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Predicting Response to Systemic
Chemotherapy for Advanced Gastric
Cancer Using Pre-Treatment Dual-
Energy CT Radiomics: A Pilot Study
Yi-yang Liu1,2†, Huan Zhang3†, Lan Wang3†, Shu-shen Lin4, Hao Lu1,2, He-jun Liang5,
Pan Liang1,2, Jun Li1, Pei-jie Lv1 and Jian-bo Gao1,2*

1 Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 2 Henan Key Laboratory of
Imaging Diagnosis and Treatment for Digestive System Tumor, Zhengzhou, China, 3 Department of Radiology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China, 4 Department of DI CT Collaboration, Siemens Healthineers
Ltd, Shanghai, China, 5 Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Objective: To build and assess a pre-treatment dual-energy CT-based clinical-radiomics
nomogram for the individualized prediction of clinical response to systemic chemotherapy
in advanced gastric cancer (AGC).

Methods: A total of 69 pathologically confirmed AGC patients who underwent dual-
energy CT before systemic chemotherapy were enrolled from two centers in this
retrospective study. Treatment response was determined with follow-up CT according
to the RECIST standard. Quantitative radiomics metrics of the primary lesion were
extracted from three sets of monochromatic images (40, 70, and 100 keV) at venous
phase. Univariate analysis and least absolute shrinkage and selection operator (LASSO)
were used to select the most relevant radiomics features. Multivariable logistic regression
was performed to establish a clinical model, three monochromatic radiomics models,
and a combined multi-energy model. ROC analysis and DeLong test were used to
evaluate and compare the predictive performance among models. A clinical-radiomics
nomogram was developed; moreover, its discrimination, calibration, and clinical
usefulness were assessed.

Result: Among the included patients, 24 responded to the systemic chemotherapy.
Clinical stage and the iodine concentration (IC) of the tumor were significant clinical
predictors of chemotherapy response (all p < 0.05). The multi-energy radiomics model
showed a higher predictive capability (AUC = 0.914) than two monochromatic radiomics
models and the clinical model (AUC: 40 keV = 0.747, 70 keV = 0.793, clinical = 0.775);
however, the predictive accuracy of the 100-keV model (AUC: 0.881) was not statistically
different (p = 0.221). The clinical-radiomics nomogram integrating the multi-energy
radiomics signature with IC value and clinical stage showed good calibration and
discrimination with an AUC of 0.934. Decision curve analysis proved the clinical
usefulness of the nomogram and multi-energy radiomics model.
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Conclusion: The pre-treatment DECT-based clinical-radiomics nomogram showed
good performance in predicting clinical response to systemic chemotherapy in AGC,
which may contribute to clinical decision-making and improving patient survival.
Keywords: dual-energy CT, radiomics, response prediction, systemic chemotherapy, gastric cancer
INTRODUCTION

Gastric cancer (GC) remains one of the most common malignant
tumors in the world, and its morbidity and mortality rank fifth and
third, respectively. There weremore than amillion new cases and an
approximated 784,000 deaths worldwide in 2018 (1); moreover,
most GC cases are diagnosed at an advanced stage (2). It is therefore
essential to select an effective treatment regimen for advanced
gastric cancer (AGC) to maximize the overall therapeutic benefits.
Chemotherapy can improve survival and quality of life for patients
present with unresectable, locally advanced, or metastatic GC (3).
Furthermore, the overall survival of AGC patients who are treated
with systemic chemotherapy was 8 months longer than with
optimal supportive care alone (4–8). However, tumor response
rate of most treatment regimens is less than 40% and chemotherapy
drugs can cause serious side effects in some patients (9, 10). Hence,
pre-treatment prediction of tumor response to systemic
chemotherapy may translate into more precise patient selection
and individualized medicine, which are of great clinical significance.

Dual-energy CT (DECT) is a milestone imaging tool that
generates a rich amount of DECT quantitative information. The
virtual monochromatic images (VMI) derived from DECT have
been used in the diagnosis and prediction of tumors, including
classification of parotid neoplasms, the evaluation and
characterization of cervical lymphadenopathy, prediction of
lymph node metastasis in GC, and classification of clear cell renal
cell carcinoma (11–15). In terms of predicting the treatment
efficacy, Tang et al. demonstrated that iodine concentration (IC)
on DECT could evaluate efficacy response of GC to neoadjuvant
chemotherapy (16). However, to our knowledge, the application
and potential advantages of multi-energy virtual monochromatic
image datasets in predicting therapeutic response of GC have not
been explored. Theoretically, there is a rich amount of quantitative
information in the variation of energy-dependent attenuation in
different tissues. Given the dynamic and heterogeneous nature of
tumor (17, 18), performing radiomics analysis on monochromatic
images may improve the predictive capabilities (11).

Radiomics can noninvasively analyze tumor biology,
distinguish the subtle differences that human eyes cannot
discern, quantify tumor heterogeneity, and monitor tumor
development and response to treatment (19–23). Through
extensive extraction of quantitative features, radiomics can
delineate tumor heterogeneity metrics, which may reflect
pathophysiological characteristics associated with treatment
response (23–25). In fact, pre-treatment radiomics with other
CT techniques has been proven to non-invasively predict
treatment responses of GC (26–29).

Therefore, we aimed to establish and assess a clinical-
radiomics nomogram from pre-treatment DECT scans to
25
predict clinical response to systemic chemotherapy in patients
with AGC, and to verify whether radiomics performed on multi-
energy VMI datasets is more helpful in predicting response.
MATERIALS AND METHODS

Patients
This multi-center, retrospective study was approved by the
institutional review board, and the requirement for informed
consent was waived due to the retrospective study design. A total
of 69 consecutive patients from two independent institutions (49
from the Zhengzhou University First Affiliated Hospital between
March 2014 and November 2019 and 20 from Shanghai Jiao
Tong University Ruijin Hospital between November 2017 and
February 2019) were collected. The inclusion criteria were as
follows: (1) histologically confirmed primary gastric
adenocarcinoma; (2) no prior history of radiotherapy,
chemotherapy, or other treatments that might affect the blood
supply to the tumor; (3) no serious heart and renal insufficiency
and other important viscera lesions; (4) received baseline contrast-
enhanced DECT examinations within 1 week before
chemotherapy; (5) treated with systemic chemotherapy due to
metastatic, unresectable, and recurrent GC or tumors surrounding
major vessels on CT examination (cT4a~bNxM0~1); (6) ECOG
PS 0–2. The exclusion criteria were as follows: (1) patients with co-
malignancy; (2) incomplete clinical data at baseline; (3) motion
artifacts on CT; (4) lesions with cystic changes or cavitation; and
(5) intolerance to chemotherapy. Baseline clinicopathological data,
including age, sex, and clinical stage, were obtained from
retrospective electronic records.

Systemic Chemotherapy Regimen and
Treatment Response Evaluation
In our study, enrolled patients were mainly treated with
capecitabine plus oxaliplatin (XELOX) regimen or S-1 plus
oxaliplatin (SOX) regimen.

In detail, patients were given capecitabine at a dose of 1,000
mg/m2 (or S-1: 60 mg/m2) orally twice daily from day 1 to day
14. Furthermore, oxaliplatin (130 mg/m2) was given
intravenously for 2 h on day 1. Cycles were repeated every 21
days, and the toxicity of chemotherapy was evaluated after each
cycle. At least six cycles of treatment were given unless there was
disease exacerbation, unacceptable toxicity, or death occurred.

Evaluation of Treatment Response
Post-treatment CT images were obtained within 3 weeks after
completion of chemotherapy. The treatment response was
assessed by the change of the sum of the maximum diameters
September 2021 | Volume 11 | Article 740732
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for all target lesions in the pre- and post-chemotherapy
CT images.

The short-term therapeutic response was evaluated with the
standard of Response Evaluation Criteria in Solid Tumors
(RECIST v. 1.1) (30). Based on current study purpose, we
classified patients with complete response (CR, complete
disappearance of all target lesions and no new lesions) or
partial response (PR, a reduction ≥30% in the sum of the
diameters of target lesions) as responders, while others with
stable disease (SD, neither partial response nor progressive
disease) or progressive disease (PD, a ≥20% size increase or
new disease) were classified as non-responders (Figures 1 and 2).

CT Image Acquisition
All patients fasted for 8 to 12 h before examination and took
800–1000 ml of warm water before the CT scan, where the
patients were placed in a supine position with head first and
breath-hold.

CT scans were performed using multi-vendor Dual-Energy
CT (Discovery CT750 HD scanner, GE Healthcare, Milwaukee,
WI, USA; SOMATOM Force scanner, Siemens Healthineers,
Forchheim, Germany). The patients underwent contrast-
enhanced DECT scans, including the arterial phase (AP) and
venous phase (VP). After unenhanced CT was performed, the
main contrast agent (Ultravist 370, Bayer Schering Pharma,
Thüringen. Germany) was infused intravenously through the
antecubital vein at a rate of 3.0 ml/s (1.5 ml/kg) using a pump
Frontiers in Oncology | www.frontiersin.org 36
injector. AP and VP contrast-enhanced CT images were achieved
after a post-injection delay of 30 and 70 s, respectively. The
scanning parameters were summarized as follows (1) Discovery
CT750 HD: using fast tube voltage switching between 80 and 140
kVp, tube current: 375 mA, pitch: 1.375:1, rotation time: 0.6 s,
detector width: 40 mm, collimation: 128*0.6 mm, FOV: 400 ×
400 mm; reconstruction algorithm: STAND; reconstructed
section thickness:1.25 mm slice thickness: 5 mm. (2)
SOMATOM Force: tube voltage: 100/Sn150 kVp; effective tube
current-time product: 200/125 mAs; FOV: 374 × 374 mm;
rotation time: 0.5 s; pitch: 0.6; reconstructed section thickness:
1.25 mm slice thickness: 5 mm; kernel: Qr40; collimation:
128*0.6 mm.

Image Analysis
The CT images were transferred to dedicated workstations with
dual-energy software (Syngo.via, Version VB10, Siemens
Healthineers, Forchheim, Germany; ADW 4.7, GE Healthcare,
Milwaukee, WI, USA).

A 15-year experienced gastrointestinal radiologist interpreted
the dual-energy images with the knowledge that all patients had
GC confirmed by endoscopic biopsy. Clinical lymph node
staging (cN) and distant metastasis staging (cM) were
evaluated according to the 8th edition of AJCC guidelines (31),
and the distant metastatic sites were recorded. The maximal
thickness (the largest short diameter perpendicular to the longest
axis on the maximal cross-section) of the primary tumor was
FIGURE 1 | Case 1. Portal phase DECT images of a 34-year-old female with GC patient who responded to chemotherapy. (A–C) Diffuse thickened gastric wall was seen
at the gastric body (arrow). (D–F) Slightly thickened gastric wall was seen at the gastric body, and the lesion was significantly regressed (arrow). (A–C) were monochromatic
images of 40, 70, and 100 keV before chemotherapy, respectively. (D–F) were monochromatic images of 40, 70, and 100 keV after chemotherapy, respectively.
September 2021 | Volume 11 | Article 740732
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measured. The Borrmann classification of the tumor was also
assessed (32). A free-hand, VP-based individualized region of
interest (ROI) was manually delineated on iodine-based material
decomposition images in the largest cross-sectional area by the
reader, and then the ICs (mean value, units of 100 mg/ml) of the
lesion in the ROI was recorded. Meanwhile, circular ROIs were
carefully placed at the same slice to avoid calcified plaques and
subsequently obtain the aortic ICs. Finally, the iodine ratio of the
lesion to aorta was taken as normalized iodine concentration
(NIC = IC lesion/IC aorta).

Tumor Segmentation and Feature
Extraction
We conducted lesion segmentation and radiomics feature
extraction with a prototypical software (Syngo Frontier,
Radiomics 1.0.9a, Siemens Healthineers, Germany). Venous
phase images were previously reported as the best phase for
GC visualization (14, 27, 33) and therefore were used for tumor
segmentation. In order to seize the energy-dependent changes in
tissue attenuation, we selected monochromatic images of 40, 70,
and 100 keV as typical dual-energy datasets for feature extraction.
The volumes of interest (VOI), referred to whole tumor regions in
three dimensions on venous phase contrast-enhanced DECT
images, was delineated by a radiologist with 7 years of
experience and reviewed by a radiologist with 10 years of
experience to minimize possible bias (Supplemental Appendix 1;
Frontiers in Oncology | www.frontiersin.org 47
Figure S1). The software provides a variety of options to
customize image pre-processing before radiomic feature
extraction, including wavelet filtering, Laplacian of Gaussian
filtering, and non-linear intensity transforms including logarithm,
exponential, square, and square root operations. The extracted
features were reproducible and matched the benchmarks of
image biomarker standardization initiative (IBSI) (34).

Finally, 1691 radiomics features were extracted from each
patient in each single-energy image set, including 17 shape
features, 324 first-order features, and 1,350 texture features
Supplemental Appendix 2; Table A1.

Feature Selection and Radiomics Model
Establishment
To prevent overfitting or selection bias in our radiomics model,
univariate logistic regression analysis (p < 0.05) and LASSO
regression were used to screen out the most relevant informative
radiomic features of chemotherapy response. Tenfold cross-
validation was performed to determine the optimal value of
regularization parameter l at minimum MSE. Based on the
selected features, the radiomics model was established by
multivariate logistic regression algorithm. Three single-energy
(40-keV, 70-keV, and 100-keV) radiomics models and a multi-
energy (combined three single-energy features) radiomics model
were established. The process of LASSO is shown in
Supplemental Appendix 3; Figure S2.
FIGURE 2 | Case 2. Portal phase DECT images of a 40-year-old female patient with GC who did not respond to chemotherapy. (A–C) An irregular wall-thickening
lesion at the gastric body was present (arrow). (D–F) There was no obvious change (slightly regression) in the lesions of gastric body (arrow). (A–C) were
monochromatic images of 40, 70, and 100 keV before chemotherapy, respectively; (D–F) were monochromatic images of 40, 70, and 100 keV after chemotherapy,
respectively. Note: After completion of chemotherapy, the patient was diagnosed with aggravated peritoneal metastasis.
September 2021 | Volume 11 | Article 740732
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Clinical Model and Nomogram
Establishment
Univariate and multivariate logistic regression analysis were used
to determine the independent clinical predictors related to
chemotherapy response.

The candidate factors of univariate logistic regression analysis
included age, gender, clinical stage, cN stage, cM stage, distant
metastatic sites, location, Borrmann classification, thickness, and IC
and NIC value. Odds ratio and 95% confidence interval (CI) were
calculated. The significant variables (p-value < 0.05) in the
univariable analysis were considered in the multivariate logistic
regression analysis. Then, the independent clinical predictive factors
were determined and the clinical model was established. In addition,
a combination model (ComModel) was established by combining
the selected clinical predictor with multi-energy radiomics model to
explore the added value of the additional dual-energy information.
Meanwhile, the ComModel was visualized as a nomogram to
predict individualized probability of response.

Evaluation and Comparison of Model
Performance
Evaluation of the model contained discrimination, calibration,
and clinical usefulness. The receiver operating characteristic
(ROC) curve analysis was used to evaluate the discrimination
performance of each model, while the DeLong test was used to
compare the differences in area under the curve (AUC) among
different models. Calibration curves were carried out to describe
calibration performance according to agreement between
predicted and actual probability of response. Decision curve
analysis (DCA) was employed to estimate the clinical
usefulness of the model based on the net benefit at different
threshold probabilities. The radiomics flowchart of our study is
shown in Figure 3.

Statistical Analysis
Feature selection, model construction, and performance
evaluation were performed on R software package (version
Frontiers in Oncology | www.frontiersin.org 58
3.6.3). Other statistical analyses were conducted with SPSS25.0
software (IBM, USA). A two-tailed p-value<0.05 was considered
statistically significant.

Normality of distribution of continuous variables was tested
using a Kolmogorov–Smirnov test. The differences in continuous
variables were assessed by using analysis of variance (ANOVA),
and categoric variables were compared using the c2 test.
RESULTS

Clinical Characteristics
The general demographic characteristics, clinicopathological
characteristics, and dual-energy parameters of the patients are
shown in Supplemental Appendix 4; Table A2. A total of 69
(median age 56 years, range 23–84 years) patients with AGC
were analyzed in this study. The number of AGC patients with
stage IV disease was 47 (68.1%). There were 10 patients (14.5%)
presented with diffuse lesions (lesion location ≥2). Fifty-eight
patients (84.1%) demonstrated evidence of lymph node
involvement. Distant metastases were found in 40 patients
(58.0) and 14 of them (20.3%) presented with liver metastasis.

According to the results of response assessment, patients were
divided into responder (n = 24) and non-responder (n = 45) groups.
Baseline characteristics of the two groups are summarized in
Table 1. Clinical Stage, Borrmann classification, and IC were
found to be significantly different between groups. Furthermore,
univariate and multivariate logistic regression analyses
demonstrated that clinical stage and IC value were independent
clinical predictors of response to chemotherapy for AGC (Table 2).

Radiomics Feature Selection
Based on LASSO regression, we obtained 8, 4, 6, and 11 most
significant radiomics features with non-zero coefficients as the
predictive radiomics features from the 40-keV, 70-keV, 100-keV,
and multi-energy groups, respectively. The distribution of the
selected radiomics features of the corresponding model
FIGURE 3 | Radiomics workflow of the present study. The radiomics procedure consists mainly of five steps: volume of interest segmentation, feature extraction,
feature selection, model evaluation, and nomogram evaluation.
September 2021 | Volume 11 | Article 740732
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coefficients is shown in Supplemental Appendix 5, Tables A3
and A4.

Evaluation and Comparison of Model
Performance
Radiomics model: The 100 keV radiomics model had the better
predictive value among the three monochromatic radiomics
models, with an AUC of 0.881 (95% CI 0.791–0.971). The AUC
was 0.747 (95% CI: 0.628–0.866) for the 40-keV radiomics model
and 0.793 (95% CI 0.678–0.908) for the 70-keV radiomics model.
The AUC of the multi-energy radiomics model was 0.914 (95% CI
0.846–0.982) (Figure 4A).

Clinical model: Clinical stage and IC were included in themodel.
The AUC of the clinical model was 0.774 (95% CI 0.628–0.866).

Combined model: A combined clinical-radiomics model
(ComModel) was established incorporating multi-energy radiomics
features, clinical stage, and IC value while presented as a nomogram
(Figure 4B). The AUC of ComModel was 0.934 (0.877–0.991).

The AUC of the multi-energy radiomics model predicting
response probability was superior to two monochromatic
radiomics models and the clinical model. The ComModel
achieved best discrimination among all models with an AUC
of 0.934. Besides, there was no significant difference between
Frontiers in Oncology | www.frontiersin.org 69
ComModel, the 100-keV model, and the multi-energy model
(p = 0.138 between the multi-energy model and ComModel, p =
0.073 between ComModel and the 100-keV model, p = 0.221
between the 100-keV model and the multi-energy model). ROC
curves and detailed performances of the six models are illustrated
in Figure 4C and Table 3. A comparison of discrimination of
these models is demonstrated in Table 4.

Evaluation of Clinical-Radiomics
Nomogram Performance
The calibration curves of the nomogram (Figure 5A) showed a
good fit between predictive probability of response and actual
response rate. Non-significant statistics of the accompanied
Hosmer–Lemeshow test (p = 0.280) implied that the nomogram
was adequately calibrated without departure from the ideal fit. The
decision curve analysis (Figure 5B) demonstrated good
performance of the multi-energy radiomics model and the
nomogram in terms of clinical decision-making, which added
more benefits than either a treat-all or treat-none scheme. In
addition, the analysis showed that the nomogram and multi-
energy radiomics model had a similar clinical application value,
and their prediction performance was better than that of the
clinical model.
TABLE 1 | Baseline characteristics of responder and non-responder groups.

Characteristics Responder (n = 24) Non-responder (n = 45) p

Age (years) 57.25 ± 12.44 53.22 ± 14.10 0.250
Sex 0.352
Female 9 12
Male 15 33

ECOG 0.136
PS 0 11 29
PS 1–2 13 16

Clinical Stage 0.018*
III 12 10
IV 12 35

cN stage 0.768
N0 5 6
N1 10 17
N2 5 11
N3 4 11

Metastatic sites 0.597
Absent 12 17
Liver 4 10
Lung 0 2
Othera 8 16

Location 0.879
Upper 11 19
Middle 3 9
Lower 6 11
Diffuse 4 6

Borrmann type <0.001*
I–II 2 8
III 20 15
IV 2 22

Thickness (cm) 2.165 ± 0.723 2.520 ± 0.855 0.093
IC (100 mg/ml) 24.857 ± 3.153 21.780 ± 3.379 0.001*
NIC 0.078 ± 0.044 0.127 ± 0.067 0.257
September 2021 | Volume 11 | Article
*p-value < 0.05. Data (%) are the proportion of sample size or mean value ± SD.
aperitoneum, distant lymph node, adrenal gland, ovary; N, lymph node; IC, iodine concentration; NIC, normalized iodine concentration.
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DISCUSSION

In this study, we built a DECT-based clinical-radiomics
nomogram for systemic chemotherapy response prediction in
Frontiers in Oncology | www.frontiersin.org 710
AGC using datasets from two centers. The constructed
nomogram, which combined clinical stages, IC, and DECT-
derived radiomics features, demonstrated satisfactory
discriminative ability, and can be used to stratify patients who
TABLE 2 | Clinical predictors for response to chemotherapy in patients with AGC.

Characteristic Univariable analysis p-value Multivariable analysis p-value

OR (95% CI) OR (95% CI)

Age (years) 1.023 (0.984–1.062) 0.249
Sex 0.354
Male Reference
Female 1.650 (0.573–4.753)

ECOG 0.139
PS 0 Reference
PS 1–2 2.142 (0.781–5.873)

Clinical stage 0.021* 0.029*
III Reference Reference
IV 0.286 (0.098–0.829) 0.251 (0.072–0.869)

cN stage
N0 Reference –

N1 0.706 (0.170–2.923) 0.631
N2 0.545 (0.111–2.673) 0.455
N3 0.436 (0.084–2.269) 0.324

cM stage 0.329
M0 Reference
M1 0.607 (0.223–1.653)

Location
Upper Reference –

Middle 0.576 (0.128–2.588) 0.472
Lower 0.942 (0.272–3.260) 0.925
Diffuse 1.152 (0.266–4.993) 0.850

Borrmann type
I–II Reference –

III 4.500 (0.806–25.122) 0.086
IV 0.350 (0.041–2.977) 0.336

Thickness (cm) 0.551 (0.272–1.119) 0.099
IC (100 mg/ml) 1.334 (1.108–1.605) 0.002* 1.309 (1.067–1.605) 0.010*
NIC 6.950 (0.248–194.682) 0.254 4.373 (0.077–247.896) 0.474
September 2021 | Volume 11 | Article
*p-value < 0.05. CI, confidence interval; OR, odds ratio; N, lymph node; M, distant metastasis; IC, iodine concentration; NIC, normalized iodine concentration.
A B C

FIGURE 4 | Radiomics score, nomogram developed with the combined model, ROC curve analysis of all models. (A) Waterfall plot for distribution of radiomics
scores for each patient. (B) The developed clinical-radiomics nomogram to predict response to chemotherapy in patients with gastric cancer. (C) ROC curves of all
models for predicting response to chemotherapy. AUC, area under the curve; Clinical-radiomics, nomogram.
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are more likely to benefit from systemic chemotherapy.
Furthermore, our study demonstrates that radiomics features
extracted from the virtual monochromatic images can reflect
heterogeneity of gastric cancer and that radiomics may serve as a
Frontiers in Oncology | www.frontiersin.org 811
promising technique for predicting the response to treatment in
patients with AGC.

Existing radiomics models for predicting response to systemic
chemotherapy used both pre-treatment and post-treatment CT
TABLE 3 | Radiomics, clinical-only, and clinical-radiomics model predictive performance.

Model AUC
(95% CI)

SPE
(%)

SEN
(%)

ACC
(%)

PPV
(%)

NPV
(%)

40 keV 0.747
(0.628–0.866)

60.0 83.3 68.1 52.6 87.1

70 keV 0.793
(0.678–0.908)

88.9 62.5 79.7 75.0 81.6

100 keV 0.881
(0.791–0.971)

84.4 83.3 84.1 74.1 90.5

Full 0.914
(0.846–0.982)

86.6 87.5 86.9 77.7 92.8

Clinical 0.775
(0.665–0.884)

55.6 91.7 68.1 52.4 92.6

ComModel 0.934
(0.877–0.991)

91.1 83.3 88.4 83.3 91.1
September 2021
 | Volume 11 | Article 74
AUC, area under the curve; SPE, specificity; SEN, sensitivity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; Full, multi-energy; ComModel, Clinical-
Radiomics; CI, confidence interval.
TABLE 4 | Comparison of discrimination of all models.

Model 5 0.17
Model 4 <0.01* 0.02*
Model 3 0.10 0.22 0.11
Model 2 <0.01* 0.01* 0.81 0.17
Model 1 <0.01* <0.01* 0.74 0.02* 0.52

Model 6 Model 5 Model 4 Model 3 Model 2
*p < 0.05. Model (1) corresponds to the model based on selected 40-keV radiomics features, model (2) corresponds to the model based on selected 70-keV radiomics features, model (3)
corresponds to the model based on selected 100-keV radiomics features, model (4) corresponds to the clinical model, model (5) corresponds to the model based on selected multi-energy
radiomics features, and model (6) corresponds to the model combining multi-energy radiomics features and clinical features.
A B

FIGURE 5 | Calibration curves and decision curve analysis of the nomogram. (A) Calibration curves of the nomogram. The x-axis and the y-axis show the
nomogram-predicted response probabilities and the actual probabilities, respectively. The calibration curve presents the calibration of the nomogram in terms of the
agreement between the predicted response to chemotherapy and the observed probabilities of response to chemotherapy. The diagonal gray line presents a perfect
prediction, and the black solid line presents the predictive performance of the nomogram. Better prediction is indicated by a closer fit of the black solid line to the
diagonal gray line. (B) Decision curve analysis for the combined model, multi-energy radiomics model, and clinical model. The y-axis represents the net benefit. The
gray line represents the assumption that all patients have a response to chemotherapy; however, the black line is the opposite. The blue line represents the
combined model. The red line represents the multi-energy radiomics model. The green line represents the clinical model.
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images (35). However, the post-treatment nature could narrow
its extensive utility in clinical therapy decision-making (36).
Thus, pre-treatment images were selected to construct
prediction models in the current study. Using a pre-treatment
predictive model, clinicians can identify the chemosensitivity of
patients, thereby better stratifying patients for more appropriate
treatment regimens (36). As a result, the pre-treatment
predictive model may broaden its application in the clinical
settings and help personalize treatment and improve prognosis
of AGC patients.

Dual-energy imaging extends the capabilities of conventional
CT offering potentials to improve lesion detection and
characterization (33). At present, some scholars have been
committed to the combination of dual-energy CT and radiomics
or texture analysis (13, 37–42). However, most feature extractions
were based on single-energy monochromatic images, 120 kV
equivalent mixed images, or iodine images. There were few
studies on feature extraction based on multi-energy images,
especially in gastric cancer. Li et al. (14) found that the multi-
energy image-based radiomics model could better predict lymph
node metastasis (LNM) for gastric cancer when compared to the
clinical and single-energy model. In terms of monoenergetic
selection for radiomics model construction, 70 keV was used as
it could resemble a 120-kVp conventional single-energy CT
acquisition, while having a higher contrast-to-noise ratio and
less image noise (43–46). Meanwhile, according to basic CT
physics and algorithms, we also selected 40-keV images as the
representative of low-energy dataset (40–70 keV) to reflect the
tissue enhancement characteristics and 100-keV images as
the representative of high-energy dataset (100–140 keV) to reflect
the tissue non-enhanced characteristics. In our comparison of three
monoenergetic radiomics models, the 100-keV model achieved a
better performance. High-energy monochromatic images have
higher image quality and lower background parenchymal noise
(47, 48). Thus, we speculate that the radiomics features based on
low-noise, high-energy images reflecting the tissue non-enhanced
nature are more likely to seize the heterogeneity of tumors. Notably,
the 100-keV model did not significantly differ from the multi-
energy model or the clinical-radiomics nomogram in terms of
response prediction. This finding was consistent with a previous
study that the potential benefits of multi-energy images must be
evaluated on a case-by-case basis (13). From this, the 100-keV
images not only was visually comfortable and extensively useful in
clinical routine display (14), but also showed good performance in
predicting systemic chemotherapy response of AGC.

