/j.jocn.2011.01.027

Russell-Giller, S., Wu, T., Spagna, A., Dhamoon, M., Hao, Q., and Fan, J. 
(2021).   Impact of unilateral stroke on right hemisphere superiority in 

executive  control. Neuropsychologia 150:107693. doi: 10.1016/j.
neuropsychologia.2020.107693

Thiebaut de Schotten, M., Dell'Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., 
Murphy, D. G., et al. (2011). A lateralized brain network for visuospatial attention. Nat. 
Neurosci. 14, 1245–1246. doi: 10.1038/nn.2905

Tooze, A., Gittoes, N. J., Jones, C. A., and Toogood, A. A. (2009). Neurocognitive 
consequences of surgery and radiotherapy for tumours of the pituitary. Clin. Endocrinol. 
70, 503–511. doi: 10.1111/j.1365-2265.2008.03464.x

Tooze, A., and Sheehan, J. P. (2018). Neurocognitive changes in pituitary adenoma 
patients after gamma knife radiosurgery. J. Neurosurg. 129, 55–62. doi: 
10.3171/2018.7.Gks181595

Weissman, D. H., and Banich, M. T. (2000). The cerebral hemispheres cooperate to 
perform complex but not simple tasks. Neuropsychology 14, 41–59. doi: 
10.1037//0894-4105.14.1.41

Welcome, S. E., and Chiarello, C. (2008). How dynamic is interhemispheric 
interaction? Effects of task switching on the across-hemisphere advantage. Brain Cogn. 
67, 69–75. doi: 10.1016/j.bandc.2007.11.005

Williams, R. S., Biel, A. L., Wegier, P., Lapp, L. K., Dyson, B. J., and Spaniol, J. (2016). 
Age differences in the attention network test: evidence from behavior and event-related 
potentials. Brain Cogn. 102, 65–79. doi: 10.1016/j.bandc.2015.12.007

Yao, S., Song, J., Gao, J., Lin, P., Yang, M., Zahid, K. R., et al. (2017). Cognitive function 
and serum hormone levels are associated with gray matter volume decline in female 
patients with Prolactinomas. Front. Neurol. 8:742. doi: 10.3389/fneur.2017.00742

Zhang, S., Chen, X., Wang, Y., Liu, B., and Gao, X. (2022). Visual field inhomogeneous 
in brain-computer interfaces based on rapid serial visual presentation. J. Neural Eng. 
19:016015. doi: 10.1088/1741-2552/ac4a3e

61

https://doi.org/10.3389/fnins.2023.1198409
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1080/01688639708403831
https://doi.org/10.1007/s10143-019-01134-z
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1016/0168-5597(87)90052-9
https://doi.org/10.1016/s1047-9651(03)00109-8
https://doi.org/10.1016/j.clinph.2007.04.019
https://doi.org/10.1146/annurev.ne.13.030190.000325
https://doi.org/10.1016/j.jocn.2011.01.027
https://doi.org/10.1016/j.neuropsychologia.2020.107693
https://doi.org/10.1016/j.neuropsychologia.2020.107693
https://doi.org/10.1038/nn.2905
https://doi.org/10.1111/j.1365-2265.2008.03464.x
https://doi.org/10.3171/2018.7.Gks181595
https://doi.org/10.1037//0894-4105.14.1.41
https://doi.org/10.1016/j.bandc.2007.11.005
https://doi.org/10.1016/j.bandc.2015.12.007
https://doi.org/10.3389/fneur.2017.00742
https://doi.org/10.1088/1741-2552/ac4a3e


TYPE Original Research

PUBLISHED 16 May 2023

DOI 10.3389/fnins.2023.1191683

OPEN ACCESS

EDITED BY

Jiajia Li,

Xi’an University of Architecture and

Technology, China

REVIEWED BY

Haitao Yu,

Tianjin University, China

Jia Zhao,

Southwest University, China

*CORRESPONDENCE

Liyuan Zhang

LiyuanZhang@bjut.edu.cn

†These authors have contributed equally to this

work

RECEIVED 22 March 2023

ACCEPTED 14 April 2023

PUBLISHED 16 May 2023

CITATION

Jiang X, Liu X, Liu Y, Wang Q, Li B and Zhang L

(2023) Epileptic seizures detection and the

analysis of optimal seizure prediction horizon

based on frequency and phase analysis.

Front. Neurosci. 17:1191683.

doi: 10.3389/fnins.2023.1191683

COPYRIGHT

© 2023 Jiang, Liu, Liu, Wang, Li and Zhang. This

is an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Epileptic seizures detection and
the analysis of optimal seizure
prediction horizon based on
frequency and phase analysis

Ximiao Jiang1†, Xiaotong Liu2†, Youjun Liu1, Qingyun Wang2,

Bao Li1 and Liyuan Zhang1*

1Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of

Technology, Beijing, China, 2Department of Dynamics and Control, Beihang University, Beijing, China

Changes in the frequency composition of the human electroencephalogram are

associated with the transitions to epileptic seizures. Cross-frequency coupling

(CFC) is a measure of neural oscillations in di�erent frequency bands and brain

areas, and specifically phase–amplitude coupling (PAC), a form of CFC, can be

used to characterize these dynamic transitions. In this study, we propose amethod

for seizure detection and prediction based on frequency domain analysis and PAC

combined with machine learning. We analyzed two databases, the Siena Scalp

EEG database and the CHB-MIT database, and used the frequency features and

modulation index (MI) for time-dependent quantification. The extracted features

were fed to a random forest classifier for classification and prediction. The seizure

prediction horizon (SPH) was also analyzed based on the highest-performing band

to maximize the time for intervention and treatment while ensuring the accuracy

of the prediction. Under comprehensive consideration, the results demonstrate

that better performance could be achieved at an interval length of 5min with an

average accuracy of 85.71% and 95.87% for the Siena Scalp EEG database and

the CHB-MIT database, respectively. As for the adult database, the combination

of PAC analysis and classification can be of significant help for seizure detection

and prediction. It suggests that the rarely used SPH also has a major impact on

seizure detection and prediction and further explorations for the application of

PAC are needed.

KEYWORDS

electroencephalogram (EEG), phase-amplitude coupling (PAC), frequency-domain

analysis, seizure prediction horizon (SPH), machine learning

1. Introduction

Epilepsy is a chronic brain disorder, characterized by recurrent seizures. The reason

for the pathological dynamics is the abnormally synchronous discharge of groups of, in

particular, cortical neurons (Tsipouras, 2019). Seizure onset can lead to loss of consciousness,

disorders of mood, and, in extreme cases, even death of the patients (Yang et al., 2021). It

affects nearly 50 million people worldwide (Acharya et al., 2017; World Health Organization

Epilepsy, 2023). Seizures can be treated through drug treatment, surgical intervention, and

neuromodulation (He et al., 2021; Mueller et al., 2022). However, in the process of treatment,

inconsistent availability of clinical data, the complexity of epilepsy etiology, and the lack

of standard diagnostic procedures often make diagnosis and follow-up treatment difficult.

Thus, exploring effective methods to detect and predict seizure onset is an important
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The electroencephalogram (EEG) measures the electrical

activity of the brain and is thus an important examination tool for

the clinical diagnosis of neurological disorders including epilepsy

andAlzheimer’s disease (Cho et al., 2017; Yu et al., 2020). According

to the collection method, there are two common types of EEG

recordings, namely, scalp electroencephalography (scalp EEG) and

intracranial electroencephalography (iEEG) (Jayakar et al., 2016).

In humans, oscillatory brain activity occurs in a variety of frequency

bands reflecting electrophysiological signals generated by large

ensembles of synchronized neuronal firing (Jensen and Colgin,

2007). Specifically, the amplitude of high-frequency oscillation has

been suggested as a biomarker of the seizure onset area (Charupanit

et al., 2020). In clinical practice, the diagnosis is typically based

on a patient’s clinical representation and available multimodal

data. However, this has some disadvantages, particularly being

time-consuming (Vidyaratne and Iftekharuddin, 2017; Duan et al.,

2022). Concerning the EEG, in addition to contributions from

neural activity, the signals contain interfering signals from other

sources, which may make the diagnosis difficult. There is a need

for reliable algorithms, specifically for automatic seizure onset

detection as recorded in the EEG.

In recent years, researchers have designed various methods

to extract various features from EEG recordings. There are three

main analysis methods, namely time domain analysis, frequency

domain analysis, and time–frequency domain analysis. In terms

of frequency domain analysis, researchers have extracted various

features, including mean frequency and root mean square, and

achieved an excellent result on seizure detection. Cross-frequency

coupling (CFC) is a method to dynamically measure interactions

of neural oscillations in different frequency bands and between

brain areas. CFC also appears to detect neural correlates of various

cognitive states (Liu et al., 2018). Three types of algorithms,

namely phase–amplitude coupling (PAC), phase–phase coupling

(PPC), and amplitude–amplitude coupling (AAC), are common

methods for CFC analysis (Munia and Aviyente, 2021). Among

them, PAC, which quantifies the interplay between the amplitude

of high-frequency oscillations and the phase of low-frequency

oscillations, has recently become a topic of interest (Munia and

Aviyente, 2019). In the context of epilepsy, it was shown that

interictal PAC is helpful for the localization of the epileptogenic

zone (Motoi et al., 2018; Ma et al., 2021). Although most studies

emphasized PAC analysis for seizure onset zone (SOZ) detection,

few studies have also applied it to the (temporal) detection and

prediction of seizure onset (Edakawa et al., 2016; Grigorovsky

et al., 2020; Yamamoto et al., 2021). Due to the non-linearity and

non-stationarity of EEG signals, the synchronization process of

epilepsy is also discussed to analyze the mechanism as well as the

complex underlying dynamics of seizure (Fan and Chou, 2019).

For quantitative analysis, functional brain networks and graph

theory have provided opportunities to understand the complex

mechanism changes (Yu et al., 2018; Akbarian and Erfanian, 2020;

Fallahi et al., 2021; Liu et al., 2021). The network metrics including

the efficiency, clustering, small worlds, and modular organizations

are themeaningful information to extract the topological properties

of the brain network.

Recently, machine learning with powerful computing ability

has made available algorithms to potentially improve classical data

analysis. A variety of machine learning models have been proposed

for classification. Common classification algorithms include the

support vector machine (Hussain, 2018), decision trees, K-nearest

neighbor (Jukic et al., 2020), and random forest (Sun Q. et al.,

2021). In Sun Q. et al. (2021), the authors combined the random

forest algorithm with time domain and non-linear characteristics

for seizure detection and were able to obtain a high accuracy

of state classification. Similar methods based on the random

forest algorithm have been applied to differentiate between types

of seizures and achieved a good performance (Basri and Arif,

2021). Amethod combining machine learning and functional brain

networks has been adopted by researchers in more and more fields.

Yu et al. (2019) applied it to automatically identify acupuncture

manipulations and with the support vector machine algorithm,

the highest accuracy can be obtained. With the improvement and

optimization of algorithms and models, deep learning has also

gradually been applied to the study of epilepsy. Convolutional

Neural Network (CNN) has stood out and was applied in many

research in terms of image recognition (Ryu et al., 2021; Wang

et al., 2022). Compared with the conventional CNN, Graph

Convolutional Network (GCN) can preserve rich marginal features

having the advantage of explaining the connective relationships

between features (Chen et al., 2021; Jia et al., 2022; Li et al., 2022).

The deep learning method acquires abundant EEG data. However,

rare public datasets can provide such an amount of EEG data which

is a wicked problem.

In the context of seizure detection and prediction, the main

goal is to classify the interictal stage and the preictal stage (Snyder

et al., 2008; Yang et al., 2021). To achieve that, the seizure prediction

horizon (SPH) and the seizure occurrence period (SOP) were

suggested (Maiwald et al., 2004). The SOP is a time period when

a seizure is predicted to occur and the SPH is the interval from

the alarm to the beginning of the SOP. A correct prediction is

achieved when a seizure onset occurs after the SPH and within

the SOP. Recently, studies have addressed the problem of the

length of SPH and SOP. Wang et al. compared the prediction

effect of SOP between 30 and 60min with the SPH of 5min

achieving an excellent performance (Wang et al., 2022). Moreover,

Aarabi et al. conducted prediction experiments on iEEG data

with an SOP of 30 and 50min and an SPH of 10 s (Aarabi and

He, 2017). Additionally, Zhang et al. acquired a high sensitivity

by setting SPH to zero. In contrast, few studies emphasized

the length of SPH which was also called the intervention time

(Wang et al., 2022). In clinical practice, it was still important

to find an appropriate SPH to leave enough time for providing

effective intervention.

In this study, we propose a method for epileptic seizure

onset detection and for the classification of preictal and

interictal states. Frequency domain analysis is performed

on two databases, the Siena Scalp EEG database and the

CHB-MIT database. Based on the single-channel analysis,

the length of SPH is adjusted to find the optimal SPH for

potential treatment.

2. Material and methods

This section describes the database used for the experiment

and the method, which can be categorized into three
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FIGURE 1

The flowchart. (A) The pre-processing module includes filtering and Independent Components Analysis (ICA); (B) The feature extraction module

includes frequency domain and PAC, and the machine learning module performs the classification; and (C) The optimization module adjusts the

length of SPH to find the optimal SPH. The data I in (A) are the raw EEG data from chb01 in the CHB-MIT database and the Data II are the output of

the pre-processing module.

major parts: first, the EEG signal is preprocessed; second,

features including single-channel PAC, peak frequency, and

median frequency are extracted; and third, the random

forest classifier is applied for classification. The flowchart

of the proposed method in this study is illustrated in

Figure 1.
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TABLE 1 Data of the patients in the Siena Scalp EEG database.

Patient Gender Age (years) EEG Chan. Seiz.

1 M 46 29 2

3 M 54 29 2

5 F 51 29 3

6 M 36 29 5

7 F 20 29 1

9 F 27 29 3

11 F 58 29 1

12 M 71 29 4

13 F 34 29 3

14 M 49 29 4

16 F 41 29 2

17 M 42 29 2

EEG Chan., the number of EEG channels; Seiz., the number of seizures; F, Female; M,

Male. For comparison, the patient numbers here are marked in the original database

without modification.

2.1. Database

Two databases were used in this study: the Siena Scalp EEG

database and the CHB-MIT database.

The Siena Scalp EEG database (https://www.physionet.org/

content/siena-scalp-eeg/1.0.0/) collected by the Unit of Neurology

and Neurophysiology at the University of Siena (Detti et al., 2020).

It consists of scalp EEG recordings from 14 patients including nine

men (ages 36–71) and five women (ages 20–58). The recordings

were captured with a sampling rate of 512Hz, with electrodes

arranged on the international 10–20 system. In total, this database

has a component of 47 seizures on about 128 recording hours. In

the study, we used 29 channels (“Fp1”, “F3”, “C3”, “P3”, “O1”, “F7”,

“T3”, “T5”, “Fc1”, “Fc5”, “Cp1”, “Cp5”, “F9”, “Fz”, “Cz”, “Pz”, “F4”,

“C4”, “P4”, “O2”, “F8”, “T4”, “T6”, “Fc2”, “Fc6”, “Cp2”, “Cp6”,

“F10”, and “Fp2”). Table 1 reports the details of the data.

The second database is the CHB-MIT database (https://www.

physionet.org/content/chbmit/1.0.0/) which contains the widely

used scalp EEG recordings from 23 patients at Children’s Hospital

Boston (Shoeb, 2009; Truong et al., 2018; Yang et al., 2021). Among

them, chb21 was obtained 1.5 years after case chb01, from the

same female subject, and chb24 with incomplete information was

added to the database later. The records were captured at a rate

of 256 samples per second sampling by 16-bit resolution using the

International 10–20 Electrode Position System. A total of 983 h of

consecutive EEG recordings and 198 seizures are available in the

database. In most cases, files contain only 1 h of digitized EEG

signal, although files belonging to case chb10 are 2 h, and files

belonging to cases chb04, chb06, chb07, chb09, and chb23 are 4 h.

In this study, we used 22 channels (“FP1-F7”, “F7-T7”, “T7-P7”,

“P7-O1”, “FP1-F3”, “F3-C3”, “C3-P3”, “P3-O1”, “FP2-F4”, “F4-

C4”, “C4-P4”, “P4-O2”, “FP2-F8”, “F8-T8”, “T8-P8”, “P8-O2”, “FZ-

CZ”, “CZ-PZ”, “P7-T7”, “T7-FT9”, “FT9-FT10”, and “FT10-T8”)

contained in most records. Table 2 reports the details of the data.

TABLE 2 Data of the patients in the CHB-MIT database.

Patient Gender Age (years) EEG Chan. Seiz.

1 F 11 23 7

2 M 11 23 3

3 F 14 23 7

4 M 22 23 4

5 F 7 23 5

6 F 1.5 23 10

7 F 14.5 23 3

8 M 3.5 23 5

9 F 10 23 4

10 M 3 23 7

11 F 12 23 3

12 F 2 23 40

13 F 3 23 12

14 F 9 23 8

15 M 16 31 20

16 F 7 28 10

17 F 12 28 3

18 F 18 22 6

19 F 19 28 3

20 F 6 28 8

21 F 13 28 4

22 F 9 28 3

23 F 6 23 7

24 - - 23 16

EEG Chan., the number of EEG channels; Seiz., the number of seizures; F, Female; M, Male.

2.2. Pre-processing

To obtain valid features of the signal, pre-processing including

filtering and ICA is essential. By appropriate filtering, the noise

in EEG data can be effectively reduced. In other words, in a

given frequency band, EEG signals can be filtered to improve the

corresponding signal-to-noise ratio. The raw EEG signals were

contaminated by power line contributions at 60Hz and 50Hz for

the CHB-MIT and the Siena, respectively. Therefore, a notch filter

was utilized to remove this power-line interference. The filtered

data were processed by ICA to remove physiological artifacts, e.g.,

eye movements and other muscular noise. For further analysis, the

preprocessed EEG data were decomposed into the classical EEG

frequency bands using a fifth-order Butterworth bandpass filter.

We followed the definition of SPH and the SOP mentioned in

Maiwald et al. (2004), Zhang and Parhi (2016), and Shokouh Alaei

et al. (2019) as illustrated in Figure 2 for state division. The seizure

onset may not occur immediately and exactly after the SPH, which

indicates the uncertainty of the prediction. To better achieve the

prediction, we assumed that the seizure onset was followed by the

SPH in our experiments. For an effective and practical prediction,
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FIGURE 2

The schematic diagram of the seizure prediction horizon (SPH) and

the seizure occurrence period (SOP).

the SPH should not be too long. At the same time, from a clinical

perspective, the SPH ought not to be too close to the seizure onset

to allow for an intervention of patients. In the case of seizure

clusters, we focus on the leading seizure. Thus, when a second

seizure starts soon after the previous seizure, we considered them

as only one seizure.

According to Truong et al. (2018) and Sun B. et al. (2021), the

preictal length was set to 30min. Referring to Ryu et al. (2021), the

SPH existed before the ictal state, and the time after the preictal

state was assumed to be 5min. At the same time, the rest of the

recording was defined as an interictal state. The final partition of

each state is shown in Figure 3. PN00 and PN10 in the Siena Scalp

EEG database have insufficient preictal and interictal data. After

removal, 12 subjects from this database were used.

For a specified EEG sequence, an EEG window length of 30-s

with a slide step of 15-s was used to obtain 30-s segments of EEG

signals (Truong et al., 2018).

2.3. Feature extraction

The single-channel PAC was calculated. For comparison, two

common frequency domain features, namely, peak frequency and

median frequency, were also extracted (Sánchez-Hernández et al.,

2022).

Traditionally, PAC can be calculated as follows (Dupré la Tour

et al., 2017). First, a bandpass filter is performed to decompose

the EEG signal x(t) on each channel into low frequency fx and

high frequency fy, and the range is divided into delta (0.5–4Hz),

theta (4–8Hz), alpha (8–13Hz), beta (13–30Hz), and gamma

(30–80Hz), which are the commonly used frequency bands for

human EEG (Liu et al., 2021). Second, the Hilbert transform is

applied to obtain the phase sequence 8x of a low-frequency band

and the amplitude sequence ay of a high-frequency band. Third, a

metric is used to quantify the correlation between 8x and ay. In

this study, the modulation index (MI) is chosen, which is robust

against noise and short data epochs and overall the commonly

used measurement method (Hulsemann et al., 2019; Munia and

Aviyente, 2019; Liu et al., 2021; Ma et al., 2021).

To calculate the value of MI, we refer to Tort et al. (2008),

in which 18 bins of 20◦ each are used (−180◦-180◦). The average

amplitude of the high-frequency component is computed and

normalized as follows:

P
(

j
)

=
f y(j)

∑N
i=1 f y(i)

(1)

where f y(j) is the average of ay within each bin, N is the total

number of bins, and the range of j is [1,N] (Fujita et al.,

2022). Subsequently, the Shannon entropy is calculated by the

following formula:

H (P)=−
N

∑

j=1

P
(

j
)

logP(j) (2)

Here, P is the vector of the normalized averaged amplitude in

each bin and N is the total number of bins. The Shannon entropy

depends on the number of bins and so does the MI. According

to Tort et al. (2008) and Hulsemann et al. (2019), 18 bins

were employed.

PAC is significantly associated with the deviation from the

uniform distribution. The Kullback–Leibler distance, a measure

for the disparity of the distributions, is calculated by the

following formula:

KL (U,X)=logN−H(P) (3)

where U is the uniform distribution, X is the distribution of the

data, N is the total number of bins, and logN is the maximum

entropy value. The final MI is computed as follows:

MI=
KL(U, X)

logN
(4)

where KL (U,X) is the Kullback–Leibler distance according to Eq.

3 and N is the total number of bins.

We used the Welch function to obtain the signal power

spectrum for each band, and the peak frequency and median

frequency were calculated to characterize the highest peak in the

power spectral density (Sánchez-Hernández et al., 2022).

2.4. Classification

A classical machine learning algorithm was employed for the

classification based on the extracted features. As an ensemble

learning algorithm, the random forest classifier stands out among

traditional classifiers (Basri and Arif, 2021). It is based on ensemble

decision trees trained by the bagging method. For an input sample,

M trees will have M classification results. The algorithm then

integrates all the classification voting results and designates the

category with the most votes as the final output.

For the input data D, max–min normalization was used

according to the given formula:

Dscaled =
D− D.min(axis=0)

D.max(axis=0)−D.min(axis=0)
∗ (max−min)

+ min (5)

Where max and min are the maximum and minimum values of the

given mapping range. In our experiments, the mapping range was

set to be (−1, 1).
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FIGURE 3

The ictal, SPH, preictal, and interictal states. (A) An example of a segmented EEG signal. The rightmost line is a landmark of the epileptic seizure

onset. The SPH is set 5min before seizure onset, the preictal state is 30min earlier than SPH, and the interictal state follows the preictal state. (B) A

schematic diagram of the segmentation.

TABLE 3 Workstation configuration.

Library Version

Numpy 1.18.5

Scipy 1.4.1

Scikit-learn 0.24.1

MNE 0.23.0

As for the parameters adjustment, three parameters, namely,

estimator, min-sample-split, and max-depth, were selected, and the

grid search method was applied to find the best parameter value.

For the division of the data into the training and testing sets, the

k-fold cross-validation method was employed for k=10 (Sameer

and Gupta, 2020). Based on the seizures, the extracted features were

randomly divided into 10 equal parts, nine of which were used for

training and one for testing.

