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Editorial on the Research Topic
Editor’s challenge in medical physics and imaging: quantitative
medical imaging

In the realm of modern healthcare, the importance of timely and accurate diagnosis
cannot be overstated. The advent of various diagnostic modalities has revolutionized
patient management, particularly through the use of non-invasive, medical imaging.
While effective for straightforward diagnostic tasks, such as identifying fractures or
lesions, these methods faced also limitations with the increasing complexity of imaging
modalities and the breadth of diagnostic information they provide. The integration of
quantitative parameters has significantly enhanced the precision and reliability of
medical imaging [1]. Quantitative imaging encompasses measurements of size, density,
metabolic and functional parameters, among others, which contribute to more robust
and standardized diagnostic assessments.

With the launch of this Editor’s Challenge in late summer of 2022, we sought to provide
a forum for imaging researchers to present fundamental concepts of quantification within
their chosen imaging modalities. We did encourage explorations of the inherent limitations
of quantification, such as spatial resolution, contrast, sensitivity, and robustness, in both
clinical and research applications. In addition, we sought discussions on strategies to
enhance counting statistics, improve signal-to-noise ratios, and develop methodological
and algorithmic advancements that yield more reliable quantitative data. The topics of
interest included: 1) Fundamentals of quantitative imaging, 2) Algorithmic updates and
corrections for deriving quantitative data, 3) Quantitative capabilities across various
imaging modalities, 4) Emerging trends to advance the limits of quantification, 5)
Utilization of quantitative data in diagnostic and therapeutic contexts, and 6)
Incorporation of validated artificial intelligence into quantitative diagnostics.

As always, when soliciting contributions to special issues in journals, initial interest is
high while actual contributions come in lower quantities (sic). As it was the case with this
challenge. Over the course of 18 months, we received 20 indications of full submissions, of
which 16 panned out. All submissions went to peer-review and ultimately, 10 manuscripts
have been accepted for inclusion in this Research Topic on Quantitative Medical Imaging.
Despite the relatively small number of submissions, it is encouraging to see that the breadth
of the papers did cover the range of topics laid out as part of this initiative, and we like to
thank all authors for their valuable contributions.
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Kumar et al. evaluate the feasibility of using a benchtop X-ray
fluorescence (XRF) imaging system for high-resolution, quantitative
imaging of tumour models. The study employs a 3D breast cancer
model and investigates the use of metallic contrast agents. Results
demonstrate the system’s capability for detailed spatiotemporal
localization of nanoparticles, offering potential for pre-clinical
studies and enhanced understanding of cancer pathophysiology.

Hagberg et al. present a study on the use of iron-filled hydrogel
clusters as phantoms for quantitative susceptibility mapping (QSM)
in MRI. They validate the magnetic properties of these clusters,
demonstrating their suitability as model systems for QSM. The
phantoms mimic tissue properties and provide a reproducible
means for calibrating MRI scanners, potentially improving the
accuracy of susceptibility measurements in clinical settings.

Berg and Börner describe the design and development of a
resolution phantom using Deep X-ray Lithography (DXRL) for
high-resolution MRI and microscopy. Their proposed phantom
features grids with varying spatial periods and orientation to
assess and improve spatial resolution in the micrometer range.
The phantom design aims to enhance quality control and
performance in ultra-high-field MRI scanners, contributing to
advancements in microimaging techniques. Furthermore, such
phantoms might be used also in micro-CT and Optical
Coherence Tomography.

Bibiano et al. introduces a novel model-based fitting approach
for T1 mapping in MRI, eliminating the need for waiting times
between inversion pulses. The method combines inversion-prepared
and unprepared measurements, enabling faster and more accurate
T1 mapping. Validation with phantom and volunteer data
demonstrate that the new approach yields T1 values closely
matching reference methods, making it a promising technique
for efficient and robust tissue characterization in clinical MRI.

Guidi et al. discuss the advancements in MRI-derived
cerebrovascular reactivity (CVR) mapping for assessing vascular
dysfunction in brain diseases. The study advocates for high-
resolution imaging to better characterize microvascular
alterations. By using novel MRI sequences and mild hypercapnic
challenges, they were able to improve the spatial specificity of
hemodynamic and metabolic measurements, providing deeper
insights into neurovascular impairments associated with
conditions, such as hypertension and Alzheimer’s disease.

Moving on to Computed Tomography (CT), Chung et al. review
the principles and clinical applications of CT perfusion (CTP) imaging,
focusing on kinetic modelling and diagnostic interpretation. Their
paper details the technical considerations for accurate quantitative
imaging and discusses the use of CTP in stroke, cancer, and
cardiovascular disease. The authors emphasize future research
directions, including dose reduction strategies and advancements in
CT hardware, to enhance the diagnostic utility of CTP.

Exploring dynamic and parametric imaging in the context of
molecular imaging, Khamwan et al. assess 18F-FDG-PET imaging to
localize seizure onset zones in drug-resistant epilepsy (DRE)
patients. Their findings suggest that parametric approaches may
offer superior sensitivity compared to traditional methods, aiding in
the accurate localization of seizure origins for effective surgical
intervention.

Wanek et al. investigate the distribution of the radiotracer [18F]
THK-5317 in preclinical mouse models with tau pathology. Their

study highlights sex, age, and strain-related differences in
radiotracer uptake across various organs. The authors underscore
the significance of incorporating the 3Rs principles (Replacement,
Reduction, and Refinement) in preclinical imaging, and suggest that
organ-to-blood concentration ratios can serve as effective
quantitative parameters for radiotracer studies.

Staying in the field of PET, but moving from pre-clinical to clinical
studies, Ferrara et al. examine the potential of low-dose (LD) [18F]
FDG-PET/CT imaging protocols in reducing radiation exposure while
maintaining diagnostic image quality. Their research involved
19 healthy controls and seven lung cancer patients, comparing LD
and standard-dose (STD) imaging. Results indicated that mean
standardized uptake values (SUVBW) were similar between LD and
STD conditions, except in the heart. Although LD imaging showed
increased noise, especially in cancer lesions, the study supports the
feasibility of LD-PET/CT for studying multi-organ metabolic patterns
in non-oncological contexts.

A major obstacle to PET-based quantification is involuntary
patient motion. Tumpa et al. explore the application of deep learning
for head motion correction in PET imaging. The proposed neural
network effectively registers image volumes, reducing motion
artifacts and improving quantification accuracy. The study
highlights the potential of deep learning to enhance PET image
quality and facilitate more accurate diagnostic assessments in
clinical practice.

In conclusion, quantitative imaging represents a
transformative advancement in the field of medical diagnostics.
This is attested by the selected manuscripts in response to our
challenge. By providing objective and reproducible measurements,
quantification enhances the accuracy and consistency of diagnostic
interpretations, supporting more informed clinical decision-
making potentially leading to novel biomarkers. As medical
imaging technologies continue to evolve, the integration of
quantitative parameters will further refine diagnostic
capabilities, enabling early detection and precise monitoring of
various diseases. The ongoing research and innovations in this
domain underscore the critical role of quantification in achieving
better patient outcomes and advancing the frontiers of
medical science.
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Deep learning based registration
for head motion correction in
positron emission tomography as
a strategy for improved image
quantification

Tasmia Rahman Tumpa1,2, Jens Gregor2, Shelley N. Acuff1 and
Dustin R. Osborne1*
1Graduate School of Medicine, The University of Tennessee, Knoxville, TN, United States, 2Electrical
Engineering and Computer Science, The University of Tennessee, Knoxville, TN, United States

Objectives: Positron emission tomography (PET) is affected by various kinds of
patient movement during a scan. Frame-by-frame image registration is one of the
most practiced motion correction techniques. In recent years, deep learning has
shown a remarkable ability to quickly and accurately register images once trained.
This paper studies the feasibility of using a deep learning framework to correct 3D
positron emission tomography image volumes for headmotion in routine positron
emission tomography imaging to improve quantification inmotion impacted data.

Materials and Methods: A neural network was trained with 3D positron emission
tomography image volumes in an unsupervised manner to predict transformation
parameters required to perform image registration. A multi-step convolutional
neural network (CNN) was combined with a spatial transform layer. Pairs of target
and source images were used as input to the network. To prepare the training
dataset, a previously published TOF-PEPT algorithm was applied to automatically
detect static frames where the patient remained in a relatively steady position and
transitional frames where they underwent abrupt motion. A single image volume
was reconstructed for each static frame. The image reconstructed from the first
static frame served as the target image with images from subsequent static frames
being used as source images. The trained neural network predicted
transformation parameters that could be used to perform frame-by-frame
image-based motion correction but also enabled raw listmode positron
emission tomography data correction where individual line-of-responses were
repositioned. Line profiles and ROIs were drawn across the reconstructed image
volumes to compare performance and quantitative results between standard
registration tools and the deep learning technique. Corrected volumes were
further compared to motion free images quantitatively using Dice indices.

Results: In total, one hundred 3D positron emission tomography image volumes
were used to train the network. Cross-validation was carried out using a 4:1 ratio
for the training and test data. A conventional algorithm for affine registration from
the Advanced Normalization Tools (ANTs) software package served as a baseline.
To evaluate the correction performance, the mean Dice index and standardized
uptake value (SUV) were used. Application of the algorithm to clinical data showed
good performance with respect to registration accuracy as well as processing
time. The neural network yielded a mean Dice index of ~0.87 which was similar to
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the advanced Normalization Tools algorithm and did so ~3x faster using a multi-
core CPU and ~20x faster with a GPU. Standardized uptake value analysis showed
that quantitative results were 30%–60% higher in the motion-corrected images,
and the neural network performed better than or close to the advanced
Normalization Tools.

Conclusion: The aim of this work was to study the quantitative impact of using a
data-driven deep learning motion correction technique for positron emission
tomography data and assess its performance. The results showed the technique
is capable of producing high quality registrations that compensate for patient
motion that occurs during a scan and improve quantitative accuracy.

KEYWORDS

positron emission tomography (PET), head motion correction, positron emission particle
tracking (PEPT), time-of-flight (TOF), deep learning, image registration, convolutional
neural network, spatial transform layer

1 Introduction

Positron emission tomography (PET) is a non-invasive nuclear
medicine imaging procedure that uses radioactive tracers to visualize
biochemical changes such as metabolism. Quantitative and
qualitative assessment of PET data is affected by various kinds of
patient movement such as respiratory and cardiac motion which are
non-rigid and periodic by nature, head and whole-body motion
which are rigid/affine and irregular by nature, etc. Patient movement
leads to degraded image quality, e.g., in the form of blurring, which
impacts diagnostic image analysis including but not limited to
quantification of standardized uptake values (SUV) and
measurement of lesion intensity, size, and location.

Use of external devices constitutes one of the most widely
practiced approaches for motion correction. However, the use of
such devices is limited by several constraints such as device cost and
setup, necessary training, regular maintenance, and, most
importantly, retroactive data correction. Attention has therefore
shifted toward data-driven motion correction which typically either
performs frame-by-frame image registration [1] or event-based
correction [1–5]. In frame-based image registration, the listmode
data is divided into a sequence of motion-free frames. Images are
reconstructed for each frame of data, aligned with a reference frame,
and then summed together to create the final image volume. In
event-based correction, individual lines of response (LOR) in each
frame are repositioned, thereby allowing a single image to be
reconstructed from all the raw data. In most cases, registration is
carried out by optimizing different similarity criteria in the image
domain, e.g., mutual information [6–8], cross-correlation [6, 7, 9],
the sum of absolute differences [9, 10], or standard deviation of the
ratio of two image volumes [9, 10].

Several traditional methods exist that facilitate image registration
[11–14]. These methods aim to numerically solve the optimization
problem in an iterative manner over pairs of images. The computation
can be very intensive, depending on the complexity of the task. More
recently, deep learning has received significant attention as it allows a
neural network to learn the underlying patterns of the registration task
thereby replacing the costly optimization computation with an
inexpensive forward pass of the trained network.

To date, many different deep learning approaches have been
proposed, e.g., Convolutional Neural Network (CNN) [15–20],

Generative Adversarial Network (GAN) [21–23], and reinforcement
learning [24–26]. The neural network can be trained in a supervised or
unsupervised way. Supervised learning relies on ground truth
transformation parameters [20, 24–28]. In such cases, the network is
either trained with simulated images with known ground truth
information, or the ground truth information is extracted by
applying other methods for the training dataset. In routine clinical
applications, it is very difficult to acquire accurate ground truth
information which makes supervised learning of a neural network a
challenging task. Thus, for medical image applications, unsupervised
and self-supervised learning is desired [29].

In 2015, Jaderberg et al. [30] introduced their Spatial Transform
Network (STN), which allowed unsupervised image registration.
STN consisted of three modules, namely, a neural network, a grid
generator, and a sampler. Firstly, the neural network was used to
learn features from input images and estimate a mapping between
them, the grid generator was then used to compute the sampling grid
based on the derived transformation parameters, and the sampler
finally generated a warped/moved image by carrying out the
sampling operation using interpolation. The loss between the
warped and target image thus could be used to train the neural
network in an end-to-end unsupervised manner. Later, other papers
explored similar approaches with different neural networks, such as
the use of a Fully Convolutional Network (FCN) by Li et al. [19], de
Vos et al. [15] and the use of a U-net-like architecture by
Balakrishnan et al. [17] Research on the application of the deep
learning approach has continued to enhance the registration
performance using a number of different approaches including
but not limited to multi-step recurrent network [31], cascaded
network [16, 32], multi-scale estimation [18, 33, 34],
diffeomorphic registration [35, 36], reducing negative Jacobian
determinant [37], and encouraging invertibility [31, 32].

Most of the above-mentioned papers focused on CT and/or MRI
image registration. Neural network-based PET image registration,
on the other hand, has only been addressed in a limited scope
[38–40]. This paper studies deep learning based motion correction
for PET with the aim of achieving computational efficiency
compared to the conventional iterative approach ensuring the
consistency of performance. The multi-step recurrent network by
Shen et al. [31] formed the basis for the work as it has demonstrated
superior performance, particularly for affine registration. We
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introduced a few modifications as described below. The paper will
mainly focus on rigid head motion correction of brain PET data
using the more general affine model. The following sections provide
a detailed overview of the approach.

2 Materials and methods

2.1 Overview of the image registration
approach

The task of image registration can be considered as warping a
source image Isrc to a target image Itgt defined in the spatial domain
Ω ∈ Rh×w×d. The objective is to find a mapping function
f: Isrc → Itgt. Letting Iwrpd and Φ denote the warped image
and the transformation parameters, respectively, the warping
operation can be expressed as:

Iwrpd � f Isrc,Φ( ) (1)

The neural network parameters θ are then optimized in
a way that minimizes the dissimilarities between the
warped image and fixed images. The network learns by
optimizing the image dissimilarity metric denoted by S as
follows. That is:

θ* � argminθ S Iwrpd, Itgt( ) (2)

Ultimately, the network is trained to predict the transformation
parameters which for a 3D affine registration include transform
matrix A ∈ R3x3 and translation vector t ∈ R3×1.

2.2 Network architecture

We adopted a multi-step recurrent approach that includes a
CNN [31] and a spatial transform layer [30] to train the network
in an unsupervised manner. Pairs of source and target images

were fed as input to the network and the network made
predictions of transformation parameters, which were then
passed along with the source image to the spatial transform
layer. The grid generator of the spatial transform layer created a
sampling grid to warp the moving source image according to the
transformation parameters predicted by the network. The
sampler then performed linear interpolation to sample and
provide the warped image.

With reference to Figure 1, prediction and correction took
place in a recurrent manner by repeatedly feeding the warped
image back to the same CNN as a new source image which was
then registered with the target image. The process is repeated
for k number of steps. For the results reported here, we used
k � 3 and an analysis is presented in Section 3.2 as a support of
this choice. The composition of the parameters obtained at
each step was used as the final transformation parameters.
Letting A1, A2, and A3 denote the affine transform matrices and
t1, t2, and t3 the translation vectors, the final solution can be
expressed as:

A′ � A3A2A1 (3)
t′ � A3A2t1 + A3t2 + t3

Figure 2 shows the CNN architecture, which was inspired by
work by Zhao et al. [32] and consisted of a series of convolutional
and pooling layers. Except for the final layer, the convolution
operations were performed using kernel size 3, stride 1, and a
ReLU [41] activation function. At the final layer, two convolution
operations were performed to predict the transform matrix and
translation vector using kernel size 3 and linear activation functions.
In selected layers after convolution, average pooling with kernel size
2 was performed. Section 3.2 speaks to the choice of the network
architecture.

2.3 Loss functions

Image dissimilarity loss was modeled by the negative normalized
cross-correlation [42] given by:

Limg � −
∑i∈Ω Iiwrpd − Iwrpd( ) Iitgt − Itgt( )��������������������������������∑i∈Ω Iiwrpd − Iwrpd( )2

��������������∑
i∈Ω

Iitgt − Itgt( )2
√√√ (4)

where Iwrpd and Itgt denote the mean of the warped image and the
target image, respectively.

To prevent the transform parameters from overshooting, the
following regularizing loss function was used [1]:

Lreg � A − I| || |2F + t| || |22 (5)
where subscript F denotes the Frobenius norm and I is the identity
matrix.

These loss functions were combined to form a total loss:

Ltotal � λimg Limg + λreg Lreg (6)
where λimg and λreg denote image dissimilarity loss and
regularization weighting factors set to 1 and 0.01, respectively,

FIGURE 1
Multi-step affine registration network: Initially, source and target
images are concatenated and passed as input to a convolutional
neural network. The network predicts transformation parameters that
are passed along with the source images to a spatial transform
layer. The layer generates warped images, which at the next step are
passed as the source images to the same network, and the process
repeats for k number of steps.
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with the values determined empirically. Future work will explore this
aspect in-depth.

2.4 Data preparation and training details

To prepare the dataset, the PET listmode data was sorted into
motion-free static frames using the previously published TOF-PEPT
algorithm [43–46]. An image was reconstructed for each frame using
the OSEM algorithm available on the 64-slice Biograph mCT Flow
PET/CT scanner. We used our institution’s standard clinical
protocol that calls for 3 iterations, 24 subsets and 5 × 5 Gaussian
post-smoothing. The Siemens e7 processing tools (Siemens
Healthineers, Knoxville) were used for all data processing and
reconstruction. The image volume reconstructed from the first
static frame was used as the reference/target image while image
volumes reconstructed from subsequent static frames were used as
source images.

Five patient studies were conducted in compliance with an
Institutional Review Board approved protocol (IRB #3941) using
full 64-bit listmode data acquisition. During a 3-min scan,
patients rested their heads in random positions and
orientations at random time points. Each study thus exhibited
a different range of movements and therefore yielded different
numbers of static frames.

In order to expand the limited amount of data available to
form an adequately large dataset for training the neural network,
image volumes were further synthesized from the five patient
studies. In total, one hundred 3D PET image volumes were
simulated by applying random transformations to the LOR
data. Each transformed raw listmode dataset was then
histogrammed and sent to the reconstruction algorithm as
previously mentioned to create image volumes. To reduce the
computational cost associated with the neural network training,
images were resized from 400 × 400 × 109 to 128 × 128 × 96 by
cropping background with zero-valued voxels and rescaling the
result. Cross-validation was used with a 4:1 ratio for the training
and test data. Training spanned 100 epochs with 20 steps per
epoch and using a batch size of 4. The learning rate was fixed at
1e-4. The network was trained using a computer equipped with a
32-core Intel Xeon E5-2670 CPU and a Tesla V100S GPU.

2.5 Validation and evaluation

Pairs of source and target image volumes were passed to the
trained neural network. The network outputted the transformation
parameters along with a warped image from the spatial transform
layer. An overall motion-corrected image was then produced by
registering the source image from each motion-free static frame for
the whole scan duration and summing them together. Additionally,
the transformation parameters predicted by the trained neural
network were applied to the raw listmode data. The LORs within
each static frame were all aligned to the reference frame using the
predicted transformation parameters. The transformed listmode
data was then histogrammed and reconstructed using the
Siemens e7 processing tools (Siemens Healthineers, Knoxville).

To evaluate the neural network’s image registration capabilities
quantitatively, the Dice index was used to measure the similarity
between warped and target images:

Dice A, B( ) � 2 A ∩ B| |
A| | + B| | (6)

A higher value of the index indicates better performance. The
processing time needed for a trained network to perform the
registration was used to evaluate the computational efficiency.
Lastly, in order to evaluate the motion correction from a clinical
perspective, the standardized uptake value (SUV) was studied. The
conventional iterative registration algorithm (typeofTransform =
“Affine”) from the Advanced Normalization Tools (ANTs) software
package [11] was used as a baseline against which the performance
of the neural network could be compared.

Quantitative analysis of the image data were performed using
comparison of line profiles across the brain from each of the image
volumes created using a commercial analysis software (Inveon Research
Workplace, Siemens Healthineers, Knoxville, TN). Data were loaded
into the software, geometric alignment verified, and linear regions of
interest were drawn across the brain with line profiles plotted along the
direction of the line width. This enabled comparison of SUVs along the
profile but to also gave a measure of signal-to-background variance
across regions of high and minimal uptake across the region. Peak-to-
valley ratios were calculated to provide an estimation of signal-to-noise
ratio to more quantitatively illustrate whether the corrected data
improved upon the uncorrected images.

FIGURE 2
Convolutional neural network: The network consists of a series of convolutional and pooling layers after selected convolution operations. Two
convolution operations are carried out at the final layer to output the transform matrix and the translational parameters.
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3 Results

3.1 Qualitative and quantitative evaluation of
the performance of neural network

Table 1 compares the neural network performance in individual
image registration in terms of mean Dice index and computational
time against the ANTs algorithm for the synthesized dataset. The
neural network performed close to the conventional iterative

algorithm but did so ~3x and ~20x faster, respectively, using the
multi-core CPU and the GPU.

The ability to generate motion-corrected images was also
studied. Figures 3, 4 show motion-free static frames for two
patient studies. The trained network was used to register “Frame
2” and “Frame 3” to reference frame “Frame 1.” The three frames
were then summed to create a motion-corrected image. For
comparison, motion-corrected images were created using the
ANTs algorithm as well. Figures 5, 6 show axial, coronal, and

TABLE 1 Comparison of performance in image registration.

Study Mean dice index Mean computational time (seconds)

ANTs Deep learning ANTs Deep learning

GPU CPU

Cross Validation 1 0.82 0.80 2.49 0.15 0.81

Cross Validation 2 0.85 0.84 1.96 0.16 0.96

Cross Validation 3 0.86 0.86 2.08 0.11 0.93

Cross Validation 4 0.91 0.88 2.61 0.10 0.80

Cross Validation 5 0.82 0.81 4.08 0.11 0.80

Mean 0.85 0.84 2.65 0.13 0.86

FIGURE 3
Patient Study 1: Illustration of the three motion-free static frames where the patient placed their head in three different positions. A slice of the 3D
PET image volume in the axial plane is shown in the figure.

FIGURE 4
Patient Study 2: Illustration of the three motion-free static frames where the patient placed their head in three different positions. A slice of the 3D
PET image volume in the axial plane is shown in the figure.
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FIGURE 5
Qualitative comparison of the neural network performance in motion correction bymeans of frame-by-frame image registration. Rows from top to
bottom show the sum of the three frames without any correction (A, D, G), correction using the deep learning approach (B, E, H), and the ANTs iterative
algorithm (C, F, I), respectively, in the axial, coronal, and sagittal view.

FIGURE 6
Qualitative comparison of the neural network performance in motion correction bymeans of frame-by-frame image registration. Rows from top to
bottom show the sum of the three frames without any correction (A, D, G), correction using the deep learning approach (B, E, H), and the ANTs iterative
algorithm (C, F, I), respectively, in the axial, coronal, and sagittal view.
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sagittal slices of the original uncorrected image and motion-
corrected images using the neural network and ANTs software.
The qualitative improvement in the motion-corrected images is
readily apparent with the neural network and ANTs showing
comparable performance. Table 2 compares the neural network
performance in producing overall motion-corrected image volumes
by means of mean Dice index and computational time. Both
qualitative and quantitative reviews show that the deep learning
and conventional iterative approaches performed similarly;
however, the former provided final results ~20 times faster with
the use of a GPU.

Quantitative assessments showed good SUV agreement across
the methods. As illustrated by Figures 7, 8, the peak-to-valley ratios
of SUVs were 30%–60% higher in themotion-corrected images, with
the neural network performing better or similar to ANTs. Good
peak-to-valley improvement helps confirm that the correction
method is appropriately aligning the data so that regions of
uptake are not motion-blurred into areas of lower uptake.

Lastly, a study was conducted to evaluate the correction of the
original raw listmode data by repositioning the LORs with the
transformation parameters estimated by the trained neural
network. Figure 9 provides a qualitative comparison of the
uncorrected and motion-corrected image volumes reconstructed
from the repositioned listmode data. Motion-corrected image
volume achieved sharper details compared to the uncorrected data.

3.2 Analysis of the choice of network
architecture

The choice of the network and the step size of the multi-step
architecture (defined in Section 2.2) were analyzed by means of two
studies. Figure 10 shows the training loss versus epoch with varying
step sizes: 1, 2, 3, and 4. We observed that the network learned faster
with increasing step size but saturated at step size 4. Thus, a step size
of 3 was chosen for network training.

TABLE 2 Comparison of performance in producing motion corrected images.

Study Mean dice index Mean computational time (seconds)

ANTs Deep learning ANTs Deep learning (GPU)

Cross Validation 1 0.85 0.83 5.74 0.30

Cross Validation 2 0.79 0.82 3.62 0.32

Cross Validation 3 0.93 0.92 3.74 0.22

Cross Validation 4 0.93 0.94 6.62 0.20

Cross Validation 5 0.90 0.91 7.23 0.33

Mean 0.88 0.88 5.39 0.27

FIGURE 7
Patient Study 1: A region in the brain area (left) where a line profile (right) was manually drawn. The peak-to-valley ratio for the motion-corrected
data with the deep learning (DL) approach is shown to be higher than the ANTs method.
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The network performance in image registration was studied by
means of Dice scores for four different architectures: 5 convolution
stages with 32, 64, 128, 256, and 512 features; 5 convolution stages
with 16, 32, 64, 128, and 256 features; 4 convolution stages with 32,
64, 128, and 256 features; and 4 convolution stages with 16, 32, 64,
and 128 features. Figure 11 shows the results. The configuration with
5 convolution stages led to better learning, possibly due to having
deeper layers with more abstraction. The network, on the other
hand, performed better when more features were used.

4 Discussion

This paper focused on studying and presenting the application
of deep learning for data-driven PET motion correction.

The deep learning approach for image registration has
demonstrated promising performance over the years. Here, a
modified version of a multi-step recurrent deep learning
approach was adopted to train a neural network for affine
registration. The network was trained on a synthesized dataset to
predict required transformation parameters in an unsupervised
manner using a spatial transform layer that provided warped
images to supervise the training.

To prepare the training data, multiple motion-free static
frames were identified from the whole scan duration using the
previously published motion detection algorithm TOF-PEPT.
Images reconstructed from these static frames were used as
input to train the network along with a target image
reconstructed from a reference frame. The final goal was to
perform motion correction by means of frame-by-frame
registration with the trained network. The registered image
frames were summed together to create the final motion-
corrected image. To evaluate against a baseline, the frame-by-
frame registration was implemented with the ANTs algorithm as

FIGURE 8
Patient Study 2: A region in the brain area (left) where a line profile (right) was manually drawn. The peak-to-valley ratio for the motion-corrected
data with the deep learning (DL) approach is close to the ANTs method.

FIGURE 9
Qualitative comparison of the neural network performance in
motion correction by remapping raw listmode data. Rows from top
to bottom show the sum of the three frames without any
correction (A,C,E) and correction using the deep learning
approach (B,D,F), respectively, in the axial, coronal, and sagittal
view.
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well. Mean Dice indices and manually drawn line profiles across
brain regions were used to compare the motion-corrected images
from the two methodologies against the uncorrected data. With
respect to the iterative algorithm, the neural network yielded
comparable and reliable performance both from qualitative and
quantitative perspectives with significant improvements in speed.

The neural network performed ~3x faster when using a multi-core
CPU and ~20x faster with a GPU.

Additionally, the correction of the raw listmode data itself was
studied by repositioning the LORs within each static frame
according to the transformation parameter predictions by the
neural network. A final motion-corrected image volume was

FIGURE 10
The plot of training loss versus epoch demonstrates the neural network performance with changing step sizes from 1 to 4. The network learned
faster with increasing step size but saturated at step size 4 for the dataset used.

FIGURE 11
The comparison of the neural network performance for four different network architectures by means of Dice score. Network 1: 5 levels of
convolution with 32, 64, 128, 256, and 512 features; Network 2: 5 levels of convolution with 16, 32, 64, 128, and 256 features; Network 3: 4 levels of
convolution with 32, 64, 128, and 256 features; and Network 4: 4 levels of convolution with 16, 32, 64, and 128 features. The network performed better
with 5 levels of convolution, and a higher number of features.
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created by sending the remapped listmode data to the image
reconstruction tools. With this approach, a reasonable correction
could be achieved as presented in this paper. Further improvement
in mapping from the image domain to actual scanner geometry and
more precise transformation prediction will make it possible to
produce more clinically suitable motion-corrected data.

Our group works heavily with radiation oncology supporting
various advanced therapy workflows using PET/CT, where
multimodal registration can certainly result in mismatches [47].
Although this work focused on our single modality head registration
results that typically might only need rigid models, the full intent was to
have a generalizable process that can support multimodal PET/CT
registration. Ireland, et. Al. presented a study that specifically focused on
multimodal head and neck registration showing improvements when
using a non-rigid model [48]. Since geometric mismatches between the
modalities can occur due to voxel variations, etc. We decided to test the
robustness of the deep learning technique using an affine model. This
also enabled some level of testing for this specific set of cases as we
expectedmostly rigid transformation within the samemodality and our
registration scaling factors were in fact unity indicating confirmation of
a rigid transformation.

Lastly, the paper presented two studies that supported and
evaluated the choice of network architecture. The first study
analyzed the choice of step size, whereas the second study was
evaluated four different network architectures with respect to their
performance in image registration. The network choice with deeper
layers and a higher number of features was found to perform better.

This work aimed to study the feasibility of applying deep learning to
correction of affine/rigid motion during routine clinical brain PET
imaging. Notwithstanding using a limited amount of real data
augmented by synthesized data, results showed promising
performance with a reduced computational cost once the neural
network has been trained. Limitations of neural network methods
such as the one studied here include the general need for large
amounts of data and computational resources for training. Future
work will aim to further enhance the network performance, study
use of a larger amount of real data, and extend application to non-rigid
cases, such as respiratory motion correction.

5 Conclusion

This paper explored an unsupervised deep learning approach for
PET motion correction by means of 3D image registration. The
feasibility of the proposed deep learning approach in the application
of motion correction was studied by means of both frame-by-frame
image registration and remapping of raw listmode data. Both
approaches yielded reasonable corrections. The network
performance was compared both qualitatively and quantitatively
against a conventional iterative algorithm from the Advanced
Normalization Tools (ANTs) software package. The deep

learning approach performed on par with the iterative approach,
but ~3x faster when using a multi-core CPU and ~20x with a GPU.
This work is expected to aid to address the application of a deep
learning approach for routine PET motion correction.
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Introduction: Accurate diagnosis and personalized treatments involving site-
targeted cancer localization, drug delivery, therapeutic strategy, and disease
pathways identification, rely on a precise understanding of biomarker kinetics,
drug pharmacokinetics, and mechanistic behaviour of functionalized tracers
through in vitro and in vivo studies. X-ray fluorescence (XRF) computed
tomography (XFCT) offers a potential alternative to current 3D imaging
techniques for spatiotemporal localization of nanoparticle-tracers with high
spatial resolution and sensitivity. In this work, the applicability of a benchtop
cone-beam system with a polychromatic X-ray source was examined with regard
to physical constraints of engineered tissue models.

Methods: A tissue engineering approach based on a decellularized scaffold was
used to establish a 3D breast cancer model with MDA-MB-231 cells in co-culture
with primary human fibroblasts. The 3D breast cancer system, in combination with
small-animal-sized phantoms, was used to demonstrate the novel integrated pre-
clinical imaging approach to perform in vitro surrogate investigations and non-
destructive analysis on biophantoms. These models are adopted to evaluate the
functionality and optimize the setup for high-spatial-resolution, fast, and fully-3D
quantitative imaging. Polychromatic X-rays from amicrofocus source are used for
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XRF stimulation from conventional Gadolinium (Gd) and nanoparticle-based
Molybdenum (MoNPs) contrast agents.

Results and Discussion: The intestinal scaffold allowed the invasion of the breast
cancer cells over this barrier and therefore provides a valuable tool to study
metastasis formation of tumor cells from epithelial origin. The breast cancer
model was well suited for the development and validation of the proposed XRF
imaging, with spatial resolution under <2 mm and contrast dose in the order of a
few 100 μg/mL (~0.3 mg/mL for Gd and ~0.5 mg/mL for MoNPs), radiation dose in
the order of a few 100 cGy (280 cGy for Gd and 94 cGy for MoNPs, with a possible
reduction of an order ofmagnitude for Gd and 67% forMoNPs), and imaging time in
the order of 10 min for Gd (33 min total) and 100 min (2.8 h total) for MoNPs,
approaching in vivo conform conditions for pre-clinical studies. High-resolution
XFCT for tissue-engineered cancer models would be of significant interest in
biomedical research and diagnostic imaging, e.g., for an increased mechanistic
understanding of molecular processes in tumor formation or early cancer
detection.

KEYWORDS

tissue engineering, X-ray fluorescence computed tomography, in vivo pharmacokinetics,
in vitro cancer models, nanoparticle contrast agents, molecular imaging

1 Introduction

Engineered tissue models are valuable test systems to study cell
homeostasis as well as the development and progression of diseases.
The development of microphysiological tissue models opens new
possibilities for testing and development of diagnostic and
therapeutic approaches at a pre-clinical or translational stage [1].
Composed of various cell types with different tissue origins, three-
dimensional (3D) models closely recapitulate tissue architecture and
are able to unravel mechanistic insights into tumor formation and
metastasis [2]. In the field of cancer research, especially for drug
efficacy screening and toxicity testing, many experiments are still
performed in traditional two-dimensional (2D) cell cultures,
xenografts or small animal models [3]. Although 2D models have
the advantage of simple handling, they are unable to mimic the
complexity of cell-cell or cell-matrix interactions and this can result
in loss of crucial cellular signaling pathways and changes in cell
responses to stimuli [4]. Moreover, 2D cultures do not provide
satisfactory conservation of cellular properties such as cellular shape,
polarization and heterogeneity [5]. In contrast, the collection of pre-
clinical data from animal models is usually expensive, time
consuming and associated with high regulatory hurdles impairing
the fast translation of innovative treatments from bench to bedside
[6]. Here, a critical impetus to meaningful pre-clinical theranostic
(therapeutic and diagnostic) investigations is the validity of small-
animal models to simulate human physiological behaviour, which
otherwise manifests significant physiological and metabolic
differences. Particularly, in cancer diseases, dissimilarities in
animal-human tumor vascularization and drug pharmacology
may undermine such investigations [7]. Tissue-engineered 3D
models can overcome these limitations and bridge the gap
between human relevance, reproducibility and physiological
relevance [8]. Similar to in vivo conditions, tissue models can
reproduce mechanical and biochemical properties that are crucial
for cancer development and progression, such as morphology,
cellular migration, tissue stiffness and integration of multiple cell

types simultaneously [9]. While current standardized approaches in
personalized cancer therapy allow cancer classification and
prognosis prediction via human-relevant pharmacokinetic and
pharmacodynamic models, they rely on data from large cohort
studies with low specificity on comorbidities [7, 10]. Herein,
prediction of individual response is difficult as the data
requirement is large and generalized rather than targeted while
ignoring individual comorbidities. Therefore, surrogate
investigations on replicable patient-derived organoids or tissue
cultures may allow systematic evaluations with reproducible
results. Recent results indicate a close relationship between the
response of 3D in vitro cancer models and the patient response
to therapy [2]. As such, in vitro human-based cell models have the
potential to predict patient response to therapy, thereby a valuable
tool to study personalised drug response [11]. Moreover, with the
development of functional in vitro models, complex cell systems
such as bioartificial organs with vascular structures and in vivo-like
organ functionality can be constructed for such investigations.

While non-invasive bio-imaging modalities using near-infrared
(NIR) optical photons, like optical fluorescence imaging with, e.g.,
quantum dots (QDs) and conjugated NP-fluorophores, have been
successful in non-ionizing molecular imaging with high
spatiotemporal resolution in the sub-millimeter/sub-second
(μm-mm/ms-hr) range, they are limited to only superficial
depths, therefore, limiting imaging of deep organs and complex
bioartificial systems [12, 13]. While in photoacoustic and ultrasound
imaging, the spatial resolution is depth dependent due to frequency-
dependent acoustic attenuation and decreases significantly at deeper
penetration depths, the mechanical coupling of ultrasound receivers
in the case of engineered tissue systems and bioreactor systems may
be challenging [14–16]. Alternatively, as a non-invasive (neglecting
ionizing radiation damage) technique, X-ray fluorescence computed
tomography (XFCT) can allow molecular imaging and quantitative
analysis of 3D elemental composition inside deep samples and
organs. XFCT combines principles of absorption-based CT
imaging with emission tomography in the form of X-ray
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fluorescence (XRF) detection from elements within the sample [17].
XRF emissions from high atomic number target elements,
i.e., contrast agents posed as markers, are typically instigated by
the excitation of inner shell electrons from monochromatic X-rays,
such as in X-ray fluorescence imaging (XFI) with polarised
synchrotron-based sources [18–22]. The resulting XRF photons
along with scattered photons are detected and analyzed in order
to spectrally identify, spatially localize, and quantify the elemental
composition with respect to their photon energies. Owing to the
spectroscopic nature of XFCT, the computed tomography extension
of XFI, has unique capabilities compared to attenuation or contrast-
based imaging modalities (e.g., X-ray CT and its variants), such as
inherent specificity due to the characteristic element-specific energy
lines of XRF photons, leading to high detection sensitivity of very
small marker concentrations [23–26]. Besides, the spatial resolution
offered by XFI is adjoining that of morphological imaging modalities
(CT, MRI, etc.) and substantially higher than that of present
functional imaging modalities like PET and SPECT [18, 19, 21].

With the XFCT technique, besides 3D elemental mass
localization inside imaging objects, X-ray attenuation maps can
also be simultaneously obtained within the same imaging
setup. As characteristic XRF photons stimulated from atoms have
much higher energies and a higher penetration depth than visible
light photons, XRF imaging has fundamentally distinct advantages
of high sensitivity in deeper tissues or organs [27]. Here, the XRF
penetrability depends on the atomic number (symbol Z) of the target
element, with higher Z (or high-Z) leading to higher energy with a
squared proportionality on Z [28] and, therefore, a greater
transmission probability through large objects from energetic
K-shell/L-shell photons [17].

In XFI and pencil beam XFCT, the spatial resolution is primarily
determined by the pencil beam diameter, specifically for XFI in the
axial and transverse directions, and majorly by the focal depth-
dependent detection solid angle in the longitudinal direction [19, 20,
26]. However, in cone-beam XFCT, a full-body fast scanning is
possible, allowing full-3D reconstruction of tracer distribution while
preserving dynamic tracking, i.e., a higher full-body scanning
temporal resolution is offered at the cost of high spatial
resolution as delivered by XFI or pencil beam XFCT. The spatial
resolution of cone-beam XFCT is primarily limited by scattering
noise and instrumentation challenges. Specifically, loss of spatial
resolution may occur from the optical components or collimation
optics due to geometrical unsharpness in pinhole/parallel-hole
collimators from the detection solid angle, septal penetration in
the collimator, and collimator scattering. With the use of pixelated
hybrid photon counting detectors (HPCD), these losses can also be
attributed to correlation effects such as the charge-sharing effect,
intrinsic detector scattering, sensor-intrinsic fluorescence, and
fluorescence escape. In contrast, PET imaging, which is
considered the gold standard for molecular assessment of tissues
in cancer clinics, is constrained by fundamental spatial resolution
limits arising from positron range and photon non-collinearity.
From either imaging technique, a perpetual tradeoff between the
scannable field-of-view (FOV) and achievable spatial resolution
exists. Moreover, present 3D techniques in PET and SPECT still
suffer from inevitable tradeoffs between managing cell viability and
feasibility of longitudinal scanning (i.e., repeated imageability over
multiple time-points allowing progression studies). This is due to the

intrinsic half-life of radionuclides and radioactivity accumulation,
specifically for slow biological processes, where the radiation dose is
also delivered when imaging is not being performed [19].
Furthermore, it is challenging to confine the radiation dose of
the radiotracer to specific target locations in PET and SPECT, as
the radiotracer can spread to different regions of the target tissue and
organs. In contrast, this is avoided in XFCT due to no intrinsic loss
of XRF signals through the use of externally controlled excitations
and known scanning regions [19]. These advantages render XFCT a
highly promising candidate for a future modality in clinical
molecular imaging of high-Z probes such as metallic
nanoparticles (NPs) with active or passive tumor targeting [25, 29].

Paralleling synchrotron-based approaches, in benchtop XFCT
settings, state-of-the-art lies in spectrally-matched quasi
monoenergetic focused pencil-beam (Montel-type X-ray focusing
mirror) excitation from liquid metal x-ray tubes that offer high flux,
narrowband excitation, and high spatial resolution, but are limited
to low atomic number nanoparticles [25, 26]. The high brilliance of,
e.g., Indium-based liquid metal source requires NP tracers with
K-edges close to the Indium K-alpha emission line at 24–24.2 keV,
leaving only a small range of excitable elements with sufficiently high
atomic numbers to allow NPmultiplexing and minimize losses from
XRF signal absorption [18, 25, 26]. Though, as shown in previous
studies, the spatial resolution in cone-beam XFCT is currently
limited to the millimeter range (> 2 mm), higher spatial
resolution is achievable through sensitivity enhancement, e.g.,
from multi-pinhole collimators [23, 24, 27, 30]. However, the
design of multi-pinhole collimators entails additional
instrumentation challenges. An alternative approach that could
yield higher spatial resolution may be a sequential imaging
approach, i.e., initial scans with cone-beam XFCT for sparsely
localizing XRF signal sources acquired at low radiation doses,
followed by high spatial resolution scans using a focused
monochromatized beam, e.g., with X-ray focusing mirrors [25,
26]. Here, we chose to demonstrate the feasibility of XRF
imaging with a microfocus X-ray source as, in principle, the
achievable spatial resolution limit and increase in the flux
intensity at the object focus, when coupled with
monochromatizing beam-focussing optics, will be influenced by
the x-ray focal spot sizes [31, 32].

Considering in vivo constraints for pre-clinical
investigations, achieving high spatial resolution with currently
available benchtop x-ray technology poses a challenging task.
The in vivo constraints, e.g., for cell tracking and drug delivery
studies in live animals (e.g., mice) are expected to have total NP
mass in the order of micrograms and sub-millimeter spatial
resolution, imaging scan-times within the effective
anaesthetized periods, i.e., typically under 60 min, and
radiation dose under 30 cGy (lethal dose LD50/30 in the range
500–760cGy) corresponding to that of micro-CT imaging [18, 19,
33–35]. In dose-enhanced radiation therapy, the NP contrast
doses in the mg/g levels, e.g., with gold nanoparticles (AuNPs),
have been found to have a year of survival in mice [25, 36]. For
conventional Gadolinium (brand name Dotarem, Gd-DOTA)
contrast agents, the intravenous lethal dose for 50% (i.v.-LD50)
of mice is typically seen to be 10–15 mmol/kg, while the clinically
recommended dose is 0.1 mmol/kg [37, 38]. With MoNPs, dose
limits of up to 21 mmol/kg/day for 14 days have been considered
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in certain studies, concluding LD50 ≥ 83.4 mmol/kg with no sign
of toxicity or mortality [39, 40]. In our study, for imaging the
breast cancer models using XFCT, these values are taken as the
upper and lower-bound reference values, and the feasibility of
high-spatial-resolution imaging is examined.

The recent advances and unique properties of NPs have resulted
in a rapid increase in their applications in biomedical and
pharmaceutical applications [39]. In XFCT imaging NPs serve as
functional or molecular contrast agents, which can be combined
with functionalizations for targeted drug delivery and therapy.
Compared to conventional contrast agents, NPs offer several
advantages such as loadability, tunability and multifunctionality
in different medical imaging modalities [41]. A systemic
administration of NPs via intravenous injection and the
subsequent drug delivery to the site of action is achieved through
passive and active targeting [42]. In passive drug targeting strategies,
the pathophysiological vascular permeability of tumor blood vessels
and the enhanced retention in tumor tissue was successfully
exploited for NP delivery, while active targeting uses conjugated
ligands on the NP surface to improve the drug selectivity for tumor
cell-specific biomarkers or receptors [25].

Here, we present a novel integrated pre-clinical approach to
perform in vitro surrogate investigations and non-destructive
analysis on bio fabrications, like engineered 3D tissues, for
interventional cancer radiology, assisted through in situ, easily
accessible benchtop XFCT imaging. In the current work, a tissue-
engineered 3D microphysiological breast cancer model is examined
in the context of feasibility evaluation and development of a
quantitative 3D cone-beam XFCT setup. Compared to
conventional 2D cell cultures, the proposed microphysiological
cancer model overcomes the lack of histological complexity and
functionality to reflect the complex biological behavior in a more
accurate way. The quantitative tomographic XRF imaging of NPs in
the microphysiological breast cancer model is demonstrated with
spatial resolution at scan-times, contrast dose, and radiation dose
approaching conform conditions for in vivo and in vitro
experiments. The method is performed via passive targeting with
metallic contrast agents, namely, a conventional Gd-containing (Z =
64) solution based on Gadoteric acid and MoNPs (Z = 42).

2 Material and methods

2.1 Cell culture

The static 3D tissue culture was performed according to
established and standardized protocols on the Small intestine
submucosa + mucosa (SISmuc) scaffold derived from a porcine
jejunum [43, 44]. The SISmuc scaffold was fixed in a cell crown
between two supporting rings. Subsequently, 1 · 105 MDA-MB-
231 cells and 7.5 · 104 primary fibroblast cells were seeded on the
luminal side of the scaffold. The cell crowns were placed in 12-well
plates and covered with approx. 2.5 mL cell culture medium
containing 10% FCS (RPMI-1640 for MDA-MB-231 cells and
DMEM for primary fibroblasts). The cells were maintained in 5%
CO2 under high humidity at 37 °C and a medium exchange was
performed every 2–3 days. After 14 days of culture, the monolayer
tissue was assembled to a multilayer structure with the following

order: Fibroblast layer, MDA-MB-231 layer followed by a layer of
SISmuc scaffold without cells.

Afterwards, the multilayer breast cancer model was treated with
Gd-containing contrast agent (Gadoteric acid, brand name
Dotarem®, 0.5 mmol/mL) and MoNPs. MoNPs with a particle
size less than 100 nm (measured by TEM) and 99.8% purity
(trace metal analysis) were purchased from Sigma-Aldrich (St.
Louis, United States) in the form of black powder and suspended
in deionized distilled water to prepare the required concentrations.

2.2 Immunohistochemistry staining

Scaffolds were fixed in embedding medium Tissue-Tek and
stored at −80°C. Prior to staining, the multilayer tissue was cut in
cross-sections of 10μm thickness using a microtome (CM3050 S,
Leica Microsystems). Immunohistochemistry staining was
performed with primary antibodies against Ki67 (Rabbit, 1015,
Merck Millipore), Vimentin (Rabbit, EPR3776, Merck Millipore)
and Pro-Collagen (Mouse, 3468667, Merck Millipore) with a 2-step
HRP polymer detection system (Super Vision 2 HRP Polymer-Kit,
DCS Innovative Diagnostik-Systeme, Germany). The primary
antibodies for Ki67 and Vimentin were diluted 1:100 and for
Pro-Collagen 1:1000 in 0.5%BSA in PBS and incubated at room
temperature for 1 h. Nuclei were counterstained by Haematoxylin.
Images were acquired using a digital microscope (Evos XL Core,
Thermo Fisher Scientific).

2.3 Analysis of cell vitality by
Ki67 immunohistochemistry staining

Immunohistochemistry stainings for Ki67 were performed as
described above. Three images per sample with a magnification
of ×10 were counted for the ratio of Ki67-positive signal (brown
color) compared to a Haematoxylin-positive signal (blue color)
within the respective tissue layers: I) primary fibroblast layer and
II) MDA-MB-231 breast cancer cell layer.

2.4 Cone-beam computed tomography

Three-dimensional linear attenuation maps were obtained using
the transmission cone-beam CT (CBCT) technique to account for
and correct internal attenuation of incident excitation photons and
emitted XRF photons within the sample. Figures 3A,B shows the
benchtop XFCT imaging system with the incorporated CBCT
arrangement. A series of 6 flat panel array X-ray detectors
(RadEye TM1, Teledyne Rad-Icon Imaging), each featuring a fully
integrated CMOS silicon photodiode array with a scintillator having
24.6 mm × 49.2 mm active area, 48 μm pixel size, and 512 × 1024
matrix, were butted together to integrate a large-area detection into
the XFCT setup. A tungsten-target microfocus X-ray tube (Oxford
Nova 600) with 90 kV nominal tube voltage, 2.0 mA maximum
beam current, 80 W nominal radiographic anode input power,
254 μm Beryllium window (Be, Z = 4), and 14–20 μm diameter
focal spot size (at maximum voltage and minimum power) was used
as an excitation source for both the CBCT and XFCT imaging
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modes. The micro-sized focal spots are critical for spatial resolution
enhancement and radiation flux concentration, e.g., via coupling
with X-ray poly-capillary optics or Bragg-reflection-based bent
focusing crystals [31, 32]. Bragg-reflection-based bent mosaic
crystals, offering better reflection efficiencies, form a crucial
aspect of our future work for focusing and monochromatizing. In
the present investigation, we implemented a multi-leaf collimator
system on the microfocus x-ray tube to generate cone-beam X-rays
without supplementary focusing optics. The custom-made multi-
leaf lead (Pb, Z = 82) beam collimation system was mounted and
aligned at the tube exit window to allow excitation-beam shaping
and minimize inherent leakage radiation. The X-ray tube with the
collimation system was mounted on a high-accuracy multi-axis
robot arm (KR 60 HA, KUKA) to allow positioning and
alignment under different imaging modes. For the tomographic
scanning geometry, a rotation stage (URS50CPP, Newport™) was
mounted on a vertical-axis alignment (M-443, Newport™)
platform, needed for the axial positioning within the cone-beam
profile and rotational sampling (X-ray projections) of the tissue
model phantoms and small-animal-sized calibration phantoms.

Scan parameters for the Gd imaging configuration were set to
90 kV peak tube voltage, operated at 0.9 mA tube current with
0.3 mm Copper (Cu, Z = 29) filtration, with 40.5 cm source-to-
isocenter and 55.7 cm source-to-detector distance, allowing a full-
field scan. A total of 30 projections were acquired at 12° angular
sampling interval and approx. 6 s exposure time per projection.

For MoNP contrast agents, the image acquisition parameters
were set to 45 kV peak tube voltage, operated at 1.8 mA tube current
with 6 mm Aluminium (Al, Z = 13) filtration, with 16.8 cm source-
to-isocenter and 31.5 cm source-to-detector distance. The set tube
voltage was higher than the XFCT configuration to allow better
contrast in transmission images and lower the overall CBCT scan-
time. Here, a total of 60 projections (6° interval) were acquired at
approx. 10 s exposure time per projection.

2.5 Cone-beam X-ray fluorescence
computed tomography

The XFCT imaging geometry consisted of a cone-beam
sampling scheme using the same mechanical stage/platform
arrangement for tomography with the collimated microfocus
X-ray tube, as mentioned in Section 2.4. For XRF detection,
energy-resolving X-ray detectors were used for discriminating
primary XRF/scattered counts in the XRF signal bins from
accompanying secondary (Rayleigh and Compton) events in the
neighboring bins since there exists a proportionality between the
absorbed energy in the sensor and electron-hole pairs produced
upon intrinsic interactions within the atoms of the semiconductor
material leading to differentiability between detected signals
depending on the sensor energy resolution. In the current XFCT
setup, Timepix3 HPCD (55 μm × 55 μm pixels size, ~14 mm ×
14 mm active detection area, 1 mm CdTe sensor thickness,
~4–6 keV FWHM energy resolution around Gd XRF energies,
Minipix TPX3, Advacam) was irradiated behind circular aperture
single-pinhole arrangements. The XRF detector was operated in
various modes: Time-of-Arrival (ToA) and Time-over-Threshold
(ToT) continuous pixel-event readout mode, giving photon

interaction position (pixel coordinates), arrival time, and
deposited energy.

For Gd contrast agents, the pinhole collimator was made out of
Lead (Pb), having an opening diameter of 0.4 ± 0.05 mm and a
thickness of 1.5 ± 0.05 mm. The X-ray tube was operated under the
same excitation-beam settings as in CBCT, i.e., at 90 kV tube voltage,
0.9 mA beam current, and 0.3 mm Cu filtering. However, to allow
full-field scanning in geometrically/mechanically constrained large
CT detector arrangement in the setup, the source-to-isocenter
distances were set differently, i.e., for 30 mm internal region-of-
interest (ROI) FOV and 20 mm longitudinal FOV, 14 cm source-to-
isocenter, 5.5 cm isocenter-to-pinhole, and 1.5 cm pinhole-to-
detector distance was used. To minimize the object and
geometry-dependent elastic and Compton scattered background,
and to improve the signal-to-background ratio, the geometry of the
fluorescence detectors and acquisition/post-processing parameters
were optimized. Specifically, detector angle optimization for total-
scatter minimization (primarily Compton-scattered photons) was
carried out for the chosen polychromatic excitation-beam properties
(see Figure 1) using Monte Carlo (MC) simulations on the
GEANT4 toolkit, and task-specific optimal bin widths were
determined under Poisson point process assumptions for sum
spectrum binning of the X-ray projection data [21, 45, 46]. The
detector was positioned at 42 ± 3° polar angle with respect to the
primary photon ray (central projection axis in the imaging mid-
plane) in order to minimize the background interference in signal
bins. A compressed sensing-based sparse-view image acquisition

FIGURE 1
A comparison between the experimental and simulated sum-
spectra of the excitation beam for the Gd case (with 90 kV tube
voltage, 0.9 mA tube current, 0.3 mm copper filter) is shown here. The
experimental measurements (blue) were taken using the
Timepix3 detector, and simulations (red) were performed using MC
(Geant4) particle transport with the Timepix3 sensor charge-transport
and digitization model of the read-out electronics. The simulated
incident sum-spectrum is obtained at the entrance surface of the
detector (black) through surface flux scoring of the incident gamma
tracks. Both the measured and simulated spectra are scaled by
radiometric correction factors, as neither a physical measurement of
direct high-flux is possible by Timepix3 detectors, nor a simulation of a
large number of particles with Geant4 is computationally tractable.
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strategy was adopted to minimize radiation dose with 10 angular
projections (in 360° scan) at an exposure time of 150 s per
projection [47].

For MoNP imaging, the pinhole collimator consisted of an
opening diameter of 0.4 ± 0.03 mm in 1.2 ± 0.05 mm thick Iron
(Fe, Z = 26). Here, Fe was chosen in order to minimize
interference from Pb L-shell XRF on the lower end of the Mo
K-shell XRF bins. The X-ray tube was operated at 30 kV to
minimize intrinsic CdTe XRF interference in Mo K-Shell XRF
bins, with 2 mA beam current and 6 mm Al filtration. An
approximately 30 mm internal ROI-FOV was realized with
9 cm source-to-isocenter, 4.5 cm isocenter-to-pinhole, and
1 cm pinhole-to-detector distance. For the chosen beam
properties (see Figure 2), the detector was positioned at an
optimum polar angle of 114 ± 3°. A total of 30 angular
projections (in 360° scan) were obtained at an exposure time
of 300 s per projection.

2.6 XFCT calibration phantoms and
simulated in vivo phantoms

Calibration standards in varying concentrations with Gd, based
on Gadoteric acid (C16H25GdN4O8), and MoNPs were used as
contrast agents on a custom-made water-equivalent phantom for
system characterization andmulti-layer in vitro 3D tissue models for
simulated in vivo investigations.

For XFCT calibration experiments, approx. 0.75 mL volume of
0–3.1 mg/mL Gd dilutions (see Figure 3C) made from 0.5 mmol/mL
(~78.5 mg/mL) stock solution were filled in polypropylene
microcentrifuge tubes (1.5 mL maximum volume, 10 mm
diameter, 9° taper angle) and embedded in water-filled 50 mm
maximal diameter, ~ 60 mm high hexagonal borosilicate glass
containers behaving as small animal surrogates (see Figure 3C,
right). Calibration experiments with MoNPs involved approx.
1.8 mL volume of 0–10 mg/mL MoNP dilutions (see Figure 3D)
filled in cryogenic vials (2 mL maximum volume, 12.5 mm

diameter) embedded in water-filled phantoms (see Figure 3D,
right). The assembled samples of the multilayer breast cancer
model (as described in Section 2.1) were each immersed in
approx. 12 mL cell culture medium held inside separate
borosilicate containers (see Figure 3E) after treatment with 0.16,
0.78, 1.57, and 3.15 mg/mL Gd and 0.01, 0.05, 0.1, and 0.2 mg/mL
MoNP. Blank cell crown phantoms (see Figure 3F) were used for
task-based optimization of the XFCT system [48].

2.7 XFCT data processing

The ToA and ToT event-information from XFCT projections
were used to carry out energy calibration and event clustering (Pixet
Pro, Advacam) to reconstruct events degraded by the charge-sharing
effect, intrinsic CdTe XRF, and intrinsic Compton scattered events.
Contrary to the detection based on large-area single-pixel or multi-
pixel detectors, individual small pixels (55 μm) of the
Timepix3 sensor led to insufficient detected counts for the in
vivo scan-time and dose constraints. Therefore, single-pixel
spectra were binned together to form sum spectra, and a spatial-
filtering-based optimization problem (similar to [21, 49]) was
modelled and solved for cone-beam polychromatic X-rays to
obtain the subset of pixels that maximizes the signal-to-
background ratio (limit set at SNR > 3.29) in each projection
(Figure 4 shows the typical XRF spectrum in each projection and
the corresponding optimization). The pixels that contribute most to
the background counts were eliminated through an iterative process
followed by XRF signal maximization until the stopping condition
(in percentage of remaining pixels) is reached. The minimum
percentage of pixels that can be removed was determined based
on the FOV, i.e., 30 mm internal ROI-FOV and 20 mm longitudinal
FOV, which is approximately 20% (projected area) of the total
detector area. Therefore, assuming a maximum removability of 80%,
this limit was set at 4% of the total detector area. Better choices can
be made for the lower limit of removable pixel percentage, e.g., based
on an expected signal area proportional to target ROI or target organ
projection onto the collimated detector. Here, this is defined
empirically to avoid divergence of the SNR due to low statistics
from a small number of remaining pixels, which may increase the
chances of false detection (a non-physical presence of XRF signal
[49]). Better estimates can be obtained on a task-specific basis, e.g.,
for a specific target region of interest with given NP dose and
radiation dose limits, through MC simulation studies with structural
data of tissue models.