DECT-derived IC represents iodine deposition in tissues and
is deemed as an alternative measure for tumor vascularity and
perfusion (49). Previous studies have explored the application of
IC in the field of oncology for diagnosis, the prediction of lymph
node metastasis, and the evaluation of therapy response (50–52).
Tang et al. revealed that the tumor IC was in good agreement
with the pathological regression in evaluating the response of GC
to neoadjuvant chemotherapy, and prediction efficacy of IC was
superior to that of tumor thickness (16). In the present study,
univariate and multivariate analysis results showed that IC was
an independent predictor of the response of chemotherapy for
Frontiers in Oncology | www.frontiersin.org 912
GC. Moreover, the IC value of the non-response group was
significantly lower than that of the response group, which may
indicate that the relatively low blood supply of the tumor before
chemotherapy has some difficulties in the targeted organ
transportation of chemotherapy drugs, leading to a lower
sensitivity of chemotherapy than that of the tumor with
relatively rich blood supply before chemotherapy. Although
NIC has been proven to be a relatively stable indicators in
tumor staging and detection of HER2 status (53, 54), its
application and benefits are not entirely clear (55). Previous
study revealed that NIC cannot serve as an independent
predictive factor for lymph node metastasis in GC (51). Similarly,
this study found that NIC was not statistically significant in
univariate logistic analysis (p > 0.05); however, we still included
NIC in the multivariate study and further confirmed it as a non-
independent risk factor. Hence, future studies are prompted to
discuss and validate the value of NIC in tumor prediction.

Tumor thickness plays an important role in predicting the
therapeutic response of GC. Wang et al. revealed that tumor
thickness ratio reduction was a good predictor of pathological
complete response (pCR) after neoadjuvant chemotherapy
(NAC) in patients with GC; however, tumor thickness before
NAC was not helpful in predicting pCR (56). We also found that
pre-treatment tumor thickness was not correlated with systemic
chemotherapy response. Previous studies have suggested that the
clinical staging of GC is closely related to the choice of treatment
strategy and prognosis. At the same time, we have also
demonstrated IC and clinical staging were significantly
associated with systemic chemotherapy response, and an
improvement of predictive power was observed when IC and
clinical staging were added to the radiomics model.

Our study had some limitations. First, this is a pilot study using
functional imaging radiomics to predict response to systemic
chemotherapy. Although data from two centers were included,
the sample size was still limited and lacked a validation group.
However, the construction of our radiomics prediction model was
based on features screened out using 10-fold cross-validation,
ensuring optimal reliability and reproducibility. Furthermore,
future collaboration with other dual-energy CT centers is
underway to enlarge the sample size. Second, the current study
gathered dual-center dual-energy data to increase the statistical
power at the expense of increased variability of different
manufacturers’ scanners; however, we used monochromatic
images derived from the fast kilovolt peak-switching and dual-
source acquisition paradigms to extract radiomics features to
reduce the possible variability. Jacobsen et al. confirmed in a
large phantom study that fast kilovolt peak-switching and dual
source usually provided the most accurate monochromatic
attenuation, and little difference existed in monochromatic error
between the two scan protocols used in our study (57). Meanwhile,
predictive model developed by current research achieved favorable
performance, which further shows the good predictive value of the
radiomics features based on different manufacturers’ dual-energy
CT for chemotherapy response. Future research can attempt to use
uniform dual-energy scanners and standardized imaging
techniques to establish predictive model.
September 2021 | Volume 11 | Article 740732
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In conclusion, we developed a pre-treatment dual-energy
CT–based radiomics nomogram for predicting clinical
response to systemic chemotherapy in patients with AGC. Our
preliminary results revealed that integrating multidimensional
data including radiomics, clinical factors, and dual-energy
parameter could benefit risk stratification, optimize candidate
selection for systemic chemotherapy, and, finally, improve
quality of life in patients with advanced gastric cancer.
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Background: Lymph vascular invasion (LVI) is an unfavorable prognostic indicator in
gastric cancer (GC). However, there are no reliable clinical techniques for preoperative
predictions of LVI. The aim of this study was to develop and validate PET/CT-based
radiomics signatures for predicting LVI of GC preoperatively. Radiomics nomograms were
also established to predict patient survival outcomes.

Methods: This retrospective study registered 148 GC patients with histopathological
confirmation for LVI status, who underwent pre-operative PET/CT scans (Discovery VCT
64 PET/CT system) from December 2014 to June 2019. Clinic-pathological factors (age,
gender, and tumor grade, etc.) and metabolic PET data (maximum and mean
standardized uptake value, total lesion glycolysis and metabolic tumor volume) were
analyzed to identify independent LVI predictors. The dataset was randomly assigned to
either the training set or test set in a 7:3 ratios. Three-dimensional (3D) radiomics features
were extracted from each PET- and CT-volume of interests (VOI) singularly, and then a
radiomics signature (RS) associated with LVI status is built by feature selection. Four
models with different modalities (PET-RS: only PET radiomics features; CT-RS: only CT
radiomics features; PET/CT-RS: both PET and CT radiomics features; PET/CT-RS plus
clinical data) were developed to predict LVI. Patients were postoperatively followed up
with PET/CT every 6-12 months for the first two years and then annually up to five years
after surgery. The PET/CT radiomics score (Rad-scores) was calculated to assess survival
outcome, and corresponding nomograms with radiomics (NWR) or without radiomics
(NWOR) were established.

Results: Tumor grade and maximum standardized uptake value (SUVmax) were the
independent LVI predictor. 1037 CT and PET 3D radiomics features were extracted
separately and reduced to 4 and 5 features to build CT-RS and PET-RS, respectively.
PET/CT-RS and PET/CT-RS plus clinical data (tumor grade and SUVmax) were also
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developed. The ROC analysis demonstrated clinical usefulness of PET/CT-RS plus clinical
data (AUC values for training and validation, respectively 0.936 and 0.914) and PET/CT-
RS (AUC values for training and validation, respectively 0.881 and 0.854), which both are
superior to CT-RS (0.838 and 0.824) and PET-RS (0.821 and 0.812). SUVmax and LVI
were independent prognostic indicators of both OS and PFS. Decision curve analysis
(DCA) demonstrated NWR outperformed NWOR and was established to assess survival
outcomes. For estimation of OS and PFS, the C-indexes of the NWR were 0. 88 and 0.88
in the training set, respectively, while the C-indexes of the NWOR were 0. 82 and 0.85 in
the training set, respectively.

Conclusions: The PET/CT-based radiomics analysis might serve as a non-invasive
approach to predict LVI status in GC patients and provide effective predictors of patient
survival outcomes.
Keywords: gastric cancer, PET-CT, nomogram, lymph vascular invasion, survival prognosis, radiomics
INTRODUCTION

Gastric cancer (GC) is currently one of the most common
malignant tumors, accounting for the second-highest number
of cancer-related fatalities worldwide, seriously threatening
human health and life safety (1). Furthermore, approximately
70% of cases occur in Asia, with China accounting for at least half
of all cases. Surgical resection is taken as the standard treatment
approach for GC that is surgically resectable (2). Unfortunately,
the poor survival prognosis arising from postoperative tumor
recurrence is still a clinical dilemma. It has been reported that the
recurrence rate of GC patients within two years after radical
resection was 61.7%, and the average recurrence time was 24.3
months. Especially, 90% of patients with stage III GC had a
recurrence rate of 50% and 40% in the first and second years after
surgery (3, 4). At present, there are currently no efficient and
reliable prognostic bio-markers for identifying high-risk groups
for adjuvant therapy in clinical practice.

Malignant tumor cell metastasis is the leading cause of death
in patients with malignant tumors, in which lymphatic
metastasis is the main way. Lymph vascular invasion (LVI)
refers to the infiltration of tumor cells in the lumen of arteries,
veins, or lymphatic vessels during histologic examination with
hematoxylin and eosin (H&E) stains, D2-40 and CD31 stains,
which has previously been demonstrated to prompt the local
recurrence and distant metastasis of tumors (5, 6). For instance,
LVI has been reported to be an independent prognostic factor for
the overall survival (OS) and disease-free survival (PFS) of breast
cancer patients (7, 8). Thus, accurate identification of LVI status
is conductive to develop personalized treatment planning for
breast cancer patients. Meanwhile, a series of studies have found
that the occurrence of pathological LVI was closely associated
with the progression of GC and poor clinical prognosis. The
incidence of LVI was 25% and 44% in moderately and well
differentiated and poorly differentiated gastric cancers,
respectively, while the 5-year survival rate of GC was only
37.7% in patients with LVI-positive, which was significantly
lower than 59.9% of patients with LVI-negative (9–12).
217
Although LVI is considered to be a key prognostic factor of
unsatisfactory survival outcomes in various cancers, accurate
identification of LVI status prior to operation is still difficult
because LVI is mainly found through postoperative pathology.

18F-fluorodeoxyglucose(18F-FDG) positron emission
tomography-computed tomography (PET-CT), as a prospect
imaging modality, plays a vital role in preoperative staging,
treatment efficacy evaluation, tumor residual, and recurrence
identification of GC. Nevertheless, predicting LVI of GC patients
using quantitative PET metabolic parameters has received
minimal attention. Lin et al. found that ratio maximum
standardized uptake values (SUVmax) to mean standardized
uptake values (SUVmean) is an independent predictor of LVI
in hepatocellular carcinoma (13). Noda et al. reported that
SUVmax of lung cancer could be employed for the
identification of LVI (14). Unfortunately, the clinical usefulness
of all these metabolic parameters in predicting LVI has not been
demonstrated in GC, which needs to be deeply investigated.

Radiomics, which transformed digital medical images into
high-throughput data, is a promising and non-invasive method
that can extract high-throughput features (such as shape,
intensity, and texture features) (15). It captures relationships
between image voxels that may not be perceived by the naked
eyes of physicians-even experienced radiologists, which can
contribute to the diagnostic and predictive accuracy of the
disease (16). Xu et al. reported that total lesion glycolysis
(TLG) might be the best indicator for predicting lymph
vascular space invasion (LVSI) in cervical cancer without
lymphatic metastasis (17). Nie et al. investigated the clinical
value of the PET/CT-based radiomics analysis in predicting LVI
status, and the results demonstrated the favorable predictive
efficacy for LVI status in lung adenocarcinoma patients (18).
Several works focused on predicting the LVI status of GC using
computed tomography (CT)-derived radiomics features have
previously been reported. Chen et al. demonstrated that
radiomics analysis based on contrast-enhanced computed
tomography (CECT) may help to predict LVI status and PFS
(19). In Meng et al.’s study, models constructed with two-
March 2022 | Volume 12 | Article 836098
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dimensional (2D) radiomics features revealed comparable
performances with those constructed with three-dimensional
(3D) features in predicting LVI status (20). However, to our
knowledge, no previous study has focused on the clinical value of
PET-based radiomic signatures in the preoperative prediction of
LVI in GC.

In the present study, we intended to develop and validate the
PET/CT-based radiomics models for preoperatively predicting
the LVI status of GC. Furthermore, we also investigated whether
the PET/CT-based nomogram can be applied as a non-invasive
method to assess patient survival outcomes.
MATERIALS AND METHODS

Ethical approval was obtained for this retrospective study, and the
need for written informed consent was waived. The enrolment
flowchart of this study is displayed in Supplementary Figure 1. A
total of 148 patients with pathologically confirmed GC from
December 2014 to June 2019 were enrolled in this study
according to the following inclusion criteria:1) PET/CT scans
were performed before surgery;2) GC patients with clear
pathologically confirmed LVI on surgical resection specimens;3)
No previous anti-tumor therapy before surgery such as
radiotherapy, chemotherapy and neoadjuvant therapy;4)
Patients with detailed clinical data and follow-up information
(OS and PFS were followed up until September 30, 2020). The
exclusion criteria were as follows: 1) Poor image quality (artifacts
related to patient motion, which was assessed by a senior
radiologist who has 15-year specialized experience); 2) History
of other malignant tumors. Clinical information was obtained
through clinical medical record retrieval, including age, gender,
lymph node metastasis, cTNM, T stage, N stage, M stage,
molecular subtype, tumor grade, tumor thickness ,
carcinoembryonic antigen (CEA), carbohydrate antigen 125
(CA125), carbohydrate antigen199 (CA199), SUVmax,
SUVmean, metabolic tumor volume (MTV) and TLG.

Image Acquisition
Prior to scanning, all patients were required to fast for at least 6
hours. All patients’ blood glucose levels should be kept below
11.0 mmol/L. PET/CT images were acquired using the Discovery
VCT 64 PET/CT system (GE Healthcare, Milwaukee, USA). A
total of 1000-1200ml contrast agent (Meglumine diatrizoate at a
concentration of 2%) was injected into the patients 15 minutes
before the examinations to fill the gastric cavity, which is a cheap,
effective and well-tolerated intracavitary contrast agent with
minimal adverse effects. A 3.78 MBq/kg dose of 18F-FDG was
administered intravenously, and approximately one hour later,
whole-body CT scanning was performed. Specific imaging
parameters were listed as follows: tube voltage 140 kV, tube
current 140 mA, slice thickness 3 mm, reconstruction interval 3
mm, matrix size 512 × 512, and field of view 650 mm. After the
CT scan, the emission scan was followed by a 1.5-2 min
transmission scan per bed position. After the completion of the
CT scan, the PET emission scan was followed by a 2 min per bed
Frontiers in Oncology | www.frontiersin.org 318
position. Image reconstructions were performed based on the 3D
ordered subset expectation-maximization algorithm (2 iterations
and 17 subsets).

Image Analysis
The PET/CT images were analyzed by two radiologists blinded to
the clinical and pathological results, (Reader 1, P.X and Reader 2,
C.G with 10- and 15-years’ experience in the interpretation of
PET/CT images, respectively). The metabolic parameters were
measured by drawing a region-of-interest (ROI) on the axial PET
image based on a threshold of 40% of SUVmax using commercial
software (PET VCAR; GE Healthcare, USA). Any disagreement
was resolved by consensus. SUVmax was defined at the highest
value on one pixel with the highest counts within the ROI (21).

Tumor Segmentation and Radiomics
Feature Extraction
The overview of the radiomics workflow is displayed in Figure 1.
Axial PET and CT Digital Imaging and Communications in
Medicine images obtained from the Picture Archiving and
Communication System were applied for tumor segmentation.
The tumor lesion was delineated on axial PET and CT images
using LIFEx software (open-source software; www.lifexsoft.org/
index.php) (Figure 1A). All 3D segmentation was first delineated
automatically by means of a fixed threshold of 40% of the
SUVmax, which were corrected by a radiologist manually
afterward, blinded to surgical and pathological results.

We adopted three steps to preprocess the PET and CT images
prior to feature extraction (22). Firstly, we resampled all images
to a uniform voxel size of 1 mm × 1 mm × 1 mm using linear
interpolation to minimize the influence of different layer
thicknesses. Secondly, based on the gray-scale discretization
process (bin width for CT = 25, bin width for PET = 0.1), we
convert the continuous image into discrete values. Finally, we use
the Laplacian of Gaussian and wavelet image filters to eliminate
the mixed noise in the image digitization process in order to
obtain low- or high-frequency features. Radiomics features were
extracted from each PET-derived volume of interest (VOI) and
CT-derived VOI by applying dedicated AK software (Artificial
Intelligence Kit; GE Healthcare), which is in compliance with
image biomarker standardization initiative guidelines (23). A
total of 2074 radiomics features were extracted from each VOIs
(1037 for CT, 1037 for PET) including (i) 198 for first-order
feature, (ii) 14 for shape feature, (iii) 264 for gray level co-
occurrence matrix (GLCM) feature, (iv) 176 for gray level size
zone matrix (GLSZM) feature, (v) 176 for gray level run length
matrix (GLRLM) feature, (vi) 55 for neighborhood gray tone
difference matrix (NGTDM) feature, (vii) 154 for gray level
dependence matrix (GLDM) feature.

Radiomic Feature Selection and
Model Development
After the radiomics features extraction, Z-score normalization
was done on each radiomics feature. In addition, the same
preprocessing procedure was also applied to the testing set.
The dataset was randomly assigned to either the training set or
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test set in 7:3 ratios. All cases in the training set were used to train
the predictive model, while cases in the test set were utilized to
independently evaluate the model’s performance.

Firstly, intra- and inter-class correlation coefficients (ICCs)
were calculated to assess the intra- and inter-observer
reproducibility. Reader 1 and Reader 2 drew the VOIs of 40
cases (20 LVI-present GCs and 20 LVI-absent GCs) of CT
images and PET images randomly selected from the whole
cohort. Reader 1 repeated the segmentations two weeks later.
ICC greater than 0.80 indicated good agreement of feature
extraction. The VOI segmentation for the remaining cases
were performed by Reader 1. Next, the feature selection was
carried out by using a step-by-step selection method. Firstly,
univariate logistic regression analysis with the Mann-Whitney U
test was utilized to select features with P-value< 0.05 for the
subsequent analysis. Secondly, multivariate logistic regression
analysis was applied to choose features closely related to LVI
status. Finally, a subset of the most informative features was
retained using the least absolute shrinkage and selection operator
Frontiers in Oncology | www.frontiersin.org 419
(LASSO) method. The k-Nearest Neighbor (KNN) was applied
for model construction, and four sets of machine learning
models (a CT-RS, a PET-RS, a PET/CT-RS, a PET/CT-RS
incorporating clinical and metabolic parameters) were
developed to predict LVI of GC. The diagnostic performance
of the radiomics models was evaluated regarding the area under
the curve (AUC), sensitivity, specificity, and accuracy.

Construction of Radiomics Nomograms
In this study, among all pathologic and therapeutic factors,
SUVmax and pathologic LVI were demonstrated to be associated
with survival prognosis, which were incorporated into the
nomogram’s construction (Supplementary Tables 4–7). A PET/
CT radiomics score (Rad-scores) was calculated, and corresponding
nomograms with radiomics (NWR) or without radiomics (NWOR)
were established by incorporating the independent LVI predictors
as well as the Rad-score to assess survival outcome. Calibration
curve analysis and Decision curve analysis (DCA) were performed
to assess the clinical value of the nomograms.
FIGURE 1 | The flow diagram of this study. (A) Image segmentation; (B) Feature extraction; (C) Feature selection; (D) Model building.
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Follow Up and Survival Analysis
Patients were postoperatively followed up every 6-12 months for
the first 2 years and then annually up to five years. The endpoints
of this study were PFS and OS. PFS is defined as the time interval
from surgery to the recurrence or progression of the disease. OS is
defined as the time interval from surgery to death. Survival curves
were drawn using the Kaplan-Meier approach and compared
using the log-rank test. All the prognostic factors (including
pathologic LVI status, gender, age, lymph node metastasis,
tumor grade, molecular subtype, T stage, N stage, M stage,
cTNM, CEA, CA125, CA199, Tumor thickness, SUVmax,
SUVmean, MTV and TLG were evaluated by univariate
analysis using the Kaplan-Meier approach. Statistically
significant variables were analyzed for the multivariate Cox
forward stepwise regression model to select independent
predictors of OS and PFS.

Statistical Analyses
Univariate analysis (chi-square test or Mann-Whitney U test)
and multivariate logistic regression was used to screen out final
significant variables by using SPSS software (Version 25.0, IBM).
ICC, receiver operating curve (ROC) analysis, calibration plots,
DCA, and survival analysis were performed with R statistical
software (version 3.5.1). A two-sided P-value< 0.001 was used as
the criterion to indicate a statistically significant difference.
RESULTS

Patient Characteristics
A total of 148 patients (103 males and 45 females; average age 61;
median age 60 years; age range 35-85 years) were recruited for this
study, including 69 cases of LVI-present and 79 cases of LVI-
absent. The clinic-pathological variables and PET metabolic
parameters of all patients are displayed in Table 1. In univariate
logistic regression analysis, there was no significant statistical
difference in gender, age, molecular subtype, T stage, M stage,
cTNM, CEA, CA125, CA199, tumor thickness, SUVmean and
MTV between LVI-present and LVI-absent groups (P > 0.001),
while lymph node metastasis, tumor grade, N stage, SUVmax and
TLG were statistically significant (P < 0.001). Among these
parameters, tumor grade and SUVmax were further shown to be
independent LVI predictors (Supplementary Table 2).

Intra and Inter-Observer Reproducibility of
Feature Extraction
The intra-observer ICC ranged from 0.811 to 0.920, and inter-
observer ICCs were ranged from 0.740 to 0.902. Therefore, a
favorable intra- and inter-observer reproducibility of radiomics
feature extraction was observed in our study.

Performance of the Four Models
After proper feature selection, 4, 5, 9, and 11 RSs were selected
respectively to develop the CT-RS, PET-RS, PET/CT-RS, and
clinical parameters integrated models for predicting LVI status in
GC. After using a step-by-step selection method, four CT and
Frontiers in Oncology | www.frontiersin.org 520
five PET radiomics features were eventually selected to build CT-
RS and PET-RS, respectively. Radiomics features and
corresponding coefficients and their significance are listed in
Supplementary Table 3. The ROC analysis demonstrated the
clinical usefulness of the integrated model and PET/CT-RS,
which both are superior to the CT-RS and PET-RS. All results
regarding diagnostic efficacy were demonstrated in Table 2, and
the ROC curves were as displayed in Figure 2. The ROC analysis
demonstrated a favorable clinical usefulness of PET/CT-RS plus
clinical data (AUC values for training and validation, respectively
0.936 and 0.914) and PET/CT-RS (AUC values for training and
validation, respectively 0.881 and 0.854), which both are superior
to CT-RS (0.838 and 0.824, both P values < 0.001) and PET-RS
(0.821 and 0.812, both P values < 0.001). The accuracy, precision,
sensitivity and specificity were 0.796, 0.827, 0.782 and 0.812 for
CT-RS model; 0.767, 0.782, 0.782 and 0.75 for PET-RS model;
0.806, 0.857, 0.764 and 0.854 for PET/CT-RS; 0.883, 0.891, 0.891
and 0.875 for PET/CT-RS incorporating clinical and metabolic
parameters, respectively.

Construction and Validation of Radiomics
Nomogram
Among all pathologic and therapeutic factors, SUVmax and
pathologic LVI were demonstrated to be associated with survival
prognosis, which was incorporated into the nomogram’s
construction (Supplementary Tables 4–7). Radiomics features
for calculating PET/CT Rad-scores of OS and PFS and their
importance and significance were displayed in Tables 3, 4. For
estimation of OS, the C-index of the NWR in the training set and
test set were 0.88 and 0.84, respectively. The C-index of the
NWOR in the training set and test set were 0.82 and 0.80,
respectively. For estimation of PFS, the C-index of the NWR in
the training set and test set were 0.88 and 0.84, respectively. The
C-index of the NWOR in the training set and test set were 0.85
and 0.79, respectively. Diagnostic Performance of the NWR
and NWOR in Table 5 and Figure 3. The PET/CT-NWR and
PET/CT-NOWR, the corresponding calibration curve, and the
decision curve were displayed in Figures 4, 5.

Survival Outcome
As of September 30, 2020, 148 populations had been successfully
followed up regarding the OS and PFS. The overall death rate was
50.67% (75/148), and the overall progression rate was 50.67%
(75/148). The median OS of all populations was 28.95 months
(range, 1-87 months), particularly 16.5 months (range, 1-39
months) for the pathologic LVI-present patients, and 58.7
months (range, 26-87 months) for the pathologic LVI-absent
patients. The median PFS of the patients was 17.7 months (range,
1-85 months), particularly 10.4 months (range, 1-26 months) for
the pathologic LVI-present patients and 53.3 months (range, 9-
85 months) for the pathologic LVI-absent patients. The
multivariate Cox regression analysis that SUVmax and
pathologic LVI were independent prognostic indicators of both
OS [HR=1.210 (95% CI) and 3.814 (95% CI), P< 0.001] and PFS
[HR=1.233 (95% CI) and 3.988 (95% CI), P< 0.001]. Survival
curves are displayed in Supplementary Figures 2–5.
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Case Study
Two typical cases were chosen by the domain experts—one
patient with features predicting LVI-absent status and one with
LVI-present status—to illustrate the performance of our model
in predicting LVI status and survival outcome. The detailed
medical information, including the CT and PET images and
fused images for each patient, are shown in Supplementary
Figures 6A, B. A: Representative PET/CT images in a 60-year-
old patient with stage I A gastric cancer, with evidence of LVI-
absent status at postsurgical histological analysis after surgery.
For predicted LVI-absent patient, OS and PFS were 47.4 and 28.9
months, respectively. B: Representative PET/CT images in a 68-
year-old patient with stage II B gastric cancer, with evidence of
LVI-present status at postsurgical histological analysis after
surgery. For predicted LVI-present patient, OS and PFS were
16.2 and 8.7 months, respectively.
Frontiers in Oncology | www.frontiersin.org 621
DISCUSSION

The aim of the present study was to evaluate the diagnostic
performance of machine learning models built from a great
number of clinicopathological parameters and PET-CT data
for predicting pathological LVI status and survival outcomes in
GC patients. Our experimental results demonstrated that the
PET/CT-RS model incorporating tumor grade and SUVmax
exhibited excellent clinical value, which achieved relatively
higher AUCs than the PET/CT-RS model did, suggesting the
additional value of clinico-pathological variables and metabolic
parameters in the identification of LVI status in GC patients.
Furthermore, SUVmax and pathologic LVI status were
demonstrated to be independent predictors of both OS and
PFS, which indicates that SUVmax can serve as a non-invasive
bio-marker to facilitate individual treatment strategy schedules.
TABLE 1 | Baseline clinical characteristics of patients.