2.5. Statistical analysis

In this study, the analysis was conducted on a workstation with

the Python 3.8.8 configuration as shown in Table 3. The overall

goal was to classify the interictal and preictal states and to predict

the ictal state. To evaluate the performance of the model, four

evaluation metrics were calculated, namely, accuracy, precision,

recall, and F-1 score, given as follows:

Accuracy =
TP+TN

TP+TN+FP+FN
(6)

Precision =
TP

TP+FP
(7)

Recall =
TP

TP+FN
(8)

F-1 score =
2∗Precision∗Recall

Precision+Recall
(9)

The true positive (TP) is the number of segments that are

correctly classified as preictal. The true negative (TN) is the

number of segments that are correctly identified as interictal.

The false positive (FP) represents the number of segments that

are incorrectly classified as preictal, and the false negative (FN)

represents the segments that are incorrectly recognized as interictal.

3. Results

3.1. The performance of seizure detection
and prediction based on frequency domain
analysis

The average results of a single-channel frequency domain

analysis based on the different sub-bands are provided in Figure 4.

From the results of both databases, it can be seen that a better

performance occurs at high frequencies, i.e., either the beta or
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FIGURE 4

The seizure detection and prediction average results are based on the single-channel frequency domain analysis and PAC analysis, respectively. (A)

The average results of the Siena Scalp EEG database are based on a single channel. (B) The average results of the CHB-MIT database are based on

the single channel. The data on the diagonal represent the results of frequency domain analysis and the data on the lower triangle represent the

results of PAC analysis.
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gamma frequency band. For the Siena Scalp EEG database, the

best performance was obtained in the gamma band, followed by

the beta band. For the CHB-MIT database, an accuracy of 95.87%

was achieved with the gamma band. Similarly, a high accuracy also

can be obtained with the beta band. By comparing the results of

different frequency bands, the performance weakens from the high-

to low-frequency band, which suggests that the high-frequency

band has more valid information for classification. Particularly in

the CHB-MIT database, we observe that all evaluation metrics have

improved a lot. For patients in the Siena Scalp EEG database, the

EEG data came pre-processed by high-pass filtering at either 1.6Hz

or 5.3Hz. We, therefore, excluded the delta band and evaluated the

other four bands.

3.2. The e�ect of seizure detection and
prediction based on phase–amplitude
coupling analysis

For further exploration, the MI was computed and the average

PAC results are shown in Figure 4. Based on the results, the beta-

gamma leading AC has the best performance on both databases.

To be specific, the highest average accuracy of 85.71% was obtained

on the Siena EEG database, while an average accuracy of 89.42%

was achieved on the CHB-MIT database. Apart from that, it can

be found that beta-theta leading PAC also had a good performance

on the Siena EEG database. For the Siena Scalp EEG database, the

average accuracy was enhanced by 4.13% from 81.58% to 85.71%;

for the CHB-MIT database, the average accuracy improved by

5.76% from 83.66% to 89.42%.

Figure 5 illustrates the MI pseudo-color graph of interictal and

preictal for all electrode channels with the 30-s slide windows

moved. PAC presented a different characteristic in the interictal

and preictal state. As shown in Figure 5, the interictal PAC was rare

and weak, while the preictal PAC bursts rhythmically during some

periods of time, which were indicated by red rectangle boxes. Also,

PAC can occur on different channels at different times, indicating

that the PAC varied with time.

Comparing the results of the single-channel frequency domain

analysis with the PAC, we can find some nuances in both databases.

For the Siena EEG database, the adult database, the best result was

obtained by applying the PAC method; for the CHB-MIT database,

the child database, the single gamma frequency band achieved the

best performance. More interestingly, for the CHB-MIT database,

the delta band with other high-frequency bands and PAC can

improve the results compared with the single delta band.

3.3. The results of seizure detection and
prediction based on the analysis of optimal
SPH

The above results are based on the SPH of 5min (Truong et al.,

2018; Ryu et al., 2021; Wang et al., 2022). In this section, we adjust

the length of SPH to between 10 and 15min, respectively, to analyze

the influence on seizure detection and prediction caused by the

length of SPH. Based on the above results, the following analysis

is conducted on the gamma band (frequency domain analysis)

and the beta-gamma PAC, the optimal frequency band, for the

CHB-MIT database and the Siena EEG database, respectively.

Supplementary Tables 1, 2 show the accuracy, precision, recall,

and F-1 score for each patient from two databases according to the

length of SPH. For each patient, there are three major outcomes.

First, for most patients, a higher accuracy can be achieved when the

SPH of 5min was used. Second, some patients had better accuracy

with the SPH of 10 or 15min. Third, there was no difference for

different lengths of SPH. For the first two cases, we selected patient

01 and patient 05 from the Siena EEG database, for example. The

former obtained an accuracy of 87.12% and 79.53% at an SPH of 5

and 15min, respectively. The latter obtained an accuracy of 81.47%

and 88.73% at an SPH of 5 and 10min, respectively. In the third

case, for some patients from the CHB-MIT database, high accuracy

can be obtained at these three interval lengths. What needed to

be noticed was that some patients (e.g., 11 from the CHB-MIT

database) have very few valid seizures considering the definition of

the SOP and SPH displayed in Figure 2 and results do not vary with

the interval length. There was no result with an SPH of 15min due

to the lack of a preictal state in the data.

An average accuracy, precision, recall, and F-1 score are

illustrated in Figure 6. Combining the results of the two databases,

comprehensively, we find that the best performance was obtained

with an SPH of 5min. Although, the accuracy at the SPH of

5min does not have a predominant advantage on both databases.

There was, in terms of numerical results, a slight difference among

the SPH of 5, 10, and 15min. Supplementary Figures 1, 2 plot

the results of the Kruskal–Wallis test between 5min, 10min, and

15min SPH from the two databases. The p-values of the two

databases are all more than 0.05. It suggests that at a certain range,

the change of SPH has no significant effect on the accuracy of

detection. Therefore, it is necessary to take the time expense to cure

the patients and the feeling of the patients into consideration. If

the length of the SPH is extended, it can increase the psychological

stresses of patients. With a similar accuracy, thus, the SPH of 5min

can detect and predict the seizure faster and more efficiently.

4. Discussion and conclusion

In this study, frequency domain and PAC analysis are used to

classify the interictal and the preictal states for seizure detection

and prediction in EEG recordings from two cohorts of patients

with epilepsy. The PAC classification analysis with the random

forest classifier achieved better overall performance on the Siena

Scalp EEG database for adults compared to the pediatric CHB-

MIT database. In particular, the beta-gamma PAC stands out.

The frequency domain analysis had the best performance on

the pediatric CHB-MIT database. With both methods of feature

extraction, the results improved from low- to high-frequency

bands. In terms of the length of SPH, comprehensively, we found

that the best overall performance was obtained with an SPH of

5min, although some patients also had a good performance when

the SPH was 10 or 15min. Clinically, the highest accuracy does not

necessarily mean practicality, that is the length of the warning time

and the accuracy of the analysis need to be weighed against each

other. Overall, it is found in this study that applying the SPH of
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FIGURE 5

The MI pseudo-color graph of interictal (A) and preictal (B). The MI was computed in 30 s windows shifted by 15 s for all electrode channels of patient

07 in the Siena EEG database. The usually significant channels and time points of change were labeled by red rectangle boxed.

FIGURE 6

The average results of interval lengths of 5, 10, and 15min, respectively. (A) The average results of the Siena Scalp EEG database. (B) The average

results of the CHB-MIT database.

TABLE 4 The comparison of seizure detection and prediction with other algorithms based on the CHB-MIT database.

Authors Subjects Features Classifier SPH (minutes) Acc Pre Recall F-1

Ryu et al. (2021) 24 DWT DenseNet-LSTM 5 0.9328 - - 0.923

Hu et al. (2019) 24 MAS CNN 20 0.8625 - - -

This work 24 Peak frequency and median

frequency

Random forest 5 0.9587 0.95 0.95 0.95

Acc, Accuracy; Pre, Precision; F-1, F-1 score; DWT, discrete wavelet transform; MAS, mean amplitude spectrum; CNN, convolutional neural network.

5min can contribute to a better performance for seizure prediction,

which has greater value for clinical prevention.

There is growing evidence that oscillatory activity in the brain

plays a role in cognitive activities including sensory processing,

feedback processing, and working memory (Jensen and Colgin,

2007). Scalp EEG recording of epilepsy was used in this study,

which provides a general reflection of the activity of neurons on

the scalp surface, important for clinical diagnosis, focal potentials,

and postoperative review (Kobayashi et al., 2012; Tatum et al.,

2018). High-frequency oscillation is considered to be a distinctive

feature of the epileptogenic zone (Melani et al., 2013; Nariai

et al., 2017). The acquisition of scalp EEG is more uncertain than

that of iEEG. Artifacts from data preprocessing, muscle signals,

and other factors can interfere with the analysis. Despite the
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above-described interference occurring during processing, there

is a difference between the high-frequency activity caused by it

and the pathological high-frequency rhythm produced by seizures

(Kobayashi et al., 2004; Otsubo et al., 2007). Also, studies have

highlighted that ictal slow waves are associated with ictal gamma

rhythms. In spasms showing beta activity, the gamma rhythm is

superimposed with it (Melani et al., 2013). This is a characteristic

that is not present in non-pathological high-frequency rhythms.

Consequently, we added cross-frequency coupling features to the

frequency domain features to help predict seizures.

With unique coupling properties, CFC has been widely

investigated in this context. Due to the distinctive and persistent

PAC, researchers put much attention to its analysis during the

seizure. However, the PAC of the interictal period and the preictal

period are also of importance. Fujita et al. (2022) indicated that

compared with healthy controls, epilepsy patients have abnormal

PAC characteristics that can promote the discrimination between

epileptic and normal. Amiri et al. (2016) found that the increased

PAC is likely to be a sign of some fundamental abnormality in

the interictal state. Ma et al. (2021) came to the conclusion that

being paroxysmal, PAC of the interictal state and the preictal state

can be used for accurate location of the epileptogenic zone. Also,

the coupling of PAC can vary during the seizure. According to

our results, there are distinct differences between the PAC of the

interictal and the preictal state which is observed in Figure 5. It

suggests that the PAC can help to classify them, particularly in

the beta-gamma coupling band. Moreover, the proposed approach

yields better results in the higher frequency bands. This is consistent

with prior findings where the high-frequency range has a crucial

role in cognitive function (Cho et al., 2017).

The incidence rate of epilepsy is particularly high in infancy

and childhood. The characteristics of early infant EEG are

various spatially distributed activities, rather than the more typical

posterior rhythm in the mature EEG (Rosch et al., 2018). In

addition, the electrographic symptoms of seizures in children are

not as typical as those in adults. Lee and Lee (2013) indicated

that, in terms of clinical features and interictal EEG, there

were significant differences between patients who had temporal

lobectomy in childhood and those having the operation during

adulthood. Because the brain function of children is immature, it

can easily be affected by adverse factors inside and outside the skull,

potentially resulting in seizures. Most of the current studies have

used data from the CHB-MIT database, which contains data from

pediatric patients. Therefore, the Siena Scalp EEG database which

is made up of adult data was added to our investigation to give a

more comprehensive picture.

There are some limitations. First, our approach for seizure

prediction is suitable only for EEG signals recorded continuously

over a long period of time. The length of the data has a

great influence on the final performance. Another limitation is

that there are significant differences among different patients

whose characteristics and dynamics of the peri-ictal states vary

greatly (Yang et al., 2021). The proposed approach may thus not

be suitable for all types of epileptic seizures. As displayed in

Supplementary Tables 1, 2, it can be seen that, in terms of the

length of SPH, the variation of the results is not uniform for each

patient. A possible explanation for this is that they contain different

types of seizures. Consequently, further work could consider the

influence caused by the specific seizure type. Moreover, in the

process of research, we found that the PAC has temporal and

spatial differences. Since the two databases were public, however,

the experiments were lack of patients’ specific clinical information.

We compared the results of our work with previous studies

in terms of SPH. To the best of our knowledge, there are only a

few studies of SPH based on the CHB-MIT database. Table 4 gives

the details including subjects, feature extraction method, classifier,

SPH, and the four evaluation metrics based on the CHB-MIT

database. As shown in Table 4, the method combining DWT and

DenseNet-LSTM in Ryu et al. (2021) achieved an accuracy of 0.9328

and an F-1 score of 0.923. Hu et al. (2019) obtained an accuracy of

0.8625 with an SPH of 20min. Compared to this, our method with

an SPH of 5min has a better performance.

Currently, several studies have applied many frequency domain

features for seizure detection and prediction and obtained

valuable results. While PAC is more widely used for seizure

onset detection and dynamic network connections in epilepsy,

few studies have applied it to seizure prediction. Based on

the experiments, the integration of PAC and machine learning

may be a significant help to achieve an early warning of an

imminent seizure for the adult database. Although the signal-

channel PAC in our experiments is not absolutely predominant,

our results show that the proposed method has the potential

to become a reliable seizure detection and prediction tool for

auxiliary clinical diagnosis and prediction. Moreover, the length

of SPH is analyzed, and the results show that at a certain range,

an SPH of 5min has an overall performance on the seizure

prediction. In clinical, it can be helpful to give timely aid before

a seizure occurs. The next step will be to further explore the

application of PAC in EEG data of children with epilepsy and

to incorporate the algorithm into a practical EEG setting to

support early intervention and hopefully improve the quality of life

of patients.
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Introduction: Research on the brain activity during resting state has found that 
brain activation is centered around three networks, including the default mode 
network (DMN), the salient network (SN), and the central executive network 
(CEN), and switches between multiple modes. As a common disease in the elderly, 
Alzheimer’s disease (AD) affects the state transitions of functional networks in the 
resting state.

Methods: Energy landscape, as a new method, can intuitively and quickly grasp 
the statistical distribution of system states and information related to state 
transition mechanisms. Therefore, this study mainly uses the energy landscape 
method to study the changes of the triple-network brain dynamics in AD patients 
in the resting state.

Results: AD brain activity patterns are in an abnormal state, and the dynamics of 
patients with AD tend to be unstable, with an unusually high flexibility in switching 
between states. Also , the subjects’ dynamic features are correlated with clinical 
index.

Discussion: The atypical balance of large-scale brain systems in patients with 
AD is associated with abnormally active brain dynamics. Our study are helpful 
for further understanding the intrinsic dynamic characteristics and pathological 
mechanism of the resting-state brain in AD patients.

KEYWORDS

triple-network, energy landscape, Alzheimer’s disease, resting-state fMRI, dynamics 
analysis

1. Introduction

Alzheimer’s disease (AD) is a common degenerative neurological disease that typically 
begins with memory loss and progresses to impairments in a series of higher cognitive functions, 
followed by a loss of ability to live independently and eventual death. The onset of AD is obscure 
and seriously affects the normal life of patients. The etiology and specific pathogenesis of the 
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disease have not been fully elucidated (Delbeuck et  al., 2003; 
Cummings et al., 2019; Lei et al., 2021). Therefore, methods designed 
to better understand the pathogenesis of AD and identify specific 
brain abnormalities in the early stages of AD are crucial.

Resting-state fMRI reflects the spontaneous activity of neurons 
when the brain is not performing a task. It has been widely employed 
in studies of a variety of neurological and psychiatric disorders. 
Because it does not require subjects to perform any task, resting-state 
fMRI is ideal for AD patients with cognitive decline (Vemuri et al., 
2012; Yang et al., 2020). Different functional connectivity networks 
have been described based on the synchronization of low-frequency 
BOLD signals in the resting state (Damoiseaux et al., 2006). Vinod 
Menon proposed that among the inherent functional networks in the 
human brain, the default mode network (DMN), the salient network 
(SN), and the central executive network (CEN) are particularly crucial 
(Menon, 2011). The DMN is more active in the resting state, while the 
DMN is inhibited instead during the execution of tasks. In contrast, 
the CEN is less activated in the resting state and more activated when 
subjects are performing tasks or receiving external stimuli. The SN is 
generally considered to coordinate the DMN and CEN (Buckner et al., 
2008; Lerman et al., 2014; Liao et al., 2021). Therefore, some studies 
have proposed the three networks as a “triple-network” model, which 
suggests that these three networks play an important role in the 
functions related to cognitive tasks performed by the brain, and they 
are considered the core networks related to the cognitive functions of 
the brain (Menon, 2011). The “triple-network” model is widely used 
to study various diseases. Previous studies have found that these three 
networks are closely associated with cognitive impairment in AD 
patients, and all three networks are damaged to varying degrees by the 
disease (Balthazar et al., 2014).

In a conventional resting-state fMRI analysis, functional 
connectivity is the most commonly investigated metric, which 
assumes that the BOLD signal is temporally stationary within the scan 
duration (Greicius et al., 2003). Actually, the brain is a complex and 
dynamic system with important features such as self-adaptation, self-
organization, and multi-stability. A previous study indicated that the 
activity patterns of the resting brain are presumably in a 
nonequilibrium process of continuous switching between multiple 
states and show considerable variability on different time scales (Yao 
et al., 2020). Revealing the dynamic mechanism of spontaneous neural 
activity in the resting-state brain has important scientific importance 
for understanding the working mechanism of the brain and has 

prospective clinical applications in the prevention and treatment of 
brain diseases, including AD.

Currently, dynamic functional connectivity (dFC) based on 
sliding window correlation (SWC) and co-activation patterns (CAP) 
are two popular methods for AD dynamics analysis. The former was 
based on dynamically intercepting signals through windows of specific 
length and then performing functional connectivity analysis within 
each dynamic window. In recent years, a number of studies have been 
devoted to the extraction of high-level features from the dFC to 
achieve effective filtering of invalid information in the dFC and 
extraction of dynamic change features associated with the disease, 
contributing to exploring abnormal brain function networks and 
improving the classification accuracy of AD (Sendi et al., 2021; Gao 
et al., 2022; Matsui and Yamashita, 2022; Qiao et al., 2022; Ghanbari 
et al., 2023; Penalba-Sánchez et al., 2023). The principle of CAP was 
to extract co-activation patterns in certain specific peak points of the 
BOLD signal time series using a clustering algorithm. By analyzing 
the spatio-temporal features of these patterns to reveal the underlying 
mechanisms of abnormal brain function in AD patients, providing 
some potential biomarkers for the diagnosis and treatment of AD (Ma 
et al., 2020; Adhikari et al., 2021). The methods and conclusions of 
recent studies on the dynamic brain function network analysis of AD 
are shown in Table 1.

The regularities presented by activity patterns in the resting brain and 
the underlying mechanisms are also well suited for research using 
statistical-physical and nonequilibrium dynamics approaches (Huang 
et al., 2020). One of the commonly used methods is energy landscape 
analysis, a data-driven approach based on statistical mechanics (Watanabe 
et al., 2014; Ezaki et al., 2017; Gu et al., 2018; Kang et al., 2019). This 
method is similar to CAP that focuses on the nonequilibrium process of 
switching between resting-state active modes in the brain, but the energy 
landscape analysis better describes this process by constructing an energy 
topography of the state space in the brain system based on the statistical 
distribution, whose structure represents the stability and interrelationship 
of the system states and reflects the dynamic characteristics of the system 
in more detail.

In the present study, we  extracted a time series based on 
representative ROIs in brain regions of the triple networks and used 
the energy landscape approach to analyze the dynamic characteristics 
of AD patients in the resting state. Some common dynamic indicators 
were used to characterize the resting triple-network dynamic system 
in the subjects and correlate it with the clinical index to further 

TABLE 1 Dynamic brain function network analysis method for AD.

Target Authors Method Conclusions

AD/NC Gao et al. (2022) dFC Extraction of potential advanced features enhanced the classification and diagnosis of brain diseases.

AD/MCI/NC Ghanbari et al. (2023) dFC
Redundancy could provide a basis for neuroprotective mechanisms of cognitive ageing and act as an early 

biomarker of AD.

vmAD/NC Sendi et al. (2021) dFNC
From NC to AD, the connectivity strength changed and the temporal properties of the FNC also became 

dysregulated.

AD/ASD Qiao et al. (2022) dFC
Inter-component dFC could be used as a biomarker for the diagnosis of AD et al. and provide a basis for 

brain connectomics.

AD/MCI/NC Ma et al. (2020) CAP
The DMN and visual network of AD are impaired, and transition and CAP entropies can be used as new 

biomarkers.

AD/NC Adhikari et al. (2021) CAPs Resting-state co-activation patterns could be a biomarker for the diagnosis and prediction of AD.
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explore the dynamic characteristics of the three resting networks and 
the hidden neural mechanisms of AD in patients, providing some 
theoretical inspiration for the prevention, diagnosis and treatment of 
diseases. Finally, the random walk method was used to simulate the 
dynamic changes in activity patterns in the triple network as a method 
to verify the effectiveness of the energy landscape analysis method.

2. Materials and methods

2.1. Subjects

The fMRI data from all subjects investigated in this study were 
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database and were acquired using a Philips 3.0 T MRI instrument.1 The 
downloaded data from each subject included 3 T structural fMRI data and 
behavioral data. This study included two groups of subjects selected based 
on the following criteria: (1) 33 patients with confirmed AD and MMSE 
scores = 6–26 points who were able to complete the entire data collection 
process and maintain a stable resting state during the entire time and (2) 
39 normal healthy elderly people with MMSE scores = 26–30 points, 
without depression or other types of dementia, and no history of receiving 
medication for psychiatric diseases.

Resting-state fMRI data were obtained from scans acquired with 
a 3.0 T Philips instrument. The acquisition parameters were as follows: 
(1) parameters of the fMRI scan were EPI fast imaging sequence, flip 
angle = 80°, matrix = 64 × 64 × 6,720, slice thickness = 3.3 mm, 
TR = 3,000 ms, TE = 30 ms, and pixel spacing = 3.3 × 3.3 × 3.3 mm3. (2) 
Scan parameters of the 3D-weighted T1 structural images were an 
acquisition plan = sagittal, flip angle=9°, and matrix = 256 × 256 × 170.

2.2. Data preprocessing

We preprocessed the resting-state fMRI data using the FSL toolkit 
and the AFNI toolkit. The preprocessing steps are described below. (1) 
The first four time points were deleted to ensure that all data were 
derived from a stable magnetic field. (2) Head movements were 
corrected. (3) Gaussian spatial smoothing was performed with a half-
peak width of 6 mm. (4) Bandpass filtering was performed at 
0.01–0.1 Hz. (5) Linear registration FLIRTt with the MNI152 standard 
spatial template was conducted. (6) White matter and cerebrospinal 
fluid signals were removed.

2.3. Triple-network ROI time series 
extraction

The ROI template used in this study was obtained from the 
Neurofunctional Imaging of Mental Disorders Laboratory at Stanford 
University.2 We  used this ROI template to extract time series of 
representative brain regions within the three networks. We selected 
representative ROIs from the three networks to extract their time 

1 https://adni.loni.usc.edu/

2 http://findlab.stanford.edu/research

series. The coordinates of the selected ROI corresponding to the 
Brodmann area (BA) and the MNI standard space are shown in 
Tables 2–5.

2.4. Energy landscape analysis method

The energy landscape approach aims to study the interactions 
among local brain regions from a statistical-physical perspective. The 
definition of energy can be used to describe the state of a brain system 
composed of different brain regions. This state model is essentially 
determined by the empirical distribution of fMRI data in different 
brain regions. Based on the model defined by the energy function, the 
energy landscape of the brain system in the state space can be obtained. 
The structure of the energy landscape reflects the stability and 
interactions of the states of the brain system. Furthermore, the energy 
landscape can also reflect a series of dynamic characteristics of 
the system.

