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Editorial on the Research Topic
The IV Latin American Metabolic Profiling Society (LAMPS)
symposium: 2022

In the past two decades, metabolomic analysis has evolved from being an important tool
to becoming a standalone discipline. It has been applied to a wide variety of problems,
including clinical diagnosis and biomarker identification, crop selection and protection, and
food authentication, among others. Most of the advances in metabolomics have gone hand
in hand with the standardization of methods and protocols, as well as with advances in
analytical instrumentation and bioinformatics tools capable of handling large amounts of
samples and data. The latter are inherently associated with considerable investments in
resources, putting researchers in emerging regions such as Latin America at a clear
disadvantage. However, the number of research groups, institutions, and dedicated
facilities focusing on metabolomic analysis has increased modestly but steadily in the
past years in Latin American countries. One of the catalysts of this growth has been the Latin
American Metabolic Profiling Society (LAMPS), an organization founded initially by
researchers in Argentina, Colombia, Brazil, Peru, and Uruguay in the mid 2010s. Since
its early days, LAMPS has promoted collaborative research projects between members and
fostered training opportunities for students and young investigators, and has also organized
biennial meetings attended by researchers in the field from Latin America and the rest of the
World. The first LAMPS meeting was held in Lima, Perú (2014), and gatherings in Rosario,
Argentina (2016) and Rio de Janeiro, Brazil (2018) followed. The fourth LAMPS meeting
planned for 2020 was postponed due to the COVID-19 pandemic, and was then celebrated
in Cartagena de Indias, Colombia, in 2022. With 14 invited panelists and over
150 participants, this proved to be the largest LAMPS gathering so far.

To partly document this continuing growth, this Research Topic collects manuscripts
from Latin American groups that participated in the IV LAMPS. As evidenced in the
volume, the contributions describe the use of metabolomics analysis and related methods to
tackle a wide gamut of problems which are briefly summarized here. For example, COVID-
19 was the focus of two studies. In one of them, López-Hernandez et al. used untargetedMS-
based metabolomics to investigate dysregulations in lipid pathways 2 years after recovery
from the disease, adding important insights into our understanding of long COVID-19. In
the other, the effects of SARS-Cov-2 on lung parenchyma were compared to those caused by
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other severe pulmonary infections through analysis of the 1H NMR
profiles of tissue extracts, corroborating that distinct metabolic
signatures associated with energy metabolism and inflammatory
pathways differentiate COVID-19 from other respiratory infections
(Hurtado et al.). Through a translational study supported largely by
untargeted NMR-based metabolomic analysis and targeted GC-EI-
MS data, a multinational team led by Argentine researchers reported
the identification of nicotinamide as a potential biomarker for
Alzheimer’s disease (Dalmasso et al.). The application of
untargeted metabolomics and lipidomics based on LC-QTOF-MS
and GC-QTOF-MS found dysregulation of glycerolipid and
sphingolipid metabolic pathways in the plasma of acute leukemia
patients (Arévalo et al.). These differences are independent of
lifestyle, race, or geographic location, providing valuable clues for
the development of global therapies. NMR-based plasma
metabolomics of individuals with differential responses to HIV-1
exposure and/or infection revealed that different pathways are
affected in each group relative to controls (Gómez-Archila et al.).
In particular, the study was the first to identify that HIV-1-exposed
but seronegative (HESN) individuals have a specific metabolic
fingerprint with significant alterations in LDL, glucose, lactate,
and phosphocholine levels. Based on a systematic review of
26 independent metabolomics studies on systemic sclerosis,
Morales-Gonzáles et al. identified 151 metabolites associated with
the condition. Species linked to amino acid, lipid, and TCA cycle
metabolic pathways are the most dysregulated. These confirm the
impact of autoimmune inflammation, vascular damage, fibrosis, and
gut dysbiosis in the progression of this disease, and also represent
potential biomarkers for its early diagnosis and prognosis. The gut
microbiome in a Colombian cohort of pregnant and lactating
women was investigated by untargeted metabolomics based on
LC-QTOF-MS coupled to molecular networking (Londoño-
Osorio et al.). The report helps to identify metabolites with
potential use in nutritional and physiological state assessments as
well as personalized health and nutrition strategies. Using MS-based
multiplatform metabolomics, Pardo-Rodriguez et al. investigated
alterations in the metabolism of Trypanosoma cruzi after treatment
with extracts of the Andean shrub Clethra fimbriata. More than
150 altered metabolites were identified in the treated parasites, with
those related to energy metabolism pathways being the most
affected. In addition, the authors found that triterpenes
originating on the plant contributed to the disruption of essential
processes in the parasite. Based on a study involving MS/MS data of
beauvericins, depsipeptides present in Fusarium spp. Fungi, Selegato
et al. demonstrated that the combination of feature-based molecular
networking and MassQL is an effective strategy for accelerating the
decoding of mass fragmentation pathways and identifying molecules
with comparable fragmentation patterns. In combination with
molecular networking analysis, MS-based untargeted
metabolomics was applied to investigate the influence of
altitudinal variations in the chemical composition of different
bamboo species (Chivita et al.). The study uncovered
89 differential metabolites between the altitudinal ranges
investigated, with an increase in the profile of flavonoids
observed at high altitude and a boost in the levels of cinnamic
acid derivatives registered at low altitude. Finally, Arrieta-Echeverri
et al. carried out a characterization of the microbial populations and
chemical space composition of a water kefir fermentation using

culture-dependent methods, compositional metagenomics, and
untargeted metabolomics based on LC-QTOF-MS. The work
provides specific knowledge that could be easily applied to the
rational development of novel probiotic and postbiotic
ingredients for functional nutrition.

To conclude, it is worth mentioning that several of the
manuscripts published in this Research Topic are the product of
synergistic collaborations between Latin American research groups,
and that those collaborations developed, in great part, from events
fostered by LAMPS. We are already organizing the upcoming V
LAMPSMeeting, which will include several workshops and will have
the participation of invited experts from around the World. We are
certain that this meeting, which will be held in Montevideo,
Uruguay, from October 30th to 1 November 2024 (https://sites.
google.com/unesp.br/v-lamps-2024/home), will confirm that the
field of metabolomics, as well as its ancillary methodologies,
continues to expand and mature in the region.
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Nicotinamide as potential
biomarker for Alzheimer’s disease:
A translational study based on
metabolomics

María C. Dalmasso1,2,3, Martín Arán4, Pablo Galeano1, Silvina Perin5,
Patrick Giavalisco5, Pamela V. Martino Adami2, Gisela V. Novack1,
Eduardo M. Castaño1, A. Claudio Cuello6, Martin Scherer7,
Wolfgang Maier8,9, Michael Wagner8,9, Steffi Riedel-Heller10,
Alfredo Ramirez2,8,9,11,12† and Laura Morelli1*†

1Laboratory of Brain Aging and Neurodegeneration-Fundación Instituto Leloir-IIBBA-National Scientific and
Technical Research Council (CONICET). Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina,
2Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty
of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, 3Studies in
Neuroscience and Complex Systems Unit (ENyS-CONICET-HEC-UNAJ). Florencio Varela, Florencio Varela,
Argentina, 4Laboratory of NMR-Fundación Instituto Leloir-IIBBA-National Scientific and Technical Research
Council (CONICET). Ciudad Autónoma de Buenos Aires, Cologne, Argentina, 5Max Planck Institute for
Biology of Ageing, Cologne, Germany, 6Department of Pharmacology and Therapeutics, McGill University,
Montreal, CA, Canada, 7Department of Primary Medical Care, University Medical Centre Hamburg-
Eppendorf, Hamburg, Germany, 8Department of Neurodegenerative and Geriatric Psychiatry, University
Hospital Bonn, Medical Faculty, Bonn, Germany, 9German Center for Neurodegenerative Diseases (DZNE),
Bonn, Germany, 10Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig,
Leipzig, Germany, 11Department of Psychiatry and Glenn Biggs Institute for Alzheimer’s and
Neurodegenerative Diseases, San Antonio, TX, United States, 12Cluster of Excellence Cellular Stress
Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany

Introduction: The metabolic routes altered in Alzheimer's disease (AD) brain are
poorly understood. As the metabolic pathways are evolutionarily conserved, the
metabolic profiles carried out in animalmodels of AD could be directly translated into
human studies.

Methods:We performed untargeted Nuclear Magnetic Resonance metabolomics in
hippocampus of McGill-R-Thy1-APP transgenic (Tg) rats, amodel of AD-like cerebral
amyloidosis and the translational potential of these findings was assessed by targeted
Gas Chromatography-Electron Impact-Mass Spectrometry in plasma of participants
in the German longitudinal cohort AgeCoDe.

Results: In rat hippocampus 26metabolites were identified. Of these 26metabolites,
nine showed differences between rat genotypes that were nominally significant. Two
of them presented partial least square-discriminant analysis (PLS-DA) loadings with
the larger absolute weights and the highest Variable Importance in Projection (VIP)
scores and were specifically assigned to nicotinamide adenine dinucleotide (NAD)
and nicotinamide (Nam). NAD levels were significantly decreased in Tg rat brains as
compared to controls. In agreement with these results, plasma of AD patients
showed significantly reduced levels of Nam in respect to cognitively normal
participants. In addition, high plasma levels of Nam showed a 27% risk reduction
of progressing to AD dementia within the following 2.5 years, this hazard ratio is lost
afterwards.
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Discussion: To our knowledge, this is the first report showing that a decrease of Nam
plasma levels is observed couple of years before conversion to AD, thereby suggesting
its potential use as biomarker for AD progression.

KEYWORDS

NAD salvage pathway, vit B3, transgenic rats, alzheimer’s disease, biomarkers, brain
alterations, nicotinamide (NAM), case-control analysis

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
proteinopathy characterized by deposition of amyloid β (Aβ) and
hyperphosphorylated tau protein in the brain of patients. The
pathology observed in AD begins years, or even decades, before the
appearance of clinical symptoms. Thus, identification of biomarkers
reporting on pathways modulating AD pathology in asymptomatic
individuals at-risk is of paramount importance to define target groups
for early prevention strategies once these become available. This,
however, has been proven to be a major challenge as several,
partially unknown, pathways contribute to the pathology leading to
neurodegeneration, cognitive decline and finally dementia (De
Strooper and Karran, 2016). Unfortunately, current validated
biomarkers inform on the neuropathological hallmarks of the
disease following the amyloid cascade hypothesis leaving other
pathways uncovered (Jack et al., 2018). This assumption receives
further support from disappointing results from amyloid-specific
therapies in AD.

Dementia stage in AD is the culmination of a series of events that
begin with a complex interplay between genetic and environmental
susceptibility factors years before cognitive symptoms become
apparent. This interplay triggers a sequence of pathological changes
which involves process altering Aβ homeostasis, as well as processes
beyond amyloid such as vascular changes, neuroinflammation and
age-related factors relevant for reserve and resilience of the brain (De
Strooper and Karran, 2016). Given the difficulty linked to the search
for biomarkers informing on these pathways in humans, research has
turned into model organisms to identify and to characterize conserved
pathogenic pathways and molecules that could serve as biomarkers for
AD (Wang et al., 2021). Herein, a promising animal model is the
McGill-R-Thy1-APP rat (Leon et al., 2010) expressing the human
amyloid precursor protein (APP) with the Swedish and Indiana
mutations responsible for familial AD in humans. The hemozygous
Tg ± rats do not develop extracellular plaques, but show intraneuronal
accumulation of Aβ in cortex and hippocampus (Leon et al., 2010;
Iulita et al., 2014), a similar feature was described in the human brain
at early stages of AD amyloid pathology (Christensen et al., 2010).
Moreover, these animals show accumulation of SDS-resistant Aβ
oligomers (~30 kDa) from 6 months onwards (Galeano et al.,
2014); synaptosomal bioenergetic defects (Martino Adami et al.,
2017a) and cognitive impairments in different hippocampal-
dependent behavioral tasks (Leon et al., 2010; Galeano et al., 2014;
Iulita et al., 2014; Martino Adami et al., 2017a; Martino Adami et al.,
2017b; Habif et al., 2021) resulting and interesting model of early AD-
amyloid pathology. The homozygous Tg+/+ rats show the full AD-
like-amyloid pathology, accompanied by neuroinflammation and
cognitive impairment, reflecting stages of late AD (Leon et al.,
2010). While the Tg rat model has been extensively used to explore
stages of AD pathology and validation of experimental therapeutic

candidates, studies linking the metabolic profiles in hippocampus in
association with the degree of amyloid pathology are still lacking.
Furthermore, translational research is still needed to define whether
findings made in the McGill-R-Thy1-APP rat can also be seen in AD
patients.

Identification of novel biomarkers covering pathogenic
pathways beyond classic amyloid cascade pathways will derive
in better clinical diagnosis, particularly at preclinical stage of
the disease. Recent developments in sensitivity and specificity of
proteomics and metabolomics technologies have made it possible
to identify different molecules targeting these additional
pathological pathways. Thus, for example, cerebrospinal fluid
(CSF) and blood levels of the neurofilament light chain (NfL)
have been used as a sensitive biomarker for neuroaxonal
damage that can monitor neurodegeneration and progression of
Alzheimer’s disease dementia, albeit not specific (Norgren et al.,
2003; Gaiottino et al., 2013). While most reports have been done
using data derived from mouse models for neurodegenerative
diseases (Wilkins and Trushina, 2017), few reports have been
focused on the McGill-R-Thy1-APP rat model (Nilsen et al.,
2012; Nilsen et al., 2014b).

Consequently, this study aimed to characterize metabolic
abnormalities in the hippocampus of homo- and hemizygous
McGill-R-Thy1-APP rats by using Nuclear Magnetic Resonance
(1H-NMR) spectroscopy. Promising findings in the rat were
followed up in human plasma samples by Gas Chromatography
Electron Impact Mass Spectrometry (GC-EI-MS) to explore their
potential utility as AD biomarkers.

Materials and methods

Rat model

Transgenic (Tg) McGill-R-Thy1-APP rats (Leon et al., 2010) were
provided to Fundación Instituto Leloir (FIL) by The Royal Institution
for the Advancement of Learning/McGill University, Montreal,
Canada, and an in-house colony was established at FIL. Rats’
genotypes were determined by real time qPCR as previously
described (Galeano et al., 2014). To avoid the litter effect, groups
were made up of pups from three to four different litters. Homozygous
(Tg+/+), hemizygous (Tg+/-), and littermates’ wild type (WT) control
animals were maintained in polycarbonate cages in a temperature-
controlled animal facility with a 12-h dark/light cycle and allowed to
consume standard diet and water ad libitum. Only 9-month-old male
rats were used for experiments to avoid any potential effects of female
estrus cycle. All experimental procedures were performed in
accordance with the guidelines of ARRIVE and OLAW–NIH. The
protocol was approved by the local animal care committee (CICUAL #
A5168-01).
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Rat hippocampal tissue collection

Rats were anesthetized with ketamine (50 mg/kg) and xylacine
(10 mg/kg), placed under a guillotine blade, decapitated and brains
quickly removed. Sacrifices were carried out during the morning.
Hippocampi were dissected and processed as described in the
Supplementary Figure S1 minimizing the time between sacrifice
and tissue freeze.

Human plasma samples

Samples were selected from the German study on Aging,
Cognition and Dementia (AgeCoDe) biobank (Ramirez et al.,
2015). The original study protocol was approved by the local ethics
committees at the following German institutions: University of Bonn;
University of Hamburg; University of Duesseldorf; University of
Heidelberg/Mannheim; University of Leipzig and the Technical
University of Munich. Written informed consent was obtained
from all participants. The main assessment instrument at all visits
included the Structured Interview for Diagnosis of Dementia of
Alzheimer type, Multi-infarct Dementia and Dementia of other
etiology according to DSM-IV and ICD-10 (SIDAM), and
diagnosis of AD was established according to the NINCDS-
ADRDA criteria for probable AD (McKhann et al., 1984; Zaudig
et al., 1991).

This is a longitudinal study, where participants were recruited in
primary care centers in six German cities. Inclusion criteria were to
be at least 75 years old and cognitively healthy according to the
general practitioner’s judgment. Every ~18 months interval
participants are followed-up with personal interviews and
neuropsychological assessments. To date, nine follow-ups (FUs)
were completed, but results from the last one are still in process.
Blood samples were obtained at the third visit, processed and store at
-80°C. For this study the third visit is considered the baseline.
Controls (n = 189) remained cognitively unimpaired until the last
FU, and were 83.6 ± 3.1 years old, 64.0% female and 20.6%
Apolipoprotein E4 (APOE4) carriers. In this report, participants
who converted to AD at baseline were denominated incidentAD (n =
68), and participants with diagnosis of AD before the baseline, were
denominated prevalent AD (n = 29). Participants with incident AD
were 86.0 ± 3.6 years old, 64.7% female and 33.8% APOE4 carriers;
and those with prevalent AD, were 84.2 ± 3.1 years old, 75.8% female
and 37.9% APOE4 carriers. Subjects converting to AD in the next
three visits following baseline (FU1, FU2 and FU3) were included in
the analysis. At FU1 there were 25 participants with mean age of
84.8 ± 3.5 years old, 80% women, and 28% APOE4 carriers; at
FU2 there were 37 participants with mean age of 83.6 ± 2.6 years
old, 67.6% women, and 32.4% APOE4 carriers; and at FU3 there were
23 participants with mean age of 82.7 ± 2.6 years old, 60.9% women,
and 21.7% APOE4 carriers.

Expression of aβ isoforms in rat hippocampus

To quantify human Aβ 38/40/42MSD® V-PLEX PLUS Aβ Peptide
Panel one kit was used following the manufacturer’s instructions.
Methodology is described in the SI.

Untargeted nuclear magnetic resonance
(NMR) spectroscopy

Frozen rat hemi-hippocampus were homogenized with a teflon-
glass grinder in 2 ml ice-cold 80% methanol (Nagana Gowda et al.,
2018) and centrifuged at 4°C for 10 min at 15000 xg. Supernatants
were collected, dried in a Savant SpeedVac (Thermo Scientific) and
solubilized in .5 ml sodium phosphate buffer (100 mM dissolved in
D2O, pH = 7.4), supplemented with 3-trimethylsilyl-[2,2,3,3,-2H4]-
propionate (TSP, final concentration .33 mM) as chemical shift
reference. Sample sizes for NMR experiments were chosen using an
analysis based approach, MetSizeR (Nyamundanda et al., 2013). All
NMR experiments were performed at 298 K on a Bruker Avance III
spectrometer operating at a proton frequency of 600.3 MHz. 1H-NMR
1D spectra were acquired using a standard Bruker 1D NOESY pulse
program with pre-saturation during relaxation delay and mixing time,
and spoil gradients (noesygppr1d). The following experimental
parameters were used in all measurements: 256 scans, 1.85 s
relaxation delay, 1.36 s acquisition time, 20 ppm spectral width,
10 m mixing time, and 32 K acquisition points. The NMR data
were zero-filled, Fourier transformed, phase corrected using
NMRPipe and converted to a Matlab-compatible format for further
processing and analysis. All spectra were referenced to TSP (1H δ =
0 ppm) and submitted to water peak elimination, baseline correction,
normalization, and scaling. The assignment was achieved using the
freely available electronic databases HMDB and BMRB, and
subsequently confirmed by 2D spectra including heteronuclear
single quantum coherence (HSQC) and total correlation
spectroscopy (TOCSY) (Supplementary Table S1). 2D 1H–1H
TOCSY spectra were collected with N1 = 512 and N2 =
2048 complex data points. The spectral widths for the indirect and
the direct dimensions were 9,615.4 and 9,604.9 Hz, respectively. The
number of scans per t1 increment was set to 36. The transmitter
frequency offset was 4.7 ppm in both 1H dimensions. 2D 13C-1H
HSQC spectra were collected with N1 = 512 and N2 =
2048 complex data points. The spectral widths for the indirect and
direct dimensions were 24,906.9 and 12,019.2 Hz, respectively. The
number of scans per t1 increment was set to 256. The transmitter
frequency offset was 70 ppm in the 13C dimension and 4.7 ppm in the
1H dimension. The estimated detection limit for 1H NMR (at
600 MHz) is dependent on the compound and varies between
1–10 µM.

Measurement of NAD+ and NADH in rat
hippocampal tissues

NAD+/NADH levels were measured using NAD+/NADH assay
kit from Abcam (ab65348) as described in SI.

Determination of enzymes transcript levels of
NAD rate-limiting and NAD salvage pathway

MRNA levels of NAMPT (rate-limiting); NMNAT (NAD-
generation) and CD38, PARP1, PARP2 and Sirt 3 (NAD-
consuming) enzymes were assessed by qRT-PCR as described in
the SI.
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Targeted Gas Chromatography Electron
Impact Mass Spectrometry (GC-EI-MS)

Human plasma samples were thawed on ice, and 100 ul were
extracted with 900 ul of cold extraction buffer containing 40:40:
20 methanol:acetonitrile:water [v:v:v]. After 30 min in an orbital
mixer at 4°C, samples were sonicated for 10 min in an ice-cooled
bath-type sonicator and centrifuged for 10 min at 16000xg at 4°C.
Supernatants were collected and dried in a SpeedVac until complete
dryness. Standard curves of Nam were prepared with concentrations
ranging from .005 to 50 ug/ml (expected limit of detection .1–.5 ng/
ml). Standards were processed in the same way as samples. Dried
down samples and standards were derivatized using methoxyamine
and MSTFA/FAMEs solution (N-methyl-N-trimethylsilyl-
trifluoracetamid/Fatty acid methyl esters) following standard
procedures (Lisec et al., 2006; Caldana et al., 2013). After that,
samples were analyzed in a GC-EI-MS (Q Exactive GC Orbitrap
system, ThermoFisher) using a 30-m DB-35M capillary column.
Representative fragments from the GC-EI-MS analysis of Nam
were extracted using TraceFinder (Version 4.1, ThermoFischer)
and quantified using the linear range of the obtained standard
curve. All analysis were performed using peak areas, transformed
into Z-scores, for easier comparison among experiments.

Statistical analysis

The normalized NMR spectral areas (AUC) of assigned
metabolites were subjected to Pareto scaling and analyzed by
multivariate analysis using MetaboAnalyst 5.0 (Chong et al., 2018)
(Supplementary Figure S1). The statistical significance was assessed by
one-way ANOVA, Fisher’s LSD were performed for all post-hoc tests
taking p < 0.05 as significant.

Data of NADH and NAD + levels were analyzed by one-way
ANOVA tests followed by post-hoc Tukey’s multiple comparisons tests.

Statistical analysis and plots of data from GC-EI-MS experiments
performed with human plasma were done using R-project v. 4.0.0
(https://www.R-project.org) and R-studio v.1.2.5042 (http://www.
rstudio.com/). Normal distribution was visualized using qqnorm
plots, and outliers (defined as mean ± 3 standard deviation) were
eliminated from the analysis (n = 2). For easier comparison among
experiments in human samples a Z-score standardization was applied
and subsequently data were analyzed by one-way ANOVA tests
followed by post-hoc Tukey’s multiple comparisons tests. In all
cases, assumption of normality was examined using Kolmogorov-
Smirnov or Shapiro–Wilk tests. A probability equal or less that 5% was
considered as significant. All analyses were carried out using
GraphPad Prism for Windows (version 7.0).

Linear regression models adjusted for sex, age and apoe4 were
used to estimate the association of Nam levels in cases vs. controls in
the discovery and replication experiments, as well as in FUs groups.
Meta-analysis was performed using the R-package “metafor”
(Viechtbauer, 2010) and visualized with the general function forest.
The cox proportional hazards regression model, which relates time
dependent variables, time dependent strata, and multiple events per
subject, were performed with the R-package “survival” (Therneau,
2020) and “survminer” (Kassambara, 2021). Samples of paritcipants
converting toAD at FU1-3 were included, time variable was time to
conversion to AD in years, and the event per subject was conversion

(no = 0, yes = 1). Proportional hazard assumption was tested by
Schoenfeld’s test, and consequently two cox regressions were
performed with a split-time = 2.5 years.

Results

Comparison of 1H-NMR metabolomics
profiles of Tg and control rats

In this report we did not assess the cognitive status of Tg rats.
However, it was previously reported by us and others that from 3 to
9 months of age, Tg rats show impairments in learning and spatial
reference memory (Galeano et al., 2014; Wilson et al., 2017a), in
long-term memory of inhibitory avoidance to a foot-shock, in
novel object recognition memory and social approaching
behavior (Habif et al., 2021), in cued fear-conditioning recall
(Wilson et al., 2017a), and associative learning (Wilson et al.,
2017b). Studies by Leon et al. (2010) and Iulita et al. (2014)
established that 13-month-old Tg+/+ rats show marked
cognitive impairments, while Tg ± rats perform intermediately
between homozygous and WT genotypes. To determine Aβ-
associated shifts in brain metabolites, we first performed a
highly sensitive multiplex ELISA to quantify total Aβ levels
within the hippocampus of a sub-set of Tg rats (n = 3–7). The
median value of the concentration of Aβ40 showed nearly 4-fold
increase in Tg+/+ [54.4 [pg/mg] (IQR: 31.8–55.7)] vs. Tg+/−
[13.8 [pg/mg] (IQR: 9.8–31.1), p = .048]. For Aβ42, the
increased was more than 20-fold [48.8 [pg/mg] (IQR:
16.7–153.4)] vs. Tg+/− [2.4 [pg/mg] (IQR: 2.0–7.5), p < 0.035].
These results confirmed the impact of the two copies of human
mutant APP transgene on the accumulation of cerebral amyloid. To
identify metabolic changes in pathways relevant for the
hippocampus of the McGill-R-Thy1-APP rat, we carried out
untargeted 1H-NMR metabolomics on methanol-extracted
samples from freshly isolated tissues. A total of 26 compounds
were detected and identified (residual methanol was excluded from
the analysis), including mainly amino acids, carboxylic acids, and
nucleotides (Figure 1A; Supplementary Table S1).

Principal component analysis (PCA) and partial least square-
discriminant analysis (PLS-DA) were performed in order to detect
the differences among control and Tg rats (Supplementary Figure S1).
Although the 95% confidence intervals generated for each group
overlapped in the PCA score plots, a pronounced separation was
observed for Tg+/+. Supervised PLS-DA was in line with PCA and
gave a clearer separation between groups (Supplementary Figure S1).
Nine metabolites were found to be significantly altered in Tg rats vs.
control (Table 1).