Clinical factors LVI-absent LVI-present X²/Z P

Gender 0.3610 0.5479
Female 19 (27.9) 26 (32.5)
Male 49 (72.1) 54 (67.5)
Lymph node metastasis 23.1482 < 0.01
Negative 33 (48.5) 10 (12.5)
Positive 35 (51.5) 70 (87.5)
Tumor grade 35.6672 < 0.01
Well differentiated 7 (10.3) 1 (1.25)
Middle differentiated 43 (63.2) 19 (23.8)
Poorly differentiated 18 (26.5) 60 (75.0)
Molecular subtype 4.2472 0.2360
Undifferentiated 11 (16.2) 24 (30.0)
Diffuse type 21 (30.9) 23 (28.8)
Mixed type 18 (26.5) 18 (22.5)
Intestinal type 18 (26.5) 15 (18.8)
T stage 6.4222 0.0928
T1 17 (25.4) 13 (16.3)
T2 36 (53.7) 40 (50.0)
T3 14 (20.9) 22 (27.5)
T4 0 (0.0) 5 (6.25)
N stage 85.4190 < 0.01
N0 33 (48.5) 6 (7.5)
N1 29 (42.6) 6 (7.5)
N2 4 (5.9) 38 (47.5)
N3 2 (2.94) 30 (37.5)
M stage 3.1613 0.0754
M0 38 (55.9) 56 (70.0)
M1 30 (44.1) 24 (30.0)
cTNM 6.3146 0.0973
I 24 (35.3) 18 (22.5)
II 11 (16.2) 7 (8.8)
III 3 (4.4) 5 (6.3)
IV 30 (44.1) 50 (62.5)
Age 62.43 ± 9.64 61.33 ± 10.35 0.67 0.5067
CEA 2.19 ± 3.07 20.67 ± 78.25 -1.93 0.0554
CA125 14.34 ± 43.34 20.53 ± 47.75 -0.82 0.4136
CA199 63.12 ± 65.73 126.62 ± 309.72 -1.65 0.1019
SUVmax 6.31 ± 2.25 9.20 ± 2.87 -6.71 < 0.01
Tumor thickness 1.61 ± 0.59 1.70 ± 0.56 -0.90 0.3701
TLG 65.63 ± 62.55 99.04 ± 55.19 -3.43 < 0.01
SUVmean 8.35 ± 4.97 9.32 ± 3.93 -1.32 0.1877
MTV 9.31 ± 5.72 8.99 ± 4.67 0.38 0.7037
Ma
rch 2022 | Volume 12 | Article
SUVmax, maximum standardized uptake value; SUV, mean mean standardized uptake value; TLG, total lesion glycolysis; MTV, metabolic tumor volume; CEA, carcinoembryonic antigen;
CA125, carbohydrate antigen 125; CA199, Carbohydrate antigen199; LVI, lymph vascular invasion.
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Previous studies have investigated the potential of baseline
metabolic indexes to predict tumor LVI. A previous study
conducted by Hyun, SH et al. reported that tumor-to normal
liver standardized uptake value ratio (TLR) of the tumor is
closely associated with the occurrence of microvascular
invasion (MVI) and constructed a predictive model for
preoperative prediction of MVI status yielding an AUC of
0.756 (24). In our study, the conventional clinico-pathological
Frontiers in Oncology | www.frontiersin.org 722
indexes (such as age, gender, tumor markers, tumor grade, and
so on) and PET metabolic parameters (SUVmax, SUVmean,
TLG, and MTV) were analyzed, and only SUVmax and tumor
grade were considered as independent LVI predictors, suggesting
the traditional parameters extracted from conventional images
demonstrate a limited contribution to LVI prediction.

Different from the naked eye discrimination of traditional
imaging modality, radiomics analysis enables automatically
TABLE 2 | Diagnostic Performance of different radiomics models.

CT-RS PET-RS PET/CT-RS PET/CT-RS incorporating clinical and metabolic parameters

Training set Test set Training set Test set Training set Test set Training set Test set

Accuracy 0.796 0.733 0.767 0.756 0.806 0.800 0.883 0.867
Precision 0.827 0.750 0.782 0.760 0.857 0.826 0.891 0.875
AUC 0.838 0.824 0.821 0.812 0.881 0.854 0.936 0.914
Sensitivity 0.782 0.750 0.782 0.792 0.764 0.792 0.891 0.875
Specificity 0.812 0.714 0.750 0.714 0.854 0.810 0.875 0.857
PPV 0.827 0.750 0.782 0.760 0.857 0.826 0.891 0.875
NPV 0.765 0.714 0.750 0.750 0.759 0.773 0.875 0.857
March 2022
PPV indicates positive prediction value; NPV indicates negative prediction value.
A B

C D

FIGURE 2 | ROCs of different radiomics models in the training and test set. (A) The ROC of CT-RS; (B) The ROC of PET-RS; (C) The ROC of PET/CT-RS; (D) The
ROC of PET/CT-RS incorporating clinical and metabolic parameters.
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filtering comprehensive data from images and deeply
investigating tumor heterogeneity. In a previous study, the
clinical value of radiomics analysis in the prediction of
pathological LVI or MVI has been explored. Zhang et al.
reported that radiomics models based on magnetic resonance
imaging (MRI) and CT could serve as an effective visual
prognostic tool for predicting LVI in rectal cancer. It
demonstrated the great potential of preoperative prediction to
improve treatment decisions (25). Liu et al. explored the use of
dynamic contrast-enhanced (DCE)-MRI-based radiomics for
preoperative prediction of LVI in invasive breast cancer and
found that the DCE-MRI-based radiomics signature in
combination with MRI Axillary lymph node (ALN) status was
effective in predicting the LVI status of patients with invasive
breast cancer before surgery (26). To our best knowledge, we
developed the first-of-its-kind machine learning models based on
quantitative radiomics signatures derived from preoperative 18F-
FDG PET/CT images to predict LVI status in GC patients, which
may serve as a potential biomarker to supplement the traditional
clinical and imaging modalities for personalized treatment in GC
patients. Our radiomics models demonstrated favorable
predictive efficacy, with high AUCs in the training set and
validation set. In the validation set, the prediction accuracy of
the integrated model is 0.867, while the accuracy of the PET
model and the CT model is 0.756 and 0.733, respectively, which
demonstrated that the combined model achieved better
predictive efficacy than either the PET-based radiomics
signatures or the CT-based radiomics signatures alone.
Additionally, with the inclusion of clinical indexes and
Frontiers in Oncology | www.frontiersin.org 823
metabolic parameters in the integrated radiomics model, the
predictive performance was improved, suggesting that the
clinical factors (tumor grade and lymph node metastasis) and
metabolic parameters (SUVmax) played a complementary role in
predicting LVI and ultimately contribute to improving the
prediction efficacy of the integrated model (training set,
validation set AUC are 0.936 and 0.914, respectively).

The current AJCC/UICC guidelines do not include LVI as an
independent prognostic indicator of GC in the TNM staging
system. However, many studies have shown that LVI is an
important prognostic factor for GC after surgical treatment and
is associated with tumor recurrence. Patients with LVI had been
reported to be associated with poorer prognosis (27–29). Partly in
line with previous works, we found that SUVmax and pathological
LVI were independent predictors of the survival period, suggesting
their clinical usefulness in the long-term management of GC
patients. Therefore, in addition to establish a PET/CT-based
radiomics signature for the prediction of LVI status, the
predictive role of this signature in the survival outcome of GC
patients was also explored in this study. Previous research has
demonstrated that radiomics analysis can be applied to predict
survival outcomes in patients with GC. Jiang et al. analyzed clinico-
pathological variables and PET/CT-based radiomics features of 214
GC patients, and a radiomics nomogram with the radiomic
signature incorporated was constructed to demonstrate the
incremental value of the radiomic signature to the TNM staging
system for individualized survival estimation (30).

Different from the previous works, we included LVI and
SUVmax as stratifying indexes and explored the survival
TABLE 3 | Radiomics features for calculating PET/CT radiomics scores (Rad-scores) of OS and their importance.

Feature name Importance

original_glszm_SizeZoneNonUniformityNormalized.PET 2.920620505
original_glszm_SmallAreaEmphasis.PET 6.308496129
wavelet.HLH_firstorder_Kurtosis.PET 0.275069109
log.sigma.3.0.mm.3D_ngtdm_Coarseness.PET 1.76E-06
wavelet.HHH_glcm_ClusterShade.PET 10.57007006
wavelet.HLL_glszm_LargeAreaHighGrayLevelEmphasis.PET 9.41E-10
wavelet.LHH_gldm_SmallDependenceEmphasis.CT 4.869217544
wavelet.LHH_glszm_SizeZoneNonUniformityNormalized.CT -1.937417252
wavelet.LLH_glszm_LargeAreaLowGrayLevelEmphasis.CT 8.70E-06
wavelet.LLL_glcm_Imc1.CT 3.16013583
March 2022 | Volume 12 |
TABLE 4 | Radiomics features for calculating PET/CT radiomics scores (Rad-scores) of PFS and their importance.

Feature name Importance

log.sigma.3.0.mm.3D_firstorder_90Percentile.PET 9.70279E-05
original_gldm_LargeDependenceLowGrayLevelEmphasis.PET 3.578397243
original_glszm_SmallAreaEmphasis.PET 8.222186126
wavelet.LLH_ngtdm_Contrast.PET 5.71462E-05
log.sigma.3.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis.CT 4.247335367
log.sigma.3.0.mm.3D_ngtdm_Coarseness.CT 2.4324E-06
wavelet.HHH_glcm_ClusterShade.CT 8.907641842
wavelet.HLL_glszm_SmallAreaLowGrayLevelEmphasis.CT 4.175090394
wavelet.LHH_glszm_SizeZoneNonUniformityNormalized.PET -2.014521921
wavelet.LHL_glrlm_GrayLevelNonUniformityNormalized.CT 1.824925527
wavelet.LLL_glcm_Imc1.CT 5.26516043
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outcome prediction value of the clinical nomogram. We also
provided clinicians an easy-to-use approach to predict survival
outcomes by developing a radiomics nomogram that
demonstrated favorable discrimination in both the training and
testing sets. Additionally, we found an integrated nomogram
incorporated PET/CT radiomics and clinical parameters
improved survival prediction in GC patients. For estimation of
PFS, the c-index of the integrated nomogram is 0.84 in the test
set, while the c-index of the clinical parameters-based nomogram
is 0.79.

There are some limitations to this study. Firstly, although the
final results achieved are ideal, the number of patients included
was still limited. A future study with a larger number of samples
Frontiers in Oncology | www.frontiersin.org 924
will be needed to conduct further verification of our results.
Secondly, potential selection bias might exist because of the
retrospective nature. Therefore, a prospective validation might
provide sufficient evidence for clinical application. Thirdly, as
tumor segmentation was performed in a manual manner, the
exploitation of a more efficient method for tumor segmentation
remains an important consideration.
CONCLUSION

In summary, this study demonstrated that the application of
radiomics analysis based on PET/CT images shows the potential
TABLE 5 | Diagnostic Performance of the NWR and NWOR.

Model OS PFS

Training set Test set Training set Test set

c-index 95%CI c-index 95%CI c-index 95%CI c-index 95%CI

NWR 0.88 0.84-0.91 0.84 0.80-0.89 0.88 0.84-0.91 0.84 0.80-0.89
NWOR 0.82 0.77-0.86 0.80 0.75-0.86 0.85 0.81-0.88 0.79 0.73-0.80
March 2022
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FIGURE 3 | The NWR for OS (A) and PFS (B) prediction based on rad-score and clinical factors (LVI, SUVmax). The NWOR for OS (C) and PFS (D) prediction
based on clinical factors (LVI, SUVmax).
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FIGURE 4 | Calibration curve of the NWR for OS (A) and PFS (B) in the training set. Calibration curve of the NOWR for OS (C) and PFS (D) in the training set.
Calibration curve of the NWR for OS (E) and PFS (F) in the test set. Calibration curve of the NOWR for OS (G) and PFS (H) in the test set.
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role of preoperative assessment of LVI status. In addition, we
developed an easy-to-use tool to predict the survival outcome of
patients with GC. Although further investigation, including a
much larger number of populations from multicenter, should be
carried out to better expand the generalization ability of
this method.
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GLOSSARY

LVI lymph vascular invasion
GC gastric cancer
2D two-dimensional
3D three-dimensional
RSs radiomics signatures
VOI volume of interests
Rad-scores radiomics score
NWR nomograms with radiomics
NWOR nomograms without radiomics
SUVmax maximum standardized uptake value
H&E hematoxylin and eosin
SUVmean mean standardized uptake values
18F-FDG PET-
CT

18F-fluorodeoxyglucose positron emission tomography-
computed tomography

TLG total lesion glycolysis
CEA carcinoembryonic antigen
CA125 carbohydrate antigen 125
CA199 carbohydrate antigen 199
MTV metabolic tumor volume
ROI region of interest
ICCs Intra- and inter-class correlation coefficients
KNN k-Nearest Neighbor (KNN)
Rad-scores radiomics score
DCA Decision curve analysis
ROC receiver operating curve
AUC area under the curve
TLR tumor-to normal liver standardized uptake value ratio
MRI magnetic resonance imaging
CT computed tomography
DCE dynamic contrast-enhanced
ALN Axillary lymph node
MVI microvascular invasion
LVSI lymph vascular space invasion
OS overall survival
PFS progression-free survival
DFS disease-free survival
CECT contrast-enhanced computed tomography
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Background: DNA mismatch repair (MMR) deficiency has attracted

considerable attention as a predictor of the immunotherapy efficacy of solid

tumors, including gastric cancer. We aimed to develop and validate a

computed tomography (CT)-based radiomic nomogram for the preoperative

prediction of MMR deficiency in gastric cancer (GC).

Methods: In this retrospective analysis, 225 and 91 GC patients from two

distinct hospital cohorts were included. Cohort 1 was randomly divided into a

training cohort (n = 176) and an internal validation cohort (n = 76), whereas

cohort 2 was considered an external validation cohort. Based on repeatable

radiomic features, a radiomic signature was constructed using the least

absolute shrinkage and selection operator (LASSO) regression analysis. We

employed multivariable logistic regression analysis to build a radiomics-based

model based on radiomic features and preoperative clinical characteristics.

Furthermore, this prediction model was presented as a radiomic nomogram,

which was evaluated in the training, internal validation, and external validation

cohorts.

Results: The radiomic signature composed of 15 robust features showed a

significant association with MMR protein status in the training, internal

validation, and external validation cohorts (both P-values <0.001). A radiomic

nomogram incorporating a radiomic signature and two clinical characteristics

(age and CT-reported N stage) represented good discrimination in the training

cohort with an AUC of 0.902 (95% CI: 0.853–0.951), in the internal validation

cohort with an AUC of 0.972 (95% CI: 0.945–1.000) and in the external

validation cohort with an AUC of 0.891 (95% CI: 0.825–0.958).
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Conclusion: The CT-based radiomic nomogram showed good performance

for preoperative prediction of MMR protein status in GC. Furthermore, this

model was a noninvasive tool to predict MMR protein status and guide

neoadjuvant therapy.
KEYWORDS

gastric cancer (GC), radiomics, microsatellite instability, nomogram, LASSO, DNA
mismatch repair deficiency
Introduction

Gastric cancer (GC) is one of the most common malignant

diseases and ranks as the fourth leading cause of cancer-related

death worldwide (1). According to 2020 statistics, the incidence

and mortality of GC both ranked third among solid tumors in

China (1). The first diagnosis of GC patients with locally

advanced disease is approximately two-thirds, so most

guidelines recommend comprehensive therapy as the standard

treatment method, mainly including neoadjuvant therapy plus

surgery (2, 3). Kim et al. found that GC patients with cStage III

disease with microsatellite instability-high (MSI-H) had better

survival than those with microsatellite stability (MSS) after

neoadjuvant chemotherapy (4). A meta-analysis of four

randomized clinical trials of adjuvant chemotherapy based on

immunotherapy in GC showed that the overall survival of GC

patients with microsatellite instability (MSI) was significantly

better than that of patients with MSS (hazard ratio [HR], 0.69;

95% CI, 0.55 to 0.88; P = 0.003) (5). However, An et al. showed

that in MSI-H patients with stage II or III GC, adjuvant

chemotherapy based on 5-FU did not receive any benefit,

which gives a guideline that these patients are not suitable for

the 5-FU-based chemotherapy drugs (6). MSI is caused by a lack

of DNA mismatch repair protein deficiency (dMMR), which

accounts for 6%–25% of GC patients (7). Interestingly, MSI

creates a high mutation burden, increases the number of

neoantigens in tumor tissues, and these individuals exhibit

high levels of immune checkpoint molecules (8, 9). As a result,

comprehensive therapy based on anti-PD-1/-L1 Abs may be a

good option for MSI GC patients. Thus, assessing the MMR

status of all GC patients is a level I recommendation in the

current guidelines.

In clinical practice, immunohistochemistry (IHC) or DNA

detection is the primary technology to evaluate MSI using

postoperative tumor tissues. Although preoperative

gastroscopy tumor samples could also be used to detect MSI,

sampling bias and poor DNA quality may lead to misleading

findings (10, 11). Thus, there is insufficient evidence to choose an

appropriate neoadjuvant therapy for patients who are suffering
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from locally advanced GC. Furthermore, gastroscopic biopsy is a

procedure that requires good physical condition for the patient,

but it cannot be conducted on patients who have inadequate

circumstances, including poor coagulation, cardiopulmonary

dysfunction, and unacceptable gastroscopy. In some primary

hospitals, there is difficulty in implementing these technologies.

Therefore, developing a relatively non-invasion and acceptable

strategy for detecting the MMR status of GC patients is an

urgent task (12).

In comparison to gastroscopic biopsy and surgery without

invasive injury, computed tomography (CT) is a noninvasive

technology commonly used for the diagnosis, response

evaluation, and postoperative follow-up of gastric cancer (13).

Prior studies have demonstrated that quantitative radiomic

features of CT images are associated with elements of the

tumor microenvironment, such as the tumor stroma, gene

expression level, and even tumor-infiltrating lymphocytes (11,

14, 15). Referring to the immunohistochemistry scores for a-
smooth muscle actin and periostin, Yuming et al. built a deep-

learning model to precisely assess tumor stroma using CT

images in GC, which can guide treatment decisions and

predict prognosis for patients (11). Human epidermal growth

factor receptor 2 (HER2) status may be accurately predicted

using a radiomic nomogram that combines a radiomic signature

and carcinoembryonic antigen level (CEA) (16). Currently,

Okihide et al. utilized five clinicopathological features (age,

sex, location, T stage, and distant metastasis) to predict MSI

(AUC = 0.82, 95% CI: 0.75–0.87) in GC. However, the main

collecting clinicopathological features are derived from

postoperative gastrectomy (17). As can be observed, predicting

MMR status of GC patients based on clinicopathological features

falls well short of clinical diagnostic standards. Furthermore,

MSI was associated with tumor location, size and lymph node

status in GC CT images (18). According to the above results,

constructing a prediction model based on radiomic features may

produce the desired result for the MSI diagnosis.

Although model-based radiomic features perform well in the

identification of MMR deficiency in colorectal cancer (8, 19), this

is the first study to employ radiomic features to predict MMR
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status in GC. This study aimed to develop and validate a CT-

based radiomic nomogram for the preoperative prediction of

MMR deficiency in GC.
Materials and methods

Patients

This retrospective study was approved by the Ethics

Committee of the First Affiliated Hospital of Nanchang

University and the patients. Cohort 1 included 252 GC

patients who underwent radical gastrectomy were enrolled in

this study with preoperative contrast-enhanced CT examination

from June 2018 to December 2021 at the First Affiliated Hospital

of Nanchang University (Donghu Hospital). Another cohort 2

collected 91 GC patients from April 2020 to December 2021 at

the First Affiliated Hospital of Nanchang University (Xianghu

Hospital). The inclusion criteria were as follows (1):

histologically proven diagnosis of GC; (2) preoperative

contrast-enhanced CT within a month; (3) MMR protein

status tested by IHC; and (4) no preoperative adjuvant

therapy. The exclusion criteria were as follows: (1) any

preoperative adjuvant therapy; (2) poor quality CT images:

poor filling of the stomach with unsatisfactory gastric

distention and substantial motion artifacts; and (3) lack of

clinical data. Cohort 1 was randomly divided into the training

(n = 176) and internal validation (n = 76) cohorts at a rate of 7:3

(Figure 1). The training cohort contained proficient DNA

mismatch repair (pMMR, n = 105) and dMMR (n = 71). The
Frontiers in Oncology 03
32
internal validation cohort contained pMMRs (n = 46) and

dMMRs (n = 30). Cohort 2 was used as an external validation

cohort, which contained pMMR (n = 64) and dMMR (n = 27).

The collected preoperative clinical characteristics of the

patients included age, body mass index (BMI), sex, tumor

location, CEA status (normal or abnormal), CA19-9 status

(normal or abnormal), CA12-5 status (normal or abnormal),

AFP status (normal or abnormal), and CT-reported T stage (T1,

T2, T3, T4) and N stage (N0, Nx). The normal range of CEA,

CA19-9, CA12-5, and AFP was, respectively, 0–6.5 ng/ml, 0–27

U/ml, 0–35 U/ml, and 0–7 ng/ml. Additionally, we measured

several semantic features to compare the difference in predictive

level with radiomic features, including long diameters of the

tumor, short diameters of the tumor, tumor thickness, and CT

value of the tumor in the portal phase. The reference for CT

imaging classification of gastric cancer was based on the Chinese

Society of Clinical Oncology (CSCO): Clinical guidelines for the

diagnosis and treatment of gastric cancer, 2021 (20). Reference

for CT imaging classification of gastric cancer can be referred to

Supplementary Figure 1.
MMR protein status evaluation

To determine MMR protein status, we employed IHC to test

four correlated proteins, including mutL homolog 1 (MLH1),

mutS homolog 2 (MSH2), mutS homolog 6 (MSH6) and

mismatch repair system component (PMS2). According to

MSI status, GC patients were divided into three groups: MSI-

H, MSI-L, and MSI stability (MSS). The expression level of
FIGURE 1

The technology roadmap represents workflow in this study. The GC cohort 1 was collected from the First Affiliated Hospital of Nanchang
University (Donghu hospital), and the cohort 2 was collected from the First Affiliated Hospital of Nanchang University (Xianghu hospital).
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MMR proteins was used to diagnose MSI status. The positive

staining of all four proteins represented MSS/MSI-L (pMMR),

but the MMR proteins with anyone assessed as negative

represented MSI-H (dMMR) (21).
CT image acquisition

Before abdominal contrast-enhanced CT, all patients

received Racanisodamine Hydrochloride injection 20 mg via

intramuscular injection and drank 1,000–2,000 ml of water. The

picture archiving and communication system (Carestream,

Canada) was used to export CT images of the portal venous

phase. Contrast-enhanced CT scanning of cohort 1 was

performed using a 192-channel CT (Siemens Healthcare) in

Donghu hospital. Cohort 2 was scanned by 256-channel CT

(Siemens Healthcare) and 320-channel CT (Aquilion ONE) in

Xianghu hospital. The acquisition parameters were as follows:

tube voltage of 80 to 120 kVp; tube current of 120–300 mAs; the

pitch of 0.6 to 1.25 mm; an image matrix of 512 × 512; and

reconstruction slice thickness of 1 or 2 mm. After intravenous

injection of contrast media (1.5 ml/kg, at a rate of 2.5–3.5 ml/s),

the arterial phase and portal venous phase were acquired within

25–30 s and 65–70 s, respectively.
Radiomic features extraction

The extent of the tumor lesion was enhanced and more

easily distinguished between the tumor and peripheral normal

tissue during the portal venous phase, and many previous studies

used this phase to segment tumor lesions (22, 23). In this study,

we employed ITK-SANP software (version 3.6.0, USA) to

manually segment regions of interest (ROIs) (Figure 2).
Frontiers in Oncology 04
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Lesions were located by significantly enhanced parts and

thickening of the gastric wall for incorporation with the

clinical characteristics of pathology specimens (24). The ROIs

were manually drawn carefully to highlight neighboring upper

and lower slices of the solid tumor, while we were careful to

avoid involving the normal gastric wall and nearby air or fluid

(8). Radiologist 1 (Zhu with 5 years of experience) delineated the

ROI of all 343 GC patients. We randomly selected 30 patients,

re-drew their ROIs for feature extraction by Zhu one month

later, and analyzed the result to prevent intraobserver differences

from affecting the reproducibility of radiomic features. To

confirm the interobserver reproducibility, a second radiologist

(Zhou, who has 10 years of experience) delineated the ROIs for

these 30 patients (16). Radiomic features were extracted using

PyRadiomics software (version 2.2.0) (25). Finally, eight

hundred and fifty-one radiomic features were extracted and

classified into four categories: shape, size, texture, and wavelet

(Supplementary Table S1).
Radiomic feature selection and radiomic
signature establishment

Intra- and interclass correlation coefficients (ICCs) were

used to evaluate the reproducibility and robustness of the

extracted radiomic features. Only radiomic features with an

ICC ≥0.8 were considered highly stable and retained for

subsequent analysis. A Z-score normalization was used to

standardize the radiomic feature data in the training, internal

validation, and external validation cohorts. Then, we employed

the Mann–Whitney U test to identify significantly different

features between the pMMR and dMMR groups, with P <0.05

in the training cohort (15). The least absolute shrinkage and

selection operator (LASSO) regression was used for feature
FIGURE 2

Manual segmentation of tumor with a GC patient. (A) A slice portal venous phase of contrast-enhanced CT images of the tumor. (B) the red
label masks a slice CT image of the tumor with manual segmentation. (C) Three-dimensional (3D) image of the tumor with
manual segmentation.
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selection and radiomic signature construction in the training

cohort. We used 10 cross-validations to define the regularization

parameter l. Finally, the radiomic score (Rad-score) was

developed and demonstrated as a formula that was calculated

by determining a linear combination of the selected features and

the product of their respective coefficients. The R software

package “Glmnet” was used for LASSO logistic regression.

The discriminative ability of the radiomic signature for

predicting MMR deficiency was based on the receiver

operating characteristic (ROC) curve and the area under the

curve (AUC).
Establishment of the
radiomic nomogram

A univariate logistic regression analysis was used

to investigate the correlation between MMR deficiency

and clinical characteristics in cohort 1 GC patients.

Multivariate logistic regression analysis was used to build a

prediction model by incorporating radio-score and clinical

characteristics with P-values <0.05 in the univariate logistic

regression analysis. The chosen features with P-values <0.05 in

the multivariable analysis were used to build a radiomics-based

model, which was presented as a radiomic nomogram in the

training cohort. The ROC curve was applied to evaluate the

discriminative performance of the radiomic nomogram in

training, internal validation, and external validation cohorts.

A calibration curve was applied to evaluate the radiomic

nomogram in all cohorts. To estimate the clinical usefulness

of the prediction models, decision curve analysis (DCA) was

performed to assess the net benefit of the radiomic nomogram

and signature in the training, internal validation, and external

validation cohorts.
Statistical analysis

In this study, we employed IBM SPSS Statistics (Version

20.0, USA) to assess the clinical data. The t-tests or the Mann–

Whitney U-test were used to compare the numerical data (age

and BMI), while the Chi-square or Fisher tests were used to

compare the categorical data (sex, sex, tumor location, CEA,

CA19-9, CA12-5, AFP level, CT-reported T stage, and N stage)

in the training, internal validation, and external validation

cohorts. Furthermore, the t-test or the Mann–Whitney U-test

was used to assess the correlation between radiomic features and

MMR status in the training cohort, which was the first

dimensionality reduction. The R software (version 3.3.1,

Austria; http://www.R-project.org) was used to study the

radiomic feature data and build a prediction model. A P-value

of <0.05 was defined as statistically significant.
Frontiers in Oncology 05
34
Results

Patients’ clinical characteristics

The characteristics of GC patients are presented in Table 1.

Cohort 1 was randomly divided into a training cohort (n = 176,

average age: 62 years old; range: 23–87 years old) with 107 males

and 69 females, and an internal validation cohort (n = 76,

average age: 62 years old; range: 30–83 years old) with 50

males and 26 females. There were 91 GC patients, 55 males

and 36 females (average age: 61 years old; range: 37–78 years

old) in the external validation cohort. In the training cohort,

statistically significant differences in age, sex, tumor location,

CEA level, and CT-reported T stage were identified between

pMMR and dMMR patients (P-value <0.05), while other clinical

features (BMI, CA19-9 level, CA125 level, AFP level, and CT-

reported N stage) showed no statistically significant differences

(P-value >0.05). Furthermore, we found that age and CT-

reported N stage showed statistically significant differences

between pMMR and dMMR patients in the internal validation

cohort. There were also only two clinical features (sex and CEA

level) that had significant differences in the external

validation cohort.
Radiomic signature establishment

Of eight hundred and fifty-one radiomic features extracted

from the delineated ROIs, 49 features with ICCs <0.8 were

excluded (Supplementary Table S2). A total of 802 radiomic

features were found to be substantially different between pMMR

and dMMR patients, and they were used to build a radiomic

signature via least absolute shrinkage and selection operator

regression with tenfold cross-validation. Finally, 15 radiomic

features were chosen to evaluate the Rad-score of each GC

patient (Supplementary Table S3). The difference in Rad-

scores was statistically significant between pMMR and dMMR

patients in training, internal validation, and external validation

cohorts (P-value <0.001). The radiomic signature in the training

cohort is depicted in Figure 3.