We fit the subjects’ fMRI data to the pairwise maximum entropy 
model (MEM) using the criteria described below (Ezaki et al., 2018). 
Due to the large amount of data required for this method, we collected 
the fMRI signals from the same group of subjects and then performed 
pairwise MEM fitting. As each network contains a certain number of 
ROIs, we labeled each ROI as i i =( )1 2, .....  and denoted the binarized 
activity of the fMRI sequence at moment t as s it t T1£ £( ) , with +1 
and − 1 representing the activation and deactivation states, 
respectively. We set a threshold value for each ROI of each subject, and 
we  considered the ROI in an active state when it exceeded this 
threshold value. The threshold is the average signal value of the ROI 
for the subject over the whole time course, and thus the ROI of each 
subject is active approximately 50% of the time moments. The pattern 
of activity at moment t is represented by the NROI -dimensional 
binary vector s s s1 2

t t
N
t
ROI

, , ,....é
ë

ù
û , and there exist 2NROI possible 

patterns of ROI activity, which are enumerated as 
V V NROI1 21 1 1 11 1= - - -[ ] = [ ], , , , , ,... ...... ... .

For each ROI, we aggregated the data from the same set of subjects 
according to the time scale and calculated the occurrence frequency 
of each activity pattern V kk

NROI=( )1 2, ,... , denoted as P Vk( ) . In the 
paired maximum entropy model, the frequencies conform to the 
Boltzmann distribution as follows:

 
P V e ek

E V E V

i

k i

NROI

( ) = - ( ) - ( )

=
å/
1

2

 (1)

where E Vk( )  represents the energy of the active mode Vk , which 
we calculate using the following equation:

TABLE 2 Demographic and clinical scale information of subjects.

AD (n = 33) NC (n = 39) p-value

Gender(female/male) 14/19 16/23 0.90

Age(mean ± SE) 73.35 ± 1.30 74.44 ± 1.07 0.51

MMSE(mean ± SE) 22.97 ± 0.42 28.87 ± 0.20 < 0.001

CDR(mean ± SE) 0.76 ± 0.08 0.00 ± 0.00 < 0.001
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The fitting parameters hi and Jij denote the tendency of the ith 
ROI to be active when it is isolated and the strength of the interaction 
between the ith ROI and the jth ROI, respectively. Based on this 
definition, a smaller energy value corresponds to a greater frequency 
of occurrence of a pattern of activity on the time scale.

We obtain hi and Jij i j NROI, , , ,=( )1 2 .... by initially calculating the 
mean and two-by-two correlations for each state in the fMRI data 
from the subjects. The formula used for the calculation is as follows 
(where 〈 〉 denotes the average value):
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For a particular hi and J i j Nij ROI, , , ,=( )1 2 ... , the mean and 
correlation expected from the model in equation (1) are as follows:
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Notably, only the information on the average activity in each brain 
region and the coactivity between two brain regions in the fMRI data 
were used in the calculation. Other information was not considered 
in the model, such as information on the coactivity patterns between 
multiple brain regions. We must calculate the relative entropy of the 
model distribution of the brain system states and their empirical 
distribution, which is the K-L divergence (Kullback–Leibler 
divergence). The model distribution is defined as the Boltzmann 
distribution, and the empirical distribution is the actual probability 
distribution of each state in the fMRI data. The difference between the 
two can be measured using the following K-L divergence D2:

 D P V P V P Vk k model k
k

NROI

2 2
1

2
= ( ) ( ) ( )( )

=
å .log /  (5)

We iteratively adjust the values of hi and Jij  
according to h hi

new
i
old

i i m= + á ñ - á ñ( )a s s  and 
J Jij
new

ij
old

i j i j m= + á á ñ( )ñ -a s s s s , where α is the iteration step, 
until they gradually approach the values á ñs i m  and á ñs si j m  given 
in eqs. (3, 4) of the model.

TABLE 3 Brain coordinates in the DMN.

Number ROI Brain area BA MNI space

x y z

1 dDMN_1_ROI Left Medial Frontal Gyrus 10 0 49 12

2 dDMN_2_ROI Left Angular Gyrus 39 −48 −73 32

3 dDMN_3_ROI Right Media Frontal Gyrus 8 18 38 51

4 dDMN_4_ROI Precuneus 31 0 −57 30

5 dDMN_5_ROI Cingulate Gyrus 24 0 −17 35

6 dDMN_6_ROI Right Angular Gyrus 39 48 −66 29

7 dDMN_7_ROI Thalamus / −6 −6 3

8 dDMN_8_ROI Left Parahippocampal Gyrus 35 −24 −37 −9

9 dDMN_9_ROI Right Parahippocampal Gyrus 35 24 −21 −23

TABLE 4 Brain coordinates in the CEN.

Number ROI Brain area BA MNI space

x y z

1 LCEN_1 Left Precentral Gyrus 9 −35 21 3

2 LCEN_2 Left Middle Frontal Gyrus 10 −44 46 1

3 LCEN_3 Left Inferior Parietal Lobule 40 −44 −65 4

4 LCEN_4 Left Middle Temporal Gyrus 21 −65 −38 12

5 RCEN_1 Right Precentral Gyrus 9 32 26 4

6 RCEN_2 Right Middle Frontal Gyrus 10 35 62 7

7 RCEN_3 Right Inferior Parietal Lobule 40 46 −54 49

8 RCEN_4 Right Middle Frontal Gyrus 8 3 36 44
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The principle of this iteration is based on the gradient descent 
method, which minimizes the given K-L scatter, improves the 
accuracy of the model fit by iteratively training the two parameters h 
and j continuously, and finally obtains an optimized model. The 
energy landscape of the system is constructed based on this optimized 
model. The dynamics of different states of the brain system can 
be characterized by the local minimum, basin, dis-connectivity graph 
and energy barrier in the energy landscape.

In the energy landscape, among the 2n state vectors constructed, 
the two states in which only one element differs are considered 
adjacent states, such that each state has n neighboring states. When 
the energy value of a state is less than all n neighboring states, the state 
is defined as a local minimal state. It is also possible to construct 
disconnected diagrams to represent the main features of each state, 
including information such as the energy of local minimal states and 
the energy barrier of switching between neighboring states. The 
disconnected graph is a tree-like branching graph structure, where 
different branches represent different local minima, and the branch 
heights between neighboring local minima represent the energy 
barriers between them. The disconnected diagram is a more concise 
and intuitive representation of the relationship between the substable 
states of the system compared to the energy landscape. The detailed 
steps used to construct it are as follows:

 (1) First, the energy landscape is constructed based on the fitted 
optimization model and visualized to some extent in the 
superlattice diagram. Each state has a corresponding energy 
location and is connected to neighboring states, constituting 
multiple energy basins.

 (2) Second, the energy maximum corresponding to all current 
states is set as the energy threshold, which is denoted as Eth.

 (3) Then, the states and corresponding edges in the superlattice 
diagram with energies larger than the threshold Eth 
are removed.

 (4) Finally, all local minimal states in the superlattice diagram are 
checked to confirm that they have at least one path to achieve 
an interconnection.

 (5) Steps (3) and (4) are repeated and the threshold Eth is set to the 
maximum energy value in the remaining states, repeating this 
process until all local minimal states are disconnected from 
each other.

 (6) The energy threshold Eth corresponding to the first 
disconnection of each two local minimal states is recorded, and 
this value is the energy barrier between these two states, which 
is the height of the potential barrier between them in the 
disconnection diagram. As a result, the disconnected graph of 
local minimal states is obtained.

The energy landscape analysis method is a calculation method 
that can directly interpret multivariate time series. The analysis 
consists of the following four main steps: (1) binarization of the BOLD 
signal; (2) estimation of the maximum entropy model (Boltzmann 
distribution); (3) construction of the disconnected map and the local 
minimal state (basin) of energy; and (4) calculation of the dynamic 
index for the energy landscape. This method was originally designed 
to analyze fMRI data, but in principle, it is also applicable to other 
types of data. Based on experience, the energy landscape analysis 
method has a better performance when the number of variables is 

approximately 6 to 15. For a model with more variables, the calculation 
cost becomes significant, and the interpretation of the results becomes 
difficult. The energy landscape analysis process is shown in Figure 1.

3. Results

3.1. Construction of the triple-network 
energy landscape in the resting-state brain

Based on the structure of the energy landscape described above, 
we subsequently conducted studies on the dynamic characteristics of 
the triple networks in the resting-state brains of AD patients and 
NC subjects.

First, we constructed the corresponding energy landscape with 
fMRI data from two groups of subjects in the triple networks. The 
structure of the energy landscape in the triple networks from NC 
subjects and AD patients is shown in Figure  2. Nine ROIs were 
selected for the DMN, for a total of 29 activation states. The diagram 
in Figure 2A1 shows the activity patterns corresponding to the 8 local 
minimal states in AD patients, where black represents the inactivated 
state and white the activated state. The figure shows strong 
complementarity between the brain area states of these 8 activation 
patterns. For example, in pattern 1, all 9 brain areas are inactive, while 
in pattern 8, all 9 brain areas are activated; in pattern 2, only the left 
and right angular gyrus and precuneus are activated, while the 
remaining brain areas are inactive, which is completely opposite and 
complementary to pattern 7. Figure 2A2 shows the nonconnected 
graph of the local minimal state of AD patients, which visualizes the 
basic characteristics of each activity pattern, and the branches of the 
tree represent the hierarchical structure of each activity pattern in the 
energy landscape. Each branch corresponds to a local minimal state, 
and the difference in height between each two states is the energy 
barrier, which measures the amount of energy required to jump 
between these two states. The larger the energy barrier, the less easy it 
is to jump between states and the lower the frequency of occurrence. 
Conversely, if the jump between neighboring states is easier, the 
frequency is higher on the time scale. As shown in Figure 2A2, pattern 
4 and pattern 8, pattern 1 and pattern 5 are neighboring patterns, and 
their energy is relatively low, while the energy of the remaining four 
states is relatively high. Based on this structural feature of the energy 
landscape and the similarity between the two groups of subjects, 
we grouped the two lower energy pairs of local minimal states into two 
major brain states, denoted by major state 1 and major state 2, and the 
other higher energy local minimal states were uniformly defined as 
secondary brain states, which were denoted as minor states. These 
three states correspond to different colors in the nonconnected graph. 
The subsequent representation of the triple-network dynamics is 
based on these three states (major state 1, major state 2 and minor 
state) (Table 5).

Figure 2A3 shows five activation patterns corresponding to the 
local minimal state in the DMN energy landscape of NC subjects, 
where pattern 2 is characterized by activation in the left and right 
angular gyrus, left and right medial frontal gyrus, cingulate gyrus and 
precuneus, which are complementary to pattern 4. In pattern 3, only 
the left and right para-hippocampal gyrus, left and right angular gyrus 
and precuneus brain regions are activated, while the remaining brain 
regions are inactive and have no complementary activation patterns. 
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Compared with the results from the AD group, the NC group has 3 
fewer brain activity patterns. Figure 2A4 shows the nonconnected 
graph of the energy landscape of the DMN in NC subjects with a 
structure similar to AD, pattern 2. Pattern 5, pattern 1 and pattern 4 
are adjacent to each other, the energy required to jump between two 
states is smaller, and the energy of these four patterns is significantly 
lower than pattern 3. We inferred that these four patterns potentially 
represent the major activity patterns of the DMN in the resting state 
of NC subjects.

Figure 2B1 shows the activity patterns corresponding to the 8 local 
minimal states in AD patients, which are represented by the 
combination of 8 ROI activation states. Similar to the DMN, a strong 
complementary relationship exists between these 8 activation patterns 
corresponding to the states of brain regions. For example, in pattern 1, 
all 8 brain regions are inactive, which is complementary to pattern 8, 
where all 8 brain regions are activated; in pattern 3, only the left and 
right middle frontal gyrus and the left and right inferior parietal lobule 
are active, which is complementary to the activation status of pattern 
6. Figure 2B2 shows the nonconnected graph of the local minimal state 
in AD patients, where pattern 7 and pattern 8, as well as pattern 1 and 
pattern 2 are adjacent to each other, and the energy of these four 
patterns is relatively low compared to other patterns. Figure 2B3 shows 
six activation patterns corresponding to the local minimal states in the 
CEN energy landscape of NC subjects. Similar to the results from AD 
patients, the activation patterns are complementary, such as the lack of 
activation in all brain regions in pattern 1 that is complementary to 
activation in pattern 6; in pattern 2, only the right precentral gyrus, 
right middle frontal gyrus and right inferior parietal lobule are 
activated, which is complementary to the status of pattern 4. However, 
compared with subjects with AD, pattern 3 and pattern 5  in NC 
subjects have no complementary patterns, and two patterns of brain 
activity are missing. The nonconnected graph in the CEN of NC 
subjects is shown in Figure 2B4. Similarly, patterns 5 and 6 and patterns 

1 and 3 are neighboring, the energy required to jump between states 
with close branches is smaller, and two additional states with higher 
energy are observed. Overall, the structure of the CEN energy 
landscape for the AD and NC groups is similar to their DMN results.

Figure  2C1 shows 8 local minimal states corresponding to 
activation patterns in AD patients, which are represented by the 
combination of eight ROI activation states. All activation patterns in 
the figure are complementary. For example, in pattern 2, the left and 
right middle frontal gyrus and left cingulate gyrus are activated, while 
the remaining brain regions are not activated, which is complementary 
to the states of pattern 7. In pattern 3, only the left and right insula are 
activated, which is completely opposite to the state of pattern 6. 
Figure 2C2 shows the nonconnected graph of the local minimal states 
of AD patients, where pattern 1 and pattern 5, as well as pattern 4 and 
pattern 8, are adjacent to each other, and the energy of these four 
patterns is relatively low compared to the other patterns. Figure 2C3 
represents the 8 brain area activation patterns in the SN energy 
landscape of NC, which are completely consistent with the activation 
patterns of AD patients. The nonconnected graphs of the SN in NC 
subjects are shown in Figure 2C4, with pattern 1 and pattern 5, as well 
as pattern 4 and pattern 8 located adjacent to each other, and the 
energy of these two groups of patterns is significantly lower than the 
other four states. We infer that these four patterns potentially represent 
the major activity patterns in the resting-state SN of NC subjects. 
Overall, unlike the DMN and CEN, the results of the energy landscape 
analysis of the SN network in the AD and NC groups were less different.

3.2. Dynamic characterization of the 
triple-network activity patterns in the brain

Based on the accurately fitted energy landscape model mentioned 
above, some frequently occurring brain major states are sufficiently 

FIGURE 1

The process of energy landscape analysis. (A) extraction of ROI time series, (B) binarization of data, (C) calculation the frequency of appearance in each 
activity pattern, (D) fitting MEM (E) construction of energy landscape (F) construction of non-connected graph.
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representative of the resting-state brain activity pattern. The energy 
landscape analysis revealed the hierarchical relationships between the 
2n states by calculating the energy values for all possible brain activity 
patterns and systematically searching for brain activity patterns with 
the lowest local energy values that play a dominant role and are more 
easily observed compared to others. This value is essentially a 
statistical indicator of the probability that each activity pattern occurs 

on a time scale. Patterns of activity with lower energy values tend to 
occur more frequently, and these patterns are considered relatively 
more stable.

The results of the study showed that the energy landscape of the 
triple networks of subjects in the AD and NC groups had a similar 
structure that was dominated by the activity patterns with 
complementary relationships. Moreover, both had two sets of 

FIGURE 2

The structure of the energy landscape is shown for DMN from AD patients and NC subjects (A1–A4), CEN (B1–B4), and SN (C1–C4). Comparing the 
three networks reveals that the differences between AD and NC are the least in SN and the greatest in DMN.

TABLE 5 Brain coordinates in the SN.

Number ROI Brain area BA MNI space

x y z

1 aSN1 Left Middle Frontal Gyrus 10 −32 45 26

2 aSN2 Left Insula 13 −41 15 −2

3 aSN3 Left Cingulate Gyrus 32 −2 17 45

4 aSN4 Right Middle Frontal Gyrus 10 28 43 26

5 aSN5 Right Insula 13 44 13 1

6 aSN6 Left Cerebellum / −33 −54 −42

7 aSN7 Right Cerebellum / 33 −55 −43
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neighboring and low-energy activity patterns. Meanwhile, the 
remaining patterns were relatively high in energy. This suggests that 
the other local minimal states were less stable than these four patterns, 
which all had similar activation patterns in the triple networks. For 
instance, patterns 1/4/5/8 in the DMN of AD patients was similar to 
patterns 1/2/4/5 in the ROI activation pattern of NC subjects.

Based on the classification of the triple-network brain activity 
states described above, we selected some common dynamic indicators 
to quantitatively represent the dynamic characteristics of the three 
networks in the subjects, which include the appearance frequency, 
transition frequency and duration.

First, we calculated the frequency of occurrence of each state in 
the fMRI time series and used it to quantify the dominance of different 
states. The comparison of the frequency of each state in the DMN 
between the AD and NC groups is shown in Figure 3A. Within a 
single group of subjects, the frequencies of major state 1 and major 
state 2 were much higher than that of the minor state. The proportion 
of the frequency of brain states in the DMN of AD patients was similar 
to that of NC subjects, and both showed a significantly higher 
proportion of major states than minor states. This finding is consistent 
with the results of the energy landscape analysis, where states with low 
energy appear more frequently in time, are more stable, and dominate 
the pattern of brain activity. In addition, for major state 1, the 
frequency of occurrence was 42.1% in AD patients and 47.6% in NC 
subjects, representing a significantly lower percentage in AD patients 
than in NC subjects (p < 10−8). Similarly, the frequency of major state 
2 was 43.5% in AD patients and 50.5% in NC subjects, which was 
significantly lower in AD patients than in NC subjects (p < 10−12). 
However, the frequency of the minor state in the AD group was 14.4%, 
while the frequency in the NC group was 1.8%, representing a 
significantly higher frequency in the AD group than in the NC group 
(p < 10−25).

Figure 3C shows the comparison of the frequency of each state in 
the CEN between the AD and NC groups. Within a single group of 
subjects, the proportions of the frequencies of major state 1 and major 
state 2 were significantly higher than that of the minor state. The 
proportions of the frequencies of CEN brain states in AD patients was 
similar to that in NCs, both showing a significantly higher proportion 
of major states than minor states. Similarly, for major state 1, the 
frequency of occurrence was 40.2% in AD patients and 44.9% in NC 
subjects, and was significantly lower in AD patients than in NC 
subjects (p < 10−4). The frequency of major state 2 was 38.8% in AD 
patients compared with 43.1% in NC subjects, and was significantly 
lower in AD patients than in NC subjects (p < 10−3). In addition, the 
frequency of the minor state was 21.1% in the AD group compared 
with 11.9% in the NC group, representing a significantly higher 
frequency in the AD group than in the NC group (p < 10−6). The 
results of this analysis were generally similar to those obtained for the 
DMN network.

Figure 3E shows the frequency results for each state in the SN 
between the AD and NC groups. Within a single group of subjects, the 
frequency proportions of major state 1 and major state 2 were 
significantly higher than those of the minor state. For different groups 
of subjects, a significant difference was not observed between groups 
in the frequency of major state 1, which was different from the results 
obtained for the first two networks (p = 0.9026). In addition, the 
frequency of major state 2 was significantly lower in patients with AD 
than in NC subjects (p < 10−6), and the frequency of major state 2 was 

37.5% in patients with AD and 42.9% in NC subjects. In contrast, the 
frequency of minor states was significantly higher in AD patients than 
in NCs (p < 10−3), as the frequency of minor states was 22.2% in AD 
patients and 16.8% in NC subjects.

The aforementioned results indicate that the frequency of major 
brain states in AD patients is significantly lower than that in NC 
subjects, while the frequency of minor states is significantly higher 
than that in NC subjects. We further analyzed the dynamics of brain 
activity states by calculating and visualizing the transition frequency 
matrices between different brain activity states in the triple networks 
of the AD and NC groups. The transition frequency matrix of the 
DMN is shown in Figure 4C, and it depicts that the activity pattern 
transitions in both the AD and NC groups are mainly concentrated 
between the two major states. The difference is that the transition 
frequency between the minor state and the major state is higher in 
patients with AD, while it is approximately 0 in NC subjects.

The transition frequency matrix between different brain states of 
the CEN is shown in Figure 4D, and it indicates that although the 
activity state transitions in both the AD and NC groups were mainly 
concentrated between the two major states, the concentration trend 
was more obvious in NC subjects. Meanwhile, the transition frequency 
between the minor state and major states was significantly higher in 
AD patients.

The transition frequency matrix between different brain states of 
the SN network is shown in Figure 4E. Compared with the first two 
networks, the transition frequency between the minor state and major 
states was significantly increased for both groups. However, the active 
state transitions of NC subjects were still mainly concentrated between 
the two major states, while patients with AD had similar transition 
frequencies between the minor state and major states compared to the 
two major states.

In summary, the results showed that the minor state was less 
frequent in both AD patients and NC subjects, and the transition 
frequency from the minor state was also low. Therefore, we classified 
the transitions of brain activity states into the following two types: 
direct transitions between major states only and indirect transitions 
between the two major states through the minor state. For simplicity, 
we refer to the minor state as the intermediate state between the major 
states, which mainly appears in the jump transition between major 
states. The two types of state transitions are defined in Figure 4B.

Based on this definition, we further calculated the frequency of 
direct transitions between major states and the frequency of indirect 
transitions between major states through minor states and compared 
the statistical analysis of AD patients with NC subjects. The 
comparison of the transition frequencies between major states in the 
DMN for both groups is shown in Figure 5A. The direct transition 
frequencies were higher than the indirect transition frequencies in 
both the AD and NC groups. However, the direct transition frequency 
between major states was significantly lower in AD patients than in 
NC subjects (p < 10−8), being 19.9% in AD patients and 27.6% in NC 
subjects. In contrast, the indirect transition frequency for major states 
was significantly higher in subjects with AD than in NC subjects 
(p < 10−21), being 6.8% in the AD group compared to 0.9% in the 
NC group.

The comparison of the transition frequencies between major states 
in the CEN for both groups is shown in Figure  5C. The direct 
transition frequency of major states in the CEN was 17.4% in AD 
patients and 21.9% in NC subjects, which was significantly lower in 
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AD patients than in NC subjects (p < 10−3). Conversely, the frequency 
of indirect transitions between major states was 7.5% in patients with 
AD compared to 4.4% in NC subjects, and the value of the AD group 
was significantly higher than that for the NC group (p < 10−5).

The comparison of the transition frequencies between major states 
in the SN for both groups is shown in Figure 5E. The direct transition 
frequency of the SN was 15.9% in AD patients and 18.5% in NC 

subjects, indicating a significantly lower value for AD patients than for 
NC subjects (p = 0.0048). In contrast, the indirect transition frequency 
of the major state was 8.5% in the AD group compared to 7.2% in the 
NC group, where the value of the AD group was higher than that of 
the NC group (p = 0.025).