Interestingly, most of them (i.e., taurine, glutathione, tyrosine, and
glutamate) have been previously reported in several studies on
metabolomics performed in biological samples from the CNS, both
in animal models and in AD patients (Altine-Samey et al., 2021).
However, the PLS-DA loadings with the larger absolute weights and
the highest VIP scores were NAD and Nam (Supplementary Figure
S1). These two metabolites showed significant differences between
genotypes (Figures 1B, D). Standard runs analysis was performed in
order to confirm de identity of NAD in contrast to its related
metabolite Nicotinamide Adenine Dinucleotide Phosphate (NADP)
(Figure 1C). As previously described for these key molecules in the
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FIGURE 1
Untargeted 1H-NMR metabolomics of hippocampus of AD-like amyloid pathology transgenic rats (A) Typical 600 MHz 1H-NMR spectrum of WT rats,
representative of all the registered spectra. Assigned resonances of specific metabolites are indicated in red. Expanded views of the spectrum between
3.1–4.4 ppm (A) and 1.7–3.2 ppm (B) are shown (B)Overlaid of averaged 1H-NMR spectra ofWT rats (blue) (n= 10), Tg +/- (green) (n= 12) and Tg+/+ (red) (n=
10) in the 9.5–8.0 ppm zone (dashed box in A). The resonances assigned to NAD and Nam protons are indicated (C)Overlaid of representative 1H-NMR
spectra of WT rats (black, sample), NAD standard (red, upper panel) and NADP standard (red, lower panel) (D) Lower panel: correlation betweenNAD and Nam
levels of samples analyzed. The AUC of H6 of NAD and H2 of Nam were plotted (n = 32). The linear regression (dashed line), the Pearson’s correlation
coefficient and the p-value (two tailed) are shown. Upper panels: differences in the AUC of NAD (left) and Nam (right) among groups (WT, blue; Tg+/-, green
and Tg+/+, red) were analyzed by one-way ANOVA. Significant differences are indicated accordingly to Fishers´s LSD test. ****p < 0.0001.
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NAD salvage-pathway, Nam and NAD levels showed an inverse
relationship (Figure 1D; Supplementary Figure S1). Since NMR
analysis cannot differentiate between NADH and NAD+, and
taking into account that NADH levels decrease as a function of age
and that the ability to regenerate NADH drops sharply in aged brain
(Lautrup et al., 2019) we quantified NADH and NAD + by a
colorimetric kit and found that homozygous rats (Tg+/+) showed
significantly lower levels of NAD+ and NADH compared with those
observed in WT. In contrast, hemizygous rats (Tg+/-) showed an
intermediate level that did not reach significance neither with WT nor
with Tg+/+ (Figure 2A). In this regard, NADH/NAD + ratio was
significantly lower in the Tg+/+ as compared to WT and Tg +/-
(Figure 2B) suggesting a clear alteration of the redox state in the brains
of Tg+/+ rats, which is probably still incipient in the Tg ± ones. To
explain alterations in Nam and NAD+/H levels observed in Tg+/+
brains we first evaluated transcript levels of Nicotinamide
phosphoribosyltransferase (NAMPT) the rate-limiting component
in the NAD + rescue pathway (Garten et al., 2015) and found a
slight increase (1.85 ± 0.29) as compared with the control group
(WT = 1) (Figure 2B). In addition, gene expression of NAD +
-generating enzyme nicotinamide mononucleotide
adenylyltransferase (NMNAT2) and NAD + -consuming (CD38,
PARP1, PARP2 and SIRT3) enzymes (Okabe et al., 2019) were also
assessed. We detected increments greater than 1.5 fold-change in
NMNAT2 (7.8 ± 1.12), CD38 (member of the cyclic ADP-ribose
synthase family) (5.83 ± 0.35) and PARP2 (member of the ADP-ribose
transferases family) (2.23 ± 0.24). Whereas transcript levels of
PARP1 and SIRT3 (sirtuin) were unaffected (1.5 ± 0.06 and 1.27 ±
0.08, respectively) (Figure 2B). Based on these results, expression of
rate-limiting enzyme in Tg+/+ seems to be slight different from WT,
while NAD + -consuming and the NAD + -generating pathways seem
to be activated in Tg+/+ brain suggesting potential disturbance of the
NAD + rescue pathway following the ongoing amyloid pathology.
While central disturbance in NAD + metabolism in Tg rats was
observed, its translation to peripheral tissue was unclear.

TABLE 1 Hippocampal metabolites detected by 1H-NMR spectroscopy that showed significant differences between control and Tg rats.

Metabolite FRD

Tg+/- Tg+/+ Tg−/+ Tg+/+

NAD 2,50E-06 8,36E-11 ↓ ↓

Nam >0.05 3,20E-05 = ↑

Taurine 2,39E-06 2,70E-05 ↓ ↓

Valine 1,71E-02 >0.05 ↓ =

GSH >0.05 2,08E-02 = ↑

Tyrosine >0.05 2,47E-02 = ↑

NAA 3,55E-02 >0.05 ↓ =

Creatine 3,55E-02 >0.05 ↓ =

Glutamate 4,59E-02 4,80E-02 ↓ ↓

Differences in the AUC, of metabolites were analyzed by one-way ANOVA, with Fisher’s LSD, post-hoc test; FDR, false discovery rate. Arrows indicate significant increase (up) or decrease (down)

with respect to control rats. = , no change from control rats. NAD, nicotinamide adenine dinucleotide; Nam, nicotinamide; GSH, glutathione; NAA, N-acetylaspartate.

FIGURE 2
Hippocampal Aβ deposition alters the brain NAD + metabolism (A)
Bars show mean ± SEM levels of NADH (left panel) and NADH/NAD +
ratio (right panel) in hippocampal homogenates of control (WT; n = 3),
hemizygous (Tg+/; n = 3) and homozygous (Tg+/+; n = 3)
transgenic rats. One-way ANOVA tests and post hoc analyses revealed
that Tg+/+ showed significantly lower levels of NADH (F(2, 6) = 10.76, p =
0.01; post-hoc: **p < 0.01) and NADH/NAD + ratio (F(2, 6) = 6.71, p =
0.02; post-hoc:*p < 0.05) compared with those observed in WT (B)
Transcript levels of rate-limiting (NAMPT), NAD+ -generation (NMNAT2)
and NAD + consuming enzymes (CD38, PARP1, PARP2 and SIRT3) in
hippocampal homogenates of Tg+/+ rats. Each bar represents the
mean ± SEM of at least three independent experiments performed by
triplicate for each sample normalized by GAPDH or Eukaryotic
Translation Elongation Factor 1 Alpha 1 (EEF1A1). The mean ± SEM
relative to WT (=1) is shown. Values above the dashed line (+1.5) were
considered different from WT (=1).
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Plasma nam levels as a potential biomarker
of AD

The results in the brain of the rat prompted us to explore whether
these findings can be translated to humans. Herein, we focused our
analysis on plasma because it might offer a promising alternative for
biomarker in blood. Since measure of NAD in clinical practice is
methodologically complicated because of its size (665 Da) and its
stability in chromatography solvents, Nam levels were measured. To
this aim, targeted detection of Nam was performed in human plasma
samples from the longitudinal study AgeCoDe using GC-EI-MS. First,

we compared whether Nam plasma levels of 68 participants with AD
dementia (AD) showed statistical differences compared to
93 cognitively normal (CN) participants and found that Nam levels
were significantly reduced in cases compared to CN (odd ratio (OR) =
0.67, p = 0.02, Figure 3A). In an independent replication sample drawn
from AgeCoDe, including 96 CN and 29 AD, Nam showed the same
trend (OR = 0.93) which, however, did not reach significance (p = 0.7,
Figure 3A) probably due to the small number of cases analyzed. The
meta-analysis of both samples confirmed the protective effect of
plasma levels of Nam (OR = 0.76, p = 0.04, Figure 3A).

Namplasma levels as a prospective biomarker
of AD conversion

To better analyze our results we explored whether Nam plasma
levels, measured at baseline, were associated with the time to
conversion to AD. Consequently, participants were included in the
analysis if they have available data on plasma levels of Nam and
converted to AD at any of the next three follow-ups (FU) for which
data was available [(FU1) = 0.94 ± 0.35 years after baseline; FU2 =
2.43 ± 0.38 years after baseline; FU3 = 4.13 ± 0.37 years after baseline].
For the analysis, the impact of Nam levels was stratified in tertiles
(high, medium and low) and their effect on time to conversion was
visualized by Kaplan-Meier survival curves (Figure 3B) and analyzed
by Cox regression models. This analysis showed that only the higher
levels of Nam are associated with a later conversion to dementia
(hazard ratio (HR) 0.73, p = 0.04). However, we also observed that the
HR is not proportional over time (curves intersect). Thus, while a
person with Nam levels in plasma within the high tertile has 27% risk
reduction of progressing to AD within the next 2.5 years, this HR is
lost afterwards. Supporting this finding, we observed that only
participants progressing to AD at FU1 showed significantly lower
levels of Nam compared with CN (p = 0 .04, Figure 3C).

Discussion

Alzheimer’s disease is a complex phenotype involving several
pathogenic pathways leading to a metabolic imbalance already at
early stages of the disease before symptom become apparent. Relevant
pathways altered in AD include lipid and amino acid metabolism, as
well as dysregulation of the glucose metabolism and mitochondrial
dysfunction guiding to energetic imbalance and oxidative stress (Yan
et al., 2020). Using untargeted 1H-NMR spectroscopy, we observed in
hippocampus of the McGill-R-Thy1-APP rat a significant reduction of
NAD level in Tg rats compared to their healthy littermates at 9 months
of age suggesting an energetic imbalance in the Tg rats.

NAD + and related metabolites are critical compounds essential to
adaptive stress responses and cell survival. It was well established that
PARP-1 (a NAD + consuming enzyme) functions as a DNA repair
enzyme under intense DNA damage as is the case of late AD brain
neuropatholgy. It was postulated that PARP-1 activity depletes
neurons of NAD+ and ATP leading to neuronal death by a
caspase-independent mechanism that shares characteristics of
apoptosis and necrosis (known as Parthanatos), recently reviewed
by Salech et al. (2020). Interestingly, Nam is a well-known inhibitor of
PARP-1. It is of note that McGill-R-Thy1-APP rats used in this study
lack neuropathology of late-AD brains and PARP-1 transcript levels in

FIGURE 3
Plasma levels of Nam in association with AD (A)Meta-analysis forest
plot of Nicotinamide plasma levels in human samples. Discovery
experiment includes 68 cases and 93 controls. Replication experiment
includes 29 cases and 93 controls. Estimates are in Odds Ratios; CI,
confidence interval; FE Model, fixed effects meta-analysis results. (B)
Kaplan-Meier conversion to AD survival of 85 participants after blood
test for Nicotinamide, stratified in high, medium or low levels. High levels
of Nicotinamide seem to be a predictor of dementia survival for 2.5 years
(HR = 0.73, p = 0.04) (C) Box plots represent the normalized GC-EI-MS
spectral areas of Nicotinamide in human plasma of CN (cognitive
normal) subjects (n= 189); AD (n= 85) patients and FU1 (n= 25); FU2 (n=
37) and FU3 (n = 23) participants.*p < 0.05.
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Tg rat brains are similar to control animals, suggesting that
Parthanatos is not operative in this animal model of brain
amyloidosis. Considering the number of enzymes and transcription
factors sensitive to the redox potential, NAD+/H redox state acquires
pathophysiological relevance for aging and neurodegenerative diseases
(Verdin, 2015; Fang et al., 2017). While several studies in mouse
models for AD have shown the relevance of the NAD(P)+/NAD(P)H
homeostasis in the brain, especially in hippocampus and cortex
(Ghosh et al., 2012; Dong and Brewer, 2019; Dong et al., 2019),
few reports have been published on the role of the NAD(P)+/NAD(P)
H homeostasis in the McGill-R-Thy1-APP rats. A previous in vivo
study using Magnetic Resonance Spectroscopy (1H-MRS) identified in
tissue derived from hippocampus and frontal cortex of McGill-R-
Thy1-APP rat significant difference in levels of several metabolites
compared to the WT littermates (Nilsen et al., 2012). Herein, the Tg+/
+ rats, compared toWT rats, showed lower levels of glutamate, GABA,
N-acetylaspartate (NAA) and elevated myo-inositol and taurine.
These differences become apparent during the progression of
amyloid pathology in Tg+/+ in time window of 6 months between
three-to 9-months of age. Previously, the NAA and myo-inositol
findings were reproduced in dorsal hippocampus tissue derived
from this rat model, though only in males Tg+/+ rats (Nilsen
et al., 2014b). Metabolites identified in these studies suggested
brain damage and mitochondrial dysfunction that might be gender
specific. In line with this report, we were able to replicate in part these
previous differences using brain tissue from this rat model. Minor
differences might derive from dissimilarities in the techniques used in
previous studies compared to ours (in vivo 1H-MRS vs ex vivo
1H-NMR). By using in vivo 1H-MRS the regional concentration of
low molecular weight metabolites can be measured non-invasively.
Conversely, ex vivo 1H-NMR spectroscopy detects only hydrophilic
metabolites extracted from tissue homogenates. Hence, both
approaches might be complementary for the identification of
neurochemical processes related to AD pathology and its
progression over time. Our findings on NAD receive further
supports from 1H- and 13C NMR spectroscopy and HP-LC
experiments done in cingulate cortex derived from aged McGill-R-
Thy1-APP (15-month-old) that showed decreased levels of NAD + in
Tg rats compared to WT (Nilsen et al., 2014a).

In correlation with our findings, experimental evidence supports a
protective effect of NAD + supplementation on cognitive deficits in
AD models (Gong et al., 2013; Liu et al., 2013). It was previously
reported (Xing et al., 2019) in hippocampal tissue of 6-month-old
APPswe/PS1Δe9 transgenic mice decrements of NAD-generating
enzyme (NAMPT) levels which were reverted by the
administration of NAD, suggesting that increasing NAMPT
expression levels may promote NAD production. Our results
showed a slight increase of NAMPT transcript levels in Tg+/+ as
compared to control rats (1,8 fold-change as compared to WT = 1). It
is of note that NAMPT expression is induced by inflammatory signals
and is considered a biomarker of chronic and acute inflammatory
disease (Audrito et al., 2020). In this regard, hippocampal
accumulation of Aβ in Tg+/+ rats may act as an alarmin triggering
proinflammatroy cytokines (Wilson et al., 2018) and promoting
increments of NAMPT transcript levels as reported here.
Consequently, we postulate the possibility to use NAD +
metabolites as peripheral biomarkers for AD. In line with this
hypothesis, our study identified a significant lower level of plasma
Nam in AD patients compared to healthy controls. This difference was

also seen before the patients progressed to AD. Thus, Nam levels in
plasma could serve as biomarker for progression to AD. However, risk
reduction associated to high levels of Nam is lost after 2.5 years,
meaning it is only valid in the close proximity to its assessment. The
relevance of our observation is reinforced by a recent report showing
that by untargeted metabolomics 308 CSF metabolites from
338 individuals were identified and associated using principal
components (PCs) analysis with CSF total tau (t-tau),
phosphorylated tau (p-tau), Aβ42, and Aβ42/40 ratio. Employing
linear regression models 5 PCs were significantly associated with
CSF p-tau and t-tau and 3 PCs with CSF Aβ42. Pathway analysis
suggested that these PCS were enriched in six pathways, including
metabolism of caffeine, nicotinate and Nam. (Dong et al., 2022).

In addition to the role of Nam as a potential biomarker for AD
progression Nam may be also involved in AD onset. In this regard, a
new mechanism of AD induction was recently postulated in which
NAD depletion due to inadequate levels of Nam may have a relevant
role in neuronal damage. On this point, the dietary habits in the aging
characterized by low fruits and vegetable consumption and the
presence of visceral fat which secretes visfatin, an inflammatory
adipokine that deplets blood Nam, may explain why many people
do develop AD due to lifestyle (Adams, 2021). However, research in
humans has shown that plasma levels of NAD + decrease while levels
of Nam increase significantly with age (Clement et al., 2019). These
data have fueled several clinical trials of NAD + precursors, which still,
produced inconsistent results (Rainer et al., 2000; Demarin et al.,
2004).

The utility of Nam as a treatment for prevention of AD is still on
debate. It was reported in animal models of AD that dietary
supplements of Nam can increase the amount of (NAD) (+) in
the brain, reduce the production of Aβ, and slow the decline of
cognitive function. While Nam has shown promise in the treatment
of AD, a Phase II Clinical Trial failed to demonstrate that Nam
improves cognitive function in subjects with mild to moderate AD
over 24 weeks. The lack of efficacy of Nam was explained due to
several factors including a low sample size (n = 15); inclusion of
subjects with moderate AD, and a relatively short treatment phase
(Phelan et al., 2017). Currently few more human clinical trials are
ongoing to evaluate the safety concerns of Nam supplementation
however the outcomes are yet to be available (Nadeeshani et al.,
2021).

We are aware that this study has also limitations. We only
employed male Tg rats due to the well known effect that estrous
cycle has on biochemical parameters, increasing intra-group
variability. This is a clear impediment for generalizing results.
However, in the experiments with human samples both genders
were included. Finally, the replication analysis on human plasma
did not reach significance. Since the effect goes in the same direction
and the meta-analysis is still significant, this could be a minor
problem. A replication in independent cohorts is necessary to
validate the potential use of plasma levels of Nam as biomarker for
AD progression.

Conclusion

In summary, our study provides additional supporting evidence
indicating that hippocampal Aβ burden and/or hAPP processing is
associated with the degree of NADH/NAD + shift in McGill-R-Thy1-
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APP rat brain. Although this information cannot infer causal direction
it offers a different perspective on the Aβ-mediating mechanisms
involved in brain energy dysfunction observed in AD. Besides, our
findings indicate that plasma Nam content has a potential role as
short-term AD risk biomarker. Nevertheless, further studies in larger
cohorts and independent populations of patients will be needed to
confirm our results and the potential use of Nam as peripheral
biomarker. To our knowledge, this is the first report showing a
significant decrease of Nam plasma levels in people with AD that
is observed couple of years before conversion, thereby suggesting its
potential use as biomarker for progression.
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Introduction: Similar to what it has been reported with preceding viral epidemics
(such as MERS, SARS, or influenza), SARS-CoV-2 infection is also affecting the
human immunometabolism with long-term consequences. Even with
underreporting, an accumulated of almost 650 million people have been
infected and 620 million recovered since the start of the pandemic; therefore,
the impact of these long-term consequences in the world population could be
significant. Recently, the World Health Organization recognized the post-COVID
syndrome as a new entity, and guidelines are being established to manage and
treat this new condition. However, there is still uncertainty about the molecular
mechanisms behind the large number of symptoms reported worldwide.

Aims and Methods: In this study we aimed to evaluate the clinical and lipidomic
profiles (using non-targeted lipidomics) of recovered patients who had a mild and
severe COVID-19 infection (acute phase, first epidemicwave); the assessment was
made two years after the initial infection.

Results: Fatigue (59%) andmusculoskeletal (50%) symptoms as themost relevant and
persistent. Functional analyses revealed that sterols, bile acids, isoprenoids, and fatty
esters were the predicted metabolic pathways affected in both COVID-19 and post-
COVID-19 patients. Principal Component Analysis showeddifferences between study
groups. Several species of phosphatidylcholines and sphingomyelins were identified
and expressed in higher levels in post-COVID-19 patients compared to controls. The
paired analysis (comparing patients with an active infection and 2 years after recovery)
show 170 dysregulated features. The relationship of such metabolic dysregulations
with the clinical symptoms, point to the importance of developing diagnostic and
therapeuthic markers based on cell signaling pathways.
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1 Introduction

Post-COVID-19 exists, and matters. The World Health
Organization (WHO) has recently recognized the post-COVID-
19 (or long COVID) condition (Delphi consensus), as one “that
occurs in individuals with a previous history of probable or
confirmed SARS-CoV-2 infection, usually three months after the
onset, with symptoms lasting at least two months that cannot be
explained by an alternative diagnosis” (Soriano et al., 2022). Studies
show that 60% of COVID-19 survivors experience post-COVID
symptoms (Fernández-de-Las-Peñas et al., 2021), and that these are
associated with worse quality of life (Malik et al., 2022).

Why some patients experience long-term symptoms after
COVID-19 infection remains uncertain (Yong, 2021). Genetic
susceptibility, age, and viral load could be related to this
syndrome (Collaborators, 2022). Organ damage due to
an excessive inflammatory response caused by the virus,
persistent reservoirs of SARS-CoV-2 in certain tissues triggering
post-infection morbidity, pathogen reactivation as a result of
immune dysregulation, host-microbiome alterations, coagulation
problems, and autoimmunity due to molecular mimicry between
SARS-CoV-2 and autoantibodies could be involved mechanisms
(Collaborators, 2022). In addition, it has also been suggested that
the prolonged symptoms of COVID-19 may not be a direct result
of SARS-CoV-2 infection, but rather the consequence of Epstein-
Barr virus reactivation induced by COVID-19 inflammation
(Ortona and Malorni, 2022).

Multiple studies point to an immunometabolic dysregulation,
highlighting certain metabolites, such as those involved in the
tryptophan and kynurenine pathways, which have a very
important role in the immune system. To date, the plethora of
symptoms and protracted disorders documented suggest that
various concurrent mechanisms might be involved, and that
different therapeutic approaches need to be established when
dealing with these patients.

It remains unknown whether SARS-CoV-2 can cause substantial
tissue damage leading to a chronic form of the disease, such as the
chronic convalescent lesions seen with other viral infections
including the Human Immunodeficiency Virus (HIV), hepatitis
C virus (HCV), hepatitis B virus (HBV) and some herpesviruses.
Previous studies with SARS survivors have shown lung
abnormalities months after infection (Lopez-Leon et al., 2021).

A recent comprehensive molecular investigation revealed
extensive inflammation and degeneration in the brains of
patients who died of COVID-19, even among those with no
reported neurological symptoms. In that study, the authors
report that SARS-CoV-2 virus induced vascular damage affecting
endothelial cells and caused generalized neuroinflammation.
Cytokines like interleukin-1 and interleukin-6 were highly
elevated in patients with COVID-19, which are the ones driving
neurodegeneration and Alzheimer’s disease (Reiken et al., 2022).

Another study showed that between one and 12 months after
infection, patients recovered fromCOVID-19 are at increased risk of
incident cardiovascular disease, including cerebrovascular disorders,
arrhythmias, ischemic and non-ischemic heart disease, pericarditis,
myocarditis, heart failure, and thromboembolic events; these risks
were documented even among people who were not hospitalized
during the acute phase of the infection, and increased gradually

depending on the care setting during the acute phase (non-
hospitalized, hospitalized, and intensive care) (Xie et al., 2022).

In terms of mortality, a large study comprising nearly five
million healthy controls and 90,000 COVID-19 patients revealed
that the risk of death among COVID-19 survivors in the following
6 months after infection, increased by 60% (Al-Aly et al., 2021).

In the present work, we investigated the health status of
patients who recovered from a mild, severe, and critical COVID-
19 in 2020 (post-COVID-19 patients). Two years later, patients
who provided informed consent were surveyed. Clinical
symptomatology and blood samples for laboratory analyses
were obtained. Untargeted lipidomic analysis was performed
with plasma samples to assess potential dysregulation of lipid
metabolism. These long-term alterations need to be deeply
analyzed to find a possible connection with symptoms
persistence and to find effective therapeutic alternatives to
treat (or cure) these patients.

2 Materials and methods

2.1 Patients’ recruitment

Symptomatic individuals aged 35–70 years who were RT-qPCR-
tested for SARS-CoV-2 between March 15 and 1 November 2020, at
the Zacatecas General Hospital’s Respiratory Triage Unit of the
Mexican Institute of Social Security (IMSS) and Christus Muguerza
del Parque Hospital of Chihuahua city were included in this study.
Negative controls were RT-qPCR negative patients. Inclusion
criteria for negative controls, and mild, severe, and critically ill
patients are shown in Supplementary Table S1.

The COVID-19 group were patients who were positive for
SARS-CoV-2 in the first epidemic wave (2020). Blood specimens
for plasma isolation were collected within two days after hospital
admission on average. Baseline information including age, sex,
comorbidities, clinical and laboratory data, and disease severity
classification according to WHO guidelines (WHO, 2023).

Clinical data was obtained from the electronic medical records
of each patient and stored by a password-protected database and
provided in Table 1. Blood samples were collected in 2020 and stored
at −80°C in the biobank at the Autonomous University of Zacatecas,
Mexico.

Two years after hospital discharge and recovery, plasma samples
were obtained from 22 COVID-19 patients (post-COVID-
19 group). Chest computed tomography (CT) scans (in patients
that had a baseline CT), basic blood biochemical markers
(i.e., hemoglobin, platelets, leukocytes, lymphocytes, and
creatinine), and a questionnaire to assess the persistence of
clinical symptoms were used to evaluate their clinical recovery.
Blood collection was done in fasting conditions. Only three patients
had one reinfection 20 months on average after recovery from the
initial infection.

The study was conducted in accordance with the Declaration of
Helsinki (1976). It was also revised and approved by the Research
and Ethics Committees of the Instituto Mexicano de Seguridad
Social, with the registration number R-2022-3301-038 and Christus
Muguerza del Parque Hospital (folio HCMP-CEI-28022022-
A01 and HCMP-CEI-15042020-3). Informed consent was
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obtained from all participants. All patients included in this study
were informed in writing regarding the collection of their samples
for research aims and were given the right to refuse participation.

2.2 Sample preparation

Blood collected in vacutainer tubes (EDTA) was centrifuged at
4°C and 3000 g for 15 min. Plasma was aliquoted and stored at −80°C
until use. Plasma thawed in ice was extracted with pre-cooled
isopropanol in a 1:3 ratio (LCMS grade, Honeywell, Charlotte,
NC, United States) (Medina et al., 2020) vortexed for 1 min and
incubated at −20°C overnight for protein precipitation.
Subsequently, the extraction mix was centrifuged at 16000 g and
4°C for 15 min and supernatants were carefully collected. An
additional step of centrifugation was done to remove any debris
collected. For the analysis, each aliquot was transferred into certified
LC vials (TruView LCMS, United States) and diluted to 1:20 ratio
with a mixture of isopropanol/acetonitrile/water (2:1:1, v: v: v).
Sample preparation order was randomized for sample picking to
ensure no systematic biases were present during sample preparation.