The Rad-score of the dMMR group was significantly higher

than that of the pMMR group in training, internal validation,

and external validation cohorts. The AUC of the radiomic

signature for the training cohort was 0.876 (95% CI: 0.824–

0.928) (Figure 4A). The training cohort had a sensitivity of

77.4%, a specificity of 83.8%, and an accuracy of 81.3%. In the

internal validation cohort, the AUC of the radiomic signature

was higher than that of the training cohort (AUC = 0.966, 95%

CI: 0.933–0.999) (Figure 4B). The internal validation cohort had

a sensitivity of 75.9%, a specificity of 95.7%, and an accuracy of

88.0%. Furthermore, the AUC of the radiomic signature for the

external validation cohort was 0.913 (95% CI: 0.857–0.969) with
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a sensitivity of 74.1%, specificity of 84.4%, and accuracy of

81.3% (Figure 4C).
The performance difference between CT
features and selected radiomic features
to predict MMR status

To compare the performance between semantic features and

15 selected radiomic features to predict MMR status, we

constructed predictive models, respectively. The highest AUC

values of semantic features were 0.64 (95% CI: 0.52–0.75) and

0.64 (95% CI: 0.53–0.74) in the internal validation and external

cohorts (Table 2). However, 15 selected radiomic features
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showed significantly better performance, with the highest AUC

values of 0.82 (95% CI: 0.72–0.90) and 0.71 (95% CI: 0.60–0.80)

in the internal validation and external cohorts (Table 3). The

AUC value of the radiomic signature was also significantly

higher than the combined CT features model in the internal

validation and external cohorts.
Construction of radiomic nomogram

In the univariate and multivariate logistic regression

analyses, age, CT-reported N stage, and Rad-score were

independent predictors for assessing MMR status. In the

univariate analysis, sex and CEA level were significantly
TABLE 1 Characteristics of GC patients in training, internal validation and external validation cohorts.

Characteristics

Training cohort
(n = 176)

P-value

Internal validation cohort
(n = 76)

P-value

External validation cohort
(n = 91)

P-value
pMMR dMMR pMMR dMMR pMMR dMMR

Age (year) 59.70 ± 9.91 65.94 ± 11.47 <0.001 58.15 ± 11.72 64.23 ± 12.18 0.033 61.72 ± 8.15 61.30 ± 11.29 0.828

BMI 22.10 ± 3.39 21.98 ± 3.47 0.825 22.29 ± 3.08 22.40 ± 2.81 0.884 22.54 ± 2.93 22.80 ± 3.68 0.714

Sex 0.024 0.715 0.001

Male 71 36 31 19 46 9

Female 34 35 15 11 18 18

Tumor location 0.039 0.855 0.558

Upper-third 31 10 11 6 15 4

Middle-third 26 17 10 8 18 10

Lower-third 48 44 25 16 31 13

CEA level 0.003 0.299 0.030

Normal 87 69 38 28 54 27

Abnormal 18 2 8 2 10 0

CA19-9 level 0.617 0.694 0.719

Normal 86 56 37 23 50 22

Abnormal 19 15 9 7 14 5

CA12-5 level 0.781 1.000 0.579

Normal 98 67 44 29 62 25

Abnormal 7 4 2 1 2 2

AFP level 0.722 0.153 0.508

Normal 101 69 46 28 63 26

Abnormal 4 2 0 2 1 1

CT-reported T stage <0.001 0.258 0.141

T1 18 11 7 6 6 2

T2 16 12 4 3 7 4

T3 32 19 14 14 19 14

T4 39 29 21 7 32 7

CT-reported N stage 0.089 0.019 0.647

N0 42 45 18 20 48 19

N1 + N2 + N3 63 26 28 10 16 8

Rad-scores −2.36 ± 2.63 1.01 ± 1.73 <0.001 −3.52 ± 4.00 1.67 ± 1.57 <0.001 −2.33 ± 3.80 0.93 ± 1.24 <0.001
front
pMMR, proficient DNA mismatch repair; dMMR, deficient DNA mismatch repair; BMI, body mass index; CEA normal range: 0–6.5 ng/ml; CA19-9 normal range: 0-27 U/ml; CA12-5
normal range: 0-35 U/ml, AFP normal range: 0-7 ng/ml. The bolded P-value showed statistically significant (P-value<0.05).
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correlated with MMR status, while no statistically significant

correlation was found in the multivariate analysis (Table 4).

Then, we used age, CT-reported N stage, and the Rad-score to

build a radiomic nomogram to predict MMR status in the three

cohorts (Figure 6A). The radiomic nomogram showed good

performance for predicting MMR status in the training cohort

with an AUC of 0.902 (95% CI: 0.853–0.951), in the internal

validation cohort with an AUC of 0.972 (95% CI: 0.945–1.000),

and in the external validation cohort with an AUC of 0.891 (95%

CI: 0.825–0.958) (Figure 5). The training cohort showed a

sensitivity of 80.3%, a specificity of 91.4%, and an accuracy

of 86.9%. The internal validation cohort had a sensitivity of

70.0%, a specificity of 97.8%, and an accuracy of 86.8%. The

external validation cohort had a sensitivity of 77.8%, a specificity

of 81.3%, and an accuracy of 80.2%. The calibration curve of

the radiomic signature and nomogram of three cohorts is
Frontiers in Oncology 07
36
presented in Figure 6B and Supplementary Figure 2,

suggesting that the prediction model was acceptable. The

DCA showed that the radiomic signature and nomogram

would offer a more net benefit than either the default of all

dMMR or non-dMMR in the three cohorts (Figure 6C and

Supplementary Figure 2).
Discussion

In this study, we developed and validated a prediction model

to assess the MMR status of GC patients based on a radiomic

signature and two clinical features: age and CT-reported N stage.

The radiomic nomogram performed well in predicting MMR

status in the training (AUC = 0.902), internal validation (AUC =

0.972), and external validation (AUC = 0.891) cohorts.
BA

FIGURE 3

Feature selection using LASSO logistic regression and the least absolute shrinkage. (A) LASSO coefficient profiles of the features. Different color
line shows the corresponding coefficient of each feature. (B) Tuning parameter (l) selection in LASSO model. The first vertical line was drawn
via ten-fold cross-validation based on minimum criteria.
B CA

FIGURE 4

The ROC curves of the radiomic signature in the (A) training cohort, (B) internal validation cohort, and (C) external validation cohort.
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An increasing number of studies have confirmed that MSI-H

or MMR deficiency is a remarkable biomarker for the diagnosis,

treatment, and prognosis of GC patients (26, 27). MSI is defined

as a phenotype of high mutation genomic MS, which is on

account of MMR deficiency. Currently, MSI or MMR deficiency

is detected by IHC and PCR-based molecular testing using

tumor tissue after gastrectomy (28, 29). However,

postoperative pathological results did not give timely advice on

neoadjuvant therapy for individuals with locally advanced GC.

Although preoperative gastroscopy can sample tumor tissue for

testing MMR status, two limitations remain: histological

assessment is also impacted by tumor tissue dynamic

progression and geographic heterogeneity. Ottini et al.

confirmed the heterogeneity of intratumoral MSI patterns
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observed in GC biology by assessing the microsatellite allele

pattern in various sections of the same tumor studied (30).

Similarly, Mathiak et al. showed that a biphasic MSH2

expression status in the same GC neoplasm (5%–23% of the

tumor area was MSS and 85% MSI) (31). Radiomics features

extracted from CT images were used in this study to assess the

whole tumor and were easily repeated throughout the treatment

period with no invasion. Previous studies showed that dMMR

GC was significantly associated with CT semantic features,

including a lower location, fewer lymph nodes, and smaller

tumor thickness, implying that dMMR may be evaluated via

radiomic features (18). To our knowledge, this is the first study

to assess the potential of radiomic features to predict MMR

status in GC based on preoperative clinical characteristics. Our
TABLE 2 The performance of CT features extracted by radiologist to predict MMR status

Semantic features
AUC (95%CI)

Internal validation cohort External validation cohort

Long diameters of tumor (mm) 0.57 (0.45–0.69) 0.63 (0.52–0.73)

Short diameters of tumor (mm) 0.54 (0.42–0.65) 0.55 (0.44–0.66)

Tumor thickness (mm) 0.53 (0.42–0.65) 0.58 (0.47–0.68)

CT value of tumor in PP (HU) 0.53 (0.41–0.65) 0.64 (0.53–0.74)

Location (up and mid vs low) 0.53 (0.42–0.65) 0.57 (0.46–0.67)

CT-reported N stage (N0 vs Nx) 0.64 (0.52–0.75) 0.52 (0.42–0.63)

CT-reported T stage 0.60 (0.49–0.71) 0.60 (0.49–0.70)

Combined semantic features model 0.63 (0.49–0.76) 0.53 (0.39–0.66)
MMR status. 95% CI, 95% confidence interval.
TABLE 3 The performance of selected radiomic features to predict MMR status.

Radiomics features
AUC (95% CI)

Internal validation cohort External validation cohort

Original shape elongation 0.82 (0.72–0.90) 0.68 (0.57–0.77)

Original shape flatness 0.61 (0.49–0.72) 0.57 (0.45–0.66)

Original shape surface area 0.68 (0.57–0.79) 0.59 (0.48–0.69)

Original glcm Imc2 0.72 (0.60–0.82) 0.68 (0.57–0.77)

Wavelet LHL glcm cluster shade 0.56 (0.44–0.67) 0.58 (0.48–0.69)

Wavelet LHL glcm cluster tendency 0.61 (0.50–0.72) 0.69 (0.59–0.78)

Wavelet LHL glcm Idn 0.67 (0.56–0.78) 0.54 (0.43–0.64)

Wavelet HLL glcm Idn 0.66 (0.55–0.77) 0.59 (0.48–0.69)

Wavelet LHL glrlm run entropy 0.65 (0.53–0.76) 0.70 (0.60–0.79)

Wavelet LHH first order 10 percentile 0.53 (0.41–0.64) 0.59 (0.48–0.69)

Wavelet HHH first order total energy 0.66 (0.54–0.76) 0.61 (0.50–0.71)

Wavelet HHL first order total energy 0.65 (0.53–0.76) 0.63 (0.52–0.73)

Wavelet HLH glszm small area high gray level emphasis 0.69 (0.58–0.79) 0.68 (0.57–0.77)

Wavelet LHL gldm small dependence emphasis 0.56 (0.44–0.67) 0.71 (0.60–0.80)

Wavelet HHL glrlm low gray level run emphasis 0.67 (0.55–0.77) 0.63 (0.52–0.73)

Radiomics signature 0.97 (0.93–1.00) 0.91 (0.86–0.97)
95% CI, 95% confidence interval.
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study confirmed that the radiomic signature based on CT images

performed well in predicting the MMR status of GC in the

training (AUC = 0.876, 95% CI: 0.824–0.928), internal validation

(AUC = 0.966, 95% CI: 0.933–0.999), and external validation

cohorts (AUC = 0.913, 95% CI: 0.857–0.969). In comparison to

colorectal cancer research, our prediction model appears to have

greater diagnostic power for assessing MMR GC status (8, 19).

Furthermore, a gastroscopic biopsy or surgery is a procedure

that requires good physical condition for the patient, but it

cannot be conducted on patients who have inadequate

circumstances. Thus, this prediction model was a useful

supplement strategy for predicting the MMR status of GC

with a relatively non-invasion technique.

Radiomics converts medical pictures into mineable data by

high-throughput extraction of numerous quantitative based on

shape, size, volume, and other factors, which has proved useful

in the investigation of diseased conditions (32, 33). Radiomic
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features differ from traditional semantic features of medical

images extracted by radiologists in that they contain more

messages about tumors and are more objective (33). In the

radiomic signature, elongation represented the best independent

risk to predict MMR status in GC with an AUC of 0.82 (95% CI:

0.72–0.90) in the internal validation cohort. Likewise, shape-

related radiomic features, such as elongation, flatness, and

surface area, outperformed semantic shape features extracted

by radiologists. Several similar studies confirmed that

elongation, flatness, standard deviation, skewness, kurtosis,

and tumor contrast were promising radiomic features for gene

expression prediction (34, 35). In particular, elongation and

flatness features showed better identification of high Ki-67

expression in adrenocortical carcinoma by the Spearman rank

method (36). The remaining independent predictors of radiomic

features were 11 wavelet features and one gray level co-

occurrence matrix feature. The AUC value of the radiomic
B CA

FIGURE 5

The ROC curves of the clinical risk, radiomic signature and radiomic nomogram (radiomic signature + clinical risk) in the (A) training cohort,
(B) internal validation cohort, and (C) external validation cohort.
TABLE 4 Univariate and multivariate logistic regression analysis of risk factors of MMR status.

Variable
Univariate Logistic Regression Multivariate Logistic Regression

OR (95% CI) P value OR (95% CI) P value

Sex (male vs female) 0.57 (0.34–0.97) 0.036 0.49 (0.21–1.12) 0.094

Age 1.05 (1.02–1.08) <0.001 1.05 (1.01–1.09) 0.014

BMI 0.99 (0.92–1.07) 0.900

CEA level (normal vs abnormal) 0.20 (0.07–0.58) 0.003 2.94 (0.82–10.50) 0.097

CA19-9 level (normal vs abnormal) 1.22 (0.65–2.28) 0.528

CA12-5 level (normal vs abnormal) 0.82 (0.26–2.52) 0.732

AFP level (normal vs abnormal) 1.51 (0.37–6.20) 0.563

Location (up and mid vs low) 1.31 (0.90–1.90) 0.146

CT-reported N stage (N0 vs Nx) 0.36 (0.21–0.61) <0.001 2.30 (1.04–5.07) 0.038

CT-reported T stage 0.94 (0.75–1.19) 0.654

Rad-scores 3.23 (2.38–4.38) <0.001 2.98 (2.18–4.08) <0.001
OR, odds ratio; 95% CI, 95% confidence interval; BMI, body mass index; CEA normal range: 0–6.5 ng/ml; CA19-9 normal range: 0–27 U/ml; CA12-5 normal range: 0–35 U/ml, AFP normal
range: 0–7 ng/ml. The bolded P-value showed statistically significant (P-value <0.05).
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signature was significantly higher than the combined CT

features model in the internal validation and external cohorts

with 0.97 (95% CI: 0.93–1.00) and 0.91 (95% CI: 0.86–0.97).

Several previous researches demonstrated that wavelet features

were significantly correlated with heterogeneity indices at the

cellular level, which were promising radiomic features to

evaluate prognosis in colorectal liver metastases patients (37).

In this study, the radiomic signature that we constructed showed

a reliable model to predict MMR status in GC, outperforming

traditional semantic features extracted by radiologists.

Additionally, many studies have focused on the correlation

between MMR status and different clinical features, which can be

used to discriminate molecular expression levels and give

individualized therapeutic guidance (38, 39). Previous studies
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showed that dMMR GCs were significantly correlated with

female sex, advanced age, distal location, and intestinal type

(40, 41). Martinez and coworkers discovered that GC patients

with dMMR showed an earlier clinical stage (TNM stage I or II)

and Borrmann type I or II, while they were initially diagnosed

(21). In our studies, we found that the dMMR phenotype was

also significantly associated with older age and fewer CT-

reported lymphatic metastases. However, no association was

detected between dMMR and CEA, CA19-9, CA12-5, or AFP

levels in the blood tumor markers. Furthermore, Yexing and

colleagues built a radiomic nomogram based on the radiomic

signature and clinical features that performed well in

determining HER2 status (16). We employed age, CT-reported

N stage, and the Rad-score to develop a radiomic nomogram to
B C

A

FIGURE 6

Radiomics nomogram developed with ROC, calibration curves, and decision curve analysis (DCA). (A) A radiomic nomogram was constructed in
the training cohort via radiomic signature, age and CT reported N stage. (B) Calibration curve of the radiomic nomogram in the training cohort.
(C) DCAs for radiomic nomogram and signature in the training cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2022.883109
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2022.883109
predict MMR status. The radiomic nomogram showed good

performance for predicting MMR status in the training cohort

with an AUC of 0.902 (95% CI: 0.853–0.951), in the internal

validation cohort with an AUC of 0.972 (95% CI: 0.945–1.000),

and in the external validation cohort with an AUC of 0.891 (95%

CI: 0.825–0.958). Okihide et al. constructed a clinical features

model to predict dMMR, which showed lower evaluating

capability with an AUC of 0.82 (95% CI: 0.75–0.87) and the

model was not tested by the validation cohort, which may make

the model unrepresentable (17). Therefore, our radiomic

nomogram can efficiently discriminate dMMR GCs using a

radiomic signature and clinical features in the preoperative.

Currently, radiomics-based GC research has focused on

preoperative lymph node metastasis, Lauren categorization, the

tumor immune milieu, genetic subtypes, and GC prognosis

prediction (42–47). Identifying dMMR is crucial in our

research since it guides preoperative clinical management for

GC patients. Firstly, dMMR seems to be a biomarker for GC,

which was associated with less lymphatic metastasis and an

earlier T stage (41). Secondly, GC patients with confirmed MMR

status are extremely important in clinical practice for guiding

adjuvant and perioperative treatment (48, 49). A 1,990 GC

patient study showed that dMMR GCs did not have better

benefits in terms of disease-free survival (DFS) than pMMR

GCs following R0 resection (6). When GC patients were treated

only with surgery vs groups treated with chemotherapy, stage II

or III GCs with dMMR status were correlated with better overall

survival (OS) (50). The above results were confirmed by a

multinational meta-analysis, which showed that GC patients

with pMMR benefit from surgery plus chemotherapy rather than

dMMR (51). Thirdly, MMR status might be associated with a

response to immune checkpoint inhibitors in GC patients. A

meta-analysis including 2,545 GC patients (including phase III

KEYNOTE-062, CheckMate-649, JAVELIN Gastric 100, and

KEYNOTE-061) revealed that GC patients with dMMR should

be identified as a highly immunosensitive and specific subgroup

for anti-PD-1 therapy (5), because of their intrinsic mutational

burden-activated expression of immune checkpoints and

inflammation (4, 52). Therefore, when patients are diagnosed,

their MMR status must be accurately identified in order to

provide a customized therapeutic schedule.

In this study, the main limitation is the retrospective nature

of the study, which might have resulted in selection bias.

However, we first built and validated a radiomic nomogram to

assess the MMR protein status of GC patients based on the

radiomic signature and clinical features. Secondly, because the

distinction between tumor tissue and adjacent normal gastric

tissue can be maximized in the portal venous phase, the radiomic

features were only extracted from CT images of the portal phase.

We will use other phases to evaluate MMR protein status in the

future. Thirdly, although the study cohorts were collected from
Frontiers in Oncology 11
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two hospitals, multi-center cohorts are really needed to verify the

generalization ability of the predictive model. Fourthly, at the

same time, we should design prospective research to

demonstrate the practicability of the radiomic model.
Conclusion

We developed and validated a radiomic nomogram model

that might be accurate to assess the MMR protein status of GC

patients based on the radiomic signature and clinical features

(age and CT-reported N stage). This prediction model is also a

noninvasive detection model that can guide preoperative

clinical management.
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A combined predicting model
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after simultaneous integrated
boost in esophageal squamous
cell carcinoma patients
(GASTO1072)
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Ruihong Huang1, Ting Luo1,3, Guobo Peng1, Yanxuan Wu1,
Zihan Qiu4, Derui Li1, Fangcai Wu1* and Chuangzhen Chen1*
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3Department of Radiation Oncology, Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital,
Sun Yat-Sen University, Shanwei, China, 4Department of Otolaryngology-Head and Neck Surgery,
The First Affiliated Hospital of Shantou University Medical College, Shantou, China
Purpose: We aimed to develop a combined predicting model for benign

esophageal stenosis (BES) after simultaneous integrated boost (SIB) with

concurrent chemotherapy in patients with esophageal squamous cell

carcinoma (ESCC).

Methods: This study included 65 patients with EC who underwent SIB with

chemotherapy. Esophageal stenosis was evaluated using esophagograms and

the severity of eating disorders. Risk factors were investigated using univariate

and multivariate analyses. Radiomics features were extracted based on

contrast-enhanced CT (CE-CT) before treatment. The least absolute

shrinkage and selection operator (LASSO) regression analysis was used for

feature selection and radiomics signature construction. The model’s

performance was evaluated using Harrell’s concordance index and receiver

operating characteristic curves.

Results: The patients were stratified into low- and high-risk groups according

to BES after SIB. The area under the curves of the clinical model, Rad-score,

and the combined model were 0.751, 0.820 and 0.864, respectively. In the

validation cohort, the AUCs of these threemodels were 0.854, 0.883 and 0.917,

respectively. The Hosmer-Lemeshow test showed that there was no deviation

from model fitting for the training cohort (p=0.451) and validation cohort

(p=0.481). The C-indexes of the nomogram were 0.864 and 0.958 for the

training and validation cohort, respectively. The model combined with Rad-

score and clinical factors achieved favorable prediction ability.
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Conclusion: Definitive chemoradiotherapy could alleviate tumor-inducing

esophageal stenosis but result in benign stenosis. We constructed and tested

a combined predicting model for benign esophageal stenosis after SIB. The

nomogram incorporating both radiomics signature and clinical prognostic

factors showed favorable predictive accuracy for BES in ESCC patients who

received SIB with chemotherapy.

Trial registration number and date of registration: Registered in www.

Clinicaltrial.gov, ID: NCT01670409, August 12, 2012
KEYWORDS

esophageal cancer, esophageal stenosis, radiomics, chemoradiotherapy, radiotherapy
Introduction

Esophageal cancer (EC) is a common gastrointestinal

malignancy, with squamous cell carcinoma (ESCC) being the

predominant type. It has a high incidence in Eastern and Central

Asia (1, 2). Patients with locally advanced disease, particularly

those with unresectable tumors have an unsatisfactory

prognosis, on account of a less than 30% 5-year survival rate

(3). For locally advanced EC patients who reject or cannot

tolerate surgery, concurrent chemoradiotherapy has been a

standard recommendation due to higher long-term survival

rates and insignificant differences in late toxicity compared to

single radiotherapy (4).

Recently, a clinical approach known as simultaneous

integrated boost (SIB) that delivers a higher dose fractionation

to the gross tumor volume while delivering a lower dose

fractionation to the clinical target volume has been approved

as feasible with acceptable toxicities (5–7). We also explored this

therapeutic mode for esophageal squamous cell carcinoma

(ESCC) in a phase II clinical trial. Preliminary results

demonstrated that tumor control and overall survival

improved when compared with historical data (8). The long-

term outcome has been reported in European Society for

Therapeutic Radiology and Oncology (ESTRO), and the phase

III clinical trial was currently being conducted. Although the

tolerability of such treatment regimens was acceptable in these

studies, their treatment-related late toxicities were not well

established, particularly in the case of benign esophageal

stenosis (BES). BES arises from various etiologies including

peptic, radiation, and caustic injury. It differs from malignant

esophageal stenosis due to tumor mass and can impair the

patient’s quality of life and lead to serious complications like

weight loss, malnutrition, and aspiration (9). The late toxicities

of esophageal radiotherapy were predominantly manifested as

benign stenosis and esophageal dysmotility (10, 11). Previous

studies have shown that esophageal stenosis after conventional
02
44
fractional radiotherapy of EC was correlated with the extent of

the circumference involved (ECI), T stage, the longitudinal

length of the tumor (LLT), and the wall thickness of the

affected esophagus (12–14). Whether these factors continue to

be related to BES after SIB has not been verified.

Radiomics, which extracted high-dimensional quantitative

features from radiographic images to provides additional

information on the heterogeneity and phenotype of tumor

aggressiveness (15–17). It can be used for disease detection,

cancer diagnosis, and treatment outcome prediction (18–23).

Previous radiomics studies on EC have mainly focused on

predicting tumor differentiation, staging, lymph node

metastasis, and survival outcomes (24–27). To our knowledge,

there has been no radiomics-based studies on toxicity prediction

for high-dose radiotherapy in patients with ESCC.

Hence, this study sought to identify both clinical and

radiomics features correlated with BES after SIB in patients

with ESCC and develop a nomogram for prediction.
Methods and materials

Patients

From August 2012 to January 2018, we investigated 107

patients with ESCC who received SIB with concurrent

chemotherapy from a single-arm, prospective phase II clinical

trial called “simultaneous modulated accelerated radiotherapy

combined with chemotherapy for esophageal cancer” (clinical

trial: NCT01670409) at the Cancer Hospital of Shantou

University Medical College. The trial protocol has previously

been published (8). A prospective phase III clinical trial called

“simultaneous modulated accelerated radiotherapy combined

with chemotherapy vs concurrent chemoradiotherapy for

esophageal cancer” is currently enrolling patients. Inclusion

criteria: (a)Measurable lesions on imaging; (b)No obvious
frontiersin.org

http://www.Clinicaltrial.gov
http://www.Clinicaltrial.gov
https://doi.org/10.3389/fonc.2022.1026305
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2022.1026305
esophageal mass or lymph node enlargement compressing the

esophagus on CT imaging after treatment; (c)No recurrence in

the tumor area during follow-up ≥ 6 months. Exclusion criteria:

(a)Control failure of the tumor area during or after treatment;

(b)Failure to complete radiotherapy; (c)Surgery after complete

radiotherapy. As shown in Figure 1, the final study enrolled 65

patients. These patients were divided into a training group (n=

43) and a validation group (n= 22) in a ratio of 2:1.
Pre-treatment evaluation

The extent of the disease was evaluated by imaging,

serological examination, and endoscopic biopsy. The clinical

stage was defined according to the American Joint Cancer

Committee (AJCC) staging system 6th (28). LLT and ECI were

evaluated by barium esophagography, endoscopy and CE-CT

images (CT scanner: 16-row Spiral CT of Bright Speed Series of

GE Medical Systems, USA). CT scanning parameters were

setting as follows: Tube voltage,120KpV; Rotation time, 0.75

seconds; Pitch, 1.375; Matrix, 512×512; Field of visual, 360

mm×360 mm. The wall thickness was defined by measuring

the thickest portion of the tumor. The extent of circumference

involvement was demarcated as follows: (a)Level 1, ≤1/2 of

circumference involvement; (b)Level 2, ≥1/2 of circumference
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involvement but less than whole circumference involvement; (c)

Level 3, whole circumference involvement. Target area

delineation and radiotherapy plans were determined by CT

images analyzed in the Eclipse planning system.
Treatment

All patients were treated with SIB in conjunction with

chemotherapy. A higher-than-standard dose of 66 Gy/30 F

was delivered to the gross tumor volume, and a lower dose of

54 Gy/30 F was delivered to the sub-clinical tumor volume.

Chemotherapy was based on cisplatin and 5-fluorouracil

(5-FU) for four cycles: two cycles of concurrent chemotherapy,

and two cyc l e s o f ad juvant chemotherapy , a f t e r

completing radiotherapy.
Follow up

For the first 2 years after treatment, patients were assessed

every 3 months and then twice a year. An evaluation of patients’

history, physical examination, serological test, chest X-ray with

barium esophagography or CE-CT scan, and abdominal

ultrasound were performed.
FIGURE 1

The workflow of Inclusion and Exclusion.
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Outcome indicators

Esophagograms, which were performed prior to, during,

after, and during follow-up examination, were used to measure

the degree of esophageal stenosis. By using a barium

esophagogram, we measured the widest part (a in Figure 2A)

of the oral side lumen diameter and the narrowest part (b in

Figure 2A) of the primary site. The stenotic ratio (c; expressed as

a percentage) was then determined as c = (a-b)/a×100% (12–14).

The maximum value of the stenotic ratios in follow-up review at

all points in time was defined as the degree of post-

treatment BES.

In the follow up review, the severity of eating disorders was

recorded and categorized according to the Radiation Therapy

Oncology Group (RTOG) late radiation injury score: (a)Grade 0,

none; (b)Grade 1, slightly difficulty in swallowing solids; (c)

Grade 2, inability to swallow solid food normally, swallowing

semi-solid food; (d)Grade3, ability to swallow only liquids; (e)

Grade 4, necrosis or perforation fistula (29).