The state transition frequency difference in the three networks was 
similar in both groups, with lower direct transition frequencies and 

FIGURE 3

The frequency of different brain states in DMN between AD and NC in empirical data is compared in (A). In simulation, the frequency of appearance for 
each state in DMN is shown in (B). The frequency of appearance of each state in CEN is presented in (C,D) for empirical data and simulation, 
respectively. Similarly, the frequency of appearance of each state in SN is shown in (E,F) for empirical data and simulation. Although no significant 
difference is observed between the two types of data, there are significant differences between AD and NC, and these differences have varying degrees 
in the three networks. ***p < 0.001 in t-test.
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higher indirect transition frequencies in AD patients compared to NC 
subjects. However, within the AD group, the direct transition 
frequencies were significantly higher than the indirect transition 
frequencies. This abnormal state transition indicates that the brain 
activity states of AD patients tend to remain in minor states for a longer 
time than those of NC subjects. We  confirmed this inference by 
subsequently calculating the duration of brain activity patterns in the 
three states, where this index was the average duration of each state over 
the time series, quantified as the mean length of repetition over time. 
The unit of duration is step of TR, shortened to s. The comparison of 
the mean duration in the DMN between both groups is shown in 
Figure 6A. The duration of both major states in the AD group was 
significantly smaller than that of the NC group, where the mean 
duration of major state 1 was 2.78 s in patients with AD and 3.23 s in 
NC subjects (p = 0.0019), and the mean duration of major state 2 was 
2.76 s in patients with AD and 3.51 s in NC subjects (p < 10−8). However, 
the duration of the minor state in AD patients was significantly longer 

than that in NC subjects, with a mean duration of 1.27 s in AD patients 
and 0.88 s in NC subjects (p < 10−4). The comparison of the mean 
duration in the CEN between both groups is shown in Figure 6C. The 
duration of both major states in the AD group was significantly smaller 
than that in the NC group, where the average duration of major state 
1 in patients with AD was 2.62 s and 3.03 s in NC subjects (p = 0.0011); 
the average duration of major state 2 in the AD group was 2.49 s and 
2.83 s in the NC group (p = 0.0017). Unlike the results for the DMN, the 
duration of the minor state in the CEN of AD patients was not 
significantly different from that of NC subjects, with a mean duration 
of 1.51 s in AD patients and 1.42 s in NC subjects (p = 0.18). Figure 6E 
shows the comparison of the mean duration of states in the SN between 
both groups. The mean duration of major state 1 was 2.56 s in AD 
patients and 2.59 s in NC subjects, which were not significantly different 
(p = 0.74); the mean duration of major state 2 was 2.47 s in AD patients 
and 2.81 s in NC subjects, and was significantly smaller in the AD group 
than in the NC group (p = 0.0024). In addition, the duration of the 

FIGURE 4

Dynamics of brain activity patterns. We performed a 105 random-walk numerical simulation to characterize the dynamics in brain states for each 
network of AD and NC (A). A schematic diagram showing different types of transitions between brain activity states is presented. We divide the 
transition pattern of major states into direct and indirect forms (B). The transition frequency matrix between different brain states of DMN (C). The 
transition frequency matrix in CEN (D). The transition frequency matrix in SN (E). The three networks have different degrees of difference.
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minor state in AD patients was longer than that in NC subjects 
(p = 0.017), and the average duration of the minor state was 1.47 s in AD 
patients and 1.35 s in NC subjects.

Compared to the NC group, brain activity in the AD group was 
characterized by a shorter duration in major states and a significantly 
longer duration in transition states, but the duration of major states 
was significantly longer than that of transition states within the AD 

group. Notably, the duration of each state in the triple networks 
differed to varying degrees, with the DMN differing most significantly, 
followed by the CEN and SN.

In conclusion, compared with the NC group, the AD group has a 
higher frequency and duration of minor states and a higher frequency 
of indirect transitions, which indirectly reflects the abnormal dynamic 
characteristics of brain activity states in individuals with AD.

FIGURE 5

In the empirical data, the comparison of transition frequencies between major states in DMN (A). In the simulation, the transition frequencies in DMN 
(B). The transition frequencies between major states in CEN from empirical data and simulation (C,D). The transition frequencies in SN from empirical 
data and simulation (E,F). We can find that the empirical value is greater than the simulation value, and there are different degrees of variability in AD 
and NC among the three networks. *p < 0.05, **p < 0.01, ***p < 0.001 in t-test.

84

https://doi.org/10.3389/fnins.2023.1171549
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1171549

Frontiers in Neuroscience 12 frontiersin.org

3.3. Random-walk simulation of the 
dynamics of the energy landscape

We performed 105 random walk data simulations to characterize 
the dynamic changes in the brain states of the AD and NC groups, as 
shown in Figure 4A. The variability of dynamic changes in brain states 
differed among the three networks, with the most significant difference 
noted in the DMN, followed by the CEN, and the least significant 
difference detected in the SN. Compared with patients with AD, the 
frequency of major states in the DMN of NC subjects was extremely 
high, but the frequency of minor states was low. In the CEN, the 

frequency of minor states in NC subjects is increased, but there was 
still a gap compared with AD patients. In the SN, the difference 
between the NC and AD groups was significantly reduced, and the 
frequency of each state was similar. The SN usually plays a moderating 
and transitional role between the DMN and CEN; thus, 
we  hypothesized that the coordination relationship between the 
networks of dynamic brain systems in patients with AD might be less 
affected by the disease.

We characterized the dynamics of three core networks related to 
cognitive functions in AD and NC groups based on the energy 
landscape. Based on the results, the energy landscape structures of 

FIGURE 6

The comparison of empirical data on state duration in DMN (A). The comparison of simulated data for state duration in DMN (B). The state duration of 
each state in CEN from empirical data and simulation (C,D). The state duration in SN from empirical data and simulation (E,F). It can be found that the 
empirical value is smaller than the simulated value, and there are different degrees of variability in AD and NC among the three networks. *p < 0.05, 
**p < 0.01, ***p < 0.001 in t-test.
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the AD and NC groups are similar, the tree-like branching structures 
of the nonconnected graph have two sets of adjacent and relatively 
low energy local minimal states, and some similarity in the activation 
patterns of the three networks is observed between the two groups. 
Nevertheless, the results of the energy landscape analysis and the 
differences in dynamic characteristics of the AD and NC groups 
were significant. We analyzed three dynamic characteristics. The first 
characteristic is the appearance frequencies of different brain states, 
as shown in  Figure 3B, Figure 5B and Figure 6B. In both the AD and 
NC groups, all three networks showed a significantly higher 
frequency of major states over time than minor states, while the 
frequency of major states in patients with AD was lower than that in 
NC subjects, which was also evident from the transition frequency 
matrix between the different brain activity states. Thus, the activity 
of minor states in patients with AD increased and the total number 
of appearances of major states decreased significantly in the same 
time period. The second feature is the frequency of different 
transition modes of the major state, as shown in Figure  3D, 
Figure 5D and Figure 6D. The direct transition frequencies between 
the major states in patients with AD are all lower than those of NC 
subjects. In contrast, their indirect transition frequencies are 
significantly higher than NC subjects. Therefore, the minor state of 
patients with AD, which functions as a transition state, affects the 
stability of the switching between the major states, and thus the 
direct switching between the major states is more easily interrupted 
by the appearance of the minor states. Finally, we  analyzed the 
average durations of the three networks in the AD and NC groups, 
and the results in Figure 3F, Figure 5F and Figure 6F showed that the 
average durations of the two major states in patients with AD were 
less than those in NC subjects. Combining the results for these three 
characteristics, we propose that the major states in patients with AD 
showed instability phenomena, which might arise from the abnormal 
minor states. The total number of minor state appearances increased 
on the time scale, the AD group was more likely to jump from the 
major state to the minor state, and the duration of each minor state 
appearance increased. Based on these results, the brain regions 
associated with the minor state are more likely to be activated, and 
the activation level is increased and more persistent, disrupting the 
original steady state.

3.4. Study of the correlation between 
triple-network dynamic characteristics and 
clinical MMSE scores

We further explored whether the abnormal dynamic 
characteristics of the triple-network brain activity states in patients 
with AD are related to the disease by analyzing the dynamic indicators 
in combination with the subjects’ clinical behavioral data, the scores 
of which range from 0–30 points, with lower scores representing a 
more severe intellectual impairment. In the figure, R represents the 
correlation coefficient, and P represents the level of significance of 
the correlation.

We first calculated the correlation between the appearance 
frequencies of each state in patients with AD and the MMSE scores. 
The results for the DMN are shown in Figure 7A. The frequency of 
appearance of both major states had a significant positive correlation 
with the MMSE score (R = 0.484, p < 10−4; R = 0.606, p < 10−7). In 

contrast, the frequency of the minor state was significantly negatively 
correlated with MMSE scores (R = − 0.724, p < 10−12). The correlation 
between the frequency of each state in the CEN of patients with AD 
and the MMSE score is shown in Figure 7B. The frequencies of both 
major states were positively correlated with the MMSE score 
(R = 0.475, p < 10−4; R = 0.335, p = 0.004). In contrast, the frequency 
of the appearance of the minor state was significantly negatively 
correlated with the MMSE score (R = −0.494, p < 10−4). The 
correlation between the frequency of each state in the SN of AD 
patients and MMSE scores is shown in Figure 7C. No correlation was 
observed between the frequency of major state 1 and the MMSE 
score (R = 0.042, p = 0.724), but a significant positive correlation was 
observed between the frequency of major state 2 and the MMSE 
score (R = 0.528, p < 10−5). In contrast, the frequency of the minor 
state was negatively correlated with the MMSE score (R = −0.389, 
p = 0.001).

Second, we calculated the correlation between the transition 
frequency of patients with AD and the MMSE score. The result for 
the DMN is shown in Figure 8A. The direct transition frequency was 
significantly positively correlated with the MMSE score (R = 0.548, 
p < 10−6). In contrast, a significant negative correlation was detected 
between the indirect transition frequency and MMSE score 
(R = –0.736, p < 10−12). The correlation between the frequency of 
transitions in the CEN and the MMSE score is shown in 
Figure 8B. The frequency of the direct transition in patients with AD 
was positively correlated with the MMSE score (R = 0.336, p = 0.004). 
In contrast, the indirect transition frequency had a negative 
correlation with the MMSE score (R = −0.421, p < 10−3). The 
correlation analysis between the frequency of transitions in the SN 
and the MMSE score is shown in Figure 8C. The frequency of the 
direct transition in patients with AD was positively correlated with 
the MMSE score (R = 0.416, p < 10−3). The indirect transition 
frequency, on the other hand, had a negative correlation with the 
MMSE score (R = −0.329, p = 0.005). The correlations between each 
transition frequency and the MMSE score were similar for the 
three networks.

Finally, we analyzed the correlation between the mean duration of 
states in patients with AD and the MMSE score, and the results for the 
DMN are shown in Figure  9A. The correlation between the mean 
duration of major state 1 and the MMSE score was not significant 
(R = 0.194, p = 0.103), but the mean duration of major state 2 displayed a 
significant positive correlation with the MMSE score (R = 0.459, p < 10−4). 
In contrast, the mean duration of the minor state was significantly 
negatively correlated with the MMSE score (R = −0.363, p = 0.002). 
Notably, due to the low frequency of the minor state in patients with AD, 
some outliers in their mean duration (duration close to 0) are present, 
which may have affected the results of the correlation analysis. The 
correlation analysis between the duration in the CEN of patients with AD 
and the MMSE score is shown in Figure 9B. Unlike the previous results, 
the mean durations of both major states in the CEN were positively 
correlated with the MMSE score (R = 0.352, p = 0.002; R = 0.302, p = 0.01). 
A weaker negative correlation was observed between the duration of the 
minor state and MMSE score (R = −0.168, p = 0.158). The correlation 
analysis between the mean duration in the SN of patients with AD and 
the MMSE score is shown in Figure 9C. The mean duration of major state 
1  in patients with AD was not correlated with the MMSE score 
(R = −0.055, p = 0.644), whereas the mean duration of major state 2 was 
weakly positively correlated with the MMSE score (R = 0.257, p = 0.029). 
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In addition, a weaker negative correlation was observed between the 
duration of the minor state and the MMSE score (R = −0.259, p = 0.028).

4. Discussion

4.1. Time-varying characteristics of the 
triple-network dynamics in the resting 
brain

In the present study, we  explored the differences in dynamic 
characteristics of three networks in the resting brain between the AD 
and NC groups by conducting an energy landscape analysis. In all 
three networks, the brain activity patterns of patients with AD lacked 
a more stable major state compared to NC subjects, while the minor 
state was more active. This property may cause frequent switching in 

resting-state brain activity patterns between different substates, 
increasing the frequency of transitions between major and minor 
brain states, and the occurrence of minor states is significantly higher. 
Patients with AD experience difficulty in focusing on the major state 
for a long time and lose stability of the three networks.

According to previous studies of the normal ageing process of the 
brain, its internal balance system actively inhibits the effects of various 
genetic and environmental factors, whereas the balance system fails in 
patients with neurodegenerative diseases such as AD. The instability 
of spontaneous neuronal activity in cortical and hippocampal circuits 
is a typical feature of AD (Palop et al., 2007; Frere and Slutsky, 2018). 
Researchers observed a strong correlation between the formation of 
amyloid plaques, the appearance of overactive neurons and the 
impairment of learning abilities in animals. By performing functional 
studies of individual cortical neurons in a mouse model of AD, 
researchers found that the presence of overactive neurons near 

FIGURE 7

The correlation between the frequency of each state and MMSE in DMN (A1–A3). The correlation between the frequency of each state and MMSE in 
CEN (B1–B3). The correlation between the frequency of each state and MMSE in SN (C1–C3). It can be found that the frequency of appearance and 
MMSE are correlated, and the correlation is most significant in DMN.
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amyloid plaques accounted for 50% of neurons, which was 16 times 
more than that in normal mice. This phenomenon causes serious 
dysfunction of the neural network of AD mice (Busche et al., 2008). 
Impaired synaptic function and decreased neural plasticity are the 
early symptoms of AD and are closely related to the decline in 
cognitive ability. Based on a study using transcranial magnetic 
stimulation, cortical inhibition is weakened in AD patients, and the 
cortical excitability is significantly higher than that of elderly 
individuals with normal cognition. Lower cognitive performance is 
significantly associated with higher cortical excitability and lower 
inhibition (Spires-Jones and Knafo, 2012; Chou et al., 2022). These 

results are consistent with the findings from our study that the stability 
of major states in the network associated with cognitive function is 
disrupted in patients with AD compared with normal subjects, and 
the patient’s brain is unable to easily suppress this active abnormal 
activity. In recent years, Ma et al. have used co-activation pattern 
analysis to study the AD brain and found that the increase in transition 
and CAP entropies and the diversity of CAP transition probabilities 
suggest variable information flow and higher system uncertainty Ma 
et al. (2020). Our study has also revealed that the triple-networks of 
AD patients exhibit decreased main state occurrence, increased minor 
state occurrence, and increased system instability, which is consistent 

FIGURE 8

The correlation of transition frequencies between major states and MMSE in DMN (A1,A2). The correlation of transition frequencies between major 
states and MMSE in CEN (B1,B2). The correlation of transition frequencies between major states and MMSE in SN (C1,C2). It can be found that the 
frequencies of different transition methods are significantly correlated with MMSE, and the degree of correlation is different for the three networks.

88

https://doi.org/10.3389/fnins.2023.1171549
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1171549

Frontiers in Neuroscience 16 frontiersin.org

with the previous study. Sendi et al. observed during normal brain 
development toward very mild AD that there were significant 
interruptions in all states, and that connectivity of multiple networks, 
such as the subcortical, auditory, and visual networks, decreased 
(Sendi et  al., 2021). Recombination patterns were also found in 
connections within and between multiple networks. Similarly, our 
results show changes in the energy landscape of different states in AD 
patients when compared to those of NC individuals. This suggests a 
network reorganization may be occurring in AD patients. Ghanbari 
et al. employed a sliding window method to estimate the dynamic 
functional connectivity (dFC) of each network, from which they 
extracted the Mean of Redundancy (MOR) and Fluctuation of 
Redundancy (FOR) features. Statistical analysis based on these 
features revealed that redundancy significantly increased in AD 

patients compared to NC individuals (Ghanbari et al., 2023). Our 
study also found that the stability of the main state decreased, while 
the indirect switching increased in AD patients, which may account 
for the increase in redundant dynamic characteristics.

Therefore, we considered that all three core networks associated 
with cognitive function are affected by AD-related disorders. Previous 
studies have observed varying degrees of damage to the three networks 
in AD patients, where the number of functional connections in the 
module is significantly reduced and closely related to 
cognitive impairment.

The DMN consists mainly of the posterior cingulate cortex (PCC), 
precuneus (PCu), and inferior parietal lobe (IPL) and is mainly 
associated with some higher cognitive functions of the brain, such as 
situational memory, visuospatial processing, and consciousness 

FIGURE 9

The correlation between the duration of each state and MMSE in DMN (A1–A3). The correlation between the duration of each state and MMSE in CEN 
(B1–B3). The correlation between the duration of each state and MMSE in SN (C1–C3). It can be found that there is a significant correlation between 
duration and MMSE, but the degree of correlation is not significant in SN.
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(Ciftci, 2011; Mohan et al., 2016). The DMN in the normal brain is 
characterized by a symmetrical, well-organized pattern (Raichle et al., 
2001). However, in the mild AD group, the symmetry or functional 
connectivity between interhemispheric homogeneous regions 
decreases in some disease-related functional networks. Patients with 
AD perform normally when using intrahemispheric processing but 
poorly when interhemispheric communication is needed. This loss of 
symmetry may reflect a state of cognitive decline and imbalance in the 
functional networks of the patient’s brain (Lee et al., 2009; Chen et al., 
2013). For example, the functional connectivity of the precuneus, 
posterior cingulate and medial frontal cortex in the DMN of patients 
with AD is reduced, and the correlation between nodes in the DMN 
is reduced (Palesi et  al., 2016). The CEN is the functional brain 
network associated with executive tasks, mainly comprising the 
dorsolateral prefrontal cortex (DLPFC) and the posterior parietal 
cortex (PPC), covering multiple medial-frontal regions, including the 
anterior and paracallosal cingulate, which are presumed to help 
process information related to working memory, decision-making and 
retention, and operational target detection (Ramezanzadeh et  al., 
2014; Wang et al., 2015). Compared to NC subjects, patients with AD 
exhibit enhanced functional connectivity in the suprafrontal gyrus 
(SFGmed.L) and middle frontal gyrus (MFG.L) regions of the CEN 
network, while the anterior cingulate cortex (ACG.R) region of the 
CEN shows reduced functional connectivity. These changes may 
contribute to impaired executive function (Jilka et al., 2014). The SN 
is similar to a “dynamic switch” network that plays a regulatory and 
transitional role, mainly comprising the ventral lateral prefrontal 
cortex (VLPFC) and the anterior cingulate cortex (ACC), and is 
proposed to play a key coordinating role between the CEN and the 
DMN (Ciftci, 2011; Brier et al., 2012). Functional connectivity within 
the SN is not significantly different between the NC and AD groups, 
but abnormal connectivity with the DMN and CEN occurs in AD 
patients (Wang et al., 2015).

However, among the three networks, the dynamic characteristics of 
the DMN and CEN were significantly different between the two groups 
compared with the SN. For example, the intermediate transition states of 
the DMN and CEN in the AD group are greater than those in the NC 
group, whereas the energy landscape constructed by the SN had high 
similarity, corresponding to the same pattern of brain area activation. In 
addition, group differences in the frequency and duration of major state 
1 were not found in the SN, and the differences in the probability of 
transitions between the major states were not as significant as in the other 
two networks. Our results indicated that the SN may be less affected by 
the disease, while the DMN and CEN are more severely damaged than 
the SN in the early stage of AD.

In clinical practice, AD usually begins with a situational memory 
impairment followed by a slow progression to wider impairments in 
daily activities such as attention, executive functioning, language, and 
visuospatial functioning, eventually leading to loss of independent 
daily living abilities (Dai et al., 2015). As mentioned above, the DMN 
plays a key role in cognitive processes, particularly in situational 
memory processing. Therefore, the DMN plays a central role in brain 
activity and connects other participating networks, indicating that AD 
pathology may spread from the DMN to nearby networks, including 
those involved in visual space and executive function, as well as other 
peripheral networks (Fair et al., 2008; Liu et al., 2018). Significant 
degeneration of functional connectivity has been observed within the 
DMN network in AD patients, with the bilateral angular gyrus (AG) 

identified as one of the typical areas. Additionally, both clusters of the 
right middle frontal gyrus and the superior frontal gyrus in the CEN 
related to the control of executive functions showed a significant 
decrease in functional connectivity (Sridharan et  al., 2008). In 
contrast, no significant differences in the functional connectivity of 
internal networks were observed in the SN of both the AD and NC 
groups (Zhu et  al., 2016). Compared with age-matched controls, 
individuals with early-onset AD showed lower functional connectivity 
in all networks, such as auditory, sensorimotor, and default mode 
networks, whereas patients with late-onset AD showed lower 
functional connectivity only in the DMN. Patients with early-onset 
AD have more extensive disorganization of brain function than those 
with late-onset AD (Hodges, 2006; Adriaanse et  al., 2014). These 
results support the hypothesis that the DMN is more severely impaired 
than the CEN and that the SN is less affected by the disease in 
AD patients.

4.2. Comparison of the dynamic 
characteristics based on random walk data 
simulations

We conducted 105random walk data simulations to characterize 
the dynamic changes in resting brain activity in the three networks of 
AD patients and NC subjects as an approach to verify our results. 
We analyzed the dynamic characteristics of the simulation data and 
compared them with the empirical data to verify the effectiveness and 
rationality of the energy landscape model. Through comparison, 
we found that the statistical results of the dynamic characteristics of 
the simulated data and empirical data were consistent. Based on the 
findings described above, we further confirmed that the SN is less 
affected by the disease. We verified that the energy landscape achieves 
a better description of the nonequilibrium process of switching 
between resting-state activity patterns in the brain, from which the 
stability and interactions of the states can be determined and the 
dynamics characteristics can be described in more detail. The method 
is also suitable for analyzing specific networks and ROI brain regions.

4.3. The relationship between the dynamic 
changes in the three networks and a 
cognitive index

We tested the correlation between the dynamic features that were 
significantly different in AD patients and the clinical index. The 
frequency of occurrence, frequency of state transitions and duration 
of the major states in the three networks of these subjects were 
correlated with the MMSE scores. The characteristics of major states 
were generally positively correlated with MMSE scores; the higher the 
score, the more stable the major states were. Meanwhile, the 
characteristics of minor states were negatively correlated with MMSE 
scores; the lower the score, the more active the minor states were. The 
degree of correlation differed among the three networks, with the 
DMN exhibiting the highest correlation with MMSE scores, followed 
by the CEN, and the weakest correlation was observed with the 
SN. Therefore, we  suggest that the abnormalities in the dynamic 
characteristics of the three networks of patients with AD are related to 
their cognitive impairment, with the DMN and CEN identified as 
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more strongly associated with cognitive impairment and the SN 
showing a weaker correlation.

Our research provides empirical evidence that AD patients are 
characterized by abnormally nonequilibrium large-scale brain network 
dynamics. Although previous neuroimaging studies have reported neural 
synchronization disorders in patients with AD and identified a unique 
variety of structural and functional whole-brain architectures, most 
studies have not directly studied brain dynamics (Uhlhaas and Singer, 
2006). In contrast, we  illustrate the time-varying characteristics of 
dynamic brain activity patterns in three core brain networks associated 
with cognitive function and directly report the link between abnormalities 
in nonequilibrium brain dynamics in patients with AD and their clinical 
cognitive performance. Given the results of previous studies, our current 
study may be  considered as providing additional empirical support, 
emphasizing the importance of studying brain dynamics to obtain a 
biological understanding of various developmental and psychiatric 
disorders and provide a deeper understanding of the intrinsic neural 
mechanism and system dynamics characteristics of the AD brain in the 
resting state.

5. Limitations and future work

We have studied and revealed the dynamic characteristics of 
functional network activity patterns in the resting brains of AD 
patients from the perspective of nonequilibrium dynamics. The data 
used in this study are derived from subjects included in a single 
database, and the number of samples used in this study is limited, 
including only 33 AD patients and 39 healthy subjects. In the future, 
other data sources and a larger sample size must be considered, as well 
as the inclusion of patients with mild cognitive impairment as an 
intermediate control group, which will help to improve the reliability 
of the research methods and results. Additionally, the analysis 
performed in this study only used one clinical behavioral data point, 
the MMSE score of the subjects, and thus the study lacked 
comprehensiveness. Thus, we need to include more clinical behavioral 
data as indicators for the correlational analysis to increase the 
persuasiveness of the findings and conclusions. Currently, various 
artificial intelligence (AI) techniques and advanced signal processing 
methods have been used for accurate diagnosis of mental illnesses 
such as AD, Schizophrenia (SZ), and ASD (Khodatars et al., 2021; 
Sadeghi et al., 2022; Illakiya and Karthik, 2023). Combining dynamic 
indicators with deep learning can significantly reduce network 
training costs, which has become one of the hotspots in current 
research on mental illness diagnosis. We will continue to develop 
function magnetic resonance data analysis methods based on 
non-equilibrium dynamics in the future, and combine them with deep 
learning to strive for breakthroughs in the diagnosis of multiple 
neurological diseases such as AD and ASD.