2.3 Quality controls (QC) and quality
assurance (QA)

These processes are referred to as the procedures applied in
preparation for data acquisition (QA) and during/after data
acquisition (QC) (Kirwan et al., 2022). As part of QA
procedures, the equipment was subjected to a complete
maintenance twice a year. This maintenance included both
the chromatography system, the mass analyzer, and the
nitrogen source. Sample cone and ion source cleaning were
performed between every analytical batch. Calibration and
manual tuning were also performed immediately before
running samples. Temperature control, standardized protocols
of operations and qualification of technical staff were also
considered.

A pool of human plasma from all participants in the study
served as a technical replicate throughout the dataset (pooled
QCs). QCs were prepared identically as individual samples.
Overall process variability was determined by calculating the
median relative standard deviation (RSD) for all endogenous
metabolites present in 100% of the pooled QCs samples.

TABLE 1 Clinical and demographic characteristics.

Variable Negative controls (n = 15) COVID-19 (n = 28) Post-COVID-19 (n = 20) p-value

Age, mean ± SD (years) 47.2 ± 8.4 56.3 ± 13 51.8 ± 11.6 0.0537

Male gender, n (%) 9 (60) 15 (53.5) 11 (55) 0.9198

Smoking, n (%) 3 (20) 2 (7.6) 3 (15) 0.4501

Comorbidities (self-reported), n (%)

Diabetes 1 (6.66) 10 (35.7) 3 (15) 0.0592

Hypertension 4 (26.6) 8 (28.5) 9 (45) 0.4044

Obesity 1 (6.6) 8 (28.5) 0 (0) 0.0128 *b

Symptomatology, n (%)

Fever 0 (0) 15 (53.5) 0 (0) <0.0001 *a, b

Cough 0 (0) 24 (85.7) 3 (15) <0.0001 *a, b

Headache 10 (66) 18 (64) 6 (3) 0.0334 *b, c

Dyspnea 2 (13.3) 23 (82.1) 6 (3) <0.0001 *a, b

Diarrhea 0 (0) 6 (21.4) 2 (10) 0.1201

Chest tightness 0 (0) 14 (50) 4 (20) 0.0015 *a, b

Pharyngalgia 8 (53.3) 9 (32.1) 2 (10) 0.0209 *c

Myalgia 8 (53.3) 18 (64.2) 9 (45) 0.4072

Arthralgias 5 (33.3) 18 (64.2) 10 (50) 0.1482

Anosmya 0 (0) 5 of 14 (35) 1 (5) 0.006 *a, b

Laboratory data, median (Q1-Q3)

Erythrocytes (million/mL) 5.3 (5–5.5) 4.8 (1.2–5.32) 5 (0.9–5.48) 0.0935

Hemoglobin (g/dL) 15.5 (14.9–16.4) 13.25 (9.78–15.2) 15.45 (14.63–16.55) 0.001 *a, b

Platelets (thousands/mL) 277 (242–320) 233.5 (145.5–306.5) 237 (216–248) 0.1183

Leukocytes (×103) 6.6 (5.9–7.8) 8.3 (5.08–11.68) 7.23 (6.38–7.98) 0.4093

Lymphocytes (%) 33.3 (25.8–37) 7 (2.25–12.8) 34.95 (29.88–38.25) <0.0001 *a, b

Monocytes (%) 6.5 (5.4–8.3) 2.95 (0.4–4.78) 6.3 (1.16–7.1) 0.0036 *a

Neutrophils (%) 58 (51.3–62.7) 81.45 (26.56–91.88) 51.1 (8.82–58.1) <0.0001 *a, b

Glucose (mg/dL) 91 (84–116) 123 (80–191.3) 100.3 (19.02–131.9) 0.1314

Creatinine (mg/dL) 1 (0.7–1.1) 0.67 (0.5–0.78) 0.795 (0.7–0.92) 0.0083 *a

*a: Negative Controls vs. COVID-19.

*b: COVID-19, vs. post-COVID-19.

*c: Negative Controls vs. post-COVID-19.

Significant values (p < 0.05) are highlighted in bold.
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Experimental samples were randomized across the platform run
with 10 QCs samples at the beginning (for instrument and
column equilibration) and one QC sample was acquired every
ten samples injected.

2.4 Ultra-performance liquid
chromatography (UPLC)-Mass spectrometry
method for lipidomic analysis

The analysis was performed using an ACQUITY UPLC
I-Class (Waters Corp., Milford, MA, United States) coupled to
a XEVO-G2 XS quadrupole time-of-flight (ToF) mass
spectrometer (Waters, Manchester, NH, United States) with an
electrospray ionization source. The samples were analyzed in
positive (ESI+) mode.

A UPLC CSH C18 column (2.1 × 100 mm, 1.7 µm) with a
binary gradient elution of solvents was used for lipid separation.
The mobile phase A was 10 mM ammonium formate with 0.1%
formic acid in acetonitrile/water (60:40, v:v) and mobile phase B
was 10 mM ammonium formate with 0.1% formic acid in
isopropanol/acetonitrile (90:10, v:v). The mobile phases were
delivered at a flow rate of 0.3 mL/min, initially with 60% A,
followed by a linear gradient to 57% A over 2 min, and then the
percentage of A was decreased to 50% within 0.5 min. Over the
next 10 min, the gradient was ramped to 46% A, and the amount
of A was then decreased to 30% in 0.5 min. Over 6 min, the
amount of A decreased to 1%, and returned to initial conditions
(60%) at the end of 25 min. The column temperature was
adjusted to 55°C and the injection volume was five uL. Data
was acquired using positive electrospray ionization mode with
the capillary voltage set to 3.2 kV, the cone voltage to 40 eV and
the source temperature to 130 °C. The desolvation gas was
nitrogen, with a flow rate of 900 L/h, cone gas flow of 25 L/h
and temperature of 550°C. Data was acquired in the m/z range of
50–1,200 in data independent analysis (DIA) mode in which the
collision energy was alternated between low energy (6 eV) and
high energy (ramped from 10–40 eV) in consecutive scans of 0.2 s
generating high and low chromatograms and spectra. Lockmass
correction was made by the acquisition of mass reference leucine
enkephalin in intervals of 30 s.

2.4.1 Data analysis
Raw data were processed under default parameters as a

UNIFI file (UNIFI 1.8.2, Waters Corp., Milford,
United States), which was exported to Progenesis QI (version
3.0.7, Waters Corp., Milford, United States). For the alignment,
retention times below 0.5 min and after 18 min were excluded. A
width peak of 0.06 s was defined. Deconvolution was
automatically performed, considering M + H, M + Na, M +
H-H20, M + K, and M + NH4 as adducts. However, manual
inspection was done, eliminating those features with incorrect
alignment in chromatograms and neutral and m/z mass. An excel
file was exported and a signal to noise (S/N) ratio was calculated
for each sample based on the extraction blank. All features with a
S/N < 5 in the 80% of samples were eliminated. Besides, RSD was
calculated taking QCs as references. Features with RSD > 20%
were also eliminated.

2.5 Lipid identification

Amanual inspection about putative identification was done by
searching accurate mass in HMDB (https://hmdb.ca), LipidBlast
(https://fiehnlab.ucdavis.edu/projects/lipidblast) and METLIN
(https://metlin.scripps.edu). Putative identification was assigned
based on accurate mass, retention time, and fragmentation
patterns [Progenesis QI (version 3.0.7, Waters Corp., Milford,
United States)]. Confidence levels in annotation were as following:
level 4 (molecular formula): molecular formula identification of
features is completed via isotope abundance distribution, charge
state and adduct ion determination. Level 3 (tentative structure):
tentative structural identification includes a unique match of the
parent ion (MS1) data searched through literature and/or libraries
and databases. Level 2 (putative identification): putative
identification reveals probable structure using fragmentation
data from literature and/or libraries and databases (Schrimpe-
Rutledge et al., 2016). For the significant features putatively
identified, a MS/MS method was performed. Briefly, precursor
ions were fragmented with collision energies 10 eV, 20 eV, and
40 eV. Mass spectra were analyzed and based on the fragmentation
pattern; an identification (level 2–4 of confidence) was assigned.

2.6 Statistical analysis

Medians with interquartile ranges (IQRs) or means [with
standard deviation (s.d.)] and frequencies (%) were used to
describe baseline characteristics of non-COVID-19 subjects, and
COVID-19 or post-COVID-19 patients for continuous and nominal
data, respectively. Normality was assessed using the D’Agostino-
Pearson normality test. Continuous variables were analyzed using
Mann-Whitney U or Kruskal-Wallis tests. For nominal variables
(e.g., sex, smoking, death, symptoms, and comorbidities) chi-square
tests for trends were used. All p-values less than 0.05 considered
statistically significant. Analyses were conducted using GraphPad
Prism version 8.0.1 for Windows (GraphPad Software, La Jolla
California United States).

For lipidomics data, functional and statistical analyses were
performed with MetaboAnalyst 5.0 (https://www.metaboanalyst.
ca). After filtering and eliminating possible artifacts or
redundancies, data was normalized by sum (TIC), transformed
by square, and scaled by range.

Mummichog pathway activity profile was done with the
intention to reveal the most important metabolic pathway altered
without dealing with identification of all features. Mass tolerance
was set to 5 ppm, p-value: 10–4 cut off (default top 10% peaks),
pathway library: homo sapiens (human) metabolite sets for lipids
(main chemical classes and sub-classes) and metabolic pathways
with at least three entries were considered. Metabolite sets were
manually curated and originate from a number of sources (KEGG,
BiGG, and Edinburgh Model).

Analysis of continuous and categorical data was performed by
Mann-Whitney rank sum and Fisher’s exact tests, respectively.
Adjusted p-values (false discovery rate, FDR) < 0.05 were
considered as significant. Univariate analysis of covariance
(ANCOVA) was conducted in SPSS (version 29, SPSS Inc.,
United States) to examine the differences between post-COVID,
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COVID-19 patients and negative controls, including all features
from the lipidomic dataset adjusted by age and comorbidities that
were reported as significant (presence or absence of diabetes and
obesity).

Principal component analysis (PCA) and two-dimensional
partial least squares discriminant analysis (2D PLS-DA) scores
plots were used to compare plasma lipidomic data across and
between study groups; 2000-fold permutation tests were used to
minimize the possibility that the observed separation of the PLS-DA
was due to chance. Discriminant Q2 (DQ2) is an improvement for
the Q2 value used in the validation of PLSDA models since it does
not penalize class predictions beyond the class label value. DQ2

estimations were performed using Matlab (version 2020B, The
MathWorks, United States) using the DQ2 Matlab routine

written by Westerhuis et al. (Westerhuis et al., 2008) (http://
www.bdagroup.nl/). Variable importance in projection (VIP) and
heat maps were also plotted. Significant features were considered
when having a VIP score >1.5 and a FDR <0.05.

3 Results

Table 1 shows the baseline characteristics of negative controls,
COVID-19 patients (acute phase), and post-COVID-19 patients
(2 years after recovery). At the time of the clinical examination, none
of these patients had an active infection.

Among the 20 patients with post-COVID-19, 55% were male
and the mean age was 51.8 ± 11.6 years. Four (27.3%) patients had

FIGURE 1
Post-COVID-19 (immediately after infection resolution), and persistent symptoms (until September 2022), clustered by etiology condition. (A)
Neurological, (B) Psychiatric, (C) Respiratory, (D)Cardiac, (E)Digestive, (F) Systemic. The scale (0%–100%) represents the percentage of patients reporting
each particular symptom. Figure was built with R package (ggplot2). Only symptoms that were non-significant (chi2 test) between post-COVID-19 and
persistent status were represented.
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FIGURE 2
Follow-up lung CTs in patients with different degree of severity. (A, B): 47-year- old male patient (severe disease). (A) 2020. Pneumonia with
presence of a ground glass pattern in the three levels of the parenchyma, with a predominant injury in the left basal region (arrows) with scattered areas of
consolidation. (B) 2022. Complete resolution of radiological findings. (C, D): five- year-old male patient (severe disease). (C) 2020. Multiple nodular
opacities in the right upper lobe (arrow) with ground glass images in themiddle level of the parenchyma (coronal section) and predominance the left
lobe. At the basal level, the affected areas are smaller with a diffuse nodular pattern. (D) Complete resolution of radiological findings. (E, F): 51-year- old
male patient (severe disease). (E) 2020. Pneumonia with the presence of a pattern in ground glass patches in the three levels of the parenchyma, with
injury predominantly in the left basal region (arrows) with areas of consolidation and a pattern of bronchoalveolar distention. (F) 2022. Almost complete
resolution of COVID-19 pneumonia with a mild residual interstitial pattern, predominantly at the basal level, coronal section (arrow). (G, H): 51-year-old
male patient (severe disease). (G) 2020. Ground glass-type opacities are identified in the middle level of the parenchyma in coronal section, left lobe
(arrow). At the apical region, a diffuse pattern of cotton-nodular appearance. (H) 2022. Complete resolution of the radiological findings. (I, J): 30-year-old
male patient (severe disease). (I) 2020. Pneumonia with presence of a minimally affected pattern in the apical area with barely perceptible frosted glass
smears, diffuse ground-glass patches at themid-level of the parenchyma, with considerable involvement of left basal region (arrows). (J) 2022: Complete
resolution of radiological findings.
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developed a mild disease during the acute phase, 11 (50%) had
severe disease, and five (22.7%) were critically ill requiring
intubation. After two years, most of the laboratory parameters
were normal. Lymphocytes, monocytes and neutrophils, which
were altered parameters during the acute phase, showed
statistical differences with the post-COVID phase. Various
clinical symptoms persisted after two years of recovery; patients

basically reported the same symptoms of the acute phase, except for
vomiting and fever (Figure 1).

Patients with an abnormal chest CT in 2020 were taken a follow-
up CT scan to assess pulmonary sequelae. Representative CT images
of the two COVID-19 groups in 2020 and 2022 are shown in
Figure 2. While some patients had a complete resolution of
abnormal findings two years after the initial infection, others had

FIGURE 3
Scatter Plot representing Mummichog Pathway Activity Profile showing the enrichment factor. The enrichment factor is the ratio between the
number of significant pathway hits and the expected number of hits within the pathway. (A) Negative controls vs COVID-19 (lipids main chemical class).
(B)Negative controls vs Post-COVID-19 (lipids main chemical class). (C)Negative controls vs COVID-19 (lipids sub chemical class). (D)Negative controls
vs Post-COVID-19 (lipids sub chemical class). Size and color increases as -log10(p) and enrichment factor increases. Figure was built with
MetaboAnalyst software v 5.0 (https://www.metaboanalyst.ca).
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persistent lung abnormalities (interstitial thickening, ground glass
opacity, and subpleural bands).

3.1 Functional analysis of untargeted
lipidomics data generated from high-
resolution mass spectrometry (HRMS)

With the goal to know the most important metabolic pathways
dysregulated, both in the infection and recovery phases, a
functional analysis (mummichog pathway activity profile) was
done. A total of 401 features were detected after filtering as
previously described. When the mummichog pathway activity
profile was performed, putative dysregulated metabolic
pathways were associated with both states (acute phase and
post-COVID-19) with respect to negative controls (Figure 3).
When analyzing active infection (COVID-19 group) and

recovery (post-COVID-19 patients), fatty esters, sterols,
secosterols and steroids were dysregulated. For active COVID-
19 patients, bile acids pathway was dysregulated, and for post-
COVID-19, it was the isoprenoids pathway. When subclasses of
lipids were represented, both in the case of acute phase and post-
COVID phase, phospholipids were the most important family of
compounds dysregulated. Supplementary Tables S2, S3 show the
specific details for these metabolic pathways, respectively.

3.2 Univariate and hierarchical clustering
analysis

Significant statistical differences between the three study groups
were observed. In total, 306 features were significantly dysregulated;
97 showed differences (FDR < 0.05) between controls and post-
COVID-19, while 251 were different between post-COVID-19 and

FIGURE 4
Heat map representing the most important features differentiating negative controls, post-COVID-19 patients, and COVID-19 patients. Data was
normalized, distance measure: Euclidean, clustering method: Ward. Ranked by ANOVA test. Figure was built with MetaboAnalyst software v 5.0 (https://
www.metaboanalyst.ca). * Represents features with confidence level 2 and ◆ represents features with level 3.
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COVID-19. With respect to controls, 239 features were different
compared with COVID-19 patients. ANCOVA replicated the
findings of ANOVA after adjustment by age, diabetes, or obesity
for the putative features (Supplementary Table S4). The heatmap
revealed differences between the COVID-19 group compared with
the control and post-COVID-19 groups, but there were also
differences between post-COVID-19 patients and the negative
controls (Figure 4).

3.3 Multivariate analysis

The multivariate analysis showed a clear separation between
the three groups. Principal Component Analysis (PCA) revealed
a good clustering in QC samples indicating that technical
reproducibility and stability of the system was achieved during

the analysis. Once the QCs were inspected, they were eliminated
from subsequent analysis. Partial Least Square Discriminant
Analysis (PLS-DA) also showed good discrimination. The
performance for this model was evaluated by 10-fold cross-
validation and permutation test showing no overfitting
(Figure 5). Double-check of the models was done as a
validation resource of diagnostic statistics for PLS-DA. DQ2

were as follow: 0.65, 0.79 and 0.73 for the comparisons
between: controls vs COVID-19, controls vs Post-COVID, and
post-COVID vs COVID-19, respectively.

VIP plots showed the most differentiated features with higher
concentrations were found in the post-COVID-19 group (Figure 6).
Details about m/z, retention time, adducts, and adjusted p-value are
shown in Supplementary Table S4. Tandem analyses (MS/MS) were
performed for the most important and abundant ions. Figure 7 and
Supplementary Table S5 shows a representation of the

FIGURE 5
Multivariate analyses from plasma lipidomics profile of negative controls, COVID-19 patients, and post-COVID-19 patients. (A) Score scatter plot
based on PCA models including quality controls (QCs) samples (C). (B) Score scatter plot based on PLS-DA models. (C) Cross validation (10-foldCV). (D)
permutation test (2000 permutations). Figures were produced in Metabo Analyst software v 5.0 (https://www.metaboanalyst.ca/).
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fragmentation pattern leading to the identification of
glycerophospholipids and sphingomyelins.

3.4 Paired analysis

Thirteen patients with paired samples (acute phase and post-
COVID-19) were included; 38.4% male, and mean age 54.6 ±
7.9 years. Three (23%) developed a mild disease during the acute
phase, 8 (61%) had a severe disease, and two (15%) were critically ill
requiring intubation (Table 2). After two years, most laboratory
parameters became normal. Lympochytes counts, altered during
acute phase, was statistically different compared with the post-

COVID phase. After two years of recovery, patients reported the
same symptoms experienced during the acute immediate recovery
phase, except for vomit and fever.

Paired T-tests) showed 170 features dysregulated
(FDR<0.05). The volcano plot revealed that 55 features were
upregulated in post-COVID-19 patients, and 172 remained
downregulated.

Figure 8 shows the multivariate analysis. PCA (Figure 8A)
revealed a good clustering of samples. Partial Least Square
Discriminant Analysis (PLS-DA) also showed good
discrimination; the performance for this model was evaluated by
10-fold cross-validation and permutation test showing no overfitting
(Figures 8B–D).

FIGURE 6
Variable importance in Projection (VIP) plot representing the rank of 15 features identified by PLS-DA according to VIP score on x-axis. The most
discriminating metabolites are shown in descending score order. The color boxes indicate whether metabolite concentration was increased (red) or
decreased (blue). Figures were produced in MetaboAnalyst software v 5.0 (https://www.metaboanalyst.ca/). * Represents features with confidence level
2 and ◆ represents features with level 3.
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FIGURE 7
Tandemmass spectrometry (MS/MS) representing the pattern of fragmentation with 10, 20, 40 eV in ESI (+) mode, leading to the identification of (A)
PC(14:0/18:2); (B) SM(d18:1/24:1).
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The VIP plot showed that for most differentiated features,
higher concentrations were seen among in post-COVID-
19 patients (Figure 8E).

4 Discussion

This study aimed at describing clinical and metabolic alterations
persisting two years after patients had a SARS-CoV-2 infection of
different severity. The metabolic pathways dysregulated during
infection and after two years of recovery were identified. A
functional analysis approach was used assuming that putative
annotation at individual compound level can collectively predict
changes at functional levels, as demonstrated by Li et al. (Li et al.,
2013).

Lipid classes belonging to sterols, steroids, and fatty esters were
dysregulated in both COVID-19 groups studied. Very recently,
Guntur et al. (Guntur et al., 2022) found higher levels of poly
and highly unsaturated fatty acids in patients with post-COVID-
19 syndrome (more than 28 days after infection: recruitment phase
done in a time-interval of two years). This finding was consistent
with a reduced fatty acid oxidation at mitochondrial level. The
accumulation of such molecules has been associated with
erythrocyte dysfunction and impairment of oxygen transportation
that could persist for months, thereby explaining symptoms such as
fatigue and exercise intolerance.

Sterols are a subgroup of steroids. The most familiar type is
cholesterol, which is vital for the membrane structure, and it is a
precursor of fat-soluble vitamins and steroid hormones. A recent
systematic review and meta-analysis demonstrated that lower
concentrations of total HDL, and LDL-cholesterol were
significantly associated with COVID-19 severity and mortality
suggesting that cholesterol concentrations might be useful for
risk stratification and monitoring (Zinellu et al., 2021). Ghini
et al. (Ghini et al., 2022) recently demonstrated that the
lipoproteome of recovered patients slowly reverted to the healthy
state.

Corticosteroids such as dexamethasone belong to steroids. They
have significant anti-inflammatory and anti-fibrotic effects, which

may play a role reducing lung and systemic inflammation, especially
in severe pneumonia and in advanced stages of COVID-19 (Leistner
et al., 2022).

Among fatty esters, monoacylglycerols, diacylglycerols, and in
particular, triacylglycerols, have also been associated with metabolic
dysregulation in COVID-19 patients (Masana et al., 2021).

In COVID-19 patients bile acid was also found dysregulated.
Bile acids are signaling molecules with immune, metabolic, and
intestinal microbiota control actions (Wahlström et al., 2016). Bile
acids pathways have been widely reported in COVID-19 due to the
proven association between gut dysbiosis and inflammatory
processes that lead to severe disease. However, anomalies in bile
acids metabolism are also associated with liver injury, and affect the
substance transport system (cholesterol transport), which is
common in severe COVID-19 (Shen et al., 2020). A disordered
metabolism of bile acids among recovered COVID-19 patients
(three months after discharge) has been documented, suggesting
that the intestinal equilibrium at mucosal level is delayed before is
fully repaired (Zhang et al., 2021).

In post-COVID-19 patients, the isoprenoids pathway, also
recognized as mevalonate pathway (MVP) or HMG-CoA
reductase pathway, was also dysregulated. Isoprenoids are a
highly diverse class of biomolecules, ranging from cholesterol,
vitamin K, coenzyme Q10, all steroids hormones (Holstein and
Hohl, 2004). The MVP limits the activation of inflammasomes and
cytokine release, and for this reason, unbalanced signaling could be
associated with the pathobiology of COVID-19. A recent in silico
study revealed dysregulation of genes involved in the MVP in SARS-
CoV-2 infection, but not with H3N2 influenza virus,
H1N1 influenza virus, or respiratory syncytial virus (Gomez
Marti et al., 2021). Finally, the use of statins, namely, HMG-
CoA-reductase inhibitors, frequently used as therapeutic agents,
reduce cholesterol levels lowering viral titers through
immunomodulatory, anti-inflammatory and anti-thrombotic
effects (Proto et al., 2021).

These previously described metabolic alterations could account
for the plethora of symptoms reported in this study. In recovered
patients, values of hemoglobin, lymphocytes, monocytes,
neutrophils, and creatine were within normal range two years

TABLE 2 Clinical characteristics from patients with paired samples 2 years after recovery.

Variable COVID-19 (N = 13) Post-COVID-19 (N = 13) p-value

Male gender, n (%) 5 (38.4%) NA

Age, mean (± s.d) 54.6 ± 7.9 NA

Disease severity

Mild, n (%) 3 (23%) NA

Severe, n (%) 8 (61%) NA

Critical, n (%) 2 (15%) NA

Laboratory

Hemoglobin (g/dL), median (Q1-Q2) 14.90(13.80–16.40) 15.40(14.50–17.40) 0.08

Platelets (×103/mL), median (Q1-Q2) 238 (171.0–318.0) 238 (219.0–265.0) 0.96

Leukocytes (×103), median (Q1-Q2) 9.2 (5.6–11.8) 7.3 (6.3–8.1) 0.36

Lymphocytes (%), median (Q1-Q2) 13.4 (7.2–22.8) 36.4 (31.9–38.4) <0.001

Creatinine (mg/dL), median (Q1-Q2) 0.7 (0.68–0.8) 0.80 (0.6–0.8) 0.96

Significant values (p < 0.05) are highlighted in bold.
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after the acute infection. Only three out of 22 patients had one
reinfection (with the Omicron variant, January 2022). By the
moment of the follow-up laboratory tests, all patients tested

negative for SARS-CoV-2. However, the heterogeneity of
persistent symptomatology indicates that multiple organ systems
were affected during the recovery phase. The etiologies of the

FIGURE 8
Multivariate paired analyses from plasma lipidomics profile of COVID-19, and post-COVID-19 patients. (A) Score scatter plot based on PCAmodels
including paired samples. (B) Score scatter plot based on PLS-DAmodels. (C) Cross validation (10-foldCV). (D) permutation test (2000 permutations). (E)
Variable importance in Projection (VIP) plot representing the rank of 15 features identified by PLS-DA according to VIP score on x-axis. The most
discriminating metabolites are shown in descending score order. The color boxes indicate whethermetabolite concentration was increased (red) or
decreased (blue). * Represents features with confidence level 2. Figures were produced in MetaboAnalyst software v 5.0 (https://www.metaboanalyst.
ca/).
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reported conditions are post-acute COVID-19 cardiovascular
syndrome, post-acute COVID-19 neuropsychiatric syndrome, and
multi-system syndrome.

In the cohort of patients with baseline and follow-up CT scans,
interstitial thickening, ground glass opacity, and subpleural bands
were the most frequent sequelae observed. Ground glass opacity,
interstitial thickening, parenchymal bands, bronchiectasis,
lymphadenopathy, and pleural effusion has been reported (Yu
et al., 2020). A systematic review and meta-analysis of 15 studies
including over 3000 patient’s follow-up CT scans at 1–6 months
after discharge showed residual CT changes in 55.7% of the cases (So
et al., 2021). It could be possible that these anomalies could be
reverted two years after infection in the absence of other lung
diseases.

