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Pyroptosis and necroptosis are two recently identified forms of immunogenic cell death in the tumor microenvironment (TME), indicating a crucial involvement in tumor metastasis. However, the characteristics of necroptosis and pyroptosis that define tumor microenvironment and prognosis in ccRCC patients remain unknown. We systematically investigated the transcriptional variation and expression patterns of Necroptosis and Pyroptosis related genes (NPRGs). After screening the necroptosis-pyroptosis clusters, the potential functional annotation for clusters was explored by GSVA enrichment analysis. The Necroptosis-Pyroptosis Genes (NPG) scores were used for the prognosis model construction and validation. Then, the correlations of NPG score with clinical features, cancer stem cell (CSC) index, tumor mutation burden (TMB), TME, and Immune Checkpoint Genes (ICGs) were also individually explored to evaluate the prognosis predictive values in ccRCC. Microarray screenings identified 27 upregulated and 1 downregulated NPRGs. Ten overall survival associated NPRGs were filtered to construct the NPG prognostic model indicating a better prognostic signature for ccRCC patients with lower NPG scores (P< 0.001), which was verified using the external cohort. Univariate and multivariate analyses along with Kaplan-Meier survival analysis demonstrated that NPG score prognostic model could be applied as an independent prognostic factor, and AUC values of nomogram from 1- to 5- year overall survival with good agreement in calibration plots suggested that the proposed prognostic signature possessed good predictive capabilities in ccRCC. A high-/sNPG score is proven to be connected with tumor growth and immune-related biological processes, according to enriched GO, KEGG, and GSEA analyses. Comparing patients with a high-NPG score to those with a low-NPG score revealed significant differences in clinical characteristics, growth and recurrence of malignancies (CSC index), TME cell infiltration, and immunotherapeutic response (P< 0.005), potentially making the NPG score multifunctional in the clinical therapeutic setting. Furthermore, AIM2, CASP4, GSDMB, NOD2, and RBCK1 were also found to be highly expressed in ccRCC cell lines and tumor tissues, and GASP4 and GSDMB promote ccRCC cells’ proliferation, migration, and invasion. This study firstly suggests that targeting the NPG score feature for TME characterization may lend novel insights into its clinical applications in the prognostic prediction of ccRCC.
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Introduction

Renal cell carcinoma (RCC) is one of the most common malignancies of the urinary system, and it is also the most common type of kidney cancer in adults. Based on the GLOBOCAN estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC), an estimated 431,288 new cases of RCC were diagnosed and 179,368 deaths were recorded worldwide in 2020 (1). Additionally, the mortality rate of RCC is decreasing in the majority of developed countries while not in the less-developed regions where access to optimal therapies is still constrained (2). In the United States, the American Cancer Society estimates that 79,000 new cases and 13,920 deaths were estimated in 2022 (3), but the mortality rate from kidney cancer decreased by 2.5% per year between 2015 to 2019 (4). In China, the estimation of new cases and deaths of kidney cancer were 50,088 and 46,345 respectively (5). According to a recent study based on age-period-cohort analysis, the kidney cancer mortality rate displayed a significant increasing trend, with an increase of 2.85% for men and 1.25% for women (6).

RCC consists of many heterogeneous subtypes, and it is canonically categorized into three major histological subtypes, including clear cell RCC (ccRCC), papillary RCC, and chromophobe RCC (7, 8). Clear cell renal cell carcinoma (ccRCC) is the most prevalent histological subtype that accounts for approximately 75% of all RCC cases (9), which is characterized by malignant epithelial cells, arising from the epithelial cells of renal proximal tubules (10, 11). Usually, patients with early stages of RCC do not have signs or symptoms, and the pathologies and carcinogenesis mechanisms are still unclear (12, 13). Additionally, symptoms are hard to identify until kidney cancer has spread to other parts of the body, usually the lymph nodes, lungs, or long bones (14). Currently, surgical intervention remains the primary treatment for RCC patients, especially in the early stages (15). As one of the most lethal urologic malignancies, it has been reported that over 30% of RCC patients relapsed after surgery, around 20%-30% of RCC patients were diagnosed with metastatic disease, and more than 40% of RCC patients died from it eventually (16, 17). Using Surveillance Epidemiology and End Results (SEER) registry a data source sampled to represent the entire US population, found that the prognosis for patients with advanced and metastatic disease is poor, with only 13.6% 5-year survival (18). Accordingly, the introduction and development of specific RCC treatments have improved patients’ outcomes, and integrating surgery or ablative strategies with targeted therapies has been becoming the optimal adjuvant therapy for patients with metastatic RCC (19). In order to ensure appropriate treatment selection for patients, it is necessary to develop a signature to accurately predict the overall survival of ccRCC patients.

Considering that RCC is also an immunogenetic tumor that contains many immune cells such as tumor-infiltrating lymphocytes (TIL) and tumor-infiltrating immune cells (TIICs) (20–22), an alternative to antiangiogenic therapy is targeted as a selection of immunotherapy in RCC patients. Recent findings concluded that treatment with immune checkpoint inhibitors (ICIs) like Nivolumab alone could prolong the overall survival (OS) rate and reduce the grade 3 or 4 adverse events (23). When combined with anti-cytotoxic T-lymphocyte antigen-4 (CTLA4) and anti-programmed death 1 (PD-1) for treatment, the OS and response rates significantly improved (24). Studies have highlighted the importance of tumor microenvironment (TME) to RCC therapy and advocated combination treatment of antiangiogenics and targeted immunotherapy to overcome resistance. It has been recognized as a first-line therapy option currently (25, 26). Pyroptosis and necroptosis are two recently characterized forms of immunogenic cell death (ICD) in the TME, and they are expected to stimulate the immunogenicity of tumors and induce the effectiveness of anti-tumor immune responses (27). Unlike apoptosis, pyroptosis and necroptosis belong to programmed forms of necrosis (28), and they could protect against infections in the TME and be initiated by host and pathogen molecules (29). Currently, the underlying mechanisms of programmed forms of necrosis in RCC are still not fully understood. TME plays an essential role in tumor survival and promotion function in which the tumor cells could disseminate from the primary site to distant locations invasively, which results in cancer metastasis (30), thus, with more understanding of pyroptosis and necroptosis characteristics in the TME and identifying non-apoptotic cell death biomarkers in RCC prognosis predictions could benefit the development of anti-cancer treatment and next-generation chemotherapeutic medicines through targeting at powerful anti-tumor adaptive immune response (31).

In this study, the Gene expression data and clinical information datasets related to ccRCC and healthy control (HC) samples were downloaded from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, aiming to screen the differentially-expressed necroptosis- and pyroptosis- related genes (DE-NPRGs). Then we applied the bioinformatics methods and techniques to get the Necroptosis-Pyroptosis Clusters (NP-Clusters) and constructed the Necroptosis-Pyroptosis Genes (NPG) score for prognosis and functions analysis in ccRCC carcinogenesis and prognosis pathways, which could provide a reliable basis for pathological mechanisms of ccRCC and evidence for the therapeutic targets in clinical treatment and applications.



Methods


Acquisition of date and identification of differentially expressed necroptosis-related genes and pyroptosis-related genes (DE-NPRGs)

Gene expression data and clinical information of ccRCC patients were extracted from TCGA database (http://cancergenome.nih.gov/) and the GEO database (https://www.ncbi.nlm.nih.gov/geo/) (32–34). A total of 539 ccRCC samples and 72 normal samples with transcriptional data (HTSeq-FPKM), single nucleotide polymorphism (SNP), copy number variation (CNV), and clinical information were obtained from the TCGA database. The clinical pathological characteristics of these patients are shown in Table S1 and Table S2. The FPKM values of TCGA-KIRC were transformed into transcripts per kilobase million (TPM) for subsequent analysis. In addition, the gene expression profile data and clinical information of the external validation cohort were downloaded from the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/, ID: GSE29609) (35).

Necroptosis-related genes and pyroptosis-related genes (NPRGs) were extracted following the summary of previous research and reviews (36–40). A total of 60 necroptosis- and pyroptosis- related genes (NPRGs) were obtained and provided in Table S3. The “Limma” R package was applied to identify DE-NPRGs between ccRCC samples and normal samples (41). False Discovery Rate (FDR)< 0.05 and |log2 Fold Change| ≥ 1 were regarded as the threshold of differential expression. A protein-protein interaction (PPI) network for the DE-NPRGs was constructed by Search Tool for the Retrieval of Interacting Genes (STRING v11.0, https://string-db.org/) (42).



Screening of necroptosis-pyroptosis clusters (NP-Clusters) by nonnegative matrix factorization (NMF)

Based on the expression of DE-NPRGs, the NMF algorithm was employed to perform unsupervised clustering using the “NMF” R package (43). K-value was determined when the magnitude of the cophenetic correlation coefficient began to decrease. Next, principal component analysis (PCA) was performed to show the classification of common responsive genes (CRG) clusters. We then investigated the correlation between NP-Clusters with the clinical characteristics and prognosis. The differences in overall survival (OS) between different NP-Clusters were determined with Kaplan–Meier analysis obtained by the “survival” and “survminer” R packages. To investigate the differences of NPRGs in biological functions, gene set variation analysis (GSVA) was conducted with the gene set “c2.cp.kegg.v7.2” obtained from the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/) (44, 45). An adjusted P value less than 0.05 was considered statistical significance. Then, single-sample gene-set enrichment analysis (ssGSEA) algorithm was used to quantify the status of immune cell infiltration in ccRCC TME (46).



Construction and validation of NPG prognostic model

DE-NPRGs were subjected to univariate Cox regression analysis to extract the genes that were associated with OS. First, we excluded the genes with adjusted P values over 0.001. Then, the least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to avoid the overfitting problem and construct the NPG score signature using the R package “glmnet” (47). The penalty parameter (λ) was selected by applying 10-fold cross-validation according to the minimum criteria. Next, we calculated the NPG score for each sample using the following formula:  with Coef indicating the coefficient and Exp referring to the expression level of each NPRG. The prognostic scoring system for ccRCC patients was established, and the median value of the predicted NPG scores was regarded as the cut-off. PCA and t-distributed stochastic neighbor embedding (t-SNE) analyses were conducted by “stats” and “Rtsne” R packages. The R package “survival” and “survminer” was applied to compare the survival probability between the two groups via Kaplan-Meier (K-M) analysis. The R package “timeROC” was employed to perform 1-, 3- and 5- year receiver operating characteristic (ROC) analysis and calculate the value of area under curve (AUC). The external validation GEO cohort was employed to verify the NPG score signature. Patients in the GEO cohort were also divided into high- and low-risk groups. The K-M plot and time-dependent ROC plot were also made.



Functional annotation of the DEGs between high- and low-risk groups

After dividing patients into high-risk and low-risk groups, we applied the criteria of FDR<0.05 and |log2 Fold Change| ≥1 to screen the DEGs between high- and low-risk groups using the “Limma” R package. On the basis of these DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out with the “clusterProfiler” package (48–50). Gene Set Enrichment Analysis (GSEA) was performed by “clusterProfiler” R package to determine whether prior defined functional or pathway sets of genes differ significantly between high- and low-risk groups (51). The annotated gene sets “h.all.v7.2.symbols” and “c5.bp.v7.2.symbols” from the MSigDB database were adopted in our analysis. Enrichments of gene sets with an adjusted P value less than 0.05 were regarded to be significant.



Independent prognostic analysis and establishment of a nomogram

We extracted the clinical characteristics, including age, pathological stage, and sex of ccRCC patients in the TCGA cohort. These variables, in combination with the NPG score, were analyzed in univariate and multivariable Cox regression analysis. “survival” and “forest” R packages were used for analysis and visualization. In order to provide an applicable tool for clinicians and patients, we establish a nomogram by applying “rms” R package. Age, sex, pathological stage, and NPG score were involved. Time-dependent ROC analysis for survival probability to assess the prognostic accuracy and the calibration plots were applied to compare nomogram-predicated probability with observed outcomes. The clinical usefulness of the nomograms was evaluated by decision curve analysis (DCA).



Correlation of NPG score with clinical features, cancer stem cell (CSC) index, and tumor mutation burden (TMB)

We conducted a stratified analysis to explore whether the NPG score signature retained its predictive value according to pathological stage I to II and III to IV. Kaplan-Meier analysis (K-M analysis) was applied to compare the difference between high- and low-risk groups. Furthermore, the RNAss file named “StemnessScores_RNAexp_20170127.2.tsv” was downloaded. The tumor stem cell characteristics were obtained from the transcriptome and epigenetics of the samples and then used to evaluate the stem cell-like features of tumors. We performed a correlation analysis to investigate the association between NPG score and Cancer Stem Cell (CSC) index, mutation status, and TMB. The somatic mutation data were obtained from the TCGA database, and the waterfall plots were made employing by “maftools” R package (52).



Correlation of NPG score with TME, immune checkpoint genes (ICGs)

Two computational methods, ssGSEA, and Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT), were chosen for immune deconvolution analyses (53). ssGSEA takes the sample gene expression values as the input and computes an overexpression measure for the given gene list of immune cell type relative to all other genes in the transcriptome. CIBERSORT also takes gene expression values as the input but uses a gene expression signature matrix of particular immune cell types instead to compute the infiltration level of each immune cell type. Additionally, we employed the R package “ESTIMATE” to evaluate the TME score (stromal score, immune score, and estimate score) levels between high- and low- risk groups (54). We also investigated the correlations between high- and low-risk groups of the expression levels of ICGs. The Spearman correlation analysis between NPG score and PDCD1/CTLA4 was performed. Additionally, to analyze the response to immune checkpoint therapy, we downloaded immunophenoscore (IPS) data from The Cancer Immunome Atlas (https://tcia.at/ ) (55, 56).



Therapeutic response prediction

The immunophenoscore (IPS) based on the expression of major immunocompetence determinants was obtained from The Cancer Immunome Atlas (https://tcia.at/) for predicting the clinical benefits of immunotherapy (57, 58). Four types of IPS, including IPS, IPS-CTLA4 blocker, IPS-PD-1/PD-L1/PD-L2 blocker, IPS-CTLA4, and PD-1/PD-L1/PD-L2 blocker, were calculated from the TCGA-KIRC database. Moreover, we explored differences in the chemotherapeutic effects of drugs in ccRCC patients between high- and low-risk groups. Semi-inhibitory concentration (IC50) of anticancer drugs commonly used to treat ccRCC were calculated using the “pRRophetic” R package (59).



Cell culture and clinical samples

HK-2, 786-O, 769-P, ACHN, A498, CAKI-1, CAKI-2 and OSRC2 were purchased from Procell(Procell Life Science&Technology Co., Ltd). HK2, A498 were cultured in MEM medium supplemented with 10% fetal bovine serum (FBS), 786-O, 769-P, OSRC2 were grown in RPMI-1640 medium with 10% FBS, ACHN was raised in DMEM medium supplemented with 10% fetal bovine serum (FBS), CAKI-1, CAKI-2 were maintained in McCoy’s 5 A medium with 10% FBS. All cells were cultured in a humidified incubator with 5% CO2 at 37°C. All cell lines were authenticated by the short tandem repeat DNA profiling test and tested negative for mycoplasma contamination.

We selected 20 renal cancer tissues and 20 normal tissues from clinical tissue biopsy in The First Affiliated Hospital of Sun Yat-sen University from 2020 to 2022. All the patients were detected by CT and MRI scans of the body and pathology methods. Before collecting samples, the patients were not treated with drugs or radiotherapy. All the studies involving human participants were reviewed and approved by the Institutional Ethics Committee for Clinical Research and Animal Trials Ethical of the First Affiliated Hospital of Sun Yat-sen University [(2021)144], and the Informed Consent Forms were provided and signed by participated patients. All participants agreed on the use of clinical specimens for medical research. The study methodologies conformed to the standards set by the Declaration of Helsinki. One of our authors had access to information that could identify individual participants during or after data collection. In the end, tissues were obtained from 20 ccRCC patients.



Plasmid construct and siRNA interference

Recombinant plasmids of overexpressing GSDMB and CASP4 were synthesized and constructed by Tsingke (Tsingke Biotechnology Co., Ltd). Lentiviral packaging plasmids and the negative control plasmids were purchased from GeneCopoeia (Rockville, USA). 293 T cells were transfected with GSDMB and CASP4 overexpressing plasmids using Lipofectamine 2000 (Invitrogen, CA, USA); 48 h after the transfection, supernatants containing overexpressing GSDMB and CASP4 lentivirus were collected to transfect 786-O and 769-P cells. Puromycin (5μg/ml) was used for selecting the stably transfected cell lines, and qPCR was used to quantify the efficiency of overexpressing plasmids. Small interference RNA (siRNA) of GSDMB and CASP4 and corresponding negative control were chemically synthesized by RiboBio (RiboBio Co., Ltd China) for further research. The siRNA target sequence is shown in Supplementary Table S5.



RNA isolation and quantitative real-time PCR (qRT-PCR)

Total RNA was extracted using TRIzol Reagent (Invitrogen, USA) according to the manufacturer’s instructions. NanoDrop was used to detect RNA concentration by A260/A280 ratio. PrimeScript RT reagent kit (EZBioscience, China), and SYBR Green PCR reagent (EZBioscience, China) were used to perform cDNA synthesis and further conduct qRT-PCR according to the manufacturer’s protocol. The reaction was incubated at 95°C for 10 min followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. GAPDH was used as an internal control. The primer sequences were exhibited in Supplementary Table S4. Data were analyzed using the 2-ΔΔCT relative quantification method.



Immunohistochemistry (IHC) and western blot (WB)

First, the expression of AIM2, CASP4, GSDMB, NOD2, and RBCK1 in ccRCC patients was examined by IHC. Antibodies used for IHC were as follows: AIM2 (Proteintech: #20590-1-AP), CASP4 (Proteintech, #11856-1-AP), GSDMB (Proteintech, #12885-1-AP), NOD2 (Abcam, # ab31488) and RBCK1 (Proteintech, #26367-1-AP). Second, Western blotting analysis was performed with the standard protocol. ccRCC cells were lysed with NP-40 lysis buffer, and the protein concentration of each sample was measured using a BCA Protein assay kit (Beyotime, China). Equivalent protein was then separated by 10% Tris-Tricine SDS-PAGE and transferred onto polyvinylidene fluoride (PVDF) membranes. After being blocked in 5% fat-free milk, the PVDF membranes were incubated with primary antibodies overnight at 4°C. Primary antibodies included GAPDH (Proteintech, #60004-I-Ig), H3 (Abcam, #ab1791), AIM2 (Proteintech: #20590-1-AP), CASP4 (Proteintech, #11856-1-AP), GSDMB (Proteintech, #12885-1-AP), NOD2 (Abcam, # ab31488) and RBCK1 (Proteintech, #26367-1-AP). Then membranes were incubated with secondary antibody (HRP-conjugated anti-rabbit IgG, Abcam) at room temperature for 1 hour. Finally, the bands on the membranes were observed with a western blot substrate kit (Tanon, Shanghai, China).



CCK8 and colony formation assays

For CCK8 assays, a total of 1500 ccRCC cells were seeded per well in the 96-well plate. The freshly prepared CCK-8 detection solution was added to the well and incubated for 2 hours at 37 °C. The OD value was detected with a spectrophotometer reader at 450 nm. For colony formation assays, a total of 1000 cells were seeded per well in a 6-well plate. After being cultured for 2 weeks, the colonies were fixed with 4% paraformaldehyde for 20 min at room temperature and then stained with 0.1% crystal violet. The number of colonies (>50 cells) was counted.



Transwell assays

Transwell migration assays and matrigel invasion assays were performed using a 24-well transwell chamber (Corning, NY, USA) with or without matrigel (Corning, NY, USA). About 50,000 cells were resuspended in serum-free medium and seeded onto the upper chamber, and the lower chamber was added with 10% FBS-containing medium as the chemo-attractant. The cells that migrated through the membrane or invaded through the matrigel were fixed, stained, and then counted under a light microscope.



Statistical analysis

All statistical analyses were performed using R software (Version 4.1.1) and GraphPad Prism (Version 9.0.0). To compare variables between two groups, we employed the independent sample t-tests for normally distributed continuous variables and Mann-Whitney U tests for nonnormally distributed continuous variables. One-way ANOVA and Kruskal-Wallis tests were used to perform difference comparisons of three or more groups. The survival analysis was conducted via the Kaplan-Meier method, and log-rank tests were employed to identify the significance of differences. Correlation coefficients were evaluated by Spearman analysis. The statistical significance was defined with P< 0.05.




Results


Identification of candidate NPRGs in ccRCC

A total of 60 NPRGs were obtained and provided in Supplementary Table S3. RNA expression levels of 60 NPRGs between normal and tumor samples were presented in Figure 1A. The expression levels of AIM2, CASP1, CASP4, CASP5, GSDMA, GSDMB, GSDMC, GZMA, GZMB, IFI16, MEFV, MLKL, NAIP, NLRC4, NLRP1, NLRP6, NLRP7, NLRP12, NOD2, PYCARD, RBCK1, TLR3, TNIP1, TRADD, TRAF2, ZBP1 were upregulated in tumor samples, while only the expression level of NLRP2 was downregulated in tumor samples. The interactions of DE-NPRGs were analyzed by the PPI network according to the STRING database using a confidence of 0.9 as the threshold (Figure 1B). The comprehensive landscape of DE-NPRGs interactions, connections, and their prognostic values in ccRCC patients was exhibited in a co-expression network (Figure 1C). Then, 28 DE-NPRGs were subjected to univariate Cox regression analysis to select Candidate NPRGs for model construction. A total of 14 NPRGs were retrieved as candidate genes with the adjusted P value cutoff of 0.001 (Figure 1D).




Figure 1 | Screening necroptosis and pyroptosis related genes (NPRGs) in ccRCC. (A) Heat map of 60 NPRGs. (B) PPI network for the cross talks of NPRGs according to STRING database (cross talk score = 0.9). (C) The association network landscape of differentially Expressed NPRGs (DE-NPRGs): red dot, down-regulation; grey dot, up-regulation; purple dot, risk factors; green dot, favourable factors; pink line, positive correlation with P < 0.001; blue line, negative correlation with P< 0.0001; the size of dots represents the significance of the correlation. (D) Univariate Cox regression analysis of candidate NPRGs with the 14 ones were significantly selected in the model (P < 0.001).





Screening of NP-clusters by NMF

In order to explore the expression features and potential biological characteristics of NPRGs in ccRCC, we performed unsupervised clustering analysis to classify patients into distinct NP-Clusters using the NMF algorithm based on the expression levels of 28 DE-NPRGs. The cophenetic correlation coefficient and visual inspection of the consensus matrix suggest the best cluster number was 3 (Figures 2A, B, S1). Patients with ccRCC in TCGA cohort were categorized into 3 NP-Clusters (cluster A, n=154; cluster B, n=106; cluster C, n=279). PCA was conducted and showed an obvious different distribution among NP-Clusters (Figure 2C). Kaplan-Meier OS curves showed that patients in NP-Custer A had the shortest OS time, whereas patients in NP-Cluster C had the superior OS time (Figure 2D). Figure 2E shows the different expressions of NPRGs and clinicopathological characteristics among NP-Cluster A to C.




Figure 2 | Risk classifications and related functional annotation based on the DE-NPRGs. (A, B) Consensus clustering matrix in ccRCC patients with best cluster number of three (k = 3). (C) ccRCC patients in TCGA cohort were stratified into three groups. (D) Kaplan-Meier curves for the three clusters. (E) Heatmap showing the clinicopathologic characteristics formed by DE-NPRGs and clinical features in three NP-clusters. (F) Heatmap of GSVA enrichment scores comparisons for the differentially expressed pathways in three NP-clusters. (G) Comparison of ssGSEA scores for immune infiltration of ccRCC in three NP-clusters and results visualization. *** P< 0.001; ns, no significance.



To further explore the functional annotation among 3 NP-Clusters, we conducted GSVA enrichment analysis (Figure 2F). NP-Cluster B presented enrichment pathways related to immune activation, including the B cell receptor signaling pathway, T cell receptor signaling pathway, NOD like receptor signaling pathways, and Toll like receptor signaling pathways. Next, NP-Cluster A and NP-Cluster C showed an association with immune inhibition compared with NP-Cluster B. NP-Cluster A enriched in nerve conduction related pathways and NP-Cluster C enriched in metabolic-related biological processes. Subsequently, we compared the relevant abundance of immune cells among 3 NP-Clusters to explore the potential function of NPRGs in the immune infiltration of ccRCC by ssGSEA (Figure 2G). We observed NP-Cluster B was significantly enriched in immune cell activation, including the higher immune infiltration levels of activated B cells, activated CD4+T cells, activated CD8+T cells, and activated dendritic cells.



Construction and validation of NPG prognostic model

We performed LASSO Cox regression analysis for 14 OS-related DE-NPRGs, and 10 genes were obtained to establish the NPG prognostic model in the TCGA cohort based on the minimum criteria to predict the prognosis of ccRCC patients (Figure 3A). The corresponding coefficients were acquired from LASSO Cox regression analysis. NPG score can be calculated as following: NPG_score = (0.009877* AIM2) + (0.042783* CASP4) + (0.134083* GSDMB) + (0.016047* IFI16) + (0.085619* NOD2) + (0.007173* RBCK1) - (0.024375* TLR3) - (0.006708* TNIP1) + (0.073096* TRAF2) - (0.169280* ZBP1). Then, 10 genes were subjected to multivariate Cox regression analysis, and we found GSDMB (HR=1.1435, P<0.05), RBCK1 (HR=1.0072, P<0.05), and TLR3 (HR=0.9759, P<0.05) were independent prognostic factors (Figure 3B). Then patients were divided into high-risk (NPG score > median value) and low-risk (NPG score< median value) groups accordingly. PCA and t-SNE plots demonstrated an obvious differential distribution between high and low-risk groups in the TCGA cohort (Figures 3C, D). The risk plot of NPG scores revealed that groups with high NPG scores had increased fatal events and shorter survival times (Figures 3E, F). Correlation evaluation demonstrated that a low NPG score was linked to a higher percentage of alive patients at follow-up, while a high NPG score was related to a higher percentage of dead patients (Figure 3G) at follow-up. In the TCGA cohort, Kaplan–Meier OS curves showed that patients in the high-risk group had a shorter OS than low-risk patients (P< 0.001) (Figure 3H). The 1-, 3-, and 5-year survival probability of NPG score were represented by AUC values of 0.763, 0.707, and 0.728, respectively (Figure 3I).




Figure 3 | NPG prognostic model construction and validation. (A) Cross-verification for fine-tune the selection of parameters in LASSSO regression and 10 NPRGs were obtained in TCGA cohort for the NPG prognostic model construction. (B) Multivariate Cox regression analysis of NPRGs for NPG score calculation in TCGA cohort. (C, D) PCA map and t-SNE plots for high- and low- risk groups based on the NPG score (red dot, high risk class; green dot, low risk class). (E, F) risk plot of NPG score The survival rate (low-NPG score group: on the left side of the dotted line; high-NPG score group: on the right side of the dotted line) and time (red dot, dead subjects; green dot, alive subjects) for each patient in TCGA cohort. (G) Correlation of NPG score and vital status of ccRCC patients. (H) Kaplan–Meier curves for comparison of NPG score risks between low-NPG score and high-NPG score groups in TCGA cohort. (I) ROC curves with the NPG score prediction efficiency in TCGA cohort. (J) Kaplan–Meier curves for comparison of NPG score risks between low-NPG score and high-NPG score groups in external validation cohort (GEO cohort). (K) ROC curves with the NPG score prediction efficiency in external validation cohort (GEO cohort).



To further verify the performance of the prognostic model, we applied an external validation cohort. Similarly, we calculated the NPG score for each sample and divided them into high- and low-risk groups. Kaplan–Meier analysis also showed a significantly better prognosis in the low-risk group compared to that in the high-risk group (Figure 3J). ROC curves also verified the accuracy of our signature. As shown in Figure 3K, the AUC of the GEO cohort indicated a score of 0.741 at 1 year, 0.780 at 3 years, and 0.828 at 5 years.



Functional annotation of the DEGs between high- and low-risk groups

To elucidate the potential biological functions and signaling pathways associated with high NPG scores, 1536 DEGs between high- and low-risk groups were identified in the TCGA cohort for functional enrichment analysis. The results of GO showed DEGs were enriched in immune-related biological processes (antimicrobial humoral response, humoral immune response, acute inflammatory response, and acute-phase response) and iron-related and signal transport biological processes and molecular functions (organic anion transport, signaling receptor activator activity, and metal ion transmembrane transporter activity) (Figure 4A). The results of the KEGG pathway showed that DEGs were associated with pathways including complement and coagulation cascades, cytokine-cytokine receptor interaction, viral protein interaction with cytokine and cytokine receptor, IL-17 signaling pathway, staphylococcus aureus infection, and steroid hormone biosynthesis (Figure 4B). Furthermore, GSEA indicated that a high NPG score is predominantly associated with tumor progression and immunity, including (Figures 4C, D): reactome chemokine receptors bind chemokines, reactome regulation of insulin like growth factor igf transport and uptake by insulin like growth factor binding proteins igfbps, reactome immunoregulatory interactions between a lymphoid and a non lymphoid cell, hallmark kras signaling dn, hallmark epithelial mesenchymal transition, hallmark coagulation.




Figure 4 | Functional annotation of the DEGs between high- and low- NPG score groups. (A) The GO analysis with GO terms of biological processes, cell components, and molecular functions. (B) KEGG pathway enrichment analyses of DEGs between high- and low- NPG score groups. (C, D) GSEA analysis of tumor progression and immunity between low- and high- NPG score groups.





Independent prognostic analysis and establishment of a nomogram

To determine whether the NPG score was an independent prognostic predictor for OS, we combined clinical characteristics (pathological stage, age, and sex) and NPG score to perform univariate and multivariate Cox regression analysis. In univariate Cox regression analysis, higher NPG score (HR=3.0080, 95% CI =2.1500−4.2083, P<0.0001), more advanced pathological stage (HR=3.8832, 95% CI =2.8134−5.3598, P<0.0001), and older age (HR=1.6915, 95% CI =1.2401−2.3073, P=0.0009) were significantly related to OS (Figure 5A). In multivariate Cox regression analysis, after adjusting for other confounding factors, the NPG score is still confirmed to be an independent predictor for OS (HR=2.6165, 95% CI= 1.8596−3.6814, P<0.001) (Figure 5B). Furthermore, comparisons of the clinicopathological characteristics in the high- and low-risk groups revealed significant differences in NPRGs expression and clinicopathological features (Figure 5C). High NPG scores were related to advanced pathological stages and more death events. Moreover, the expression of TRAF2, GSDMB, ZBPQ, RBCK1, IFI16, AIM2k, and CASP4 were upregulated in the high-risk group.




Figure 5 | Independent prognostic validation and establish of nomogram. (A) Univariate cox regression for TCGA cohort based on the clinical characteristics (pathological stage, age, and sex) and NPG score. (B) Multivariate analysis for TCGA cohort. (C) Heatmap showing the clinicopathologic characteristics formed by 10 NPRGs and clinical features in low- and high- NPG score groups. (D) Nomogram. (E) ROC curves illustrating the prediction efficiency of nomogram (AUC, 0.72 to 0.76). (F) DCA curves illustrating the clinical effectiveness of the nomogram. (G–I) Nomogram to predict 1-, 3-, and 5- year overall survival rates of ccRCC patients. Calibration plots showed overall survival nomogram model to compare the nomogram-predicted probability (blue line) with ideal nomogram (grey line).



To better apply the NPG score prognostic model, we constructed a nomogram based on the TCGA cohort to exhibit a quantitative method to predict the 1-, 3-, and 5-year overall survival. The nomogram contained NPG score and clinical information, including age and pathological stage (Figure 5D). AUC values of the nomogram were calculated, and calibration analysis was performed to estimate the predictive ability of the nomogram for prognosis. Figure 5E showed the relationship between AUC (0.72 to 0.76) and predicting survival time (from 1 year to 5 years). We plotted DCA curves to illustrate the clinical benefits of the nomogram (Figure 5F). The calibration plots showed good agreement between nomogram-predicated probability and the observed outcomes (Figures 5G–I).



Correlation of NPG score with clinical features, CSC index, and TMB

We first analyzed the association between NP-Clusters and NPG score, and observed NP-Cluster C had the lowest median NPG score, which was consistent with the K-M analysis of NP-Clusters (Figure 6A). However, there was no significance between NP-Cluster A and B (P=0.25). Stratified analysis was conducted to evaluate whether the NPG score retained its predictive ability in different pathological stages (stage I–II and stage III–IV). The result showed significantly lower OS in patients in the high-risk group compared to those in patients with low-risk scores for both stage I–II (P<0.001) and stage III–IV (P<0.001) (Figures 6B, C). Previous studies demonstrated that CSC could drive the growth and recurrence of tumors and are resistant to many current treatments (60, 61). A mild but significant negative correlation (R = -0.11, P = 0.013) was observed between NPG score and CSC index (Figure 6D). Furthermore, we described the landscape of somatic mutation between high- and low- risk groups. Patients with high NPG scores had higher mutation frequencies of TTN, SETD2, BAP1, MTOR, LRP2, SPEN, and FLG, while VHL and PBRM1 mutation frequencies were much higher in patients with low NPG scores (Figures 6G, H). However, there was no significant difference in TMB between high- and low-risk groups (Figure 6E). Additionally, Spearman correlation analysis revealed no significant correlation between NP-Clusters and TMB (Figure 6F).




Figure 6 | Correlation of NPG score with clinical features, CSC index, and TMB. (A) Comparison plot illustrating the differences of NPG score in three NP-Clusters. (B, C) Kaplan–Meier curves for comparison of NPG score risks between low-NPG score and high-NPG score groups by stratified analysis of pathological stages. (D) Correlation of NPG score and CSC index. (E, F) Tumor mutation burden analysis. (G, H) Landscape of tumor mutation burden between high- and low- NPG score groups.





Correlation of NPG score with TME cell infiltration

Then, we employed 2 computational methods, ssGSEA and CIBERSORT, to investigate the correlation between NPG score and TME cell infiltration. Using ssGSEA, we observed the immune infiltration levels of B cells, CD8 T cells, DCs, macrophages, pDCs, T helper cells (P<0.001), Tfh, Th1 cells, Th2 cells, TIL, Treg in the high-risk group were significantly higher than those in the low-risk group, while the infiltration levels of mast cells in the high-risk group was lower than that low-risk group (Figure 7A). The immune-related functions’ scores include APC co-stimulation, CCR, checkpoint, cytolytic activity, inflammation-promoting, parainflammation, T cell co-inhibition, T cell co-stimulation, Type-I IFN response, and Type-II IFN response were also significantly higher in high-risk group (Figure 7B). The difference in immune cell infiltration levels evaluated by CIBERSORT was consistent with ssGSEA (Figures 7C, D). Meanwhile, Macrophage M0, Plasma cells, T cells CD4 memory activated, T cells CD8, T cells follicular helper and Tregs were positively correlated with NPG score, while B cells naïve, Dendritic cells resting, Macrophage M1, Macrophage M2, Mast cells activated, Monocytes, Neutrophils, and T cells CD4 memory resting were negatively correlated with NPG score (Figure 7E). TME scores, including the Stromal, Immune, and ESTIMATE scores, were significantly higher in the high-risk group (Figure 7F).




Figure 7 | Correlation of NPG score with TME cell infiltration. (A) ssGSEA analysis of NPG score and immune infiltration levels in ccRCC. (B) Comparison of immune-related functions scores in low- and high- NPG score groups. (C, D) Difference in immune cell infiltration levels evaluated by CIBERSORT in ccRCC. (E) The relationship of NPG score and different immune cell infiltration levels. (F) Correlation analysis between TME scores and NPG score in ccRCC *P < 0.05; ** P < 0.01; *** P< 0.001; ns, no significance.





Therapeutic response prediction

Considering that the expression levels of ICGs have been reported to associate with the clinical benefit of checkpoint blockade immunotherapy, we compared the difference in ICGs expression between high- and low-risk groups. The expression levels of 19 ICGs containing BTLA, CD274, CD276, CD40, CTLA4, and PDCD1 were upregulated in the high-risk group, while HAVCR2 and HHLA2 were downregulated (Figure 8A). The expression levels of PDCD1 and CTLA4 also increased with the increasing NPG score (Figures 8B, C). Subsequently, we explored the correlation between NPG score and response to immunotherapy. No significant differences of PD-L1 or PD-L2 expression in the groups of low- NPG and high- NPG score groups (P>0.05 Figure S2). However, IPS difference showed that patients with higher NPG scores, who received single CTLA4 blocker treatment (P=0.038) or CTLA4 and PD-1/PD-L1/PD-L2 combined therapy (P=0.0028), could have a better therapeutic effect than those with lower NPG score (Figures 8D–G). It revealed that patients with high NPG scores were more suitable for immune checkpoint inhibitor combined therapy. We next obtained chemotherapy drugs currently used for the treatment of ccRCC to estimate the sensitivities of patients in the low- and high-risk groups to these drugs (Figure 8H). We observed that the patients in the high-risk group had lower IC50 values for Sunitinib, Rapamycin, and Temsirolimus. The IC50 value of Lapatinib was higher in patients with a high NPG score




Figure 8 | Therapeutic response prediction. (A) Comparison the difference of ICGs expression between high- and low-NPG score groups. (B, C) The relationship of NPG score and PDCD1 and CTLA4. (D–G) Correlation analysis between NPG score and response to immunotherapy. (H) Comparison of the sensitivities to the chemotherapy drugs currently used for ccRCC treatment. *P < 0.05; ** P < 0.01; *** P < 0.001.





The expression levels of AIM2, CASP4, GSDMB, NOD2, and RBCK1

Then, we investigated the expression levels of AIM2, CASP4, GSDMB, NOD2, and RBCK1 in cell lines and tumor tissues by qRT-PCR, IHC. As shown in Figures 9A, B, qRT-PCR showed that the expression of AIM2, CASP4, GSDMB, NOD2, and RBCK1 was significantly upregulated in tumor samples. In our validation results in cell lines, the expression tendency of 5 genes was consistent with prediction results (Figure 9C). Additionally, oligo sequences used in quantitative real-time PCR were displayed in Supplementary Table S4. IHC staining validated that the protein levels of AIM2, CASP4, GSDMB, NOD2, and RBCK1 in tumor tissues were much higher than that in adjacent normal tissues (Figure 9D). To further confirm these findings, their protein expression levels were examined using WB in 10 paired RCC tissues (Figures 9E, F). The expression levels of AIM2, CASP4, GSDMB, NOD2, and RBCK1 were frequently higher in RCC tissues.




Figure 9 | qRT-PCR, IHC and WB verification. (A, B) mRNA expression of AIM2, CASP4, GSDMB, NOD2, and RBCK1in ccRCC patients by qRT-PCR. (C) Levels of the mRNA expression in different cell lines as assessed by qRT-PCR analysis. (D) Protein expression of AIM2, CASP4, GSDMB, NOD2, and RBCK1 in ccRCC patients by Western blot. (E, F) Expression of AIM2, CASP4, GSDMB, NOD2, and RBCK1 makers in ccRCC tumor tissue and normal tissues by IHC. *P < 0.05; ** P < 0.01; *** P< 0.001; **** P< 0.001; ns, no significance.





CASP4 and GSDMB have promoting effects on the proliferation, migration, and invasion of ccRCC cells

To explore the role of CASP4 and GSDMB in ccRCC proliferation, migration, and invasion in vitro, we constructed two siRNA specifically targeting CASP4 (siCASP4-1, si-CASP4-2) and GSDMB (siGSDMB-1, siGSDMB-2) respectively, and overexpressing vector (OE-CASP4 and OE-GSDMB) (Figures 10A, B). CCK-8 assays and colony formation assays showed that silencing CASP4 and GSDMB significantly reduced the proliferative capabilities of ccRCC cells (786-O and 769-P) while overexpressing CASP4 and GSDMB promoted cell proliferation (Figures 10C, D). Moreover, transwell assays showed that the migration and invasion abilities of ccRCC cells (786-O and 769-P) were significantly reduced when CASP4 and GSDMB were silenced. In contrast, increasing the expression level of CASP4 and GSDMB increased the migration and invasion rate of cells (Figure 10E). In summary, these results collectively confirmed that CASP4 and GSDMB have promoting effects on the proliferation, migration, and invasion of ccRCC cells.




Figure 10 | Verification of CASP4 and GSDMB for proliferation, migration, and invasion in ccRCC. (A, B) Construction and verification of two siRNA specifically targeting at CASP4 (siCASP4-1, si-CASP4-2) and GSDMB (siGSDMB-1, siGSDMB-2) respectively, and overexpressing vector (OE-CASP4 and OE-GSDMB). (C, D) CCK-8 assays, and colony formation assays to detect ccRCC cell proliferation. (E) Transwell migration/invasion assay to analyse the ability of ccRCC cell migration and invasion. *P < 0.05; ** P < 0.01; *** P< 0.001; **** P< 0.001.






Discussion

In the present study, from the 60 DE-NPRGs identified as associated with overall survival (OS) in the TCGA cohort., 26 upregulated genes and only one downregulated gene were discovered from the ccRCC samples, compared to the normal kidney samples. Through PPI network analysis based on the STRING database and co-expression network analysis among the DE-NPRGs above, 14 DE-NPRGs were significantly screened as hub genes in the ccRCC group. All of these genes except TLR3 (HR=0.9626) and TNIP1 (HR=0.9985) were associated with increased risk with a hazard ratio over 1. To obtain an in-depth understanding of the expression features in the tumor microenvironment and potentially predictable prognosis characteristics for these DE-NPRGs in ccRCC carcinogenesis, three NP-Clusters were identified with different lengths of the OS periods and pathways enrichments in ccRCC. NP-Cluster B was considerably enriched in immune cell activation, including greater numbers of activated B cells, CD4+ T cells, CD8+ T cells, and dendritic cells. Subsequently, the NPG prognostic model was constructed by multivariate Cox regression analysis with 10 genes (AIM2, CASP4, GSDMB, IFI16, NOD2, RBCK1, TLR3, TNIP1, TRAF2, ZBP1) that were selected and confirmed with LASSO regression. Then GSDMB and RBCK1 were proved to be harmful prognostic factors, while TLR3 was expected to be a good prognostic factor independently. This finding is consistent with the report from previous research. Cui et al. found that upregulation of GSDMB in ccRCC is associated with immune infiltration and poor prognosis (62); Yu et al. showed that RBCK1 could indicate the poor prognosis in RCC patients via promoting p53 degradation and ubiquitination (63); another recent study from Liao et al. reported TLR3 could be a promising prognostic biomarker for RCC microenvironment by immune infiltration (64). By the NPG prognostic model we constructed, the TCGA cohort patients were divided into high-risk and low-risk groups, and it is evident that the higher NPG score was significantly associated with worse OS as an independent prognosis predictor in ccRCC patients. The K-M plot of the validation dataset of GEO cohort showed a strongly consistent and comparable result with the TCGA cohort, with AUC of 0.741 at 1 year, 0.780 at 3 years, and 0.828 at 5 years survival, indicating a good prediction of OS by NPG score.

Furthermore, we displayed the calculated NPG score showed 1) significantly positive associations with different pathological stages (stage I–II and stage III–IV); 2) significant but mild correlations with the CSC Index that could promote the growth and recurrence of malignancies of tumors; 3) significant positive correlation with the TME score that contains stromal, immune, and ESTIMATE scores, which was approved by ssGSEA and CIBERSORT consistently; 4) positively suitable to ICIs combined treatment; and the high-NPG score could indicate more sensitive to the chemotherapy drugs of Sunitinib, Rapamycin, and Temsirolimus. This study demonstrated the significance of the NPG score in defining the TME characteristics and predicting the prognosis in ccRCC. It is well known that TME consists of immune and non-immune stromal components related to tumor oncogenesis and malignant behavior (65). Therefore, the abundant immune components in TME could help to estimate immune and stromal cell infiltration, such as ESTIMATE scores (66). Consistently, the NPG score from this study showed that a higher NPG score indicated higher stromal, immune, and ESTIMATE scores in ccRCC, and could be a potentially promising biomarker for ccRCC TME environment evaluation. Moreover, immunotherapy with ICIs has led to cancer therapeutic advancements (67). Given the general tendency of tumors to resist apoptosis or poor response to ICIs, improvement in underlying resistance to apoptotic cell death would be expected to provide the efficiency for immunotherapy. We found that the NPG score could be a potential candidate biomarker for predicting the clinical benefits of immunotherapy. By applying the differences in the chemotherapeutic effects of medications in ccRCC patients between high- and low-risk NPG groups, it is obvious that IC50 of anticancer drugs was lower in the higher NPG score group for Sunitinib, Rapamycin, and Temsirolimus, but not in Lapatinib. According to the previous research, pyroptosis is a microbial ICD produced by immune cell caspases (68); necroptosis is another form of ICD that death receptors (DRs) or pattern recognition receptors (PRRs) recognize adverse cellular environmental to launch necroptosis (67). Thus, we first established the NPG score to engage the extensive crosstalk of pyroptosis and necroptosis which could provide more evidence of multiple cell death modalities to predict the prognosis of ccRCC.

Finally, we utilized experiments in vitro to explore the expressions of primary genes of NPG score signature in the carcinogenesis process of ccRCC. Our results illustrated that AIM2, CASP4, GSDMB, NOD2, and RBCK1 had higher expression in RCC tissues, and CASP4 and GSDMB could promote proliferation, migration, and invasion of ccRCC cells. Pyroptosis and necroptosis are two forms of programmed cell death to trigger inflammatory responses with different mechanisms and pathways. Pyroptosis is mediated by members of the Gasdermins family, such as GSDMD and GSDME, to form membrane pores to allow the release of proinflammatory cytokines, IL-1β, and IL-18 (68). Necroptosis is induced by MLKL to also form pores on the cell membrane to release DAMPs. Although triggered by different mechanisms and pathways, they may share a common driver, NLRP3 inflammasome to cause inflammation (68). Additionally, pyroptosis and necroptosis are both found to have crosstalk with antitumor immunity. Pyroptotic cells send danger signals to recruit more CD8+ T cells and other tumor-suppressive cells. Also, induction of pyroptosis strengthens the efficiency of immune checkpoint inhibitors in the “cold tumor”. As for necroptosis, both DAMPs released from necroptotic tumor cells and NF-κB-derived signals released from necroptotic cells can enhance cytotoxic effects by CD8+ T effector cells (40). However, pyroptosis and necroptosis are reported to antagonize the antitumor immune response as well (67). Hence, how to promote anticancer synergy between the two cell deaths is critical to cancer immunotherapy. A recent series of studies displayed the immune landscape of ccRCC and suggested the potential immunotherapeutic targets for ccRCC treatment. A similar finding was observed that assessing the pyroptosis patterns could inform the tumor status and guide immunotherapy strategies by investigating the response of AIM2 to immunotherapy in ccRCC (69). Also, as in many other types of cancer, NOD2 was downregulated in ccRCC to promote metastasis (70). Additionally, as an essential for NF-κB stimulation, RBCK1 mutations are shown to be related to immunodeficiency and tumor-infiltrating immune cells, which proved to be an independent prognostic biomarker in RCC (71, 72). Moreover, consistent with our findings, another study by Jiang et al. identified the significance of CASP4 and GSDMB to the immune microenvironment and molecular heterogeneity in ccRCC by a pyroptosis-related prognosis prediction model. Previous studies have shown that CASP4 protein could involve the activity of cellular processes such as cell inflammation and apoptosis (73); while the GSDMB family could manage cell differentiation and proliferation, although the comprehensive role of GSDMB has not been fully understood (62). Here, taking the results of the functional enrichment analyses of NPG score-related signaling pathways (tumor progression and immunity) together, it was discovered that the NPG score might be an essential biomarker that influences carcinogenesis (proliferation, migration, and invasion) and prognosis in ccRCC.

Currently, it remains difficult to identify the early symptoms of RCC, and the majority of patients are identified at an advanced stage or even with metastases. In addition, due to the complexity of its etiology and pathophysiology, RCC exhibits the clinical features of a high risk of recurrence and metastasis (74, 75). Although the broader implementation of various diagnostic, screening techniques and advanced therapies, the risk of metastasis and recurrence for ccRCC shows a 5-year survival rate of 50%-69% for ccRCC patients and 10% for patients with metastasis (76). Consequently, it is essential to research the mechanisms underlying the carcinogenesis of ccRCC and to uncover the innovative prospective diagnosis, treatment, and prognosis targets. Advances in cancer bioinformatics analysis could benefit the investigation of genes associated with cancer metabolisms, signaling, communication, and proliferations by combining bioinformatics methodologies (clinical informatics, medical informatics, mathematics, omics science, etc.) (77); thus, it could support in tackling the clinically relevant challenges of early diagnosis, therapy, and prognosis improvement. By adopting the bioinformatics analysis, this study identified 14 OS-related differentially expressed DE-NPRGs, and 10 of them were applied to establish the NPG prognostic model by achieving the NPG score. More importantly, this necroptosis- and pyroptosis- defines tumor microenvironment characterization and prognosis predictive functions were validated by our validation cohort and experiments in ccRCC tissue and cells. However, there are a few limitations that exist still. First, the publicly available online databases were applied for the analysis and validation. It would benefit more ccRCC patients if controlled and multicenter clinical studies and sample examinations could be performed further. In addition, the underlying mechanisms and pathways involved in the pyroptosis-necroptosis genes interactions and their functions for the tumor microenvironment in ccRCC require further exploration. Further experiments in vivo and in vitro validation would gain more comprehensive knowledge targeting the better application of the NPG model to predict ccRCC prognosis. Also, the multifaceted role of NPRGs and interactions in TME illustrated the necessity to potentially design new NPG score-based immunotherapies to improve the prognosis in ccRCC. Nevertheless, despite the limitations mentioned above, it is undeniable that this study was the first to complete a comprehensive investigation of NPRGs in ccRCC and distinguished and characterized the high- and low- risk groups based on the NPG scores, which might serve as an independent indicator for evaluating prognosis in ccRCC patients. Finally, molecular medicine experiments focusing on immune and prognostic analysis were not enough like IHC for immune cell molecular markers in RCC patients and flow cytometry sorting technology which would be deeply taken into consideration in our further research related to the correlation of NPG with immune activities, allowing us to explore specific changes in the tumor microenvironment.



Conclusion

This study was the first to offer, to the best of our knowledge, thorough evidence of the substantial interplay between necroptosis-pyroptosis defined tumor environment and prognosis prediction of ccRCC. The NPG score was identified as a potential prognostic biomarker for ccRCC. The NPG score-based dependable and referable risk model accurately predicted the tumor microenvironment and OS of ccRCC. Additional clinical research and biomolecular investigation would be required to provide additional information for future in-depth studies that will profit more ccRCC patients.
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Pyrimidine metabolism is a hallmark of cancer and will soon become an essential part of cancer therapy. In the tumor microenvironment, cells reprogram pyrimidine metabolism intrinsically and extracellularly, thereby promoting tumorigenesis. Metabolites in pyrimidine metabolism have a significant impact on promoting cancer advancement and modulating immune system responses. In preclinical studies and practical clinical applications, critical targets in pyrimidine metabolism are acted upon by drugs to exert promising therapeutic effects on tumors. However, the pyrimidine metabolism in breast cancer (BC) is still largely underexplored. In this study, 163 credible pyrimidine metabolism-related genes (PMGs) were retrieved, and their somatic mutations and expression levels were determined. In addition, by using The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, 12 PMGs related to the overall survival (OS) were determined using the univariate Cox regression analysis. Subsequently, by performing the LASSO Cox hazards regression analysis in the 12 PMGs in TCGA-BRCA dataset, we developed a prognosis nomogram using eight OS-related PMGs and then verified the same in the METABRIC, GSE96058, GSE20685, GSE42568 and GSE86166 data. Moreover, we validated relationships between the pyrimidine metabolism index (PMI) and the survival probability of patients, essential clinical parameters, including the TNM stage and the PAM50 subtypes. Next, we verified the predictive capability of the optimum model, including the signature, the PAM50 subtype, and age, using ROC analysis and calibration curve, and compared it with other single clinical factors for the predictive power of benefit using decision curve analysis. Finally, we investigated the potential effects of pyrimidine metabolism on immune checkpoints, tumor-infiltrating immune cells, and cytokine levels and determined the potential implications of pyrimidine metabolism in BC immunotherapy. In conclusion, our findings suggest that pyrimidine metabolism has underlying prognostic significance in BC and can facilitate a new management approach for patients with different prognoses and more precise immunotherapy.
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Introduction

Breast cancer (BC) is presently one of the most prevalent malignancies. Furthermore, it is the top cause of cancer-related fatalities among the female population (1). Though the treatment of BC has evolved significantly in recent years, and the treatment efficacy has also improved remarkably, some patients continue to have poor treatment outcomes due to their susceptibility to recurrence, metastasis, and drug resistance. One of the most notable issues leading to this result is the heterogeneity of BC (2). Thus, the medical field requires new bio-indicators and treatment targets to guide the therapeutic management of BC patients.

Over the past half-century, the oncogene revolution has led to a large volume of research and a series of mutational events causing key phenotypes in tumor cells to cleverly combine and alter multiple signaling pathways. In addition, high-throughput sequencing technology revealed the presence of more diverse mutations associated with tumorigenesis and progression than previously assumed (3, 4). These mutations impacted a host of critical signal pathways and processes that converge to accommodate tumor metabolism and support tumor growth and migration. Some of these metabolic alterations, which were vital for the malignant transformation of tumors, were closely associated with the malignant phenotype of tumors (5). Therefore, we hypothesize that these metabolic alterations can function as a crucial hallmark of survival prognosis in tumor patients.

During tumor cell proliferation, the need to synthesize ribosomal RNA (rRNA), replicate the genome (synthesize DNA), and maintain the transcriptome (produce large amounts of mRNA) increases the demand for nucleotides. As the exogenous intake of nucleotides is essentially negligible, the endogenous synthesis of nucleotides is more important than that of other nutrients. Pyrimidines, in turn, are an essential and important component of nucleotides, and therefore, pyrimidine metabolism has a significant impact on the advancement of neoplasms (6). Accumulating evidence suggests that pyrimidine metabolism is pivotal in the progression of several kinds of carcinomas and the development of drug resistance. For example, blocking pyrimidine synthesis enhanced the molecular therapeutic response of glioblastoma stem cells (7). Adaptive response of myeloid malignancy cells to pyrimidine metabolic network led to resistance to decitabine and 5-azacytidine (8). Dihydroorotate dehydrogenase (DHODH)-driven pyrimidine biosynthesis was one of the major mechanisms linking respiration and tumorigenesis. Not only that, DHODH inhibitors were also potential anticancer medicines (9). Reprogramming of CDA-mediated pyrimidine metabolism under ER stress provides a survival advantage for the dehydrogenase-driven hyperactivation of pyrimidine MUC1 oncoprotein (10). Furthermore, pyrimidine metabolism has a non-proliferative role via the epithelial-to-mesenchymal transition in several epithelial and non-epithelial tumors (11).

Tumor-infiltrating immune cells (TIIs), an essential component of the tumor microenvironment (TME), are a series of immune effector and immune suppressor cells in and around the neoplasm (12). In addition, metabolic disorders in the TME, especially the recently discovered changes in pyrimidine metabolism, have a critical impact on tumor development (13). Pyrimidine de novo synthesis has been the target of a range of chemotherapy drugs in widespread use (e.g., 5-fluorouracil) and immunosuppressant drugs (e.g., leflunomide and brequinar), emphasizing its importance in cancer progression and immune regulation (14). Leflunomide-treated tumors that inhibit a key enzyme for ab initio synthesis of pyrimidine exhibited reduced CTLA-4+ T cells, suggesting reduced intra-tumor T cell depletion and possibly increased anti-tumor immunity. However, the researchers did not investigate the effect of the combination with immune checkpoint inhibitors, for example, inhibitors targeting programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4) (15). DHODH and mitochondria-associated pyrimidine synthesis were independent and important cytostatic regulators of activated T cells (16). Studies have demonstrated that a large number of tumor-associated macrophages (TAMs) infiltrating pancreatic ductal adenocarcinoma release a series of pyrimidines, including deoxycytidine, which competes for the inhibition of gemcitabine through multiple mechanisms (17). Nevertheless, systematic studies on the interactions between pyrimidine metabolism and TME are still insufficient.