Through the iterative process, signal and background batch fittings
were performed for a large number of pixels. The signal region was
defined as bins with K-shell XRF energies, i.e., at 42–43 keV and
17–17.5 keV peaks for Gd and MoNPs, respectively, with a spread
of 3σdet, (here, σdet is the sigma or the width parameter of the Gaussian
fit function representing the detector energy resolution post charge-
sharing reconstruction; σGddet ≈ 3 keV, σMo

det ≈ 2 keV). The background
regionwas defined as ± 3σdet around the XRF peaks. For theGd contrast
agent, a Gaussian function with 3rd order polynomial for signal fitting
and 3rd order polynomial for background fitting is utilized. Lower-order
polynomials were chosen for Gd to optimize the computation time and
were found sufficiently appropriate due to the low energy resolution of
the detector. For MoNPs, 6th order polynomials were used with an

FIGURE 2
Excitation beam sum-spectra in the MoNP case (with 30 kV tube
voltage, 2 mA tube current, 6 mm aluminium filter) from experimental
measurements using Timepix3 detector (blue), detector simulations
(red), and the simulated incident sum-spectrum (black).
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extended background region up to maximum excitation energy
(30 keV) to make the fitting process robust towards low-count
statistics. The XRF counts in individual remaining pixels were
obtained by solving a non-negative least-squares (NNLS) problem
with L1 regularization based on their contribution to the net
extracted XRF counts.

It is important to note that while the spatial filtering technique
delivers a solution to the intrinsic background problem in XFI for
large-sized (human-sized) objects by exploiting the spatial
anisotropy of single Compton scattering, its applicability to
small-animal cases is less warranted [21, 49]. Primarily because,
with narrowband and high excitation energies in XFI, which lie far
away (taking into account the reduction of fluorescence cross-
section) from the XRF signal energy range, the intrinsic
background problem becomes quasi-background-free. In this
case, the background noise from Compton scattering is less
pronounced, as there are not enough multiple energetic
scatterings in the small-animal-sized geometry to lose sufficient
energy and reach the XRF energy bins. For medium-Z (medium
atomic number) contrast agents with adequately high excitation
energy and narrow energy bandwidth, the signal backgroundmay, at
most, consist of higher Compton orders, which leads to a nearly
isotropic background spatial distribution. Therefore, spatial noise
filtering is unsuitable if higher-order Compton scattering is likely, or
if the signal region is already quasi-background-free. Optimization,
in this case, may even deteriorate the signal sensitivity. However, this
can be exploited in our case, as the excitation energies are close
enough to the XRF signal region (see Figures 1, 2), and first-order

Compton still poses an anisotropic distribution on the detector
surface.

In Figures 5A, B, the spatial distribution of total Compton
(i.e., all Compton orders) scattered photons within the Gd
K-shell XRF energy range are compared between a cylindrical
(having a height of 60 mm and 50 mm diameter) and a spherical
(50 mm diameter) water phantom. Here, the calculations over the
polar (θ) and azimuthal (ϕ) angles are performed relative to the
primary beam direction. In this case, a 4π uncollimated detector was
used and the difference in the total Compton scattered photon
between the maximum value over the polar angle θ and the
detector’s optical axis (depicted by a brown dashed line) is
slightly less than a factor of two. For the first-order Compton
photons (denoted as C1) in Figures 5C, D, this difference is of a
factor of two. However, in our simulations with the 4π uncollimated
detector, we observed that this difference is more sensitive to the
spectral bandwidth of the excitation beam than to the requirement
of spatial coherence, i.e., having a pencil-beam-like configuration
(see Supplementary Figure S1). With a microfocus source, where
narrow bandwidth energies are used via spectral beam-shaping
filters, a pencil beam configuration may already surpass the scan-
time constraints of 30–60 min. Although the utility of pencil beams,
also in the polychromatic case, has been well demonstrated for the
human-size scale (as noted in [21]), our study acknowledges the
limited margin of improvements in small-animal sizes for the
optimization problem at hand. Nonetheless, the improvement
factor scales with larger-sized objects, e.g., bioreactor systems and
bio fabrications, which we intend to use in our future studies.

FIGURE 3
The schematic diagram (A) and the experimental setup (B) of the benchtop XFCT system is shown here, including the imaging phantoms (C), (D) (E),
and (F). Image (B) showcases the imaging geometry and the various components involved, including amicrofocus X-ray tube with a collimator and beam
filtering system, amotion andmounting platform, a transmission detector, and a shielded XRF detector with single pinhole collimation. The inset image in
(B) shows the top view of the setup. The Gd (C) and MoNP (D) calibration samples are embedded in water and held inside borosilicate glass
containers. The Gd calibration samples (C) have concentrations ranging from 0–3.1 mg/mL, and the MoNP calibration samples are shown in (D) (only 0,
0.1, 0.25, and 0.5 mg/mL are shown here). The 3D breast cancer tissue model is immersed in cell growth medium (E) and blank cell crown samples are
held in water for XRF background analysis (F).
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For the pinhole collimation case, spatial anisotropy of
photons within the Gd XRF energy window can be seen by
comparing the detected (MC) Compton spatial distributions
from Figure 6A, which shows the C1 photons, and Figure 6B,
which shows the second-order Compton (denoted as C2)
photons. The higher-order Compton scattered photons (only
C2 shown in Figure 6B), which reduce spatial anisotropy, are
minimized through an intrinsic reduction in small volumes and
via pinhole collimation. From Figures 6D, E, almost an order of
magnitude reduction of C2 photons can be seen compared to
C1 photons. In Figures 6D, E, the nonuniformity in the geometric
response of the detector is corrected using a pixel-wise analytical
model to account for the solid angle effects on the Compton
background (see Supplementary Appendix A). The peak
normalized solid angle of detection, ~Ωi, is used to correct the
C1 and C2 profiles along both the horizontal (X-Cut) and vertical
(Y-Cut) directions of the detector. In Figure 6C, the pixel-wise
analytical model is compared with MC simulations, showing a
good agreement. The spatial anisotropy along the horizontal
(X-Cut) direction for the C1 profiles in 6D is more evident
and arises over the polar angles, where the C1 yield is higher
over one-half of the detector. Conversely, the anisotropy of the
C2 profiles in 6E significantly decreases about the optical axis. It
must be noted that with micron-sized solid target sources
exhibiting low electron-beam power density, optimization
possibilities for X-ray energy-hardening to minimize

interference of Rayleigh and Compton scattered photons in
XRF bins are very limited.

2.8 XFCT image reconstruction

Due to the highly undersampled scanning methodology and
inherently count-limited nature of XRF imaging, iterative statistical
image reconstruction methods were chosen for XFCT. A variation of
the maximum likelihood expectation maximization technique
(MLEM) with prior, i.e., the MAP (Maximum A Posteriori)
technique, in the form of Green’s one-step late total variation
(TV-EM) algorithm is given by Eq 1 [50, 51],

ψ k+1( )
j � ψ k( )

j∑iaij + β
zTV ψ k( )( )

zψ k( )
j

∑
i

aij
pi∑j′aij′ψ

k( )
j′

(1)

where, ψj is the relative concentration of the contrast agent, aij is
the contribution from voxel j to projection at i, pi is the XRF
projection at i, β is the regularization parameter controlling the
effect of total variation (TV) prior, and TV (ψ(k)) is the TV norm
of the current image estimate ψ(k). For the sparse-view XRF
imaging of thin 3D tissue samples, anisotropic TV prior is
chosen to slightly weaken the solutions that promote oblique
structures (edges). For internal attenuation correction of the
excitation and XRF photons, measured attenuation maps from

FIGURE 4
Typical XRF sum spectra (A,C) prior to and (B,D) post signal optimizations are shown here for (A,B) 1 mg/mL Gd concentration and (C,D) water
background (0 mg/mL Gd concentration). An overall fitting region (gray shaded area) is in the energy range of 32–53.5 keV. The background fitting zone
“B” is defined in the energy range of 32–38.5 keV and 47.5–53.5 keV, while the signal plus background fitting zone “S + B” is within 38.5–47.5 keV. The
extracted Gd XRF signal (shown in yellow) is seen to have (A) SNR~5 before optimization and (B) SNR~10 post-optimization through background
reduction and signal maximization. For water, (C) pre-optimization and (D) post-optimization SNRs were ~2.9 and ~2.3, respectively.
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CBCT scans at effective CT energies and calibrated XRF energies
(obtained from simple bilinear scaling methods [52, 53]) were
used to find the attenuation coefficients required in the element-
by-element product (Hadamard product in matrix form) of the
depth-dependent point response (modelled analytically) with
the task-specific (object dependent) attenuation factors
(calculated using radiological path lengths from Siddon’s
algorithm [54]), thus, forming the forward projection/system
matrices with elements aij. Here, an additional self-correction
applies in the reconstruction step via the back-projection process
that reduces the chances of false signal detection, whereby if
particular background bins are selected posing as XRF signals,
which would differ in each projection, the back-projection of the
sparse solutions from NNLS will weaken the false signal
intensity.

2.9 CBCT image reconstruction

The CBCT projections in MoNP scan settings were
reconstructed using FDK cone-beam filtered back-projection
algorithm [55]. For CBCT scans with Gd contrasts, an
isotropic TV-EM algorithm was used. As reconstruction
algorithms are different, comparative quantitative imaging
would be more challenging, requiring their effects to be
studied more carefully. Here, we are only looking at the
general feasibility of the approach.

3 Results

3.1 Development of a microphysiological
breast cancer model for molecular imaging
with metallic probes

The microphysiological breast cancer model used in this
study is based on a biological matrix derived from
decellularized porcine jejunum that contains an intact basal
membrane and therefore permits rapid engraftment of
epithelial cancer cells [44]. Two widely established cell types,
the breast cancer cell line MDA-MB 231 and primary fibroblast
were seeded onto the matrix. Upon static 3D culture, the breast
cancer model could be routinely established and displayed a
consistent phenotype with characteristic architecture shown in
Figure 7. The upper layer of the breast cancer model consisting of
primary human fibroblasts formed a dense cell layer, whereas the
breast cancer cell line MDA-MB231 invaded from the second
layer into the third layer of SISmuc scaffold indicating the
invasive potential of this cell line (see Figure 7). Neither the
treatment with different concentrations of MoNPs nor the
treatment with Gd-containing contrast agents had an effect on
the tissue morphology investigated by HE staining (see
Figure 7A).

An immunohistochemistry staining was performed to further
investigate the functional and molecular properties of the cancer
tissue model. Staining with Ki-67 showed that the highest

FIGURE 5
The spatial distribution of total Compton (A, B), and single-Compton (C, D) scattered photons in the Gd K-shell energy range for cylindrical and
spherical water phantoms are shown here for a 4π uncollimated spherical detector (MC). The brown dashed line represents the polar angle of the
detector’s optical axis (z-axis of the sensor) with respect to the primary beam direction. The total Compton scattering at the detector’s optical axis differs
slightly less than a factor of two from the maximum value over the polar angle θ, while the single-Compton scattering differs by a factor of two. The
asymmetry observed in ϕ, in the cylindrical water phantom (A,C), arises from the excess path length that photonsmust traverse through the volume along
the height of the cylinder compared to its radial direction, resulting in an increased likelihood of higher-order Compton scattering and photoelectric
absorption. This effect is also partly due to the collimated incident beam cross-section (30 mm × 20 mm FOV). The spherical water phantom (B, D)
exhibits weaker asymmetry in ϕ due to its radially symmetric volume geometry.
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proportion of proliferative cells (brown color) were found in the
second tissue layer that was seeded with MDA-MB 231 cells (see
Figure 7B). The MDA-MB 231 cells that invaded the third layer with
SISmuc scaffold appeared mainly in a blue nuclei color from the
Haematoxylin counter staining pointing towards a higher
proportion of non-vital cells. The upper tissue layer covered by a
dense layer of primary fibroblasts showed an almost equal
proportion between vital and non-vital cells. Due to the non-
invasive nature of these cells and the dense cell population, there
might be a limited gas and nutrient exchange leading to a higher
fraction of non-vital cells compared to the breast cancer tissue layer.
The staining with Vimentin served as a marker for intermediate
filaments comprising the cytoskeleton. As shown in Figure 7C, for
control and low MoNP concentrations, Vimentin is present in both,
primary human fibroblasts and MDA-MB 231 cells. Pro-Collagen is
a precursor for collagen synthesis, a structural protein in the
extracellular matrix found in various connective tissues. In this

study, it serves as a marker for potential cytoskeleton remodeling
induced by the treatment with contrast agents. Compared to the
control condition (see Figure 7D, control), the treatment with
MoNPs led to a significant increase in the Pro-Collagen signal
(see Figure 7D, at MoNP and Gd treatments), indicating that the
treatment with MoNPs and Gd-containing contrast agents already
in low concentrations induced cellular processes related to the
remodeling of the cytoskeleton.

3.2 Influence of contrast agents on cellular
vitality

The influence of the investigated contrast agents in various
concentrations on the cell vitality was investigated with
immunohistochemistry staining and subsequent counting of Ki-
67 positive nuclei (brown signal corresponding to vital cells)

FIGURE 6
The detected (MC) spatial distribution of singly (C1) (A) and doubly (C2) (B) scattered Compton photons in the Gd K-shell energy range for the single-
pinhole collimated detector is shown here. The spatial anisotropy of C1 photons (A) about the detector’s optical axis can be seen in comparison to the
C2 photons (B). The detection solid angle, Ωi, is compared between MC simulations and an analytical model in (C). The C1 (D) and C2 (E) photon profiles
are shown along the horizontal (X-Cut) and vertical (Y-Cut) directions of the detector. The numerical calculations of the analytical model are
performed over a 64 × 64-pixel grid in order to minimize computational efforts, resulting in a rebinning of the data in (C, D, E) by combining 4 × 4 pixels.
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FIGURE 7
(A)HE staining and (B) immunohistochemical staining against Ki-67, (C) Vimentin and (D) Pro-Collagen in the 3D breast cancer model composed of
three layers: primary human fibroblasts, MDA-MB-231 and scaffold after 48 h incubation.

FIGURE 8
Cytotoxicity of the investigated conventional and nanoparticle-based contrast agents measured by Ki-67 immunohistochemistry staining and cell
counting (A) for MoNP treatment and (B) Gd treatments in the 3D tissue-engineered breast cancer model after 48 h incubation. The data points are
represented as the mean ± standard deviation of triplicate measurements.
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compared to Haematoxylin-positive nuclei (blue color
corresponding to dead cells) (see Figures 8A, B). We could not
detect any concentration-dependent changes in the vital cell ratio in
the two tissue layers for all tested Gd- and MoNP doses. In addition,
we found a comparable vitality ratio in the apical fibroblast tissue
layer compared to the basal breast cancer cell layer which indicates
that there is no impact on the inner tissue layer due to a potential
sub-optimal gas or nutrient supply. Furthermore, we performed a 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT) assay under 2D and 3D conditions to assess the cell
vitality after treatment with the investigated contrast agents (see
Supplementary Appendix C). Under all investigated conditions, the
breast cancer cell line MDA-MB-231 had significantly higher
absorption signals compared to the primary human fibroblasts in
the MTT assay. The treatment of both cell types under 2D and 3D
conditions with Gd-containing contrast agents had no effect on the
cell vitality for the investigated conditions ranging from
0.16–3.15 mg/mL (see Supplementary Appendix C). For the
treatment with MoNPs ranging from 0.01–0.2 mg/mL, we
observed an increasing absorption signal for the MTT conversion
reaction in both, 2D and 3D conditions. Therefore, we assume that
the presence of MoNPs led to an unwanted side reaction for the
conversion of the MTT dye in a concentration-dependent manner.

3.3 Development of a cone-beam laboratory
XFCT setup for in vitro tissue testing

3.3.1 XFCT and CBCT imaging of small-animal-
sized phantoms

Here, we present the results of our pilot study on small-animal-
sized phantom measurements considering in vivo-relevant imaging
parameters. MC simulations were carried out for the in vitro
imaging-task characterization and quantitative performance
analysis of the multislice cone-beam XFCT setup. The spatial
resolution was estimated using two point-sized emitters, each
with a 0.4 mm diameter, embedded in a cylindrical water
phantom with a diameter of 50 mm and located at the center of
the field of view. For Gd as contrast agents, the sources emitted X-ray
photons in the characteristic energy range of the Gd K-shell
(42–43 keV). The emitters can be interpreted as point sources
with reference to the expected spatial resolution. Assuming at

least 3σ (where σ (sigma) represents the standard deviation of the
background noise) XRF signal differentiability over the background
noise, an achievable spatial resolution of about 1.6 ± 0.1 mm was
determined at the ~ 3.29 σK0�K1 SNR limit, where K0 and K1 are
noise covariance matrices for each of the two point-sized sources,
respectively [48, 56].

Figure 9 shows the reconstructed axial slices of the Gd-
containing calibration samples (0–3.1 mg/mL) embedded inside a
water phantom. The calibration curve in Figure 10, obtained from
the reconstructed data, shows the measured relative net XRF signal
intensities for the known Gd calibration concentrations. The relative
intensities are obtained through normalization by the maximum net
XRF signal intensity. A linear relationship was detected between the
relative net XRF signal intensity and Gd concentration, with a slight
deviation from zero in the intercept of the regression line. This
discrepancy in the intercept of the regression line may be attributed
to background noise, but with a larger sample size of low-
concentration calibration samples, this trend could potentially be
corrected. The minimum detectable Gd concentration of 0.031 wt%
(0.31 mg/mL), also the least detectable calibration sample

FIGURE 9
(A–E) Reconstructed axial slices of 3.1–0mg/mL Gd calibration samples (8 mm diameter polypropylenemicrocentrifuge tubes) embedded in water
phantom (50 mm maximal diameter), performed with 10-view projections using anisotropic total variation (TV) based sparsifying transform in Green’s
one-step-late TV-EM algorithm [50, 51]. Scale bar: 10 mm.

FIGURE 10
Calibration curve showing a linear increase in the relative
(normalized by the maximum net XRF signal intensity) net XRF signal
intensity with increasing Gd concentration. The boundary of the
shaded zone represents the 3σ (i.e., ~ 99.7 %) background level
above the intercept of the calibration curve. The XRF signals in this
zone are not differentiable from the background noise, therefore, the
detection sensitivity is defined as the least detectable sample,
i.e., 0.31 mg/mL.
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concentration, was defined as the XFCT detection sensitivity in the
Gd imaging scheme. This sensitivity limit was determined
(methodology similar to [23]) as the net measured XRF signal,
detectable above the 3σ (3 times the background standard deviation,
or the upper limit of the ~ 99.7% background confidence interval)
background noise level over the intercept of the calibration curve.

The XFCT imaging time for the Gd tissue and the phantom
scans with 10-view sparse tomography (30 mm interior region-of-
interest FOV, 20 mm longitudinal-FOV) was just under ~30min,
including the sample rotation and data acquisition, leading to an
estimated (MC) XFCT imaging dose of about 276cGy (~23cGy per
projection estimated dose, i.e., the absorbed energy in a scoring
volume held inside the 50 mm cylindrical water phantom at the

isocenter of the scan cone-beam profile) at the isocenter. The
estimated absorbed dose for the CBCT scans, using Gd as a
contrast agent for either phantom, was approximately 3.3 cGy
(~1.1 mGy per projection) at the isocenter for an exposure time
of 6s s per projection.

An achievable spatial resolution of 1.8 mm (1.8 ± 0.2 mm) is
estimated for MoNPs using MC simulations, which were conducted
as described for the Gd case but with molybdenum K-shell
characteristic energies and MoNP scan geometry. The MoNP
detection limit (see Figure 11) was estimated with a relaxed noise
condition in comparison to the Gd case, i.e., with a 95% confidence
interval about the background level. Therefore, the sensitivity in the
in vitro setting was about 0.05 wt% with an estimated (MC) dose at

FIGURE 11
Calibration curve showing a linear increase in the relative (normalized by the maximum net XRF signal intensity) net XRF signal intensity with
increasingMoNP concentration. Here a relaxed noise limit is considered due to the low-count statistics in MoNP imaging, i.e., the boundary of the shaded
zone represents the 1.96σ (i.e., ~ 95% confidence interval) background level above the intercept of the calibration curve. The detection sensitivity is
defined as the least detectable sample, i.e., 0.5 mg/mL.

TABLE 1 System characteristics and imaging metrics for CBCT and XFCT scans performed with MoNPs and conventional Gd-containing contrast agents.

MoNPs Gd (Gadoteric acid)

CBCT XFCT CBCT XFCT

Excitation beam spectrum 45 kV, 6 mm Al 30 kV, 6 mm Al 90 kV, 0.3 mm Cu 90 kV, 0.3 mm Cu

Incident flux (MC) [photons s−1 sr−1] - ~ 1.9 · 1010 - ~ 1.34 · 1012

Detected flux (Timepix3) exp.a/sim.b [photons s−1 sr−1] - ~ 9.3 · 109 / ~ 9.2 · 109 - ~ 6.89 · 1011 / ~ 7.02 · 1011

X-ray tube power [W] 80 60 80 80

Exposure time per projection [s] 10 300 6 150

Number of projections 60 30 30 10

Dose per projection [cGy] 0.033 @ 1.8 mA 3 @ 2 mA 0.11 @ 0.9 mA 23 @ 0.9 mA

Detection sensitivity [wt%] - 0.05 - 0.031

Total imaging dose [cGy] ~94 ~280

Total imaging time [h] ~2.8 ~0.55

aExperimental data (scaled by radiometric correction factors).
bSimulation data (scaled by radiometric correction factors).
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the isocenter of ~3 cGy and ~0.33mGy per projection for XFCT and
CBCT scans, respectively. This resulted in a total imaging dose of
about 94 cGy for MoNPs. The imaging time was about ~ 2.6 h and
12 min for XFCT and CBCT, respectively.

In either imaging configuration, the spatial resolution and low-
concentration sensitivity were limited primarily by the small detection
area of the Timepix3, constraining the focal distances for the FOV
choice and instrumentation challenges of designing multi-pinhole
collimation, besides the predominant signal loss effect from intrinsic
background interference. Table 1 summarises the primary XFCT and
CBCT imaging performance for the two contrast-agent scanning
schemes and their respective dose estimates.

3.3.2 XFCT and CBCT imaging of
microphysiological breast cancer model as a
phantom

In the following section, imaging results of the 3D breast cancer
model are reported for the two contrast agents. Figures 12, 13 show
the axial, sagittal, and coronal XFCT/CBCT reconstructed slices in
the tissue regions for the maximum administered dosages of Gd and
MoNPs, respectively, i.e., 3.15 mg/mL Gd and 0.2 mg/mL MoNPs,
each incubated over 48 h period. The MoNP detection sensitivity
was initially overestimated as 0.01 wt% (subsequently corrected to
0.05 wt%), leading to a maximum administered MoNP dose of
0.2 mg/mL for in vitro imaging experiments. Therefore, the

MoNP reconstructed images display significant noise from
scattered background noise along with XRF signals (proportional
to the MoNP concentration) in and around the tissue containing
cell-crown regions. The CBCT reconstructed images for the two
contrast agents varied primarily due to differences in the
reconstruction techniques outlined in section 2.9, angular
sampling frequency (i.e., 30 and 60 views for Gd and MoNPs,
respectively), and CT energies. The CBCT images for the MoNP
case are characterized by the presence of noise and streaky artifacts
from the FDK reconstruction algorithm, as seen in Figure 13B. On
the other hand, for the Gd case, the positive smoothing parameter
(ε = 0.0001) and TV regularization (β = 0.05) were set to reduce
streaky artifacts and noise in CBCT images [50].

Figure 14B displays the sampled accumulations of Gd in the central
and peripheral uptake regions of tissue-containing reconstructed slices,
which were obtained through local-contrast segmentation using Gd
concentration thresholds. The average sampled Gd concentration is
seen to increase with the increasing administered dose while having
lower accumulations in the central tissue regions. The maximum
administered dose of 3.15 mg/mL Gd led to an average sampled Gd
concentration of 0.85 ± 0.01 mg/mL in the central and 1 ± 0.05 mg/mL
in the peripheral regions, respectively. Below the sensitivity limit, i.e., for
0.16 mg/mL dosage, the average accumulations of Gd concentration are
overestimated due to sampling errors (identification of tissue regions in
local low contrast areas, resulting from background noise).

FIGURE 12
Axial (top row), sagittal (middle row), and coronal (bottom row) image planes from the tomographic reconstruction (TV-EM) of the 3D breast cancer
tissue model administered with 3.15 mg/mL Gd and incubated over 48 h period. Gd concentration (mg/mL) maps from (A) XFCT reconstruction
(magnification factor approx. ×1.5), (B) linear attenuation coefficient (mm−1) maps of the cell crown/holder held inside borosilicate glass container with
cell-culture growthmedium, obtained from the CBCT scans, and (C) XFCT image data fusedwith CBCT images. For (C), thresholding < 0.31 mg/mL
is applied to the voxels, i.e., cut off below the detection limit. While CBCT remains invariant, the low contrast detectability of the XFCT technique with
small added Gd concentrations can be clearly seen. The rainbow color bar shows the Gd concentration (mg/mL). The grayscale color bar shows the
attenuation coefficients (mm−1). Scale bar: 10 mm.
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For MoNPs (see Figure 14A) with 0.2 mg/mL and 0.1 mg/mL
dosages, as to be expected, the average sampled concentrations were
lower than the respective maximum administered doses. However,
0.05 mg/mL and 0.01 mg/mL resulted in significant overestimation

from segmentation sampling errors and misclassification of signal
and background regions, both during segmentation and signal
extraction from curve fittings under relaxed SNR limits
(SNR > 2). The extracted signal, otherwise, would be classified as

FIGURE 13
Reconstructed axial (top row), sagittal (middle row), and coronal (bottom row) tissue slices from (A) XFCT using anisotropic TV-EM algorithm, (B)
CBCT reconstruction from FDK algorithm, and (C) XFCT-CBCT registered images of the multilayer cell-culture sandwich administered with 0.2 mg/mL
MoNP solution, imaged at 48h incubation period. The rainbow color bar shows the MoNP concentration (mg/mL). The grayscale color bar shows the
attenuation coefficients (mm−1). Scale bar: 10 mm.

FIGURE 14
(A) Average MoNP and (B) Gd uptake concentration sampled (local-contrast-based threshold segmentation) from the reconstructed slices in the
central and peripheral (adjacent to cell crown) ROI in the tissue region.
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no signal under standard operating conditions (SNR > 3.29). As
pointed out before, the initial overestimation of MoNP detection
sensitivity resulted in a maximum administered dose of 0.2 mg/mL,
thus, MoNP uptake (see Figure 14A) did not demonstrate an
increase with increasing administered dose.

4 Discussion

The results demonstrate the 3D localization capability of the
benchtop cone-beam XFCT system for Gd-containing contrast
agents and MoNPs for the tissue-engineered microphysiological
3D breast cancer model with in vivo mimicking properties. The
proposed XFCT imaging technique allows for multislice
spatiotemporal reconstruction of elemental composition maps
through a dynamic event-based (ToA and ToT) acquisition of
X-ray projections while providing X-ray attenuation maps needed
for correcting the excitation and fluorescence X-ray intensities. For
varying administered Gd doses, the local deposited concentrations
in different regions of the target tissue slices were successfully
quantified, exhibiting in vitro low-contrast imaging performance
of the XFCT system. For MoNPs, the maximum administered dose
was lower than the detection limit due to an overestimation of the
sensitivity limits made prior to the in vitro tissue experiments,
however, the imaging capability is still demonstrable (see
Figure 11) at higher administered NP dosages.

Since a large object volume in the context of small-animal
imaging (about 50 mm diameter) is scanned at shorter scan-
times, leading to multislice imaging (for example, with 1.6 mm
spatial resolution and 20 mm longitudinal FOV, at least 12 axial
slices can be reliably reconstructed) with the contrast positions not
known a priori in the cone-beam volume, there is a larger intrinsic
background effect due to an increased proportion of scattered
photon generation, particularly in the case of polychromatic
excitation sources [21, 57]. Therefore, slightly higher radiation
doses per projection are necessitated specifically in comparison to
the scanning techniques with high energy resolution single-pixel
multichannel detectors in benchtop cone-beam and pencil-beam
settings [23–26]. For instance, the multislice 3D imaging scheme for
the Gd contrast agents (0.031 wt% detection limit) with low power
microfocus X-ray source, presented here, currently requires a
radiation dose of ~23 cGy per projection with ~33 min total
scan-time in comparison to ~1.87 cGy per projection for a Gold
nanoparticle (0.03 wt% detection limit in 30 mm diameter water
phantom) single-slice scheme with single-pixel detectors having
~1 h total scan-time, or ~1 cGy per projection for Gd
nanoparticles (NaGdF4, 0.18 wt% detection limit in 50 mm
diameter water phantom) single-slice fan-beam scheme (linear-
array PCDs, 0.5 × 2 mm rectangular pinhole) with ~7.5 min total
scan-time [24, 27]. It is also seen for the imaging geometry, via MC
simulations, that requirement of spectral bandwidth of the incident
cone-beam is more critical to background yield reduction (see
Supplementary Appendix B).

Besides ineffective dose utilization in the image formation
process, limited by the detection solid-angle from the single-
pinhole collimation and small area (~14 mm × 14 mm active
detection area) pixelated detector, intrinsic detector effects also
contribute significant noise to the signal background. Here, the

primary detector effects contributing to the sensitivity deterioration,
consequently increasing the radiation dose, were the charge-sharing
and partial charge deposition from CdTe XRF photons (CdTe
presents a fluorescence yield of about 80% and a mean free path
of 58 μm and 110 μm for Te and Cd, respectively) in the small-pixel
(55 μm) CdTe configuration. Both these effects cause significant
distortions in measurements and degradation of the detector energy
resolution adding to the XRF signal detectability loss from the
scattered photon interference in the signal bins. Though simple
charge-sharing reconstruction and CdTe XRF corrections are
implemented, an improved approach is necessary, along with
instrumentation improvements. Therefore, additionally, our
future considerations may involve, e.g., developing dedicated XRF
detectors, better suited for high-energy detection. Nonetheless, with
ten such single-pinhole (corresponding to the Gd 10-view sparse
imaging presented here) detectors arranged in a circular geometry
(forming 2 π solid angle in the scan mid-plane), an order of
magnitude reduction in X-ray dose can be obtained, specifically
for the Gd imaging scheme with about 2.3 cGy per projection,
therefore reaching small-animal in vivo acceptable dose limits,
for, e. g., below 30 cGy in mice [33, 58]. Consequently, the total
imaging time with parallel acquisition would then be reduced to
below ~ 6min, far below in vivo scan-time constraints, for, e.g.,
determined by effective anaesthetized period as short as 30–60 min
[59, 60]. Furthermore, multi-pinhole collimation in such a
configuration may allow additional reduction of the XFCT
imaging dose through SNR improvements per projection by a
factor equal to the number of pinholes [60]. For the same dose
limit, densely sampling systems which capture projections with
smaller angular increments would suffer from lower signal
statistics per projection, leading to overall sensitivity loss and an
increase in total scanning time. A geometric/mechanical
arrangement of ten such detectors is completely feasible in the
current XFCT setup.

As substantial dose enhancements can be achieved through
optimization of the applied X-ray beam energies, under the
current imaging configurations, imaging dose (dose per
projection of 23 cGy and 7.1 cGy for Gd and MoNPs,
respectively) and detection sensitivity (0.031 wt% and 0.05 wt%
for Gd and MoNPs, respectively) could be lowered further for a
fixed scan-time limit and maximum excitation voltage through
improved beam filtration possibilities and (or) quasi-
monochromatic beams from high-power X-ray sources, therefore,
minimizing low energy radiation dose below K-absorption edges of
the contrast agents. Here, the present setup was limited by 90 kV
maximum voltage and 80 W maximum tube power, limiting the
optimization possibilities of the incident X-ray spectrum for the
scan-time limit under 30 min. Also, further enhancement of both
detection sensitivity and delivered dose can be achieved, for, e.g.,
from detailed simulation studies for specific imaging tasks and tissue
models. With the application of variance reduction techniques,
utilization of well-validated MC-based forward projectors may
allow reconstruction without the need for calibration
measurements, thus allowing accurate quantification results. For
larger objects in cone-beam scanning, the marker accumulation can
be far away from the local calibration points and, therefore,
quantification may suffer from errors due to shift-variant
sensitivities, requiring multiple calibration points for accurate
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quantification. Additionally, our future approaches may involve,
e.g., using low-dose cone-beam scans for coarse localization and
concave reflecting-type optics for cone-beam focusing, allowing
higher and variable spatial resolution imaging with higher signal
statistics from radiation concentration effects.

5 Conclusion

In this pilot study, we have characterized a benchtop setup for
fast, and fully-3D quantitative XRF imaging with a cone-beam
X-ray source and a tissue-engineered breast cancer model. We
have focused on identifying requirements and demonstrating
feasibility with a polychromatic microfocus source using a
region-of-interest sparse sampling geometry (10-view for Gd)
and reconstruction approach, along with the optimization of
components including pixelated CdTe detectors
(Timepix3 HPCD, Advacam) and micro-pinhole collimators,
excitation beam optimization using beam-shaping filters, and
background noise reduction. Considering critical physical
constraints inherent to in vivo imaging, particularly scanning
time, contrast dose, and radiation dose, our optimizations allow
for high-spatial-resolution longitudinal imaging that is feasible
for both in vitro and in vivo experiments.

A tissue-engineered microphysiological breast cancer model was
used to evaluate the system performance after treatment with
conventional Gd-based and nanoparticle (Mo)- based contrast
agents. The proposed XRF imaging setup showed the
applicability and feasibility of cone-beam methodology for
quantitative in vitro and in vivo NP imaging at an acceptable
dosage with a spatial resolution below < 2 mm and contrast dose
(~ 0.3 mg/mL for Gd, and ~ 0.5 mg/mL for MoNPs) and imaging
time (33 min for Gd and 2.8 h for MoNPs) with a future reduction
potential with an order of magnitude. Furthermore, utilizing a ring
arrangement of ten micro-pinhole detectors can easily allow for a
significant reduction in X-ray dose for small-animal imaging,
potentially reaching an order of magnitude decrease, with doses
as low as 23 cGy for Gd and 30 cGy for MoNPs. Addressing the
Compton scattering problem, which poses the primary limiting
factor in this imaging technique, is crucial to achieving high
detection sensitivity with polychromatic microfocus sources while
minimizing radiation exposure.

Besides assessing the feasibility of high-resolution imaging,
challenges and limitations of current cone-beam techniques are
outlined, particularly for achieving higher resolution. Current
high-flux benchtop X-ray sources, e.g., based on liquid metal
targets, which allow high spatial resolution, have limitations in
accommodating multiplexed pharmacokinetics across a wide
range of nanoparticle-coupled drug candidates due to their
restrictions to low-Z nanoparticles. As pointed out,
monochromatization is essential to reduce background
contribution from Compton scattering. To achieve this, our
future investigations will employ bent mosaic crystals that rely
on Bragg reflection. These crystals potentially offer high
reflection efficiencies suitable for medium-Z nanoparticles and
enable beam focusing for higher resolution scans with higher
expected SNR. Preceding high-resolution scans, coarse scans can

be performed via cone-beam XFCT to identify the region of interest.
This becomes particularly important when the size scale of the
imaging object increases.

Overall, our proposed approach of combining a high-resolution
molecular imaging modality and complex tissue-engineered organ
models offer new possibilities in translational biomedical engineering
for nanodrug screenings and innovative cancer radiology.
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Introduction: The most important assessed quality-control (QC) criteria for
improvements in high-resolution imaging are represented by the contrast-to-
noise-ratio and spatial resolution. Ultra-High-Field (UHF) Magnetic-Resonance-
scanners (B ≥ 7 T) for medical research allowed for the improvement in spatial
resolution up to themicroimaging and nominal microscopy range [pixel-size: ps <
(100 μm)2], even in-vivo on humans just recently. Preclinical MRI- and dedicated
MR-microscopy (MRM) scanners already allow for microimaging and MRM (1-256
μm) but lack a sensible spatial resolution phantom for QC and performance
improvements in hardware, pulse-sequencing andMRprotocols. In most scientific
MRI articles, the spatial resolution is characterized by the ps, though this
measurement parameter only limits the actual resolution.

Methods: Here the Modulation-Transfer-Function (MTF) is used as evaluation
concept for the determination of the spatial resolution in MRM using simple
intensity profiles. The resolution limit is defined using a criticalmodulation-level. In
approaching visual impressions on spatial resolution an additional criterion
derived from the Modulation-depth-to-Noise-Ratio (MNR) is proposed. A
practical method for assessment based on a concrete phantom design and its
realization is shown.

Results: The phantom design consists of several sets of fine grids, specifically
featuring high structural anisotropy for optimum SNR and CNR, with different
spatial periods ranging from a1 = 256 μm down to a8 = 2 μm, not only for a quick
visual qualitative check, but also for quantification of resolution using the MTF for
two different spatial encodings in two orthogonal in-plane directions. The
challenging demands on the manufacturing technology especially with regard
to the aspect-ratio are approached using Deep-X-Ray-Lithography (DXRL) relying
on the high brilliance of Synchroton-radiation. Smallest grid plates with width of 4
μmcorresponding to 125 line pairs/mm at a plate depth of 100 μmwere achieved.
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Discussion: MR-microscopic images, originating from a microscopy insert on a
human UHF-MR-scanner, were used for demonstration of the evaluation process
with two independent resolution-criteria. The developed prototype offers unique
possibilities for quantitative resolution QC on UHF human and preclinical MR-
scanners. Such a resolution-phantom might be very important for the
improvement of MR-pulse-sequences, MR-protocols and even hardware. In
principle the phantom can also be used for other microscopic imaging-
modalities as for instance μCT and Optical-Coherence-Tomography (OCT).

KEYWORDS

imaging, resolution, quantification, phantom, modulation-transfer-function, MTF,
microscopy, XRL

1 Introduction

The spatial resolution represents one of the most important
criteria for the quality of an imaging method especially in the
case of medical imaging for the early detection of developing
pathologies. The quantitation of spatial resolution therefore
represents a relevant task for “Quantitative Medical Imaging”.

With the growing use of MRmicro-imaging, andMRM the issue
of spatial resolution is of increasing importance.

We would like to illustrate that relevance of high spatial resolution for
medical imaging subsequently in Section 1.1. The reader interested in a
short overview on factors influencing spatial resolution (Section 1.2) and a
short non-encompassing report on the state of the art on methods for
quantification of spatial resolution (Section 1.3) and finally the targeted
features of the phantom and evaluation procedure (Section 1.4) is referred
to the corresponding subsections.

1.1 Advances in high resolution MRI based
medical imaging

In the clinical routine ofMagnetic Resonance Imaging (MRI) aVoxel
Size (VS) of about 300 × 300 × 2000 μm3 can be obtained on humans.
High spatial resolution in the microimaging range (pixel size (ps):
100–300 μm) has been reported mainly for small Field of Views
(FOV) on human extremities, e.g., fingers or toes for the investigation
of Vater-Pacini corpuscles, relevant for the loss of vibrational touch
sensing, an early change in diabetes [1,2]. Extremities, investigated by
high-resolutionMRI, might represent radiological models for a variety of
pathologies, e.g., bone erosion, inflammation, psoriatic and rheumatic
arthritis [3]. The spatial resolution has been identified as a critical obstacle
to clinical investigations based on these easily accessible extremities [3]. In
principle, the often used 2D-FT MR-method for spatial encoding with
slice selective excitation allows for much higher spatial resolution, if
specific hardware can be used and the restrictions on the living biological
object or humans to be visualized are lifted, in specific: object diameter,
tolerable measurement time and tolerance with regard to the magnetic
field gradient strength.

A VS of about 30 x 30 x 200 μm3 [4] may be obtained in
preclinicial MR imaging on small animals in vivo, performed for
instance for pharmaceutical reasons.

Using such dedicated high-resolution MR-scanners the
microscopic spatial range (ps < 100 μm x 100 μm) is already
available. MRI with pixel size in that spatial range is therefore

called MR-microscopy (MRM) [5]. MR-based histology [6] in the
microscopic range has been reported on pathologic structural
changes in tissue samples ex-vivo, for arteriosclerosis [7], arthritic
changes in cartilage [8], diabetes related changes in the human skin
[9] and ovarian cancer [10].

MRM-based histology (ex-vivo) on different tissues has already
been demonstrated on high-field (B = 3 and B = 7T) human MR-
scanners using additional dedicated hardware [11,12]. A voxel
volume of (100 μm)3 has recently been reported on the human
brain ex-vivo on a 7T UHF MR-scanner [13].

Even in vivo on human extremities high spatial resolution
based on voxel- and pixel-sizes in the microscopic range has
recently been demonstrated using prototype MRI rf-detector
hardware [2].

1.2 Relevant factors for spatial resolution
in MRI

However, the pixel and voxel size represents only a limit to
the spatial resolution. The effective resolution may be
significantly less due to spatial distortions, e.g., by magnetic
field inhomogeneities or chemical shift artifacts. Also, other
sample specific and technical factors might impact the actual
achievable spatial resolution, e.g., the linewidth, the signal decay
due to T2-relaxation, the magnetic field gradient strength
(bandwidth) and gradient switching performance, the signal-
to-noise (SN) restriction and even the diffusivity of molecules
during MR-detection [5]. In parallel imaging the spatial encoding
in MRI is based on the local electromagnetic B1-distribution of
distant radio-frequency transmitter and receiver elements. Some
of these parameters also depend on the investigated sample.

1.3 Methods for proving spatial resolution in
MRI: Actual state

Consequently, the qualitative and quantitative check is
recommended on defined test structures (phantoms) in several
norms and recommendations on Quality Control (QC) of human
MR-scanners. Most available phantoms for QC of spatial resolution
are based on one dimensional periodic sets of plates or tubes
[14–16]. For practical and manufacturing reasons mostly grid or
hole structures are proposed and used for qualitative tests of spatial
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resolution with typical structural sizes of plates and diameter of
holes of d = 10 mm down to 0.7 mm [16].

In order to test image quality with regard to spatial resolution, and
assess modifications for improvements, using hardware, software and
MR-protocol modifications in the spatial range of microimaging and
microscopy, an objective test structure (phantom), which allows for the
quantitative determination of the spatial resolution, is needed [17–19]. A
previous design of a phantom for high-resolutionMRI featured a smallest
spatial structure width of 0.1 mm suitable for themicro-imaging range (�
300–100 μm) [19].

In optical imaging quantitative QC on spatial resolution is
mainly based on the MTF-concept [20]. Often glass plates using
etched orthogonal grid structures of varying periodic distance (a) are
used (see as an example for a design: the United States air force target
phantom) [21]. Such structures also allow for a quick qualitative
check on spatial resolution in themicroscopy range by a simple visual
inspection for deciding which of the periodic grid lines are still
separated. In Computed Tomography (CT) and μ-CT grid sets for
the evaluation of theMTF represent a well-established metric tool for
the quantitative characterization of the spatial response of the
imaging system [22]. μ-CT phantoms, based on silicon grids, do
exist with contrast of silicon absorption against air and resin [23].
Using tungsten as absorber material grids do exist with line
dimensions down to 0.1 μm [24]. These μ-CT phantoms are not
suited for MR-microscopy because the used metal results in a
distortion of the electromagnetic B1-field in MRI. In these μ-CT
phantoms the thickness of the absorption material is limited to a
maximum of about 1 μm due to the very challenging small spatial
dimensions. The lithographic processes used, based on silicon
technology feature limited aspect ratios (height-to-width ratios)
and consequently the high slice thickness used in MR-
microimaging and MRM would result in partial volume coverage
and signal modulation loss.

The MTF may also be calculated in principle from the Edge
Response (ER) or Line Spread Function (LSF) [25]. Due to the
sensitivity of the ER to local noise [25] and necessity for processing
steps of measured MR-profiles the ER method for QC in MRI is
rather seldomly applied.

In MRI on clinical whole body human scanners, phantoms for
checking spatial resolution are designed for typical smallest pixel size
of 0.5 mm. But no commercially available test structures (phantoms)
do exist for the microscopic (<100 μm) range down to 1 μm.
Proposals for such phantoms for the microscopic spatial scale do
exist [18] and are reported as technical realization on the basis of,
e.g., lithographically processed silicon grids [11,26].

For 2D-FT MRI with slice selective excitation the slice
thickness is usually chosen to be much bigger than the in-
plane resolution (pixel-size) due to the demands on high
gradient strength for slice selection, short radio frequency (rf-)
pulses and signal to noise ratio (SNR). Ideal phantoms for
standard 2D-FT-MRI should exhibit therefore a strong
anisotropy with regard to in-plane lateral distance of the grid
bars with reference to their structural height in slice (z-)
direction. Usual slice thickness in 2D-FT-microscopy ranges
between 50 and 200 μm (see, e.g., [9,12,26]). The demands on
the manufacturing technology for offering lateral structures
down to 1 μm at height of 50–200 μm, corresponding to aspect
ratios of about 50–200 are therefore very challenging. Deep X-ray

lithography (DXRL) at KNMF using the high brilliance and small
divergence of Synchrotron irradiation is in principle capable for
the manufacturing of such structures (aspect ratio AR � 50) in
polymers down to below 1 μm [27].

With difference to other medical imaging modalities the
spatial position in 2D-FT MRI is encoded by spatial phase (spin
warp) and frequency encoding in different spatial dimensions.
The different encodings may result in different spatial
resolutions in the two different directions. A resolution
phantom design therefore should allow for the quantitative
evaluation of the MTF in 2 orthogonal directions. This might
be achieved by orthogonally arranged grid patterns. The MTF
can be obtained using lateral profiles in the image crossing the
different orthogonally arranged periodic grid lamellae.

1.4 Conceptual approaches, targeted
phantom features, and methods

In this manuscript the subsequent aspects of a resolution
phantom including resolution analysis for slice selective 2D-FT-
MR- microimaging up to the microscopic range are described. The
phantom should allow for QC of spatial resolution on High-Field
human scanners, already capable of such high-resolution
performance, preclinical (animal) MR-scanners and even
experimental MR-imaging devices designed for highest spatial
resolution. The design and prototype phantoms should not only
allow for quick qualitative checks of spatial resolution by simple
visual inspection but also should offer the possibility for a
quantitative determination of the spatial resolution using the
MTF-concept in two orthogonal, for instance phase and
frequency encoding, directions. The manuscript is divided into
the subsequent three main subject parts: the first two describing
the physico-mathematical concept and the realization of the
phantom including its QC; the last one presents a demonstration
of the qualitative imaging results and evaluation procedure for
quantification of the spatial resolution.

1) Concept for quantitative determination of the spatial resolution
in two independent directions using a strongly anisotropic 2D-
grid structure based on the MTF including 2 independent
resolution criteria.

2) Technical realization of prototype 2D-FT resolution phantoms
and their QC.
• Design of a phantom for quantitative determination of the
spatial resolution in 2D-FT-MR-microscopy with slice
selective excitation up to spatial frequencies of f = 500/mm.
This corresponds to a lamella width of 1 μm. The height of the
structures should allow for a slice thickness (slth) in MR
encoding up to 200 μm (slthmax ≤ 200 μm). The
independent evaluation of the MTF in two orthogonal
directions with different spatial encodings should be possible.

• Manufacturing of the phantom using Deep-X-ray-
Lithography, artefacts and restrictions in technical
realization of the phantom design.

3) Exemplary measurement and evaluation of MR-microscopic
images for a Turbo-Spin-Echo (TSE) radiofrequency and
gradient pulse sequence with:
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• simple qualitative interpretation and
• quantitative evaluation of the spatial resolution

2 Materials and methods

2.1 Concept of the Modulation-Transfer-
Function (MTF) for the determination of the
spatial resolution, defining criteria

The application of linear communication theory to imaging
systems offers the possibility to characterize the main features of an
imaging apparatus by the point spread-function (PSF) in the spatial
domain and the modulation-transfer-function in the spatial
frequency domain assuming linearity and isoplanatism in the
imaging procedure [17,20]. The modulation-transfer-function
(MTF) is defined as the ratio of the spatial Fourier transform
I(fx,fy,fz) of the image intensity distribution in space (I(x,y,z)) to
that (O(fx,fy,fz)) of the object distribution (O(x,y,z)). For simplicity
we refer subsequently to only one spatial dimension (for instance
x-direction):

MTF f( ) �
I fx( )
O fx( )

(1)

The MTF(fx,fy) in the different spatial dimensions, e.g., in the plane
(x, y) might be obtained by simple multiplication of the MTFs in
orthogonal directions if independence (invariance) is valid. In the ideal
case of a single periodic (spatial period ai) object, the spatial Fourier-
component O(1/ai) is equivalent to the amplitude of the object
modulation depth O. An ideal test phantom for spatial resolution
might be composed of a set of periodically (period ai) arranged grids
with different spatial frequencies f = 1/ai covering the typical spatial
frequencies of the objects to be investigated. The MTF(f) of an imaging
system can then easily be measured using an intensity profile delivering
the modulation M(f) with standard image analysis software crossing the
grids with different spatial periods [14,17]:

M f( ) �
I max − I min

I max + I min
[ ]

f( )
(2)

Imax and Imin are referring to the maximum, respectively
minimum signal intensity in modulation. The measured intensity
modulation M(f) versus the available discrete spatial frequencies 1/ai
is representing a discrete sampling of the MTF:

M f� 1
ai( )) ∝MTF f( ) (3)

Usually, a rather continuous decrease of the MTF with higher
spatial frequencies is observed not only for MRI but also for other
imagingmodalities. Using grids of plates inMRI only discrete spatial
frequencies are available for the measurement of profiles.
Interpolation of the Modulation M(f) between these discrete
frequencies up to the available highest spatial frequencies
determined by the smallest spatial periodic distance might
therefore be used for an approximation of the real MTF of the
imaging system (see also Figure 12).

In MR imaging devices the relative modulation depth M(f)

remains relatively constant at lower spatial frequencies but

reduces significantly at higher spatial frequencies. Therefore, a
resolution criterion referring to a critical high bandpass cut-off
frequency is defined: fcut-off � 1/acut-off. Different criteria on the critical
amount of reduction inmodulation depth with higher spatial frequencies
f = 1/a might be used for the quantification of a spatial cut-off frequency
fcut-off, thus defining the spatial resolution, for instance [14]:

MTF fcut−of f 50%( ) � 0.5MTF f−>0( ) (4)
or MTF(f cut−of f ) � 0.265MTF(f−>0) (Rayleigh criterion), often used
in X-ray microscopy [28]. The critical cut-off frequency then might
be determined from the intersection of the defined critical
modulation level with the MTF by reading the relevant
corresponding cut-off frequency fcut-off, (see. also Figure 12).

We propose an additional criterion related to the relative
noise rN, as the qualitative decision on the differentiability of an
intensity line versus a background signal also depends on noise in
the image:

Mtf f ≥ kp
�
2

√
rN (5)

We define the relative noise rN here as the ratio of the standard
deviation σ of the background image signal intensity to the
maximum modulation depth Imax-Imin present, e.g., at a low
spatial frequency, where the object modulation is approaching
the maximum modulation in the image:

rN � σ
I max − I min

(6)

The coverage factor kp can be set by the user. It represents a
parameter, for which a predefined level of confidence for the
difference of the modulation Imax-Imin from image noise can be
achieved [29]. As an example, a high probability p � 0.95 is achieved
for the difference of the signal modulation to noise, setting kp = 1.95
≈ 2 (assuming a Gaussian distribution for the signal intensity with
standard deviation s and the noise being approximated by the
standard deviation σ = s of the background signal).

These definitions result in the subsequent criterion for the
critical spatial cut-off frequency fcut-off_noise, for which the
modulation reaches a non-significant level (kp =! 2):

MTF fcut−of f noise( ) � kp
�
2

√
rN ; kp �! 2( ): (7)

Other criteria for a higher (kp > 2) or lower level of significance
(kp < 2) with a certain probability might be defined for specific
imaging modalities and applications.

2.2 Technical realization of the resolution
phantom

2.2.1 Design of resolution test structure (phantom)
for MR-microimaging and MRM

2D-periodic structures in the form of two orthogonal grids are
proposed to serve as a resolution phantom for MR-microimaging
and MRM (Figure 1).

The phantom consists of a whole set of individual grids
(Figure 1) of cavities or slits in a solid base material, which
might consist of semiconductors, e.g., silicon, ceramics or—at
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best—of polymer type material. The openings are filled with an MR-
visible liquid. For the quantitative detection of spatial resolution
different sets i of grids with different lateral periodicity ai are to be
manufactured ranging from a1 = 256 μm down to about a8 = 2 μm,
e.g., in a small connected phantom of periods ai = 2, 4, 8, 16, 32, 64,
128, and 256 μm. Using intensity profiles in MR-imaging a
qualitative inspection, which of the grid slits still can be
differentiated, might be used for a quick estimation of the spatial
resolution achieved using the specific hardware and MR-protocol.
The modulation-transfer-function (MTF) may be evaluated from
these phantoms using single pixel-wide profiles according to the
methods described in the previous Section 2.1; Eqs 1–7. The spatial
resolution in MR-microimaging and MRM may be quantitatively
determined from the cut-off frequency using a criterion for the
relative modulation depth (Eq. 4) or the modulation to noise ratio
(Eq. 6 and Eq. 7).

Two orthogonal sets of grids allow for the independent
evaluation of the spatial resolution in two different orthogonal
directions with potentially two different spatial encoding methods
in the plane of the slice selection: e.g., frequency and spin warp
(phase) encoding as typical for 2D-FT MRI.

The height of the plates with reference to the width (aspect
ratio) is very important for MRI slice selective imaging with
strong anisotropic voxels, which is usually the case in standard
MR 2D-FT high resolution imaging. The selected slice in
optimum fits into the z-dimension of the plate (depth d of
the plates), in order to profit from the full modulation depth
and high SNR. For the 2D-phantoms the depth d of the periodic
structures ai > 20 μm is therefore designed to be at least 100 μm.
For the others ai < =16 μm the height is designed to be at least
50 μm (for maximum voxel size and SNR reasons). This design
poses high demands on the lithographic fabrication process
concerning achievable aspect ratios (AR), defined as ratio of
depth/lateral width: � d

a/2.

2.2.2 Technical realization of the orthogonal grids,
fabrication artefacts and restrictions

The strong anisotropy of the design structure adapted to the
usually strong anisotropy of voxels in slice selective MR-
microimaging poses high demands on the aspect ratios of the
μm-sized structures along with aspect ratios of 50–200. Deep
X-Ray Lithography (DXRL) using Synchrotron radiation with
low divergence <1 mrad is in principle able to offer such
μ-structural details in the μm-range using PMMA with sidewall
roughness of 20–30 nm [27]. The principle of the manufacturing
process is indicated in Figure 2 (see also [30]).

The manufacturing of the resolution phantom, as designed
according to Figure 1, was set-up in several steps (see also
Figure 2A).

2.2.3 Manufacturing of a high-resolution X-Ray
mask

The high-resolution mask consisted of an X-Ray transparent
support membrane (titanium foil with a thickness of 2.3 μm)
carrying gold structures (2.2 μm thick) to absorb the synchrotron
radiation during X-Ray lithography (Figure 2A). This mask allowed
for subsequent spatially selective radiation of the PMMA to make it
soluble for a wet chemical developer. ACAD-designwas first drafted for
manufacturing such a mask using electron beam lithography (EBL).
The CAD-design was set-up tomanufacture several (4 × 20) orthogonal
grid sets ranging from a/2 = 1 μm up to a/2 = 128 μm. Consequently,
after the manufacturing process several grid sets with same design had
been available. Each of these grids featured at minimum 3.5 periods of
the same plate thickness. In order to mechanically stabilize the thin
lamellae below 4 μm thickness (at minimum 100 μm height) against
tipping, small supporting struts of about 1 μm size were added
perpendicular to the plate structure of the mask design (Figure 2B).
Theywere separated from each other by about 250 μmdistance in order
to not impact the measurement of the image modulation depth.

FIGURE 1
(A) (left) Design proposal for the quality control in MR-microscopy. The test structure (phantom) for the qualitative and quantitative determination of
the in-plane spatial resolution, shown here only for one dimension, consists of several sets of periodically arranged plate walls (lamellae) characterized by
their spatial distance ai/2 at same lateral width (1µm ≤ ai ≤ 256 µm). The envisaged minimum depth of lamellae is designed to be 100 μm, thus featuring
strong demands on the aspect-ratio of the manufacturing technology. (B) (right) Frontal view of the design for two orthogonal grids, featuring
subsequently size-reduced sets of periodically arranged plates with ai+1 = ½ ai. The periodic length ai is proposed to start at a1 = 256 µm and may range
down to a8 = 2 µm. Intermediate steps in DXR-Lithography realization are possible. The two orthogonal arrangements allow for independent analysis of
two different spatial directions, e.g., phase (spin warp) and frequency spatial encoding.
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2.2.4 Synchrotron irradiation
PMMA plates of 900 μm thickness were positioned with

X-Ray mask on top to a Synchrotron radiation fan with a
width of 100 mm and a Full-Width at Half-Maximum
(FWHM) of about 4 mm. Therefore, the whole clamped
package of PMMA and mask had to be scanned through the
radiation fan to expose the whole design area of 60 × 20 mm2,
which consisted of 80 single rectangularly arranged grid design
elements (Figure 3A). The whole exposure process took around
2 h to achieve a bottom dose of around 3 kJ/cm³ in a depth of

100 μm. We used the beamline Litho 1 of the Synchrotron
radiation source KArlsruhe Research Accelerator (KARA) for
that purpose. The Synchrotron radiation is characterized by a
small divergence which allows in principle for very steep
sidewalls of the remaining PMMA (slope angle α < 1 mrad).

2.2.5 Development of phantom grid-structures in
PMMA and final preparation of prototypes

The irradiated parts of the PMMA plate were removed by
dissolving in a developer consisting mainly of 2-(2-butoxy-

FIGURE 2
(A) Schemeof the lithographicmanufacturing processwith Synchrotron radiation. The thin titanium (Ti) membrane (brown) serves as a carrier for the
thick structured goldmask (dark orange). The goldmask protects the underlying PMMAmaterial from destruction by the high intensity Synchrotron X-ray
exposure (blue arrows). (B) Enlargement of the CAD-design for the gold mask in the region of the smaller grid sets (a7 = 4 µm and a8 = 2 µm). For
improving the mechanical stability of the thin but deep lamellae, lateral support struts at 1–2 µm size were added.

FIGURE 3
(A) Photo of a section of the structured PMMA plate with several resolution phantom grid sets. The realized grid periods ai vary between 256, 128, 64,
32, 16 and 8 µm. The scale indicates cm. (B)Macro photo of one of the phantom prototypes. Two sets of grids are arranged in orthogonal directions for
independent analysis of the spatial resolution in phase and frequency encoding direction in 2D-FT MR-imaging. The largest grid with period a1 = 256 µm
can be seen, e.g., at the bottom left.
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ethoxy)-ethanol (60 vol%) and tetrahydro-1,4-oxazin (20 vol%)
for 3 h (GG, developer for PMMA). An additional dissolving
step with a mixture of 2-(2-butoxy-ethoxy)-ethanol (BDG) and
water for 20 min followed. At the end the developed
Polymethyl-Meth-Acrylate (PMMA) 3D-structure was rinsed
for 10 min in deionised water for the removal of left particles
and developing liquid. Final prototypes of the resolution
phantoms were separated from the complete irradiated hard
PMMA plate by sawing.

A macroscopic high-resolution photo of a subsection of the set
of orthogonal grid series in the PMMA layer is shown in Figure 3A.
A single grid set of one element containing two orthogonal grids is
visualized in Figure 3B.

2.2.6 Characterization of quality, challenges and
artefacts in manufacturing

A set of phantom prototypes was investigated for the achieved
fabrication quality with regard to.

• achievable maximum spatial frequencies,
• plate-slit ratio: achieved lateral width of the plates in
comparison to the scheduled open areas in between,

• height of the plates with reference to the width (aspect ratio)
and slope,

• manufacturing artefacts and mechanical stability.