Remarkably, fatigue was the predominant alteration reported
(59%), as well as musculoskeletal symptoms such as arthralgias and
myalgias. Therefore, measuring the plasma lipid profile was relevant,
as lipids plays an essential role in energy metabolism.

When the lipid profile was analyzed, multivariate analysis
showed that after two years of recovery, post-COVID-19 patients
cannot be grouped with negative controls neither clustered with
COVID-19 patients, even though most basic laboratory parameters
are normalized; yet, the presence of a wide spectrum of symptoms
reflects that metabolic mediators are not reestablished at all.

Alterations in lipids have been found in recovered patients from
SARS (2003).Wu et al. followed 25 recovered SARS patients 12 years
after infection. The authors found increased levels of
phosphatidylinositol and lysophosphatidylinositol (Wu et al., 2017).

In SARS-CoV-2, lipid metabolism has been reported altered in
all the stages of the disease (Sun et al., 2020) and in the recovery
phase. Our group has reported alteration in the levels of
acylcarnitines and glycerophospholipids (phosphatidylcholines
and lysophosphatidylcholines) upon admission in emergency
rooms (early onset of symptoms) (López-Hernández et al., 2021).
Chen and cols (Chen et al., 2022). reported that in COVID-19
patients with nucleic acid turning negative (still hospitalized), lipid
metabolism was dysregulated. Acosta-Ampudia et al. also found that
approximately two months after discharge, the phenotype of
recovered patients did not return to a similar phenotype of pre-
pandemic controls, and altered levels of unsaturated fatty acids, such
as arachidonic and linoleic acid were seen (Acosta-Ampudia et al.,
2021). Li et al. (Li et al., 2022) found that metabolic disturbance of
lipids was associated with long-term chronic discomfort and
immune dysregulation in COVID-19 survivors 6 months after
discharge. The authors also reported dysregulated levels of TG,
LTB4, PGE2, polyunsaturated fatty acids, including 5-
hydroxyeicosatetraenoic acid (5-HETE), 12-
hydroxyeicosatetraenoic acid (12-HETE), and 15-
oxoeicosatetraenoic acid (15-oxoETE).

In this study, increased levels of several lipids (e.g.,
glycerophospholipids and sphingolipids) in the plasma of
recovered patients were observed. Despite not identifying all the
features dysregulated, we were able to identify (confidence level 2)
the most important lipids contributing to the differentiation.

Phosphatidylcholines have been found altered in COVID-19
patients with mixed results. This is because the pattern of lipid
regulation in COVID-19 patients depends upon the infection
severity (asymptomatic, mild, or severe) (Hao et al., 2021).

However, in most of the studies published so far, some lipid
species (even within the same family) are upregulated and others
downregulated, revealing a complex regulation in the context of
various concomitant factors playing a role, such as the patient´s
immune status and the presence of comorbidities. Here, some
species of PCs were found to decrease during the active phase of
the disease, and two years later these species increased in post-
COVID-19 patients, even in comparison with negative controls.
This could be explained as: 1) a compensatory mechanism, 2) the
persistence of molecular mechanisms that are still dysregulating
lipid homeostasis, and as 3) the cross-talking with the immune
system and gut microbiota. In our research conducted in 2020
(Herrera-Van Oostdam et al., 2021), we observed a positive
correlation between PCs and SMs with IL-12p70 and IFN-λ1. In
line with this, a recent work has reported that patients with long
COVID showed elevated expression of type I IFN (IFN-β) and type
III IFN (IFN-λ1) that remained high after 8 months of infection
(Phetsouphanh et al., 2022). On the other hand, the observed
dysregulation could be due to lifestyle changes since it has been
observed that mitochondrial dysfunction affect the mechanisms
generating energy. Either abnormally high, or abnormally low,
phospholipids can influence energy metabolism, and have large
implications on general metabolic parameters (van der Veen
et al., 2017).

Sphingolipids (SLs) also represent an important group of
bioactive molecules involved in crucial processes such as
inflammation, cellular differentiation, regeneration, aging, among
others, particularly important in musculoskeletal cells (Meacci et al.,
2022). The results of this study showed a dysregulation in
sphingolipid metabolism, that could be associated with the
reported symptoms: fatigue and muscular pain. It has been
previously observed that sphingolipids impairment affect skeletal
muscle cells (Danieli-Betto et al., 2005; Cowart, 2010).
Accumulation of sphingolipids has been associated with
inflammatory processes, and mass decrease of skeletal muscle
cells of aged mice (Trayssac et al., 2018). Also, inactivity or
disuse of musculoskeletal cells, as seen after disabled conditions,
correlate well with remodeling of membranes enriched in SL and
cholesterol along with changes in ceramide contents (Petrov et al.,
2019). Ceramides and Hexocylceramides, which are derivatives of
sphingomyelins, have been found increased in female patients with
myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and
among those with chronic hepatitis C infection and autoimmune
disease (Zhang et al., 2016; Filippatou et al., 2021).

Increased sphingolipids levels have also been observed in
metabolic syndrome (Chavez and Summers, 2012) and in the
acute cell danger response (Naviaux, 2014). Regarding ME/CFS, a
general agreement is that metabolic features are consistent with a
hypometabolic state, characterized by a decrease in sphingolipids,
glycosphingolipids, phospholipids, purines, microbiome aromatic
amino acid, and branch chain amino acid. In this study, an increase
in sphingolipids and phosphocholines was observed, so an
underlying mechanism like ME/CFS unlikely explains the fatigue
and muscular alterations seen.

Li et al. (Li et al., 2022) found that total levels of LysoPC, PA, PC,
PE, PS and Cer were significantly downregulated in elderly survivors
after a maximum of 9 months of a mild disease. This difference may
be explained by the type of patients studied; in that study only mild
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disease was included, and patients were stratified by age; and the
time after the acute disease was shorter.

Summarizing, our results show that post-COVID-19 is a
relevant entity that requires further research.

Results also show that after two years of SARS-CoV-2 infection,
some metabolic pathways are not normalized. It was worth noting
that some lipid species were downregulated in post-COVID patients,
while others were upregulated even within the same lipid family.
These lipid dysregulations could explain some of the persistent
symptoms reported by patients, especially those related to
musculoskeletal disorders. Targeted studies reporting absolute
concentrations for these markers are needed to establish the
precise molecular mechanisms involved, and most importantly,
to eventually design potential therapeutic interventions.

Finally, some important limitations ought to be acknowledged. The
sample size was small due to the exploratory nature of this study; this is
the result of focus given to the recruitment of patients that previously
participated in protocols approved in 2020 (first epidemic wave). As a
result, after two years, nearly one-third of the patients had died at
hospitals within the followingmonths after the infection. Also, from the
patients that agreed to participate, there was limited data on the type
and dosage of the medications prescribed during the recovery phase to
be considered when interpreting the results. There was also lack of data
regarding the occurrence of new illnesses and/or the reactivation of
latent ones that could have affected the lipidomic profile of the patients.

All participating patients included in this study were sent to
specialists to receive medical assistance for treating persistent symptoms.
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Bamboo species have traditionally been used as building material and potential
source of bioactive substances, as they produce a wide variety of phenolic
compounds, including flavonoids and cinnamic acid derivatives that are
considered biologically active. However, the effects of growth conditions such
as location, altitude, climate, and soil on the metabolome of these species still
need to be fully understood. This study aimed to evaluate variations in chemical
composition induced by altitudinal gradient (0–3000m) by utilizing an untargeted
metabolomics approach and mapping chemical space using molecular
networking analysis. We analyzed 111 samples from 12 bamboo species
collected from different altitudinal ranges using liquid chromatography coupled
with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). We used
multivariate and univariate statistical analyses to identify the metabolites that
showed significant differences in the altitude environments. Additionally, we
used the Global Natural Products Social Molecular Networking (GNPS) web
platform to perform chemical mapping by comparing the metabolome among
the studied species and the reference spectra from its database. The results
showed 89 differential metabolites between the altitudinal ranges investigated,
wherein high altitude environments significantly increased the profile of
flavonoids. While, low altitude environments significantly boosted the profile of
cinnamic acid derivatives, particularly caffeoylquinic acids (CQAs).
MolNetEnhancer networks confirmed the same differential molecular families
already found, revealing metabolic diversity. Overall, this study provides the first
report of variations induced by altitude in the chemical profile of bamboo species.
The findings may possess fascinating active biological properties, thus offering an
alternative use for bamboo.
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1 Introduction

Bamboo has gained immense value in recent times due to its
versatile applications in construction, food, cosmetics, and medicine
(Liese et al., 2015; Ming et al., 2017; Chongtham and Bisht, 2020).
Bamboo is a rich source of active compounds such as flavonoids,
phenolic acid derivatives, alkaloids, terpenes, and essential oils
(Coffie et al., 2014; Gomez et al., 2021; Gagliano et al., 2022;
Indira et al., 2022; Okido et al., 2022; Cheng et al., 2023) that are
characterized by their antioxidant (Panche et al., 2016; Speisky et al.,
2022), antimicrobial (Xie et al., 2015), antiviral (Badshah et al.,
2021), and anti-inflammatory (Maleki et al., 2019) properties,
among others. While most chemical and biological studies have
focused on the Asian continent (Clark et al., 2015; Gagliano et al.,
2022; Tamang et al., 2022), there is a pressing need to deepen
research on Neotropical bamboos to identify alternative uses and
create additional value for these species.

The metabolic profile of plants can be affected by several
environmental factors, such as temperature, light, ultraviolet
radiation levels, precipitation, humidity, nutrients, and altitude
(Khalil et al., 2020; Kumari et al., 2022). Additionally, genetic
factors, including the presence of genes that control metabolite
biosynthesis and the participation of enzymes in different
biosynthetic pathways, have been shown to contribute to this
variation (Dhami and Mishra, 2015; Sampaio et al., 2016; Pant
et al., 2021). However, few studies have investigated changes in the
chemical composition of bamboo species due to environmental or
genetic effects.

Recent studies have revealed that certain changes can
significantly impact the biological potential of bamboo.
Specifically, research has shown that seasonal and altitudinal
variation in Sasa argenteastriatus (Pleioblastus argenteostriatus
(Regel) Nakai) and S. quelpaertensis Nakai leaves is positively
correlated with an increase in the content of phenolic and
flavonoid compounds, with chlorogenic acid, isoorientin, and
vitexin being the most notable compounds exhibiting significant
changes (Ni et al., 2012; Ko et al., 2018). Another study on
Indocalamus latifolius (Keng) McClure evaluated the impact of
altitude on the chemical composition of flavonoids, phenols, and
triterpenes, demonstrating that an increase in altitude led to the
accumulation of metabolites and a subsequent increase in
antioxidant potential (Ni et al., 2013). Based on these findings,
we anticipate observing a similar correlation between the increase in
phenolic compound content and the species in our study, providing
valuable insights for improving crop production and obtaining
biologically active metabolites.

Metabolomics is a valuable tool for evaluating metabolic changes
in various biological matrices caused by environmental or genetic
factors. To analyze large amounts of metabolites in a biological
sample, different analytical platforms are currently used. When
combined with multivariate analysis, these platforms can identify
differentially expressed metabolites, helping to elucidate possible
metabolic pathways affected (Verpoorte et al., 2010; Shen et al.,
2023). To integrate other platforms and complement the global

analysis of the metabolome in bamboo species, we used Global
Natural Products Social Molecular Networking (GNPS), a novel
platform that facilitates the creation of molecular networks to
analyze mass spectrometry (MS/MS) data sets, providing a
comprehensive visualization of the chemical space (Wang et al.,
2016; Aron et al., 2020; Ramabulana et al., 2021). To our knowledge,
this is the first report that applies the untargeted metabolomics
approach and molecular networking analysis to the study of the
chemical composition of bamboo species under the influence of
altitude. This study aimed to evaluate the variations in chemical
composition under the influence of an altitudinal gradient
(0–3000 m) by utilizing an untargeted metabolomics approach
and the mapping of the chemical diversity using molecular
networking analysis of the global metabolome in bamboo species.

2 Materials and methods

2.1 Study design

A completely random sampling method was implemented for
the metabolomic study by selecting different collection sites in
Colombian locations [Cundinamarca (CU), Nariño (NA),
Putumayo (PU), and Quindío (QU)] situated at different
altitudes, ranging from (0–3000 m). The geographical
distributions of the collected species are shown in Figure 1. All
samples were collected from natural bamboo in the period 2020 to
2022 (more details are provided in Supplementary Table S1).

2.2 Plant material collection and
identification

We collected a total of 111 leaf samples from the upper branches
of 12 bamboo species, which were distributed across 40 different
altitudes and collected under the same conditions. Harvested
bamboo leaves were immediately air-dried at room temperature
and then ground into powder for extraction. Based on altitude, we
divided the 111 leaf samples into two groups: the low altitude group
(~0–1500 m; n = 40) and high altitude group (~1500–3000 m; n =
71), as indicated in Table 1. At least three individuals (n = 3) were
collected at each collection site, and voucher specimens were
deposited in the (HPUJ) Herbarium of the Pontificia Universidad
Javeriana.

2.3 Metabolite extraction and sample
preparation

To extract the plant material (leaves), 300 mg of dried and
ground samples were mixed with 10 mL of a solvent containing
chloroform, methanol, and water (in a ratio of 5:2.5:2.5 v/v/v). The
resulting mixture was then vortexed for 1 min, sonicated for 20 min,
and centrifuged at 5000 rpm and 20°C for 10 min. The liquid
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supernatant was filtered using PTFE syringe filters with a pore size of
0.22 µm (Thermo Scientific, Rockwood, TN), and stored at −80°C
until used for metabolomics analysis.

2.4 Untargeted metabolomics using LC-
QTOF-MS

Untargeted metabolomics was conducted using an Agilent Infinity
1260 HPLC system coupled to an Agilent 6545 quadrupole time-of-
flight (QTOF)mass spectrometer equippedwith electrospray ion source
(Waldbronn, Germany). 5 μL of the extracts were injected on a
C18 column (Kinetex 100 × 2.1 mm, 2.6 µm) at 30°C. The mobile
phase employed in LC analyses was composed of 0.1% formic acid in
Milli-Q water (v/v) (Solvent A) and acetonitrile (Solvent B) with a
constant flow of 400 μL/min. The gradient was set as follows: 3% for
1 min; 3%–97% B in 15 min; 97% B for 2 min; the column was re-
equilibrated for 6 min at the initial conditions. Full-scan MS1 and MS/
MS spectra were acquired. Data mass spectra were acquired in negative
ionization mode (ESI−), in a mass range of m/z 80–1700 Da in data-
dependent acquisition (DDA) mode. The QTOF instrument was
operated in the 4 GHz (high resolution) mode. The parameters used
for data acquisition were set as follows: nitrogen used as nebulizer gas
with pressure at 52 psi, a capillary voltage of 3000 V, ion source
temperature of 250°C, dry gas flow at 12 L/min, and acquisition rate
of one spectrum per second. MS/MS fragmentation was performed
using a collision-induced dissociation energy of 20 eV. Throughout the
analysis, two reference masses were used for mass correction: m/z
112.9856 [C2O2F3(NH4)] and m/z 1033.9881(C18H18O6N3P3F24).

2.5 Quality control samples

To evaluate system performance and reproducibility in sample
analysis, multiple QC samples were created by pooling and mixing

equal volumes of each extracted sample. To assess the instrument’s
robustness, pooled QC samples were injected before the sample
analysis until system equilibration was achieved and after every ten
randomized sample injections.

2.6 Metabolomics data processing

The LC-QTOF-MS raw data sets were processed using Agilent
MassHunter Workstation Profinder software (B.10.0, Agilent
Technologies) to extract molecular features for deconvolution,
alignment, and integration. The data were manually inspected to
eliminate noise and unrelated ions, and a presence filter was applied.
For statistical analysis, features that were present in 100% of the
samples for each altitudinal group and had a coefficient of variation
(CV) of less than 20% in the QC were selected.

2.7 Statistical analysis

Univariate and multivariate analyses were conducted using
MatLab (R2019b, MathWorks, Inc., Natick) and SIMCA
14.0 software (Umetrics, Umeå, Sweden), respectively. The
multivariate analysis generated PCA and OPLS-DA models,
which were validated using cross-validation less than 0.05 and
evaluated based on R2X (change in X explained by the model),
R2Y (the total of Y explained), and Q2 (sum parameter in cross-
validation). The significantly differential metabolites were identified
by calculating the variable importance in the projection (VIP)
greater than 1, with jackknife confident interval (JK) not
including zero combined with FC > 2.0 or FC < 0.5. The
annotated metabolites and their peak area were organized in a
table (.csv), which was uploaded to MetaboAnalyst 5.0 software
for statistical, functional, and integrative analysis of metabolomics
data (https://www.metaboanalyst.ca/). The software was used for

FIGURE 1
Geographical distribution map showing the bamboo species studied. Each mark corresponds to the place of collection of each specimen.
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TABLE 1 Classification of bamboo species according to altitudinal range.

Plant scientific name Sampling location Altitude (m) Group

G. aculeata E.Fourn. Quindío, Montenegro 1256 Low

G. amplexifolia J.Presl Quindío, Montenegro 1256 Low

G. angustifolia Kunth Nariño, Tumaco 18 Low

Nariño, Tumaco 21 Low

Nariño, Ricaurte 1053 Low

Nariño, Ricaurte 1089 Low

Quindío, Montenegro 1256 Low

Cundinamarca, Pacho 1343 Low

Nariño, Samaniego 1478 Low

Nariño, Samaniego 1565 High

Nariño, Samaniego 1588 High

Nariño, San Lorenzo 1595 High

Nariño, La Unión 1598 High

Nariño, Consacá 1606 High

Nariño, Samaniego 1606 High

Nariño, La Unión 1610 High

Nariño, La Unión 1631 High

Nariño, San Lorenzo 1713 High

Nariño, Sandoná 1720 High

Nariño, Sandoná 1744 High

Nariño, San Lorenzo 1779 High

Nariño, San Lorenzo 1808 High

Nariño, San Lorenzo 1826 High

Nariño, Chachagüí 1857 High

Nariño, San Lorenzo 1876 High

Nariño, San Lorenzo 1930 High

Nariño, San Lorenzo 1970 High

Nariño, La Florida 2089 High

Nariño, La Florida 2122 High

Nariño, La Florida 2137 High

G. angustifolia var. bicolor Londoño Quindío, Montenegro 1256 Low

G. angustifolia Kunth biotype San Calixto Quindío, Montenegro 1256 Low

G. incana Londoño Putumayo, Mocoa 604 Low

Quindío, Montenegro 1256 Low

G. superba Huber Quindío, Montenegro 1256 Low

G. uncinata Londoño & L.G.Clark Quindío, Montenegro 1256 Low

G. venezuelae Munro Quindío, Montenegro 1256 Low

G. weberbaueri Pilg. Quindío, Montenegro 1256 Low

(Continued on following page)
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visualization using heatmap clustering (Pang et al., 2022),
normalized by Pareto scaling. Additionally, univariate analysis
was performed to determine the p-value features.

2.8 Metabolite identification

Differential metabolite annotation was conducted by
considering the precision of the mass (maximum error of
mass 10 ppm), isotopic pattern distribution, and adduct
formation, using different public online databases such as
METLIN (https://metlin.scripps.edu/), KEGG (https://genome.
jp/kegg), HMDB (https://hmdb.ca/), PubChem (https://
pubchem.ncbi.nlm.nih.gov/) and ChEBI (https://www.ebi.ac.
uk/chebi/) through the CEU Mass Mediator (https://ceumass.
eps.uspceu.es/) tool. The identity of the metabolites was
confirmed through MS/MS analysis, which included the use of
MS-DIAL 4.80 (https://prime.psc.riken.jp/compms/msdial/
main.html), MS-FINDER 3.52 (https://prime.psc.riken.jp/
compms/msfinder/main.html), CFM-ID 4.0 (https://cfmid.
wishartlab.com/) for in silico mass spectral fragmentation,
GNPS web platform (https://gnps.ucsd.edu/ProteoSAFe/static/
gnps-splash.jsp) and manual interpretation with the Agilent
Mass Hunter Qualitative Analysis software (version 10.0). The
metabolites were identified according to the metabolomics
standards initiative (Schymanski et al., 2014).

2.9 Global natural products social molecular
networking (GNPS) web platform workflow
description

A molecular network was created using the online workflow
(https://ccms-ucsd.github.io/GNPSDocumentation/) on the
GNPS website (https://gnps.ucsd.edu/). The precursor ion
mass tolerance was set to 0.02 Da and an MS/MS fragment ion
tolerance of 0.02 Da. A network was then created where edges
were filtered to have a cosine score above 0.6 and more than four
matched peaks. Further, edges between two nodes were kept in
the network if and only if each of the nodes appeared in each
other’s respective top 10 most similar nodes. Finally, the
maximum size of a molecular family was set to 0, and the
lowest-scoring edges were removed from molecular families
until the molecular family size was below this threshold. The
spectra in the network were then searched against GNPS spectral
libraries. All matches kept between network spectra and library
spectra were required to have a score above 0.6 and at least four
matched peaks (Wang et al., 2016). To enhance chemical
structural information within the molecular network,
information from in silico structure annotations from GNPS

Library Search, Network Annotation Propagation, Dereplicator
were incorporated into the network using the GNPS
MolNetEnhancer workflow (https://ccms-ucsd.github.io/
GNPSDocumentation/molnetenhancer/). Chemical class
annotations were performed using the ClassyFire chemical
ontology (Djoumbou Feunang et al., 2016; Mohimani et al.,
2017; Da Silva et al., 2018; Ernst et al., 2019). The attribute
table of the generated nodes was visualized in the Cytoscape
software to analyze the molecular network. The data used for the
analysis of molecular networks were deposited in the MassIVE
Public GNPS database (http://massive.ucsd.edu) with the
accession number MSV000090298. The workflow used in this
study is summarized in Figure 2.

3 Results

3.1 Chemical variation of bamboo species
presented between low and high altitudes

The quality and stability of the instrument were assessed by
conducting a principal component analysis (PCA) on the quality
control samples. Supplementary Figure S1 shows a clustering of
the QC samples, which indicates the analytical platform’s
reliability and the data’s validity. To account for altitudinal
variation, we performed PCA and orthogonal partial least
squares discriminant analysis (OPLS-DA) models on samples
classified into two altitude ranges. Based on this classification, we
developed an unsupervised PCA model to observe trends
between the two altitude groups. As depicted in Figure 3A, the
PCA model showed an initial exploration of the data set,
evidencing certain trends between the variables of the altitude
groups. Additionally, we constructed a supervised OPLS-DA
model to differentiate between low and high altitude groups,
with appropriate quality parameters, demonstrating complete
separation of the groups. (Figure 3B). This allowed us to
identify the significant variables that contributed to the
separation between the groups, yielding a total of
89 significant variables with values (false discovery rate,
FDR) < 0.05, VIP >1, and FC > 2.0 (or <0.5), as identified
according to the metabolomics standards initiative
(Schymanski et al., 2014). To validate the OPLS-DA model,
we conducted permutation analysis, plotting R2 and Q2 of
200 permutation tests, as shown in Figure 3C.

Table 2 presents the differential metabolites (89) that belong to
various families, such as flavonoids (48%), fatty acids (19%), cinnamic
acid derivatives (11%), unknowns (6%), peptides (3%), glycosylated
lignans (2%), alkaloids (2%), carboxylic acids (1%), phenols (1%),
carbohydrates (1%), steroids (1%), glycosylated stilbenes (1%) and
prenolipids (1%). The largest group of differentially expressed

TABLE 1 (Continued) Classification of bamboo species according to altitudinal range.

Plant scientific name Sampling location Altitude (m) Group

B. vulgaris Schrad. ex J.C. Wendl. Cundinamarca, Pacho 1343 Low

P. aurea Rivière & C.Rivière Quindío, Montenegro 1256 Low
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FIGURE 2
Schematic of the experiment analytical workflow used in this study.

FIGURE 3
Score plots of the influence of direction compared low/high altitudes. (A) PCA score plot of total samples (R2X(cum): 0.813; Q

2
(cum): 0.54). (B)OPLS-

DA score plot of the low vs. high altitudes sample (R2X(cum): 0.494; R
2Y(cum):0.858; Q

2
(cum):0.742; CV Anova: 9.61549e-27). (C)Cross-validation plot of the

OPLS-DA model with 200 permutation test. Low altitude (~0–1500 m; n = 40) and high altitude (~1500–3000 m; n = 71).
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TABLE 2 Significantly differential metabolites found the altitudinal variation.