6. Conclusion

The main focus of this paper was to perform an energy landscape 
analysis of three networks in the brains of patients with AD and NC 
subjects, to further characterize dynamics-related features based on 
the constructed energy landscape, and to observe the correlation 
between a series of dynamic characteristics and the clinical cognitive 

function of the subjects. In the Introduction section, we introduced 
the triple-network model and related background information, 
followed by the Methods, which described the extraction of the ROI 
time series and the most important method of the energy landscape 
analysis. Our study was divided into four parts. First, we compared the 
structure of the triple-network energy landscape between the two 
groups and then further explored the resting-state brain dynamic 
characteristics of the AD and NC groups. We confirmed our inference 
that AD brain activity patterns are in an abnormal nonequilibrium 
state, and the dynamics of patients with AD tend to be unstable, with 
an unusually high flexibility in switching between states. Then, 
we correlated the subjects’ dynamic features with clinical data and 
found that the atypical balance of large-scale brain systems in patients 
with AD is associated with abnormally active brain dynamics, which 
may explain the general cognitive impairment of patients. Finally, 
we simulated the dynamic changes in activity patterns using a random 
walk model and verified that the energy landscape analysis method 
can reveal the kinetic features in the model. The results of this paper 
are helpful for further understanding the intrinsic dynamic 
characteristics and pathological mechanism of the resting-state brain 
in AD patients.
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Acoustic neuroma is one of the most common tumors in the cerebellopontine 
angle area. Patients with acoustic neuroma have clinical manifestations of 
the cerebellopontine angle occupying syndrome, such as tinnitus, hearing 
impairment and even hearing loss. Acoustic neuromas often grow in the internal 
auditory canal. Neurosurgeons need to observe the lesion contour with the 
help of MRI images, which not only takes a lot of time, but also is easily affected 
by subjective factors. Therefore, the automatic and accurate segmentation 
of acoustic neuroma in cerebellopontine angle on MRI is of great significance 
for surgical treatment and expected rehabilitation. In this paper, an automatic 
segmentation method based on Transformer is proposed, using TransUNet as the 
core model. As some acoustic neuromas are irregular in shape and grow into 
the internal auditory canal, larger receptive fields are thus needed to synthesize 
the features. Therefore, we added Atrous Spatial Pyramid Pooling to CNN, which 
can obtain a larger receptive field without losing too much resolution. Since 
acoustic neuromas often occur in the cerebellopontine angle area with relatively 
fixed position, we  combined channel attention with pixel attention in the up-
sampling stage so as to make our model automatically learn different weights by 
adding the attention mechanism. In addition, we collected 300 MRI sequence 
nuclear resonance images of patients with acoustic neuromas in Tianjin Huanhu 
hospital for training and verification. The ablation experimental results show that 
the proposed method is reasonable and effective. The comparative experimental 
results show that the Dice and Hausdorff 95 metrics of the proposed method 
reach 95.74% and 1.9476 mm respectively, indicating that it is not only superior 
to the classical models such as UNet, PANet, PSPNet, UNet++, and DeepLabv3, 
but also show better performance than the newly-proposed SOTA (state-of-the-
art) models such as CCNet, MANet, BiseNetv2, Swin-Unet, MedT, TransUNet, and 
UCTransNet.
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1. Introduction

Acoustic neuroma is one of the most common tumors in the 
cerebellopontine angle area, accounting for about 85% of the tumors 
in this region. Although these tumors are typically non-life-
threatening, postoperative morbidity can be associated with injury to 
the facial nerve, cochlear nerve, cerebrospinal fluid leaks, and other 
wound complications. Permanent facial paralysis can occur in 3 to 5% 
of cases, and up to 22% of patients may experience cerebrospinal fluid 
leaks (North et al., 2022). Fortunately, the surgical mortality rate is 
low, with less than 1% of cases resulting in death (McClelland et al., 
2011). The main manifestation of acoustic neuroma is the thickening 
of the auditory nerve. Due to the limitation of bone canal, the tumor 
gradually grows to the cerebellopontine angle area with less resistance 
(Ling et al., 2016). The tumor originates from the vestibular part of the 
VIII pair of cranial nerves. The early lesions are small and often grow 
in the internal auditory canal. Neurosurgeons need to use Magnetic 
Resonance Imaging (MRI), which not only takes a lot of time, but also 
is susceptible to subjective factors. Therefore, it is of great significance 
to realize the automatic and accurate segmentation of acoustic 
neuroma. MRI has the characteristics of no bony artifacts, multi-
directional and multi angle imaging, clear anatomical structure and 
high-level resolution for tissues. It can clearly show the size, shape, 
edge contour, peritumoral edema and adjacent structural changes of 
tumor, providing information for the preoperative diagnosis of tumor. 
It has become a preferred method for the examination of space 
occupying lesions in cerebellopontine angle (Xiaoxia et al., 2014).

At present, in the medical field, manual segmentation is mainly 
used in brain tumor segmentation. Manual segmentation is to 
manually outline the tumor area in all tumor MRI image slices. 
Although manual segmentation is accurate, it is time-consuming, 
laborious and subjective, which is not conducive to the timely 
diagnosis and treatment of patients. Therefore, scholars have been 
exploring automatic segmentation methods. In the early stage, people 
mainly focused on traditional segmentation methods, such as 
threshold segmentation (Xiaobo et al., 2019), watershed segmentation 
(Yongzhuo and Shuguang, 2018), region segmentation (Qiulin and 
Xin, 2018). There are also more complex segmentation methods based 
on statistical shape model [6] and graph cut (Corso et  al., 2008). 
Despite the high speed of these segmentation methods, its result 
depends on the parameters specified by the user and the preprocessing 
of MRI images (Lingmei et  al., 2020), which greatly limits its 
generalization ability.

With the rapid development of artificial intelligence in recent 
years, deep learning methods have been successfully applied to the 
field of medical images. Deep learning models solve the problems of 
poor accuracy and strong dependence on data in traditional automatic 
segmentation methods, such as threshold segmentation, region 
segmentation, and clustering segmentation, and have made great 
progress in medical image segmentation. AlexNet (Krizhevsky et al., 
2017), VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy 
et al., 2014), ResNet (He et al., 2016), DenseNet (Huang et al., 2016), 
and other deep and wide network structures have been proposed one 
after another to learn deeper data features. UNet (Ronneberger et al., 
2015) is a network structure proposed by Ronneberger et al. in 2015, 
which was originally applied in the field of biomedical cell 
segmentation. In 2019, Mumtaz et al. used a new method based on 3D 
fully convolutional neural networks (FCNNs; Shelhamer et al., 2016) 

and a 3D level set segmentation algorithm to classify and segment 
colon and rectal cancer. Their accuracy was 0.9378, which was 0.0755 
lower than the previous accuracy of 0.8623 (Soomro et al., 2018). 
Cuixia et al. (2019) discussed and compared various classification 
models for breast tumors using deep learning in 2019 and proposed a 
novel method that combines deep learning features. Deep learning is 
also widely applied in brain tumor segmentation. Thillaikkarasi and 
Saravanan (2019) proposed a brain tumor segmentation algorithm 
using a support vector machine to extract features and CNN 
segmentation in 2019, resulting in an accuracy of 84%. Dong et al. 
(2017) used UNet to segment MRI images of brain tumors and 
achieved good results by splicing feature vectors of the expansion path 
and contraction path through skip connections. Lingmei et al. (2020) 
improved the UNet structure in 2020 and applied it to the 
segmentation of glioma magnetic resonance images. Specifically, they 
used an attention module on the contraction path of UNet to 
distribute weight to convolution layers of different sizes, promoting 
the utilization of spatial and contextual information. Replacing the 
original convolution layer with the residual compact module can 
extract more features and promote network convergence. In 2021, 
Russo et al. (2020) applied a spherical transformation preprocessing 
input training model, which was better than the Descartes input 
training model in predicting glioma tumor core segmentation and 
enhancing tumor category. The two models were combined to further 
improve prediction accuracy.

Undoubtedly, CNN represents a very promising method for image 
processing. However, its convolution operation has limitations, 
especially for samples with large texture differences, resulting in weak 
performance. In recent years, scholars have proposed several solutions 
to address this issue. For instance, Chen et al. (2014) introduced the 
Atrous Spatial Pyramid Pooling (ASPP) module in DeepLabv3+ 
(Chen et al., 2018a) after several generations of improvements (Chen 
et al., 2017, 2018b). The addition of ASPP into CNN enables atrous 
convolution to expand the vision field of the filter without increasing 
computational demand. Therefore, ASPP can obtain feature 
information of different scales without using a pooling layer, 
overcoming the limitations of local information loss caused by grid 
effect and the lack of correlation between long-distance information 
when using a single atrous convolution. Moreover, some studies 
suggest building a self-attention mechanism based on CNN features 
(Wang et al., 2017) as an effective means to solve the limitations of 
convolution operations. This method has also garnered much 
attention in the field of artificial intelligence. For instance, Tian et al. 
(2020) used channel attention in ADNet to accurately extract useful 
information hidden in the complex background. Huang et al. (2020) 
proposed the Criss-cross attention module in CCNet to capture 
contextual information of the complete image. Fan et  al. (2020) 
introduced the self-attention mechanism in 2020 and proposed Multi-
scale Attention Net (MA-Net).

Furthermore, Transformer has emerged as an alternative 
architecture designed for sequence-to-sequence prediction, and its 
success has been widely demonstrated in various fields such as 
machine translation and natural language processing (NLP; Vaswani 
et al., 2017; Devlin et al., 2018). In various image recognition tasks, 
Transformer has proven to reach or even exceed the state-of-the-art 
(Zheng et al., 2020; Dosovitskiy et al., 2021). For example, Chen et al. 
(2021) combined Transformer as a powerful encoder for medical 
image segmentation tasks with UNet in 2021, proposing TransUNet 
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as a powerful alternative for medical image segmentation. Yang et al. 
added an attention mechanism to TransUNet (Yang and Mehrkanoon, 
2022), showing that the combination of attention mechanism and 
TransUNet can optimize the segmentation effect. Subsequently, 
Valanarasu et  al. proposed the MedT (Valanarasu et  al., 2021) 
containing Local–Global (Logo) training strategy based on 
Transformer, which further improved the model’s performance. Cao 
H et al. fused high-resolution features from different scales of the 
encoder by skip connections, and Swin-Unet (Cao et al., 2021) was 
proposed to mitigate the loss of spatial information due to the 
pooling operation.

It is worth noting that acoustic neuromas have different shapes 
and may grow into the inner auditory canal, which is challenging for 
accurate feature extraction. We believe that the combination of ASPP, 
attention mechanism and Transformer can solve this challenge well. 
Therefore, we  propose a novel model called ACP-TransUNet for 
accurate segmentation of acoustic neuromas, with TransUNet as the 
core framework. Specifically, the ASPP module is added to increase 
the receptive field, enabling more accurate and noticeable extraction 
of tumor features during the segmentation process. We  also 
incorporate the CPAT module, which combines channel attention (Jie 
et al., 2019) and pixel attention (Zhao et al., 2020) to better explore 
channel and pixel features of acoustic neuromas while recovering the 
original input image size. The use of feature multiplication between 
attentions enhances the ability of feature representation and improves 
the feature propagation strategy, resulting in higher performance 
under the same computational load (Zhao et al., 2020; e.g., RCAN, 
Zhang et al., 2018; CARN, Ahn et al., 2018). By arranging the channel 
attention and pixel attention sequentially, we  aim to improve the 
feature extraction capability of ACP-TransUNet.

Our main contributions are as follows:

 1. Our proposed ACP TransUNet combines Transformer and 
CNN to capture the global and local features of the 
segmentation target.

 2. In the down-sampling process, the ASPP module is added after 
the convolutional neural network to gain contextual 
information at multiple scales and resolutions.

 3. In the up-sampling process, channel attention and pixel 
attention are used to improve model performance and accuracy 
by weighting important features.

2. Related works

2.1. TransUNet

UNet has become the most commonly used method to accurately 
segment lesions in medical segmentation tasks, and Transformer has 
also become a structural system that replaces the self-attention 
mechanism. TransUNet combines Transformer with UNet as a 
powerful alternative for medical image segmentation, possessing the 
advantages of both. To compensate for the loss of feature resolution due 
to Transformers, TransUNet adopted a hybrid CNN-Transformer 
architecture to exploit the detailed high-resolution spatial information 
of CNN features and the global context encoded by Transformers. 

Inspired by U-Shape, the attention features encoded by Transformers 
are combined with different high-resolution CNN features during 
upsampling to achieve precise localization. This design enables the 
model to preserve the advantages of Transformer and also facilitates 
the segmentation of medical images. On the one hand, Transformer 
encodes the tokenized image patches of the convolutional neural 
network (CNN) feature map as an input sequence for feature 
extraction; on the other hand, the decoder up-sampling the encoded 
features, and then combines them with the feature map in CNN to 
achieve accurate positioning (Chen et al., 2021). Currently, TransUNet 
and its variants have achieved great success in image segmentation. 
Nurçin used TransUNet for the segmentation step of the red blood cells 
to improve the segmentation quality of overlapping cells (Nurçin, 
2022). MS-TransUNet++ (Wang et al., 2022) employed a multi-scale 
and flexible feature fusion scheme between different levels of encoders 
and decoders to achieve competitive performance in prostate MR and 
liver CT image segmentation. Liu et al. proposed an efficient model 
called TransUNet+ (Liu et  al., 2022) through a redesigned skip 
connection, which has achieved promising results in medical image 
segmentation. Wang et al. proposed UCTransNet (Wang et al., 2021), 
which used the CTrans block to replace the skip connection in U-Net 
and obtained a higher segmentation effect. DS-TransUNet (Lin et al., 
2022) applied swin transformer block (Liu et al., 2021) to encoder and 
decoder. This may be the first attempt to combine the advantages of 
layered Swin Transformer into both encoder and decoder of standard 
U-shaped architecture with the aim of improving the segmentation 
quality of different medical images. In TransAttUnet (Chen et  al., 
2021), multilevel guided attention and multiscale skip connection were 
co-developed to effectively improve the functionality and flexibility of 
the traditional U-shaped architecture. Zhao et  al. proposed an 
automatic deep learning pipeline nn-TransUNet (Zhao et al., 2022) for 
cardiac MRI segmentation by combining the experimental planning of 
nn-UNet and the network architecture of TransUNet. EG-TransUNet 
(Pan et  al., 2023) used progressive enhancement module, channel 
spatial attention, and semantic guidance attention to be able to capture 
object variability on different biomedical datasets. In summary, the 
architecture of TransUNet combines the advantages of Transformer 
and CNN, which is not only good for local information extraction, but 
also can explore long-range modeling.

2.2. Channel attention

Channel attention was first proposed in SE-Net and achieved 
excellent performance. In CBAM (Woo et  al., 2018), channel 
attention has been improved significantly. Specifically, channel 
attention compresses the feature of spatial dimension, i.e., each 
two-dimensional feature map becomes a real number, which is 
equivalent to the pooling operation with global receptive field. The 
number of feature channels remains unchanged, and the module 
structure is shown in Figure 1. Channel attention aggregates spatial 
information of feature maps based on global average pooling 
AvgPool F( ) and maximum pooling MaxPool F( )  operations, 
generating two different spatial context descriptors: Favg

c  and Fc
max , 

representing average pool features and maximum pool features, 
respectively. After adding the two feature maps of the multilayer 
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perceptron (MLP), the Sigmoid function is used to generate channel 
feature map, as follows in Eq. (1):

 

M F (MLP AvgPool F
MLP(MaxPool(F)))
W W F W

C

avg
c

( ) = +
=

+

σ
σ

( ( ))

( ( ( ))1 0 11( )))maxFc
  

(1)

where Ã represents the Sigmoid function, W0 and W1 represent the 
two convolution operations, respectively, and Favg

c  and Fc
max  represent 

the average pooling and max pooling, respectively. Sigmoid function can 
map the result to 0–1 with the amplitude unchanged, so we can get the 
weight of each feature point of the input channel feature layer.

In recent years, channel attention has been widely used to solve 
medical challenges. Yuan et al. improved the accuracy of automatic vessel 
segmentation in fundus images by embedding an adaptive channel 
attention module to automatically rank the importance of each feature 
channel (Yuan et al., 2021). Du et al. applied channel attention to the 
automatic segmentation of early gastric cancer (EGC) to extract subtle 
discriminative features of EGC lesions by capturing the interdependence 
between channel features (Du et al., 2023). In addition, channel attention 
paired with other excellent attention mechanisms can also improve the 
quality of super-resolution reconstruction of medical images. Song et al. 
and Zhu et al. obtained high-quality reconstructed images for glioma 
MRI images and lung cancer CT images, respectively (Zhu et al., 2022; 
Song et al., 2023). Therefore, channel attention has great potential in the 
field of medical image processing.

2.3. Pixel attention

The channel attention aims to obtain a 1 1 1D C × ×( )  vector of 
attentional features. In contrast, pixel attention (Zhao et al., 2020) is able 
to generate 3D C H W× ×( ) matrices as attention features. Note that C is 
the number of channels, and H  and W  are the height and width of the 
features, respectively. Specifically, pixel attention generates attention 
coefficients for all pixels of the feature map. As shown in Figure 2, pixel 
attention uses only 1 × 1 convolutional layers and Sigmoid functions to 
obtain the attention map, and then multiplies the attention map with the 
input features, as follows in Eq. (2):

 
M F f FP PA′ ′( ) = ( )( )×σ 1 1

  
(2)

where Ã represents the Sigmoid function and fPA
1 1×  represents a 

convolution operation with the filter size of 1 1× .
Pixel attention not only reduces the number of parameters, but 

also eliminates unnecessary pooling operations that can lead to image 
smoothing (Tang et  al., 2021). Relying on this advantage, pixel 
attention is widely used in the field of medical images for segmentation 
(Roy et  al., 2022) and super-resolution reconstruction tasks 
(Rajeshwari and Shyamala, 2023).

3. Methods

3.1. Overview

In this section, we  describe our ACP-TransUNet with more 
details. The ACP-TransUNet model proposed in this paper is based 
on the TransUNet (Chen et al., 2021) model, and is improved and 
extended on the basis of the latter, as shown in Figure 3.

Given an input image with resolution H W×  and C number of 
channels, the segmentation map is obtained by down-sampling and 
up-sampling. The down-sampling process consists of five parts, which 
are CNN, ASPP, Image Sequentialization, Patch Embedding, and 
Transformer Layer. The input image is first extracted by CNN layer to 
get the feature map. After that, the ASPP module is used to increase 
the receptive field to obtain a feature map with different scales. Then, 
Hidden Feature and Linear Projection reshape the feature map into 
N flattened 2D patches for Image Sequentialization, with each patch 

of size P P× , 2
H WN

P
′ ′

= , ′H  and ′W  being the length and width of 

each feature map. In order to encode the spatial information of the 

patches, we add positional embedding to the patch embedding to 
preserve the positional information, as follows in Eq. (3):

  
Z x E; x E; x E Ep p p

N
p0

1 2= …



 +;

 
(3)

where E P C D∈ ( )×
2 .  represents the patch embedding projection, xp 

represents the vectorized patch, and EP
N D∈ ×  represents the 

position embedding.
The Transformer (Vaswani et al., 2017) layer is added at the end 

of the down-sampling to obtain the global features, which consists of 

FIGURE 1

Overview of the channel attention structure.

97

https://doi.org/10.3389/fnins.2023.1207149
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1207149

Frontiers in Neuroscience 05 frontiersin.org

Multi-head Attention (MSA) and Multi-layer Perceptron (MLP) as 
shown in Eqs. (4) and (5):

 Z MSA LN z zn n n
′

− −= ( )( ) +1 1  (4)

 
Z MLP LN z zn n n= ( )( ) +′ ′

  
(5)

where LN ·( ) denotes the layer normalization operator and zn is the 
encoded image representation.

In the up-sampling process, we added CPAT modules in each 
layer to weight the important features in recovering the image size to 
improve the performance and accuracy of the model.

3.2. ASPP module

Acoustic neuromas vary in shape. Some are irregular in shape 
and grow into the inner auditory canal, while some have clear 
boundary. Therefore, we need a larger receptive field to extract the 
feature of acoustic neuromas. The ordinary convolution structure 
cannot fully extract features, so in this paper we choose to use ASPP 
module to strengthen the ability of the model to segment objects at 

FIGURE 2

Overview of pixel attention structure.

FIGURE 3

Overview of ACP-TransUNet. The input is an acoustic neuroma MRI image, and the output is the corresponding prediction map generated by ACP-
TransUNet.
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different scales. As shown in Figure 4, in this paper, ASPP module is 
equipped in the last layer of CNN, with dilation rate set to 2, 4, 8. 
The rate of atrous convolution is based on the ordinary convolution, 
and the interval between adjacent weights is rate −1. The rate of 
ordinary convolution is defaulted to 1, so the actual size of atrous 
convolution is k k rate+ −( ) −( )1 1 , in which k is the size of the 
original convolution kernel. ASPP overcomes the shortcomings of 
local information loss and lack of correlation in remote information 
caused by grid effect when using single atrous convolution, making 
it possible to obtain different scale feature information without using 
pooling layer.

3.3. CPAT module

Given an intermediate feature map F∈ × ×C H W  as input, CPAT 
module sequentially infers a 1D channel attention map Mc ∈

× ×C 1 1 
and a 3D pixel attention map MP ∈

× ×C H W  as illustrated in 
Figure  5. For the arrangement of attention modules, we  found 
through experiments that the result is better when using two 
sequential attentions than using one attention, which will 

be  discussed in the ablation experiments, as shown in Eqs. (6) 
and (7):

  ′ = ( )⊗F M F Fc  (6)

 ′′ ′ ′= ( )⊗F M F FP   (7)

where ′F  denotes the feature map obtained by channel attention, ′′F  
denotes the feature map obtained by pixel attention, and ⊗ denotes 
element multiplication.

4. Experimental results

In this section, we introduce the details of the experimental data and 
results. In order to verify whether ACP-TransUNet can effectively and 
accurately segment acoustic neuromas, we first performed comparative 
experiments and ablation experiments on all test sets (including coronal 
view, sagittal view, and transverse view). To test the accuracy of the 
model’s segmentation effect in a single view, we  also conducted 

FIGURE 4

Overview of ASPP Module.

FIGURE 5

Overview of CPAT structure. This module has two submodules: channels and pixels, where ⊗ denotes element-wise multiplication. The intermediate 
feature map is adaptively refined through our module (CPAT).
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multi-view evaluation, performing a comparison experiment and 
ablation experiment on the three views separately. The results are 
discussed in detail below. Among them, ACP-TransUNet achieves 
95.74% Dice Similarity Coefficient on the test set, and Hausdorff 95 
reaches 1.9476 mm, which are superior than other models.