For this purpose, the subsequent analysis tools have been used:
a) frontal optical microscopic image (distances were digitally
gauged); b) Scanning Electron Microscopy (SEM) for more
accurate measurements in distances, lateral visual inspections,
e.g., for determination of the steepness of the walls, details of
artefacts and PMMA-structure; c) MR-microscopy was also
helpful in the evaluation of overall distances and height of the
microstructures.

2.2.6.1 Evaluation of maximum achievable spatial frequency
The final implementation version featured PMMA plates/lamellae of

100 μm depth in PMMA. Stable and correctly aligned plates were
observed at best down to a lateral width of 4 μm (Figure 4). This
corresponds to a maximum spatial frequency of f = 1/a = 125/mm.

2.2.6.2 Evaluation of slit opening to solid-plate-thickness
ratio

The slit width of the open area in between two plates was
compared to the plate thickness using the frontal optical views at the
topmost position. The ratio is relevant for the intensity modulation
in theMR-image evaluation. For the bigger sized structures, the ratio
was close to one; the optically derived distances for smallest aligned
lamellae however showed slightly bigger slits than plate thickness,
which might have been due to the focus depth of the optical
microscope and therefore ranges within errors. Scanning Electron

FIGURE 4
(A) Optical microscopic frontal view of the small-scale grids in the XRL phantom. Intact grids with spatial periods of 64 µm (topmost), 32, 16 and
8 µm (lowermost) were observed. The smallest correctly aligned plates featured a spatial width of 4 µm corresponding to a spatial frequency of 125/mm.
Plates with even smaller thickness are not aligned parallel anymore and do lack periodicity. The slit to plate thickness ratio is close to one. (B) top High
resolution optical microscopic frontal view of the smallest scale grids in the XRL phantom. The thin plates of 2 µm thickness were tilted and
interfolded with neighbouring plates due to lacking mechanical rigidity. The rectangular, stabilizing bars (top side) were only capable to keep the spatial
distance between the plates for lateral distances to about 10–30 µm. (B) bottom Lamellae below 2 µm thickness (a8/2 = 1 µm) at top side right border of
the grid showed splitting off and destruction.
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Microscopy (SEM) evaluations featured improved accuracy and
resolution. They also offered the possibility for lateral views and
evaluation at different depth (Figures 5, 6).

The slit-to plate-thickness-ratio (duty cycle) for the highest
spatial frequency f = 125/mm amounted to 1.08. The other
spatial frequencies featured ratios even closer to one. These

values are considered to be excellent in comparison to other
manufacturing technologies.

2.2.6.3 Aspect ratio and slope
The height of the plates with reference to their width (aspect

ratio) could only be checked using lateral views available with SEM

FIGURE 5
(A) SEM frontal view of the grid with nominal spatial period a = 128 µm in the XRL phantom. The slit opening was measured to be 63.4 µm, whilst the
width of the bar was indicated to be 63.9 µm. (B) SEM frontal view of the small-scale grids in the XRL phantom. The slit width for the smallest correctly
aligned plates featured a little higher distance (4.20 µm) than the solid plate thickness (d = 3.89 µm) at the surface.

FIGURE 6
(A) SEM lateral view of one plate/lamella (a/2 = 64 µm) for a manufacturing batch with 60 µm nominal structure depth. The actual structure depth
was about 63 µm. The orientation of the massive walls against the PMMA-base plate was excellent, close to 90°. Note the small grooves at both sides at
the foot of the 64 µm wide plate. Please also note, that the SEM view was obtained with a tilting angle of 30°, which results in a distortion (shortening by
factor 2 in indicated scale) in depth direction. (B) SEM view of the DXRL phantom (60 µm depth) in the high spatial frequency region. The grid plates
with smallest width, still aligned correctly, feature a spatial distance (a/2) of about 4 µm (aspect ratio: � 15). Note the excellent slope of the rigid PMMA
walls close to 90° with no measurable difference between the width at top and bottom position.
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for low lithographic depth of about 30 μm in first batches (Figure 6).
The full depth was evaluated in the final batch (depth � 100 μm)
using MR-microscopy lateral (sagittal) views.

In etching based lithographic technologies usually the
lateral open areas (slit opening) in between the massive bars
on top of the structured grids feature a broadening with
comparison to the bottom deep areas due to the different
time of the lateral etching process. This results in non-
rectangularly formed plates and a slope of the side walls
deviating from 90°. Using DXRL no differences between top
and bottom width of the grid lamellae/plates could be detected
within measurement accuracy (slope = 90°). In this work the
depth (height) of the massive plates in the different grids was
evaluated to be d � 100 μm using MRM. Thus, the highest aspect
ratio (AR) was achieved for the intact correctly aligned and
mechanically stable plates of 4 μm width: AR = 100 μm/4 μm =
25. The SEM views demonstrated, that smaller lamellae can be
obtained in principle by DXRL, but these have not been
mechanically stable for the specific phantom design with
high lamellae length at 100 μm depth demonstrated by the
tilting against each other (Figure 4B and Figure 6B).

2.2.6.4 Artefacts and mechanical stability
The main technological problem in manufacturing of the

highly anisotropic grid structures was represented by the
mechanical stability of the thin lamellae beyond about 4 μm
thickness (Figure 6B). The consequence of the mechanical
instability resulted in bowing of the thin plates at 2 μm
thickness (Figure 7A). This results in non-aligned parallel
plates, such destroying periodicity. The even smaller lamellae
tilt against each other and glue together when being flushed with
developer liquid. This artefact could already be observed in the
optical frontal microscopy views (Figures 4A, B). More details

could be observed in the high-resolution SEM images
(Figure 7A).

For the very thin lamellae below 2 μm width, additional bars
rectangular to the plane of the lamellae are added to mechanically
stabilize height and distance. This principle worked but only for
lateral distances of about 10–30 μm length.

There had been differences in the quality of the final phantom
grids, some of them showing hardly any destruction in the
outermost lamellae. The areas close to the stabilizing
rectangular bars could in principle be used to check spatial
resolutions with f = 250/mm or even 500/mm in the direction
rectangular to the stabilized lamellae (e.g., x-direction), if the
associated lateral (y-) pixel size would be chosen to be smaller
than the bowing distance, for example, in the shown example:
about 5–10 μm.

A frontal overview of a well manufactured prototype is shown in
Figure 7B. Note the excellent parallel alignment of the grid plates down
to lamellae of 4 μm width, corresponding to spatial frequencies of f =
125/mm at about 100 μm height. According to our knowledge this
frequency is sufficient for checking the spatial resolution of all
commercially available MRM systems.

2.3 Aspects of phantom sample preparation
for optimum quantification of resolution in
MRI-microimaging

Please note that the PMMA structure cannot be visualized directly as
the T2-relaxation time is too short for standard MR-spin echo encoding.
Therefore, the final phantom was designed such that the solid PMMA-
grid is open to at least two different lateral directions. This design allows
for the quick entering of theMR-visible liquid, for instancewater or silicon
oil. The prototype phantom grids were positioned inside of a small glass

FIGURE 7
(A) SEM frontal view of the section with grid of high spatial frequency. The smallest usable aligned plates featured a width a/2 = 4 µm. The smaller
lamellae (2 µm) bowed and tilted against each other destroying periodicity or evenmiss opening in between. Stabilizing bars rectangular to these lamellae
have been implemented in the design (top), but thesewere only able to keep alignment of the plates on lateral distances of about 10–30 µm. (B)Overview
frontal SEM image of a well performing phantom. The grids shown range with periodicity a in between ai/2 = 128 μm, 64, 32 16, 8 and 4 µm. All of
them could be used for quantitative evaluation of the MTF [here in x-direction (left-right)]. The smaller ones exhibit bowing and non-aligned lamellae.
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tube (inner diameter di = 4mm), which was filled with silicon oil instead
of water in order to avoid the disposition of air bubbles especially in the
small slits, often observed for water fillings (Figure 8). Water, in general,
exhibits high dielectric permittivity (with reference to silicon oil) related to
low wavelength of the used radiofrequency fields in MRI, which might
result in dielectric resonances and B1 inhomogeneity artifacts for large
body phantoms [31]. However, this feature of water represents no
problem for the usage of small sized phantom containers as proposed
here. The fixation of the PMMA grid phantom plate was performed by
styrene foam, as we observedmovements of some of the tiny grids during
the measurements.

2.4 MR-microimaging and microscopy

2.4.1 Hardware and MR-protocols
MR-microimaging and MRM for checking the suitability of the

manufactured prototype test pattern was performed on a high-field
(7 T) human MR-scanner (SiemensMagnetom 7T) equipped with a
prototype strong gradient system (G = 750 mT/m) and sensitive
radio-frequency detectors (rf-coils) [12].

A slice-selective (2D-FT) Turbo-Spin-Echo (TSE) sequence
(“tse2d1_10”) with different spatial encoding in the two
orthogonal directions (frequency (x) and phase encoding (y)) was
evaluated using different nominal spatial resolution with PS = 78 ×
78 μm2 down to PS = 31 × 31 μm2 in-plane and a slice thickness of
120 μm (Figure 9).

3 Magnetic resonance exemplary
evaluation

3.1 Quality control on spatial resolution:
Procedure for qualitative check

A quick qualitative determination of the spatial resolution might
easily be obtained from a visual inspection of the MR-image. An
example of such an evaluation is shown in Figure 9.

Firstly the reference slice is carefully aligned with the plane of the
two rectangular grids (see Figure 9B). Using a 64 × 128 Mtx a pixel
size of 78 × 78 μm2 for the microscopy regime is obtained
(Figure 9A). The grids with periodicity a down to a1/2 = 128 μm
can be differentiated. A minimum resolution of 128 μm can be
proved for both frequency (left-right) and phase (top-bottom)
encoding direction for the Turbo-Spin-Echo sequence (band-
width bw = 100 Hz). However, the single lamellae at lateral
width and distance of 64 μm of the grid with half periods a2/2 =
64 μm cannot be differentiated any more.

Increasing the matrix size to 96 × 192 at similar FOV (4.8 ×
9.8 mm2) results in smaller pixels (50 × 51 μm2). The nominally
higher resolution can be proved by qualitative inspection of the MR-
microscopic images (Figure 9C). The slits with a2/2 of 64 μm in
phase (y-) and frequency encoding (x-) direction can be
differentiated. Please note, that two slits of the grid lamellae in
phase encoding direction can hardly be separated due to partial
volume coverage of the neighbouring pixels. Such an appearance is
typical for a case when the pixel size approaches the grid pattern
with regard to size (Moiré-effect). It is hardly observed any more, if
the pixel size is further reduced to, e.g., ps: 39 × 39 μm2 (Figure 9D).

3.2 Quality control on spatial resolution:
Procedure for quantitative check

The procedure is explained on the example of an MR-
microscopic image (pixel size ps: 31 × 31 μm2, Mtx: 160 × 320,
3 slices, slth = 120 μm, TA = 96 s, bw = 100 Hz) positioned in the
plane of the grid (coronal) using a slice selective Turbo-Spin-Echo
sequence (TSE) with phase encoding in y- and frequency encoding
in x-direction (Figure 10).

The example demonstrates a case where a) the pixel size (31 μm)
is close to one of the grid modulations periods (a3/2 = 32 μm) and b)
the modulation to noise is rather low (signal to noise ratio � 672/73
� 9 for the signal originating from the largest grid).

The modulations are determined as mean values of differences
between the separate maxima and minima in intensity (Imax-Imin)

FIGURE 8
Macroscopic photo of the final resolution phantom in a small glass tube (inner diameter di = 4 mm). The PMMA-layer with the two orthogonal grids
is embedded in silicon oil, which acts as MR-active filling liquid in the slits. The resolution phantom is fixed in this prototype design using a styrene foam
showing air bubbles at right hand side (scale numbers indicating cm).
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for all of the 4 periods with the same spatial slit distance. For the
grid-period featuring a slit width (a/2) close to the pixel size only the
maximal 2 amplitudes (1 maximum 2 minima) are evaluated [14]
due to the problem of possible unfavourable phase shifts between
pixel grid and phantom grid (Moiré-pattern effect, see subsection
below). Table 1 indicates the measured modulation depth from the
profile using Imax-Imin data from fig. 10 and 11. For the low spatial
frequencies also a systematic regression analysis using sine functions
may be used. (Figure 11 blue and green colour lines). The data is
normalized to the modulation Imax-Imin (K=2π/256 μm) of the lowest
spatial frequency.

The normalized data on modulation variation with spatial
frequency is visualized in Figure 12 as plot of the modulation-
transfer function.

The cut-off frequency fcut-off, 50% = K50%/2π can be
determined from the regression analysis (sigmoidal fitting
curve in Figure 12) reading the spatial frequency on x-axis
for the 50% level for the MTF (black horizontal dashed line):

fcut-off, 50% = 14.5 line pairs/mm. This spatial frequency
corresponds to a half period a/2 = 34.5 μm.

The cut-off frequency for the modulation to noise criterion (Eq.
7) results in a higher spatial frequency: fcut-off, noise = 19.4 line pairs/
mm corresponding to a half period a/2 = 26 μm close to the
phantom slit width of 32 μm. For this reason, the grid (slit width
32 μm) still can be qualitatively detected by visual inspection
(Figure 10), though in single line profiles the modulation
disappears for some slits (unfavorable pixel position to slit-bar
position and low SNR).

4 Discussion

Quality control regarding the spatial resolution in MR-
microimaging and MRM was mainly performed by qualitative
inspection using objects with known structural sizes in the range
of the assumed spatial resolution, mostly close to the pixel size, e.g.,

FIGURE 9
(A) In-plane (coronal) slice selective MRM-scan (pixel-size ps: 78 × 78 μm2; slth = 120 μm;Matrix Mtx: 64 × 128, FOV: 5 × 10 mm2). Only the grid with
periodicity a1/2 = 128 µm can be detected in frequency (x) and phase encoding direction (y). The smaller ones cannot be resolved. From qualitative
inspection the resolution of the MR-scan is proved to be at minimum 128 µm. (B)MR-axial scan of the phantom used as localizer for accurate placement
of the MR-excited slice in the plane of the 2 orthogonal grids. The transverse (axial) scan crosses the vertical grid and thus allows for positioning of
the slice. (C) In-plane slice selective MRM-scan (Voxel-Size VS.: 50 × 51 × 120 μm3). Mtx: 96 × 192, middle of 3 slices, phase encoding direction: (y). Only
the grids with half periodicity ai/2 = 128 μm, and 64 µm can be differentiated. The smaller ones cannot be resolved. From qualitative inspection the
resolution of the MR-scan is proved to be at minimum 64 µm. Note the apparently lower modulation depth for the second slit of the a2/2 = 64 µm grid in
phase-encoding (y-) direction which appears at lower intensity than the other maxima due to partial volume coverage of the tiny slit by the neighbouring
pixels. (D) In-plane (coronal) slice selective MRM-scan (ps: 39 × 39 μm2, slth = 120 µm). Mtx: 128 × 256, middle of 3 slices, phase encoding direction: (y).
Only the grids with periodicity a1/2 = 128 μm, and a2/2 = 64 µm can be differentiated. The partial volume coverage artefact, as observed in (C) for one slit
in phase encoding direction disappeared. The smaller grid lamellae cannot be resolved. From qualitative inspection the resolution of the MR-scan is
proved to be at minimum 64 µm.
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tiny polymer beads [32]. The relevance of the concept of the MTF
and Point Spread Function (PSF) for describing principal limits in
spatial resolution in MRI has long been recognized [17,33].
Systematic investigations based on the MTF however, have been
rare and, when performed in the context of MR-microimaging or
MRM, have been mainly relying on lithographically etched
structures using silicon wafer material as available for
microelectronics [11,26].

Pixel sizes down to 1 × 4 μm2 have been reported [26] using an
experimental MR-microscopy system with strong gradients (G =
12 T/m). The authors also indicated the necessity for tools for
proving spatial resolution up to this 1 μm regime. They indicated
their limitation to letter lines of 3 μm at 75 μm depth. The
corresponding MR images were characterized by high slice
thickness and anisotropic voxels (ΔV = 1 × 4 × 75 μm3). Two
lines of 5 μm width were resolved. The same authors also reported
about the difference between pixel size and spatial resolution and the
challenges in the manufacturing of resolution phantoms and objects
with strong anisotropy necessary for high slice thickness and SNR.
Their approach for manufacturing of phantoms with advanced deep
lithographic etching processes was based on anisotropic plasma
etching in silicon.

With difference, we demonstrate the use of an alternative
deep anisotropic lithographic method based on Synchrotron

irradiation (DXRL) for the manufacturing of sets of orthogonal
grids.

Technical realizations featuring a full set of grids with varying
spatial frequencies were restricted in structural depth mainly due to
the limited aspect ratio achievable in standard lithographic etching
processes, as an example to about 32 μm slit width at about 160 μm
structural depth (AR �5) [11]. High aspect ratios (ratio of lateral
structural width to structural depth) in small grids allow for the
positioning of MR-selected slices within the grid plane and
simultaneous QC on spatial resolution in two independent spatial
directions. In standard 2D-FT imaging these are connected to
different spatial encoding principles, i.e., phase and frequency
encoding. The possibility for in plane detection of two
orthogonal grids at high structural depth allows for high SNR
due to the higher voxel size even, when single, one pixel wide
profile lines are used. Moreover it opens potential for the adjustment
and increase of the SNR by the selection of broader line profiles.

Apart from lateral etching the use of silicon phantoms may also
suffer from the inherent magnetic susceptibility difference between
the silicon material and the MR-visible liquid. In MRI QC the liquid
chosen is usually a water solution with added paramagnetic salts for
reducing the repetition time TR and subsequently the measurement
time. The susceptibility difference might result in spatial magnetic
field fluctuations resulting in spatial distortions dependent on the

FIGURE 10
2D-FT MR-scan with slice selective excitation in the layer of the 2 orthogonal grid sets (cor, VS.: 31 × 31 × 120 μm; Mtx: 160 × 256). The grid with a3/
2 = 32 µm is difficult to be detected. For quantitative evaluation using the MTF the path of a profile of 1 pixel width for the evaluation of the modulation
depth (Figure 11B) in frequency encoding direction (x: left-right) is indicated. The noise is calculated as standard deviation σ in a ROI close to the profile
outside of the grid (σ = 73.4).

TABLE 1 Calculated data for the modulation depth originating from a single line profile (Figure 10 and Figure 11). The noise criterion level is calculated from Eq. 7
from the noise defined for practicability as the standard deviation (s = σbackground) in a Region of Interest (ROI) outside of the grid but close to the path of the profile
(σbackground = 73.4).

K [2π/µm] 1/256 1/128 1/64 1/32 Noise criterion level

M = (Imax-Imin)/(Imax + Imin) 0.88+-0.04 0.79+-0.06 0.40+-0.02 0.27+-0.07 0.31

M/MK=2π/256 µm 1.00 ± 0.04 0.9 ± 0.07 0.45+-0.03 0.31+-0.08 0.35
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FIGURE 11
Intensity profile along the path indicated in Figure 10 for evaluation of the relative modulation depth and the MTF. Evaluated regions for
determination of maxima and minima are indicated by colour encoded lines (fit data for modulations with high SNR are plotted). The profile line is only
one pixel wide (31 µm) and features a modulation to noise ratio for the lowest spatial frequency (left) MNR(K=2π/256 µm), � 9.2.

FIGURE 12
Normalized Modulation transfer function (MTF). The modulation of the signal intensity normalized to the signal modulation at lowest spatial
frequency M/MK=Kmin (Table 1; Figure 11) is plotted vs. the spatial frequency f. A sigmoidal function (4 parameter fit) describes the data well and may be
used for the evaluation of the cut-off frequency corresponding to the two different resolution criteria by interpolation. The resolution criterion level
(50%-MTF level: fcut-off50% = 14.5 line pairs/mm) is indicated by the dashed horizontal black line. The Modulation-to Noise-criterion (Mcrit = kp√2
σnoise/<Imax-Imin>; kp = 2) is also shown as red dashed line (fcut-off_noise = 19.40 line pairs/mm).
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phantom and its orientation to the magnetic field. Such phantom-
induced spatial distortions due to susceptibility differences increase
with magnetic field strength. Silicon based resolution phantoms
might, therefore, not be ideally suited for MR-microscopy, which is
typically performed on high magnetic field magnets in order to
benefit from increased signal to noise ratio.

Both of these restrictions are overcome using PMMA phantoms
fabricated by DXRL [34] along with chemically inert silicon oil used
as an MR-visible liquid, which also is less sensitive to air bubble
appearance than water solutions.

The structural draft was designed for the very challenging
minimum structural width of 1 μm at 100 μm depth (AR = 100).
Actually, aspect ratios of AR = 4 μm/100 μm = 25 at very steep side
walls along with high duty cycles could be achieved using the very
low divergence of the Synchrotron radiation for structuring the
PMMA polymer down to 4 μm sized plates (lamellae). The main
restriction in themanufacturing of the phantoms was represented by
the mechanical stability of the thin lamellae plates below 4 μm at
height of 100 μm. SEM and OM results showed that the lateral
stabilization by bars rectangular to the grid lamellae was successful
only to lateral length of about 30 μm at maximum, nevertheless thus
confirming the effectiveness of the supporting tiny side bars with
regard to the mechanical stability in principle. Future realizations
with thin bar width at about 30 μm interval distance could permit
the production of grids with 4 μm slit width or even smaller plates.

The phantom application was demonstrated for several
examples of protocols with QC for spatial resolution on a
microscopy insert to a high-field 7T human scanner. A quick
qualitative check of spatial resolution in two different spatial
directions for phase and frequency encoding could be performed
in the microscopy regime (ps < 100 μm) at the same time using a
coronal or sagittal slice positioned within the plane of the grid. The
spatial distortions due to susceptibility differences are small even at
low bandwidth for this phantom. Also, the procedure for the
quantitative evaluation of the interpolated MTF of an MRM TSE
protocol was demonstrated on principle within an example of low
SNR. The cut-off frequency for a predefined modulation threshold
(50%) has been determined by interpolation of the discrete MTF
evaluations. In addition, the spatial resolution, limited by the
modulation-to-noise (MNR) criterion, could be determined using
the MTF graph with inserted noise level indication. From our
experience there might be some practical problems, inaccuracies
and uncertainties in quantitative evaluations on grid structures with
regard to the proposed MTF procedure, which are shortly discussed
below.

4.1 Pixel position with reference to grid
modulation (Moiré-pattern effect)

In unfavourable situations, when pixel size is close to the
smallest slits, one pixel might be positioned such that ½ of it is
covering a massive bar (no signal) and the other half is situated in the
slit with the MR-active liquid (max. signal); the next pixel might
experience a similar situation. In such a case (phase difference
between the pixel grid and the phantom grid Δϕ = π/2) there is
hardly any difference in signal observed (medium grey level for both
pixels: the modulation disappears for neighbouring pixels (M = 0). If

these pixels would be shifted by half the slit width against the grid
such that the phase shift between the pixel and grid pattern vanishes
(Δϕ = 0), the modulation could be maximal (one pixel covering the
slit, the next pixel covering the bar): Mth = 1 (problem of
dependence of modulation depth on the phase difference
between pixel grid and phantom grid modulation phase: aliasing
or Moiré-effect).

This effect might be effectively reduced by slightly tilting the
profile path against the investigated encoding direction. The
procedure results in a varying phase shift for the 4 different slits
and the modulation for the slit and bar with maximum modulation
depth may be evaluated as proposed in [14].

4.2 Noise overlay on modulation

For quantitative evaluation of the modulation depth the
evaluation of intensity maxima Imax and minima Imin does
include the additional contributions of the noise. A quantitatively
potentially more precise procedure would therefore include a
regression analysis (fitting) of the periodically modulated
intensity by a set of periodic rectangular functions for the
amplitudes including a constant intensity offset y0 and a phase
fitting parameter for each spatial frequency of the phantom grid
(Ki = 2π/ai) thus removing noise fluctuations. However, this
approach fails if the pixel size approaches the grid pattern half
period due to aliasing (Moiré-effect). In practice the influence of
noise on the measurement might be reduced by averaging of the
several different maxima-minima differences in order to obtain a
mean modulation for all of the 4 slit bar periods.

4.3 Interpolation inaccuracy

The cut-off frequency is determined using a regression analysis
for the discrete Ki measured MTF data and interpolation from this
fitting procedure. The evaluation is subject to errors in the indiviudal
modulation measurement. The measurement of modulation is
limited to discrete spatial frequencies and interpolation might not
accurately represent actual modulation values. The interpolation
related inaccuracy could be improved using smaller steps ΔKi, e.g.,
by adding a grid with slit width of 48 μm in between 32 and 64 μm
width or adding in design two sets of grids in parallel, one starting at
a1/2 = 128 μm (64 32, . . . 4 μm) and the second starting at 96, 48, . . .
2 μm. However, this 2-grid solution demands for two profiles for the
improved discretized MTF evaluation.

The investigated prototype phantom offered maximum spatial
frequencies corresponding to the 4 μm slit width (f = 1/(8 μm) =
125 mm−1, 125 lp/mm) in manufacturing, which would have been
sufficient for presumably more than 99% of the published MR-
microscopy reports.

4.4 Position of slice and ROI for MNR
evaluation, B1-inhomogeneity

The measurement of noise, estimated by the standard deviation
in a ROI outside of the MR visible object, might be varying with the
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position of the ROI. An example might be represented by sensitivity
encoding with several rf-coils as the noise might depend on the
distance to the most relevant rf-sensor. Each MRI-sensor (rf-coil)
features a local sensitivity distribution. This might result in a local
variation of signal intensity and modulation. We therefore propose,
to position the ROI for noise measurement as close as possible to the
measured modulation profile (see comment in the legends of
Figure 10).

The slice should be positioned as accurately as possible in the
level layer of the grid. Otherwise, the measured image and profile
could pass regions outside of the grid resulting in additional offset
intensity with a) positive sign (if the image slice is located above the
grid in the MR-active liquid) or b) negative if the slice is located in
the massive plate giving no signal to modulation. The necessity for
accurate positioning is especially relevant, if the slice thickness
approaches the grid height.

4.5 Sample dependent spatial resolution

We would like to point within this discussion also to a more
general aspect of QC on spatial resolution: the impact of sample
specific characteristics on the capability of anMR-imaging system to
differ spatially between neighboring objects.

There are several physical and chemical properties of the
sample itself, which might have impact on the spatial resolution
of an MR imaging device (see, e.g., [5,35]). These are for
instance: the magnetic susceptibility and its inhomogeneity,
the chemical environment of the detected 1H-nuclei (chemical
shift difference between neighboring voxels), the diffusivity of
the molecules, the molecular mobility, the MR-signal
dephasing, characterized by T2* with regard to the linewidth
of the spectral signal and the signal decay by T2 in Multi-echo-
encoding pulse sequences. Though the discussion of all of these
factors is beyond the scope of this article, we would like to
demonstrate this impact by an example:

We might consider the extreme case of porous media, where
magnetic susceptibility differences between the solid material
and the enclosed liquids or gases are estimated to result in
internal magnetic field gradients Gint up to few 10ths of T/m
[36]. Such strong internal gradients result in high linewidth (lw
� γ Gint Δx) for the individual volume at interest at pixel size Δx
and very short T2* decay of the MR-signal. Assuming a pixel
size and distance of 10 μm and an internal sample specific field
gradient Gint = 20 T/m for the extreme case of a porous rock
media, a high linewidth of the MR-signal (lw � 8.52 kHz/pixel)
is expected. Even maximum available gradient hardware on
special microscopy systems as, for instance, featuring a gradient
strength G = 12 T/m [26], are not capable to separate these two
pixels at 10 μm distance in frequency encoding direction (not
considering limitations due to the necessity for quick
acquisition of data during the fast signal decay).

The actual achieved spatial resolution in MRI (close to the
limits of an apparatus) might be sample specific (as is the case
for other imaging modalities) and the spatial resolution in vivo
on humans might differ between regions close to “porous
media” like the lung or close to the ear channel and
homogenous (with regard to B-field) regions, e.g., the

cerebellum in the human brain. A typical linewidth in
human tissue after shimming is in the order of 70 Hz, similar
to the linewidth we have measured for the resolution phantom
with silicon oil (lw � 65 Hz).

Actually, this sample specific aspect represents the reason,
why phantoms with defined MR-relevant properties and low
magnetic susceptibility differences are proposed for QC on
spatial resolution and recommended in guidelines for QC on
spatial resolution [14–16]. Strong susceptibility differences
resulting potentially in strong magnetic field local gradients
are present around air bubbles in water and should be avoided
in phantoms for QC for geometric accuracy or spatial
resolution. For avoiding air bubbles and susceptibility
differences we used silicone oil, which - in connection to the
PMMA material - resulted in a low value of the spectral
linewidth of the phantom.

The availability of a standardized resolution phantom,
without necessity for dealing with varying biological tissue
characteristics with impact on resolution, facilitates the
systematic improvements and optimization of MR-scanner
hardware, pulse sequences and even MR protocol
optimization. With regard to spatial resolution the phantom,
in principle, allows to study not only the impact of gradient
performance, e.g., strength and switching behavior, but the
influence of most of the multifold factors originating from
the individual local specific MR-apparatus installation. This
includes the impact of main hardware components, magnetic
field (B0-) homogeneity, rf-transmission and reception (rf-
coils), postprocessing of data including nominal resolution
enhancement by Deep Learning and AI-routines. Even MR-
protocol parameters (like shimming protocols, bandwidth,
Turbo factors in TSE, EPI-factor, GRAPPA factor, fast, and
slow gradient switching) usually adjustable by the operator on
the MR-scanner might be evaluated for their impact on the
spatial resolution of the image.

Consequently, the described phantom might be a very useful
tool for optimizing MR-protocols for improving resolution in the
microimaging range, available now also on clinical MR-scanners. In
addition, the microscopy range of animal scanners and even
hardware performance of the best performing MR-microscopy
scanners could profit from such a resolution phantom. We wish
to offer these phantoms for systematic QC to interested users for
research and resolution improvement on their specific MR-scanner,
if we are asked for, as long as already manufactured phantoms are
available.

4.6 Perspectives for usage with other
imaging modalities

In principle the manufactured phantoms, prospectively, can
also be used for other high-resolution imaging methodologies,
for example, μCT [22, 23, 24] or Optical Coherence
Tomography (OCT) [37]. There are options for varying the
contrast in these imaging modalities by adding different add-
ons to the MR-visible liquid. Such a resolution phantom for
MR-microscopy and perspectives for other imaging modalities
did not yet exist.

Frontiers in Physics frontiersin.org15

Berg and Börner 10.3389/fphy.2023.1144112

52

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1144112


5 Summary and conclusion

A phantom design for the quality control on spatial resolution in
MR-microimaging and microscopy is proposed. In specific the grid
test structure is designed for the qualitative inspection based on the
minimum distinguishable grid pattern and the quantitative
measurement of the MTF for spatial resolution up to 500 lp/mm.
Several prototypes, specifically designed for slice selective 2D-FT
encoding, were manufactured using the extraordinarily high aspect
ratios available with Synchrotron based Deep X-Ray Lithography
(DXRL) in the polymer PMMA. They were checked for the achieved
maximum spatial frequencies, aspect ratio and duty cycle using
optical and electron microscopy. A minimum slit width (amin/2 =
4 μm) at about 100 μm lamellae depth was achieved corresponding
to 125 lp/mm.

This phantom for QC allows for a quick qualitative check on
spatial resolution in two independent spatial encoding
directions at high SNR due to the usability at high slice
thickness with small pixel sizes as typically used for 2D-FT
slice selective MRI. Examples for visual qualitative inspection
are shown for several MR-protocols with pixel size in the MR-
microscopic regime (ps < 100 μm).

A simple physico-mathematical practical procedure is
proposed for MR-evaluation for deriving a quantitative
number on spatial resolution based on the MTF. The critical
level of modulation for defining a resolution criterion is fixed and
the practical method for the evaluation of the cut-off frequency is
shown. In approaching visual impressions on spatial resolution
in images an additional criterion derived from the modulation
depth to noise ratio (MNR) is suggested. Two different spatial
encoding methods (e.g., frequency and spin warp encoding) can
be evaluated using one single MRI measurement of this
prototype phantom. The evaluation is demonstrated on the
example of a slice selective fast Turbo-spin-echo (TSE) MRM
protocol with low SNR. The spatial distortions due to
susceptibility differences are considerably low with
comparison to silicon based phantoms with water from our
experience, thus offering best performance also for high field
MR-scanners. The prototype phantom not only offered the
possibility for a quick qualitative visual impression of the
spatial resolution via grid pattern differentiation but also
allows for the determination of quantitative numbers on the
spatial resolution. Though the envisaged minimum structural
size of 1 μm in the realized specimen could not be achieved, the
developed prototype offers already unique possibilities for the
quantitative evaluation of 2D spatial resolution within QC in
slice selective 2D-FT imaging for commercial preclinical and
prototype research MR-microscopy systems.

Due to the improvements in hardware, effective spatial encoding
by small rf-coil arrays and high sensitivity achieved especially at
Ultra-High-Field human MR-scanners the microscopic range with
pixel size below 100 μm becomes more relevant for the early medical
diagnosis of pathologies and already has been reached in specific
applications. The quantitative proof of the actual spatial resolution
and improvements might be achieved using the described phantom
or similar designs not only for preclinical high-resolution MRM, but
also for such UHF human scanners. DXRL is especially suited for the
anisotropic voxel sizes typical for slice selective 2DFT.

The proposed phantoms might also be used for systematic
improvement of MRI hardware for spatial encoding, pulse
sequence optimization and adjustment of MR-protocol
parameters. In principle the manufactured phantoms
prospectively can also be used for other high resolution imaging
methodologies as, for example, μCT or optical coherence
tomography (OCT). Such a resolution phantom for MR-
microscopy did not yet exist.
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Quantitative approaches in clinical Magnetic Resonance Imaging (MRI) benefit from
the availability of adequate phantoms. Ideally, the phantommaterial should reflect the
complexity of signals encountered in vivo. In the present study we validate and
characterize clusters consisting of sodium-polyacrylate embedded in an alginate
matrix that are unloaded or loaded with iron for Quantitative Susceptibility Mapping
(QSM), yielding a non-uniform iron distribution and tissue-mimicking MRI properties.
Vibrating sample magnetometry (VSM) was used to characterize the phantom
material and verify the accuracy of previous MRI-based observations of the QSM-
based molar susceptibility (χM). MRI at 14.1 T with high resolution acquisitions was
used to determine the size of hydrogel clusters and to further investigate the suitability
of the phantommaterial as a model system for QSM at high field. VSM demonstrated
that the iron-solution used for manufacturing the phantoms consisted of ferric iron.
The χM of clusters with a constant iron-to-polyacrylate-ratio (8.3 μg/mg) observed
with VSMwas 50.7 ± 8.0 ppbmM−1 but showed a tendency towards saturation at total
iron concentrations>1mM.Onunwrapped andbackground corrected phase-images
obtained with gradient-echo MRI and an isotropic voxel size of 37 μm at 14.1T, the
iron-free clusters had a roundish shape and blurry border with an equivalent sphere
diameter of 276 ± 230 µm and a QSM of 7 ± 7 ppb. Iron-loading led to strong phase
wrapping, necessitating the use of short echo times, or short inter-echo delays below
10ms at 14.1 T. The equivalent sphere diameter of the iron-loaded clusters was
estimated to 400–500 µm as verified using different MRI modalities (spin-echo,
inversion recovery, and gradient echo MRI). With a constant iron-to-polyacrylate
ratio, the cluster density was 10mm−3 mM−1 iron. In agreement with previous
observations, χM of samples with a constant amount of polyacrylate was 50.6 ±
11.4 ppbmM−1 at 3 T while samples containing clusters with a constant iron-to-
polyacrylate-ratio yielded χM = 56.1 ± 6.3 ppbmM−1 at 3T and 55.6 ± 0.7 ppbmM−1 at
14.1 T. In conclusion we found that the molar susceptibility of the proposed model
system corresponds to that predicted for ferritin in vivo loaded with 3000 iron atoms.
The reproducibility was within 12% across MR scanners, batches, and phantom types
and compared well with results obtained with vibrating sample magnetometry.
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Introduction

Magnetic susceptibility is a fundamental property in MRI and is
useful to characterize the microstructure of tissue in quantitative
terms. Indeed, quantitative susceptibility mapping (QSM) has been
used to measure calcifications, venous oxygen saturation and iron
content [1–9]. QSM has also recently been proposed as a tool to
estimate the plaque load in patients with Alzheimer’s disease
(AD) [10].

An important advantage of QSM is that its quantitative values
do not depend on the strength of the static magnetic field at which
the measurements are carried out, unlike other MRI properties.
Therefore, QSM lends itself to multi-center studies and widens the
applicability and comparability of MRI results between sites
compared to other quantitative parameters. On the other hand,
the quality of the QSM results depends on and can be influenced by
the image acquisition itself and the many different processing steps
that are required to quantify susceptibility. Therefore, novel
procedures that can be used to ascertain a correct quantification,
not only in terms of reproducibility but also accuracy, is a
requirement. To verify different post-processing algorithms,
suitable data sets in form of actual in vivo acquisitions [11] or
realistic simulations [12] have been made available.

Development of QSM phantoms suitable to assess the many
factors influencing quantification are underway, and contain single
susceptibility sources [13, 14] or mixtures [15] aimed to capture
more of the complexity encountered in vivo. Indeed, iron, which is
the most abundant susceptibility source in the brain is not
homogeneously distributed in the tissue with reported iron
concentrations of 0.56 mM in the cytoplasm and 0.96 mM in the
nucleolus of neurons and up to 3.05 mM on average in
oligodendrocytes [16].

We recently developed a phantom consisting of iron which is
clustered in hydrogels [17]. QSM was measured at 3 T (two different
vendors), 7T and 9.4 T for a phantom containing vials with different
iron concentrations (12.5–100 μg/mL aqueous solution)
corresponding to about half of those typically found for non-
haeme iron in brain tissue in vivo (25–223 μg/mL brain) [18].

In healthy subjects, the reported QSM contrast related to non-
heme iron in healthy subjects falls within a range of 0.52–1.34 ppb
per µg iron per g tissue [19–22]. These values translate into
1700–4300 iron atoms per ferritin molecule, assuming a
susceptibility of 520 ppm for fully loaded (4300 iron atoms)
ferritin [23]. In the parietal cortex of ex vivo brain, a load of
1500 iron atoms has been observed [24]. QSM contrast can also
be defined in terms of molar susceptibility, χM (which we have
previously termed “QSM-relaxivity”, in analogy with the
longitudinal and transverse relaxation parameters [17]) to
quantify the iron concentration that changes the magnetic
susceptibility by 1 ppm, or perhaps rather 1 ppb, which more
reflects the subtle field effects observed in human brain tissue.
Assuming ferritin with an iron load of 4300, χM is 72 ppb mM−1

iron, while a load of 1700 corresponds to 28 ppb mM−1, considering
a brain tissue density of 1.04 g/mL [25] and taking into account the
difference in the fraction of macromolecules between brain regions.

The proposed clustered Iron phantom yielded a molar
susceptibility, that is, within the range of that expected for
ferritin, being 54 ± 13 ppm mM−1 as an average value observed

across four different scanners at three sites. However, validation of
the observed QSM values through magnetometry measurements
were lacking. Therefore, in the present study, we performed
vibrating sample magnetometry, MRI-assessments at 3 T with the
protocol established previously, complemented by MRI at 14.1 T
using high resolution acquisition with voxel sizes between 0.037 and
0.2 mm.

Methods

Sample preparation

As described previously (cfr Figure 1 in Ref. 17), the samples
consisted of iron solutions at four different concentrations (0.2,
0.4, 0.8, and 1.6 mM) placed in 4 mL cylindrical scintillation
counting vials (high density polyethylene, # HEE8.1 Carl Roth,
Germany, height: 53 mm, diameter: 14 mm). The samples were
manufactured in two steps. In step 1, 0.04 g alginate (Alginic acid
sodium salt, Carl Roth, Germany) per milliliter of water with
30 μmol/L gadoteric acid (Dotarem, Guerbet, France) added to
shorten T1 were mixed overnight (>12 h), until a clear, slightly
yellowish, highly viscous liquid/gel was obtained. Next, 0.0125,
0.025, 0.05, or 0.1 mg/mL free iron (single-element atomic
absorption spectrometry (AAS) standard-solution, 1,000 mg/L,
matrix: 2% HNO3; Carl Roth, Germany) was absorbed in
sodium polyacrylate (NaPA), Spectra/Gel Absorbent, Spectrum,
United States) to generate iron clusters, by stirring until the liquid
was completely absorbed and homogeneously distributed in the
NaPA gel. This could be recognized by the uniform distribution of
the red-brown coloration (probably due to hydrolysis and
formation of increasingly poorly soluble condensates of
(FeOOH)x aq.) produced during mixing in the solid
polyacrylate hydrogel. Either a fixed amount (120 mg in
Phantom 4, which was the same as for Phantom 1 used in our
previous multi-centre study [17]) or increasing amounts of NaPA
were used (15, 30, 60 or 120 mg for Phantom 2 and 3, to keep the
mass ratio of iron to sodium polyacrylate fixed at 8.3 µg Fe/mg
NaPA). To prepare the final samples, 10 mL of the alginate/
Dotarem mixture from step 1 was added and the samples
mixed thoroughly. Finally, the samples were allowed to stand
until all air bubbles were gone. For the MRI acquisition, the
samples were then resuspended with 1 mL syringes, avoiding
the formation of air bubbles, and transferred to the scintillation
vials until these were completely filled. When closing the vials, any
larger inclusion of air below the lid must be avoided. This thus
yielded final iron concentrations of 0.2, 0.4,0.8, and 1.6 mM for
both phantom types, which were kept at room temperature
throughout the study. In the first type (each vial contained the
same fixed amount of NaPA), samples with a varying amount of
iron per cluster were obtained. In the second type, a fixed amount
of iron per cluster were generated. As will be shown in the course of
the present work, the second type of phantom allowed to spatially
separate single clusters from each other, and in different vials with
increasing amounts of iron, an increasing number of clusters could
be observed (cfr Figure 12, Figure 13, Figure 14). For the
magnetometry measurements, samples without any NaPA
clustering agent (‘free iron’) were also manufactured.
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Magnetometry

Magnetometry was performed using a commercially available
SQUID magnetometer (MPMS3, Quantum Design GmbH,
Darmstadt, Germany). The system was operated in the vibrating
sample magnetometry (VSM) mode. Measurements were performed
on the samples containing free iron and the iron-clusters with a
constant iron-load. The AAS standard iron solution alone was also
measured at the two highest concentrations. For each sample, slightly
less than 1 gwas gently positioned on a thin glass-membrane positioned
atmid-height of a cylindrical high purity quartz cuvette, substituting the
conventional straw holder. The change inmagnetization (2 s averaging)
as a function of temperature was measured at 0.2 T (2000 Oerstedt).
The temperature was lowered from 300 to 2 K, first at a rate of 50 K/
min, and below 250 at 10 K/min. At a temperature of 2 K, the change in
magnetization as a function of the applied external field µ0H
between ±6 T was assessed (10 s averaging). The hysteresis curve
was fitted with a Brillouin function. The results obtained from the
samples total magnetization (expressed in electromagnetic units per
Gram, emu/g) was converted from this CGS unit to ppm values in SI
units based on the density of the samples obtained with mass-
calculation and multiplication with 4π.

MRI acquisition

For scanning at 3 T (Prisma fit, Siemens Healthineers, Erlangen
Germany, software: Syngo MR E11), all vials were placed inside a

water-filled (0.9% NaCl) cylindrical, ca. 3.2 L plastic (consumer-
grade) container (height: 160 mm, diameter: 160 mm). The 2-
channel body coil was used for transmission and the 64-channel
head/neck coil for image acquisition. After “standard mode” start
shim and the acquisition of a localizer image, field-map shimming
was performed on the field-of-view (FoV) used for multi-echo
gradient-echo 3D imaging (MGRE). Magnitude and phase MGE
images were acquired with echo times (TE) from 6 to 42 ms in steps
of 6 ms; repetition time (TR) of 53 ms; nominal flip angle (FA) 18°;
matrix size of 288 × 288 × 144; FoV of 174 × 174 × 86 mm [3];
acceleration factor (GRAPPA) of 2 and acquisition time (TA) of
14 min 41 sec. Phase images were used for QSM pipeline processing,
magnitude images were used for morphological reference. Image
reconstruction and coil-combination was performed using the
manufacturers standard methods (“adaptive combine” and
“Matrix optimization off”).

At 14.1 T (Biospec 141/30, Bruker Corporation, Billerica MA,
United States, software: Paravision 360) images were acquired for
each vial separately using the standard birdcage volume transmit/
receive coil with a diameter of 35 mm. The scanning protocol
consisted of 1) global and localized field-map shimming within a
cylinder covering the center of the vial; 2) MGRE with TE from
2.5 to 15 m in steps of 2.5 m, TR = 20 m; FA = 10°. The FoV was 20 ×
20 × 38.4 mm3 and the matrix (100 × 100 × 192) set to obtain voxel-
sizes of 200 µm (TA = 6min24 s); 3) MGRE with an isotropic voxel
size of 75 µm (FoV = 19.2 × 19.2 × 38.4 mm3, matrix = 256 × 256 ×
512), TE from 3 to 23 in steps of 4 m, TR = 37 m, FA = 10° (TA = 1 h
21 min). For both MGRE sequences, the total read-out bandwidth

FIGURE 1
Result of Vibrating Sample Magnetometry for free (P1-P4) and clustered (P5-P8) iron samples with concentrations 0.2 mM (samples P1 and P5),
0.4 mM (P2, P6), 0.8 mM (P3, P7) and 1.6 mM (P4, P8). There was an increase in magnetization with decreasing temperature at 0.2T, following the Curie-
Weiss law. At a temperature of 2 K, the magnetization of the sample changed with the externally applied magnetic field H. The induced magnetization
saturated when H = ±4 T and the relationship could be fitted using a Brillouin function The small reference Gadolinium signal (not shown) has been
removed from each curve.
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was kept constant at BW = 100 kHz; 4) a single gradient echo with a
FoV of 50 × 19 × 19 mm [3], matrix of 1340 × 512 × 512, yielding a
voxel size of ca. 37 μm, acquired at a TE = 17 ms and with TR =
42.85 ms, FA = 12° (TA = 3h12 min), BW = 44.25 kHz; 5) a set of
inversion recovery 3D MPRAGE images with voxel size of 200 µm
and inversion times TI = 25, 100, 200, 400, 600, 800, 1,000, 1,400,
1800 ms, TR = 2000 ms, FA = 8° (each with TA = 25 min 44 s); 6)
multi-slice multi-spin-echo MRI with voxel size 200 µm, TE
between 6 and 120 in steps of 6 ms, TR = 1000 ms, same FoV
and matrix as for the MPRAGE measurement (TA = 5h7 min); 7)
multi-contrast diffusion weighted imaging with voxel size 200 µm,
TE = 19 ms, TR = 500 ms and b-values of 50, 100, 300, 600, 1,000,
1500 mm2/s, applied in 6 spatial directions (TA = 3 h). The on-line
calculation tool in Paravision 360 was used to generate maps for the
apparent diffusion coefficient.

Image analysis

Parametric maps of the longitudinal and effective transverse
relaxation rates were fitted with a steepest-descent Levenberg-
Marquardt algorithm. R2* maps were generated by fitting the
square of the magnitude signal. R1 maps were generated voxel-
wise from the magnitude data. Fits were performed twice, after
determining the TI at which the minimum signal was measured. For
the first fit, all data points acquired at TI ≤ TImin were assigned a
negative sign, for the second fit only datapoints below TImin were
assigned a negative sign. The T1-fit that yielded the smallest
coefficient-of-variance was chosen for each voxel. T2 maps were
obtained using the extended phase graph modelling as described
previously [26].

Quantitative susceptibility maps at 3 T were generated with MEDI+
(http://pre.weill.cornell.edu/mri/pages/qsm.html), as described previously
in a multi-centre study [17]. Multi-echo MEDI results were obtained
using non-linear analysis of the complex MRI values with the Fit_ppm_
complex_TE function [27–29], followed by unwrapping with the region
growing algorithm, and background field removal by the projection onto
dipole fields (PDF) method [30] prior to application of the morphology
enabled dipole inversion algorithm [31], with a lambda value of 1,000.
The radius of the kernel used for spherical mean value (SMV) correction
was 5.

At 14.1 T the same MEDI pipeline, but without self-referencing
and with SMV = 0.5 was used to generate QSM for each separately
measured vial (non-linear multi-echo combination). Multi-echo
results were also combined according to a linear function, from
the B0 field obtained with ROMEO [32] (linear multi-echo
combination). Finally, we also evaluated QSM results from single
echo images using Laplacian unwrapping followed by RESHARP
[33] background removal using Tikhonov regularization with a
factor of 10−3 prior to dipole inversion with the iLSQR algorithm
in STI Suite v3.0 (https://people.eecs.berkeley.edu/~chunlei.liu/
software.html).

For the 3 T data, regions-of-interest were defined using the first
echo of the 600 micron images and the applet “volumeSegmenter”
available in Matlab version R2021b (v 9.11). For each vial, the
paintbrush tool was used to define a circle placed within the vial in
the bottom slice, and the active contour tool was used to define a
region-of-interest covering each vial. Next, the binary file,

containing one where a vial voxel is present and zeros otherwise,
was smoothed with a gaussian 10 voxel smoothing kernel, and finally
a 50% threshold was used. The so-called “CSF_Mask” (cerebrospinal
fluid mask) used for self-referencing in MEDI+ was defined by
drawing a polygon at the center of the container, just below the vial
holder, followed by the active control tool and the erode tool, with a
radius of 10 and 4 iterations. Mean values for the MRI parameters
were extracted for each vial and used for further analysis.

For the 14.1 T data, segmentation of clusters was performed in
Matlab (R2018b, The MathWorks Inc). The iron-free clusters were
identified in the unwrapped and background corrected phase image
acquired with a 0.037 mm voxel-size, after gaussian smoothing with
sigma = 2 (using function: imgauss3filt) followed by histogram
equalization (histeq) and thresholding at 0.97. For the images
obtained with 0.2 mm voxels, image-modality dependent signal
thresholding was carried out to identify the clusters, as described
in Results.

Components of the clusters, connected in 3D, were identified
with bwconncomp, considering 26 connected neighbouring voxels
(voxels with a shared side or corner), followed by regionprops3 to
approximate the size of each cluster by a sphere with the same
volume, and obtain the equivalent sphere diameter. Mean values for
the MRI parameters were extracted for the clusters and voxels
classified as background. The QSM values in the background was
used as a reference value for the measurements carried out at 14.1 T.

To evaluate the relationship between the measured parameters
(VSM, qMRI parameters, number of clusters found) and the iron
concentration in the samples, to determine the molar susceptibility
χM, linear regression analysis was performed using fitlm, and the
95% confidence interval was evaluated with predict in Matlab
version R2021a (v 9.10).

To identify voxels where static dephasing and dynamic
averaging occurred, the magnitude decay data was fitted voxel-
wise by a stretched exponential function [34]:

S TE( ) � S0 · e−
TE·Rp, eff

2
( )b

b (1)
where TE is the echo time, S0 is the magnitude at a TE = 0, R2

*,eff is
the effective relaxation rate, and b is the stretching factor yielding b =
1 for a mono-exponential function and b = 2 for a Gaussian
function. Voxels with b > 1.9 were segmented and assigned to
the “static dephasing” category, and voxels with 0.6 < b < 1.4 to the
“dynamic averaging” category.

Results

Vibrating sample magnetometry

The change in magnetization with decreasing temperature
followed a Curie-Weiss relationship, and the Brillouin function
was used to fit the change in magnetization with the external
field (Figure 1). The magnetization of free iron was markedly
stronger than that of the clustered iron. The magnetization of the
samples was saturated at applied magnetic fields of ±4 T.

The iron-solution, which is available as a reference standard for
atomic absorption spectroscopy yielded a magnetic moment of 5 ±
0.2µB (expressed per iron atom in units of the Bohr magneton, µB =
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9.274.10−24J/T) from the Brillouin function fit, which corresponds
well with iron in its Fe3+ oxidation form (five electrons in shell
3 days).

The alginate embedding of the phantom material also contained
small amounts of Gadolinium (30 µM), with significantly lower
influence on the saturation magnetization than iron (60%–1000%
lower for free iron and 6%–300% for clustered iron). It was not
possible to perfectly disentangle the influence of the two and
quantify the magnetic moment of each type of ion. As an
estimate, the samples containing free iron had a magnetic
moment in the range of about 3–4.5 µB, while in the samples
containing clustered iron, lower values of ca. 1 µB were observed.
The data showed a tendency towards a decrease in magnetic
moment with increasing iron concentrations.

The total susceptibility in emu/g, measured at the saturation
level and converted to the SI-unit ppm for each sample, was used as a
global measure of magnetization of the samples containing the
phantom materials (Figure 2). The total magnetization increased
linearly with iron concentration for the free iron samples, yielding a
molar susceptibility of 207 ± 32 ppb mM−1 iron (adjusted coefficient
of determination = 0.89, p = 0.00298) and an offset, which was not
significantly different from zero (46 ± 33 ppb). Exclusion of the
highest iron concentration yielded 326 ± 45 ppb mM−1 iron
(adjusted coefficient of determination = 0.946, p = 0.0182) and
an offset of 10 ± 22 ppb. The fit for the clustered iron including all
concentrations was non-significant, since the magnetization
measured for the clusters with the highest iron concentration was
lower than at the lower concentrations. Excluding this observation
yielded a χM of 50.7 ± 8.0 ppb mM−1 iron (adjusted coefficient of
determination = 0.929, p = 0.0238) and an offset of 23 ± 4 ppb. One
may speculate that at higher concentrations antiferromagnetic
coupling occurs within the clusters, which could explain the
relatively low magnetization found in the sample with clustered
iron. Such a tendency could possibly also be found, since the increase

in magnetization measured at the three lowest concentrations was
linear, while the magnetization at the highest concentration deviated
slightly from predictions based on the lowest three concentrations.

MRI at 3 T

R2* and QSM maps were obtained from GRE MRI acquisitions at
3 T using isotropic 0.6 mm voxel sizes and compared for different
batches of clustered iron with a 1.6 mM iron concentration and the
same iron load (8.3 µg Fe/mg NaPA Figure 3). Batch 1 was used
previously in the multi-centre study [17], while Batch 2–4 were made
for the present study. The multicentre Batch 1 had homogeneous
clusters yielding R2* values that were similar across voxels (sharper
histogram distributions). Batch 2–4 were manufactured after a change
of personnel and relative to batch 1, the newer batches had a shift
towards higher R2* and amore than threefold wider distributions of R2*
values. The QSM histograms were more similar across batches,
although in the present study Batch 2–4 had a ca. 30% wider
distribution and a slightly lower average QSM value than Batch 1. A
higher QSM value reflect a stronger coherent shift of the magnetic field
within the voxel, and the wider distribution a more prominent field
inhomogeneity across the vial. This suggests on the one hand that
Batches 2–4 had a more heterogenous distribution of iron, both across
and within voxels, and on the other hand, that the batches could be
manufactured in a reproducible way.

The vials in Batch 4 had an increasing amount of iron and a fixed
amount of polyacrylate (120 mg), while in Batch 2 and 3 each cluster
had a fixed iron-to-polyacrylate ratio (of 8.3 µg Fe/mg NaPA). The
widths of the QSM histograms were similar at the highest iron
concentration while the width of Batch 4 (Figure 4A) was one-third
of Batches 2 and 3 for the lowest concentration (Figure 4B). This is
consistent with a more homogeneous distribution of iron in
presence of large amounts of NaPA, while a non-uniform iron

FIGURE 2
Validation of MRI results with vibrating sample magnetometry (VSM) and MRI. (A) VSM susceptibility values of the phantom materials increased
linearly with iron concentration for the free iron samples (red), yielding a slope of 207 ± 32 ppb mM−1 iron (adjusted coefficient of determination = 0.89,
p = 0.00298). The samples containing clustered iron (blue) at concentrations < 1 mM yielded a linear increase of 50.7 ± 8.0 ppb mM−1 iron (adjusted
coefficient of determination = 0.929, p = 0.0238) and an offset of 23 ± 4 ppb. The 95% confidence interval of the linear fits are shown as dotted lines.
(B) The results obtained with VSM are compared with the molar susceptibility determined in a multi-centre MRI study [17] where free and clustered iron
samples were measured at 3T (Sm, Siemens; GE, General Electrics), 7T and 9.4T. The average across the four scanners compares favourably with the
results obtained using VSM.
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distribution is at hand when iron is accumulated in a few clusters in
presence of a fixed iron-to-polyacrylate ratio. In both types of
samples, a clear shift towards higher QSM values with increasing
iron concentrations was observed (Figures 4C, D). The molar
susceptibility was 50.6 ± 11.4 ppb mM−1 for Batch 4 (adjusted
coefficient of determination = 0.863, p = 0.0469). This value is in
agreement with results obtained previously in presence of clusters
with a varying iron load in the multi-centre study, which was 54 ±
13 ppb mM−1 across scanners [17]. With a constant Fe-to-NaPA-
ratio and an increasing number of clusters, similar results were
obtained for the samples: χM = 56.1 ± 6.3 ppb mM−1 iron (adjusted
coefficient of determination = 0.963, p = 0.0122).

MRI at 14.1 T

The samples containing clusters with a constant iron-to-
polyacrylate ratio were further characterized by MRI at 14.1 T
using different isotropic voxel sizes between 0.037 and 0.2 mm
and different qMRI methods.

At the highest resolution, only single echo images with a TE of
17 ms were available (Figure 5). At this TE, the phase images
obtained with iron-filled clusters were wrapped multiple times,
which could not be perfectly corrected during QSM processing.
The iron free clusters stood out as local, slightly more paramagnetic
entities compared to the background exhibiting a broad QSM
histogram (0.007 ± 0.007 ppm higher). The equivalent sphere
diameter of the iron-free clusters estimated in this image series
was 276 ± 230 µm.

With larger voxels of 0.075 mm, the phase images obtained at
echo times of 3 ms could be unwrapped, while at 11 ms only the
phase images obtained with iron-free samples were completely
unwrapped (Figure 6). QSM was obtained with different
processing pipelines: single echo analysis, non-linear (MEDI) or
linear (ROMEO) multi-echo combination. For the iron-loaded

clusters, the unwrapped and background corrected as well as the
QSM images looked less blurred at the earlier echo time compared to
the later TE where phase unwrapping was incomplete. On the other
hand, the weak paramagnetic effect in the iron-free clusters
disappeared in the noise at the early TE, and only emerged at the
later TE. Non-linear and linear echo combination resulted in QSM
results that were comparable to those obtained at the first TE for the
iron-loaded clusters, but with reduced noise. For the iron-free
clusters, the multi-echo analysis methods yielded results that
were similar to the late echo images. The images obtained with
MEDI were slightly more eroded, owing to the use of spherical mean
value correction.

Similar results were obtained with voxel sizes of 0.2 mm at echo
times of 2.5 and 7.5 ms, although the QSM contrast in the iron-free
clusters was less prominent even aftermulti-echo combination (Figure 7).