Compound name Molecular
formula

Molecular
weight
(g/mol)

RT
(min)

Mass
error
(ppm)

Adduct ID
level

aCV
for
QC
(%)

Low vs. high altitude
samples

bFC cVIP dp-
value
with
FDR

Flavonoids

Luteolin 6-C-glucoside 8-C-
arabinoside

C27H30O16 610.1534 5.17 1 [M-H]− 2 0.64 0.67 3.26 2.41E-02

Quercetin 3,7-dirhamnoside C27H30O15 594.1585 5.39 1 [M-H]− 2 1.73 0.65 3.71 2.81E-04

Kaempferol-3-O-rutinoside C27H30O15 594.1585 6.09 4 [M-H]− 4 0.86 0.77 2.34 1.70E-02

Vitexin 6’’-(3-hydroxy-3-
methylglutarate)

C27H28O14 576.1479 6.86 1 [M-H-H2O]
− 3 3.42 0.45 3.03 6.10E-05

Maysin C27H28O14 576.1479 5.86 1 [M-H]− 2 3.53 0.53 3.58 1.47E-04

Cassiaoccidentalin B C27H28O14 576.1479 6.72 2 [M-H]− 2 1.76 0.58 2.70 2.91E-04

Nicotiflorin C27H30O15 594.1585 5.96 0 [M-H]− 2 2.95 0.68 1.88 8.91E-03

Scutellarein 4′-methyl ether 7-
glucuronide

C22H20O12 476.0955 6.44 1 [M-H]− 2 1.46 0.44 2.68 3.25E-06

Denticulaflavonol C35H42O6 558.2981 12.92 9 [M+Cl]− 2 0.94 0.26 2.03 7.02E-12

Apigenin 7-[6’’-(3-Hydroxy-3-
methylglutaryl)glucoside]

C27H28O14 576.1479 8.29 5 [M-H-H2O]
− 4 1.00 0.61 2.21 1.23E-03

Quercetin 3-(2″,3″,4″-
triacetylgalactoside)

C27H26O15 590.1272 6.90 1 [M-H-H2O]
− 3 0.74 0.35 2.33 5.17E-07

Hosloppin C22H16O7 392.0896 8.82 7 [M+HCOO-H]− 2 0.62 0.68 1.54 1.25E-03

Vitexin 2″-O-rhamnoside* C27H30O14 578.1636 5.96 3 [M-H]− 2 0.58 0.67 1.87 1.41E-03

Allivicin C27H30O16 610.1534 5.81 1 [M-H]− 2 1.38 0.75 2.35 2.99E-02

Paniculatin C27H30O15 594.1585 6.86 0 [M-H-H2O]
− 4 2.88 0.50 2.42 1.24E-03

6″-O-(3-Hydroxy-3-
methylglutaroyl)astragalin

C27H28O15 592.1428 6.21 1 [M-H]− 2 1.60 0.58 1.31 3.73E-03

Baicalin C21H18O11 446.0849 6.18 3 [M-H]− 4 2.31 0.47 1.59 2.05E-03

4′-O-Methylneobavaisoflavone
7-O-(2″-p-coumaroylglucoside)

C36H36O11 644.2258 6.14 8 [M-H]− 3 0.63 2.14 1.37 8.96E-03

Apigenin 7-[rhamnosyl-(1->2)-
galacturonide]

C27H28O15 592.1428 6.21 2 [M-H]− 4 2.60 0.66 1.09 2.01E-03

Isorhamnetin 3-galactoside-7-
rhamnoside

C28H32O16 624.1690 5.52 2 [M-H]− 2 0.71 0.67 1.47 8.10E-03

Violanthin C27H30O14 578.1636 6.51 4 [M-H]− 4 1.05 0.56 1.27 2.10E-05

Eruberin B C30H40O15 640.2367 6.23 2 [M-H]− 3 1.81 5.15 1.07 9.72E-04

Kaempferol 7-sophoroside C27H30O16 610.1534 5.17 6 [M-H]− 2 0.26 0.74 2.44 4.45E-02

Vicenin 2* C27H30O15 594.1585 5.96 1 [M-H]− 2 3.76 0.74 1.74 2.13E-02

Thonningianin B C35H30O17 722.1483 9.07 3 [M+HCOO-H]− 2 0.86 0.58 1.49 1.25E-04

Bracteoside C22H20O12 476.0955 6.01 2 [M-H]− 4 5.58 0.48 1.07 4.91E-05

Orientin 2″-rhamnoside C27H30O15 594.1585 6.09 1 [M-H]− 2 0.77 0.74 2.47 6.33E-03

7,8,3′,4′-Tetrahydroxyflavanone
7-(2,4,6-triacetylglucoside)

C27H28O14 576.1479 6.72 1 [M-H]− 2 1.66 0.57 2.72 2.80E-04

(Continued on following page)
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TABLE 2 (Continued) Significantly differential metabolites found the altitudinal variation.

Compound name Molecular
formula

Molecular
weight
(g/mol)

RT
(min)

Mass
error
(ppm)

Adduct ID
level

aCV
for
QC
(%)

Low vs. high altitude
samples

bFC cVIP dp-
value
with
FDR

Epigallocatechin 3-gallate C22H18O11 458.0849 7.93 2 [M-H]− 2 2.83 0.45 1.15 3.29E-06

Glychalcone A C22H22O5 366.1467 1.34 4 [M-H]− 4 1.85 0.48 1.29 6.72E-08

Quercetin 3-(3″,6″-
diacetylgalactoside)

C25H24O14 548.1166 6.94 6 [M-H-H2O]
− 3 1.39 0.52 1.06 9.13E-05

2″,4″-Diacetylafzelin C25H24O12 516.1268 6.79 1 [M-H]− 3 0.39 0.73 2.54 3.65E-03

Epigallocatechin 3-O-caffeate C24H20O10 468.1057 8.30 5 [M+HCOO-H]− 3 1.06 0.48 1.16 1.05E-06

Cyanidin 3-rutinoside C27H31O15 595.1663 6.72 8 [M-H-H2O]
− 4 1.72 0.73 1.29 1.24E-02

5,7,3′,4′-Tetrahydroxyflavanone
7-alpha-L-arabinofuranosyl-(1-
>6)-glucoside

C26H30O15 582.1585 5.17 2 [M+HCOO-H]− 4 0.24 0.63 2.60 2.76E-03

Isoorientin 2″-O-rhamnoside C27H30O15 594.1585 5.86 2 [M-H]− 4 1.15 0.60 2.82 1.20E-03

Neosaponarin C27H30O15 594.1585 6.72 2 [M-H]− 4 0.99 0.64 2.92 1.85E-03

Chamaemeloside C27H28O14 576.1479 6.08 1 [M-H]− 2 1.39 0.59 1.68 3.16E-05

5′,5‴,8,8″-Tetrahydroxy-
3′,3‴,4′,4‴,7′,7″-hexamethoxy-
5,5″-biflavan

C36H38O12 662.2363 5.90 8 [M-H-H2O]
− 3 0.33 0.61 1.45 1.39E-05

Kaempferol 7-neohesperidoside C27H30O15 594.1585 6.09 1 [M-H]− 2 0.85 0.72 2.56 4.44E-03

Saponarin* C27H30O15 594.1585 5.40 2 [M-H]− 2 1.32 0.69 2.78 7.22E-04

Astragalin 7-rhamnoside C27H30O15 594.1585 6.54 1 [M-H-H2O]
− 3 1.66 0.51 1.61 5.64E-05

Apigenin 7-glucuronide-4′-
rhamnoside

C27H28O15 592.1428 6.54 1 [M-H-H2O]
− 3 1.95 0.50 1.64 5.20E-05

Fatty acids

TriHODE C18H32O5 328.2250 8.07 1 [M-H]− 4 0.36 0.65 3.90 2.34E-08

Sativic acid C18H36O6 348.2512 8.45 1 [M-H-H2O]
− 4 0.26 0.61 3.96 4.91E-13

Coriolic acid C18H32O3 296.2351 11.70 1 [M-H]− 2 0.75 0.35 2.40 7.02E-12

HoTrE C18H30O3 294.2195 11.20 1 [M-H]− 2 0.76 0.33 2.44 1.84E-12

Dodecanedioic acid C12H22O4 230.1518 6.43 0 [M-H]− 2 0.45 0.67 1.88 1.95E-04

TriHOME C18H34O5 330.2406 8.88 2 [M-H]− 4 1.37 0.48 1.30 3.66E-07

Lauric acid C12H22O3 214.1569 8.39 1 [M-H]− 2 0.64 0.43 1.14 2.13E-07

Undecylenic acid C11H20O2 184.1463 6.70 1 [M+HCOO-H]− 4 0.61 0.68 1.26 1.89E-03

HpODE C18H32O4 312.2301 10.50 1 [M-H]- 4 1.25 0.46 1.02 1.74E-07

HpOTrE C18H30O4 310.2144 10.09 1 [M-H]− 4 1.74 0.41 1.03 2.56E-07

Undecenoic acid C11H20O2 184.1463 8.07 1 [M+HCOO-H]− 4 0.87 0.65 1.23 3.88E-07

Cascarillic acid C11H20O2 184.1463 8.45 1 [M+HCOO-H]− 4 0.88 0.53 1.43 5.49E-12

Sorbic acid C6H8O2 112.0524 3.33 1 [M-H-H2O]
− 3 1.11 0.61 1.24 9.88E-07

Malyngic acid C18H32O5 328.2250 9.08 2 [M-H]− 4 9.26 0.60 1.36 9.87E-07

Fulgidic acid C18H32O5 328.2250 8.55 1 [M-H]− 4 1.53 0.56 1.01 1.06E-05

(Continued on following page)
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TABLE 2 (Continued) Significantly differential metabolites found the altitudinal variation.

Compound name Molecular
formula

Molecular
weight
(g/mol)

RT
(min)

Mass
error
(ppm)

Adduct ID
level

aCV
for
QC
(%)

Low vs. high altitude
samples

bFC cVIP dp-
value
with
FDR

Hydroxyjasmonic acid C12H18O4 226.1205 7.50 1 [M-H]− 2 0.83 0.61 1.04 3.25E-06

Norlinolenic acid C17H28O2 264.2089 9.08 2 [M+HCOO-H]− 4 0.89 0.41 1.72 7.02E-12

Cinnamic acid derivatives

O-Caffeoylquinic acid C25H24O12 516.1268 6.79 5 [M-H]− 2 0.26 0.77 2.16 5.80E-03

p-Coumaroylquinic acid C16H18O8 338.1002 4.97 2 [M-H]− 4 1.22 4.38 1.15 2.61E-06

O-Feruloyl-beta-D-glucose C16H20O9 356.1107 4.24 1 [M-H-H2O]
− 4 1.39 2.39 1.14 2.12E-03

Dihydrocaffeic acid 3-O-
glucuronide

C15H18O10 358.0900 5.12 7 [M+HCOO-H]− 2 0.60 0.73 1.37 1.12E-02

O-Feruloylgalactarate C16H18O11 386.0849 5.83 7 [M+HCOO-H]− 2 0.45 0.62 2.09 1.80E-06

Caffeic acid 3-glucoside C15H18O9 342.0951 7.31 8 [M+HCOO-H]− 4 1.05 0.66 1.49 3.44E-03

Dihydroferulic acid 4-O-
glucuronide

C16H20O10 372.1056 5.30 1 [M-H]− 4 0.83 2.96 1.51 3.60E-07

1-Caffeoyl-4-deoxyquinic acid C16H18O8 338.1002 5.28 1 [M-H]− 4 9.71 2.79 1.04 1.32E-02

Quinic acid C7H12O6 192.0634 4.73 2 [M-H]− 2 0.91 5.05 1.42 3.14E-03

1-O-Sinapoylglucose C17H22O10 386.1213 5.48 1 [M-H]− 4 0.88 6.16 1.24 8.80E-09

Unknowns

Unknown 1 (396.036@4.25) — — 4.25 — — 5 1.89 0.32 2.27 1.54E-07

Unknown 2 (586.0623@8.9) — — 8.90 — — 5 1.77 0.67 1.49 4.69E-04

Unknown 3 (572.0832@8.44) — — 8.44 — — 5 0.45 0.79 1.02 1.65E-02

Unknown 4 (255.989@8.9) — — 8.90 — — 5 1.36 0.66 1.11 8.14E-05

Unknown 5 C27H36O12 — 6.14 — — 4 0.88 2.10 1.36 1.02E-02

Unknown 6 C27H36O12 — 5.90 — — 4 0.39 0.61 1.80 2.56E-05

Peptides

Tripeptide 1 C19H25N3O7 407.1692 4.65 6 [M-H]− 3 1.16 9.13 1.62 2.22E-09

Tripeptide 2 C19H25N3O7 407.1692 4.55 7 [M-H]− 3 1.46 10.31 1.61 1.56E-10

Tripeptide 3 C15H20N4O6 352.1383 4.81 5 [M-H]− 4 1.09 4.36 1.89 1.84E-12

Glycosylated lignans

Prupaside C27H36O12 552.2207 5.90 1 [M+HCOO-H]− 3 0.40 0.61 1.88 2.37E-05

Citrusin B C27H36O13 568.2156 6.27 2 [M+HCOO-H]− 4 1.00 0.58 1.02 6.10E-05

Alkaloids

2′-Norberbamunine C35H38N2O6 582.2730 8.51 5 [M+HCOO-H]− 4 1.30 0.39 1.07 4.43E-12

Vomilenine C21H22N2O3 350.1630 4.88 8 [M+Cl]− 4 0.50 1.36 1.44 1.04E-02

Carboxylic acids

3,4,5-trihydroxy-6-(2-hydroxy-
6-methoxyphenoxy)oxane-2-
carboxylic acid

C13H16O9 316.0794 2.06 2 [M-H]− 4 0.88 2.14 1.54 5.09E-04

(Continued on following page)
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metabolites comprises flavonoids which are the most frequently
reported metabolites for these species. Many metabolites in this
group showed an upward trend at higher altitudes, potentially
contributing to the medicinal potential of these species.

3.2 Molecular networks and heatmap
analyses reveal the chemical variation under
the influence of altitudinal variation

To explore the leading chemical classes, we created a molecular
network using the GNPS platform, which enabled us to visualize the
chemical space of the metabolome in these species. Figure 4A illustrates
the molecular network analyzed in the MolNetEnhancer platform,
revealing the classes of MF present in the metabolome. We
identified seven groups of molecular families, including
phenylpropanoids and polyketides, lipids and lipid-like molecules,
organic acid derivatives, lignans, neolignans and related compounds,
alkaloids, and derivatives, organoheterocyclic compounds, and
oxygenated organic compounds. However, due to the complexity of
the metabolome in these species and the limitations of the spectral
libraries, many of the nodes did not match any spectral reference.
Therefore, it is crucial to continue exploring the chemical composition
of these species, which is still limited in the literature. Notably, when we
created a molecular network of the flavonoid cluster and compared the
low vs. high altitude groups of the annotated compounds, we found that
vitexin 2″-O-rhamnoside (FC = 1.494; p-value = 1.41E-03), saponarin
(FC = 1.458; p-value = 7.22E-04), and vicenin 2 (FC = 1.360; p-value =

2.13E-02) (Supplementary Figures S2A–C) exhibited positive
correlations at higher altitudes, confirming the statistical analysis
performed previously (Figure 4B).

By conducting hierarchical clustering analysis and generating a
heatmap based on the two most relevant groups of annotated
metabolites that exhibited significant changes with altitude
(flavonoids and cinnamic acid derivatives), we identified two
distinct groups that were associated with altitude. We found that
each group exhibited different patterns in terms of chemical
composition and levels of presence and abundance. Figure 5
depicts the clustering of the two altitudinal ranges evaluated,
with the first cluster corresponding to the high altitude samples
that exhibited a high accumulation of flavonoids, while the low
altitude samples exhibited a high accumulation of cinnamic acid
derivatives.

3.3 Changes in the concentration and
analysis of biosynthesis pathways of the
most relevant metabolites in bamboo
species

The box plot shows the differential metabolites for the two
altitude groups. In Figure 6 we present the fold change of the main
metabolites that exhibited a significant change. We found that
cinnamic acid derivatives and flavonoids showed a significant
change with the low and high altitude groups, respectively. Our
study also highlighted the significance of quinic acid (QA) is a major

TABLE 2 (Continued) Significantly differential metabolites found the altitudinal variation.

Compound name Molecular
formula

Molecular
weight
(g/mol)

RT
(min)

Mass
error
(ppm)

Adduct ID
level

aCV
for
QC
(%)

Low vs. high altitude
samples

bFC cVIP dp-
value
with
FDR

Phenols

Phenol glucuronide C12H14O7 270.0740 2.06 0 [M+HCOO-H]− 4 0.90 2.14 1.54 5.10E-04

Carbohydrates

Ribulose C5H10O5 150.0528 0.60 0 [M-H]− 4 0.76 0.75 1.14 1.21E-03

Steroids

Physalin L C28H32O10 528.1995 1.54 3 [M-H]− 2 1.11 0.40 1.08 1.07E-07

Glycosylated stilbenes

Piceatannol 4′-galloylglucoside C27H26O13 558.1373 7.69 2 [M-H]− 3 2.60 0.36 1.23 2.24E-05

Prenolipids

Auxin b C18H30O4 310.2144 9.08 1 [M-H]− 4 1.13 0.41 1.81 7.07E-12

aCV, coefficient of variation in the metabolites in the QC samples.
bFC, fold change in the comparison (average in low altitude/average in high altitude).
cVIP, variable importance in projection.
dp-value corresponding to the p values calculated by the Benjamini–Hochberg false discovery rate post hoc correction (FDR <0.05); *Metabolites annotated with GNPS. RT: retention time;

Confidence levels in annotation were as following: Level 1: Confirmed structure, Level 2: Probable structure, Level 3: Tentative candidate(s), Level 4: Unequivocal molecular formula, Level 5:

Exact mass (Schymanski et al., 2014).
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differential metabolite, which acts as a crucial precursor in the
biosynthetic pathway of phenylpropanoids and is essential in the
production of a diverse array of phenolic compounds.

3.4 Molecular networking for chemical
space mapping of the metabolome of
bamboo species by MolNetEnhancer

To complement the study on the chemical composition of the global
metabolome of bamboo species, a molecular network was constructed
using the GNPS platform to compare other types of flavonoids that were
not statistically significant among the twelve species studied. Four
flavonoid C-glycosides (isorhamnetin 7-rhamnoside, isovitexin,
isoschaftoside, and rhoifolin) and one flavonoid O-glycoside
(cyanidin 3-O-sophoroside) were annotated (Supplementary Figures
S2D–H). It was observed that theGuadua angustifolia species was found
to have an abundant profile of flavonoid C-glucosides, specifically of the

compound isoschaftoside, which is functionally related to apigenin
(Figure 7). In terms of flavonoid variation between species, isovitexin
and isorhamnetin 7-rhamnoside were found in most species.

4 Discussion

Our findings indicate that flavonoids significantly increased at high
altitudes, while cinnamic acid derivatives exhibited an increasing trend
at low altitudes. Notably, flavonoids from G. angustifolia showed a
positive correlation with the high altitude group, as did cinnamic acid
derivatives fromG. aculeata,G. amplexifolia,G. angustifolia var. bicolor,
G. angustifolia biotype San Calixto, G. incana, G. superba, G. uncinata,
G. venezuelae, B. vulgaris, and P. aurea with low altitude (Figure 8).
However, further research is needed to determine the exact nature of
this correlation. The effect of altitudinal variation on the chemical
composition of the leaves of bamboo species is poorly documented.
Previous studies have suggested that plants grown at high altitudes tend

FIGURE 4
Molecular network analysis obtained from GNPS platform online. (A) Identification of major classes of chemical constituents of bamboo species
using MolNetEnhancer technique and GNPS molecular networking. Color of the node is set according to the chemical class using “Classyfire”. (B)
Molecular network of the flavonoid cluster comparing low altitude (blue) and high altitude (red).
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to have higher levels of flavonoids compared to those grown at low
altitudes (Wang et al., 2020; Zhou et al., 2021). This phenomenon can be
attributed to an increase of in ultraviolet radiation, illumination time
and the delay of the phenophase of the plant, along with elevation,
which is a protective mechanism that plants use against unfavorable
environmental conditions (Ni et al., 2013). In a recent study, Zhou et al.
(2021) investigated the influence of an altitudinal gradient on the
variation of flavonoids in Agriophyllum squarrosum and found that
these metabolites were enriched at high altitudes. The study also
demonstrated a strong positive correlation between the contents of
flavonoids, such as quercetin, tricine, and rutin, and environmental
variables, such as latitude, longitude, and precipitation gradients. These
findings corroborate our results and provide valuable information on
the variation in the chemical profile of bamboo under various abiotic
factors such as altitude, temperature, light, and soil, etc.

The metabolic differences expressed in bamboo species between
high and low altitudes provide valuable information about the ideal
growing conditions to promote the production of phenolic compounds

with important biological properties in medicine. Moreover, the
bamboo leaves have added value as are agro-industrial residues
generated in the construction industry. Our results suggest that the
accumulation of flavonoids at high altitudes is due to the adaptability of
bamboo species to environmental conditions. These giant grasses
biosynthesize flavonoid-type phenolic compounds that are used as
defence and potential antioxidants (Falcone Ferreyra et al., 2012;
Panche et al., 2016; Wang et al., 2018). Notably, the
phenylpropanoid biosynthesis pathway, which is the starting point
for producing many essential compounds such as flavonoids,
coumarins, lignans, and hydroxycinnamic acid conjugates (Fraser
and Chapple, 2011), is possibly the pathway that has been altered
considering the results of this study. Flavonoid production occurs
mainly through a diverse biosynthetic pathway involving the
shikimate pathway and polyketide pathways (Mouradov and
Spangenberg, 2014; Liu et al., 2021). Interestingly, the
phenylpropanoid biosynthetic pathway showed a significant change
in the presence of QA, with a fold change of 5.05, VIP of 1.42, and a

FIGURE 5
Hierarchical clustering with heatmap illustrating the differences in the metabolite abundance between low and high altitudes. The x-axis shows the
clustering of all the samples, and the y-axis shows the clustering of the annotated flavonoids and cinnamic acid derivatives.
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FIGURE 6
Box plot for the alteredmetabolites corresponding to cinnamic acid derivatives and flavonoids (p-value <0.05) at low altitude (blue) and high altitude
(red). Y-axes are represented as relative units. The data were normalized with respect to the total spectral area. Bar charts show normalized values
(mean ± one standard deviation). Boxes range from the 5% and 95% percentiles are indicated as error bars; individual data points are indicated by circles.
The medians are indicated by horizontal lines within each box.

FIGURE 7
Molecular networking and dereplication of flavonoids comparing twelve bamboo species.
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p-value with FDR 3.14E-03. QA is a metabolite that is closely related to
the biosynthesis pathway of caffeoylquinic acids (CQAs) and are
specialized bioactive metabolites that are derived from the
phenylpropanoid biosynthesis pathway. Consequently, QA is
a critical intermediate in the biosynthesis of many flavonoids
through cinnamic acid, which is a necessary precursor (Alcázar
Magaña et al., 2021; Liu et al., 2021). Furthermore, the study
revealed interesting chemical diversity in these species, with a
predominance of groups of metabolites that are flavonoids and
cinnamic acid derivatives. The mapping of the chemical space
(including information about known reference spectra) allowed
for the visualization of a large part of the global chemical
composition of these species. However, the GNPS platform
had a low annotation rate, resulting in many no-matches.

To complement the study of changes in chemical
composition under the influence of altitude, the molecular
network was used to analyze the specific cluster for
flavonoids, comparing low and high altitudes. The study
showed that the flavonoids such as vitexin 2″-O-rhamnoside,
saponarin, and vicenin 2 had a positive tendency to increase at
high altitudes. This finding suggests a close relationship

between the concentration of phenolic compounds
(flavonoids and cinnamic acid derivatives) in bamboo
species. The heatmap shows a clear difference in the content
of flavonoids and cinnamic acid derivatives between the groups
compared under the effect of the altitudinal gradient, which
could serve as marker compounds for chemical classification.
The metabolites exposed to the variable altitude showed a
significant difference, indicating that environmental factors
have previously influenced the genetic and chemical diversity
of plants (Pacheco-Hernández et al., 2021).

The metabolome of various bamboo species was compared, it was
found that G. angustifolia had a rich profile of C-glycoside flavonoids.
Similar metabolites have been reported for other bamboo species such as
P. nigra var. henonis (Zhang et al., 2008; Ibrahim et al., 2021) P. pubescens
(Tanaka et al., 2014) and B. vulgaris (Akhtar and Patowary, 2022). Some
flavonoids were found to be shared among other species, such as G.
aculeata.,G. angustifolia,G. angustifolia biotype SanCalixto,G. incana,G.
uncinata, and G. venezuelae. Out of the twelve species analyzed, B.
vulgaris and P. aurea were found to be the most studied species at the
chemical level in Asia. However, considering the limited information
available in the literature and the results obtained from the metabolomic

FIGURE 8
(A) Pearson’s correlations using pattern search of the top 25 metabolites between low and high altitude. (B) Cluster heatmap based on correlation
between flavonoids and acid cinnamic derivatives and the altitude variable. The analysis shows a positive (red) and negative (green) correlation with a
p-value = 0.05 for all the metabolites.
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analysis, this study presents an opportunity to explore the metabolome of
these species further, especially those belonging to the genusGuadua and
distributed in the Neotropical region.

5 Conclusion

This study employed an untargeted metabolomics approach and
molecular networking analysis to assess changes in the chemical
composition of bamboo species due to variations in altitude. The
study revealed that high altitude had a significant influence on the
increase of flavonoid profiles, while low altitude led to an increase in
cinnamic acid derivatives profiles. The molecular network analysis
further demonstrated the diverse chemical composition of these
species, including flavonoid glycosides, cinnamic acid derivatives,
lignans, alkaloids, carbohydrates, and fatty acids. Conducting
metabolomic studies on bamboo can provide a detailed
understanding of its chemical composition and metabolic
conservation, aiding in identifying patterns and trends in relation
to environmental and cultivation factors. This information can help
to enhance the production and quality of bamboo, identify bioactive
compounds for natural health products, and improve sustainability,
positively impacting the industry and the economy.
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How the human body reacts to the exposure of HIV-1 is an important research
goal. Frequently, HIV exposure leads to infection, but some individuals show
natural resistance to this infection; they are known as HIV-1-exposed but
seronegative (HESN). Others, although infected but without antiretroviral
therapy, control HIV-1 replication and progression to AIDS; they are named
controllers, maintaining low viral levels and an adequate count of CD4+ T
lymphocytes. Biological mechanisms explaining these phenomena are not
precise. In this context, metabolomics emerges as a method to find
metabolites in response to pathophysiological stimuli, which can help to
establish mechanisms of natural resistance to HIV-1 infection and its
progression. We conducted a cross-sectional study including 30 HESN,
14 HIV-1 progressors, 14 controllers and 30 healthy controls. Plasma samples
(directly and deproteinized) were analyzed through Nuclear Magnetic Resonance
(NMR) metabolomics to find biomarkers and altered metabolic pathways. The
metabolic profile analysis of progressors, controllers and HESN demonstrated
significant differences with healthy controls when a discriminant analysis (PLS-DA)
was applied. In the discriminant models, 13 metabolites associated with HESN,
14 with progressors and 12 with controllers were identified, which presented
statistically significant mean differences with healthy controls. In progressors, the
metabolites were related to high energy expenditure (creatinine), mood disorders
(tyrosine) and immune activation (lipoproteins), phenomena typical of the natural
course of the infection. In controllers, they were related to an inflammation-
modulating profile (glutamate and pyruvate) and a better adaptive immune system
response (acetate) associated with resistance to progression. In the HESN group,
with anti-inflammatory (lactate and phosphocholine) and virucidal (lactate) effects
which constitute a protective profile in the sexual transmission of HIV. Concerning
the significant metabolites of each group, we identified 24 genes involved in HIV-1
replication or virus proteins that were all altered in progressors but only partially in
controllers and HESN. In summary, our results indicate that exposure to HIV-1 in
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HESN, as well as infection in progressors and controllers, affects the metabolism of
individuals and that this affectation can be determined using NMR metabolomics.