4.1. Dataset

We selected MRI images of sagittal view, coronal view and transverse 
view of patients with cerebellopontine angle (CPA) acoustic neuroma 
diagnosed by experts in Tianjin Huanhu Hospital from January 2019 to 
January 2022, with all the patients signing informed consent. The 
scanning equipment we used was Siemens Skyra 3.0 T MRI scanner, 
which could collect magnetic resonance images of multiple sequences. 
However, compared with other sequences, T1WI-SE could better 
distinguish the lesion and its surrounding adjacent tissues. Therefore, this 
paper adopts contrast - enhanced fast low-angle shot 2-dimensional 
sequence (T1_fl2d) with Gd-GDPA. Scanning parameters are as follows: 
slice thickness is 5 mm; slice interval, 1.5 mm; echo time (TE), 2.46 ms; 
repetition time (TR), 220 ms. After screening, a total of 300 magnetic 
resonance images of acoustic neuromas were selected in this paper, in 
which the ratio of training set, verification set and test set is 8: 1: 1 and 
each part has no cross.

4.2. Preprocessing

To avoid the deviation of the experimental results caused by the 
inconsistent data format, the training, verification and test MRI 
images in this paper are all set to the same format. Because the dataset 
is small, to improve the generalization ability of the model, the images 
are subjected to data augmentation processing such as inversion and 
flipping. In order to save training resources, the images are set to 
512 512×  pixels. The gray value visualization of the MRI image is 
shown in Figure 6.

4.3. Experimental setup

In the experiment, the framework we  used was Pytorch, and 
batchsize was set to 4. All networks trained 100 epochs on Nvidia Tesla 
V100 GPU. Specifically, we used a pre-training model (R50 + ViT-B_16) 
that was trained on the ImageNet21k dataset. The pre-training model 
can be found at the following link: https://console.cloud.google.com/
storage/vit_models/. In addition, we use the Adam optimizer (Kingma 
and Ba, 2014) to optimize, the initial learning rate is 10 4− , and use the 
StepLR mechanism to set the learning rate attenuation according to 
epoch. The StepLR mechanism is a way to adjust the learning rate 
during training in machine learning. It reduces the learning rate by a 
certain factor after a fixed number of epochs or iterations. We set the 
“step_size” parameter to 7 and the “gamma” parameter to 0.1, which 
means that the learning rate was reduced by a factor of 0.1 every 7 
epochs. By gradually reducing the learning rate, we aimed to improve 
the convergence of the model and prevent overfitting.

4.4. Evaluation metrics

In order to objectively evaluate the results of different models, this 
paper uses the Dice Similarity Coefficient (Mehta, 2015; Liu et al., 
2020) and Hausdorff 95 (Huttenlocher et al., 1993; Beauchemin et al., 
1998) as representative segmentation performance indicators, which 
measure the similarity and maximum mismatch between the 
segmentation result and the labeling result, respectively. These metrics 
are widely used in medical image segmentation studies and have been 
shown to be effective in evaluating segmentation performance.

4.5. Comparative experiment

To verify the validity of the proposed model, we  compared 
several classical networks such as PANet (Liu et al., 2018), PSPNet 
(Zhao et al., 2016), UNet++ (Zhou et al., 2018), and DeeplabV3 
(Chen et al., 2018a), as well as some emerging networks such as 
CCNet (Huang et al., 2020), MANet (Fan et al., 2020), BiseNetv2 (Yu 
et al., 2021), Swin-Unet (Cao et al., 2021), MedT (Valanarasu et al., 
2021), TransUNet (Chen et al., 2021), and UCTransNet (Wang et al., 
2021), which have shown great performance on segmentation tasks 
in recent years. Table 1 summarizes the comparison results between 
our scheme and these representative networks. For each model, 
we visualized the segmentation effect in the coronal (cor), sagittal 
(sag), and transverse (tra) views, and the results are shown in 
Figure 7.

The results show that ACP-TransUNet achieved the best 
performance on the test set, with a Dice value of 95.74% and a 
Hausdorff 95 value of 1.9476 mm. Compared with the original UNet 
network proposed by Ronneberger et  al. (2015), ACP-TransUNet 
achieved improvements of 1.09% and 2.5506 mm in Dice and 
Hausdorff 95, respectively.

In the comparative experiments, our scheme achieved optimal 
Dice and Hausdorff 95 values, outperforming other network models. 
Specifically, our scheme improved Dice by 2.63% (PSPNet), 2.28% 
(DeepLabv3), 1.08% (UNet++), 1.86% (PANet), 10.42% (CCNet), 
0.79% (MANet), 5.88% (BiseNetv2), 4.28% (Swin-Unet), 2.48% 
(MedT), 0.72% (TransUNet), and 0.68% (UCTransNet), respectively. 
Hausdorff 95 was increased by 1.2669 mm (PSPNet), 2.4962 mm 
(DeepLabv3), 1.8268 mm (UNet++), 2.3923 mm (PANet), 3.3072 mm 
(CCNet), 1.8007 mm (MANet), 3.7427 mm (BiseNetv2), 4.3982 mm 
(Swin-Unet), 2.8318 mm (MedT), 2.0561 mm (TransUNet), and 
2.127 mm (UCTransNet), respectively. The corresponding 
segmentation effect in Figure  7 demonstrates the superior 
performance of ACP-TransUNet.

In comparison experiments, for some regular acoustic neuromas, 
such as the tumor shown in the sagittal view, it can be seen that the 
selected networks can achieve basic segmentation of the tumor except 
for BiseNetv2 and MedT. However, comparing the internal filling and 
boundary of the segmentation map, only ACP-TransUNet is closest 
to Ground Truth; for the part that shows irregular shape and grows 
into the internal auditory canal, as shown in the coronal view, 
PSPNet, PANet, CCNet, BiseNetv2 and MedT cannot well segment 
some tumors growing in the internal auditory canal. Although 
UNet++ and MANet could segment the tumors in the internal 
auditory tract, the segmentation results were inferior to the rest of the 
networks. DeepLabv3, UNet and TransUNet performed comparably 
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to ACP-TransUNet for segmenting the tumors in the internal 
auditory tract, but UCTransNet and ACP-TransUNet outperformed 
the rest of the models in terms of edge detail. However, in the 
transverse (tra), only TransUNet and ACP-TransUNet can well 
segment the acoustic neuroma. We  noticed that the models 
containing Transformer structures (such as MedT, Swin-Unet, 

TransNet, and UCTransNet) were deficient in processing edge details, 
which may be  explained by the limited Transformer localization 
ability caused by insufficient low-level details. After adding the CPAT 
module and ASPP module, the segmentation map edge contours have 
been greatly improved.

4.6. Multi-view evaluation

To further verify the effectiveness of the model, we  conduct 
comparative experiments and ablation experiments on the 
segmentation effects of the coronal, sagittal and transverse views in 
the test set, respectively. The results of the multi-view evaluation in the 
comparative experiments are shown in Table 2.

It can be seen that although the Hausdorff 95 is not as good as 
MANet in the transverse view, our model is generally better than 
other models through the evaluation of dice and Hausdorff 95 
values. Dice values of the coronal view, sagittal view and transverse 
view reached 94.88, 95.45 and 96.45% respectively; and the 
Hausdorff 95 values reached 2.541 mm, 1.4056 mm and 1.902 mm, 
respectively.

4.7. Ablation experiment

To demonstrate the efficacy of the incorporation module, 
we  performed two groups of ablation experiments based on the 
principle of “fixing two items and changing one item.”

FIGURE 6

Gray visualization of MRI images in three directions. a-1, a-2, and a-3 represent coronal, sagittal and transverse MRI images, respectively. b-1, b-2, and 
b-3 are three-dimensional gray-scale visualization images of nuclear magnetic resonance, which represent the corresponding directions. The x-axis 
and y-axis represent the length and width of the image respectively, and the value range is [0, 512]. The z-axis represents the gray value distribution of 
the image, and the value range is [0, 255].

TABLE 1 Results of comparative experiment.

Model Dice (%) Hausdorff 95 (mm)

UNet (2015) 94.65 4.4982

PSPNet (2016) 93.11 3.2145

DeepLabv3 (2017) 93.46 4.4438

UNet++ (2018) 94.66 3.7744

PANet (2018) 93.88 4.3399

CCNet (2020) 85.32 5.2548

MANet (2020) 94.95 3.7483

BiseNetv2 (2021) 89.86 5.6903

Swin-Unet (2021) 91.46 6.3458

MedT (2021) 93.26 4.7794

TransUNet (2021) 95.02 4.0037

UCTransNet (2022) 95.06 4.0746

Ours 95.74 1.9476

Bold font is the best data for each column.
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4.7.1. Ablation experiment of attention module
We examine four different experimental configurations to verify 

the efficacy of adding attention modules, i.e., TransUNet with ASPP 
(TransUNet+ASPP) as the baseline, and further with channel attention 
(TransUNet+ASPP+C), pixel attention (TransUNet+ASPP+P), and 
CPAT module (TransUNet+ASPP+CPAT). Tables 3, 4 show the 
segmentation results for the overall and multiple views, respectively.

From Tables 3, 4, we have some observations as follows.

 1. When we added channel attention to “TransUNet+ASPP,” not 
only the Dice and Hausdorff 95 of “TransUNet+ASPP+C” in 
Table 3 improved by 0.05% and 0.5062 mm, respectively, but 
also the experimental results of multiple views in Table 4 were 
better than those of “TransUNet+ASPP”， which proves the 
effectiveness of adding channel attention.

 2. When we added pixel attention to “TransUNet+ASPP,” the Dice 
and Hausdorff 95 of “TransUNet+ASPP+P” in Table 3 were 
95.52% and 2.4821 mm, respectively, and the experimental 
results in Table  4 were also improved significantly, thereby 
proving that the addition of pixel attention is effective.

 3. The results of “TransUNet+ASPP+CPAT” in Tables 3, 4 are 
significantly better than those of “TransUNet+ASPP+C” and 
“TransUNet+ASPP+P,” demonstrating that the sequential 
connection of channel attention and pixel attention is better 
than using either attention module.

4.7.2. Ablation experiment of ASPP module
To demonstrate the efficacy of the ASPP module, two different 

experimental configurations were studied, i.e., TransUNet with 
CPAT (TransUNet +CPAT) as a baseline and further addition of the 
ASPP module (TransUNet +CPAT+ASPP). Tables 5, 6 show the 
segmentation results for the overall and multiple views, respectively. 
As can be  seen from Table 5, the addition of the ASPP module 
improves the “TransUNet+CPAT+ASPP” Dice and Hausdorff 95 by 
0.2% and 1.5166 mm, respectively. In addition, according to Table 6, 
Hausdorff 95 with “TransUNet +CPAT+ASPP” is excellent in other 
views, although it is lower than “TransUNet +CPAT” in the 
transverse view. The above results prove the efficiency of 
ASPP module.

FIGURE 7

Examples of predictions for each network on acoustic neuromas in comparative experiments.
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5. Discussion

At present, the results of Dice and Hausdorff distance of our 
model in acoustic neuroma segmentation have reached our 
expectations. Given the fact that acoustic neuromas vary in shape--
some with irregular shape and growing into the inner auditory canal, 
while some with clear boundary, we need a larger receptive field to 
extract the feature of acoustic neuromas. As ordinary convolution 
structure cannot fully extract features, we added the ASPP module. 
Furthermore, since acoustic neuromas often occur in the 
cerebellopontine angle area with relatively fixed position, we intended 
to make our model automatically learn the weights at different scales 
by adding the attention mechanism. Therefore, we added the channel 
attention and pixel attention in the up-sampling, so that the channel 
information and pixel information are combined to better explore the 

channel characteristics and pixel characteristics while restoring the 
original input image size. In the comparison experiments, we can see 
that most of the networks with the added Transformer structure 
achieve good results in segmentation of acoustic neuromas, for 
example, the Dice value of these networks is almost equal to that of 
ACP-TransUNet. However, Hausdorff 95 cannot be comparable to 
ACP-TransUNet. which is due to Transformer’s inadequacy to capture 
low-level details and its limited positioning ability. Given that, 
we combined ASPP and attention mechanism to make up for this 
deficiency. In the ablation experiment, it is observed that the 
segmentation performance of the model becomes better and better 
with the addition of ASPP and CPAT modules, proving the 
effectiveness of our choice to add the modules.

However, there are still problems existing in the current work. 
For example, in the multi-view evaluation, we  did not achieve 
desirable segmentation results in the transverse view. The Hausdorff 
95 value of our model in the transverse view is 1.902 mm. That figure 
is inferior to the MANet, which reached 1.8365 mm in the 
comparison experimental. The reasons we believe are of two aspects. 
First, it could be  explained by the relatively low importance of 
channel weight in the down-sampling of acoustic neuromas in the 
transverse view direction. But the addition of pixel attention could 
make all the pixels of the feature map generate attention coefficient, 
which makes up for the disadvantage of using channel attention 
alone. Second, although the addition of ASPP module would increase 
the receptive field, making each convolution output contain a large 
range of information, the information of smaller tumors in the 
transverse view could be lost. Given that, in our future work, we will 
gradually increase the dataset and study the performance changes 
when increasing or decreasing the single direction module. In 
addition, our current research task is to achieve accurate 
segmentation of acoustic neuromas. We hope that the application of 
ACP-TransUNet will not be  limited to acoustic neuromas, so its 
effectiveness in segmenting other medical images will also be the 
focus of our future experimental research.

In our research work, the improvement of the accuracy of 
acoustic neuroma segmentation means that we  need to abandon 
some indicators in some aspects. We have considered trade-offs in 
these issues. First, the addition of ASPP module, attention mechanism 
and deeper transformer layer means longer training time and larger 
model parameters. We believe that the medical segmentation task is 
different from other segmentation tasks that pursue timeliness (such 
as face segmentation). Between lightweight and precision, we prefer 
the latter. Second, since Transformer lacks the inductive bias of 
convolution, it requires more sample size than CNN. Transformer 
needs to learn this kind of information from a large amount of data. 
Considering the precious resources and insufficient data support of 
current medical images, instead of choosing to train from scratch, 
we resort to pre-trained models to achieve the same or even better 
performance than CNN. In the future, we will conduct research for 
Transformer on small-scale datasets.

6. Conclusion

In this paper, we proposed a novel model named ACP-TransUNet 
based on the improved TransUNet structure, with all the data on the 
basis of MRI images. Through deep learning, we realized the automatic 

TABLE 2 Comparative experiment from multiple perspectives.

Model Dice (%) Hausdorff 95 (mm)

cor sag tra cor sag tra

UNet (2015) 94.16 94.76 94.94 7.6671 1.6476 3.8948

PSPNet 

(2016)

92.3 92.11 94.13 3.454 2.6466 3.4861

DeepLabv3 

(2017)

92.43 93.62 94.11 7.23 1.8961 3.9505

UNet++ 

(2018)

93.12 94.94 95.6 7.0516 1.4254 2.6112

PANet (2018) 93.14 94.03 94.33 7.4731 1.5437 3.7234

CCNet (2020) 90.9 90.15 93.76 8.0307 2.7355 4.7462

MANet 

(2020)

93.83 94.52 95.91 6.8507 2.4254 1.8365

BiseNetv2 

(2021)

89.84 84.93 92.07 8.3099 4.3865 4.2442

Swin-Unet 

(2021)

88.9 89.93 93.8 10.3311 4.7801 3.7695

MedT (2021) 91.52 92.32 94.89 8.2466 3.1183 2.8071

TransUNet 

(2021)

94.31 94.34 95.81 6.7094 2.3035 2.8282

UCTransNet 

(2022)

94.4 94.01 95.99 7.5424 2.6062 1.9285

Ours 94.88 95.45 96.45 2.541 1.4056 1.902

Bold font is the best data for each column, and the coronal, sagittal, and transverse views are 
represented by cor, sag, and tra, respectively.

TABLE 3 Results of ablation experiments with attentional module.

Model Dice (%) Hausdorff 95 
(mm)

TransUNet+ASPP 95.18 4.2574

TransUNet+ASPP+C 95.23 3.7512

TransUNet+ASPP+P 95.52 2.4821

TransUNet+ASPP+CPAT 95.74 1.9476

Bold font is the best data for each column.
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and accurate segmentation of acoustic neuromas in the cerebellopontine 
angle region. Dice and Hausdorff 95 reached 95.74% and 1.9476 mm 
respectively, and the dividing boundary was closer to the gold standard. 
The overall effect of segmentation was significantly improved, which was 
valuable for clinical application and auxiliary physician diagnosis. With 
decreased intervention of human factors, we  greatly improved the 
diagnostic efficiency and reliability. In addition, the ASPP module was 
introduced into ACP-TransUNet, which not only increases the receptive 
field and obtains multi-scale and multi-resolution background 
information, but also makes the features contained in the sequence of the 
imported Transformer more accurate and significant. The CPAT module 
with sequential channel attention and pixel attention is added to the 
upsampling process so that channel information and pixel information 
are combined to improve model performance and accuracy by weighting 
important features. The experimental results show that our model can 
effectively segment acoustic neuroma. Compared with other methods, 
the proposed method has different degrees of performance improvement 
in the segmentation of acoustic neuroma.
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TABLE 4 Results of ablation experiments with attentional module from multiple perspectives.

Model Dice (%) Hausdorff 95 (mm)

cor sag tra cor sag tra

TransUNet+ASPP 94.18 94.85 95.75 6.2425 1.9845 3.8742

TransUNet+ASPP+C 94.24 94.98 95.91 5.9475 1.4863 2.8431

TransUNet+ASPP+P 94.66 95.05 96.34 5.7424 1.8574 1.9527

TransUNet+ASPP+CPAT 94.88 95.45 96.45 2.541 1.4056 1.902

Bold font is the best data for each column, and the coronal, sagittal, and transverse views are represented by cor, sag, and tra, respectively.

TABLE 5 Results of ablation experiments with ASPP module.

Model Dice (%) Hausdorff 95 (mm)

TransUNet +CPAT 95.54 3.4642

TransUNet +CPAT+ASPP 95.74 1.9476

Bold font is the best data for each column.

TABLE 6 Results of ablation experiments with ASPP module from 
multiple perspectives.

Model Dice (%) Hausdorff 95 (mm)

cor sag tra cor sag tra

TransUNet 

+CPAT

94.68 95.34 96.23 7.0574 1.4682 1.8472

TransUNet 

+CPAT+ASPP

94.88 95.45 96.45 2.541 1.4056 1.902

Bold font is the best data for each column, and the coronal, sagittal, and transverse views are 
represented by cor, sag, and tra, respectively.

104

https://doi.org/10.3389/fnins.2023.1207149
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1207149

Frontiers in Neuroscience 12 frontiersin.org

References
Ahn, N, Kang, B, and Sohn, KA (2018). Fast, accurate, and lightweight super-

resolution with cascading residual network.

Beauchemin, M., Thomson, K. P., and Edwards, G. (1998). On the Hausdorff distance 
used for the evaluation of segmentation results. Can. J. Remote. Sens. 24, 3–8. doi: 
10.1080/07038992.1998.10874685

Cao, H, Wang, Y, Chen, J, Jiang, D, Zhang, X, Tian, Q, and Wang, M (2021). Swin-
Unet: Unet-like pure transformer for medical image segmentation.

Chen, B, Liu, Y, Zhang, Z, Lu, G, and Zhang, D (2021). TransAttUnet: Multi-level 
attention-guided U-net with transformer for medical image segmentation. arXiv.

Chen, J, Lu, Y, Yu, Q, Luo, X, and Zhou, Y (2021). TransUNet: Transformers make 
strong encoders for medical image segmentation. arXiv [Preprint].

Chen, LC, Papandreou, G, Kokkinos, I, Murphy, K, and Yuille, AL (2014). Semantic 
image segmentation with deep convolutional nets and fully connected CRFs. Computer 
science: 357–361.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2018b). 
DeepLab: semantic image segmentation with deep convolutional nets, Atrous 
convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 
834–848. doi: 10.1109/TPAMI.2017.2699184

Chen, LC, Papandreou, G, Schroff, F, and Adam, H (2017). Rethinking Atrous 
convolution for semantic image segmentation.

Chen, LC, Zhu, Y, Papandreou, G, Schroff, F, and Adam, H, (2018a). Encoder-decoder 
with Atrous separable convolution for semantic image segmentation, European 
Conference on Computer Vision.

Corso, J. J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., and Yuille, A. (2008). Efficient 
multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE 
Trans. Med. Imaging 27, 629–640. doi: 10.1109/TMI.2007.912817

Cuixia, L., Mingqiang, L., Zhaoying, B., Wenbing, L., Dong, Z., and Jianhua, M. 
(2019). Establishment of a deep feature-based classification model for distinguishing 
benign and malignant breast tumors on full-filed digital mammography. J. South Med. 
Univ 39, 88–92. doi: 10.12122/j.issn.1673-4254.2019.01.14

Devlin, J, Chang, MW, Lee, K, and Toutanova, K (2018). BERT: pre-training of deep 
bidirectional transformers for language understanding.

Dong, H., Yang, G., Liu, F., Mo, Y., and Guo, Y. (2017). Automatic brain tumor 
detection and segmentation using U-net based fully convolutional networks, annual 
conference on medical image understanding and analysis. Edinburgh, UK: Springer, 
506–517.

Dosovitskiy, A, Beyer, L, Kolesnikov, A, Weissenborn, D, Zhai, X, Unterthiner, T, 
Dehghani, M, Minderer, M, et al., (2021). “An image is worth 16x16 words: Transformers 
for image recognition at scale.” in International Conference on Learning Representations.

Du, W., Rao, N., Yong, J., Adjei, P. E., Hu, X., Wang, X., et al. (2023). Early gastric 
cancer segmentation in gastroscopic images using a co-spatial attention and channel 
attention based triple-branch ResUnet. Comput. Methods Prog. Biomed. 231:107397. doi: 
10.1016/j.cmpb.2023.107397

Fan, T., Wang, G., Li, Y., and Wang, H. (2020). MA-net: a multi-scale attention 
network for liver and tumor segmentation. IEEE Access 8, 179656–179665. doi: 10.1109/
ACCESS.2020.3025372

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image 
recognition. Las Vegas, NV, USA: IEEE.

Huang, G., Liu, Z., Laurens, V., and Weinberger, K. Q. (2016). Densely connected 
convolutional networks. Honolulu, HI, USA: IEEE Computer Society.

Huang, Z, Wang, X, Wei, Y, Huang, L, and Huang, TS (2020). CCNet: Criss-cross 
attention for semantic segmentation. IEEE transactions on pattern analysis and machine 
intelligence PP:1.

Huttenlocher, D. P, Klanderman, G. A, and Rucklidge, W. J (1993), Comparing images 
using the Hausdorff distance. Pattern analysis and machine intelligence, IEEE transactions 
on, 15, 850, 863, doi: 10.1109/34.232073.

Jie, Shen, Samuel, Albanie, Gang, Sun, and Enhua,  (2019). Squeeze-and-excitation 
networks. IEEE transactions on pattern analysis and machine intelligence.

Kingma, D, and Ba, J (2014). Adam: A Method for Stochastic Optimization. 
Computer Science.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet classification 
with deep convolutional neural networks. Commun. ACM 60, 84–90. doi: 
10.1145/3065386

Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., and Zhang, D. (2022). Ds-TransUNet: dual 
swin transformer u-net for medical image segmentation. IEEE Trans. Instrum. Meas. 71, 
1–15. doi: 10.1109/TIM.2022.3178991

Ling, C., Chao, Z., Mengling, T., Chen, Y., and Qingxiang, L. (2016). Effect 
analysis of MRI in differential diagnosis of cerebellopontine angle meningioma and 
acoustic neuroma. Contemp. Med. Symp. 14, 134–136. doi: CNKI:SUN: 
QYWA.0.2016-22-093

Lingmei, A., Tiandong, L., Fuyuan, L., and Kangzhen, S. (2020). Magnetic resonance 
brain tumor image segmentation based on attention U-net. Laser Optoelectronics 
Progress 57, 141030–141286. doi: 10.3788/LOP57.141030

Liu, Z, Chen, L, Tong, L, Zhou, F, Jiang, Z, Zhang, Q, Shan, C, Wang, Y, et al. (2020). 
Deep learning based brain tumor segmentation: A survey.