The QSM maps were zero-referenced to the median QSM value
found in voxels with a R2* value below 30 s−1, that were assumed to be
iron-free based on the upper bound of the 95% confidence-interval of
the R2* value found for the sample containing iron-free clusters
(Table 1). The QSM histograms were symmetric and narrow for
MEDI (Figure 8B). With the pipelines based on the first single echo
(Figure 8A) and the linear echo combination (Figure 8C) methods, a
second peak appeared at high QSM-values. It was particularly
prominent for the vial with the highest concentration and for
acquisitions with the smaller voxel sizes yielding a larger within-
vial standard deviation than with 0.2 mm voxels (Figures 8D–F),
indicating that more of the heterogeneity of the phantom material
could be assessed at the higher resolution, which allowed local iron
clusters to be resolved. Using these 0.075 mm voxels, a QSM-based
molar susceptibility of 43.0 ± 0.2 ppb mM−1 (adjusted coefficient of
determination = 0.992, p < 0.00257) was obtained with MEDI, and
even lower values of 21.8 ± 1.3 and 22.7 ± 1.9 ppb mM−1 with the
single echo and the ROMEO-based pipelines, respectively. This
discrepancy was mirrored by more well-defined QSM values with
narrow distributions for MEDI (Figure 8B).

FIGURE 3
Histograms showing the distribution of R2* (A) and QSM (B) values at 3T using 0.6 mm voxels in vials containing 1.6 mM iron and 120 mg sodium
polyacrylate for different batches yielding an iron-load of 8.3 µg Fe/mg NaPA. Batch 1 (solid red line) was used in a previous multi-centre study [17] while
the remaining three batches (green, cyan and violet solid lines, Batch 2–4) were manufactured for the present study. Batch 2–4 had similar R2*
distributions that were more than three times wider than for Batch 1, while the range of QSM values was ca. 30% wider than previously.
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With a voxel-size of 0.2 mm, χM was more similar to the results
obtained previously at 3–9.4 T: 55.6 ± 0.7 ppbmM−1 (adjusted coefficient
of determination = 1, p < 0.0001) using MEDI, 56.7 ± 1.0 for the single
echo approach and 56.0 ± 0.7 ppbmM−1 for the linear echo combination.

The R2* relaxivity was substantially smaller with the 0.075 mm
voxels: 42.1 ± 0.7 s−1 mM−1 (adjusted coefficient of determination =
0.999, p < 0.0003) than with 0.2 mm: 100.3 ± 0.6 s−1 mM−1 (adjusted
coefficient of determination = 1, p < 0.0001). Taken together, these
results suggest that at the higher resolution, the within voxel field is
more homogeneous. Depending on the QSM pipeline, sub-regions
with different iron-concentrations can be separated. The 0.2 mm
voxels are of a size similar to the clusters and may work as a matched
filter that allows the combined effect of local iron inclusions within
the voxel to be assessed. In this situation, comparable results were
obtained across QSM-pipelines. The QSM-based χM obtained with
the non-linear echo combination available with MEDI was less
dependent on the voxel size than the other two pipelines.

The relationship between R2* and QSM values obtained from the
multi-echo gradient images with 0.075 and 0.2 mm voxel sizes
(Figure 9) was further evaluated on a voxel-by-voxel basis, for
different classes of voxels with specific R2* values. For this purpose,
the range of R2* values between 1 and 501 s−1 were subdivided into

500 bins, and the average QSM value for each bin was extracted. These
QSM values reached a plateau for voxels with R2* values above 200 s

−1

regardless of voxel size and processing pipeline. In Figure 10, the high
variability of R2* values within the clusters is illustrated.

The QSM values at the plateau were similar across iron
concentrations, reaching levels of 175–223 ppb for voxels of
0.2 mm, with similar results at 0.075 mm using MEDI. The single
echo and ROMEO pipelines yielded lower average QSM values at the
plateau (119–158 ppb).

Below the plateau, a linear relationship between the two qMRI
parameters was found. To investigate the increase in R2* for each
ppb change in QSM, voxels with a range of R2* values between
50 and 150 s−1 were selected, yielding an increase of 0.07 ± 0.01 s−1

per Tesla for each ppb of change in the measured susceptibility. This
value is slightly lower than for spherical particles in the static
dephasing regime for which a value of 0.11 s−1 T−1 ppb−1 iron can
be predicted [23, 35]. The diffusion weighted MRI signal decreased
according to a monoexponential function and the apparent diffusion
coefficient was ca. 1.7 μm2/ms, corresponding to a diffusion length
of 5–10 µm for echo-times between 2.5 and 10 ms. In view of the
large cluster size, as shown in Figure 5 and analysed in more detail in
the next paragraph, one could thus expect that effects caused by

FIGURE 4
QSM histograms (A,B) and molar susceptibility, χM (C,D), measured at 3 T for two types of phantoms. In Batch 4 (A,C), an increasing amount of iron
and a fixed amount of polyacrylate (120 mg) was used, while in Batch 2 (B,D) a fixed iron-to-polyacrylate ratio (8.3 µg Fe/mg NaPA) was used (B,D).
Results for four different iron concentrations: 0.2 mM (solid red line), 0.4 mM (yellow), 0.8 mM (green) and 1.6 mM (blue) are shown. QSM processing was
performedwith theMEDI + pipeline using zero-referencing to the surroundingwater, and a regularization lambda factor of 1000, in agreement with
a previous multi-centre study. The average QSM values and within-vial standard deviations are shown for Batch 4 with varying iron-load per cluster (C)
and Batch 2 (D) with a constant iron-load. Linear regression analysis yielded a χM of 50.6 ± 11.4 ppb mM−1 iron (adjusted coefficient of determination =
0.863, p = 0.0469) and 56.1 ± 6.3 ppb mM−1 iron (adjusted coefficient of determination = 0.963, p = 0.0122), respectively. The 95% confidence intervals
for the linear regression analysis are shown as dotted black lines.
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static dephasing can be observed. However, the non-uniform spatial
distribution of iron within the clusters, and the large voxel-sizes used
may impede observation of such effects. Along these lines of
thought, we identified voxels that exhibited dynamic averaging
and static dephasing effects according to (Eq. 1) (Figure 10). Of
these voxels, only 14% or less were located within the clusters, as
defined by a 0.2 ppmQSM cut-off value in theMEDI images.Within
the clusters, QSM values were similar, while R2* varied greatly
(corresponding with the results in Figure 9). This observation is
consistent with an overall shift in the magnetic field, combined with
a high (root-mean-squared) variation in the magnetic field within
the voxels located inside the clusters. Possibly, these QSM results
reflect the saturation effect observed with VSM at the highest iron
concentration, caused by locally high levels of iron agglomeration.

Segmentation of clusters and qMRI results
with 0.2mm voxel size

Segmentation of clusters was performed using four different
image modalities, acquired with a voxel size of 0.2 mm: quantitative
T2-maps, T1-weighted MRI, and quantitative R2*-maps. Since the

cluster size can depend on the cut-off used, we chose various cut-offs
based on image intensity histograms (Figure 11) observed with the
0.8 mM sample, which had the highest susceptibility in the VSM
measurement, and with QSMmaps at the plateau values determined
in Figure 9. The qMRI values inside the clusters, as well as the cluster
size, expressed as the diameter of a sphere with the same volume as
the segmented clusters, were determined (Table 1).

Using the T2-maps, the hydrogel clusters without iron were
segmented as voxels with a T2 value above 180m, while iron-
containing clusters were identified as voxels with T2 below 50 m. For
reasons of the B1 (in)homogeneity of the coil used, only the most central
slices were analysed (15 slices covering 3 mm along the axial field-of-
view).Without iron, the contrast difference between the hydrogel and its
surrounding was just about discernible while the iron-loaded clusters
showed a stronger contrast difference (Figure 12). The size of the
segmented clusters was 248 ± 335 µm, while the iron-loaded clusters
appeared larger in the quantitative T2 images reaching sizes around
500 µm (Table 1). At the highest concentration, the clusters could not be
separated well and appeared as a mixture of very small and a few very
large clusters. Despite the rather crude 0.2 mm spatial sampling, iron-
free clusters had a size that corresponded with the size of 276 ± 230 µm
determined using 37 µm voxels (shown in Figure 5).

FIGURE 5
Single gradient echo phase and QSM images of samples containing clusters with 0.4 mM iron and 60 mg polyacrylate (A–C) or without iron and
120 mg polyacrylate (D–F). High-resolution (voxel size: 0.037 mm), single echo (TE = 17 ms) MRI was performed at 14.T. The raw phase (A,D), measured
at this echo time is wrappedmultiple times at the locations of the iron-containing clusters, while no large phase jumps are present in proximity of clusters
without iron, although a large background field can be noticed. After unwrapping and background field correction, some uncorrected local field
deviations can be discerned (B) resulting in inhomogeneous QSM images (C) for the iron-clusters. On the contrary, in absence of iron, Laplacian
unwrapping and RESHARP background field correction reveal small local entities with deviating field (E), corresponding to the iron-free sodium
polyacrylate clusters that are more paramagnetic (0.007 ± 0.007 ppm) than the surrounding voxels (F).
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A higher number of clusters could be observed in the T1-
weighted images and the R2*-maps, since good image quality
could be obtained across a larger axial field-of-view of 19.2 mm.

In the T1-weighted image acquired with an inversion time of
800 m, the contrast between iron-loaded clusters and the
surrounding was high (Figure 13). The T1 weighted image and a
cut-off of 20 a.u. yielded cluster sizes around 400 µm that were
smaller and had smaller standard deviations than in the T2-
map. The number of clusters detected with the highest cut-off
value increased linearly, yielding an iron-dependent cluster
density of 9.0 mm−3 mM−1+1.2 (DoC:0.967, p < 0.0112). Within
the segmented clusters there was no change in the longitudinal
relaxation rate R1 with increasing iron concentration.

Cluster segmentation using the R2*-maps was performed by
thresholding at 100, 200 and 450 s−1 (Figure 14). The average cluster
size did not increase significantly with iron concentration and varied
largely reaching sizes of 1–1.2 mm because of insufficient separation
between clusters. This led to large standard deviations for the cluster
size, especially at the highest iron concentration (Table 1). Using the
highest cut-off value there was a tendency towards a linear increase
in the number of clusters with iron-concentration, yielding a cluster
density of: 10 mm−3 mM−1+1.3 (DoC:0.814, p < 0.064). At none of
the cut-offs, an increase in the R2* relaxation rate with increasing
iron concentrations was found. The same increase in cluster density
was obtained from the QSM maps obtained with the linear echo
combination and a cut off of 0.4 ppm.

FIGURE 6
Results from multi gradient echo imaging of samples containing clusters with 0.4 mM iron and 60 mg polyacrylate (A–H) or without iron and
120 mg polyacrylate (I–P) measured at 14.1 T with 0.075 mm voxels. The raw phase (A,B) and (I,J), and the phase after Laplacian unwrapping and
RESHARP background field correction (c-d, k-l) are shown at TE = 3 ms (A,C,I,K) and TE = 11 ms (B,D,J,L). QSM results for single echo analysis at
TE = 3 ms (E,M), and TE = 11 ms (F,N) and multi-echo analysis using nonlinear echo combination in MEDI (G,O) and linear echo-combination in
ROMEO (H,P) are shown. Some issues linked with insufficient phase unwrapping in proximity of iron-loaded clusters at the later echo time yield a more
blurred appearance of the clusters in the QSM images obtained with single echo analysis, compared to the early echo time and the echo combination
methods. In iron-free clusters, the small paramagnetic effect that could be detected at a higher resolution (Figure 5) can still be discerned at the late echo
time and after echo-combination.
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Discussion

The availability of well-characterized phantoms suitable to assess
the many factors influencing quantification are fundamental to
facilitate clinical use of quantitative MRI methods, but pose some
challenges, especially if the aim is to mimic tissue microsctructure
[36]. In the case of quantitative susceptibility mapping (QSM) with
MRI, such phantoms are of value since many factors, related to the
MRI measurement, on one hand, and the processing pipeline on the
other hand influence the level of accuracy and precision that can be
achieved. The use of tissue-mimicking phantom materials allows to
assess the influence of each factor in detail in a setting that should be as
realistic as possible, given the complexity of MRI signals arising from
the tissue in vivo.

QSM is based on the successful acquisition of high quality phase
images, obtained using a fully spoiled gradient-echo MRI sequence.
The quality of the phase images depends on the available signal-to-

noise ratio in the magnitude images, and therefore on factors like the
magnetic field strength at which the measurement is carried out as
well as the echo-time and voxel size used for image acquisition.
Using MRI, the measured signal phase is assumed to evolve linearly
with the echo-time, but the phase values will be aliased into the ±π
range during image acquisition. Provided that the range of
susceptibility values that will be encountered within the tissue is
known, the echo time—or in case of multi-echo sequences: the inter-
echo delay time—can be used as a scaling factor to achieve an
“adequate” amount of phase aliasing. Just how much aliasing that
can be tolerated depends on the type of unwrapping used during
QSM processing. Unwrapping [32, 37–42] can go astray if the echo-
time is too long and/or if the tissue susceptibility differences are too
large, which for instance can happen in presence of local tissue
bleedings [41]. Others have reported echo-time dependence of QSM
results [43], suggesting the presence of non-linear phase evolution
that also may need consideration.

FIGURE 7
Results from multi gradient echo imaging of samples containing clusters with 0.4 mM iron and 60 mg polyacrylate (A–H) or without iron and
120 mg polyacrylate (I–P)measures at 14.1 T with 0.2 mm voxels. The raw phase (A,B) and (I,J), and the phase after Laplacian unwrapping and RESHARP
background field correction (C,D,K,L) are shown at TE = 2.5 ms (A,C,I,K) and TE = 7.5 ms (B,D,J,L) with the corresponding QSM results for single echo
analysis (E,F,M,N), non-linear MEDI (G,O) and linear ROMEO (H,O) multi-echo combination. Similar to the results obtained with 0.075 voxels
(Figure 6), the QSM contrast is suppressed at the later echo time in iron-loaded clusters, while the multi-echo QSM processing pipelines yield similar
contrast.
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Besides phase unwrapping, unwanted background field
components [9, 33, 44–47]need to be removed prior to the final
dipole inversion step [20, 48–50] required to obtained the final QSM

results. As an alternative, one-step QSM approaches, which utilize
combined unwrapping and background removal can be used
[51–53]. Other emerging QSM techniques are based on total field

TABLE 1 Size and qMRI values of hydrogel clusters. Clusters were identified on different imaging modalities acquired with an isotropic voxel size of 0.2 mm at
14.1 T. The cluster size (in µ m) was expressed as the diameter of an equivalent sphere with the same volume as the cluster. The observed average and standard
deviation (SD) relaxation rates: R2, R1, and R2* and QSM values (from the first echo) within the segmented clusters are listed for different iron concentrations. aThe
iron-free clusters could only be reliably segmented in the T2-maps, therefore the global average within the vial is shown for T1 and R2* and QSM. The standard
deviations (SD) for the cluster size and the qMRI values are indicated in parentheses.

Cluster size [µ m] qMRI value inside cluster

Size in T2 maps with cutoff: 180/50 ms R2 values [s
−1]

0 mM 0.2 mM 0.4 mM 0.8 mM 1.6 mM 0 mM 0.2 mM 0.4 mM 0.8 mM 1.6 mM

248 (335) 475 (184) 475 (250) 496 (370) 248 (1,106) 4.9 (0.5) 24.9 (3.8) 28.1 (6.3) 28.3 (6.1) 30.3 (7.5)

Size in T1 weighted MRI with cutoff: 20 [au] R1 values [s
−1]

0 mM 0.2 mM 0.4 mM 0.8 mM 1.6 mM 0 mM 0.2 mM 0.4 mM 0.8 mM 1.6 mM

- 394 (188) 394 (191) 394 (229) 358 (266) 0.50a (0.07) 1.31 (0.23) 1.46 (0.40) 1.51 (0.42) 1.58 (0.39)

Size in R*2 maps with cutoff: 200 s−1 R*2 values [s
−1]

0 mM 0.2 mM 0.4 mM 0.8 mM 1.6 mM 0 mM 0.2 mM 0.4 mM 0.8 mM 1.6 mM

- 424 (216) 394 (303) 394 (513) 313 (1,638) 7.7a (7.7) 288 (89) 342 (136) 343 (135) 359 (146)

Size in QSM with cutoff: 0.2 ppm QSM values [ppm]

0 mM 0.2 mM 0.4 mM 0.8 mM 1.6 mM 0 mM 0.2 mM 0.4 mM 0.8 mM 1.6 mM

- 394 (168) 394 (214) 424 (375) 248 (846) 0.000 0.011 0.254 (0.042) 0.289 (0.069) 0.295 (0.073) 0.308 (0.087)

FIGURE 8
QSM histograms of results obtained at 14.1 T with 0.075 mm voxels (A–C) and molar susceptibility (D–F) for vials containing clusters with a fixed
iron-to-polyacrylate ratio (8.3 µg Fe/mg NaPA) with iron concentrations of: 0.2 mM (solid red line), 0.4 mM (yellow), 0.8 mM (green) and 1.6 mM (blue).
QSM processing was performed with the first single echo (A,D), non-linear MEDI (B,E) or linear ROMEO (C,F) echo combination. The averageQSM values
andwithin-vial standard deviations are shown for data acquired with a 0.075 and 0.2 mm voxel size. The χM wasmore similar across voxel-sizes with
nonlinear MEDI-based echo combination than with the other two processing pipelines.
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inversion [54] and deep learning approaches [55]. Besides the QSM
processing pipeline itself, other factors such as the type of coil-
combination algorithm [56, 57] or brain-tissue masking method
employed [58] can influence quantification [21].

One possibility to assess the influence of such factors is to
perform in vivo measurements of healthy subjects and compare
the obtained QSM results in different brain regions with expected
non-haeme tissue iron concentration. The mathematical expression
describing the expected age-dependent increase in tissue iron [18]

lends itself well for such comparisons of the measured QSM-contrast
in the healthy human brain. A method that quantifies the iron-
dependent QSM-contrast kFe, (unit [ppb/[μg/g]) has been made
available for the QSM challenge 2016 data and can be adapted for
use at individual sites [21, 59]. However, in case of multi-centre
studies, such assessments may require that volunteers travel between
sites to assure the protocols are comparable. Other issues can arise if
several different types of acquisition protocols are to be assessed,
since there is an upper limit to the total scan duration, that is,

FIGURE 9
Relation between QSM values for voxels with a defined R2* value between 1 and 501s−1, subdivided into 1 s−1 bins. The images were obtained by
multi-echo GRE using 0.075 mm (A–C) and 0.2 mm (D–F) voxel sizes for samples with a fixed iron-to-polyacrylate ratio (8.3 µg Fe/mg NaPA) and a total
iron concentration of 0.2 (red dots), 0.4 (green), 0.8 (yellow) or 1.6 mM (blue). QSM values were obtained through single-echo analysis at the first echo
time (A,D), and by multi-echo analysis based on nonlinear echo combinations in MEDI (B,E) or by linear echo combination from the field map
obtained with ROMEO (C,F). A linear relationship between QSM and R2* values between 50 and 150 s−1 and a plateau above 200–250 s−1 are found for all
iron concentrations, voxel sizes and QSM processing pipelines.

FIGURE 10
Zoomed-in views of the R2* (A) and MEDI-QSM (B) observed with 0.075 voxels for the sample with 1.6 mM iron. The cyan iso-contour lines for a
QSM value of 0.2 ppm are outlined on both images. On the R2* maps, the large variability in the local R2* values within the clusters can be noted (cfr
Figure 9). Several voxels, mainly located outside the clusters, exhibit static dephasing behaviour, and others show evidence of dynamic averaging, as
further evidenced in the (C) time-series showing the average magnitude signal within segmented voxels.
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acceptable in vivo, besides issues related to motion during image
acquisition. Therefore, a more practical solution to allow informed
decisions based on an iterative optimization process to be made, that
includes adjustment of each and single step if needed, is the use of
adequate phantoms.

Ideally, the phantom material should reflect the complexity of
the tissue and have magnetic properties that are comparable to those
found in vivo. Today, besides phantoms containing single
susceptibility sources [13, 14] more complex mixtures [15], able
to mimic more of the complexity present in vivo, are available. In a
previous multi-center study, we introduced a phantom for QSM that
contains iron (available as a standard for atomic absorption

spectroscopy), either in form of a homogeneous solution, “free”
iron, or as small iron clusters after absorption of the iron in a
hydrogel consisting of sodium polyacrylate [17]. The iron
concentrations used for the phantom were about half of those
typically found for non-haeme iron in brain tissue in vivo. The
average molar susceptibility that was observed across three magnetic
field strengths and four scanners was 0.231 ± 0.047 ppm mM−1 and
0.054 ± 0.013 ppm mM−1 for the free and clustered iron,
respectively. The QSM contrast of the proposed clustered iron
thus corresponded to the χM for ferritin with an iron-load of
3000 atoms, and falls within the range of 28–72 ppb mM−1 iron
expected for ferritin in the human brain [19–22].

FIGURE 11
Intensity histograms for samples without (0mM, red dashed line) and with (0.8 mM, blue solid line) iron, using three MRI modalities and 0.2 mm
voxels measured at 14.1 T. Histograms were obtained from (A) T2-maps (B) T1-weighted MPRAGE images with an inversion time of 800 ms; (C)
quantitative R2* maps. The location of the different cut-offs used for segmentation of iron-containing and iron-free clusters are shown as black dashed
vertical lines. Note that the iron-free clusters could only be observed in the T2-maps.

FIGURE 12
Maps (axial view) of the transverse relaxation time, T2, for samples measured with a voxel size of 200 μm at 14.1 T (upper row). Clusters without iron
were identified as voxels with T2 > 180 ms (red), and clusters with iron T2 < 50 ms (blue). The corresponding size distributions, expressed as the diameter
of a sphere with the same volume as the segmented clusters are shown in the lower row.
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However, in the previous study, validations through
magnetometry measurements were lacking. Moreover, details of
the clusters, like their size and spatial distribution, had not been
obtained, motivating the present work. Another unknown factor was
the possibility to manufacture comparable batches of the phantom
material. A general feature of the phantom material, that we already
had noted in our previous study, is that the spatial distribution of
iron clusters can be hard to control during manufacturing but can be
assessed “post hoc” in R2* and QSM images. Therefore, we used MRI
at 3 T with identical imaging andQSM processing protocols as in the
previous study in order to assess reproducibility. The batches

manufactured in the present study had higher R2* values and
showed a higher variability in R2* across the containing vials
than previously. The QSM values, on the other hand, were found
to be more similar across different batches. These observations
underline the importance of the manufacturing process. The size
and the spatial distribution of the iron-loaded regions will likely
depend on the details of the mixing of iron-loaded poly-acrylate
hydrogel and the alginate matrix. At the moment, this is done
manually, which can have some drawbacks with respect to
reproducibility. When scaling-up the sample preparation,
switching to mechanical mixing (for instance by using higher

FIGURE 13
T1-weighted MRI images with an inversion time of 800 ms and a voxel size of 200 μm at 14.1 T. Iron-containing clusters were segmented at two
thresholds (20 a.u. green, 25 a.u. blue solid line). The size-distribution for the segmented clusters were similar. The cluster density increased significantly
with increasing iron load for clusters segmentedwith a cut-off of 25 a.u. The corresponding R1 relaxation rate reached a plateau for iron concentrations of
0.4 mM and above.

FIGURE 14
Maps of the effective transverse relaxation rate, R2*, acquiredwith a voxel size of 200 μmat 14.1 T. Iron-containing clusters were segmented at three
thresholds: 100 s−1 (red solid line), 200 s−1 (green) and 450 s−1 (cyan). At the highest threshold there was a tendency for a linear increase in cluster density
with increasing iron load. No significant change in R2* with increasing iron concentrations were observed.
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speed, blade-like stirrers) might help to produce more homogeneous
samples.

With regard to stability of the iron clusters, it can be noted that
sodium poly-acrylate is a super-absorbent polymer, which can
absorb its own mass multiple times (in our case: a volume
corresponding to more than 8 times its own weight). This
hydrogel has been employed for removal of heavy metal
contamination, owing to its anionic carboxylate binding sites
[60]. These can coordinate to Fe3+ in various configurations at
the molecular scale, and thus can stably bind large amounts of
iron (15 mM). The reddish-brown colour appearing when mixing
the (acidic) iron standard solution with the (basic) poly-acrylate
suggests an increase of pH and subsequent formation of hydrolysis
and formation of increasingly poorly soluble condensates of
(FeOOH)x aq. up to insoluble Fe(OH)3. The formation of these
larger condensates will further prevent the diffusion of iron out into
the alginate matrix. Our previous results [17] were obtained during a
3 months’ time period, during which the phantom was transported
between three laboratories across two continents (in a hand-
luggage) and kept at room temperature.

Introducing further variability, we decided to compare two types
of phantoms: vials containing a variable amount of iron and fixed
amount of NaPA on the one hand and a fixed iron-to-polyacrylate
ratio, yielding a fixed amount if iron per cluster and an increasing
number of clusters, on the other hand. The first type of phantom
corresponds to the one used in our previous study [17], while the
second type facilitates observation of single clusters. Regardless of
these manipulations, the χM results observed were comparable with
values between 50 and 56 ppb mM−1, provided that the voxel-size
used for MRI acquisition was larger than the size of the clusters.

Although a clear, iron-concentration dependent shift in QSM
could be observed, it was accompanied by a large standard deviation
across the vial, most likely explained by the large susceptibility
difference between the clusters and the alginate surrounding. The
standard deviation was particularly large in the phantoms where
both the amount of iron and alginate were increased, reflecting that
when there is no surplus of polyacrylate, the surrounding alginate
remains free from iron, at least to a large extent. The difference in
susceptibility between the embedding media and the polyacrylate
thence lead to large QSM variability. More fine-scaled variability
could be captured when using voxel-sizes that were smaller than the
clusters at 14.1T, but also led to a suppression of the observed molar
susceptibility. Indeed, with 0.075 voxels, the molar susceptibility
derived from the entire vial as a region of interest, was very different
from that observed at 3T, especially with the single-echo and
ROMEO combination approaches, which had wider QSM
histograms than MEDI (Figure 8). Only with a voxel-size of
0.2 mm, which approaches the estimated cluster size, the molar
susceptibility at 14.1 T became comparable to the values observed at
3 T with a voxel size of 0.6 mm.

Besides average QSM values, quantifying histogram features
could furnish additional, clinically relevant parameters, since
generally the distribution of QSM values can be large even within
selected anatomical regions-of-interest. Recently Lancione et al [61],
showed that the distributions of QSM values observed in vivo within
iron-containing structures, like the dentate nucleus and the putamen
can be quite large (as shown in the Supporting Figure S4 of that
publication). These workers report that specific histogram features,

like the standard deviation, the 75th and the 90th percentile were
useful parameters to distinguish between Parkinsonian and
cerebellar multiple system atrophy.

Although we cannot pinpoint the exact cause for the differences
between the current and previous batches, one possible contributor
may have been differences in the oxygenation state of the iron
between batches, besides differences in the actual spatial distribution
of the clusters occurring during manufacturing. The exact
oxygenation state at hand can change R2* yielding greater
relaxivity values in presence of ferric than ferrous iron [62, 63].
In addition, ferric iron can fall out and yield a reddish colour.
Therefore, it is interesting to note that the clusters generated through
the addition of sodium polyacrylate to the iron solution could be
visually identified as red dots, which were particularly prominent in
the vials containing the highest iron concentration. The change in
colour could indicate precipitation of iron inside the hydrogel
clusters. However, in order to unambiguously determine the
oxygenation state, the use of Mössbauer spectroscopy can be
envisaged in future studies [64].

In order to further characterize the phantom material, we used
vibrating sample magnetometry, which is a highly accurate and
precise technique to assess magnetic properties. Notably,
magnetometry has been used previously to assess human tissue
[65–69]. Through measurements of the magnetization as a function
of temperature, and as a function of the external field, both the type
of magnetism and the magnetic moment can be identified. VSM of
samples containing the pure iron-solution used for manufacturing
the phantom was measured and showed the presence of iron with a
magnetic moment of approximately 5µB, which corresponds to
ferric Fe3+ iron which has an effective, magnetic moment of
5.92 µB

23 when spin-only effects without nuclear couplings are
considered.

We furthermore used VSM to ascertain the susceptibility of the
phantom material as a whole, since separation of the contributions
from the iron and the small amounts of added Gadolinium ions to
the alginate embedding was not perfect. The total magnetization of
the sample was found to increase linearly with iron concentration,
yielding a molar susceptibility of 207 ± 32 ppb mM−1 for the free and
50.7 ± 8.0 ppb mM−1 for the clustered iron. These values compare
favourably with our previous observations in the multi-centre study
[17]. Interestingly, the measured magnetic moment in the samples
containing clustered iron at the highest concentration was below the
value predicted based on concentrations below 1 mM. This indicates
that the total signal is not simply the sum of all saturated iron
magnetic moments. One may speculate that at higher
concentrations antiferromagnetic coupling occurs, which could
explain the relatively low magnetization observed in the sample
with the highest iron concentration. This effect does not necessarily
have to be a solid-state phenomenon. Such phenomenon could arise
if the iron is strongly bound in the clusters and subregions with
different magnetic moment directions are at hand. As
antiferromagnetism, via superexchange, is not a rare
phenomenon, we would like to suggest that the reduced
saturation is caused by a significant fraction of iron, which are
antiferromagnetically coupled on a molecular basis. In line with this,
qMRI with 0.075 mm voxels showed that QSM saturates within the
clusters, while R2* varied strongly, possibly due to locally high levels
of iron with different magnetic moments. Antiferromagnetic
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coupling has been observed for magnetite composed of highly
ordered, alternating ferric and ferrous iron. To better investigate
such sub-lattice ordering effects, X-ray diffraction can be performed.
Also, ferritin has a highly complex behaviour as observed with
magnetometry, allegedly deriving from the presence of
superparamagnetism counteracted by anti-ferromagnetic coupling
in its core [70]. Antiferromagnetic coupling effects must not
necessarily be manifest in our MRI measurements, which were
performed at room temperature with long echo-times of a few
milliseconds during which diffusion averaging can occur.
Therefore, in this respect VSM yielded more precise and detailed
information.

Macroscopic MRI properties can be influenced by packing
densities. For iron-loaded ferritin aggregated inside liposomes,
transverse relaxation occurs at rates in MRI that are 6 times
faster than ferritin outside such liposomes [71]. In our previous
study using whole-body scanners operating at 3, 7, and 9.4T, we
observed an R2*-related relaxivity which increased linearly with
magnetic field strength by 4.00 s−1 mM−1 T−1, albeit with a (non-
significant) intercept of 5.61 s−1. From these numbers, one can
predict an R2* relaxivity of 61.6 s−1 mM−1 at 14.1 T. The batches
manufactured in the present study reached 100 s−1 mM−1, consistent
with a higher packing density than previously attained.

Segmentation using high thresholds yielded maximal R2* values of
200–500 s−1 within the clusters, which are reminiscent of the range of
155−310 s−1 expected for ferritin at 14.1T, based on an increase in R2’ of
0.11 s−1 T−1 ppb−1 iron for spherical particles in the static dephasing
regime [23]. On the other hand, in a transition zone surrounding the
cluster core, R2* increased as 0.07 ± 0.01 s−1 T−1 ppb−1 iron, suggesting
that averaging effects can occur to a certain extent.

At the highest image resolution used, with an isotropic voxel size
of 37 µm, the iron-free clusters had a roundish, snow-flake like
appearance with a blurred border. Each cluster occupied a volume
that corresponded to a sphere with an equivalent diameter of ca.
250 µm, while after iron-loading the size of the clusters increased to
500–600 µm. To avoid the “blooming-effect” of dephased
magnetization in gradient echo images, we complemented
observations of the cluster size based on R2* and QSM images
with measurements using spin-echo and short-echo time inversion-
recovery MRI. Overall, these techniques yielded similar results
regarding the cluster size.

Since the amount of the polyacrylate hydrogel always matched
the volume of the iron solution added to the samples, we expected
each cluster detected to have the same iron-load, and that the cluster
density depends on the iron concentration. The result of the image
analysis with voxel sizes of 200 µm was in line with this hypothesis
but only when high thresholds were used for cluster segmentation.
In that case, the cluster density increased with increasing iron
concentration. The qMRI parameters observed within the clusters
were the same across all samples.

Taken together, these results point towards iron-loaded clusters
with molar susceptibility and R2* values reminiscent of ferritin in

vivo. Reproducibility of QSM results across scanners, batches, and
phantom types was within 12% and compared well with results
using vibrating sample magnetometry. Using 0.2 mm voxel sizes, the
clusters could be delineated and separated from the surrounding,
while with voxels of 0.075 mm and below, a heterogeneous spatial
distribution of iron with saturated QSM values within single clusters
emerged. Around the clusters, heterogeneous MRI signal behaviour,
with voxels exhibiting static dephasing effects as well as dynamic
averaging could be identified. In future studies, it would be of
interest to push the spatial resolution further, even more towards
the diffusion length to better assess the impact of such local iron
inclusions on MRI.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

GH: Conceptualization methodology investigation formal
analysis software (MRI) writing—original draft, EG: Methodology
investigation formal analysis software (VSM) writing—review and
editing EC: formal Analysis (MRI 3T) writing—review and editing
JE. resources validation writing—review and editing KS: funding
acquisition, supervision writing—review and editing. All authors
contributed to the article and approved the submitted version.

Funding

We gratefully acknowledge the EU-LACH Grant #16/T01-0118,
and ERC Advanced Grant #834940 for supporting this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Loureiro JR, Himmelbach M, Ethofer T, Pohmann R, Martin P, Bause J, et al. In-
vivo quantitative structural imaging of the human midbrain and the superior colliculus
at 9.4T. Neuroimage (2018) 177:117–28. doi:10.1016/j.neuroimage.2018.04.071

2. Tuzzi E, Balla DZ, Loureiro JRA, Neumann M, Laske C, Pohmann R, et al.
Ultra-high field MRI in Alzheimer’s disease: Effective transverse relaxation rate
and quantitative susceptibility mapping of human brain in vivo and ex vivo

Frontiers in Physics frontiersin.org16

Hagberg et al. 10.3389/fphy.2023.1209505

70

https://doi.org/10.1016/j.neuroimage.2018.04.071
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1209505


compared to histology. J Alzheimer’s Dis (2020) 73(4):1481–99. doi:10.3233/JAD-
190424

3. Ghassaban K, Liu S, Jiang C, Haacke EM. Quantifying iron content in magnetic
resonance imaging. Neuroimage (2019) 187:77–92. doi:10.1016/j.neuroimage.2018.
04.047

4. Biondetti E, Rojas-Villabona A, SokolskaM, Pizzini FB, Jäger HR, Thomas DL, et al.
Investigating the oxygenation of brain arteriovenous malformations using quantitative
susceptibility mapping. Neuroimage (2019) 199:440–53. doi:10.1016/j.neuroimage.
2019.05.014

5. Hametner S, Endmayr V, Deistung A, Palmrich P, Prihoda M, Haimburger E, et al.
The influence of brain iron and myelin on magnetic susceptibility and effective
transverse relaxation - a biochemical and histological validation study. Neuroimage
(2018) 179:117–33. doi:10.1016/j.neuroimage.2018.06.007

6. Stüber C, Morawski M, Schäfer A, Labadie C, Wähnert M, Leuze C, et al. Myelin
and iron concentration in the human brain: A quantitative study of MRI contrast.
Neuroimage (2014) 93(1):95–106. doi:10.1016/j.neuroimage.2014.02.026

7. Wharton S, Bowtell R. Effects of white matter microstructure on phase and
susceptibility maps. Magn Reson Med (2015) 73(3):1258–69. doi:10.1002/mrm.25189

8. Deistung A, Schweser F, Wiestler B, Abello M, Roethke M, Sahm F, et al.
Quantitative susceptibility mapping differentiates between blood depositions and
calcifications in patients with glioblastoma. PLoS One (2013) 8(3):e57924. doi:10.
1371/journal.pone.0057924

9. Schweser F, Atterbury M, Deistung A, Lehr BW, Sommer K, Reichenbach JR.
Harmonic phase subtraction methods are prone to B1 background components. Proc
Intl Soc Mag Reson Med (2011) 37(9):2657.

10. Tuzzi E, Loktyushin A, Zeller A, Pohmann R, Christoph L, Scheffler K, et al.
Exploration of cortical ß-Amyloid load in Alzheimer’s disease using quantitative
susceptibility mapping at 9.4T. Available at: https://www.medrxiv.org/content/10.
1101/2022.09.23.22280290v1 (Accessed September 25, 2022).

11. Langkammer C, Schweser F, Shmueli K, Kames C, Li X, Guo L, et al. Quantitative
susceptibility mapping: Report from the 2016 reconstruction challenge. Magn Reson
Med (2018) 79(3):1661–73. doi:10.1002/mrm.26830

12. Marques JP, Meineke J, Milovic C, Bilgic B, Chan K, Hedouin R, et al. QSM
reconstruction challenge 2.0: A realistic in silico head phantom for MRI data simulation
and evaluation of susceptibility mapping procedures. Magn Reson Med (2021) 86(1):
526–42. doi:10.1002/mrm.28716

13. Olsson E, Wirestam R, Lind E. MRI-based quantification of magnetic
susceptibility in gel phantoms: Assessment of measurement and calculation
accuracy. Radiol Res Pract (2018) 2018:1–13. doi:10.1155/2018/6709525

14. Deh K, Kawaji K, Bulk M, Van Der Weerd L, Lind E, Spincemaille P, et al.
Multicenter reproducibility of quantitative susceptibility mapping in a gadolinium
phantom using MEDI+0 automatic zero referencing. Magn Reson Med (2019) 81(2):
1229–36. doi:10.1002/mrm.27410

15. Emmerich J, Bachert P, Ladd ME, Straub S. A novel phantom with dia- and
paramagnetic substructure for quantitative susceptibility mapping and relaxometry.
Phys Med (2021) 88:278–84. doi:10.1016/j.ejmp.2021.07.015

16. Reinert A, Morawski M, Seeger J, Arendt T, Reinert T. Iron concentrations in
neurons and glial cells with estimates on ferritin concentrations. BMC Neurosci (2019)
20(1):25–14. doi:10.1186/s12868-019-0507-7

17. Gustavo Cuña E, Schulz H, Tuzzi E, Biagi L, Bosco P, García-Fontes M, et al.
Simulated and experimental phantom data for multi-center quality assurance of
quantitative susceptibility maps at 3 T, 7 T and 9.4 T. Phys Med (2023) 110:102590.
doi:10.1016/j.ejmp.2023.102590

18. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human
brain. J Neurochem (1958) 3(1):41–51. doi:10.1111/j.1471-4159.1958.tb12607.x

19. Chai C, Zhang M, Long M, Chu Z, Wang T, Wang L, et al. Increased brain iron
deposition is a risk factor for brain atrophy in patients with haemodialysis: A combined
study of quantitative susceptibility mapping and whole brain volume analysis. Metab
Brain Dis (2015) 30(4):1009–16. doi:10.1007/s11011-015-9664-2

20. Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of
intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo
brain iron metabolism? Neuroimage (2011) 54(4):2789–807. doi:10.1016/j.neuroimage.
2010.10.070

21. Hagberg GE, Eckstein K, Tuzzi E, Zhou J, Robinson S, Scheffler K. Phase-based
masking for quantitative susceptibility mapping of the human brain at 9 4T. Magn
Reson Med (2022) 88(5):2267–76. doi:10.1002/mrm.29368

22. Zheng W, Nichol H, Liu S, Cheng Y-CN, Haacke EM. Measuring iron in the brain
using quantitative susceptibility mapping and X-ray fluorescence imaging. Neuroimage
(2013) 78:68–74. doi:10.1016/j.neuroimage.2013.04.022

23. Duyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue.NMR
Biomed (2017) 30(4):e3546. doi:10.1002/nbm.3546

24. Dedman DJ, Treffry A, Candy JM, Taylor GAA, Morris CM, Bloxham CA, et al.
Iron and aluminium in relation to brain ferritin in normal individuals and Alzheimer’s-
disease and chronic renal-dialysis patients. Biochem J (1992) 287(2):509–14. doi:10.
1042/bj2870509

25. DiResta GR, Lee J, Arbit E. Measurement of brain tissue specific gravity using
pycnometry. J Neurosci Methods (1991) 39(3):245–51. doi:10.1016/0165-0270(91)
90103-7

26. Hagberg GE, Bause J, Ethofer T, Ehses P, Dresler T, Herbert C, et al. Whole brain
MP2RAGE-based mapping of the longitudinal relaxation time at 9.4 T. Neuroimage
(2017) 144:203–16. doi:10.1016/j.neuroimage.2016.09.047

27. Kressler B, de Rochefort L, Liu T, Spincemaille P, Jiang Q, Wang Y. Nonlinear
regularization for per voxel estimation of magnetic susceptibility distributions from
MRI field maps. IEEE Trans Med Imaging (2010) 29(2):273–81. doi:10.1109/TMI.2009.
2023787

28. Bernstein MA, Grgic M, Brosnan TJ, Pelc NJ. Reconstructions of phase contrast,
phased array multicoil data. Magn Reson Med (1994) 32(3):330–4. doi:10.1002/mrm.
1910320308

29. de Rochefort L, Brown R, Prince MR, Wang Y. Quantitative MR susceptibility
mapping using piece-wise constant regularized inversion of the magnetic field. Magn
Reson Med (2008) 60(4):1003–9. doi:10.1002/mrm.21710

30. Liu T, Khalidov I, de Rochefort L, Spincemaille P, Liu J, Tsiouris AJ, et al. A novel
background field removal method for MRI using projection onto dipole fields (PDF):
Improved background field removal method using PDF. NMR Biomed (2011) 24(9):
1129–36. doi:10.1002/nbm.1670

31. Liu J, Liu T, de Rochefort L, Ledoux J, Khalidov I, Chen W, et al. Morphology
enabled dipole inversion for quantitative susceptibility mapping using structural
consistency between the magnitude image and the susceptibility map. Neuroimage
(2012) 59(3):2560–8. doi:10.1016/j.neuroimage.2011.08.082

32. Dymerska B, Eckstein K, Bachrata B, Siow B, Trattnig S, Shmueli K, et al. Phase
unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO).
Magn Reson Med (2021) 85(4):2294–308. doi:10.1002/mrm.28563

33. Sun H, Wilman AH. Background field removal using spherical mean value
filtering and Tikhonov regularization. Magn Reson Med (2014) 71(3):1151–7. doi:10.
1002/mrm.24765

34. Blümich B, Perlo J, Casanova F. Mobile single-sided NMR. Prog Nucl Magn Reson
Spectrosc (2008) 52(4):197–269. doi:10.1016/j.pnmrs.2007.10.002

35. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically
inhomogeneous tissues: The static dephasing regime. Magn Reson Med (1994) 32(6):
749–63. doi:10.1002/mrm.1910320610

36. Fieremans E, Lee H. Physical and numerical phantoms for the validation of brain
microstructural MRI: A cookbook. Neuroimage (2018) 182:39–61. doi:10.1016/j.
neuroimage.2018.06.046

37. Schofield MA, Zhu Y. Fast phase unwrapping algorithm for interferometric
applications. Opt Lett (2003) 28(14):1194–6. doi:10.1364/ol.28.001194

38. Cusack R, Papadakis N. New robust 3-D phase unwrapping algorithms:
Application to magnetic field mapping and undistorting echoplanar images.
Neuroimage (2002) 16(3):754–64. doi:10.1006/nimg.2002.1092

39. Karsa A, Shmueli K. Segue: A speedy rEgion-growing algorithm for unwrapping
estimated phase. IEEE Trans Med Imaging (2019) 38(6):1347–57. doi:10.1109/TMI.
2018.2884093

40. Eckstein K, Dymerska B, Bachrata B, Bogner W, Poljanc K, Trattnig S, et al.
Computationally efficient combination of multi-channel phase data from multi-echo
acquisitions (ASPIRE). Magn Reson Med (2018) 79(6):2996–3006. doi:10.1002/mrm.
26963

41. Cronin MJ, Wang N, Decker KS, Wei H, ZhuW-Z, Liu C. Exploring the origins of
echo-time-dependent quantitative susceptibility mapping (QSM) measurements in
healthy tissue and cerebral microbleeds. Neuroimage (2017) 149:98–113. doi:10.
1016/j.neuroimage.2017.01.053

42. Robinson S, Schödl H, Trattnig S. A method for unwrapping highly wrapped
multi-echo phase images at very high field: Umpire. Magn Reson Med (2014) 72(1):
80–92. doi:10.1002/mrm.24897

43. Sood S, Urriola J, Reutens D, O’Brien K, Bollmann S, Barth M, et al. Echo time-
dependent quantitative susceptibility mapping contains information on tissue
properties. Magn Reson Med (2017) 77(5):1946–58. doi:10.1002/mrm.26281

44. Özbay PS, Deistung A, Feng X, Nanz D, Reichenbach JR, Schweser F. A
comprehensive numerical analysis of background phase correction with V-SHARP.
NMR Biomed (2017) 30(4):e3550. doi:10.1002/nbm.3550

45. Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB. Gadolinium deposition
in the brain: Summary of evidence and recommendations. Lancet Neurol (2017) 16(7):
564–70. doi:10.1016/S1474-4422(17)30158-8

46. Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects
spatial variation in tissue composition. Neuroimage (2011) 55(4):1645–56. doi:10.1016/
j.neuroimage.2010.11.088

47. Zhou D, Liu T, Spincemaille P, Wang Y. Background field removal by solving the
Laplacian boundary value problem. NMR Biomed (2014) 27(3):312–9. doi:10.1002/
nbm.3064

48. Zheng W, Nichol H, Liu S, Cheng YN, Haacke EM. Measuring iron in the brain
using quantitative susceptibility mapping and X-ray fluorescence imaging. Neuroimage
(2013) 78:68–74. doi:10.1016/j.neuroimage.2013.04.022

Frontiers in Physics frontiersin.org17

Hagberg et al. 10.3389/fphy.2023.1209505

71

https://doi.org/10.3233/JAD-190424
https://doi.org/10.3233/JAD-190424
https://doi.org/10.1016/j.neuroimage.2018.04.047
https://doi.org/10.1016/j.neuroimage.2018.04.047
https://doi.org/10.1016/j.neuroimage.2019.05.014
https://doi.org/10.1016/j.neuroimage.2019.05.014
https://doi.org/10.1016/j.neuroimage.2018.06.007
https://doi.org/10.1016/j.neuroimage.2014.02.026
https://doi.org/10.1002/mrm.25189
https://doi.org/10.1371/journal.pone.0057924
https://doi.org/10.1371/journal.pone.0057924
https://www.medrxiv.org/content/10.1101/2022.09.23.22280290v1
https://www.medrxiv.org/content/10.1101/2022.09.23.22280290v1
https://doi.org/10.1002/mrm.26830
https://doi.org/10.1002/mrm.28716
https://doi.org/10.1155/2018/6709525
https://doi.org/10.1002/mrm.27410
https://doi.org/10.1016/j.ejmp.2021.07.015
https://doi.org/10.1186/s12868-019-0507-7
https://doi.org/10.1016/j.ejmp.2023.102590
https://doi.org/10.1111/j.1471-4159.1958.tb12607.x
https://doi.org/10.1007/s11011-015-9664-2
https://doi.org/10.1016/j.neuroimage.2010.10.070
https://doi.org/10.1016/j.neuroimage.2010.10.070
https://doi.org/10.1002/mrm.29368
https://doi.org/10.1016/j.neuroimage.2013.04.022
https://doi.org/10.1002/nbm.3546
https://doi.org/10.1042/bj2870509
https://doi.org/10.1042/bj2870509
https://doi.org/10.1016/0165-0270(91)90103-7
https://doi.org/10.1016/0165-0270(91)90103-7
https://doi.org/10.1016/j.neuroimage.2016.09.047
https://doi.org/10.1109/TMI.2009.2023787
https://doi.org/10.1109/TMI.2009.2023787
https://doi.org/10.1002/mrm.1910320308
https://doi.org/10.1002/mrm.1910320308
https://doi.org/10.1002/mrm.21710
https://doi.org/10.1002/nbm.1670
https://doi.org/10.1016/j.neuroimage.2011.08.082
https://doi.org/10.1002/mrm.28563
https://doi.org/10.1002/mrm.24765
https://doi.org/10.1002/mrm.24765
https://doi.org/10.1016/j.pnmrs.2007.10.002
https://doi.org/10.1002/mrm.1910320610
https://doi.org/10.1016/j.neuroimage.2018.06.046
https://doi.org/10.1016/j.neuroimage.2018.06.046
https://doi.org/10.1364/ol.28.001194
https://doi.org/10.1006/nimg.2002.1092
https://doi.org/10.1109/TMI.2018.2884093
https://doi.org/10.1109/TMI.2018.2884093
https://doi.org/10.1002/mrm.26963
https://doi.org/10.1002/mrm.26963
https://doi.org/10.1016/j.neuroimage.2017.01.053
https://doi.org/10.1016/j.neuroimage.2017.01.053
https://doi.org/10.1002/mrm.24897
https://doi.org/10.1002/mrm.26281
https://doi.org/10.1002/nbm.3550
https://doi.org/10.1016/S1474-4422(17)30158-8
https://doi.org/10.1016/j.neuroimage.2010.11.088
https://doi.org/10.1016/j.neuroimage.2010.11.088
https://doi.org/10.1002/nbm.3064
https://doi.org/10.1002/nbm.3064
https://doi.org/10.1016/j.neuroimage.2013.04.022
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1209505


49. Shmueli K, de Zwart JA, van Gelderen P, Li T-Q, Dodd SJ, Duyn JH. Magnetic
susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med
(2009) 62(6):1510–22. doi:10.1002/mrm.22135

50. Liu T, Wisnieff C, Lou M, Chen W, Spincemaille P, Wang Y. Nonlinear
formulation of the magnetic field to source relationship for robust quantitative
susceptibility mapping.Magn Reson Med (2013) 69(2):467–76. doi:10.1002/mrm.24272

51. Sun H, Ma Y, MacDonald ME, Pike GB. Whole head quantitative susceptibility
mapping using a least-norm direct dipole inversion method. Neuroimage (2018) 179:
166–75. doi:10.1016/j.neuroimage.2018.06.036

52. Liu Z, Kee Y, Zhou D, Wang Y, Spincemaille P. Preconditioned total field
inversion (TFI) method for quantitative susceptibility mapping. Magn Reson Med
(2017) 78(1):303–15. doi:10.1002/mrm.26331

53. Langkammer C, Bredies K, Poser BA, Barth M, Reishofer G, Fan AP, et al. Fast
quantitative susceptibility mapping using 3D EPI and total generalized variation.
Neuroimage (2015) 111:622–30. doi:10.1016/j.neuroimage.2015.02.041

54. Wen Y, Spincemaille P, Nguyen T, Cho J, Kovanlikaya I, Anderson J, et al.
Multiecho complex total field inversion method (mcTFI) for improved signal modeling
in quantitative susceptibility mapping. Magn Reson Med (2021) 86(4):2165–78. doi:10.
1002/mrm.28814

55. Jung W, Bollmann S, Lee J. Overview of quantitative susceptibility mapping using
deep learning: Current status, challenges and opportunities. NMR Biomed (2022) 35(4):
e4292. doi:10.1002/nbm.4292

56. Bollmann S, Robinson SD, O’Brien K, Vegh V, Janke A, Marstaller L, et al. The
challenge of bias-free coil combination for quantitative susceptibility mapping at ultra-
high field. Magn Reson Med (2018) 79(1):97–107. doi:10.1002/mrm.26644

57. Hagberg GE, Eckstein K, Cuna E, Robinson S, Scheffler K. Towards robust QSM in
cortical and sub-cortical regions of the human brain at 9.4T: Influence of coil
combination and masking strategies. Proc Intl Soc Mag Reson Med (2020) 28:3786.

58. Schweser F, Robinson SD, de Rochefort L, Li W, Bredies K. An illustrated
comparison of processing methods for phase MRI and QSM: Removal of background
field contributions from sources outside the region of interest. NMR Biomed (2017)
30(4):e3604. doi:10.1002/nbm.3604

59. Hagberg GE. PhasMask4QSM (2022). Available at: https://github.com/ghagberg/
PhaseMask4QSM.

60. Baigorri R, García-Mina JM, González-Gaitano G. Supramolecular association
induced by Fe(III) in low molecular weight sodium polyacrylate. Colloids Surf A
Physicochem Eng Asp (2007) 292(2-3):212–6. doi:10.1016/j.colsurfa.2006.06.027

61. Lancione M, Cencini M, Costagli M, Donatelli G, Tosetti M, Giannini G, et al.
Diagnostic accuracy of quantitative susceptibility mapping in multiple system atrophy:
The impact of echo time and the potential of histogram analysis. Neuroimage Clin
(2022) 34:102989. doi:10.1016/j.nicl.2022.102989

62. Dietrich O, Levin J, Ahmadi S-A, Plate A, Reiser MF, Bötzel K, et al. MR
imaging differentiation of Fe2+ and Fe3+ based on relaxation and magnetic
susceptibility properties. Neuroradiology (2017) 59(4):403–9. doi:10.1007/
s00234-017-1813-3

63. Birkl C, Birkl-Toeglhofer AM, Kames C, Goessler W, Haybaeck J, Fazekas F,
et al. The influence of iron oxidation state on quantitative MRI parameters in post
mortem human brain. Neuroimage (2020) 220:117080. doi:10.1016/j.neuroimage.
2020.117080

64. Papaefthymiou GC. The Mössbauer and magnetic properties of ferritin cores.
Biochim Biophys Acta - Gen Subj (2010) 1800(8):886–97. doi:10.1016/j.bbagen.2010.
03.018

65. Birkl C, Langkammer C, Krenn H, Goessler W, Ernst C, Haybaeck J, et al. Iron
mapping using the temperature dependency of the magnetic susceptibility.Magn Reson
Med (2015) 73(3):1282–8. doi:10.1002/mrm.25236

66. Sharma SD, Fischer R, Schoennagel BP, Nielsen P, Kooijman H, Yamamura J, et al.
MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron
overload: Comparison with SQUID-based biomagnetic liver susceptometry. Magn
Reson Med (2017) 78(1):264–70. doi:10.1002/mrm.26358

67. Kumar P, Bulk M, Webb A, van der Weerd L, Oosterkamp TH, Huber M, et al. A
novel approach to quantify different iron forms in ex-vivo human brain tissue. Sci Rep
(2016) 6(1):38916. doi:10.1038/srep38916

68. Brem F, Hirt AM,Winklhofer M, Frei K, Yonekawa Y, Wieser HG, et al. Magnetic
iron compounds in the human brain: A comparison of tumour and hippocampal tissue.
J R Soc Interf (2006) 3(11):833–41. doi:10.1098/rsif.2006.0133

69. Svobodova H, Kosnáč D, Tanila H, Wagner A, Trnka M, Vitovič P, et al.
Iron–oxide minerals in the human tissues. BioMetals (2020) 33(1):1–13. doi:10.
1007/s10534-020-00232-6

70. Brooks RA, Vymazal J, Goldfarb RB, Bulte JWM, Aisen P. Relaxometry and
magnetometry of ferritin. Magn Reson Med (1998) 40(2):227–35. doi:10.1002/mrm.
1910400208

71. Wood JC, Fassler JD, Meade T. Mimicking liver iron overload using
liposomal ferritin preparations. Magn Reson Med (2004) 51(3):607–11. doi:10.
1002/mrm.10735

Frontiers in Physics frontiersin.org18

Hagberg et al. 10.3389/fphy.2023.1209505

72

https://doi.org/10.1002/mrm.22135
https://doi.org/10.1002/mrm.24272
https://doi.org/10.1016/j.neuroimage.2018.06.036
https://doi.org/10.1002/mrm.26331
https://doi.org/10.1016/j.neuroimage.2015.02.041
https://doi.org/10.1002/mrm.28814
https://doi.org/10.1002/mrm.28814
https://doi.org/10.1002/nbm.4292
https://doi.org/10.1002/mrm.26644
https://doi.org/10.1002/nbm.3604
https://github.com/ghagberg/PhaseMask4QSM
https://github.com/ghagberg/PhaseMask4QSM
https://doi.org/10.1016/j.colsurfa.2006.06.027
https://doi.org/10.1016/j.nicl.2022.102989
https://doi.org/10.1007/s00234-017-1813-3
https://doi.org/10.1007/s00234-017-1813-3
https://doi.org/10.1016/j.neuroimage.2020.117080
https://doi.org/10.1016/j.neuroimage.2020.117080
https://doi.org/10.1016/j.bbagen.2010.03.018
https://doi.org/10.1016/j.bbagen.2010.03.018
https://doi.org/10.1002/mrm.25236
https://doi.org/10.1002/mrm.26358
https://doi.org/10.1038/srep38916
https://doi.org/10.1098/rsif.2006.0133
https://doi.org/10.1007/s10534-020-00232-6
https://doi.org/10.1007/s10534-020-00232-6
https://doi.org/10.1002/mrm.1910400208
https://doi.org/10.1002/mrm.1910400208
https://doi.org/10.1002/mrm.10735
https://doi.org/10.1002/mrm.10735
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1209505


Towards high-resolution
quantitative assessment of
vascular dysfunction

Maria Guidi1, Giovanni Giulietti2, Emma Biondetti3,4,
Richard Wise3,4 and Federico Giove1,5*
1Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy, 2Neuroimaging
Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy, 3Institute for Advanced Biomedical Technologies,
University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy, 4Department of Neuroscience, Imaging and
Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy, 5Laboratory of Neurophysics
and Neuroimaging (NaN), Fondazione Santa Lucia IRCCS, Rome, Italy

Neurovascular alterations are increasingly recognized as a key feature of many
brain diseases. They can manifest as a reduction in resting cerebral blood flow or
cerebrovascular reactivity (CVR) in the whole brain or in specific regions,
depending on the underlying condition. Neurovascular impairment is observed
in hypertension, Alzheimer’s disease, stroke, multiple sclerosis and cerebral small
vessel disease. Magnetic resonance imaging (MRI)-derived CVR mapping is a
reliable marker of vascular dysfunction and has been performed mainly at
standard functional MRI (fMRI) resolutions of 2–3 mm using the blood oxygen
level dependent (BOLD) contrast. However, vascular alterations may occur at a
finer scale (i.e., in the capillary bed) which would be better characterized with
smaller voxel sizes. Capillaries in gray matter deliver oxygen and glucose to neural
tissue and are arranged in a mesh structure, with variable density across the
cortical depth. Given that the human cortex is, on average, 2.5 mm thick,
submillimetric voxel sizes are effective in increasing the spatial specificity of
measurements of hemodynamic and metabolic changes. Novel MRI sequences
offer the possibility to map physiological parameters at high resolution with
relatively simple experimental setups. In particular, pairing the BOLD
acquisition with a contrast sensitive to blood volume changes, while
administering a mild hypercapnic challenge, allows for simultaneous mapping
of CVR, cerebral metabolic rate of oxygen consumption and other relevant
parameters at a high resolution and can be performed at the clinical field
strength of 3 T. We propose that this approach will help provide crucial
insights into vascular impairment.
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1 Introduction

Neurodegenerative diseases represent a huge socio-economic
burden in aging societies. Magnetic resonance imaging (MRI) offers
information about different brain features non-invasively and it is
widely employed in the detection of structural damage. Functional
alterations, however, may initiate years before anatomical alterations
and are important in the picture of disease pathophysiology.
Therefore, reliably mapping vascular dysfunction and identifying
early biomarkers should aid prevention and catalyze the
development of therapies.