In this study, we investigated the prognostic value of pyrimidine metabolism-related genes (PMGs) and established a signature that could be used to predict the survival prognosis and immunotherapy benefits of BC patients. We further conducted a comprehensive evaluation of the clinical application of this signature. Additionally, potential correlations between this feature and TME landforms were revealed. This comprehensive analysis might provide new insights on pyrimidine metabolism and immunotherapy for cancer research.



Materials and methods


Patients data collection

The transcriptome expression matrices and corresponding clinicopathological information of BC were retrieved from The Cancer Genome Atlas (TCGA) database (113 normal breast samples and 1,113 BC samples), the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database (1,904 BC samples), and GSE96058 (3,409 BC samples), GSE20685 (327 BC samples), GSE42568 (104 BC samples), GSE86166 (366 BC samples) from the Gene Expression Omnibus (GEO) database. We obtained 920 patients of TCGA-BRCA as a training cohort and 1,891 patients of METABRIC cohort, 3,069 patients of GSE96058 cohort, 327 patients of GSE20685 cohort, 104 patients of GSE42568 with 366 patients of GSE86166 cohort as validation sets whose overall survival (OS) was more than 30 days. In total, 186 pyrimidine metabolism-relevant genes were obtained from the Molecular Signature Database v7.5.1 (MSigDB). In addition, after taking the intersection of the above 186 PMGs with the overall genes in the TCGA-BRCA, METABRIC and GSE96058 datasets mentioned above, 163 overlapping PMGs were extracted for further analysis (Supplementary Figure 1).



Identification of somatic mutations and variations in the expression of genes among PMGs

We downloaded somatic mutations of BC patients in the training cohort from the UCSC Xena database. The somatic mutation frequencies of 163 PMGs are shown in the waterfall plot evaluated using the R package “maftools” (18). Differentially expressed genes (DEGs), which are related to pyrimidine metabolism, were determined using the R package “edgR” (19).These significant DEGs are demonstrated in a volcano plot along with a heatmap.



Acquisition of OS-related PMGs

PMGs significant for predicting survival prognosis were ascertained using the univariate Cox hazard regression analysis in TCGA-BRCA and METABRIC cohorts. The overlapping OS-related PMGs were extracted to construct the next prognostic model. Then, the mRNA expression levels and locations on the chromosomes of these genes were visualized using the R package “RCircos” (20), and the correlations between these genes and other genes were shown with strings. Besides, correlation matrix plots were constructed to ascertain the correlation features between these overlapping OS-related PMGs.



Construction and validation of pyrimidine metabolism-related prognostic signature

For the further discovery of candidate PMGs with more prognostic significance, the least absolute shrinkage and selection operator (LASSO) Cox regression analysis was applied to the training cohort (21). Then, utilizing the “glmnet” R package (22), the eight optimized PMGs were explored to model the prognosis of BC patients. Their mRNA expression level between BC tissues and normal mammary tissues was plotted in a boxplot, and their prognostic significance for OS were described in a survival curve. In accordance with the prediction model, the pyrimidine metabolic index (PMI) can be derived for patients by applying the following formula.

	

(Ei represents the mRNA expression level of each PMG; and γi represents the corresponding regression coefficient)

Median-split was applied to classify BC patients in each cohort into high PMI group and low PMI group. The classification accuracy of the signatures was evaluated based on principal component analysis (PCA).



Comprehensive evaluation of PMI and clinical parameters in BC patients

To further demystify the applicability of PMI to actual clinical problems, boxplots of Kruskal’s test were employed to compare the differences in PMI values across the various clinicopathological parameters in the TCGA-BRCA, METABRIC and GSE96058 datasets to varying degrees. In addition, the heatmap demonstrated the association between the mRNA expression levels of PMGs included in the signature and several clinical indicators, including PMI, T stage, N stage, American Joint Committee on Cancer (AJCC) stage, and survival status in the training set, as well as PMI, tumor size, positive lymph nodes, PAM50 subtype, AJCC stage, grade, and survival status in the two validation datasets.



Construction and assessment of pyrimidine metabolism-relevant clinical nomogram

Next, univariate and multivariate Cox regression analyses were performed to characterize whether PMI was an independent prognostic factor for BC patients. On the basis of these results, we developed a clinicopathological nomogram related to pyrimidine metabolism by utilizing the R packages “rms” and “regplot” (23), which combined PMI with two additional clinical features, age and PAM50 subtypes, in the training set. Verification of the predictive power of the nomogram was completed by the analysis of calibration curves (24) and decision curve analysis (DCA) which were plotted. R package “timeROC” was used to performed the Receiver Operating Characteristic (ROC) analyses (25).



Illustration of the differential biofunction and metabolic network within the two PMI groups

To illustrate the differences in biological functions and metabolic network between the high and low PMI groups, gene set enrichment analysis (GSEA) was performed (26). “c5.all.v7.5.1.symbols.gmt” [GO] and “c2.cp.kegg.v7.5.1.symbols.gmt” [KEGG] were selected as the reference molecular signature database, and |NES| > 1.5 and FDR q-values< 0.1 were considered to be statistically significant (27).



Prospective implications for immunotherapy and tumor immune microenvironment landscape estimates based upon PMI

In the past half-century, with the advent of immune checkpoint inhibitors, great progress has been made in the clinical immunotherapy of BC. Therefore, the mRNA expression levels of immune checkpoints, including PD-1, PD-L1, CTLA4, CD28, CD226, IDO1, TIGIT, and PVR in the high- and low-PMI groups were compared with the Wilcox test to initially validate the potential significance of PMI-based immunotherapy.

The estimate scores, immune scores and stromal scores were evaluated using the ESTIMATE algorithm (28) to further analyze the TME landscape between the two PMI subgroups. Twenty-two tumor immune-infiltrating cell types in the TME in the TCGA-BRCA, METABRIC and GSE96058 cohorts of BC tissues were computed using the CIBERSORT deconvolution algorithm (29). To elucidate the association between PMI and cytokines in TME, we selected several key cytokines whose mRNA expression levels were compared in the high- and low-PMI groups, including IL-1B, IL-6, IL-10, IL-15, IL-27, IL-33, INFG, and TNF.



Cell culture

Cell lines of human BC including BT-549, MCF-7, T47D, MDA-MB-231 and SK-BR-3 were obtained from ATCC (American Type Culture Collection). All cells were grown at 37°C in a 5% CO2 and 70% relative humidity atmosphere without antibiotics. Survival cells were passaged for less than six months before testing negative for mycoplasma (30).



RNA isolation and quantitative real-time PCR analysis

This technique was applied using RNA Quick Purification Kit. An overview of primer sequences is provided in Supplementary Table S1. The samples were analyzed in triplicate using a Bio-Rad CFX96 system with SYBR Green. The qRT-PCR plate was supplied by NEST. An expression level of RNA was calculated with 2−ΔΔCT and normalized to β-actin.



Statistical analyses

R software (Version 4.2.0) was utilized to perform all statistical analyses. The differences between the two groups were examined by the Wilcox test, and Kruskal–Wallis test was used for cases that involved more than two groups. The Kaplan–Meier (KM) curve was achieved by log rank test. Screening of PMG and independent OS prognostic indicators associated with OS in BC was performed using univariate and multivariate Cox regression analyses. The correlation matrix was graphed based on Spearman’s correlation test. Bilateral and p< 0.05 were ascertained to have statistical significance.




Results


Identification of prognostic pyrimidine metabolism-relevant genes in BC patients

Our study flow chart is shown in Figure 1. Initially, we evaluated 163 global variations in PMGs in somatic mutations of the TCGA-BRCA cohort. The waterfall plot displayed the top 20 genes, which had the highest frequencies of somatic mutations (Figure 2A). In addition, after comparing the mRNA expression levels of PMGs in the TCGA-BRCA cohort between the BC specimens and normal breast specimens using |log2FC|>1 and FDR<0.05 as thresholds, the results were attained, which are displayed herein by heatmap (Figure 2B) and a volcano plot (Figure 2C). As shown in the volcano plot, the PMGs of which |log2FC|>2 were marked with the symbol names. In addition, to identify PMGs significantly associated with BC prognosis for subsequent model construction, we used the univariate Cox regression analysis to screen OS-associated genes in the TCGA-BRCA and METABRIC datasets (Figure 2D), from which 26 and 64 important PMGs related to OS were obtained, respectively. After taking the intersection of the above results, we obtained 12 overlapping genes (CMPK1, POLR3GL, RRM2, PNPT1, POLR2D, GMPS, PDE6B, RRM2B, POLR3A, TXNRD1, DHODH, and CANT1) for the follow-up study (Figure 2E). In addition, the chromosomal locations and expression levels of 12 genes were demonstrated by circos plots (Figure 2F).The string connects the chromosomal location where the gene with which the 12 overlapping genes has a protein interaction is located. Finally, the association characteristics between these genes were unveiled by correlation matrix plots (Figure 2G).




Figure 1 | Study flowchart.






Figure 2 | Characterization of prognosis-related PMGs in BC patients. (A) The somatic mutation frequency of PMGs in the TCGA-BRCA cohort. (B, C) Differentially expressed PMGs between normal and tumor tissues in TCGA-BRCA were shown in a heatmap and a volcano plot successively. (D) Prognostic PMGs were screened by the univariate Cox analysis in TCGA-BRCA and METABRIC severally. (E) A Venn diagram to obtain 12 overlapping prognostic PMGs. (F) A circos plot depicting the chromosomal location of the 12 prognostic PMGs and the chromosomal location of their interacting genes and describing the expression levels of the 12 PMGs. (G) The correlation characteristics between the 12 prognostic PMGs in TCGA-BRCA was revealed with a correlation matrix plot.





Construction of prognostic signature pyrimidine metabolism-related in BC patients

LASSO Cox regression analysis was conducted on 12 candidate genes in the TCGA-BRCA training dataset, and eight critical genes were identified to construct a prognosis signature, Pyrimidine Metabolic Index, designated as PMI (Figures 3A, B), containing CANT1, CMPK1, DHODH, GMPS, PDE6B, POLR3GL, RRM2B, and TXNRD1. For further exploring the expression levels of each PMG and the ability to independently predict prognosis, and the relevance of PMGs expressions and OS was investigated using KM survival curves (Figure 3C), the mRNA expression levels of BC versus normal tissues were demonstrated with boxplots (Figure 3D). According to the results, the expressions of CANT1, GMPS, PDE6B, and RRM2B were notably elevated in BC, while the expressions of CMPK1, DHODH, and POLR3GL were significantly downregulated. In the KM analysis of OS, high expressions of CANT1, CMPK1, DHODH, GMPS, RRM2B, and TXNRD1, and downregulation of PDE6B and POLR3GL were markedly associated with a poor prognosis of BC, further confirming the reliability of selected PMGs. Furthermore, we detected the mRNA expression levels of signature-contained PMGs in common human BC cell lines, including MDA-MB-231, BT 549, SK-BR-3, MCF-7, and T47D (Figure 4). The results indicated that the expression levels of CANT1, CMPK1, DHODH, GMPS, and PDE6B in the vast majority of human BC cell lines were consistent with the tissue expression levels in the database compared with mammary epithelial cell line MCF-10A. Ultimately, the prognostic signature – the PMI of each patient – was determined as follows:




Figure 3 | Development of a PMI signature in BC. (A, B) LASSO Cox regression analysis to select candidate PMGs for the signature. (C) The KM survival curves of eight selected PMGs based on expression levels and OS. (D) Estimation over the mRNA expression levels of eight signature-contained PMGs in the training cohort. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001; ns, no significance.






Figure 4 | The mRNA expression levels of selected genes were detected in human BC cell lines and the normal mammary epithelial cell line. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.



PMI = Expression of CANT1 * 0.032209 + Expression of CMPK1 * 0.064783 + Expression of DHODH * 0.207055 + Expression of GMPS * 0.076095 - Expression of PDE6B * 0.10174 - Expression of POLR3GL * 0.33513 + Expression of RRM2B * 0.225794 + Expression of TXNRD1 * 0.004771



Validation of signature based on eight pyrimidine metabolism-relevant genes

BC patients from the TCGA-BRCA training set and two validation sets (METABRIC and GSE96058) were individually divided into high- and low-PMI subpopulations based on the median PMI value to further test the predictive accuracy of PMI in BC (Figure 5A). As predicted, deaths of BC patients had risen with increasing PMI in all cohorts (Figure 5B). Moreover, the distribution patterns of high- and low-PMI subgroups in a two-dimensional graph were visualized using PCA (Figure 5C). Also, the KM survival analysis demonstrated that high-PMI patients tended to have a lower OS than patients with low PMI (Figure 5D, TCGA-BRCA, p = 3.067e−07; METABRIC, p = 6.397e−09; METABRIC, p< 0.0001; GSE96058, p = 2.006e−08).Furthermore, the AUC curve confirmed that the PMI-only model was statistically significant for diagnosing the probability of survival in breast cancer patients (Figure 5E).Finally, the predictive accuracy of PMI in BC was again validated in the GSE86166, GSE42568 and GSE20685 (Figure 6).




Figure 5 | Assessment and verification of the efficiency of the PMI signature. (A) The increasing PMI score in TCGA-BRCA, METABRIC, and GSE96058. (B) Variations in the deaths of BC patients accompanied by PMI increasing. (C) The PCA analyses of high- and low-PMI clusters. (D) KM analyses of overall survival probabilities between the high- and low-PMI subgroups. (E) The ROC curves of the PMI-only model in predicting 2-, 3-, and 5-year OS of BC patients.






Figure 6 | Additional three validation sets for the assessment and verification of the efficiency of the PMI signature. (A) The increasing PMI score in GSE86166, GSE42568, and GSE20685. (B) Variations in the deaths of BC patients accompanied by PMI increasing. (C) The PCA analyses of high- and low-PMI clusters. (D) KM analyses of overall survival probabilities between the high- and low-PMI subgroups. (E) The ROC curves of the PMI-only model in predicting 2-, 3-, and 5-year OS of BC patients.





Comprehensive assessment of PMI and clinical parameters in BC patients

We further determined the relationship between PMI and clinical characteristics to elucidate the ability of PMI to predict other clinical factors. In the training set, significant variations existed in PMI at different levels of survival status, T stage, N stage, M stage, and PAM50 subtypes (all p< 0.05), which demonstrated that high PMI might be relevant to the severity of the clinical parameters described above (Figure 7A). Similarly, remarkable discrepancies were reaffirmed between PMI and various levels for diverse clinical parameters, including unfavorable survival probability, larger tumor size, more positive nodes, severer stage, and PAM50 subtype in high-PMI patients of the METABRIC cohort (Figure 7B) and worse survival status, more massive tumor, more metastatic lymph nodes, higher tumor grade, and PAM50 subtype in high-PMI patients of the GSE96058 cohort (Figure 7C). The integrated correlation analyses were also displayed with heatmaps in TCGA cohort (Figure 7D), METABRIC cohort and GSE96058 cohort (Supplementary Figure 2).




Figure 7 | Systematic characterization of PMI and clinical variables among BC patients. (A–C) Beeswarm plots demonstrating the correlation between PMI levels and various degrees of diverse clinicopathological indicators in TCGA-BRCA (A), METABRIC (B), and GSE96058 (C) datasets. (D) Heatmaps incorporating PMI and clinical parameters in relation to gene expression levels in eight signature-included PMGs in TCGA-BRCA *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001.





Development and assessment of clinicopathological nomogram related to pyrimidine metabolism

To ascertain whether PMI signature could serve as an independent predictor for prognoses of BC patients, we conducted univariate and multivariate Cox regression analyses in the TCGA-BRCA cohort. The results demonstrated that the T stage, N stage, M stage, age, PAM50 subtype, and PMI were notably correlated with OS in univariate COX analysis (Figure 8A), while only age, PAM50 subtype, and PMI remained independently prognostic indicators in multivariate Cox analysis (Figure 8B). Next, we developed a clinicopathological nomogram incorporating PMI, age, and PAM50 subtype to predict individual OS at 1, 2, and 5 years based on the above results (Figure 8C). To further validate the predictive power of the model, calibration plots are depicted to confirm the predictive consistency (Figure 8D). Subsequently, to compare the discrepancy in the predictive power between nomogram and single independent clinical parameters, decision curves were drawn to demonstrate that nomogram yielded greater net benefits than single independent clinical features (Figure 8E). To demonstrate the predictive power of the model more visually in multiple aspects, AUC analyses were conducted (Figure 8F). The results showed that the PMI model had significantly predictive efficacy in patients of both training and validation cohorts.




Figure 8 | Establishment of a prognosis-related nomogram model based on PMI. (A) Univariate Cox regression analysis of PMI and clinicopathological characteristic. (B) Multivariate Cox regression analysis of PMI and clinicopathological characteristic. (C) Construction of a nomogram to predict OS of BC patients from TCGA-BRCA. (D) The calibration curve to estimate prediction accuracy of the nomogram based on the agreement of predicted OS with actual OS. (E) The decision curve to evaluate the clinical decision effectiveness of the nomogram against other separate clinical parameters. (F) The ROC curves and AUC values demonstrated favorable competence of the nomogram in predicting 2-, 3-, and 5-year OS of BC patients. *p < 0.05; **p < 0.01; ***p < 0.001.





Gene Set Enrichment Analysis between two PMI groups

GSEA analysis in the training set was performed to identify whether the enriched signaling pathways and biological functions were distinguished between the high- and low-PMI groups. The results using the ontology gene sets indicated that proteasomal protein catabolic process, regulation of mitotic cell cycle, positive regulation of cellular catabolic process, proteasome-mediated ubiquitin-dependent protein catabolic process, and mitotic cell cycle phase transition were mainly enriched in the high-PMI group (Figure 9A), when using KEGG gene sets salmonella infection, endocytosis, human T-cell leukemia virus 1 infection, pathogenic Escherichia coli infection and tight junction were enriched in the high-PMI group (Figure 9B).




Figure 9 | PMI-based GSEA enrichment analysis and TME assessment in BC. (A, B) Presentation of the top 10 differential pathways from GO (A) and KEGG (B) enrichment analysis results in TCGA-BRCA. (C–E) Variance of immune score (C), stromal score (D), and ESTIMATE score (E) in different PMI groups. (F) Differences in the mRNA expression levels of eight well-known immune checkpoints between different PMI groups. (G) Boxplots were used to depict the discrepancies in the infiltration extent of 22 immune cells between different PMI groups among BC patients. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001.





Latent implications of PMI-based immunotherapy and TME landscape estimation

Tumor immune microenvironment landscape and characteristics are increasingly relevant to tumor development and subsequent therapeutic aspects. Therefore, the ESTIMATE algorithm was applied to evaluate and quantify TME by calculating the immune score, stromal score, and ESTIMATE score. The results demonstrated that the low PMI group obtained higher scores above shown in comparison to the high PMI group (Figures 9C–E). In addition, as an up-and-coming target for immunotherapy in the 21st century, immune checkpoints are playing an essential role in clinical BC treatment protocols. Thus, a comparison of candidate immune checkpoint with mRNA expression levels in both PMI groups showed that PD-L1, CTLA4, CD28, CD226, IDO1, TIGIT, and PVR except PD-1 were dramatically increased in the high-PMI group (Figure 9F), intimating that patients with a high PMI may achieve more enhanced responses to immunotherapy against the above checkpoints. The results were also very close in the other two validation groups (Supplementary Figure 3).

It is unsurprising to conclude from the above results that TME differs significantly between different PMI groups. To further investigate the variation of immune cell infiltration in TME of BC in different PMI groups, the CIBERSORT algorithm was applied. The results demonstrated that macrophages M0 and M2, resting NK cells, activated memory CD4+ T cells, and resting memory CD4+ T cells were markedly elevated in the high-PMI group, while naive B cells, resting dendritic cells, resting mast cells, monocytes, activated NK cells, CD8+ T cells, follicular helper T cells, gamma delta T cells, and regulatory T cells were considerably intensified in the low-PMI group (Figure 9G). Furthermore, we also conducted the identical analysis of the other two validation sets (Supplementary Figure 4). In both the training and the other two validation sets, macrophages M0 and activated memory CD4+ T cells were intensified significantly, while resting mast cells and gamma delta T cells were attenuated in the high-PMI group.

Altogether, the above results unveiled a significant correlation and complexity between TME and pyrimidine metabolism, which deserves further in-depth study.

In addition, cytokines are a critical component of immune TME. Given this, we further scrutinized the correlation between PMI signature and cytokines, which included the essential cytokines of TME, IL-1B, IL-6, IL-10, IL-15, IL-27, IL-33, INFG, and TNF. In the TCGA-BRCA, METABRIC and GSE96058 cohorts selected, the boxplots demonstrated that the expressions of IL-27 and INFG were consistently elevated in the high-PMI group, those of IL-6 and IL-33 were consistently declined in the high-PMI group (Figure 10). The results illustrated that PMI signature were significantly related to cytokines in the TME.




Figure 10 | Investigation of essential cytokines in TME according to PMI levels. Comparison between the mRNA expression levels of IL-1B, IL-6, IL-10, IL-15, IL-27, IL-33, IFNG, and TNF between high- and low-PMI groups were explored in TCGA-BRCA (A), METABRIC (B), and GSE96058 (C) datasets separately. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001.





Prognostic investigation of PMI in BC patients receiving different treatments

In addition, we investigated the correlation between pyrimidine metabolism and therapeutic approaches in BC patients. In the METABRIC cohort, the BC patients receiving chemotherapy (n = 396) (Figure 11A), endocrinotherapy (n = 1168) (Figure 11C) or radiotherapy (n = 1134) (Figure 11E) both had poorer prognosis in high PMI group. While in TCGA-BRCA cohort, there was no statistically significant prognosis between the high- and low- PMI groups who were undergoing chemotherapy (n = 512) (Figure 11B), endocrinotherapy (n = 470) (Figure 11D) or radiotherapy (n = 506) (Figure 11F). We hypothesized that this result was due to a lack of adequate case samples or that patients with high PMI required chemotherapy, radiation and endocrine therapy to achieve a similar prognosis as patients with low PMI.




Figure 11 | Prognostic Investigation of PMI in BC Patients Receiving Different Treatments.KM analyses of overall survival probabilities between the high- and low-PMI subgroups in BC patients undergoing chemotherapy (A, B), endocrinotherapy (C, D) and radiotherapy (E, F) in the METABRIC and TCGA-BRCA cohort, respectively.






Discussion

In recent decades, considerable feats have been achieved in the treatment and survival improvement of BC (31). Some BC subtypes have unique and efficacious treatment methods, for example, HER2-positive BC can be treated with trastuzumab-targeted therapy (32). Even so, a proportion of patients with BC still require more advanced therapy, and the emergence of pyrimidine metabolism brought a promising solution for this issue. As a complicated enzymatic network, pyrimidine metabolism incorporated nucleoside salvage, de novo nucleotide synthesis, and catalytic degradation of pyrimidines (33). Studies have demonstrated that a steady supply of dNTPs was fundamental to cancer cells, and consequently, the activation of PMGs has been regarded as indispensable for tumor growth (11). However, the prognostic implication of PMGs remains to be better elucidated in BC.

In this study, by applying the univariate COX regression analysis for these PMGs in both TCGA-BRCA and METABRIC datasets, 26 and 64 PMGs significantly associated with OS were obtained, respectively. Finally, 12 overlapping genes that were highly meaningful in predicting BC patients in the two cohorts were obtained. To maximize the validity of the following studies, we further performed the LASSO analysis of these 12 genes, and finally, eight optimal DEGs were chosen to establish a prognostic risk signature.

DHODH, a key enzyme in the de novo biosynthesis of pyrimidine nucleotides, has appeared as a therapeutic target for a variety of tumor treatments (34). The modulation of DHODH activity in cancer focused on activating the biosynthesis of de novo pyrimidine biosynthesis through CAD complex (35). Previous results have suggested that DHODH suppression was correlated with decreased cell proliferation in most cancer cell lines, which was consistent with it being a poor prognostic factor in our result. Notably, the upregulation of DHODH mRNA expression in BC showed a paradox, which may result from the existence of different molecular subtypes of BC and needs further investigation.

TXNRD1, the cytosolic selenoprotein thioredoxin reductase 1 (TrxR1), served as a central regulator of the thioredoxin system and may be inhibited pharmacologically to achieve selective killing of cancer cells (36, 37). More importantly, in certain cancer types, including gastric cancer and non-small cell lung cancer, TrxR1 appeared to be secreted into the serum and may be available as a biomarker of disease severity and responsiveness to treatment (38, 39). Our result revealed that TXNRD1 was overexpressed in BC with no significance, which obviously related to unfavorable survival. Regrettably, except for DHODH and TXNRD1, the relevance of other candidate genes to human cancer has not been reported. From the results we obtained above, upregulations of CANT1, GMPS, PDE6B, and RRM2B and downregulations of CMPK1 and POLR3GL were observed in human BC tissues. From the survival analyses, we found that high expressions of CANT1, GMPS, RRM2B, and CMPK1 and low expressions of PDE6B and POLR3GL were significantly correlated with low survival probabilities in BC patients. Technically speaking, the role of each selected gene in cancer required more exploration.

Basing on the eight prognostic genes, we then generated a risk signature, which was named “pyrimidine metabolic index” or PMI. Patients from the datasets selected were divided into high- and low-PMI groups independently. Surprisingly, BC patients with a high PMI exhibited a greater mortality rate compared with patients with low PMI, which implied that PMI had a promising value for predicting OS. In addition, the relationship between PMI and clinicopathological factors also demonstrated a remarkably strong correlation. In brief, PMI was positively linked with larger tumor, more lymph node metastasis, and a severer stage. Then, to examine whether PMI could serve as an independent prognostic indicator, we successively performed univariate and multivariate Cox regression analyses and successfully constructed a prognostic nomogram containing age, PAM50 subtype, and PMI. As can be seen from the calibration plot, the predicted probability derived from the nomogram was compatible with the observed probability. Similarly, the nomogram enhanced clinical benefit in comparison with conventional factors based on decision curves. Additionally, the nomogram demonstrated excellent performance in terms of ROC curves in both training and validation cohorts. At this point in the study, the reliability of this nomogram has been definitively confirmed.

Cancer metabolism has been widely studied, and cancer cells have a well-characterized metabolic phenotype that can profoundly affect the TME (40). Despite the growing attention to pyrimidine metabolism, there are still no available details on its relevance to immunotherapy. According to the results, patients with a low PMI obtained higher stromal scores, immune scores, and ESTIMATE scores, indicating that they might be more sensitive to immunotherapy. This would also explain the fact that patients with a high PMI have a worse prognosis since they could not benefit more from the immunotherapeutic treatment. Given that immune checkpoint inhibitors are essential in immunotherapy (41), we assessed the mRNA expression levels of eight selective immune checkpoints in BC patients, which revealed that the mRNA expression levels of all seven immune checkpoints, excluding PD-1 elevated statistically in the high-PMI group. In terms of this aspect, BC patients with a high PMI might have a stronger therapeutic response to drugs designed to inhibit immune checkpoints. Consequently, the estimation of immune infiltrating cells between the high- and low-PMI subgroups signified that macrophages M0 and M2, resting NK cells, activated memory CD4+ T cells, and resting memory CD4+ T cells were markedly activated in the high-PMI group, while naive B cells, resting dendritic cells, resting mast cells, monocytes, activated NK cells, CD8+ T cells, follicular helper T cells, gamma delta T cells, and regulatory T cells were notably strengthened in the low-PMI group. Higher infiltration levels of CD8+ T cells, and gamma delta T cells indicate better prognosis in BC patients (42, 43). This is consistent with our conclusion of poor prognosis in the high-PMI group. High infiltration of M2 cells is one of the risk factors for breast cancer (44), as seen in the TCGA-BRCA and METABRIC cohort, where distribution was significantly higher in the high-PMI group compared to the low-PMI group. The growth, differentiation, and activation of immune cells in TME were regulated by cytokines (45). Meanwhile, we investigated the expression levels of IL-1B, IL-6, IL-10, IL-15, IL-27, IL-33, INFG, and TNF between the high- and low-PMI groups. From the analysis results of training and two validation sets, elevated expressions of IL-27 and INFG and decreased expressions of IL-6 and IL-33 were stably presented in the high PMI group. Despite the primary demonstration of the relationship between pyrimidine metabolism and TME, it still requires further elucidation due to the functions of tumor-infiltrating immune cells are complicated (46, 47).

This study systematically analyzed pyrimidine metabolism-related transcriptomic profiling and created a prognostic signature PMI in BC patients. However, limitations still existed, and especially the profound mechanism of pyrimidine metabolism in TME demanded more exploration.



Conclusion

Overall, our study identified a credible risk signature for BC patients based on PMGs. This signature was validated to have excellent predictive power and was identified as an independent prognostic factor for BC patients. We also dissected the unique relationship between this signature and immune TME. In conclusion, our study provides supportive implications for pyrimidine metabolism in BC research.
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The m7G modification has been proven to play an important role in RNA post-transcriptional modification and protein translation. However, the potential role of m7G modification patterns in assessing the prognosis of Skin cutaneous melanoma (SKCM) and tumor microenvironment (TME) has not been well studied. In this study, we investigated and finally identified 21 available m7G-related genes. We used hierarchical clustering (K-means) to classify 743 SKCM patients into three m7G-modified subtypes named m7G/gene cluster-A, B, C. We found that both m7G cluster B and gene cluster B exhibited higher prognosis and higher immune cell infiltration in TME compared to other subtypes. EIF4E3 and IFIT5, two m7G related genes, were both markedly elevated in Cluster B. Then, we constructed an m7G score system utilizing principal component analysis (PCA) in order to evaluate the patients' prognosis. High m7G score subtype was associated with better survival prognosis and active immune response. Overall, this article revealed that m7G modification patterns were involved in the development of the tumor microenvironment. Evaluating patients' m7G modification patterns will enhance our understanding of TME characteristics and help to guide personal treatment in clinics in the future.




Keywords: N7-methylguanosine, skin cutaneous melanoma, immune microenvironment, prognosis, immunotherapy



Introduction

Skin cutaneous melanoma (SKCM) is a malignant tumor originating from melanocytes and is one of the most lethal human tumors. Around 25% of melanomas are transformed from the original nevus (1) and sunlight exposure, especially strong intermittent exposure patterns, is also an important environmental factor that increases the risk (2). Patients with early-stage melanoma can be cured by surgery. But patients with advanced melanoma are still unsatisfactory, with a 5-year survival rate of about 27% (3). Because metastatic melanoma is not sensitive to conventional chemoradiotherapy (4), the treatment of melanoma remains a great challenge.

In recent years, emerging immunotherapy has become an important means of treating melanoma, such as anti-CTLA4 antibodies and anti-PD1/L1 antibodies, which were called immune checkpoint inhibitors (ICIs). Among them, anti-PD1/L1 antibodies are more widely used and can effectively improve the prognosis by increasing infiltrating CD8+ T cells (2, 5). ICIs have significantly improved progression-free survival and overall survival in some patients, however, for most patients, ICIs are associated with low overall response rates. Although the identification of PD-L1 expression can screen patients with an immune response to PD-L1 antibodies, PD-L1 expression is not recommended as a predictor of immune response, as individual heterogeneity results in the inconsistency between PD-L1 expression levels and clinical benefits (5). Recent studies have shown that specific components of the TME, especially the activation of CD8+ T cells, upregulate the expression of immunosuppressive factors such as PD-L1 through a negative feedback regulatory mechanism of immunity (6). This means that immunotherapy may preferentially benefit patients with substantial CD8+ T infiltration in the TME. Therefore, predicting response to ICIs based on the characteristics of TME is a critical step to improve response to existing ICIs therapy (7).

RNA methylation is a common form of epigenetic modification, including m6A, m1A, m5C, m7G, etc., according to the different methylation sites (8). m7G refers to the addition of a methyl group to guanosine at the N7 position of the RNA ribosome. m7G exists not only in the 5’ cap region of mRNA but also in mRNA, tRNA, and rRNA, which plays an important role in the maintenance of normal physiological functions of the human body (9). m7G is involved in almost every stage of mRNA life cycle including transcription, splicing of pre mRNA, nuclear export, and translation (10–13). In recent years, more and more studies have shown that m7G-related genes play an important role in the pathogenesis of tumors. As the most studied methyltransferase involved in m7G-related processes, METTL1 usually forms a complex with WDR4, and its overexpression is often associated with some malignant tumors such as intrahepatic cholangiocarcinoma (14). This is mainly because the METTL1/WDR4 complex can increase the m7G modification of a subset of tRNAs, thereby reducing ribosomal pausing and increasing the translation efficiency of cancer-promoting mRNAs such as EGFR, which drives cancer development (14–16). Furthermore, the expression of METTL1 correlates with tumor drug resistance. Okamoto et al. (17) showed that knockdown of NSUN2 and METTL1 genes enhanced the sensitivity of HeLa cells to 5-FU, which provides a new perspective to address the mechanisms of resistance to cancer chemotherapy drugs. Ago2 is also involved in the m7G methylation process of RNA, forming a complex by assembling with microRNA, inhibiting the initiation of mRNA translation by binding to the m7G cap of targeted mRNA, precluding the recruitment of eIF4E and inhibiting the migration of lung cancer cells (18, 19).

At present, there are few studies on m7G modification, and the relationship between m7G and TME is still unclear. Most of the studies are limited to 1-2 m7G regulators, therefore, a comprehensive analysis of multiple m7G regulators will deepen our understanding of the TME.

Therefore, in this paper, a comprehensive analysis of m7G-related genes was performed through the malignant melanoma transcriptomic and genomics sequencing database. Three m7G modification patterns and gene subtypes were established by unsupervised clustering and the relationship between each subtype and the prognosis of SKCM patients and immune cell infiltration in the tumor microenvironment were analyzed. In addition, we also constructed an m7G scoring model using PCA to quantify the m7G modification pattern of individuals and used it to explore the potential relationship between this scoring model and survival prognosis, immune response, and TME. The establishment of a Nomogram helps to guide better prediction of patient’s survival prognosis in clinical. In conclusion, our finding suggests that m7G modification plays a crucial role in the tumor immune microenvironment formation and in predicting patient prognosis and immunotherapy efficacy.



Materials and methods


Data acquisition and preprocessing

The RNA-Seq (Level-3 HTseq-FPKM) sequencing data of all SKCM patients were downloaded from the TCGA database (20) and 3 repeated sequencing samples from the same patient were excluded. Finally 465 non-repeated tumor samples were included. At the same time, the RNA-Seq data of 557 normal skin samples from the GTEx project were downloaded as normal controls. After excluding non-coding RNAs, they were standardized with tumor samples for difference analysis. In addition, the GSE53118, GSE65904, and GSE78220 datasets were downloaded from the GEO database (21), and gene annotation was performed on the respective platform files as a validation cohort. In the survival analysis, no survival status was excluded and samples with an overall survival time of less than 1 day were modeled and validated. Finally, 454 SKCM patients were included in TCGA-SKCM, 79 SKCM patients were included in GSE53118 and 210 SKCM patients were included in GSE65904. It is worth noting that GSE78220 is an anti-PD-1 immunotherapy cohort, including a total of 27 SKCM patients, in which clinical information includes the corresponding situation of immunotherapy. In addition, the copy number variation (CNV) and somatic mutation data of SKCM were downloaded from the TCGA database. It is worth mentioning that in the TCGA-SKCM cohort, RNA-seq data in FPKM format were converted to TPM. The “ComBat” algorithm in the “sva” package was used to eliminate batch effects in the TCGA and GEO databases (22) and three cohorts indicated above were integrated to establish a Meta cohort. m7G related genes were obtained from the existing literature (23) and related gene sets GOMF_m7G_5_PPPN_DIPHOSPHATASE_ACTIVITY,GOMF_RNA_CAP_BINDING, GOMF_RNA_7_ METHYLGUANOSINE_CAP_BINDING. m7G-related genes: DCP2, IFIT5, EIF3D, EIF4G3, NSUN2, GEMIN5, AGO2, NUDT10, EIF4E, EIF4E2, NCBP2, NUDT11, NUDT3, NCBP1, METTL1, LARP1, NUDT4, EIF4E3, SNUPN, WDR4, LSM1, NUDT16, DCPS, CYFIP1.



Unsupervised clustering

An unsupervised consensus clustering analysis was performed based on m7G regulators or m7G pattern-regulated gene expression levels. Principal component analysis (PCA) to determine whether each subtype is relatively independent of the other subtypes. The number of clusters was determined by the R package “conensusClusterPlus” (24), and 100 replicates were performed with pltem=0.8 to verify the stability of the subtypes. Kaplan Meier curves were used to evaluate overall survival (OS) of different SKCM patients in the dataset and log-rank test was used. We performed PCA analysis to reduce the dimensionality, judging the ability of distinguishing patients.



Calculation of m7G score

First, we normalized the differentially expressed genes (DEGs) extracted from different m7G clusters and extracted overlapping DEGs, we used Cox regression method to perform prognostic analysis on each overlapping DEG and screened genes at P<0.05. Principal component analysis (PCA) was used to construct the m7G cluster signatures. Both principal components 1 and 2 are selected as feature scores, m7Gscore=∑(PC1i+PC2i).



Enrichment analysis

Differences in biological pathways between subtypes were assessed using gene set variation analysis (GSVA) (25). Gene Ontology (GO) is used to annotate the biological processes, molecular functions, and cellular components of genes (26). Gene pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) (27). Differential genes between different subtypes were analyzed using the “limma” package (p < 0.05) (28), and then the overlapping genes among the three groups were analyzed by GO and KEGG using the “clusterProfiler” package. In addition, c2.cp.kegg.v7.0.symbols.gmt was used as the reference gene set, and FDR < 0.05 was the screening threshold.



Drug sensitivity analysis

IC50s were calculated using the prophetic package in R software, and chemotherapeutic drugs were obtained from the genome of Drug Sensitivity in Cancer (GDSC) database.



Immunoassay

In immune cell analysis, we simultaneously used different algorithms, such as TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL, and EPIC, to estimate the abundance of immune cells in different samples (29). In addition, the ESTIMATE algorithm was used to calculate the immune score, and the interstitial score to reflect the microenvironmental status.



Statistical analysis

Correlation coefficients between immune cells and m7G regulator expression were calculated by Spearman correlation analysis. The Kruskal-Wallis test was used for differences among the three groups, and the χ2 test was used for associations between categorical covariates. Based on the correlation of m7Gscore with patient prognosis, the optimal cutoff value for each dataset subset was defined using the “survminer” R package. This value divided patients into high and low m7Gscore subgroups. The log-rank statistic is used to reduce batch effects of calculations. OS maps were drawn using the Kaplan-Meier method and the log-rank test was used to identify statistical differences. Univariate Cox regression was used to calculate hazard ratios for m7G regulators and genes associated with m7G phenotypes. Multivariate Cox regression was used to identify independent survival factors. The “Maftools” package and its “oncoplot” function were used to present mutational differences (30). P<0.05 was considered statistically significant.




Results


Genetic variation profile of m7G-related genes in SKCM

In this study, a total of 24 m7G-related genes were identified in the TCGA cohort and the locations of m7G-related genes on chromosomes are shown in Figure 1A. Firstly we summarized the frequency of copy number variation (CNV) and somatic mutation of m7G-related genes in SKCM. EIF4G3 and GEMIN5 had the highest mutation frequency out of 465 samples, with 86 mutated with a frequency of 18.49 percent (Figure 1B). Missense mutations were common. Additionally, strong mutational co-occurrence links between EIF4G3, METTL1, IFIT5, MSUN2, AGO2, and GEMIN5 were discovered in the co-mutation map of 24 m7G regulators (Figure 1C). According to the frequency of CNV modifications, AGO2 focused on copy number amplification, CNV deletion frequencies in DCPS were common, and CNV alterations were common in m7G-related genes (Figure 1D). Combining SKCM samples in the TCGA database with normal skin samples in the GTEx database, it was discovered that based on the expression of m7G-related genes, SKCM samples could be completely distinguished from normal samples using PCA (Figure 1E). To determine whether the aforementioned genetic variants affect the expression of m7G-related genes in SKCM patients, we investigated the mRNA expression levels of m7G-related genes between normal and SKCM samples. With the exception of EIF3D, most of the m7G-related genes showed significantly different expression levels between samples. Compared with SKCM samples, NSUN2, NUDT4, EIF4E3, EIF4E and EIF4E2 showed higher expression in normal tissues (Figure 1F, G). The above analysis showed that m7G-related genes were highly heterogeneous between normal and SKCM samples, suggesting that the imbalanced expression of m7G-related genes plays a crucial role in the occurrence and progression of SKCM.




Figure 1 | The landspace of genetic and variation of 24 m7G genes in SKCM. (A) The location of 24 m7G genes on chromosomes. (B) The mutation frequency of 24 m7G regulators in 465 patients, with each color representing the mutant types. Numbers on the right part of the figure represent the mutation frequency. (C) Co-occurrence and exclusion of 24 m7G genes mutations. Green color represents co-occurrence, and yellow color represents exclusion. (D) The CNV frequency of 24 m7G genes. The red color represents amplification as well as the blue color represents deletion. (E) Principal component analysis of m7G genes. (F, G) The expression levels of 24 m7G genes in normal and tumor tissues. (*p < 0.05;***p < 0.001).





Modification patterns mediated by m7G-related genes

A Meta cohort was created by combining three datasets (GSE53118, GSE65904, and TCGA-SKCM) with complete prognostic data. 21 m7G-related genes were subsequently annotated in the Meta cohort. The Kaplan-Meier survival analysis and log-rank test were used to separate the prognostic significance of 15 m7G-related genes for SKCM patients using the optimal cut-off value for each group (Figure S1A). Low expression of other genes was linked to better prognostic outcomes, with the exception of high expression of EIF4E3, IFIT5, and CYFIP1, which exhibited a greater survival advantage. The m7G-related gene network outlines a thorough picture of gene interactions and their prognostic consequences for individuals who have the gene (Figure 2A). Most m7G-related genes, according to our research, demonstrated a substantial association and had good predictive capacity (univariate cox regression analysis). And IFIT5 and EIF4E3 were significantly positively correlated with patient survival. According to the results mentioned above, distinct m7G methylation modification patterns may be significantly influenced by crosstalk between m7G-related genes. We used the “ConsensusClusterPlus” R package to classify the patients based on the expression of m7G-related genes; when the K value is 3, the slope of CDF decline was the smallest (Figure 2B). And finally three modification patterns were identified, which we refer to m7G cluster-A, B, and C respectively. PCA showed that three patterns were relatively discrete (Figure 2C), indicating that SKCM patients could be divided into three clusters based on the expression of m7G-related genes. Prognostic analysis revealed a considerable advantage in the m7G cluster B (Figure 2D), but no apparent survival difference between m7G cluster A and C. To explore the biological behavior between different m7G modification patterns, we performed a GSVA enrichment analysis on the meta-SKCM cohort. As shown in Figure 2E, compared with m7G cluster A, cluster B presented enriched pathways associated with immune activation, such as T cell receptor signaling pathway, B cell receptor signaling pathway, chemokine signaling pathway and cytokine-cytokine receptor interaction. In addition, KEGG pathways also varied among different modifications. The purine and pyrimidine metabolic pathways were substantially more active in m7G cluster C than in cluster B. When compared to cluster C, cluster A had a considerably higher concentration of the TGF-βmetabolic pathway (Figure S1B, C). The results indicated above may provide some evidence support for the prognostic advantage of m7G cluster-B.




Figure 2 | Patterns of m7G methylation modification. (A) Interaction network of the 21 m7G genes. In meta-SKCM cohort(GSE53118, GSE65904, TCGA). Purple dots represent risk factors and green dots represent favorable factors. (B) 743 SKCM patients were divided into 3 groups using Consensus clustering matrix. (C) Principal component analysis of m7G modification pattern. (D) Kaplan–Meier survival analysis of OS for different m7G clusters in meta-SKCM cohort(p < 0.001). (E) GSVA enrichment analysis between m7G cluster A and B.





Infiltration characteristics of TME cells under different modification patterns

We used single sample GSEA (ssGSEA) to analyze immune cell infiltration on various m7G clusters in light of mounting evidence that TME plays a significant role in tumorigenesis and progression (31). To our surprise, analysis of the TME showed that m7G cluster B is very abundant in immune cell infiltration, including CD4+ T cells, CD8+ T cells, NK cells, macrophages, eosinophils, mast cells, Myeloid-derived suppressor cells (MDSCs) and dendritic cells, while m7G clusters A and C were dominated by type 2 helper T cells (Th2) and monocytes respectively (Figure 3A). GSVA on Hallmarker gene set (32) revealed different biological behavior of three m7G modification clusters. NF-KB pathway and IL6-JAK-STAT3 pathway activity were significantly enhanced in m7G cluster B. In contrast, m7G cluster A was predominantly and significantly enriched in the Wnt-β-catenin signaling pathway and m7G cluster C was characterized by DNA repair-related pathways (Figure 3B). PCA analysis also showed that three m7G modification patterns could also be distinguished based on cancer activity pathway scores (Figure 3C). In addition, the heatmap showed that among three subtypes, IFIT5 and EIF4E3 genes were significantly up-regulated in m7G cluster-B, NUDT10 and NUDT11 were significantly up-regulated in m7G cluster A and METTL1 was mainly up-regulated in m7G cluster-C (Figure 3D).




Figure 3 | The characteristics of TME in distinct m7G clusters. (A) The infiltration level of immune cells in three m7G clusters. (*p < 0.05; **p < 0.01; ***p < 0.001). (B) GSVA enrichment analysis based on Hallmark gene set according to different m7G clusters. (***p < 0.001). (C) Principal component analysis based on pathway activity score corresponding to m7G clusters. (D) Unsupervised clustering of gene expression of 21 m7G genes in the meta-SKCM cohort.M7G cluster, pathologic stage, gender, and age were used as annotations. (E) GO enrichment analysis of prognosis-related DEGs.





The m7G-related DEGs in SKCM

We discovered 248 differentially expressed genes (DEGs) associated with the m7G phenotype using the “limma” package and carried out GO enrichment analysis on DEGs using the “clusterProfiler” tool to further explore the potential biological function of the m7G modification pattern. Surprisingly, these genes showed enrichment for biological processes significantly associated with immune infiltration, confirming that m7G modification plays a non-negligible role in the immune regulation of the TME (Figure 3E). To further validate this regulatory mechanism, we performed an unsupervised clustering analysis based on the prognostic-relevant DEGs in order to classify patients into different genotypes. Consistent with the grouping of m7G modification patterns, an unsupervised clustering algorithm revealed three distinct gene subtypes, named gene cluster-A, B, and C (Figure 4A). We observed that gene cluster B had the best survival prognosis and gene cluster A, C had no significant difference in survival prognosis (Figure 4B). In addition, among three gene subtypes, significant differences in the expression of m7G regulators were observed, which is consistent with the expected results of the m7G methylation modification pattern, while the m7G-related genes EIF4E3, IFIT5 were significantly upregulated in gene cluster B (Figure 4C, D).




Figure 4 | Construction of gene clusters and m7G score based on the DEGs. (A) DEGs were divided into 3 groups using Consensus clustering matrix. (B) K-M survival analysis of OS for different m7G gene clusters in meta-SKCM cohort(p < 0.001). (C) Histogram showing expression of m7G related genes in different gene clusters. The lines in the boxes mean median value. (D) Unsupervised clustering of gene expression of 21 m7G genes in the meta-SKCM cohort. Gene cluster, pathologic stage, gender, and age were used as annotations. (E) Alluvial diagram showing an association between m7G cluster,m7G gene cluster, m7G score, and survival status. (F) GSVA enrichment analysis based on Hallmark gene set according to high and low m7G scores. (**p < 0.01; ***p < 0.001). (G) Spearman analysis displaying the correlations between m7G score and hallmark gene set. Red represents positive correlation, blue represents negative correlation. (H, I) The difference of m7G score in distinct m7G clusters (above) and gene clusters (below). *represents p < 0.05.





The m7G score for individual SKCM patients

The aforementioned analysis is based only on the population and cannot accurately predict the pattern of m7G methylation modification in each patient. Considering the individual heterogeneity of m7G modification, we constructed the m7G score system using PCA algorithm to systematically quantify the m7G modification pattern of SKCM patients based on these phenotype-related genes. All patients with SKCM were classified into high and low groups based on the m7G cut-off value. The alluvial diagram shows the connections between the subtypes (Figure 4E). The ssGSEA algorithm analysis showed that the activity of hallmark pathway was significantly enhanced in high score patients (Figure 4F). Meanwhile, the analysis of related pathway activity showed that high score may be strongly associated with the heightened activation of the NF-KB and IL6-JAK-STAT3 pathways (Figure 4G). The Kruskal-Wallis test revealed that there was a significant difference in m7G score between m7G clusters, with the highest score in m7G cluster B (Figure 4H). There was also a significant difference in m7G score between gene clusters, with the highest score in gene cluster B (Figure 4I). However, immunological activation was more pronounced in m7G cluster B and gene cluster B. Therefore, the results above strongly suggest that high m7G score is significantly associated with immune activation and m7G Score system can better assess m7G modification patterns in individual patient.



Prognostic value of m7G score in individual patient

We further specified the value of m7G Score system in predicting patient outcomes. Patients with high m7G Score demonstrated a substantial survival benefit (Figure 5A), whereas patients with advanced disease demonstrated a lower m7G Score (Figure 5B, C). In addition, we discovered that the m7G Score had greater survival discriminating value in several clinical subgroups, including various age groups (Figure S2A) and sex groups (Figure S2B). The m7G Score system also has a good prognostic value in patients with different pathological stages, especially stage II and III (Figure S2C). Given that TMB is clinically significant in directing immunotherapy in SKCM patients, we sought to explore the intrinsic correlation between TMB and m7G Score. It was found that the TMB score was slightly higher in the low m7G Score group (Figure 5D) and the Low-TMB group represented a worse prognostic outcome (Figure 5E). Dividing SKCM patients into four subgroups based on m7G score and TMB, we found that low m7G score combined with Low-TMB indicated worse prognostic outcomes (Figure 5F). Then, we used the “maftools” package to analyze the differences in the distribution of somatic mutations between low m7G Score and high m7G Score in the TCGA-SKCM cohort (33), in which TTN was the most widely mutated gene in both groups, while the high m7G Score group had a TTN mutation rate of 56% (Figure 5G), while the TTN mutation rate in the low m7G Score group was 70% (Figure 5H).




Figure 5 | The connection between m7G score and clinical characteristics. (A) K-M survival analysis of OS in high and low m7G score groups in meta-SKCM cohort (p < 0.001). (B, C) The association between m7G score and clinicopathologic stage. (*p < 0.05 **p < 0.01 ***p < 0.001). (D)The difference of TMB in high versus low m7G score(p=0.047). (E) K-M survival analysis of OS in high and low TMB subgroups in the meta-SKCM cohort (p <0.001). (F) M7G score combined with TMB better predicted the prognosis of SKCM patients. (G, H) Mutational landscape of significantly mutated genes (SMGs) stratified by high (left panel) versus low m7G score (right panel) subgroups. Mutation types were used in different colors as annotations.





The role of m7G score in anti-PD-1/L1 immunotherapy

Previous results suggest that m7G modification patterns can influence immune cell infiltration. Therefore, we hypothesized that the immune response to anti-PD-1/PD-L1 may be significantly mediated by the differential modification pattern of m7G. Immunotherapy represented by PD-L1 and PD-1 blockade has undoubtedly become a major breakthrough in cancer treatment. We examined the potential predictive value of m7G modification signatures for immunological response to immune checkpoint blockade based on two immunotherapy cohorts (GSE78220 and IMvigor210). GSE78220 is the anti-PD-1 immunotherapy cohort, while IMvigor210 is the anti-PD-L1 immunotherapy cohort. In the anti-PD-1 cohort, patients with high m7G score showed significant clinical benefit and significantly prolonged OS (Figure 6A). Immunotherapy outcomes in patients with high m7G score were more inclined to CR/PR (Figure 6B, C). Likewise, in the anti-PD-L1 cohort, patients with high m7G Score had better prognostic outcomes (Figure 6D) and were more prone to CR/PR (Figure 6E, F). The aforementioned content suggests that quantification of m7G modification patterns is a potential and reliable biomarker for predicting prognosis and assessing therapeutic effectiveness of immunotherapy. Subsequently, we predicted the hallmark pathway activity level in the anti-PD-L1 cohort and found that, similar to the m7G Cluster, patients with high m7G scores had more notable immune activation (Figure 6G). In addition, the expression levels of PD-L1 and CTLA4 were also significantly up-regulated in patients with high m7G score (Figure 6H). In conclusion, our research strongly demonstrates that m7G methylation modification patterns are highly associated with tumor immunophenotype and response to anti-PD-1/L1 immunotherapy. And the established m7G modification signature will aid in the prediction of the anti-PD-1/L1 response to immunotherapy.




Figure 6 | The prediction to Immunotherapy using m7G score. (A) K-M survival analysis of OS in high and low m7G score groups in the GSE78220 cohort (p = 0.043). (B) Distribution of m7G scores between immune response and non-response in the GSE78220 cohort. (p=0.03). (C) The percentage of patients with different responses to immune therapy in the GSE78220 cohort. (D) K-M survival analysis of OS in high and low m7G score groups in the IMvigor210 cohort (p = 0.04). (E) Distribution of m7G scores between immune response and non-response in the IMvigor210 cohort. (p=0.046). (F) The percentage of patients with different responses to immune therapy in the IMvigor210 cohort. (G) GSVA enrichment analysis based on Hallmark gene set according to high and low m7G scores in the PD-L1 cohort. (*p < 0.05 **p < 0.01 ***p < 0.001). (H) PD-L1 (i) and CTLA4 (ii) expression levels between high and low m7G score subgroups. NS, no significance; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.





Indicative role of m7G score in the immune microenvironment

Based on the gene expression profiles of all solid tumors in the TCGA, Thorsson et al. identified five immune-expression signature subtypes: Wound Healing (Immune C1), IFN-gamma Dominant (Immune C2), Inflammatory (Immune C3), Lymphocyte Depleted (Immune C4) and TGF-beta Dominant (Immune C6) (34). Based on the aforementioned results, we discovered that immunological subtypes varied considerably between different m7G score groups and that “IFN-gamma Dominant” predominated (Figure 7A), representing a higher proportion of lymphocytes Infiltration in the high m7G score group. Significant differences in the m7G score between various immunological subtypes were also observed (Figure 7B). The ESTIMATE algorithm also demonstrated that as the m7G score is increased, the immune score and stromal score are also increased (Figure 7C), indicating that high m7Gscore was associated with high immune cell infiltration and high stromal cell levels. We conducted a correlation analysis of the stemness scores for DNA and RNA in patients with SKCM in light of the crucial role that stemness plays in tumor formation and treatment (35). Unsurprisingly, stemness scores decreased as m7G scores increased. (Figure 7D). To comprehensively explore the relationship between different m7G score groups and the immune microenvironment, we calculated the immune cell infiltration level of each patient in the TCGA-SKCM cohort based on six algorithms (TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL, and EPIC). It was discovered that the TME was in an active state and there was higher immune cell infiltration in the group with high m7G scores (Figure 7E). Similarly, the majority of immune cells were positively correlated with m7G score (Figure 7F). Although most literature reported that SKCM is not susceptible to radiotherapy and chemotherapy, we explored whether m7G score could have a certain indicative effect on traditional cytotoxic drugs. Therefore, we used the “prophetic” package to calculate the IC50 values of various drugs. With the exception of Docetaxel, it was found that high m7G score groups were more sensitive to chemotherapy drugs (Figure S3).




Figure 7 | The characteristics of TME in high and low m7G score subgroups. (A) The fraction of Immune Subtypes in high and low m7G score subgroups. (B) The distribution of m7G score between different Immune subtypes. (C) The association between immune score (i) or stromal score (ii) and m7G score. (D) The relationship between DNAss (i) or RNAss (ii) and m7G score. (E) Heatmap of immune cell infiltration level based on TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL, EPIC algorithms. (F) The correlation between m7G score and activity of immune cells in TME. ns, no significance.