Liu, S, Qi, L, Qin, H, Shi, J, and Jia, J (2018). Path aggregation network for instance 
segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR).

Liu, Y., Wang, H., Chen, Z., Huangliang, K., and Zhang, H. (2022). TransUNet+: 
redesigning the skip connection to enhance features in medical image 
segmentation. Knowl.-Based Syst. 256:109859. doi: 10.1016/j.knosys.2022. 
109859

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). “Swin transformer: 
hierarchical vision transformer using shifted windows.” in IEEE/CVF International 
Conference on Computer Vision (ICCV). pp. 9992–10002.

McClelland, S., Guo, H., and Okuyemi, K. S. (2011). Morbidity and mortality 
following acoustic neuroma excision in the United States: analysis of racial disparities 
during a decade in the radiosurgery era. Neuro-Oncology 13, 1252–1259. doi: 10.1093/
neuonc/nor118

Mehta, R (2015). Introducing dice, Jaccard, and other label overlap measures to ITK.

North, M., Weishaar, J., Nuru, M., Anderson, D., and Leonetti, J. P. (2022). Assessing 
surgical approaches for acoustic neuroma resection: do patients perceive a difference in 
quality-of-life outcomes? Otol. Neurotol. 43, 1245–1251. doi: 10.1097/
MAO.0000000000003720

Nurçin, F. V. (2022). Improved segmentation of overlapping red blood cells on malaria 
blood smear images with TransUNet architecture. Int. J. Imaging Syst. Technol. 32, 
1673–1680. doi: 10.1002/ima.22739

Pan, S. M., Liu, X., Xie, N. D., and Chong, Y. W. (2023). EG-TransUNet: a transformer-
based U-net with enhanced and guided models for biomedical image segmentation. 
BMC Bioinform. 24:85. doi: 10.1186/s12859-023-05196-1

Qiulin, J., and Xin, W. (2018). Brain tumor image segmentation based on region 
growing algorithm. J. Changchun Univ. Technol. 39, 490–493. doi: 
CNKI:SUN:JLGX.0.2018-05-013

Rajeshwari, P, and Shyamala, K. (2023). “Pixel attention based deep neural network 
for chest CT image super resolution.” in Advanced Network Technologies and Intelligent 
Computing: Second International Conference (ANTIC). pp. 393–407.

Ronneberger, O, Fischer, P, and Brox, T (2015). U-net: Convolutional networks for 
biomedical image segmentation. ArXiv abs/1505.04597.

Roy, K., Banik, D., Bhattacharjee, D., Krejcar, O., and Kollmann, C. (2022). LwMLA-
NET: a lightweight multi-level attention-based network for segmentation of COVID-19 
lungs abnormalities from CT images. IEEE Trans. Instrum. Meas. 71, 1–13. doi: 10.1109/
TIM.2022.3161690

Russo, C, Liu, S, and Di Ieva, A (2020). Spherical coordinates transformation pre-
processing in deep convolution neural networks for brain tumor segmentation in MRI. 
arXiv preprint arXiv:200807090.

Shelhamer, E, Long, J, and Darrell, T (2016). Fully convolutional networks for 
semantic segmentation.

Simonyan, K, and Zisserman, A (2014). Very deep convolutional networks for large-
scale image recognition. Computer Science.

Song, Z., Qiu, D., Zhao, X., Lin, D., and Hui, Y. (2023). Channel attention generative 
adversarial network for super-resolution of glioma magnetic resonance image. Comput. 
Methods Prog. Biomed. 229:107255. doi: 10.1016/j.cmpb.2022.107255

Soomro, MH, De Cola, G, Conforto, S, Schmid, M, Giunta, G, Guidi, E, Neri, E, 
Caruso, D, et al., (2018). “Automatic segmentation of colorectal cancer in 3D MRI 
by combining deep learning and 3D level-set algorithm-a preliminary study.” in 
2018 IEEE 4th Middle East Conference on Biomedical Engineering (MECBME), 
IEEE. pp. 198–203.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., and Rabinovich, A. (2014). Going deeper with 
convolutions. Boston, MA, USA: IEEE Computer Society.

Tang, J., Zou, B., Li, C., Feng, S., and Peng, H. (2021). Plane-wave image reconstruction 
via generative adversarial network and attention mechanism. IEEE Trans. Instrum. Meas. 
70, 1–15. doi: 10.1109/TIM.2021.3087819

Thillaikkarasi, R., and Saravanan, S. (2019). An enhancement of deep learning 
algorithm for brain tumor segmentation using kernel based CNN with M-SVM. J. Med. 
Syst. 43, 1–7. doi: 10.1007/s10916-019-1223-7

Tian, C., Xu, Y., Li, Z., Zuo, W., and Liu, H. (2020). Attention-guided CNN for 
image denoising. Neural Netw. 124, 117–129. doi: 10.1016/j.neunet.2019. 
12.024

Valanarasu, JMJ, Oza, P, Hacihaliloglu, I, and Patel, VM, (2021). “Medical 
transformer: gated axial-attention for medical image segmentation.” in 
International Conference on Medical Image Computing and Computer-
Assisted Intervention.

105

https://doi.org/10.3389/fnins.2023.1207149
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1080/07038992.1998.10874685
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TMI.2007.912817
https://doi.org/10.12122/j.issn.1673-4254.2019.01.14
https://doi.org/10.1016/j.cmpb.2023.107397
https://doi.org/10.1109/ACCESS.2020.3025372
https://doi.org/10.1109/ACCESS.2020.3025372
https://doi.org/10.1109/34.232073
https://doi.org/10.1145/3065386
https://doi.org/10.1109/TIM.2022.3178991
https://doi.org/CNKI:SUN:QYWA.0.2016-22-093
https://doi.org/CNKI:SUN:QYWA.0.2016-22-093
https://doi.org/10.3788/LOP57.141030
https://doi.org/10.1016/j.knosys.2022.109859
https://doi.org/10.1016/j.knosys.2022.109859
https://doi.org/10.1093/neuonc/nor118
https://doi.org/10.1093/neuonc/nor118
https://doi.org/10.1097/MAO.0000000000003720
https://doi.org/10.1097/MAO.0000000000003720
https://doi.org/10.1002/ima.22739
https://doi.org/10.1186/s12859-023-05196-1
https://doi.org/CNKI:SUN:JLGX.0.2018-05-013
https://doi.org/10.1109/TIM.2022.3161690
https://doi.org/10.1109/TIM.2022.3161690
https://doi.org/10.1016/j.cmpb.2022.107255
https://doi.org/10.1109/TIM.2021.3087819
https://doi.org/10.1007/s10916-019-1223-7
https://doi.org/10.1016/j.neunet.2019.12.024
https://doi.org/10.1016/j.neunet.2019.12.024


Zhang et al. 10.3389/fnins.2023.1207149

Frontiers in Neuroscience 13 frontiersin.org

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. 
(2017). Attention is all you need. Adv. Neural Inf. Proces. Syst. 6000–6010. doi: 10.48550/
arXiv.1706.03762

Wang, H, Cao, P, Wang, J, and Zaiane, OR (2021). UCTransNet: Rethinking the skip 
connections in U-net from a channel-wise perspective with transformer.

Wang, X, Girshick, R, Gupta, A, and He, K (2017). Non-local neural networks.

Wang, B., Wang, F., Dong, P., and Li, C. (2022). Multiscale transunet++: dense hybrid 
U-net with transformer for medical image segmentation. SIViP 16, 1607–1614. doi: 
10.1007/s11760-021-02115-w

Woo, S, Park, J, Lee, JY, and Kweon, IS (2018). CBAM: Convolutional block attention 
module. Springer, Cham.

Xiaobo, L., Maosheng, X., and Xiaomei, X. (2019). Automatic segmentation for 
Glioblastoma Multiforme using multimodal MR images and multiple features. J. 
Comp.Aided Design Comp. Graphics 31, 421–430. doi: CNKI:SUN:JSJF.0.2019- 
03-008

Xiaoxia, P., Qian, M., Xia, T., Ziwei, L., and Daohai, X. (2014). MRI findings of lesions 
in the cerebellopontine angle. J. Med. Imaging 24, 12–15.

Yang, Y, and Mehrkanoon, S (2022). AA-TransUNet: Attention augmented TransUNet 
for Nowcasting tasks.

Yongzhuo, L., and Shuguang, D. (2018). Application of improved watershed algorithm in 
segmentation of brain tumor CT images. Software Guide 17, 157–159. doi: 10.11907/
rjdk.172913

Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., and Sang, N. (2021). BiSeNet V2: bilateral 
network with guided aggregation for real-time semantic segmentation. Int. J. Comput. 
Vis. 129, 3051–3068. doi: 10.1007/s11263-021-01515-2

Yuan, Y., Zhang, L., Wang, L., and Huang, H. (2021). Multi-level attention network for 
retinal vessel segmentation. IEEE J. Biomed. Health Inform. 26, 312–323. doi: 10.1109/
JBHI.2021.3089201

Zhang, Y, Li, K, Li, K, Wang, L, Zhong, B, and Fu, Y (2018). Image super-resolution 
using very deep Residual Channel attention networks.

Zhao, H, Kong, X, He, J, Qiao, Y, and Dong, C (2020). Efficient image super-resolution 
using pixel attention.

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2016). Pyramid scene parsing network. 
Honolulu, HI, USA: IEEE Computer Society.

Zhao, L., Zhou, D. M., Jin, X., and Zhu, W. N. (2022). Nn-TransUNet: an automatic 
deep learning pipeline for heart MRI segmentation. Life 12:1570. doi: 10.3390/
life12101570

Zheng, S, Lu, J, Zhao, H, Zhu, X, and Zhang, L (2020). Rethinking semantic 
segmentation from a sequence-to-sequence perspective with transformers.

Zhou, Z, Siddiquee, M, Tajbakhsh, N, and Liang, J (2018). UNet++: A nested U-net 
architecture for medical image segmentation.

Zhu, D., Sun, D., and Wang, D. (2022). Dual attention mechanism network for lung 
cancer images super-resolution. Comput. Methods Prog. Biomed. 226:107101. doi: 
10.1016/j.cmpb.2022.107101

106

https://doi.org/10.3389/fnins.2023.1207149
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1007/s11760-021-02115-w
https://doi.org/CNKI:SUN:JSJF.0.2019-03-008
https://doi.org/CNKI:SUN:JSJF.0.2019-03-008
https://doi.org/10.11907/rjdk.172913
https://doi.org/10.11907/rjdk.172913
https://doi.org/10.1007/s11263-021-01515-2
https://doi.org/10.1109/JBHI.2021.3089201
https://doi.org/10.1109/JBHI.2021.3089201
https://doi.org/10.3390/life12101570
https://doi.org/10.3390/life12101570
https://doi.org/10.1016/j.cmpb.2022.107101


Frontiers in Neuroscience 01 frontiersin.org

Mutual information measure of 
visual perception based on noisy 
spiking neural networks
Ziheng Xu , Yajie Zhai  and Yanmei Kang *

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China

Note that images of low-illumination are weak aperiodic signals, while mutual 
information can be  used as an effective measure for the shared information 
between the input stimulus and the output response of nonlinear systems, thus it 
is possible to develop novel visual perception algorithm based on the principle of 
aperiodic stochastic resonance within the frame of information theory. To confirm 
this, we  reveal this phenomenon using the integrate-and-fire neural networks 
of neurons with noisy binary random signal as input first. And then, we propose 
an improved visual perception algorithm with the image mutual information as 
assessment index. The numerical experiences show that the target image can 
be picked up with more easiness by the maximal mutual information than by the 
minimum of natural image quality evaluation (NIQE), which is one of the most 
frequently used indexes. Moreover, the advantage of choosing quantile as spike 
threshold has also been confirmed. The improvement of this research should 
provide large convenience for potential applications including video tracking in 
environments of low illumination.

KEYWORDS

low-illumination image, spiking neural network, aperiodic stochastic resonance, mutual 
information, quantile threshold

1. Introduction

Stochastic resonance, initially proposed by European physicists in explaining the climatic 
switches (Benzi et al., 1981), is an essentially cooperative effect through which an external weak 
signal can be maximally amplified at a suitable amount of noise. This phenomenon is hard to 
be  reproduced in climatic research but can be  confirmed by various artificially designed 
experiments including crayfish (Douglass et al., 1993), shark (Braun et al., 1994), rat (Collins 
et al., 1996), cricket (Levin and Miller, 1996), optical material (Dylov and Fleischer, 2010) and 
human (Winterer et al., 1999; Zeng et al., 2000). The experiments successfully revealed that noise 
can play a potential but positive role in neural information processing, and further encouraged 
extensive theoretical progress, such as noise enhanced weak signal detection (Kang et al., 2005; 
Sun et  al., 2019; Kang et  al., 2022), noise facilitated information coding (Du et  al., 2010; 
Nakamura and Tateno, 2019; Guan et al., 2021) and noise enhanced chaos control (Lei et al., 
2017). Nowadays how to utilize noise for developing novel brain-like algorithms, such as visual 
perception (Simonotto et al., 1997; Fu et al., 2020; Xu et al., 2022) and epileptic diagnosis 
preprocessing (Shi et al., 2023), has attracted more and more interest in the current age of 
artificial intelligence.

Exploring the neural mechanism and algorithm design of visual perception is a long-standing 
topic in the field of neuroscience (Shapley and Hawken, 2002; Chen and Gong, 2019; Dijkstra et al., 
2019). The visual perception in a general sense refers to the process of organizing, identifying, and 
interpreting visual information in environmental awareness and understanding (Yang et al., 2021), 
while in a narrow sense it means the enhancement of image contrast (Rafael and Woods, 2002). 
There are scenarios where pictures of high contrast are hard to be  captured in a dark or 
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low-illumination environment, such as in the cosmic exploration, in the 
battle front and in the deep-sea exploration. The traditional techniques 
(Land, 1997) for image enhancement are based on Retinex theory, 
where actual color sensations are assumed related to the intrinsic 
reflectance of objects. It is generally regarded that there are mainly two 
disadvantages of Single-Scale Retinex algorithm: one is that halo would 
be  prone to occur in the transition field between strong light and 
shadow, and the other is that the image would be relatively dark after 
enhancement, so the Multi-scale Retinex algorithms (Rahman et al., 
2004; Wang et al., 2021) have been proposed. Here, let us skip to assess 
the advantage or disadvantage of the improved variants, but choose to 
develop a different method based on different physical principles, 
namely stochastic resonance and spiking neuron models. In fact, the 
method proposed in this paper is an important development of our 
previous stochastic resonance-based spiking neural network methods 
in measure index, which is critical for identifying a target image.

How to effectively evaluate the perceptual quality of visual contents, 
such as image, is actually a long-standing issue. There are generally two 
categories of assessment indexes: the full-reference evaluation metric via 
the no-reference evaluation metric. The former category claims that the 
quality of the distorted image could be measured through comparing with 
a naturalistic reference image, including peak signal to noise ratio (Hore 
and Ziou, 2010) and structural similarity (Wang et al., 2004). The latter 
category covers perceptual quality metric (PQM) (Wang et al., 2002) and 
natural image quality evaluation (NIQE) (Mittal et al., 2013). As is known, 
PQM mainly concerns the blurring and blocking effect of a JPEG format 
image, while NIQE evaluates an image by calculating its distance from a 
fitted high-quality image. Nevertheless, when the both indices are applied 
to stochastic-resonance based visual perception algorithm design, it was 
found that the dependence of PQM on noise intensity tends to be too flat 
to pick out the best enhanced image (Fu et al., 2020), while the evolution 
of NIQE via noise intensity tends to have strong fluctuations due to the 
unpredictability in Gaussian distribution fitting and perturbation of 
external noise. It is these insufficiencies that motivate us to try a different 
measure from the viewpoint of information theory.

Our inspiration comes from the mutual information measure of 
aperiodic stochastic resonance (Collins et al., 1996; Levin and Miller, 
1996; Patel and Kosko, 2008; Kang et al., 2021). Note that the external 
coherent input to stochastic resonant systems can be  periodic or 
aperiodic, when it is aperiodic, the resonant phenomenon is specifically 
named as aperiodic stochastic resonance. In case of the aperiodic 
stochastic resonance, the quantifying indexes based on the mechanism 
of frequency matching, such as the signal-to-noise ratio and the spectral 
amplification factor, are no longer appropriate, and instead the input–
output mutual information is a suitable choice for describing this 
matching mechanism of shape similarity. Following the investigation of 
aperiodic stochastic resonance (Kang et al., 2021), no matter how weak 
an external aperiodic signal is, it can always be maximally amplified by 
suitable amount of noise. Note that an image stimulus is such a typical 
aperiodic signal, thus the images of low contrast or illumination should 
always be optimally enhanced by an optimal dose of noise. This means 
there exists an optimal noise level at which the mutual information 
between the dark image and the target image can attain its maximum. As 
for whether the measure of mutual information is really a better choice 
for visual perception design, the comparison with NIQE should 
tell everything.

The paper is organized as follows. In Section 2 the phenomenon of 
aperiodic stochastic resonance in spiking neural networks consisting of 
integrate-and-fire neurons are exhibited within the information frame as 

preliminary. In Section 3 an improved visual perception algorithm is 
proposed based on the principle of aperiodic stochastic resonance. When 
applying the algorithm to both grayscale image and color image of low 
contrast, the reliability of the algorithm is verified. Different threshold 
strategies are also compared and the robustness of the mutual information 
measure is disclosed. Conclusions are finally drawn in Section 4.

2. Aperiodic stochastic resonance in 
an integrate-and-fire neural network

To enhance the plausibility of the subsequent visual perception 
algorithm, let us demonstrate here the principle of aperiodic stochastic 
resonance. Without loss of generality, let us continue to consider the 
spiking network consisting of the conductance-based fully connected 
integrate-and-fire neurons (Xu et al., 2022), as shown in Figure 1, with each 
neuron standing for one photoreceptor cell in the low illumination 
environment. The network is governed by the following Langevin equations
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where V ti ( ) is the membrane potential of the ith neuron at time t, Cm 
is the membrane capacitance, gl  is a leaky conductance, VL is a leaky 

FIGURE 1

The network topology of the present study with each blue circle 
standing for one node neuron.
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voltage, I tsyn i, ( ) is the synaptic current at time t from other neurons 
in the network, and I t S t D t i Next i i, ,( ) = ( ) + ( ) ≤ ≤2 1ξ  denotes an 
external injected current. In the external current, S t A B( )∈{ },  is a 
binary signal representing an external visual stimuli, with 
P S t A p( ) =( ) =  and P S t B p( ) =( ) = −1  with p∈( )0 1, , ξi t( )  is 
Gaussian white noise of noise intensity D  
and describing the external fluctuations satisfying 
ξ ξ δ δi j ijt s t s+( ) ( ) = ( )  for 1 ,i j N≤ ≤ . Here, δ ⋅( )  is Dirac 

function δ ⋅( ) while δij  is Dirac notation such that δij =1 if i j=  and 
δij = 0 otherwise. In Eq. (1b), gs is the synaptic conductance, Esyn the 
synaptic reversal potential, wij the synaptic weight between neuron i 
and neuron j, τ  is the synaptic constant, τ s the synaptic delay, t j k,  the 
kth spiking time of the neuron j, and s tj ( )  is the fractions of open 
synaptic channels of the jth neuron at time t. Once the membrane 
potential V ti ( ) reaches the threshold potential Vth from below, a spike 
is emitted and the membrane potential is immediately reset to the 
resting potential Vr  and restarts a time-dependent evolution following 
Eq. (1a) after a short refractory period τ ref . For the sake of simplicity, 
we set τ ref = 0 by ignoring the influence of refractory period.

Note that the train of spikes is the main carrier for neural 
information, thus the output response of the ith neuron and the 
neural network can be, respectively, denoted as

 
y t t t y t

N
t ti

k
i k

i k
i k( ) = −( ) ( ) = −( )∑ ∑δ δ,

,
,, 1

 (2)

We remark that the spike train y ti ( ) can be  acquired by Euler-
Maruyama scheme, namely
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Here the superscript n denotes the nth iteration. V V ti
n

i n= ( ) , 
I t S tsig n n( ) = ( ), ∆t t tn n n= −+1  is time step, ∆V V t V ti

n
i n i n= ( ) − ( )+1  

and r Ni
n ∼ ( )0 1,  is a normal distributed pseudo random number. Note 

that Gaussian white noise is the formal derivative of Wiener process. Since 
the Wiener process is of independent increments, these mutually 
independent pseudo random numbers at each iteration are also 
statistically independent for different iterations.

Note that noise can play a beneficial role in improving neural 
information encoding through the mechanism of stochastic resonance 
(Rizzo, 1997). Particularly, the input–output mutual information is 
suitable for acting as a quantifying metric for aperiodic stochastic 
resonance (Kang et al., 2021). For the sake of completeness, let us explain 
how to calculate the input–output mutual information for the system (1). 
Let I X Y,( ) be the mutual information of discrete random variables X  
and Y  with values in finite sets χ  and γ , then
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are the entropy and the conditional entropy (Cover and Thomas, 
2006; Yarrow et  al., 2012), respectively. We  follow the existing 
procedure (Kang et al., 2021) to calculate the mutual information 
I S t y t( ) ( )( ),  between the binary input S t( ) and the population firing 
output y t( ) . As seen from Eq. (4), I S t y t( ) ( )( ),  is a mathematical 
expectation of the form

  
I S t y t E

p s y
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,

,
log

 
(5)

Thus, we can repeat 1,000 trials to get an arithmetic average for an 
improved accuracy based on the law of large number.

Note that the entropy H y t( )( ) quantifies the average uncertainty 
of a random variable y t( ), while the conditional entropy H y t S t( ) ( )( ) 
measures the average uncertainty associated with y t( ) under the 
condition that the outcome of S t( ) are known, thus I S t y t( ) ( )( ), , as a 
measure of the shared information between the binary input and the 
population firing output, can be adopted as metric for the phenomenon 
of aperiodic stochastic resonance. When the input–output mutual 
information of the model (1) has a nonmonotonic dependence on 
noise intensity, it is usually said that the phenomenon of aperiodic 
stochastic resonance occurs (Collins et al., 1996). Particularly, when the 
input–output mutual information is maximized, the output signal 
should have a maximal resemblance in shape with the input signal.

We consider a realistic inhibitory synaptic weight wij = −0.2  
(Rolls et  al., 2008) for 1 ,i j N≤ ≤  to observe aperiodic stochastic 
resonance for both a single neuron and the spiking network. Since the 
binary input is subthreshold (Figure 2A), there is no spike emission 
from the single neuron in the absence of noise (Figure 2B). When small 
amount of noise is injected, the single neuron is activated with the help 
of noise but the resultant output response is obviously different from 
the binary input signal in shape (Figure 2C). When the noise intensity 
is increased to a proper level where the input–output mutual 
information attains a peak value (Figure 2G), the resemblance between 
the output response and the input binary signal is greatly improved, as 
shown in Figure 2D. Note that the perception function of the brain is 
generally implemented at population level, while the effect of stochastic 
resonance can be enhanced by uncoupled array or coupled ensemble 
(Nakamura and Tateno, 2019; Sun et  al., 2019). Thus, in order to 
simulate this synergetic effect of system size on the aperiodic stochastic 
resonance, we also show the shape similarity by raster plots for N = 5 
(Figure 2E) and N =10 (Figure 2F). From these pictures it is clear that 
the shape similarity significantly increases as the network size grows, 
thus a larger network should be necessary for the subsequent visual 
perception design. We emphasize that all the shape similarities are 
selected when the mutual information of Figures  2D–F reaches 
maximum. This demonstrates that the input–output mutual 
information as function of noise cannot unlimitedly increase, and 
therefore there exists an optimal noise intensity at which the weak 
input signal can be best detected. Additionally, from Figures 2G–I, it is 
clear that the aperiodic stochastic resonance has a strong dependence 
on the spike threshold: the lower the threshold, the prominent the 
resonant effect. This point has an important inspiration: a suitable 
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threshold should be chosen so that an optimally enhanced image can 
be acquired. In fact, the spike threshold in real neurons has certain 
circadian rhythm and self-adaptability, so it can be lower in a dimmer 
environment (Destexhe, 1998; Taillefumier and Magnasco, 2013).