We integrated the severity of eating disorders Grade 0–1 into

the normal diet group and Grade≥2 into the non-normal diet

group, then combined the stenotic ratio with the diet grouping to

plot the ROC curve. The AUC was calculated to quantify the

accuracy of the stenotic ratio in assessing the degree of

esophageal stenosis. The optimal cut-off value of the stenotic

ratio was determined according to the Youden index. For

univariate analysis, a chi-square test, t-test, and rank sum test

were performed to explore the correlation between stenotic ratio
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and clinical factors. For multivariate analysis, binary logistic

regression analysis and a linear regression model were used.
CE-CT image acquisition and
radiomics extraction

All patients underwent pre-treatment CE-CT scans (Philips

Brilliance CT Big Bore Oncology Configuration, Cleveland, OH,

USA). The CT voxel size was 1.0 × 1.0 × 3.0 mm3. The CT

images were transmitted to the radiation therapy planning

system (Eclipse Planning System version 10.0) via the DICOM

3.0 port. All gross tumor volumes (GTVs) were delineated on the

planning CT scans by experienced radiation oncologists. The

radiomics features were extracted from every GTV using

MATLAB R2016a (Mathworks, Natick, USA) and its toolbox

(https://cn.mathworks.com/). These features included four

groups: the intensity features, the geometric features and the

texture features. According to the first-order statistics, the

intensity features were calculated from the histogram of voxel

intensity values in the volume of interest (VOI). The geometric

features describe the shape of the VOI (30). The texture features

calculated in all three-dimensional directions within the VOI,

which can quantify intra-tumor heterogeneity differences,

consist of gray level co-occurrence matrix (GLCM),

neighborhood grey-tone difference matrix (NGTDM), gray

level size zone matrix (GLSZM) and gray level run length

matrix (GLRLM) (31–34). Overall, 96 radiomic features were
FIGURE 2

(A) Barium esophagography image. The widest part (line a in panel A) of the oral side and the narrowest part (line b in panel A) of the primary
site were clearly demonstrated. (B) ROC curve for stenotic ratio and the diet group. ROC, Receiver operating Characteristic; AUC, Area under
the curve.
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extracted from every GTV. The specific types and algorithms for

radiomic feature extraction have been discussed in previous

studies (35, 36).
Radiomics features selection and
model development

Univariate analysis was used to evaluate radiomics factors

for BES. Radiomics variables with a p-value >0.250 were

excluded from further analysis. Pearson correlation analysis

was used to reduce the correlations between radiomics

features. For example, for a pair of features with high

correlation (i.e., the absolute value of correlation coefficient ≥

0.8), the one with a lower p-value in the univariate analysis

remained. The least absolute shrinkage and selection operator

(LASSO) was chosen for the logistic regression model to select

the most useful predictive features and create a radiomics

signature model (defined as the Rad-score).
Clinical features selection and
model development

Before starting treatment, clinical data including gender, age,

tumor location and the TNM stage was gathered. LLT, ECI and

number of CT layers in which the wall thickness of affected

esophagus (NEWT) >1cm were collected from barium

esophagography, endoscopy and CE-CT images. Univariate

and multivariate analysis were used to identify the clinical

factors correlating with BES after SIB. The potential clinical

risk factors constituted the clinical model.
Combined model development

The individualized predictionmodel included potential clinical

risk factors and the Rad-score usingmultivariate logistic regression

analysis. To visualize the patient-level probability estimate of BES,

a nomogram was developed based on multivariate logistic

regression analysis and tested in the validation cohort.
Assessment of the Rad-score
and nomogram

Because the clinical factors (such as ECI, LLT and

NEWT>1cm) were measured on the CE-CT imaging, the VIF

analysis was also used to assess the collinearity information

among the clinical factors and final radiomics features. Variance

inflation factor (VIF) was used to evaluate the collinearity

among the final radiomics features that constituted the Rad-

score. The performance of each model was evaluated using the
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area under the receiver operating characteristic curves (AUCs),

accuracy, sensitivity and specificity.

The predictive power of the nomogram was quantified using

Harrell’s concordance index (C-index) and assessed using the

calibration curve. The Hosmer-Lemeshow test was used to assess

the goodness-of-fit of the nomogram (37). Decision curve

analysis (DCA) was used to quantify the net benefit at

different threshold probabilities and determine the clinical

usefulness of the nomogram.
Statistical analysis

For univariate analysis, a chi-square test, t-test, and rank

sum test were performed to explore the correlation between

stenotic ratio and clinical factors. For multivariate analysis,

binary logistic regression analysis and a linear regression

model were used.

All statistical tests were conducted using R software version

4.0.5 and SPSS (version 23.0; IBM Corp., Armonk, NY, USA). The

“glmnet” package was used to analyze the LASSO logistic model.

The “pROC” and “car” were used to calculate the ROC curves and

VIF. The C-index was calculated using the Kaplan–Meier

“survival” package. The nomogram and calibration curve were

built by using “rms” package. The Hosmer-Lemeshow test was

calculated using the “generalhoslem” package in the R

environment. Differences were considered statistically significant

at p < 0.05.
Result

Patients’ characteristics

The patient characteristics for the two cohorts are shown in

Table 1. The average age of 65 patients was 61.16 ± 5.77. There

were no differences in patient characteristics between the

training group and validation group.
Benign esophageal stenosis
after treatment

The last date of follow-up was December 22, 2019, and the

median follow-up period was 62 months (17-82 months) for all

patients. The change in the mean esophageal stenotic ratio of 65

patients before treatment to 1 year after treatment is shown in

Table S1 and Figure S1. The change in the mean esophageal

stenotic ratio of 48 patients (17 eliminated, 1 for recurrence, 2

for death, and 14 for missing follow-up) from 3 to 18 months

after treatment are shown in Table S2 and Figure S2. It tended to

decrease with time and reached a plateau in the ninth months

after treatment.
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The peak stenotic ratio for 24 (36.9%), 20 (30.8%), 11

(16.9%), 6 (9.2%), 2 (3.1%), 1 (1.5%), and 1 (1.5%) patient(s)

occurred in the third, sixth, ninth, twelfth, fifteenth, eighteenth,

and twenty-first months after treatment, respectively. Thirty-five

patients (53.8%) had a normal diet when they had a peak
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stenotic ratio, 26 (40%) had a semi-solid diet, and 4 (6.2%)

had a liquid diet. We divided these patients into a normal diet

group (35 patients, 53.8%) and a non-normal diet group (30

patients, 46.2%) according to the RTOG late radiation injury

score. The ROC curve was plotted by considering the stenotic
TABLE 1 Clinical characteristics of 65 patients with ESCC after definitive CCRT.

Factors Training cohort n (%) Validation cohort n (%) p-value

Age, years 0.624b

Average ± SD 61.16 ± 5.77 61.95 ± 6.78

BMI, Kg/m2 0.330b

Average ± SD 21.52 ± 3.31 20.70 ± 2.87

Gender 0.906c

Male
Female

28 (65.1%)
15 (34.9%)

14 (63.6%)
8 (36.4%)

Tumour location 0.671c

Cervical
Upper
Middle

3 (7.0%)
18 (41.9%)
22 (51.2%)

3 (13.6%)
9 (40.9%)
10 (45.5%)

T stagea 0.966c

T2
T3
T4

9 (20.9%)
21 (48.8%)
13 (30.2%)

5 (22.7%)
11 (50.0%)
6 (27.3%)

N stagea 0.335c

N0
N1

19 (44.2%)
24 (55.8%)

7 (40.0%)
15 (68.2%)

M stagea 0.572c

M0
M1

37 (86.0%)
6 (14.0%)

20 (90.9%)
2 (9.1%)

Clinical stagea 0.776c

II stage
III stage
IV stage

17 (39.5%)
20 (46.5%)
6 (14.0%)

8 (36.4%)
12 (54.5%)
2 (9.1%)

ECI 0.778

Level 1 2 2

Level 2 27 13

Level 3 14 17

LLT 0.430

Average ± SD 5.01 ± 1.78 5.06 ± 1.51

NEWT>1cm 0.911

Average± SD 9.65 ± 7.34 11.14 ± 6.72

ESCC, esophageal squamous cell carcinoma; CCRT, concurrent chemoradiotherapy; AJCC, American Joint Committee on Cancer staging system (version 6.0th); RT, radiotherapy; PF,
cisplatin and 5-fluorouracil.
aAmerican Joint Committee on Cancer (AJCC) staging system (version 6.0th)
bp-value was analysed using the independent samples t-test
cp-value was analysed using the chi-squared test.
IBM, imaging biomarker; CI, confidence interval; HR, hazard ratio.
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ratio as the test variable and the diet group as the status variable,

which resulted in AUC=0.811 (95% CI: 0.705-0.917, p<0.001)

(Figure 2B). The optimal cut-off value for stenotic ratio was

determined to be 58.2% according to the Youden index, and 31

cases (47.7%) with a stenotic ratio >58.2% were defined as the

benign stenotic group (high risk group). The rest of patients

were defined as the low risk group.
Radiomics selection and
Rad-score constructing

Ninety-six radiomics features were reduced to 30 potential

factors, which had a p-value ≤ 0.25. Nineteen features were

excluded after comparing the inter-variable Pearson correlation

analysis. The remained 11 features were performed with non-

zero coefficients in the LASSO logistic regression model.

Ultimately 7 of them were chosen to construct the Rad-score.

As shown in Figure 3, with the optimal tuning parameter l value

of 0.036 and log (l) = -3.322, the Rad-score calculation formula

was constructed using the LASSO logistic regression model

(Formula 1):

Rad-score = −0.0037 × Max + 4.7716 × Spherical

Disproportion − 1.4654 × Idistcent−2.9222 × Informaiton

Measure of Correlation2_GLCM+ 0.1131 × Run_Percentage _

GLRLM−0.9177 × Texture_Strength_NGTDM−1.7964 ×

Small_Zone_Emphasis_GLSZM + 5

A constant value 5 was used to obtain a Rad-score >0 from

the calculation formula. The VIFs of the seven radiomics

features were tolerable, ranging from 1.336-2.341 (Table S3).
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Development of individualized
prediction model

Clinical factors were analyzed using univariate and

multivariate Logistic regression, as shown in Table 2. In the

training cohort, factors showing a significant correlation with

BES after treatment were ECI (p=0.027), LLT (p=0.097), and the

number of CT layers in which the wall thickness of affected

esophagus>1cm (NEWT>1cm) (p=0.028) in the univariate

analysis. VIFs of the seven radiomics features and the three

clinical factors were tolerable (VIF<10), ranging from 1.593-

8.640 (Table S3). We combined the clinical characteristics and

the Rad-score into a multivariate logistic regression model.
Performance of the model
and nomogram

The combine model performed the best among three

models. Figures 4A, B deplicted the AUCs of different models.

For BES, the Rad-score model was superior to the clinical model.

The combine model outperformed the Rad-score or the clinical

model in the training cohort, and the results were replicated in

the validation cohort. The box plot method was used to compare

low-risk and high-risk patients in the BES as shown in

Figures 4C, D. And the results revealed significant differences

(p<0.05, wilcoxon test) between two subgroups of BES in two

cohorts. We also constructed a nomogram to visualize the

logistic regression model of BES (Figures 5A). As shown in

Figure 5B, C, the calibration curve of the nomogram for the
A B

FIGURE 3

Radiomics selection using LASSO logistic regression model (A). The tuning parameter l selection of LASSO model with 10-fold cross-validation
was performed to select radiomic features. At the optimal tuning parameter l value of 0.036 and log (l) = -3.322, the left dotted vertical line
was set with the minimum criteria where 7 radiomic features were selected. (B). LASSO coefficient profile of 11 Radiomic features. A coefficient
profile plot was generated against the log (l) sequence. The dotted vertical lines were drawn at the 6 non-zero coefficients, with the optimal
value of l. LASSO, least absolute shrinkage and selection operator.
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probability prediction of BES had good prognostic performance.

The DCA showed the nomogram had clinical utility in

predicting the power of risk of BES within a wide range of

reasonable threshold probability (Figure 6). The Hosmer-

Lemeshow test revealed no deviation from model fitting for

the training cohort (p=0.451) and validation cohort (p=0.481).

The C-indices of the nomogram were 0.864 and 0.958 for the

training and validation cohorts, respectively.

Discussion

For patients with locally advanced EC, approximately half

had local recurrence and poor overall survival (38, 39). Some

researchers have applied SIB to the therapy of EC to improve

local control (8). Nonetheless, information on late toxicity of

SIB, which contributes to the comprehensive evaluation of this

therapeutic mode, is limited. Benign esophageal stenosis is one

of the most common late toxicities that leads to significant

deterioration in quality of life despite tumor regression. The

benefits must be balanced against the risk of toxicities. Thus,

developing an individual predictive model is critical for clinical

decision making.

We expected that characteristics other than clinical factors,

such as texture and distribution on CT imaging, might

contribute to the severity of benign esophageal stenosis. As a

result, our study yields promising results. We found that the

Rad-score, which consisted of seven radiomics features, was

discovered to be an independent risk factor for BES after SIB. In

terms of clinical factors, CEI, LLT and NEWT>1cm were

identified as potential factors for BES in univariate analysis,

however these clinical factors were only weakly correlated with

BES in multivariate analysis.
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Although several studies have identified risk factors for

esophageal stenosis, clinicians are unable to identify specific

patients who may develop BES after radiotherapy (12–14). It is

necessary to identify patients who have a high risk of BES after SIB

before treatment, as these patientsmight bemore suitable for surgery

or immunotherapy. And the radiation dose should be further

explored in such patients. Hence, a prediction model based on

radiomics and clinical factors that discriminated severe BES after

SIB with high diagnostic performance was developed in this study.

The radiomics signature model incorporates some

individual radiomics features as predictors to probe the clinical

utility of features that have been explored and investigated in

many studies (40, 41). Max was extracted from the intensity

features. It measures the maximum value of the gray level

intensity. According to our findings, a smaller Max value may

be related to a poor BES result. SphericalDisproportion refers to

the ratio of the tumor region’s perimeter to the perimeter of a

sphere with the same surface area as the tumor region. Idistcent

describes the maximum distance between the vertices of the

tumor surface grid in the axial plane. Tumors with a larger

SphericalDisproportion or a smaller Idistcent had more irregular

shape, which was associated with poorer treatment response (15,

42, 43). In terms of texture feature, the Information Measure of

Correlation2_GLCM refers to the consistency of the gray level of

image texture in the row or column directions. It is high when

gray levels are equally distributed along the row or column

direction in contoured structures. A smaller Information

Measure of Correlation2_GLCM, indicating the ROI

heterogeneity (44). Run_Percentage_GLRLM measures the

texture roughness by dividing run length by voxels in ROI.

Texture_Strength_NGTDM represents the significance and

uniqueness of voxels on a three-dimensional level .
TABLE 2 Univariate and multivariate association of Rad-score and clinical characteristic Logistic regression analysis of BES (likelihood Ratio:
Backward stepwise).

Variables

Training cohort Validation cohort

Univariate Multivriate Univariate Multivriate

OR p OR(95%CI) p OR p OR(95%CI) p

Age 1.010 0.848

Gender 1.319 0.666

Tumour location 1.524 0.401

Clinical stage 0.722 0.470

BMI 1.035 0.712

LLT 1.365 0.097 1.008 (0.571-1.780) 0.977 1.614 0.148 0.566(0.165-1.945) 0.367

ECI 4.314 0.027 3.112(0.777-12.469) 0.109 5.210 0.069 6.080(0.735-50.303) 0.094

NEWT>1cm 1.116 0.028 1.087 (0.981-1.206) 0.112 1.249 0.027 1.384(1.008-1.901) 0.044

OR, odds ratio; CI, confidence interval; BMI, Body Mass Index; LLT, longitudinal length of tumor; ECI, the extent of circumference involvement; NEWT>1cm, the number of CT layers
in which the wall thickness of affected esophagus>1cm.
The bold values refers to the clinical factors which were included in the clinical models.
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Small_Zone_Emphasis_GLSZM describes of the distribution of

small areas. The finer the contoured structures are, the larger the

value, the smaller the zone. The previous studies observed that

Informat ion Measure of Corre la t ion2_GLCM, the

Run_Percentage_GLRLM, Texture_Strength_NGTDM and

Small_Zone_Emphasis_GLSZM are highly relevant to the

heterogeneity and prognosis of Specific types of tumor (15, 44,

45). These results demonstrate the possibility of using radiomics

multivariate analysis and the high OR of the radiomics signature

model might able to predict BES in patients with ESCC.

However, these seven radiomic features did not achieve the

significant statistical value due to insufficient number of patients.

It needs to be further confirmed in the validation cohort and
Frontiers in Oncology 09
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larger prospective cohorts. Several previous studies have

reported that combining radiomic signatures (or features) and

clinical risk factors improved the predictive accuracy of these

models (26, 35, 46, 47). Thus, we developed a nomogram that

incorporates the Rad-score as well as these clinical factors. These

clinical factors are generally available during treatment, and the

collection of information does not require additional

examinations or place an additional economic burden on

patients. Despite the fact that these clinical factors were

insignificantly different in multivariate analysis, incorporating

them into the radiomics signature model, which comprised the

combined model, improved the AUC in predicting BES and

achieved excellent discrimination in this cohort.
A B

C D

FIGURE 4

ROC curves for assessing the different performance of three models in training cohort (A) and validation cohort (B). The box plots of combine
model for low-risk and high-risk groups for training cohort (C) and validation cohort (D). ROC, receive operation characteristic; AUC, area under
the curve; CI, confidence interval; Rad-score, radiomic score.
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This study demonstrated that the esophageal stenotic ratio

tended to decrease during and after treatment, with the mean

stenotic ratio dropping from 72.0% before treatment to 46.5% 1

year after treatment, reflecting a distinct remission of stenosis

caused by tumor mass. Re-stenosis was considered because the

maximum stenotic ratio during follow-up was greater than that

at the completion of treatment. Two other studies (12, 14)

reported that the peak stenotic ratio occurred–5-8 and 6-8
Frontiers in Oncology 10
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months after treatment, but specific numbers and proportions

of cases at each point in time were not displayed. In previous

studies (12–14), the evaluation of stenosis has basically referred

to the barium esophagogram as follows: Grade 1 (<25%), Grade

2 (25~50%), Grade 3 (50~75%), and Grade 4 (75~100%); grade

≥3 is defined as stenosis, or referred to the RTOG late radiation

injury score, which was classified based on the patients’

subjective experience of eating disorders. Atsumi K et al.,
A

B C

FIGURE 5

(A). The nomogram for the prediction of BES. The constructed nomograms were used to estimate the risk of BES for individual ESCC patients.
Calibration curves of the combined nomogram in the training cohort (B) and validation cohort (C). The calibration curves describe the
calibration of the combine nomogram in terms of the conformity between the predicted risk of BES and observed BES outcomes. The 45°
dotted line represents a perfect prediction, the solid lines represent the bias-corrected performance of the combine nomogram. BES, benign
esophageal stenosis; ESCC, esophageal squamous cell carcinoma; ECI: the extent of circumference involvement; LLT: longitudinal length of
tumor; NEWT>1cm: number of CT layers with esophageal wall thickness >1 cm.
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Wang et al., and Luo et al. all used stenotic ratio to assess the

degree of BES after high dose radiotherapy (ranging 54-71.4Gy,

56-66Gy, 56-70Gy, respectively), and 23%, 43.5% and 33.8% of

patients had a stenotic ratio >50% respectively in their researches

(12–14). All the above studies found BES was not correlated with

RT dose. In this study, we combined the RTOG late radiation

injury score and stenotic ratio to create an ROC curve, and the

result showed AUC=0.811, indicating that the stenotic ratio was

considered capable of objectively evaluating the extent of

esophageal stenosis. According to the optimal cut-off value,

stenotic ratio>58.2% was defined as benign stenosis. The rate

of BES after 66 Gy radiotherapy was 47.7%. The evaluation of

stenosis could be more accurate and convincing by the

integration of the two above.

Previous studies have explored the risk factors for

esophageal stenosis after conventional fractional radiotherapy.

The extent of circumference involvement, T stage, tumor length,

and the wall thickness of the affected esophagus has been

confirmed by Atsumi et al. in a 109 EC patient study, Wang

et al. in a 61-patient study, Luo et al. in a 71-patient study, and

Kim et al. in a 62-patient study (12–14, 48). The extent of

circumference involvement was a risk factor for stenosis after

endoscopic mucosal resection of early EC (49).

Dysphagia is the most common symptom in advanced

patients and has a significant impact on quality of life. The

mechanism of BES after chemoradiotherapy has not been

determined due to limited pathological data. It is commonly

assumed that post-radiotherapy esophageal stenosis is caused by
Frontiers in Oncology 11
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radiation-induced fibrosis (RIF). Because of fibrosis and

inflammation of the submucosa and muscular layers, the

esophagus loses its elasticity, resulting in post-radiotherapy

esophageal stenosis 4-12 months after therapy and developing

in a few years (50). However, the stenotic ratio of patients in our

study tended to reach a plateau after 9 months. This may be

because long-term esophageal peristalsis controlled by

autonomic nerves, even without food intake, may decrease the

damage of fibrosis. For BES, balloon dilatation, stent

implantation, bypass operation, and drug infusion are the

most commonly used palliative treatments (51), but they had

unsatisfactory outcomes for high re-stenosis rate and

complications, like perforation and hemorrhage (52–54).

This study was conducted prospectively to indentify the

risk factors associated with BES by combining objective

evaluation using esophagography with subjective evaluation of

the severity of eating disorders in patients, and build an

individual predictive model incorporating radiomics features

and clinical factors. It could be a useful guide when choosing a

treatment option for patients with EC as well as an important

piece of information when acquiring a patient’s informed

consent before radiotherapy.

The innovation of this study is that this study was a

prospective study for BES after SIB for ESCC. Since the

difficulty of long time follow up, there is scarce data for BES

after high dose radiotherapy for esophageal cancer. The

application of radiomics in CE-CT imaging has been focused

on specific topics, such as survival outcomes and diagnosis (55).
A B

FIGURE 6

The DCA for the combine nomogram in the training cohort (A) and validation cohort (B). The y-axis represents the net benefit. The x-axis
represents the threshold probability. The red line represents the radiomics nomogram. The grey line represents the hypothesis that all patients
had BES. The black line represents the hypothesis that no patients had BES. The DCA in two cohorts showed the nomogram had clinical benefit.
DCA, Decision curve analysis; BES, benign esophageal stenosis.
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To the best of our knowledge, this is the first predict model that

applied radiomics to assess BES after SIB.

The limitations of this study include the lack of comparison

with patients receiving standard-dose radiotherapy because all

the patients in these prospective studies received SIB. The

NCCN Guidelines state that a standard dose of definitive

radiation for esophageal cancer is 50–50,4 Gy (1.8–2.0 Gy/day)

(total 25–28 fractions). However, more than 50% of patients who

had standard-dose CRT subsequently experienced recurrence or

distant metastases and passed away from this illness (56). A dose

of 60.0 Gy or more has become a more common dose of CCRT

in Asian nations where ESCC is the predominate histological

type since studies have shown that a greater dose than 50.4 Gy of

CCRT could be safely administered without significant adverse

effects and yield a high probability of local control (8, 57, 58).

Since high dose radiotherapy of 60 Gy or more with 2 Gy per

fraction, is frequently used in China to treat esophageal cancer, it

can be challenging to collect clinical information concerning

standard dose of radiotherapy, particularly for a prospective

study. Our hospital is currently conducting a phase III trial, and

we will eventually include a standard dose of radiotherapy in our

prediction model. There were no T1 patients in our study;

therefore, the impact of T stage on esophageal stenosis after

SIB needs further verification. Another limitation of our study is

the small sample size and the lack of external validation of the

model. Clinical data for BES was difficult to acquire due to long

time follow up. Wang et al. analyzed BES after radiotherapy

ranging 56-66Gy and included 62 patients from 2005 to 2008

(12). Luo et al. analyzed BES after radiotherapy ranging 56-70Gy

and included 71 patients from 2010 to 2013 (14). Jun W. Kim

et al. analyzed BES after radiotherapy ranging 45-90Gy and

included 62 patients from 2001 to 2015 (48). These were all

retrospective studies with a wider range of radiotherapy dose.

The challenge of gathering information of BES is a pervasive

problem in this research field. That is why the sample size in this

study is small and it is indeed a weakness. To overcome the

shortcoming of limited sample size we did use the 10-fold cross

validation method in this study. K-fold cross validation was

reported to reduce the uncertainty of input dataset partition in

previous study (59, 60). Multicenter validation with a larger

sample size is required for clinical applications.
Conclusion

In conclusion, BES due to tumor mass could achieve varying

degrees of remission after simultaneous modulated accelerated

radiotherapy, but BES occurs after radiotherapy at the same

time. BES after SIB was potential associated with the Rad-score,

CEI, LLT and NEWT>1cm. We developed a nomogram that

incorporates both the Rad-score and clinical prognostic factors

to predict the risk of BES in patients with ESCC who received

definitive CCRT.
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SUPPLEMENTARY FIGURE 1

The change in the mean esophageal stenotic ratio of 65 patients before
treatment to 1 year after treatment. Seven points in x axis represent before

treatment, twentieth fraction, complete treatment, 3, 6, 9, and 12 months
after completing treatment.

SUPPLEMENTARY FIGURE 2

The change in themean esophageal stenotic ratio of 48 patients from 3 to

18 months after treatment. Six points in x axis represent 3, 6, 9, 12, 15, and
18 months after completing treatment.
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CT-based delta radiomics in
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stage IV gastric cancer to
immune checkpoint inhibitors
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Xiaoting Li1, Li Zhang2, Bin Dong5*‡, Xiaotian Zhang3*‡,
Lei Tang1*‡ and Lin Shen3*‡
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of Education), Peking University Cancer Hospital and Institute, Beijing, China, 2Center for Data
Science, Peking University, Beijing, China, 3Department of Gastrointestinal Oncology, Key
Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University
Cancer Hospital and Institute, Beijing, China, 4National Engineering Laboratory for Big Data Analysis
and Applications, Peking University, Beijing, China, 5Beijing International Center for Mathematical
Research (BICMR), Peking University, Beijing, China
Introduction: To explore the prognostic value of CT-based delta radiomics in

predicting the prognosis of patients with stage IV gastric cancer treated with

immune checkpoint inhibitors (ICI).

Materials and methods: Forty-two patients with stage IV gastric cancer, who

had received ICI monotherapy, were enrolled in this retrospective study.

Baseline and first follow-up CT scans were analyzed. Intratumoral and

peritumoral regions of interest (ROI) were contoured, enabling the extraction

of 192 features from each ROI. The intraclass correlation coefficients were

used to select features with high stability. The least absolute shrinkage and

selection operator was used to select features with high weights for predicting

patient prognosis. Kaplan–Meier analysis and log-rank test were performed to

explore the association between features and progression free survival (PFS).

Cox regression analyses were used to identify predictors for PFS. The C-index

was used to assess the prediction performance of features.

Results: Two radiomics features of DVintra_ZV and postVperi_Sphericity were

identified from intratumoral and peritumoral regions, respectively. The Kaplan–

Meier analysis revealed significant differences in PFS between patients with low

and high feature value (DVintra_ZV: P=0.000; postVperi_Sphericity: P=0.012),
and the multivariable cox analysis demonstrated that DVintra_ZV was

independent predictor for PFS (HR, 1.911; 95% CI: 1.163–3.142; P=0.011), with

C-index of 0.705.