Construction of nomogram based on m7G score

We developed a nomogram based on m7G score since the nomogram can be applied intuitively to clinical practice to assess the prognosis of patients. To construct the nomogram, we incorporated the statistically relevant indicators from the multivariate Cox regression, such as the m7G score, Age, and Stage (Figure S4A). For example, in the low m7Gscore population, patients with a total score of 58.4 in stage I and older than 60 years old had a probability of survival of 0.042 for less than one year, 0.225 for less than three years, and 0.333 for less than five years (Figure S4B). According to ROC curve, nomogram had good predictive performance for survival in TCGA and GEO cohorts (GSE53118, GSE65904) (Figure S4C, D). In addition, calibration curve results for 1-, 3-, and 5-year survival showed that actual survival was close to predicted survival in the TCGA-SKCM cohort (Figure S4E). In the GEO cohort (GSE53118, GSE65904), the result is the same as the aforementioned content (Figure S4F).




Discussion

Due to the presence of variable loops, tRNAs are the most common m7G-modified RNA species (36). The m7G modification of tRNA is important for normal mRNA translation and maintenance of embryonic stem cell self-renewal. If damaged, it can lead to the progression of microcephaly primitive dwarfism and cancers (37). Previous studies have shown that m7G modification selectively promotes the regulation of cell cycle and translation of oncogenic mRNAs, which correlates with the number of codons decoded by m7G-modified tRNAs (16). In addition to intrahepatic cholangiocarcinoma, abnormal m7G modification is also associated with esophageal squamous cell carcinoma, acute myeloid leukemia, glioblastoma multiforme, and breast cancer (14, 36). However, the relationship between m7G modification and melanoma is unclear. Therefore, this article aims to explore the relationship between multiple m7G-related genes and TME in order to better predict patient prognosis and guide more effective immunotherapy strategies.

First, we identified three distinct modification patterns based on 21 m7G-related genes with distinct biological behaviors and prominent TME infiltration characteristics. Tumors were classified into three immunophenotypes: immunological-inflammatory, immune-desert, and immune-excluded based on the immune background of the tumor (31). The immune-inflammatory type refers to the infiltration of CD4+T, CD8+T and other immune cells in the tumor parenchyma, which is related to the inflammatory response (38). Immuno-excluded means that immune cells are surrounded by a matrix and cannot penetrate into the parenchyma (39). Immune desert type refers to the lack of infiltration of relevant immune cells in both the parenchyma and stroma of the tumor (31, 39). GSVA showed that m7G Cluster B significantly enriched immune activation-related pathways such as T and B cell receptor signaling pathways and m7G Cluster B had higher infiltration of adaptive immune cells and macrophages in TME. The levels of these immune cells directly affect the onset of the adaptive immune response and correlate with a patient survival advantage (6, 40, 41). m7G Cluster A was significantly enriched for matrix-related pathways, such as TGF-β. TGF-β suppresses immune responses by limiting T cell infiltration into tumors (42). m7G Cluster C is associated with immune-oncogenic pathways such as DNA repair. There is a tendency to classify Cluster B as an immune-inflammatory phenotype and m7G Clusters A and C into an immune-desert phenotype.

Then we further investigated the DEGs associated with the m7G phenotype to further explore the potential biological functions of these genes. GO enrichment analysis showed that DEGs were significantly associated with immune-related biological pathways and were identified as three genomic subtypes, indicating that m7G modification is important in shaping the TME. In addition, JAK/STAT3 signaling was upregulated in cluster B, and previous study reported that JAK/STAT3 signaling enhances PD-L1 expression (43), therefore they can response to PD-L1 therapy better than cluster A and C. What’s more, we found that EIF4E3 and IFIT5 were significantly up-regulated in Cluster B regardless of m7G modification grouping or gene grouping and were associated with high survival prognosis of patients. We reasonably suspect that EIF4E3 and IFIT5 may enhance antitumor activity by promoting the activation of immune responses. IFN-induced tetratricopeptide repeat protein 5 (IFIT5), a member of the IFIT family, is an important enhancer of the innate immune response, initiating several immune signaling pathways to defend itself, including IRF3, NF-kB (44, 45). IFIT5 has a special tetratricopeptide repeat (TPR) structure that regulates cell function by recognizing its partner to form a complex, affecting cell migration ability and proliferative activity (46, 47). Studies have reported that high expression of IFIT5 is associated with more immune cell infiltration and its low expression is an independent risk factor for the prognosis of patients with malignant melanoma (48), which is consistent with the conclusion of this paper. Furthermore, IFIT5 plays different roles in the development of certain tumors. For instance, by preventing the transformation of microRNA (miRNA), IFIT5 can increase the expression of EMT transcription factors and increase the risk of developing renal cell carcinoma (49). EIF4E3 is a member of the eukaryotic translation initiation factor EIF4E family, which affects mRNA processing, nuclear export, translation and cancer development by specifically recognizing the 5′m7G cap structure of mRNA. Unlike other EIF4E family members in their cancer-promoting roles (50, 51), EIF4E3 competes with EIF4E1 for the same transcriptional and translational targets, such as VEGF, cyclinD1, through atypical binding to the cap and hinders tumor development by reducing the expression of these factors, which is important. tumor suppressor and was confirmed in AML (52, 53).

Afterwards, based on DEGs, we established an m7G scoring system to better assess the heterogeneity of individual m7G modification patterns. Although high TMB showed better survival and was often associated with better immune responses in patients receiving immunotherapy, our results showed lower TMB in the high m7G score subgroup, suggesting that the m7G scoring system can be a more effective predictor of patient prognosis than TMB. We also noticed that the somatic mutation rate of TTN was highest in the low subgroup, with a statistically significant difference between the two groups. Studies have shown that TTN deficiency can down-regulate cell cycle-related proteins such as Cyclin D1, CDK2 and up-regulate apoptosis-related proteins, which may be related to the regulation of its upstream long non-coding RNA TTN-AS1 (LncRNA-TTN-AS1). Hypomethylation of the transcription initiation site leads to overexpression of lncRNA-TTN-AS1, which increases TTN expression by activating promoters upstream of TTN and promotes tumor proliferation and migration (54). This may provide a new therapeutic target and therapeutic strategy for malignant melanoma.

In recent years, only a minority of the population has benefited from immunotherapy, so we sought to assess whether the m7G score could serve as a novel biomarker to predict patient responses to immunotherapy. Two independent immunotherapy cohorts confirmed the predictive power of the m7G score in anti-PD-1/L1 immune response, with a significantly higher response rate in the high m7G score subgroup than in the low group. We also noticed that NF-KB signal transduction pathway in the high m7G score subgroup was significantly active in the PD-L1 cohort. Studies have demonstrated that in patients who have seen a full or partial response to immunotherapy, the codon G34E mutation in the NF-KB inhibitor epsilon (NF-KBIE) causes loss of NF-KBIE function and activation of the NF-KB signal transduction pathway. Overactivated NF-KB pathway allows patients to better benefit from immunotherapy and will promote the maturation of dendritic cells and recruit more CD8+ T cells (55, 56). In addition, we also explored the potential relationship between m7G score and TME and found a higher degree of immune cell infiltration of TME in high m7G score subgroup. This suggests that different m7G modification patterns can have a huge impact on TME shaping. Subsequently, we established a nomogram, combined with a variety of clinical indicators, to establish a personalized prognostic prediction scale to quantify multiple risk factors of different individuals. These results suggest that the m7G score can be used to guide immunotherapy regimens and assess patient prognosis.

However, there are some limitations in this paper. Firstly, although this paper integrates 21 m7G-related genes, only using retrospective data may introduce some bias. Therefore, our next goal is to collect more samples from patients with melanoma and verify the molecular mechanism of m7G-related gene regulation through relevant experiments. In addition, due to the small number of immunotherapy cohorts, more data on patients receiving ICI treatment in medical centers will be further collected in the future to establish a prospective study.



Conclusion

In conclusion, we comprehensively assessed the characteristics of the tumor microenvironment with different m7G modification patterns and the results indicated that m7G modification plays an important role in regulating immune responses. Importantly, in three m7G modification patterns, Cluster B was associated with high survival prognosis of patients, which showed significant upregulation of m7G-related genes, EIF4E3 and IFIT5. We also established an m7G scoring system, which can be an effective predictor of patient prognosis. These m7G-related genes may play a role as a prognostic biomarker for patient resistant or sensitive to immunotherapy. Assessing the m7G modification pattern of patients will better guide the immunotherapy regimen and improve the overall survival rate of patients in the future.
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Background

The RNA modification 5-methylcytosine (m5C) is one of the most prevalent post-transcriptional modifications, with increasing evidence demonstrating its extensive involvement in the tumorigenesis and progression of various cancers. Colorectal cancer (CRC) is the third most common cancer and second leading cause of cancer-related deaths worldwide. However, the role of m5C modulators in shaping tumor microenvironment (TME) heterogeneity and regulating immune cell infiltration in CRC requires further clarification.



Results

The transcriptomic sequencing data of 18 m5C regulators and clinical data of patients with CRC were obtained from The Cancer Genome Atlas (TCGA) and systematically evaluated. We found that 16 m5C regulators were differentially expressed between CRC and normal tissues. Unsupervised cluster analysis was then performed and revealed two distinct m5C modification patterns that yielded different clinical prognoses and biological functions in CRC. We demonstrated that the m5C score constructed from eight m5C-related genes showed excellent prognostic performance, with a subsequent independent analysis confirming its predictive ability in the CRC cohort. Then we developed a nomogram containing five clinical risk factors and the m5C risk score and found that the m5C score exhibited high prognostic prediction accuracy and favorable clinical applicability. Moreover, the CRC patients with low m5C score were characterized by “hot” TME exhibiting increased immune cell infiltration and higher immune checkpoint expression. These characteristics were highlighted as potential identifiers of suitable candidates for anticancer immunotherapy. Although the high m5C score represented the non-inflammatory phenotype, the CRC patients in this group exhibited high level of sensitivity to molecular-targeted therapy.



Conclusion

Our comprehensive analysis indicated that the novel m5C clusters and scoring system accurately reflected the distinct prognostic signature, clinicopathological characteristics, immunological phenotypes, and stratifying therapeutic opportunities of CRC. Our findings, therefore, offer valuable insights into factors that may be targeted in the development of precision medicine-based therapeutic strategies for CRC.





Keywords: 5-methylcytosine, RNA methylation, colorectal cancer, immune infiltrates, tumor microenvironment, precision medicine



Introduction

Colorectal cancer (CRC) is a prevalent malignancy worldwide, ranks third in terms of incidence, and causes a significant burden on human health (1). Although treatment strategies have greatly improved in recent decades, CRC remains the principal cause of cancer-related mortalities, with a 5-year survival rate of 13–14% for patients with advanced CRC and distant metastasis (2). The therapies that are currently available for metastatic CRC (mCRC) include cytotoxic chemotherapy, molecular-targeted therapy, and immunotherapy (3); however, the clinical benefits of these therapeutic modalities remain unsatisfactory, mainly due to the lack of effective pre-treatment predictive biomarkers. It is therefore imperative to elucidate the molecular mechanisms underlying the tumorigenesis of CRC and identify reliable biomarkers that enable the early diagnosis and treatment response predictions for patients with CRC.

The complex crosstalk between cancer cells and the tumor microenvironment (TME) has been identified as a critical factor that drives tumor progression, metastasis, and drug resistance (4). As the “soil” of cancer cells, the TME contains various non-malignant cells, including fibroblasts, transformed cells, vascular vessels, stromal cells, and immune infiltrates (5, 6). Several studies have demonstrated that immune cells are the dominating components of the TME and that immune resistance contributes to immune evasion and tumor progression (7, 8). However, high TME heterogeneity may account for a broad range of clinical prognoses and variable responses to immunotherapies, even among the patients of the same pathological grade and clinical stage. Therefore, depicting TME heterogeneity and the associated immune infiltrates may contribute to guiding the development of precision medicine for treating CRC.

Epigenetic modifications result in heritable modulations of gene expression in the absence of a modified genomic DNA sequence. The tumorigenesis of CRC is not well-understood and has been gradually characterized based on various driver mutations and genetic and epigenetic alterations (9, 10). Several types of epigenetic regulation, including histone modification (ubiquitination, acetylation, and phosphorylation), chromatin remodeling, DNA and RNA methylation, and the expression and activity of noncoding RNA, are critical hallmarks of CRC progression (11). RNA methylation is an essential biological epigenetic process that has the functional impact on the regulation of transcriptional activation and inactivation (12). To date, more than 100 modifications have been identified for all four ribonucleotides (A, C, G, and U), including N6-methyladenosine (m6A), 5-methylcytosine (m5C), 7-methylguanosine, N1-methyladenosine, and 3-methyluracil (13, 14). Among these, m6A is the most ubiquitous and abundant post-transcriptional modification, with previous studies having identified its regulatory role in TME-specific immune infiltration (15–17). In a previous study, m6A score constructed using m6A-related genes effectively predicted the immune response and prognoses of patients with colon cancer (18). m5C is another common and well-studied RNA modification that plays a fundamental role in various biological processes, including carcinogenesis and cancer progression (Figure 1B) (19–24); however, the role of m5C modulators in shaping TME heterogeneity and regulating immune cell infiltration in CRC requires further investigation.




Figure 1 | Landscape of m5C methylation regulators. (A) Graphical summary of the study protocol. (B) Overview of the m5C genes and their functions in different cancer types. (C) Pie charts showing the types of m5C regulators (top). The heatmap depicts the mRNA expression levels of 18 m5C regulators between normal mucosae and CRC tissues according to transcriptome data from TCGA and GTEx (bottom).



In this study, we comprehensively profiled the expression of 18 m5C regulators and identified two distinct m5C modification patterns in CRC. Additionally, we established a novel m5C scoring system using m5C-related genes identified by the weighted gene co-expression network analysis. To the best of our knowledge, these findings are the first to highlight the relationship between the m5C score and immune phenotypes, TME heterogeneity, clinicopathological characteristics, and therapeutic strategies for CRC.



Methods

Figure 1A illustrates the overall workflow and mechanism diagram of this study.


Data collection and processing

We retrieved clinical data, RNA-sequencing data, and mutation profiles for both “COAD” and “READ” from The Cancer Genome Atlas (TCGA) via the Genomic Data Commons portal. Copy number variation (CNV) profiles were obtained from the UCSC Xena browser, and the microsatellite instability (MSI) analysis was performed as previously described by Bonneville (25). We obtained a CRC gene expression matrix (GSE38832) with detailed clinical information from the Gene Expression Omnibus (GEO).



Unsupervised clustering of m5C regulator genes

In total, 18 m5C genes, including 11 writers, 3 readers, and 4 erasers, were systematically analyzed using data from previous studies (26–28). Consensus unsupervised clustering analysis was conducted using the ConsensusClusterPlus package in R to explore distinct m5C modification patterns. Gene set variation analysis (GSVA) was performed using the GSVA package to calculate the enrichment score for 50 hallmark pathways from MSigDB. The differences in these pathways were analyzed between various m5C clusters using the limma package. An adjusted P< 0.05 and |logFC| > 0.2 were considered to be statistically significant.



Differentially expressed genes (DEGs) and functional analysis

The limma R package was used to identify DEGs between the different m5C clusters according to the cut-off criteria of |logFC| ≥ 1 and adjusted P< 0.05. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted using the clusterProfiler R package based on the DEGs.



Weighted gene co-expression network analysis (WGCNA)

The WGCNA R package was used to construct WGCNA and identify m5C cluster-related genes. First of all, the TPM data from the TCGA were tested to determine whether they were good genes or samples. Then, the filtered genes were used to construct a scale-free network by calculating the connection strength between genes. The scale independence and modules’ average connectivity were calculated using the gradient method. The appropriate power value was determined when the degree of independence was above 0.85 and average connectivity degree is relatively higher. Once the power value was determined, the scale-free gene co-expression networks were constructed. The cluster dendrogram among the modules was plotted using the ggtree package in R. The heatmap depicting the correlations between the modules and clinicopathological characteristics was generated in R using the pheatmap package. The key module with the strongest association with the m5C cluster was chosen for further analysis.



Construction of the m5C risk score

Univariate Cox regression analysis was performed using the survival R package to identify prognostic genes. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was implemented to minimize the risk of overfitting using the glmnet package based on the prognostic genes. Multivariate Cox regression analysis was then used to identify the candidate genes that were used to establish the prognostic m5C score. The m5C risk score was calculated using Eq. (1):

 

where Coefi and Expi represent the risk coefficient and signature gene expression, respectively.



Correlation analysis between clinical characteristics, the cancer stem cell (CSC) index, and MSI with the m5C score

Univariate and multivariate analysis of the clinicopathological features, including age, gender, American Joint Committee on Cancer (AJCC) stage, TNM stage, and risk score, were performed to investigate whether the m5C risk score was independent of all the other available clinical features. The relationship between the m5C score and clinical characteristics was analyzed using Chi-square test. The associations between the MSI and CSC index with the m5C score were also analyzed.



Determining the TME immune landscape

The abundance of tumor‐infiltrating immune cells (TIICs) was quantified using the single-sample (ss) GSEA in the GSVA package. Additionally, we evaluated the differences in the gene expression of immunomodulators and immune checkpoint and effector genes between the different m5C risk groups. The anticancer immune response (cancer immunity cycle) was also evaluated between the various risk groups.



Nomogram construction and validation

The nomogram prediction model was constructed based on the m5C risk score and clinical factors using the RMS package. Receiver operating characteristic (ROC) curves are well-known and have been used in previous bioinformatics studies; and therefore have been used to assess the discriminative performance of nomograms (29, 30).The calibration and ROC curves were used to evaluate the prediction probability and reliability of the nomogram model. The decision curve analysis (DCA) was then performed to assess the clinical performance and net benefit of the nomogram.



Mutation and drug-susceptibility analysis

To explore the somatic mutation profiles in the different risk-score groups, the mutation annotation format data of the patients with CRC from TCGA cohort were analyzed using the Maftools package. The tumor mutational burden (TMB) score of each patient with CRC and each risk-score group was calculated and analyzed statistically. The drugs and their target information were derived from DrugBank (https://go.Drugbank.com/). The 50% inhibitory concentration (IC50) values of common anticancer drugs were calculated and compared in the different risk groups using the pRRophetic package.



Tissue samples

Forty pairs of CRC specimens and adjacent normal tissues were harvested from patients at Zhongnan Hospital of Wuhan University. Written informed consent was obtained from all the participants. This study was approved by the ethics committee of Zhongnan Hospital of Wuhan University. The enrolled patients and their clinical characteristics are listed in Supplementary Table 17.



RNA extraction and RT-qPCR

Total RNA was extracted from the CRC tissues using TRIzol reagent (Invitrogen, USA). cDNA was synthesized with random primers using HiScript II Q RT SuperMix (Vazyme, China). RT-qPCR was then performed using ChamQ Universal SYBR qPCR Master Mix (Vazyme). All the forward and reverse primer sequences are presented in Supplementary Table 18.



Immunofluorescence

Immunofluorescence staining was performed on paraffin-embedded human CRC sections according to standard procedures. The antibodies used for immunofluorescence were anti-programmed death-ligand 1 (PD-L1; 66248-1-Ig; Proteintech), and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4; ab19792; Abcam).



Statistical analysis

Normally-distributed continuous variables are presented as the mean ± standard deviation and were compared using an independent Student’s t-test or the Mann–Whitney U test, whereas categorical variables were compared using Chi-square or Fisher’s exact tests. The “survcutpoint” function for the maximum rank statistic was applied to determine the optimal cutoff value of the m5C score. The survival curves for prognostic analysis of categorical variables were built using the Kaplan-Meier method, and the log-rank test was applied for statistical analysis. Spearman’s correlation coefficients and distance correlation analyses were used to assess the correlation between m5C regulators and scores with pathways related to the cancer immunity cycle or immune checkpoint blockade (ICB) response. The tumor immune dysfunction and exclusion (TIDE) analysis was performed to predict the clinical response to ICB. The survival and forestplot packages were used to perform univariate and multivariate Cox regression analyses. A time-dependent ROC analysis was performed using the timeROC package. R (version 4.1.2) was used to conduct all the statistical analyses, with P< 0.05 indicating statistical significance.




Results


Multiomics analysis of m5C regulators in CRC

We identified 18 m5C regulatory genes from the published literature, and their expression profiles in human CRC were analyzed using data from TCGA (Figure 1C; Supplementary Table 1). The expression levels of most of the m5C writers (NOP2, NSUN2, NSUN4, NSUN5, NSUN6, NSUN7, DNMT1, DNMT3A, and DNMT3B) and readers (YTHDF2, ALYREF, and YBX1) were significantly upregulated in the CRC tissues compared to those in the normal tissues, whereas the expression of the m5C eraser TET2 was downregulated in human CRC tissues (Figure 2A; Supplementary Table 1). Immunohistochemical data from the Human Protein Atlas (HPA) were consistent with the results of the transcriptomic analysis (Supplementary Figure 1). Figure 2B shows the locations of the m5C genes on their respective chromosomes. The imbalance in the expression of m5C writers, readers, and erasers may contribute to abnormal m5C modification patterns and therefore drive the oncogenesis and progression of CRC. To explore the prognostic value of the m5C regulators, we investigated the potential correlation between the gene expression levels and survival statuses of patients with CRC. The survival analysis were performed and revealed that most of the m5C genes were significantly correlated with CRC prognoses (Supplementary Figure 2). The principal component analysis (PCA) demonstrated that the expression of the 18 m5C regulators could be used to distinguish CRC samples from normal samples (Figure 2C). Moreover, the CNA analysis revealed prevalent CNV alterations in the 18 m5C genes, with most of the alterations being focused on the amplification of DNMT3B, whereas YTHDF2 showed the highest deletion frequency (Figure 2D). The close interaction between the m5C regulators revealed the potential value of the m5C clustering analysis (Figure 2E; Supplementary Table 2). Further investigation of the mutation patterns of the m5C genes indicated that 128 (20.78%) mutations among the CRC samples were present in the genes. TET1 showed the highest mutation frequency (6%), followed by TET3, DNMT1, DNMT3B, and YTHDF2 (Figure 2F). Taken together, these results demonstrate that m5C regulators may act as diagnostic biomarkers and prognostic predictors for CRC.




Figure 2 | Landscape of the genetic alterations and transcriptional variations in the m5C genes in CRC. (A) Boxplot comparison of the differential expression levels of m5C genes between tumor and normal tissues from the TCGA-CRC dataset. (B) Circos plot showing the chromosomal distribution of 18 m5C genes. (C) PCA of the expression profiles of 18 m5C regulators. (D) CNV frequencies of the 18 m5C regulators. Column height represents the change in frequency. (E) Spearman’s correlation analysis of the 18 m5C genes from the TCGA-CRC dataset. (F) Mutation frequencies of the 18 m5C genes from the TCGA-CRC cohort. *P < 0.05, ***P < 0.001, ns, no significant.





Identification of m5C modification clusters and biological function analysis

The prognostic value, interactions, and connections among the m5C regulators in the patients with CRC are presented in Figure 3A. Most of these genes were risk or favorable factors and were significantly correlated with the other m5C regulators. We found significant associations between the m5C regulators from the same category as well as cross-category associations. For example, the m5C writer TRDMT1 showed a significant positive association with the writer NSUN3 and a positive correlation with the m5C eraser TET2. Unsupervised clustering analysis based on the expression of the m5C genes showed that the fewest crossovers between the CRC samples occurred at a consensus matrix k value of 2 (Figure 3B; Supplementary Figures 3A–G). The results of the consensus clustering were visualized using an empirical cumulative distribution function (CDF) plot and delta area plot (Supplementary Figures 3H, I). The Kaplan–Meier analysis of the different subtypes indicated that m5C cluster B exhibited significantly poorer prognoses than cluster A (Figure 3C).




Figure 3 | Different m5C modification patterns showing distinct biological characteristics. (A) Correlations and correlation coefficients between the 18 m5C regulators in CRC. Each circle represents an individual gene, and the size of the circle represents the associated prognosis. Data were generated using the log-rank test (range: 0.1–0.0001). The green or purple dots represent favorable factors or risk factors for OS, respectively, and red or blue lines indicate positive or negative correlations between the regulators, respectively. (B) Consensus clustering matrix (k = 2). (C) Survival analysis of the patients in the clusters generated according to m5C scores from the TCGA dataset. (D) Heatmap generated using DEGs between m5C clusters A and B. (E) Heatmap showing the GSVA analysis, which showed the activation or inhibition of biological pathways according to the m5C clusters. (F) GO and (G) KEGG analyses of the DEGs between m5C clusters A and B. (H) Heatmap showing the immunotherapy-predicted pathways between m5C clusters A and B.



The DEGs between the two m5C clusters were identified to explore their potential biological functions and were visualized in the heatmap (Figure 3D; Supplementary Table 3). There were significant differences in the enrichment scores of many of the hallmark signatures between the two clusters, including DNA repair, MYC targets, and mTORC1 signaling (Figure 3E, Supplementary Table 4). The GO analysis of the DEGs revealed significant levels of enrichment in many immune biological processes, including the regulation of B-cell activation, complement activation, positive regulation of B-cell activation, humoral immune response mediated by circulating immunoglobulin, immunoglobulin receptor binding, B-cell receptor signaling pathway, antigen binding, and immunoglobulin complex (Figure 3F; Supplementary Table 5). The KEGG analysis revealed that the DEGs were significantly enriched in several common cancer-related pathways, such as CRC, the p53 signaling pathway, Hippo signaling pathway, oxidative phosphorylation, ErbB signaling pathway, nucleotide metabolism, and pyrimidine metabolism (Figure 3G; Supplementary Table 6). More importantly, several of the pathways that were positively correlated with the ICB response, such as the DNA replication and RNA degradation pathways, and the cell cycle were enriched in m5C cluster A, whereas the cytokine–cytokine receptor-interaction pathway that was negatively associated with the ICB response was significantly enriched in m5C cluster B (Figure 3H; Supplementary Tables 7, 8). These results suggest that m5C modifications play a critical role in tumor progression and the immune regulation of the TME.



Construction and validation of prognostic risk models based on m5C-related genes

To identify m5C cluster-related modules, co-expression network was built from the expression data from TCGA-CRC. Overall, the CRC samples with intact clinicopathological information were incorporated into the co-expression analysis (Figure 4A). When constructing the network, we chose the power of β = 5 as the soft threshold value (Supplementary Figure 4A). The WGCNA identified 23 different-colored modules (Figure 4B), with the black module showing the highest association with the m5C cluster (Figure 4C). Moreover, we found that the genes in the black module were significantly co-expressed (Supplementary Figure 4B; Supplementary Table 9).




Figure 4 | Construction of a prognostic signature using m5C-related genes. (A) Clustering dendrogram of the CRC samples and associated clinical traits. (B) Clustering dendrogram of the genes with dissimilarity on the basis of topological overlap with the corresponding module colors. (C) Heatmap of the association between module eigengenes and clinical phenotypes of CRC. (D) LASSO coefficient profiles of m5C-related genes. (E) Partial likelihood deviance for the LASSO coefficient profiles. (F) Survival analysis of the CRC patients stratified by the m5C risk score. (G) ROC curves for predicting the sensitivity and specificity of 1-, 3-, and 5-year OS based on the m5C score. (H) Alluvial diagram of subtype distributions in the groups with different m5C scores and survival outcomes. (I, J) Ranked dot and scatter plots showing the m5C score distribution and patient survival statuses. (K) Heatmap of the expression of eight m5C-related genes in the different m5C risk groups. (L, M) Univariate and multivariate Cox analyses of the m5C risk scores and clinical variables.



Given the essential role of m5C modification patterns in CRC tumorigenesis and the TME, we developed a prognostic signature for CRC and subsequently identified 66 prognostic m5C-related genes in the key module based on the univariate Cox regression analysis (Supplementary Table 10). Among them, 17 genes were screened using the LASSO Cox regression model and partial likelihood deviance (Figures 4D, E; Supplementary Table 11). We then conducted multivariable Cox regression analysis and identified eight m5C-related genes (Supplementary Figure 4C), which were used to build the risk model based on the Akaike Information Criterion. The prognostic risk score formula was as follows (Supplementary Table 12): risk score = DYNLT2B × (−0.19856) + TPX2 × (−0.33132) + DDIT3 × (0.24658) + RAB17-DT × (0.43442) + CHRNA5-AS × (−0.24444) + CA3 × (0.44152) + DPH5-DT × (−0.47732) + PRSS22-AS × (0.40269). Based on the median risk score, all the CRC patients were equally classified into high- and low-risk groups, with those in the high-risk group exhibiting evidently worse prognoses than those with low m5C score (Figure 4F). In addition, the predicted survival ROC curve confirmed the precise predictive capacity of the risk model, with area under the ROC curve (AUC) values of 0.638, 0.668, and 0.719 for 1-, 3-, and 5-year survival, respectively (Figure 4G). The risk scores of the patients in m5C cluster A were substantially lower than those of the patients in m5C cluster B (Supplementary Figure 4D), with the Sankey diagram indicating a relationship between the patients with CRC according to the m5C score and clusters (Figure 4H). The calculation and ranking of the risk score for each patient in ascending order resulted in a risk distribution plot that revealed significant decreases in survival time and increases in the mortality rate along with increasing risk scores (Figures 4I, J). As shown in the heatmap in Figure 4K, the expression levels of the eight m5C-related genes differed considerably between the various risk groups. Interestingly, most of the m5C regulators were significantly differentially expressed between the high- and low-risk groups (Supplementary Figure 4E; Supplementary Table 13). To assess whether this prognostic signature may be an independent predictor of CRC, univariate and multivariate Cox regression analyses were performed with the clinicopathological features (age, gender, AJCC stage, and TNM stage) and risk score. Compared with the other clinical features, the risk score was identified as an independent prognostic factor regardless of the univariate or multivariate analyses (Figures 4L, M). These results indicate that the m5C risk model may serve as a powerful prognostic indicator for patients with CRC.



Relationship between the m5C score and clinicopathological and immunological features

We determined the relationship between the m5C score and clinicopathological traits of patients with CRC. The clinicopathological features related to the m5C score in the two risk subgroups are presented in Figure 5A. The patients with CRC at AJCC stages III–IV were mostly in the high-risk subgroup, whereas those at stages I–II were mostly in the low-risk subgroup (Figure 5B). Similarly, the patients with CRC who were diagnosed with T3-4, N1-2, or M+ showed significantly higher enrichment levels in the high-risk group (Figures 5C–E). These results indicate that the high m5C-risk score may efficiently predict advanced AJCC stages, lymphatic and distant metastases, and poorer survival in patients with CRC.




Figure 5 | Relationship between the m5C score, clinical features, and immunological characteristics. (A) Heatmap of the distribution of clinical characteristics and corresponding m5C risk score in each CRC sample. (B–E) Heatmap and table indicating the distribution of the clinicopathological features between the high- and low-m5C-score groups. (F) Relationships between the m5C risk score and CSC index. (G) Spearman’s correlation analysis of the m5C scores and TMB. (H) TMB in the different m5C risk groups. (I, J) Relationships between the m5C risk score and MSI. *P < 0.05, ***P < 0.001.



As a stem cell disease, the occurrence of CRC has been found to potentially originate from CSCs generated by intestinal stem cells escaping regulation (31, 32). We found that the m5C score showed a linear inverse association with CSC index values, suggesting that CRC patients with a lower m5C score also exhibit less stem cell differentiation and distinct stem cell properties (Figure 5F). A recent study confirmed the TMB to be an effective biomarker for immunotherapy (33). Moreover, cancers with high TMB may present higher levels of neoantigens, making them targets of the host immune system (34). The results of the analysis from TCGA-CRC data indicated that patients in the low-risk group showed the significantly higher TMB than those in the high-risk group (Figure 5H), implying that patients with a low m5C risk score tend to obtain survival benefits from immunotherapy in clinical practice. Furthermore, the Spearman’s correlation analysis confirmed a negative correlation between the m5C score and TMB (Figure 5G); however, no significant difference was observed in the m5C score between the different MSI statuses or in the MSI types between the different risk groups (Figures 5I, J).



Correlation of the m5C score with immune phenotypes

We investigated the existence of immune heterogeneity in different m5C risk groups. The correlation analysis between the m5C score and enrichment scores of the therapeutic signatures demonstrated that the CRC patients with low m5C score may have benefited from radiotherapy (Figure 6A). Common immune effector genes, including IFNG, CTLA4, GZMA, SLAMF1, CYBB, FGL2, CXCL10, IL7R, NCR1, and CCL4, were all highly expressed in the low-risk subgroup (Figure 6B), and the TIICs, such as activated CD8 and CD4 T cells, effector memory CD8 T cells, type 2 T helper (Th) cells, eosinophils, γδT cells, and neutrophils, were significantly enriched in the low-risk subgroup (Supplementary Figure 5). Additionally, the m5C score was negatively associated with the activities of many critical anticancer immunity cycles, including CD8 T cell recruitment; B-cell recruitment; cancer antigen presentation, priming and activation; myeloid-derived suppressor cell recruitment; neutrophil recruitment; natural killer cell recruitment; and Th1 cell recruitment (Figure 6C; Supplementary Table 14).




Figure 6 | Correlation between the m5C risk score and immune phenotypes. (A) Heatmap showing the associations between the m5C score and the enrichment scores of several therapeutic signatures. (B) Differences in the expression levels of the immune effector genes between the two m5C score groups. (C) Spearman’s correlation analysis of the m5C score with the activities of cancer immunity cycles (left) and immune-related pathways analyzed by the ssGSEA (right). (D) Differences in the expression levels of immune checkpoint genes between the two m5C score groups. (E) Heatmap showing the significant differential expression of immunomodulators between the two risk groups. *P < 0.05, **P < 0.01, ***P < 0.001.



As expected, the m5C score was negatively correlated with ICB response-related pathways, including base-excision repair, antigen-processing machine signaling, the interferon-γ signature, spliceosome, RNA degradation, proteasome, and the p53 signaling pathway (Figure 6C). However, several common immune checkpoint genes, such as CD274 (PD-L1), CD86, CD80, CTLA4, IDO1, TIGIT, KIR3DL1, BTLA, CD28, HHLA2, CD40LG, CD244, CD48, TNFRSF9, and ICOS (Figure 6D), were highly expressed in the low-risk subgroup. Furthermore, the genes associated with immunomodulation, including CCL15, TAP2, CXCL11, CXCL10, CXCL9, B2M, KLRC1, CXCR6, IL2RA, CD80, ICOS, CXCL1, CXCL2, CXCL3, CXCL6, and CXCL8, were significantly upregulated in the low-risk subgroup (Figure 6E; Supplementary Table 15).

A higher TIDE prediction score has been confirmed to be associated with tumor escape from immune surveillance and worsened ICB response (35). In the present study, we found that patients with CRC in the low-risk subgroup exhibited a lower TIDE score than those in the high-risk subgroup (Figures 7A, B; Supplementary Table 16), whereas the patients with a high TIDE score had significantly worse prognoses than those with a low TIDE score (Figure 7C). These findings indicate that the low m5C score is associated with an inflammatory phenotype.




Figure 7 | Mutation profiles and drug-susceptibility analysis. (A) Correlations between the TIDE scores and clinicopathological features (survival status, TNM stage, gender, age, and m5C score subtypes). (B) Comparison of the TIDE score between the two m5C score subgroups. (C) Survival analysis of the CRC patients in the high- and low-TIDE-score groups. (D, E) Waterfall chart depicting the somatic mutation landscapes in the low- and high-m5C-score groups. (F) Relationship between the m5C score and chemotherapeutic sensitivity. (G) Association between the m5C score and targeted treatment sensitivity. ***P < 0.001.





Mutation profiles and drug-susceptibility analysis

Genomic mutations are considered to be the driving force of tumor malignancy. Therefore, we investigated and visualized the distribution of 20 somatic mutations between the two risk groups. The most frequently-mutated genes in the CRC population were APC and TP53 (Figures 7D, E). Notably, the mutation frequencies of the most genes (19/20) were higher in the low-m5C-score subgroup (Figures 7D, E). We then investigated whether the m5C score could provide accurate guidance for precision treatments by assessing the differences in anticancer drug sensitivity between the low- and high-risk subgroups for identifying potential CRC individualized therapy modalities. The IC50 values demonstrated that the CRC patients with low m5C score exhibited higher level of sensitivity to common chemotherapeutic drugs, such as methotrexate, mitomycin C, gemcitabine, cisplatin, camptothecin, and all-trans retinoic acid (Figure 7F), whereas those with high m5C score showed higher level of sensitivity to several targeted drugs, including saracatinib, bexarotene, bryostatin 1, imatinib, and linsitinib (Figure 7G). These results demonstrate that the m5C score may contribute to identifying effective antitumor agents and precision medicine therapies for CRC treatment.



Construction and performance validation of the m5C score-based nomogram

To provide clinicians with a quantitative method for predicting CRC prognoses, we constructed a nomogram that integrates the risk model and clinical variables, including gender, age, depth of tumor invasion (T stage), lymph node metastasis (N stage), and AJCC stage (Figure 8A). We subsequently validated the predictive accuracy of the nomogram by measuring the AUC and performing calibration. The ROC analysis revealed AUC values of 0.783, 0.801, and 0.795 for the prediction of the 1-, 3-, and 5-year overall survival (OS), respectively (Figure 8B), thus demonstrating the predictive ability of the nomogram. The calibration plot for the nomogram predicting 1-, 3-, and 5-year OS demonstrated good performance relative to that of an ideal model using TCGA sets (Figures 8C–E). Moreover, the DCA graphically demonstrated that the nomogram exhibited greater clinical usefulness and net benefit than the other models, indicating the powerful predictive ability for clinical application (Figure 8F). Based on the nomogram, we stratified the patients with CRC into high- or low-risk subgroups based on the median risk score. The survival analysis confirmed that the patients in the high-risk subgroup showed worse prognoses than those in the low-risk subgroup (Figure 8G). These results suggest that the m5C score-based nomogram represents a more accurate and reliable predictive model than conventional staging systems.




Figure 8 | Construction and validation of the m5C score-based nomogram. (A) Development of the nomogram for predicting the 1-, 3‐ or 5‐year OS of CRC patients. (B) ROC curves for the nomogram for predicting the 1-, 3-, and 5-year OS. (C–E) Calibration plots of the nomogram for predicting the 1-, 3- and 5-year OS. (F) DCA for the nomogram assessing clinical utility. (G) Kaplan–Meier survival curves on the basis of the m5C score calculated using the nomogram. *P < 0.05, **P < 0.01, ***P < 0.001.





External validation of the m5C score using GEO CRC and independent cohorts

We verified the reliability of the m5C-based risk model using a GEO CRC cohort and 40 patients with CRC from our center. Consistent with the analysis results of the dataset from TCGA, the patients with CRC from the GSE38832 cohort and those in the high-m5C-score group showed worse prognoses than those in the low-m5C-score group (Figure 9A). The correlation analysis of the therapeutic signatures indicated similar treatment prediction results in the TCGA-CRC cohort (Figure 9B). The m5C score, which was also consistent with the aforementioned results, was negatively associated with most of the ICB response-related pathways and activities of many anticancer immunity cycles (Figure 9C). Furthermore, TIICs, including activated CD8 and CD4 T cells, effector memory CD8 T cells, and type 17 Th cells, were enriched in the low-m5C-score subgroup, whereas the infiltrating levels of pro-tumor immune cells (plasmacytoid dendritic cells) were significantly higher in the high-m5C-score group (Supplementary Figure 6A). The patients with CRC at AJCC stages III–IV showed significantly higher levels of enrichment in the high-risk subgroup than in the low-risk subgroup (Supplementary Figure 6B).




Figure 9 | External validation of the m5C score using a GEO CRC dataset (GSE38832) and an independent CRC cohort. (A) Kaplan–Meier survival curve for patients with low and high m5C scores. (B) Heatmap of the associations between the m5C score and the enrichment scores of several therapeutic signatures in the GSE38832 dataset. (C) Spearman’s correlation analysis of the m5C score with activities of cancer immunity cycles (left) and immune-related pathways using the GSE38832 dataset. (D) Heatmap of the eight m5C-related risk gene profiles in 40 pairs of CRC tumor tissues and adjacent normal tissues. (E) Histogram showing the ratio of the AJCC, T, and N stages between the low- and high-risk groups. (F) Relationships between the m5C risk scores and clinicopathological characteristics of 40 CRC patients in our cohort. (G) The relative mRNA expression levels of several immune checkpoint genes were examined using RT-qPCR. (H, I) PD-L1 and CTLA4 expression was detected using immunofluorescence between the CRC patient samples in the low- (left) and high- (right) m5C-score groups. *P< 0.05, **P< 0.01,  ns, no significant.



To further confirm the clinical significance of the risk model, the expression levels of eight m5C-related risk genes were determined in 40 pairs of CRC tumor tissues and corresponding normal tissues. The RT-qPCR analysis demonstrated the expression profiles of these genes, which were visualized using a heatmap. Six m5C-related risk genes were differentially expressed between the cancer tissues and adjacent normal tissues (Figure 9D; Supplementary Table 17). The 40 patients with CRC were stratified into two subgroups according to the risk formula. The results indicated that the m5C risk score was significantly correlated with the AJCC stage, T stage, and N stage (Figure 9E). In addition, the patients in the T3-T4 or N1-N2 group showed higher risk scores than those in the T1-T2 or N0 group (Figure 9F). The patients in the low-risk group exhibited higher levels of immune checkpoint genes, including PD-1, PD-L1, CTLA4, TIGIT, and IDO1 (Figure 9G). Consistent with the analysis results of the data from TCGA, the immunofluorescence results revealed that the patients in the low-risk group showed a higher percentage positivity and cell counts of PD-L1 and CTLA4 than those in the high-risk group (Figures 9H, I). The results of the external validation further confirmed the effectiveness of using the m5C score as an indicator of CRC prognoses and the relative immune response.




Discussion

Cancer immunotherapy represents a newly-emerging and rapidly-growing field in precision medicine for clinical applications and research settings (36). Significant breakthroughs in cancer immunotherapy have allowed for a broader understanding of the influence of the tumors genetic landscapes on the treatment sensitivity of immunotherapy as a critical cornerstone for the implementation of individualized cancer therapies (37). Currently, several promising immunotherapies, such as those involving oncolytic viruses, immune checkpoint inhibitors (ICIs), chimeric antigen receptor T cells, and cancer vaccines, represent alternative strategies for treating various cancers (38). Compared with the standard treatments, immunotherapy utilizes and manipulates the immune system of the patient to attack malignant cells, thereby enabling innate and adaptive immune factors to identify cancer cells and potentially initiate tumor-specific immune responses (39–41). Cancer immunotherapy has achieved a remarkable level of efficacy, especially in treating solid organ tumors and hematological malignancies (42, 43). CRC, however, is complex and present a high degree of TME heterogeneity, which introduces major variability in immunotherapeutic efficacy. Thus, investigating TME heterogeneity may facilitate improved prognostic predictions and precise treatment modalities for CRC. In this study, we identified two distinct m5C modification patterns in CRC, each being associated with different biological functions, immunological properties, and prognoses. To the best of our knowledge, this study presents the most comprehensive analysis of m5C regulators. We further developed an m5C risk-score model to quantify patient m5C subtypes and independently validated this model using two CRC cohorts.

As the most predominant epigenetic modification, RNA methylation plays an indispensable biological role in malignant transformation and cancer progression. Accumulating evidences have confirmed the regulatory effects of m6A RNA modifications in the TME and innate immunity of CRC (44–46). Another well-studied RNA modification is m5C, which is a common epigenetic modification that is widely involved in cancer initiation and progression (19–24). SUMO-2/3-modified NSUN2 reportedly promotes the progression of gastric cancer by regulating m5C mRNA methylation (23). Chen et al. developed a single-nucleotide resolution map of m5C modifications in human urothelial carcinoma of the bladder and identified high m5C methylation levels in oncogenes (19). Mechanistically, the m5C methyltransferase NSUN2 and the m5C reader YBX1 drive cancer progression by targeting the m5C methylation site of the 3′ untranslated region of HDGF (19). In esophageal squamous cell carcinoma, NSUN2 and LIN28B enhance the stability of GRB2 mRNA in an m5C-dependent manner, thereby facilitating cancer emergence and progression (24). However, comprehensive analyses of m5C RNA modifications and the TME in CRC has not yet been reported.

In this study, high-throughput sequencing and the HPA revealed imbalances in the expression levels of m5C writers, readers, and erasers. Theoretically, these imbalances may lead to aberrant m5C modification patterns, ultimately resulting in CRC tumorigenesis and progression. Moreover, we found that these m5C genes were highly interconnected and formed a tight network of molecular interactions. The cluster analysis identified two independent m5C modification patterns based on 18 m5C regulators. The survival analysis revealed significantly worse prognoses for the patients with CRC in m5C cluster B compared to those in m5C cluster A. Additionally, we observed significantly-different TME features between the two clusters, with cluster-specific DEGs also being associated with immune-related biological functions and cancer-related pathways.

Conventional radiotherapy and chemotherapy have yielded limited therapeutic efficacy in patients with advanced CRC. To date, three ICIs have been approved by the US Food and Drug Administration for the treatment of CRC, including the monoclonal antibodies pembrolizumab and nivolumab, which target PD-1, and ipilimumab, which targets CTLA-4 (47). Regardless of the significant advances in immunotherapy for cancer, substantial prognostic heterogeneity remains prevalent in CRC, which highlights the crucial contribution of the TME to CRC-targeted immunotherapy. We, therefore, established a robust risk-score model on the basis of the m5C-related genes. The results indicated that the m5C score not only accurately predicted the prognoses of the patients with CRC but also served as an efficient predictor of their immunotherapeutic response. Importantly, the patients in the high- and low-m5C-score groups presented distinct clinicopathological features, mutation patterns, immune checkpoint characteristics, immune cell infiltration, and drug sensitivity. Clinical trials of several ICIs that target PD-L1, CTLA-4, TIGIT, IDO1, TIM-3, LAG-3, and VISTA are currently underway for advanced solid cancers, including CRC (48).

In the high-m5C-score group, the expression levels of common immune checkpoint genes, including PD-L1, IDO1, CTLA-4, and TIGIT, were significantly lower than those in the low-m5C-score group. Moreover, the m5C score was negatively associated with the activities of many anticancer immunity cycles and immunomodulators, such as CXCR6, CXCL9, CXCL10, and CXCL11, which are of crucial importance for the infiltration of anticancer TIICs. Increasing studies have assessed the contribution of cytotoxic cells, especially CD8 T cells (49); however, recent studies have revealed that CD4 T cells exert their antitumor effects by directly inhibiting the tumor cell cycle (50–52). Indeed, γδT cells are able to recognize and kill CRC cells in a major histocompatibility complex-unrestricted manner (53), thereby inhibiting tumor progression. In the present study, we found that infiltrating levels of CD4 T cells, CD8 T cells, and γδT cells were significantly higher in the low-m5C -score subgroup, indicating their positive functions in CRC. The results further demonstrated that the high m5C score reflected a non-inflammatory phenotype, whereas the low m5C score reflected an inflammatory phenotype.

Targeted and ICI therapies are recommended as the mainstream treatment options for advanced mCRC. Despite the progress in the selection of molecular- targeted drugs based on specific gene loci for the individualized treatment of CRC, immunotherapeutic benefits have only been observed in a small percentage of patients with hypermutated MSI-high/deficient mismatch repair (MSI-H/dMMR) CRC (~15% of patients with localized CRC and 4% of patients with mCRC) (54). Despite there being strong evidence that ICI therapies have yielded potent and persistent effects in patients with MSI-H/dMMR CRC, some patients still fail to respond to immunotherapy or respond only partially (55). The optimal treatment regimen for specific patients remains difficult to determine; therefore, identifying predictive biomarkers with a higher degree of accuracy is necessary. We found that the m5C score may represent a biomarker that is capable of guiding clinical decision-making and facilitating personalized precision treatments for patients with CRC.

Our results further indicated that the CRC patients with high m5C risk score were sensitive to molecular-targeted drugs, with the findings suggesting that the m5C score may be useful in guiding the personalization of treatments for patients. Additionally, we established a nomogram model by incorporating clinical risk factors and the m5C score, which further improved prognostic performance. These results strongly indicate that the application of the m5C risk score for the prognostic stratification of CRC has great potential and could lead to better understanding of the molecular mechanisms underlying CRC, which would further contribute to developing improved therapeutic strategies.

Despite its promising findings, this study, nonetheless, had several limitations. All of the transcriptomic and expression data of the patients with CRC were extracted and analyzed from public databases (TCGA and GEO). Furthermore, this study utilized a retrospective analysis, which can introduce inherent selection bias. To address this limitation in future studies, we will cooperate with the Hubei Provincial Human Genetic Resources Collection Center and Hubei Key Laboratory of Intestinal and Colorectal Diseases to establish our own large-sample dataset for further evaluation and validation of our proposed model. Additionally, although we highlighted the use of m5C modification patterns for predicting CRC TME statuses and prognoses, we did not identify the associated molecular mechanisms. In the future, we will evaluate the biological functions associated with m5C modifications and those related genes to the regulation of the immune microenvironment, as well as the precise mechanisms underlying the m5C regulators in CRC based on the results of this study.



Conclusions

In summary, these findings reveal the crucial role of m5C modification patterns in the regulation of the TME in CRC. The comprehensive analysis indicated that the novel m5C risk scores reflect the distinct prognostic signatures, clinicopathological characteristics, immunological phenotypes, and therapeutic opportunities that may promote the applications of precision medicine for patients with CRC.
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Background

Immune checkpoint inhibitors (ICIs) have been increasingly used for the treatment of advanced gastric cancer (AGC). However, the safety and the short-term outcomes of laparoscopic gastrectomy for patients with AGC after neoadjuvant immunotherapy (NAI) remain unknown.



Methods

We retrospectively analyzed the patients with AGC who underwent laparoscopic surgery after neoadjuvant therapy between 1 January 2019 and 31 October 2021. We further compared the differences in postoperative complications, overall response rate, adverse events, surgical parameters, and postoperative recovery between two cohorts: the NAI group (NAI plus chemotherapy) and the neoadjuvant chemotherapy (NAC) group. Multivariable regression analyses were used to determine the risk factors for the overall response rate.



Results

Overall, 80 patients were enrolled, of whom 30 cases were included in the NAI cohort and 50 were included in the NAC cohort. The overall rate of postoperative complications was 30.0% in both groups (p = 1.000). The overall response rate was 70.0% in the NAI cohort and 40% in the NAC cohort (p = 0.012). The adverse effects were found in 16 cases (53.3%) of the NAI cohort and 23 cases (46.0%) of the NAC cohort (p = 0.645). There was no statistical difference in intraoperative bleeding (50 ml vs. 50 ml, p = 0.983), operation time (320.9 min vs. 303.5 min, p = 0.382), dissected lymph node count (43.5 vs. 40.0, p = 0.364), first postoperative anal aerofluxus (3 days vs. 3 days, p = 0.091), first liquid diet (4 days vs. 5 days, p = 0.213), and postoperative length of stay in the hospital (8 days vs. 7 days, p = 0.508) between the two groups. NAI was estimated to be the independent protective factor [odds ratio (OR) 4.931, 95% confidence interval (CI) (1.385–17.559), p = 0.014] for odds to overall response rate, whereas vessel invasion was found to be the significant risk factor [OR 0.113, 95% CI (0.027–0.475), p = 0.003].



Conclusions

Laparoscopic surgery after NAI combined with chemotherapy is a safe therapeutic choice for AGC and may bring better short-term outcomes due to a higher overall response rate.
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Introduction

Gastric cancer is the fourth leading cause of cancer-related death worldwide, with over 1 million new cases annually (1). Surgical procedure still plays a pivotal role in the treatment of gastric cancer. Since the 21st century, there have been gradual changes in the therapeutic strategies of gastric cancer, and laparoscopic surgery has been broadly applied in this field. The CLASS-01 trial of the Chinese Laparoscopic Gastrointestinal Surgery Study group (2) confirmed that laparoscopic surgery is safe and feasible for local advanced gastric cancer (AGC), and patients treated by this surgery could achieve better recovery postoperatively. For AGC patients undergoing the surgical procedure after neoadjuvant chemotherapy (NAC), the Idea, Development, Exploration, Assessment, Long-term (IDEAL) study (3) showed that laparoscopic surgery is safer compared to open surgery, accompanied by better tolerance of those patients to postoperative adjuvant chemotherapy. Moreover, laparoscopic surgery would lead to less intraoperative bleeding, shorter postoperative length of stay in the hospital, as well as similar overall survival (OS) and 5-year disease-free survival (DFS) rates (4).

Nowadays, immune checkpoint inhibitors (ICIs) have been confirmed to be beneficial in inducing anti-tumor immune responses, which are recommended as an important therapeutic approach for AGC (5). An increasing number of trials have been implemented on the application of immunotherapy combined with conventional chemotherapy as a first-line adjuvant therapy for unresectable gastric or gastroesophageal junction cancer, with the achievement of positive results. According to these reports, when the combined positive score (CPS) is greater than 5 or 10, immunotherapy-based combined therapy can prolong the OS and DFS when compared with chemotherapy alone (6, 7). Therefore, one ICI that targets programmed death 1 (PD-1), nivolumab, as a new promising therapeutic choice for advanced-stage cancers, has been approved by the Food and Drug Administration (FDA) in 2021 for the first-line treatment of AGC or metastatic gastric cancer (8).

As for the ICIs that target PD-1/programmed death ligand 1 (PD-L1), there are still some adverse effects in the clinical practice, which occur generally in delayed periods and tend to be autoimmune specialty compared with chemotherapy. The top 5 adverse events are rash, colitis, pneumonia, elevated transaminases, and hypothyroidism (9). As evidenced by preliminary clinical trials, the incidence of adverse effects of single-agent ICIs is 15% to 90%, while the overall incidence of adverse effects of PD-1/PD-L1 inhibitors is approximately 30%, of which the incidence of grades 3/4 adverse effects is 9%, and that of serious adverse events requiring immunosuppressive therapy or discontinuation of immunotherapy ranges from 0.5% to 13% (10, 11). For unresectable gastric or gastroesophageal junction cancer, the incidence of grades 3/4 adverse effects of chemotherapy combined with immunotherapy ranges from 59% to 72%, and 2% of patients died due to severe adverse effects (6, 7).

At present, the clinical application of immunotherapy has aroused a certain degree of interest, while the safety and the short-term outcomes of laparoscopic surgery for AGS after neoadjuvant immunotherapy (NAI) remain unclear. It remains unknown whether the activation of the immune system aggravates inflammatory stress after NAI for AGC, and whether the superimposed adverse effects of NAI and conventional chemotherapy would delay the time of laparoscopic surgery and aggravate postoperative complications (e.g., gastrointestinal inflammation, edema, or post-operational pulmonary inflammation). These are a series of practical clinical questions that have not been well answered according to the current research. Therefore, the present study was carried out with the primary endpoint to determine the safety and short-term outcomes of laparoscopic surgery for AGC after NAI combined with chemotherapy compared with NAC alone.



Methods


Study design

The clinical data of enrolled patients were collected from Nanfang Hospital of Southern Medical University between 1 January 2019 and 31 October 2021. The inclusion criteria were as follows: (1) patients aged between 18 and 80 years; (2) patients with the Eastern Cooperative Oncology Group (ECOG) score of <2 points before treatment; (3) patients without serious cardiopulmonary disorders, other comorbidity, and serious coagulation dysfunction; (4) patients without previous treatment and with the diagnosis of gastric cancer by endoscopic and pathological methods; and (5) patients with preoperative clinical tumor stage of cT1-2N+M0, cT3-4bNanyM0. Furthermore, patients diagnosed with limited metastasis and who have the possibility of undergoing radical resection after neoadjuvant therapy (NAT), which was evaluated by multidiscipline discussion, were enrolled in our study. The exclusion criteria were as follows: patients who were suspected of or confirmed with multiple distant metastases and recurrent gastric cancer, combined with other malignant tumors, co-existing with other organ insufficiency, and those who were in the acute phase of certain infections. Patients who met the criteria for inclusion and exclusion were enrolled and assigned into two groups [NAI group (NAI plus chemotherapy) and NAC group] randomly to eliminate selection bias. Meanwhile, all patients received consecutive NAT before laparoscopic gastrectomy.