MRI contrast based on the blood oxygen level dependent
(BOLD) effect is widely exploited in brain research. BOLD-based
functional MRI (fMRI) is largely confined to clinical or basic
research due to its nonquantitative nature and its dependency on
multiple parameters, which are related partly to baseline tissue
structure and physiology [1] and partly to underlying dynamic
changes in cerebral blood flow (CBF), cerebral blood volume
(CBV) and cerebral metabolic rate of oxygen consumption
(CMRO2). Other fMRI techniques that have found a
comparatively large application in clinical studies are arterial spin
labeling (ASL), for quantifying perfusion, and cerebrovascular
reactivity (CVR) mapping based on BOLD or ASL. These have
been applied to the study of aging, stroke, tumor, dementia, multiple
sclerosis, brain injury, arterial stenosis, and more [2].

Other quantitative, less explored, fMRI techniques include vascular-
space occupancy (VASO) [3], able to quantify changes in CBV, and
calibrated fMRI, which relies on a simple model of the BOLD signal for
extracting CMRO2 [4–6]. These techniques have found limited
application in disease states, for reasons including the lack of
standardized protocols, limited contrast-to-noise and more difficulties
in data acquisition and processing compared to BOLD. In this perspective
article, we propose that VASO and calibrated fMRI at high resolutions
can add valuable information to the picture of vascular impairment
because of their straightforward physiological interpretation and their
closer link to themicrovasculature compared to BOLD [7]. Indeed, many
neurodegenerative diseases are accompanied by (or originate from) a
microvascular dysfunction, which can be assessed by observing the effects
on microvascular parameters (CBF and CBV) or metabolic parameters
(CMRO2), as reported, for example, by Klinkmueller et al. in the case of
Huntington’s disease [8].

For microvascular assessment, imaging at submillimetric resolution
is needed, since the average human cortical thickness is about 2.5 mm
[9] and, thus, gray matter (GM) voxels having similar or larger sizes are
typically affected by severe partial volume contamination by the
surrounding cerebrospinal fluid (CSF) and white matter (WM),
which has a different vascularization. Moreover, in terms of vascular
density and function, the cortex is organized in a layered structure [10]
and it has been shown that voxel sizes of about 0.8 mm are capable of
distinguishing layer-specific activation in certain areas based on
haemodynamic responses [11].

Calibrated fMRI is currently limited in resolution. In order to
calibrate the BOLD signal, in addition to the BOLD contrast, a
“vascular” contrast needs to be acquired (usually ASL for mapping
CBF) while modulating the arterial partial pressure of carbon
dioxide (PaCO2). The experiments are typically performed at low
image resolutions (e.g., 3.5 × 3.5 × 3–8 mm3) [12], which are often
dictated by the low signal-to-noise ratio (SNR) of ASL sequences.

VASO-fMRI, on the other hand, has been recently proven to be
feasible at submillimetric resolutions (0.8 mm) at the clinical field
strength of 3 T [13], therefore it represents a good candidate for
microvascular state assessment in disease. Additionally, in the
framework of calibrated fMRI, it has been shown that the term
related to CBF changes can be replaced by a term related to CBV
changes (obtainable with VASO) via Grubb’s law, while assuming
different coupling exponents for venous and total CBV changes [14,
15]. Therefore, VASO can be used to obtain submillimetric maps of
CMRO2 changes [14].

This perspective article is structured as follows: Section 2 focuses
on disease states characterized by microvascular impairment;
Section 3 describes the parameters that can be derived from MRI
in order to assess microvascular dysfunction in such diseases;
Section 4 proposes an acquisition protocol and functional
paradigm for mapping the parameters listed.

2 The microvascular component in
neurodegenerative diseases

While submillimetric VASO and calibrated fMRI have been
proven feasible for the characterization of the microvascular
component in healthy individuals [13, 14], we suggest that the
same methodology may be useful in the study of disease states. A
dysfunctional microvasculature is indeed common in many
pathological conditions, such as small vessel disease (SVD),
vascular dementia, Alzheimer’s disease (AD), ischemic stroke,
brain tumors, cerebral amyloid angiopathy (CAA), mild cognitive
impairment (MCI), Huntington’s disease, Parkinson’s disease,
among others [16]. We focus here on SVD, AD and brain
tumors as case studies for investigating microvascular impairment.

2.1 Small vessel disease

Cerebral small vessel disease includes a wide spectrum of
cerebrovascular diseases that involve endothelial dysfunction of
capillaries, small arteries and small veins in the brain, leading to
blood-brain barrier (BBB) dysfunction, impaired vasodilation, vessel
stiffening, dysfunctional blood flow and interstitial fluid drainage,
WM rarefaction, ischemia, inflammation, myelin damage, and
secondary neurodegeneration [17]. The underlying
neurobiological mechanisms are, to date, not clear, and SVD is
generally assessed by looking at macroscopic or mesoscopic
manifestations, such as WM hyperintensities, lacunas,
microbleeds, perivascular spaces, or small subcortical infarcts. In
terms of hemodynamic measures, a reduction in CVR and CBF has
been observed [18]. Given the microvascular nature of the disease,
mapping microvascular reactivity and the possible related metabolic
impairment can help clarify the underlying mechanisms and
pathological effects of the observed alterations [19].

2.2 Alzheimer’s disease

AD is characterized by amyloid-β accumulation and impaired
CVR [20], but the relationship between these alterations is not clear.
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One hypothesis is that amyloid-β accumulation may directly induce
vascular dysfunction by impairing vasorelaxation, but therapies
aimed at amyloid-β plaque reduction are not effective in
reversing cognitive decline [21].

Another hypothesis identifies the microvasculature and related
inflammatory processes as fundamental in the pathogenesis of AD
[22]. In particular, a CBF reduction is currently the earliest known
change associated with the disease, and the mechanism behind it
might be a pericyte-driven constriction of capillaries [23]. It is
hypothesized that this constriction and the associated
hypoperfusion are the precursors of amyloid-β accumulation via
upregulation of the BACE1 enzyme. Capillary dysfunction and
microvascular CVR reduction were additionally observed to be
associated with symptom severity [24, 25], and resting CMRO2

was found to be reduced in a calibrated BOLD study in AD
patients [26].

2.3 Brain tumors

Brain tumors are accompanied by strong alterations in the
vasculature (e.g., angiogenesis), which often lead to a local
disruption in the neurovascular coupling, also termed
neurovascular uncoupling (NVU). Even low grade brain
tumors show some degree of NVU [27]. In practice, this may
cause a reduced or absent BOLD response to functional tasks in
the region affected, even if neuronal activation is present [28].
Distinguishing regions of NVU from regions effectively lacking
neuronal response is very important in presurgical planning to
avoid excess surgical resection [27, 28]. In place of task-based
BOLD fMRI, CVR mapping is generally preferred as it relies on a
purely vascular stimulus. CVR mapping was found to be superior
(i.e., able to identify NVU regions also in low and intermediate
brain gliomas) to perfusion mapping with T2* dynamic
susceptibility contrast [27]. Increasing spatial resolution in
CVR maps and adding a vascular contrast (such as CBV-
weighted) is important for precise localization and
characterization of the tissue affected.

3 Quantitative parameters for high
resolution mapping of vascular
dysfunction

In the following, we list quantitative fMRI-derived parameters
useful in the study of neurovascular disease and that can be mapped
at high resolution at 3 T.

3.1 Cerebral blood volume

Mapping of CBV with MRI without the use of contrast agents
can be achieved with vascular-space occupancy [3]. VASO is an
inversion recovery technique exploiting the different T1 of blood and
tissue (T1,tissue < T1,blood) for creating a contrast sensitive to CBV
changes. In the original VASO formulation the images were
acquired at the time of blood nulling [3], while more recent
implementations showed that different inversion times can be

used, as long as a difference in the T1 weighting of the two
compartments is achieved [29, 30]. When the vasculature dilates,
either following a metabolic demand of the tissue or a vasodilatory
stimulus, the volume of blood in a responding voxel increases.
VASO measures quantitative changes in blood volume, which
can be expressed as a percentage change or in volume units, but
VASO does not quantify baseline CBV.

The slice-saturation slab-inversion VASO (SS-SI-VASO) [31],
developed at 7 T, permits the acquisition of gradient-recalled echo
(GRE)-BOLD and VASO contrasts interleaved by adding a second
excitation pulse at each repetition time (TR). VASO demonstrated a
high specificity for the capillaries, arterioles and intracortical arteries
[32, 33], making it a valuable tool for high-resolution fMRI [34].
Recently, the VASO implementation acquiring BOLD volumes
concomitantly has been adapted for high-resolution applications
at 3 T, where it has been shown capable of distinguishing layer-
dependent activation [13], thus reflecting a microvascular
sensitivity.

Using the VASO sequence requires some effort in setting up a
working protocol, dealing with the lower SNR and longer TRs
compared to BOLD, as well as a less standardized data
processing. Examples of protocols for submillimetric acquisitions
can be found at https://github.com/layerfMRI/Sequence_Github/
tree/master/3T.

3.2 Cerebrovascular reactivity

Cerebrovascular reactivity (CVR) reflects the capacity of brain
vessels to dilate or constrict in response to a vasoactive stimulus.
MRI-based CVR is generally expressed as percent BOLD or ASL
signal change per mmHg change in end-tidal carbon dioxide
(EtCO2) [2]. Despite the relative simplicity of the measure, it is
one of the most reliable MRI-derived predictors of cerebrovascular
impairment and has been applied in the study of several diseases,
including SVD and AD [2, 35, 36].

Since GRE-BOLD signal changes are heavily weighted towards
the venous macrovasculature, both due to an inherent weighting
towards larger vessels and to dHb-containing compartments [37],
CVR maps based on such contrast show similar features. In order to
target microvascular CVR, different sequences should be employed,
such as ASL, spin-echo (SE)-BOLD, or VASO. In particular, VASO-
based CVR could be interesting due to the high resolutions
achievable and the observed stability to hypercapnic stimuli [14].
In one study, VASO reactivity was found to be more negative
(i.e., larger CBV increase) in patients with carotid artery disease
compared to healthy controls [38].

3.2.1 Vasodilatory stimuli
CVR mapping with MRI can be achieved with administration of

carbon dioxide (CO2)-enriched gas [2], breath holding [39] or
amplitude of resting-state fluctuations in CO2 [40]. CVR
mapping has been performed at a variety of spatial resolutions,
determined by the BOLD or ASL acquisition protocol used. For CVR
mapping at high resolution, inhalation of a CO2-enriched gas
mixture (typically 5% CO2) is preferable over the other
approaches because it gives the strongest increase in CBF and
thus improves the contrast-to-noise ratio (CNR), while being safe

Frontiers in Physics frontiersin.org03

Guidi et al. 10.3389/fphy.2023.1248021

75

https://github.com/layerfMRI/Sequence_Github/tree/master/3T
https://github.com/layerfMRI/Sequence_Github/tree/master/3T
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1248021


and well tolerated [41]. A few studies have indeed successfully
mapped CVR at voxel sizes below 2 mm using breathing
manipulations [2, 42]. In particular, a recent study by Schellekens
et al. reports depth-dependent profiles of CVR using GRE-BOLD
and SE-BOLD, showing a detectable variation with cortical
depth [15].

3.3 Cerebral metabolic rate of oxygen
consumption

BOLD signal changes in a voxel during a task of interest can be
modeled according to Eq. 1 [4]:

ΔBOLD
BOLD0

� M 1 − CBVv

CBVv,0
( ) CBF

CBF0
( )−β

CMRO2

CMRO2,0
( )β⎡⎣ ⎤⎦ (1)

where CBVv is the CBV contributing to BOLD signal changes
(“venous” CBV), M is the calibration parameter which
corresponds to the maximum BOLD signal change (BOLD = M
for complete deoxy-hemoglobin washout from the vasculature), β is
a magnetic-field dependent exponent, and the subscript 0 indicates
quantities at baseline.

It is generally assumed that CBV and CBF are coupled via Eq. 2:

CBVv

CBVv,0
� CBF

CBF0
( )α

(2)

where α is a coupling constant, often taken to be equal to 0.38 [43].
The goal of calibrated fMRI is isolating the CMRO2 term from

the Eq. 1: to this end, a pure CBF or CBV sensitive contrast needs to
be acquired in addition to BOLD, and the calibration parameter M
needs to be estimated. For extracting M a vasoactive, isometabolic
(CMRO2/CMRO2,0 ~ 1) stimulus is used, which introduces a BOLD
dependency only on CBF or CBV (measurable) if Eq. 2 is
assumed [4, 5].

Most calibrated fMRI studies use ASL sequences for mapping
CBF and extract CBV via Eq. 2. Since the technique allows for
voxelwise mapping, the resolution achievable by ASL at 3 T dictates
the resolution of CMRO2 maps. For submillimetric applications,
CBV mapping can be used and CBF changes estimated by Eq. 2,
while assuming a different coupling exponent for venous and total
CBV changes [14, 15].

Other approaches for CMRO2 mapping have been introduced
using different gas mixtures or without exogenous gas
manipulations. Existing acquisition techniques and modelling
approaches have been recently reviewed [44, 45].

4 Functional paradigms for
multiparametric mapping at high
resolution

Given the sequences currently available, we propose that it is
possible to obtain, in less than 30 min at 3 T, submillimetric maps of
1) BOLD-based CVR; 2) VASO-based CVR; 3) the calibration
parameter M; 4) relative changes in CMRO2 elicited by a task of
interest; 5) BOLD signal changes elicited by the same task; 6) VASO
signal changes elicited by the same task.

To this end, the use of the VASO sequence with a 3D readout
[13] has shown to be suitable for submillimetric fMRI at 3 T.

Figure 1 shows the activation maps obtained for two tasks
using the same acquisition protocol. The sequence used was the
3 T VASO [13] with the following acquisition parameters:
isotropic nominal resolution = 0.9 mm, matrix size = 188 ×
188 × 28, echo time (TE) = 21.2 ms, TR = 3.9 s (this refers to
the time it takes to acquire a BOLD-VASO pair of volumes),
210 measurements (210 BOLD volumes and 210 VASO volumes),
partial Fourier = 6/8, GRAPPA = 3, bandwidth = 1,026 Hz/Px,
echo spacing = 1.1 ms, inversion delay = 550 ms, flip angle = 30°

with a variable flip angle scheme [13], water selective excitation
achieved with long binomial 1-1 pulses. The acquisition was
performed on a Siemens Prisma 3 T (Siemens Healthineers,
Erlangen, Germany) scanner and a 32-channel head coil.
Informed consent was obtained according to international
standards, the study was approved by the Ethical Committee
of Fondazione Santa Lucia, CE/2022_010.

One acquisition was performed during a breathing challenge
consisting of an alternation of medical air and 5%-CO2-enriched
air administration (Figure 1A), for a total acquisition time of

FIGURE 1
Activation maps overlaid on the mean of the VASO timecourse
obtained with the acquisition of 210 pairs of volumes (210 BOLD
volumes and 210 VASO volumes) at a isotropic resolution of 0.9 mm
for a breathing paradigm involving hypercapnia (A) and a right-
hand finger tapping task (B). The duration was 13.5 min (TR = 3.9 s) for
each run.
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13.5 min. The other acquisition was performed during a
functional task consisting of an alternation of right-hand
finger tapping for 6 TRs and rest for 6 TRs (Figure 1B). For
both acquisitions, the timecourses were corrected for motion
using the ASL toolbox based on SPM [46, 47]. Statistical
activation maps were obtained using FSL FEAT [48] and
z-stats are reported in Figure 1. A detectable activation was
present for both contrasts and conditions, with BOLD
generating larger clusters as expected. The submillimetric
voxel size of 0.9 mm allows to have 2 to 4 voxels within the
gray matter thickness and to reduce partial voluming with the
neighboring CSF and WM. Nevertheless, the large BOLD signal
changes following the pial venous vasculature are located outside
the GM and reduce the spatial specificity. VASO signal changes
have in general a lower amplitude and are more affected by noise,
which result in smaller clusters as in Figure 1, while the specificity
of the signal changes is less compromised by the pial vasculature
(more clearly visible in Figure 1B).

This preliminary dataset confirms that it is possible to have a
statistically significant response in both BOLD and VASO
timecourses for a functional run of 13.5 min (210 BOLD-VASO
pairs of volumes).

With the two datasets referred to in Figure 1, the signal changes
in BOLD and VASO upon hypercapnia can be used to estimate the
calibration parameter M across gray matter from Eq. 1 (assuming
Eq. 2), and the signal changes in BOLD and VASO elicited by the
finger tapping task can then be used to estimate changes in CMRO2

from the same equation, once M has been calculated.

4.1 Limitations

The proposed multiparametric acquisition can offer a multi-
faceted window into microvascular dysfunction, by mapping
vascular and metabolic features concomitantly at 3 T and at
voxel volumes below 1 mm3.

The submillimetric VASO sequence has been introduced only
recently at 3 T and has some limitations. First of all, the low SNR of
10–20 [13] limits its flexibility: tasks associated with small effect sizes
are hard to detect, unless the acquisition time is largely increased.
Moreover, the generation of the VASO contrast has some timing
constraints that impact the TR duration: the typical TR is about
4–5 s (for the acquisition of a full BOLD-VASO pair) for slab
protocols.

Additionally, the breathing challenge could create excessive
discomfort in patient populations, both due to wearing a mask
and being in a hypercapnic state. Therefore, it is important to
familiarize each subject with the gas challenge prior to scanning.
An earlier study showed an increase in participant dropouts for AD
patients compared to healthy control for the breathing
challenge [26].

While CVR mapping is reliable and has been applied in
disease, the same does not hold for calibrated fMRI.
Calibrated BOLD models rely on several assumptions, which,
even at typical image resolutions, might not be a good
approximation of the real underlying mechanisms. Such
limitations could be exacerbated at higher resolutions where
the spatial heterogeneity of the vasculature is resolved. Most

notably, the flow-volume coupling expressed by Grubb’s
relationship is unlikely to hold true with the same exponent
for small voxel sizes and between healthy subjects and patients.
Therefore, differences in CMRO2 between a healthy group and a
disease group could stem from a disrupted CBF-CBV coupling
rather than a true metabolic difference. To avoid such bias,
imaging CBF, CBV, and BOLD concomitantly [8] is
preferable, but CBF mapping via arterial spin labeling at high
resolution is challenging [49], therefore studying the flow-
volume coupling relationship experimentally in humans is
difficult.

If using VASO in the calibrated BOLD framework, the CBV at
baseline needs to be assumed. A fixed fraction of 5.5% [50] might
be acceptable considering that the microvascular blood density,
which is the major factor responsible for VASO signal changes for
short stimulations, is relatively homogeneous across the cortical
depth [10, 51]. During hypercapnic stimulations, however, the
fraction of VASO signal change coming from venous blood
increases [52], challenging the assumption of a fixed baseline
blood fraction.

Finally, the assumption of isometabolism during gas
administration has been challenged in several studies. Although
there is not a definitive answer, some evidence suggests a reduction,
rather than an increase, in CMRO2 of up to 13% during a 5%-CO2

gas challenge [53]. However, this value depends on the
concentration of arterial CO2 and on the length of the
respiratory challenge, with shorter epochs having less impact on
CMRO2 [2].

5 Discussion and conclusion

We propose that, to obtain more insight into neurovascular
diseases, several contrasts and approaches sensitive to
microvascular function should be used at 3 T and at
submillimetric resolutions. The acquisition scheme that we
propose here involves the use of VASO at 3 T (BOLD and
CBV-weighted contrast interleaved) with a gas manipulation
inducing hypercapnia, and a functional task. Scanning under
these conditions for less than 30 min makes it feasible to obtain
maps of BOLD and VASO signal changes for each condition,
CVR, regional CMRO2 changes and M at a submillimetric
resolution.
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Objective: Precisely localizing the seizure onset zone remains a challenging task in
drug-resistant epilepsy (DRE) patients especially given its critical role in successful
surgery and effective management. This study aimed to investigate the kinetic
parameters of regional 18F-fluorodeoxyglucose (FDG) uptake in DRE patients,
aiming to identify the kinetic parameters best enabling the identification of the
epileptogenic region.

Methods: Consecutive DRE patients with clinically mandated interictal
18F-FDG PET/CT were recruited from October 2019 to September 2020 for
pre-surgical evaluation. Immediately after injecting 18F-FDG of 112–179 MBq,
dynamic data were acquired for 90 min. The motion correction and
resampling to the Montreal atlas was performed in order to generate a
transformation matrix. 116 volume of interests (VOIs) and regional time-
activity curves (TACs) were generated by employing the automated
anatomical labeling (AAL) template using PMOD software. Kinetic
parameters of FDG unidirectional blood-brain clearance (K1), efflux (k2),
phosphorylation (k3), and net metabolic flux (Ki) were derived using
irreversible 2-tissue-compartment model with an image-derived input
function (IDIF). The kinetic parameters values obtained from all regions
were ranked and compared with the presumed epileptogenic zone (EZ).

Results: Eleven DRE patients (5males, 6 females, mean age 35.1 ± 10.2 years) were
analyzed. We found that the region with the lowest values of Ki provided correct
lateralization in 7/7 (100%) of patient with temporal lobe epilepsy (TLE) and the
region with the lowest Ki and k3 parameters showed concordance with the EZ in
100% and 71.4% of patients, respectively.

Conclusion: The present parametric approach to the evaluation of FDG-PET may
be more sensitive than semi-quantitative approaches for the detection of
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pathophysiology in the EZ of patients with medically unresponsive TLE in addition
to the routine clinical investigations.

KEYWORDS

drug-resistant epilepsy, pharmacokinetic modeling, compartmental modeling, dynamic-
PET, PMOD software, epileptogenic zone localization

1 Introduction

Epilepsy is a prevalent neurological disorder that affects millions
worldwide, and about one-third of patients with epilepsy become
medically intractable, often requiring surgery for achievable
management [1]. Precisely localizing the epileptogenic zone (EZ)
is essential for successful surgical intervention. Functional imaging
techniques such as 99mTc-ethyl cysteinate dimer (ECD) ictal-
interictal single photon emission computed tomography (SPECT)
and 18F-fluorodeoxyglucose-positron emission tomography (FDG-
PET) play a crucial role in identifying EZ and differentiating them
from non-epileptogenic regions, particularly in patients with drug-
resistant epilepsy (DRE) or discordant cases where conventional
magnetic resonance imaging (MRI) has limited sensitivity [2–5].
18F-FDG PET is typically used in interictal studies for presurgical
evaluation since ictal studies are difficult to obtain due to slow brain
glucose uptake and the short decomposition time of 18F. The main
advantage of interictal 18F-FDG PET over interictal 99mTc-ECD
SPECT is that 18F-FDG PET provides a better spatial resolution,
thus results in higher diagnostic sensitivity for EZ localization [6].

In epilepsy, it was known that there is mutation of gene
controlling oxidative phosphorylation affecting mitochondrial
function [7–11]. Since the structure of mitochondria is disrupted
in neuropathological study, the utilization of glucose in this area is
less. This results in the focally reduced FDG uptake or the known
relative hypometabolism in the EZ. However, the limitations of
static FDG-PET (sFDG-PET) in accurately defining the surgical
margin pose a significant challenge [12, 13]. Overcoming these
limitations and achieving accurate localization of the seizure
origin remain the greatest challenges for epilepsy pre-surgical
evaluation.

Pharmacokinetic (PK) modeling plays a critical role in studying
radiotracer kinetics in the human body, particularly in the field of
nuclear medicine, which includes neuroimaging [14–16]. Applying
kinetic models and quantifying PET data is of great interest for
accurately localizing seizure onset zones in difficult epilepsy cases.
While some studies have shed light on local cerebral FDG
metabolism during epilepsy, our understanding of this
phenomenon is limited, and most previous studies have
investigated FDG kinetics in healthy adults or animals [17–22].
Their applicability to epilepsy has yet to be ascertained. As such, the
establishment of PKmodels specific to epilepsy is a critical need, and
would help optimize treatment for patients with DRE.

To achieve accurate localization of EZ, it is crucial to understand
the differences in FDG kinetics and transfer rate between EZ and
normal human brain areas. Therefore, the present study aimed to
investigate the kinetic parameters for regional FDG uptake in DRE
patients utilizing interictal dynamic FDG-PET (dFDG-PET) PK
models. Quantitative analysis in terms of PK models that provide
transfer rates and quantification in each region of the brain derived

in this study can improve the localization of EZ for intractable
epilepsy, ultimately leading to better management and outcomes for
patients.

2 Materials and methods

2.1 Subjects

This study was conducted in accordance with the guidelines and
regulations of our institutional review board (IRB) and obtained
approval prior to patient recruitment. Consecutive DRE patients
who underwent a prolonged video-electroencephalography (EEG)
monitoring for presurgical evaluation and required 18F-FDG PET/
CT study during October 2019 to September 2020 were scanned in
this study. Written informed consent was obtained from all patients
prior to the examination. Patients were received anti-seizure
medications as per their usual regimen at the time of scanning
procedure in order to control the seizure condition. All patients
underwent MRI brain epilepsy protocol with T1-weighted and T2-
weighted sequences. Patients who had last seizure within 48 h prior to
the examination, or lacked EEG data were excluded from the study.

2.2 Dynamic PET/CT image acquisition

To conduct the kinetic modeling, PET/CT imaging was performed
using a Siemens Biograph Vision 64-slice digital PET/CT system. All
patients fasted for at least 6 h before the study. Prior to injection, blood
glucose levels were checked to ensure the level below 120 mg/dL. Each
patient was intravenously injected with 2.6 MBq/kg of 18F-FDG (half-
dose protocol) and immediately followed by a 90-min dynamic PET
scan. List-mode data were acquired and binned into 31 frames: 6 × 10 s,
8 × 30 s, and 17 × 300 s. PET image series for each frame was
reconstructed using time-of-flight ordered subset expectation
maximization (OSEM) algorithm with 8 iterations and 5 subsets,
and matrix size of 440 × 440. Corrections for radioactivity decay,
attenuation, model-based scatter, random events, and 5 mm Gaussian
filtering of convolution kernel were applied to all PET image
reconstructions. A low-dose CT scan protocol was used for
attenuation correction and localization.

In this study, a non-invasive method, image-derived input
function (IDIF) was utilized for alternative invasive arterial blood
sampling [13, 23, 24]. The regions of interest (ROIs) were drawn by
iso-contour (3D iso-contouring VOI tools using region-growing)
inside the right internal carotid artery (ICA) in order to generate
time-activity curve (TAC) input function for the kinetic modeling.
Figure 1 shows the dFDG-PET images varying over time, which
were used for generating the TAC at the internal carotid artery
region as a non-invasive input function.
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FIGURE 1
Illustration of dynamic-FDG PET images changing over-time for measuring the input function at the internal carotid artery region.

FIGURE 2
Overall workflow for PK model based on 2-tissue compartment (2TC) utilizing image-derived input function measured from dFDG-PET.

Frontiers in Physics frontiersin.org03

Khamwan et al. 10.3389/fphy.2023.1233059

82

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1233059


2.3 Regional tissue time-activity curves

In this study, 31 time-frames of dynamic PET images were
transferred to the PMOD software (PMOD 4.101, PMOD
Technologies Ltd.) to determine the FDG kinetic parameters in
each patient. Image pre-processing was initiated with motion
correction for the 90-min acquisition for the deformation
process. PET data were averaged across the early 5 time-frames
series to create a reference, which was used to perform a rigid body
transform across all 31 frames of the dynamic PET. The motion-
corrected PET frames were then re-sliced and co-registered with a
PET template in the Montreal Neurological Institute (MNI) space
using a non-rigid transform to generate a transformation matrix.
The transformation information was then used to reorient the
dynamic image into the MNI space. The resulting transformation
matrix was inverted and applied to all ROIs to move them from the
standard MNI template into the patient PET. A set of predefined
volume of interests (VOIs) utilizing an automated anatomical
labeling (AAL) template atlas was used to generate 58 VOIs per
hemisphere, creating a total of 116 regional TACs for calculating the
kinetic parameters. The overview workflow for spatial
normalization, AAL atlas, which was used to automatically
extract the VOIs and TACs for 116 local brain regions, and the
IDIF for PK model, which was obtained using dynamic PET scan, is
illustrated in Figure 2.

2.4 Compartmental modeling

By employing dFDG-PET measurements, the irreversible two-
tissue compartment (2TC) model was used to develop the kinetic
modeling for the dFDG-PET data utilizing the PKIN kinetic
modeling module. The compartmental model used to describe
the behaviors of FDG in brain tissue is depicted in Figure 3. The
left compartment represents the vascular space for FDG, the center
compartment represents the tissue space for free FDG, and the right
compartment represents the tissue space for 18F-FDG-6-phosphate
(FDG-6-P). The transfer rate constants between compartmental
tissues are represented by K1 (FDG unidirectional blood-brain

clearance), k2 (efflux), and k3 (phosphorylation). The
corresponding ordinary differential equation of 2TC FDG kinetic
modeling of each compartment can be expressed using Eq. 1 as
follows [25, 26]:

d

dt
C1 t( )
C2 t( )[ ] � − k2 + k3( ) 0

k3 0
[ ] C1 t( )

C2 t( )[ ] + K1

k4 � 0
[ ]Cwb t( ), (1)

where Cwb(t) represents the 18F-FDG activity concentration in
whole blood derived from IDIF, C1(t) represents the activity
concentration of free 18F-FDG, and C2(t) represents the
activity concentration of metabolized or trapped 18F-FDG in
the tissue space at time t. The constant K1 (unit: mL/min/cm3)
is the rate of 18F-FDG delivery from the whole blood to the tissue
space, k2 (unit: min-1) is the rate constant of tracer leaving the
tissue space, whereas k3 (unit: min-1) is the rate constant of
18F-FDG being phosphorylated by hexokinase. Typically, this
irreversible model widely assumes that the dephosphorylation
process is negligible, therefore, FDG k4 rate constant can be
considered to be zero (i.e., k4 = 0) for the majority of tissues. As a
result, the irreversible FDG model using PMOD in this study
includes 3 fittable parameters (i.e., K1, k2, k3). With regard to
non-linear fitting of kinetic parameters, the initial values of Ki,
K1, k2, and k3 were set to 0.05, 0.1, 0.01, and 0.01, respectively.
The lower bound and the upper bound were set from zero to eight
for all mentioned parameters.

The macro parameter Ki representing the net metabolic influx
rate of 18F-FDG consumption can be calculated using Eq. 2 as
follows [26, 27]:

Ki � K1k3
k2 + k3

(2)

The total radioactivity concentration in the tissue compartment
as a function of time (CPET(t)) that can be measured by PET is the
sum of the time courses of 18F-FDG in the vascular, intravascular
and extravascular spaces, which can be written using Eq. 3 as follows
[25–27]:

CPET t( ) � Cwb t( ) ⊗ K1k2
k2 + k3

e − k2+k3( )t[ ] + K1k3
k2 + k3

( ), (3)

FIGURE 3
Two-tissue irreversible compartment model used for kinetic modeling of 18F-FDG.
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where ⊗ is the convolution operation symbol, K1 is the rate of
18F-FDG entry into the tissue, while k3/(k2+k3) represents howmuch
18F-FDG is metabolized or trapped as mentioned previously. For
model fitting, the fraction of blood volume (vB, unit: mL/mL) is
fixed at a physiologic value of approximately 5% to reduce the
number of fitted parameters [15, 18, 19, 26, 28].

2.5 Potential epileptogenic zone verification

The consensus of the area of potential EZ was made by the
multidisciplinary epilepsy team which consisted of epileptogists,

neurosurgeons, diagnostic radiologists and nuclear medicine
physicians. At the time of this study, results of the kinetic
18F-FDG study were not as part of information used for
consensus decision.

2.6 Data analysis

The kinetic parameters of Ki, K1, k2, and k3 derived from
kinetic modeling of 116 regions in each patient were analyzed. All
rate constants among these regions were ranked and the lowest
value of kinetic parameters was chosen, and compared with the

TABLE 1 Patient demographics data.

Id Age/
Sex

Injected
activity
(MBq)

Blood
glucose level

(mg/dL)

Clinical
localization/
lateralization

EEG location MRI brain Interictal PET/CT

1 26/M 150 91 Rt. temporal Rt. mesial temporal Probably right
hippocampal sclerosis

Hypometabolism at antero-
lateral right temporal lobe

2 47/F 125 77 Lt. temporal Intermittent slow Lt.
cerebral hemisphere with

Lt. temporal lobe
predominance

Left hippocampal
sclerosis

Hypometabolism at left
medial temporal lobe

3 22/F 140 81 Rt. parietal IED spike Cz Pz, C4, ictal
EEG: repetitive spike Cz

C2 C4

Relatively small gyri at
superior aspect of

anterior right temporal
lobe

Suspicious of a small area of
subtle mild

hypometabolism at right
inferomedial temporal lobe

4 38/M 125 109 Lt. hemisphere Rt. temporal (ictal EEG
Rt. temporal, IED bilateral

R > L)

Left hippocampal
sclerosis, Traumatic

brain injury Lt. frontal
and bilateral superior

temporal

Hypometabolic focus at
anterior left temporal lobe

5 35/M 110 85 Lt. temporal Lt. temporal-occipital-
parietal

Negative Suspicious area of
functional deficit zone at
left temporal lobe (lateral,
anterior and mesial)

6 31/F 112 89 Rt. temporal Ictal EEG 4/4 Rt. (Rt
frontal or Rt. Insula),
IED—Rt. temporal, Lt.

temporal, Lt.
frontotemporal

Negative Bilateral temporal
metabolism is quite equal
except area of relatively

lower at left temporal pole

7 38/M 179 88 Rt. temporal Ictal EEG: Rt. temporal 3/
3, interictal EEG: Rt.

temporal

Right occipital cortical-
based tumor

Hypometabolism at the
whole right temporal cortex

8 19/F 132 79 Rt. hemisphere Ictal EEG→ Rt. temporal-
occipital-parietal 2/3 and
1/3 Lt. temporal Interictal
EEG → Rt. PTO > Rt.
frontal > bilat. occipital

(Rt > Lt)

Left frontal focal cortical
dysplasia (FCD), ± Right

occipital FCD

Relatively hypometabolism
at bilateral posterior
parietal regions

9 41/F 132 75 Rt. temporal Ictal EEG → Rt. temporal
8/8, interictal EEG → Rt.

& Lt. temporal

Few hyperintense foci
without restricted
diffusion in right

temporal stem. Brain
atrophy

No evidence of focal
hypometabolism

10 53/F 140 107 Lt. temporal Lt temporal Ill-defined internal
architecture in posterior
left hippocampal body

Hypometabolism at left
lateral temporal lobe

11 36/M 145 79 Lt. hemisphere Ictal EEG →Lt. 4/7, Rt. 3/
7, interictal EEG → Lt.
temporal, Lt. frontal

Few small non-specific
white matter changes

Hypometabolism at the left
temporal lobe
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presumed EZ identified by the concordance of at least 3 out of
4 pre-surgical workups, which are clinical semiology, scalp EEG,
MRI, and static FDG-PET visual analysis results. The presumed

EZ as established through the previously mentioned concordance
was determined by assigning it to a specific region based on the
AAL atlas.

TABLE 2 Summary of suspected epileptogenic zone by pre-surgical workups and associated kinetic parameter findings.

Id Suspected
epileptogenic

area

Lowest Ki Lowest K1 Lowest k2 Lowest k3 Associated kinetic parameter
findings

1 Rt. temporal TLE Rt. hippo Temporal_Inf_l Occipital_Inf_l Rt. hippo Ki, k3

2 Lt. temporal TLE Lt. hippo Parietal_Sup_l Parietal_Sup_l Lt. hippo Ki, k3

3 Inconclusive - Rt. hippo Frontal_Inf_Oper_l Frontal_Inf_Oper_l Frontal_Sup_Orb_l n/a

4 Lt. temporal TLE Lt. hippo Frontal_Sup_l Occipital_Sup_l Lt. hippo Ki, k3

5 Lt. temporal TLE Lt. hippo Parietal_Sup_l Occipital_Inf_r Occipital_Sup_r Ki

6 Inconclusive - Temporal_Pole_Sup_l Frontal_Sup_r Precentral_l Lt. hippo n/a

7 Rt. temporal TLE Rt. hippo Temporal_Inf_l Frontal_Sup_l Rt. hippo Ki, k3

8 Inconclusive - Rt. hippo Rt. hippo Frontal_Sup_Orb_r Rt. hippo n/a

9 Rt. temporal TLE Rt. hippo Temporal_Pole_Mid_r Frontal_Sup_Orb_l Temporal_Pole_Mid_l Ki

10 Lt. temporal TLE Temporal_Pole_Mid_l Temporal_Pole_Mid_l Temporal_Pole_Mid_l Temporal_Pole_Mid_l Ki, k1, k2, k3

11 Inconclusive - Parietal_Sup_r Temporal_Pole_Sup_l Temporal_Pole_Sup_l Lt. hippo n/a

Tem, temporal; TLE, temporal lobe epilepsy; Hippo, hippocampus; Sup, superior; Mid, middle; Inf, inferior; n/a, unable to associate kinetic parameter with the epileptogenic zone due to

inconclusive epileptogenic area.

FIGURE 4
Box plot showing the rate constants in presumed EZ regions for (A) FDG net metabolic flux; Ki (B) FDG unidirectional blood-brain clearance; K1 (C)
efflux; k2 and (D) phosphorylation; k3.
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3 Results

Eleven patients with DRE, aged 19–53 years (5 males, 6 females,
mean age 35.1 ± 10.2 years) were carried out. Table 1 presents the
characteristics of the study subjects with DRE referred to dFDG-PET
in this study. The mean 18F-FDG activity administered to the
patients was 135.5 ± 19.2 MBq, ranging from 110–179 MBq, and
all dynamic scans of the 11 DRE patients were successful. Negative
MRI findings were found in 2 patients (patient 5 and patient 6).
Table 2 lists the summary of suspected area of EZ and related kinetic
parameter findings. In this study, the suspected areas for EZ were
found at the left temporal lobe in 4 patients, right temporal lobe in
3 patients, and inconclusive in 4 patients (patients 3, 6, 8, and 11).
We thus excluded the patients who had inconclusive EZ due to the
discordance of clinical, EEG, MRI, and PET/CT interpretation from
the analysis of this study. When the lowest value of kinetic
parameters was chosen and compared with the presumed EZ, we
found that the net metabolic flux Ki and the rate constant k3 kinetic
parameters provided high association with the suspected EZ in all
patients. The lowest Ki values were concordance with the suspected
EZ in all the remaining EZ identifiable 7 patients, while the lowest k3
values were found concordance in 5 out of 7 patients (71.7%).

Figure 4 illustrates the box plots of the rate constants of Ki, K1, k2
and k3 in presumed EZ regions found in this study. The plots
indicated that the values of Ki and k2 were significantly lower and
higher, respectively, in the presumed EZ regions compared to other
regions. The details of regional FDG kinetic parameters determined
from 11 DRE patients are provided in Supplementary Material S1.

Figure 5 illustrates a comparison of the biokinetic in the
presumed EZ and homologous regions in the contralateral
hemisphere of a patient suspected to have presumed EZ in the

left temporal region, showing hypometabolic areas at the left
temporal lobe. The kinetic parameters were calculated from TAC
generated from both the epileptogenic foci and counterpart
homologous regions in the contralateral hemispheres. The lowest
Ki values of 0.017 mL/min/cm3 and k3 of 0.034 min-1 were found in
the left middle temporal pole region for this case, which were
associated with the clinical diagnosis and EEG location.

4 Discussion

Improving the localization of epileptic foci in DRE is of great
interest, as visualization of hypometabolic areas on FDG-PET is
non-specific to the EZ [29, 30]. In recent years, there have been huge
efforts in using nuclear medicine techniques, both by visual and by
quantitative analysis, for better localizing EZ [30]. Among these, the
study of FDG biokinetic pattern in epilepsy is a method that has
potential to benefit patients in clinical settings by avoiding invasive
diagnoses [13]. To address this, we further investigated the kinetic
parameters of regional FDG uptake using a 2TC-PK model of
dFDG-PET in DRE patients for pre-surgical evaluation to see if a
single kinetic parameter or a combination would benefit in EZ
localization or not. Based on our results, we found that the lowest net
metabolic flux (Ki) values were concordance with all of the presumed
EZ. In addition, the rate constant of 18F-FDG phosphorylation (k3)
was also lowest in 5 of 7 patients. Thus, both of these kinetic
parameters can be used in isolation without comparison to any
other brain reference regions (e.g., contralateral homologous brain
region, cerebellum, pons, etc.). Of note is that although some
patients showed that there were other structural abnormalities on
their MRI (patients 4 and 9) or even if there was a lesion not related

FIGURE 5
Comparison of biokinetic of ipsilateral and contralateral in patient who has suspected epileptic foci at Lt temporal lobe (Pt.10/F). The arrows on PET
images indicate the hypometabolic areas at Lt temporal lobe corresponds to the lowest Ki (0.017) and k3 (0.034) at Lt middle temporal pole. Time-activity
curves of dynamic FDG PET were generated in both the epileptogenic foci and the counterpart homologous regions in the contralateral hemispheres for
calculating the kinetic parameters.
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to epileptogenicity (patient 7), the lowest Ki and k3 were still located
at the epileptogenic region. So, the utilization of dFDG-PET imaging
combined with pharmacokinetic modeling has a potential to provide
important information for the assessment and characterization of
epileptic foci in DRE patients with discordant pre-surgical
investigation data in addition to the use of FDG-PET visual
analysis alone.

According to distribution of the kinetic values in representative
brain regions illustrated in Figure 4, we observed that Ki and k3
showed decreasing trends, while k2 showed higher values in the
presumed EZ. We also found that Ki was the lowest in all seven EZs,
k3 was the lowest in 5 out of 7 patients, and k2 was the highest in
4 out of 7 patients. According to these results, we suggested that k3’s
low value and high k2 might contribute to the low Ki. The high k2
values could be due to the accumulation of radiotracer in the
extracellular compartment in the EZ, resulting in a high flux of
the radiotracer back into the bloodstream.

Reference [18] described a mathematical model based on blood
sampling to determine a local cerebral metabolic rate of glucose in
13 healthy subjects. The average kinetic parameters of FDG (Ki, K1,
k2 and k3) in graymatter were 0.0334 ± 0.0058, 0.102 ± 0.028, 0.130 ±
0.066, and 0.062 ± 0.019 min-1 respectively, while in white matter
were 0.0154 ± 0.0035, 0.054 ± 0.014, 0.109 ± 0.044, and 0.045 ±
0.019 min-1 respectively. Although the kinetic parameters Ki, K1, k2
and k3 in the suspected EZ of our study, as depicted in Figure 4,
closely matched those reported by Huang et al, there were notable
exceptions in the hippocampus areas for both EZ and non-EZ
regions. It is important to note that Huang et al. reported their
kinetic parameters in gray matter and white matter regions.
Consequently, direct comparisons between their findings and
those of our study may not be comparable, as we have reported
the kinetic parameters specific to each local region derived from the
AAL atlas.

In comparison to our study, Ref. [13] assessed the use of
asymmetry indexes (ASYM) derived from dFDG-PET and from
static FDG PET to identify the pathophysiology of metabolism in
intractable epilepsy. They found that hypometabolism within
epileptic foci may be related to reduced glucose phosphorylation
(k3) compared to capillary influx (K1). This is in line with our study,
in which k3 was usually lowest in the presumed EZ. This was also
proven in a study of patients with temporal lobe epilepsy, in which
the oxidative metabolism of glucose was reduced in the area of
epileptogenicity, not the decrease of neuronal density [31]. The
lowest net flux (Ki) in our study may be the result of low k3 as it is
frequently the lowest parameter in the EZ. This finding corresponds
with the previous genetic and pathological studies mentioned earlier
in the introduction that the affecting pathology in epilepsy focused
on phosphorylation, aka hexokinase activity or k3 in kinetic
modeling. However, there might also be other factors causing low
Ki because some of the presumed EZ did not show lowest k3 value.

The study by Ref. [12] utilized the parametric quantification
from dFDG-PET imaging to locate hypometabolic foci in patients
with no MRI evidence of focal epilepsy. The lowest negative z-scores
were identified as hypometabolic. Their study found that dFDG-
PET was able to detect focal regions of altered metabolism in all
cases where standard clinical FDG-PET found no abnormalities.
However, the authors suggest that further study is warranted to
evaluate the specificity and sensitivity of dFDG-PET in larger

cohorts to determine whether glucose dynamics can improve
clinical utility for localization of epileptic foci over standard static
PET techniques.

The reduced interictal uptake of 18F-FDG in the temporal lobe
ipsilateral to the seizure focus in temporal lobe epilepsy (TLE)
patients was studied by Ref. [32]. They attributed this reduction
to regional differences in the lumped constant (lambda),
indicative of altered glucose metabolism. Our study aligns
with this finding by demonstrating altered glucose metabolism
in DRE patients, emphasizing the importance of accurate
metabolic assessments for epilepsy evaluation. The study by
Ref. [33] focused on the coupling between regional cerebral
glucose metabolism (rCMRGlc) and blood flow (rCBF) in TLE
patients. They found a mismatch between metabolism and blood
flow in the temporomesial structures, indicating that alterations
in glucose metabolism might not always correspond to changes in
blood flow. Their study resonnates with our findings, as we
observed a specific kinetic parameter, the Ki and k3 to be a
more reliable indicator of EZ compared to traditional static
measures.

The use of PET templates instead of T1-weighted MRI in the
MNI space for generating the transformation matrix allowed the
results of automated AAL segmentation comparable to the T1-
weighted MRI templates. In this study, we opted for an alternative
approach for invasive arterial blood sampling in patients by
extracting the IDIF from the ICA instead. This non-invasive
method has demonstrated its robustness through a number of
studies [13, 23, 24, 27, 34, 35]. Furthermore, it can offer relative
simplicity and appropriateness for clinical implementation
especially for patients with DRE. Unfortunately, this study did
not correct the partial volume effect (PVE) for the IDIF, as
outlined in previously mentioned literature. Consequently, the
measured activity concentration employed to generate the IDIF
may potentially be underestimated due to this effect, especially in
smaller vessels. This underestimation could influence the peak of the
IDIF TAC and the fitting of the kinetic model, potentially leading to
an overestimation of the kinetic parameters. We acknowledge this
limitation in our study. Another limitation is the number of studied
subjects was relatively small. Since only one patient proceeded with
epilepsy surgery, the localization of epileptic foci was not uniformly
confirmed through the standard outcome of seizure remission
following the resection of the identified regions. Therefore,
further studies with larger cohorts and follow-up data after
epilepsy surgery are merited to validate the findings.

5 Conclusion

This study investigated whether kinetic modeling approach has
a potential to improve FDG-PET localization of epileptic foci in
DRE patients. The findings from this study demonstrated that the
net metabolic flux (Ki) and phosphorylation (k3) of 18F-FDG, as
investigated using 2-tissue irreversible compartment model in
dFDG-PET, were concordance with suspected epileptogenic
regions with Ki as the most reliable parameter for identifying EZ.
The presumed kinetic parameters obtained from this study provide
non-invasive indicators and complement clinical setting to define
the potential epileptic foci in addition to the other clinical
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information. This approach could contribute to more effective
treatment options for DRE patients.
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Introduction: Current small-animal PET instrumentation provides sufficient
resolution, sensitivity, and quantitative accurate information on the radiotracer
distribution within the whole body. However, most preclinical imaging studies
focus on the disease-related organ of interest and do not use the total body
information provided by small-animal PET. In this study, we investigated the
distribution of [18F]THK-5317 (also referred to as (S)-[18F]THK-5117), a
radiotracer initially developed to visualize tau deposits in the brain, in two
transgenic mouse models of tau overexpression and littermate controls at
different ages and of both sexes. We compared multiple quantitative
parameters of radiotracer uptake in multiple organs of mice to investigate sex,
age, or strain-related differences.

Methods: After intravenous administration, 60-min dynamic PET scans were
acquired, followed by venous blood sampling, organ harvesting, and
metabolite analysis by radio-thin-layer chromatography.

Results: Blood pharmacokinetics and metabolism of [18F]THK-5317 significantly
differed between males and females across all strains. Sex-related differences in
organ VTs were identified from two-way ANOVA analysis. Organ-to-blood
concentration ratios correlated well with organ VTs in all investigated organs.

Conclusion: Following our workflow, a straightforward multiple-organ analysis of
[18F]THK-5317 uptake in mice was easily achievable. From the derived quantitative
parameters, the organ-to-blood values correlate best with the calculated VTs.
Given the active incorporation of 3R principles into preclinical quantitative
imaging, we propose that this workflow might be suitable to select novel
radiotracer candidates before more complex kinetic models, comprising
invasive methods such as full arterial blood sampling, for radiotracer
quantification are applied.
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1 Introduction

Quantitative, non-invasive imaging technologies utilizing small
laboratory animals are essential for research on the biodistribution
of new drugs, disease progression, or response to novel therapeutic
approaches. The availability of specifically bred or genetically
modified mouse disease models, as well as technological advances
in small-animal imaging instrumentation and methodologies, have
led to significant discoveries on the molecular origins of these
illnesses and triggered research on various novel therapeutic
approaches [1–4].

Among the non-invasive imaging modalities, especially positron
emission tomography (PET), utilizing radiolabeled compounds
(radiotracers) offers considerable versatility in studying diseases
from multiple perspectives and at different disease stages. Despite
numerous species differences between rodents and humans, PET
studies usually enable a high degree of translatability as many
correlative and longitudinal study designs utilized in basic
research can be modified to match current clinical safety
requirements with reasonable effort [5–8].

Current small-animal PET instrumentation offers sufficient
spatial resolution, high sensitivity for dynamic imaging, and,
provided sufficient efforts are directed toward standardized
protocols, a high degree of quantitative accuracy for rodent brain
studies. Moreover, multimodal preclinical PET/CT scanners are
available with an axial field of view (FOV) large enough to
acquire whole-body mouse images in a single scan. As such,
total-body positron emission tomography (TB-PET) scans, which
are now increasingly emerging in clinical imaging, are easily
achievable in mice. Such total-body scans provide holistic and
dynamic information on radiotracer distribution within the
scanned subject during the whole acquisition time. However,
most preclinical imaging studies only focus on the disease-related
organ of interest and do not use total body information. This is
especially true for neurological diseases or disorders, where the brain
is the focus [9–13].

TB-PET enables the quantification of radiotracer
pharmacokinetics throughout the entire body or multiple organ
systems in a single scan acquisition. These data form the basis for
subsequent kinetic modeling where the distribution of radioactivity
in the target organ and the input function (the time course of the
radiotracer in the blood or plasma) are used to determine the local
tissue concentration(s). Further graphical evaluation methods to
quantify the organ uptake in terms of the distribution volume (VT)
provide non-invasive, quantitative measures that can then be
observed in a systems biology approach [14–17].

The challenge in using whole-organ (blood/plasma-based)
kinetic modeling in small-animal imaging lies in the requirement
for an arterial blood input function and the determination of
radioactive metabolites. In mice, however, arterial blood sampling
is often impossible and limited by the small total blood volume. Even
when arterial blood sampling is performed, the study design is
limited to non-recovery imaging procedures, rendering longitudinal
studies in aged animals or comparative studies of different
therapeutic interventions in the same animal impossible. Closed-
loop systems to avoid blood loss during such imaging procedures
require long pre-scan preparation times, surgically skilled personnel,
and are not feasible in a high-throughput manner [18].

Alternatively, a whole-blood based, non-invasive image-derived
input function (IDIF), derived from small-animal total-body
images, can be obtained, an approach that has been shown to be
feasible in multiple preclinical radiotracer evaluations [19]. Using
modern small-animal PET scanners, IDIF can be accurately derived
bymeasuring the time–radioactivity concentration curves (TACs) in
the left ventricle or a major vessel in mice [20]. For certain
radiotracers, using population-based IFs and metabolization data
has shown to be feasible in rodents [21–23].

Another aspect of adding total body information to small-
animal PET might be the identification of sex differences in
radiotracer pharmacokinetics, response to therapies, or metabolic
changes during disease progression. Consequently, putative sex
differences may be identified and addressed accordingly. It is
commonly recognized that organ size and function change
during aging and are sex-dependent. However, such differences
are not reflected by changes in the whole-body weight of the
respective animals [24]. This is particularly relevant for the
excretory organs such as the liver and the kidneys, which directly
influence radiotracer metabolism and elimination kinetics.

We recently reported one such sex difference in an APP/h Tau
rat model so far as the plasma pharmacokinetics and metabolism of
the putative tau radiotracer [18F]THK-5317 (also referred to as (S)-
[18F]THK-5117) were different between male and female rats [22].

In the present study, our goal is to investigate the multi-organ
distribution of [18F]THK-5317 in the brain and peripheral tissues in
two transgenic mouse models of tau overexpression, as well as their
littermate controls, across various age groups and both sexes.
Peripheral tau accumulation has been reported recently and has
not yet been explored with dynamic PET [25,26]. We further aim to
introduce a systematic workflow for performing quantitative
analysis on multiple organs in mice. Lastly, we compared
different quantification measures other than the Logan volume of
distribution (VT) as outcome parameters for [18F]THK-5317 uptake.

2 Materials and methods

2.1 Chemicals

Chemicals were purchased from Sigma-Aldrich Handels GmbH
(Vienna, Austria) and used without further purification.
Radiosynthesis of [18F]THK-5317 was performed, following the
established protocols [22,27]. For this study, [18F]THK-5317 (n =
15) was synthesized with a decay-corrected radiochemical yield of
12% ± 4% and a radiochemical purity of 95% ± 3% in a synthesis
time of 76 ± 4 min. Molar activity at the end of synthesis was 498 ±
281 GBq/µmol.

2.2 Animals

We examined hTau (B6.Cg-Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/
J) [28] and TMHT (Thy-1-mutated human tau) [29], as well as non-
transgenic hTau littermates (as ntg-control), in this study. In total,
86 mice purchased from QPS Austria GmbH (Grambach, Austria)
were used. Mice were scanned at 20, 44, or 68 weeks of age, including
both sexes. A detailed study summary is provided in Supplementary
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Table S1. Mice were housed in a temperature- and humidity-
controlled facility under a cycle of 12/12 h of light/dark with free
access to standard laboratory animal diet (ssniff R/M-H, ssniff
Spezialdiäten GmbH, Soest, Germany) and water ad libitum. An
acclimatization period of at least 1 week was allowed before animals
were used in the experiments. Of the 86 mice, 14 mice, especially of
the 44- and 68-week age groups, were lost during imaging (e.g.,
technical problems with the scanner and breathing arrest under
anesthesia while scanning), yielding 72 PET datasets available for
analysis. In one mouse, blood sampling and tissue harvesting were
not possible. The study was approved by the national authorities
(LF1-TVG-48/028-2016; Amt der Niederösterreichischen
Landesregierung, Austria), and study procedures followed the
European Communities Council Directive 2010/63/EU. The
animal experimental data reported in this study comply with the
ARRIVE (Animal Research: Reporting of in Vivo Experiments)
guidelines 2.0 [30].

2.3 Small-animal PET imaging

PET imaging was performed on a small-animal PET scanner
(Focus 220™, Siemens Healthineers, Knoxville, TN, United States)
with 7.6 cm axial and 19 cm transaxial field-of-view [31]. Two mice
(side by side) were imaged during one PET acquisition using a dual-
mouse imaging cradle (m2m Imaging Corp, Cleveland, OH,
United States). Before initiating PET acquisitions, anesthesia was
induced in an induction box with isoflurane [concentration: 1.5%–
3.0% (v/v)] in medical air as carrier gas. Afterward, animals were
positioned on the dual-mouse imaging cradle, and isoflurane
concentration levels were adjusted [range: 0.8%–1.5% (v/v)] to
maintain the respiratory rate of the animals between 60 and
80 breaths/minute during the scan procedure. Then, the lateral
tail veins were catheterized after warming the tails using pre-heated
(~38°C) pads. Animals were warmed throughout the experiment,
and the body temperature and respiratory rate were constantly
monitored (SA Instruments Inc., Stony Brook, NY,
United States). All animals underwent a 60-min dynamic [18F]
THK-5317 scan. Data acquisition was initiated at the start of
intravenous injection (0.15 mL as slow bolus over ~ 40 sec), and
list-mode data were acquired with an energy window of
250–750 keV and a 6-ns timing window. A 10-min transmission
scan was performed using a rotating 57Co-point source before each
PET scan for attenuation correction. At the end of the scan, a blood
sample was collected into a small tube (Microvette CB 300 LH,
Sarstedt AG & Co, Nümbrecht, Germany) by puncture of the
retrobulbar plexus, and animals were euthanized by cervical
dislocation under deep anesthesia. Afterward, the organs of
interest were extracted for gamma counting.

2.4 Ex vivo analysis of samples

Blood was centrifuged to obtain plasma (17,000 g, 4°C, 1 min),
and radioactivity concentrations in blood, plasma samples, and
organs were measured in a gamma counter (HIDEX AMG
automatic gamma counter, Turku, Finland). Data from the
gamma counter were decay-corrected to the time of radiotracer

injection. Then, data were corrected by animals‘ injected activity,
and expressed as percentage of injected dose per gram (%ID/g).
Individual plasma-to-blood concentration ratios (P/B ratio) at
60 min after [18F]THK-5317 administration were calculated by
dividing the radioactivity concentration measured in the plasma
by the radioactivity measured in the blood of the respective animal.

2.5 Metabolite analysis

The percentage of unchanged (unconjugated) [18F]THK-5317
was analyzed by radio-thin-layer chromatography (radio-TLC).
Blood was centrifuged to obtain plasma, and proteins were
precipitated with acetonitrile (1 µL per µL plasma). Tissues were
homogenized using an Ultra Turrax T10 instrument (IKA
Laboratory Equipment, Staufen, Germany), and proteins were
precipitated with acetonitrile (0.2 mL per brain). All solutions
were vortexed and centrifuged (12,000 × g, 1 min, 21°C).
Approximately 5 µL of the supernatant and diluted radiotracer
solution as references were spotted on silica gel 60F 254-nm TLC
plates (10 × 20 cm; Merck, Darmstadt, Germany), and plates were
developed in dichloromethane/methanol (95/5, v/v). Detection was
performed by exposing the TLC plates to multi-sensitive phosphor
screens overnight. The screens were then scanned at 300 dpi
resolution using a phosphor imager (Cyclone® Plus, PerkinElmer,
Waltham, MA, United States). The retardation factor (Rf) of [18F]
THK-5317 was 0.58, as assessed using unlabeled reference
standards.

2.6 PET image analysis

Dynamic list-mode data from the 60-min scans were sorted into
three-dimensional sinograms, according to the following frame
sequence: 8 × 5 s, 2 × 10 s, 2 × 30 s, 3 × 60 s, 2 × 150 s, 2 ×
300 s, and 4 × 600 s. PET images were reconstructed by Fourier
rebinning of 3D sinograms, followed by two-dimensional filtered
back projection with a ramp filter, resulting in a voxel size of 0.4 ×
0.4 × 0.8 mm3. The standard data correction protocol was applied to
the data, including normalization, attenuation, and decay
correction. Before each measurement series, the PET scanner was
cross-calibrated with the activimeter by imaging a phantom with a
known activity concentration of an 18F-radiotracer solution.

On the dynamic PET images, organs of interest (the brain, heart,
lung, liver, left kidney, and muscle) were defined by delineating pre-
defined volumes of interest (VOIs) using the software program
AMIDE [32]. Then, TACs of these VOIs were extracted, and the area
under the curves (AUCs) from 0 to 60 min were calculated.