KEYWORDS

NMR, metabolomics, HIV-1, biomarkers, pathways

Introduction

Human immunodeficiency virus type 1 (HIV-1), the causal
agent of the acquired immunodeficiency syndrome (AIDS) in
humans (Barré-Sinoussi et al., 1983; Gallo et al., 1983), continues
to be a serious public health problem, after nearly 40 years of
research (ONUSIDA and Comunicaciones y Promoción Mundial,
2021), generating considerable mortality among those infected, and
an excessive cost for the healthcare system (Roth et al., 2018; Frank
et al., 2019).

The progression of infection from the acute phase to advanced
infection or AIDS is a very complex process, which takes
approximately 10 years in absence of treatment (Vergis and
Mellors, 2000; Kumar, 2013). Some individuals can naturally
control HIV-1 replication, maintaining low viral load (VL) levels
and an adequate count of CD4+ T lymphocytes, in the absence of
antiretroviral therapy (ART) for at least 1 year (Cao et al., 1995;
Baker et al., 2009). These individuals are known as controllers (elite
or viremic) and exhibit specific resistance mechanisms to disease
progression, including the presence of HLA alleles, HLA-B27 and
HLA-B57 (Gonzalo-Gil et al., 2017).

Likewise, researchers have tried to characterize the natural
resistance to HIV-1 infection among people exposed to the virus,
who remain seronegative, known as HIV-exposed seronegative
(HESN) individuals (Meyers and Fowke, 2010; Young et al.,
2011). To date, only the homozygous Δ32 mutation in the CCR5
gene, the main entry coreceptor of the virus, has been consistently
associated with host resistance to HIV-1 in less than 3% of resistant
individuals (Huang et al., 1996; Ding et al., 2021). Other known
genetic and immunologic factors involved in resistance to HIV-1
infection only partially explain this phenomenon (Lederman et al.,
2010; Taborda-Vanegas et al., 2011), which means that further
mechanisms remain unclear.

In this context, metabolomics understood as the objective
identification and quantification of small molecules in biological
fluids (Nicholson et al., 1999), might help to understand the
biochemical state of an organism for discovering biomarkers.
Through case-control studies of metabolites in plasma, urine, or
cells, by quantitative measurement using nuclear magnetic
resonance (NMR) spectroscopy, different pathophysiological
states have been explained (Bertini et al., 2012; Li and Deng,
2016; Paris et al., 2018), suggesting that metabolomics could be a
potential tool for prognosis, diagnosis, and monitoring the efficacy
of treatment (Puchades-Carrasco and Pineda-Lucena, 2015),
including HIV-1 infection.

Studies of the HIV effects on metabolism during in vitro
replication and infection in animal and human models have
provided new insights and targets for biomarker development
and therapy. To date, little is known about the metabolic profiles
that generate resistance to infection or a differential response to
AIDS and its progression.

In the current study, we hypothesize that differences in the
phenotype of infected individuals with high or low viral loads and
seronegative individuals continuously exposed to HIV-1 will result
in a dissimilar metabolomic plasma profile. Therefore, we collected
and analyzed plasma samples of age and sex-matched groups of
progressors, controllers, HESN and healthy controls by proton
Nuclear Magnetic Resonance Spectroscopy (1H NMR). We aim
to identify a specific metabolic fingerprint of each group and to
obtain biomarkers related to HIV-1 progression and natural
resistance, providing valuable information on the pathogenesis of
HIV-1 infection.

Materials and methods

Chemicals and materials

All solvents and reagents were analytical grade, sodium
phosphate dibasic dihydrate, sodium azide, deuterium oxide, 3-
(Trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP-d4) and
3-(Trimethylsilyl)-1-propanesulfonic acid-d6 sodium salt (DSS-d6)
were supplied by Merck (Germany). The ultrapure water was
obtained in a Milli-Q purification system of Merck Millipore.
The Vivaspin® 500 3000 K MWCO Centrifugal Concentrators
were provided by Sartorius.

Human subjects

A retrospective cross-sectional study was developed using a
defined database of volunteers to build case-control relationships.
Plasma samples from 88 volunteers were evaluated distributed as
follows:

• HESN: thirty individuals, from serodiscordant couples
(couples in which one partner is HIV-positive and the
other HIV-negative). HESN reported multiple unprotected
sexual episodes for >2 years at the time of enrollment, with at
least five episodes of at-risk intercourse within 6 months
before study entry with an HIV positive partner with a
detectable viral load (Zapata et al., 2008). The median VL
of the partner was 2,569 RNA copies/mL (interquartile range =
400–25,250 copies/mL) (Aguilar-Jiménez et al., 2013). From
these individuals, 10 (35%) were ART-naïve [VL median
(interquartile range)] [10,257 (718–23,188)]. Eight (25%)
were ART-responders VL < 400. Finally, 12 (40%) were
ART-non-responders [ (Fisher et al., 1987), 806
(18,200–118,770)]. No Δ32-homozygous subjects were
included.

• Controllers: fourteen, with 1 year of diagnosis of HIV-1
infection, and viral load less than 2000 copies/mL in the
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absence of Antiretroviral therapy (ART) and normal CD4+ T
lymphocyte count (Pereyra et al., 2008). The median diagnosis
time was 46 months (range 12–168). The median VL was
211 copies/mL (range 20–1885), and the median CD4+ T cells
count was 745 cells/uL (range 514–1,367). Only 2 (14%)
controllers showed the HLA-B*27 allele, and 3 (21%)
controllers showed the HLA-B*57 allele.

• Chronic progressors: fourteen, with a CD4 + T lymphocyte
count> 350 cells/μL and a viral load between 10,000 and
100,000 copies/mL without receiving ART (Taborda et al.,
2015). The median diagnosis time was 51 months (range
12–120). From these, ten individuals had between 1 and
5 years of infection, three reported 6–9 years, and one had
10 years of infection. The median VL was 31,552 copies/mL
(range 11,206–160405) and the median CD4+ T cells count
was 443 cells/uL (range 267–819).

• PLHIV: people living with HIV. In this case it refers to a mix of
controllers and progressors.

• Healthy controls: thirty, with negative serological tests for
HIV-1 without risk behaviors.

This study was approved by the Bioethical Committee Universidad
de Antioquia; and all the individuals signed informed consent prepared
according to Colombian Legislation Resolution 008,430/1993.

Processing of blood samples

The Blood sample was collected from all participants by using
potassium-EDTA collection tubes. Then, it was centrifuged at
1,000 x g for 5 min at 4°C, and 2 mL of plasma was stored
at −80°C until processing. Two methodologies were established to
process the biofluid: a direct analysis and a deproteinization analysis.

For the direct analysis 300 µL of Buffer pH 7.4 (Na2HPO4

75 mM DSS 2.3 mM and NaN3 0.04%) was added to a
microcentrifuge tube (1.5 or 2 mL) and reserved. Then, the
plasma sample was thawed, homogenized, and 300 µL transferred
to the previously mentioned vial with buffer. The resulting solution
was mixed and 550 µL transferred to a 5 mmNMR tube for analysis.
Tubes were degassed for 3 min before capping.

In the case of deproteinization analysis, 300 µL of Buffer pH 7.4
(Na2HPO4 75 mM TSP 2.3 mM and NaN3 0.04%) was added to a
microcentrifuge tube (1.5 or 2 mL) and reserved. Then, the vial
containing the sample was thawed, the plasma was homogenized,
and 500 µL of plasma were taken to a Vivaspin 500 centrifugal filter
(Previously pre-washed 5 times with Buffer pH 7.4). The sample
was centrifuged at 12,000 gravities at 4°C for 60 min 300 µL of the
filtrate was brought to the microcentrifuge tube containing the
300 µL of Buffer pH 7.4 they were mixed with a micropipette.
Finally, 550 μL of the solution were taken and transferred to a

FIGURE 1
Case-control relationships. Detail of each of the five relationships built to analyze plasma samples in a direct and filtered way. To know the details of
each of the volunteers who participated in the study, see Supplementary Table S1. Exclusion criteria: Individuals with hemoglobin ≤8.0 g/dl; neutrophil
count ≤1,000/mm3; receiving some immunosuppressive treatment; pregnant or lactating women; cancer or with an active infection or disease requiring
hospitalization. Age reported as the sample mean. SD: standard deviation.
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5 mm NMR tube for analysis. The tubes were degassed for 3 min
before being capped.

1H-NMR experiments

The 1H-NMR spectra of extracts were recorded at 300 K by a
Bruker AVANCE III 600.13 MHz spectrometer equipped with
5 mm triple-resonance z-gradient cryoprobe (Prodigy TCI 1H-
13C/15N-2H). TopSpin version 3.6.2 (Bruker GmbH Karlsruhe
Germany) was used for spectrometer control purposes. Carr-
Purcell-Meiboom-Gill (CPMG) pulse sequence with water
presaturation and spoil gradients (cpmgpr1d pulse sequence) for
direct analysis (64 k data points, spectral width 12,019 Hz, dummy
scans 8, 64 scans, loop for T2 filter 80, gain 80,6, delay time 4 s, fixed
echo time 0.0007 s and the 90° pulse length was adjusted to about
10.40 µs). 1H 1D Nuclear Overhauser Effect Spectroscopy (NOESY)
NMR spectra with water presaturation and spoil gradients
(noesygppr1d pulse sequence) was used for analysis of
deproteinization samples Spectra were acquired with (Thomsen
et al., 2011) scans, 64 k data points, spectral width of 7,211 Hz,
and relaxation delay of 20 s (dummy scans 4, gain 203, and the 90°

pulse length was adjusted to about 10.42 µs)
Total Correlation Spectroscopy (TOCSY) and multiplicity

Heteronuclear Single Quantum Correlation (HSQC) were
performed on representative samples with 256–512 t1 increments
32–96 transients and a relaxation delay of 1.5 s. The TOCSY spectra
were recorded by a standard MLEV-17 pulse sequence with mixing
times (spin-lock) of 65 ms.

Data analysis and statistics

NMR spectra processing: 1H-NMR spectra were transformed
with a 0.5 line-broadening and manually baseline- and phase-
corrected with Topspin 3.6.4. NMR signals of DSS-d6 (for direct
analysis) or TSP-d4 (for deproteinization analysis) were
referenced to 0.0 ppm. For metabolite identification purposes
the 1H and chemical shift values and multiplicity of signals
were compared with the reference data from the Chenomx
software (Chenomx NMR Suite 8.4 Chenomx Inc. Edmonton
Canada) in combination with spectral databases Human
Metabolome Database, and the Biological Magnetic Resonance
Bank and several literature reports (Ulrich et al., 2007; Wishart
et al., 2018). Optimal integration regions were defined for each
metabolite to select signals without overlapping. Integration was
performed with MestreNova 14 (Mestrelab Research SL Santiago
de Compostela Spain) by manually integrating of the previously
identified signals. With these regions an integration matrix
(Integral Regions) was built which was later applied to the
88 acquired spectra and a matrix of integrals was built for all
the spectra (Integral series). This matrix of integrals was
normalized by the sum of the total signals of the spectrum
using Excel (Microsoft United States of America).

Multivariate and univariate analysis of Metabolomic Profiles:
The previously normalized matrix of integrals was processed using
MetaboAnalyst 5.0. First a principal component analysis (PCA) was
performed which allowed finding groups of samples with a similar
metabolic pattern and/or segmenting those with a different
metabolome.

FIGURE 2
Principal component analysis (PCA) of the study groups. 3D score plot charts of the PCA analysis of all study volunteers, on the left side the analysis
with direct plasma and on the right side with filtered plasma. PC: Principal component, HC: Healthy control, CT: controller, HESN: HIV-exposed
seronegative, PR: Progressor. Each of the three axes of the graph represents a principal component. The values that each of the axes takes is related to the
fact that there is a score value for each observation (row) in the data set; so, there is score values for the first component, another for the second
component, and one for the third. The score value for an observation, say the first component, is the distance from the origin, along the direction (load
vector) of the first component, to the point where that observation projects onto the direction vector.
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Then five case-control relationships were established: healthy
controls versus progressors; healthy controls versus controller;
healthy controls versus PLHIV (progressors and controllers);
healthy controls versus HESN, and controllers versus
progressors. These relationships were evaluated by Partial Least
Squares Discriminant Analysis (PLS-DA) which links two data
matrices and improves the separation between different groups of
samples. The quality of the PLS-DA was evaluated, and a
permutation test was carried out to calculate the goodness of fit
(R2) and the predictive capacity (Q2) of the randomly generated

models. An analysis of the results of the PLS-DA statistic (VIP
scores) was performed and the metabolites that contributed
significantly to the separation of the groups were identified.
Variables with a VIP score greater than 1.0 were considered
significant for the model.

Finally, the selected variables were subjected to a Univariate
analysis using a difference of means test (Wilcoxon Test). For tests
with a p-value less than 0.05 (p < 0.05) a statistically significant
difference between the means (mean or median as appropriate) was
assumed for the variable evaluated. In the case of obtaining more

FIGURE 3
Partial Least Squares Discriminant Analysis (PLS-DA). Score plot charts of the PLS-DA of the five case-control relationships established; on the left
side, the analysis with direct plasma and on the right side with filtered plasma (in each colored box). HC: Healthy control, CT: controller, HESN: HIV-
exposed seronegative, PR: Progressor. CVD: Cross-validation details, A: Accuracy, R2: goodness of fit, Q2: predictive capacity. Healthy controls in black,
HESN in green, Progressors in red, Controllers in blue and PLHIV in purple.
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than one significant signal for a given metabolite, we selected the
signal with less overlapping for graphical representation.

Gene analysis

Analysis of associated genes was carried out with the
metabolites that were statistically significant after univariate
analysis. For this, the web interface of MetaboAnalyst 5.0 [14]
was used. Metabolites were introduced in the Network Explorer

section of the platform and the Metabolite-Gene-Disease
Interaction Network analysis was carried out, which provides a
global view of potential functional relationships between
metabolites, connected genes, and target diseases. The network
integrates gene-metabolite, metabolite-disease, and gene-disease
interaction networks.

The genes identified through the previous analysis were filtered
through a comparison process with the National Center for
Biotechnology Information (NCBI) gene database of the U.S.
National Library of Medicine, excluding genes unrelated to HIV-

FIGURE 4
Metabolites that explain the difference between the groups. Results of theWilcoxon test for the significant variables (metabolites) for each proposed
PLS-DA model. In the panel (A) (main green box), the comparison of healthy controls and HESN, in the panel (B) (main red box) the comparison between
healthy controls and progressives, and in the panel (C) (main blue box) the comparison between healthy controls and controllers. Within each small
individual box: on the left the region of the spectrum (metabolite signal) 1H-NMR superimposed of all the samples analyzed in each comparison, on
the right side the box-and-whisker plot for the normalized concentration and the statistical significance of each test. *: p-value < 0.05, **: p-value <
0.01 and ***: p-value < 0.001. +: False Discovery Rate (FDR) < 0.05, + +: FDR <0.01, + + +: FDR <0.001 and ns: FDR ˃0.05. Healthy controls in black, HESN
in green, progressors in red, and the controllers in blue.
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1. Additionally, to perform a more specific analysis, genes that were
not related to two or more groups and/or metabolites were excluded.

Then, we proceeded to perform an individual analysis of the
selected genes through a review in the NCBI gene database. Looking
specifically at the section on HIV-1 interactions, we filter further
into the subcategories Replication interactions (human proteins
shown to be required for HIV-1 infectivity and replication) and
Protein interactions (proteins that have been shown to interact with
proteins from HIV-1).

Results

Human subjects

Figure 1 shows the main characteristics of the five case-control
relationships analyzed in the study. Out of the 88 available
volunteers, a selection was made to generate groups balanced by
gender and age. A summarized table of all individuals can be found
in Supplementary Table S1

To compare HESN with healthy individuals, we achieved a
completely gender-balanced comparison, with 15 women and
15 men in each group. Also, in the case of controllers, the

number of women and men was similar in both groups. In the
case of joining controllers and progressors (PLHIV), we built up
groups with a higher number of men than women, but that was still
gender-matched between patients and controls.

Analysis of metabolic plasma profiles

1H NMR metabolomics analysis was performed on intact and
filtered plasma samples, to identify the highest possible number
of compounds. During the spectral analysis process, it was
possible to identify fifty-five metabolites in the direct plasma
samples: two alcohols, twenty-one amino acids, fourteen lipid-
related signals, sixteen organic acids, one purine derivative, and
one sugar. In the filtered plasma samples, forty-five metabolites
were identified: two alcohols, twenty amino acids, two lipid-
related signals, eighteen organic acids, two derived from
purine and one from sugar. It should be noted that three
metabolites that were not observed in direct plasma could be
detected in filtered plasma samples: two organic acids (2-
hydroxybutyrate and 3-Hydroxyisovalerate) and one purine
derivative (Inosine). In Supplementary Figures S1, S2 a model
NMR spectrum can be seen with the relative assignment for direct
and filtered Plasma respectively. Furthermore, the quantification
of small metabolites was more accurate in the filtered samples due
to the absence of overlapping with broad lipoprotein samples. It
should be noted that the lipoproteins evaluated in the unfiltered
samples complement the metabolomic analysis of the plasma
samples from the volunteers. To know the details of the
metabolites identified in the plasma samples, see
Supplementary Table S2.

After assignment, normalized integration tables were obtained
of all spectra (Supplementary Table S3) and analyzed bymultivariate
analysis.

Multivariate analysis of plasma metabolomic
profiles

Initially, a principal component analysis (PCA) was performed
with all 88 samples to get a general overview. The result is shown in
Figure 2, which corresponds to the PCA score plots of direct plasma
samples and filtered plasma samples. In this unsupervised analysis,
we detected a clustering between samples belonging to the same
group (healthy control, controller, HESN or progressor). This
grouping was more evident for direct plasma samples, which
could indicate that lipoproteins play a key role in the
differentiation of the groups. HESN samples seem to have the
highest dispersion. PCAs were also performed for the five
established case-control relationships, which can be seen in
Supplementary Figure S3.

In addition, to observe specific metabolic differences between
our five case-control relationships, a pair-wise Partial Least Squares
Discriminant Analysis (PLS-DA) was performed (see Figure 3).

Statistically significant PLS-DA models were obtained
comparing HESN and controllers with healthy controls. Models
between healthy controls and progressors and healthy controls
versus PLHIV were statistically significant. The analysis of the

FIGURE 5
Venn diagram of metabolites that explain differences among
groups. Set Analysis showing the metabolites related to differences
similarities among the metabolomic profiles of controllers,
progressors and HESN. In the main part of each set the
metabolites related only to one study group and in the intercepts the
metabolites related to two or more groups (central intercept). CT:
controllers (In blue color set), HESN: HIV-exposed seronegative (In
green color set), PR: Progressors (In red color set). HC: Healthy
controls, 3-HB: 3-Hydroxybutyrate, ACE: Acetate, ALA: Alanine, CRE:
Creatine, Cre: Creatinine, Glc: D-Glucose, GLN: Glutamine, GLU:
Glutamate, LAC: Lactate, LDL1 (CH3): Low density lipoprotein (CH3),
LDL (AC): Low density lipoprotein aliphatic chain, MET: Methionine,
MYO: Myo-inositol, PHO: Phosphocholine, PYR: Pyruvate, SER:
Serine, TYR: Tyrosine, UNK: Unknown, VAL: Valine, VDL (AC): VDL-2
(aliphatic chain), VDL1 (CH3): Very low-density lipoprotein (CH3), (-n
(CH3)3: Lipids (-n (CH3)3, CH2CH2O VLDL: Lipid: CH2CH2O VLDL,
CH2-C=C: Lipids CH2C = C.

Frontiers in Molecular Biosciences frontiersin.org07

Gómez-Archila et al. 10.3389/fmolb.2023.1204273

55

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1204273


PLS-DA statistics through the VIP score allowed reducing the
number of relevant variables (metabolites) to be analyzed as follows:

• Healthy controls versus HESN: 27 in direct plasma (DP) and
26 in filtered plasma (FP).

• Healthy controls versus progressors: 47 in DP and 33 in FP.
• Healthy controls versus controllers: 35 in DP and 38 in FP.
• Healthy controls versus PLHIV (progressors and controllers):
39 in DP and 36 in FP.

• Controllers versus progressors: 45 in DP and 39 in FP.

For the details of the PLS-DA statistics see Supplementary
Table S4.

Univariate analysis of plasma metabolomic
profiles

The metabolites relevant for PLS discriminant modeling were
further submitted to univariate statistical analysis to identify
significant changes in each case-control comparison. The detail

FIGURE 6
Specific and related metabolites in the study groups. (A) Differential metabolic profile: Metabolites that only exhibit a statistically significant mean
difference compared to healthy controls in a study group, (B) Comparative metabolic profile: Metabolites exhibiting a statistically significant mean
difference compared to healthy controls in two or more study groups. Variation: ↓ (Smaller area or relative concentration in the reference method) ↑
(Bigger area or relative concentration in the reference method). The box-and-whisker plot for the normalized concentration and the statistical
significance of each test. *: p-value < 0.05, **: p-value < 0.01 and ***: p-value < 0.001. +: False Discovery Rate (FDR) < 0.05, + +: FDR <0.01, + + +:
FDR <0.001 and ns: FDR ˃0.05. Healthy controls in gray, HESN in green, progressors in red, and the controllers in blue.
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of the mean difference analysis (Wilcoxon Test) can be seen in
Supplementary Table S5.

For the Healthy controls versus HESN comparison, 21 signals
(variables) were identified with a significant variation, 13 associated
with the FP. These signals are associated with 13 metabolites: six
lipid-related signals (Low density lipoprotein aliphatic chain, Low
density lipoprotein (CH3), very low-density lipoprotein (CH3),
Lipids CH2C = C, lipids (-n (CH3)3 and VDL (aliphatic chain)),
three amino acids (Serine, alanine and phosphocholine), two organic
acids (3-Hydroxybutyrate and Lactate), one alcohol (Myo inositol)
and one sugar (Glucose). Only the lactate was increased in HESN,
the rest of the metabolites were decreased compared to healthy
controls.

In healthy controls versus progressors comparison, 28 signals
were identified, 19 associated with DP. These signals correspond to
14 metabolites: eight amino acids (Creatine, creatinine, Glutamine,
Methionine, Serine, Alanine, Tyrosine and Valine), four lipid-
related signals (Lipid: CH2CH2O, VLDL, Lipids CH2C = C,
VDL-2 (aliphatic chain) and very low-density lipoprotein (CH3)),
one alcohol (Myo inositol) and one sugar (Glucose). The metabolites
of the lipid-related signals, Serine, Alanine and Tyrosine, are
decreased.

While for the comparison healthy controls versus controllers
24 signals were identified (equal amount of each matrix), which
were associated with 12 metabolites: five amino acids (Glutamine,
Glutamate, Methionine, Serine and Valine), three lipid-related
signals (Low density lipoprotein (CH3), very low-density
lipoprotein (CH3) and lipids (-n (CH3)3), three organic acids
(3-Hydroxybutyrate, Acetate and Pyruvate) and one sugar
(Glucose).

Figure 4 shows a quantitative comparison of the most
representative metabolites that change between healthy controls
and HESN, progressor and controller groups.

The comparisons of healthy controls versus PLHIV and
controllers versus progressors can be seen in Supplementary
Figure S4.

Discussion

All three study groups show a specific
metabolic profile

PCA and the PLS-DA analysis demonstrated significant
differences between the controllers, progressors, and HESN study
groups versus healthy controls. In contrast, only weak models were
obtained comparing controllers and progressors, which may be due
to the low sample number in this case (n = 8). Differences were
related to specific metabolites present in different concentrations
between the groups as demonstrated by univariate analysis
(Wilcoxon Test). For each case-control comparison, a list of
metabolites with altered levels were established. Figure 5 provides
an overview of all the important metabolites in the different
comparisons.

We observed that the disease altered the metabolomics blood
profile of progressors, showing the highest number of relevant
variables compared to healthy controls in the PLS-DA (47 in DP
and 33 in FP), and the highest number of differentiated metabolites
(Ding et al., 2021) in the univariate analysis. The impact on
controllers was lower (35 variables in DP and 38 in FP,
12 relevant metabolites), while HESNs are the group with the
lowest number of relevant variables in the PLS-DA (27 in DP
and 26 in FP) and 13 differentiated metabolites. The progression
of HIV induces the massive elimination of CD4+ T lymphocytes and
alterations in various components of the immune system (Brenchley
et al., 2006), which would explain the difference in the metabolic
profiles of the progressors compared to controllers and HESN. Since
the controllers resist the progression to AIDS, maintaining low levels
of viral load and an adequate count of CD4+ T lymphocytes (Cao
et al., 1995; Baker et al., 2009), it is directly reflected in a lesser
impairment of their metabolism. Likewise, identifying of a
differential metabolomic profile in HESNs allows us to affirm
that the natural resistance of the host to HIV-1 is associated with
a differential phenotype. Detailed analysis of the metabolomics
changes (positive or negative variation) between the groups, as
shown in Figure 6, allowed establishing differential (Figure 6A)
and comparative profiles (Figure 6B) for each of the case-control
comparisons.

Alterations associated to progressors: Progressors stand out for
the variation of specific lipoproteins and creatine/creatinine and
tyrosine, while changes in glutamate, pyruvate and acetate seem to
be specific for controllers. On the other hand, alterations in lactate,
phosphocholine and VDL are characteristic of HESN.

Concerning the comparative analysis (Figure 6B), it is worth
mentioning that glucose and serine change in all three case-control
comparisons, although these changes do not always have the same
sign. It is also noteworthy that progressors and HESN have five
metabolic changes in common, four of which have the same sign.

FIGURE 7
Venn diagram of HIV-related genes. Genes identified by
Metabolite-Gene-Disease Interaction Network analysis and filtered
through the NCBI gene database as related to HIV-1. In the main part
of each set, the genes are related only to one study group and in
the intercepts, the genes are related to two or more groups (central
intercept). CT: controllers (In blue color set), HESN: HIV-exposed
seronegative (In green color set), PR: Progressors (In red color set).
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TABLE 1 HIV-related genes that were associated with two or more study groups and/or metabolites.