Outcome measurements

The cTNM staging and ypTNM staging were conducted following the 8th edition of the American Joint Committee on Cancer (AJCC) staging system (12). Contrast-enhanced computed tomography was used for pre-therapeutic clinical TNM staging assessment. Standard radical gastrectomy with D2 lymphadenectomy was performed for each patient by following the Japanese Gastric Cancer Association’s gastric cancer treatment guidelines (13). The primary outcomes were safety, which was defined as the rate of surgical complications within 1 month postoperatively and was evaluated by the Clavien–Dindo classification system (14), and short-term outcome, which was defined as postoperative overall response rate based on the Becker criteria (15). In addition, the secondary outcomes were adverse events [assessed according to the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE 4.0)], surgical parameters (intraoperative bleeding, operation time, and dissected lymph node count), and postoperative recovery (including first anal aerofluxus, first liquid diet, and postoperative length of stay in the hospital, which were assessed within 2 weeks postoperatively).



Therapeutic regimens of NAC and NAI

The patients in the NAC group received two to eight cycles (70.0% received three to four cycles) of consecutive treatment before surgery, and the main treatment regimens include CapeOX (oxaliplatin at 130 mg/m2 on day 1 and capecitabine at 1,000 mg/m2 twice daily from days 1 to 14, 21 days per cycle), FOLFOX (oxaliplatin at 85 mg/m2 on day 1, fluorouracil at 400 mg/m2 on day 1 and 2,400 mg/m2 on days 1 and 2 through continuous infusion, and leucovorin at 400 mg/m2 on day 1, 2 weeks per cycle), and FLOT (docetaxel at 50 mg/m2 on day 1, oxaliplatin at 85 mg/m2 on day 1, fluorouracil at 2,600 mg/m2 for 24 h through continuous infusion, and leucovorin at 200 mg/m2 on day 1, 21 days per cycle), while patients in the NAI cohort received combined treatment using ICIs based on NAC for two to eight treatment cycles (86.7% received three to four cycles) similarly. The ICIs included pembrolizumab (200 mg), toripalimab (3 mg/kg), carrelizumab (200 mg), and sintilimab (200 mg), all of which were administrated intravenously every 21 days as a cycle.



Laparoscopic surgery

All patients underwent laparoscopic surgery after NAT. Total or partial gastrectomy combined with D2 lymph node dissection was performed according to the tumor size and location. Specifically, laparoscopic distal gastrectomy was performed for tumors located at the antrum or the distal stomach body. Total gastrectomy was conducted when the tumors were located at the fundus, upper site of the stomach body, and gastroesophageal junction. All operations were completed by experienced chief surgeons. Reconstruction of the alimentary tract was accomplished by Billroth II gastroduodenostomy or Roux-en-Y esophagojejunostomy according to the types of gastrectomy and at the surgeon’s discretion. Combined resection was performed for those with local invasion or limited distant metastasis, and it was estimated that R0 resection could be achieved.



Statistical analysis

Two groups of populations for analysis were described. The intention-to-treat population was enrolled according to the inclusion and exclusion criteria and was used to calculate the baseline characteristics. The as-treated population excluded the patients who did not complete the full treatment of NAT and laparoscopic gastrectomy. The primary and secondary end points were calculated by the as-treated population.

The SPSS® version 26.0 (IBM, Armonk, New York, USA) software package was used for statistical analysis and data processing. The normality of the distribution of continuous variables of each group was assessed using the Kolmogorov–Smirnov test. The continuous variables were presented as mean (standard deviation, SD) if normally distributed, and as median (interquartile range, IQR) if not. Univariate analysis was conducted to evaluate the differences between all baseline parameters and short-term outcome indicators of each group. The continuous data of each group were evaluated using Student’s t-test or Mann–Whitney test for differences. Meanwhile, categorical data were analyzed by χ2 test or Fisher’s exact test if appropriate. Univariable and multivariable regression analyses were used to identify factors associated with the overall response rate. Odds ratio (OR) with a 95% confidence interval (CI) was shown. Variables in the univariable analysis were included in the multivariable model when p < 0.05. Two-tailed p < 0.05 was considered statistically significant.




Results


Patient enrollment and baseline clinical data

Overall, 88 patients were enrolled and allocated to the NAI group or NAC group (Figure 1). No statistically significant difference was found in baseline clinical parameters [sex, age, body mass index (BMI), cTNM stage, and ECOG] between the two cohorts (Table 1, all p > 0.05). Six patients had rapid tumor progression, one patient suffered from acute encephalorrhagia, and one patient declined surgery; all of these patients were excluded from this study. Finally, 80 patients met the criteria of the as-treated population (Supplementary Table 1). There were six cases and four cases with limited metastasis in the NAI group and NAC group, respectively. Intergroup analysis (NAI vs. NAC) revealed no statistical significance in terms of the performance status evaluated by ECOG scores (p = 0.800). The percentage of male and female patients in the NAI group was 64.5% and 35.5%, and it was 77.2% and 22.8% in the NAC group. The median (IQR) age of patients was 58 (45–67) years in the NAI cohort and 57 (50–65) years in the NAC cohort, respectively. The mean (SD) BMI in the NAI group and the NAC group was 23.5 (3.6) kg/m2 and 22.5 (2.7) kg/m2, respectively. Nine (30.0%) of 30 cases from the NAI cohort and 20 (40.0%) of 50 cases from the NAC cohort had tumors located in the upper stomach, while 40.0% were located in the lower site of each cohort.




Figure 1 | Study flow diagram. NAI, neoadjuvant immunotherapy; NAC, neoadjuvant chemotherapy.




Table 1 | Clinical data characteristics of intention-to-treat patients.





Adverse events

The two groups of patients received two to eight cycles of continuous NAT preoperatively. The proportion of patients in the NAI group who received three to four cycles of neoadjuvant therapy is 86.7%, and the proportion is 70.0% in the NAC group (data were not shown, p = 0.109). The main regimens in the NAC group included CapeOX, FOLFOX, and FLOT, and the NAI group applied combined therapy using PD-1 inhibitors (carelizumab, pembrolizumab, toripalizumab, and sintilimab) on the basis of the regimens adopted in the NAC group. There was no significant difference in adverse effects of the hematopoietic system and non-hematopoietic system in patients between the NAI group and the NAC group (Table 2, 53.3% vs. 46.0%, p = 0.645). Most of the adverse effects in the two groups were grades 1/2. The common adverse effects of the hematopoietic system were leukopenia, neutropenia, and anemia, while those of the non-hematopoietic system were nausea, vomiting, and elevated transaminases. In addition, 10.0% and 8.0% of the patients in NAI and NAC groups had grades 3/4 adverse effects, and the adverse events above grade 4 were not observed.


Table 2 | Adverse events.





Surgical and pathological results

There were no statistically significant differences in surgical indicators in the NAI and NAC cohorts (Table 3, all p > 0.05), while the median interval in the NAI group from the last NAT to laparoscopic gastrectomy was longer than that of the NAC cohort [36 (30–46) vs. 28 (23–36) days, p = 0.001]. However, no cases underwent unplanned procedures or dropped out of subsequent therapy owing to serious adverse effects in the NAI cohort. The rate of total gastrectomy was 53.3% in the NAI cohort and 56.0% in the NAC cohort. Roux-en-Y digestive tract reconstruction was mainly performed in both groups (93.3% vs. 74.0% for NAI and NAC groups). Five (16.7%) and six patients (12.0%) in each cohort underwent combined organ resection. The R0 resection rate of the two cohorts (NAI vs. NAC) was 86.7% and 84.0%. The mean (SD) operation time of the two cohorts was 320.9 (88.4) min and 303.5 (84.6) min (p = 0.382). There was no significant difference regarding median (IQR) intraoperative bleeding [50 (50–100) vs. 50 (50–100) ml, p = 0.983] and mean (SD) dissected lymph node count [43.5 (14.3) vs. 40.0 (17.8), p = 0.364] between the two cohorts. No patients converted to laparotomy in either group. There were no differences in vessel invasion (33.3% vs. 38.0%, p = 0.811) and nerve invasion (46.6% vs. 62.0%, p = 0.245) between the two cohorts. However, a significant difference was observed regarding tumor regression grade between the two cohorts (p < 0.001), and more patients in the NAI cohort obtained grade 1A (33.3% vs. 2.0%). The overall response rate in the NAI cohort was significantly higher than that of the NAC cohort (70.0% vs. 40.0%, p = 0.012).


Table 3 | Surgical, postoperative recovery, and pathological results of two groups.





Postoperative complications and recovery

There was no significant difference in the NAI cohort and NAC cohort regarding the overall complications within 30 days postoperatively (Table 4, p = 1.000). Meanwhile, no statistically significant difference was found in the overall postoperative complications in the NAI cohort of our study when compared with the regimen of using NAC plus laparoscopic gastrectomy and laparoscopic gastrectomy alone as previously reported (Supplementary Table 2, p = 0.083). Furthermore, there were seven cases (14.0%) and six cases (20.0%) that suffered from pulmonary infection postoperatively in the NAC group and NAI group, respectively. One patient (3.3%) in the NAI cohort suffered from full-thickness wound dehiscence, and five patients (10.0%) in the NAC cohort had anastomotic leakage and underwent reoperation, yet without statistical significance between the two cohorts (all p > 0.05). There was one patient in each group who suffered from anastomotic bleeding and underwent conservative treatment and recovered finally. Two cases (6.7%) in the NAI cohort and four cases (8.0%) in the NAC cohort suffered from grades 3/4 complications. No perioperative death was found in either group. There was no difference in the median (IQR) time of the first anal aerofluxus [3 (3–4) vs. 3 (3) days, p = 0.091] and the first liquid diet [4 (3–4) vs. 5 (3-6) days, p = 0.213] between the two groups. The median (IQR) postoperative length of stay in the hospital of the two groups was 8 (6–9) days and 7 (5–9) days (p = 0.508), respectively.


Table 4 | Postoperative complications.





Multivariable analyses to determine factors associated with the overall response rate

Univariable analyses of the overall response rate (partial response and complete response) in all patients revealed that multiple items were estimated to be the predictors (Table 5). NAI was founded to be the only protective factor [OR 4.931, 95% CI (1.385–17.559), p = 0.014] for odds to overall response rate, and vessel invasion as the independent risk factor [OR 0.113, 95% CI (0.027–0.475), p = 0.003] in the multivariable regression model. Univariable analyses of the overall response rate for the NAI group estimated three variables that were included in the multivariable model (Table 6). However, none of them were identified as predictors with statistically significant difference.


Table 5 | Multivariable regression analysis of risk factors for the overall response rate in all patients.




Table 6 | Multivariable regression analysis of risk factors for the overall response rate to the NAI group.






Discussion

At present, research on the application of immunotherapy in gastric cancer generally focuses on patients with unresectable, metastatic, or recurrent tumors (7, 16, 17). The safety and efficacy of adjuvant immunotherapy have been adequately evaluated for these patients. However, the safety and the short-term efficacy of NAI and subsequent laparoscopic gastrectomy for patients with AGC remain uncertain. Accordingly, the present study was conducted to clarify the above issues of NAI combined with chemotherapy versus conventional NAC for AGC followed by laparoscopic surgery, which was compared in the aspects of postoperative complications, pathological regression, adverse events, and postoperative recovery. Consequently, NAI combined with chemotherapy plus laparoscopic surgery is safe and can achieve better pathological responses for the treatment of patients with AGC.

The accumulated number of clinical trials has confirmed that NAC or perioperative chemotherapy can bring survival benefits to patients with AGC (18, 19). Nowadays, NAC represents a promising approach and has become a standard treatment for AGC worldwide (6, 20). Common NAC regimens for AGC include CapeOX, FOLFOX, SOX, SP, ECF/ECX, FLOT, and DOS, and corresponding incidences of adverse effects were 24%, 33%, 20.8%, 34.4%, 27%, 27%, and 15.2%, respectively. The choice of regimens has regional differences from Eastern to Western countries (21–25). However, it is still unknown whether NAI combined with conventional chemotherapy may increase the incidence of adverse effects, cause unplanned procedures, elevate postoperative complications, and delay postoperative recovery. In early breast cancer and advanced head and neck carcinoma, NAI combined with conventional chemotherapy produced no impact on the occurrence of severe grades 3/4 adverse events and unplanned surgery (26, 27). Our study found that the overall adverse effect rate of NAI combined with conventional chemotherapy and NAC alone was 53.3% and 46.0% for AGC, and the incidence of grades 3/4 adverse effects was 10.0% and 8.0%, respectively, neither of which showed significant statistical difference. In addition, there was no unplanned operation due to serious adverse events in the NAI cohort, although the median interval from the last treatment to surgery in the NAI cohort was longer than that in the NAC group. However, the treatment-related adverse event was similar in the two groups, and there were no patients who dropped out because of serious adverse effects. This delay might be partially attributed to safety concerns due to a poor understanding of ICIs as NAT before laparoscopic surgery. Findings in our study shared similarities to the research results in the breast cancer and head and neck carcinoma mentioned above.

Prior research (28) has documented that postoperative complications of gastric cancer can affect the completion of subsequent comprehensive anti-tumor therapy, suggesting that a higher complication rate would lead to the shortening of the long-term survival of patients. Three randomized controlled trials (RCTs) (2, 29, 30) from China, South Korea, and Japan confirmed the safety and superiority of laparoscopic surgery compared to open surgery for the treatment of AGC, accompanied by additional advantages of no increase in surgical complications and weakening of the prognosis. Significantly, this therapeutic approach can realize less intraoperative bleeding, lower postoperative pain score, shorter length of stay in the hospital, and faster postoperative recovery. Moreover, previous clinical studies have also verified the safety and effectiveness of laparoscopic surgery after NAC for AGC, with an incidence of postoperative complications ranging from 10% to 33.3% (3, 4, 24, 31, 32). Whether the advantage of laparoscopic surgery will continue in NAI combined with chemotherapy aroused tremendous concern. In the current study, the overall complication rate of the NAI group and NAC group was both 30.0%, and grades 3/4 complications in the two groups were two cases (6.7%) and four cases (8.0%), respectively. Similarly, no difference was observed in postoperative complications of NAI plus laparoscopic gastrectomy in our study compared to that of NAC plus laparoscopic gastrectomy and laparoscopic gastrectomy alone reported by previous trials (2, 3). The observed anastomotic leakage in the NAI cohort was lower than the NAC cohort, yet without statistical difference. In these patients, the tumor was located at the proximal stomach and all of them underwent total gastrectomy. Local tissue edema caused by incomplete stricture of the cardia and the high site of anastomosis might be the risk factors. In particular, all of these patients were insensitive to NAC. Moreover, the incidence of postoperative pulmonary infection in the two cohorts was higher (20.0% for NAI and 14.0% for NAC) than that reported previously (3). It may be related to the higher proportion of total gastrectomy in our study (53.3% for NAI and 56.0% for NAC) and regular chest x-ray examination 2 days postoperatively, which may facilitate the detection of mild or asymptomatic pneumonia. It is also correlated with the tendency of pulmonary inflammatory injury after immunotherapy (9), which requires further research to support these speculations. No patients in the two groups converted to laparotomy, and no difference was observed in intraoperative bleeding, operation time, and postoperative gastrointestinal function recovery.

The reported objective response rate of single-agent immunotherapy is about 15% regardless of CPS; and for AGC or gastroesophageal junction cancer, immunotherapy combined with chemotherapy or targeted therapy can significantly improve the objective response rate from 24% to 65.8%, without any increase in the incidence of adverse effects, providing a potential direction of combined treatment of immunotherapy and other regimens for the treatment of AGC (5, 16, 33). In our study, the complete or partial response rate of the NAI group was significantly higher than that in the NAC group, leading to a larger proportion of ypT0 populations. The multivariable model estimated that NAI was as an independent protective factor for the overall response rate. These results may suggest that laparoscopic surgery for AGC after NAI combined with chemotherapy could achieve a better short-term outcome. In our univariable and multivariable analyses for odds to the overall response rate of the NAI group, preoperative CPS and the status of immune cells such as white blood cells and granulocytes failed to be estimated as significant predictors. These may indicate that patients with AGC would also benefit from preoperative immunotherapy when the CPS is negative or suffer from decreased peripheral blood cells. Moreover, the data in our study indicated that patients who are Epstein–Barr virus-encoded RNA-1 (EBER)-positive (10.0%) and with microsatellite instability-high (MSI-H) (10.0%) in the NAI group all obtained partial response or complete response, which shows that a positive relationship of the EBER and MSI status correlates with the efficacy of immunotherapy. Further large-scale trial is needed to confirm the results.

However, our study has the following three main limitations. Firstly, we failed to calculate the sample size of the two groups due to insufficient data on complications after NAI of AGC plus laparoscopic surgery. The application of NAI for the treatment of AGC is a new effort and is exploratory. Our study finds that NAI combined with chemotherapy plus laparoscopic surgery for AGC can obtain a better overall response rate, which might guide later research hypotheses or clinical practice. Secondly, the inconsistencies in chemotherapy regimens may lead to different results within the group. Generally, 5-fluorouracil-based chemotherapy regimens, such as CapeOX, FOLFOX, and FLOT, are considered effective treatments for AGC. The proportion of the CapeOX regimen in the NAC group is lower than that in the NAI group (24.0% vs. 66.7%). This is partially caused by patients in the NAC group having a larger proportion of upper tumor location and incomplete esophageal obstruction. These patients were evaluated by multidiscipline discussion and recommended to undergo intravenous chemotherapy. Thirdly, it was a single-center study, and laparoscopic surgeries reported in our study were conducted by experienced chief surgeons. It may not fully reflect the generality of the experience and skills of surgeons at all levels.



Conclusion

NAI combined with chemotherapy plus laparoscopic surgery may be a safe therapeutic option for AGC. The NAI regimen exhibits superiority in achieving a better overall response rate, yet without differences in postoperative complications, adverse effects, and postoperative recovery when compared with the NAC regimen. Moreover, findings in our study remain to be confirmed through further multicenter, large-scale, and phase III RCTs.
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Background

In the regulation of tumor-related immunity, dendritic cells (DCs) are crucial sentinel cells; they are powerful to present antigens and initiate immune responses. Therefore, we concentrated on investigating the DC-related gene profile, prognosis, and gene mutations in bladder urothelial carcinoma (BLCA) patients to identify sensitivity to immunotherapy of patients.



Methods

According to DC infiltration, BLCA patients were divided into two subgroups, and differentially expressed genes (DEGs) were obtained. Patients were classified by unsupervised clustering into new subgroups. The least absolute shrinkage and selection operator (LASSO) regression analysis and Cox regression were used to develop a DC-related risk model. CIBERSORT, xCell, and GSEA were used to infer immune cells’ relative abundance separately and enriched immune pathways.



Results

A total of 29 prognosis-related DEGs were identified from the unsupervised cluster. Among them, 22 genes were selected for constructing the DC-related risk model. The dendritic cell-related risk score (DCRS) can accurately distinguish patients with different sensitive responses to immunotherapy and overall survival outcomes. Furthermore, patients with ryanodine receptor 2 (RYR2) mutation had a better prognosis.



Conclusions

The DCRS played an essential part in immunity pathway and formation of TME diversity. Our study indicated that RYR2 mutation combined with DCRS is useful for predicting the prognosis and discovering appropriate patients for immunotherapy.
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Introduction

Bladder urothelial carcinoma (BLCA) is one of the most common cancer types of the genitourinary tract, with an increased incidence in younger age (1). The latest statistics reveal that the incidence and mortality rates of BLCA are 80.5/100,000 and 32.9/100,000, respectively (2). Surgical resection is the main therapy for BLCA treatment, but the patients after surgery still have a poor prognosis with recurrence, including biochemical recurrence (BCR) and distant metastases. In recent years, immunotherapy such as PD-1/PD-L1 and CTLA4 immune checkpoint inhibitors (ICIs) has been applied in clinic, which brings hope for cancer patients (3). A sound performance of anti-tumor activity was manifested by the ICIs in the therapy of most solid tumors, such as melanoma, kidney cancer, lung cancer, and liver cancer (4). However, the low effectiveness of immunotherapy is a challenge in the clinical treatment of bladder cancer. A series of biomarkers have been confirmed to predict the effectiveness of ICI treatment, including the expression level of TMB and PD-L1, neoantigens, intestinal flora, and immune cell status. In fact, the immune status of cancer predicts the effect of immunotherapy. Therefore, we constructed an immune signature to predict the response to immunotherapy in BLCA patients.

The mechanisms of immunotherapy mainly included restarting and maintaining the immune cycle and restoring the anti-tumor immune response in the body (5). The tumor microenvironments consist of malignant tumor cells, fibroblasts, glial cells, and especially immune cells that were a key part in influencing response to immunotherapy. For example, dendritic cells (DCs) activate the release of damage-associated molecular patterns (DAMPs) by delivering, processing, and presenting tumor-associated antigens (TAAs) on the DC surface. Induced by DAMP release, chemokines, cytokines, and interferons (IFNs) are driven to stimulate immune response, which play a crucial role in promoting this process of immunogenic cell death (ICD) (6, 7). DCs are one of the most important immune modulatory cells (8) and a sentinel of the immune system with a unique ability to activate T lymphocytes (9). DCs can drive the activation and development of immunity or immune tolerance. However, the specific functions of these DCs in immune tolerance or development of immunity are unclear (10, 11).

Tumor mutation burden (TMB) was recognized as a potential biomarker related to response to immunotherapy (12). In fact, it has been proven that TMB is more significantly correlated with response rate than PD-L1 expression in immunohistochemistry (13). Tumor protein P53 (TP53) and ataxia telangiectasia and Rad3-related (ATR) mutations related to genomic instability can result in an elevated mutation rate in the tumor genome (14, 15). In addition, tumor-specific neoantigens caused by somatic mutations can also be used as a biomarker named tumor neoantigen burden (TNB) to predict the efficiency of immunotherapy (16). However, only a few tumor mutation burden will generate immunogenic neoantigens and only a few mutant peptides on cell surface are capable of eliciting an immune response (17–19). Consequently, this research for new TMB may further help predict the efficacy of immunotherapy.

In this article, the degree of DC infiltration was evaluated. Based on TCGA-BLCA and GEO data containing the expression files and clinical information of BLCA samples, we constructed a dendritic cell-related risk score (DCRS) model through Cox regression and least absolute shrinkage and selection operator (LASSO) regression analysis. This gene signature has the potential to predict immunotherapy susceptibility in BLCA patients. Furthermore, we explored the alterations in TMB among patients with varying DCRS and combined TMB and DCRS to choose suitable patients for ICI treatment more accurately.



Method


DC data acquisition

In this study, a database of 404 patients with BLCA RNA-seq (level 3) data with clinical data were obtained from The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov); additionally, GSE32894 (n = 224), which was used to verify the DC-related risk model, was collected from the GEO database (http://www.ncbi.nlm.nih.gov.geo). The mutation data consisted of 404 BLCA patients obtained from TCGA, and the mutation information of two DCRS group subsets was analyzed by the maftools package (20). All data were freely available from the online website.



Immune cell infiltration

xCell and CIBERSORT were used to calculate the abundance of infiltrating immune cells in TME. CIBERSORT was based on support vector regression and achieved accurate deconvolution of complex cellular mixtures (21). xCell can calculate the degree of infiltration of 64 immune cells using a set of 10,808 genes (22). Compared with the CIBERSORT algorithm, the activation state of DC cells in the tumor immune microenvironment can be further accurately distinguished.



Development and verification of a DC-related signature

To better evaluate the immune pathway and immune infiltration pattern of BLCA, a DCRS was established using immune function clusters and different immune infiltration. The constructional procedure of DCRS was as follows: According to the median degree of DC infiltration calculated by xCell, BLCA patients were divided into the DC infiltration degree high (DCH) group and the DC infiltration degree low (DCL) group. The limma package was used to identify differentially expressed genes (DEGs) from the DCL group and the DCH group with false discovery rate (FDR)< 0.05 and logFoldChange > 2. Univariate Cox regression was used to analyze the prognosis of DEGs, with the limiting condition of p-value< 0.01. The BLCA patients were divided into two new subgroups, Cluster 1 and Cluster 2, using the ConsensusClusterPlus package. DEGs from Cluster 1 and Cluster 2 were identified using the limma package with |logFC| > 1 and FDR< 0.05. Then, univariate Cox regression was used to identify the prognosis-related DEGs, with the limiting condition of p-value< 0.01. Afterward, the expression level of each gene and the corresponding coefficient were assembled using LASSO regression analysis to calculate the DCRS, and the formula was as follows:

	

where CoefDEGs represents the LASSO coefficients and ExpDEGs represents the expression levels. All BLCA samples were divided into DC-related risk score high (DCRS > median value, DCRSH) and DC-related risk score low (DCRS< median value, DCRSL) groups.



Predicting the response to immunotherapy

The immunophenoscore (IPS) data were collected from The Cancer Immunome Atlas. The quantitative score named IPS can represent tumor immunogenicity and was scored from 0 to 10 points. The response to ICI treatment that was positively correlated with tumor immunogenicity can also be predicted by IPS (23).



Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was used to identify obvious signaling pathways between the DCRSL group and the DCRSH group; the C5 GO ALL gene set collection was downloaded from the molecular signatures database (MSigDB, v7.5.1). Additionally, gene set variation analysis (GSVA) was used to identify obvious signaling pathways between the BLCA DCH group and the DCL group.



Statistical analysis

All statistics were accomplished using the R software (version 4.2.1). Time‐dependent receiver operating characteristic (ROC) curve was built using the survival package. LASSO regression analysis was performed using the glmnet package. Univariate Cox regression analysis was calculated using the Survival package. Kaplan–Meier curves of overall survival (OS) were calculated between the two groups using the Survival package and the SurvMiner package. RNA-seq and mutation data were processed by limma and maftools packages. If there are no additional instructions, a p-value< 0.05 was considered to be statistically significant for all.




Results


Identification of DC-related differentially expressed genes associated with BLCA prognosis

The immune infiltration score was calculated for each BLCA sample in the TCGA dataset through xCell methodology. Then, the median enrichment score of DC cell infiltration was determined to divide BLCA samples into two groups (DCL and DCH) (Figure 1A). Additionally, the ESTIMATE package was used to estimate immune score, estimate score, tumor purity, and stromal score. We found that immune score, estimate score, and stromal score and the extent of infiltrating immune cells were obviously higher in the DCH group than in the DCL group, and tumor purity was obviously lower (Supplementary Figures S1A–D). In addition, samples in the DCH group correspond to favorable survival outcome (Figure 1B). The result of difference analysis of transcription data showed that 396 DEGs were upregulated (n = 339) or downregulated (n = 57) in BLCA (Figure 1C). Moreover, using univariate Cox regression analysis with p< 0.01 as criteria, a total of 13 DEGs were obtained as the prognostic factors (Figure 1D). Based on the above results, we speculated that the 13 DEGs are significant factors associated with prognosis and DC. These DEGs were subjected to BLCA patients divided into two new subgroups using the ConsensusClusterPlus package: Cluster 2 (n  = 294) and Cluster 1 (n = 110) (Supplementary Figures S2A–L). Survival analysis showed that the prognosis of Cluster 1 was significantly better than that of Cluster 2 (Figure 2A). Based on GSVA analysis, we found that DC-associated immune signaling pathways were enriched in Cluster 1, such as the positive regulation of innate immune response, the T-cell receptor signaling pathway, the NK T-cell activation, and the immunological memory process (Figure 2D). DCs are essential mediators of the innate immune system (24) and sentinel cells specialized in controlling T-cell function (25), suggesting that the unsupervised cluster contributed to distinct DC-related immune signaling pathways.




Figure 1 | Investigation of the DC infiltration-associated expression change in bladder urothelial carcinoma (BLCA). (A) Heatmap showing the degree of infiltration of 64 immune cell types in the TCGA-BLCA cohort (n = 404) using xCell based on a set of 10,808 genes. (B) Survival analysis indicated that patients assigned to the two clusters [DC High (n = 202) and DC Low (n = 202)] had significantly different survival outcomes in the TCGA-BLCA cohort. (C) Volcano map shows 396 differentially expressed genes between DC High and DC Low. Green dots indicate upregulation and yellow dots indicate downregulation. (D) Univariate Cox regression analysis was used to screen genes associated with clinical prognosis with a p-value< 0.01 in the TCGA-BLCA cohort.






Figure 2 | Construction of a DC-related risk model to predict BLCA prognosis. (A) Survival analysis of Cluster 1 (n = 110) and Cluster 2 (n = 294). (B) Volcano map shows 429 genes differentially expressed between Cluster 1 and Cluster 2. Green dots indicate upregulation and yellow dots indicate downregulation. (C) Univariate Cox regression analysis was used to screen genes associated with clinical prognosis with a p-value< 0.01 in the TCGA-BLCA cohort. (D) Gene set variation analysis (GSVA) enrichment analysis of the activation states of biological pathways between Cluster 1 (n = 110) and Cluster 2 (n = 294). These biological processes are shown in the heatmap. Yellow represents the activated pathway, and green represents the inhibited pathway.





Construction and validation of a DC-related risk model to predict BLCA prognosis

To better explore the potential mechanism for the difference of immune status between the two clusters, we compared the expression profiles of two clusters. A total of 429 DC-related DEGs (164 upregulated genes and 265 downregulated genes) were under the conditions of |logFC| > 1 and FDR< 0.05 (Figure 2B); subsequently, a list of 29 DC-related DEGs was identified as prognostic factors affecting BLCA prognosis (p< 0.01) using univariate Cox regression (Figure 2C). A comprehensive and effective DC-related risk model was established to predict prognosis and sensitivity to immunotherapy; the LASSO regression analysis was performed for the 29 DC-related DEGs. When the number of variables (prognostic DEGs) was 22, the likelihood of deviation was minimized (Supplementary Figure S1E). The regression coefficients of the 22 variables were calculated by the LASSO model (Supplementary Figure S1F). Finally, a 22 DC-related signature was conducted, composed of KCNE4, EPHA3, IL12A, RBP7, UBD, KRTDAP, IGFL2, DMKN, NLRP12, C11orf16, MFAP5, COMP, FNDC1, APOL1, DPT, CLEC4G, SUSD2, RTP4, CBLN4, NXPH3, LRP1B, and MMP9. Results showed that this DCRS was significantly higher in patients with advanced TNM stage (Supplementary Figure S1G). We defined the DCRSH and DCRSL according to the median value of DCRS. Samples in DCRSH correspond to favorable overall survival (Figure 3A). The ROC curves of the DC-related risk model showed a favorable performance of predicting prognosis. The AUC values of 1 year, 3 years, and 5 years were 0.705, 0.667, and 0.685, respectively, all of which were higher than 0.6 (Figure 3B). In addition, we utilized the SURVRM2 package to assess the restricted mean survival time (RMS time, the mean survival time of patients at a specific time t or the life expectancy of t year) for BLCA patients during the follow-up period (Figure 3C). The RMS time was 3.59 years for the DCRSH group and 6.11 years for the DCRSL group, which further illustrated the favorable prognosis of the DCRSL group.




Figure 3 | DC-related risk score was constructed in the training set and verified in the validation set. (A) Survival analysis of the DCRSL group (n = 202) and the DCRSH group (n = 202) in the training set. In these two groups, the Kaplan–Meier curve with a log-rank p-value< 0.001 showed significant survival differences. (B) Time-dependent receiver operating characteristic (ROC) curve analysis of the DCRS in the training set. The 1-, 3-, and 5-year area under curves (AUCs) were 0.705, 0.667, and 0.685, respectively. (C) The restricted mean survival (RMS) curve for the DCRS was plotted in the training set. The green part represents the RMS time, and the yellow part represents the restricted mean time lost (RMTL). (D, H) The relative probabilities of anti-cytotoxic T lymphocyte-associated protein 4 (CTLA4) and anti-programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) treatment between the DCRSL and DCRSH groups in the training set. The asterisks indicate statistical p-values (***<0.001). (E) Survival analysis of the DCRSL (n =43) group and the DCRSH (n = 181) group in the validation set. In these two groups, the Kaplan–Meier curve with a log-rank p-value of 0.039 showed significant survival differences. (F) Time-dependent ROC curve analysis of the immune score in the validation set. The 1-, 3-, and 5-year AUCs were 0.650, 0.584, and 0.540, respectively. (G) The RMS curve for immune scores was plotted in the validation set. The green part represents the RMS time, and the yellow part represents the restricted mean time lost (RMTL).



The DC-related risk model was further verified in the validation dataset (GSE32894). A total of 224 BLCA samples in GSE32894 were separated into the DCRSH group (n = 181) and the DCRSL group (n = 43) by using the same cutoff standard. An analogous outcome was shown in the validation cohort in that the adverse prognosis corresponded to DCRSH group (Figure 3E). The AUC values for 1-year, 3-year, and 5-year OS rates were 0.650, 0.584, and 0.540, respectively (Figure 3F). The RMS time of the DCRSH and DCRSL groups was 3.41 years and 4.33 years, respectively (Figure 3G). The above findings confirmed that the DCRSL group had a better prognosis than the DCRSH group, which supported the idea that the DC-related risk model had the potential to predict the overall survival of BLCA patients.



Immune scores and response to ICI treatment in BLCA

Due to the absence of data associated with immunotherapy response in the TCGA database, we extracted two important IPS data to replace patient’s response to immunotherapy from the TCIA database (IPS-PD-1/PD-L1/PD-L2_POS and IPS-CTLA4_POS). The relative probability of responding to anti-CTLA4 and anti-PD-1/PD-L1 treatment was much higher in the DCRSL group (Figures 3D, H). These consequences demonstrated that patients in DCRSL had a higher potential to benefit from immunotherapy.



Genomic features, molecular functions, and mechanisms of DCRSH and DCRSL groups

As the above findings demonstrated the accuracy of the DC-related risk model, we tried to explore the biological difference between two groups. To reveal the specific biological processes associated with immunity, we performed GSEA GO analysis to calculate the enrichment score of pathways and biological terms in the DCRSH and DCRSL groups (Figure 4A). The results showed that the immune pathway in the DCRSL group was associated with the T-cell-mediated cytotoxicity pathway, MHC protein complex, and regulation of CD8+ T-cell activation. Therefore, we speculated that DCRS could distinguish the DC-associated immune status and predict the prognosis.




Figure 4 | Gene set enrichment analysis (GSEA), immune cell infiltration, and cytokine expression in the DCRSL and DCRSH groups. (A) Gene ontology (GO) enrichment analysis of the activation states of immune-related pathways in distinct DC-related risk score groups. (B) The relationship between the abundance ratios of different tumor immune-infiltrating cells. (C) The horizontal axis and vertical axis represent tumor-infiltrating immune cells and relative percentages, respectively. Yellow and green represent the DCRSL group and the DCRSH group. (D) The expression of cytokines associated with DC between the DCRSL group and the DCRSH group. The upper and lower ends of the box indicate the interquartile range of values. The line in the box indicates the median value, and the black dot indicates the outlier. The asterisks indicate statistical p-values (*<0.05, **<0.01, ***<0.001).





Immune cell infiltration in different DC-related risk groups

The CIBERSORT algorithm was able to calculate the abundance of infiltrating immune cells and has been widely applied in the preceding studies related to the tumor immune microenvironment. Therefore, we used the CIBERSORT algorithm to assess the infiltration levels of 22 immune cells. The results with p-values less than 0.05 are shown in Supplementary Figure S1H. In the DCRSL group, the correlation among immune cells was higher (Figure 4B). M1 macrophages had a significantly negative correlation with DCs activated in both the DCRSH and DCRSL groups. Furthermore, in the DCRSL group, activated NK cells had the highest positive correlation with activated DCs. The infiltration levels of immune cells between the DCRSH and DCRSL groups are shown in Figure 4C. The estimated proportion of naive B cells (p< 0.001) and M0 (p< 0.001) and M2 (p< 0.001) macrophages was significantly higher in the DCRSH group, while CD8+ T cells (p< 0.001), activated CD4+ memory T cells (p = 0.012), follicular helper T cells (p< 0.001), activated mast cells (p = 0.005), resting DCs (p< 0.001), activated DC (p< 0.001), and monocytes (p = 0.014) were significantly enriched in the DCRSL group.

The above results showed that the immune infiltration level in the DCRSL group was significantly higher than that in the DCRSH group. IFN-γ is a cytokine that promotes the differentiation of DCs (26). We observed an elevated expression level of IFN-γ in the DCRSL group. It is well known that DCs consist of two states, resting state and activated state. In the resting state, DCs express low levels of MHC molecules and B7 molecules on the surface, which is not beneficial when presenting antigens to T cells. In contrast, activated DCs highly express MHC-II/I-like molecules and co-stimulatory molecules (such as B7 and ICAM) (27). Although activated DCs have a weak ability to uptake and process antigens, they are powerful to present antigens and initiate immune responses (28). Importantly, activated DCs can regulate cellular differentiation and activation of T cells and especially promote the recruitment and activation of CD8+ T cells that were associated with the immunotherapy response. We compared the expression of MHC molecules and cytokines secreted from DCs in two groups. We found high expression of MHC molecules in the DCRSL group. The expression of CD40 and CD30L, which mediate central tolerance to Treg cells, was also increased in the DCRSL group. These findings may contribute to explain the better prognosis of the DCRSL group (Figure 4D).



Comparison of somatic mutations in the DCRSH and DCRSL groups

Subsequently, we analyzed somatic mutations to further explore genetic differences between the DCRSH and DCRSL groups. Waterfall plots showed the highly mutated genes in the DCRSH (n = 200) and DCRSL groups (n = 202), where missense mutation was the most common mutation type. Overall, the DCRSH group exhibited a higher number of mutations than the DCRSL group. The top five genes with mutation frequencies were TTN, TP53, MUC16, ARID1A, and KMT2D in the DCRSH group, and in the DCRSL group, the top five genes were TTN, TP53, MUC16, PIK3CA, and RYR2. The most common mutation type was missense mutation in both groups (Figures 5A, B). The mutation frequency of the TP53 gene was higher in the DCRSH group, while the mutation frequencies of PIK3CA, RYR2, and TTN genes were lower than those of the DCRSL group. In the two cohorts, SYNE1-TP53 and SYNE1-MACF1 showed significant co-occurrence (Figure 5C). This phenomenon suggested that they may have synergistic effects. Additionally, we detected the DEGs with p-value< 0.05 using Fisher’s test (Figure 5D). Furthermore, we explored the impact of these genes with high mutation frequencies on prognosis in two cohorts. As a result, only the RYR2 mutation had a significant effect on BLCA prognosis in the entire cohort (Figure 6A). We further compared the association between RYR2 mutation and prognosis in the DCRSH and DCRSL groups and found that RYR2 significantly affected the prognosis only in the DCRSH group (Figures 6B, C).




Figure 5 | Landscape of somatic mutations between the DCRSL and DCRSH groups. (A, B) Waterfall plot of tumor somatic mutations established by those   with low DC-related risk scores (n = 202) (A) and high DC-related risk scores (n = 200) (B). (C) The heatmap shows the mutual co-occurring and exclusive mutations of the top 20 frequently mutated genes. The color or symbol of each cell represents the statistical significance of the exclusivity or co-occurrence of each pair of genes, respectively. Green represents mutual co-occurrence, and brown represents exclusive mutation. Asterisks indicate statistical p-values (*<0.05). (D) Forest plot of statistically significant mutant genes between the groups. Asterisks indicate statistical p-values (*<0.05, **<0.01, ***<0.001). (E) The lollipop plot illustrates the differential distribution of variants for ryanodine receptor 2 (RYR2).






Figure 6 | Changes between the RYR2 mutation group and the RYR2 wild group. (A-C) Kaplan–Meier curves show the independent relevance between the overall survival time and RYR2 mutation in the DCRSL group (n = 202), DCRSH group (n = 200), and all cohorts (n = 402). (D) Effect of RYR2 mutation on tumor immune cell infiltrating in the DCRSL group (n = 202), DCRSH group (n = 200), and whole samples (n = 402) (p-value, *< 0.05, **< 0.01, ns > 0.05). (E) Gene set enrichment analysis comparing the RYR2 phenotype between the mutation group and the wild-type group.





Research of the RYR2 mutation pattern in the DCRS cohort

RYR2 encodes Ca2+ release channels in sarcoplasmic reticulum, which plays a central role in cardiac excitation–contraction coupling (29). Traditionally, RYR2 mutations were commonly considered to be associated with heart failure and arrhythmias. However, current studies had revealed a correlation of RYR2 mutation with immune cells and tumor progression. The complex communication mechanism between RYR2 and immune cells or immune-related molecules has been identified (30). In addition, it has been proven that RYR2 was associated with malignant progression of triple-negative breast cancer. In the DCRSH group, the mutational frequency of RYR2 was less (10%) than that of the DCRSL group (21%). Additionally, by calculating immune cell infiltration among the DCRSH group, the whole sample group, and the DCRSL group, we found that RYR2 mutation increased CD8+ T cells’ infiltration in the whole sample group and the DCRSH group (Figure 6D). Coincidentally, survival analysis showed that the prognosis of the RYR2 wild group was significantly better than that of the RYR2 mutation group in the DCRSH group and the whole sample group (Figures 6A-C). Furthermore, we used GSEA to search the potential signaling pathway differences between RYR2 mutants and the RYR2 wild group. RYR2 mutations were mainly enriched in type 1 IFN receptor binding and the response to IFN-β. RYR2 wild type was mainly enriched in the glomerulus development and the ovulation pathway (Figure 6E).




Discussion

With the expanded application of immunotherapy, the ICIs are increasingly being studied in cancer treatment. However, only 20%–30% of BLCA patients may benefit from immunotherapy due to the complex regulatory mechanisms among various immune cells in the TME. The current study based on the CD8+ T cell-associated immune checkpoint was still far from being adequate to accomplish the desired therapeutic curative effect. In the regulation of tumor-related immunity, DCs are crucial sentinel cells; they are powerful to present antigens and initiate immune responses. DCs are responsible for the delivery, processing, and presentation of TAAs; activation of DAMP release; and promoting the immune stimulative role of chemokines, cytokines, and IFNs. In this study, we aimed to construct a DC-related risk model and identify DC-related genes associated with tumor mutation and immune cell infiltration in TME and accurately identify suitable patients who might benefit from immunotherapy.

In the present study, we used the xCell algorithm to calculate the estimated proportion of immune cells for each BLCA sample. Then, according to the median value of the DC infiltration score, BLCA patients were divided into the DCH and DCL groups. Comparing the DCH and DCL groups, we identified DEGs that were considered as DC-related DEGs. Later on, univariate Cox regression analysis was conducted to select DEGs correlated to prognosis. Based on the expression profiles of prognostic DC-related DEGs, BLCA patients were clustered into two groups (Cluster 1 and Cluster 2) using the ConsensusClusterPlus package. The overall survival of Cluster 2 was obviously reduced compared to that of Cluster 1; GSVA revealed that DC-associated pathways were significantly enriched in Cluster 1 such as the positive regulation of innate immune response and the T-cell receptor signaling pathway. These findings indicated that patients in different unsupervised clusters have different DC-related immune status.

After that, we identified DEGs between Cluster 1 and Cluster 2 groups to better explore the potential mechanism for the difference of immune status between Cluster 1 and Cluster 2, followed by univariate Cox regression analysis to identify prognostic DEGs. We constructed a DC-related risk model using LASSO regression analysis and calculated the DCRS according to the LASSO coefficient. In this research, patients from TCGA were stratified into two groups according to the median value of DCRS and our findings were validated in the GSE32894 cohort. The ROC curves showed that the AUC values of 1 year, 3 years, and 5 years were 0.705, 0.667, and 0.685, respectively, which were higher than 0.6. The higher RMS time in the DCRSL group also proved the validity and the accuracy of DC-related risk model to predict the prognosis of BLCA patients. GSEA also revealed that immune-related pathways were enriched in DCRSL. In conclusion, these discoveries suggested that DCRS may be a promising prognostic indicator of BLCA.

An intimate connection was found between the response to immunotherapy and immune cell infiltration. M2 macrophages had been shown to advance tumor development and were linked to poor overall survival in BLCA patients, and M1 macrophages are capable of antigen presentation and promoting inflammatory responses (31). An obvious rise in degree of infiltrating M0 (p< 0.001) and M2 (p< 0.001) macrophages had been observed in the DCRSH group, which was found to have a worse prognosis, while in the DCRSL group, the abundances of infiltrating other immune cells were greater, such as CD8+ T cells (p< 0.001), activated CD4+ memory T cells (p = 0.012), follicular helper T cells (p< 0.001), activated mast cells (p = 0.005), resting DCs (p< 0.001), activated DCs (p< 0.001), and monocytes (p = 0.014). Meanwhile, patients in the DCRSL group may have increased sensitivity to immunotherapy. In addition, we also found a high expression of MHC-related molecules in the DCRSL group. Generally, MHC-related molecules’ high expression was associated with the activation of antigen presentation in DC cells and the initiation of immune response; these results may explain the better prognosis of the DCRSL group. Collectively, it may imply that the DCRS model might predict clinical response to immune therapy. Although the DC-related risk model showed an effective performance in predicting prognosis, the degree of accuracy was not much higher, which may result from the insufficient number of samples. The model’s accuracy may be further enhanced by expanding the sample size and required validation in a clinical trial with a large sample size.

The recent research illustrated that tumor mutations are associated with the tolerance or response to immunotherapy; therefore, comprehensive genomic mutation analyses must be considered to accurately select patients who are suitable for immunotherapy. The mutant landscape was compared in the DCRSL and DCRSH groups. We found that the gene mutation frequency was higher in the DCRSL group. TTN and TP53 had higher mutation frequencies in both groups. It was discovered that TP53 played a vital role in bladder cancer development (32). However, except for RYR2, other genes with high mutation frequencies were not associated with BLCA prognosis whether in risk groups or the whole sample group. RYR2 was traditionally considered to be associated with heart failure and arrhythmias, but recently, some studies (28) have identified complex communication mechanisms between RYR2 and immune cells and immune-related molecules. Nevertheless, the immune regulation mechanism of RYR2 was not clear. In the DCRSH group, the mutational frequency of RYR2 was less than that of the DCRSL group. By comparing the infiltration of immune cells among the DCRSH group, the DCRSL group, and the whole sample group, we found an increased infiltration of CD8+ T cells in the DCRSH group and the whole sample group. RYR2 mutations were mainly enriched in the type 1 IFN receptor binding pathway and the response to IFN-β pathway by GSEA. IFN, produced primarily by DCs, has pleiotropic impacts on the immune system (33). The mutation frequency of RYR2 was lower in the DCRSH group. These results suggested that RYR2 mutations may participate in the induction and maintenance of anti-tumor immune responses mediated by DCs. Therefore, we believe that combining DCRS and RYR2 mutations could help to screen BLCA patients who were suitable for immunotherapy.



Conclusion

In conclusion, our results indicated that patients with low DCRS had a better prognosis and predicted benefit from immunotherapy. These DC-related gene signatures may be valuable for the prognostic stratification and patient selection of ICI before treatment. At the same time, it was expected that the DCRS model would improve our understanding of TME and the genomic features and guide immunotherapy and combination therapy strategies.
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Supplementary Figure 1 | Immune infiltration and the least absolute shrinkage and selection operator (LASSO) regression analysis. (A–D) The tumor purity, estimate scores, immunity scores, and stromal scores between the DCL group and the DCH group; the line in the box indicates the median value, and the black dot indicates the outlier. The asterisks indicate statistical p-values (***< 0.001). (E, F) The least absolute shrinkage and selection operator (LASSO) Cox regression for the DC-related key differentially expressed genes. (G) Immune cell abundance ratios in the BLCA cohorts. Each column represents a sample, and each column uses a different color and height to indicate the abundance ratio of immune cells in the sample.

Supplementary Figure 2 | Unsupervised clustering grouping in BLCA. (A–J) Unsupervised clustering algorithm in BLCA patients and consensus matrices for k = 2–9.
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Background

Pancreatic cancer (PC) is one of the most lethal malignancies and carries a dismal mortality and morbidity. Four types of RNA modification (namely m6A, m1A, APA and A-to-I) could be catalyzed by distinct enzymatic compounds (“writers”), mediating numerous epigenetic events in carcinogenesis and immunomodulation. We aim to investigate the interplay mechanism of these writers in immunogenomic features and molecular biological characteristics in PC.



Methods

We first accessed the specific expression pattern and transcriptional variation of 26 RNA modification writers in The Cancer Genome Atlas (TCGA) dataset. Unsupervised consensus clustering was performed to divide patients into two RNA modification clusters. Then, based on the differentially expressed genes (DEGs) among two clusters, RNA modification score (WM_Score) model was established to determine RNA modification-based subtypes and was validated in International Cancer Genome Consortium (ICGC) dataset. What’s more, we manifested the unique status of WM_Score in transcriptional and post-transcriptional regulation, molecular biological characteristics, targeted therapies and immunogenomic patterns.



Results

We documented the tight-knit correlations between transcriptional expression and variation of RNA modification writers. We classified patients into two distinct RNA modification patterns (WM_Score_high and _low), The WM_Score_high subgroup was correlated with worse prognosis, Th2/Th17 cell polarization and oncogenic pathways (e.g. EMT, TGF-β, and mTORC1 signaling pathways), whereas the WM_Score_low subgroup associated with favorable survival rate and Th1 cell trend. WM_Score model also proved robust predictive power in interpreting transcriptional and post-transcriptional events. Additionally, the potential targeted compounds with related pathways for the WM_Score model were further identified.



Conclusions

Our research unfolds a novel horizon on the interplay network of four RNA modifications in PC. This WM_Score model demonstrated powerful predictive capacity in epigenetic, immunological and biological landscape, providing a theoretical basis for future clinical judgments of PC.





Keywords: RNA modification writers, tumor microenvironment, pancreatic cancer, molecular classification, immunotherapy



1 Introduction

Pancreatic cancer (PC) is one of the most devastating cancers, with 5-year survival rates of<5% among solid cancers (1). Existing evidence reported that the progression of PC results from multiple activated pathways and crosstalk events in epigenetic levels (2). Epigenetics deals with changes in gene expression resulting directly from mutations of DNA sequences, leading to the formation of inherited traits both intra-generationally and inter-generationally (3). It was also found that RNA modification as a reversible epigenetic mechanism, plays a pivotal role in almost all vital bioprocesses, including tumorigenesis (4).

RNA modification, a molecular process, can make changes to specific nucleotide sequences such as A, C, G, and U residues (5). With the rapid evolution of transcriptome-wide profiling, more than 170 different types of RNA modifications were found including N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ), and N1-methyladenosine (m1A) (6–9). Since the complexity of the epitranscriptome landscape, plenty of studies suggested that there might be some kinds of underlying interactions among those modifications. For example, m6A modification deficiency was confirmed to generate the inflated level of A-to-I editing via positive regulation of ADAR with m6A-depleted transcripts (10), while m1A and m5C may also play a relevant part in regulating A-to-I editing (11). Hence, we concentrated on four common adenine-related RNA modifications (including m6A, m1A, APA and A-to-I) to explore the interplay of their promoters termed as “writers”.

m6A refers to the methylation at position N6 of adenosine, which is the most prevalent modification throughout the mammalian RNA transcriptome, regulating the different stages of RNA metabolism including RNA-protein interaction and RNA stability (12). This modification was catalyzed by multicomponent methyltransferases such as METTL3, METTL14, METTL16, WTAP, VIRMA and RBM15 (13). Extensive studies have acknowledged the vital functions of the m6A in numerous physiological processes, especially in cancer progression (14, 15). m1A is developed by adding a methyl group to the nitrogen-1 position of adenosine. Under physiological circumstances, m1A carries a positive charge which influences RNA-protein interaction and RNA structure (9). m1A writers act as methyltransferase complexes contain TRMT6/61A, TRMT61B, and TRMT10C (16).  It has been reported that m1A modification comprehensively engaged in the initiation and development of many diseases (17, 18). APA, namely alternative polyadenylation, is an RNA-processing mechanism that generates distinct 3’ ends in transcripts made by RNA polymerase II, thus significantly broadening the diversity of mRNAs and proteins (19). Several 3’-end-processing factors (e.g., CPSF, CSTF and CFIm complex) were proved to regulate the ploy (A) selection and alteration (20). Deficiency in 3’UTR may contribute to the onset of various cancers which in turn accelerate the development of target therapy, for instance, the shortening of the KHDRBS1 mRNA 3’UTR can mediate the upregulation of KHDRBS1 and promote the progression of gastric cancer (21). A-to-I is one of the RNA-editing mechanisms which is mediated by ADAR family members (ADAR, ADARB1 and ADARB2) (22). These modifications can be directly recognized as adenosine-to-guanosine mismatches in transcriptome (23), then make a positive or negative contribution to tumor progression by modifying oncogenes (24). For further understanding the meaning of epigenetic modifications, the exploration of interplay in these four types of RNA modifications is an urgent need.

It is worth noting that research on the role of the above common types of RNA epigenetic modification is still incomplete, let alone the crosstalk between these diverse types. In 2020, Swati V and colleagues (25) have reported the widespread, recurrent and functionally relevant 3’ UTR APA events in PC patients by profiling data and have experimentally validated the effects of several APA events, including CSNK1A1, FLNA and PAF1 on miRNA regulation, protein expression as well as tumor growth. Similarly, phenomenological research on m1A and A-to-I was also archived in PC. ALKBH3 as a m1A demethylase and ADAR1 as an A-to-I editor were found highly expressed in PC compared with normal pancreas (26). However, there is a lack of further studies to explore the mechanism and tumor-promoting functionality of these anomalies in the regulation of specific oncogenes/antioncogenes. Moreover, these published studies have indicated a distinct RNA modification pattern in PC compared with other malignancies. Taking m6A, the most intensively studied type in RNA epigenetics as an example. Several studies have suggested m6A “writer” METTL14, instead of METTL3 which acts as central methylase most of the time, is the key regulator leading to the elevated m6A levels in PC samples. Wang M et al (27) published a m6A-dependent METTL14/PERP/TP53 axis promoting the growth and metastasis of PC. Chen S et al (28) reported that CLK1-SRSF5 axis regulated METTL14 exon10 skipping enhanced the transcriptomic m6A modification level and promoted PC metastasis. The above studies show that the role of RNA epigenetic modification in PC still deserves further exploration.

Given the immunological “cold” characteristics of PC, immunotherapy is facing tremendous challenges and imperatively needs to strive for a breakthrough (29). To facilitating the sensitivity of immunotherapy, investigating the tumor immune microenvironment (TIME) and recognizing the potential resistant mechanism for individual patients should be emphasized (30). In recent years, RNA modifications and their writers were deemed as a novel regulator of the tumor immune system. For example, METTL3- or METTL4-deficient tumors enhanced the infiltration of CD8+T cells and increased the potency of anti-PD1 therapy in colorectal cancer (31). METTL14 was also determined as a target for enhancing immunotherapy in rectal cancer (32). In addition, the shortening 3’UTR served as a significant part in the immunotherapy and targeted therapy of clear cell renal carcinoma (33). However, several studies reveal the distinct TIME pattern in PC via combing these four types of RNA modification together. Hence, perceiving the regulatory mechanism of mixed RNA modification writers in TIME cells infiltration help unlock broad prospects for the development of immunotherapy.

In our study, transcriptional variation of PC patients from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) was included to access the specific RNA modification patterns. This pattern is either correlated with infiltration of immune cells, or enriched in epithelial-mesenchymal transition (EMT), TGF-β and multiple carcinogenic signaling pathways. Then, we established the writers of the RNA modification score (WM_Score) model based on the differentially expressed genes (DEGs) to evaluate the predictive capacity in the distinct pattern. At last, we manifested the unique status of WM_Score in transcriptional and post-transcriptional regulation, molecular biological characteristics, targeted therapies and immunogenomic patterns. The flowchart of this study was shown in Figure S1.