The heart curve was used as an IDIF. First, the heart curve was
scaled to the blood curve using the blood activity from the gamma
counter. Then, a sex-specific (male or female) plasma-to-blood ratio
(P/B ratio) was applied to obtain the plasma input function. For
metabolite correction, a simple linear regression was performed,
assuming a parent fraction of 1 (100%) at 0 s and the measured
parent fraction at 3,600 s, separate for the male and female animals.
The sex-specific plasma input function was then corrected by the
resulting linear equation. The final obtained metabolite-corrected
plasma input function Cp(t) was used for calculating the volumes of
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distribution (VT) for different organs derived from the slope of the
linearized Logan graphical analysis [33]:∫T

0
CROI t( )dt
CROI T( ) � VT ×

∫T

0
Cp t( )dt

CROI T( ) + Int,

where AUCROI for each organ from 0-T was used as a measure of∫T

0
CROI(t)dt. For all assessed organs, the plot became linear after

10 min.
In addition, radiotracer clearance from the plasma was

performed on decay- and metabolite-corrected plasma
radioactivity data from all animals. Plasma clearance was
calculated as the quotient of the injected activity divided by the
AUC and corrected by the body weight of the animal [34]:

Clearance mL/h/g BW[ ] � InjActivity kBq[ ]
AUC kBq

mL*h[ ] *BW−1 g−1[ ].
Moreover, we calculated the organ-to-blood ratio by dividing

the organ activity values derived from the last PET frame
(50–60 min) by the corresponding blood activity values measured
with the gamma counter of the respective animal.

2.7 Statistics

Statistical testing was performed using GraphPad Prism
9.1.0 software (GraphPad Software, La Jolla, CA,
United States). Differences between groups were analyzed by
two-way ANOVA using a full model for assessing the effects of
sex, strain and age, and the interaction between them, followed by
Tukey’s multiple comparison test. Alternatively, two-tailed,
unpaired t-tests were used to compare groups in the
biodistribution experiments. The level of statistical significance
was set to p < 0.05. Unless stated otherwise, all values are given as
mean ± standard deviation (SD).

3 Results

VOI-based analysis of the dynamic small-animal PET data
was performed to determine the brain, liver, lung, kidney, and
muscle retention of [18F]THK-5317. PET images, as well as the
derived organ TACs for the investigated mouse strains, are
shown in Supplementary Figures S1–S7. In all investigated
organs, [18F]THK-5317 showed a peak uptake within the first
5–10 min after intravenous administration, followed by a fast
washout from the organs until the end of the PET scan. The
highest organ uptake (%ID/g) was observed in the liver and
kidney, followed by the lungs and brain, and was lowest in
muscle tissue. No distinct differences in radiotracer
pharmacokinetics were observed in TACs, irrespective of the
mouse strain, age group, and sex, except for the kidney.

Biodistribution performed at the end of the PET scans showed
no significant age dependency of [18F]THK-5317 uptake in the
investigated organs (Supplementary Tables S2–S4). Data from
different age groups within the investigated mouse strains were
pooled to further focus on sex-related issues. After data pooling,
blood pharmacokinetics of [18F]THK-5317 showed significant

differences between male and female individuals across all strains
(Table 1). In general, female mice showed higher blood radioactivity
at 60 min after radiotracer injection (0.50 ± 0.21; 0.43 ± 0.15; 0.36 ±
0.09 %ID/g in ntg-control, hTau, and TMHT mice, respectively)
compared to male mice (0.29 ± 0.15; 0.25 ± 0.08; 0.27 ± 0.07 %ID/g
in ntg-control, hTau, and TMHT mice). In addition, in plasma,
female mice showed higher radioactivity concentration levels at
60 min after radiotracer injection (0.62 ± 0.25; 0.51 ± 0.01; 0.50 ±
0.13 %ID/g in ntg-control, hTau, and TMHT mice, respectively)
when compared to male mice (0.45 ± 0.24; 0.37 ± 0.12; 0.35 ± 0.09 %
ID/g in ntg-control, hTau, and TMHT mice). The derived plasma/
blood ratios at 60 min, however, were not different between males
and females. Radiotracer clearance from plasma was not
significantly different between the investigated age, strain, or sex
groups (Supplementary Figure S8). Further significant sex-related
uptake differences were found for the liver, which was higher in
female ntg-control (2.39 ± 0.92 vs. 1.33 ± 0.65 %ID/g) and hTau
(2.53 ± 1.53 vs. 1.52 ± 0.41 %ID/g) mice but lower in TMHT mice
(0.26 ± 0.36 vs. 0.93 ± 0.69 %ID/g) compared to male mice.
Additional significant differences in the organ uptake between
male and female ntg-control and hTau mice but not in TMHT
mice were found in the urinary bladder and bone (Os femoris)
(Table 1).

For the plasma and brain, no significant differences in
metabolism of [18F]THK-5317 were identified between ntg-
control, hTau, and TMHT mice, regardless of age. However, a
trend of more extensive metabolism in female compared to male
mice was observed (Supplementary Table S5). When pooled, female
mice showed a significantly higher fraction of radiometabolites of
[18F]THK-5317 in plasma (22.1% ± 5.9% unchanged parent)
compared to male mice (26.0% ± 7.7% unchanged parent).
Additionally, in some animals, liver metabolization of [18F]THK-
5317 was assessed, showing a higher fraction of radiometabolites
(2.2% ± 0.6% vs. 3.9% ± 1.9% unchanged parent) in female vs. male
mice. In the brain, the percentage of the unchanged radiotracer did
not differ between female and male mice (Table 2). For the
determination of brain VTs as the outcome parameter for [18F]
THK-5317 distribution, we generated an image-derived blood input
function (IDIF) by placing a spherical VOI over the heart of the
individual animals. For validation, we compared such derived PET
blood radioactivity measurements in the last PET frame (50–60 min
after radiotracer administration) with the radioactivity measured in
the venous blood sample taken at the end of the PET scan in the
gamma counter. In line with our previous experiences [35], heart
radioactivity concentrations measured in PET showed a good
correlation with the respective gamma counter values (r = 0.704,
p < 0.0001, Supplementary Figure S9).

Based on individual blood IDIFs and the population-based
metabolite correction, we derived the organ uptake of [18F]THK-
5317, expressed as Logan VT in the investigated mouse groups
(Figure 1). In the brain, two-way ANOVA analysis revealed a
statistically significant effect of sex on brain VTs (F1,54 = 7.462,
p = 0.009, η2 = 0.123) and an effect of strain and age (F8,54 = 3.302,
p = 0.004, η2 = 0.333). In contrast, in the liver, no significant effect
between the investigated study groups was found. Further significant
sex-related differences in organ VTs were identified from the two-
way ANOVA analysis in the lung (F1,54 = 4.662, p = 0.035, η2 =
0.079), kidney (F1,54 = 16.52, p = 0.002, η2 = 0.169), and muscle
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(F1,54 = 4.923, p = 0.031, η2 = 0.084). Alternative organ analysis given
as organ-to-blood ratios revealed similar effects of sex in the
identical organs such as the brain/blood (F1,54 = 12.02, p = 0.001,
η2 = 0.182), lung/blood (F1,54 = 13.37, p = 0.001, η2 = 0.198), kidney/
blood (F1,54 = 6.399, p = 0.014, η2 = 0.106), and muscle/blood (F1,54 =
8.052, p = 0.006, η2 = 0.130) but not in the liver/blood (F1,54 = 0.562,
p = 0.457). Interestingly, organ AUC values exhibited a significant
effect of sex on the brain (F1,54 = 12.68, p = 0.0008, η2 = 0.190), liver
(F1,54 = 42.29, p < 0.0001, η2 = 0.439), and lung (F1,54 = 9.482, p =
0.033, η2 = 0.149) but not on the other organs. The individual organ
AUC values, as well as organ-to-blood ratios for ntg-control, hTau,

and TMHT mice, are shown in Supplementary Figures S10, S11.
Individual comparisons obtained with Tukey’s multiple
comparisons test showed significant differences between certain
individual groups for some organs (e.g., the kidney). However,
these differences did not follow a general trend and varied
between the organs.

Correlation analysis of different organ uptake measures of [18F]
THK-5317 such as AUCorgan, organ-to-blood ratio, and measured
concentration in the last PET frame (%ID/g) to the respective VTs is
shown in Figure 2. Organ-to-blood ratios showed a statistically
significant correlation to the respective organ VTs for all analyzed

TABLE 1 Biodistribution of [18F]THK-5317 in male and female (pooled over the investigated age groups) non-transgenic hTau littermates (ntg-control), hTau
(B6.Cg-Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J), and TMHT (Thy-1 mutated human tau) mice obtained at 60 min after intravenous administration. Data are presented as
mean percent of injected dose per gram tissue (%ID/g) ± standard deviation. Significance indicates differences between male and female individuals of the
respective study groups.

Study group ntg-control hTau TMHT

Male Female Significant* Male Female Significant* Male Female Significant*

n = 11 n = 11 n = 13 n = 11 n = 11 n = 14

Blood 0.29 ± 0.15 0.50 ± 0.21 p = .004 0.25 ± 0.08 0.43 ± 0.15 p = .028 0.27 ± 0.07 0.36 ± 0.09 p = .011

Plasma 0.45 ± 0.24 0.62 ± 0.25 p = .031 0.37 ± 0.12 0.51 ± 0.1 p = .033 0.35 ± 0.09 0.50 ± 0.13 p = .003

Brain 0.27 ± 0.08 0.29 ± 0.14 n.s. 0.24 ± 0.10 0.24 ± 0.06 n.s. 0.24 ± 0.09 0.28 ± 0.09 n.s.

Heart 0.34 ± 0.13 0.47 ± 0.15 n.s. 0.39 ± 0.17 0.38 ± 0.04 n.s. 0.32 ± 0.08 0.37 ± 0.08 n.s.

Lung 0.52 ± 0.22 0.68 ± 0.25 n.s. 0.67 ± 0.32 0.54 ± 0.22 n.s. 0.53 ± 0.15 0.55 ± 0.13 n.s.

Liver 1.33 ± 0.65 2.39 ± 0.92 p = .011 1.52 ± 0.41 2.53 ± 1.53 p = .044 0.93 ± 0.69 0.26 ± 0.36 p = .028

Kidney 0.72 ± 0.26 0.86 ± 0.26 n.s. 0.88 ± 0.33 0.77 ± 0.15 n.s. 1.25 ± 0.89 0.95 ± 0.28 n.s.

Spleen 0.52 ± 0.22 0.52 ± 0.13 n.s. 0.53 ± 0.27 0.67 ± 0.42 n.s. 1.33 ± 0.79 1.40 ± 0.78 n.s.

Stomach 2.07 ± 1.44 2.25 ± 1.37 n.s. 2.39 ± 1.34 1.46 ± 0.24 n.s. 2.12 ± 0.88 1.52 ± 0.41 n.s.

Small intestine 2.37 ± 1.64 2.36 ± 1.53 n.s. 5.46 ± 5.20 3.58 ± 2.5 n.s. - - -

Large intestine 0.82 ± 0.36 1.17 ± 0.38 n.s. 1.49 ± 2.28 0.89 ± 0.21 n.s. 1.48 ± 0.65 1.24 ± 0.36 n.s.

Gall bladder 83.08 ± 50.6 83.57 ± 61.02 n.s. 102.77 ± 83.78 58.69 ± 58.09 n.s. 80.27 ± 79.87 41.76 ± 44.19 n.s.

Urine 17.74 ± 13.5 21.11 ± 20.93 n.s. 15.89 ± 10.39 10.47 ± 5.51 n.s. 17.00 ± 18.69 19.72 ± 12.95 n.s.

Urinary bladder 5.21 ± 1.54 1.25 ± 0.78 n.s. 6.22 ± 2.38 3.39 ± 1.58 p = .021 6.02 ± 3.37 5.24 ± 3.34 n.s.

Bone 0.33 ± 0.12 0.15 ± 0.11 p = .008 0.20 ± 0.12 0.19 ± 0.08 p = .044 0.22 ± 0.06 0.20 ± 0.04 n.s.

Muscle 0.26 ± 0.08 0.30 ± 0.13 n.s. 0.23 ± 0.09 0.22 ± 0.05 n.s. 0.21 ± 0.05 0.23 ± 0.06 n.s.

*Statistical significance was determined using a two-tailed, unpaired t-test. The level of significance was set to p < 0.05. n.s. : not significant.

TABLE 2 Levels of the unchanged parent of [18F]THK-5317 determined at 60 min after radiotracer injection in male and female individuals of the investigated
mouse study groups. Data show pooled values for male and female individuals, irrespective of the age group or strain.

Study group

Male Female Significant*

n = 35 n = 36

Plasma 26.00 ± 7.67 22.08 ± 5.94 p = .032

Brain 47.26 ± 12.35 48.90 ± 11.77 n.s.

Liver 3.86 ± 1.94 # 2.19 ± 0.60 # p = .020

# the number was lower for the liver analysis; n = 8 for male and n = 10 for female.

Statistical significance was determined using a two-tailed, unpaired t-test. The level of significance was set to p < 0.05. n.s. : not significant.
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organs: the brain (r = 0.707, p < 0.0001), liver (r = 0.798, p < 0.0001),
lung (r = 0.751, p < 0.0001), kidney (r = 0.337, p = 0.0038), and
muscle (r = 0.679, p < 0.0001). In addition, a positive correlation
between kidney VT and AUCkidney (r = 0.4655, p < 0.0001), and
kidney %ID/g at 60 min after radiotracer administration (r = 0.2527,
p = 0.0322) was identified.

4 Discussion

We were interested in identifying the sex, age, or strain-related
differences in the distribution and kinetics of tau-radiotracer [18F]
THK-5317 on a whole-organ level. We, therefore, quantitatively
analyzed PET images obtained in three different mice strains at three

FIGURE 1
Whole-organ volume of distribution (VT) of [

18F]THK-5317 obtained with Logan graphical analysis in the (A) brain, (B) liver, (C) lung, (D) kidney, and (E)
muscle in male and female non-transgenic hTau littermates (ntg-control), hTau (B6.Cg-Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J), and TMHT (Thy-1 mutated
human tau) mice aged 20 weeks (black, closed symbols), 44 weeks (red, open symbols), and 68 weeks (blue, half-open symbols). *p < 0.05, **p < 0.01,
and ***p < 0.001; two-way ANOVA followed by Tukey’s multiple comparison test.
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different ages using both sexes in terms of percent of injected dose
per gram tissue (%ID/g). Moreover, we were interested if alternative
quantitative parameters such as AUC values, or organ-to-blood
ratios, which are easier to obtain in mice, can be used as a surrogate
for the volume of distribution (VT) obtained by Logan graphical
analysis. In line with previous observations in rats [22], we observed
sex-related differences in the [18F]THK-5317 uptake in the studied
mice. In all strains, we observed significant differences in blood and
plasma uptake between male and female mice. Contrary to rats, in
the studied mice, the female values were overall higher.
Biodistribution values agree with values published previously by
[36] in male ICR mice. Apart from blood and plasma, we

additionally obtained a sex-related difference in the liver (all
strains), bone (ntg-control and hTau), and urinary bladder (hTau).

It is broadly recognized that drug pharmacokinetics are largely
affected by hepatic drug-metabolizing enzymes (DME) and that their
function is highly variable between species, strains, and sex [37]. Our
observation suggests different retention/metabolization of [18F]THK-
5317 in these animals by phase I/II DME or other DME-regulating
factors. Interestingly, in the liver, [18F]THK-5317 uptake was higher in
female ntg-control and hTau mice compared to male mice, whereas in
TMHT mice, it was the opposite. As ntg-control and hTau mice share
an identical genetic background in contrast to TMHT mice, the
probable involvement of additional strain-dependent co-factors in

FIGURE 2
Comparison of measures of the [18F]THK-5317 uptake in the (A) brain, (B) liver, (C) lung, (D) kidney, and (E)muscle and correlation analysis of whole-
organ area under the concentration curve (AUCOrgan), organ-to-blood ratio at the end of the PET scan, and PET-derived percent of injected dose per
gram tissue (%ID/g) at 60 min after the administration with the volume of distribution (VT) obtained with Logan graphical analysis. (a.u. = arbitrary units
either %ID/g or organ-to-blood ratio; r = Pearson correlation coefficient; p = p-value for Pearson correlation; linear regression formula shows the
slope and intercept of the respective simple linear regression fit.)
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DME expression and function is likely. We, therefore, speculate that the
differences observed in this study are related to sex- and strain-
dependent hepatic processes which require further studies.

Surprisingly, we obtained a small but statistically higher amount
of unchanged parent at 60 min post-injection in plasma in male
mice (26%) compared to female mice (22%). Irrespective of sex, the
obtained values were in good agreement with values reported in
other mouse strains [38]. Yet, the unchanged parent in the brain was
comparable between the sexes (47% male vs. 49% female), and the
obtained values were significantly lower than that reported by
Alzghool et al. (95% unchanged parent in the brain tissue of
APP/PS1-21 mice), as well as our findings in rats at the same
sampling time [22]. These findings emphasize the importance of
radiometabolite analysis within the respective study setup and that
the rate of tracer metabolism can differ not only between species but
also between individual mouse strains. Furthermore, this supports
our previous observations [22] showing that mice seem to
metabolize [18F]THK-5317 much faster than rats.

Whole-organ VTs of [
18F]THK-5317 were highest for the liver,

followed by the kidney, brain, lung, and muscle. The rank order of
organ VTs generally followed previous reports on tau retention, but
further correlation studies are required [26].

Our attempt to identify an alternative approach to derive
alternative quantitative parameters has shown that the organ-to-
blood values exhibited the best correlation to the calculated VTs.
This is not surprising as both parameters are based on organ-to-
blood activity ratios. Yet, we believe that this approach might be a
good base for the evaluation of new radiotracers as blood samples at
the end of the PET scan are easy to obtain. In addition, it also offers
the possibility to examine plasma and radioactive metabolites.When
a new radiotracer shows promising parameters using this approach,
a more complex kinetic model and specifically a full arterial IF could
be planned for subsequent preclinical evaluation. This strategy
might aid in decreasing severity and the number of research
animals used, and further facilitates candidate selection, following
this low-complexity setup in preclinical PET studies.

However, we have identified the following limitations from our
study. First, [18F]THK-5317 is metabolically unstable, not
exclusively tau-selective, and has been shown to bind to Aß
plaques and monoamine oxidase B (MAO-B) in mouse models
[38,39]. Although hTau and TMHT mice used in this study clearly
showed the absence of ß-amyloid, cerebral MAO-B expression has
not been investigated. Furthermore, MAO-B expression increases as
part of the neuroinflammatory response to tau accumulations, as
well as during aging [40,41]. It cannot be excluded that the sex
differences identified in the whole-brain uptake of [18F]THK-5317
solely reflects changes in MAO-B expression patterns as sex-
dependency of MAO-isoform expression has been confirmed in
the human brain [42]. Second, our initial assumption about the
estimated effect size for sample size calculation for different study
groups was incorrect. We, therefore, pooled the acquired data over
age and strain groups to increase the respective group sizes, which
ultimately revealed statistically significant differences. Conclusively,
this study highlights the importance of preliminary, pilot studies
from which effect sizes and, ultimately, sample size calculations can
be based on real-world data obtained in the own research
environment and not solely based on the published data. Third,
the heart input function suffered from spillover from the liver and

gall bladder signals, especially in the late time frames. We, therefore,
carefully positioned the heart VOI to minimize this influence.
Fourth, for the calculation of the liver VT, we only used a single
input function and did not account for the dual blood supply (the
portal vein and the hepatic artery). In PET-only images without
anatomical guidance, the liver portal vein cannot be identified in
mice. Fifth, the IDIF method was not validated to the ground truth,
which would be the arterial sampling. This might add some
additional bias to the results. Finally, the radiosynthesis process
of [18F]THK-5317 requires further optimization to consistently
achieve radiochemical purities above 98%.

In conclusion, we presented a workflow for quantitative,
multiple-organ analysis of the [18F]THK-5317 uptake in mice,
revealing sex-differences in the plasma concentration, the
formation of radiometabolites, and uptake in various organs in
mice. From the derived quantitative parameters, the organ-to-blood
values correlate best with the calculated VTs. Given the active
incorporation of 3R principles into preclinical quantitative
imaging, we propose that following this workflow, comprising
dynamic PET scans, concomitant blood sampling, subsequent
metabolite analysis, and candidate selections based on organ-to-
blood uptake parameters, might be suitable to select novel
radiotracer candidates before more complex kinetic models,
comprising invasive methods such as full arterial blood sampling,
for radiotracer quantification are applied.
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Quantitative functional imaging
with CT perfusion: technical
considerations, kinetic modeling,
and applications
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1Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada, 2Robarts
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CT perfusion (CTP)-derived quantitative maps of hemodynamic parameters have
found important clinical applications in stroke, cancer, and cardiovascular disease.
Blood flow, blood volume, transit time, and other perfusion parameters are
sensitive markers of pathophysiology with impaired perfusion. This review
summarizes the basic principles of CTP including image acquisition, tracer
kinetic modeling, deconvolution algorithms, and diagnostic interpretation. The
focus is on practical and theoretical considerations for accurate quantitative
parametric imaging. Recommended CTP scan parameters to maintain CT
number accuracy and optimize radiation dose versus image noise are first
reviewed. Tracer kinetic models, which describe how injected contrast material
is distributed between blood and the tissue microenvironment by perfusion and
bidirectional passive exchange, are then derived. Deconvolution algorithms to
solve for hemodynamic parameters of kinetic models are discussed and their
quantitative accuracy benchmarked. The applications and diagnostic
interpretation of CTP in stroke, cancer, and cardiovascular disease are
summarized. Finally, we conclude with a discussion of future directions for
CTP research, including radiation dose reduction, new opportunities with novel
CT hardware, and emerging diagnostic applications.

KEYWORDS

perfusion imaging, computed tomography, tracer kinetic modeling, deconvolution,
radiation dose reduction, acute ischemic stroke, cancer, cardiovascular disease

1 Introduction

CT perfusion (CTP) is a functional imaging technique used to generate quantitative
maps of hemodynamic parameters such as blood flow, blood volume, and mean transit time.
Normal vascular perfusion underpins normal tissue function, and its disruption may be an
indicator of underlying disease. Since the first demonstration of brain CTP by Leon Axel in
1980 [1], the field has rapidly grown to encompass specific diagnostic applications in various
diseases such as acute ischemic stroke, cancer, and cardiovascular disease. Specifically, CTP
may be used to non-invasively diagnose and characterize diseases with impaired tissue
perfusion, monitor disease progression, and distinguish viable from non-viable tissue.
Decisions on the management and treatment of patients can be informed by CTP.

A notable diagnostic application of CTP is in acute ischemic stroke. CTP was used to
select patients with large vessel ischemic stroke for endovascular stroke treatment in multiple
randomized controlled trials [2–4]. Post-processing and analysis of brain CTP imaging was
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fully automated, and imaging-based assessment of treatment
eligibility was available within minutes of acquisition. Patients
who received endovascular stroke treatment based on a favorable
CTP profile had greatly improved 90-day functional outcomes
compared to those not receiving treatment. The therapeutic
benefit persisted beyond the 6-h onset-to-treatment time window
normally recommended for patients selected without perfusion
imaging. CTP is a validated and automated treatment decision
assistance tool in acute ischemic stroke and played an important
role in demonstrating that endovascular stroke treatment was safe
and effective beyond the standard therapeutic time window.

A CTP study is normally performed as follows. An iodinated
contrast agent is intravenously injected into the patient, and
following a short delay (<10 s) for the contrast agent to arrive at
the organ of interest, CT scans are serially acquired for ≈1 to 3 min.
Time–density (attenuation) curves (TDCs) derived from the
acquired serial (dynamic) contrast-enhanced CT images describe
how the contrast agent washes in and out from tissue by blood flow.
Hemodynamic parameters such as blood flow (F), blood volume
(Vb), mean transit time (MTT), artery-to-tissue contrast delay time
(T0), and time-to-maximum of the residue function (Tmax, a
composite index of delay, dispersion, and MTT) [5] can be
estimated by analyzing the acquired TDCs. Specifically, the
arterial TDC, which estimates the arterial contrast concentration,
is deconvolved from tissue TDCs to estimate an impulse residue
function (IRF). The perfusion parameters of interest are derived
from the IRF, which describes the hemodynamic response if a unit
mass of contrast was injected into the arterial inlet of the tissue.
Calculation of the IRF for each tissue voxel leads to quantitative
maps of perfusion parameters from which regional impairment of
perfusion can be visualized.

This review summarizes the basic principles of CTP, methods to
estimate perfusion parameters, diagnostic applications, and
emerging research, with a focus on quantitative parametric imaging.

2 The quantitative capability of CT

CT images are cross-sectional, quantitative maps of the linear
attenuation coefficient (expressed as CT number) of tissue. Due to
the small differences in the linear attenuation coefficient between
water, blood, and soft tissue in the diagnostic X-ray energy range
(≤150 keV) [6, 7], blood cannot be distinguished from soft tissue
with CT to estimate perfusion. In contrast, iodine has a much greater
attenuation coefficient than that of soft tissue [6, 7]. Intravenous
injection of an iodine contrast agent allows the contrast agent to
circulate throughout the organ of interest. If the patient is scanned
serially with fixed CT protocols as in a CTP study, the contrast-
induced changes in CT number reflect the same in iodine
concentration in vessels and tissue in a linear fashion and can be
quantified as TDCs. Furthermore, an iodine contrast agent is inert,
extracellular, and does not bind to any target nor does it enter a cell;
it remains either in the intravascular or interstitial space [8]. As such,
contrast transport principles, which are described in Section 3, can
be applied to describe TDCs obtained from CTP.

The linear relationship between CT number and contrast
concentration is a notable advantage of CTP compared to
perfusion magnetic resonance imaging (MRI). In dynamic

susceptibility contrast perfusion MRI, a tissue-dependent scaling
factor must be accounted to convert T2* signal change to
gadolinium concentration [9, 10]. As such, absolute
measurements of blood flow and blood volume cannot be
obtained without knowledge of these tissue-dependent scaling
factors. The relative blood flow and volume obtained by
normalizing by mean blood flow or volume in a reference region
are used for perfusion MRI in clinical practice due to this limitation.
While perfusion imaging with positron emission tomography and
flow-specific radiotracers is the clinical gold standard for absolute
perfusion measurements, it is often impractical due to its long scan
time and high resource requirement (e.g., availability of a cyclotron
and flow-specific radiotracers such as 15O-water or 13N-NH3, which
are short-lived tracers with additional logistical problems, unlike off-
the-shelf stable contrast agents used in CTP).

2.1 CT perfusion scan protocol

In designing a CTP scan protocol, the goal is to balance the
radiation dose to the patient versus the signal-to-noise ratio (SNR) of
TDCs required to generate diagnostic quality perfusion maps. The
following scan parameters are of significance in CTP: X-ray tube
voltage, tube current-exposure time, scan interval, contrast injection
volume and rate, axial coverage, and scan duration.

Tube voltage determines the energy spectrum of the incident
X-ray beam and sensitivity to the iodine contrast agent. For CTP, to
balance the iodine contrast-to-noise ratio and radiation dose, a tube
voltage of 80 kV is used for most diagnostic applications [11, 12],
though higher tube voltages (100 or 120 kV) may be appropriate in
thoracic and abdominal CTP, where there may be greater
attenuation of X-rays due to the larger scan object.

At a fixed tube voltage, photon fluence is determined by the tube
current-exposure time product (referred to by its unit, mAs). Photon
fluence and radiation dose are linearly proportional to mAs, and the
noise level is inversely proportional to the square root of the mAs.
ThemAs is an important factor, besides kV, in determining the TDC
SNR. The recommended mAs for brain CTP ranges between
100 mAs and 200 mAs per dynamic image at a tube voltage of
80 kV [13, 14]. The optimal mAs for other anatomical applications
has not yet been established, but can range from tens of mAs to up to
200 mAs per dynamic image. The choice of mAs also depends on the
number of dynamic CTP images acquired to balance the
radiation dose.

The recommended CTP temporal resolution is ≤ 3 s between
dynamic images [13–16]. This range has mainly been determined
empirically and depends on other scan parameters such as contrast
volume and injection rate, patient cardiac output, desired brain
coverage versus scanner axial coverage, and radiation dose [17, 18].
A uniform scan interval of 3 s with a 40-mL bolus injection at 4 mL/s
was found to balance the radiation dose and perfusion parameter
accuracy [17]. Non-uniform scan intervals have also been used to
sample the slower venous/wash-out phase of TDCs at prolonged
intervals to assess blood–brain barrier permeability [19] or to
optimize the radiation dose [15, 20].

The minimum scan interval can also be limited by the desired
anatomical coverage versus the axial coverage provided by the
scanner. In CT scanners with less whole organ coverage
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(<8 cm axially), a toggling table [21, 22] or periodic spiral [23]
technique is often used to increase coverage. The toggling table
technique (also called step-and-shoot or shuttle mode) increases the
axial coverage by acquiring two “slabs” of the object at two “toggled”
table positions. Here, the table is stopped during the scan, and this
process is repeated over the prescribed scan duration [21, 22]. In the
periodic spiral technique, the object is scanned continuously while
the patient table smoothly moves in and out of the gantry (i.e., a
continuous helical or spiral CT scan). The scan interval is therefore
limited by the inter-scan time required due to table movement and
the desired axial coverage.

CTP scan duration should be chosen such that at least the
first pass of contrast through the vasculature is fully captured,
which normally takes 45–60 s after contrast injection [24].
Following the first pass of contrast (the intravascular phase),
the TDC signal is mainly from the influx and efflux of contrast
through the blood–tissue barrier by passive diffusion

(interstitial phase). Therefore, a longer scan duration of
120–150 s may be prescribed to assess vessel permeability and
other kinetic parameters with model-dependent deconvolution
[15, 19, 25]. Scan duration must otherwise be balanced against
radiation dose. If a CTP study is too short, the full wash-out
phase of the contrast agent may not be sampled, especially in
diseased regions where the transit time may be prolonged. This
so-called truncation of TDCs is known to cause an
underestimation of CBV, MTT, and Tmax and, accordingly,
may lead to an inaccurate diagnosis [26]. Tolerance to TDC
truncation may depend on the deconvolution algorithm used to
generate perfusion parametric maps [27]. Of note, an iodinated
contrast material is diffusion-limited with respect to perfusion
in blood–tissue exchange, particularly in the case of an intact
blood–brain barrier. This contrasts with xenon, which is not
diffusion-limited in all tissues. Tracers that are not diffusion-
limited are freely diffusible.

FIGURE 1
Examples of CT artifacts that may affect CT number consistency in CT perfusion. (A) Intra-scan motion artifact in a CT perfusion dynamic image.
(A.ii) The cerebral blood volumemap shows regions of increased and decreased blood volume (arrows), where the decrease suggests an ischemic core.
(A.iii) Follow-up diffusion-weighted imaging does not show an infarct in that region. (B) An anthropomorphic head phantom reconstructed (B.i)with and
(B.ii) without beam hardening correction and (B.iii) the difference image (without minus with correction). The image without beam hardening
correction has cupping artifacts and a poor bone–brain interface (arrows). (C) An anthropomorphic head phantom scanned at (C.i) 20 mm and (C.ii)
40 mmbeam collimation width. (C.iii) The difference image (40 mmminus 20 mm) shows increased intracranial CT number at 40 mm relative to 20 mm
collimation width, possibly due to scattering overcorrection. The arrows also show beam hardening shading artifacts due to the different attenuation
characteristics of bone compared to the intracranial material.
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2.2 CT artifacts

A select number of relevant CT artifacts that affect the
estimation of perfusion are reviewed here. The key idea is to
mitigate CT artifacts such that the linear relationship between
the change in CT number and the change in iodine
concentration is maintained. As such, for CTP, the consistency of
the CT number between images is arguably more important than
absolute CT number accuracy. Representative examples of CT
artifacts discussed in this article are illustrated in Figure 1.

2.2.1 Patient motion
Two types of patient motion can be identified for CTP: (1) inter-

scan motion, which misaligns tissue voxels between dynamic
images, and (2) intra-scan motion, or motion during the
scanning of an image, which often causes dark shading artifacts.
Moderate-to-severe patient motion may be seen in up to 25% of
patients receiving brain CTP [28]. A secondary analysis of a
randomized clinical trial of endovascular stroke treatment
revealed that ≈10% of patients who received brain CTP had
motion artifacts, which rendered the CTP study unanalyzable
[29]. Inter-scan motion can mostly be corrected by co-registering
(spatially aligning) all dynamic images to a reference dynamic image
in the CTP study [30]. Motion correction by image registration is
automated and available in all commercial CTP software. Intra-scan
motion artifact is difficult to correct retrospectively, and dynamic
images showing severe intra-scan motion artifacts may need to be
selectively excluded from CTP post-processing. Motion artifacts can
cause both erroneous increases and decreases in estimated perfusion
depending on the context. For example, intra-scan motion shading
may decrease the amplitude of TDCs and erroneously introduce a
low-blood flow region. In contrast, inter-scan motion may cause
blurring of inter-organ boundaries (e.g., the bone–brain interface)
and cause artificial increases or decreases in the measured TDC
value. Motion is a major challenge for myocardial CTP imaging in
which the beating heart undergoes nonrigid movement. These
challenges are mitigated by electrocardiogram gating, fast gantry
rotation time to minimize intra-scan motion, and nonrigid motion
correction post-reconstruction [31]. Figure 1A illustrates the effect
of intra-scan motion on a CTP cerebral blood volume map.

2.2.2 Beam hardening
Beam hardening refers to an increase in mean X-ray energy

(“hardening”). Generated X-rays are polyenergetic, and low-energy
photons are disproportionately attenuated compared to high-energy
photons when passing through an object [6, 32]. X-rays that pass
through a greater length of the attenuating material will
proportionally have greater hardening. Non-uniform energy
attenuation results in inconsistent X-ray energy distributions
between detectors and projections, which causes a shift in the CT
number, wherein beams with greater hardening have a lower CT
number. Furthermore, streaking and shading artifacts may occur at
cross-sections with heterogenous bone structures, such as at the
posterior fossa of the head [6, 32]. This occurs due to inconsistent
levels of beam hardening between projections. All commercial CT
systems have methods to correct for these artifacts, but the
discussion of specific methods is outside the scope of this review.
Without proper correction, the linear relationship between CT

number and iodine concentration is not maintained, thereby
compromising the accuracy of perfusion parameter estimations.
Beam hardening artifacts are illustrated in Figure 1B and Figure 1C.

2.2.3 X-ray scattering
Compton scattering is one of the main modes of interaction

between X-ray photons and tissue at diagnostic X-ray energy
levels [6]. As a result, the measured CT detector signal can be
from primary photons (directly from the incident X-ray) or a
scattered photon (deflected at a random angle from within the
scanned object). Scattering increases with greater beam
collimation width as the volume of the irradiated material and
detector coverage are increased. Scattering can be modeled as a
low-frequency additive bias to the true primary detector signal,
which may cause streaking artifacts and CT number bias in the
reconstructed image [6]. Because scattering induces a greater
measured detector signal, the projections are seemingly less
attenuated, causing a reduction in CT number [33]. Software
correction methods [34, 35] or a post-patient collimator that
rejects scattered photons [36] can reduce the effects of scattering.
However, suboptimal scattering correction or scattering
overcorrection may result in increased CT number [36]. In
CTP, an inconsistent level of scattering between dynamic
images may cause CT number inconsistency, which would
invalidate the linear relationship between CT number and
iodine concentration. The accuracy of estimated perfusion
parameters would accordingly be affected. Figure 1C illustrates
how CT number consistency may be impacted by differing levels
of scattering due to protocols using different beam collimation
widths.

2.3 CT perfusion radiation dose

2.3.1 CT perfusion dose reduction
Radiation dose levels used for CTP imaging likely do not

increase the risk of cancer mortality substantially, relative to the
natural prevalence rate. Concerns with CTP radiation dose are,
therefore, with respect to the potential diagnostic benefit that is
provided and whether the same diagnostic information can be
reliably abstracted from a lower scan dose. Given a low enough
scan dose, radiation risk-to-diagnostic benefit criteria may be
favorable for CTP.

The most straightforward dose reduction technique is to reduce
the mAs or kV. Dose scales linearly with mAs and by a power law
with kV [6]. CTP image and TDC SNR suffer with lower mAs as
noise increases proportionally to the inverse square root of mAs. The
estimated blood flow becomes overestimated at lower mAs than at
higher mAs, and similar biases are observed for other estimated CTP
parameters [37]. The relationship between kV and the TDC SNR is
more complex: while noise increases with lower kV by a power law
[6], the sensitivity to iodine concentration also increases due to a
greater proportion of the X-ray energy spectrum being closer to the
K edge of iodine.

Dose reduction by reducing mAs and kV has mainly been
investigated empirically. Murphy et al. found no significant
differences in CBF, CBV, and Tmax estimated from brain CTP
studies of patients with acute ischemic stroke acquired at 50 mAs
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versus 100 mAs at otherwise fixed protocols, potentially offering
dose reduction by 50% [38]. Li et al. demonstrated that low-dose
CTP acquired at 70 kV did not compromise the image quality of
generated perfusion maps compared to 80 kV, resulting in a
reduction of the effective dose from 4.7 to 3.0 mSv [39]. A low-
dose 70 kV and 120 mAs CTP protocol was also superior to an
80 kV and 100 mAs protocol for CTP imaging of the pancreas,
resulting in a lower effective dose of 3.60 versus 4.88 mSv [40]. The
minimum image and TDC SNR required for reliable detection of
disease at CTP is not yet known. A model relating the TDC SNR to
lesion detectability may help determine the minimum required scan
dose for the diagnosis.

3 Theory of contrast transport

This section describes the principles of contrast transport used
to estimate perfusion parameters with dynamic contrast-enhanced
CT imaging.

3.1 Fick principle

We begin with the Fick principle, which considers a control
volume, Q, with an arterial inlet contrast concentration, Ca(t),
and a venous outlet contrast concentration, Cv(t). A schematic is
provided in Figure 2A. By conservation of mass, the
concentration of contrast that accumulates in Q(t) over time
is related to Ca and Cv by:

Q t( ) � F∫t
0
Ca τ( ) − Cv τ( )[ ] dτ, (3.1)

where F is the blood flow (in units of mL/g per unit time, but often
reported in mL/min/100 g) delivering contrast into and draining
contrast out of the tissue volume. Eq. 3.1 is the integral form of the
Fick principle and is the basis of the peak enhancement method for
determination of perfusion: under the assumption of no venous
outflow (Cv(t) = 0) in the period [0, t max], where t max is the time
when Q(t) attains its maximum (peak) value. Eq. 3.1 can be
rewritten as

FIGURE 2
Contrast transport in CT perfusion. (A) Schematic of a tissue volume, Q, comprising a network of capillaries with an arterial inlet time-contrast
concentration (density), Ca(t), supplied by blood flow F and a venous outlet time-contrast concentration, Cv(t), drained similarly by F. (B) Schematic of
the Johnson–Wilson–Lee (JWL) model of contrast transport. (C) Arterial time–density curve, (D) JWL-based impulse residue functions, and (E)
corresponding tissue time curves. (A) was adapted and modified with permission from Servier Medical Art, licensed under a Creative Commons
Attribution 3.0 unported license.

Frontiers in Physics frontiersin.org05

Chung et al. 10.3389/fphy.2023.1246973

104

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1246973


F � Q t( )[ ] max∫t max

0
Ca τ( )dτ

, (3.2)

which states that perfusion is the ratio of the maximum tissue TDC
value and the area of the arterial curve until t max. Alternatively,
differentiating Eq. 3.1 while assuming no venous outflow results in

F �
d
dt Q t( )[ ] max

Ca,max
. (3.3)

Eq. 3.3, the differential form of the Fick principle, is the basis for the
maximum front slope method [41], which states that blood flow is the
quotient of the maximum slope ofQ(t) and the maximum value of the
arterial curve. While this model simply describes blood flow, it relies on
the assumption that there is no venous outflow of contrast agent during
the measurement period, which is likely violated in regions such as the
brain, where the artery-to-venous transit time of the contrast may be
only 4–6 s. If this assumption is violated, themeasuredQ(t)will change
slower over time compared to no venous outflow, and blood flowwill be
underestimated as a result. Nonetheless, Eq. 3.3 highlights a key
relationship between the slope of Q(t), Ca(t), and blood flow.
Alternatively, F can be computed as the linear regression (y � mx)
slope when taking x � ∫t

0
Ca(τ) dτ and y � Q(t).

3.2 Impulse residue function

Meier and Zierler [42] formalized the work by Stewart [43] to
describe an alternative impulse residue function (IRF)-based
formulation to contrast transport. Consider a network of capillaries
with contrast delivery via blood flow by an arterial inlet and a venous
outlet (Figure 2A). The transit time of contrast from the arterial inlet to
the venous outlet can be modeled by a probability distribution function
or a transit time spectrum, h(t), where ∫∞

0
h(τ) dτ� 1. If the transit

time spectrum is time-invariant (does not change over the
measurement time; i.e., contrast transport can be modeled as a
stationary system) and CT number is linear with contrast
concentration, then by the principle of linear superposition, the
TDC at the venous outlet is related to that at the arterial inlet as follows:

Cv t( ) � Ca t( )⊗ h t( ), (3.4)
where ⊗ is the convolution operator defined as

f t( )⊗ g t( ) � ∫∞
−∞

f τ( )g t − τ( ) dτ. (3.5)

Defining the IRF, R(t), as the fraction of the contrast agent
remaining in tissue at time t, results in

R t( )� 1−∫t
0
h τ( )dτ. (3.6)

Eq. 3.1 can be reformulated using (3.4) and (3.6) to arrive at the
form:

Q t( ) � F∫t
0
Ca γ( )R t − γ( ) dγ

� FCa t( )⊗ R t( )
. (3.7)

The tissue TDC is the convolution of the arterial curve and the
IRF scaled by blood flow. A flow-scaled IRF, RF(t), can be defined as
RF(t) � FR(t) for convenience. Since ∫t

0
h(τ) dτ is a monotonically

increasing function that ranges from 0 to 1, R(t) also ranges from
0 to 1 andmonotonically decreases between time 0 and t. This agrees
with the definition that the IRF is the fraction of contrast remaining
in the system at time t. F can then be estimated as the maximum
value of the flow-scaled IRF.

The IRF describes a theoretical tissue response function if a
unit mass of bolus was instantaneously injected into the arterial
inlet (i.e., Ca(t) � δ(t), a Dirac delta function). In practice,
directly measuring the IRF non-invasively is infeasible.
Imaging modalities such as CT, magnetic resonance imaging,
or positron emission tomography are used to non-invasively
measure Q(t) and Ca(t), and RF(t) is calculated by inverting
the convolution, i.e., deconvolution. Deconvolution algorithms
are discussed in Section 4.

3.3 Central volume principle

The central volume principle [42] describes the relationship
between blood flow (F), blood volume (Vb), and the mean
transit time (MTT) of blood through the tissue vasculature
(both macro- and micro-vasculature). Consider that a bolus of
the contrast agent is injected into the arterial inlet of the tissue,
i.e., F∫0+

0
δ(t)dt � F. At time t, by definition, the fraction of the

contrast agent leaving the system is h(t) dt. If contrast agent and
blood are uniformly mixed, the fraction of tissue blood volume
leaving via the venous outlet at this time is h(t)dt. However, this
fraction would have ‘traced’ a blood volume of dVb � Fh(t)tdt.
The total blood volume, Vb is obtained by integrating over
time or

Vb � ∫∞
0
F th t( ) dt � F∫∞

0
th t( )dt.

∫∞
0
th(t) dt is recognized as the expected value of h(t). The MTT of

blood through the tissue vasculature (both macro and micro) is

MTT � ∫∞
0
th t( ) dt.

Therefore, the central volume principle states that the blood
volume is the product of the blood flow and the MTT:

Vb � F ·MTT. (3.8)
Meier and Zierler also showed that the area underneath R(t) is

equal to the MTT [42]:

MTT � ∫∞
0
R t( ) dt. (3.9)

Of note, the central volume principle made no assumptions on
the shape of h(t), and thus is generally applicable, independent of
the hemodynamic model of intravascular contrast transport.

3.4 Tracer kinetic modeling

So far, the properties of the contrast agent were not considered,
and no assumptions were made about underlying hemodynamic
processes that determine the functional form of the transit time

Frontiers in Physics frontiersin.org06

Chung et al. 10.3389/fphy.2023.1246973

105

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1246973


spectrum, h(t), and therefore the IRF, R(t). X-ray contrast is inert,
does not bind to any target in blood or tissue, and does not enter cells
[8]. Therefore, the contrast agent remains extracellular and
distributes in the intravascular blood space and interstitial space.
The magnitude of distribution in the interstitial space depends on
the permeability of local capillaries. For example, an intact
blood–brain barrier prevents the contrast agent from entering the
interstitial space; however, if this barrier is disturbed, contrast can
leak into the extravascular (interstitial) space and efflux from there
back into the blood space by bidirectional passive diffusion
depending on the concentration gradient. Without a tracer
kinetic model, the distribution of the tracer in the intravascular
and extravascular spaces cannot be described mathematically by
the R(t).

The Johnson–Wilson–Lee (JWL) model is a kinetic model that
can describe the equilibration of contrast through the blood–tissue
barrier between intra- and extra-vascular space [12, 44, 45], which
accounts for the perfusion of contrast through the vasculature as
well as its bidirectional permeation across the blood–tissue barrier.
Note that because both perfusion and permeation are explicitly
accounted for, the JWL model is valid independent of the relative
rates of perfusion (F) and blood–tissue permeation (characterized
by the permeability surface product (PS) of the barrier). A schematic
of the JWLmodel is shown in Figure 2B. The JWLmodel IRF and its
special cases (plug flow and irreversible leakage) are discussed in the
following sections and are illustrated in Figure 2D. Corresponding
tissue curves after convolving with the arterial curve in Figure 2C are
shown in Figure 2E.

3.4.1 Johnson–Wilson–Lee model
The flow-scaled IRF of the JWL model is given by

RJWL
F t( ) �

0 0≤ t<T0

F T0 ≤ t<T0 +W
FEe−k2 t−T0−W( ) t≥T0 +W

⎧⎪⎨⎪⎩
� F U t − T0( ) − U t − T0 −W( )[ ]
+FEe−k2 t−T0−W( )U t − T0 −W( ), (3.10)

where T0 is the delay time between the arrival of the contrast
agent at the artery and tissue; W is the minimum transit time for
the contrast to pass through the tissue vasculature; FE is the flow-
extraction product, where E is the fraction of the contrast that is
extracted to the interstitial space by unidirectional passive
diffusion (0≤E≤ 1), and k2 is the efflux rate constant. U(t) is
the Heaviside step function:

U t − τ( ) � 0 t< τ
1 t≥ τ
{ .

For the JWL model, St Lawrence and Lee showed that [45]

K1 � FE,

E� 1−e−PS/F, (3.11)
k2 � K1

Ve
,

whereK1 is the influx rate constant of the extracted contrast agent to
the extravascular space, PS is the permeability surface area product
of the endothelial barrier and gives the permeation rate through
passive diffusion, k2 is the efflux rate constant of the contrast leaking

back to the intravascular space, and Ve is the distribution volume of
the extravascular space.

By using Eq. 3.10 and (3.7), a closed-form solution to Q(t) can
be derived:

QJWL t( ) � F D t − T0( ) −D t − T0 −W( )[ ]
+FECa t − T0 −W( ) ⊗ e−k2tU t − T0 −W( ),

(3.12)
where D(t − γ) � ∫t

γ
Ca(τ − γ)U(τ − γ)dτ and the time integral of

Ca(t) shifted by γ.
The standard interpretation of the JWL model is that all vessels

in a tissue volume are fused into a single tube and, therefore, has a
uniform transit time. In this case, the minimum transit time W is
equal to the MTT. This is the so-called “plug flow” model in which
the contrast agent passes through vessels without dispersion. In the
case of a permeable vessel, a fraction of flowing contrast is initially
extracted from the vessels into the extravascular space and then leaks
back to the intravascular space at the efflux rate constant. Here, the
exponential decay component of the JWL IRF is fully attributed to
the wash-out of the extracted contrast from the extravascular space.

A modified interpretation of the JWL model may instead
consider the exponential decay as a measure of dispersion due to
varying vessel path lengths. In this interpretation, the contrast fully
remains in the intravascular space and E represents the fraction of
contrast with transit time > W such that the MTT � W + E/k (i.e.,
the mean vascular transit time is the total area underneath the JWL
IRF). A mixed interpretation, one in which both heterogeneous
vascular transit time and leakage of the endothelial barrier are
accounted for, may be possible, but the two processes must be
alternatively modeled or partitioned heuristically. The JWLmodel of
contrast transport is, therefore, highly flexible depending on its
interpretation and how the distribution of the contrast is partitioned
between the intra- and extra-vascular space.

3.4.2 Special case of the Johnson–Wilson–Lee
model: irreversible leakage (k2 = 0)

A special case of the JWL model arises when the contrast leaks
into the extravascular space but does not leak back into the
intravascular space (k2� 0). The resulting flow-scaled IRF,
RFE
F (t), for this special case is

RFE
F t( ) �

0 0≤ t<T0

F T0 ≤ t<T0 +W
FE t≥T0 +W

⎧⎪⎨⎪⎩
� F U t − T0( ) − U t − T0 −W( )[ ]
+FEU t − T0 −W( )

, (3.13)

and the closed-form solution, QFE(t), is simplified to

QFE t( ) � F D t − T0( ) −D t − T0 −W( )[ ] + FED t − T0 −W( ).
(3.14)

As with the JWLmodel, this special case can also be interpreted such
that E represents the extraction of the contrast into the extravascular
space from endothelial barrier leakage or the fraction of contrast with
vascular transit time>W (heterogenous vascular transit time).MTT and
Vb therefore depend on the interpretation of the model: in the former
case,MTT � W, whereas in the latter case,MTT � W + E(TD − T0),
where TD is the duration of the CTP study. A width (TD − T0) is
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enforced such thatMTT is clipped to a finite value.Vb � F ·MTT is the
same as in Eq. 3.8 but depends on the adopted definition of MTT.

3.4.3 Patlak graphical analysis
The special case of the JWL model with irreversible leakage is

similar to the Patlak graphical analysis method when taking W→ 0
in RFE

F (t) (i.e., a Dirac delta function in place of a finite-width
boxcar) [46]. The Patlak flow-scaled IRF is therefore:

RPatlak
F t( ) � Vb δ t − T0( ) + K1U t − T0( ), (3.15)

where the area underneath the Dirac delta function is Vb. By
evaluating Eq. 3.7 with (3.15), the tissue TDC can be expressed as

QPatlak t( ) � VbCa t − T0( ) +K1∫t
T0

Ca τ − T0( ) dτ. (3.16)

Dividing both sides by Ca(t − T0) results in

QPatlak t( )
Ca t − T0( ) � Vb +K1

∫t
T0
Ca τ − T0( )dτ
Ca t − T0( ) . (3.17)

The Patlak parameters Vb andK1 can then be estimated linearly
taking y � QPatlak(t)/Ca(t − T0) and x � ∫t

T0
Ca(τ − T0) dτ/Ca

(t − T0) for assumed values of T0 (e.g., by a grid search of T0 values).

3.4.4 Special case of the Johnson–Wilson–Lee
model: intravascular plug flow (FE = 0, k2 = 0)

Another special case arises when there is no leakage of contrast
to the extravascular space (i.e., the contrast fully remains in the
intravascular space) and the vascular transit time is uniform. As
mentioned previously, this is the so-called “plug flow” model. The
resulting IRF, Rplug

F (t), for this special case is

Rplug
F t( ) �

0 0≤ t<T0

F T0 ≤ t<T0 +W
0 t≥T0 +W

⎧⎪⎨⎪⎩
� F U t − T0( ) − U t − T0 −W( )[ ]

, (3.18)

and the closed-form solution, Qplug(t), is

Qplug t( ) � F D t − T0( ) −D t − T0 −W( )[ ]. (3.19)
Here, W � MTT as the contrast is entirely intravascular. The

significance of the two special cases of the JWL model will be
elaborated in Section 4.2 when discussing model-dependent
deconvolution methods.

4 Deconvolution methods

Deconvolution aims to “invert” the convolution in Eq. 3.7 to
recover the flow-scaled IRF from the measured arterial (Ca(t)) and
tissue TDCs (Q(t)). Methods can be broadly categorized into
model-independent and model-dependent deconvolution. Model-
independent methods make no assumption about the functional
form of RF(t) which is non-parametrically recovered from the
measured Q(t) and Ca(t). Conversely, model-dependent
methods parameterize RF(t) based on tracer kinetic models (e.g.,
equations 3.9; 3.12; 3.14) and use the parametric form of Q(t) (e.g.,
equations 4.11; 4.13; 4.15; 4.16) to estimate the model parameters of
RF(t). It has been extensively shown that different deconvolution

methods can produce different estimates of perfusion parameters
[47–50].

4.1 Model-independent deconvolution

First, the convolution in Eq. 3.7 can be discretized as

q j[ ]� Δt∑N−1

i�0
ca i[ ]rF j − i[ ], (4.1)

where

q � Q t0( ),Q t1( ),/,Q tN−1( )[ ]T
ca � Ca t0( ),Ca t1( ),/,Ca tN−1( )[ ]T
r � RF t0( ),RF t1( ),/,RF tN−1( )[ ]T

are vectorized forms of Q(t), Ca(t), and RF(t), respectively, over
measurement times t0,t1, . . . ,tN−1 at Δt uniformly spaced intervals. i
and j are integer vector indices, and N is the number of vector
elements. Vectors and matrices are denoted by emboldened
characters.

The discrete convolution in Eq. 3.14 can be formulated as a
matrix multiplication:

q� ΔtAr, (4.2)
where A is a Toeplitz matrix formed by the elements of ca:

A �
Ca t0( ) 0 / 0
Ca t1( ) Ca t0( ) / 0

..

. ..
.

1 ..
.

Ca tN−1( ) Ca tN−2( ) / Ca t0( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4.3)

Model-independent deconvolution methods therefore aim to
non-parametrically recover r from the measured q and ca.

4.1.1 Singular value decomposition
One of the most commonly used approaches to recover r in

perfusion imaging is with singular value decomposition (SVD) [49,
51]. The SVD factorizes an m × n matrix, M, into the form:

M�UΣVT �∑k
i�1
σ iuiv

T
i ,

where U � [ u1 . . . um ] and VT � [ v1 . . . vn ]T are real
orthogonal matrices for a real matrix M, comprising left and
right singular vectors ui and vi, respectively, and Σ is an m × n
diagonal matrix with non-negative real singular values σi � Σii on its
diagonal. Singular values by convention are arranged in descending
order such that σ1 ≥ σ2 ≥ . . . ≥ σk, where k is the rank of M.
Knowing that the inverse of an orthogonal matrix is its
transpose, the pseudoinverse of M can be obtained by

M+�VΣ+UT �∑k
i�1

viuT
i

σ i
,

where + indicates the pseudoinverse and Σ+ is obtained by taking the
reciprocal of each singular value:

Σ+
ii � 1/σ i σ i > 0

0 σ i� 0
{ .

Eq. 3.14 can then be solved by the pseudoinverse with the SVD:
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r̂ � 1
ΔtVΣ+UTq � 1

Δt∑ki�1 uT
i q
σ i

vi, (4.4)

where r̂ is the pseudoinverse-estimated flow-scaled IRF and U ,Σ,V
are from the SVD of A. The pseudoinverse returns the least-squares
solution [49, 52, 53]:

r̂ � argmin
r

q −Ar‖��� 2
2.

However, since Σ+ comprises reciprocals of σ i, small singular
values will cause the solution r̂ to be unstable [53]. Small singular
values arise when columns of A are collinear, that is, columns of A
can be expressed as a linear combination of its other columns [54]. A
simple method to combat this problem is to truncate small singular
values below a prescribed threshold [49, 55]:

ftrunc
i,λr

� 1 σ i > λ
0 σ i ≤ λ
{ , (4.5)

where ftrunc
i,λr

is a regularization filter and λ � λrσ1 is the singular
value threshold for truncating singular values below a fraction λr of
the largest singular value σ1. Commonly used values for λr range
between 10% and 20% [48–50]. Alternatively, small singular values
can be rolled off more smoothly with a Tikhonov/Wiener weighting
filter [56]:

fTikh
i,λr

� σ2i
σ2i + λ2

.

These filters can be incorporated into Eq. 4.4:

r̂ � 1
Δt∑ki�1fi,λr

uT
i q
σ i

vi,

where fi,λr is either f
trunc
i,λr

or fTikh
i,λr

. Of note, the solution r̂ obtained
after applying the Tikhonov/Wiener filter is equivalent to the least-
squares solution with Tikhonov (2-norm) regularization [56, 57]:

r̂ � argmin
r

q
��� −Ar‖22 + λ2 Ir‖ ‖22,

where I is the identity matrix. More advanced constraints, such as
non-negativity and regularizing the second derivative of r (by
replacing I with a second-order finite difference matrix) to
reduce spurious oscillations [58, 59], may be further applied to
produce more physiologically reasonable solutions, but is outside the
scope of this review.

Standard SVD deconvolution is considered delay-sensitive; that is, r̂
is erroneous when there is a time interval between contrast arrival at
Ca(t) and at Q(t). This time interval is T0. There are two cases to
consider: (1) when the contrast arrives atQ(t) earlier than at Ca(t) and,
conversely, (2) when the contrast arrives atQ(t) later than atCa(t). The
first case is arguably more problematic as it violates the causality
assumption of the contrast transport theory formulated in Eq. 4.2,
where tissue enhancement, Q(t), is expected to be “driven” by the
arterial contrast concentration, Ca(t). Q(t) and R(t) must therefore be
0 between 0≤ t<T0 as the contrast has not yet arrived in the tissue from
the artery. However, this assumption may not hold in practice if Ca(t)
was obtained from a distal artery relative to the local artery supplying
Q(t). Alternatively, Ca(t) may have been selected in an ischemic region
where arterial contrast arrival is delayed relative to that of normal brain. In

such cases,T0 < 0 and the first non-zero element ofQ(t) andR(t) occur
at t< 0. Smith et al. [60] reformulated the standard SVDdeconvolution to
enforce causality by deconvolving a shifted Q(t) such that it lags Ca(t).
Without shifting Q(t), standard SVD substantially overestimated true
blood flow, but after reformulation, SVD blood flow was equivalent to
that of delay-insensitive deconvolution [60].

The second case, in which the contrast arrives at Q(t) later than
that at Ca(t), is common in acute ischemic stroke and may lead to an
underestimation of blood flow [61, 62]. Ca(t) is often selected at a
proximal large artery, and Q(t) is downstream of an occlusion, so the
contrast arrival in tissue is delayed. In these cases, T0 > 0, andQ(t) and
R(t) should theoretically be 0 between 0≤ t<T0 as no contrast has
arrived at t<T0. As this criterion is not enforced by the formulation in
Eq. 4.2, r̂ may not be 0 between 0≤ t<T0. True blood flow is
underestimated as a result of SVD deconvolution when T0 > 0 [61,
62]. Ibaraki et al. proposed estimating T0 for each tissue curve until the
arterial peak time by a least-squares fitting toQ(t) with a shifted Ca(t)
convolved with an exponential decay kernel. Alternatively, a more
thorough but computationally expensivemethodwould be to iteratively
shift Q(t) for a range of T0 and compute an r̂T0 by SVD for each
T0-shiftedQ(t), qT0

[58]. The optimal delay time and deconvolved IRF
would be the r̂T0 producing the least-squares difference between qT0

andAr̂T0. By including both negative and positive delays in the iterative
search ofT0, this method can address both delay sensitivity problems of
standard SVD in which the contrast can arrive at Q(t) either earlier or
later than at the selected Ca(t).

4.1.2 Block-circulant singular value decomposition
Wu et al. described a delay-insensitive deconvolution method by

performing the SVD with a block-circulant matrix of ca [50]. The
matrix multiplication in Eq. 4.2 becomes a circular convolution
when replacing A with the circulant matrix, Ac :

Ac �

Ca t0( ) 0 / 0 0 Ca tN−1( ) / Ca t1( )
Ca t1( ) Ca t0( ) / 0 0 0 / Ca t2( )

..