As the last paragraph, let us emphasize that the shape similarity 
measured by the mutual information can be further improved by increasing 
the network size, as shown by Figures 2D–F, but the improvement should 
have limitation following the law of large number. In fact, According to the 
previous investigations, whether the quantifying index is the spectral 
amplification factor (Fu et al., 2020) or the signal to noise ratio (Xu et al., 
2022), it cannot be improved infinitely; on the contrary, the limit level can 
be  achieved with a network size 50N ≤ for the aperiodic binary  
S t( ). Noting the image signal is more complex than the binary input, 
we choose N = 300 in the subsequent algorithm implementation so that 
the benefit of network size can be maximally utilized. This should imply 
the following fact. Although there are over 100 million photoreception 
neurons for one normal person (Rieke and Baylor, 1998), not all of them 
participate in the perception task: the more complex the stimuli are, the 
more neurons are involved.

3. Visual perception algorithm and 
mutual information measure

Noise is not only ubiquitous in nervous systems but can play a 
positive role in neural information processing (Rizzo, 1997). As 
illustrated by the last section, noise can potentially assist human 
being in detecting weak aperiodic stimuli. Note that an image of low 

contrast is such a typical stimulus, thus some biologically plausible 
visual perception algorithms (Fu et al., 2020; Xu et al., 2022) have 
been proposed by combining the basic biophysical process behind 
visual perception, which includes three stages of encoding, decoding 
and integrating, with the principle of aperiodic stochastic resonance. 
Nevertheless, as mentioned in the introduction section, one of the 
most commonly used assessment indices, namely NIQE (Mittal et al., 
2013; Xu et al., 2022), always gives rise to strong fluctuations as noise 
intensity increases. To overcome this insufficiency in the existing 
algorithms, we aim to present an improved algorithm within the 
frame of information theory.

3.1. Grayscale image enhancement

When light enters the eye, the photoreceptors in the retina 
transform the optical signal into an electrical signal through an 
inherent encoding process participated by rod cells. Note that there are 
two kinds of photoreceptors in the retina: rods and cones. The cones in 
charge of color are active to bright light while the rods in charge of 
profile are more sensitive to dim light. In the low-illumination 
environment, the rhodopsin in rod cells can decompose itself under 
the light stimulation so that the light signals can be transferred into 
electrical signals (Hartong et al., 2006). As a result, human can discern 
to certain extent the profile of hidden objects in dim surroundings. 
Thus, we use the spiking neural network (1) to simulate the rod cells 
and their feedback interaction (Xu et al., 2022), while the aperiodic 
binary input can be replaced by the weak image stimulus.

FIGURE 2

The quantized output and the input–output mutual information are displayed. The random binary signal is displayed in panel (A) with A =0.1, B =0 and 
p = 0.7. For given Vth = 0.2, as the panel (B) shows there is no 1 in the quantized output for the single neuron when the noise intensity is vanishing since 
the input signal is subthreshold. As the noise intensity is increased, the quantized output becomes more visible and clearly, there is more input–output 
similarly for a single neuron with panel (D) D = 0.006 than the other level (C) D = 0.001. The resemblance becomes evident when (E) N = 5 and (F) N = 
10 for the optimal noise intensity, which is the same for different network size under the identical spike threshold. The mono-peak curves of mutual 
information I (S(t),y(t)) via noise intensity with thresholds: (G) Vth = 0.2, (H) Vth = 0.3 and (I) Vth = 0.4 signify the occurrence of aperiodic stochastic 
resonance for different size’ network. The other parameters are fixed as Vre = 0, gl = gs = 1, Cm = 1, Esyn = 0, τs = 1, τd = 0.5 and T = 500.
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In the encoding state, let Gray be an M-dimensional grayscale 
matrix of a white-black image, with each pixel representing an 
illuminance value. Note that all the rods in the network are assumed 
to focus on the same image stimuli, thus the illuminance matrix can 
be received by every rod. Let V ti

m n, ( ) represents the time-dependent 
potential response of the ith rod cell when it receives the pixel 
Gray m n,( )  with 1 , ,m n M≤ ≤  then the spiking neural network (1) 
can be rewritten into
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where ξi
m n t, ( )  is Gaussian white noise satisfying 

ξ ξ δ δi
m n

j
m n

ijt s t s, ,+( ) ( ) = ( )  for i j N, , , ,= …1 2 . Once V ti
m n, ( )  

reaches the spike threshold Vth from below, an action potential is 
generated by neuron i emits and then the membrane potential is 
immediately reset to the resting potential Vr , from where a new cycle 
of evolution restarts. In the encoding phase, Index m ni , ,( )∈{ }0 1 , the 
(m, n) element of the spike matrix Indexi is adopted to mark whether 
the ith neuron has generated spikes during given time span or not. 
That is, Index m ni ,( ) =1 if there is spike generation and 
Index m ni ,( ) = 0  otherwise. Here, the time span T  is taken as one 
millisecond to approximate the time cost by a gaze from a normal 
person and specifically, we emphasize that the grayscale image is taken 
as a continuous input during the whole time span. That is, every rod 
cell receives the same constant grayscale matrix. We emphasize that 
the encoding scheme follows from the previous algorithms (Fu et al., 
2020; Xu et al., 2022), which also have certain association with image 
reconstruction algorithms (Roy et al., 2019; Li et al., 2022). Noting that 
there are N  neurons in the network, there should be  N  such 0–1 
counting matrices altogether. With these spike matrices available, 
ganglion cells in the last segment of the retina can then transmit the 
involving information to visual cortex for the next stage (Masland, 
1996). For the sake of simplicity, we fix the neural network parameters 
Cm =1, g gl s= =1, τ s =1, τd = 0 5. , Esyn = 0 , wij = −0 2. , Vre = 0 , 
T =1 and N = 300 but leave Vth and D tunable.

Note both the stage of decoding and the stage of integrating are 
implemented at the visual cortex. Since the binary spike trains are the 
main carrier of neural information (Strong et al., 1996), it is reasonable 
to assume that each encoded spike matrix should be decoded into a 
binary image. Then, the spike matrix Indexi encoded by the ith neuron 
can be decoded as a gray image Pi ic  of element
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With all the decoded binary images available, an integrated grayscale 
image Pic can be obtained by an ensemble average, namely
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N
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Considering the visual perception process is carried on in noisy 
environment, every binary image Pi ic  is actually a matrix-valued 
random variable. Thus, the treatment in Eq. (8) is somehow similar to 
the effect of large number law, which cancels out the influence of 
occasional factors by taking arithmetic average. In fact, this integration 
treatment has biophysical implication as well. As is known, a single 
visual cortex cell usually does not receive all the signals from 
photoreceptors but only a specifically dominated area (Lecun and 
Bengio, 1995). Thus, integrating over all the decoded binary images 
helps to assure that all the information of the visual content 
is processed.

The purpose of visual perception is to pick out the best enhanced 
image under the help of suitable amount of noise, but the noise 
intensity fixed in the above procedure is generally not optimal. 
Nevertheless, it is possible to capture an optimal value following the 
principle of aperiodic stochastic resonance. Let us measure the 
quality of the enhanced image by the input–output image mutual 
information, namely the mutual information between Gray and Pic
. To this end, the pixels of Gray and Pic are divided into 255 bins of 
unit size: 0 1,[ ], …, 254 255,[ ]; the frequency number of the pixels is 
counted in each bin and then the histograms for Gray and Pic are 
obtained; the joint histogram of Gray and Pic can be acquired in the 
same way. With these histograms to approximate the corresponding 
marginal distribution laws and the corresponding joint distribution 
law, the input–output image mutual information could 
be calculated by
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(9)

Then, by examining the nonmonotonic dependence of the image 
mutual information via the noise intensity, one can attain the 
optimal noise intensity, at which the enhanced image is exactly the 
target image of our visual perception algorithm. Note that the 
external noise level of a neural network can be  self-adjusted by 
synaptic weights (Feng et  al., 2006), thus it is also biologically 
plausible to optimize the enhanced image by an optimal 
noise intensity.

Algorithm 1 summarizes the above procedure for visual 
perception, while Figures 3, 4 show the test results. For the test in 
Figure 3, we take 0.5 quantile as the spike threshold (Xu et al., 
2022). The marginal histograms for the original picture 
(Figure  3A) and the target image (Figure  3B) are shown in 
Figures 3D,E, respectively. By comparing Figures 3D,E, it is clear 
that more pixels with relatively low grayscale value have been 
shifted to the area of relatively high grayscale value, which 
explains why the hidden objects such as flowers and visual charts 
can be revealed in the target image. Here, we emphasize that the 
nonmonotonic curve of the image mutual information via noise 
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intensity in Figure  3C signifies the occurrence of aperiodic 
stochastic resonance) and the target image in Figure 3B is picked 
out from the peak value of the mutual information curve. In fact, 
our numerical experience has confirmed that a bit derivation from 
the optimal noise intensity can cause degradation in the quality of 
the enhanced image. The performance of algorithm 1 can be 
further confirmed by a darker original image. As shown in 
Figure  4, the 0.6 quantile is taken as the spike threshold. 
Analogously, by comparing the marginal histograms of the dark 
image (Figure 4A) and the target image (Figure 4B), as shown in 
Figures 4D,E, it is clear to see that the low-value pixels have been 
increased. Therefore, the tower, trees, the building and the 
reflection of the tower become discernable in the target image, 
which corresponds to the peak value of the mutual information 
curve. Note that the distribution of the natural image features is 
close to the generalized Gaussian distribution (Moorthy and 
Bovik, 2010), thus the parameters of the generalized Gaussian 
distribution fitted with the image to be enhanced should have 
certain distance of the parameters fitted with natural images. The 
distance is the so called NIQE, defined by Mittal et al. (2013)

  
NIQE = −( )

+











−( )∑ ∑
−

v v v vT
1 2

1 2
1

1 22
 

(10)

where  ν1 and Σ1 are the mean vector and the covariance matrix fitted 
with the natural images, respectively, and ν2, Σ2 are the mean vector and 
the covariance matrix fitted with the images to be enhanced, respectively. 
It is clear that the smaller NIQE, the better the image quality. Therefore 
the minimum of NIQE corresponds to the best enhanced image. As seen 
from noise intensity denoted by the dash line in Figures 3C and 4C, 
although the optimal noise intensities obtained from the two metrics are 
almost the same, the mutual information curves are smoother than the 
NIQE curves. This suggests that the image mutual information is a more 
appropriate metric for assessing the grayscale image quality.

Algorithm 1 Image enhancement for grayscale images

Step1: Input the grayscale image Gray to the integrate and fire 

neuronal network under noise intensity D to get the matrix 

Index i Ni , , ,= …1  which stores the spiking information.

Step2: Transfer Index i Ni , , ,= …1  to grayscale image Pi i Nic , , ,= …1

Step3:

Calculate Pi
N

Pi
i

N
ic c=

=
∑1

1
, mutual information I Pi Grayc,( ) 

and NIQE

Step4: Change D and repeat Step1 to Step 3 until the best enhanced 

image is selected

FIGURE 3

The low illuminance grayscale image in (A) is taken from the internet and the 0.5 quantile is adopted as the spike threshold. The marginal probability 
law of (A) is shown in (D) while the marginal probability law of the best enhanced image (B) selected by mutual information is shown in (E). The joint 
probability law of (A) and (B) are shown in the two-dimensional histogram (F). The quantifying indexes mutual information (blue solid line) and NIQE 
(red solid line) are plotted in (C) where the black dotted line denotes the optimal noise intensity.
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3.2. Color image enhancement

The color image of low-illumination (contrast) has much difference 
from the grayscale images, since several color channels are usually involved 
in given color space. As is known, there are distinct color spaces, such as 
Red-Green-Blue (RGB) space, Hue-Saturation-Value (HSV) space and 
Y-cbcr color space (Smith, 1978; Rafael and Woods, 2002; Benjamin et al., 

2016; Wu et al., 2021), among which the RGB space is suitable for computer 
Graphics, the Y-cbcr space is good at discrimination of luminance and 
chrominance, while the HSV space is in line with the human visual 
perception system. Based on this consideration, we can transfer the signal 
from the RGB space into the HSV space. Since the illumination of a color 
image is overwhelmingly dominated by its value matrix, it is enough to 
enhance the value information for color image perception.
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FIGURE 5

Schematic diagram of color image enhancement algorithm.

FIGURE 4

The darker grayscale picture in (A) is taken by us and the 0.6 quantile is taken as the spike threshold. The marginal probability law of (A) is shown in 
(D) while the marginal probability law of the best enhanced image (B) picked out by mutual information is shown in (E). The joint probability law of 
(A) and (B) is shown in the two-dimensional histogram (F). The perception assessments mutual information (blue solid line) and NIQE (red solid line) 
are plotted in (C) where the black dotted line denotes the optimal noise intensity.
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Let L be the value matrix. Following the general process of vision 
formation in low illuminance environment, we can adapt Algorithm 
1 with the grayscale matrix Gray replaced by L so that the 
illumination information can be encoded by the rod cells on the 
retina. And then, the encoded spike matrices Indexi  for i N= …1, ,  
can be transmitted to visual cortex and finally integrated into a binary 
image Img . As the value information L is the input image and Img  is 
the output image, we can measure the input–output similarity by the 
image mutual information defined by

  
I Img L P Img L

P Img L
P Img P LImg L

, ,
,( ) = ( ) ( )

( ) ( )








∑

,
log
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Here P L( ) and P Img( )  are the marginal distribution laws for the 
original value matrix and the enhanced image which is noise intensity 
dependent, respectively, and P Img L,( ) denotes the joint distribution 
law. Again, these distribution laws can be  approximated by their 
histograms, thus the input–output image mutual information is still easy 
to be obtained. Once the best enhanced value matrix is attained, an 
inverse transform from the HSV space into the RGB space can generate 
a best enhanced color image, which is the target image for color vision 
perception. The main procedure has been summarized in Algorithm 2. 
To enhance the intuitiveness, the flowchart of the algorithm is also 
displayed in Figure 5.

We exhibit two test results with low-contrast color images acquired 
from the internet and the real world in Figures 6 and 7, respectively. For 

the test in Figure 6, the 0.6 quantile is taken as the spike threshold. As 
shown from Figure 6C the nonmonotonic curve of the image mutual 
information via noise intensity again verifies the occurrence of aperiodic 
stochastic resonance) and the target image in Figure 6B is picked out 
from the peak value of the mutual information curve. By comparing the 
marginal histograms Figures 6D,E for the original picture Figure 6A and 
the target image Figure 6B, it is clear that more pixels with relatively low 
illumination value have been shifted to the area of relatively high 
illumination value, which again explains why the hidden objects such as 
a bus and an excavator become exposed in the target image. It is clear 
from Figure 7 that some details of the target image selected by the peak 
value of the mutual information curve become visible, such as the 
characters on the monument. Here, we emphasize that the image is 
indeed enhanced, although most of the pixels of the marginal histogram 
in Figure 7E are still relatively low. The reason behind this observation is 
that most of the pixel values are zero since no color and illuminance 
information can be available from this totally dark environment. Here 
we also would like to emphasize that the principle of stochastic resonance 
is powerful in enhancing weak signal, no matter how weak it is, but the 
weak signal must exist at first. Therefore, we claim that Figure 7B is 
already the best enhanced image and the corresponding noise intensity 
is optimal, as revealed by the perception indexes shown in 
Figure 7C. Finally, from Figures 6,7C we see again that the optimal noise 
intensities obtained from the two metrics are coincident and the mutual 
information curves are smoother than the NIQE curves. This again 
illustrates that the image mutual information is a more appropriate 
metric for assessing the quality of an enhanced color image.

FIGURE 6

The dark color image in (A) is taken from the internet and the 0.6 quantile is used as the spike threshold. The marginal probability law of (A) is shown in 
(D) while the marginal probability law of best enhanced color image (B) selected by mutual information is shown in (E). The joint probability law of 
(A) and (B) are shown in the two-dimensional histogram (F). The quantifying indexes mutual information (blue solid line) and NIQE (red solid line) are 
plotted in (C) where the black dotted line denotes the optimal noise intensity corresponding to the maximal mutual information.

114

https://doi.org/10.3389/fnins.2023.1155362
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnins.2023.1155362

Frontiers in Neuroscience 09 frontiersin.org

Algorithm 2 Image enhancement for color images

Step1: Transform the image from RGB space to HSV space.

Step2: Input the value matrix L to the integrate and fire neural 

network under noise intensity D to get the matrix 

Index i Ni , , ,= …1  which stores the spiking information.

Step3: Transfer Index i Ni , , ,= …1  to grayscale image Img i Ni , , ,= …1 .

Step4:

Calculate Img
N

Img
i

N
i=

=
∑1

1
, mutual information I Img L,( ) and 

NIQE.

Step5: Change D and repeat Step2 to Step 4 until the best enhanced 

value matrix is selected.

Step6: Combine the best enhanced value matrix with hue matrix and 

saturation matrix and transform it from HSV space into the 

RGB space.

3.3. Effect of threshold strategy

As shown in Figure 2, the spike threshold has obvious influence 
on the aperiodic stochastic resonant effect. In fact, since the spike 
threshold always has important impact on neural activity and coding 
performance (Yu et al., 2005; Fu et al., 2020; Xu et al., 2022), it is also 
a critical parameter for the spiking neural network based visual 
perception. In the previous subsections, we choose some quantile of 

the relevant histogram of the original images as the spike threshold, 
and the results have showed that the metric of mutual information is 
more capable of picking out the best enhanced image. To strengthen 
this point, let us take a comparative perspective. To this end, let us 
attempt another threshold strategy (Reinhard et al., 2002), which takes 
a log-average luminance as threshold, namely

  

V

Gray

m nth
m n=

+( )

∗

















∑
exp

log
,

δ

 

(12)

for grayscale images and

  

V

L

m nth
m n=

+( )

∗

















∑
exp

log
,

δ

 

(13)

for color images. We remark that in Eqs. (12) and (13), a small positive 
number δ  is introduced to avoid vanishing antilogarithm. In 
Figures 8, 9 we show the test results with the best quantile threshold 
and the log-average luminance threshold with different delta value.

For the grayscale image case, Figure 8 shows the variation of the 
target image and the assessment index under different spike 
thresholds. As seen from Figures 8A–C, the threshold change does not 
have much impact on the enhanced image, but it tends to be difficult 
for us to select the optimal noise intensity from the fluctuating curve 

FIGURE 7

The low illuminance color image in (A) is taken by us and the 0.9 quintile is the spike threshold. The marginal probability law of (A) is shown in (D) while 
the marginal probability law of best enhanced color image (B) selected by mutual information is shown in (E). The joint probability law of (A) and (B) are 
shown in the two-dimensional histogram (F). The quantifying indexes mutual information (blue solid line) and NIQE (red solid line) are plotted in 
(C) where the black dotted line denotes the optimal noise intensity corresponding to the maximal mutual information.

115

https://doi.org/10.3389/fnins.2023.1155362
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnins.2023.1155362

Frontiers in Neuroscience 10 frontiersin.org

FIGURE 8

The best enhanced grayscale images selected by mutual information with spike thresholds (A) 0.5 quantile, (B) 𝛿 = 0.001 and (C) 𝛿 = 0.01 for Eq. (12). 
Their quantifying indexes which black dotted line denotes the optimal noise intensity corresponding to the maximal mutual information are plotted in 
panels (D–F).

FIGURE 9

The best enhanced color images selected by mutual information with spike thresholds (A) 0.6 quantile, (B) 𝛿 = 0.001 and (C) 𝛿 = 0.01 for Eq. (13). Their 
quantifying indexes which black dotted line denotes the optimal noise intensity corresponding to the maximal mutual information are plotted in panels (D–F).
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of NIQE. By contrast, the curve of the image mutual information is 
smooth and sharp, as shown in Figures  8D–F, thus the mutual 
information metric is better for us to pick out the optimal noise 
intensity and then find the target image. Here, it is worthy to 
emphasize that the curve of the image mutual information is single-
peaked, but the curve of NIQE has multiple local minimums. By 
checking the quality of the enhanced images at all the local optimal 
noise intensity, it is found that the enhanced image at the local optimal 
noise intensity, which is also the maximum point of the image mutual 
information, is the best enhanced image. This clearly demonstrates 
that the mutual information measure has advantage over the NIQE 
index in picking out the target image in the present visual perception 
research. That exactly manifests why we do this research. Additionally, 
it is observed that among the three strategies for the spike threshold, 
the mutual information curve corresponding to the one-half quantile 
has the most prominent peak, thus choosing a suitable quantile as the 
spike threshold (Xu et al., 2022) also has advantage over log-average 
luminance strategy (Reinhard et al., 2002).

For the color image case, Figure 9 shows the variation of the target 
image and the assessment index under different spike thresholds. It is 
clear that the optimal noise intensity with the image mutual formation is 
coincident with the optimal counterpart with the NIQE metric. This 
coincidence once again demonstrates both the metrics are effective for 
picking out the target image. Nevertheless, due to its smoothness, the 
image mutual information is more convenient than the NIQE metric, as 
suggested by the Figures. Additionally, it is evident that the target image 
(Figure 9C) is sensibly darker than the counterpart in Figures 9A,B, 
illustrating that the enhancement performance with the log-average 
threshold is sensitive to the choice of the small parameter. An 
inappropriate choice of the parameter delta in Eq. (13) can cause a bad 
enhancement. This of course is of inconvenience, and thus suggests that 
the quantile threshold strategy has merit from a viewpoint of antithesis.

4. Conclusion and discussion

We have revealed the phenomenon of aperiodic stochastic 
resonance in the conductance-based integrate-and-fire neuronal 
networks within the frame of information theory, and then 
we  presented an improved spiking neural network based visual 
perception algorithm based on the principle of aperiodic stochastic 
resonance. In the improved algorithm, the image mutual information 
is adopted as a quantifying metric, since it can well measure the 
shared information between the input image stimulus and the 
enhanced target image. With the same trials in calculation, it was 
shown that the optimal noise intensity corresponding to the 
maximum of the mutual information coincides with one of the 
counterparts of the minimums of the NIQE index. More importantly, 
it was shown that the curve of the image mutual information via 
noise intensity is usually mono-peaked, sharper and smoother than 
that of the NIQE index via noise intensity. This illustrates that the 
applicability and advantage of the image mutual information over the 

frequently used index in visual perception. Additionally, with the 
numerical tests with the quantile of the image histogram as spike 
threshold scheme compared with those with the log-average 
luminance as spike threshold, it was further confirmed the mutual 
information index has more reliability than the NIQE index, since the 
results from the latter scheme are more sensitive to the increasing 
noise level. Nevertheless, note that the spike threshold is fixed during 
the entire implementation of the algorithm, so the quality of the best 
enhanced image might be further improved by an adaptive strategy, 
such as updating the threshold at each noise intensity by the quantile 
of the newly enhanced image. This is worthy to be explored in the 
near future. We  also wish that the algorithm of this paper has 
application or inspiration in the relevant fields such as brain-machine 
interface, cosmic detection and target tracking in 
low-illumination environment.
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