Gene PR CT HESN

GLUD2 ALA↓ GLN↑ GLU↓ GLN↑ ALA↓

DNAJB1 PABPN1 FOXP2 ALA↓ GLN↑ GLN↑ ALA↓

LDHA LDHB LDHC CRE↑
Cre↑ ALA↓

GLU↓ PYR↑ ALA↓
LAC↑

MDH2 ALA↓ GLU↓ PYR↑ ALA↓

PKLR PKM ALA↓ CRE↑ PYR↑ ALA↓
LAC↑

SLC38A2 SLC38A1 ALA↓ GLN↑ MET↑ ALA↓

GPT2 ALA↓ Cre↑ GLU↓ PYR↑ ALA↓

SLC16A10 ALA↓ GLN↑ MET↑ TYR↓ VAL↑ ALA↓

ARG2 CRE↑ VAL↑ GLU↓ VAL↓ N/A

SERPINC1 CAD CREBBP F13A1 MTOR HTT HIP1 DNAJA1 HSPA1A HSPA4 HSPB1 KCNN3 PML PPP2R2B
MAPK8 PSMD2 ATXN2 TAF4 TGM4 TGM1 TGM3 UBA52 SUM O 1 UFD1 VCP VEGFA
NCOA3 HAP1 TGM5 HDAC6 DNAJB6 STUB1 BAIAP2 TARDBP UBQLN2 ASRGL1 RBM17 TGM7 TMEM37 TGM6

GLN↑

BDNF CREB1 GAPDH GART GRIN2B IMPDH2 JUN MAPT MSN PFAS ALDH18A1 QARS1 SPTBN TGM2 NME6 GLN↑ GLU↓ GLN↑

CASP3 GLN↑ VAL↑ GLU↓
GLN↑ VAL↓

CAT CRE↑
MET↑ TYR↓

GLU↓ MET↑

COMT VAL↑ GLU↓ VAL↓

DARS1 EPRS1 GLUL KARS1 RARS1 AIMP2 AIMP1 EEF1E1 LARS1 GLN↑ MET↑ GLU↓
GLN↑ MET↑

DLD VAL↑ GLU↓
PYR↑ VAL↓

F2 Cre↑ GLU↓

FM O 3 HBB MAT2A MSRA MTR MTRR MYH9 SMUG1 MET↑

GAD1 SOD1 MET↑ GLU↓ MET↑

IARS1 GLN↑
MET↑ VAL↑

GLU↓ GLN↑
MET↑ VAL↓

IGF1 OAT PFKM CRE↑ GLU↓

MARS1 Cre↑
GLN↑ MET↑

GLU↓
GLN↑ MET↑

TH TYR↓ GLU↓

MAP3K14 Cre↑ GLN↑ GLN↑

ALB Cre↑ TYR↓ N/A PHO↓

BGLAP Cre↑ LAC↑

FOXL2 FTL HMOX1 HOXA13 LYZ PIN1 PPIA SRSF1 SLC7A5 KYNU ALA↓ ALA↓

CD79A CRP Cre↑ PHO↓

DNMT1 FCN2 GCK B4GALT1 HK2 IFNB1 LGALS3 PYGL SGCB B4GALT2 SIGLEC5 H6PD
SIGLEC7 CD207 GBA2 GXYLT1

Glc↑ Glc↓

F3 Cre↑ Glc↑ Glc↓

GYPA CRE↑ Glc↑ Glc↓

FOS N/A GLU↓ LAC↑

(Continued on following page)
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Differentially, it was possible to identify an increase in the
expression of creatine-creatinine in progressors; creatine is found
in muscles (Kreider and Stout, 2021). Altered creatine-creatinine
values have been previously found in HIV positive patients (Sitole
et al., 2019) and are related to the prolonged period of high energy
expenditure (Kosmiski, 2011) and cachexia (Von Roenn et al., 1992).

Likewise, tyrosine was decreased in the HIV progressors
group. Tyrosine is a precursor of catecholamines (adrenaline,
dopamine and noradrenaline) whose altered metabolism is
related to mood disorders (Hasler et al., 2008). An increased
phenylalanine/tyrosine ratio is common in patients with HIV-1
infection and is related to immune activation (Zangerle et al., 2010).
Previous NMR studies identified tyrosine downregulation in
untreated HIV-infected patients (Sitole et al., 2019). This change
was not observed in HIV controllers, which allows us to state that
low tyrosine levels are a biomarker of HIV infection progression.

One factor associated with HIV progression is the response of
immune cells (Shi et al., 2022). Immune cells undergo energetic and
structural remodeling following immune activation. It generates
metabolic changes associated with increased energy and
biosynthetic demands as viral load increases and the immune
system responds (González Plaza et al., 2016). This metabolic
changes, including lipid homeostasis, since mitochondria plays a
key role in the biosynthesis of phospholipids for membranes, as well
as in the catabolism of fatty acids (Tilokani et al., 2018).
Unsurprisingly, phospholipid alterations are a common finding
in the metabolic profiles of HIV-infected individuals.

A comparison of the commonly altered metabolites in
controllers and progressors showed that valine is differentially
regulated between both groups; it increased in progressors and
decreased in controllers compared to healthy controls. A recent
study show a significant increase in Valine levels in TEC before the
loss of control compared to PEC, therefore, valine was defined as the
main differentiating factor between the studied groups (Tarancon-
Diez et al., 2019). That is, elevated valine levels could be a potential
biomarker for the prediction of virological progression in controllers
and progressors.

Alterations associated to controllers: L-glutamic acid and
pyruvate are differentially altered in controllers; these metabolites
modulate latent HIV reactivation and/or macrophage inflammation
in vitro (Giron et al., 2021). A previous study demonstrated that
glutamic acid was elevated in Persistent Elite Controllers (PEC)
compared to Transient HIV Elite Controllers (TEC) (Tarancon-

Diez et al., 2019), suggesting that glutamate metabolism is associated
with a delay in the recovery time from HIV.

Likewise, in controllers, acetate is differentially decreased. This
metabolite is transiently released into the circulation in response to
systemic bacterial infection, as a resistance mechanism of the host’s
adaptive immune system. (Bose et al., 2019) (Balmer et al., 2016)
(Vysochan et al., 2017). The virus-associated mechanism may be
related to the group of HIV controllers, where downregulation of
acetate concentration would slow down the lipogenesis.

Alterations associated to HESN: In all groups (controllers,
progressors and HESN) evaluated, changes in the lipid profile
were observed. However, HESNs showed variations in response
compared to controllers and progressors; all significant changes
were downward. It highlights the Low-density lipoproteins (LDL)
signals that are decreased in HESN and increased in the other
groups. LDLs are considered proinflammatory lipid species
(Brennan et al., 2021) and associated with immune activation in
HIV-infected persons (Funderburg and Mehta, 2016). Other NMR
metabolomics studies support our findings on altered lipid
metabolism in HIV-infected people (Hewer et al., 2006; Riddler
et al., 2008; Philippeos et al., 2009; Swanson et al., 2009; Rodríguez-
Gallego et al., 2018; Sitole et al., 2019). We did not identify previous
studies that used NMRmetabolomics to characterize HESNs as done
in this study; however, a previous study that included 32 HESN
individuals demonstrated that immune status secondary to HIV
exposure influences the plasma efflux capacity of HDL cholesterol,
which is buffered in HESN (Tort et al., 2018).

Likewise, glucose was altered in all groups. It is decreased in
HESN and increased in the other groups. Early steps of virus
replication are moderately affected by the ability of the target cell
to perform glycolysis at the time of infection. Similarly, virion
production in cultures containing galactose was reduced by 20%–

60% compared to the amount produced in glucose-containing
cultures (Hegedus et al., 2014). That suggests that high glucose
availability in the body is associated with infection process and virus
replication, which do not occur in HESN.

The HESN group showed higher lactate expression compared to
healthy controls, lactate has anti-inflammatory effects modeling the
production of interleukins and other proinflammatory molecules
(Hearps et al., 2017) (Aldunate et al., 2013). This suggests a
protective role of lactate in the sexual transmission of HIV.

Phosphocholine was found significantly decreased in the
HESN group. Phosphocholine shown to be able to suppress

TABLE 1 (Continued) HIV-related genes that were associated with two or more study groups and/or metabolites.

Gene PR CT HESN

OXCT1 3 HB↓

PLA2G1B GLU↓ PHO↓

LDHD PYR↑ LAC↑

ALPI MPO Cre↑ TYR↓ N/A N/A

GAA CRNKL1 PIK3C2A CRE↑ Cre↑

CT: controllers, HESN: HIV-exposed seronegative, PR: progressors, N/A: Not Applicable. Variation: ↓ (Smaller area or relative concentration in the reference method) ↑ (Bigger area or relative
concentration in the reference method). 3-HB: 3-Hydroxybutyrate, ALA: alanine, CRE: creatine, Cre: Creatinine, Glc: D-Glucose, GLN: glutamine, GLU: glutamate, LAC: lactate, MET:

methionine, PHO: phosphocholine, PYR: pyruvate, TYR: tyrosine, VAL: valine.
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TABLE 2 List of genes differentially expressed in the study groups and associated with replication and protein interactions with HIV-1.

Description Progressors Controllers HESN Replication and/or protein interactions with HIV-1

DnaJ heat shock protein family (Hsp40)
member B1

ALA↓ - GLN↑ GLN↑ ALA↓ Knockdown of DnaJ inhibits HIV-1 replication in HeLa-derived
TZM-bl cells Brass et al., 2008, while an increase in gene expression
is relevant for Tat recruitment in HIV-infected cells Dhamija et al.,
2015

Hsp40 protein is required for HIV-1 Nef-mediated enhancement of
viral gene expression and replication Kumar and Mitra, (2005), and
that members of this family of interferon-inducible proteins should
be considered within its anti-HIV function Urano et al., 2013

Pyruvate kinase L/R ALA↓ - CRE↑ PYR↑ ALA↓
- LAC↑

PKLR has shown a regulatory role in HIV replication in HeLa P4/
R5 cells (Zhou et al., 2008)

solute carrier family 38 member 2 ALA↓ - GLN↑
- MET↑

GLU↓ - GLN↑
- MET↑

ALA↓ Down-regulation of SLC38A1 and SLC38A2 is associated with HIV
interference with immunometabolism in activated primary human
CD4+ T cells Matheson et al., 2015

solute carrier family 38 member 1 ALA↓ - GLN↑
- MET↑

GLU↓ - GLN↑
- MET↑

ALA↓ This gene uses alanine as an endogenous substrate for T cell
mitogenesis Matheson et al., 2015

Glutamic--pyruvic transaminase 2 ALA↓ Cre↑ GLU↓ PYR↑ ALA↓ Knockdown has been shown to inhibit early stages of HIV-1
replication in an in vitro model König et al., 2008

Caspase-3 GLN↑ VAL↑ GLU↓
GLN↑ VAL↓

N/A Is related to HIV-associated dementia (HAD) Yndart et al.,
2015 (104)

Coagulation factor II thrombin Cre↑ GLU↓ Encodes the protein prothrombin Smolkin and Perrotta, (2017).
Knockdown of F2 has previously been suggested to have a regulatory
role in HIV replication Zhou et al., 2008

Thrombin was shown to activate gp120/gp41 of HIV-1, enhances
virus-cell fusion Cheng et al., 2010, and enhance the gp160-mediated
fusion of HIV-1 with R5 tropism Ling et al., 2004

Glyceraldehyde-3-phosphate dehydrogenase GLN↑ GLU↓ GLN↑ Negatively regulates HIV-1 infection by directly interacting withGag
and Gag-Pol Kishimoto et al., 2012

Glutamate ionotropic receptor NMDA type
subunit 2B

GLN↑ GLU↓ GLN↑ GRIN2B deletion inhibits HIV-1 replication in HeLa P4/R5 cells
Zhou et al., 2008, this inhibition is related to HIV-gp120 and Tat
upregulating GRIN2B Che et al., 2014; Xiong et al., 2014

Lysyl-trna synthetase 1 GLN↑ MET↑ GLU↓
GLN↑ MET↑

Knockdown inhibited the initial stages of HIV-1 replication in vitro
König et al., 2008

Methionyl-trna synthetase 1 Cre↑ GLN↑ MET↑ GLU↓
GLN↑ MET↑

Knockdown inhibited HIV-1 replication Yeung et al., 2009

Moesin GLN↑ GLU↓ GLN↑ Knockdown inhibited HIV-1 replication Yeung et al., 2009

Phosphofructokinase muscle CRE↑ GLU↓ Knockdown inhibited the initial stages of HIV-1 replication in vitro
König et al., 2008

Mitogen-activated protein kinase 14 Cre↑ GLN↑ GLN↑ MAP kinases (MAPK) have been associated with HIV proteins such
as gp120 Jin et al., 2016, NefHashimoto et al., 2014, Tat Planès et al.,
2016 and Vpr Hoshino et al., 2010, which generate a strong
activation of these enzymes

Aminoacyl trna synthetase complex
interacting multifunctional protein 1

GLN↑ MET↑ GLU↓
GLN↑ MET↑

Knockdown inhibited HIV-1 replication Yeung et al., 2009

Leucyl-trna synthetase 1 GLN↑ MET↑ GLU↓
GLN↑ MET↑

Knockdown of DnaJ inhibits HIV-1 replication in HeLa-derived
TZM-bl cells Brass et al., 2008

Ficolin 2 Glc↑ N/A Glc↓ Ficolin-2 binds to HIV-1 gp120 and blocks viral infection (Luo et al.,
2016)

Glucokinase Glc↑ Glc↓ Knockdown inhibited HIV-1 replication in HeLa-derived TZM-bl
cells Brass et al., 2008

Interferon beta 1 Glc↑ Glc↓ Interferon-beta, encoded by IFNB1 gene, has antiviral, antibacterial
and anticancer properties Graber et al., 2014. HIV-1 replication
upregulates the expression of IFNB1 gene Czubala et al., 2016

(Continued on following page)
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immune response in human placenta (Lovell et al., 2007),
initiate phagocytic immune recognition (Thompson et al.,
1999) and is an intermediate in the synthesis of
phosphatidylcholine in tissues (El-Bacha et al., 2016).
Phosphatidylcholine has anti-inflammatory effects (Treede
et al., 2007/07). The low concentration of phosphocholine in
HESN could be related to the production of
phosphatidylcholine that would reduce the inflammation of
the colon and rectum that occurs in anal intercourse, a
common means of HIV exposure in HESN.

It should be noted that cell activation and inflammation have
been reported to enhance infection. (Masson et al., 2015; Liebenberg
et al., 2017; Wall et al., 1994). The metabolites identified in HESN,
and the metabolic and signaling pathways associated with these
metabolites, may contribute to the reduction of inflammation and
cell activation. Inflammation increases the risk of contracting HIV
by causing the activation of HIV target cells (CD4+ T cells),
increasing their susceptibility to HIV infection (Koning et al.,
2005). Inflammation also leads to increased recruitment of these
activated target CD4+ T cells at the site of HIV exposure (Arnold
et al., 2016).

A specific comparison of progressors and HESN revealed
that Myo-inositol was elevated in progressors and decreased in
HESN. Myo-inositol is a marker of glial reactivity, gliosis and
neuroinflammation (Bertran-Cobo et al., 2022). Previously, it
was found to be elevated in different brain regions by Magnetic
Resonance Spectroscopy (MRS) studies of HIV-infected patients
with cognitive impairment (Chang et al., 2004; Cohen et al.,
2010; Cassol et al., 2013; Cysique et al., 2013). A previous NMR
study on CSF found that impairments in late recall and motor
function were associated with higher levels of myo-inositol
(Dickens et al., 2015). Alterations in myo-inositol levels were
also identified in human mouthwashes (Ghannoum et al., 2013)
and brain tissue of HIV-infected rodents (Epstein et al., 2013).
All these findings, including those presented in our research,
suggest that elevated levels of myo-inositol promote HIV
progression in infected people and resistance to infection
in HESN.

HIV-related genes associated with
significant metabolites

In addition to the altered metabolic pathways, we also
wanted to study the genes that were related to these
pathways, whose expression could be altered. An analysis of
the genes associated to HIV-1 that were related to the
metabolites responsible for the difference between the study
groups and the healthy controls (See Supplementary Table S6),
revealed that patients living with HIV (Controllers and
progressors) had the highest number of genes involved in
their infectious status (231 and 185 genes versus 78 for
HESN) (Figure 7). affected by the expression or differential
regulation of the metabolites. A total of 341 genes.

We further obtained a more reduce list of genes by filtering
only those found in two or more study groups or related to two or
more metabolite (Table 1). From these, 21 genes were specifically
related to replications interactions (Table 2). The table also
summarizes how the alteration of these genes has been
previously related to HIV.

Among the genes listed in Table 2, five are related to the three
study groups (progressors, controllers and HESN): DnaJ heat
shock protein family (Hsp40) member B1, Pyruvate kinase liver
and red blood cell (PKLR) gene, Solute carrier gene family
SLC38A1 and SLC38A2, and glutamic-pyruvic transaminase 2
(GPT2).

High pyruvate expression in controllers may be associated with
elevated PKLR function, whereas in HESN, high lactate expression
that is associated with reduced pyruvate would explain a differential
gene response in these two groups. SLC38A1 and SLC38A2 uses
alanine as an endogenous substrate for T cell mitogenesis (Matheson
et al., 2015). This metabolite is markedly down regulated in HESN
and progressors, but not in controllers, which instead have a low
concentration of GLU. In contrast to the HESN, progressors and
controllers increase GLN and MET metabolites.

GPT2 encodes a mitochondrial alanine transaminase, a
pyridoxal enzyme that catalyzes the reversible transamination
between alanine and 2-oxoglutarate to generate pyruvate and

TABLE 2 (Continued) List of genes differentially expressed in the study groups and associated with replication and protein interactions with HIV-1.

Description Progressors Controllers HESN Replication and/or protein interactions with HIV-1

Galectin 3 Glc↑ Glc↓ In HIV infection, deletion of LGALS3 by shRNA was shown to
inhibit HIV-1 production in vitroWang et al., 2014. Furthermore, it
promotes HIV-1 budding through association with Alix and Gag
p6 Wang et al., 2014

Sialic acid binding Ig like lectin 5 Glc↑ Glc↓ Siglec-5 associated with divergent outcomes of HIV-1 infection in
human and chimpanzee CD4 T cells Soto et al., 2013

Phospholipase A2 group IB N/A GLU↓ PHO↓ This gene was involved in CD4 anergy and CD4 lymphopenia in
HIV-infected patients Pothlichet et al., 2020

Myeloperoxidase Cre↑ TYR↓ N/A N/A Knockdown of MPO inhibits HIV-1 replication in HeLa P4/R5 cells
Zhou et al., 2008

Crooked neck pre-mrna splicing factor 1 CRE↑ Cre↑ CRNKL1 was identified as a highly Selective Regulator of Intron-
Retaining HIV-1 and Cellular mRNAs Xiao et al., 2021

CT: controllers, HESN: HIV-exposed seronegative, PR: progressors, N/A: Not Applicable. Variation: ↓ (Smaller area or relative concentration in the reference method) ↑ (Bigger area or relative
concentration in the reference method). 3-HB: 3-Hydroxybutyrate, ALA: alanine, CRE: creatine, Cre: Creatinine, Glc: D-Glucose, GLN: glutamine, GLU: glutamate, LAC: lactate, MET:

methionine, PHO: phosphocholine, PYR: pyruvate, TYR: tyrosine, VAL: Valine.

Frontiers in Molecular Biosciences frontiersin.org13

Gómez-Archila et al. 10.3389/fmolb.2023.1204273

61

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1204273


glutamate (Qing et al., 2016). The differential regulations of pyruvate
and glutamate in Controllers may be related to a differential
expression of this gene and low rates of virus replication.

On the other hand, when the association between HIV
progressors and controllers was analyzed, eleven genes (CASP3
gene, coagulation factor II thrombin gene (F2), Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), Glutamate ionotropic
receptor NMDA type subunit 2B (GRIN2B), Mitogen-activated
protein kinase 14 (MAP3K14) gene, Lysyl-trna synthetase 1
(KARS), Phosphofructokinase muscle (PFKM), Methionyl-tRNA
synthetase 1 (MARS) Moesin (MSN), Aminoacyl tRNA
synthetase complex interacting multifunctional protein 1
(AIMP1)) were identified expressed in both groups, but related to
different metabolites or opposite metabolite concentration changes
(See Table 2).

Between progressors and controllers there are two differences in
terms of the associated metabolites: the expression of valine
(elevated in progressors and decreased in controllers) and the
expression of glutamate that is exclusively decreased in
controllers. For this reason, glutamate is then the most important
metabolite in the difference between progressors and controllers.
Glutamate causes neuronal cell death by apoptosis at high
concentrations (Froissard and Duval, 1994; Behl et al., 1995) and
glutamate-induced apoptotic cell death was associated with caspase-
3 gene regulation (Zhang and Bhavnani, 2006). It could then be
stated that low concentrations of glutamate in Controllers may be
related to a neuroprotective profile and regulation of apoptosis in
HIV infection.

The relationship between prothrombin and/or thrombin with
glutamate has been previously determined (Hoogland et al., 2005;
Chinnaraj et al., 2018). Thus, the differential expression of glutamate
in controllers may be related to an optimized cell proliferation
mediated by F2 that participates in resistance to HIV progression.

There is a relationship between glutamate and GAPDH shown
previously (Ikemoto et al., 2003), so, it can be inferred that the
differential levels observed in controllers can promote the
downregulation of the infection.

Creatinine was only found to be altered in progressors. It has
been demonstrated that dietary supplementation with creatinine
generates a decrease in MAPK expression (Alves et al., 2012); this
could occur in progressors with high creatinine levels. MAP kinases
(MAPK) are involved in cellular processes such as development,
proliferation, differentiation, and transcription regulation
(Plotnikov et al., 2011).

Furthermore, in our study we were able to identify five genes that
were associated with progressors and HESN: Ficolin 2 (FCN2),
Glucokinase (GCK), Interferon-beta 1 (IFNB1), Galectin 3
(LGALS3), and Sialic acid binding Ig like lectin 5 (SIGLEC5) (See
Table 2). All five genes are associated with D-Glucose regulation in
study groups. In the progressors, D-Glucose is upregulated and
downregulated in the HESNs group. Glucokinase is a type IV
isozyme found exclusively in the liver. It is highly specific, only
uses D-glucose as a substrate (Sanchez Caballero et al., 2021); it is
encoded by the GCK gene, and its knockdown inhibited HIV-1
replication in HeLa-derived TZM-bl cells (Brass et al., 2008). The
low concentration of D-Glucose in HESNs may be related to this
phenomenon.

It was possible to identify a gene that is related to controllers and
HESN, phospholipase A2 group IB gene (PLA2G1B). Recently, this
gene was involved in CD4 anergy and CD4 lymphopenia in HIV-
infected patients (Pothlichet et al., 2020). This gene could potentially
be differentially expressed between controllers and HESN. It is
enough to identify that HESN present a decreased concentration
of PHO, a metabolite directly related to PLA2G1B.

Finally, within the replication interactions, two progressor-
specific genes associated with increased expression of CRE and
Cre were identified: Myeloperoxidase (MPO) and Crooked neck
pre-mRNA splicing factor 1 (CRNKL1).

Conclusion

This study presents differential metabolic profile for controllers,
progressors and HESN individuals. Thus, the resistance to HIV-1
progression is associated with changes in the individual’s
metabolome, represented in the form of metabolites, that could
provide biomarkers of the infectious status of PLHIV, and it will be
key to determine the factors that control the infection. Based on our
results, we propose tyrosine, glutamate, and valine as biomarkers of
progression in HIV infection in progressors and controllers.

It should be noted that the variation in the viral load during
progression could affect the metabolomic profile of these
individuals. Therefore, conducting a longitudinal study with this
population help to resolve this issue. However, according to the HIV
“test and treat” guidelines, it is challenging to recruit HIV-positive
individuals without receiving ART; therefore, evaluations spanning
continuous years of suppressive or not suppressive ART compared
with our cohort can help to elucidate the impact of the ART in the
metabolomic profile.

Likewise, our study visualized that natural resistance to HIV-1
infection in HESN individuals is associated with a specific metabolic
fingerprint, described here for the first time according to our
research. We consider LDL, glucose, lactate and Phosphocholine
plausible biomarkers of natural resistance to HIV infection in
HESN. However, additional studies should be carried out with
other HESN groups: female sex workers (FSWs), children born
to HIV infected mothers and men who have sex with men (MSM).
These analyses allow us to compare and contrast our results, to
determine if the metabolites are repeated in the different groups or if
there are other phenotypes associated with HIV resistance.

The specific biomarkers for each group were associated with
genes and proteins related to HIV-1, therefore, differential
expression among groups could potentially explain the
characteristics of each group. Finally, we consider that proteomic,
transcriptomic and genomic analyzes should be carried out to have a
more comprehensive look at the progression and the natural
resistance to HIV-1 infection.
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The Feature-based Molecular Networking (FBMN) is a well-known approach for
mapping and identifying structures and analogues. However, in the absence of
prior knowledge about the molecular class, assessing specific fragments and
clusters requires time-consuming manual validation. This study demonstrates that
combining FBMN andMass SpecQuery Language (MassQL) is an effective strategy for
accelerating the decoding mass fragmentation pathways and identifying molecules
with comparable fragmentation patterns, such as beauvericin and its analogues. To
accomplish this objective, a spectral similarity network was built from ESI-MS/MS
experiments of Fusarium oxysporum at various collision energies (CIDs) and paired
with a MassQL search query for conserved beauvericin ions. FBMN analysis revealed
that sodiated and protonated ions clustered differently, with sodiated adducts needing
more collision energy and exhibiting a distinct fragmentation pattern. Based on this
distinction, two sets of particular fragments were discovered for the identification of
these hexadepsipeptides: ([M + H]+) m/z 134, 244, 262, and 362 and ([M + Na]+) m/z
266, 284 and 384. By using these fragments, MassQL accurately found other
analogues of the same molecular class and annotated beauvericins that were not
classified by FBMN alone. Furthermore, FBMN analysis of sodiated beauvericins at
70 eV revealed subclasses with distinct amino acid residues, allowing distinction
between beauvericins (beauvericin and beauvericin D) and two previously unknown
structural isomers with an unusual methionine sulfoxide residue. In summary, our
integrated method revealed correlations between adduct types and fragmentation
patterns, facilitated the detection of beauvericin clusters, including known and novel
analogues, and allowed for the differentiation between structural isomers.