2 Materials and methods


2.1 Datasets obtaining and processing

The workflow of this study was shown in Figure S1. Public transcriptional profiling datasets from patients’, including TCGA_PAAD dataset, GSE62452 GSE57495 and GSE28735 dataset from GEO, ICGC_AU_PAAD dataset were included. For TCGA_PAAD dataset, somatic mutation, copy number variation, RNA expression in FPKM format data, as well as complete clinical information was obtained from UCSC Xena (https://xenabrowser.net/datapages/). RNA-seq data in FPKM format was then transformed into TPM by R. GEO datasets were downloaded from https://www.ncbi.nlm.nih.gov/geo/ in raw data format and further disposed using R package affy; R package sva were then utilized to combine different sourced GEO datasets. ICGC_AU_PAAD dataset were downloaded from https://dcc.icgc.org/, somatic mutation data, FPKM RNA-seq data and clinical information were included in our study. All the above data was analyzed in R (version 4.1.1) and Bioconductor packages for data cleaning and gene signature annotation. The detailed information for these datasets were listed in Supplementary Table 1.



2.2 Mutation and copy number variation (CNV) analysis

For somatic mutational analysis, SNP6 array data was first obtained from TCGA and ICGC datasets. Then, non-silent mutation types were excluded and the remained data was imported into R package GenVisR for visualization. For CNV analysis, GenePattern platform (https://www.genepattern.org/) was utilized according to its GISTIC2.0 module. The parameter settings were as followed: confidence level 0.99, q-value threshold 0.25, join segment size 4, gene gistic YES, remove X NO, cap value 1.5, max sample segs 2000, gene collapse method exteme.



2.3 Unsupervised consensus clustering

After expression matrix was standardized using sweep() function in R, package ConsensusClusterPlus was applied for gene expression clustering. The parameters in this study were set as: maxK=4, reps=100, pItem=0.8, pFeature=1, title=title, clusterAlg=“pam”, distance=“spearman”. Consensus CDF value and delta area of CDF curve were used as evaluation criteria for every single clustering.



2.4 Construction of WM_score model


2.4.1 Identification of Writer_clusters-related differentially expressed genes (DEGs)

Based on the two Writer_clusters identified by consensus clustering, we performed differential expression (DE) analysis using R package LIMMA. In brief, we first excluded genes in the dataset that were expressed as 0 in more than 20% of the samples; then functions in LIMMA package including makeContrasts(), lmFit() and eBayes() were applied in turn to build the linear model and extrack results of DE analysis. The standards defined as DEGs were adjusted P value< 0.05 and absolute value of log2FoldChange ≥1.



2.4.2 Model construction by LASSO-cox method

The above DEGs were first introduced into a uni-variate cox regression along with survival information of samples by R package ezcox to first identified writer_clusters-related, differentially expressed prognostic genes, which were defined as candidates for WM_score model. To further narrow down the number of genes included in the final model, LASSO-cox algorithm was then applied. We first randomly divided TCGA_PAAD cohort into train set and internal test set using R package caret. Then, glmnet package was applied for model construction. The finally included genes and their corresponding LASSO-cox coefficients were extracted to calculate WM_score for each sample following the following formula:

	

where Coefi meant the LASSO-cox coefficients for each gene, xi was the TPM value of each gene.



2.4.3 Validation of WM_score model

To further detect the efficacy of WM_score in predicting prognosis of PDAC patients, we performed internal and external validation in both TCGA_PAAD, GSE57495 and ICGC_AU_PAAD datasets. Time-dependent ROC curve and Area Under the Curve (AUC) implemented by R package survivalROC and plotROC was applied to evaluate the predicting ability of WM_score model.




2.5 Gene set variation analysis (GSVA) and GSVA based EMT-score

To explore diverse enrichment status in gene function for different clusters and/or subgroups, GSVA was applied by R package GSVA and GSEAbase. Two gene sets were conducted for functional annotation from MsigDB (http://www.gsea-msigdb.org/gsea/msigdb/), which were c2.cp.kegg.v7.4.symbols and h.all.v7.4.symbols, respectively. LIMMA package was then utilized to distinguish the enrichment differences between different subgroups.



2.6 Correlation between WM_score and multiple molecular subtypes of PDAC

Based on the literature published by Moffitt, Collisson and Bailey et al (34–36), gene sets for each molecular subtype were first extracted, resulting in 50, 62 and 1939 genes included for Moffitt, Collisson and Bailey subtyping, respectively; while genes for Bailey subtyping were further divided into 240 ADEX, 1,061 squamous, 268 progenitor and 370 immunogenic genes. Then, consistent with the consensus clustering method mentioned above, we manually performed clustering in TCGA_PAAD dataset and assigned subtypes by overlapping the consensus clustering results and expression patterns of the subtyping genes included.



2.7 Analysis between WM_Score-high and -low groups for transcriptional and post-transcriptional events


2.7.1 Correlation between WM_score and miRNA targeting

The expression matrix of microRNAs (miRNAs) from TCGA_PAAD dataset was downloaded from UCSC xena as mentioned above. DE analysis for miRNAs was also performed by Limma-Voom method and potential targeting relationship between DE miRNAs and WM_score DEGs was predicted by Diana tools (http://diana.imis.athena-innovation.gr/DianaTools/index.php). Finally, Sankey diagram was applied to depict this targeting relationship by R package ggalluvial.



2.7.2 Association between WM_score and APA events

APA events for TCGA_PAAD cohort were accessed from The Cancer 3′ UTR Atlas (TC3A, http://tc3a.org) and original data were downloaded from (https://www.synapse.org/#!Synapse:syn24982198/files/) (37). Percentage of Distal polyA site Usage Index (PDUI) was evaluated by DaPars2 algorithm to identify the alternative proximal polyA site. Thus, PDUI values were regarded as quantitative indicators to identify 3’UTR lengthening (positive index) or shortening (negative index). DE analysis for PDUI was also performed based on Limma package. FDR<0.05 and PDUI difference > 0.1 were considered as statistically significant.



2.7.3 Association between WM_score and m6A/m1A modification

To identify the m6A or m1A dependent regulation between WM_score related DEGs and all of the m6A/m1A regulators, RMBase online tool was applied and the original data from this database was downloaded from (https://rna.sysu.edu.cn/rmbase/download.php). The regulatory relationships included in this database as high/extremely high reliable were summarized in this study.




2.8 Compound resistance and sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC, http://www.cancerrxgene.org/downloads) database, which contained drug sensitivity data (IC50) of 1,000 cell lines, were accessed to get drug sensitivity and resistance information for pancreatic cancer cell lines. Spearman correlation analysis was performed to calculate the correlation between drug sensitivity and WM_Score, the absolute value of correlation coefficient > 0.2 and FDR< 0.1 were regarded as significant.



2.9 Analysis for immune cell infiltration and immune signatures

To assess the overall immune infiltration and stromal purity of tumor samples, we first applied ESTIMATE algorithm in R followed standard analysis process. For tumor immune cell infiltration analysis, we adopted two algorithms: CIBERSORT and ssGSEA. We downloaded archives that contained defining gene signatures for every immune cell type from the original manuscripts. For T cell differential evaluation, we applied GSVA algorithm to evaluate based on the MsigDB and Pathcards (https://pathcards.genecards.org/) gene sets, which were BIOCARTA_IL12_PATHWAY and BIOCARTA_IL4_PATHWAY from MsigDB for Th1/Th2 development and Th17 Differentiation pathway from Pathcards. We also referred to the literature published by Eric R L et al. (38) to determine the characteristic markers of various types of immune cells including Treg cells.



2.10 Statistical analysis

All statistical analysis were performed in R (version 4.1.1). The comparison of count data was tested by Fisher’s test and Chi-square test. For the measurement data that conformed to the normal distribution, Student-t test was applied; besides, Wilcox test was applied for non-normal distribution data between independent subgroups. Spearman analysis was applied to estimate the correlations between two variables that are note linearly related. K-M test was utilized to validate the fraction of PC patients living for a certain survival time and log-rank test was conducted to compare the significance of difference. R package survival and survival miner were used for depicting Kaplan-Meier survival curve. A two-tailed p-value of less than 0.05 was deemed to be statistically significant unless specifically stated.




3 Results


3.1 Transcriptional variation of four types of RNA modification writers in PC

In total, we screened 26 RNA modification writers (7 m6A writers, 4 m1A writers, 12 APA writers and 3 A-I writers) from the published literature that were currently involved in this study (Table S2). To explore potential transcriptional variation in four types of RNA modification writers in PC, we evaluated the frequency of non-synonymous somatic mutations in 26 writers. As is shown in Figure 1A, 71 of 821(8.65%) samples gained mutations of RNA modification writers. Among them, the mutation frequency of PCF11 leads first and is followed by CPSF1, ADARB2, WTAP and RBM15. Although the comparison between overall survival among different mutation statuses of these writers was non-significant, PC patients with mutations had a shorter survival rate than those without mutations (Figure S2E), implying that transcriptional alteration may play a vital role in the progression of PC. We also assessed the somatic CNV of these writers. Intriguingly, ADAR, CPSF1, TRMT61B, CPSF4 and CSTF1 possessed an extensive prevalence of CNV gain, while WTAP, ADARB1, RBM15, RBM15B and CF1 had less CNV gain (Figure 1B).




Figure 1 | Transcriptional variation of four types of RNA modification writers in PC. (A) Mutation statuses of 26 RNA modification writers. (B) Somatic CNV of 26 RNA modification writers. Expression of m6A writers (C), A-to-I writers (D), m1A writers (E) and APA writers (F) between normal and PC tissues. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, p > 0.05).



To further perceive the relationship between the expression of these 26 RNA modification writers and the transcriptional variation status, we compared the mRNA expression of these writers between paired normal and PC tissues, and the most of writers were highly expressed in PC tissues (Figures 1C–F, Figures S2A–D). Those writers with CNV gain were significantly highly expressed in PC tissues and vice versa (e.g., ADAR, CPSF4). This suggests that CNV may be a crucial factor in the transcriptional process of these writers. Notwithstanding, several writers had widespread expression but with CNV loss. So, to examine the divergence between CNV and mRNA expression in PC, we concentrated on the subgroups of CNV status (CNV gain, CNV loss and CNV stable) among distinct writers which owned CNV loss in more than 20% of the samples. Undoubtedly, PC patients with CNV gain had higher mRNA expression than those with CNV loss in CPSF2, ADAR and TRMT61A (Figures S2F–H). All these analyses determined the robust bonds between the transcriptional scenery and mRNA expression in 26 RNA modification writers.



3.2 TIME and cancer hallmarks correlated with patterns of RNA modification writers

To probe into interrelations among these RNA modification writers, Pearson correlation coefficients were calculated among them, and we found that majority of the correlations were positive except for TRMT61A (Figure S3A). Also, Univariate Cox analysis showed that 10 of 26 writers (CSTF2, CPSF4, METTL3, NUDT21, ADARB2, PABPN1, CPSF1, VIRMA, METTL14 and CFI) were independent prognostic factors in PC patients (Figure S3B). Therefore, these detections led us to confirm that some crosstalk relationship probably exists in specific clusters of RNA modification.

Then, according to the screening standard mentioned above, unsupervised consensus clustering was performed to categorize PC patients into Writer_cluster_1 and Writer_cluster_2 based on the expression matrix of 22 selected RNA modification writers (Figures 2A–E; Table S3). It should be noticed that Writer_cluster_1 was charactered by the elevated expression of APA writers (CPSF1, CPSF4, PABPN1) and the over expression of m6A writers (METLL14, ZC3H13, VIRMA) always happened in Writer_cluster_2; besides, METTL3 was up regulated in Writer_cluster_1, confirmed the unique m6A regulating pattern in PC (Figure 2E). GSVA analysis was then applied to examine the molecular and biological functions of two distinct clusters of RNA modification. Writer_cluster_1 was notably enriched in DNA repair, base excision repair and RNA polymerization, while Writer_cluster_2 was markedly enriched in the period of tumorigenesis and immunoreactions, such as EMT, JAK/STAT signaling pathway and chemokine signaling pathway (Figure 2F). By the way, the prognostic endpoint was also appraised based on OS, DFI, PFI and DSS (Figures 2G–J). We found that the Writer_cluster_2 pattern of RNA modification exhibited a preferable survival rate than the Writer_cluster_1 pattern.




Figure 2 | Distinct RNA modification patterns and correlated biological characteristics. Consensus heatmap (A), CDF plot (B), Item-Consensus plot (C) and area under CDF (D) of unsupervised consensus clustering in 26 RNA modification writers, the optimal k is 2. (E) Heatmap shows the expression of writers in distinct RNA modification patterns. (F) Heatmap of GSVA analysis shows specific enriched pathways in distinct RNA modification patterns. Comparison of OS (G), DFI (H), PFI (I) and DSS (J) between Writers_cluster_1 and Writers_cluster_2 pattern. (K) The differences in abundances of 22 types of immune cells between Writers_cluster_1 and Writers_cluster_2 pattern. (*p < 0.05; **p < 0.01).



TIME of different RNA modification patterns was still considered in our study. CIBERSORT algorithm was performed to measure the component discrepancy between two distinct patterns of RNA modification (39). In the bulk, the expression profile of 26 RNA modification writers was highly correlated with tumor immune infiltration (Figure S3C). For instance, CF1, ZC3H13 and ADARB1 were prominently negatively correlated with NK cells resting. The abundances of 22 types of immune cells among two patterns were also quantified (Figure 2K). We noticed that the Writer_clsuter_1 pattern of RNA modification possessed higher infiltration of immunosuppressive cells (e.g., T cells regulatory), which was consistent with the poor prognostic outcome in Figures 2G–J.



3.3 Construction and validation of RNA modification writers signature

In order to further investigate the biological mechanism of two distinct RNA modification patterns, differential analysis was conducted to determine 215 DEGs related to different RNA modification statuses (Table S4). GO pathway analysis showed these DEGs enriched in several molecular functions including immunoglobulin receptor binding, signaling receptor and growth factor binding (Figure S4A), KEGG pathway analysis exhibited focal adhesion, TGF-β signaling pathway and ECM-receptor interaction were enriched (Figure S4B). For verifying the heterogeneity in regulation, we applied unsupervised consensus clustering based on these DEGs and stratified PC patients into DEG_cluster_A and DEG_cluster_B (Figures S4C–F). Consistent with the clustering of RNA modification writers, most of the patients clustered in Writer_cluster_1 corresponded to DEG_cluster_A, and Writer_cluster_2 to DEG_cluster_B (Figure S4G and Table S3, Fisher’s test p = 0.044).

Patients in the TCGA cohort were randomly assigned to training and testing set at a ratio of 7:3. Based on DEGs, univariate Cox regression was performed to decrease redundancy and 38 prognosis-related DEGs remained. Next, we used the LASSO-Cox algorithm to distinguish two RNA modification patterns in the TCGA training set (Figures 3A, S4H–I). At last, a 10-DEGs (including CXCL9, GREM1, INHBA, SEMA3C, C1S, PGGHG, PABPC1L, BRICD5, PCSK1N and C4orf48) based model named WM_Score model was established, and PC patients were divided into WM_Score_high (WM_high) and WM_Score_low (WM_low) groups based on the median WM_Score. The forecasting capability of the WM_Score model for overall survival was evaluated by ROC curves, the AUC reached 0.722 at 1 year, 0.743 at 2 years, 0.756 at 3 years in the TCGA training set, and robustly validated in TCGA testing set (Figures 3B, C).




Figure 3 | Construction and validation of RNA modification writers signature. (A) LASSO-Cox analysis was performed to constructed 10-DEGs based WM_Score model. AUC of WM_Score model in TCGA training (B) and testing (C) sets. (D) Heatmap visualizing the expression of 10 DEGs compared among Writer_cluster_1/2, DEG_cluster_A/B and WM_Score_high/low. Comparison of WM_Score between Writer_cluster_1 and _2 (E), DEG_cluster_A and _B (F). Comparison of OS (G), DFI (H), PFI (I) and DSS (J) between WM_Score_high and WM_Score_low group. (K) Multivariate Cox analysis shows WM_Score is significantly corresponded with prognosis, while the age, gender, stage, grade and tumor size proved to be nonsensical. AUC of WM_Score at 1, 2, 3 year in ICGC (L) and GEO (M) external validation set. (**p < 0.01; ***p < 0.001).



Coincidentally, these three clusters (Writer_cluster_1/2, DEG_cluster_A/B and WM_Score_high/low) indicated a high coherence through different calculative strategies (Figure 3D). As is shown in Figure S4J, 61.96% patients in Writer_cluster_1 overlap with patients in WM_Score_low group, 63.1% patients in Writer_cluster_2 overlap with patients in WM_Score_high group. 57.61% patients in DEG_cluster_A overlap with patients in WM_Score_low group, 59.52% patients in DEG_cluster_B overlap with patients in WM_Score_high group (Figure S4K). What’s more, we found that Writer_cluster_2 had higher WM_Score than Writer_cluster_1. By the same token, WM_Score of DEG_cluster_B were higher than DEG_cluster_A (Figures 3E, F).

Subsequently, the prognostic and clinicopathological features in WM_Score_high and WM_Score_low groups were compared. Patients with low WM_Score exhibited a preferable survival rate than those in the WM_Score_high group (Figures 3G–J).

In order to clarify the interdependency of WM_Score, we further conducted multivariate Cox analysis. The result manifested that the WM_Score significantly corresponded with prognosis, while the age, gender, stage, grade and tumor size proved to be nonsensical (Figure 3K). To further verify the reliability and practicability of the WM_Score model, ICGC and GEO external validation set was selected and AUC reached 0.72 (ICGC)/0.73 (GEO) at 1 year, 0.736 (ICGC)/0.751 (GEO) at 2 years, 0.727 (ICGC)/0.77 (GEO) at 3 years (Figures 3L, M and Table S5).



3.4 The interaction between WM_Score model and molecular biological features

To explore the functional role of distinct WM_Score subgroups mentioned above, GSVA analysis was applied. We found that the WM_Score_high group enriched in EMT, TGF-β, and mTORC1 signaling pathways (Figure 4A). For examining the correlation with EMT pathway, we computed the EMT score based on the expression of epithelial and mesenchymal marker genes. The stronger the tendency to mesenchymal, the higher the WM_Score, which may explain the poorer survival rate of the WM_Score_high group (Figure 4B and Table S3).




Figure 4 | Biological characteristics of WM_Score model in PC. (A) GSVA analysis between WM_Score_high and _low group. (B) Differences in the WM_Score between mesenchymal trend and epithelial trend. WM_Score differences among Moffitt classification (C), Collisson classification (D) and Bailey classification (E) based on patients in TCGA cohorts. (F–H) Overlap analysis of these three classifications and WM_Score based on the histogram of frequency distribution. Differences of WM_Score in specific grade (I) and stage (J) of patients in TCGA dataset. (*p < 0.05; **p < 0.01; ***p < 0.001; NS, p > 0.05).



From published data, PC can be divided into three transcriptome classifications of molecular subtypes (MS) including Moffitt classification, Collisson classification and Bailey classification (40). Moffitt classification contains Classical and Basal-like subtypes, the latter subtype was confirmed to be linked to worse overall survival in PC (34). Collisson classification encompasses Classical with adhesion and epithelization, Exocrine-like with mesenchymal transition and quasi-mesenchymal (QM-PDA) with tumor cell derived digestive enzyme (35). Bailey classification includes aberrantly differentiated endocrine exocrine (ADEX) with KRAS activation and endocrine differentiation, Immunogenic with acquired immune suppression, Pancreatic progenitor with early pancreatic development and Squamous with hypermethylation of pancreatic endodermal cell-fate determining genes and have the worst prognosis (36). Based on the hallmark gene signatures in these three classifications of MS from the literature (34–36, 40), unsupervised consensus clustering was performed to classify PC patients into distinct MS (Figures S5A–F and Table S3). To assess the relationships between MS and WM_Score, we analyzed the WM_Score of MS in the TCGA dataset. Among overall nine MS, Basal-like, QM-PDA and Squamous subtypes acquired comparatively high WM_Score which may be associated with their unfavorable prognosis (Figures 4C–E).

We also implemented overlap analysis of these three classifications which were visualized by the histogram of distribution. In consistent, patients with a high degree of malignant MS (e.g. Basal-like and Squamous subtype) tended to be determined as WM_Score_high group and vice versa (Figures 4F–H). Furthermore, we found that WM_Score was higher in advanced PC than those in early grades and stages (Figures 4I, J), implying that this WM_Score model may be more sensitive to preclinical diagnostic. However, there were no significant WM_Score differences among old, gender and tumor size (Figures S5G–I).



3.5 Transcriptional and post-transcriptional regluation associated with WM_Score

RNA modifications have been historically identified as a transcriptional and post-transcriptional regulator, whereas the WM_Score model was conducted based on RNA modification writers. So, we concentrated on the transcriptional and post-transcriptional events (e.g. APA, m6A and m1A) related to WM_Score.

It is well-established that APA promotes transcriptional alteration by providing mRNA with 3’UTRs where binding sites for miRNAs targeted (41), we proposed that two RNA modification statuses may have specific miRNA features based on the regulation of distinct writers. First of all, we performed differential analysis between WM_Score_high and _low group,42 miRNAs were screened out and pathway analysis of their target genes was operated (Table S6). Then, 8 miRNAs, 14 mRNAs and 9 enriched pathways were determined (Figure 5A; Table S7). For further identify the mechanism of RNA modification writers, we assessed the APA events of each gene in TCGA dataset to explore the post-transcriptional attributes. We identified the genes between two RNA modifications with distinct PDUI and found that most of genes with negative PDUI (shortening 3’UTR) enriched in the WM_Score_high group (Figure 5B and Supplementary Table 8). Via univariate Cox analysis, we selected 5 prognosis-related top genes (COL1A2, DKK1, AREG and CEACAM5) for verification. COL1A2 was with significantly lengthening 3’UTR in the WM_Score_high group, while DKK1, AREG and CEACAM5 were with markedly shortening 3’UTR. For those genes with lengthening 3’UTR, patients in the lengthening group had a worse survival rate than those in the shortening group, the same phenomenon was seen for genes with shortening 3’UTR (Figures 5C–F). As a side note, we can hypothesize that in the WM_Score_high group, the 3’UTR may work together with the miRNA-targeting system to facilitate the progression of PC.




Figure 5 | Transcriptional and post-transcriptional characteristics related to WM_Score. (A) Sankey diagram based on 8 miRNAs, 14 mRNAs and 9 enriched pathways. (B) The differences in the PDUI of each gene between WM_Score_high and WM_Score_low groups. Kaplan-Meler plot shows overall survival between 3’UTR lengthening and 3’UTR shortening of COL1A2 (C), DKK1 (D), AREG (E) and CEACAM5 (F). Relationships between DEGs and m6A (G) or m1A (H) regulators via the RMVar database. (I) Signaling pathways targeted by drugs which are resistant or sensitivity to WM_Score.



To examine whether WM_Score was associated with m6A and m1A, we explored the corresponding relationships between DEGs and m6A or m1A regulators via the RMVar database. Among m6A and m1A regulators, readers binding with DEGs were the most, suggesting that WM_Score is definitely an integrated predictive model based on RNA modification writers (Figures 5G, H and Table S9-10).



3.6 Identification of potential compounds targeting the WM_Score model

Aiming at recognizing the impacts of WM_Score on drug sensitivity, Spearman correlation analysis was performed to compute the relationship index between WM_Score and the response to drugs based on the GDSC dataset. We found 38 potential compounds were markedly related to WM_Score (Figure S6A and Table S11). Among them, most of the compounds showed drug resistance on WM_Score, suggesting that patients with higher WM_Score probably lead to higher resistance to these targeted therapies, including Gemcitabine and Cisplatin, except for IGF1R_3801. Furthermore, we explored the targeted pathway of these compounds. The results showed that compounds targeted the WM_Score_low patients may regulate the MAPK, DNA replication and Genome integrity to strengthen the sensitivity of themselves (Figure 5I). In summary, the WM_Score proved to be an innovative therapeutic target for PC.



3.7 The WM_Score predicts distinct TIME and immunogenomic patterns

For examing the distinct TIME of the WM_Score model, CIBERSORT and ESTIMATE algorithms were applied based on the expression profile of patients in the TCGA dataset (Figure S6B–E and Table S12). No major differences were observed according to the abundances of 22 types of immune cells (42) between WM_Score_high and WM_Score_low group, but the WM_score was positively related to ESTIMATEScore, ImmnueScore and StromaScore, implying that the infiltration of immune cells in WM_Score model was highly abundant (Figure S6C-E).

To further validate the immune cell infiltration between different WM_Score subgroups, ssGSEA was performed based on 28 stromal and immune cell types according to the gene signature “LM22”, and multiple T cells infiltrations were found among two distinct WM_Score subgroups (e.g., Regulatory T cell, Th1 cell, Th2 cell and Th17 cell, Figure 6A and Table S13).




Figure 6 | The relationship between WM_Score and immunogenomic patterns. (A) The immune cell infiltration between different WM_Score groups based on 28 stromal and immune cell types. Differences of WM_Score in Th1/Th2 trend (B) and Th17_diff_down/Th17_diff_up trend (C). Expressional differences of distinct cytokines between WM_Score_high and _low group in Th1 (D), Th2 (E), Th17 (F), Treg (G) signaling pathways. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p > 0.0001).



Considered PC is an immunologically cold tumor, exploration of immunogenomic patterns of PC was urgent to be emphasized based on WM_Score. Four types of T cells (Th1 cell, Th2 cell, Th17 cell and Treg cell) were involved in the following stratification analysis. Extensive evidence has documented that shifting Th1/Th2 balance toward to Th2 polarization may contribute to the tumor immune escape, while IL-12 can suppress Th2 differentiation and promote Th1 production and the case in IL-4 is the opposite (38, 43, 44). So, we extracted BIOCARTA_IL12_PATHAY and BIOCARTA_IL4_PATHWAY from the MSigDB database as background gene sets, ssGSEA scores based on these two gene sets were calculated separately. Then, the median value of the subtraction of these two ssGSEA scores was determined as a cutoff point to distinguish patients from Th1_trend and Th2_trend (Table S14). As is shown in Figure 6B, patients in Th2_trend have higher WM_Score than those in Th1_trend. On the other part, the Th17 cell differentiation gene set from the PathCards database was selected to access the differences between WM_Score subgroups, and patients were divided into Th17_diff_up and Th17_diff_down groups based on the median value of ssGSEA score computed via this gene set (Table S14). We found that patients in the Th17_diff_up group tend to gain higher WM_Score (Figure 6C). To further confirm the mechanism of the T cell infiltration in WM_Score, we screened several cytokine markers of those four types of T cells from published literature and compared their expression patterns between distinct WM_Score subgroups (38). As an overall perspective, WM_Score_high group gathered the more abundant infiltration of these T cells, including 3 cytokines (STAT1, IFNG and IRF1) in Th1 signaling (Figure 6D), 3 cytokines (IL13RA1, GATA3 and AREG) in Th2 signaling (Figure 6E), 3 cytokines (IL21R, IL23A and IL22RA1) in Th17 signaling (Figure 6F) and 2 cytokines (TGFBR1 and AHR) in Treg signaling (Figure 6G). At last, we evaluated the expression of common immune checkpoint markers to predict the response to immunotherapy (Figure S6F). The expression of PD-L1 was higher in the WM_Score_high group, indicating that patients in WM_Score high group may be more sensitive to immunotherapy.




4 Discussion

Owing to the emerging advancement of methods in whole-transcriptome sequencing and high-performance mass spectrometry, qualitative and quantitative detection in characterization of the RNA modification enzymes (e.g. writers and erasers) have achieved a breakthrough. As a crucial subunit facilitating catalysis and conjugation of RNA, writers plays an essential regulatory role in carcinogenesis, immune response and alternative splicing (45). Despite lots of efforts have been exerted to explore the systematic mechanism of writers in single RNA modification, the underlying interaction of multiple RNA modification writers in PC have not been clarified. Thus, our study focused on four types of RNA modification writers (m6A, m1A, APA and A-to-I) for further analyses. We first evaluated the transcriptional variation and mutational statuses of these RNA modification writers in PC. Then, based on the expression profile of these 26 writers and machine learning algorithm, two distinct RNA modification patterns were determined. To make the results more practical, we performed LASSO-Cox analysis to construct a score-based model, WM_Score model, and appraised the predictive capacity of RNA modification writers in different subgroups.

Via LASSO-Cox algorithm, WM_Score model was established based on 10 DEGs (CXCL9, GREM1, INHBA, SEMA3C, C1S, PGGHG, PABPC1L, BRICD5, PCSK1N and C4orf48). Linkage evidences suggested that most of these DEGs correlated with immunity and tumorigenesis. As a member of chemokine family, CXCL9 promotes the progression of PC via STAT3-dependent cytotoxic T lymphocyte suppression (46). GREM1 as functionally opposing BMP signaling pathway gene, was confirmed to promote the advancement and progression of colorectal cancer (47). In PC, INHBA/TGF-β regulatory network enhanced the stem cell-like properties and stromal microenvironment, leading to resistance to chemotherapy (48). SEMA3C regulated the autophagy process and tumor immune microenvironment, which in turn promoted pancreatic cancer cell growth (49). Silencing of C1S also resulted in decreased proliferation and viability of cancer cells and strengthened aggregation of T cells (50). Based on the median value of WM_Score, PC patients was divided into WM_Score_high and WM_Score_low group. We found that WM_Score_high group displayed the worse prognosis, and significantly enriched in EMT, TGF-β and mTORC1 pathways. It is generally known that EMT is essential for the initiation of metastasis in cancer progression (51), and TGF-β was one of the most well-known promoters of EMT-inducing transcription factors and a major contributor to immunosuppression (52). What’s more, mTOR was considered as a mediator in TGF-β pathway that intensified stemness and drug resistance in cancer (53). We can hypothesize that mTOR pathway activation induces TGF-β, in turn, enhanced the EMT signaling pathway in WM_Score_high group. This chain reaction may explain the poor survival rate of this group and validate the efficacy of our WM_Score model. More recently, Guo Y, et al (54) also discovered a six-gene prognostic signature (METTL16, WTAP, IGF2BP2, IGF2BP3, YTHDC2 and YTHDF2) in PC. No overlap was identified between the 10-gene WM_Score model we constructed and those previously defined. Besides, the methodology of signature construction we adopt is a more comprehensive way which included four types of RNA modifications. Taken together, our WM_Score model was identified to be superior or comparable to the previous defined signatures.

Known as “immune desert”, with limited T cell infiltration, the polarized PC immunity approached with a barrage of challenges (55). Together, TIME, cancer-associated fibroblasts (CAFs) and extracellular matrix proteins constitute the pro-tumor environment (56). Thus, we examined the TIME and immunogenomic patterns among distinct WM_Score subgroups, and WM_Score_high group was correlated with higher infiltration of immunosuppressive cells, including Th2 cell and Th17 cell, which was contributive to the systemic immune dysfunction. Considered the heterogeneous population of T cells in PC, we focused on three T helper cells (Th1, Th2 and Th17 cell) for subgroup analyses. Naive CD4+T cells can differentiate into two subsets: Th1 cells, which tend to enhance the proinflammatory responses and activate autoimmune responses; Th2 cells, which induce humoral immune responses by secreting IL-4, -5, -6, -9, -10 and -13 (56). In coculture studies, PC secreted IL-10 and TGF-β suppressed the development of Th1 responses, whereas promoted the shift from Th1 to Th2 trend that is correlated to worse survival (57). In addition to Th1 and Th2 cells, Th17 cells, characterized by secretion of IL-17, played a distinguished role in PC (58, 59). Although the function of Th17 remained controversial, emerging evidences have illustrated that Th17 seems to be a tumor promotor in the progression of PC (60). In consistent, patients in Th2_trend and Th17_diff_up subgroups achieved conspicuously higher WM_Score, bolstering the consequences of aforementioned works. On the other part, production of multiple cytokines by PC cells also resulted in the general immunosuppressive microenvironment of PC by swapping the balance from a Th1 to a Th2 status (61). Taken this phenomenon into consideration, we conducted an in-depth analysis of the relationship between four types of T cells (Th1, Th2, Th17 and Treg cells) signaling pathway and their distinct chemokines. The result elucidated that, in WM_Score_high group, high expression of chemokine STAT1, IFNG, IRF1, IL13RA1, GATA3 and AREG and low expression of chemokine IL12A and IL2 may act together to break the balance between Th1 and Th2 cells. By the same token, the increased expression of chemokine IL21R, IL23A, IL22RA1, TGFBR1 and AHR might coordinately regulate the recruitment of Th17 and Treg cells in WM_Score_high group. Given the complicated and heterogeneous regulatory mechanism in TIME mentioned above, this study provided a basis for future studies on RNA modification target therapy.

Additionally, as one type of RNA modifications, APA could regulate transcript stability by altering the miRNA-mediated activities at a post-transcriptional level. And the length of 3’UTR was utilized to measure the APA events, shortening 3’UTR generally related to oncogene activation and tumor metastasis (41). Based on this, we accessed the characteristics in miRNA-mediated RNA modification in the WM_Score model. In WM_Score_high group, the EMT, PI3K-Akt and protein digesting pathways targeted by DE miRNAs were enriched, and the length of 3’UTR was shorter than those in WM_Score_low group. We can present the hypotheses that for patients with higher WM_Score, the shortening 3’UTR of regulatory genes prevented the targeted accidents of miRNA, resulting in the normal transcription of these genes and leading to the development of PC. Finally, we explored the potential therapeutic targets of RNA modification writers in PC. The result shown that WM_score was mainly correlated with resistance to compounds targeted MAPK, DNA replication and Genome integrity pathways, and sensitivity to compounds targeted IGF1R signaling pathway. In other words, WM_Score_high group will benefit from the therapy which targeted IGF1R pathway, and several studies have already showed the target therapies against stromal insulin/IGF-1 pathway can have negative effects on PC progression (62). By the way, prediction of response to immunotherapy was considered in this study. All the above proved that WM_Score model based on distinct RNA modification pattern, was not only an efficient predictor to interpreter the transcriptional and post-transcriptional events, but also a classifier to access the clinical outcome of targeted therapy and immunotherapy, shedding new light on the adjuvant treatment for PC.

Nevertheless, this study still has several limitations. First, the interplay mechanism among four types of RNA modifications should be further validated in vivo and vitro. Second, as a consequence of limited patents receiving immunotherapy and the complexity and difficulty in assembling specimens, the association between WM_Score and immunotherapy response should be identified based on immunotherapy cohorts. Third, it should be noted that similar methodologies have been used in another study for colorectal cancer (CRC) (63). However, distinctions in results between the two studies and novelty of this study should be highlighted. 1) we discovered that the expression of APA writers CPSF1, CPSF4 and PABPN1 were enriched in Writer_Cluster1 with better prognosis whereas m6A writers METTL14, WTAP and ZC3H13 did the exact opposite, indicating that APA and m6A might be the decisive types of RNA modification in PC pathogenesis. 2) given the different cancer types and biological behavior between PC and CRC, our WM_score model that matched well with existing molecular subtypes of PC could provide a new sequencing-based tool for precise diagnosis/therapy and prognosis prediction as well as some novel molecular targets for future mechanism research of PC. 3) considering that the immunotherapy of CRC has been progressing much better than that in PC, our results indicating the interaction between RNA epigenetics and Th cells differentiation/polarization might exert unique effects on the mechanism research of PC immunity in the future. Fourth, this study did not fully integrate results of targeted drug screening with nanotechnology, which showed significant potential to improve treatment for PC patients (64). A combination of multi-omics research and nanotechnology held considerable promise in PC research in recent years. For instance, Kong C et al (65) developed an ultra-pH-sensitive micelle (UPSM) system targeting lysosomal catabolism activation of PC cells to achieve rapid drug release, they proved the therapeutic efficiency of this system through both transcriptional and amino acid profiling. Zhou S et al (66) screened miRNA biomarkers by exosome sequencing and designed a virus-mimicking fusogenic vesicle system to achieve accurate detection of these markers, improving diagnostic accuracy and therapeutic efficiency in PC patients. In the future, our research will strive to integrate our innovative WM_score model with the study of nanoparticle drug delivery, to improve the treatment of PC patients with poorer prognosis.



5 Conclusion

In conclusion, our integrated multi-omics analyses based on four types of RNA modification writers unveiled a convoluted regulatory network in immune infiltration and prognostic statuses of PC. We developed WM_Score model that served as a predictor of writers in transcriptional and post-transcriptional regulation, targeted therapies and immunotherapy. This study provided insights into the underlying interplay mechanism of RNA modifications, unfurling the novel therapeutic strategies for PC patients.



Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.



Author contributions

HZ and XY conceived and supervised the study. WG, DC, and JL analyzed the data. DC and WG wrote the draft. LZ, TX, XZ, and ZL revised and validated the manuscript. All authors read and approved the final manuscript.



Funding

This study was supported by the National Natural Science Foundation of China (No. 82000614; No. 81873589); Natural Science Foundation of Hunan Province, China (No. 2020JJ5876); Science and Technology Project of Changsha, Hunan, China (NO.kq2004146; NO.kq2004143) and Basic Research Program Project of Qinghai Department of Science and Technology (2018-0301-ZJC-0519).



Acknowledgments

We would like to exert compelling appreciation for the TCGA and ICGC projects.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.1031184/full#supplementary-material



References

1. Siegel, RL, Miller, KD, Fuchs, HE, and Jemal, A. Cancer statistics, 2022. CA Cancer J Clin (2022) 72(1):7–33.doi: 10.3322/caac.21708

2. Miller, KD, Nogueira, L, Devasia, T, Mariotto, AB, Yabroff, KR, Jemal, A, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin (2022) 72(5):409–36. doi: 10.3322/caac.21731

3. Ge, T, Gu, X, Jia, R, Ge, S, Chai, P, Zhuang, A, et al. Crosstalk between metabolic reprogramming and epigenetics in cancer: Updates on mechanisms and therapeutic opportunities. Cancer Commun (Lond) (2022) 42(11):1049–1082. doi: 10.1002/cac2.12374doi: 10.1002/cac2.12374

4. Chen, Y, Hong, T, Wang, S, Mo, J, Tian, T, and Zhou, X. Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev (2017) 46(10):2844–72. doi: 10.1039/C6CS00599C

5. Jonkhout, N, Tran, J, Smith, MA, Schonrock, N, Mattick, JS, and Novoa, EM. The RNA modification landscape in human disease. Rna. (2017) 23(12):1754–69. doi: 10.1261/rna.063503.117

6. Chen, YS, Yang, WL, Zhao, YL, and Yang, YG. Dynamic transcriptomic m(5) c and its regulatory role in RNA processing. Wiley Interdiscip Rev RNA. (2021) 12(4):e1639. doi: 10.1002/wrna.1639

7. Nombela, P, Miguel-López, B, and Blanco, S. The role of m(6)A, m(5)C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer. (2021) 20(1):18. doi: 10.1186/s12943-020-01263-w

8. Zhang, C, and Jia, G. Reversible RNA modification N(1)-methyladenosine (m(1)A) in mRNA and tRNA. Genomics Proteomics Bioinf (2018) 16(3):155–61. doi: 10.1016/j.gpb.2018.03.003

9. Xiong, X, Li, X, and Yi, C. N(1)-methyladenosine methylome in messenger RNA and non-coding RNA. Curr Opin Chem Biol (2018) 45:179–86. doi: 10.1016/j.cbpa.2018.06.017

10. Zhao, Y, Chen, Y, Jin, M, and Wang, J. The crosstalk between m(6)A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Theranostics. (2021) 11(9):4549–66. doi: 10.7150/thno.54967

11. Xiang, JF, Yang, Q, Liu, CX, Wu, M, Chen, LL, and Yang, L. N(6)-methyladenosines modulate a-to-I RNA editing. Mol Cell (2018) 69(1):126–35.e6. doi: 10.1016/j.molcel.2017.12.006

12. Zhang, Y, Geng, X, Li, Q, Xu, J, Tan, Y, Xiao, M, et al. m6A modification in RNA: biogenesis, functions and roles in gliomas. J Exp Clin Cancer Res (2020) 39(1):192. doi: 10.1186/s13046-020-01706-8

13. Tang, Y, Chen, K, Song, B, Ma, J, Wu, X, Xu, Q, et al. m6A-atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res (2021) 49(D1):D134–d43. doi: 10.1093/nar/gkaa692

14. He, L, Li, H, Wu, A, Peng, Y, Shu, G, and Yin, G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. (2019) 18(1):176. doi: 10.1186/s12943-019-1109-9

15. Wang, T, Kong, S, Tao, M, and Ju, S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. (2020) 19(1):88. doi: 10.1186/s12943-020-01204-7

16. Jin, H, Huo, C, Zhou, T, and Xie, S. m(1)A RNA modification in gene expression regulation. Genes (Basel). (2022) 13(5):910. doi: 10.3390/genes13050910

17. Esteve-Puig, R, Climent, F, Piñeyro, D, Domingo-Domènech, E, Davalos, V, Encuentra, M, et al. Epigenetic loss of m1A RNA demethylase ALKBH3 in Hodgkin lymphoma targets collagen, conferring poor clinical outcome. Blood. (2021) 137(7):994–9. doi: 10.1182/blood.2020005823

18. Ali, AT, Idaghdour, Y, and Hodgkinson, A. Analysis of mitochondrial m1A/G RNA modification reveals links to nuclear genetic variants and associated disease processes. Commun Biol (2020) 3(1):147. doi: 10.1038/s42003-020-0879-3

19. Mitschka, S, and Mayr, C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol (2022), 23(12):779–796. doi: 10.1038/s41580-022-00507-5

20. Turner, RE, Pattison, AD, and Beilharz, TH. Alternative polyadenylation in the regulation and dysregulation of gene expression. Semin Cell Dev Biol (2018) 75:61–9. doi: 10.1016/j.semcdb.2017.08.056

21. Yu, X, Kang, W, Zhang, J, Chen, C, and Liu, Y. Shortening of the KHDRBS1 3'UTR by alternative cleavage and polyadenylation alters miRNA-mediated regulation and promotes gastric cancer progression. Am J Transl Res (2022) 14(9):6574–85.

22. Cayir, A. RNA A-to-I editing, environmental exposure, and human diseases. Crit Rev Toxicol (2021) 51(5):456–66. doi: 10.1080/10408444.2021.1953438

23. Eisenberg, E, and Levanon, EY. A-to-I RNA editing - immune protector and transcriptome diversifier. Nat Rev Genet (2018) 19(8):473–90. doi: 10.1038/s41576-018-0006-1

24. Xu, X, Wang, Y, and Liang, H. The role of a-to-I RNA editing in cancer development. Curr Opin Genet Dev (2018) 48:51–6. doi: 10.1016/j.gde.2017.10.009

25. Venkat, S, Tisdale, AA, Schwarz, JR, Alahmari, AA, Maurer, HC, Olive, KP, et al. Alternative polyadenylation drives oncogenic gene expression in pancreatic ductal adenocarcinoma. Genome Res (2020) 30(3):347–60. doi: 10.1101/gr.257550.119

26. Shen, P, Yang, T, Chen, Q, Yuan, H, Wu, P, Cai, B, et al. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and a-to-I RNA-editing. Mol Cancer. (2021) 20(1):51. doi: 10.1186/s12943-021-01333-7

27. Wang, M, Liu, J, Zhao, Y, He, R, Xu, X, Guo, X, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N(6) adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. (2020) 19(1):130. doi: 10.1186/s12943-020-01249-8

28. Chen, S, Yang, C, Wang, ZW, Hu, JF, Pan, JJ, Liao, CY, et al. CLK1/SRSF5 pathway induces aberrant exon skipping of METTL14 and cyclin L2 and promotes growth and metastasis of pancreatic cancer. J Hematol Oncol (2021) 14(1):60. doi: 10.1186/s13045-021-01072-8

29. Schizas, D, Charalampakis, N, Kole, C, Economopoulou, P, Koustas, E, Gkotsis, E, et al. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat Rev (2020) 86:102016. doi: 10.1016/j.ctrv.2020.102016

30. Bear, AS, Vonderheide, RH, and O'Hara, MH. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell (2020) 38(6):788–802. doi: 10.1016/j.ccell.2020.08.004

31. Wang, L, Hui, H, Agrawal, K, Kang, Y, Li, N, Tang, R, et al. m(6) a RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J (2020) 39(20):e104514. doi: 10.15252/embj.2020104514

32. Cai, C, Long, J, Huang, Q, Han, Y, Peng, Y, Guo, C, et al. M6A "Writer" gene METTL14: A favorable prognostic biomarker and correlated with immune infiltrates in rectal cancer. Front Oncol (2021) 11:615296. doi: 10.3389/fonc.2021.615296

33. Zhong, W, Wu, Y, Zhu, M, Zhong, H, Huang, C, Lin, Y, et al. Alternative splicing and alternative polyadenylation define tumor immune microenvironment and pharmacogenomic landscape in clear cell renal carcinoma. Mol Ther Nucleic Acids (2022) 27:927–46. doi: 10.1016/j.omtn.2022.01.014

34. Moffitt, RA, Marayati, R, Flate, EL, Volmar, KE, Loeza, SG, Hoadley, KA, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet (2015) 47(10):1168–78. doi: 10.1038/ng.3398

35. Collisson, EA, Bailey, P, Chang, DK, and Biankin, AV. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol (2019) 16(4):207–20. doi: 10.1038/s41575-019-0109-y

36. Bailey, P, Chang, DK, Nones, K, Johns, AL, Patch, AM, Gingras, MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. (2016) 531(7592):47–52. doi: 10.1038/nature16965

37. Feng, X, Li, L, Wagner, EJ, and Li, W. TC3A: The cancer 3' UTR atlas. Nucleic Acids Res (2018) 46(D1):D1027–d30. doi: 10.1093/nar/gkx892

38. Lutz, ER, Wu, AA, Bigelow, E, Sharma, R, Mo, G, Soares, K, et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res (2014) 2(7):616–31. doi: 10.1158/2326-6066.CIR-14-0027

39. Newman, AM, Liu, CL, Green, MR, Gentles, AJ, Feng, W, Xu, Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12(5):453–7. doi: 10.1038/nmeth.3337

40. Collisson, EA, Sadanandam, A, Olson, P, Gibb, WJ, Truitt, M, Gu, S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med (2011) 17(4):500–3. doi: 10.1038/nm.2344

41. Zhang, Y, Liu, L, Qiu, Q, Zhou, Q, Ding, J, Lu, Y, et al. Alternative polyadenylation: methods, mechanism, function, and role in cancer. J Exp Clin Cancer Res (2021) 40(1):51. doi: 10.1186/s13046-021-01852-7

42. Rusk, N. Expanded CIBERSORTx. Nat Methods (2019) 16(7):577. doi: 10.1038/s41592-019-0486-8

43. Thorsson, V, Gibbs, DL, Brown, SD, Wolf, D, Bortone, DS, Ou Yang, TH, et al. The immune landscape of cancer. Immunity. (2018) 48(4):812–30.e14. doi: 10.1016/j.immuni.2018.03.023

44. Pradhan, P, Qin, H, Leleux, JA, Gwak, D, Sakamaki, I, Kwak, LW, et al. The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against b cell lymphoma. Biomaterials. (2014) 35(21):5491–504. doi: 10.1016/j.biomaterials.2014.03.039

45. Fernandez Rodriguez, G, Cesaro, B, and Fatica, A. Multiple roles of m6A RNA modification in translational regulation in cancer. Int J Mol Sci (2022) 23(16):8971. doi: 10.3390/ijms23168971

46. Gao, HF, Cheng, CS, Tang, J, Li, Y, Chen, H, Meng, ZQ, et al. CXCL9 chemokine promotes the progression of human pancreatic adenocarcinoma through STAT3-dependent cytotoxic T lymphocyte suppression. Aging (Albany NY). (2020) 12(1):502–17. doi: 10.18632/aging.102638

47. Kobayashi, H, Gieniec, KA, Wright, JA, Wang, T, Asai, N, Mizutani, Y, et al. The balance of stromal BMP signaling mediated by GREM1 and ISLR drives colorectal carcinogenesis. Gastroenterology. (2021) 160(4):1224–39.e30. doi: 10.1053/j.gastro.2020.11.011

48. Abdel Mouti, M, and Pauklin, S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 signaling network: A pivotal molecular target in PDAC treatment. Mol Ther (2021) 29(3):920–36. doi: 10.1016/j.ymthe.2021.01.002

49. Zhang, D, Lindstrom, A, Kim, EJ, Hwang, CI, Hall, ML, Lin, TY, et al. SEMA3C supports pancreatic cancer progression by regulating the autophagy process and tumor immune microenvironment. Front Oncol (2022) 12:890154. doi: 10.3389/fonc.2022.890154

50. Daugan, MV, Revel, M, Russick, J, Dragon-Durey, MA, Gaboriaud, C, Robe-Rybkine, T, et al. Complement C1s and C4d as prognostic biomarkers in renal cancer: Emergence of noncanonical functions of C1s. Cancer Immunol Res (2021) 9(8):891–908. doi: 10.1158/2326-6066.CIR-20-0532

51. Pastushenko, I, and Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol (2019) 29(3):212–26. doi: 10.1016/j.tcb.2018.12.001

52. Trelford, CB, Dagnino, L, and Di Guglielmo, GM. Transforming growth factor-β in tumour development. Front Mol Biosci (2022) 9:991612. doi: 10.3389/fmolb.2022.991612

53. Hua, H, Kong, Q, Zhang, H, Wang, J, Luo, T, and Jiang, Y. Targeting mTOR for cancer therapy. J Hematol Oncol (2019) 12(1):71. doi: 10.1186/s13045-019-0754-1

54. Guo, Y, Wang, R, Li, J, Song, Y, Min, J, Zhao, T, et al. Comprehensive analysis of m6A RNA methylation regulators and the immune microenvironment to aid immunotherapy in pancreatic cancer. Front Immunol (2021) 12:769425. doi: 10.3389/fimmu.2021.769425

55. Gorchs, L, and Kaipe, H. Interactions between cancer-associated fibroblasts and T cells in the pancreatic tumor microenvironment and the role of chemokines. Cancers (Basel). (2021) 13(12):2995. doi: 10.3390/cancers13122995

56. Foucher, ED, Ghigo, C, Chouaib, S, Galon, J, Iovanna, J, and Olive, D. Pancreatic ductal adenocarcinoma: A strong imbalance of good and bad immunological cops in the tumor microenvironment. Front Immunol (2018) 9:1044. doi: 10.3389/fimmu.2018.01044

57. Sadeghlar, F, Vogt, A, Mohr, RU, Mahn, R, van Beekum, K, Kornek, M, et al. Induction of cytotoxic effector cells towards cholangiocellular, pancreatic, and colorectal tumor cells by activation of the immune checkpoint CD40/CD40L on dendritic cells. Cancer Immunol Immunother. (2021) 70(5):1451–64. doi: 10.1007/s00262-020-02746-x

58. Zou, W, and Restifo, NP. T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol (2010) 10(4):248–56. doi: 10.1038/nri2742

59. Harrington, LE, Hatton, RD, Mangan, PR, Turner, H, Murphy, TL, Murphy, KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol (2005) 6(11):1123–32. doi: 10.1038/ni1254

60. Herting, CJ, Karpovsky, I, and Lesinski, GB. The tumor microenvironment in pancreatic ductal adenocarcinoma: Current perspectives and future directions. Cancer Metastasis Rev (2021) 40(3):675–689. doi: 10.1007/s10555-021-09988-w. doi: 10.1007/s10555-021-09988-w

61. Sideras, K, Braat, H, Kwekkeboom, J, van Eijck, CH, Peppelenbosch, MP, Sleijfer, S, et al. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treat Rev (2014) 40(4):513–22. doi: 10.1016/j.ctrv.2013.11.005

62. Mutgan, AC, Besikcioglu, HE, Wang, S, Friess, H, Ceyhan, GO, and Demir, IE. Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer. Mol Cancer. (2018) 17(1):66. doi: 10.1186/s12943-018-0806-0

63. Chen, H, Yao, J, Bao, R, Dong, Y, Zhang, T, Du, Y, et al. Cross-talk of four types of RNA modification writers defines tumor microenvironment and pharmacogenomic landscape in colorectal cancer. Mol Cancer. (2021) 20(1):29. doi: 10.1186/s12943-021-01322-w

64. Girish, BP, Dariya, B, Mannarapu, M, Nagaraju, GP, and Raju, GSR. Targeting the tumor microenvironment of pancreatic ductal adenocarcinoma using nano-phytomedicines. Semin Cancer Biol (2021) 86(Pt 2):1155–1162. doi: 10.1016/j.semcancer.2021.06.014. doi: 10.1016/j.semcancer.2021.06.014

65. Kong, C, Li, Y, Liu, Z, Ye, J, Wang, Z, Zhang, L, et al. Targeting the oncogene KRAS mutant pancreatic cancer by synergistic blocking of lysosomal acidification and rapid drug release. ACS Nano. (2019) 13(4):4049–63. doi: 10.1021/acsnano.8b08246

66. Zhou, S, Hu, T, Han, G, Wu, Y, Hua, X, Su, J, et al. Accurate cancer diagnosis and stage monitoring enabled by comprehensive profiling of different types of exosomal biomarkers: Surface proteins and miRNAs. Small. (2020) 16(48):e2004492. doi: 10.1002/smll.202004492


Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Gao, Chen, Liu, Zang, Xiao, Zhang, Li, Zhu and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.



 REVIEW
 published: 04 January 2023
 doi: 10.3389/fimmu.2022.1043667

[image: image2]

 Epigenetic modification-related mechanisms of hepatocellular carcinoma resistance to immune checkpoint inhibition

 Shengwei Tao 1, Shuhang Liang 2, Taofei Zeng 1 and Dalong Yin 1* 

 1 Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China, 2 Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China 

 
  Edited by: 
 Hailin Tang, Sun Yat-sen University Cancer Center (SYSUCC), China 

 Reviewed by: 
 Juan Xiao, University of South China, China
 Ning Lyu, Sun Yat-sen University, China 

*Correspondence: 
 Dalong Yin
 doctoryin@ustc.edu.cn 

Specialty section: 
 This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology 

 Received: 13 September 2022

Accepted: 28 November 2022

Published: 04 January 2023

Citation:
Tao S, Liang S, Zeng T and Yin D (2023) Epigenetic modification-related mechanisms of hepatocellular carcinoma resistance to immune checkpoint inhibition . Front. Immunol. 13:1043667. doi: 10.3389/fimmu.2022.1043667

  Hepatocellular carcinoma (HCC) constitutes most primary liver cancers and is one of the most lethal and life-threatening malignancies globally. Unfortunately, a substantial proportion of HCC patients are identified at an advanced stage that is unavailable for curative surgery. Thus, palliative therapies represented by multi-tyrosine kinase inhibitors (TKIs) sorafenib remained the front-line treatment over the past decades. Recently, the application of immune checkpoint inhibitors (ICIs), especially targeting the PD-1/PD-L1/CTLA-4 axis, has achieved an inspiring clinical breakthrough for treating unresectable solid tumors. However, many HCC patients with poor responses lead to limited benefits in clinical applications, which has quickly drawn researchers’ attention to the regulatory mechanisms of immune checkpoints in HCC immune evasion. Evasion of immune surveillance by cancer is attributed to intricate reprogramming modulation in the tumor microenvironment. Currently, more and more studies have found that epigenetic modifications, such as chromatin structure remodeling, DNA methylation, histone post-translational modifications, and non-coding RNA levels, may contribute significantly to remodeling the tumor microenvironment to avoid immune clearance, affecting the efficacy of immunotherapy for HCC. This review summarizes the rapidly emerging progress of epigenetic-related changes during HCC resistance to ICIs and discusses the mechanisms of underlying epigenetic therapies available for surmounting immune resistance. Finally, we summarize the clinical advances in combining epigenetic therapies with immunotherapy, aiming to promote the formation of immune combination therapy strategies.
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  1. Introduction.

Primary liver cancer is the sixth most commonly diagnosed malignancy and the third leading reason for cancer mortality worldwide, accompanied by an extremely high number of new and fatal cases (1).