. ..
.

1 ..
. ..

. ..
.

1 ..
.

Ca tN−1( ) Ca tN−2( ) / Ca t0( ) 0 Ca tN−2( ) / 0
0 Ca tN−1( ) / Ca t1( ) Ca t0( ) 0 / 0
0 0 / Ca t2( ) Ca t1( ) Ca t0( ) / 0

..

. ..
.

1 ..
. ..

. ..
.

1 ..
.

0 Ca tN−2( ) / 0 Ca tN−1( ) Ca tN−2( ) / Ca t0( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� A A′

A′ A
[ ]

,

where

A′ �
0 Ca tN−1( ) / Ca t1( )
0 0 / Ca t2( )
..
. ..

.
1 ..

.

0 Ca tN−2( ) / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
Block-circulant SVD deconvolution can be performed using Ac

in Eq. 4.2 and using the pseudoinverse method with regularization as
described in the previous section. Circular convolution is equivalent
to linear convolution with time aliasing [63]. Time aliasing can be
avoided by appending ca with zeroes to have a total length ≥ 2N,
which is already considered in the above notation. Note that this is
equivalent to applying a rectangular window function of width tN−1;
unless ca decays to 0 at t � tN−1, the sharp change from Ca(tN−1) to
0 will result in Gibbs ringing artifact in the deconvolved IRF r̂.
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Ringing can be mitigated in part by regularizing the solution with an
oscillation index as described by Gobbel and Fike [50, 64].
Regularizing the second derivative of r̂ as briefly alluded in the
previous section may also be effective in this context.

4.1.3 Fourier transform deconvolution
The Fourier transform-based method of deconvolution utilizes

the convolution theorem, which states that a convolution in the time
domain is a product in the frequency domain. Applying the Fourier
transform to both sides of Eq. 3.7 results in

~Q f( ) � ~Ca f( ) · ~RF f( ),
where˜ indicates the Fourier transform of a function and f is the
frequency variable in units of inverse time. RF(t) can then be
obtained by taking the inverse Fourier transform (F −1) of the
quotient of the tissue and arterial curve frequency spectra:

RF t( ) � F −1 ~Q f( )
~Ca f( ){ }.

The Fourier transform method of deconvolution is
mathematically equivalent to the block-circulant SVD method
[50, 53]. It follows that Q(t) and Ca(t) should also be zero-
padded in this method to have a total length ≥ 2N prior to
taking the Fourier transform to avoid time aliasing. As with SVD
methods, the Fourier transform method is also highly sensitive to
noise and must be regularized with a filter, ~g(f):

RF t( ) � F −1 ~g f( ) ~Q f( )
~RF f( ){ }.

~g(f) could be a rectangular low-pass filter defined as

~glp f( ) � 1 −λ≤RF f( )≤ λ
0 f
∣∣∣∣ ∣∣∣∣> λ{ ,

where λ � λr ~RF(0) is a fractional threshold of the zero-frequency
~RF(0) and would be equivalent to block-circulant SVD with
truncated singular values of the same relative threshold.
Alternatively, Straka et al. proposed a Wiener-like filter to roll off
high-frequency components more smoothly [65]:

~gWiener f( ) �
~C
2

a f( ) −N2

~C
2

a f( ) ~Ca f( )>N,f ≠0

1 f� 0

0 else

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ , (4.6)

whereN � λr
2 max|~Ca(f)|. Wiener-like filtering is effectively similar

to Tikhonov regularization in block-circulant SVD. Note that the
filter value at zero frequency is 1, and thus the zero frequency of the
filtered ~RF(f) remains unchanged. The significance of the zero
frequency of ~RF(f) is that it is the area underneath RF(t), which is
equal to the blood volume. This can be shown by evaluating the
Fourier transform integral at f� 0:

~RF 0( ) � ∫∞
−∞

RF t( )dt � F∫t
0
R τ( )dτ � F ·MTT � Vb.

As such, with careful filtering to not modify the zero-frequency
value during Fourier transform deconvolution, blood volume
estimates will be unaffected by regularization.

4.1.4 Bayesian deconvolution
Applying Bayesian deconvolution to estimate hemodynamic

parameters in patients starts with the assumption that each
patient can be specified by two types of events (characteristics)—
CTP TDCs and themodel represented by the flow-scaled IRF, RF(t),
to generate Q(t) according to Eq. 3.7. The a posteriori probability of
RF(t) given a measured Q(t), or P(RF(t)|Q(t)), can be factored
using the Bayes Theorem [66] as follows:

P RF t( )|Q t( )( ) � P Q t( )|RF t( )( )P RF t( )( )
P Q t( )( ) , (4.7)

where P(Q(t)|RF(t)) is the probability (likelihood) of observing
Q(t) given a specific RF(t), P(RF(t)) is the a priori probability of
RF(t), and P(Q(t)) is the probability of observing Q(t). The
Bayesian deconvolution for RF(t) then maximizes the a posteriori
probability P(RF(t)|Q(t)) or

argmax
RF t( )

P RF t( )|Q t( )( )� argmax
RF t( )

P Q t( )|RF t( )( )P RF t( )( )
P Q t( )( ) . (4.8)

P(Q(t)) can also be written as

P Q t( )( )� ∫P Q t( )|RF t( )( )P RF t( )( )dRF t( ). (4.9)

Eq. 4.9 shows that P(Q(t)) gives the probability (evidence)
that the measured Q(t) can be modeled by RF(t) using Eq. 3.7.
Unless there are biases or artifacts in the CTP study, every Q(t) is
equally likely; therefore, P(Q(t)) is uniform and Eq. 4.8
simplifies to

argmax
RF t( )

P RF t( )|Q t( )( ) � argmax
RF t( )

P Q t( )|RF t( )( )P RF t( )( ). (4.10)

If P(RF(t)) is uniform (i.e., ~1), i.e., we do not have prior
knowledge of which RF(t) is more likely, Eq. 4.10 simplifies to

argmax
RF t( )

P RF t( )|Q t( )( ) � argmax
RF t( )

P Q t( )|RF t( )( ). (4.11)

Eq. 4.11 shows that the Bayesian deconvolution or maximum a
posteriori (MAP) is equivalent to the maximum likelihood
estimation of RF(t) under the assumption that both P(RF(t))
and P(Q(t)) are uniform. In addition, because an RF(t) that
maximizes P(RF(t)|Q(t)) and P(Q(t)|RF(t)) also maximizes
their logarithms, Eq. 4.11 can also be written as

argmax
RF t( )

logP RF t( )|Q t( )( ) � argmax
RF t( )

logP Q t( )|RF t( )( ). (4.12)

Assuming that the measured Q(t) has a Gaussian noise of equal
variance, σ2, distributed around the true value and the noise between
samples is independent (IID Gaussian noise), then the likelihood,
P(RF(t)|Q(t)), can be written as

P RF t( )|Q t( )( ) �∏N
n�1

1����
2πσ2

√ e−
1
2

Q tn( )− Ca t( ) ⊗ RF t( )[ ]t�tn
σ( )2 . (4.13)

Substituting Eq. 4.13 into (4.12) results in

argmax
RF t( )

logP RF t( )|Q t( )( ) � argmin
RF t( )
∑N
n�1

1
2σ2

Q tn( ) − Ca t( ) ⊗ RF t( )[ ]t�tn( )2
+∑N

n�1

1
2
log
����
2πσ2

√( ).
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Therefore, the MAP RF(t) estimate is equivalent to the
traditional least-squares estimate. That is, under the assumptions
of (1), P(RF(t)) and P(Q(t)) are uniform (i.e., ~1) and (2) Q(t) has
IID Gaussian noise:

argmax
RF t( )

P RF t( )|Q t( )( ) � argmin
RF t( )
∑N
n�1

Q tn( ) − Ca t( ) ⊗ RF t( ))[ ]t�tn( )2.
(4.14)

When a priori knowledge of RF(t) is available, the MAP RF(t)
estimate for uniform P(Q(t)) is given by the log transformation of
Eq. 4.10:

argmax
RF t( )

logP RF t( )|Q t( )( ) � argmax
RF t( )

logP Q t( )|RF t( )( ) + logP RF t( )( )[ ] .
(4.15)

If Q(t) has IID Gaussian noise, Eq. 4.15 can be rewritten as
(ignoring constant term) follows:

argmax
RF t( )

logP RF t( )|Q t( )( ) ~ argmax
RF t( )
∑N
n�1

− 1
2σ2

Q tn( ) − Ca t( ) ⊗ RF t( )[ ]t�tn( )2
+ argmax

RF t( )
logP RF t( )( ) .

(4.16)

One useful a priori constraint on RF(t) is smoothness as measured
by the integral of the square of the curvature. Boutelier et al. formally
expressed the smoothness of R(t) as a probability distribution and
solved for the MAP distribution, P̂(RF(t)|Q(t)), using Eq. 4.16 [67].
The hemodynamic parameters can then be obtained as the means of
different marginal distributions of P̂(RF(t)|Q(t)).

The marginal a posteriori distribution of F, P̂(F|Q(t)), is
obtained by evaluating the following multiple definite integrals
(noting RF(t) � FR(t)):

P̂ F|Q t( )( ) � ∫
R t( )

P̂ RF t( )|Q t( )( )dR t( ),

which is a definite integral in the N-dimensional space (as R(t) is
discretized into a vector of N elements, see Eq. 4.1). The Bayesian
deconvolution-estimated blood flow, F̂, is the mean of P̂(F|Q(t)):

F̂� ∫FP̂ F|Q t( )( )dF.

The marginal a posteriori distribution of R(t), P̂(R(t)|Q(t)), is
obtained by evaluating the following multiple definite integrals:

P̂ R t( )|Q t( )( ) � ∫
F
P̂ RF t( )|Q t( )( )dF.

The Bayesian deconvolution-estimated IRF, R̂(t), is the mean
of P̂(R(t)|Q(t)):

R̂ t( ) � ∫
R t( )

R t( ) P̂ R t( )|Q t( )( )dR t( ),

which is a definite integral in the N-dimensional space. The
estimated mean transit time, M̂TT, is calculated as

M̂TT �∑N
n�1

R tn( )Δt,

where Δt is the sampling interval ofQ(t). Finally, the estimated fit to
Q(t) is evaluated by Eq. 3.7 with F̂R̂(t).

However, calculations of both marginal distributions and their
means can be time-consuming as they involve evaluating up to N
definite integrals, where N is the number of samples of Q(t) and
R(t), which can be as many as 90 depending on the sampling
interval. Approximate analytical rather than more exact numerical
integration can speed up the calculation but lead to oscillating and
negative R(t) at certain times [66], both of which are non-
physiological.

The right side of Eq. 4.16 suggests that Bayesian deconvolution
with a priori knowledge of P(R(t)) can be cast as an optimization
problem. If a least-squares criterion is used for IID Gaussian noise in
Q(t), then the cost function C(R(t),λ) to be minimized is

C R t( ),λ( ) �∑N
n�1

Q tn( ) − Ca t( ) ⊗ RF t( )[ ]t�tn( )2
+ λ∫

R t( )

d2R t( )
dt2
( )2dR t( ) (4.17)

for imposing a priori smoothness constraint on R(t), where λ is the
Lagrange multiplier to control the importance of R(t) smoothness
relative to the least-squares criterion. C(R(t),λ) is linear with
respect to R(t) and λ and, therefore, is amenable to non-negative
linear least-squares (NNLS) techniques described by Lawson and
Hanson [52]. Lee extended the optimization to include time
causality (i.e., Q(t) must start later than Ca(t) or Q(t) lags
behind Ca(t) by τ > 0) and monotonicity (i.e., R(t) starts with a
maximal plateau for a duration equal to the minimum transit time
and thereafter decreases monotonically to baseline without
oscillations) [58].

4.2 Johnson–Wilson–Lee model-
dependent deconvolution

Model-dependent deconvolution based on the JWL model will
be described in this section. The special cases of the JWL model as
described previously simplify parameter estimation by reducing the
number of unknowns.

The closed-form solution of the JWL tissue curve, QJWL(t), is
shown in Eq. 3.12. This equation can be discretized as

q � Df , (4.18)
where f � [F FE ]T and D is an N× 2 matrix given by

D �
D t0 − T0( ) −D t0 − T0 −W( ) G t0 − T0 −W( )
D t1 − T0( ) −D t1 − T0 −W( ) G t1 − T0 −W( )

..

. ..
.

D tN−1 − T0( ) −D tN−1 − T0 −W( ) G tN−1 − T0 −W( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(4.19)

D(t − γ) � ∫t
γ
Ca(τ − γ)U(τ − γ) dτ is the time integral of the

arterial TDC, and G(t − γ) � Ca(t − γ) ⊗ e−k2t U(t − γ) is the
convolution of the arterial TDC with an exponential decay function.

Note thatD(t) can be computed numerically with the measured
Ca(t), and evaluating G(t) requires an estimate of k2. Therefore,
there are five unknown parameters: F,FE,T0,W,k2. Estimating the
five parameters of the JWL model requires solving a nonlinear
optimization problem. This is computationally intensive, requires a
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reliable initial guess, and is susceptible to returning solutions of local
minima. To solve for the parameters in the JWL model, Bennink
et al. [68] used parameter estimates from a simplified model as initial
guesses to a nonlinear regression of Eq. 3.12. It is unclear whether
these initial guesses may have biased the nonlinear regression to
unsatisfactory local minimum solutions.

Alternatively, the estimation of f can be linearized by
performing a grid search of the nonlinear parameters
T0,W,and k2. With assumed values of T0,W, and k2, D(t) and
G(t) can be numerically evaluated and f can be estimated by an
NNLS algorithm to enforce physiological positive values of blood
flow and the flow-extraction product [52]. For example, a grid search
may comprise 25 values of T0 from 0 to 24 s at 1-s intervals,
25 values of W between 2 and 26 s at 1-s intervals, and
25 logarithmically spaced values of k2 between 10–3 and 1 s-1,
leading to 15,625 grid search combinations. The optimal set of
estimated parameters, f̂ ,T̂0, Ŵ, and k̂2 would be the set that
minimizes the squared differences between q and Df :

f̂ ,T̂0,Ŵ,k̂2 � argmin
f̂ ,T̂0 ,Ŵ,k̂2

q − Df
���� ����22 s.t. f ≥ 0. (4.20)

As can be seen, the number of NNLS required can be large
depending on the number of grid search combinations. Advanced
optimization methods, such as using a dynamic grid search step size,
may be required to reduce the grid search combinations for efficient
application in practice. Alternatively, the grid search can be greatly
accelerated by assuming a simplified model as described in Section
3.4.2 and Section 3.4.4.

Using the irreversible leakage model described in Section 3.4.2, it
is assumed that k2� 0. The exponential function with a decay rate
constant of 0 evaluates to 1, so the convolution term G(t − T0 −W)
is simply the shifted time integral of the arterial TDC
(G(t − T0 −W) � D(t − T0 −W) when k2� 0). By excluding k2
from the grid search, the number of grid search combinations
greatly decreases (e.g., 25 × 25 = 625 in the above example),
resulting in a more manageable computation time. The four
model parameters are estimated as described for the JWL model
with the aforementioned simplifications.

A further simplification is to assume no leakage and a uniform
vascular transit time as in the plug flow model described in Section
3.4.4. Here, FE� 0, so there are three model parameters to be
estimated: f � [F], T0, and W. As such, only the first column of
D is required in Eq. 4.19. A fast method of calculating a normalized
form of the residuals is as follows. Knowing that the areas
underneath the left and right sides of Eq. 3.19 are equal, we can
normalize both sides to have an unit area as follows:

Q t( )∫T
0
Q t( )dt

� D t − T0( ) −D t − T0 −W( )∫T
0
D t − T0( ) −D t − T0 −W( )dt

,

where T is the total measurement time. Areas of Q(t) and
D(t − T0) −D(t − T0 −W) can both be computed numerically.
Note that F is eliminated on the right-hand side after
normalizing the area and eliminates the need to estimate f plug to
compute the normalized residuals. Defining q′ and D′ as qplug and
Dplug normalized by their respective areas, the residuals become
‖q′ − D′1‖22, where 1 is a vector of 1. The set of T̂0,Ŵ that produce
the minimum residual can be quickly determined, and only a single

NNLS needs to be computed to determine the corresponding
optimal f̂ for the TDC. A similar approach without T0-delay
estimation was described by Axel [69].

While the appeal of the simplified models is their fast
computation, their assumptions may not hold in general,
especially in highly diseased conditions.

4.3 Comparison of deconvolution methods

We compared the quantitative accuracy of five deconvolution
algorithms: two model-independent (SVD and Fourier
transform) and three model-dependent (plug flow, irreversible
leakage, and JWL) deconvolution methods. Block-circulant SVD
was omitted as it produced the same results as the Fourier
transform method when using equivalent regularization filters.
Details of the methods are provided in Section 4.1 and Section
4.2. Specifically, SVD was not delay-corrected and regularized by
truncating the smallest 15% of the largest singular value as
described in Eq. 4.5. Fourier transform deconvolution used a
Wiener-like regularization filter with 15% regularization as
described in Eq. 4.6. The plug flow and irreversible leakage
model deconvolution methods were the simplified cases of the
JWL model as described in Section 4.2 and used a grid search of
T0 ∈ [0, 1, . . . , 20] s and W ∈[2, 3, . . . , 24] s. A research version of
commercial CTP software (CT Perfusion 4D, GE Healthcare) was
used to solve for the full JWL model parameters. The remaining
four methods were implemented in-house using a custom Python
script. Details on the simulation of CTP data are provided in the
Supplementary Materials.

4.3.1 Ground truth versus deconvolution-
estimated blood flow

Correlation plots comparing ground truth versus mean
estimated blood flow over 1,024 trials for each deconvolution
method are shown in Figure 3. Simulation of routine-dose noise
(σ� 2.5 HU) and low-dose noise (σ� 5.0 HU) is shown in the left
and right columns, respectively. Linear lines of best fit are indicated
by the solid red lines, while the dashed black line is the identity line.
The linear regression slope is an indicator of parametric contrast
(i.e., magnitude of difference between high and low estimated blood
flow values), and the intercept can be loosely interpreted as an
indicator of bias at low ground truth blood flow values. The linear
regression line of an ideal method would be the identity line,
indicating a one-to-one agreement between the ground truth and
estimated blood flow values.

As shown in the correlation plots, all deconvolution methods
have a positive vertical axis intercept that is similar in value and
overestimates very low true blood flow values (e.g., <8 mL/min/
100 g). The regression intercept has greater deviation from the
origin at the low-dose noise level compared to the routine-dose
noise level. Notably, the model-independent methods have
shallower regression slopes that substantially underestimate
higher true blood flow values, whereas the regression slopes of
model-dependent methods are closer to 1. This indicates that despite
the difference in the simulated model IRF versus those used in
model-dependent deconvolution methods, (1) the model-dependent
deconvolution methods investigated here are better able to estimate
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FIGURE 3
Ground truth versus deconvolution-estimated blood flow using (A) singular value decomposition (SVD), (B) Fourier transform, (C) plug flow, and (D)
irreversible leakage. (E) Johnson–Wilson–Lee (JWL) model deconvolution at routine-dose noise (σ = 2.5 HU; left) and low-dose noise (σ = 5.0 HU; right)
levels. The linear regression equation and Pearson’s correlation are indicated in the inset of each plot.
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absolute blood flow than model-independent methods and (2), as a
result, can better quantify differences between low and high ground
truth blood flow values. In addition, the regression slope became
shallower with greater noise for all methods, indicating that blood
flow quantification worsens with greater noise.

The trade-off for better absolute agreement (lower bias)
between ground truth and estimated blood flow with model-
dependent methods is that they have higher variance than model-
independent methods. The mean and standard deviation of
deconvolution-estimated perfusion parameters over
1,024 trials for a single set of ground truth parameters at
routine-dose noise levels (σ� 2.5 HU) are tabulated in Table 1.
Reflecting the correlation plots, the model-independent methods
underestimate the true blood flow value on average, whereas the
model-dependent methods better agree with the true value on
average. However, the model-independent methods have smaller
standard deviations compared to model-dependent methods.
Note that for this set of ground truth parameters, the mean
SVD blood flow is less than that of the Fourier transform method
despite the latter having a shallower regression slope. This is due
to the positive T0 (i.e., the tissue TDC and the artery TDC), which
is described in Section 4.1.1, which causes a reduction in
estimated blood flow, whereas the Fourier transform method
is delay-insensitive.

Figure 4 shows a comparison of the mean deconvolution-
estimated flow-scaled IRF and their corresponding fitted tissue
TDCs overlaid on their respective ground truths for the
parameter set listed in Table 1. For the model-independent
methods, the estimated flow-scaled IRFs were averaged and the
fitted TDC was then computed with Eq. 4.2. For the model-
dependent methods, the means of the estimated model
parameters were first computed and then substituted into
Equation 3.10 and 4.18 to evaluate the mean estimated flow-
scaled IRFs and fitted TDCs, respectively. Despite applying
regularization and averaging over 1,024 trials, the model-
independent flow-scaled IRFs are oscillatory and fail to recover
the sharp initial peak in the true flow-scaled IRF. The corresponding
fitted tissue TDCs also contain oscillations, indicating that the
model-independent deconvolution methods overfitted to noise.
While the flow-scaled IRFs for the model-dependent methods did
not match the shape of the ground truth, they better reproduced the
sharp peak required for accurately estimating blood flow. The fitted
tissue TDCs do not show oscillations and arguably agree better with
those of the ground truth in this example.

The rightmost column of Figure 4 shows the distribution of
blood flow values estimated over 1,024 trials with each
deconvolution method. All methods produced approximately a
unimodal normal distribution of estimated blood flow values.
The model-independent methods produced a very narrow
distribution, whereas the model-dependent methods had a
broader distribution. The standard deviations of estimated blood
flow values are accordingly greater with model-dependent
deconvolution. However, the mean of the distribution better
converges to the true value with the model-dependent methods.
As such, model-independent deconvolution methods are more
precise at the expense of accuracy, whereas model-dependent
methods are more accurate but are less precise.

Though not investigated in this experiment, model-dependent
methods can also provide hemodynamic parameters that are
unavailable with model-independent methods, such as those
related to vessel permeability.

5 Applications of CT perfusion

5.1 Acute ischemic stroke

Acute ischemic stroke is mainly caused by a clot that limits blood
flow to the brain. Reperfusion treatments including intravenous
thrombolysis (IV-tPA) and endovascular thrombectomy (EVT) are
highly effective if administered early after stroke onset (<4.5 h for
IV-tPA and <6 h for EVT). However, randomized controlled trials
demonstrated that the therapeutic time window can be extended up
to 9 h after stroke onset for IV-tPA and 16–24 h for EVT with
selection by CTP [2–4, 70]. Treatment selection was based on a
target mismatch profile defined as a small volume of irreversible
brain injury (infarct or ischemic core) relative to a large salvageable
region (penumbra). Specifically, the target mismatch profile in the
DEFUSE-3 late-window EVT trial (6–16 h after stroke onset) was
defined as an ischemic core volume <70 mL, penumbra
volume ≥15 mL, and a mismatch ratio (quotient of penumbra
and core volume) ≥ 1.8 [4]. Anterior large vessel ischemic stroke
patients receiving late-window EVT based on this target mismatch
profile had significantly greater rates of good 90-day functional
outcome compared to best medical therapy [4]. As of 2022, CTP is
one of two imaging-based selection methods (alongside diffusion-
weighted imaging and perfusion magnetic resonance imaging)
approved by the American Heart Association best practice

TABLE 1 Mean and standard deviation of deconvolution-estimated perfusion parameters over 1,024 noise trials for a set of ground truth perfusion parameters.

Method F [mL/min/100 g] Vb [ml/100 g] MTT [s] T0 [s]

Ground truth 60 4 4 4

SVD 21.7 ± 0.2 3.7 ± 0.2 10.3 ± 0.5 N/A

Fourier transform 26.0 ± 0.2 3.7 ± 0.2 8.6 ± 0.4 N/A

Plug flow 59.9 ± 5.2 4.0 ± 0.1 4.0 ± 0.5 4.0 ± 0.4

Irreversible leakage 61.5 ± 3.1 4.0 ± 0.1 4.0 ± 0.3 4.2 ± 0.2

JWL 65.5 ± 1.7 4.3 ± 0.1 3.9 ± 0.1 4.4 ± 0.1

F, blood flow; Vb, blood volume; MTT, mean transit time; T0, delay time between contrast arrival at the artery and tissue; SVD, singular value decomposition; JWL, Johnson–Wilson–Lee.
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FIGURE 4
Comparison of deconvolutionmethods for a single set of ground truth parameters: blood flow, 60 mL/min/100 g; blood volume, 4 mL/100 g;mean
transit time, 4 s; T0, 4 s. Deconvolution methods were (A) singular value decomposition (SVD), (B) Fourier Transform, (C) plug flow, (D) irreversible
leakage, and (E) Johnson-Wilson-Lee (JWL) model. The mean deconvolution-estimated flow-scaled impulse residue function (IRF) and fitted tissue
time–density curve over 1,024 trials are overlaid on their respective ground truths in the left and middle columns, respectively. Histograms showing
the distribution of deconvolution-estimated blood flow values over 1,024 trials are shown in the rightmost column, where the solid red line indicates the
mean and the dotted black line is the ground truth.
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guidelines for EVT selection between 6 and 16 h after stroke onset
[71]. CTP played a major role in demonstrating that the therapeutic
window of reperfusion treatments can be extended based on tissue
status rather than strict time thresholds. An example CTP study of a
patient with large vessel ischemic stroke is shown in Figure 5.

As such, the main role of CTP is to measure the ischemic core and
penumbral volumes and quantify mismatch profiles. Modern CTP
software is automated and can provide diagnostic information within
minutes of image acquisition [72]. Ischemic core and penumbra
volumes are mainly measured by thresholding perfusion parameters.
CBF is often used to detect the ischemic core, andTmax is often used for
the penumbra [73–75]. The randomized controlled trials that validated
the diagnostic utility of CTP used a single software package (RAPID
CTP, RapidAI, Menlo Park, CA), which used CBF<30% relative to that
in the normal tissue to detect the ischemic core and Tmax>6 s for the
penumbra [2–4, 70]. Of note, RAPID perfusion imaging software uses
Fourier Transform deconvolution as described by Straka et al. [65],
which may have limited absolute agreement with ground truth blood
flow, as we have shown in Section 4.3.1. This demonstrates that absolute
accuracy and quantification of blood flow may not be required
specifically for determining target mismatch profiles, which may
have implications for CTP scan protocol design and radiation dose
reduction.

Optimal stroke lesion thresholds, however, differ between CTP
software packages, which has raised doubts about its widespread
deployment across institutions using different software platforms
[76]. One of the potential reasons that stroke lesion thresholds differ
between CTP software is that each software may use different
deconvolution algorithms. As shown in Section 4.3, each
deconvolution algorithm has different biases and variances in
estimating blood flow, and optimal lesion thresholds may
accordingly differ. Chung et al. found that linear regression
relationships of ground truth versus estimated perfusion
parameters determined from simulated CTP data (as in Section
4.3.1) may help guide the calibration of optimal stroke lesion
thresholds between software packages [77]. Threshold calibration
and demonstration of equivalence between other CTP software and
RAPID CTP have also been shown empirically [78–81].
Nonetheless, CTP requires better standardization between

software packages such that reliable diagnostic criteria can be
deployed between institutions using different platforms.

CTP has also demonstrated potential for detecting hemorrhagic
transformation in ischemic stroke [19, 82]. Hemorrhagic
transformation is a brain bleed caused by a complete breakdown
of the blood–brain barrier due to sustained severe ischemia and is
associated with high rates of mortality when symptomatic [83, 84].
According to the Heidelberg Bleeding Classification [85], there are
two main types of hemorrhagic transformation following ischemia:
hemorrhagic infarct (HI1 and HI2) and parenchymal hemorrhage
(PH1 and PH2). Symptomatic hemorrhage, which causes an
increase in the National Institutes of Health Stroke Scale
(NIHSS), is usually associated with PH and not HI.

Measures of vessel permeability as determined with model-
dependent deconvolution methods have been found to identify
patients likely to undergo hemorrhagic transformation. Aviv
et al. found that patients with larger permeability surface area
products (PS, Eq. 3.11) within the ischemic region at admission
CTP were associated with hemorrhagic transformation [19]. In a
voxel-wise analysis of CTP maps of 1,407 patients with acute
ischemic stroke, Bivard et al. found that an extraction fraction
(E, Eq. 3.11) threshold of 30% relative to the contralateral
hemisphere optimally distinguished between patients who did
and did not develop any form of hemorrhagic transformation
[82]. Both studies by Bivard et al. and Aviv et al. showed that
increased PS or E is associated with hemorrhagic transformation,
but differentiation of PH from HI is an ongoing research issue.
Nonetheless, Bivard et al. showed that the severity of hemorrhage
increased with larger volumes of tissue with E > 30%.82 Neither study
included patients treated with EVT and only included patients who
were considered for IV-tPA. CTP measures of vessel permeability
may therefore help identify patients at risk of hemorrhagic
transformation. Validation of CTP permeability measures in
predicting hemorrhagic transformation after EVT is still required.
Specifically, a useful application may be to predict hemorrhagic
transformation in large vessel ischemic stroke patients presenting
with a large ischemic core or beyond 24 h after stroke onset, who
have been found to have high rates of hemorrhage after EVT
[86, 87].

FIGURE 5
CT perfusion study of a patient with large vessel ischemic stroke who achieved early quality recanalization at endovascular thrombectomy. (A)
Predicted pre-treatment ischemic core (red) and penumbra (blue) by thresholding (B) cerebral blood flow and (C) Tmax maps, respectively, using the
optimal thresholds for this software package (CT Perfusion 4D, GE Healthcare). The small ischemic core relative to the large penumbra indicates a target
mismatch profile suitable for endovascular thrombectomy. (D) Follow-up infarct (red outline) delineated on non-contrast CT shows good
agreement with the ischemic core predicted by pre-treatment CT perfusion. Cerebral blood flow is in units of mL/min/100 g, and Tmax is in units of
seconds.
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5.2 Solid tumor

Tumor angiogenesis fosters the microenvironment required for
tumor growth and metastasis [88]. Tumor perfusion and vessel
permeability are therefore associated with tumor grades, prognosis,
and treatment response [89, 90]. Therefore, the main role of CTP in
evaluating solid tumors is to supplement histological assessment of
the tumor with non-invasive imaging of tumor perfusion and vessel
permeability.

5.2.1 Brain tumors
Gliomas are highly heterogeneous brain tumors that are the

most common type of neoplasm in adults [91]. The malignancy of
glioma is graded according to WHO tumor classification using a
tumor sample taken from a brain biopsy or surgery [92]. However,
the acquisition and utility of sampling the tumor is problematic due
to the highly heterogeneous nature of glioma cells and the limited
obtainable samples, meaning that the histopathological results may
be under-graded [93, 94]. An alternative to this invasive and limited
procedure is in vivo perfusion imaging, such as CTP. Perfusion
parameters such as blood volume, blood flow, and PS are associated
with angiogenesis, which underpins tumor growth. In current
practice, perfusion imaging supplements histological evaluation of
tumor grading, prognosis, and monitoring treatment response.
Histological assessment is nonetheless still required as CTP lacks
the spatial resolution required for assessing tumor
microenvironments (i.e., CT resolution is approximately 0.5 mm,
whereas microvasculature is on the order of μm) [89].

Perfusion parameters such as blood volume, blood flow, and PS
are associated with the tumor vasculature and have demonstrated
predictive value in glioma grading, prognosis, and treatment
response [89, 90]. Studies have suggested that blood volume may
potentially be a good biomarker for microvascular density (MVD),
which is associated with angiogenesis and, therefore, the
aggressiveness of the tumor [95–98]. Vascular endothelial growth
factor (VEGF) is an additional biomarker that shows a positive
correlation with hypoxic and hypoglycemic permeable blood vessels.
It is used to judge the potential for neoangiogenesis, aiding in the
histological grading process [99]. CTP PS could replace the need to
sample for VEGF as well as be used to study treatment response
[100]. This may help design more effective therapies based on the
underlying mechanisms of permeability and the blood–brain barrier
[99]. Jain et al. reported that in a study of 23 brain tumor patients
with various tumor grades, CBV and PS showed a significant
positive correlation with MVD (Pearson’s correlation, r = 0.596,
p < 0.001) and microvascular cellular proliferation (MVCP) (r =
0.546, p = 0.001), respectively, as well as a significant correlation with
WHO-defined tumor grade for CBV (r = 0.373, p = 0.031) and PS
(r = 0.452, p = 0.039) [95]. Ellika et al. found that in a cohort of
19 patients with glioma, CTP had higher sensitivity and specificity
than conventional MRI in classifying patients into low-grade and
high-grade glioma (92.9% and 100% for CTP versus 85.7% and 60%
for MRI, respectively) [90]. Therefore, CTP-derived parameters can
be used in combination with biopsy to non-invasively differentiate
tumor grades and elucidate different characteristics of tumor
proliferation. Overall, CTP may have the potential to non-
invasively track relevant biomarkers for tumor grading and
angiogenesis associated with treatment planning and response.

5.3 Cardiovascular disease

The main role of CTP in cardiovascular disease is to determine
regions of ischemic myocardial tissue using functional information
on blood flow, blood volume, MTT, and other hemodynamic
parameters.

5.3.1 Ischemic heart disease
Although coronary CT angiography (CCTA) is the main imaging

tool used to define coronary artery disease (CAD) that causes myocardial
ischemia, invasive fractional flow reserve (FFR) is currently the gold
standard for the identification of significant CAD requiring
revascularization [101–104]. CCTA provides morphological
information on the degree of stenosis but lacks functional information
on myocardial perfusion, leading to suboptimal positive predictive value
and specificity for significant CAD [104–106]. FFR is a diagnostic
measure that assesses the relative pressure difference across stenotic
coronary arteries, providing guidance for revascularization decisions. It
exhibits a diagnostic accuracy of over 90% when using a relative pressure
threshold of ≤0.8 [102]. Treatment for significant CAD involves either
enlarging the narrowed artery by percutaneous transluminal coronary
angioplasty or stenting or bypassing blockages by grafts [103].

Despite diagnostically validated non-invasive FFRCT technology
[107–110], FFRCT still does not provide quantitative data in the
myocardium, such as with CTP. The principal role of CTP in CAD
is non-invasively providing functional information on ischemic
myocardial tissue while maintaining a similar diagnostic value to
FFRCT. Using CTP-derived functional maps of blood flow, blood
volume, and mean transit time, occluded major vessels can be
determined by referencing ischemic regions segmented according to
the AHA 17 segment model [111]. CTP, either dynamic or static, has
been shown to have utility in isolation [104, 112] but has the most
impact when combined with othermodalities such as CCTA [113, 114].
Using their PERFECTION study data with CCTA-derived FFRCT,
Pontone et al. showed that CCTA + CTP had similar diagnostic
performance per vessel determination of significant CAD as CCTA
+ FFRCT in terms of the area under its receiver operating characteristic
curve (CCTA + CTP AUC = 0.876 with 95% confidence interval:
0.832 to 0.919, and CCTA + FFRCT AUC = 0.878 with 95% confidence
interval: 0.833–0.923) [113].

5.3.2 Cardiac sarcoidosis
Sarcoidosis is a disease where a number of granuloma cells

accumulate within the tissue of any organ in the body, and in 2011,
it was reported to affect about 10–40 in 100,000 Americans [115].
Cardiac sarcoidosis (CS) accounts for approximately 20%–30% of all
sarcoidosis cases in the United States and can lead to sudden death
without any admissible symptoms [115]. Silverman et al. found that
there were a significant number of CS patients who were clinically silent
[116]. Diagnostic imaging via 18F-FDG PET or gadolinium-based
cardiac MRI has substantially improved the detection of sarcoidosis.
Corticosteroid therapy is currently the only treatment for CS, though its
benefit requires validation in randomized controlled trials [117].
Imaging may guide the management of CS symptoms and
potentially decisions for corticosteroid treatment, but this requires
validation in future studies [118]. So et al. demonstrated the
potential utility of CTP to identify scar tissue in a CS patient using
myocardial blood flow and extravascular contrast distribution volume
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imaging [119]. More studies are needed to validate the diagnostic
potential of CTP in identifying CS patients, but if successful,
myocardial CTP may prove to be a more accessible imaging
modality than cardiac MRI and 18F-FDG PET for diagnosing CS.

6 Discussion

6.1 Radiation dose reduction

6.1.1 Low-dose CT perfusion denoising
Dose reduction by reducing mAs comes at the expense of lower

CTP image SNRs and TDC SNRs. The lower limit for recommended
mAs has mainly been established empirically. Further dose
reduction may be possible with post-processing or advanced CT
reconstruction techniques that improve image and TDC SNRs. In
simulation studies, spatiotemporal filtering of dynamic CTP images
demonstrated potential for dose reduction by leveraging spatial and
temporal relationships between CTP TDCs to improve TDC SNRs
[120–123]. An ultra-low-dose brain CTP protocol (effective dose:
1.2 mSv) with statistical iterative reconstruction (ASIRv, GE
Healthcare) allowed the evaluation of blood–brain barrier
permeability in thrombotic thrombocytopenic purpura [124].
Statistical iterative reconstruction has also been applied for 20 ×
dose reduction myocardial CTP imaging in a porcine model of
coronary artery occlusion [125]. More recently, deep learning-based
image reconstruction and denoising techniques have been proposed,
potentially offering greater improvements in CTP imaging and TDC
SNRs [126–128]. These methods have mainly been evaluated in
terms of quantitative image fidelity metrics and require clinical
validation. In addition, the strength of these noise reduction
methods needs to be increased at lower doses, which often comes
at the expense of spatial resolution. A balance between a perfusion
map SNR and spatial resolution is required for reliable diagnostic
application [73], though this has not been investigated in detail.

6.1.2 Low-temporal resolution CT perfusion
Radiation dose can be reduced by acquiring fewer dynamic CTP

images at the expense of temporal resolution or scan duration. Van
Ommen et al. demonstrated that certain deconvolution methods for
brain CTP tolerated a scanning interval of up to 5 s while still
adequately distinguishing between ischemic and normal brain tissue
[129]. Chung et al. found that tailored sampling of four dynamic
CTP images (pre-contrast baseline, arterial peak, and two additional
delayed images at 8-s intervals) had diagnostic potential in
identifying mismatch profiles in acute ischemic stroke [130].
While the quantitative accuracy of estimated perfusion
parameters may decrease with fewer acquired dynamic images,
perfusion map quality may be sufficient for diagnosis. Deep
learning methods to interpolate missing dynamic images or
directly predict perfusion maps from low-temporal resolution
CTP studies may also be viable [131, 132].

6.1.3 Future outlook
Demonstration of low-dose CTP has mainly been with

simulation studies or animal models. Prospective acquisition of
low-dose CTP in humans has been hampered by ethical and
safety considerations or concerns of diagnostic reliability. Studies

reporting the prospective application of low-dose CTP are required.
These data may then support the wider deployment of low-dose
CTP in practice. In addition, a theoretical model relating the
radiation dose and image/TDC SNR to the detectability of
disease in CTP parametric maps may be helpful in guiding the
selection of low-dose protocols. Future studies should also consider
diagnostic task-based metrics rather than intermediate measures,
such as the accuracy of estimated perfusion parameters. Absolute
agreement between regular-dose and low-dose CTP parameters may
not be important so long as diagnosis is reliable. For better inter-
study comparison, dose reduction studies should also report dosage
in more comparable absolute measures, such as the dose-length
product (mGy cm), CTDI100 dose (mGy), or effective dose (mSv), in
addition to relative measures of dose reduction compared to routine
levels.

Ongoing work in CTP dose reduction may facilitate its broader
clinical application. For example, perfusion imaging of pediatric
stroke patients is garnering interest to validate the translation of
diagnostic and therapeutic stroke paradigms from adults to children
[133], but pediatric perfusion imaging studies have mainly usedMRI
in part due to the lack of ionizing radiation [134]. Therefore, ultra-
low-dose CTP protocols may provide a broad opportunity to better
characterize pediatric cerebrovascular disease and identify pediatric-
specific imaging profiles suitable for stroke reperfusion therapies.

6.2 New CT technology

6.2.1 Photon-counting detector CT
Current clinical CT scanners use energy-integrating detectors

(EIDs), which comprise scintillators to convert X-rays to light and
light to electrical signals via photodiodes. The generated electrical signal
is proportional to the sum of energies of all transmitted X-rays. Photon-
counting detector (PCD) CT is an emerging technology that instead
uses semiconductors to produce an electrical signal directly
proportional to the energy of each incident X-ray photon. Electronic
noise, which may be prevalent at low-fluence scans with EIDs, can
therefore be minimized by setting an energy floor required for photon
detection [135, 136]. PCD elements are much smaller than EID
elements, ranging from 0.11 × 0.11 to 0.5 × 0.5 mm2 and 1 ×
1mm2, respectively [135], allowing for higher spatial resolution.

PCDs provide several advantages over EIDs: (1) spectral energy
resolution from a single X-ray source, (2) higher spatial resolution,
(3) beam hardening and metal artifact reduction, and (4) radiation
dose efficiency. These have meaningful implications for PCD-CT
perfusion. First, multi-energy resolution may improve the iodine
contrast-to-noise ratio [135] and thus improve the CTP TDC SNR.
Radiation dose reduction may be possible if sufficient TDC SNRs
can be achieved at lower doses with spectral imaging. Second,
smaller perfusion deficits, such as lacunar or watershed infarcts
[137], may be better visualized with the higher spatial resolution
afforded by PCD-CT. Last, artifact reduction may improve
perfusion map quality in previously problematic anatomical
locations and scan conditions. For example, CTP is less reliable
in quantifying stroke lesion volumes for posterior circulation
ischemic strokes compared to anterior circulation [30]. This may
be in part due to beam hardening and photon starvation artifacts at
the posterior fossa obscuring CTP TDCs.
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6.3 New applications

6.3.1 Lung perfusion CT
In contrast to brain perfusion imaging, where deconvolution

techniques are commonly employed, lung perfusion imaging
predominantly utilizes either the peak enhancement method (Eq.
3.2) or the maximum front slope method (Eq. 3.3) [138–141]. These
methods are applied under the assumption of no venous outflow and
have the advantage that the numerical computation is simpler to
implement. Nevertheless, the requirement of no venous outflow
means the perfusion values will be dependent on injection rate
and the viscosity of the contrast agent, as investigated by Xin et al.
[141] They found that compared to invasive measurement of cardiac
output by thermal dilution at the pulmonary artery, applying Eq. 3.3
to data acquired with diluted contrast (Isovue-370 and saline in the
ratio of 3:2) calculated more accurate lung perfusion than applying
Eq. 3.2. In contrast to Equation 3.2, Equation 3.3 also provided more
comparable lung perfusion values when comparing the rapid injection
rate (8 mL/s) with the slower rate (4 mL/s) of diluted contrast.

To circumvent the assumption of zero venous outflow, two
approaches have been employed. The first approach involved
utilizing the irreversible leakage model, as outlined in Section
3.4.3 and Eq. 3.16 [142]. The second approach used the model-
independent regularized deconvolution method, as described in
Section 4.1 [143]. The justification for irreversible leakage lies in the
fact that CTP acquisition for lung perfusion usually lasts less than
20–30 s, primarily due to the necessity of breath holding. Consequently,
any potential backflux of leaked contrast from tissue to blood can be
disregarded. Nonetheless, as discussed in Section 3.4.1, the value of K1

obtained through the irreversible leakage model does not directly
represent lung perfusion. Rather, it represents the product of lung
perfusion and the contrast extraction efficiency by the lung tissue.
Consistent with this interpretation, lung perfusion calculated with Eq.
3.3 with the no venous outflow assumption had better potential for the
diagnosis of pulmonary nodules than K1 from the irreversible leakage
model [144]. The deconvolution approach demonstrated a significant
reduction in lung perfusion downstream of a stenosed pulmonary
artery, surpassing 50% occlusion. The threshold for stenosis, leading to
a decrease in lung blood volume, was higher at 76%. This higher
threshold is likely due to autoregulation, wherein at lower degrees of
stenosis, the microvasculature undergoes vasodilation to compensate
for the decrease in perfusion pressure, resulting in an increase in lung
blood volume.

Due to tumor-associated angiogenesis, the blood supply to lung
cancer transitions from a single input solely from the pulmonary artery
to a dual input from both the pulmonary and bronchial arteries. To
account for this change, Yabuuchi et al. [145] expanded the application
of the maximum front slope method to accommodate dual-input
scenarios. By utilizing the dual-input maximum front slope method,
Ohno et al. [146] demonstrated that dual-input total perfusion
outperformed pulmonary arterial perfusion and the single-input
perfusion obtained through the single-input maximum slope method
in predicting treatment response and recurrence following chemo-
radiotherapy for non-small-cell lung cancer.

The requirement of breath holding during lung CT
perfusion restricts the acquisition time to a maximum of
20–30 s. Consequently, the analysis of lung CTP studies is
currently limited to the simple models discussed above,

namely, peak enhancement and maximum front slope,
operating under the assumptions of no venous outflow or
irreversible leakage. To advance lung CTP techniques, future
developments can explore acquiring studies with shallow
breathing and subsequently employing non-rigid registration
to align the images. This approach has the potential to extend
the acquisition time to 2–3 min. With these extended data, in
addition to perfusion and blood volume, parameters such as PS
can be determined as in solid tumors (Section 5.2).

7 Conclusion

CTP has demonstrated diagnostic utility in numerous clinical
applications due to its relative accessibility and low cost compared
to other perfusion imagingmodalities. This review provided a summary
of CTP scan protocols, theory of contrast transport, deconvolution
methods, applications, and future opportunities for research and
application. With further reductions to radiation dose and
improvements in hardware and software methods to acquire and
generate perfusion maps, CTP is poised to become an integral
component of the diagnosis and management of patients with
perfusion injuries.
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No-wait inversion—a novel model
for T1 mapping from inversion
recovery measurements without
the waiting times
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Introduction: Quantification of longitudinal relaxation time T1 gained interest as
an important MR-inducible tissue property for tissue characterization. Standard
inversion recovery (IR) measurements for T1 determination take a prohibitively
long time, and signal models assume a perfect inversion. Acceleration is possible
by using the Look–Locker (LL) technique or other accelerated, model-based
algorithms. However, the calculation of real T1 values from LL acquisitions
necessitates the knowledge of equilibrium magnetization M0. Thus, usually, a
waiting time to allow for free relaxation between global inversion pulses must be
implemented. This study aims to introduce a novel model-based fitting approach
for T1 mapping without the need for such waiting times.

Methods: Single-inversion spiral LL spoiled gradient echo acquisitions were
performed in a phantom and eight healthy volunteers using a 1.5T magnetic
resonance imaging (MRI) scanner. The measurements comprised two parts, one
without magnetization preparation and a second featuring a global inversion
pulse preparation before each of the 35 slices. Acquisitionwas performedwithout
any waiting time in between slices, i.e., before the inversion pulses. T1 maps were
calculated based on an iterative model-based reconstruction algorithm which
combines the information from these two measurements, with and
without inversion.

Results: Accurate T1 maps were obtained in phantom and volunteer
measurements. ROI-based mean T1 values differ by an average of 1.5% in the
phantom and 5% in vivo between reference measurements and the proposed
method. The combined fit benefits from both the information obtained in the
inversion prepared and the unprepared measurements. The former provides a
large dynamic range for accurate model-based fitting of the relaxation process,
while the latter provides equilibrium magnetization M0, necessary to obtain
accurate T1 values from a LL-like acquisition.
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Conclusion: The proposed model of a combined fit of an inversion-prepared and
an unprepared measurement allows for robust fast T1 mapping, even in cases of
imperfect inversion due to skipped waiting times for magnetization recovery. Thus,
it can render long waiting times in between inversion pulses redundant.

KEYWORDS

T1 mapping, quantitative MRI, model-based reconstruction, inversion recovery, non-
Cartesian trajectory, brain

1 Introduction

Quantitative magnetic resonance imaging (MRI) allows
obtaining maps of specific physical parameters in MRI. When
compared to qualitative MRI (or weighted imaging), it
additionally allows

- comparison of different tissues within the same individual
from different locations or points in time;

- comparison between images from different individuals; and
- achievement of disease-specificity, with studies correlating
abnormalities in the absolute values of certain MR-inducible
tissue properties and health conditions [1–4].

The quantification of longitudinal relaxation time T1 gained
interest for tissue characterization, and T1 mapping is already used
in cardiac [1, 2, 5] and brainMRI [3, 4, 6]. Conventional techniques for
T1 determination are based on tracking magnetization after a suitable
magnetization preparation, e.g., inversion recovery (IR)
measurements. Following an inversion pulse, an image is acquired
for a fixed delay after the inversion pulse. Typically, the k-space is filled
in a segmented fashion. Consequently, for each repetition,
magnetization must be restored to the original state, requiring a
waiting interval to ensure full recovery of the signal before every
new magnetization preparation. Repetitions of these measurements, to
acquire images at different delays after the inversion pulse, are
necessary to trace the relaxation of magnetization. Thus, standard
IR measurements have a prohibitively long duration and are hardly
feasible for clinical application [6–8]. The Look–Locker (LL) technique
[9] came as a milestone for accelerated T1 quantification. Typically, an
IR magnetization preparation pulse is applied, followed by a series of
low-angle radiofrequency (RF) pulses used for spoiled gradient echo
imaging. Data acquired after one inversion is sorted into different
k-spaces, corresponding to the different delays after the inversion.
Thus, the number of necessary repetitions can be reduced compared to
conventional IR T1 mapping. However, the problem of the long
waiting periods, on the order of 5*T1max, still exists for the LL
technique [2, 10]. Although LL techniques are much faster than
conventional IR T1 mapping, the RF pulses used for data
acquisition affect the T1 recovery. Thus, the longitudinal relaxation
process is not the same as for an undisturbed IR experiment, resulting
in an apparent T1 (termed T1*). The longitudinal relaxation time
T1 can be calculated from the apparent relaxation time T1* using the
acquisition parameters repetition time and the local flip angle [11, 12].
Alternatively, T1 can be calculated from the measured quantities, T1*,
equilibrium magnetization M0, and steady-state magnetization Mss
[10, 12]:T1/T1* � M0/Mss. To overcome the issue of long acquisition
times, single shot techniques with a very restricted spatial or temporal

resolution can be used. However, both can lead to a poor accuracy of
the corresponding parameter maps. Alternatively, undersampled
k-spaces can be used. Yet, these approaches require sophisticated
reconstruction approaches to mitigate the effects of undersampled
data sets [13, 14]. For example, the model-based acceleration of LL
T1 mapping (MAP [10]) uses a single inversion to generate a series of
undersampled images. Then, a pixel-wise fit of the undersampled
dataset is performed using a model of monoexponential relaxation.
This results in fully sampled k-spaces, leading to a series of images that
cover the whole IR process. As a result, accurate parameter maps are
calculated [10, 15].

Based on a novel model-based fitting approach, this study aims
to introduce a technique for T1 mapping without the necessity of
waiting times for free relaxation in between inversion pulses.

2 Materials and methods

2.1 Measurements

Measurements were performed on eight healthy volunteers. The
study was approved by the local ethics committee, and informed
consent was obtained from all volunteers before scanning.
Experiments were performed on a 1.5T MRI scanner (Siemens
MAGNETOM Avanto Fit) using a 20-channel head coil array.
Table 1 gives an overview of all measurements performed. In
general, reference measurements were performed using a turbo
spin echo (TSE) sequence (Table 1, Nb 1 and 3), while
acquisitions for the proposed method are based on a LL [9],
spoiled gradient echo acquisition with a spiral trajectory (Table 1,
Nb. 2A, 2B, 4A, 4B, 5A, and 5B).

For comparison, in each volunteer and the phantom
examination, one slice was acquired using a TSE sequence using
the following imaging parameters: flip angle = 150°, resolution =
0.5 × 0.5 mm2, slice thickness = 5 mm, turbo factor = 10,
measurement time = 22 min, and TE = 12 ms. Inversion times
were as follows: TI = 30 ms, 100 ms, 250 ms, 500 ms, 1,000 ms,
1,600 ms, and 2,500 ms, and TR was TI + 1,000 ms and ranged
between 1,030 and 3,500 ms. In the phantom, measurements at TI =
6,000 ms and 10,000 ms were added.

For all other acquisitions in each slice, 400 spoiled gradient echoes
(GREs) using a variable-density spiral read-out trajectory were
acquired. Consecutive spiral arms were spaced apart by a double
golden angle. The trajectory was designed using the variable-density
spiral design function tool [16, 17] by Brian Hargreaves and adjusted to
observe a maximum gradient amplitude of 40 mT/m and a maximum
gradient slew rate of 170 mT/m/s. The readout length of one spiral arm
was 6.28 ms and extended in k-space to a maximum value of 0.625 1/
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mm in order to achieve a spatial resolution of 0.8 × 0.8 mm2. By design,
a total of 70 equally spaced spiral arms could fully cover the k-space for
a FOV of 300 mm. However, in this study, a continuous rotation of a

double golden angle was chosen between consecutive spiral arms.
Other imaging parameters include TE = 0.61 ms, TR = 7.5 ms, flip
angle = 10°, slice thickness = 5 mm, and measurement time = 3s for

TABLE 1 Overview of measurements and their measurement parameters.

Nb Object Sequence Magnetization preparation Waiting time

1 Volunteers, 1 slice each Turbo spin echo Inversion-prepared -

2A Volunteers, 35 slices each Spoiled GRE with spiral
trajectory

Non Non

2B Volunteers, 35 slices each Spoiled GRE with spiral
trajectory

Inversion-prepared Non

3 Phantom, 1 slice Turbo spin echo Inversion-prepared -

4A Phantom, 35 slices Spoiled GRE with spiral
trajectory

Non Non

4B Phantom, 35 slices Spoiled GRE with spiral
trajectory

Inversion-prepared Non

5A Phantom, 35 slices Spoiled GRE with spiral
trajectory

Non Non

5B Phantom, 35 slices Spoiled GRE with spiral
trajectory

Inversion-prepared 20s

Common parameters

Spoiled GRE TSE

TE = 0.61 ms TE = 12 ms

TI = 30 ms, 100 ms, 250 ms, 500 ms, 1,000 ms, 1,600 ms, and 2,500 ms

TR = 7.5 ms, flip angle = 10° TR = TI + 1,000 ms, flip angle = 150°,

Resolution: 0.8 × 0.8 mm2 Resolution = 0.5 × 0.5 mm2

Slice thickness = 5 mm Slice thickness = 5 mm

Turbo factor = 10

Measurement time per slice = 3 s Measurement time per slice = 22 min

TABLE 2 T1 values as determined in the phantom measurements.

Phantom T1 values (mean ± SD) [ms]

Measurement Spiral acquisition with pause
(Nb. 5)

Spiral acquisition with no
pause (Nb. 4)

TSE (Nb. 3) Handbook

Reconstruction model a) b) c) a) b) c) Reference

ROI 1 1,363 ± 263 1,929 ± 121 1,811 ± 131 1,377 ± 271 1,302 ± 79 1,801 ± 97 1,793 ± 35 1,724

ROI 2 1,058 ± 151 1,461 ± 67 1,392 ± 69 1,129 ± 222 1,147 ± 78 1,374 ± 81 1,402 ± 24 1,451

ROI 3 904 ± 138 1,127 ± 69 1,059 ± 60 866 ± 135 1,021 ± 71 1,043 ± 73 1,017 ± 21 1,010

ROI 4 631 ± 141 765 ± 35 703 ± 33 612 ± 116 742 ± 29 702 ± 41 688 ± 8 672

ROI 5 481 ± 167 524 ± 23 492 ± 35 481 ± 112 525 ± 22 493 ± 31 488 ± 5 467

ROI 6 329 ± 167 373 ± 16 346 ± 23 358 ± 180 377 ± 25 343 ± 20 347 ± 4 333

ROI 7 252 ± 84 272 ± 14 243 ± 18 274 ± 24 271 ± 17 246 ± 18 249 ± 4 235

ROI 8 326 ± 45 204 ± 12 181 ± 14 493 ± 72 200 ± 18 184 ± 19 181 ± 3 169

Model a): unprepared measurement only.

Model b): inversion-prepared measurement only.

Model c): combined fit of inversion-prepared and unprepared measurements.

Ref: TSE acquisition.
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each slice. Each acquisition in a healthy volunteer comprised 35 slices
in interleaved order and covered the whole brain.

These measurements comprised two LL-like acquisition parts:
during the first part (Nb. 2A), no preparation and only slice-selective
excitations were used. In the second part (Nb. 2B), a global adiabatic
inversion pulse was applied before the acquisition of each slice (pulse
length: 10.2 ms). No waiting time was heeded in between slices, and
thus, starting magnetization was affected by the previous global
inversion pulses. Both parts acquire the course of the receiver coil
weighted magnetization from a starting point (M0 or –αM0) to the
steady-state magnetization Mss.

The same protocol was used for phantom measurements (Nb. 4A
and 4B) on an Essential System Phantom Model 106 by CaliberMRI
(Handbook T1 values are given in Table 2). Here, an additional
measurement with a waiting time of 20 s in between slices, and thus in
between successive inversion pulses, was performed (Nb. 5A, 5B). The
value of more than 10*maximum T1 in the phantom was chosen to
ensure full relaxation of all phantom compartments and no signal
contamination by former inversion pulses. Additionally, reference
T1 values for the different vials within the phantom are provided by
the vendor in the phantom manual.

A depiction of the spoiled gradient echo pulse sequence and the
spiral k-space trajectory is given in Figure 1.

2.2 Reconstruction

For all measurements, raw data was extracted from the scanner,
and image reconstruction was performed offline in MATLAB.
Reference TSE measurements (Table 1, Nb. 1 and 3) were
reconstructed by 2D Fourier transform. Data reconstruction of
spiral GRE acquisitions was performed by a modified model-
based acceleration of LL T1 mapping (MAP) algorithm [10, 15].
First, the corrected spiral k-space trajectory was calculated based on
the gradient system transfer function [18, 19]. Then, initial images
were reconstructed by gridding the data of each spiral arm into

separate k-spaces. All reconstructions were performed on amatrix of
size 512 × 512 and with a field of view of 40.96 cm. After 2D Fourier
transform, this results in a stack of highly undersampled images,
which track the time course of T1* relaxation. As one spiral arm is
gridded to each k-space, the temporal resolution equals TR. This was
conducted separately for both parts of the spiral measurements, with
and without the inversion pulse.

This initial step was followed by the iterative reconstruction
algorithm consisting of alternating steps of pixel-wise model-based
fitting and restoring data consistency. Data from the two parts of the
measurement (Nb. 2A and B, 4A and B, and 5A and B) was either
reconstructed together using a combined model (model (c)) or, for
comparison, separately only for the unprepared part (model (a) for
part A) or the inversion-prepared part (model (b) for part B).

This pixel-wise fitting of the reconstruction used the following
fitting models:

(a) Unprepared:

The transient phase of unprepared magnetization in spoiled
gradient echo acquisition only (Nb. 2A, 4A, and 5A) with three free
parameters (M0non, Mss, and T1*):

Mnon � Mss + M0non −Mss( )*e − t
T1*( ).

(b) Inversion-prepared:

Inversion recovery Look–Locker (IR-LL) acquisition only (Nb.
2B, 4B, and 5B) with three free parameters (M0IR, Mss, and T1*):

Minv � Mss − M0IR +Mss( ) *e − t
T1*( ).