Conclusions: Based on CT scans at baseline and first follow-up, the delta

radiomics features could efficiently predict the PFS of gastric cancer patients

treated with ICI therapy.
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immunotherapy, gastric cancer, prognosis, radiomics, computed tomography
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Introduction

Gastric cancer is one of the malignancies with high mortality

rate (1). Despite significant efforts to develop innovative

treatment techniques based on cytotoxic chemotherapy,

targeted therapy, and radiotherapy, a significant proportion of

gastric cancer patients will still demonstrate poor response to

conventional therapies or even fast progression after treatment

(2). Immune checkpoint inhibitors (ICIs) have revolutionized

the treatment of a variety of malignancies, including gastric

cancer (3). More specifically, several large multicenter clinical

trials demonstrated a significant and durable survival benefit in

refractory gastric cancer patients who received ICI therapy, with

a duration of response ranging from 8.4 to 9.5 months (3, 4).

However, treatment response varied significantly as 60% of

patients derived no benefit from ICI therapy, and 21% of

patients even showed hyperprogression during treatment (2, 3,

5). Therefore, there is an urgent need for the introduction of

precise biomarkers that can predict the response of gastric

cancer to ICI at the early treatment stage.

Several predictive tumor biomarkers from biopsy tissue

samples could indicate ICI treatment response and prognosis

of gastric cancer patients (6), such as positivity of programmed

death-ligand 1 (PD-L1), mismatch repair deficiency (dMMR),

and Epstein–Barr virus (EBV) (6, 7). However, most patients

tested negative for the above-mentioned biomarkers, e.g., 86% of

patients with PD-L1 combined positive scores (CPS)<1, 78.4-

92.5% of patients with mismatch repair proficiency (pMMR),

and 91% of patients with negative EBV according to previous

studies (3, 5, 8, 9). Some of these biomarkers predicted that

patients with poor treatment response could still respond well to

ICI therapy, with reported objective response rates of

approximately 6.4-10.9% for PD-L1 CPS < 1, 12.3% for

pMMR, and 16.4% for negative EBV, respectively (3, 6, 7).

Besides, not all laboratories have the available resources to

perform complex immunohistochemistry protocols that are

necessary to identify or evaluate potential tumor biomarkers,

hindering their subsequent application in clinical practice (10,

11). In addition, given the spatial heterogeneity of gastric cancer,

biopsy samples may not always be evaluated appropriately.

Computed tomography (CT) has been widely and routinely

used in clinical practice, yet traditional unidimensional

measurements made both RECIST and iRECIST criteria no

longer meet the needs of the ICI response evaluation and

hindered the realization of the precision medicine (12).

Radiomics is a useful tool to mine data from radiographic

images, such as tumor texture characteristics, which may not

be detectable by ‘naked-eye’ inspection (13). Several studies have

verified that radiomics could predict response to neoadjuvant

chemotherapy and palliative chemotherapy in patients with

gastric cancer, with an area under the curve (AUC) of 0.74-

0.82 (14–16). Recently, one study explored the response
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prediction performance of baseline CT radiomics in patients

treated with immunotherapy combined with chemotherapy and

showed promising results, with an AUC over 0.7 (17). To the

best of our knowledge, the prognostic value of radiomics features

in patients with gastric cancer treated with ICI monotherapy has

not been elucidated. Therefore, this study aimed to use delta

radiomics to extract information from CT scans (at baseline and

first follow-up) and predict the survival of patients with stage IV

gastric cancer treated by ICI.
Materials and methods

Patients

This study was performed in line with the principles of the

Declaration of Helsinki. Written informed consent of this

retrospective study was waived. Data from 101 consecutive

patients with stage IV gastric cancer who had received anti-

programmed cell death protein 1/programmed cell death ligand

1 (PD-1/PD-L1) antibody alone or in combination with anti-

cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibody

were collected in the Peking University Cancer Hospital, Beijing,

China, between 2016 and 2020. Inclusion criteria were as

follows: (a) histologically confirmed gastric adenocarcinoma;

(b) patients treated with ICI monotherapy (anti-PD-1/PD-L1

alone or in combination with anti-CTLA-4 antibodies); (c)

availability of baseline enhanced abdominal/pelvic CT scans

performed <30 days before ICI treatment; (d) availability of

the first follow-up enhanced abdominal/pelvic CT scans two to

three cycles after ICI treatment initiation. Exclusion criteria were

as follows: (a) patients with primary gastric surgical treatment

(n=53) (b) patients with other synchronous or metachronous

malignant neoplasms (n=4); (c) thickness of primary gastric

lesions <10mm on CT (n=1); (d) CT images with obvious

artifacts (n=1). Finally, 42 patients were included in our study.

The following clinicopathological data were retrospectively

collected from patients’ medical records: age, gender, Eastern

Cooperative Oncology Group performance status score (ECOG

PS), treatment regimen, treatment cycles of ICI before first

follow-up, Lauren subtype, degree of differentiation, PD-L1

status, MMR status, EBV status, peritoneal metastasis, hepatic

metastasis, the number of metastatic sites. We registered patients

with PD-L1 CPS ≥ 1 as PD-L1 positive cases (4). The flowchart is

shown in Figure 1.
Treatment regimens and
follow-up protocol

There were 29 patients received anti-PD-1/PD-L1 treatment

alone, including seven patients received GLS-010 (zimberelimab)
frontiersin.org
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(240mg d1 d15 Q28d), six patients received CS1003

(nofazinlimab) (200mg d1 Q21d), four patients received

toripalimab (3mg/kg d1 d15 Q28d), three patients received

BGB-A317 (tislelizumab) (200mg d1 Q21d), three patients

received pembrolizumab (200mg d1 Q14d), two patients

received atezolizumab (1200mg d1 Q21d), two patients received

MSB2311 (20mg/kg d1 Q21d), one patients received LZM009

(432mg d1 Q28d) and one patients received Sintilimab (200mg d1

Q21d). There were 13 patients received anti-PD-1 in combination

with anti-CTLA-4 treatment, including seven patients received

Sintilimab + IBI310 (Sintilimab 200mg d1 Q21d, IBI310 68mg d1

Q42d) and six patients received Nivolumab + Ipilimumab

(Nivolumab 1mg/kg d1, d22 Q42d, Ipilimumab 3mg/kg d1

d22 Q42d).

All patients conducted follow-up every two to three cycles of

ICI treatment, including enhanced abdominal/pelvic CT scans

until the resistance to ICI therapy. PFS was defined as the time

from the start of ICI treatment to disease progression, death

from any cause, or the cutoff date of November 12, 2021.

Patients without any progression or death at the end of the

follow-up period were censored.
CT examination

All patients underwent abdominal/pelvic contrast-enhanced

CT examinations after fasting for more than eight hours. 10 mg

anisodamine (654-2, Hangzhou Minsheng Pharma) was

administered intramuscularly to reduce gastrointestinal

motility before CT examination. Next, 6g gas-producing

crystals with 10ml warm water were given orally shortly before

the examination. All patients underwent a quick respiratory

training session to prevent potential respiratory artifacts. The CT

scanner was either the LightSpeed 64 VCT or the Discovery
Frontiers in Oncology 03
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CT750 HD, with a peak tube voltage of 120 kVp, an automatic

tube current-time product, a collimation thickness of 64 x

0.625 mm, a helical pitch of 0.984:1, 5-mm scanning thickness,

and 0.625-mm reconstructed thickness. Patients were scanned in

the supine position, and scan coverage started from the

diaphragmatic dome until 2cm below the lower margin of

symphysis ossium pubis. All patients were injected with

nonionic contrast material through the antecubital vein at a

rate of 3.5ml/s (1.5ml/kg of body weight, iohexol 300mg I/ml,

Omnipaque, GE Healthcare). Arterial and venous phase

scanning were performed at 40s and 70s, respectively,

following contrast media injection.
Image analysis and segmentation

Baseline and first follow-up CT scans in arterial and venous

phases were analyzed by two radiologists with 20 and 3 years of

experience in gastrointestinal CT interpretation, respectively (TL

and LJZ). Both radiologists were blinded to the clinical and

histopathological information. However, they did know the

anatomical location of gastric cancer. Two intratumoral

regions of interest (ROI) were manually contoured–one ROI

for the arterial phase and another ROI for the venous phase–on

the largest area of the gastric lesions (axial plane) using the ITK-

SNAP software (v.3.6.0, http://www.itksnap.org). To capture

peritumoral information, the slice image was uniformly

interpolated to 0.6 mm per pixel, and a peripheral ring was

then created automatically by dilating the tumor boundaries by 7

pixels (4.2mm) on the outside and shrinking by 7 pixels (4.2mm)

on the inside (18). Secondly, the modification was conducted

manually on the pre-modified peripheral ring to exclude the

gastric cavity and the area covering the surrounding organs and

large vessels (Figure 2).
FIGURE 1

Study design for the evaluation of response prediction to immune checkpoint inhibitors in stage IV gastric cancer patients based on radiomics
features. preAintra: intratumoral regions on baseline atrial phase; preVintra: intratumoral regions on baseline venous phase, preAperi:
peritumoral regions on baseline atrial phase; preVperi: peritumoral regions on baseline venous phase; postAintra: intratumoral regions on
follow-up atrial phase; postVintra: intratumoral regions on follow-up venous phase; postAperi: peritumoral regions on follow-up atrial phase;
postVperi: peritumoral regions on follow-up venous phase.
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Feature extraction and selection

First, we uniformly resampled the CT image and its ROI

annotation so that the spacing parameters in the x-, y-, and z-axis

were 0.6, 0.6, and 5.0, respectively. The texture features were

extracted from each ROI of each patient’s CT image using the

open-source python platform Pyradiomics (version 2.1.2, https://

pyradiomics.readthedocs.io/en/latest/#). We extracted a total of 192

features for each ROI, including eight shape features, 36 first-order

statistics, 46 gray level co-occurrence matrices, 32 gray level run

length matrices, 32 gray level size zone matrices, 28 gray level

dependence matrices, and ten neighboring gray tone difference

matrices. Eight sets of radiomics features were derived from

intratumoral and peritumoral regions at baseline arterial and

venous phases, and follow-up CT scans, including features from

intratumoral regions at baseline atrial phase (preAintra),

intratumoral regions at baseline venous phase (preVintra),

peritumoral regions at baseline atrial phase (preAperi),

peritumoral regions at baseline venous phase (preVperi),

intratumoral regions at follow-up atrial phase (postAintra),

intratumoral regions at follow-up venous phase (postVintra),

peritumoral regions at follow-up atrial phase (postAperi), and

peritumoral regions at follow-up venous phase (postVperi).

Calculate the changes between baseline and follow-up features by

subtracting the values of CT features of follow-up and baseline,

which provided four corresponding sets of delta features (DAintra,
DVintra, DAperi, and DVperi).
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All radiomics features were standardized by subtracting the

mean value and dividing by the standard deviation. Intraclass

correlation coefficients (ICCs) based on a multiple-raters, two-

way random-effects model were calculated to assess the stability

and reproducibility of radiomic features within groups. To

ensure reliability for all twelve sets of radiomics features, we

only reserved radiomic features with ICC estimates > 0.80, and

further selection was then conducted in the data obtained by TL.

Furthermore, we used the Cox proportional hazards regression

method with the least absolute shrinkage and the selection

operator (LASSO) penalty with four-fold cross-validation to

select the most useful predictive features from intratumoral

and peritumoral regions, respectively (19). Since the total

patient number was limited, the most significant nonzero

feature in intratumoral and peritumoral regions was selected

to avoid overfitting.
Statistical analysis

Continuous variables were presented as the mean with

standard deviation (SD) or median with interquartile ranges

(IQR) based on normal distribution or not. Categorical variables

were shown as numbers with percentages. PFS was estimated

using the Kaplan–Meier method, and the log-rank test was

employed to compare differences in survival probability. The

Cox proportional hazards model was used for univariate and
FIGURE 2

Schematic illustration of the steps followed to draw intratumoral and peritumoral ROIs. (A, D): the largest axial sections of gastric lesions were
manually contoured (intratumoral region of ROI). (B, E): the pre-modified peripheral ring was automatically generated. (C, F): modifying was
conducted manually on the pre-modified peripheral ring to exclude the gastric cavity and the part covering the surrounding organs (pancreas)
and large vessels (in C: solid line: peritumoral region of ROI; dotted line: the part of ROI been deleted).
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multivariate analyses. P values less than 0.10 in univariate

analysis were subsequently included in the multivariate

analyses where enter feature selection was used. Harrell’s

concordance index (C-index) was calculated to evaluate

prognostic ability. Statistical analysis was conducted using R

software (R 4.0.4, The R Foundation for Statistical Computing,

Vienna, Austria). All statistical tests were two-sided, and a value

of P<0.05 was considered significant.
Results

Patient characteristics

A total of 42 patients were included in this study. The

median follow-up time and the median time for PFS were 736

(IQR: 656, 1266) and 133 (IQR: 61, 483) days, respectively. The

patients’ clinicopathological data are summarized in Table 1.

Univariate analysis revealed that age and Lauren type were

associated with PFS. In contrast, other clinicopathological

characteristics were not found to have a prognostic impact.

The K–M analysis showed that older patients (>62 years, median

value) had more prolonged PFS compared to younger patients

[median PFS time: younger patients, 92 (IQR: 45, 165) days;

older patients, 483 (IQR: 73, not reached) days; P=0.001].

Patients with intestinal-type gastric cancer showed more

prolonged PFS than patients with a different Lauren type

[median PFS time: intestinal type, 195 (IQR: 100, 649) days,

reference; diffuse type, 63 (IQR: 45, 92) days, P =0.003; mixed

type, 127 (IQR: 54, 134) days, P=0.087].
Radiomics feature selection

A three-step radiomics feature selection procedure was

applied. In the first step, 2304 radiomics features were

extracted from twelve sets of features. Consequently, 99

features were further enrolled with ICC>0.80 as a reliability

standard, including 70 intratumoral features (preAintra: 14;

preVintra: 25; postAintra: 8; postVintra:13; DAintra: 2,

DVintra: 8) and 29 peritumoral features (preAperi: 5;

preVperi: 8; postAperi: 7; postVperi: 8; DAperi: 0, DVperi: 1).
The third step involved the selection of features with the highest

coefficient based on the Lasso COX method, which included

DVintra_original_glszm_Zone Variance (DVintra_ZV) from the

intratumoral regions and postVperi_original_shape_Sphericity

(postVperi_Sphericity) from the peritumoral regions.
Radiomics feature analysis

The optimal cut-off values were -0.09 and 0.88 for

DVintra_ZV and postVperi_Sphericity determined by X-tile
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(version 3.6.1), respectively. The K–M analysis suggested that

the PFS of stage IV gastric cancer patients with a high

DVintra_ZV value (> cutoff value) was worse than that of

patients with a low value (≤ cutoff value), with a median PFS

of 402 vs. 64 days (P=0.000, log-rank test). The PFS of stage IV

gastric cancer patients with a low postVperi_Sphericity value

was worse than that of patients with a high value, with a median

PFS of 100 vs. 589 days (P=0.012, log-rank test) (Figure 3). We

performed additional analyses within subgroups of gastric

cancer patients who had either not been tested or had already

tested negative for biomarkers, including PD-L1, MMR, and

EBV. Our findings revealed that DVintra_ ZV and postVperi

Sphericity could stratify patients in all three subgroups

according to their PFS (Figures 4A–F).

DVintra_ZV and postVperi_Sphericity were both significant

in univariate analysis (hazard ratio [HR], 2.320; 95% confidence

interval [CI]: 1.478–3.641, P=0.000; HR, 0.601; 95% CI: 0.410–

0.882, P=0.009). After controlling for age, Lauren type,

peritoneal metastasis, and number of metastatic sites,

DVintra_ZV were still independent predictor of survival (HR,

1 .911 ; 95% CI : 1 .163–3 .142 ; P=0 .011) . However ,

postVperi_Sphericity had no association with PFS (HR, 0.690;

95% CI: 0 .421–1.132; P=0.142) . DVintra_ ZV and

postVperi_Sphericity yielded a C-index of 0.705 (95% CI:

0.625–0.785) and 0.632 (95% CI: 0.528–0.736), respectively.
Discussion

This study initially explored the relationship between delta

radiomics with the prognosis of patients with stage IV gastric

cancer receiving ICI. Our findings revealed that DVintra_ZV
and postVperi_Sphericity from the intratumoral and

peritumoral regions, respectively, could classified patients with

survival outcomes and DVintra_ZV was the independent

predictor for PFS.

Previous studies have reported that on-treated tumor

samples of patients with effective ICI response showed

increased immune cell abundance and a low percentage of

tumor cells (20, 21). A previous study explored the association

between radiomics features in pan-cancer and CD8 cell

abundance within the tumor. The relatively homogeneous

tumors were associated with increased pre-existing CD8+ cell

infiltration and better prognosis; in contrast, tumors composed

of highly proliferating tumor cells exhibited a more

heterogeneous radiomics texture (22). In our study, the low

DVintra_ZV score indicated that the texture of gastric lesions

changed from heterogeneous to homogenous and thus were

more likely to be observed in patients with prolonged survival

after ICI treatment. We hypothesized that this change may

indicate immune cell infiltration and good tumor response to

ICI therapy, whereas texture changes towards non-uniformity

may indicate a high extent of tumor cell proliferation and
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TABLE 1 The clinicopathological characteristics of the included patients.

Characteristics Total (n=42) Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Age (years), (median [IQR]) 62.00 (12.00) 0.943 (0.915–0.972) 0.000* 0.972 (0.936–1.008) 0.129

Gender, n (%) 0.534 (0.257–1.112) 0.094

Male 31(73.814%)

Female 11(26.19%)

ECOG PS, n (%) 0.658 (0.353–1.223) 0.186

0 20 (47.628%)

1 +–2 22 (52.3852%)

Treatment regimen, n (%) 0.797 (0.359–1.769) 0.576

Anti-PD-1/PD-L1 29 (69.04%)

Anti-PD-1 + anti-CTLA-4 13 (30.95%)

Treatment cycle, n (%) 1.229 (0.820–1.844) 0.318

Two cycles 33 (78.57%)

Three cycles 9 (21.43%)

Lauren type, n (%)

Intestinal 19 (45.23%) [reference] [reference]

Diffuse 11 (26.19%) 3.629 (1.553–8.478) 0.003* 3.155 (1.203–8.275) 0.020*

Mixed 7 (16.677%) 2.370 (0.883–6.362) 0.087 1.924 (0.668–5.540) 0.225

No testing 5 (11.9012%) 0.570 (0.161–2.026) 0.385 0.409 (0.087–1.933) 0.259

Differentiation, n (%) 1.157 (0.578–2.317) 0.680

Moderate 17 (40.481%)

Poor 25 (59.5260%)

PD-L1, n (%)

Negative 12 (28.579%) [reference]

Positive 17 (40.48%) 0.520 (0.228–1.185) 0.119

No testing 13 (30.951%) 0.604 (0.256–1.427) 0.250

MMR, n (%)

pMMR 33 (78.579%) [reference]

dMMR 4 (9.5210%) 0.296 (0.069–1.279) 0.103

No testing 5 (11.902%) 2.282 (0.836–6.227) 0.107

EBV, n (%)

Negative 23 (54.765%) [reference]

Positive 12 (28.579%) 0.875 (0.361–2.122) 0.768

No testing 7 (16.677%) 2.103 (0.834–5.310) 0.115

peritoneal metastasis, n (%) 0.513 (0.254–1.036) 0.063 1.187 (0.469–3.007) 0.717

Present 20 (47.62%)

Absent 22 (52.38%)

Hepatic metastasis, n (%) 1.263 (0.616–2.589) 0.524

Present 15 (35.71%)

Absent 27 (64.29%)

Number of metastatic sites, n (%)

1 7 (16.67%) [reference] [reference]

(Continued)
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resistance to ICI. Similar to our results, Basler et al. also

suggested that the changes in the CT texture of metastatic

melanoma from heterogeneity to homogeneity during ICI

treatment are more likely to represent pseudoprogression,

whereas changes from homogeneity to heterogeneity may

indicate true tumor progression (23). Accordingly, patients

with pseudoprogression showed longer survival compared with

patients with true progression (23).

Given the dynamic change of tumor-immune interactions,

biomarkers capable of tracking tumor evolution during the

treatment course may provide more information on patients’

prognoses. A previous histological study showed that early on-

treatment samples were more predictive of the response to ICI

compared to the mere assessment of baseline samples (20).

Although biopsies provide a method to capture the dynamic

change of tumors, invasive re-biopsy may not be frequently

conducted in real-world clinical practice. In our study, both

predictors, DVintra_ ZV and postVperi_ Sphericity, incorporated
Frontiers in Oncology 07
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post-treatment CT texture features and could predict the response

of patients receiving ICI. Consistently, Khorrami et al. developed

radiomics models to predict the ICI response and OS of patients

with non–small cell lung cancer (NSCLC). The results showed that

the performance of models combining baseline and follow-up

features was better than the baseline radiomics model alone (21).

Similar results also have been reported in patients treated with

radiation therapy and chemotherapy (24, 25).

Khorrami et al. have shown that the ICI response prediction

performance of combined radiomics from intra- and peritumoral

regions in NSCLC was superior to radiomics from the intratumoral

region alone (21). The authors also found that the density of

immune infiltration in surgical specimens after ICI was correlated

with peritumoral delta radiomics (21). In previous articles, the

association between peritumoral radiomics and pathological

characteristics of gastric cancer were also studied, but the

prediction value of peritumoral radiomics were different (18, 26,

27). Some large-scale studies showed peritumoral radiomics
A B

FIGURE 3

Kaplan–Meier estimates of progression-free survival in all patients according to (A) DVintra_ZV (DVintra_original_glszm_Zone Variance);
(B) postVperi _Sphericity (postVperi_original_shape_Sphericity).
TABLE 1 Continued

Characteristics Total (n=42) Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

2 29 (69.05%) 1.640 (0.566–4.755) 0.362 2.022 (0.546–7.481) 0.292

3+ 6 (14.29%) 3.431 (0.955–12.321) 0.059 4.881 (0.884–26.939) 0.069

DVintra_ZV, (median [IQR]) -0.07 (0.54) 2.320 (1.478 – 3.641) 0.000* 1.911 (1.163–3.142) 0.011*

postVperi_Sphericity, mean (SD) 0.00 (1.00) 0.601 (0.410 – 0.882) 0.009* 0.690 (0.421–1.132) 0.142
frontiersin.or
IQR, interquartile ranges; HR, hazard ratio; CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group performance status score; PD-1, programmed cell death protein 1; PD-L1,
programmed cell death ligand 1; MMR, mismatch repair; dMMR, mismatch repair deficiency; pMMR, mismatch repair proficiency; EBV, Epstein–Barr virus.
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features were one of the important factors to determine the tumor

immune microenvironment of gastric cancer and had the prognosis

predicting value, while another large-scale study showed

peritumoral features may be inapplicable for predicting the

Lauren classification of gastric cancer (18, 26, 27). We noticed

that the peritumoral ROI in their studies were all a peripheral ring,

the same with the peritumoral ROI used in lung cancer (18, 21, 26,

27). However, unlike lung cancer which is surrounded by consistent

pulmonary tissue, gastric cancer is usually surrounded by air in the

stomach cavity, fat tissue of peritoneum and adjacent organs. We

suppose the peritumoral ROI covering air, fat, gastric cancer, and

even other organs may influence the precision of information from

radiomics features of the peritumoral region, although thickness of

ROI around the tumor used in previous studies were smaller than

ours. Therefore, in our research, we put effort into modifying the

automatically generated peripheral ring, especially deleting the

adjacent organs and air covered by the automatically generated

ROI. However, unfortunately, such procedure increased the

interobserver variability, and only 29 peritumoral features had

ICC > 0.80 (70 intratumoral features had ICC > 0.80). Moreover,

it was labor-intense to modify the peritumoral ROI of all patients.

Taken together, we believe that further research is needed to explore

the appropriate method for extracting information from the

peritumoral region of gastric cancer.

In our study, patients with a high postVperi_Sphericity score

demonstrated a trend towards a more promising survival

outcome compared to patients with a low score. Sphericity
Frontiers in Oncology 08
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measured the roundness of the shape and a larger value meant

that the shape of ROI resembled a circle (28). Given that all ROIs

of the peritumoral area appeared long and narrow, high score of

postVperi_ Sphericity could be considered in two aspects, the

larger the width and the shorter the length of the ROI. The width

of the pre-modified peripheral ring was consistent among

different patients (9.4mm in total) when first generated

automatically. In patients with low visceral adipose tissue, the

pre-modified peripheral ring may cover adjacent organs and

thus should be manually modified, contributing to a smaller

width. Poor nutritional status, including low visceral fat, has

been associated with worse survival outcomes in patients treated

with ICI therapy (29, 30). The length of ROI could be regarded

as the maximum tumor extension on stomach. Maximum tumor

diameter has been proved to be a negative factor for prognosis of

patients with gastric cancer (31). Therefore, we considered that a

low sphericity score may reflect poor nutritional status and high

tumor burden and indicate worse survival after ICI treatment.

Our study has some limitations. First, the sample size of this

retrospective study was relatively small. However, the data obtained

from patients treated with ICI monotherapy were informative and

of great value for assessing response after ICI treatment. In contrast,

a combination regimen, such as ICI and chemotherapy, may cause

confounding factors. Our study should be considered exploratory.

Second, histological biomarker data were unavailable from all

patients in this study. Since not all hospitals have accredited

laboratories to carry out complex immunohistochemistry
A B C

D E F

FIGURE 4

Kaplan–Meier estimates of progression-free survival in patients who had either not been tested or had already tested negative for biomarkers.
(A, D) PD-L1, (B, E) MMR, and (C, F) EBV according to radiomics features. DVintra_ZV, DVintra_original_glszm_Zone Variance;
postVperi_Sphericity, postVperi_original_shape_Sphericity.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1059874
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.1059874
protocols, it is worthwhile to investigate the predictive value of

radiomics features in patients who have not been tested or have

already tested negative for biomarkers to provide a method of

selecting appropriate treatment. Third, pathology confirmation of

immune cell infiltration from post-treatment samples was absent.

Future studies should aim to evaluate the relationship between

radiomics features and immune cell infiltration in post-treatment

gastric cancer samples.
Conclusions

Given the complexity of the intrinsic biological pathway of

the tumor microenvironment, current biomarkers alone,

including PD-L1, dMMR, and EBV status, cannot predict

patient prognosis completely. Radiomics features complement

these widely accepted histological biomarkers and can be

considered candidate biomarkers that can reflect tumor

phenotype and provide longitudinal surveillance. Radiomics

features have the potential to be used as cost-effective

screening tools that can be applied in clinical practice when

administering ICI treatment to patients with gastric cancer.
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Glossary

ICI Immune checkpoint inhibitors

ROI Regions of interest

PFS Progression free survival

PD-1 programmed cell death protein 1

PD-L1 programmed cell death ligand 1

CTLA-4 Cytotoxic T lymphocyteassociated antigen 4

dMMR Mismatch repair deficiency

EBV Epstein–Barr virus

CPS Combined positive scores

pMMR Mismatch repair proficiency

CT Computed tomography

AUC Area under the curve

ECOG PS Eastern Cooperative Oncology Group performance status
score

preAintra Intratumoral regions at baseline atrial phase

preVintra Intratumoral regions at baseline venous phase

preAperi Peritumoral regions at baseline atrial phase

preVperi Peritumoral regions at baseline venous phase

postAintra Intratumoral regions at follow-up atrial phase

postVintra Intratumoral regions at follow-up venous phase

postAperi Peritumoral regions at follow-up atrial phase

postVperi Peritumoral regions at follow-up venous phase

DAintra Changes between baseline and follow-up features of
intratumoral regions at atrial phase

DVintra Changes between baseline and follow-up features of
intratumoral regions at venous phase

DAperi Changes between baseline and follow-up features of
peritumoral regions at atrial phase

DVperi Changes between baseline and follow-up features of
peritumoral regions at venous phase

IQR Interquartile ranges

ICCs Intraclass correlation coefficients

LASSO Least absolute shrinkage and the selection operator

C-index Harrell’s concordance index

CI Confidence interval

HR Hazard ratio

DVintra_ZV DVintra_original_glszm_Zone Variance

postVperi_Sphericity Postvperi_original_shape_Sphericity

NSCLC Non–small cell lung cancer
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Predicting the efficacy of
radiotherapy for esophageal
squamous cell carcinoma based
on enhanced computed
tomography radiomics and
combined models

Jihui Liu †, Xiyue Yang †, Xin Mao, Tingting Wang, Xuhai Zheng,
Gang Feng, Tangzhi Dai and Xiaobo Du*

Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology
Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine,
University of Electronic Science and Technology, Mianyang, China
Purpose: This study aimed to investigate the ability of enhanced computed

tomography (CT)-based radiomics and dosimetric parameters in predicting

response to radiotherapy for esophageal cancer.