Hepatocellular carcinoma (HCC) constitutes 75%-85% of primary liver cancer as the commonest subtype. Potential Curative treatments, comprising surgical resection, liver transplantation, and local ablation, are amenable to early-stage HCC patients, which account for less than 20% of all HCC cases (2–4). However, most HCC patients are identified in the unresectable stage given its rapid progression, high malignancy, and inconspicuous early symptoms, resulting in palliative or symptomatic treatment, such as transarterial chemoembolisation (TACE) and systemic therapies (4, 5). Therefore, the identification of appropriate systemic therapy for advanced HCC has been an area of intense interest.

In recent years, with the advancement of precision cancer management, therapeutic strategies for HCC have emerged, including precision surgical resection, targeted molecular therapy based on different subtypes, and immunotherapy. Herein, the current landscape of systemic therapy for HCC treatment strategies is shown in  Figure 1A . The application of multityrosine kinase inhibitor (TKIs) sorafenib as first-line therapy represented a milestone in systematic therapy (6). Despite the SHARPE trial and the ORIENTAL trial demonstrating improved median overall survival (OS) with sorafenib of 2.8 (10.7 vs 7.9)/2.3 (6.5 vs 4.2) months compared with placebo, respectively, anticancer efficacy remained suboptimal with a median survival of less than one year (6, 7). Notably, the therapeutic landscape has vigorously evolved after 2016 despite sorafenib remaining the pillar option for HCC patients during the past decade (5). Lenvatinib was approved for first-line treatment of advanced HCC due to its proven superior progression-free survival (PFS), and overall response rate (ORR) compared to sorafenib (8). In addition, regorafenib and cabozantinib were applied as second-line treatment since it was proven to prolong survival in progressed patients after suffering sorafenib treatment (9, 10). The biomarker-driven REACH-2 trial confirmed the efficacy of ramucirumab, especially in cases with baseline AFP >400ng/ml (11). Despite the promising outlook shown by these phase III studies, the OS benefits remain unsatisfactory.

 

Figure 1 | The landscape of systemic therapy for HCC treatment strategies. (A) The guidelines are sorted out and summarized by 2018 ASCO, 2018 AASLD, and 2020 EASL. The clinical stages of the patients are defined according to BCLC. (B) Main drugs for systemic therapy. TKI, Multi-tyrosine kinase inhibitor; VEGFR, vascular endothelial growth factor receptor; VEGF, vascular endothelial growth factor; ASCO, American Society of Clinical Oncology; AASLD, American Association for the Study of Liver Diseases; EASL, European Association for the Study of the Liver; BCLC, Barcelona Clinic Liver Cancer. 



During past decades, the application of T-cell immune checkpoint inhibitors (ICIs) such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) monoclonal antibodies have completely opened the door to tumor immunotherapy (12–16). Currently, immunotherapy has achieved compelling efficacy in treating several solid and hematologic tumors, and promising clinical breakthroughs in the immune-based treatment of HCC are emerging (17–22). However, it is undeniable that a considerable number of patients experienced primary resistance to ICIs, despite ICIs offering prognostic improvement in certain groups (23). In addition, even patients who initially benefit may ultimately develop resistance, which means only a minority of patients have a long-lasting response to these treatments (19, 20, 24). Many hypotheses have been suggested to be responsible for primary nonresponse or acquired resistance to ICIs, focusing on the tumor-intrinsic factors or the tumor microenvironment (TME), such as lack of immunogenic epitopes, immunosuppressive cell populations, inflammatory phenotypes, and T-cell exhaustion (25–29). Therefore, discovering and identifying the causes of tumor immune escape and screening the best beneficiary population guided by predictive markers may lead to further breakthroughs in managing advanced HCC.

Nowadays, accumulating evidence has found that epigenetic modifications may act essentially in remodeling TME to avoid immune surveillance, affecting the efficacy of immunotherapy. This review mainly concentrates on the epigenetic changes in tumor cells, and the impact of TME reprogramming can be consulted in other reviews (30, 31). The history and advances in immunotherapy for HCC were introduced first, followed by a discussion of the mechanisms of HCC resistance to immunotherapy. Then, we summarize the rapidly emerging progress of epigenetic-related changes during HCC resistance to ICIs and discuss underlying epigenetic therapies available for surmounting immune resistance. Finally, this review summarizes the clinical advances in combining epigenetic therapies with immunotherapy, aiming to promote the formation of immune combination therapy strategies.


 2. History and advances in Immunotherapy for HCC.

Systemic therapy based on TKIs and chemotherapy constituted the dominant treatment for advanced HCC before 2017. Notably, immunotherapies have been regarded as a breakthrough that has changed the treatment landscape for advanced HCC since 2017. Among immunotherapies, the success of ICIs therapy targeting PD-1, PD- L1, and CTLA-4 in solid and hematological tumors has shifted more attention to its potential in advanced HCC ( Table 1  and  Figure 2 ).

 Table 1 | Representative clinical trials for the systemic treatment of HCC. 



 

Figure 2 | Representative clinical trials for the systemic treatment of HCC. Background color: red for trials with first-line settings, pink for trials with second-line settings, and purple for trials with negative results. 



 2.1. Monotherapy for the treatment of advanced HCC.

Monotherapy employing antibodies targeting PD-1, PD-L, and CTLA-4 for the treatment of HCC, as outlined in  Figure 1B . Well-known CheckMate 040 trial (NCT01658878) and KEYNOTE-224 trial (NCT02702414) were the first phase II ICIs trials to have proven promising results, confirming the significant efficacy of nivolumab and pembrolizumab in patients with advanced HCC (19, 20). CheckMate 040 was an open-label, non-comparative, phase I/II dose escalation and expansion trial, enrolling 262 patients with or without sorafenib exposure, demonstrating an ORR of 15% and 20% for nivolumab in the dose-expansion phase and dose-escalation phase, respectively (19). The median OS was 15.6 months in patients treated with nivolumab as second-line therapy, whereas the median OS was 28.6 months with nivolumab in the first-line setting without prior sorafenib therapy. Similarly, another phase II trial KEYNOTE-224, which enrolled 104 patients to evaluate the potential of pembrolizumab as second-line therapy, demonstrated an ORR of 17%, and a median OS of 12.9 months (20). Subsequently, the exciting results of these two trials led to accelerated approvals by the United States Food and Drug Administration (FDA) for nivolumab and pembrolizumab monotherapy as second-line therapy after sorafenib failure for progressive HCC.

Based on positive results from the uncontrolled single-arm trials, some randomized phase III trials were performed to validate the efficiency of monotherapy. CheckMate 459 (NCT02576509) is an open-label, randomized phase III trial that evaluated the efficacy of nivolumab and sorafenib as first-line treatment for advanced HCC in 743 patients (32, 33). The results showed that while patients treated with nivolumab showed a survival benefit of 1.7 months more than those treated with sorafenib, the trial did not meet the statistical significance of its predefined OS endpoint (median 16.4 months versus 14.7 months, HR=0.85; P=0.075). Furthermore, another randomized phase III trial KEYNOTE-240 (NCT02702401) compared the efficiency of pembrolizumab versus placebo as second-line therapy for 413 patients who progressed on previous sorafenib (34). Although the results showed significantly higher median OS and ORR in the pembrolizumab group than in the placebo group, the predefined OS and PFS statistical threshold were still not reached. In spite of demonstrated antitumor activity for nivolumab in the first-line setting and pembrolizumab in the second-line setting, the results of two phase III trials failed, which can be attributed to treatment with new drugs or ICIs after disease progression in the control group. Rewardingly, a recent phase III trial KEYNOTE-394 (NCT03062358) enrolled 453 Asian patients who failed in first-line treatment with sorafenib or oxaliplatin, confirming the remarkable benefits of second-line therapy with pembrolizumab in OS, PFS, and ORR (35). To date, other ICI monotherapies are currently being explored, and detailed results are presented in  Table 1 .


 2.2. Combination therapy for the treatment of advanced HCC.

The dilemma of ICIs monotherapy suggests that combining with other drugs to potentiate the efficacy of ICIs may be a promising direction. Several combination strategies are exhibiting outstanding results, including the combined application of two ICIs, one ICI plus vascular endothelial growth factor (VEGF) inhibitor, and one ICI plus one TKI. ( Table 1 ).

 2.2.1. Combinations of two ICIs.

The combination of nivolumab with ipilimumab was first evaluated by the CheckMate 040 trial, validating an ORR of 32% and a 2-year OS rate of 48% in child-Pugh class A patients previously treated with sorafenib (36). Positive data from this strategy led to accelerated FDA approval in 2020 for second-line treatment, and arm A was selected in an ongoing phase III study CheckMate 9DW (NCT04039607) for comparison with sorafenib or lenvatinib in first-line treatment.

Another regimen, termed STRIDE (Single Tremelimumab Regular Interval Durvalumab), has been shown to have clinical activity and manageable safety in phase I/II trial Study 22 (NCT02519348) (37). More recently, results from this regimen’s Phase III clinical trial HIMALAYA (NCT03298451) were also announced, demonstrating significantly improved ORR and three-year OS rates compared to sorafenib (38). In addition, durvalumab monotherapy was shown to be non-inferior to sorafenib in the first-line treatment. Hence, the STRIDE regimen was approved by FDA in October 2022 for the first-line treatment of unresectable HCC patients.


 2.2.2. Combinations of one ICI and VEGF inhibitor.

The combination of atezolizumab and bevacizumab was explored in a phase Ib trial GO30140 (NCT02715531) that demonstrated an ORR of 36% and a median PFS of 7. 3 months (39). Given such results, a global, open-label, phase III randomized trial IMbrave150 (NCT03434379) was performed to validate the safety and efficiency of this strategy (40, 41). According to the updated study, median OS was prolonged by 5.8 months with atezolizumab plus bevacizumab compared to sorafenib, establishing its superior first-line status in the treatment of advanced HCC over sorafenib (41). This pioneering advance demonstrated the mechanistic synergy and efficacy of the combination of anti-vascular therapy and immunotherapy, inspiring subsequent clinical trials with ICIs in combination with TKIs or anti-VEGF monoclonal antibodies. For instance, a randomized, open-label, phase II/III trial ORIENT-32 (NCT03794440) enrolled 571 Chinese patients with unresectable HBV-associated HCC (42). The results showed that sintilimab plus bevacizumab biosimilar (IBI305) showed significant OS and PFS benefits in first-line therapy with a manageable safety profile compared to sorafenib.


 2.2.3. Combinations of one ICI and one TKI.

A preclinical study revealed that the combination of lenvatinib and PD-1 inhibitors had a synergistic effect and increased efficacy (43). Therefore, a phase Ib clinical trial KEYNOTE-524 (NCT03006926) was performed to verify the safety and efficacy of lenvatinib plus pembrolizumab in patients with unresectable HCC (44). Based on the favorable safety and efficacy demonstrated by this regimen, a phase III trial LEAP-002 (NCT03713593) was subsequently conducted (45). Unexpectedly, although lenvatinib plus pembrolizumab was found to have elevated benefits in OS and PFS, it did not reach the predefined statistically significant difference. Nevertheless, the subgroup analysis of OS suggested that patients with portal vein invasion/extrahepatic metastases, HBV-related HCC, and APF >400ng/mL all benefited more from lenvatinib in combination with pembrolizumab. The regimen of Camrelizumab plus Apatinib has also been shown in Rescue (NCT03463876) and SHR-1210 (NCT03764293) to have positive efficacy and a manageable safety profile in first-line setting (46, 47). Another promising regimen, cabozantinib in combination with atezolizumab, was assessed in advanced renal cell carcinoma (48). However, the phase III trial COSMIC-312 (NCT0375579) of cabozantinib plus atezolizumab for the first-line setting of advanced HCC showed that the combination therapy significantly improved median PFS compared with sorafenib, but failed to improve median OS (49).

In the past few years, despite the failure of some clinical trials, several studies have shown exciting survival benefits, shifting to first-line treatment options ( Figure 2 ). Meanwhile, the combination regimens also showed hidden dangers in tolerability and safety that need attention. Honestly, the efficiency of immunotherapy for HCC remains inadequate compared to other tumors with favorable responses. In fact, only a small percentage of patients with advanced HCC derive significant benefits from ICIs treatment. To address this need, efforts are required to focus on identifying molecular biomarkers that predict response to TKIs or ICIs and exploring novel drug mechanisms in combination with ICIs.




 3. Mechanisms of HCC resistance to immunotherapy.

The hallmark of developing cancer is a dynamic immunoediting process that interacts with the immune system. This hypothesis explains the ability of immune cells to eliminate the tumor (immune surveillance) while shaping the tumor immunogenicity to produce an environment that contributes to tumor growth and progression (immune tolerance) ( Figures 3 ,  4 ). In the battle between the immune system and the tumor, there are three phases in sequence: immune elimination (early cancerous cells are recognized and eliminated by the immune system), immune equilibrium (sporadic tumor cells that survive immune elimination are not visible and cannot grow excessively), and immune escape (tumors gradually grow with distinct clinical features and establish an immunosuppressive microenvironment to evade killing by the immune system) (50, 51). For immunotherapy to be successful, three essential criteria need to be met: firstly, tumor antigen-specific T cell responses need to be activated; secondly, T cells need to infiltrate the TME; and finally, activated T cells need to trigger tumor cell killing mechanisms. Taken together, ICIs treatment failure can be caused by a defect in the above steps.

 

Figure 3 | Schematic diagram of the molecular mechanism of impaired anti-tumor immunity caused by immune checkpoints and reactivation of T cells with PD-1/PD-L1 blocking antibody. When tumor cell PD-L1 binds to T cell PD-1, this interaction leads to T cell dysfunction and lack of anti-tumor activity. Thus, blocking the interaction between PD-1 and PD-L1 with anti-PD-1 or PD-L1 antibodies can reactivate T cells and release their anti-tumor activity. 



 

Figure 4 | Immunosuppressive TME of HCC. In the TME of HCC, there are cell types that promote anti-tumor immunity and cell types that impede effective immune surveillance, which are illustrated in this figure. Treg cell, regulatory T cell; MDSC, myeloid-derived suppressor cell; NK, natural killer; IDO, indoleamine 2,3-dioxygenase; VEFG, vascular endothelial growth factor; TGF-β, transforming growth factor-β. 



It is growingly recognized that epigenetic modifications occurring in tumor cells and immune cells within the TME represent the essential factors of cell growth, immune evasion, and drug resistance. Critical factors of primary response resistance to immune checkpoint blockade have been increasingly recognized, including tumor-intrinsic factors (tumor neoantigen burden and activation of oncogenic signaling pathways), TME (low tumor-infiltrating lymphocytes, exhausted CD8+ T cells, immunosuppressive cells and epigenetic silencing of chemokine), host immune components and microbiomes. Epigenetic modification-induced silencing of gene expression and loss of mutation-associated antigens, which impairs immunogenicity and immune recognition, have been implicated as one of the mechanisms of acquired drug resistance. For example, hypermethylation regulated by DNMTs and histone deacetylation regulated by HDACs contribute to the loss of function of tumor suppressor genes or immune presenting genes (e.g., MHC class-I expression), leading to tumor antigen presentation dysfunction and immune evasion (52). Moreover, activating mutations in CTNNB1 were correlated with a low response to ICIs monotherapy in advanced HCC patients (53). Despite multiple factors that might explain the therapeutic outcomes of ICIs, acquired resistance to HCC may be primarily attributable to the reprogramming of TME, which impedes the infiltration of lymphocytes (54–57).


 4. Epigenetic modification-related mechanisms of HCC resistance to ICIs.

Epigenetics is a mechanism that changes biological phenotypes without involving DNA sequence changes, and such changes can be passed on to offspring. Specifically, epigenetic modifications include chromatin structure remodeling, DNA methylation, histone post-translational modifications, and non-coding RNA levels ( Figure 5 ).

 

Figure 5 | The regulatory systems involved in the epigenetic landscape of HCC. The epigenetic marks in HCC include chromatin structure remodeling, DNA methylation, histone post-translational modification and non-coding RNA. 



 4.1. Chromatin structure remodeling.

Chromatin is a dynamic structure composed of DNA and histones, consisting of H2A, H2B, H3, H4, and DNA (58, 59). Chromatin conformation is essentially controlled by DNA modifications and histones subjected to post-translational modifications, leading to altered transcriptional activity (60, 61). The mating-type switch/sucrose non-fermenting (SWI/SNF) complex regulates chromatin accessibility in an adenosine triphosphate (ATP)-dependent nucleosome remodeling manner, which is the most intensively studied chromatin remodeling complex. Hence, its gene-encoding region is frequently mutated in tumors (62). The SWI/SNF complex is a macromolecular complex of 12-15 subunits, including a catalytic ATPase subunit, SWI/SNF related, matrix associated, actin-dependent regulator of chromatin, subfamily a, member 4 (SMARCA4), and several subunits, such as AT-rich interaction domain 1A (ARID1A) and ARID1B or polybromo 1 (PBRM1) and ARID2 (63). SWI/SNF subunit inactivating mutations, such as ARID1A, ARID1B, ARID2, PBRM1, and SMARCA4, are frequently detected in HCC (62).

ARID1A encodes one subunit of the SWI/SNF complex and regulates many processes requiring DNA access (such as transcription, DNA damage repair, and replication) by remodeling chromatin structure. ARID1A mutation was found to be associated with larger HCC and highly or moderately differentiated HCC (64). Moreover, He et al. found that ARID1A downregulation was associated with metastasis and poor prognosis in HCC, possibly due to the downregulation of E-cadherin (65). In addition, ARID1A mutations have also been reported to cause angiogenesis by upregulating angiopoietin-2 (Ang2) via H3K27ac modification (66). An in vivo experiment revealed that ARID1A knockdown could lead to mouse hepatocarcinogenesis, accompanied by macrophage and neutrophil infiltration and activation of STAT3 and NF-κB pathways (67). Notably, mutations in the SWI/SNF complex have been found to be involved in resistance to ICIs. ARID1A-deficient tumor-bearing mice exhibited increased mutational load as well as better lymphocytic tumor infiltration accompanied by increased PD- L1 expression in ovarian cancer. And ARID1A-deficient mice combined with anti-PD-L1 treatment were significantly more effective than mice with ARID1A wild-type ovarian tumors (68). Furthermore, inhibition of PBRM1, another SWI/SNF complex, was found to enhance immunotherapeutic response by increasing tumor immunogenicity (69). These results suggest that the aberrant SWI/SNF complex may engage in the TME of HCC and inhibition of the SWI/SNF complex may offer a combined effect with ICIs. More in-depth studies are needed to elucidate the mechanism of mutated SWI/SNF complexes shaping the TME.


 4.2. DNA methylation.

DNA methylation is achieved by adding a methyl group to cytosines at CpG sequences in gene-promoter regions by DNA methyl transferases (DNMT), resulting in gene silencing. The overall depletion of methylation at repetitive element regions that preserve genomic stability while exhibiting hypermethylation at promoter regions of tumor-suppressor genes is prevalent in cancer (70–73). In HCC, significantly elevated levels of DNA hypermethylation were observed in the promoters of genes associated with TP53, cAMP, serine proteases, and NADH regulation compared to normal tissues (74). Analysis of the cohort of human HCC versus normal tissues revealed the signature of tumor suppressor gene hypermethylation as detected by methylation-specific PCR (75). Moreover, genes regulated by methylation sites in non-tumor tissues of hepatitis cirrhosis potentially drive tumorigenesis and recurrence and carry significant prognostic value (76–78). During the progression of cirrhosis to advanced HCC, ascending DNA methylation can distinguish the normal liver from the diseased tissue (74, 79–81).

The mechanisms contributing to hepatocarcinogenesis and drug resistance due to dysregulated DNA methylation may be diversified. For example, the expression of DNMT and TET is altered during hepatocarcinogenesis (82, 83). DNMT3 is overexpressed in HCC and correlates with hypermethylation of promoters controlling 22 oncogenes (83, 84). High Dnmt3b expression in HCC is regulated by the IL-6/STAT3 signaling pathway, contributing to resistance to sorafenib and poor prognosis (85). DNA methylation in HCC may also alter genes involved in immune surveillance (86–89). In sorafenib-resistant HCC cells, overexpression of DNIMT1 is accompanied by PD-L1 expression, causing poor prognosis (90). PD-L1knockdown or drug interference reverses sorafenib resistance in HCC by restoring the expression of CDH1, an intercellular adhesion molecule that inhibits HCC metastasis, which is silenced by DNMT1 methylation (90). Subsequently, it was shown that the DNMT inhibitor 5-azacytidine combined with anti-PD-L1 therapy led to tumor regression accompanied by increased cytotoxic T-lymphocyte infiltration in mouse models compared to monotherapy (91). This mechanism is synergistic with immunotherapy by inducing upregulation of the T helper 1 (Th1)-type chemokines CXCL9 and CXCL10, causing effective T cell traffic to the TME. Furthermore, SGI-110 (Guadecitabine), a second-generation DNMT1 inhibitor, exhibited anti-carcinogenic and anti-angiogenic activity in a xenograft HepG2 model (75, 92). These studies suggest that inhibition of epigenetic modifiers may collaborate with ICIs by strengthening immunogenicity, remodeling effective T cell function, and modifying the immunosuppressive TME, making more exploration needed.


 4.3. Histone post-translational modifications.

Histone modifications, including histone methylation, acetylation, ubiquitination, sumoylation, and phosphorylation, have been intensively studied in different cancers and are considered crucial factors for disease progression and immunotherapy resistance (93–96). The histone tails are modified to reversibly modulate chromatin compaction to promote or constrain accessibility to genes and further activate or silence gene transcription processes (97). Dysregulation of epigenetic modifiers of histones is recognized to exert an essential influence on hepatocarcinogenesis and immune escape ( Figure 6 ).

 

Figure 6 | Typical histone post-translational modifications and DNA methylation mechanism. The figure shows the role of epigenetic regulation of chromatin by DNA methylation and histone post-translational modifications in the occurrence and development of HCC. The figure highlights the role of histone demethylase (HDM), histone methyltransferase (HMT), histone acetyltransferases (HAT), histone deacetylase (HDAC), and DNA methyltransferase (DNMT) in the formation of epigenetic characteristics of HCC. Ac, acetylation; Me, Methylation. The figure shows that EZH2 overexpression leads to elevated H3K27me3 levels on the promoters of CD274 and interferon regulatory factor 1 (IRF1), impeding PD-L1 expression. In, addition, the alteration caused by HDAC8 overexpression activates the Wnt/β-Catenin pathway, which in turn impairs antitumor immunity of antigen-specific T cells resulting in ICI resistance. 



 4.3.1. Histone methylation.

The methylation of lysines on histones is mainly modulated by histone methyltransferases (HMTs) and histone demethylase (HDMs). In contrast to transcriptional activation due to histone acetylation, the effects of histone methylation are dictated by the location and number of residue methylation. For instance, the monomethylation of lysine 9 and 27 of histone H3 (H3K9me1 and H3K27me1) is correlated with an active chromatin state. In contrast, the trimethylations on lysine 9 and 27 of histone H3 (H3K9me3 and H3K27me3) are associated with a repressive chromatin (98).

Available evidence suggests that aberrant alterations in histone-modifying enzymes and anomalous histone modifications of genes involved in angiogenesis, cell cycle regulation, and cell adhesion are common in the progression of hepatocarcinogenesis. For example, H3K9me2 and H3K9me3 were overexpressed in HCC and correlated with a bad prognosis (99). Similarly, another study has also emphasized the critical role that high levels of H3K9me3 and its HMT SUV39H1 perform in the development and recurrence of HCC (100). The identical effect was also substantiated in other HMTs, such as SETDB1, G9a, and EHMT2 (101–105). Among the HMTs family, enhancer of zeste homolog 1 and 2 (EZH2), a catalytic subunit of the polycomb repressive complex 2 (PRC2), has recently captured much discussions. EZH2 is the crucial molecule of PRC2 and catalyses the trimethylation of H3 (H3K27me3) lysine residues to mediate the silencing of target genes (106, 107). A high association has been established between hyper-expressed EZH2 and HCC, indicating that EZH2 is tightly related to an aggressive phenotype and unfavorable prognosis (108, 109). Moreover, both EZH2 knockdown and drug blockade reduced the level of H3K27me3, resulting in reduced tumorigenesis (110).

The benefits of EZH2 inhibitors in combination with targeted therapy have begun to emerge. Kusakabe et al. observed overexpression of EZH2 and H3K27me3 in sorafenib-resistant cells, while the combination of sorafenib with an EZH2 inhibitor reversed sorafenib resistance resulting in a synergistic antitumor effect (111). Recently, it has been proposed that EZH2 can influence lymphocyte subpopulation differentiation and function to reshape the TME, and thus inhibition of EZH2 may be a novel strategy to improve anti-tumor immunity in certain cancers (112–114). Two H3K4me3-specific HMT, MLL1, and WDR5 have been proven to block immune escape and improve anti-PD-1 immunotherapy in pancreatic cancer (115, 116). Xiao et al. found that EZH2 potentiated H3K27me3 levels on the promoters of CD274 and interferon regulatory factor 1 (IRF1) to impede PD-L1 expression, suggesting that EZH2 inhibition combined with ICIs may provide accessible benefit (117). A study by Bugide et al. came to the identical conclusion, demonstrating that genetic or pharmacological inhibition of EZH2 induces re-expression of chemokine CXCL10 in HCC and therefore promotes migration and infiltration of NK cells into the tumor (118). The scope for clinical application of EZH2 inhibitors is being actively explored (119). Furthermore, given the outstanding inhibition of tumor growth demonstrated by EZH2 inhibitors in combination with anti-PD-1 therapy, Tazemetostat has been approved as the most widely studied EZH2 inhibitor as a first-line treatment option for epithelioid sarcoma (112, 114).


 4.3.2. Histone acetylation.

The acetylation of lysines on histones is mainly controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs), which are responsible for mediating chromatin structural sparing and transcriptional activation of genes (120). Numerous studies have established a robust correlation between HCC and the dysregulation of HDAC. For example, Ler et al. revealed that HDAC1 and HDAC2 expression was upregulated in most HCC tissues, and HDAC1 expression is related to the degree of malignancy (121, 122). HDAC3 has been reported to be involved in DNA damage and repair processes, adjusting the balance between DNA damage and protumorigenic transcription (123, 124). hMOF, the histone acetyltransferase responsible for H4K16 acetylation, was found to have a dual effect of inhibiting growth and promoting vascular invasion in HCC, the exact mechanism of which remains unclear (125, 126).

Based on the currently available evidence, many efforts have focused on the function of HDAC in TME. Several studies have suggested that, in addition to altering the intrinsic phenotype of tumor cells, epigenetic therapies exhibit the potential to reverse primary or acquired resistance to ICIs. For example, Aberrant epigenetic modification by HDAC8 overexpression was demonstrated to play a crucial role in resistance to ICI (127). The alteration caused by HDAC8 overexpression activates the Wnt/β-Catenin pathway, which in turn impairs antitumor immunity of antigen-specific T cells resulting in ICI resistance (127, 128). Moreover, HDAC10 was found to recruit EZH2 enabling modification of the CXCL10 promoter region H3K27me3, producing CXCL10 transcriptional repression and therefore inhibiting NK cell migration and infiltration towards HCC (129). Therefore, inhibitors against HDACs and HATS are expected to be new targets for HCC management and require validation of effects verified in preclinical and clinical trials.



 4.4. Non-coding RNA.

Non-coding RNAs (ncRNAs) are not responsible for the translation into proteins and perform roles in regulating DNA methylation, histone modification, and gene silencing. Aberrations of ncRNAs have been reported extensively in HCC, and detailed information on these reports can be found in the following reviews (130–134). Given the immune-related focus of this review, representative ncRNAs have been selected for elaboration.

The expression of many microRNAs were closely associated with the degree of differentiation, and tumor metastasis of HCC, such as miR-497, miR-1246, and miR-378a-3p (135, 136). In addition, miR-378a-3p was also proved to directly regulate PD-L1 and STAT3 signaling to inhibit HCC, which may be a potential target in the future (137). Moreover, liver-derived exosome miR-92a-3p was identified as a potential biomarker for predicting HCC metastasis. Mechanistically, exosomal miR-92a-3p plays a key role in epithelial-mesenchymal transition (EMT) progression and promotion of metastasis through inhibition of PTEN and activation of the Akt / Snail signaling pathway (138). MiR-1 was found to be induced by NRF-2, promoting upregulation of PD-L1 expression and maintaining HCC resistance to sorafenib (139). MiR-200c inhibits PD-L1 expression by binding to the 3’ untranslated region (3’ UTR) of CD274 in HCC (140). Similarly, MIR-570 can also affect PD-L1 mRNA by binding its 3'UTR in HCC (141). The miR-144/451a cluster was also found to promote macrophage M1 polarisation and activity in a hepatocyte growth factor (HGF) and macrophage migration inhibitory factor (MIF)-dependent manner to inhibit HCC development (142). MiR-144/451a was also revealed to promote macrophage M1 polarisation in a specific cytokine-dependent manner to inhibit HCC development.

In terms of long non-coding RNAs (lncRNAs), KCNQ1 overlapping transcript 1 (KCNQ1OT1) was found to promote sorafenib resistance and PD-L1-mediated immune escape by sponging miR-506 and miR-146a-5p (143, 144). Cancer susceptibility candidate 11 (CASC11) was found to stabilize E2F transcription factor 1 (E2F1) mRNA by recruiting eukaryotic translation initiation factor 4A3 (EIF4A3), which in turn affects the activation of NF-KB signaling pathway and Pl3K/AKT/mTOR pathway, and further regulated PD-L1 expression (145). The above researches suggest that selected ncRNAs therapies combined with ICIs may be promising treatment candidates. It is encouraging that OTX-2002, the first mRNA therapeutic to downregulate MYC expression pre-transcriptionally through epigenetic regulation, has been approved for application in HCC patients. Currently, MYCHELANGELO I (NCT05497453) is evaluating the potential of OTX-2002 as a single agent or in combination with TKIs or ICIs.



 5. The combination of epigenetic drugs with immunotherapies.

Unlike genetic mutations, epigenetic alterations are amenable to pharmacological interventions due to their flexible and variable interactions, rendering them a promising target for reversing ICIs resistance (146). Actually, epigenetic drugs not only exert a direct effect on tumors but also have the potential to remodel the suppressed TME and synergistically improve ICI efficacy (147–149). Currently, there is a wealth of research demonstrating the effectiveness of epigenetic modifiers drugs in many cancer models and pre-clinical applications (150, 151). In addition, some of these drugs have been intensively investigated in treating HCC. Therefore, it is reasonable to expect that coupling epigenetic drugs with ICIs may offer a desirable prospect for ICIs-resistant patients ( Figure 7 ). Epigenetic modifications within TME were elaborated on in a previous review, and this review focuses on the epigenetic alterations occurring in HCC (30, 152). The current exploration of epigenetic drugs combined with ICIs in the clinic is summarized in  Table 2 .

 Table 2 | Epigenetics drugs in clinical trial. 



 

Figure 7 | Mechanisms of combined epigenetic and immunotherapeutic strategies for HCC treatment. (A) Figure A illustrates the enhanced efficacy of DNMTi combined with ICIs by promoting immune cell activation and infiltration into TME and inducing hypermethylated silenced neoantigen expression. (B) Figure B demonstrates that HMTi combined with ICIs promotes immune cell activation and infiltration to TME and enhances NK cell-mediated HCC killing by upregulating the expression of chemokines, PD- L1, and NK cell ligand, which are inhibited by high histone methylation. 



 5.1. DNA methyltransferase inhibitors (DNMTi).

DNMTi was shown to enable the demethylation of cancer-testis genes and repetitive sequences, leading to improved host immune surveillance by increasing immunogenicity (153). Currently, the inhibitors of DNMT include 5-azacytidine, decitabine, zebularine (ZEB), and guadecitabine (SGI-110). Some studies have also highlighted the association between DNA methylation and immune checkpoints or lymphocytic infiltration. In mouse models, the DNMT inhibitor 5-azacytidine reactivated the expression of TH1-type chemokines (CXCL9 and CXCL10), increased infiltration of cytotoxic T-lymphocyte infiltration, and caused tumor regression in combination with anti-PD-L1 (91). Besides resensitizing sorafenib-resistant cells, decitabine also brought PFS and OS benefits clinically (90, 154). SGI-110, a novel DNMTi, has already been demonstrated in a preclinical study to inhibit HCC growth and enhance the antitumor effects of sorafenib (75). Moreover, Liu et al. proposed that SGI-110 has the potential to combine immune checkpoint therapy by reactivating endogenous retroviral elements (ERVs) to stimulate immune response pathways (92). More clinical trials combining SGI-110 and immunotherapy are ongoing (NCT01752933, NCT03257761).

However, DNMTi does not seem to perform a favorable function necessarily. A previous study has reported that brain-expressed X-linked protein 1 (BEX1) methylation mediated by DNMT1 inhibited HCC stemness and tumorigenicity, while DNMT1i ZEB promoted self-renewal and invasiveness in the high cancer stem cell (CSC) score HCC group (155). They found that the promoter region of the BEX1 gene was highly methylated, and the activation of BEX expression by ZEB treatment aberrantly triggered the Wnt/β-catenin signaling pathway, causing the proliferation of tumor hepatocytes. Moreover, BEX overexpression was also found to lead to resistance to sorafenib, and knockdown treatment restored its sensitivity. Considering the differential effects of DNMTI, its exploration in different patient subtypes should be emphasized in subsequent studies to ensure a better survival benefit.


 5.2. Histone demethylase/methyltransferase inhibitors (HDTi/HMTi).

The potential role of HMT and HDM inhibitors in managing HCC is also being actively pursued. For example, EZH2 negatively regulates PD-L1 in an IFN γ-dependent manner and might provide a promising target for combination immunotherapy (117). While previous studies demonstrate that EZH2 inhibitor GSK126 enhances transcription of NK cell ligands to promote natural killer cell-mediated HCC cell death, additional studies ought to be conducted to validate the benefit of EZH2 inhibitors in conjunction with ICIs (118). Furthermore, upregulation of another HMT, G9a, was defined to be significantly associated with HCC progression and aggressive clinicopathological features. Thus, inhibition of G9a may lead to novel approaches (104). Interestingly, the combination therapy of DNMTi and HMTi/HDTi also yielded therapeutic benefits. As an example, improved antitumor effects of ICIs combining 5-aza and 3-deazaneplanocin A were verified in a subcutaneous transplanted hepatoma cell model (91). CM-272, a dual inhibitor of G9a and DNMT1, exhibits anticancer efficacy in vitro and in vivo by restoring the differentiation phenotype of HCC cells (101). While CM-272 was proven to potentiate ICIs therapy in liver fibrosis and bladder cancer, the propensity in HCC remains to be established both at a fundamental and clinical phase (156, 157).


 5.3. Histone deacetylase inhibitors (HDACi).

HDACi is clinically approved for treating hematologic malignancies that warrant continuous evaluation of its value in HCC. HDAC inhibitors such as TSA, panobinostat, valproic acid, and ITF2357 can inhibit HCC cells and may provide a combined effect with immunotherapy (158–161). TSA has been shown to improve the anticancer effects in combination with sorafenib (162). The pan-deacetylase inhibitor panobinostat demonstrated inhibitory effects by affecting the expression of angiogenic and epithelial-mesenchymal transition markers in the HCC model (163, 164). In addition, low expression of another HDAC, SIRT7, is proposed to induce global H3K18 acetylation and reactivate key metabolic and immune regulators, affecting tumorigenicity in vitro and in vivo (165). And it has been demonstrated that SIRT7 blockade stimulates PD-L1 expression, which provides a foundation for combining SIRT7 inhibitors with ICIs (166). Moreover, HDACi combined with DNMTi could provide stronger anti-proliferative effects compared to single agents in a xenograft HCC model (167).

Accumulating evidence has demonstrated that HDAC inhibition reprograms the TME to convert cold tumors into hot ones. HDAC inhibitor Belinostat was previously tested for its potential to treat advanced unresectable liver cancer in a multicenter phase I/II study (168). Later, a preclinical study demonstrated that belinostat has immune-mediated antitumor effects and may enhance the effectiveness of immunotherapy. In a subcutaneous Hepa129 mouse HCC model, Belinostat was observed to enhance anti-CTLA-4 antitumor activity by promoting early infiltration of M1 macrophages and suppressing regulatory T cells (169). Yang et al. observed that the inhibition of HDAC8 relieved T-cell hypo-infiltration by reversing H3K27 hypoacetylation occurring in the metabolic and immunomodulatory factor genome and activating T-cell transport chemokine expression in HCC (128). In a syngeneic and orthotopic C57BL/6 mouse Hepa1-6 hepatoma model, selective HDAC8 inhibitor PCI -34051 combined with anti-PD-L1 therapy improved tumor-infiltrating CD8+ T cells, eliciting an effective and up to 15-month tumor-free response to ICB. Comparably, HDAC2 inhibitors were also shown to block the transcription of immune checkpoint genes mediated by nuclear translocation of PD-L1, causing increased infiltration of CD8+ cytotoxic T cells in HCC (170). Inhibition of HDAC6 also specifically triggers TH17 cell activation and strengthens the anti-tumor immune response (171). Considering the prominent regulatory effects of HDAC in hepatocarcinogenesis and TME, it is conceivable that the combination of HDACi and immunotherapy will result in a better survival benefit.


 5.4. Histone reader protein inhibitors (BETi).

Satisfactory results were also obtained for targeted epigenetic readers. The expression of acetylated H3 and H4 reader BRD4 is augmented in HCC, and the BRD4 inhibitor JQ-1 was proven to suppress HCC proliferation (172–174). Importantly, targeting BRD4 also showed enhanced efficacy of ICI in the experimental HCC model. BET bromodomain inhibitor molibresib combined with anti-PD-L1 shows enhanced anti-tumor effects by decreasing Monocytic-MDSC and increasing tumor-infiltrating lymphocytes (TILs) in fibrotic HCC mouse models (112).

Taken together, several therapeutic approaches targeting epigenetic mechanisms can modify tumor progression and response to treatment, supporting great promise in combining epigenetic strategies with ICIs. However, efforts must also be devoted to further understanding the complex epigenome and its regulation, discovering and exploiting novel epigenetic mechanisms, and assessing the effectiveness and safety of these approaches. The clinical application of epigenetic modulators is far from being realized, and subsequent implements for evaluating safer and more effective combined ICIs in larger populations warrant adequate attention. As the results of these trials are reported, distribution patterns based on biomarkers will likely provide the greatest benefit to patients.



 6. Biomarkers of ICIs responses in HCC.

Despite remarkable advances in etiological prevention, diagnostic techniques, and treatment strategies, the 5-year survival rate for all stages of HCC is still only 18%, prompting clinicians and scientists to scout for bio-predictive marker models for ICIs efficacy based on tumor and TME (118, 119). Different immunocompetent subtypes respond differently to ICIs treatment. Through in-depth characterization of the high-resolution HCC immune landscape, better prognostic enhancement strategies may be developed for specific immunocompetent subtypes. Therefore, identifying molecular biomarkers predicting response to TKIs or ICIs remains a valuable area of research to be actively explored.

Although previous studies have attributed positive immune responses to PD-L1 staining, tumor mutational burden (TMB), and microsatellite instability (MSI) in many tumors, it does not apply to HCC (175–178). A clinical study found no significant differences in OS and relapse-free survival (RFS) between PD-L1 high- and low-expressing subgroups in 2979 HCC patients. On the flip side, CheckMate017 and OAK also found that non-small-cell lung cancer patients with negative PD-L1 expression could benefit from immunotherapy (179, 180). Meanwhile, PD-L1 expression levels did not associate with immune response in HCC, according to the CheckMate040 and Keynote224 studies (19, 20, 181). ICIs response does not correlate with mutational burden in HCC, as revealed by next-generation sequencing (NGS) (53, 177). Analysis of RNA-seq data in the TCGA database also revealed consistent results (182). The incidence of MSI-high or mismatch repair defects (dMMR) in HCC is estimated to be low (~3%); patients with high microsatellite instability did not indicate a high response rate (183, 184). Nonetheless, two recent studies showed that higher intra-tumoral frequency of PD-1high CD8+ T cells and CD38+ CD68+ macrophages were correlated with better response to ICIs detected by flow cytometry and multiplex IHC (185, 186). Currently, the prognostic relationship between PD-L1 expression on tumor cells and TILs remains controversial (187, 188). Therefore, the importance of spatial heterogeneity of the HCC TME in the evaluation of ICIs efficacy markers deserves further evaluation.

Recently, a clinical study showed that Wnt/β-Catenin pathway mutations frequently occur in HCC patients resistant to ICIs therapy (189). Mechanically, activation of Wnt/β-Catenin leads to ICIs resistance by impairing antigen-specific T cell-mediated antitumor immunity, which is demonstrated by constructing tail vein injections of a transposon-based vector expressing MYC; p53−/− (190, 191). There is much evidence that cytokine and immune cell infiltration in TME may influence the outcome of ICIs. For instance, serum CD137 concentration and M1 macrophage infiltration were potential predictors for HCC patients treated with immune-combined anti-vascular therapy. Moreover, several studies have also found that TGF β attenuates the ICIs by limiting TIL within the tumor (192, 193). In addition, the etiology of HCC may also be responsible for the heterogeneity of patient response to immunotherapy. For example, the HBV-associated HCC microenvironment is more immunosuppressive and exhaustive than the non-viral-associated HCC. The high enrichment of PD-1high Tregs and PD-1+ CD8+ resident memory T cells in HBV-associated HCC implies an advantage of anti-PD-1therapy (194–196). Notably, a previous study found that the gut microbiome regulates chemokine-mediated immune cell accumulation via bile acids, affecting immune surveillance in HCC (197). Two recent clinical studies have demonstrated robust correlations between the gut microbiome and bile acids and the efficacy of ICIs therapy in HCC (198, 199).

Although several predictors have been identified, any single predictive biomarker has limitations and cannot effectively identify the beneficiary population. Using combined assays or building effective predictive models may improve predictive sensitivity and effectively capture the immune status of tumor patients. In the future, analyzing tumor and microenvironment characteristics through large samples and building multivariate models for immunotherapy efficacy prediction using machine learning and artificial intelligence will help develop a new paradigm for precision tumor therapy.


 7. Conclusions.

HCC is a malignancy that severely threatens human health, and most patients will progress to the advanced stage with a poor prognosis. Treatment for advanced HCC has been lacking effective means, and with the development of immunotherapy, HCC treatment is at the dawn of a new era. However, immune resistance and disappointingly low patient response rates are critical reasons plaguing efficacy improvement. As introduced by this review, epigenetic changes may be essential biomarkers for identifying immunotherapy responders, as well as promising targets for overcoming resistance to ICIs. The mechanisms that operate to drive drug resistance remain to be further elucidated.

Pretreatment of the microenvironment with epigenetic reagents before immunotherapy may help reprogram immune cells toward subtypes that are effective against cancer. The development of predictive biomarkers can help reveal the mechanism underlying ICIs resistance and the interaction mechanism within tumors and TME, which is crucial for individualized immunotherapy. Although our knowledge is still constrained, the current evidence indicates that epigenetic therapies exhibit sufficient potential. With the exploration of combination therapies (such as combining ICIs with TKIs or Epigenetic drugs) and immunotherapy guided by practical predictive markers to screen for optimal benefit populations, there may be further breakthroughs in managing advanced HCC.
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Introduction

Cellular senescence is a hallmark of tumors and has potential for cancer therapy. Cellular senescence of tumor cells plays a role in tumor progression, and patient prognosis is related to the tumor microenvironment (TME). This study aimed to explore the predictive value of senescence-related genes in thyroid cancer (THCA) and their relationship with the TME.



Methods

Senescence-related genes were identified from the Molecular Signatures Database and used to conduct consensus clustering across TCGA-THCA. Differentially expressed genes (DEGs) were identified between the clusters used to perform multivariate Cox regression and least absolute shrinkage and selection operator regression (LASSO) analyses to construct a senescence-related signature. TCGA dataset was randomly divided into training and test datasets to verify the prognostic ability of the signature. Subsequently, the immune cell infiltration pattern, immunotherapy response, and drug sensitivity of the two subtypes were analyzed. Finally, the expression of signature genes was detected across TCGA-THCA and GSE33630 datasets, and further validated by RT-qPCR.



Results

Three senescence clusters were identified based on the expression of 432 senescence-related genes. Then, 23 prognostic DEGs were identified in TCGA dataset. The signature, composed of six genes, showed a significant relationship with survival, immune cell infiltration, clinical characteristics, immune checkpoints, immunotherapy response, and drug sensitivity. Low-risk THCA shows a better prognosis and higher immunotherapy response than high-risk THCA. A nomogram with perfect stability constructed using signature and clinical characteristics can predict the survival of each patient. The validation part demonstrated that ADAMTSL4, DOCK6, FAM111B, and SEMA6B were expressed at higher levels in the tumor tissue, whereas lower expression of MRPS10 and PSMB7 was observed.



Discussion

In conclusion, the senescence-related signature is a promising biomarker for predicting the outcome of THCA and has the potential to guide immunotherapy.
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Introduction

Thyroid cancer (THCA) is the most common malignant disease of the endocrine system, and its incidence has steadily increased in recent years (1). Among THCA, 90% of cancers are epithelial cell-derived, which are then divided into papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), and anaplastic thyroid cancer (ATC). In addition, less than 5% of THCA cases are diagnosed as medullary thyroid cancer (MTC) (2). In 2022, statistics revealed 11, 860 and 31, 940 new cases of THCA in American men and women, respectively (3). Despite the low mortality, some cases may progress to invasive diseases, and recurrence and metastasis occurs in approximately 10–30% of patients (4). Thus, aggressive THCA may benefit from immunotherapy and targeted treatments.

Cellular senescence responds to diverse intrinsic and extrinsic stimulation to remove senescent cells and maintain homeostasis (5). Cellular senescence can be caused by mitosis, carcinogenic activation, tissue damage signaling, progressive telomere shortening, oxidation, genotoxic stress, telomere structure change, ionizing radiation, epigenetic changes, chromatin disorders, protein steady-state disorders, mitochondrial dysfunction, inflammation, radiation therapy, or chemotherapy (6). Accumulation of cell damage leads to both cell senescence and cancer. Cell senescence and cancer are closely associated. Evidence has shown that senescence is both beneficial and harmful to tumorigenesis and cancer progression. Senescence causes cells to remain in a permanent cell stagnation cycle, which can prevent tumor formation. Conversely, if senescent cells cannot be eliminated in time and accumulate, they may cause tumorigenesis, invasion, progression, and metastasis (7).

The genomic profile of cancer has been widely studied in recent years. In THCA, the BRAFV600E mutation is the most frequent somatic mutation site. The BRAFV600E mutation has been confirmed as an independent factor influencing the radioiodine avidity of PTC with lung metastases (8). Evidence has demonstrated that a single BRAFV600F mutation is not related to the prognosis of THCA; however, cooperation with other factors may lead to poor THCA outcomes. Zerfaoui et al. reported that the nuclear interaction of the Arp2/3 complex and BRAFV600E leads to vemurafenib resistance and the progression of THCA (9). The thyroid gland is an organ closely associated with immunity. Hashimoto’s thyroiditis is an autoimmune disorder that has been confirmed to be a protective factor against lymph node metastasis in PTC (10). PTC is characterized by lymphocytic infiltration, which may be associated with improved prognosis (11). Therefore, evaluation of THCA genomics based on specific genes, such as ferroptosis-related, pyroptosis-related, autophagy-related, and senescence-related genes, may have significant value for predicting the prognosis and immunotherapy response.

There are various prediction models of other cancer types based on the senescence-related genes which can predict prognosis and treatment effect, demonstrating that senescence-related genes can play important roles in various cancers. We proposed that senescence-related genes can also be used to predict survival and guide therapy for THCA. To provide global evidence of senescence-related genes in thyroid cancer, we identified a senescence-related signature and demonstrated that it can reliably predict the prognosis of THCA. Functional enrichment analyses were conducted to explore putative mechanisms, and the immune cell infiltration pattern, immunotherapy response, and drug sensitivity were confirmed to be significantly related to senescence-related signatures.



Methods and materials


Data collection and processing

THCA mRNA expression data (FPKM) and clinical information were extracted from TCGA online database (https://portal.gdc.cancer.gov/), which included 503 tumor and 56 normal samples. A total of 432 senescence genes were identified in the MSigDB (Molecular Signatures Database) genetic database (Supplementary Table S1) (12). TCGA-THCA was divided into a training group and a test group at a 1:1 ratio using R software.



Identification of the senescence clustering

To explore the correlation between the senescence-related genes, a protein-protein-interaction (PPI) network was constructed on STRING (https://string-db.org/), and the functional annotations were analyzed. To further reveal the expression patterns of senescence-related genes in THCA, consensus clustering was conducted to identify the best senescence clusters. The expression of 432 senescence genes was used to conduct the consensus clustering with the “ConsensusClusterPlus” R package (13). The consensus matrix and cumulative distribution function (CDF) were used to calculate the optimal number of clusters. To determine the survival differences between clusters, the Kaplan-Meier (K-M) method was performed between the subtypes. Subsequently, the expression difference of immune checkpoints was analyzed using the limma algorithm, and p < 0.05 was considered significantly different (14). To evaluate immune cell infiltration in the clusters, we conducted an analysis to explore different immune cell types, such as CD8 T cells, cytotoxic lymphocytes, endothelial cells, fibroblasts, monocytic lineage, myeloid dendritic cells, neutrophils, T cells, and NK cells.



Establishment of the senescence-related signature

The limma algorithm was used to identify differentially expressed genes (DEGs) between senescence clusters (Supplementary Table S2). Univariate Cox regression analysis was then conducted to calculate the prognostic DEGs, with HR<1 or >1 regarded as protective or risk genes (p < 0.05). To avoid overfitting, least absolute shrinkage and selection operator (LASSO) regression analysis was performed to identify signature genes using the “glmnet” package (15). The risk score was calculated using the following formula:

	

Patients with THCA were divided into low- and high-risk subgroups based on their risk score relative to the median risk score. K-M survival analysis was conducted to evaluate the prognosis of patients with low- and high-risk THCA. A receiver operating characteristic (ROC) curve was used to confirm prediction stability (16). Principal component analysis (PCA) was conducted to evaluate the separation of low- and high-risk THCA (17). To further validate the advantage and stability of the novel signature, the C-index of our signature and other three models was compared (18–20).



Nomogram construction

To further improve the clinical value, a nomogram was constructed based on age, sex, M stage, T stage, N stage, clinical stage, and senescence-related signature (21). A calibration curve was constructed to show the relationship between the actual and predicted probabilities for the 1-, 3-, and 5-year OS. The discrimination performance of each factor for THCA was evaluated using ROC analysis.



Clinical correlation analysis

To explore the correlation between the senescence-related signature and several clinical characteristics, subgroup analyses of the training dataset were conducted, including age, sex, T stage, M stage, N stage, and clinical stage. Moreover, the survival difference between low- and high-risk THCA in distinct clinical subgroups was evaluated using K-M survival analysis.



Immune cell infiltration and immunotherapy response

To explore the relationship between immune cell infiltration and senescence-related signatures, immune cell infiltration was assessed using the XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT algorithms with different colors (22–26). The correlation coefficient was calculated to evaluate the relationship between immune cells and the signature. The expression of immune checkpoints in low- and high-risk THCA was analyzed using the limma algorithm. Immune cells, including CD8 T cells, cytotoxic lymphocytes, endothelial cells, fibroblasts, monocytic lineage, myeloid dendritic cells, neutrophils, T cells, and NK cells, were also analyzed in low- and high-risk THCA and presented in violin plots.

To predict the immunotherapy response in two subsets, tumor immune dysfunction and exclusion (TIDE), CD274 (PD-L1, death-ligand 1), interferon-gamma (IFNG, a potent inducer of immune response), myeloid-derived suppressor cells (MDSC), and immunophenoscore (IPS) were calculated.



Functional enrichment analysis

To explore the putative mechanisms underlying low- and high-risk THCA, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted with the DEGs in low- and high-risk THCA identified using the limma algorithm (p < 0.05) (27, 28). Gene set enrichment analysis (GSEA) was performed to analyze variations in pathway activities between low- and high-risk THCA (p < 0.05) (29). The annotated file “c2.cp.kegg.v7.5.1. symbols.gmt” was downloaded from MSigDB. Functional enrichment analyses were conducted using the “ClusterProfiler” R package (30).



Assessment of the drug sensitivity

To identify the correlation between drug sensitivity and senescence-related signatures, the half-maximal inhibitory concentrations (IC50) of drugs were calculated using the “pRRophetic” R package (31). Wilcoxon signed-rank tests were used to compare the IC50 values of low- and high-risk THCA.



Exploration of signature genes in databases

To further explore the expression of the six signature genes in THCA, the limma algorithm was used to calculate the mRNA difference between normal and tumor samples. TCGA-THCA and GSE33630 datasets were extracted for analysis (32).



Cell culture and RT-qPCR

The normal thyroid cell line (Nthy ori-3-1) and cancer cell line (BCPAP) were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA), maintained in RPMI-1640 media (Gibco) with 10% fetal calf serum (Gibco), and incubated in 5% CO2 at 37°C.

Total RNA was extracted using the TRIzol lysis method. The RNA was then reverse transcribed into complementary DNA (cDNA) using the Hifair® III One-Step RT-qPCR SYBR Green Kit (Yeasen, China). RT-qPCR was conducted using the Hieff® qPCR SYBR Green Master Mix (Yeasen, China), according to the manufacturer’s instructions. The 2−ΔΔCt method was used to calculate the relative gene expression levels. Primers were synthesized and designed by GenePharma (Shanghai, China) and their detailed sequences are listed in Supplementary Table S3. β-Actin was used as the control.



Statistical analysis

The analysis and relevant figures were obtained using R software (version 4.1.1). The t-test was used to compare differences between the two groups. Spearman’s analysis was used to calculate correlation coefficients. Kaplan–Meier survival analyses with log-rank tests were performed to assess the significant differences in OS between the two groups. Statistical significance was set at p < 0.05.




Results


Identification of three senescence clusters

The PPI network revealed that senescence-related genes had complex correlation (Supplementary Figure S1) and involved in diverse cellular functions, such as organic acid metabolic process, cellular metabolic process, and metabolic process (Supplementary File S1). Consensus clustering results showed that there was a significant difference when k = 3 with a curve of a gentle slope (Figures 1A-C). Therefore, patients in TCGA-THCA were divided into clusters 1, 2, and 3. The heatmap shows that the three clusters have clear edges (Figure 1D). To determine whether different expression patterns of senescence-related genes affected the prognosis of THCA, K-M survival analysis was performed between the three clusters, which showed that cluster 2 had the best outcome and cluster 3 had the worst (Figure 1E). The relationship between senescence and immune activity was explored by analyzing the expression of immune checkpoints in the three clusters. The significantly expressed immune checkpoints included IL10RB, PDCD1LG2, PDCD1, BTLA, CSF1R, TIGIT, LGALS9, CTLA4, IL10, HAVCR2, VTCN1, IDO1, KDR, CD244, CD274, TGFBR1, TGFB1, and LAG3 (p < 0.05) (Figure 1F).




Figure 1 | Identification of the three senescence clusters. (A) Consensus CDF in consistent clustering (k = 2–9). (B) Relative change in area under the CDF curve from k 2–9. (C) Tracking plot of the THCA samples (K = 2–9). (D) Consensus heatmap defining the three clusters (k = 3). (E) K-M survival analysis showing significant prognosis between the three clusters. (F) Boxplot presenting the significant expression difference of immune checkpoints between the three clusters. ns, no significance. * indicated P<0.05; ** indicated P<0.01; *** indicated P<0.001.





Evaluation of immune cell infiltration in senescence clusters

The MCPCOUNTER algorithm was used to explore immune cell infiltration in the three clusters (Figure 2). Cluster 1 contained the highest number of fibroblasts. Cluster 2 showed the highest numbers of CD8 T cells, cytotoxic lymphocytes, myeloid dendritic cells, neutrophils, and T cells. Cluster 3 had the highest number of endothelial cells and monocytic lineages. The high proportion of immune cells in cluster 2, which can suppress cancer cells, may partly account for the favorable prognosis.