(c) Combined:

A combination of unprepared GRE magnetization and
magnetization of IR-LL acquisitions (Nb. 2A and B, 4A and B,

FIGURE 1
(A) Sequence diagram of the spoiled gradient echo acquisition with spiral trajectory. In part one of the measurement, nomagnetization preparation
is performed. In part two of themeasurement, the nonselective adiabatic inversion pulse is played out before the acquisition of each slice. (B)Depiction of
the spiral trajectory. Shown are the first three arms, and consecutive arms are continuously rotated by a double golden angle.
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and 5A and B) with four free parameters (M0IR, M0non, Mss,
and T1*):

Minv � Mss − M0IR +Mss( ) *e − t
T1*( )

Mnon � Mss + M0non −Mss( )*e − t
T1*( )

⎛⎝ ⎞⎠,

where Mss is steady-state magnetization, T1* is the LL relaxation
time [9], M0non is equilibrium magnetization, and M0IR is
magnetization directly after the inversion pulse. An illustration of
the different models for data on representative voxels is given in
Figure 2. Afterward, fitted images were transformed back to the
k-space, and data consistency was enforced by reintroducing
measured data points into these modeled k-spaces. As in the
original MAP algorithm, we iteratively performed steps
consisting of model-based fitting and data consistency until
convergence to a solution was reached [15].

However, as this procedure converges rather slowly, we used a
modified algorithm. The original MAP reconstruction algorithm can
be seen as alternating projections onto two different subspaces: the
data-consistent solutions and the subspace of exponential signal
evolutions in all pixels. A combination of two MAP projections,
either from the data-consistent solution subspace back onto the
data-consistent solution subspace or from the exponential model
subspace back to the model subspace, can be seen as steps into the
right direction with a non-optimized step size. In other words, from
two solutions in each of these subspaces, a one-dimensional (1D)
consistency subspace and a 1D model subspace are defined. In the
modified MAP algorithm, we calculate the point in the 1D data-

consistent subspace, which is closest to the 1D model subspace, and
use it as the starting points for two further MAP iterations. These
MAP steps were used again to determine new 1D subspaces and a
new step size estimate. If the reconstruction problemwould be linear
and the measured data without noise, the exact solution would be
found after a single step size adjustment. Numerical experiments
suggest that, for our data, this approach reduces the number of steps
before convergence by a factor of approximately 50 compared to the
original MAP approach while arriving at a similar solution. For the
reconstructions presented below, we performed six MAP steps and
two step size adjustments (after MAP steps 2 and 4) in total.

2.3 Calculation of parameter maps

From the results of the last iteration in the model-based
subspace, absolute T1 values were calculated from the apparent
relaxation time T1* in LL acquisitions as [10]: T1 � T1* *M0IR/non

Mss using
the latest fitting values. Additionally, the inversion efficiency was
calculated as InvEff � M0IR/M0non from the combined model (c).

Reference TSE data were reconstructed by 2D FFT, and an
adaptive coil combination was performed [20]. The average phase of
the last three measurements in each pixel was subtracted from all
measurements, and subsequently, the real part of the data was fitted
pixel-wise using the following equation (adapted from [21]):

S � M0 * 1 − 1 − b( )*e −TI
T1( ) + c*e −TR

T1( )( ),
with c � (eTElast/T1),

FIGURE 2
Comparison of the different fit models for three exemplary pixels in the white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), as
performed in the last iteration. Data and fits of inversion preparedmeasurements are shown in shades of blue, from unprepared measurements in shades
of red. Left: Fit of three parameters (Mss, M0non, and T1*) on data on the unpreparedmeasurement (part A of spiral LL acquisitions), as described bymodel
(a). Center: Fit of three parameters (Mss, M0IR, and T1*) on data on the inversion preparedmeasurement (part B of spiral LL acquisitions), as described
by model (b). Right: combined fit of four parameters (Mss, M0IR, M0non, and T1*) on data on the unprepared and inversion-prepared measurement
simultaneously, as described by model (c). Major difference lies in the constraint introduced by model (c), forcing Mss and T1* to be similar in both
relaxation processes.
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where TR is the repetition time and TI is time after inversion.
Parameters b and c account for a potential non-ideal inversion and a
constant effect of the acquired multi-echo train, respectively.

2.4 ROI-based analysis

In each multi-slice measurement, the central slice was identified,
which also corresponds to the slice chosen in single-slice reference
measurements. ROIs were then manually placed in corresponding
areas in all measurements. In the phantom, a total of eight circular
ROIs were added to comprise each of the separate vials inside the
phantom. These ROIs were labeled ROI 1 to ROI 8 in the order of
decreasing T1 values. In each volunteer, three different polygonal
ROIs were drawn within that selected slice. The first ROI is placed in
the frontal white matter area, the second ROI in the gray matter in
the sulci in the right posterior brain, and the third ROI inside the

frontal part of one ventricle. For each ROI in the phantom, the mean
T1 values and the standard deviation (SD) within the ROI are
evaluated. In each volunteer mean T1 values and SD within the ROI
are evaluated, as well as mean T1 values and SD in each tissue over
the whole group of volunteers.

Additionally, equivalence testing was performed to assess
whether the phantom measurements with and without the
waiting time were statistically equivalent. Specifically, the two
one-sided t-test (TOST) procedure was conducted to test
whether the difference in means between two groups falls
within a predefined equivalence margin [22]. The equivalence
bounds were set to be 3% of the mean T1 value in the reference
measurement (i.e., 59 ms in ROI 1, 44 ms in ROI 2, 32 ms in ROI 3,
21 ms in ROI 4, 15 ms in ROI 5, 10 ms in ROI 6, 7 ms in ROI 7, and
5 ms in ROI 8). Practically, the equivalence of the means was
assessed by examining whether the 90% confidence interval fell
entirely within the predetermined equivalence bounds. Values

FIGURE 3
Parameter maps as determined by the three different fit models and from the reference measurement. Top: equilibrium magnetization (M0). In the
combined fit, two independent parameters (M0IR and M0non) are considered to allow for imperfect inversion. Center: steady-state magnetization (Mss)
and apparent longitudinal relaxation times (T1*). Bottom: longitudinal relaxation times (T1), as calculated from fit parameters of unprepared acquisition
only [model (a)], inversion-prepared data only [model (b)], and the combined fit of both parts of themeasurements [model (c)]. Arrows point to areas
of T1 underestimation.
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within each ROI were considered as paired as the same ROIs were
applied and pixel values were listed in the same order. The
significance level was set at α = 0.05.

3 Results

3.1 Signal evolution in the different models

Exemplarily, Figure 2 shows the signal evolution in three pixels
located in the white matter area in the center of the brain, gray
matter area, and cerebrospinal fluid (CSF) in the ventricle. Shown
are the data points after data consistency was restored and the
corresponding exponential curves fitted in the last iteration of each
of the separate reconstruction processes (model (a), model (b), and
model (c)). Note that the combined fitting, as proposed in model (c),
forces Mss and T1* to be similar for both relaxation processes as data
from identical tissue should feature identical tissue properties.

Separate fitting of either inversion-prepared data (model (a)) or
unprepared data (model (b)) imposes no such constraint, resulting
in differing values.

3.2 Exemplary volunteer

Figure 3 shows parameter maps, as determined by the three
different models after eight iteration steps. The combined model
(c) yields two values for equilibrium magnetization M0IR and
M0non, from the inverted and unprepared relaxation processes
respectively, while steady-state magnetization Mss and T1* times
are preordained to be identical. Steady-state magnetization Mss
(Figure 3 Mss) is comparable in all models. Maps of the
equilibrium magnetization M0IR/non are shown in Figure 3 M0.
Using model (b) for fitting of inversion-prepared data only (part B
of LL measurements) enables robust fitting. Challenges to this
model (b) arise in cases of imperfect inversion or altered
magnetization due to the lack of waiting time between
consecutive global inversions. The latter is especially apparent
in areas with long relaxation times like in CSF, where the calculated
values of M0IR are low. LowM0IR values are also determined by the
combined model, but in contrast, it can robustly determine M0non,
and the resulting maps show a similar distribution as in the
reference measurement.

T1* maps (Figure 3 T1*) are noisy when determined by model
(a) from unprepared data only. The maps determined by model (b)
or (c) show reduced tissue contrast as usual for T1* in LL
acquisitions [23–26].

T1 maps, as calculated from these fitting parameters, are
shown in Figure 3 T1. The calculation of T1 depends on the
accurate determination of T1*, Mss, and M0. Although the first is
challenging in model (a), the last poses a problem in model (b). In
model (c), equilibrium magnetization is determined by M0non,
allowing robust T1 calculation, as reflected in the detailed
T1 map (Figure 3 T1).

The results of all 35 slices in the exemplary volunteer are shown
in Figure 4. Reasonable T1 maps were acquired at all positions in the
head and were independent of the chronological position of the slice
in the measurement setup and, therefore, independent of its history
of inversion pulses.

The efficiency of the inversion preparation is shown in Figure 5.
Clearly, the relaxation process does not start at 100% inversion of
equilibrium magnetization M0 in tissues with long relaxation time
but in many other areas.

3.3 Phantom measurements

Figure 6 shows the T1 maps, as determined in the phantom
measurements with and without a deliberate waiting time in
between slices and, therefore, before all global inversion pulses.
Corresponding T1 values from the ROI-based analysis are collected
in Table 2. The parameter maps (Mss, M0, T1*, and T1), as
determined by the three different fit models after the eighth
iteration step are presented in Supplementary Figure S1.

As in the volunteer, maps calculated from the unprepared
measurement (Nb. 2A) with model (a) are noisy, while robust

FIGURE 4
T1 maps as determined by the proposed combined fit model (c)
in all slices of the whole head of one exemplary volunteer.

FIGURE 5
Inversion efficiency for one exemplary volunteer, as determined
by the ratio of the two parameters M0IR and M0non in the combined fit
model (c). Full inversion was not achieved in tissues with long
relaxation time but worked fine in other areas.
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fitting was possible in the inversion-prepared case (Nb. 2B) with
model (b) and with the proposed combined reconstruction (Nb. 2A
and B) by model (c).

The statistical equivalence test for the combined reconstruction
model (model (c)) revealed that the mean difference between
T1 values from measurements with and without pause was below
the equivalence bounds in all ROIs. Tests on the T1 values gained by
model (b) from IR measurements showed that the mean difference
was below the equivalent bounds in ROIs 5–8. T1 values in the ROIs
1–4, featuring the longest T1 values, cannot be considered equivalent
within the given bounds. Tests for reconstruction model (a),
unprepared measurement, revealed that the mean difference
between T1 values from measurements with and without pause
was outside the equivalence bounds in all ROIs, except for ROI 5.

Deviations of ROI-based mean T1 values between the combined
fit model (c) and the TSE reference measurement were 0.4%, 2.0%,
2.5%, 2.0%, 1.0%, 1.2%, 1.2% and 1.6%, respectively, for the eight
ROIs in the decreasing T1 order. Deviations to phantom manual
values were 4.3%, 5.6%, 3.2%, 4.3%, 5.3%, 2.9%, 4.5%, 8.2%,
respectively, for ROIs 1–8 (see also Supplementary Table S1).

3.4 Volunteer ensemble

T1maps were calculated for all slices in all eight healthy volunteers
and by all three reconstructionmodels. The T1maps acquired from the
TSE reference measurement and T1 maps calculated from the
combined model (c) in a corresponding slice are shown in
Supplementary Figure S2. Mean T1 and SD, as calculated by model
(a), were 1,567 ± 139 ms in CSF, 967 ± 37 ms in the gray matter, and
529 ± 43 ms in the white matter. Mean T1 and SD, as calculated by
model (b), were 2,278 ± 240 ms in CSF, 1,022 ± 44 ms in the gray
matter, and 559 ± 84 ms in the white matter. For the combined model
(c), mean T1 values and SD of 2,911 ± 240 ms in CSF, 1,198 ± 58 ms in
the gray matter, and 557 ± 40 ms in the white matter were found.
Separate results for each volunteer and area are collected in Table 3,

relative deviations are collected in Supplementary Table S2. In general,
model (a) underestimates T1 values and has high SD within the ROIs
in each volunteer. Model (b) has lower SD within ROIs and shows
underestimation of T1 values, especially in tissue with slow relaxation.
The results from model (c) agree within the error bounds with the
T1 times as determined by the reference measurement and are in good
accordance with the literature values [27–29]. In addition, they feature
low SD within each of the evaluated areas, indicating robust fitting.

4 Discussion

The proposed method aims to accomplish fast T1 mapping
without the need for waiting times in between inversion pulses.
Therefore, the combination of information from two parts of a
measurement, with and without inversion, is proposed. To obtain
T1 values from a LL acquisition, information on the apparent
relaxation time T1* and on equilibrium magnetization M0 and
steady-state magnetization Mss is necessary [9, 12]. Inversion-
prepared measurements provide a large dynamic range for accurate
model-based fitting of the relaxation process (and thus T1*), but
without considering the necessary time for magnetization recovery,
they cannot provide M0. In contrast, unprepared measurements can
provide the equilibriummagnetizationM0, but determination of T1* is
challenging, due to the low dynamic range of the relaxation process.
Information on M0 could, otherwise, be procured by considering long
waiting times in between inversion pulses to allow full relaxation before
each such pulse. The main advantage of the proposed approach is the
omission of such waiting times, which significantly decreases
acquisition time.

4.1 Sequence design

The design of the spiral trajectory was driven by two limitations.
First, the desired resolution and second a limited readout length, in

FIGURE 6
T1 maps of phantom measurement, with and without a waiting time to allow for free relaxation of magnetization. Maps calculated from the
unprepared measurement by model (a) are noisy, while robust fitting was possible in the inversion-prepared case (model (b)) and with the proposed
combined model (c). The major difference between measurements with and without waiting time emerges when regarding vials with long T1 values
(indicated by arrows) and the inversion measurement only (model (b) for measurement part B). Measurements without waiting time result in a
variable underestimation of absolute T1 values, which can bemitigated by either introducing the waiting time of 20 s or by using the combinedmodel (c).
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TABLE 3 T1 values determined from ROIs placed in CSF, gray matter, and white matter for the three different fitting models.

Volunteer T1 values (mean ± SD) [ms]

ROI location CSF Gray matter White matter

Reconstruction model a) b) c) Reference a) b) c) Reference a) b) c) Reference

1 1,619 ± 60 2,549 ± 174 2,917 ± 55 2,387 ± 158 947 ± 34 969 ± 71 1,162 ± 57 989 ± 51 546 ± 33 664 ± 161 595 ± 62 571 ± 26

2 1,467 ± 55 1,751 ± 148 2,736 ± 88 2,434 ± 130 965 ± 33 1,019 ± 78 1,185 ± 55 1,065 ± 69 508 ± 18 547 ± 108 536 ± 25 527 ± 6

3 1,516 ± 118 2,199 ± 219 2,815 ± 104 2,723 ± 35 1,051 ± 39 1,094 ± 136 1,331 ± 63 1,129 ± 50 535 ± 20 596 ± 133 575 ± 27 547 ± 10

4 1,520 ± 69 2,228 ± 226 2,903 ± 59 2,908 ± 184 973 ± 21 979 ± 54 1,169 ± 22 1,122 ± 32 528 ± 25 597 ± 147 547 ± 30 539 ± 6

5 1,702 ± 103 2,306 ± 209 2,998 ± 5 3,130 ± 55 952 ± 25 1,008 ± 83 1,210 ± 34 1,176 ± 59 531 ± 16 478 ± 71 569 ± 24 546 ± 15

6 1,449 ± 98 2,406 ± 169 2,962 ± 35 2,699 ± 154 936 ± 24 1,022 ± 93 1,173 ± 35 1,241 ± 68 580 ± 21 484 ± 82 590 ± 30 565 ± 7

7 1,828 ± 93 2,413 ± 157 2,998 ± 6 2,781 ± 135 937 ± 25 1,007 ± 68 1,146 ± 28 1,063 ± 51 438 ± 19 659 ± 105 470 ± 19 519 ± 12

8 1,436 ± 102 2,369 ± 164 2,958 ± 49 2,677 ± 172 975 ± 29 1,079 ± 75 1,208 ± 51 1,122 ± 57 566 ± 23 445 ± 158 573 ± 27 560 ± 10

Mean 1,567 ± 139 2,278 ± 240 2,911 ± 92 2,717 ± 240 967 ± 37 1,022 ± 44 1,198 ± 58 1,113 ± 76 529 ± 43 559 ± 84 557 ± 40 547 ± 18

Model a): unprepared measurement only.

Model b): inversion-prepared measurement only.

Model c): combined fit of inversion-prepared and unprepared measurements.

Ref: TSE acquisition.
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order to prevent strong effects of T2* relaxation along the readout.
Furthermore, a variable density factor of two was chosen to optimize
the acquisition of the k-space where most of the energy in an image is
concentrated near the origin of the k-space [17]. Consecutive spiral
arms were rotated in the spiral plane by a double golden angle. One
advantage of golden angle sampling is the uniform coverage of the
k-space along time. For optimized fitting of the exponential
T1 relaxation, ideally, three full k-spaces are available at set points
in time. For a fixedT1 value, the ideal position of these in time is known.
For unknown multiple T1 values, golden angle sampling provides a
good compromise. For center-out trajectory designs, the double golden
angle (137.51° ≈ 360°–2*111.25°) features the same properties as the
standard golden angle (111.25°) for full spoke acquisitions [30].

4.2 Reference measurement

Reference multi-inversion TSE measurements were performed
in one slice in each volunteer and in the phantom. The settings were
adjusted to minimize SAR in all acquisitions and to keep overall scan
time within reasonable limits. A variable TR of TI+1,000 ms was
chosen for each acquisition in order to realize equal relaxation time
in between the last excitation for acquisition and the subsequent
inversion pulse. A comprehensive overview of IR signal modeling
can be found in MRI handbooks and online (e.g., [21, 31, 32]),
including the signal dependencies on TR. In contrast, other
measurement setups use constant long TR values (e.g., 5*T1) and
include a long TR assumption in the fitting process.

4.3 Comparison of T1 measurements

In this study, T1 was determined by multi-inversion TSE
measurements, as well as by inversion-prepared and unprepared
spiral LL acquisitions in combination with three different fit models.
Additionally, handbook values for the phantom are given.

Values given in the phantom handbook are generally lower than
measured values (with the exception of ROI 2) independent of the
acquisition type and fitting model. For our proposed fitting model
(c), deviations are between 2.9% and 8.2%. Differences between the
reference measurement and handbook values are in a similar range,
between 0.7% and 7.1%. The main reason might be a difference in
temperature as handbook values are stated at 20°C, whereas both
reference and LL measurements were performed at 22°C–23°C. The
temperature dependence of T1 is known to be between 1% and 3%
per degree temperature change [33, 34]. Additionally, the reference
measurement was performed as a TSE sequence, where the
prolonged echo trains average signal around the set TI.

Reconstruction of LL acquisitions by model (a) has low mean
T1 values and maps are very noisy, which is also reflected in the high
SD within each ROI in the phantom and in all volunteers. Model (b)
has lower SD within ROIs but also shows an underestimation of
T1 values in comparison to reference measurements or other fitting
models, especially in areas with slow relaxation (e.g., ROIs 1 and 2 in
phantom or CSF and gray matter in vivo). Due to that, both are not
considered a recommended technique.

T1 values, as determined by the proposed combined fit model (c),
are in good agreement with reference values obtained by multiple

inversion TSEmeasurements for phantom and in vivo cases. In in vivo
measurements, T1 values deviate by 1.8% in the white matter, 7.1% in
the gray matter, and 6.6% in CSF, and are in a range of literature
values given for the evaluated tissues [27–29]. In the phantom, a
T1 range of 150–2,000 ms is covered. Within these ROIs, T1 values
deviate by no more than 2.5% from the reference measurement.

For very slow relaxing components (like CSF), inaccuracies can
occur due to the short overall LL acquisition time per slice. Although
main features of the relaxation process are covered within the 3 s
acquisition, the magnetization level of very slow components has not
necessarily reached the steady-state magnetization yet.

4.4 Model considerations

The main advantage of model-based reconstructions lies in the
usage of prior knowledge. The MAP approach applied in this study
combines prior knowledge about the relaxation behavior with the
contrast information acquired using a spiral sampling scheme [10,
15]. The iterative reconstruction algorithm introducesmore andmore
information about the relaxation process into the initial k-spaces,
which originally contain only one spiral arm each. Although, for
example, fingerprinting assumes that incoherent artifacts do not
influence the fitting, MAP uses the information from other time
points to consistently fill each k-space. Thus, over the iterations, the
k-space of each point in time is filled and undersampling artifacts are
eliminated. As a result, one complete image is generated for every time
point TI of the relaxation process. Specifically, for the study presented
here, a total of 400 full images spaced apart by TR were obtained.

The relaxation process from equilibrium magnetization (or
inversion) into steady-state magnetization depends on T1* and
can be fitted by corresponding exponential equations of T1* in
inversion-prepared and unprepared measurements. The main
advantage of the former is the large dynamic range of signal
evolution, which benefits robust fitting, especially in accelerated
methods. Unfortunately, to determine equilibrium magnetization
M0, it also demands perfect inversion and, thus, a waiting time to
allow free relaxation in between pulses. By combining the inversion
acquisition with an unprepared measurement, M0 can be adequately
recovered in a combined fit, as given by model (c). Thus, no waiting
time is necessary. As an additional benefit, the combined fit model
allows an investigation of the performance of the inversion pulse by
comparing M0non and M0IR.

The main advantage of such a model-based approach is the
efficient use of information gathered in the shortest measurement
times. Reconstructions can be performed on a fine temporal grid as
no binning of phase-encoding steps is used, but each acquired spiral
arm provides information on one time point along the relaxation
curves. In combination with pixel-wise fitting, no spatial or temporal
filtering is applied.

4.5 Inversion pulses

The presented study used a global inversion pulse to provide
maximum insensitivity to B1 inhomogeneity [35]. The inversion was
then followed by the acquisition of a single slice. Consequently, all
slices are affected each time an inversion is played out. In other
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words, all slices, but the first, have a history of multiple inversions. If
no waiting time for free relaxation in between the inversion pulses is
heeded, the inversion acts on an arbitrary magnetization vector and
not on the equilibrium magnetization M0. Thus, the start point of
the relaxation process shifts from –M0, as in a perfect inversion, to a
different value, and M0 can no longer be determined. Loss of the
M0 information subsequently prevents the necessary T1* correction
for LL acquisitions [9, 10, 12].

An additional advantage of a global inversion is that it allows
generalization of the method, for example, for segmented 3D [36–38]
acquisitions or simultaneous multi-slice measurements [39].

4.6 Other T1 mapping techniques

T1 mapping is often included in multiparametric acquisition
frameworks [40], like fingerprinting [41–44], the MR multitasking
framework [45, 46], or SyMRI [47, 48], which can achieve clinically
reasonable scan times below 10 min. Although the additional
information gained might be a benefit, the faster acquisition in
our proposed method is favorable for dedicated T1 mapping
applications.

Another common technique to determine T1 is the variable flip
angle method [49]. Several approaches were presented, which can
acquire whole-head T1 maps under 10 min [3, 6, 50]. Although they
are very fast, they require exact knowledge of the flip angle.
Additionally, problems with the B1 inhomogeneity and slice
profile may arise, especially for thin slices and fast pulses [51].
T1 values determined by the variable flip angle method are also
dependent on the RF spoiling procedure [52].

In techniques based on IR-LL methods, T1 can be calculated
from T1* either by using the acquisition parameters repetition time
TR and the local flip angle or from the measured quantities, T1*, M0,
andMss [9, 12]. By choosing optimal settings for a given experiment
and incorporating flip angle information, a bias from imperfect
inversion can be minimized. Shin et al. [11] performed whole brain
T1 mapping in approximately 4 min with a resolution of 1 × 1 ×
4 mm3. Within an optimized setup, an average error of T1 of 1.2%
was achieved, without requiring a specific waiting time in between
inversion pulses. In comparison to our approach, this study achieved
comparable measurement times, albeit slightly lower in-plane
resolution and volume coverage.

Other techniques based on IR-LL methods mostly rely on
segmented acquisitions with multiple inversions, especially for 3D
acquisitions, which require a high number of readout lines. For
example, Henderson et al. [36] performed whole-head T1 mapping
with a resolution of 1.4 × 1.4 × 6 mm3 in 8 min. The volume was
divided into 128 segments, each starting with an inversion pulse and a
delay time of 2 s in between. Similar measurement times were achieved
by Maier et al. [38] for 1-mm isotropic resolution by dividing the
k-space into 60 segments. Building on that, interleaved slab-selective
inversion preparations were proposed. The necessary delay times can
there be used to acquire different slabs. For example, Li et al. [37]
acquired whole-head T1 maps with 1-mm isotropic resolution within
4 min 21 s by separating the acquisition into six slabs.

The introduction of saturation pulses prior to the global
inversion pulse of each segment can shorten necessary delay
times. Such a setup was, for example, implemented by

Deichmann et al. [53] to minimize waiting times from 15 s to
3 s in a segmented acquisition. The so-called TAPIR sequence [7, 54]
uses a saturation pulse and a delay of 2–2.5 s before the inversion
pulse. Similar to our technique, the relaxation process after the
inversion does not start from inverted equilibrium magnetization.
Although in TAPIR, the additional preparation step allows control
over this start point, our approach assumes a random start point.
The necessary information on equilibrium magnetization is then
gained either by modeling (TAPIR) or by an additional part in the
measurement (as proposed here). A 3D extension of the TAPIR
algorithm was proposed by Claeser et al. [55] who acquired the
whole head in five segments with a resolution of 0.94 × 0.94 ×
2.5 mm3 in 3 min 25 s. This method can achieve acquisition times
similar to our proposed method.

The shortest scan times are generally achieved by single-shot,
inversion-prepared LL techniques, with high undersampling rates in
combination with a sophisticated reconstruction algorithm. Feng
et al. [13] acquired 32 slices in the human head with a resolution of
1.25 × 1.25 × 3 mm3 in 2 min 32 s and with a resolution of 0.875 ×
0.875 × 3 mm3 in 2min 49 s. In addition, Müller et al. [56] achieved a
resolution of 0.5 × 0.5 × 4 mm3 or 0.5 × 0.5 × 3 mm3 in 1 min
55 s and 2 min 36 s, respectively. Both methods provide in-plane
resolutions similar to our proposed method (0.8 × 0.8 × 5 mm3).
Measurement times are even shorter, albeit the total volume covered
is also smaller (280 × 280 × 96 mm3 [13] and 192 × 192 × 115/
117 mm3 [56] vs 410 × 410 × 175 mm3 in our method). Wang et al.
[39] combined such an approach with a simultaneous multi-slice
acquisition, thus allowing even further acceleration of whole-head
acquisitions. A total of five stacks, comprising five slices each, were
acquired in approximately 1 min. Out of the total time, 4 s each were
spent on the acquisition of the five stacks, and in between those, a
10-s waiting period was heeded. Considering that, an evaluation of
the combination of our proposed method without waiting times,
with a simultaneous multi-slice acquisition, is a very interesting
direction for future work.

Another recent study also aims at eliminating the waiting time in
between inversion pulses, by using an AI-based reconstruction
method to gain quantitative T1 values [57]. In comparison to our
method, the main benefit is the extremely short reconstruction time
once training of the data is accomplished. Nevertheless, our method
does not require a matching training dataset and does not rely on
specific acquisition parameters.

4.7 Measurement time

In this study, the whole brain was covered by acquiring 35 slices.
As the acquisition of each slice only took 3 s, total measurement time
for both inversion and unprepared measurement together resulted
in 210 s. To the best of our knowledge, only few other techniques can
provide T1 mapping in the whole head at submillimeter resolution
in such short acquisition times [13, 39, 55, 56].

If the traditional waiting period of 5*T1 (e.g., approx. 1.2 s in the
gray matter) after each inversion pulse was observed, total
measurement time for an inversion prepared acquisition would
have been 309 s, assuming a similar sequence setup. Over this
reference, the proposed algorithm presents an acceleration, which
is even more pronounced if longer T1 values are considered (e.g., in
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CSF). In future implementations, further acceleration by shortening
the unprepared acquisition might be possible and should
be evaluated.

In the phantom, two sets of measurements were performed, with
and without the waiting time, to evaluate the influence of the omission
of waiting time for free relaxation on T1 values. Statistical equivalence
testing revealed that the mean difference of T1 values, acquired from
the combined reconstruction model (c), was below the equivalence
bounds for the whole range of T1 values covered by the phantom
(175–1900 ms). In contrast, the results from IR measurements
without waiting time are not equivalent to the results from
measurements with waiting time for free relaxation. In conclusion,
by applying the combined reconstruction model, measurement time
can be reduced without compromising T1 mapping.

4.8 Limitations

Common limitations of iterative reconstruction procedures are
long reconstruction times and a high computational load. Although,
here, the introduction of the step size adjustment into the
reconstruction pipeline could significantly reduce the number of
steps before convergence (approximately by a factor of 50), the
offline implementation and overall time requirements do not
yet allow an easy introduction into clinical practice. Further
acceleration could be gained in future by using time-optimized
fitting procedures, for example, by a reduced dimension
nonlinear least-square fitting, as proposed in Barral et. al [58].

Furthermore, our approach is sensitive to model mismatches,
which can occur, for example, due to motion, inflow, slice profile,
partial volume effects, or multiple T1 components. Here, a rather
simple straightforward exponential behavior is used as a model,
which does not consider any such effects but, on the other hand, is
very robust. Nevertheless, the introduction of such aspects into the
model is possible [59].

The number of iterations and the setup of MAP steps and step
size adjustments were empirically determined. The optimal settings
might differ for different acquisition parameters. Then, other and
maybe more flexible stop criteria could additionally be evaluated.

5 Conclusion

The proposed model of a combined fit of an inversion-prepared
and unprepared measurement allows for robust fast T1 mapping,
even in cases of insufficient magnetization relaxation before
consecutive inversion pulses. It can thus render long waiting
times in between inversion pulses redundant.
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Aim: High-sensitivity hybrid positron emission tomography (PET) imaging using
advanced whole-body (WB) or total-body PET/computed tomography (CT)
systems permits reducing injected tracer activity while preserving diagnostic
quality. Such approaches are promising for healthy control studies or
exploring inter-organ communication in systemic diseases. This study
assessed test/retest variations in the fluoro-2-deoxy-D-glucose (FDG) uptake
in key organs from low-dose (LD) and standard-dose (STD) [18F]FDG-PET/CT
imaging protocols in healthy controls and lung cancer patients.

Methods: A total of 19 healthy controls (19–62 years, 46–104 kg, 10 M/9 F) and
7 lung cancer patients (47–77 years, 50–88 kg, 4 M/3 F) underwent [18F]FDG-
PET/CT imaging. All subjects were first injected (“test,” LD) with 28 ± 2 MBq FDG
and underwent a dynamic (0–67min post-injection) WB imaging protocol with
LD-CT. Then, 90 min post-LD injection, the subjects were repositioned and
injected with 275 ± 16 MBq FDG (“retest,” STD). Second LD-CT and STD-CT
scans were acquired for healthy controls and patients, respectively. Static images
(55–67 min post-injection) were considered for subsequent analysis. The CT
images were used to automatically segment the target volumes of interest.
Standardized uptake values normalized to the body weight (SUVBW) were
extracted for each volume of interest. The mean SUVBW were compared for
both LD/STD conditions with paired t-tests. In patients, FDG-avid lesions were
manually delineated on LD and STD static images. Effective dose levels were
estimated from both the CT and PET acquisitions.

Results:Organ-based mean SUVBW were similar between the LD and STD (mean
%difference ≤5%) in both healthy controls and cancer patients, except in the
heart. Intra-control test/retest variability was significant in the brain, heart, and
skeletal muscle (p < 0.05). While 17 lesions were delineated on the STD images of
the patients, only 10/17 lesions were identified on the LD images due to increased
image noise. Lesion-based mean SUVBW were similar between LD and STD

OPEN ACCESS

EDITED BY

Ciprian Catana,
Massachusetts General Hospital and Harvard
Medical School, United States

REVIEWED BY

Charalampos Tsoumpas,
University Medical Center Groningen,
Netherlands
Bo Zhou,
Yale University, United States

*CORRESPONDENCE

Daria Ferrara,
daria.ferrara@meduniwien.ac.at

RECEIVED 29 January 2024
ACCEPTED 18 March 2024
PUBLISHED 04 April 2024

CITATION

Ferrara D, Shiyam Sundar LK, Chalampalakis Z,
Geist BK, Gompelmann D, Gutschmayer S,
Hacker M, Kertész H, Kluge K, Idzko M,
LangstegerW, Yu J, Rausch I and Beyer T (2024),
Low-dose and standard-dose whole-body
[18F]FDG-PET/CT imaging: implications for
healthy controls and lung cancer patients.
Front. Phys. 12:1378521.
doi: 10.3389/fphy.2024.1378521

COPYRIGHT

© 2024 Ferrara, Shiyam Sundar, Chalampalakis,
Geist, Gompelmann, Gutschmayer, Hacker,
Kertész, Kluge, Idzko, Langsteger, Yu, Rausch
and Beyer. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 04 April 2024
DOI 10.3389/fphy.2024.1378521

137

https://www.frontiersin.org/articles/10.3389/fphy.2024.1378521/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1378521/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1378521/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1378521/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1378521&domain=pdf&date_stamp=2024-04-04
mailto:daria.ferrara@meduniwien.ac.at
mailto:daria.ferrara@meduniwien.ac.at
https://doi.org/10.3389/fphy.2024.1378521
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1378521


acquisitions (p = 0.49, %difference = 10%). In patients, the effective doses were
(1.9 ± 0.2) mSv (LD-CT), (16.6 ± 5.4) mSv (STD-CT), (0.5 ± 0.1) mSv (LD-PET), and
(4.6 ± 0.3) mSv (STD-PET).

Conclusion: LD and STD [18F]FDG injections in healthy controls and lung cancer
patients yielded comparable mean SUVBW, except in the heart. Dose levels may be
reduced for [18F]FDG-PET imaging without a loss in mean SUVBW accuracy,
promoting LD-PET/CT protocols for studying multi-organ metabolic patterns. In
oncology patients, this approach may be hindered by a lower diagnostic quality in
the presence of significant noise.

KEYWORDS

PET/CT, low-activity imaging, radiation exposure, [18F]fluoro-2-deoxy-D-glucose,
standardized uptake values

Introduction

Since its inception in the late 1990s [1], hybrid positron emission
tomography (PET) and computed tomography (CT), also referred to
as dual-modality PET/CT, has become a well-established non-
invasive imaging modality for a wide variety of clinical
applications. In many oncology indications, PET/CT has been
accepted as a standard imaging modality in patient management,
providing both metabolic and anatomic information for diagnosis
and treatment planning [2–4].

The technological innovations of recent years, culminating in
the introduction of total-body (TB) PET/CT systems [5], have
brought continuous improvements in system performance and
sensitivity [6, 7] and consequently expanded PET/CT imaging to
new research areas. For instance, the advent of extended axial field-
of-view PET systems allows the simultaneous and quantitative
imaging of multiple distant organs, thereby providing the
possibility to investigate multi-organ metabolic information and
detect potential anomalies from normal metabolic activity patterns
[8, 9]. To visualize and quantify metabolic aberrations, it is necessary
to establish a normative, organ- or voxel-wise, database based on the
images derived from healthy controls. However, to create such a
database, a significant amount of data must be collected first in light
of the public concerns over ionizing radiation. Radiation exposure
from PET/CT imaging, as measured by the effective dose to a
subject, scales with the amount of injected PET tracer activity.
The new PET/CT systems, with their increased sensitivity, allow
for further reduction in injected tracer activity and, subsequently,
reduction in radiation exposure [7, 10, 11].

Prior studies of low-dose PET/CT imaging have indicated
potential for their adoption in clinical routine. For example,
Calderón et al. demonstrated that decreasing levels of injected
[18F]fluoro-2-deoxy-D-glucose (FDG) activity ranging from
3.0 MBq/kg to 0.125 MBq/kg affected the mean standardized
uptake values (SUVs) by only 8% or less [11]. Kertész et al.
investigated the effects of reducing the injected [18F]FDG activity
in pediatric oncology patients undergoing whole-body PET/CT
examinations and showed that the injected activity levels can be
reduced to 75% of the original dose without compromising the PET
image quality [12]. Prieto et al. evaluated the impact of a 30% FDG
dose reduction on image quality, resulting in steady clinical reading
confidence despite a slight reduction in image quality [13]. Taken
together, these studies either focused solely on deriving low-count

PET images from standard activity images via list-mode resampling
rather than using actual low-activity injections or they relied on the
improved sensitivity of TB-PET systems, which are not yet widely
available in medical facilities. Adding to the above research, Tan
et al. compared ultra-low-dose and half-dose [18F]FDG-TB-PET/
CT imaging in a test–retest setup within a 72-h time frame [14].
However, this study focused primarily on parametric imaging and
assessed SUVs exclusively in the liver, thereby neglecting other
organs and the continuous predominance of semi-quantitative
SUV evaluations over kinetic modeling in clinical routine [15].

Our study, preceding the installation of a TB-PET/CT system,
assesses the impact of reduced PET tracer doses on quantitative
organ-based SUVBW measurements, especially in healthy controls.
Focusing on [18F]FDG imaging, we seek to understand the effects of
lowering injected tracer doses on healthy organ evaluations and

TABLE 1 Demographics of study participants.

Healthy controls

n° participants 19

Median age (years, range) 32 (19–62)

Average age (years, mean ± SD) 35 ± 14

Height (cm, mean ± SD) 175 ± 12

Weight (kg, mean ± SD) 76 ± 17

BMI (kg/m2, mean ± SD) 25 ± 5

Injected low dose (MBq, mean ± SD, “test”) 28 ± 2

Injected standard dose (MBq, mean ± SD, “retest”) 279 ± 14

Lung cancer patients

n° participants 7

Median age (years, range) 65 (47–77)

Average age (years, mean ± SD) 62 ± 13

Height (cm, mean ± SD) 165 ± 11

Weight (kg, mean ± SD) 71 ± 14

BMI (kg/m2, mean ± SD) 26 ± 4

Injected low dose (MBq, mean ± SD, “test”) 29 ± 3

Injected standard dose (MBq, mean ± SD, “retest”) 271 ± 17
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disease-related metabolic changes. Using serial [18F]FDG injections
(test/retest), we examined intra-subject variabilities over 90 min and
compared lesion uptake variations between low-dose (LD) and
standard-dose (STD) PET scans in lung cancer patients. The goal
was to create a standard organ-SUVBW database for analyzing
metabolic discrepancies due to diseases [9] and reduce radiation
concerns from PET/CT scans.

Materials and methods

Participants

The study included 19 healthy controls (19–62 years, 46–104 kg,
10 M/9 F) and 7 lung cancer patients (47–77 years, 50–88 kg, 4 M/
3 F). Here, “healthy” means the clinical absence of known systemic
diseases. All data were acquired according to the Declaration of
Helsinki (EK1907/2020) between July and December 2021. Written
informed consent was obtained from all the subjects before
examinations. The details of the participants’ demographics are
summarized in Table 1. Statistics are reported as the mean ±
standard deviation (SD).

Imaging protocol

All participants were scanned on a Siemens Biograph Vision
600 PET/CT system with an axial field-of-view of 26.3 cm and time-
of-flight (TOF) resolution of 220 ps [16]. The participants were
asked to fast for 6 h before the examinations and were scanned in
supine position with their arms down. Each subject first underwent a
67-min PET acquisition following an LD intravenous injection of
[18F]FDG (28 ± 2 MBq, 10% of the National Diagnostic Reference
Levels of Austria [17]). After completing the acquisition, the subjects
were given a 20-min break to empty their bladder.

Then, 90 min post-LD injection, the subjects were repositioned
and injected with a bolus of [18F]FDG (275 ± 16 MBq), followed by
a 67-min acquisition (STD) (Figure 1). The first 6 min of both PET
protocols were performed with the patient fixed to the table to cover
the chest region, followed by 14 whole-body (WB) sweeps under

continuous table motion, adding up to a total emission scan time
of 61 min.

A CT scan (120 kVp, 35 mAs ref, CareDose tube current
modulation enabled) was performed for the CT-based
attenuation correction prior to each PET scan. Healthy controls
were scanned using LD-CT (average dose length product, DLP =
133 ± 19 mGy*cm) for both the test (LD-PET) and retest (STD-
PET). Lung cancer patients underwent an LD-CT (DLP = 121 ±
8 mGy*cm) for the test (LD-PET) and then STD-CT for standard
clinical care (DLP = 1,144 ± 377 mGy*cm) in the retest scan (STD-
PET). In the STD-CT protocol, dual-phase (venous and arterial
phases) contrast-enhanced CT, including the entire body in the
field-of-view, was used for both clinical reporting and attenuation
correction.

PET images were reconstructed with a matrix size of 220 × 220 ×
803 and a voxel size of 3.3 × 3.3 × 2 mm3, using 3D PSF + TOF OSEM
(4 iterations and 5 subsets) with all corrections applied and a 3-mm full-
width at half-maximum (FWHM) Gaussian post-reconstruction filter.

Quantification of organs

In all acquisitions, LD-CT was used to automatically delineate
different target volumes using the AI-based segmentation tool
MOOSE [18]. The resulting segmentations included abdominal
organs, bones, muscles, fat, and heart subregions. A complete list
of the segmented regions is given in Supplementary Table S1 of
Supplementary Materials. From the last 12 min of the static
acquisitions (55–67 min post-injection) of both tracer activities,
the mean SUVs normalized to the body weight (SUVBW) were
extracted for every volume of interest (VOI) and every participant.
The mean SUVBW extracted from the STD acquisitions were
corrected according to Eq. 1, including the residual activity
90 min post-LD injection:

Mean SUVBW � CVOI
kBq
mL[ ]

Ainj MBq[ ] + Ares MBq[ ]*BW kg[ ], (1)

where CVOI is the activity concentration in the VOI, Ainj is the
total injected activity, Ares is the residual activity 90 min post-LD

FIGURE 1
Visual description of the study protocol.
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injection, and BW is the body weight [19]. The average SUVBW and
the corresponding standard deviations were evaluated for each VOI
in both healthy controls and patients. Group averaged parameters
were compared for both LD and STD conditions with %differences
and unpaired sample t-tests. A p-value <0.05 was considered
statistically significant. Intra-subject variability between the
test–retest protocols was assessed with %differences and paired
sample t-tests.

Lung cancer patients

The 3D Slicer [20] software was used to visualize the PET images
of lung cancer patients. Otsu’s method [21] was applied for image
thresholding using the automatic option in 3D Slicer, highlighting
regions in the images with pathologically increased signals (lesion).
An experienced clinician manually fine-tuned lesion segmentations to
visually refine lesion boundaries where necessary. FDG-avid lesions
were first identified on LD-PET images and then on STD-PET images
in order to prevent any potential bias caused by the improved image
quality of the STD-PET data. The number of segmented lesions was
compared to the clinical report of each patient.

The mean SUVs normalized for body weight were calculated for
each lesion using data from the last 12 min of the PET acquisitions
for both LD and STD. Corresponding volumes were extracted for
both LD and STD acquisitions. The results were then compared
using %differences and paired sample t-tests.

Literature comparison

The mean SUVBW of organs in healthy controls undergoing
STD-PET were compared to the SUVBW ranges provided in [22],
[23] (kidneys and skeletal muscle) and [24] (subcutaneous fat).
References were chosen by ensuring that the study protocol (60 ±
10-min PET acquisitions with [18F]FDG) and participant
demographics (age, sex, and weight distributions) were similar to
those in the current study.

Effective dose estimations

Effective doses (EDs) were evaluated for both LD and STD
protocols in healthy controls and lung cancer patients. Specifically,
the radiation dose from the CT scans was estimated using the DLP
multiplied by the conversion factor k, where k = 0.015 mSv/mGy*cm
for whole-body CT examinations [25, 26]. The PET contribution to
the effective dose was calculated by multiplying the injected activity
with the dose coefficient Γ = 0.017 mSv/MBq for [18F]FDG [27].
The total effective doses were obtained by summing the individual
CT and PET contributions, according to Eq. 2:

EDtot � EDCT + EDPET

� DLP mGy*cm[ ]*k mSv

mGy*cm
[ ] + A MBq[ ]*Γ mSv

MBq
[ ]. (2)

The resulting effective doses for both LD and STD acquisitions
were compared to dose estimates from the existing literature [28–31].

Results

Quantification of organs

Healthy controls
A complete list of the segmented regions, as well as the

corresponding uptake values, is given in Supplementary Table S1
of Supplementary Materials. The mean SUVBW of the target volumes
ranged from 0.4 ± 0.1 (subcutaneous fat) to 6.4 ± 1.1 (brain) across
healthy controls (Table 2). The mean SUVBW from both LD and STD
protocols were similar (absolute %difference ≤5%, Figure 2), except
for the heart (absolute %difference = 14%). The group unpaired t-test
underlined no statistical differences in any VOI (p > 0.05). In healthy
controls, intra-subject variations in SUVBW between test/retest scans
were significant in the brain (average %difference = 5%, p = 0.01),
heart (19%, p = 0.04), skeletal muscle (8%, p = 0.01), and adrenal
glands (15%, p = 0.03) (Figure 3; Table 3).

Lung cancer patients
In lung cancer patients, the mean SUVBW in the segmented

regions varied, on average, from 0.4 ± 0.1 (subcutaneous fat) to 5.4 ±
1.0 (brain) (Table 4). In all the VOIs, the mean SUVBW between test
and retest scans were comparable (average absolute %
difference ≤5%; Figure 4), except in the heart (20%). The group
unpaired t-test indicated no statistical differences in any VOI (p >
0.05). Intra-patient changes in organ-based uptake values between
test and retest scans were not significant (Figure 5; Table 5).

Lesion evaluation

A total of 10 FDG-avid lesions were observed and delineated on
the LD images of the lung cancer patients. In contrast, 17 lesions
were delineated on the STD images, a total number equivalent to the
information provided in the clinical reports of the patients. Lesion
volumes derived from LD images of the tumor were 41% smaller
than those derived from the STD images (Supplementary Table S2).
Seven lesions (<2 cm3) were not detected on the LD-PET images
(Figure 6). The mean SUVBW values of correspondent lesions were
similar in LD and STD acquisitions (10%, p = 0.49; Table 6). In
patient #005, the lesion was visible only on the CT, and, therefore, no
SUV was obtained.

Literature comparison

Organ-based mean SUVBW values in the STD acquisitions of
healthy controls were comparable to literature references (Figure 7).
Across all organs, the assessed mean SUVBW consistently fell within
the ranges reported in previous studies [22–24]. Subcutaneous fat
exhibited the least uptake values (0.4 ± 0.1), while the brain
demonstrated the highest uptake (6.4 ± 1.1).

Effective dose estimations

For healthy controls, the average total effective dose was 2.5 ±
0.3 mSv for the test (LD-CT + LD-PET) and 6.7 ± 0.4 mSv for the
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TABLE 2 Mean standardized uptake values normalized to the body weight (SUVBW) group statistics for healthy controls.

Volume of interest Test LD SUVBW Retest STD SUVBW Absolute difference (%) Unpaired t-test

Brain 6.4 ± 1.1 6.6 ± 1.1 3 p = 0.56

Heart 3.0 ± 1.8 2.6 ± 1.5 14 p = 0.46

Kidneys 2.7 ± 0.5 2.8 ± 0.4 4 p = 0.47

Liver 2.0 ± 0.3 2.0 ± 0.3 1 p = 0.85

Pancreas 1.5 ± 0.2 1.5 ± 0.2 1 p = 0.83

Spleen 1.5 ± 0.2 1.5 ± 0.2 1 p = 0.87

Lung 0.6 ± 0.2 0.6 ± 0.1 5 p = 0.49

Skeletal muscle 0.6 ± 0.1 0.6 ± 0.1 5 p = 0.25

Subcutaneous fat 0.4 ± 0.1 0.4 ± 0.1 3 p = 0.61

FIGURE 2
Comparison of the mean standardized uptake values normalized to the body weight (SUVBW) in low-dose (LD) (blue, test) and standard-dose (STD)
(gray, retest) acquisitions across 19 healthy controls.

FIGURE 3
Intra-subject variability of the mean SUVBW in LD (blue, test) and STD (gray, retest) acquisitions of 19 healthy controls.
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retest (LD-CT + STD-PET), respectively. The contribution from the
PET scan to these total effective doses was 0.5 ± 0.1 mSv for the test
(20%) and 4.8 ± 0.3 mSv for the retest acquisition (72%).

In cancer patients, the average effective dose contribution from
the STD-CT was 16.6 ± 5.4 mSv (81%) to a total effective dose of
21.3 ± 5.4 mSv. With the LD-PET/CT protocol, the total effective

TABLE 3 Intra-subject variability of the mean SUVBW between LD/STD scans of healthy controls. Organs with statistically significant differences in LD/STD
SUV are indicated in red.

Volume of interest Absolute difference (%) Paired t-test

Brain 5 p � 0.01

Heart 19 p � 0.04

Kidneys 10 p = 0.21

Liver 7 p = 0.68

Pancreas 7 p = 0.63

Spleen 8 p = 0.77

Lung 9 p = 0.05

Skeletal muscle 8 p � 0.01

Subcutaneous fat 8 p = 0.24

TABLE 4 Mean SUVBW group statistics for lung cancer patients.

Volume of interest Test LD SUVBW Retest STD SUVBW Absolute difference (%) Unpaired t-test

Brain 5.3 ± 1.0 5.4 ± 0.9 2 p = 0.79

Heart 3.0 ± 1.8 3.0 ± 1.3 1 p = 0.97

Kidneys 2.9 ± 0.5 2.9 ± 0.3 1 p = 0.85

Liver 2.2 ± 0.4 2.3 ± 0.4 1 p = 0.91

Pancreas 1.5 ± 0.3 1.4 ± 0.2 3 p = 0.74

Spleen 1.6 ± 0.2 1.6 ± 0.1 2 p = 0.74

Lung 0.6 ± 0.2 0.6 ± 0.2 2 p = 0.91

Skeletal muscle 0.7 ± 0.1 0.6 ± 0.1 4 p = 0.91

Subcutaneous fat 0.4 ± 0.1 0.4 ± 0.1 3 p = 0.91

FIGURE 4
Comparison of the mean SUVBW in LD (blue, test) and STD (gray, retest) acquisitions of seven lung cancer patients.
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dose was reduced to 2.4 ± 0.1 mSv, while the relative contribution
(1.9 ± 0.2 mSv) from the CT remained the same (79%). Table 7
summarizes the complete dose records in both groups of subjects.

Discussion

This study evaluated variations in organ uptake in [18F]FDG-
PET/CT images of healthy controls and lung cancer patients
undergoing a dual-injection, dual-scan protocol. We demonstrate
similar uptake values in key organs for both LD- and STD-PET
imaging, with an exception in the heart on a group-based level.
Intra-subject variabilities were highest in the brain (7%), skeletal
muscles (8%), and heart (20%). All mean SUVBW were comparable
with previously recorded literature values (Figure 7) [22–24]. While
our study suggests equivalence of LD- and STD-PET imaging
protocols for organ-based quantification in healthy controls, care
must be taken when assessing patients since the LD protocol yielded
a lower detection rate of actual lesions (Figure 6).

In the present study, test and retest [18F]FDG PET/CT scans
were set apart by 90 min (Figure 1), without significant differences in
the group mean SUVBW in key organs (Figures 2, 4) in both healthy

controls and lung cancer patients. The intra-subject variability in
organ uptakes between LD and STD was also explored. Significant
changes in the mean uptake values from test to retest scans of
healthy controls were observed in the brain, heart, adrenal glands,
and, to a lesser extent, in skeletal muscles (Figure 3; Table 3,
Supplementary Table S1). Physiological changes in both the brain
and heart can affect the SUVs measured from two PET scans
acquired at different time points. This may include changes in
blood flow, metabolism, and cardiac function [32–36], which are
most likely to occur within the 90 min between the two scans.
Notably, in all healthy controls, skeletal muscle uptake was
somewhat higher in the test (LD) than in the retest (STD)
acquisition (8%, Table 3). This decrease in muscle uptake during
the retest protocol could indicate reduced stress and tension levels
[37] in participants, who may have relaxed after undergoing the
protocol once before. The intra-subject differences in brain, adrenal
glands, and skeletal muscle SUVs for LD/STD acquisitions were
found only in the healthy cohort (Figure 5; Table. 5), likely because
of the increased variability provided by its larger cohort size than
that of the patients (Table 1). Inaccurate segmentations may have
altered some results as well. For example, adrenal gland uptakes
might have been affected by segmentation errors due to their small

FIGURE 5
Intra-subject variability of the mean SUVBW in LD (blue, test) and STD (gray, retest) acquisitions of seven lung cancer patients.

TABLE 5 Intra-subject variability of the mean SUVBW between LD/STD scans of lung cancer patients.

Volume of interest Absolute difference (%) Paired t-test

Brain 7 p = 0.44

Heart 20 p = 0.91

Kidneys 8 p = 0.74

Liver 4 p = 0.57

Pancreas 8 p = 0.42

Spleen 4 p = 0.47

Lung 5 p = 0.53

Skeletal muscle 7 p = 0.22

Subcutaneous fat 4 p = 0.16
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size and low contrast with surrounding tissues, posing a challenge in
distinguishing them from other structures, such as the kidneys and
the liver [18], in the LD-CT image.

Imaging of lung cancer patients showed similar mean SUVBW

between LD and STD scans in all segmented organs. However, fewer
FDG-avid lesions were identified on LD-PET images than on STD-
PET images (Figure 6). Given the increased image noise levels in LD
imaging, only 10 lesions were delineated from the LD images (at 10%
activity injection), while 17 lesions were subsequently identified on the
STD acquisitions. Specifically, delineations of seven smaller lesions
(<2 cm3) were not possible from LD images, given the increased noise
level (Figure 6). In addition, the volumes of lesions were generally
smaller in segmentations obtained from LD images due to reduced
image quality. Nonetheless, the SUVBW values of the corresponding
lesions were similar in the LD and STD acquisitions, with a mean %
difference equal to 10% (Table 6).

Overall, these findings suggest that low-dose FDG-PET/CT
imaging may be a valuable option for reducing radiation exposure
in FDG-PET/CT imaging for composing a normative database of
healthy control values [9]. Our SUVBW readouts for both STD and

LD acquisitions were similar to published literature values [22–24].
Although variations in the mean SUVBW values in organs with
high metabolic activity and glucose turnover, such as the brain and
the heart, were observed, the results were still consistent with the
references in terms of both mean values and the minimum and
maximum ranges of SUVBW reported (Figure 7).

Effective doses from STD-PETwere also consistent with established
references for the standard clinical practice [28, 29]. Administering an
activity that is 90% lower than that of the standard dose resulted in a
67% reduction in the total effective dose in healthy controls, thus
effectively addressing concerns regarding radiation exposure in FDG-
PET/CT imaging, particularly for non-clinical indications.

Exposure from CT plays a significant role in the overall effective
dose during a standard examination. Using contrast-enhanced dual-
phase CT (STD-CT) in cancer patients contributed 79% to their total
effective dose, which, instead, was drastically reduced with the low-
dose CT (2 mSv) protocol (Table 7). Mostafapour et al.
demonstrated that the radiation dose in CT imaging could be
further reduced from an effective dose of 2.6 mSv to less than
0.1 mSv by incorporating a tin filter for noise reduction [31].

FIGURE 6
Visual comparison of lesion delineation on (A) coronal and (B) transverse images of LD and STD protocols of Pat-001. The LD images failed to detect
the smallest fluoro-2-deoxy-D-glucose (FDG)-positive lesions. The primary lesion delineation in the LD image is smaller in volume and different in shape
from the corresponding lesion delineation in the STD image. (C) Line profiles of the lesion segmented from the transverse LD (blue) and STD (gray) PET
image of Pat-001.
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However, potential artifacts from noise amplification during CT-
based attenuation and scatter correction await further study.

Our study has several limitations. First, it was constrained by its
small sample size. A larger cohort of participants could yield more
reliable statistical results. Lesion delineation was performed by a single
clinician, thus introducing a subjective bias into volume segmentations.

The use of average delineations bymultiple clinicians would offer amore
precise reference. Next, LD PET imaging resulted in lower image quality,
compromising its validity for clinical indications. Our study did not
explore techniques to reduce noise in LD-PET images, such as AI-based
image denoising methods [38, 39] or adjusted image reconstruction
parameters for enhanced diagnostic accuracy [12, 40]. In our study, the

TABLE 6 Mean SUVBW statistics of delineated lesions. Average value and P value are indicated in bold.

Lesion ID Test LD SUVBW Retest STD SUVBW Absolute difference

Pat-001_vol1 9.1 ± 1.6 5.9 ± 2.8 42%

Pat-001_vol2 - 6.0 ± 1.7 -

Pat-001_vol3 - 5.8 ± 1.4 -

Pat-001_vol4 - 3.6 ± 1.0 -

Pat-001_vol5 - 4.9 ± 0.6 -

Pat-002_vol1 2.6 ± 0.3 2.4 ± 0.4 9%

Pat-003_vol1 5.9 ± 0.6 6.4 ± 1.0 8%

Pat-003_vol2 - 2.6 ± 0.2 -

Pat-003_vol3 - 4.1 ± 1.0 -

Pat-003_vol4 - 3.1 ± 0.6 -

Pat-004_vol1 8.6 ± 2.6 8.5 ± 2.7 1%

Pat-006_vol1 8.0 ± 2.1 7.5 ± 2.3 7%

Pat-006_vol2 8.2 ± 2.3 7.5 ± 2.2 9%

Pat-006_vol3 7.1 ± 1.2 6.4 ± 1.4 10%

Pat-006_vol4 10.0 ± 2.8 8.0 ± 3.0 22%

Pat-006_vol5 6.5 ± 0.8 6.6 ± 1.4 1%

Pat-007_vol1 5.1 ± 0.6 4.9 ± 0.5 5%

Average (10 ± 14) %

Paired T-test p = 0.49

FIGURE 7
Mean SUVBW comparison from STD acquisitions of healthy controls (Siemens Biograph Vision 600; gray). Red bars represent the literature ranges of
minimum and maximum SUVBW from [22–24].
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retest protocol started 90min after the test injection, followed by an
additional hour of dynamic acquisition before static reconstruction.
During this period, a portion of LD activity remains undecayed andmay
exert a minor influence on the subsequent quantification of STD
uptakes. Considering our initial injected LD activity of 28MBq and
the behavior of [18F]FDG kinetic signals at long uptake times [41–43],
we anticipate an impact smaller than 5% at the time of STD static
acquisition on our uptake quantifications. Last, the present study focused
solely on the analysis of static images, neglecting the dynamic
information of PET images. For instance, Liu et al. demonstrated
that whole-body dynamic PET imaging with a 10-fold reduction in
injected activity could provide relevant kinetic metrics of [18F]FDG and
comparable image contrast to full-activity imaging [44]. The parametric
assessment of LD-PET could contribute valuable information to the
evaluation of a reference database of normal PET values in
healthy controls.

Conclusion

The study demonstrated that a reduction of 90% in the
administered [18F]FDG activity is feasible for semi-quantitative
whole-body PET/CT imaging without loss of accuracy of organ-
based SUVBW assessment. LD and STD injections provided
comparable mean SUVBW of organs in both healthy controls and
lung cancer patients, except in organs with fast a [18F]FDG turnover.
However, LD images did not provide sufficient clinical quality for the
diagnostic assessment of lung cancer patients. Thus, our study supports
the general adoption of LD-PET/CT imaging data for imaging healthy
controls for the purpose of building an organ-based normative database.
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