Methods: A retrospective analysis of 147 patients diagnosed with esophageal

cancer was performed, and the patients were divided into a training group (104

patients) and a validation group (43 patients). In total, 851 radiomics features

were extracted from the primary lesions for analysis. Maximum correlation

minimum redundancy and minimum least absolute shrinkage and selection

operator were utilized for feature screening of radiomics features, and logistic

regression was applied to construct a radiotherapy radiomics model for

esophageal cancer. Finally, univariate and multivariate parameters were used

to identify significant clinical and dosimetric characteristics for constructing

combination models. The area evaluated the predictive performance under the

receiver operating characteristics (AUC) curve and the accuracy, sensitivity, and

specificity of the training and validation cohorts.

Results: Univariate logistic regression analysis revealed statistically significant

differences in clinical parameters of sex (p=0.031) and esophageal cancer

thickness (p=0.028) on treatment response, whereas dosimetric parameters

did not differ significantly in response to treatment. The combined model

demonstrated improved discrimination between the training and validation

groups, with AUCs of 0.78 (95% confidence interval [CI], 0.69–0.87) and 0.79

(95% CI, 0.65–0.93) in the training and validation groups, respectively.

Conclusion: The combined model has potential application value in predicting

the treatment response of patients with esophageal cancer after radiotherapy.

KEYWORDS

radiotherapy, esophageal squamous cell carcinoma, computed tomography,
radiomics, dosimetric
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1 Introduction

Esophageal cancer is the eighth most prevalent and sixth most

lethal cancer worldwide. In Asia and Eastern Europe, the most

prevalent histological subtype of this malignancy is squamous cell

carcinoma (1). More than 70% of patients with esophageal cancer

are diagnosed at an intermediate to advanced stage, with

unresectable or metastatic disease, and a combination of

chemotherapy and radiation therapy is frequently provided to

patients with esophageal cancer (2). Studies have indicated that

the 5-year survival rate for patients with locally advanced

esophageal cancer treated with radiation is only 36–47% (3, 4),

and the 5-year overall survival of patients with complete remission

(CR) is better than that of patients without CR (5). Therefore, early

identification of patients who do not respond to radiotherapy and

prompt monitoring of tumor response to treatment during

radiotherapy are crucial for implementing individualized

precision radiotherapy and enhancing overall patient survival.

Computed tomography (CT) is commonly used to assess the

preoperative staging of esophageal cancer, including the extent of

infiltration, lymph node extent, and metastasis, for clinical

treatment decisions (6). However, CT only shows the external

morphological features of esophageal cancer. It is challenging to

fully assess the heterogeneity within the tumor. Radiomics extracts

quantitative CT image features with a high throughput. This

information extraction is based on the entire tumor and is not

confined to a single tissue sample, allowing for a thorough

description of tumor heterogeneity. Hou et al. investigated the

baseline CT-enhanced image characteristics of 49 patients (33

with strong response and 16 with poor response) with esophageal

cancer treated with radiation and found substantial differences in

kurtosis and skewness in histogram characteristics between the two

groups (7). Yang et al.’s analysis of patients receiving lower doses of

neoadjuvant chemoradiotherapy (nCRT) did not reveal any clinical

characteristics that predicted patients’ arrival to pathological

complete response (pCR). However, radiomics features enabled

the construction of three highly accurate models for predicting

pCR following nCRT in individuals with esophageal cancer (8).

Some researchers have attempted to predict an outcome by

combining intratumoral and peritumoral features. Radiomics

examination is not restricted to the tumor body. Hu et al.

included patients with esophageal cancer who underwent surgery

after nCRT in two institutions and extracted radiomics features

from baseline-enhanced CT intratumoral and peritumoral regions

to construct models, demonstrating that models constructed with

seven intratumoral and six peritumoral radiomics features had

superior predictive performance, with receiver operating

characteristic (ROC) curves of 0.906 and 0.85 in the training and

validation groups, respectively (9).

With the progress of radiotherapy technology, esophageal

cancer can be treated by three-dimensional conformal radiation

therapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and

volumetric-modulated arc therapy (VMAT), but its 5-year survival

rate remains inadequate. Local uncontrolled or recurrence remains

the most common cause of radiotherapy failure. Due to individual
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variances, the radiation dose for each patient varies. Some studies

have demonstrated the significant efficacy of radiotherapy up to a

dose of 40 Gy in certain patients, whereas others are not sensitive to

radiotherapy and fail to improve their local control rate even when

administered 70 Gy (10). Incremental radiation therapy dosages

may result in severe toxic side effects, the severity of which is mostly

determined by clinical criteria and the quantity of healthy tissue

surrounding the exposed tumor. In radiation therapy for cancer,

metrics, such as prescribed dose, dose distribution, and dose-

volume histogram, can also be utilized to evaluate treatment

response and cancer prognostic analysis (11, 12).

To the best of our knowledge, the doses of radiotherapy received

by patients in some current studies were also significantly lower

than those of radical radiotherapy. Few studies have incorporated

dosimetric data and several other variables into predictive models.

To assist clinicians in deciding the best course of treatment for

patients with esophageal cancer receiving radiation, this study

aimed to examine the effects of enhanced CT-based radiomics in

predicting the response to radiotherapy.
2 Materials and methods

2.1 Patients and treatment

The ethical committee allowed a retrospective collection of 147

patients with a histological diagnosis of esophageal squamous cell

carcinoma at our hospital between January 2018 and December

2021 (approval number: S2022035-01). The inclusion criteria

were as follows: (a) patients with a histopathology-confirmed

squamous cell carcinoma of the esophagus, (b) patients who

had completed radiotherapy, (c) patients without distant

metastases or other neoplastic diseases, and (d) patients

with trackable treatment results. The exclusion criteria were as

follows: (a) patients with missing follow-up data; (b) patients who

had previously undergone chest radiation, chemotherapy, or

surgical tumor excision; (c) patients with multifocal primary

disease; and (d) extreme respiratory motion artifacts; and (e)

invisible tumor on CT image. Image quality is judged by the two

radiologists independently, and the disagreement is resolved

through negotiation. Patients underwent 3D-CRT, IMRT, or

VMAT during the treatment period. In total, 100% of the

prescribed dose encompassed 95% of the volume of the target

area for all patients.
2.2 Response assessment

After 3 months of treatment, response to treatment was assessed

by CT findings and determined according to the efficacy evaluation

criteria for solid tumors (Response Evaluation Criteria in Solid

Tumors) (13). CR, partial response (PR), stable disease (SD), and

progressive disease (PD) were assessed. Patients with CR or PR were

classified as responders, whereas patients with SD or PD were

classified as nonresponders.
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2.3 Image acquisition

All patients underwent chest CT examinations utilizing a

Siemens large-aperture CT scanner. The scan parameters (tube

voltage, 120 kVp; tube current, 200 mAs; matrix, 512×512; layer

thickness, 5 mm; layer spacing, 5 mm) were in accordance with the

clinical standard acquisition methodology. Iodine contrast agent

was injected at 3 ml/s using a high-pressure syringe. A radiation

oncologist drew the primary gross tumor volume (GTV) on

Oncentra software, which was subsequently examined by an

experienced radiation oncologist. Avoiding the esophagus lumen,

blood arteries, periesophageal fat, and artifacts were outlined as

the GTV.
2.4 Feature extraction

TPS exported Digital Imaging and Communications in

Medicine files to 3D Slicer(version,4.11, https://www.slicer.org)

for preprocessing (1×1×1 resampling) and feature extraction

(Supplementary Figure 1) (14). In total, 851 features, comprising

107 original features and 744 wavelet features, were extracted from

each GTV. The original features included 18 first-order statistical

features, 14 shape size features, 14 gray-level dependence matrix, 16

gray-level size zone matrix, 24 gray-level co-occurrence matrix,16

gray-level run-length matrix, and 5 neighboring gray tone difference

matrix. Image transformation features, such as wavelet transform

features, were primarily utilized to divide original tumor images

into distinct frequency domains. Except for 14 shape features that

do not change with image transformation, each of the 93 features is

extracted to different values in the image GTV after 8

wavelet transforms.
2.5 Feature screening and
model construction

Random stratified sampling was used to divide 147 patients into

two groups (104 and 43 patients in the training and validation

groups, respectively). Data standardization and feature extraction

were performed using R software (version 3.6.0, https://www.r-

project.org).The extracted features were preprocessed with Z-score

for normalization to reduce the effect of different magnitudes on the

features, specifically by eliminating the mean of each feature to

center the feature values and then dividing by the standard

deviation of each feature. The minimum redundancy maximum

relevance (mRMR) algorithm was then used to screen features. The

mRMR algorithm is based on calculating a pair of correlation

coefficient (A) and redundancy coefficient value (B) for each

feature, where the correlation coefficient represents the

relationship between the feature and treatment response and the

redundancy coefficient represents the redundancy coefficient

between features. The A-B values of all parameter values for

features were then ordered in decreasing order (15). The least

absolute shrinkage and selection operator (LASSO) method was

then utilized for additional feature screening using tenfold cross-
Frontiers in Oncology 0370
validation. A logistic regression model calculated a radiomics score

(Rad-score) for each patient using model-weighted coefficients.
2.6 Model construction and evaluation

We established a combined model to predict the efficacy of

radiotherapy for esophageal cancer by using multivariate logistic

regression analysis. The variables included Rad-score, clinical and

dosimetric parameters. The Combine model is finally demonstrated

through a nomogram. The performance of the model was evaluated

using area under the curve (AUC), precision, sensitivity, and

specificity. Using a decision curve analysis, the quantification of

net benefits under different threshold probabilities was confirmed.
2.7 Statistical analyses

All statistical analyses were performed using the R software.

Continuous variables are expressed as median (Q1, Q3) using the

Mann–Whitney U test. For the count data, the Fisher’s exact

probability approach was utilized. Univariate and multivariate

logistic regression analyses were performed to identify the

independent predictors of clinical and dosimetric indicators. The

difference in AUC between models was examined using the Delong

test. P<0.05 was considered statistically significant.
3 Results

In total, 236 patients with esophageal cancer were treated in our

hospital, of whom 15 discontinued treatment, 23 were lost to

follow-up, 22 had a history of radiotherapy, 10 had incomplete

data and19 had poor image quality. These patients were excluded

from the statistical analyses. The remaining 147 patients (113 males

and 34 females; median age, 66 years) met the inclusion criteria. The

number of patients who responded to treatment (CR+PR) was 89,

whereas 58 patients (PD+SD) were nonresponders. The clinical and

dosimetric characteristics of the patients are shown in Table 1.

LASSO regression was used to minimize the dimensionality of

the recovered features, and 7 out of 851 possible radiomics features

were selected to calculate their products with the regression

coefficients using the following equations (Figures 1A, B). Each

patient’s Rad-score was obtained and calculated as follows: Rad-

score=–0.236×Original_firstorder_90Percentile-0.026×Wavelet.

Hll_firstorder_Skewness-0.128×Original_glszm_HighGray

LevelZoneEmphasis+0.19×Wavelet.Lhh_glcm_ClusterShade-

0.046×Wavelet.Hll_glcm_ClusterShade-0.049×Wavelet.Hll_

firstorder_Maximum+0.173×Wavelet.Hhl_glcm_ClusterShade

Figure 2 illustrates the results of using the AUC size of the area

under the ROC curve to measure the prediction performance of the

model. In the training group, the AUC value of radiomics for

predicting esophageal cancer treatment response was 0.76 (95%

confidence interval [CI], 0.67–0.85), with an accuracy of 0.692 (95%

CI, 0.594–0.779), a sensitivity of 80.5%, and a specificity of 61.9%. In

the validation group, the AUC, accuracy, sensitivity, and specificity
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TABLE 1 The clinical and dosimetric characteristics of the patients.

Characteristic Non-response (n=58) Response (n=89) p

Age 67.00 (59.00,73.00) 66.00 (60.00,73.00) 0.899

Gender 0.008*

Female 20 (34.48%) 14 (15.73%)

Male 38 (65.52%) 75 (84.27%)

Tumor location 0.176

Cervical 5 (8.62%) 2 (2.25%)

Upper 12 (20.69%) 17 (19.10%)

Middle 27 (46.55%) 54 (60.67%)

Lower 14 (24.14%) 16 (17.98%)

Histologic grade 0.141

Poor 24 (41.38%) 24 (26.97%)

Moderate 31 (53.45%) 62 (69.66%)

Well 3 (5.17%) 3 (3.37%)

T stage 0.812

T1 2 (3.45%) 1 (1.12%)

T2 11 (18.97%) 18 (20.22%)

T3 30 (51.72%) 44 (49.44%)

T4 15 (25.86%) 26 (29.21%)

N stage 0.373

N0 14 (24.14%) 14 (15.73%)

N1 30 (51.72%) 43 (48.31%)

N2 13 (22.41%) 30 (33.71%)

N3 1 (1.72%) 2 (2.25%)

M stage 0.765

M0 54 (93.10%) 83 (93.26%)

M1 4 (6.90%) 6 (6.74%)

Group stage 0.309

I 2 (3.45%) 0 (0.00%)

II 13 (22.41%) 19 (21.35%)

III 26 (44.83%) 38 (42.70%)

IV 17 (29.31%) 32 (35.96%)

Hypertension 0.865

Yes 6 (10.34%) 10 (11.24%)

No 52 (89.66%) 79 (88.76%)

Smoking history 0.466

Yes 15 (25.86%) 28 (31.46%)

No 43 (74.14%) 61 (68.54%)

Drinking history 0.748

Yes 13 (22.41%) 22 (24.72%)

(Continued)
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TABLE 1 Continued

Characteristic Non-response (n=58) Response (n=89) p

No 45 (77.59%) 67 (75.28%)

Nutrition 0.154

1 18 (31.03%) 35 (39.33%)

2 17 (29.31%) 27 (30.34%)

3 6 (10.34%) 13 (14.61%)

4 13 (22.41%) 7 (7.87%)

5 4 (6.90%) 7 (7.87%)

Thickness 1.35 (1.19,1.60) 1.50 (1.17,1.90) 0.048*

Length 5.50 (4.50,7.00) 5.90 (4.50,7.00) 0.959

BMI 22.00 (19.59,23.42) 21.50 (19.80,23.30) 0.834

Dose 60.00 (60.00,60.00) 60.00 (60.00,60.00) 0.650

Frequency 30.00 (28.00,30.00) 30.00 (28.70,30.00) 0.718

Divided dose 2.00 (2.00,2.13) 2.00 (2.00,2.00) 0.352

PTV

Dmin (Gy) 5400.00 (4952.10,5601.20) 5306.00 (4786.50,5596.50) 0.660

Dmax (Gy) 6636.00 (6518.50,6722.50) 6599.00 (6478.90,6757.90) 0.641

Dmean (Gy) 6252.25 (6203.85,6293.10) 6228.00 (6167.00,6286.60) 0.374

V90 (%) 99.99 (99.86, 100.00) 99.99 (99.86, 100.00) 0.815

V93 (%) 99.78 (99.45, 99.99) 99.86 (99.44, 99.99) 0.837

V95 (%) 99.43 (99.14, 99.71) 99.57 (98.99, 99.87) 0.576

Lung

Dmean (Gy) 1169.00 (1047.85,1366.30) 1200.00 (1007.10,1341.30) 0.984

V5 (%) 53.52 (48.52, 58.63) 51.72 (44.51, 58.68) 0.429

V10 (%) 37.41 (34.60, 41.99) 38.51 (33.31, 41.38) 0.967

V20 (%) 21.41 (18.81, 27.59) 23.04 (19.82, 26.05) 0.898

V30 (%) 11.49 (8.04, 14.55) 12.45 (8.22, 14.82) 0.756

V40 (%) 5.68 (3.88, 8.34) 5.94 (3.52, 8.37) 0.997

Heart

Dmean (Gy) 2748.00 (1640.10,3255.50) 2598.00 (1108.20,3190.70) 0.234

V5 (%) 92.89 (57.94, 98.43) 87.07 (38.63, 97.13) 0.134

V10 (%) 79.00 (48.04, 91.82) 75.95 (32.61, 89.80) 0.242

V15 (%) 69.00 (41.20, 83.75) 62.35 (24.00, 80.68) 0.203

V20 (%) 61.52 (36.47, 74.22) 53.89 (19.91, 73.42) 0.241

V25 (%) 54.67 (27.72, 66.24) 46.25 (17.49, 64.02) 0.229

V30 (%) 43.34 (21.91, 55.79) 39.34 (14.13, 50.50) 0.161

V40 (%) 24.34 (12.63, 39.00) 20.31 (7.47, 32.04) 0.210

V50 (%) 10.34 (4.52, 14.97) 7.47 (2.51, 14.51) 0.189

V60 (%) 1.60 (0.00, 4.03) 1.29 (0.00, 3.99) 0.564

(Continued)
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were 0.73 (95% CI, 0.58–0.88), 0.721 (95% CI, 0.563–0.846), 88.2%,

and 61.5%, respectively. The Delong test revealed no statistically

significant difference between the effectiveness of the two

groups (p>0.05).

The clinical and dosimetric parameters related to treatment

response in the training group were determined by univariate and
Frontiers in Oncology 0673
multivariate logistic regression analyses. Sex and esophageal

carcinoma thickness were substantially associated with treatment

response among clinical characteristics, as shown by univariate

logistic regression analysis. However, none of the dosimetric

variables were related to treatment response (Table 2). Hence,

sex, esophageal cancer thickness, and Rad-score were
TABLE 1 Continued

Characteristic Non-response (n=58) Response (n=89) p

Spinal Cord

Dmax (Gy) 4421.00 (4338.85,4531.00) 4421.00 (4338.60,4521.50) 0.855

Dmean (Gy) 2418.5 (1910.75,2920.75) 2295 (1816.01,2725.60) 0.301
*p<0.05.
A B

FIGURE 1

Selection of radiomics features for predicting response using the least absolute shrinkage and selection operator (LASSO) logistic regression model.
(A) LASSO coefficient profiles of the radiomics features. (B) The cross-validation curve.
A B

FIGURE 2

Receiver operating characteristic (ROC) curve comparison of combined and radiomics and clinical models. (A) ROC curve in the training set.
(B) ROC curve in the validation set.
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TABLE 2 Univariate and Multivariate logistic regression analysis in the training set.

Variable Univariate analysis Multivariate analysis

OR (95%CI) p OR (95%CI) p

Age 0.985 (0.940, 1.032) 0.516

Gender 2.727 (1.098, 6.771) 0.031* 2.028 (0.705,5.838) 0.189

Tumor location 1.392 (0.823, 2.354) 0.217

Histologic grade 1.523 (0.707, 3.278) 0.282

T stage 1.278 (0.726, 2.251) 0.395

N stage 1.302 (0.759, 2.234) 0.338

M stage 0.633 (0.121, 3.301) 0.588

Group stage 1.291 (0.761, 2.189) 0.343

Treatment 1.599 (0.522, 4.898) 0.411

Hypertension 1.156 (0.316, 4.229) 0.826

Smoking history 1.442 (0.593, 3.506) 0.420

Drinking history 1.404 (0.539, 3.661) 0.487

Nutrition 0.879 (0.648, 1.191) 0.405

Medication 1.490 (0.831, 2.674) 0.181

Thickness 2.419 (1.101, 5.317) 0.028* 2.033 (0.877,4.713) 0.098

Length 0.972 (0.804, 1.176) 0.772

BMI 1.001 (0.880, 1.139) 0.985

Dose 0.984 (0.885, 1.094) 0.768

Frequency 1.027 (0.811, 1.301) 0.824

Divided dose 0.150 (0.001,21.467) 0.454

PTV_Dmin 1.000 (1.000, 1.000) 0.576

PTV_Dmax 1.000 (0.999, 1.000) 0.530

PTV_Dmean 1.000 (0.999, 1.000) 0.452

PTV_V90 0.361 (0.039, 3.386) 0.373

PTV_V93 0.826 (0.294, 2.317) 0.716

PTV_V95 1.177 (0.553, 2.507) 0.672

Lung_V5 0.981 (0.943, 1.020) 0.325

Lung_V10 1.000 (0.946, 1.056) 0.991

Lung_V20 0.999 (0.931, 1.072) 0.977

Lung_V30 0.995 (0.975, 1.015) 0.617

Lung_V40 1.005 (0.970, 1.041) 0.772

Lung_Dmean 1.000 (0.999, 1.001) 0.979

Heart_V5 0.992 (0.979, 1.005) 0.236

Heart_V10 1.001 (0.998, 1.004) 0.572

Heart_V15 0.993 (0.980, 1.007) 0.325

Heart_V20 0.993 (0.979, 1.007) 0.334

Heart_V25 0.993 (0.977, 1.009) 0.368

Heart_V30 0.990 (0.973, 1.008) 0.265

(Continued)
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incorporated into the multivariate logistic analysis to construct a

combined model.

Based on the results of the multivariate analysis, a combine

model is finally demonstrated through a nomogram (Figure 3), The

risk ratio and significance of each variable in the multivariate

combined model are shown in Supplementary Table 1, and the

outcomes are presented in Figure 2. In the training group, the AUC,

accuracy, sensitivity, and specificity for the combined model were

0.78 (95% CI, 0.69–0.87), 0.673 (95% CI, 0.574–0.762), 96.7%, and

54.8%, respectively. In the validation group, the AUC, accuracy,

sensitivity, and specificity were 0.79 (95% CI, 0.65–0.93), 0.651

(95% CI, 0.491–0.790), 92.3%, and 53.3%, respectively. The

performance metrics of radiomics, clinics, and combined models

are displayed in Table 3.The AUC of combined model was higher

than that of the clinical model, indicating that the combined model

achieved considerably better discrimination capability than clinical

model(DeLong’s test, p < 0.001).However, there was no significant

difference between the combined and the radiomics model

(p=0.772) and between the radiomics and the clinical

model (p=0.133).

Using decision curves to analyze the influence of the model on

clinical treatment decisions, the clinical model (without Rad-score)

or the combined model (with Rad-score) outperformed “all

treatment” or “no treatment” when the risk threshold was greater
Frontiers in Oncology 0875
than 10%, and the combined model had greater predictive power

than the clinical model when the threshold was more significant

than 23% (Figure 4).
4 Discussion

In this study, radiomics features of localized CT images of

patients before radiotherapy were extracted, and the optimal seven

features were screened out, combined with clinical features to

construct a model of the treatment response of patients receiving

radiotherapy, which can provide a cost-effective and noninvasive

method for predicting the efficacy of radiotherapy.

In the present study, two clinical factors, esophageal carcinoma

thickness and sex, were substantially associated with treatment

response. Previous studies have demonstrated the predictive

usefulness of esophageal carcinoma thickness in determining

preoperative treatment response (16, 17). According to Zhang

et al., esophageal cancer thickness as a single predictor can

evaluate survival and efficacy of preoperative chemotherapy (18).

The limited value of thickness measurement on CT may be

attributed to the swelling effect of necrotic and fibrotic tissues

following radiation, resulting in persistent imaging abnormalities.

Radiomics augments standard imaging parameters. It recognizes

intra-tissue heterogeneity, hence increasing the predictive accuracy

of the model for tumor response. According to a previous study on

esophageal cancer, women are more likely to present with pCR and

have higher survival rates than men (19, 20). In contrast, the results

of the current study were different, possibly due to the small number

of women with esophageal cancer in the study population, which

led to unusual experimental results. Dosimetric measures were not

altered significantly when the treatment response was reversed. Jin

et al. obtained similar results using a dosimetric model to evaluate

treatment response in esophageal cancer after radiotherapy (21).

The obtained dosimetric parameters may be 3D dose distributions,

which describe the volume of irradiation received by an organ at a

provided dose. There is a loss of spatial link information

between voxels.

Several studies have demonstrated the use of radiomics, an

emerging image analysis technique, to predict the efficacy of

radiation in patients with esophageal cancer. Murakami et al.
TABLE 2 Continued

Variable Univariate analysis Multivariate analysis

OR (95%CI) p OR (95%CI) p

Heart_V40 0.992 (0.970, 1.014) 0.465

Heart_V50 0.985 (0.944, 1.027) 0.469

Heart_V60 1.023 (0.902, 1.162) 0.720

Heart_Dmean 1.000 (0.999, 1.000) 0.318

Spinal_Cord_Dmax 1.001 (0.999, 1.002) 0.292

Spinal_Cord_Dmean 1.000 (0.999, 1.000) 0.538

Rad-score 18.861 (4.718,75.403) <0.01* 15.326 (3.687,63.693) <0.01*
frontie
*p<0.05.
FIGURE 3

Predictive nomogram combined Rad-score, sex, and esophageal
cancer thickness.
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retrieved 22 radiomics variables for LASSO regression analysis from

positron emission tomography (PET)/CT images of 98 patients

with esophageal cancer treated with nCRT. Using a neural network

classifier, they developed a prediction model with accuracy,

sensitivity, and specificity of 89.6%, 92.7%, and 89.5%,

respectively (22). Hou et al. extracted 138 radiomics features from

the pre-therapy T2-weighted (T2W)- and spectral attenuated

inversion recovery (SPAIR) T2W-magnetic resonance imaging

(MRI) sequences of 68 patients with esophageal squamous

carcinoma, which could distinguish between CR and stable

lesions, partial remission and stable lesions, and reactive and non-

reactive lesions by 26, 17, and 33 features, respectively, and used

artificial neural networks (ANNs) and support vector machine

(SVM) to construct predictive models. The performance of the

SPAIR T2W-MRI model was superior to that of the T2W sequence

(SVM, 0.929; ANN, 0.883) (23). However, these earlier studies

rarely incorporated several elements, such as dosimetric

parameters, into model projections. In some of these studies,

patients received nCRT, with significantly lower treatment doses

than radical radiotherapy. In this study, dosimetric, clinical, and

other multiple factors were considered, and the LASSO regression

method was used to construct a model for predicting treatment

response after radiotherapy in patients with esophageal cancer, with

a maximum sensitivity of 96.7% and a maximum AUC of 0.79,

indicating that the prediction model has a high level of confidence

in identifying treatment response. Yip et al. predicted the treatment
Frontiers in Oncology 0976
response of patients with esophageal cancer based on PET/CT

utilizing a radiomics approach. They showed high sensitivity

(81%) and specificity (82%) (24), which are comparable to the

current study’s findings. Luo et al. studied baseline CT images of

226 patients receiving nCRT for esophageal cancer, and LASSO was

used to build Rad-score for seven radiomics features. Combining

the radiomics labels with clinical staging, nomograms were created

to predict CR, with AUCs of 0.844 and 0.807 for the training and

validation groups, respectively. The prediction algorithm based on

the nomogram outperformed clinical staging (25). The predictive

performance of the combined model was similarly superior to that

of the only radiomics model in this study.
Currently, CT-based radiomics characteristics consist primarily

of geometric, morphological, textural, and intensity-based histogram

characteristics. Textural characteristics are a standard way to assess

tumor heterogeneity (26). Yip et al. studied PET/CT images of 31

patients with esophageal cancer before and after nCRT and reported

that the grayscale histogram standard deviation (histogram SD)

characteristics of tumors before and after therapy were related to

tumor regression grade (27). In addition, another study conducted by

Yip et al. extracted radiomics features that responded to patient

heterogeneity in CT radiomics before and after radiotherapy, such as

entropy, homogeneity, mean gray intensity, kurtosis, and standard

deviation of the histogram. After comparing the changes in these

texture features with patient survival, they discovered that entropy,

homogeneity, and skewness predicted patient survival after treatment

(28). Nakajo et al. extracted textural features from PET/CT scans of

52 patients with esophageal cancer receiving concurrent radiation.