Figure 2 | Immune cell infiltration in the three clusters. Violin plot showing CD8 T cells, cytotoxic lymphocytes, endothelial cells, fibroblasts, monocytic lineage, myeloid dendritic cells, neutrophils, T cells, and NK cells.





Identification of the senescence-related signature

Univariate Cox regression analysis was used to identify DEGs among the three senescence clusters. There were 15 protective genes, including XKRX, DOCK6, TCIM, NELL2, FAM111B, DTX4, TRIM21, RMI2, LCMT1, APOE, TUSC3, AC005479.2, PGPEP1, MCM3, and PSMB7 (Hazard Ratio, 0.428, 0.187, 0.622, 0.711, 0.290, 0.688, 0.166, 0.334, 0.189, 0.711, 0.646, 0.439, 0.294, 0.248, and 0.107, respectively), as well as eight risk genes, including ADAMTSL4, ANTXR1, TMX4, SEMA6B, CNST, MRPS10, LPGAT1, and TMEM167A (Hazard Ratio, 2.476, 2.976, 8.495, 2.911, 3.752, 7.674, 2.951, and 8,595, respectively) (Figure 3A). Subsequently, LASSO analysis further narrowed down the candidate genes and 10 senescence-related genes with optimal λ values were screened (Figures 3B, C). Six senescence-related genes were identified and used to construct the risk formula: (-1.7274663260496 * DOCK6 expression) + (1.27110457900683 * ADAMTSL4 expression) + (-0.885359668808328 * FAM111B expression) + (1.4076646152426 * SEMA6B expression) + (2.43200689265228 * MRPS10 expression) + (-4.57826818302534 * PSMB7 expression). According to the median risk score, the patients were divided into low- and high-risk subgroups. K-M survival analysis was conducted for the training subset and the two test subsets, revealing that low-risk THCA had a significantly better prognosis than high-risk THCA (p < 0.001, p < 0.001, and p = 0.023, respectively) (Figures 3D–F). ROC analysis showed that in TCGA-all subset the AUCs of 1-, 3-, and 5-year survival were 0.959, 0.920, and 0.893; in the TCGA-train subset, the 1-, 3-, and 5-year survival AUCs were 0.968, 0.922, and 0.960; in TCGA-test subset, the AUCs of 1-, 3-, and 5-year survival were 0.945, 0.944, and 0.776, revealing that the predictive ability of the signature was very stable (Figures 3G–I). Setting the median risk score as the threshold and plotting the survival status revealed that nearly all high-risk THCA patients died, further demonstrating the stability of our senescence-related signature (Figures 4A–F). Heatmaps showed the expression of six signature genes in low- and high-risk THCA, and the trends were consistent in the training and test subsets (Figures 4G–I). PCA of the three subsets confirmed that low- and high-risk THCA had perfect separation (Figures 4J–L). The model comparation result showed that signature of Luo et al, Li et al, and Wang et al. had lower C-index than our signature (0.589, 0.786, and 0.875 to 0.927) (Supplementary Figure S2).




Figure 3 | Identification and validation of the senescence-related signature. (A) Univariate Cox regression analysis identifying 23 prognostic DEGs. (B) Coefficients of the LASSO analysis. (C) The senescence-related signature obtained six prognostic genes with a minimum lambda value. (D–F) K-M survival analysis showing a significant survival difference between low- and high-risk THCA across the TCGA-all, TCGA-training, and TCGA-test subsets. (G–I) ROC analysis showing the stable prediction ability of the senescence-related signature across TCGA-all, TCGA-training, and TCGA-test subsets.






Figure 4 | Stability of the senescence-related signature and construction of a nomogram. (A–C) Survival curve of the THCA patients across TCGA-all, TCGA-training, and TCGA-test subsets. (D–F) Survival status of the THCA patients across TCGA-all, TCGA-training, and TCGA-test subsets. (G–I) Heatmaps showing the expression of signature genes in THCA patients across the TCGA-all, TCGA-training, and TCGA-test subsets. (J–L) PCA showing the perfect separation of low- and high-risk THCA across the TCGA-all, TCGA-training, and TCGA-test subsets. (M) The nomogram constructed with the senescence-related signature, age, gender, T stage, M stage, N stage, and clinical stage. (N) The calibration curve used to estimate the prediction accuracy of the nomogram. (O) Multi-index ROC curve of the senescence-related signature and other factors.





Construction of a nomogram

To build a more useful tool for individuals, a nomogram was constructed based on sex, M stage, T stage, N stage, age, clinical stage, and risk score (Figure 4M). The final nomogram scores of each patient obtained by combining all items can be used to predict 1-, 3-, and 5-year survival rates. Additionally, the calibration curves showed that the nomogram had perfect accuracy in predicting the survival (Figure 4N). Additionally, the ROC analysis showed that the nomogram had the highest AUC (0.986) than other factors (risk 0.945, age 0.970, gender 0.613, clinical stage 0.782, T stage 0.780, M stage 0.487, and N stage 0.515, respectively), demonstrating that the nomogram was the most stable predictive factor (Figure 4O).



Clinical correlation analysis of senescence-related signature

To further explore the clinical correlation of the signature, the relationships between age, sex, T stage, N stage, M stage, and clinical stage and the signature were calculated. The results showed that the risks were higher in age > 65 than age ≤ 65, higher in T3 than T1, higher in N1 than N0, higher in clinical stage II than clinical stage II, and higher in clinical stage III to clinical stage II (p = 0.0012, p = 0.025, p = 0.027, p = 0.0015, and p = 0.021, respectively) (Figure 5).




Figure 5 | Correlation analysis showing that the senescence-related signature is associated with age, gender, T stage, N stage, M stage, and clinical stage.



Although the survival difference between low- and high-risk THCA has been demonstrated in the training and test subsets, subgroup analysis was also conducted to further confirm the predictive ability of the signature. The results showed significantly better prognosis in low-risk THCA than high-risk THCA in the subgroups of age > 65 years, female, male, N0, N1, T1–2, T3–4, stage I–II, and stage III–IV (p = 0.008, p = 0.001, p = 0.010, p = 0.039, p = 0.002, p = 0.025, p = 0.001, p = 0.034, and p < 0.001, respectively) (Figure 6).




Figure 6 | K-M survival analysis presenting the significance of prognosis between low- and high-risk THCA in subgroups of age > 65, female, male, N0, N1, T1–2, T3–4, clinical stage I–II, and clinical stage III–IV.





Immune cell infiltration and activity

The seven immune algorithms showed that the senescence-related signature was negatively correlated with NK cells, Th1 cells, and cytotoxic cells (coefficient < -0.25), and positively correlated with endothelial cells, stromal score, macrophages, non-regulatory CD4 T cells, monocyte lineage, and myeloid dendritic cells (coefficient > 0.25) (Figure 7A). Regarding immune checkpoints, TIGIT, LGALS9, CTLA4, VTCN1, NECTIN2, ADORA2A, KDR, CD274, CD160, TGFBR1, and LAG3 were significantly different between low- and high-risk THCA (p < 0.01) (Figure 7B). There was a higher infiltration of endothelial cells, monocyte lineage, myeloid dendritic cells, and NK cells in high-risk THCA (p < 2.22e-16, p = 0.00061, p = 0.00075, and p = 0.0003, respectively). Moreover, a higher proportion of CD8 + T cells and cytotoxic lymphocytes was observed in low-risk THCA patients (p = 0.0079 and p = 7.8e-06, respectively) (Figure 7C).




Figure 7 | Immune cell infiltration pattern in low- and high-risk THCA. (A) Correlation analysis of risk score and diverse immune cells using the XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT algorithms. (B) Boxplot showing the expression difference of immune checkpoints in low- and high-risk THCA. (C) Violin plot showing infiltration of CD8 T cells, cytotoxic lymphocytes, endothelial cells, fibroblasts, monocytic lineage, myeloid dendritic cells, neutrophils, NK cells, and T cells in low- and high-risk THCA. ns, no significance. * indicated P<0.05; ** indicated P<0.01; *** indicated P<0.001.





Immunotherapy response

The TIDE score was lower in the low-risk subtype, indicating that low-risk THCA patients may show a better response to immunotherapy (p < 0.05) (Figure 8A). In addition, CD274, IFNG, and MDSC levels were all higher in the low-risk subtype, which also supported a better response for low-risk THCA (p < 0.05) (Figure 8A). Subsequently, the IPS in the four subgroups was explored. The results showed that in the CTLA4–PD1–, CTLA4–PD1+, CTLA4+ PD1–, and CTLA4+ PD1+ subgroups, low-risk THCA exhibited a higher IPS (p = 7e-09, p = 9e-05, p = 2.5e-08, and p = 7.9e-07, respectively), which predicted a better immunotherapy response (Figure 8B).




Figure 8 | Immunotherapy response of low- and high-risk THCA. (A) Difference of the TIDE, Exclusion, Dysfunction, CD274, IFNG, Responder, Merck18, and MDSC score between low- and high-risk THCA. (B) IPS score of the low- and high-risk THCA in the of CTLA4- PD1-, CTLA4- PD1+, CTLA+ PD1-, and CTLA+ PD1+ subgroups. * indicated P<0.05; ** indicated P<0.01; *** indicated P<0.001.





Functional enrichment analysis for low- and high-risk THCA

To further investigate the putative cellular function and pathway of low- and high-risk THCA, the DEGs between the two subtypes were identified with the criteria of FDR < 0.05 and p < 0.05. BP analysis showed that the top three enriched functions were thyroid hormone metabolic processes, hormone metabolic processes, and organic acid transport (Figure 9A). CC analysis revealed that the top three enriched functions were apical plasma membrane, apical part of cell, and collagen-containing extracellular matrix (Figure 9A). MF analysis confirmed that the d-threo-aldose 1-dehydrogenase, aldo-keto reductase (NADP), and alditol NADP+ 1-oxidoreductase activities were the most enriched functions (Figure 9A). KEGG analysis demonstrated that the top five enriched pathways were cytokine-cytokine receptor interaction, thyroid hormone synthesis, vascular smooth muscle contraction, Wnt signaling pathway, and phospholipase D signaling pathway (Figure 9B). GSEA revealed differential molecular functions of the two THCA subtypes. The results showed that butanoate metabolism, glycine, serine, and threonine metabolism, steroid hormone biosynthesis, valine, leucine, and isoleucine degradation, and vascular smooth muscle contraction play vital roles in high-risk THCA (Figure 9C). In addition, allograft rejection, DNA replication, proteasomes, ribosomes, and type I diabetes mellitus were the top five enriched pathways in low-risk THCA (Figure 9C).




Figure 9 | Functional enrichment analysis of low- and high-risk THCA. (A) GO enrichment results across TCGA-THCA including BP, CC, and MF analysis. (B) KEGG enrichment results showing the top related pathways across TCGA-THCA. (C) GSEA identifying the top five gene sets in low- and high-risk THCA.





Drug sensitivity in low- and high-risk THCA

To predict the sensitivity of several common drugs, drug analysis was conducted for low- and high-risk THCA. AKT inhibitor VIII, GSK1070916, and rapamycin showed higher sensitivity in low-risk THCA (p = 2.6e-05, p = 0.0024, and p = 7.4e-09, respectively). Moreover, in high-risk THCA, 5-fluorouracil, bleomycin, crizotinib, doxorubicin, erlotinib, and gemcitabine were less sensitive than high-risk THCA (p = 3.2e-08, p = 0.018, and p = 0.033, p < 2.22e-16, p = 9.8e-11, p = 0.0099, respectively) (Figure 10).




Figure 10 | Drug sensitivity in low- and high-risk THCA, including AKT inhibitor VIII, GSK1070916, rapamycin, 5-fluorouracil, bleomycin, crizotinib, doxorubicin, erlotinib, and gemcitabine.





Expression of signature genes in THCA

To further demonstrate the abnormal expression of the six signature genes in THCA, expression analysis was performed using two independent datasets, TCGA-THCA and GSE33630. The results showed that ADAMTSL4, DOCK6, FAM111B, and SEMA6B were more highly expressed in THCA than in normal samples (p < 0.05), whereas the expression of MRPS10 and PSMB7 was lower than that in normal samples (p < 0.05) (Figures 11A, B).




Figure 11 | Expression of the signature gene. (A) Gene expression differences across TCGA dataset. (B) Gene expression differences across GSE33630. (C) RT-qPCR verifying the gene transcription in tumor and normal cells. * indicated P<0.05; ** indicated P<0.01; *** indicated P<0.001.



In a real-world experiment, the RT-qPCR results were consistent with the bioinformatic analysis, confirming that ADAMTSL4, DOCK6, FAM111B, and SEMA6B were expressed at higher levels in thyroid cancer cells (p < 0.05), while MRPS10 and PSMB7 were expressed at lower levels (p < 0.05) (Figure 11C) (Supplementary Table S4).




Discussion

The cellular senescence system is complicated and multifaceted and is crucial for modulating various cellular processes. Previous studies have reported that cellular senescence has both negative and positive effects on tumorigenesis. Peng et al. demonstrated that autophagy can promote tumor suppression by inhibiting signals through senescence (33). In addition, senescence is closely related to tumor immunity. Thymic Stromal Lymphopoietin (TSLP)-stimulated CD4+ T cells play a vital role in antitumor immunity in advanced breast cancers. Boieri et al. reported that TSLP-stimulated CD4+ T cells transform breast cancer cells into a senescent-like phenotype by inducing interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) (34). Wang et al. confirmed that senescent cells could accumulate with age by expressing programmed death-ligand 1 (PD-L1) and escaping T cell immunity. PD-L1+ senescent cells showed significantly higher resistance to T-cell immunity than PD-L1- senescence cells (35). Therefore, tumor cells may escape human immunity through cellular senescence. To provide global evidence for senescence in THCA, a novel signature was identified based on senescence-related genes that could stably predict prognosis and immunotherapy response. Subgroup analysis revealed that the senescence-related signature can serve as a biomarker for the prognosis of THCA in patients aged > 65 years, females, males, N0, N1, T1–2, T3–4, clinical stage I–II, and clinical stage III–IV.

The signature comprised six genes: ADAMTSL4, DOCK6, FAM111B, SEMA6B, MRPS10, and PSMB7. Disintegrin-like and metalloproteinase domains with thrombospondin type 1 motif (ADAMTS)-like proteins are secreted glycoproteins that are part of the ADAMTS superfamily. ADAMTSL4 is one of the most widely studied members, is associated with aggressive tumor phenotypes, and participates in microfibril formation and function (36). In glioblastoma multiforme (GBM, WHO grade IV), ADAMTSL4 has been reported to make a contribution to predicting survival (37). However, the function of ADAMTSL4 in THCA requires further exploration. Dedicator of cytokinesis 6 (DOCK6) is an atypical Rho guanine nucleotide exchange factor (GEFs) for Rac and CDC42 GTPases. This is a complex protein family, and DOCK6 is one of the members of the DOCK-C subfamily that can exchange GDP for GTP for Rac1 and CDC42 (38). Previous studies have demonstrated that overexpression of DOCK6 is associated with migration and poor prognosis of oral squamous cell cancer (39). DOCK6 may promote chemotherapy and radiotherapy resistance in gastric cancer through WNT/β-catenin signaling (40). Family with sequence similarity 111 member B (FAM111B) is a 16 kb gene situated on human chromosome 11q12.1, which has shown functions in various cancer types, including thyroid cancer, pancreatic adenocarcinoma, lung cancer, and cervical cancer (41–44). Semaphorin 6b (SEMA6B) promotes and suppresses tumor progression (45). In our analysis, SEMA6B was shown to contribute to the development of THCA. Paramasivam et al. reported that gene expression screening indicates the overexpression of MRPS10 in breast cancer (46). Another study demonstrated that PSMB7 is an unfavorable prognostic marker for breast cancer and is associated with anthracycline resistance (47). The association of these genes with several types of cancer has been widely studied. The present analysis confirmed the functions of these genes in THCA.

The TME contains diverse cell types (endothelial cells, macrophages, T cells, dendritic cells, etc.) and extracellular components (extracellular matrix, cytokines, hormones, etc.) surrounding tumor cells, which affect tumor progression (48). The thyroid gland is one of the most important endocrine organs involved in human immunity. The TME of THCA is even more complicated because of the effects of other diseases, such as Hashimoto’s lymphocytic thyroiditis. Previous studies have confirmed the coexistence of Hashimoto’s disease and papillary thyroid carcinoma (49). Although some studies have reported that Hashimoto’s thyroiditis may be tumor-protective while others indicate that it is tumor-promoting, they all demonstrated that the microenvironment of the thyroid is pivotal to THCA progression (50). In the analysis of immune cell infiltration, M2 macrophages showed higher infiltration in high-risk THCA and M1 macrophages presented higher infiltration in low-risk THCA. Tumor-associated macrophages (TAMs) recruited to the microenvironment have the potential to polarize M1 or M2 macrophages according to the stimulation of TME. M1 macrophages have a pro-inflammatory role that can activate the immune response and prevent tumor progression; M2 macrophages play a completely opposite pro-tumorigenic function, both of which affect tumor development (51). M1 and M2 macrophage infiltration in low- and high-risk THCA may partly account for the differences in malignancy and prognosis. In addition, other diverse immune cell types showed a significant difference between the two subtypes, demonstrating that the TME may play a vital role in THCA.

Functional enrichment analysis revealed that various pathways play putative roles in low- and high-risk THCA, such as cytokine-cytokine receptor interactions, thyroid hormone synthesis, and the Wnt signaling pathway. Cytokine-cytokine receptor interactions have been reported to be strongly associated with the risk of diverse cancers. As an endocrine cancer, THCA has been confirmed to be affected by thyroid hormones. Moreover, after the surgery, the intake of oral L-thyroxine can both prevent the recurrence of cancer and maintain human hormones. The Wnt signaling pathway is associated with progression, drug resistance, and cancer immunotherapy (52, 53). During the past few decades, the function of Wnt signaling in THCA has also been studied. Zhang et al. reported that KDM1A could promote the progression and maintain the stemness of THCA through the Wnt signaling pathway (54). LEMD1 increases the proliferation and migration of THCA via the Wnt signaling pathway (55). Our analysis further demonstrated that senescence-related signatures are associated with the Wnt signaling pathway.

The bioinformatic analysis explored the issues about the prediction viability of senescence-related genes for thyroid cancer to predict the prognosis, immunotherapy response, and drug sensitivity, and discussed the putative mechanisms of senescence-related genes in thyroid cancer.

In conclusion, this study identified a novel senescence-related prognostic signature containing six genes. Comparing to other clinical gene predictive model, such as 21-gene recurrence score and 70-gene signature test (MammaPrint) for breast cancer (56, 57), the 6-gene signature has better economic viability. The risk score calculated using the signature can independently predict the survival and immunotherapy benefit of patients with THCA. Our new senescence-related model may be used for THCA-targeted therapy in the future.
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Digestive tract-related cancers account for four of the top ten high-risk cancers worldwide. In recent years, cancer immunotherapy, which exploits the innate immune system to attack tumors, has led to a paradigm shifts in cancer treatment. Gut microbiota modification has been widely used to regulate cancer immunotherapy. Dietary compounds and traditional Chinese medicine (TCM) can alter the gut microbiota and its influence on toxic metabolite production, such as the effect of iprindole on lipopolysaccharide (LPS), and involvement in various metabolic pathways that are closely associated with immune reactions. Therefore, it is an effective strategy to explore new immunotherapies for gastrointestinal cancer to clarify the immunoregulatory effects of different dietary compounds/TCMs on intestinal microbiota. In this review, we have summarized recent progress regarding the effects of dietary compounds/TCMs on gut microbiota and their metabolites, as well as the relationship between digestive cancer immunotherapy and gut microbiota. We hope that this review will act as reference, providing a theoretical basis for the clinical immunotherapy of digestive cancer via gut microbiota modulation.
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Introduction

Gastrointestinal cancers, including colorectal and gastric cancer, are among the top five cancer types with the highest mortality rates according to data published by the World Health Organization in 2021 (1). Although significant progress has been made in cancer treatment, improving cancer survival and life expectancy remains a challenge worldwide (2). In the past decade, immune checkpoint blockade (ICB) therapy, which interferes with the interaction between immune checkpoints and receptors, has demonstrated promising therapeutic effects in cancer treatments (3). Antibodies targeting programmed cell death 1 (PD-1), programmed cell death ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) have achieved early success in clinical trials, inducing durable remission in various tumor types (4–6). Unfortunately, effective immunotherapy is limited in most patients owing to the immunosuppressive tumor environment, benefitting only 10–40% of patients. In particular, driver gene mutations (7), low tumor-infiltrating lymphocytes (TIL) (8), defects in the antigen presentation process (9), and T cell function loss and failure inhibit immunotherapy effects. Therefore, the efficacy of immunotherapy in tumor treatment requires further improvement.

Hundreds of trillions of microbes make up the gut microbiome, which is the largest microbial community in the human body. Gut microbiota maintain the physiochemical conditions of the gut and aid host digestion, nutrient metabolism, toxin neutralization, and resistance to parasites (10, 11). Actinobacteria, Bacteroidetes, Firmicutes, and Fusobacteria constitute the majority of the human gut microbiota (12). Fungi such as Aspergillus and Candida are also present in the gut microbiome (13). In addition to genetic factors and maternal status during pregnancy, acquired environmental factors affecting gut microbiota include diet (14, 15), lifestyle choices (16), and emotions (17). Previous studies have demonstrated that gut microbiota perturbations influence digestive cancer immunotherapy development. For example, microbiota can ameliorate immunosuppression by altering the tumor microenvironment (18, 19). Lactobacillus and Bifidobacterium reduce the polarization of invasive monocytes to M2 macrophages and increase M1 phenotype development by upregulating immune factors such as interleukin (IL)-10, thereby inhibiting immune escape and further reducing digestive tumor growth and metastasis (20). Furthermore, products metabolized by microbiota are also involved in immune regulation. Short-chain fatty acids (SCFAs) restrain specific enzymes involved in the transmission of genetic materials that alter the metabolism and gene regulation of immune cells, contributing to a positive impact on digestive tumor therapy. Moreover, inosine from B. longum promotes T helper (TH)1 cell differentiation and enhances the therapeutic effect of ICB, mediated by the T cell-specific adenosine A2A receptor (A2AR) (21).

Dietary compounds such as dietary fiber, flavonoids, alkaloids, and polysaccharides are bioactive metabolites which play a crucial role in maintaining health and adjusting physiological functions (Food and Drug Administration and HSS, 2016). They can transform intestinal microbial components and produce intestinal metabolites, such as hydrogen, methane, SCFAs and B vitamins after microflora fermentation in the large intestine (22). Traditional Chinese medicine (TCM) has been used therapeutically for several millennia. Nearly 100 species of Chinese herbal crude drugs and their preparations are widely used in the medical industry and are included in the European Pharmacopoeia and the United States Pharmacopoeia (23). The chemical composition of TCMs is complex including sugars, amino acids, proteins, vitamins, and dietary compounds originating from plant cell walls (24). Most TCMs are administered orally and interact with the microflora, which affects immune function and influences cancer immunotherapy (25). Recent studies have shown that dietary compounds/TCMs can modulate intestinal microbiota structure and metabolic pathways, improve the composition of the tumor immune microenvironment, and show potential in turning a cold tumor (i.e. immune desert) into a hot tumor (i.e. immune-infiltrated) to enhance immunotherapy efficacy (26–28). Some dietary compounds/TCMs can be fermented or converted by the gut microbiota to form bioactive components. For example, puerarin and isoflavone glycosides can be metabolized by gut flora into daidzein and pistil isoflavones that are more effective than their precursors (29).

Although ICB remains one of the most commonly used techniques to clinically treat cancer, several studies have used dietary compounds/TCMs as a supplementary treatment choice to explore new immunotherapies with high efficiency and few adverse reactions, and improve the survivability and quality of life of patients with tumors (30–34). We have summarized these dietary compounds/TCMs currently under preclinical or clinical research and critically evaluated their future development potential to provide new ideas for tumor immunotherapy through the intervention of microflora. Figure 1 illustrates the links between digestive cancer immunotherapy, dietary compounds/TCMs, and the intestinal microbiota.




Figure 1 | Links betweencancer immunotherapy, dietary compounds/TCM, and gut microbiota. (1) The relationship between gut microbiota and cancer immunotherapy is bidirectional. (2) Dietary compounds/TCM modulate gut microbiota composition and metabolism. (3) Dietary compounds/TCM can directly improve the immune system. (4) Biodegradable components produced by intestinal microbiota derived from dietary compounds/TCM also improve cancer immunotherapy effects.





Gut microbiota involved in digestive tract tumorigenesis

Many studies have demonstrated the alteration of gut microbiota in digestive cancer patients. The efforts to identify the specific processes by which the gut microbiota contributes to the development of cancer have received a lot of attention.


Gastric cancer

Numerous virulence factors are produced by Helicobacter pylori, including the oncoproteins cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA), which have been identified as the primary virulence factors involved in the pathogenesis of gastric cancer (35). Additionally, Helicobacter pylori causes gastric atrophy and gastric acid shortage, which promote excessive microbial growth in the stomach, resulting in more nitrogen derivatives in the diet that can be converted into carcinogens (36).



Colon cancer

It was reported that Fusobacterium are abundant in patients with colorectal cancer (CRC) (37). Surface adhesion protein (FadA), the primary factor controlling the adherence and invasion of Fusobacterium, can bind to β-catenin and lead to its activation, which in turn triggers inflammation and tumor growth (38). Additionally, many bacterial metabolites may also cause genomic instability, leading to tumorigenesis. For instance, Enterobacteriaceae produce colibactin, which stimulates the overexpansion of intestinal epithelial cells and aids in the development of CRC by generating DNA damage, mutation, and genomic instability (39). Enterococcus faecalis can induce double-stranded DNA breaks and promote the development of CRC in mice by producing superoxide free radicals (40). Similarly, secondary bile acids produced by gut bacteria can affect the mitotic process of intestinal epithelial cells, induce DNA damage, and increase the risk of CRC (41). The metabolism of gut bacteria also produces other cancer-promoting substances such as glucuronidase that can transform the precarcinogens in food or drugs into carcinogens (42); or produce carcinogenic chemicals such as N-nitroso compounds (NOCs) (43) and hydrogen sulfide (H2S) (44).



Hepatocellular carcinoma

A growing body of literature points to an increased abundance of lipopolysaccharide (LPS)- producing bacteria (Neisseria, Enterobacteriaceae, and Vermicella) in patients with hepatocellular carcinoma (HCC) (45–47). It is reported that LPS can activate the toll-like receptor (TLR) 4 and NF-κB pathways and trigger the production of cytokines such as TNF-α and IL-6 that promote cancer progression (48). Secondary bile acids can make the intestinal mucosa more permeable, allowing intestinal pathogens to translocate to the liver and cause HCC (49, 50). Through the portal venous system, the liver is connected to intestinal bacterial components and their metabolites, which may cause inflammatory alterations, hepatotoxicity, and finally, HCC. For instance, alterations in the gut microbiota raised the levels of hepatobiliary acid, which caused hepatocarcinogenesis in an obesity-induced human liver cancer xenograft mice model (51).



Esophageal cancer

Fusobacteria is one of the most common microorganisms found in the esophagus (52). Matrix metalloproteinases (MMPs) can be secreted by intestinal epithelial cells when Fusobacterium is present (53). Activated MMPs can encourage the growth of tumor cells by increasing the breakdown of the esophageal extracellular matrix, stimulating tumor angiogenesis, and controlling cell adhesion and motility (54). Fusobacterium simultaneously triggers the IL-6/p-STAT3/c-MYC signaling pathway and encourages M2-type differentiation of macrophages through a TLR4-dependent mechanism, promoting tumor growth (55). Therefore, Fusobacterium is a potential target for the treatment of esophageal cancer.




Digestive cancer immunotherapy via gut microbiota modulation

Due to the resistance of a large number of patients to chemotherapy drugs, gut microbiota- mediated immunotherapy has become one of the most promising methods in cancer research in recent years (56). The gut microbiota plays a key role in the occurrence and development of digestive cancer by regulating metabolism, immune response and inflammation (57). The relationship between gut microbiota and digestive cancer immunotherapy is shown in Figure 2.




Figure 2 | Relationship between gut microbiota and digestive cancer immunotherapy. (1) When tumors arise, gut flora and its metabolites (such as short-chain fatty acids) activate dendritic (DC) cells. (2) Cytokines are involved in activating NK cells and promoting the migration of NK cells to tumor sites. (3) Killer (NK) cells can directly kill tumor cells via antibody-dependent cellular cytotoxicity (ADCC) and inhibit pathogenicity through cytotoxicity. (4) Some metabolites shape the immune system by regulating T cell differentiation and also participate in tumor-killing by interacting with host cell surface receptors. (5) Anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) enhance the interaction between DC cells and T cells, and anti-programmed cell death ligand 1 (PD-L1) stimulate T cell immune response to promote immunotherapy. (6) Phagocytes eliminate pathogens by phagocytosis and secret cytokines to recover intestinal barrier dysfunction.




Gastric cancer

Bifidobacterium augmented anti-CTLA-4 checkpoint blockade in mouse models (58), whereas antibiotic-treated or sterile mice showed no response to this blockade. More abundant bacterial species such as Enterococcus faecium enhance anti-PD-L1 treatment in mouse models (18). Recent research has shown that the use of probiotics as adjunctive therapy for Helicobacter pylori infection can effectively inhibit the progression of gastric cancer (59, 60). Probiotics administered to patients with gastric cancer following total gastrectomy were found to improve immune function and reduce inflammation (61).



Colon cancer

Eubacterium, Lactobacillus, and Streptococcus can release multiple metabolites that influence the immune system, such as SCFAs, which are positively connected to the anti-PD-1/PD-L1 response (62). SCFAs alter inflammation, including the activation, proliferation, and differentiation of anti-inflammatory T regulatory (Treg) cells or pro-inflammatory Th1 and Th17 cells, and affect the polarization of pro-inflammatory M1 and anti-inflammatory M2 macrophages (63). Furthermore, SCFAs cause tumor growth by activating mitogen-activated protein kinase and PI3K (phosphatidylinositol-3-kinases) signaling by increasing somatomedin C (IGF-1) levels. In addition, virulence factors are important components of gut flora that affect CRC immunotherapy (64). TcdB produced by Clostridium difficile inhibits TH and memory B-cell differentiation (65). Therefore, modulating the Clostridium difficile count is beneficial for immune recovery. Interestingly, in some microflora such as Bacteroides fragilis, the cross-reaction between bacterial antigen and tumor neoantigen can activate antitumor T cells (66). In contrast, the enterotoxins BFT (Bacteroides fragilis enterotoxin) and IL-17 produced by Bacteroides fragilis induce the differentiation of monocytic myeloid-derived suppressor cells into intestinal epithelial cells, which can selectively upregulate arginase 1 (Arg1) and type 2 NO synthase (NOS2) to produce NO, inhibit T cell proliferation, and promote CRC generation (67).



Hepatocellular carcinoma

The function of dendritic cells can be enhanced by oral Bifidobacterium administration, which increases CD8+ T cell accumulation in HCC tissue (68). Similarly, SagA, an enzyme expressed by Enterococcus faecium, enhances the effect of immunotherapy in HCC (69). Microbial metabolites, including amino acid derivatives and secondary BAs, are also involved in immunoregulation. Lactobacillus is able to convert tryptophan into indole and its derivatives, which are major aromatic hydrocarbon receptors (AHRs) that play a pivotal role in intestinal immunobarrier function (70). In addition, the bacterial metabolites lactic acid and pyruvate, enhance the immune response by inducing GPR31-mediated dendritic cell differentiation (71).



Esophageal cancer

Immune checkpoint inhibitor (ICI) therapies have been evaluated for their effect on specific microbes in esophageal cancer, including cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1)/PD-1 ligand (PD-L1) inhibitors (72). Vetizou et al. found that anti-CTLA-4 therapy was effective only when B. fragilis and/or B. thetaiotaomicron and Burkholderiales populations were present and are therapeutic when T cells are specific for B. fragilis and B. thetaiotamicron (58). In addition, the reintroduction of B. fragilis cells and/or polysaccharides or adoptive transfer of B. fragilis-specific T cells restored therapeutic efficacy and reduced immune-mediated colitis through activation of Th1 cells with cross-reactivity to bacterial antigens and tumour neoantigens. These results indicate that reconstruction of intestinal flora is beneficial for esophageal cancer treatment through immune regulation.




Interactions between dietary compounds and gut microbiota


Dietary compounds affect microbiota metabolites


SCFAs

Several epidemiological studies have shown that in inflammatory disease and digestive cancer, particularly gastric and colon cancer, the incidence rate is related to SCFA shortage in the diet (73). SCFAs, mainly composed of acetate, propionate, and butyrate, inhibit histone deacetylase (HDAC) and G protein-coupled receptor (GPCR) activation pathways to induce phagocytes to secrete chemokines and anti-inflammatory factors, block phagocytes from releasing tumor necrosis factor (TNF), and promote T lymphocyte proliferation and differentiation for the treatment of tumors (74, 75). Notably, when treating intestinal inflammation with dietary fiber, high-dose butyrate caused by continuous inulin intake may cause stagnation of colonic epithelial stem cell proliferation and even inflammation and obstruction of the urinary system, thus damaging the immune system (76). This indicates that the dietary compound dose also affects the metabolic function of microbiota.



Tryptophan

After treatment with active ginseng polysaccharides, indoleamine 2,3-dioxygenase (IDO) activity was substantially reduced, causing the microflora to produce more L-tryptophan and less L-kynurenine. Therefore, dietary compounds that lower IDO activity to modulate microfloral metabolites are a potential route of anti-PD-1 therapy resistance (76). Furthermore, intestinal microbes can break down TRP to produce indole-containing metabolites, which modulate the host immune system by activating the ligand-gated transcription factor AHR.



Secondary bile acids

The intestinal microbes convert primary bile acids into secondary bile acids (lithocholic and deoxycholic acids) in the large intestine. Two primary bile acid receptors, farnesoid X receptor (FXR) and G-protein coupled bile acid receptor (TGR), modulate the synthesis, metabolism, and redistribution of bile acids through interactions with the gut microbiota (77). The development of Romboutsia following treatment with Tremella fuciformis polysaccharides can increase the production of deoxycholic acid in the intestine and alter the metabolism of bile acids, which has a considerable influence on the treatment of colitis (78). Kaempferol has been used to increase the expression of sterol 27-hydroxylase (CYP27A1) and FXR to counteract the declining trend of deoxycholic acid (79). This decreased the tumor burden in ApcMin/+ mice and repaired the intestinal barrier. Moreover, the increase in secondary bile acids was closely related to the gut microbiota as demonstrated by the greater number of species with anticancer capabilities in the kaempferol therapy group (80).



Pyruvate and lactic acid

The gut microorganisms can ferment dietary fiber to produce pyruvate and lactic acid. When the expression of GPR81 and Wnt3 lactic acid-specific receptors in Paneth cells and stromal cells is increased, lactic acid stimulates the proliferation of intestinal epithelial stem cells and prevents intestinal damage. Lactic acid also affects the expression of CX3CR1, a phagocyte in the lamina propria that modulates intestinal immune function (80). Codium fragile extract boosted the percentage of beneficial bacteria and decreased the degree of pyruvate fermentation and glycolysis, reducing the inflammatory reaction induced by a high-fat diet (81). Additionally, to reduce intestinal inflammation and treat metabolic disorders of the microbiota, polysaccharides extracted from Rosa Roxburghii Tratt (RTFP) can decrease the Firmicutes/Bacteroides ratio, lower the levels of d-lactic acid and LPS, and suppress the TLR4/NF-κB signaling pathway. It has been reported that RTFP can be administered as a natural anti-inflammatory agent to minimize colitis caused by chronic obesity (82).




Dietary compounds affect microbiota composition

According to their natural properties, intestinal microbiota can be divided into nine phyla, of which Firmicutes (64%), Bacteroides (28%), Proteus (8%), and Actinomycetes (3%) account for 98% of the flora (83). Dietary compounds indirectly affect immune responses by regulating the microbiota composition. For instance, insoluble dietary fiber extracted from barley leaves increased Parasutterella and Alistipes abundance to a certain extent and decreased Akkermansia abundance, as well as markedly relieved acute colitis symptoms and decreased levels of inflammatory factors such as IL-6, TNF-α, and IL-1β in colitis mice. In addition, short-term rice bran consumption reduces the Firmicutes: Bacteroidetes ratio in humans but may increase it in the long run (84). Therefore, there may be a time difference in the impact of dietary compounds in reducing CRC risk (85). Additionally, genetically modified mice with the same epigenome but two different gut microbes were fed four equal-calorie diets with the same dietary fiber composition. Integrated transcriptomic and metabolomic analyses showed that the metabolic results of the final amino acids and lipids in each group were different, indicating that gut microbiota structures also affected metabolism of dietary compounds (86).



Metabolic regulation of intestinal flora on dietary compounds

The metabolism of dietary compounds by gut microbiota is mainly catabolic, which reduces the molecular weight of drugs, weakens polarity, and increases fat solubility and the efficacy. According to research on ginseng metabolism, microbiota can metabolize the ginsenosides Rb1 and RD into compound K, which has a potent anticancer effect (87). The oral bioavailability of food components can also be improved by gut flora. Curcumin can prevent tumor growth in vivo by increasing the chemical sensitivity of HCC cells to 5-FU via blocking the G2/M phase of the cell cycle, and reducing the activation of downstream protein kinases in the PI3K/AKT/mTOR signaling pathway (88). Glycyrrhizin is a flavonoid food component that can be metabolized by gut flora to yield three potential metabolites: pantothenic acid (M3), resorcinol (M4), and M5 to achieve antitumor activity (89, 90).




Interactions between TCM and gut microbiota

TCM is mostly used in decoctions. The main components of TCM ingested by the human body from such decoctions include polysaccharides, peptides, flavonoids, alkaloids, polyphenols and anthocyanins. As specific components are more complex than those of dietary compounds, TCM has multi- component, level, and target effects. The herbal medicine WangShiBoChiWan (WSBCW) increases the number of Bifidobacterium and Desulfovibrio, restrains Bacteroides fragillis in the gut, upregulates intestinal junction proteins, increases long villi length, and reduces the levels of inflammatory factor (91). XiaoChaiHuTang (XCHT) partially reverses gut dysbiosis associated with CRC progression inhibition, and the mechanism may be related to the TLR4/MyD88/nuclear factor (NF)-κB downregulation of signaling pathways (92). Fecal microbiota transplantation from GeGen QinLian decoction (FMT-GQD) treatment inhibits nucleotide-binding and regulates important pathways, including the oligomerization domain (NOD), receptor-interacting-serine, threonine-protein kinase 2 (RIP2), and NF-κB signaling pathways, which could influence the expression of related downstream inflammatory factors and inhibit the activation and differentiation of CD4+ T cells to influence the immune system (93).

Gut bacteria can produce a large number of enzyme systems, mainly including glucuronidase β-glucose enzyme, nitroreductase, and protease to degrade and release a variety of active ingredients that are convertible, directly altering the toxicity of TCM (94). By diacylation, esterification, and elimination of methyl hydroxyl, the intestinal microbiota can transform aconitine, the primary poisonous component of aconite, into monoester diterpene alkaloids that act as anti-inflammatories (95). However, the negative effects of gut flora that increase TCM toxicity are also significant. The hepatotoxic and carcinogenic effects of cycasin, an azo-glucoside found in the plants of the Cycadaceae family, may be caused by the microflora modulation via converting it into three different carcinogens, diazomethane cycasin, diazomethane cycasin, and cycasin (96). Consequently, comprehensive research into the dual effects of gut flora metabolism on TCM is necessary for digestive cancer immunotherapy. The relationships between dietary compounds/TCMs and intestinal microflora have been demonstrated in Figure 3.




Figure 3 | Relationship between dietary compounds/TCM and gut microbiota. (1) Dietary compounds/TCM and degraded bioactive components can modulate the microflora structure, and the different composition of gut flora among species also influences their curative effect. (2) Some gut microbial metabolites produced by probiotics restore intestinal epithelial cell barrier, and the reduction of harmful metabolites produced by pathogens also decreases intestinal barrier damage. (3) Cell barrier restoration is also conducive to gut flora stability.





Dietary compounds/TCM regulate immunotherapy through interstinal microbiota intervention

Many active components of dietary compounds/TCM participate in regulating cancer immunotherapy, which may be linked to improved intestinal health and microbial metabolites. The mechanisms have been detailed in Tables 1, 2.


Table 1 | Dietary compounds improves immunotherapy by modulating intestinal microbiota.




Table 2 | TCM improves immunotherapy by modulating intestinal microbiota.




Dietary fiber

Pectin, a soluble fiber extracted from plant cell walls, can be used to block the proliferation cycle of tumor cells, thereby inhibiting CRC (97, 119). The gut flora of CRC subjects in tumor-bearing mice was dosed orally with pectin, which significantly improved the anti-PD-1 monoclonal antibody effect (82). Moreover, mice treated with gut flora from patients resistant to anti-PD-1 antibody showed a similar effect. Inulin is a plant-derived polysaccharide fiber present in Jerusalem artichoke and chicory tubers. It can be adsorbed into intestinal mucosa folds through the thickening effect, which is conducive to its interaction with gut flora. Akkermansia, Lactobacillus, and Rosebacilli are the main SCFA-producing bacteria, and their abundance increased significantly after inulin gel administration. Notably, high-dose inulin intake for 14 days (approximately 450 mg per day) slows tumor growth in mice before tumor modeling but does not work in synergy with anti-PD-1 (98). This may be related to a reduction in gut flora diversity caused by a single diet. Approximately 90% CRC tumors exhibit abnormal Wnt/β-catenin pathway activation (120). Albuca Bracteate Polysaccharides (ABP) treatment inhibits β-catenin expression. Furthermore, ABP and 5-FU (first-line drugs for CRC treatment) synergistically affected CRC tumor cell growth, migration, and invasion, and the antitumor effect of their combination was better than that of 5-FU or ABP alone. Fucoidan significantly increased Lactobacillus levels and decreased Fusobacterium levels in CRC mouse models, which alleviated macrophage and T cell infiltration, and reduced colonic inflammation (100). Moreover, fucoidan also inhibited the Wnt/β-catenin pathway (121). Dietary fibers with similar effects also contain cellulose and apple and jujube polysaccharides, which reduce the abundance of differential bacteria correlated with IL-6, IL-1β, and TNF-α concentrations to inhibit colon tumor formation (101, 102, 122).



Flavonoids

Corylin is one kind of flavonoids isolated from the fruit and seed of Psoralea corylifolia (104). Corylin improved intestinal homeostasis to further reduce tumor cell-induced inflammation by inhibiting the TLR4/p38/AP-1 pathway, inflammatory factors, and the contact between bacteria and epithelial cells in CRC mice. Apigenin has been reported to prevent atrophic gastritis and subsequent gastric cancer caused by Helicobacter pylori. Apigenin also treats tumors by regulating gut flora associated with SCFA production, such as Bifidobacterium and Lactobacillus (103, 123). Bound polyphenol of the inner shell (BPIS) sharply restores Lactobacillus and Bifidobacterium abundance in the intestine of CRC mouse models, with an increase in various lymphoid subgroups such as CD4+, CD8+T cells, and NKT cells in the blood (105). BPIS also increases the number of microbiota products, including SCFAs and indole derivatives, which boost intestinal junction recovery and alleviate inflammation in tumor-bearing mice (124). The above result shows that BPIS can regulate oncogenic inflammation. The initial response to harmful stimuli is acute inflammation, with chronic inflammation potentially resulting from the persistence of inflammatory factors (125). Inflammatory cells and cytokines act as tumor promoters during chronic inflammation, affecting cell survival, proliferation, invasion, as well as angiogenesis. Moreover, the effect of inflammation on most cancers is double-edged, since cancer also affects inflammation. Inflammation has a close relationship with tumors, making inflammation an important target for anticancer treatment (126). Activating anti-cancer immunity cells can improve the cancer-killing ability of the immune system (127, 128). These results showed that BPIS may become a new cancer drug through microbial restoration and immune regulation. Other flavonoid compounds with anti-tumor effects include carnosic acid (106) and baicalin (129).



Glycosides

An early study showed that Ginsenoside Rk3 exerts antitumor effects in vitro, without toxic effects on normal cells and lymphocytes (105). Later, it was found that a crucial factor in avoiding HCC is the LPS-TLR4 signaling pathway that Ginsenoside Rk3 inhibits by enhancing gut microbial imbalance (107). The mechanism of Rk3 against esophageal cancer is also related to this pathway. Neohesperidin (NHP), found in citrus fruits, upregulates Firmicutes and Proteobacteria and downregulates Bacteroides abundance. Furthermore, NHP treatment significantly increases IFN-γ expression and CD4+ and CD8+ T cell infiltration in mouse tumor cells, whereas the antibiotic cocktail (ABX) suppresses this effect (108). Consequently, NHP, a microecological regulator, induces antitumor immunity by improving immune checkpoint efficacy as a glycoside.



Biological pigments

Anthocyanins are polyphenolic compounds widely present in plants. Bilberry anthocyanin extracts (BAE) assist in systemic nutritional status and immunity improvement by increasing the levels of Lachnospiraceae johnsonii in Firmicutes (109). Meanwhile, BAE induces T cell responses and increases SCFA production by upregulating Clostridia to ferment resistant starch and nonstarch polysaccharides. Simultaneously, the ratio of aerobes decreased remarkably, and the proportion of anaerobes increased with BAE, showing that oxygen content reduction may help BAE improve the microflora environment. Recombinant phycoerythrin (RPE) is a light-harvesting pigment that greatly reduces tumor weight, increases the incubation period of tumor cells, and inhibits cancer growth in H22-bearing mice. Moreover, RPE improved the probiotic level and sharply reduced the pathogen level compared to the cyclophosphamide group (110). Safflower yellow (SY), the main active ingredient from Carthamus tinctorius, modulates microbiota composition in BC mice, including increased Bacteroides fragilis and Clostridium counts, which could suppress pro-inflammatory factor activity and induce CD8+T cell and butyric acid production. This finding provides evidence that SY improves the immune microenvironment by affecting the immune cell components of the liver and modulating the abundance of inflammation-related gut microbiota (111).

Furthermore, combined treatment with multiple dietary compounds requires more attention. Combined GLP and GPS treatment significantly improved the intestinal barrier by blocking colonic polyp growth, transforming M1 to M2, effectively adjusting epithelial–mesenchymal transition markers and cutting carcinogenic signaling molecules in ApcMin/+ mice. Their combination also greatly promotes SCFA-producing bacteria and inhibits sulfate-reducing bacteria (130). However, some highly disconcerted effects were also observed. Soluble fermentable fiber inulin may lead to gut flora imbalance and icteric hepatic cellular cancer (131). Excessive inulin increases SCFA production and stimulates immune cells to produce inflammatory factors, including IL-1α, IL-1β, IL-6, and IL-10, which cause acute lamellar inflammation and laminitis. Therefore, the application of dietary compounds in immunotherapy requires more comprehensive investigations.



TCM

GQD is a classical TCM formula, and its active compounds, including baicalin, Glaxo, and berberine, greatly reduce the inflammatory response and oxidative stress both in vivo and in vitro, which have been used in ulcerative colitis therapy (132, 133). Additionally, GQD and anti-PD-1 combination therapy downregulates PD-1 and increases IL-2, indicating that the combined treatment restores T-cell function to a certain extent by suppressing the checkpoint blockade. Combination therapy also increased Bacteroides groups, which reduces the pro-inflammatory activity of the mouse small intestine and exerts immune regulation by releasing extracellular bacterial DNA. Notably, combination therapy changes glycerophospholipid and sphingolipid metabolism, which could be used as biomarkers for monitoring patients with CRC (134).

Experimental results have indicated that sporoderm-broken Ganoderma reverses the tumor xenotransplantation-mediated microbiota structural shift (135) by increasing the immunoactivity-related genera, and by reducing microbiota, such as Bacteroides, which cause immunologic suppression and carcinogenic effects (136). The transformation of microbiota leads to changes in a series of key metabolites, including several amide acids necessary to form SCFAs. The Yiyi Fuzi Baijiang decoction (YFBD), composed of Coix seed and Patrinia villosa, is a TCM used to treat gastrointestinal disorders. Coix seeds and Patrinia villosa demonstrated antitumor hyperplasia effects in several carcinoma cell lines (137, 138). YFBD inhibited CRC cell proliferation and development in ApcMin/+ mice without significant weight changes or immune recovery. YFBD also changes ApcMin/+ mice intestinal bacteria, such as Bacteroides fragilis and Trichospiroideae, which regulate the Treg/Th17 ratio to control carcinogenesis (139).

Siwu-Yin inhibits esophageal precancerous lesion occurrence by increasing Turicibacter abundance, regulating bile acid synthesis and secretion metabolic pathways, and improving macrophage polarization (117). Accordingly, TCM has great potential in preventing digestion cancer progression in addition to its application in tumor immunotherapy. Furthermore, Danggui Buxue decoction (DBD) significantly improves bone marrow suppression-mediated anemia after CRC chemotherapy, while treating CRC by increasing butyric acid-producing bacterial abundance (118). This suggests a novel use of TCM for treating the postoperative side effects of digestive cancer.




Conclusions

With the development of 16S rRNA high-throughput sequencing, TCM microencapsulation, and CAR-T technology, we have reached a new level of understanding regarding the modulation of gut flora by dietary compounds/TCM for digestive cancer immunotherapy. Dietary compounds/TCM are primarily metabolized in the intestine. Long-lasting effects on the gut microbiota from dietary compounds/TCM can strengthen the biological function via their conversion into bioactive metabolites. The studies mentioned above provide prospective methods to arrest tumor progression by enhancing the intestinal barrier, inhibiting pathogens, restraining inflammatory reactions, provoking tumor cell apoptosis and metabolism, and controlling SCFA secretion. However, research must overcome some obstacles.

Firstly, most research focused on the correlation analysis of dietary compounds/TCM on the structure and composition of gut flora, intestinal immune inflammatory reaction, intestinal barrier function and bacterial metabolites, but further multi-channel research has been neglected. In addition, the vast majority of experimental designs only stay in one stage, such as in precancerous lesions of digestive tract tumors, or in the tumor development or pre-late stages. We believe time series analysis is required to conduct a longitudinal survey on the tumor immune methods of dietary compounds/TCM modulating gut microbiota, which may provide more information. Notably, most digestive tumor models were conducted on only one strain of mice, resulting in a lack of comparisons and inductions between different strains of mice. Furthermore, the therapeutic effects of dietary compounds/TCM in different species (such as rabbits, monkeys, etc.) should also be investigated.

We recommend that future research should focus on the following aspects. Firstly, some dietary compounds/TCMs have shortcomings such as low bioavailability and bioactivity, toxic or side effects, and insufficient supply, which remain the main obstacles to clinical transformation. Secondly, exactly which specific species of gut microbiota, or even which specific enzymes in the microbiota can metabolize dietary compounds/TCM remains to be elucidated. Moreover, the specific components of dietary compounds/TCM that play an immunomodulatory role after being metabolized should also be investigated. It is necessary to identify more precise targets to reduce the increased toxicity of dietary compounds/TCM after metabolism. Thirdly, regarding some TCM with complex prescriptions, it may be difficult to standardize research materials, because factors such as different processing methods or different raw material origins can affect the quality. Fourthly, since the therapeutic response of dietary compounds/TCM is affected by different digestive cancer heterogeneity, more information is needed to select the proper treatment and mode of natural compound administration. Therefore, more studies are required focusing on the effect of one specific type of digestive tumor or a single component of dietary compounds/TCM on tumor immunotherapy. Fifthly, the modification of dietary supplements/TCM, in comparison to western drugs, is still poorly understood, which make it more difficult to achieve selective targeted drug delivery, leading to many uncertainties about the efficacy of this method. We suggest that interdisciplinary methods, such as nanomedical technology and precision medicine, are required to improve the safety of dietary compounds/TCMs and achieve better therapeutic effects. These efforts will pave the way for the use of dietary compounds/TCMs in clinical researches. In summary, we hope this review will help to understand the specific mechanisms by which dietary components/TCM improve immunotherapy based on microbiota and provide a theoretical basis for the development of new drugs for treating malignant digestive tumor growth, recurrence, and complications.
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Introduction

Gastric cancer (GC) is the fourth leading cause of cancer death worldwide. Due to the lack of effective chemotherapy methods for advanced gastric cancer and poor prognosis, the emergence of immunotherapy has brought new hope to gastric cancer. Further research is needed to improve the response rate to immunotherapy and identify the populations with potential benefits of immunotherapy. It is unclear whether m7G-related lncRNAs influence tumour immunity and the prognosis of immunotherapy.



Methods

This study evaluated 29 types of immune cells and immune functions in gastric cancer patients, and m7G-related lncRNAs and their molecular subtypes were identified. In addition, we also studied the biological function characteristics of m7G-related lncRNA molecular subtypes. Finally, the patient's risk score was calculated based on m7G-related lncRNAs, and a nomogram of staging and risk groups was established to predict the prognosis. For experimental verification, RT–qPCR were preformed from the native cohort.



Results

After identifying m7G-related lncRNAs and their molecular subtypes, we found three molecular subtypes, the B subtype had the highest level of infiltration, and the B subtype may benefit more from immunotherapy. We divided GC patients into two regulator subtypes based on biological function. The two subtypes have significant immunological differences and can be used to judge ICI treatment. We established a risk score formula based on five lncRNAs, including LINC00924, LINC00944, LINC00865, LINC00702, and ZFAS1. Patients with poor prognoses were closely related to patients in the high-risk group. After comprehensive analysis of different risk groups, the efficacy of the high-risk group on bleomycin, cisplatin, docetaxel, doxorubicin and etoposide was better than that of the low-risk group, suggesting that risk subgroups based on risk scores play a guiding role in chemotherapy and that the high-risk group may benefit more from immunotherapy. RT–qPCR results showed that LINC00924, LINC00944, and LINC00865 were highly expressed in tumour tissues, while LINC00702 and ZFAS1 were expressed at low levels in tumour tissues.



Discussion

In conclusion, we were the first to discover that m7G-related lncRNAs play a vital role in the tumour immune microenvironment of gastric cancer, and a risk prediction model was established to identify patients with potential benefits from immunotherapy and predict the prognosis of GC patients.
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Introduction

Gastric cancer (GC) is currently the fifth most common malignant tumour globally (1). Due to the lack of specific symptoms in the early stage of GC, many patients are diagnosed at an advanced stage with a 5-year survival rate of less than 30% (2–4). The resection of advanced GC is not very effective due to poor prognosis, and there is a lack of effective treatment. In recent years, the emergence of immunotherapy seems to have brought hope to patients with advanced GC, but the effective response rate is low. Therefore, it is urgently needed to study the mechanisms and methods to improve the response rate to immunotherapy.

Tumour immunotherapy is widely used clinically as the fourth treatment method after surgery, radiotherapy and chemotherapy. It can inhibit and kill tumour cells by stimulating or mobilizing the immune system and enhancing the antitumor immunity of the tumour microenvironment. TILs are a major component of tumour-infiltrating immune cells, consisting of T cells, B cells, and NK cells, and have been reported to affect cancer progression and response to immunotherapy (5, 6). CD57+ is a marker of NK cells; similar to CD8+ T cells, CD57+ NK cells directly eliminate tumour cells and exhibit antitumor immunity (7). Studies have shown that although tumour cells have developed various abilities to evade the recognition of CD8+ T cells, they still cannot escape the attack of NK cells (8). A growing body of research has suggested that NK cells play an essential role in the development of GC. Saitto et al. found that the frequency of NK cell apoptosis in GC patients was significantly higher than that in normal tissues, and its frequency was related to the progression of GC (9). CD4+ T cells include all subgroups of helper T cells and regulatory T cells and participate in antitumor cellular and humoral immunity by secreting a variety of interleukins (10). A high ratio is considered to be an effective predictor of postoperative prognosis (11), while a high proportion of circulating Th17 and Th22 cells is associated with tumour progression and poor prognosis in GC (12). The above studies have shown that different infiltrating immune cells and their ratios are closely related to the prognosis of GC.

