Introduction: Trypanosoma evansi parasite infections cause a chronic animal wasting disease called Surra, and cases of atypical Human Trypanosomosis (aHT). In experimental models, T. evansi infections are hallmarked by the early onset of excessive inflammation. Therefore, balancing the production of inflammatory cytokines by anti-inflammatory IL-10 is crucial for prolonged survival.
Methods: To improve the understanding of trypanosomosis induced immunopathology, we used scRNA-seq data from an experimental chronic T. evansi infection mouse model, resembling natural infection in terms of disease characteristics.
Results and discussion: For the first time, obtained results allowed to assess the transcriptomic profile and heterogeneity of splenic CD4+ T cell subsets, during a trypanosome infection. Here, the predominant subpopulation of T cells was represented by Tbx21(T-bet)+ Ccr5+ Id2+ type 1 helper T cells (Th1), followed by Icos+ Cxcr5+Follicular T helper cells (Tfh) and very minor fraction of Il2ra(CD25)+Foxp3+ regulatory T cells (Tregs). Interestingly, the profile of Th1 cells shows that besides Ifng, these cells express high levels of Il10 and Il21, coding for anti-inflammatory and immunoregulatory cytokines. This coincides with the elevated expression of key genes involved in IL-10 and IL-21 secretion pathway such as Stat1 and Stat3, as well as the transcriptional factors Prdm1 (Blimp 1), and Maf (c-Maf). In contrast, there is virtually no IL-10 transcription detected in the Treg population. Finally, differential gene expression and gene ontology analysis of infection-induced Ifng+ Il10+ Il21+ Th1 cells highlights their suppressive function on T cell activation, differentiation and INF-γ production itself. This indicates that during trypanosome infections, the Ifng+ Il10+ Il21+ Th1 cells, rather than Tregs, assume an immune regulatory role that is needed for dampening inflammation.
Traditionally, pathogen-associated molecular patterns (PAMPs) were described as structural molecular motifs shared by different classes of microorganisms. However, it was later discovered that the innate immune system is also capable of distinguishing metabolically active microbes through the detection of a special class of viability-associated PAMPs (vita-PAMPs). Indeed, recognition of vita-PAMPs triggers an extra warning sign not provoked by dead bacteria. Bacterial RNA is classified as a vita-PAMP since it stops being synthesized once the microbes are eliminated. Most of the studies in the literature have focused on the pro-inflammatory capacity of bacterial RNA on macrophages, neutrophils, endothelial cells, among others. However, we, and other authors, have shown that microbial RNA also has down-modulatory properties. More specifically, bacterial RNA can reduce the surface expression of MHC class I and MHC class II on monocytes/macrophages and help evade CD8+ and CD4+ T cell-mediated immune surveillance. This phenomenon has been described for several different bacteria and parasites, suggesting that microbial RNA plays a significant immunoregulatory role in the context of many infectious processes. Thus, beyond the pro-inflammatory capacity of microbial RNA, it seems to be a crucial component in the intricate collection of immune evasion strategies. This review focuses on the different facets of the immune modulating capacity of microbial RNA.