They concluded that texture-related characteristics could predict

clinical response (29). The preceding study suggests that we can

analyze the heterogeneous information of esophageal cancers based

on the radiomics features of pretreatment CT and then develop a

model to predict the efficacy of radiation in patients. In the present

study, we discovered that the 90th percentile of the first-order

statistical parameters may differentiate between responders and

nonresponders.Texture features reflect the spatial distribution of

pixels within the tumor (26), and the spatial distribution of pixels

is more irregular in heterogeneous tumor pictures. The two-

dimensional gray area size matrix’s large area dominance feature

(glszm HighGrayLevelZoneEmphasis) indicates more related areas in

the image, indicating a coarser texture, and treatment responses can

be classed accordingly. Additionally, the Gabor wavelet transform

was employed to extract additional features. As a short-time Fourier
TABLE 3 Predictive performance of radiomics, clinics, and combined models.

Model
Training set (n=104) Test set (n=43)

AUC (95%CI) Accuracy Sensitivity Specificity AUC (95%CI) ACC Sensitivity Specificity

Radiomics
0.76

(0.67-0.85)
0.692

(0.594-0.779)
80.5% 61.9%

0.73
(0.58-0.88)

0.721
(0.563-0.846)

88.2% 61.5%

Clinics
0.65

(0.54-0.76)
0.683

(0.584-0.771)
67.4% 72.2%

0.60
(0.42-0.78)

0.628
(0.467-0.770)

63.9% 57.1%

Combine
0.78

(0.69-0.87)
0.673

(0.574-0.762)
96.7% 54.8%

0.79
(0.65-0.93)

0.651
(0.491-0.790)

92.3% 53.3%
FIGURE 4

Decision curve analysis for the combined and clinical models.
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transform, Gabor wavelet transformations can deconstruct a picture

into its component frequencies and directions (30). This study also

demonstrates that Wavelet.Hll firstorder Skewness, Wavelet.Lhh

glcm ClusterShade, Wavelet.Hll glcm ClusterShade, Wavelet.Hll

firstorder Maximum, and Wavelet.Hhl glcm ClusterShade may

discriminate the treatment response.

This study has some limitations. First, this study lacked

multicenter validation and was conducted at a single institution.

Nonetheless, the data in this study were obtained from a single CT

scanner, which ensures equal scanning parameters and eliminates

the influence of multiple devices and scanning parameters on

picture characteristics. Second, a previous study showed that

genes such as CXCR-2 and cyclin D1 are closely related with the

prognosis of tumors (31). The incorporation of genetic

characteristics into the radiomics model is vital.
5 Conclusion

In this study, a noninvasive, comprehensive, and individualized

radiotherapy efficacy prediction model was developed by

retrospectively analyzing the radiomics features of pre-radiotherapy

CT images of patients with esophageal cancer. Validation and model

evaluation were also performed. The model integrated radiomics

features and clinical factors with good predictive accuracy, providing

a cost-effective and simple evaluation technique for determining the

effectiveness of radiation for esophageal cancer.
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immunochemotherapy
and surgery
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and Xiangnan Li1*
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Henan, China, 2Clinical Medical College, Henan University, Henan, Kaifeng, China
Background and purpose: Unnecessary surgery can be avoided, and more

appropriate treatment plans can be developed for patients if the efficacy of

neoadjuvant immunochemotherapy for esophageal cancer (EC) can be

predicted before surgery. The purpose of this study was to evaluate the ability

of machine learning models based on delta features of immunochemotherapy

CT images to predict the efficacy of neoadjuvant immunochemotherapy in

patients with esophageal squamous cell carcinoma (ESCC) compared with

machine learning models based solely on postimmunochemotherapy CT

images.

Materials and methods: A total of 95 patients were enrolled in our study and

randomly divided into a training group (n = 66) and test group (n = 29). We extracted

preimmunochemotherapy radiomics features from preimmunochemotherapy

enhanced CT images in the preimmunochemotherapy group (pregroup) and

postimmunochemotherapy radiomics features from postimmunochemotherapy

enhanced CT images in the postimmunochemotherapy group (postgroup).

We then subtracted the preimmunochemotherapy features from the postim

munochemotherapy features and obtained a series of new radiomics features that

were included in the delta group. The reduction and screening of radiomics features

were carried out by using the Mann-Whitney U test and LASSO regression. Five

pairwise machine learning models were established, the performance of which

was evaluated by receiver operating characteristic (ROC) curve and decision

curve analyses.

Results: The radiomics signature of the postgroup was composed of 6 radiomics

features; that of the delta-group was composed of 8 radiomics features. The area

under the ROC curve (AUC) of the machine learning model with the best efficacy

was 0.824 (0.706-0.917) in the postgroup and 0.848 (0.765-0.917) in the delta

group. The decision curve showed that our machine learning models had good
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predictive performance. The delta group performed better than the postgroup

for each corresponding machine learning model.

Conclusion: We established machine learning models that have good predictive

efficacy and can provide certain reference values for clinical treatment decision-

making. Our machine learning models based on delta imaging features performed

better than those based on single time-stage postimmunochemotherapy imaging

features.
KEYWORDS

esophageal cancer, delta radiomics, neoadjuvant immunochemotherapy, pathological
complete response, machine learning
1 Introduction

Esophageal cancer (EC) is the most common malignant tumor of

the upper digestive tract, ranking seventh in terms of incidence

(604,000 new cases) and sixth in terms of overall mortality (544,000

deaths) among all cancers. The five-year relative survival rate for EC is

lowest among cancers and comparable to that for liver cancer at 20%

(1, 2). Most cases of EC are diagnosed at middle and advanced stages.

Surgical resection after neoadjuvant chemoradiotherapy (NCRT)

should be considered the standard of care for patients with

resectable locally advanced EC. In patients with locally advanced

ESCC, NCRT plus surgery improves survival compared with surgery

alone, and the adverse events are acceptable and controllable. In

patients with resectable EC, the combination of neoadjuvant

chemoradiotherapy and surgery has an overall survival benefit (3,

4). Studies have reported a probability of pathologic complete

response after neoadjuvant immunochemotherapy for EC of 26% to

49% (5–7). After many explorations in recent years, immunotherapy

for EC has been expanded to neoadjuvant therapy and

immunotherapy combined with neoadjuvant chemotherapy. There

is much clinical experience accumulated to date. For example, the

NICE-2, TD-NICE and Keep-G 03 studies, among others, have shown

relatively ideal disease control rates and PCR rates (8–10). Therefore, it

is very important to accurately predict the efficacy of neoadjuvant

immunochemotherapy for EC. Radiomics is an emerging technology

with the ability to capture intratumor heterogeneity in a noninvasive

manner. Indeed, radiomics is a promising approach to

comprehensively quantify tumor phenotypes through application of

a large number of quantitative imaging features (11, 12).

Delta-radiomics is the change in radiomics features, a

multitemporal comparison, and can fully reflect characteristic

changes in tumors before and after treatment. Previously

published studies have demonstrated the superiority of delta-

radiomics in cancer from many aspects. The study of Jing Gong

et al. showed that a delta-radiomics model can improve predictive

performance and has prognostic value in predicting the

progression-free survival and overall survival of non-small cell

lung cancer (NSCLC) patients (13). According to Zhang, Z. et al.,
0280
the delta-radiomics features extracted from MR images after

surgical radiotherapy for brain metastases have the potential to

distinguish radiation necrosis from tumor progression and have

better predictive value than traditional radiomics features (14). The

purpose of this study was to evaluate the ability of machine learning

models based on delta features of immunochemotherapy CT images

to predict the efficacy of neoadjuvant immunochemotherapy in

patients with esophageal squamous cell carcinoma (ESCC)

compared with machine learning models based solely on

postimmunochemotherapy CT images.
2 Materials and methods

2.1 Study design

After patient selection, we manually outlined the region of

interest (ROI) on the CT images of patients before and after

neoadjuvant immunochemotherapy. Then, we extracted the

radiomics features according to the radiomics classes and filters

shown in Figure 1 for statistical analysis. The flowchart of the main

steps is illustrated in Figure 1.
2.2 Patients

A total of 146 patients with EC who received neoadjuvant

immunochemotherapy plus surgical resection at the First Affiliated

Hospital of Zhengzhou University from June 2019 to May 2022

were included in this study. The inclusion criteria were (i) ESCC

diagnosed by histopathology and (ii) complete available enhanced

CT images before and after immunochemotherapy. The exclusion

criteria were as follows: (i) adenocarcinoma of the esophagogastric

junction (n=6); (ii) esophageal fistula after neoadjuvant

immunochemotherapy (n=1); (iii) incomplete diagnosis and

treatment process in our hospital (n=20); and (iv) nonenhanced

CT or CT image artifacts (n=24). Ultimately, 95 patients were

enrolled in this study.
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2.3 CT image acquisition and
tumor segmentation

Enhanced CT images before and after neoadjuvant

immunochemotherapy were obtained for all patients. CT scanners

from multiple manufacturers were used for enhanced chest CT of all

patients. Information about the scan parameters of CT (including

manufacturer, tube voltage, tube current, etc.) is provided in

Supplemental Material Table S2. The tumor ROI was manually

delineated on 3Dslicer (version 4.1.1, http://www.slicer.org, USA) by

two thoracic surgeons with more than 5 years of clinical experience;

the ROI was delineated and analyzed in the arterial phase. First, the

tumor contour was delineated on enhanced CT images before

neoadjuvant immunochemotherapy by referring to gastroscopy,

barium meal gastrointestinal examination and other examinations.

Then, the head and tail lengths of the delineated ROI on the enhanced

CT images before and after neoadjuvant immunochemotherapy were

determined. The length was kept unchanged, and the tumor ROI after

neoadjuvant immunochemotherapy continued to be delineated

manually. CT images of the same patient before and after

neoadjuvant immunochemotherapy ensured that the tumor was of

the same length in the sagittal position. The preneoadjuvant target

area served as a reference for the postneoadjuvant target area; that is,

the target area was the same. The mapped tumor area was evaluated

by another radiologist.
2.4 Radiomics feature extraction
and selection

The PyRadiomics (version 3.0.1, http://github.com/Radiomics/

pyradiomics#readme) package of Python software (version 3.9.7) was

used to extract features from the postgroup and delta group. Delta

radiomics features were defined as the radiomics features of the

postgroup minus the radiomics features of the pregroup. The

extracted radiomics features were screened by the Mann-Whitney U
Frontiers in Oncology 0381
test, and features with a threshold of P < 0.05 were retained, after which

data standardization (StandardScaler) was selected to

nondimensionalize these retained radiomics features. Next, five cross-

validations and iterations of 1e6 were performed on the standardized

features to obtain the alpha parameter with the minimummean square

error. Based on the selected optimal alpha parameter, the least absolute

contraction and selection operator (LASSO) feature selection algorithm

was applied to select relevant features and calculate the coefficients of

each. LASSO solves the multicollinearity problem by resetting

insignificant feature weights to zero through penalty coefficients, thus

reducing the feature dimension. Finally, radiomics features with

nonzero coefficients were obtained. To increase the repeatability of

radiomics features and the generalization and stability of the models, 10

patients in the pregroup and the postgroup were randomly selected,

and the ROIs outlined by Reader1 and Reader2 were used for reliability

analysis (ICC). Detailed information is available in Supplementary

Materials Table S3 and Table S4.
2.5 Statistical analysis

We randomly divided patients into a training set and a test set

(7:3); the former was used to develop the machine learning models

and the latter to verify and evaluate the performance of the machine

learning models. The predictive radiomics features selected by the

Mann-Whitney U test and LASSO algorithm were entered into

machine learning models. We built the machine learning models

using the scikit-learn package (version 1.0.2, http://scikit-learn.org) in

Python (version 3.9.7). Five machine learning models were

constructed with both the postgroup and delta group, including

support vector machine (SVM), regression decision tree (DT),

random forest (RF), extreme gradient boosting (XGBoost), and

logistic regression (LR). We also evaluated the predictive power of

each machine learning classifier using a validation set, and the AUC

value and the corresponding sensitivity, specificity, and overall

accuracy were calculated. Decision curves of the machine learning
B

C DA

FIGURE 1

(A, B): Image Acquisition & Tumor Segmentation. (A) The region of interest (ROI) of the pregroup. (B) The region of interest (ROI) of the postgroup.
(C) The PyRadiomics package was used to extract radiomics features, and the radiomics classes and filters used are listed. The pregroup features and
postgroup features were extracted, and the delta features were obtained. Delta features = postgroup features - pregroup features. (D) The least
absolute shrinkage and selection operator (LASSO) algorithm was applied to select features, and other statistical analyses were performed, such as
predictive model construction and validation.
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models with the best AUC performance were plotted for guiding

clinical decisions.
3 Results

3.1 Patients

A total of 95 patients were enrolled in our study. Postoperative

histopathologic specimens were evaluated by an experienced

pathologist and reviewed by a thoracic surgeon. Pathological

complete response (PCR) occurred in 39 patients and

nonpathological complete response (nPCR) in 56 patients, with a

ratio of approximately 2:3. Table 1 provided the patient details. The

immunochemotherapy regimen was paclitaxel and platinum

combined with PD-1 monoclonal antibody. Ninety-four patients

underwent esophagectomy by the McKeown method, and 1 patient

underwent esophagectomy by the Ivor-Lewis method.
3.2 Feature selection of radiomics

A total of 1,037 features were extracted from the postgroup and the

delta group. The extracted radiomics features were screened by the

Mann-Whitney U test, and those with a threshold of P < 0.05 were

retained. In total, 335 features for the postgroup were retained and 154

for the delta group. Then, the least absolute shrinkage and selection

operator (LASSO) algorithm was applied to select features. Details are

provided in Table S1 in the Supplementary Material. Among them, 6

nonzero features were retained for the postgroup and 8 for the delta

group, and their corresponding coefficients were determined. For the

postgroup, the results were as follows: coefficient of feature A

‘original_shape_Maximum2DDiameterSlice’ -0.01413; of feature B ‘lbp-

2D_gldm_DependenceNonUniformityNormalized’ -0.00953215; of

feature C ‘lbp-3D-m2_firstorder_Kurtosis’ -0.0263521; of feature D ‘lb

p-3D-m2_gldm_DependenceNonUniformityNormalized’ -0.00134778;

of feature E ‘lbp-3D-k_glszm_SmallAreaLowGrayLevelEmphasis’

-0.05375544; and of feature F’square_glrlm_RunEntropy’ -0.09855901.

The results for the postgroup the delta group were as follows: coefficient

of feature A ‘original_shape_Elongation’ -0.04356936; of feature B ‘orig

inal_shape_MinorAxisLength’ -0.1491607; feature C ‘original_shape_S

urfaceVolumeRatio’ 0.09608021; of feature D ‘lbp-3D-m2_firsto

rder_Kurtosis’ -0.05886248; of feature E ‘lbp-3D-k_glszm_SmallA

reaHighGrayLevelEmphasis’ -0.06292696; of feature F ‘lbp-3D-k_ngtd

m_Coarseness’ 0.0091555; of feature G ‘log-sigma-4-0-mm-3D_g

lcm_Autocorrelation’ -0.05041306; and of feature H’square_glrlm_Ru

nEntropy’ of -0.02573776. These results are shown in Figure 2.
3.3 Diagnostic performance of
radiomics models

The nonzero features of the two groups retained were modeled

separately by machine learning, and all models showed good

predictive efficacy of neoadjuvant immunochemotherapy in the

validation set. The results for all models are given in Table 2.
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Table 3 lists the specific parameters of each model. In the

process of model fitting, we use grid searches, learning curves and

other methods to obtain optimal parameters. The random forest

classifier had the best effect in both groups. The AUC value of the

validation set of the postgroup was 0.82 (95% CI, 0.706-0.917); the

sensitivity was 0.83, the specificity 0.76, and the accuracy 0.79. The

AUC value of the delta group was 0.85 (95% CI, 0.765-0.917), the

sensitivity was 0.67, the specificity was 0.88, and the accuracy was

0.79. Figures 3, 4 depict all the ROC curves of the models. In this

study, we plotted decision curves of the best-performing random

forest classifiers to guide clinical decision-making, as indicated

in Figure 5. Decision curve analysis (DCA) is a widely used

method to measure clinical practicability. Figure 5 shows the net

benefit of two random forest models in determining the efficacy of

immunochemotherapy for ESCC. The net benefit was defined as the

harm from a residual tumor by avoiding surgical resection of the

esophagus (false positive) subtracted from the benefit from avoiding

surgical resection of the esophagus (true positive) in patients

predicted by the model to have PCR. It can be seen from the

decision curve that the random forest model of the delta group

indicated more net benefit than the random forest model of

the postgroup.
4 Discussion

The purpose of this study was to evaluate the difference in the

prediction of neoadjuvant immunochemotherapy for ESCC

between postimmunohistotherapy CT modeling alone and delta

imaging modeling. We used the variation in image group

characteristics before and after immunochemotherapy (delta

group) and the image of the individual postgroup to build 5 kinds

of machine learning models, which were verified in the test set. Each

machine learning model showed good predictive ability with regard

to the effect of a neoadjuvant immunochemotherapy curative effect,

and the prediction effect was best in the random forest models.

Indeed, the two random forest models achieved high AUC values of

0.82 (postgroup) and 0.85 (delta-group) in the verification set. The

predictive effect of the model established by delta radiomics was

better than that of single imaging feature modeling after

immunochemotherapy. The AUC value was similar to that

reported by Hu, Y., et al. (15) Moreover, the results were verified

by DCA, demonstrating good clinical practicability of the models.

Traditional imaging examination can show the size,

morphology, enhancement mode and other characteristics of

lesions but cannot reveal more in-depth information about EC.

As an emerging technology to capture high-throughput imaging

features, radiomics can capture the heterogeneity of tumors in a

noninvasive way with great objectivity. Many previous studies have

demonstrated the utility of radiomics in predicting response to

neoadjuvant chemoradiotherapy at different levels. Most of these

studies used FDG PET/CT to predict PCR with neoadjuvant

chemotherapy and radiotherapy (NCRT) in patients with locally

advanced EC (16–18). In addition, most previous studies modeled

radiomics features based on a single time phase. In the study of Qiu

Q et al., CT images of patients before nCRT were collected, 711
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radiomics features were extracted, and radiomics nomograms were

constructed. The optimal value of the C index was 0.746 (95% CI,

0.680 – 0.812) in the training cohort and 0.724 (95% CI, 0.696 –

0.752) in the validation cohort (19). Mao, Y. et al. also extracted a
Frontiers in Oncology 0583
total of 340 radiological features from CT images of patients with

locally advanced rectal cancer (LARC) prior to neoadjuvant

chemotherapy. The best performing model used both radiomics

and clinical variables, with areas under the curve of 0.926 and 0.872,
TABLE 1 Demographic statistics of patients in the training cohort and test cohort.

Variable Training cohort (n=66) Test cohort(n=29)

c2/Z P

Sex 0.4107 0.5216

Female 25 9

Male 41 20

Age -0.931 0.352

Mean 65.3 64.1

Median 66 64

Range 49~77 54~75

SD 6.39 6.12

Smoking history 0.028 0.8671

Yes 17 7

No 49 22

Alcohol history 2.0285 0.1544

Yes 10 8

No 56 21

BMI 0.3177 0.573

≥ 18.5 and <24 36 14

≥ 24 30 15

Clinical T stage 0.325 0.9553

T1 17 7

T2 14 5

T3 26 13

T4 9 4

Clinical N stage 5.9933 0.05

N0 46 13

N1 14 13

N2 6 3

Tumor location 2.7979 0.2469

Upper thoracic 10 1

Middle thoracic 32 17

Lower thoracic 24 11

Pathological Differentiation 2.9638 0.3972

Low 7 7

Middle 31 12

High 3 1

unknown 25 9
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respectively, in the training and validation cohorts (20). Similarly,

Yang Z et al. extracted radiomic features from CT images before

neoadjuvant therapy and constructed three models. The AUC

values of the model with the best performance in the training set

and the test set were 0.85 and 0.79, respectively (21). However,

studies based on a single phase did not contain information about
Frontiers in Oncology 0684
response to treatment. Delta radiomics covers a large amount of

time-dependent information, allows dynamic assessment of

complete tumor changes over the treatment period, provides a

large amount of data on treatment-induced changes and is more

consistent with assessment of immunotherapy effects in clinical

practice. Thus far, few previous studies have used delta imaging
TABLE 2 The results of all models.

Models
post delta

SEN SPE PPV NPV ACC AUC SEN SPE PPV NPV ACC AUC

SVM 0.58 0.71 0.58 0.71 0.66 0.686(0.667-0.706) 0.58 0.88 0.78 0.75 0.76 0.770(0.667-0.882)

DT 0.58 0.76 0.64 0.72 0.69 0.711(0.706-0.750) 0.67 0.82 0.73 0.78 0.76 0.745(0.667-0.824)

RF 0.83 0.76 0.71 0.87 0.79 0.824(0.706-0.917) 0.67 0.88 0.8 0.79 0.79 0.848(0.765-0.917)

XGBoost 0.33 0.82 0.57 0.64 0.62 0.760(0.647-0.833) 0.58 0.88 0.78 0.75 0.76 0.789(0.647-0.833)

LR 0.58 0.71 0.58 0.71 0.66 0.676(0.647-0.750) 0.67 0.71 0.62 0.75 0.69 0.799(0.667-0.824)
B

C D

E F

A

FIGURE 2

Selection of radiomics features via the LASSO method. (A) A 5-fold cross-validation curve for the radiomics features of the delta group, with vertical
dashed lines drawn at the point where the optimal lambda value is 0.0613591 and the number of radiomics features is 8. (B) A 5-fold cross-
validation curve for the radiomics features of the postgroup was drawn with vertical dashed lines at the optimal lambda value of 0.1097498 and the
number of radiomic features of 6. (C) LASSO coefficient profiles of the 154 features retained for the delta group. The coefficient profile is drawn for
the lambda sequence. Vertical lines are drawn at values selected using 5-fold cross-validation, where the optimum lambda yields 8 features with
nonzero coefficients. (D) LASSO coefficient profiles of the 335 features retained for the postgroup. The coefficient profile is drawn for the lambda
sequence. Vertical lines are drawn at values selected using 5-fold cross-validation, where the best lambda yields 6 features with nonzero
coefficients. (E, F) The nonzero coefficients screened by post group and their corresponding coefficients.
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features to model and predict the efficacy of neoadjuvant

chemotherapy for EC. Xie CY et al. used a delta radiomics

approach combined with a genomics approach that utilized

differentially expressed genes to reduce the number of radiomics

features, allowing the creation of a CT-based radiomics model using

a genomic-based feature selection approach. This resulted in better

performance and versatility (AUC: 0.912 in the training set, 0.825 in

the internal test set, and 0.749 in the external test set) (22). In recent

years, the unique value of delta radiomics has been demonstrated in

many areas of cancer and shown to improve the performance of

predictive models in many ways (23–28). This is the same as the

conclusion obtained in this study, which is encouraging. In this

study, comparison between radiomics models was conducted based

on CT images for the same patients, and the results showed that

delta radiomic features were superior to single time-phase image

omics features, which may provide certain reference value for

similar radiomics modeling in the future.
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This study built a decision curve based on the best machine

learning model, with potential clinical application for some

problems based on machine learning model and decision curve

analyses. EC patients have a high incidence of surgical

complications, significantly reduced postoperative quality of life

and risk of death, which is not a good choice for patients who

achieve PCR after neoadjuvant chemotherapy (29–32). The results

of this study can be used as a potential auxiliary method

independent to evaluate surgical specimens to identify complete

responders who may avoid surgery and as an important reference

factor to evaluate whether patients can undergo neoadjuvant

chemotherapy as an alternative therapy to surgery. This approach

provides significant clinical benefit for identifying patients eligible

for individualized organ preservation therapy programs (33).

There are some limitations in this study. The main limitation

is that the sample size was small. The main reason for this is that

complete patient information was involved, complete and
FIGURE 3

The AUC value for the post group test set.
TABLE 3 Parameters of all machine learning models in this study.

groups Model parameters

delta

SVM C = 25, gamma = 0.09, kernel = “poly”, probability = True

DT criterion = ‘entropy’, random_state = 23, max_depth = 1, min_samples_leaf = 1, min_samples_split = 5

RF random_state = 11, n_estimators = 3, criterion = “gini”, max_depth = 2, max_features = “sqrt”, min_samples_leaf = 1, min_samples_split = 5

XGBoost random_state = 10, booster = ‘gbtree’,learning_rate=0.23,colsample_bylevel=0.8,gamma =0,max_depth=3,min_child_weight=3,n_estimators = 3,
objective=‘binary:logistic’,use_label_encoder=False

LR penalty=“l1”, solver=“liblinear”,C = 0.1125,class_weight=“balanced”

post

SVM C = 0.0625, gamma = 0.01, kernel = “linear”, probability = True

DT criterion = ‘entropy’, random_state = 21, max_depth = 6, min_samples_leaf = 2, min_samples_split = 7

RF random_state = 26, n_estimators = 2, criterion = “gini”, max_depth = 2, max_features = “auto”, min_samples_leaf = 1, min_samples_split = 5

XGBoost random_state = 10, booster = ‘gbtree’,learning_rate=0.55,colsample_bytree = 0.1, colsample_bylevel=0.6,gamma =0,max_depth=3,
min_child_weight=3,n_estimators = 5, objective=‘binary:logistic’,use_label_encoder=False

LR penalty=“l1”, solver=“liblinear”,C = 0.3,class_weight=“balanced”,tol=0.0001, multi_class=‘ovr’
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available enhanced CT images before and after neoadjuvant

chemotherapy had to be avai lable, and postoperative

pathological confirmation and accuracy of fol low-up

information had to be completed. In addition, to ensure the

learning effect of machine learning, we conducted data

balancing (PCR: none-PCR = 1:1), as the aforementioned

findings suggested that the probability of pathologic complete

response after neoadjuvant chemotherapy for esophageal cancer is

26% to 49% (5–7). Therefore, the clinical PCR rate also limited the

sample size. This may have resulted in a model that was weak in

generalizability and does not represent the characteristics of all

populations. Second, more medical centers were needed, and it

would be worthwhile to conduct research involving more centers.

Multicenter research may be helpful to improve and externally

verify our machine learning model, increase its ability to assist in

therapy, and increase its ability to contribute to clinical decision-

making and effective prediction.
Frontiers in Oncology 0886
5 Conclusion

We used CT to extract radiomics features to establish a sample

machine learning model for effectively predicting PCR after

neoadjuvant immunochemotherapy. The machine learning model we

established has a good predictive effect and can provide some value for

clinical treatment decision-making. Overall, our machine learning

model based on delta imaging features performed better than the

model based on single time-phase postimmunochemotherapy

imaging features.
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FIGURE 5

The decision curve of the random forest model based on the test group and two extreme curves are drawn. The decision curve depicts the net
benefit of the model within a certain probability threshold (Y-axis). The treat-all curve indicates that the intervention was performed regardless of the
predicted outcome; thus, esophagectomy was avoided in this study. The treat-none curve indicates that no intervention was performed regardless
of the outcome; thus, esophagectomy was performed in this study. The part of the model that is better than the two extreme curves is indicated by
the pink fill. (A) The decision curve for the postgroup. (B) The decision curve for the delta group.
FIGURE 4

The AUC value for the delta group test set.
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