Epigenetics is a phenomenon in which the gene sequence does not change, but the level of gene expression and modification can produce heritable changes. Among them, the epigenetic methylation modification represented by m7G has attracted widespread attention. During transcription initiation, m7G is cotranscribed onto the 5’ cap (13). This essential cap modification stabilizes transcripts, prevents exonucleolytic degradation, and regulates nearly every step of the mRNA life cycle, including transcription elongation, premRNA splicing, polyadenylation, nuclear export, and translation. As part of the cap structure, m7G is also present inside tRNA and rRNA (14), and internal m7G modifications affect RNA processing and function and are thought to be involved in human diseases. Similar to mRNA in structure, lncRNA also has a 5’ end cap and 3’ end polyadenylic acid tail and splicing phenomenon, but it lacks an obvious open reading frame and does not have a protein-coding function. It regulates the expression levels of genes at various levels, such as transcription and posttranscription, and is widely involved in various physiological and pathological processes in the body (15). Studies have shown that lncRNAs also have important regulatory effects on immune cells (16). CD8+ T cells express many lymphocyte-specific lncRNAs, which are dynamically regulated during cell differentiation or activation states (17). Microarray analysis of mouse spleen naive T cells and memory CD8+ T-cell lncRNA expression profiles showed that nearly one hundred lncRNAs are only expressed in specific tissues or cells (17). The lncRNA Tmevpg1 is expressed in both peripheral blood NK cells and T cells, and its expression is inhibited when stimulated and activated by IFN-γ (18). The above results suggest that lncRNAs play critical regulatory roles in immune cell differentiation and activation. Changes in epigenetic modification-related lncRNAs can be used by tumour cells to disrupt immunogenicity and immune recognition mechanisms, thereby obtaining an immune escape phenotype (19–22). In addition, epigenetic silencing affects almost all antigen processing and presentation processes (23). The vital role of epigenetic modifications in tumour immune escape has laid a solid theoretical foundation for using epigenetic modifiers to improve the immune targeting of tumour cells. However, whether m7G methylation modification affects tumour immunity is still unclear.

To gain a deeper understanding of the mechanisms of gastric carcinogenesis, data from 3 independent GC cohorts from TCGA and GEO were included and analysed. Twenty-nine types of immune cells and immune functions in GC samples were evaluated, and m7G-related lncRNAs and their molecular subtypes were identified. The results suggested that the B subtype may benefit more from immunotherapy; according to the differential mRNAs related to molecular subtypes, GC patients were divided into two subtypes of regulators. In addition, the patient’s risk score was calculated based on m7G-related lncRNAs, resulting in a risk score formula based on five lncRNAs, including LINC00924, LINC00944, LINC00865, LINC00702, and ZFAS1. Finally, the above data were experimentally verified. RT–qPCR results showed that LINC00924, LINC00944, and LINC00865 were highly expressed in tumour tissues, while LINC00702 and ZFAS1 were expressed at low levels in tumour tissues. Our study is the first to indicate that m7G-related lncRNAs play a significant role in the tumour immunity of GC.



Materials and methods


Datasets and preprocessing

Our study included 3 independent cohorts from the TCGA and GEO databases. Samples were processed according to the following criteria: (1) primary GC; (2) complete gene expression profiles and survival information; and (3) no chemotherapy or radiotherapy before surgery.

The final GSE66229 cohort included 300 patients, the GSE15459 cohort included 192 patients, and the TCGA cohort included 370 patients. In addition, copy number variation (CNV) and somatic mutation data of GC were downloaded from the TCGA database.

On the GDC website (https://portal.gdc.cancer.gov/), we were able to access RNA sequencing data of gene expression (FPKM values) and clinical information in the TCGA dataset. Transcripts per kilobase million (TPM) were converted from FPKM. Data from the GEO database were annotated from the Affymetrix platform (GPL570). For GSE66229 and GSE15459 microarrays, datasets and clinical information were accessed directly from the GEO website(http://www.ncbi.nlm.nih.gov/geo). The ComBat algorithm was used to eliminate the batch effect of the TCGA and GEO databases in the ‘sva’ package, and the above three cohorts were integrated to establish a meta cohort.

Principal component analysis (PCA) before and after batch correction is shown in Figure S1. The GENCODE database (GRCh38 version) was used for lncRNA and mRNA annotation. In addition, taking the intersection of the two platforms (Illumina and GPL570), 1084 lncRNAs and 16192 mRNAs were finally retained for subsequent analysis. M7G-related genes from the literature (24) and related gene sets were obtained from GOMF_M7G_5_PPPN_DIPHOSPHATASE_ACTIVITY and GOMF_RNA_CAP_BINDING GOMF_RNA_7_METHYLGUANOSINE_CAP_BINDING. Twenty-four m7G-related genes were annotated in the final meta-dataset: DCP2, IFIT5, EIF3D, EIF4G3, NSUN2, GEMIN5, AGO2, NUDT10, EIF4E, EIF4E2, NCBP2, NUDT11, NUDT3, NCBP1, METTL1, LARP1, NUDT4, EIF4E3, SNUPN, WDR4, LSM1, NUDT16, DCPS, and CYFIP1. Spearman correlation analysis (p < 0.001, correlation coefficient > 0.3) was performed on all lncRNAs and 24 m7G-related genes in the meta cohort. Finally, 123 m7G-related lncRNAs were screened for subsequent bioinformatic analysis.



Assessment of the immune microenvironment

The ssGSEA score (xi) was calculated for each GC sample (i) using the ssGSEA algorithm and transformed using the formula xi=(xi-xmin)/(xmax-xmin), where xmax and xmin represent the maximum and minimum values of ssGSEA scores, respectively. Scores of 29 immune cells and immune functions in GC samples were calculated, and heatmap visualization was performed using the heatmap package. Additionally, the ESTIMATE algorithm identifies specific features associated with stromal scores, immune cell infiltration and tumour purity. Differences in risk grouping across molecular subtypes were compared using the Kruskal–Wallis test.



Unsupervised clustering

Unsupervised consensus clustering analysis was performed based on the expression levels of m7G-related lncRNAs. Principal component analysis (PCA) was used to determine whether each subtype was relatively independent of the other subtypes. The number of clusters was determined using the R package “conensusClusterPlus”, and 100 replicates were performed with pltem=0.8 to verify the stability of the subtypes. Kaplan–Meier curves were used to assess the overall time to survival (OS) of patients with different GC in the dataset, and log-rank tests were performed. The ability of molecular subtypes or risk groups to discriminate patients was determined using PCA with a dimensionality reduction method.



Construction of the risk score model

In the batch-adjusted GEO cohort, univariate Cox regression analysis was used to identify m7G-related lncRNAs associated with prognosis (p < 0.001). Subsequently, the least absolute shrinkage and selection operator (LASSO) model was used to remove redundant genes, a risk model was constructed based on the coefficients of multivariate Cox regression, and the TCGA cohort was used as the validation set to test the predictive efficacy. ROC curve analysis was performed using the timeROC software package. Independent prognostic factors identified by multivariate Cox regression were identified to construct prognostic nomograms, and ROC curves were used for calibration curve validation.



Enrichment analysis

GSVA was used to assess differences in biological pathways between subtypes. Gene Ontology (GO) was used to annotate the biological processes of genes, molecular functions and cellular components. Differential genes between different subtypes were analysed (p<0.05), and then the overlapping genes among the three groups were analysed by GO and KEGG using the ‘clusterProfiler’ package. In addition, c2.cp.kegg.v7.0.symbols.gmt was used as a reference gene set, and FDR < 0.05 was the screening threshold.



Drug sensitivity analysis

IC50 was calculated using the ‘prophetic’ package in R software, and chemotherapeutic drugs were obtained from the genome of the Drug Sensitivity in Cancer (GDSC) database.



Real-time quantitative PCR

Twenty pairs of GC and paired adjacent tissues were obtained from patients with advanced GC who underwent radical gastrectomy in our hospital from 2021-2022, and TRIzol ® (1 mL) was used to isolate total RNA from tumour and adjacent tissues (200 mg) in the validation dataset. Complementary DNA (cDNA) was created using reverse transcriptase from avian medulloblastoma virus and random primers according to TAKARA’s instructions. SYBR Premix Ex Taq II (Takara, Shiga, Japan) was used for amplification of cDNA, and the process proceeded at 37˚C for 15 min. Then we used SYBR Premix EX TaqTM II (Takara Biotechnology, Dalian, China) on a Bio-Rad IQ5 assay system (Bio-Rad Laboratories, U.S.A.) to determine the mRNA expression levels. The PCR conditions were as follows: predenaturation at 95˚C for 30 s, denaturation at 95˚C for 5 s, and annealing at 60˚C for 30 s, and the complete synthesis progress was 40 cycles. Beta-actin was utilized as an internal reference to normalize the mRNA expression levels of the target genes. and the data were analysed using the 2-ΔΔCT value. Primer sequences are from the Getprime database (https://gecftools.epfl.ch/getprime). All primers were tested for efficiency, and only an amplification efficiency between 90% and 110% was used. Supplementary File 1 shows the primer sequences.



Statistical analysis

Spearman correlation analysis was applied to calculate correlation coefficients between the abundance of immune cells and the expression level of m7G-related lncRNAs. The χ2 test was used for associations between categorical covariates. Based on the correlation of the risk score with patient prognosis, the optimal cutoff value for each dataset subset was defined using the “survminer” R package. This value divided patients into high and low risk score subgroups. The log-rank statistic is used to reduce batch effects of calculations. OS plots were drawn by the Kaplan-Meier method and the log-rank test was applied to identify statistical differences. And unpaired T test was applied to identify statistical differences in RT-PCR experiments. P<0.05 was considered statistically significant.



Ethical statement

The study involving the usage of patient tissues was performed in accordance with the Declaration of Helsinki and was approved by the Ethics Committee of Peking Union Medical College Hospital (approval No. 001933). All of the patients were given and accepted an informed consent form prior to their enrollment.




Results


Landscape of m7G regulators in GC

Figure 1A shows the chromosomal locations of the 24 m7G regulators that can be annotated. Figure 1B shows the prognosis and correlation landscape of regulators. Most of the regulators are closely related, and 14 regulators can be used as indicators of the prognosis of GC patients (Supplementary Figure 2). Additionally, we found that AGO2 had the highest frequency of amplification, while EIF4G3 had the highest frequency of deletion (Figure 1C). Interestingly, EIF4G3 also had the highest mutation frequency in the samples (Figure 1D). Additionally, according to differential analysis of the expression of the m7G regulator in different samples, the results showed that except for NUDT10 and EIF4E3, which were upregulated in normal samples, most genes were upregulated in tumour samples (Figure 1E).




Figure 1 | Landscape of m7G regulators in GC. (A) chromosomal locations of the 24 m7G regulators (B) prognosis and correlation landscape of regulators (C) Frequency of group in m7G genes (D) mutation frequency of TCGA samples (E) differential analysis of the expression of the m7G regulator.





Identification of m7G-associated lncRNAs and their molecular isoforms

In the meta cohort, correlation analysis was performed using the abovementioned 24 m7G regulators and all annotable lncRNAs, and a total of 123 m7G lncRNAs were identified (Figure 2A). According to the CDF consensus score of the curve, k = 3 was the best (Figures 2B, C). PCA demonstrated that the molecular typing based on 123 m7G regulators had significant heterogeneity (Figure 2D). In addition, survival analysis showed that type C had the worst prognosis among these three molecular classifications, while type A had the best prognosis (Figure 2E).




Figure 2 | Identification of m7G-associated lncRNAs and their molecular isoforms. (A) correlation analysis (B, C) consensus cluster and curve (D) PCA analysis (E) survival analysis.





Immune characterization of m7G-associated lncRNA molecular subtypes

Among the three molecular subtypes, type B had the highest degree of infiltration, followed by type C and type A (Figure 3A). In contrast, type B tumours had the lowest purity, and type A tumours had the highest purity (type A > type C > type B) (Figures 3B–D). Finally, we detected the expression of six immune checkpoint genes (i.e., PDCD1, CTLA4, HAVCR2, LAG3, CD274, PDCD1LG2) and found that the mRNA levels of some immune checkpoints in subtype B were higher than those in other types, which may suggest that this subtype may benefit more from immunotherapy (Figures 3E–J).




Figure 3 | Immune characterization of m7G-associated lncRNA molecular subtypes. (A) immune infiltration level (B-D) assessment of the stromal scores of the three subtypes, immune scores and tumor purity (E-J) expression of six immune checkpoint genes. *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance.





Biological functional characterization of m7G-associated lncRNA molecular isoforms

To explore the reasons for the different survival states and immune landscapes, we used GSVA to study changes in biological processes between different subtypes. The results show that compared with type B, type A has more activated pathways, such as KEGG_GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM, KEGG_AMINOACYL_TRNA_BIOSYNTHESIS, KEGG_PYRIMIDINE_METABOLISM, etc.

(Figure 4A). Compared with type C, the type A has more active channels, such as




Figure 4 | Biological functional characterization of m7G-associated lncRNA molecular isoforms. (A-C) GSVA to study changes in biological processes between different subtypes (D) 174 mRNAs were considered to be regulator genes of molecular subtypes.



KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC, KEGG_DILATED_CARDIOMYOPATHY, etc. (Figure 4B), etc. Type B has more activated pathways, such as KEGG_DRUG_METABOLISM_OTHER_ENZYMES, KEGG_PANTOTHENATE_AND_COA_BIOSYNTHESIS, KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIE, etc. (Figure 4C). To explore the mechanisms in the regulation of m7G-associated lncRNA molecular isoforms, we further identified molecular isoform-related differential mRNAs. A total of 174 mRNAs were considered to be regulator genes of molecular subtypes (Figure 4D). Interestingly, we found that based on these 174 genes, GC patients could be divided into two regulator subtypes (Figure S3A). As with lncRNA molecular typing, there is also significant heterogeneity among different regulatory isoforms (Figure S3B), which have survival-indicating ability (Figure S3C), and many classical signaling pathways have also been altered between different subtypes, such as Wnt and MAPK. (Figure S3D). In addition, the two subtypes have obvious immunological differences and can be used for ICI judgment before treatment (Figure S4).



Calculation of patient risk scores based on m7G-associated lncRNAs

Although the above molecular typing and regulator typing results can predict the survival and functional differences of GC patients, molecular typing is based on the patient population, so it cannot accurately predict the status of each patient. Individual patients were assessed for risk score for clinical application. Considering the large sample size of the GEO cohort, we performed univariate Cox regression analysis in the GEO cohort (Figure 5A) to screen out 33 prognostic lncRNAs and then further eliminated redundant lncRNAs by LASSO regression analysis (Figures 5B, C). We obtained a risk score formula based on the 5 lncRNAs (Figure 5D): (0.2590 × expression level of LINC00924) + (-0.2616 ×expression level of LINC00944) + (0.18349 × expression level of LINC00865) + (0.1899 × expression level of LINC00702) + (0.4736 × expression level of ZFAS1). In addition, we differentiated the TCGA cohort of patients at different risks with the same median risk score. Among them, in the GEO cohort, there were 246 people in the high-risk group and 246 in the low-risk group; in the TCGA cohort, there were 185 people in the high-risk group and 185 people in the low-risk group.




Figure 5 | Calculation of patient risk scores based on m7G-associated lncRNAs. (A) univariate Cox regression analysis in the GEO cohort (B, C) LASSO regression analysis (D) risk score formula.





Prognostic validation of risk scores

PCA showed good dispersion of patients in different cohorts (Figures 6A, D). In each group, high-risk patients showed significantly shorter survival times than low-risk patients, as shown in Figures 6B, E. The AUCs of the GEO cohort at 1, 3, and 5 years were 0.665, 0.673, and 0.702, respectively (Figure 6C). Meanwhile, in the TCGA cohort, the predicted AUCs at 1, 2, and 3 years were 0.648, 0.625, and 0.639, respectively (Figure 6F). In addition, to explore the link between molecular subtype and risk grouping, we drew a Sankey diagram and found that most of the patients with poor prognosis in the molecular subtype were closely related to those in the high-risk group (Figure 6G). In addition, boxplots confirmed our hypothesis that molecular subtype C and regulatory subtype B had higher risk scores (Figures 6H, I). To determine whether the risk score is an independent prognostic factor in GC patients, Cox regression analysis was performed by clinical characteristics and risk score. Based on the results of univariate Cox regression analysis, in the TCGA and GEO columns, risk scores were significantly associated with OS (GEO cohort: HR = 1.594 (Figure 7A); TCGA cohort: HR = 1.698 (Figure 7B). After adjusting for other confounding factors, the risk score was an independent predictor of OS in GC patients (GEO cohort: HR = 1.407 (Figure 7C); TCGA cohort: HR = 1.641 (Figure 7D). In addition, for more accessible clinical application, we combined staging and risk classifications and drew a nomogram that was intuitively applied to clinical work, as shown in Figure 7E. The ROC curves showed that the predictive power of the nomogram for 1-, 3-, 5-, and 10-year survival was significantly improved (Figures 7F, H). Again, the predicted curve was close to the standard curve, indicating that the predicted survival rates at 1, 3, 5, and 10 years were closely related to the actual survival rates, as shown in Figures 7G, I. In addition, we found that different risk groups were significantly correlated with age, stage, and Lauren classification (Figure S5).




Figure 6 | Prognostic validation of risk scores. (A,D) PCA showed good dispersion of patients in different cohorts (B, E) high-risk patients showed significantly shorter survival times than low-risk patients (C, F) AUC curve (G) Sankey diagram (H, I) boxplots.






Figure 7 | Prognostic validation of risk scores in GC patients. (A) Cox regression analysis in GEO cohort (B) Cox regression analysis in TCGA cohort (C, D) After adjusting other confounding factors, Cox regression analysis in the TCGA and GEO columns (E) nomogram (F, H) ROC curves (G, I) predicted curve.





Comprehensive analysis of different risk groups

We further analysed the relationship between the risk score and tumour mutation burden (TMB). Waterfall plots showed that low-risk patients exhibited a wider range of somatic mutation frequencies than high-risk patients (Figure 8A), and boxplots showed that high-risk patients had higher TMB scores (Figure 8B). Considering the importance of cell stemness maintenance to the survival of tumour patients, we found that with the increase in risk score, the cell stemness index decreased (Figure 8C). In addition, we used the pRRophetic algorithm to evaluate the therapeutic effect of chemotherapy drugs. For some classical chemotherapeutic drugs, the IC50 results were encouraging: the high-risk group showed better results than the low-risk group for bleomycin (Figure 8D), cisplatin (Figure 8E), docetaxel (Figure 8F), doxorubicin (Figure 8G), and etoposide (Figure 8H), which suggests that risk grouping based on the risk score plays a guiding role in chemotherapy. In addition, the GSEA results also suggested that there may be activation states of different pathways in different risk groups, and there may be more activation of apoptosis pathways in high-risk patients (Figure S6). We performed an immune signature analysis of patients in different risk groups in the same manner as described above, and patients in the high-risk group showed a higher degree of infiltration (Figure 9A). The high-risk group in ESTIMATE showed the highest stromal and immune scores, while tumour purity was lower (Figures 9B-D). Finally, we found that the mRNA expression of the six immune checkpoints was also different between the high- and low-risk groups (Figures 9E-J), which may suggest that our high-risk group may benefit more from immunotherapy.




Figure 8 | Comprehensive analysis of different risk groups. (A) Waterfall plots (B) boxplots (C) relationship between risk score and the cell stemness index (D-H) IC50 of bleomycin (D), cisplatin (E), docetaxel (F), doxorubicin (G), and etoposide (H) of high-risk and low-risk groups.






Figure 9 | Immune signature analysis of patients in different risk groups. (A) degree of infiltration of different groups (B-D) assessment of the stromal scores of the three subtypes, immune scores and tumor purity (E-J) expression of six immune checkpoint genes. **P < 0.01, ***P < 0.001, ns: no significance.





Expression and validation of m7G-related lncRNAs

To validate the expression of lncRNAs in m7G-related risk scores, we downloaded the normal gastric gland epithelium sequencing set from the GTEx database and compared it with TCGA-GC (Figures 10A–E). In addition, we used RT–qPCR to detect the expression of corresponding lncRNAs in 20 pairs of GC and adjacent tissues in our hospital (Figures 10F–J). The results showed that LINC00924, LINC00944, and LINC00865 were highly expressed in tumour tissue, while LINC00702 and ZFAS14 were expressed at low levels in tumour samples. In addition, we analysed the relationship between the five m7G-related lncRNA signatures and patient survival information, and we were pleased to find that the expression level of these m7G-related lncRNAs was correlated with the survival time of patients (Figures 10F–J). The overall trend is very consistent with our risk score model. These results strongly validated m7G-related lncRNAs in GCs.




Figure 10 | Expression and validation of m7G-related lncRNAs. (A-E) The normal gastric gland epithelium sequencing set from the GTEx database and compared it with TCGA-GC. (F-J) RT–qPCR results and survival time of patients of the expression of corresponding lncRNAs in 20 pairs of GC and adjacent tissues. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: no significance.






Discussion

GC continues to be a common malignant cancer worldwide and ranks fifth and fourth in morbidity and mortality, respectively (25). Early GC is mostly asymptomatic or only has mild symptoms, and early GC can be treated by surgical and endoscopic resection (26). Most GC patients are diagnosed at an advanced stage, the effect of surgery and chemotherapy is not good, and the prognosis is poor. Therefore, GC treatment remains a major problem. The mechanism of GC requires further in-depth understanding.

M7G RNA methylation is a modification in which a methyl group is added to the seventh N of the messenger RNA guanine (G) under the action of methyltransferase. m7G modification is one of the most common base modifications in posttranscriptional regulation and is widely distributed in the 5’ cap region of tRNA, rRNA, and eukaryotic mRNA. It plays an important role in maintaining RNA processing metabolism, stability, nuclear export and protein translation (24). In our research, m7G-related lncRNAs and their molecular subtypes were identified, and a total of 123 m7G lncRNAs were identified and divided into 3 subtypes. Among them, type B has the highest degree of infiltration, and the mRNA levels of some immune checkpoints are higher than those of other subtypes, indicating that this subtype may benefit more from immunotherapy. Studies of altered biological processes have shown that, compared to type C, type B is more activated in the following pathways:

KEGG_DRUG_METABOLISM_OTHER_ENZYMES, KEGG_PANTOTHENATE_AND_COA_BIOSYNTHESIS, KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIE, etc. Drug metabolizing enzymes (DMEs) mainly include phase I enzymes and phase II enzymes, cytochrome P450s (CYPs) are the main phase I enzymes, and glutathione-S-transferases (GSTs), UDP-glucuronosyltransferases (UGTs), and dihydropyridine dehydrogenases (DHPs) are the major phase II enzymes. These enzymes play an important role in the detoxification of exogenous drugs and the metabolism of drugs, and when DMEs are expressed in tumour tissues, drug resistance is mainly caused by metabolizing and inactivating drugs (27). It should be noted that the 123 m7G-related lncRNAs we screened refer to their expression levels correlated with m7G regulators. Whether these m7G-related lncRNAs have an expression regulation mechanism with m7G regulators needs further study.

Next, we obtained a risk score formula based on five lncRNAs, including LINC00924, LINC00944, LINC00865, LINC00702 and ZFAS1, based on the expression of m7G-related lncRNAs. Studies have shown that increased expression of LINC00924 is significantly correlated with decreased overall survival and increased abundance of tumour-infiltrating CD8+ T cells, B cells, macrophages, and NK cells. Immune checkpoint blockers (ICBs) responded poorly to high LINC00924 expression. Furthermore, via univariate and multivariate Cox regression analysis, the authors discovered that linc00924-related PEX5L was an independent prognostic factor for GC progression in the CNC (coding–noncoding coexpression) network. That is, LINC00924 expression was associated with poor prognosis and short survival, immune infiltration, and poor response to ICB. LINC00924 may be an immunotherapy target for advanced GC (28). Recent studies have found that LINC00944, a lncRNA related to cancer immunity, is associated with antibiotics, cytokines, interleukins, antigen processing and presentation, natural killer cell cytotoxicity, TCR signaling, cytokines, chemokines and the interleukin receptor pathway (29). Pamela et al. found that the expression of LINC00944 was strongly correlated with immune signaling pathways. Further evaluation of the TCGA-BRCA cohort revealed that LINC00944 expression was positively correlated with tumour-infiltrating T lymphocytes and proapoptotic markers. Furthermore, the results showed that the expression of LINC00944 correlated with age at diagnosis, tumour size, and estrogen and progesterone receptor expression (30). LINC00702 was found to be related to tumour size and tumour metastasis and was significantly downregulated in NSCLC patients. Furthermore, overexpression of LINC00702 in vitro and in vivo significantly inhibited the proliferation and metastasis of NSCLC cells by inducing apoptosis. Bioinformatics and in vitro experiments revealed that LINC00702 functions as a competing endogenous RNA (ceRNA) for miR-510 in NSCLC and upregulates its target gene PTEN. Thus, LINC00702 may become a potential diagnostic biomarker and therapeutic target for NSCLC patients (31). Long noncoding RNAs are key regulators of human disease and prognostic cancer markers, including GC. Using GEO microarray data, Fengqi N et al. comprehensively assessed the transcriptome differences of lncRNAs in GC and identified an oncogenic lncRNA, ZFAS1. ZFAS1 is upregulated in colorectal cancer and hepatocellular carcinoma and functions as an oncogene, and Fengqi N et al. showed that ZFAS1 is also overexpressed in GC, and its elevated levels are associated with poor prognosis and shortened survival. In vitro experiments showed that ZFAS1 gene expression inhibited the proliferation and apoptosis of GC cells and inhibited their tumorigenicity in vivo. Therefore, ZFAS1 may promote the occurrence of GC (32). In addition, we used RT–qPCR to detect the expression of corresponding lncRNAs in GC and para-carcinoma tissues. The results showed that LINC00924, LINC00944, and LINC00865 were expressed at a high level in tumour tissues, while LINC00702 and ZFAS14 were expressed at low levels in normal samples. The above results suggest that LINC00924, LINC00944, LINC00865, LINC00702 and ZFAS1 play vital roles in the occurrence and development of GC. It is important to note that the results of RT-PCR are not completely consistent with those of BioInfo analysis, which may be due to the limited number of tissue samples for RT-PCR.

Our study also has certain limitations, and the overall conclusions come from bioinformatics analysis of RNA-seq data in the database and lack large-scale clinical validation. At the same time, the main expression of m7G-related lncRNAs in gastric cancer by those cells is not clear, and the specific mechanism of m7G-related lncRNAs affecting the immune response and patient prognosis in gastric cancer also needs to be systematically and deeply experimentally studied. In the future, we will continue to monitor and work hard to advance these issues.

In conclusion, we discovered for the first time that m7G-related lncRNAs play a vital role in the immune microenvironment of GC by regulating immune cell infiltration and immune function in GC tissue in a synergistic manner, and the biological mechanism of their specific functions warrants further study. Our work provides new ideas for the underlying mechanism of GC and immunotherapy.
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Background

Histone acetylation-related lncRNAs (HARlncRNAs) play significant roles in various cancers, but their impact on lung adenocarcinoma (LUAD) remains unclear. This study aimed to develop a new HARlncRNA-based prognostic model for LUAD and to explore its potential biological mechanisms.





Methods

We identified 77 histone acetylation genes based on previous studies. HARlncRNAs related to prognosis were screened by co-expression, univariate and multivariate analyses, and least absolute shrinkage selection operator regression (LASSO). Afterward, a prognostic model was established based on the screened HARlncRNAs. We analysed the relationship between the model and immune cell infiltration characteristics, immune checkpoint molecule expression, drug sensitivity, and tumour mutational burden (TMB). Finally, the entire sample was divided into three clusters to further distinguish between hot and cold tumours.





Results

A seven-HARlncRNA-based prognostic model was established for LUAD. The area under the curve (AUC) of the risk score was the highest among all the analysed prognostic factors, indicating the accuracy and robustness of the model. The patients in the high-risk group were predicted to be more sensitive to chemotherapeutic, targeted, and immunotherapeutic drugs. It was worth noting that clusters could effectively identify hot and cold tumours. In our study, clusters 1 and 3 were considered hot tumours that were more sensitive to immunotherapy drugs.





Conclusion

We developed a risk-scoring model based on seven prognostic HARlncRNAs that promises to be a new tool for evaluating the prognosis and efficacy of immunotherapy in patients with LUAD.





Keywords: long noncoding RNAs, lung adenocarcinoma, biomarker, histone acetylation, drug sensitivity, epigenetics




1 Introduction

Lung cancer is the leading cause of cancer-related death and morbidity worldwide (1, 2). Most patients with lung cancer have developed advanced disease at the time they see a doctor. The 5-year survival rate for lung cancer patients is < 30% despite advances in diagnosis and treatment (3). Therefore, it is important to identify individualised biomarkers related to lung cancer to improve the precision of treatment and prognosis.

The incidence of cancer continues to rise and its development is inseparable from gene mutations and epigenetics (4). Histone modifications mainly include methylation, acetylation, phosphorylation, and ubiquitination (5). These modifications can be combined to form a ‘ histone code ‘ that regulates gene expression (6). During histone acetylation, an acetyl group is covalently added to the amino group of the lysine residue at the tail of the histone (7). Maintaining the balance of histone acetylation modification is essential for regulating gene expression and maintaining cell homeostasis. The removal of acetyl groups from histones leads to chromatin compression, thereby inhibiting the transcription of corresponding genes (8). Lung cancer cells increased acetylation of H4K5/H4K8 and decreased acetylation of H4K12/H4K16 compared to normal lung epithelial cells (9). Moreover, HDAC2 and TRIM24 were found to be overexpressed in lung cancer (10, 11). Zhou et al. found that KAT2B is mainly associated with antigen processing and presentation, immune cell regulation, and IFN-γ response, and its expression is associated with poor prognosis of LUAD (12). Therefore, the investigation of histone acetylation is of great significance for LUAD.

Longnon-codingRNAs (LncRNAs) do not directly encode proteins but can affect the expression of target genes through epigenetic regulation of gene expression processes, such as transcription and translation. In addition, lncRNAs can not only regulate the growth and differentiation of cancer cells (13–17), but also the ability of cancer cells to invade other organs and participate in the mechanism of drug resistance by cancer cells (18). The lncRNA HULC showed a cancer-promoting effect on glioblastoma, gastric cancer, and pancreatic cancer (19, 20). LINC00973 is involved in chemoresistance in colon cancer, whereas LINC00092 promotes ovarian cancer progression by driving glycolysis through tumour-associated fibroblasts (21, 22). Using microarray analysis, Wang et al. found that lncRNAs can distinguish LUAD from normal tissues and have high sensitivity and specificity, suggesting that abnormally expressed lncRNAs are expected to become signature biomarkers for LUAD diagnosis (23). Qiu and Luo et al. found that lncRNAs CCAT2 and CARLo-5 were elevated in LUAD and associated with poor prognosis (24, 25). Ji et al. found that MALAT1, a new non-coding RNA, can predict the metastasis and survival of early non-small cell lung cancer (NSCLC) (26). Although many lncRNAs have been shown to have important prognostic value in lung cancer, their roles have not been completely elucidated (27). In addition to affecting the tumour cells themselves, lncRNAs can also mediate the interaction between tumour and immune cells (28), thereby affecting the tumour microenvironment (TME) (29). In recent years, breakthroughs in tumour immunotherapy have extensively expanded the field of tumour therapy. However, drug resistance significantly limits its benefits to patients (30, 31). Tumour-associated long noncoding RNAs inhibit antigen presentation and immune cell infiltration, thereby reducing the effectiveness of immune checkpoint therapy (32, 33). For example, MALAT1 was first identified in lung cancer patients. It can not only regulate the expression of PL-L1 (34), but also regulate the infiltration of CD8+ T cells and myeloid-derived suppressor cells (MDSCs) (35). LINC00473 increased the expression of PD-L1 and its receptor PD-1 in pancreatic cancer cells by sponging miR-195-5p, thereby inhibiting the activation of CD8+ T cells (36). Given the important role of lncRNAs in tumour and immunotherapy resistance, the combined use of targeted lncRNA and chemotherapy drugs or immunotherapy may be an effective strategy for cancer treatment (28, 37). Studies have demonstrated that lncRNAs promote cancer progression by acetylating post-translational modifications of key metabolism-related proteins (38, 39). Although histone acetylation-related lncRNAs (HARlncRNAs) cannot directly encode proteins, they can transmit downstream information and regulate the expression of histone acetylation-related genes. However, the function of HARlncRNAs in LUAD remains unclear.

In the present study, we investigated the correlation between HARlncRNAs and LUAD prognosis. We screened independent prognostic HARlncRNAs to construct a risk-scoring model. The model was verified using receiver operating characteristic (ROC) analysis and a nomogram. We further examined the relationship between the risk model and immune infiltration, TMB, chemotherapy, targeted therapy, and immunotherapy sensitivity. Finally, the entire sample was divided into three clusters to further distinguish between hot and cold tumours. These findings may provide new prognostic tools and potential biomarkers for LUAD.




2 Methods



2.1 Data sources for research

The gene expression profiles, somatic mutation data, and clinical data of patients with LUAD were obtained from the TCGA-LUAD database. We included patients who met the pathological diagnosis of lung adenocarcinoma and had complete follow-up and clinical information. In addition, we excluded patients with a survival time < 30 days. Basic patient information is provided in Supplementary Table 1.




2.2 Modelling based on 7 lncRNAs

We summarised 77 previously identified histone acetylation-related genes (40). Afterward, we used the limma package in R to screen for differentially expressed genes (DEGs) in LUAD. Genes without corresponding lncRNAs in TCGA-LUAD were excluded from our study. A total of 4241 HARlncRNAs were screened according to a correlation coefficient > 0.4, p< 0.05.

After univariate Cox regression analysis in the TCGA cohort, we performed minimum absolute shrinkage, LASSO regression, and multivariate stepwise Cox regression analyses, and finally obtained 7 histones acetylated lncRNAs in the risk characteristics. An equal ratio of 1:1 was used to divide the dataset into training and validation datasets.

Based on the median risk scores, the training and validation groups were divided into high- and low-risk groups, respectively. Additionally, we performed principal component analysis (PCA) to verify the independent prognostic ability of the model. The C-index is mainly used to evaluate the prediction accuracy of the established model.




2.3 Risk score and clinicopathological features

To determine the stability of the constructed risk score in predicting survival outcomes in clinical features, including age, sex, and pathological stage, we plotted the Kaplan-Meier curve for different groups.




2.4 Tool to assess the prognosis of patients

A nomogram is a common tool for evaluating prognosis. It integrates various clinicopathological features that are associated with prognosis. The nomogram was built using the R package ‘rms’.




2.5 Functional pathways of DEGs

To understand the mechanism and potential biological functions of DEGs in the high- and low-risk groups in LUAD, a cluster profile software package was used for Gene Ontology (GO) enrichment analysis in R software. P< 0.05 was considered statistically significant. The results were plotted using the ggplot2 software package.




2.6 Immune profile analysis and immune checkpoint inhibitor treatment response prediction 

First, we analysed the expression differences of immune checkpoint-related genes in the two groups of patients. Afterward, we analysed the immune and matrix scores of the TME using an estimate algorithm (41). Immune cells and enriched immune-related functions of the two groups were analysed using single-sample gene-set enrichment analysis (ssGSEA). Tumour immune dysfunction and exclusion (TIDE) was used to predict the efficacy of immunotherapy.




2.7 Drug sensitivity

The half maximal inhibitory concentration (IC50) values of paclitaxel, gefitinib, gemcitabine, and other anticancer drugs in LUAD samples were analysed. The pRRophetic package in R was used to calculate the IC50 of the drug (42).




2.8 Cluster analysis based on prognostic lncRNA

Potential molecular subgroups were explored using the ConsensusClusterPlus (CC) R package. Survival differences between clusters were analysed using the ‘survminer’ package. Subsequently, we used PCA and T-distributed stochastic neighbour embedding (t-SNE) to determine the discriminant degree of our cluster. TIMER (43), CIBERSORT (44, 45), QUANTISEQ (46), MCPCOUNTER (46), XCELL (45), and EPIC algorithm (47) were used to determine the immune infiltration of LUAD. In addition, we used ‘ggpubr’ and pRRophetic R packages to compare the differences in immune checkpoint-related gene expression and drug sensitivity between the three groups.




2.9 Cell culture

The Type Culture Centre of the Chinese Academy of Science (Shanghai, China) provided lung epithelial BEAS-2B cells and lung adenocarcinoma A549 and H1299 cell lines. BEAS-2B cells were cultured with DMEM medium (HyClone, USA). A549 and H1299 cells were cultured in RPMI-1640 medium (HyClone, USA). All media was supplemented with 10% FBS, 100 IU/mL penicillin G and 100 IU/mL streptomycin. The incubator conditions were set at 37°C and 5% CO2. The medium was changed every 2-3 days. Cells were passaged when the cell confluence reached 80-90%.




2.10 RNA extraction and real-time fluorescence quantitative PCR

Total RNA was isolated from cells using TRIzol reagent (Vazyme, China). We used HiScriptQRTSuperMix (Vazyme, China) reverse transcription RNA, cDNA as a template, and ChamQTMSYBRqPCRMaster (Vazyme, China) for qRT-PCR. We used GAPDH as an internal reference, and relative mRNA levels were calculated using the 2 -ΔΔCT method. All experiments were independently repeated three times. Primer sequences are shown in Supplementary Table 2.




2.11 Acquisition of immunohistochemical images

All the immunohistochemical (IHC) images used in this study were obtained from the Human Protein Atlas (HPA) database, with annotation conducted by certified pathologists (48). The staining intensity score was defined as follows: 0 for negative, 1 for weak, 2 for medium, and 3 for strong positive staining. The percentage of positive cells was defined as none for 0,< 25% cells for 1, 25-75% cells for 2, and< 75% cells for 3. The final IHC staining score = intensity score × percentage score.




2.12 Statistical analysis

The significance of the two groups of samples in the present study was tested using the Wilcox test, and the significance of the three groups and the above samples was tested using the Kruskal–Wallis test. The survival times of patients in the high- and low-risk groups were compared using Kaplan-Meier analysis, and the significance of the differences was evaluated using the log-rank test. Spearman’s correlation analysis was performed to determine the correlation of quantitative variables with non-normal distributions. Unless specified otherwise, all differences with p< 0.05 were considered statistically significant. PCR results were drawn using GraphPad Prism. Most analyses were performed using R software 4.1.1.





3 Results



3.1 Identification of HARlncRNAs in LUAD patients

First, co-expression analysis was used to find lncRNAs related to histone acetylation modification-related genes in LUAD, and the results were visualized in Figure 1A. A total of 21 lncRNAs strongly associated with overall survival (OS) (p< 0.05) were identified. Afterward, LASSO regression was performed, and 10-fold cross-validation was performed (Figures 1B, C). Multivariate Cox regression analysis was used to obtain seven lncRNAs for model construction (Supplementary Table 3). Afterward, we performed a correlation analysis between these seven most characteristic lncRNAs and histone acetylation modification-related genes through heat maps (Figure 1D). The expression of the seven HARlncRNAs in normal tissues and LUAD was shown in Supplementary Figure 1.




Figure 1 | Screening prognostic lncRNA tags. (A) Co-expression analysis of 23 genes related to histone acetylation modification and lncRNAs in LUAD. (B, C) A 10-fold cross-validation of variable selection and LASSO coefficient distribution in LASSO regression analysis. (D) Correlation analysis of 7 lncRNAs and 23 genes related to histone acetylation modification.






3.2 Construction of prediction features of LUAD HARlncRNAs

After multivariate Cox regression coefficients were obtained, a risk score formula was developed.

	

Prognostic risk models based on seven lncRNAs showed that OS was longer in the low-risk subgroup of the overall, training, and validation cohorts (Figures 2A, E, I). In addition, we visualised the distribution of risk scores and survival status and found that in all cohorts of LUAD patients, higher risk scores corresponded with more death events (Figures 2B, C, F, G, J, K). Simultaneously, using the expression heatmap, we confirmed that LUAD patients with high expression of LINC01537, IER3-AS1, AC022613.1, and NKILA were associated with high-risk scores. In contrast, AC068338.3, AC009831.1, and MED4-AS1 were highly expressed in patients with a low-risk score (Figures 2D, H, L). In addition, we analysed the expression of LINC01537, IER3-AS1, NKILA, and MED4-AS1 in cell lines (Figures 3A–H). These results are consistent with those of the public database.




Figure 2 | Evaluation of the label model of HARlncRNAs in the overall, training, and validation LUAD cohorts. (A, E, I) OS analysis of two subgroups in (A) total set, (E) trial set, and (I) validation set. (B, F, J) Risk score in (B) total set, (F) trial set, and (J) validation set. (C, G, K) Individual survival status in (C) total set, (G) trial set, and (K) validation set. (D, H, L) Heatmap of 7 lncRNAs expression in two subgroups in (D) total set, (H) trial set, and (L) validation set.






Figure 3 | The expression of LINC01537, IER3-AS1, NKILA and MED4-AS1 in the A549 cell lines (A–D) and H1299 cell lines (E–H). *p < 0.05; **p < 0.01; ***p < 0.001.






3.3 Accuracy of models in clinical application

We evaluated the prognostic ability of the independent prognostic models using univariate and multivariate Cox regression analyses. Both analyses showed that risk score was an independent prognostic factor (Figures 4A, B). In addition, we found that the AUCs were more prominent at 1, 3, and 5 years, indicating that the constructed model predicted patients with high accuracy (Figure 4C). The constructed model was further compared with the other clinical characteristics of ROC curves. The risk scores had the highest AUC values among these factors (Figure 4D). We further verified the prognostic value of the model using PCA (Figures 4E, F). The risk model could effectively distinguish between patients. The C-index of the risk score was the highest (Supplementary Figure 2). These results confirmed that the risk model based on the expression profiles of the seven HARlncRNAs might be a potential prognostic marker.




Figure 4 | Validation of prognostic models for lncRNAs associated with histone acetylation modification. (A, B) A multivariate and univariate analysis of clinicopathological factors associated with OS in patients with LUAD. (C) One-, three-, and five-year OS prediction models (D) Risk scores and other clinical factors are compared using ROC curves. (E, F) PCA analysis of risk model based on expression profiles of 7 HARlncRNAs. (G, H) Stratified survival analysis based on clinical stages of LUAD. (I, J) Stratified survival analysis based on patient gender.



Afterward, we performed a stratified analysis of staging and sex. Low-risk patients showed consistently better overall survival across early- and advanced-stage, female, and male patients (Figures 4G–J).




3.4 Nomogram for predicting patient prognosis

We developed an OS nomogram including sex, lymph node metastasis, tumour size, age, stage, and calculated risk score to estimate the survival probability of patients. The results showed that when the score was 328, the 1-, 3-, and 5-year survival rates were 0.863, 0.554, and 0.288, respectively (Figure 5A). Figure 5B shows the calibration curves for LUAD at 1, 3, and 5 years, indicating that the nomogram could reliably predict OS in these patients. In addition, the ROC curve showed that the nomogram had a stronger predictive value than age and the prognostic risk score model (Figure 5C). In univariate Cox regression analysis, stage, lymph node metastasis, tumour size, and nomogram were independent prognostic factors (Figure 5D). In multivariate regression analysis, the nomogram remained the only independent prognostic factor (Figure 5E).




Figure 5 | Establishment and verification of nomogram. (A) Nomogram with risk score model and clinicopathological features. (B) Calibration diagram of the nomogram. (C) TCGA-LUAD risk score and clinical characteristics ROC curve. (D, E) Univariate and multivariate Cox regression analyses of the nomogram. **p < 0.001; ***p < 0.001.






3.5 Differences in the biological pathways of differential genes

We found differentially expressed genes between the two groups using differential analysis (Supplementary Table 4). GO enrichment results showed that the differentially expressed genes were enriched in the processes of microtubule-based movement, antimicrobial humoral response, and cilium movement in BP, whereas the CC process focused on the processes of the motile cilium, apical plasma membrane, and apical part of the cell, and MF was enriched in receptor-ligand activity and signal receptor activator activity. (Figures 6A–C). The GO digital index numbers are listed in Supplementary Table 5.




Figure 6 | Focusing on the functional pathways of DEGs. (A) Bar chart (B) Bubble diagram (C) Circle diagram of GO enrichment analysis.






3.6 Somatic cell variants and risk score models

Through analysis of the waterfall diagram, we found that TP53, TTN, and MUC16 ranked in the top three in the two groups (Figures 7A, B). Afterward, we downloaded and analysed immunohistochemical images of TP53, TTN, and MUC16 in normal and LUAD clinical samples (Supplementary Figure 3–5). The results showed that the staining scores of TP53 and MUC16 in tumour tissues were higher, whereas the TTN staining fraction between both tumour and alveolar tissues was not significant. (Supplementary Table 6). Figure 7C shows that there were differences in TMB expression between the two groups. In addition, survival analysis showed better prognosis in patients with high TMB (Figure 7D). A combination of the model and TMB was analysed, and the results showed that patients with low risk and high TMB had a better prognosis (Figure 7E). The results showed our constructed prediction model was not affected by TMB status, indicating that our model was more accurate than TMB in predicting prognosis.




Figure 7 | Impact of risk score models on somatic gene alterations and TMB. (A, B) Comparison of gene mutation rates between two subgroups. (C) Differential analysis of TMB between two subgroups. (D) The prognostic role of TMB in LUAD patients. (E) The prognostic role of combined risk score model and TMB in LUAD patients.






3.7 Analysis of immune microenvironment and immunotherapy

At present, there is an increasing number of ICIs for tumours. We analysed the immunohistochemical staining of PD-L1 (Supplementary Figure 6) and PD-L2 (Supplementary Figure 7) in patients with LUAD. The results of the immunohistochemical scoring are shown in Supplementary Table 6. Thereafter, we analysed the differences in ICI gene expression between the two groups. We found that most genes were highly expressed in the low-risk group, including CD28, LAIR1, KIR3DL1, CD48, CD80, and ADORA2 (Figure 8A). Based on the ESTIMATE algorithm, we analysed the abundance of immune cells between the two groups. We found that the low-risk group had higher immune and estimated scores, whereas there was no difference in stromal scores (Figures 8B, C; Supplementary Figure 8).




Figure 8 | Cell infiltration in LUAD tumor microenvironment. (A) High-risk compared to low-risk immune checkpoint gene expression. (B, C) Differences in (B) ImmuneScore and (C) StromalScore between two groups. (D) Evaluation of immune cell infiltration. (E) Analysis of immune-related functions. (F–H) TME was evaluated based on TIDE for two subgroups. *p < 0.05; **p < 0.01; ***p < 0.001.



Afterward, we used CIBERSORT to analyse 22 infiltrating immune cells. The two groups exhibited different immunologic profiles. M1 macrophages and CD8+ T cells were significantly elevated in the high-risk group, whereas resting dendritic and mast cells were significantly enriched in the low-risk group (Figure 8D). Next, we used ssGSEA to analyse immune-related functions. We found that the type II IFN response and HLA immune-related functions were more active in the low-risk group than in the high-risk group (Figure 8E). We used multiple algorithms to analyse the immune infiltration of high- and low-risk LUAD patients, which can be considered to be an external verification (Supplementary Figures 9–16). TIDE can predict whether patients will benefit from the use of ICIs, and the higher the score, the more prone patients were to immune escape (49). Figures 8F–H shows that the TIDE score of the low-risk group was higher, suggesting that patients in the low-risk group were more prone to immune escape. Similar results were obtained for the TIDE score of the test group (Supplementary Figure 17). T cell dysfunction was more significant in the low-risk group. However, immune exclusion was observed more frequently in the high-risk group.




3.8 Prediction of drug sensitivity by the risk model

Sensitivity analysis of the three common therapeutic drugs for LUAD showed that high-risk patients might have a higher sensitivity to paclitaxel, gefitinib, and erlotinib (Figures 9A–C), suggesting that the risk score model might help to identify LUAD patients that are more likely to benefit from chemotherapy and targeted therapy.




Figure 9 | Risk score guide clinical. (A–C) Differences in sensitivity to clinical drugs between two subgroups.






3.9 Identifying hot and cold tumours and ICIs sensitivity

Different immune microenvironments have different subtypes, resulting in different immunotherapy effects (50, 51). Clusters can distinguish between hot and cold tumours and guide immunotherapy (52–55). Therefore, we used the R package ‘ConsensusClusterPlus’ to group the patients into three clusters based on cluster analysis. (Figure 10A; Supplementary Figure 18). Survival analysis showed that the OS of cluster 3 was the longest (Figure 10B). T-SNE and PCA revealed that these three clusters were distinguishable (Figures 10C, D).




Figure 10 | Distinguishing different clusters. (A) Patients are classified into three categories by ConsensusClusterPlus. (B) Kaplan-Meier survival curve in the three clusters. (C, D) PCA and t-SNE of three cluster.



Afterward, we analysed the infiltration of immune cells on different platforms, and the results showed that clusters 1 and 3 had a higher degree of CD8+ T immune cell infiltration (Figure 11A). In addition, clusters 1 and 3 had higher immune scores than cluster 2 (Figure 11B). Almost all ICIs, including LAG3 and CD274, were highest in cluster 1 (Figure 11C). Increased infiltration of CD8+ T immune cells, activation of immune checkpoints, such as CD274 and LAG3, and high immune scores play a crucial role in hot tumours (56, 57). Therefore, we classified clusters 1 and 3 as hot tumours that were more sensitive to immunotherapy (56). We then analysed the sensitivity of different clusters to drugs. The results showed that clusters 1 and 2 might be more sensitive to gemcitabine, paclitaxel, and gefitinib (Figures 11D–F). Based on the above analysis results, we can improve research on immunotherapy in LUAD patients and improve the accuracy of patient treatment.




Figure 11 | Different cluster immunity and drug sensitivity. (A) Heat maps of immune cells in different clusters. (B) Immune scores of different clusters. (C) Differential expression of immune checkpoint genes in different clusters. (D–F) IC50 of different clusters in gefitinib, gemcitabine, paclitaxel. *p < 0.05; **p < 0.01; ***p < 0.001.







4 Discussion

The present study constructed a risk-scoring model based on seven HARlncRNAs related to prognosis. ROC curve, univariate analysis, and multivariate analysis were used to verify the accuracy of the model. Patients in the high-risk group showed higher immune cell infiltration and were predicted to be more sensitive to chemotherapy, targeted therapy, and immunotherapy drugs. Therefore, the risk-scoring model based on seven prognostic lncRNAs might correctly estimate the prognosis of LUAD patients and identify potential candidates for chemotherapy, targeted therapy, and immunotherapy. Although our risk model can predict patient prognosis and guide drug treatment, it cannot identify hot and cold tumours. Clusters can distinguish between hot and cold tumours and guide immunotherapy (52–55). Therefore, we divided the patients into three clusters. Clusters 1 and 3 exhibited higher CD8+ T immune cell infiltration. CD8 + T cells are the main driver of antitumour immunity (57). In addition, clusters 1 and 3 had higher immune scores and higher CD274 and LAG3 than cluster 2. Therefore, we suggested that clusters 1 and 3 can be considered hot tumours (56). Furthermore, clusters 1 and 3, as hot tumours, might be more sensitive to immunotherapy (51, 56). This suggested that our classification could not only predict patient prognosis, but also guide individualised treatment. More importantly, based on these lncRNAs as liquid biopsies, it is more convenient and effective to distinguish between hot and cold tumours (58).

Lung cancer has the highest mortality rate among all malignancies (59). Despite significant advances over the past few decades in early screening and treatment, the prognosis of patients with LUAD remains dismal. The molecular pathogenesis of lung cancer involves mutations and disorders of oncogenes and tumour suppressor genes (60). Additionally, epigenetic abnormalities play key roles in the development and progression of lung cancer (61, 62). Therefore, an in-depth study of epigenetics will help to identify new disease biomarkers.

In our model, we used seven different HARlncRNAs, namely LINC01537, MED4-AS1, AC009831.1, IER3-AS1, AC022613.1, AC068338.3, and NKILA. INC01537 was reported to be a tumour suppressor located on the human chromosome 11q13.4 (63). Gong et al. found that LINC01537 was expressed at low levels in lung cancer and that phosphodiesterase 2A (PDE2A) was the target of LINC01537. LICN01537 not only inhibited tumour growth and metastasis, but also increased sensitivity to nilotinib (64). Wu et al. found that MED4-AS1 was downregulated in LUAD; however, its role is not fully understood (65). Mahale et al. demonstrated that the carcinogenic properties of IER3 and IER3-AS1 are determined by their interaction with HnRNPK (66). AC022613.1 was highly expressed in LUAD and associated with a poor prognosis. In addition, AC022613.1 affects the prognosis of many other cancers (67). Lu et al. found that the expression of AC068338.3 was lower in LUAD tissues and cell lines than in normal tissues (68). NF-kappa B-interacting lncRNA (NKILA) is upregulated by NF-κB in breast cancer (69, 70). Lu et al. found that the expression of NKILA was downregulated in NSCLC tissues (71). To date, no relevant studies have been conducted on AC009831.1. Our study shows that LINC01537, IER3 − AS1, AC022613.1, and NKILA are high-risk lncRNAs, and MED4 − AS1, AC009831.1, and AC068338.3 are low-risk lncRNAs.

Immune checkpoint inhibition alone for PD-L1 high-expressing tumours and combined with cytotoxic chemotherapy for PD-L1 low-expressing tumours have become the standard of care for first-line treatment of advanced NSCLC; however, this treatment approach does not have a high overall effect. More importantly, many patients develop primary or secondary resistance to immunotherapy (72, 73). TMB was originally proposed as an indicator of the number of neoantigens produced by mutated genes in tumour cells. High TMB is thought to lead to increased tumour neoantigen expression that would be cross-presented and activate tumour-specific immune responses (74). Alternatively, TMB could be predictive of immunotherapy efficacy. PD-L1 expression level and TMB status were predictive biomarkers of anti-PD-L1 activity in the Checkmate 026 trial (75). Furthermore, the KEYNOTE-158 study showed that patients with high TMB were more likely to benefit from immunotherapy (76). Therefore, TMB has been accepted as a predictor of immunotherapy in advanced NSCLC and was recommended by the recent NCCN guidelines (77). Given the good predictive value of TMB, we explored the relationship between TMB and the risk-score model. To further test the ability of the established model to predict patients ‘ response to immunotherapy, we analysed the TIDE scores of the two groups, and found that the high-risk group had a lower TIDE score, indicating that the high-risk group may respond better to immunotherapy. These results suggest that our established model could predict the effectiveness of immunotherapy in patients with LUAD.

Chemotherapy is one of the most important systemic treatments for patients with advanced NSCLC. Combined paclitaxel and platinum, as a first-line treatment for stage IV NSCLC without driver gene mutations, improves patient survival (78). Targeted therapy is the basis for the treatment of advanced NSCLC harbouring driver gene mutations. Studies comparing gefitinib with chemotherapy in patients with EGFR mutations have shown that gefitinib significantly improved PFS (79). Additionally, the CSCO guidelines (version 2020) recommend erlotinib as the first-line treatment for stage IV NSCLC with EGFR mutations (80). The results of our study suggest that the high-risk group may be more sensitive to the chemotherapeutic drug paclitaxel and targeted therapy drugs, including gefitinib and erlotinib. In conclusion, we developed a scoring model that can provide a reference for drug selection in patients with LUAD.

Although our risk model has good predictive potential, this study had several limitations. First, regardless of all the information we searched for in the GSE31210, GSE50081, and GSE72094 series from GEO, we could not obtain sufficient information for lncRNA; therefore, we did not use it as an external validation queue. Liu et al. suspected that there were deviations and limitations between commercial microarray data and TCGA data (53). However, the data of our immune cell bubble map comes from multiple platforms and can be used for the verification of external data (55). Second, in the future, a large number of clinical samples should be collected to confirm the practical application value of our model.





Conclusion

This study provides detailed evidence on the substantial interaction between lncRNAs of histone acetylation modification-related genes and the prediction of LUAD prognosis. Risk scores were identified as potential prognostic markers for LUAD, and the practical applicability of the model was investigated in terms of its sensitivity to chemotherapy, targeted drugs, and immunotherapy.
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