KEYWORDS

MS/MS fragmentation, beauvericin, feature-based molecular networking, MassQL, PCA

1 Introduction

LC-MS/MS-based metabolomics is a well-established technique for analyzing metabolites
present in biological systems.However, the process ofmetabolite identification remains challenging.
The structural complexity, and presence of similar fragments across different compounds,
stereoisomers, adducts, and other spectral interferences make metabolite annotation a difficult

OPEN ACCESS

EDITED BY

Guillermo Moyna,
Universidad de la República, Uruguay

REVIEWED BY

Andrés Perez Parada,
Universidad de la República, Uruguay
Kaifeng Hu,
Chengdu University of Traditional
Chinese Medicine, China

*CORRESPONDENCE

Denise M. Selegato,
denise.selegato@embl.de

RECEIVED 11 June 2023
ACCEPTED 18 July 2023
PUBLISHED 01 August 2023

CITATION

Selegato DM, Zanatta AC, Pilon AC,
Veloso JH and Castro-Gamboa I (2023),
Application of feature-based molecular
networking and MassQL for the MS/MS
fragmentation study of depsipeptides.
Front. Mol. Biosci. 10:1238475.
doi: 10.3389/fmolb.2023.1238475

COPYRIGHT

© 2023 Selegato, Zanatta, Pilon, Veloso
and Castro-Gamboa. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 01 August 2023
DOI 10.3389/fmolb.2023.1238475

66

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1238475/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1238475/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1238475/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1238475/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1238475/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1238475&domain=pdf&date_stamp=2023-08-01
mailto:denise.selegato@embl.de
mailto:denise.selegato@embl.de
https://doi.org/10.3389/fmolb.2023.1238475
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1238475


task, even for experienced spectroscopists. Consequently, a significant
number of metabolites in biological systems remain unidentified (de
Jonge et al., 2023).

Although statistical tools have been developed for analyzing large
datasets, they are primarily designed for data exploration and analysis
rather than the specific task of metabolite annotation. These tools often
rely on clustering, classification, or regression approaches, which may
not provide the level of detail required for accurate and comprehensive
metabolite identification. Therefore, specialized approaches are needed
to effectively address the challenges associated with metabolite
annotation in LC-MS-based metabolomics (Lindon et al., 2000;
Vuckovic, 2012; Johnson et al., 2016; Wishart, 2016).

In recent years, molecular networking has emerged as a powerful
tool for large-scale annotation of LC-MS/MS data (Wang et al., 2016).
Molecular networking groups themass spectra (MS2) ofmetabolites in a
dataset based on fragmentation patterns, such as neutral losses,
comparable losses, and ions present in the mass spectra. This
approach offers a systematic way to organize and analyze vast
amounts of LC-MS/MS data, allowing for the identification and
classification of metabolites into distinct metabolic classes (Pilon
et al., 2019). This network can also be enriched by annotating the
experimental MS2 spectra against MS2 spectral libraries or compound
databases, propagating annotations through the network edges to
adjacent unknown nodes (Schmid et al., 2021).

Several investigations have demonstrated the effectiveness of
molecular networking for metabolite annotation. For example,
Naman et al. (2017) successfully identified a novel cytotoxic peptide
from Symploca sp. cyanobacteria using molecular networks and the
GNPS library (Naman et al., 2017). Similarly, Klein-Júnior et al. (2017)
analyzed Palicourea sessilis using molecular networks and the DNP-
ISDB tool, resulting in the identification of eightmonoterpene alkaloids,
three of which were novel and exhibited moderate anticholinesterase
activity (Klein-Júnior et al., 2017). Olivon et al. (2017) employed
molecular networks and bioactivity data against the Chikungunya
virus to prioritize and isolate four esters of 12-deoxyforbol, two of
which were novel, from 107 Euphorbiaceae species with anti-viral
activity (Olivon et al., 2017).

Molecular networks have also been utilized to discover
chalcones with antimicrobial properties against Staphylococcus
aureus from Angelica keiskei (Caesar et al., 2018), as well as to
characterize new indole alkaloids from Geissospermum laeve with
potential antiparasitic and cytotoxic activity (Fox Ramos et al.,
2017). Furthermore, Nothias et al. (2018) developed the bioactive
molecular network approach for bio-guided studies, facilitating the
dereplication process by associating bioactivity values with ion
quantifications detected in LC-MS experiments (Nothias et al.,
2018). This approach led to the isolation of two new substances,
maridric acids A and B, from previously uncharacterized marine
microorganisms.

The use of molecular networking can also assist in understanding
metabolic fragmentation. This method involves analyzing metabolites
with different collision energies, resulting in unique cleavage patterns.
By examining protonation sites, cleavage types, fragment stability, and
characteristic ions, researchers can accurately identify metabolites and
their specific fragmentation patterns. Importantly, this approach
would reveal the connections between structurally similar
metabolites by highlighting subtle and intricate fragmentation
patterns (De Souza et al., 2020; de Jonge et al., 2023).

Based on advancements in molecular networking, Jarmusch
et al. (2022) have developed a complementary method called
MassQL to further explore underutilized MS/MS data (Jarmusch
et al., 2022). MassQL captures the unique characteristics of MS data,
including isotopic patterns, diagnostic fragmentation, and neutral
loss, and establishes a comprehensive MS terminology for searching
MS patterns across datasets. This powerful tool formalizes terms for
MS1 patterns (e.g., precursor ionm/z, isotopic patterns) andMS/MS
fragmentation patterns, ensuring compatibility with all types of
mass spectrometry data. By integrating molecular networking
with MassQL, researchers can employ a comprehensive and
powerful approach to analyze LC-MS/MS data and gain insights
into metabolite fragmentation pathways.

In the present study, our aim is to demonstrate the potential of
combining principal component analysis (PCA), spectral similarity
networking, andMassQL as an effective approach for decoding mass
fragmentation pathways of beauvericins and analogues. The
beauvericin class a cyclic hexadepsipeptides composed of
alternating N-methyl amino acid and hydroxy acid residues
(Urbaniak et al., 2020). This class shares structural similarities
with other enniantins but differs primarily in the types of amino
acids and hydroxy acids that encompass them. Enniantins usually
contain 2-hydroxyisovaleric acid, N-methylvaline,
N-methylisoleucine, N-methylleucine (Sy-Cordero et al., 2012;
Renaud et al., 2017; Li et al., 2020), while beauvericins commonly
feature N-methylpheylalanine (MePhe), 2-hydroxyisovaleric acid
(Hiv) and 2-hydroxy-3-methylpentanoic acid (Hamill et al., 1969;
Gupta et al., 1995; Li et al., 2020; Urbaniak et al., 2020).

Due to similar fragmentation of peptides and the challenge to
identify them, the beauvericins were selected as a model metabolic class
for application of our strategy using FBMNandMassQL. Depsipeptides
usually have the proton located at theN-terminus or a basic residue side
chain and, during fragmentation, it can move along the backbone,
breaking at different conserved sites (Pallerla et al., 2019). Thus, to
achieve this objective, we employ these approaches in a combination of
different collision energies from ESI-MS/MS experiments from a
Fusarium oxysporum extract to determine both the mass
fragmentation pathways and the identification of known and novel
hexadepsipeptides. The selection of these compound classes is based on
the ongoing debate surrounding the fragmentation profile of
beauvericin, specifically the assignment of the ion at m/z 362 (Liuzzi
et al., 2017; Tolosa et al., 2019).While this ion is commonly identified as
diagnostic fragment ions for beauvericin and some derivatives, there is
controversy regarding their presence in other cyclic peptides, lacking the
required specificity for their automated discovery. Thus, our study aims
to provide insights into the ambiguous fragmentation between these
compound classes and demonstrate the potential of our approach in
deciphering these complex fragmentation patterns.

2 Materials and methods

2.1 Fungi fermentation and metabolite
extraction

Fusarium oxysporum (Nectriaceae) was cultured in Czapek-
Broth (NaNO3, 1.5 g L

−1; KH2PO4, 0.5 g L
−1; MgSO4, 0.25 g L

−1;
FeSO4.7H2O, 0.025 g L−1; KCl, 2.5 g L−1; and D-glucose,
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30.0 g L−1) in three biological replicates. Each fungal replicate was
cultivated separately in eight Erlenmeyer flasks containing 300 mL
of Czapek broth. The medium was first autoclaved at 121 °C for
20 min and, after sterilization, F. oxysporum was inoculated and
incubated while stationary at 26°C for 28 days.

At the end of the incubation period, the flasks were vacuum
filtered to remove mycelium and extracted with ethyl acetate (3 ×
500 mL). The solvent was evaporated, and the extracts were then
submitted to a clean-up process with solid phase extraction (SPE) in
a cartridge filled with C-18 reversed phase silica after reconstitution
in methanol HPLC grade (Strata X, C18), followed by filtration in
0.22 µM membrane.

2.2 MS/MS parameter optimization

Direct flow infusion of the samples was performed using a
high-resolution micrOTOF-QII mass spectrometer (Bruker
Daltonics, Bremen, Germany) for the optimization of the
ionization and fragmentation parameters. This preliminary
analysis used beauvericin as targeted precursor ions, both in
its protonated (theoretical m/z 784.4173) and sodiated (m/z
806.3992) adducts, aiming to obtain MS/MS data with
distinctive product ions characteristic. To optimize the
collision energy (CE), fragmentation experiments were
performed altering the collision-induced dissociation (CID)
energy. For each experiment, these precursor ions were
selected from the full-scan mass spectrum using a mass error
of 10 ppm and fragmented at different CID energies (10, 20, 25,
30, 40, 50, 60 and 70 eV). Optimized CID energies were selected
based on the ability to produce different MS/MS spectra in terms
of type of product ions and their intensity.

The optimized ESI parameters were set to the following values:
positive ionization mode, nebulizer (N2) gas pressure of 4.5 Bar, dry
gas flow rate of 9.0 L min-1, ion source temperature of 200°C,
capillary voltage of 4500 V, and voltage source of 5 kV. Full scan
analysis was conducted in the m/z range of 50–1,500.

2.3 LC-MS/MS parameters

The LC-MS/MS analysis of the extracts of each replicate of F.
oxysporum was performed using ultra-fast liquid chromatography
(UFLC) Shimadzu system (Shimadzu Prominence UFLC,
Shimadzu) equipped with two solvent pumps (LC-20AD), a
degassing system (DGU-20A3), an autosampler (SIL-20AHT), a
column oven (CTO-20A), a system controller (CBM-20A), and a
diode array detector (SPD-M20AV, Shimadzu). The UFLC system
was coupled to the previously described high-resolutionmicrOTOF-
QII mass spectrometer.

To perform the analysis, the samples were suspended in MeOH/
H2O (8:2, v/v) at a concentration of 5.0 mg mL-1, centrifuged, and
the supernatant was transferred to a vial for subsequent analysis. LC
separations were performed on a Kinetex 2.6 μm XB-C18 core-shell
column (100 × 2.1 mm ID, Phenomenex, Torrance, United States).
The injection volume was 2 μL, the flow rate was 250 μL min-1, and
the column oven temperature was set to 40°C. The samples were
eluted using a mobile phase consisting of water (solvent A) and

acetonitrile (solvent B), both acidified with 0.1% formic acid, in a
linear gradient from 5% to 100% (B) over a period of 45 min.

ESI and MS/MS conditions were set based on the previously
optimized parameters. The spectra acquisition rate was established
at 1 Hz. The instrument provided a resolving power of 9,000 per
FWHM for the beauvericin precursor ion m/z 784.4173. The mass
spectra were externally calibrated in Enhanced Quadratic mode,
using the exact masses of the sodium trifluoroacetate (NaTFA)
clusters ions from a 500 ppm solution in methanol/water (1:1, v/
v). After each run, the calibrant solution was consistently injected at
a flow rate of 3 μL/min via a six-port divert valve. The MS/MS
fragmentation step involved selecting the 5 ions with the highest
intensity, and active exclusion was applied after 4 spectra with a
release time of 30 s. The mass spectra were processed using the
DataAnalysis software (version 4.3, Bruker). MS data collected from
F. oxysporum replicates can be found in the MassIVE dataset under
the register number MSV000091616.

2.4 LC-MS/MS data processing

The mass spectrometry data were centroided and converted
from the proprietary format (.raw) to the m/z extensible markup
language format (.mzML) using the peak picking algorithm of
ProteoWizard (ver. 3.0.19, MSConvert tool) (Chambers et al.,
2012). The mzML files were then processed with MZmine3
(Schmid et al., 2023). In short, feature detection and
deconvolution were performed with the ADAP chromatogram
builder and local minimum resolver algorithm. The isotopologues
were regrouped and the features were aligned, and gap filled across
samples.

The aligned peak list was filtered to contain only peaks with an
associated fragmentation spectrum. Finally, the feature
quantification table results (.CSV) and spectral information
(.MGF) were exported with the GNPS module for feature-based
molecular networking analysis on GNPS and with SIRIUS export
modules. The MZmine3 project, the MZmine3 batch file (.XML
format), and results files (.MGF and. CSV) are available in the
MassIVE dataset under the register number MSV000091616. The
MZmine3 batch file contains all the parameters used during the
processing.

2.5 LC–MS/MS data annotation

The files exported from MZmine3 were uploaded to GNPS
(http://gnps.ucsd.edu) (Wang et al., 2016) platform, in which
spectral library matching was performed against public
fragmentation spectra (MS2) spectral libraries. Annotation has also
been performed with SIRIUS (v. 5.5.7) to systematically annotate the
MS2 spectra (Böcker et al., 2009; Böcker and Dührkop, 2016;
Dührkop et al., 2019; 2021). Molecular formulas were computed
with the SIRIUS module by matching the experimental and
predicted isotopic patterns and from fragmentation trees analysis
of MS2. The parameters for SIRIUS tools were set as follows:
molecular formula candidates retained, 10; maximum precursor
ion m/z computed, 850; profile, Q-TOF; MS2 mass accuracy
(ppm), 10; possible ionizations [M + H]+ and [M + Na]+.
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2.6 Feature-based molecular networking

A molecular network was created with the FBMN workflow
(Nothias et al., 2020) on GNPS (Wang et al., 2016). The precursor
ion mass tolerance was set to 0.01 Da and the MS/MS fragment ion
tolerance to 0.02 Da. A molecular network was then created where
edges were filtered to have a cosine score above 0.7 and more than
4 matched peaks. Further, edges between two nodes were kept in the
network if and only if each of the nodes appeared in each other’s
respective top 10 most similar nodes. Finally, the maximum size of a
molecular family was set to 100, and the lowest-scoring edges were
removed frommolecular families until the molecular family size was
below this threshold.

The analogue search mode was used by searching against MS/
MS spectra with a maximum difference of 100.0 in the precursor ion
value. The DEREPLICATOR software was used to annotate MS/MS
spectra (Mohimani et al., 2018). The molecular networks were
visualized using the Cytoscape software (Shannon et al., 2003)
and the links are available in the Supplementary Materials for
public access.

2.7 Principal component analysis (PCA)

The.MGF file containing the MS/MS information was binned
(bin size ofm/z 0.1) and the resulting table was used to visualize the
clustering of compounds based on the presence of conserved ions
using Principal Component Analysis. SDV function from the R
package (version 2.5.5) was applied to calculate the Euclidean
dissimilarity matrix based on the metabolite levels. Subsequently,
classical metric multidimensional scaling was carried out based on
the Euclidean distance matrix to obtain different principal
coordinates.

2.8 MassQL analysis

The MassQL tool version 31.4 (Jarmusch et al., 2022) was
employed to search for specific MS/MS fragments that were
identified as specific for the beauvericin molecular class. Thus,
these analogs were grouped by searching for MS/MS diagnostic
ions at (1) m/z 134, 244, 262, 362 or (2) m/z 384, 284, 266 with a
0.1 m/z tolerance and a minimum percentage intensity relative to
the base peak of 10.0% for analysis at CID energy of 25 eV, and
100% for 50 and 70 eV. The MassQL jobs can be publicly
accessed, and the links are available in the Supplementary
Materials. The extracted data was re-analyzed to generate a
molecular network, using the same parameters as described
above.

3 Results

To assess the ability of MS/MS Molecular Networking to detect
beauvericin analogues and distinguish their fragmentation patterns
in different collision energies (25, 50 and 70 eV), a fragmentation
study was established by the untargeted tandem mass spectrometry
of F. oxysporum extract based on the fast data-independent

acquisition (DIA) function of QToF mass spectrometer. This
Fusarium extract has been previously reported to produce
beauvericin (Selegato et al., 2016) and the DIA setting allowed
the automatic analysis and detection of known and unknown
analogs that range in structural features and concentration in
these fungal cultures.

3.1 Principal component analysis (PCA) of
MS/MS data

PCA analysis was performed on the MS/MS data using the
SDV algorithm to evaluate the effect of collision energy on
fragmentation data of beauvericin and analogues. Separate
PCAs were conducted for each collision energy, showing a
cumulative explained variance of 58.27% (25 eV), 70.42%
(50 eV), and 96.32% (70 eV) for the first five principal
components (PCs). For the higher collision energy, a strong
correlation was observed between beauvericin in PCs 3–6 (for
50 eV) and PCs 1–3 (for 70 eV), respectively (Figure 1). However,
this correlation was associated with the type of adduct formed
during MS acquisition (protonated and sodiated ions) rather than
the fragmentation pattern itself.

The protonated beauvericins [M + H]+ were clustered on the
positive sides of PC3 and PC1 (for 50 and 70 eV, respectively)
with four characteristic fragments identified: m/z 362, 262,
244 and 134. The m/z 134 fragment exhibited higher
abundance at 70 eV and corresponds to the
N-methylphenylalanine (MePhe) residue, while the ions m/z
244, 262, and 362 showed higher intensities at 50 eV and are
associated with the c2 and b2-fragments of MePhe-Hiv residues
and the b3-fragment of the Hiv-MePhe-Hiv residue, respectively.
In general, the depsipeptide fragmentation occurs mostly at the
peptide bond (b-fragments), leading to the formation of stable
amino acid immonium ions (H2N

+ = CHR2), or, at higher
energies, in neighboring sites, generating the a-fragment alkyl
carbonyl (CHR-CO) and the c-fragment aminoalkyl bond (NH-
CHR) (Hohmann et al., 2008).

Contrarily, the positive sides of PC6 and PC3 (for 50 and 70 eV,
respectively) were dominated by sodiated adducts [M + Na]+ which
are clustered due to the presence of the ions m/z 384, 284, and 266.
These fragments are also originated from the b3-fragmentation of
Hiv-MePhe-Hiv residue and the b2/c2-fragments of the MePhe-Hiv
residue, respectively. Interestingly, the sodiated adducts exhibited a
lower overall abundance of fragments compared to the protonated
ions, indicating increased stability of the Na+ adducts. Only the ion
m/z 384 was significant at both 50 and 70 eV, while no fragments
were observed for beauvericin at 25 eV. Lastly, a higher number of
beauvericin ions were clustered at 70 eV, confirming that at higher
energy levels, the conserved ions are more prevalent and explain the
variance in the dataset better than other fragments and the
precursor ion.

PCA analysis mainly showed the significant distinctions
between sodiated and protonated beauvericin adducts. However,
evaluation of the diagnostic fragments correlated with this adducts
also reveals variations in the fragmentation pattern, specifically
regarding the type and quantity of fragments generated through
peptide cleavages. Indeed, the representative fragmentation
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spectra of beauvericin suggests that lower energies break the
protonated ions into both b and c fragments, along with neutral
loss of water (−18 Da) and methyl (−15 Da), whereas at higher
energies, more stable b2-fragments have higher abundance in the
spectra.

For protonated beauvericin, the most abundant fragment at
25 eV is the c4-fragment atm/z 541, as well as all five b-fragments
(m/z 134, 262, 362, 523 and 623). As the collision energy
increases, these b-fragments become more dominant over the
c-fragments, in which the most significant ions are one, two and
three-residue b-fragments (m/z 134, 262 and 362). At 70 eV, most
fragments above m/z 400 have undergone fragmentation, and the
m/z 262 and 362 appear at low intensities. Consequently, the
single residues MePhe (m/z 134) and OH-Hiv (m/z 180) become
the only representative fragments, with normalizes abundances
of 100% and 20%, respectively (Figure 2). This fragmentation
plurality is not observed in sodiated adducts, regardless of the
collision energy. At 25 eV, no fragments are generated, and, at
50 and 70 eV, only b-fragments are observed. Interestingly,
neither a nor c-fragments were formed at any of the collision
energies, resulting in a cleaner spectrum compared to their
respective protonated precursor.

3.2 Feature-based molecular networking
(FBMN) of beauvericin analogues in different
collision energies

The FBMN approach involves organizing MS/MS data (spectra)
into a network based on the similarity of fragmentation patterns.
Each node within the network represents a collection of spectra
sharing the same precursor ion, and the relationships between nodes
are determined by the degree of similarity among the spectra. Thus,
to examine the variations in the fragmentation pattern of
beauvericins under different CID energies, each dataset (25, 50,
and 70 eV) was submitted to molecular networking approach.

Although all three networks contain a similar number of
precursor ions, there is a disparity in the number of clusters. At
higher collision energy (70 eV), there was a higher prevalence of
singletons, which do not exhibit similar fragmentation patterns
to other nodes, and the presence of smaller clusters with fewer
than 10 nodes each. Conversely, at lower energies, a larger part
of the nodes is grouped in big clusters, displaying almost three
times less single nodes than at 70 eV. Moreover, at 25 eV, fewer
clusters are present, but most of them contain many nodes
(Figure 3).

FIGURE 1
Principal Component Analysis (PCA) of the MS/MS beauvericin data at 50 eV and 70 eV. Analysis was performed using tandem MS data at different
collision energies to obtain principal components (PCs) that explained the total beauvericin variation (A) 2D-Score plots of the PCs for 50 (PC3 and PC6)
and 70 eV (PC1 and PC3). (B) 1D-Loading plots of the PCs that displayed a strong correlation was observed with beauvericin. For 50 eV, PC3 and
PC6 show a combined variance of 16.95%, whereas for 70eV, PC1 and PC3 have 79.34% of explained variance.
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Protonated beauvericin ions were consistently clustered
together, regardless of the collision energy applied. However, as
the collision energy increases (50 and 70 eV), the number of ions
grouped within the protonated clusters increases. In contrast,
sodiated ions are mostly found as singletons (self-loop nodes) or
scattered in random groups at 25 eV. At increasing energies,
beauvericin nodes are grouped into numerous clusters of only a
few nodes. For instance, at 50 eV, three highly specific beauvericin
clusters are formed and MS/MS pattern is similar to the protonated
cluster at 25 eV, as it balances the presence of the fragments with the
precursor ion. In all three clusters, the identification of both the
conserved ions (m/z 266, 284, and 384) and the repetitive loss of
amino acid residues at their peptide bonds (b-fragments) are equally
important to determining similarity. At energies above 50 eV, nodes
that contain conserved beauvericin ions are grouped into different
clusters and the presence of these fragments are no longer
exclusively what determines the similarity.

FBMN analysis of sodiated beauvericins at 70 eV revealed
subclasses with distinct amino acid residues, allowing distinction
between known beauvericins (beauvericin and beauvericin D) and
two previously unknown structural isomers (Figure 4). Both clusters
contain the conserved ions at m/z 266, 284, 384. However, the MS/
MS spectra of the unknown compounds, eluting in earlier retention
time (~30 min), exhibit an additional neutral loss of 64 Da, which
corresponds to the loss of methanesulfenic acid (CH3SOH) from the
methionine sulfoxide residue (Supplementary Figure S1). Putative
annotation of the first novel metabolite (compound 1) showed a
sodiated mass of m/z 806.3695, repetitive losses of
161–100–161–100 (from the MePhe-Hiv-MePhe-Hiv residues)
and an additional loss of 97 Da, which corresponds to the
N-methylated methionine residue (MeMe(O)) after the loss of
methanesulfenic acid. The proposed molecular formula is
C41H57N3O10S, displaying a mass error below 3 ppm, and
retention time of 30.62 min. Compound (2) had the same

FIGURE 2
Fragmentation of beauvericin as a protonated ion and sodiated adduct at 25, 50, and 70 eV. The structure is shown both in its linear and cyclic form
to facilitate visualization. Breaks in the peptide bond of each amino acid residue are shown in different colors and correspond to the b-fragments.
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fragmentation pattern as compound 1 (losses of
161–100–161–100 Da), expect for the loss of 83 Da, correlated to
the non-methylated methionine sulfoxide residue (Me(O)) after the
loss of methanesulfenic acid. This new depsipeptide has a m/z of
792.3536 and proposed molecular formula C40H55N3O10S (mass
error <3 ppm). Lastly, apart from the novel compounds, beauvericin
D was also putatively annotated byMS/MS fragmentation. Although
this molecule follows the exact same fragmentation pattern as
beauvericin, its spectra also display a specific loss of 147 Da,
which is characteristic of phenylalanine without any
N-methylation. The putative MS/MS annotation of all four
isomers are detailed in the Supplementary Materials
(Supplementary Figures S2–5).

Overall, FBMN was successful in assisting the detection of
beauvericin and other 13 analogues that share the same MS/MS
fragmentation pattern. Among these molecules, some are known
molecules that have been putatively identified, while others require
further characterization and assessment of their unmatched
fragment spectra. Table 1 shows the beauvericin ions identified
for F. oxysporum, the proposed molecular formular and, when
available, putative annotation.

3.3 Finding beauvericin analogues with
MassQL analysis

The MassQL tool was used to search for spectra containing
specific fragments related to beauvericin. For this, MassQL used the
FBMN with different CEs to search for a query in a mass
spectrometry-centric fashion, targeting to find its related ions
without ambiguity. Three different strategies have been applied to
search for this molecular class and a summary with their description
and their main findings are available on Table 2. The complete
results generated from each query and the links for their jobs on

GNPS are available on Supplementary Material and Supplementary
Table S2.

The initial query (query 1) aimed to search for MS/MS spectra
that incorporated the product ion mass of at least one of the
conserved ions previously identified in the beauvericin analogues.
Thus, the search was conducted using the protonated fragment ions
c2, b2 and b2-H2O atm/z 362, 262 and 244, and their sodium adducts
at m/z 384, 284 and 266, respectively. The y ion at m/z 134 was
searched for protonated ions only. This query resulted in 112, 167,
and 156 scans for CID energies of 25, 50, and 70 eV, respectively.
Furthermore, some ions identified by this query did not exhibit the
characteristic fragmentation pattern of the hexadepsipeptide class,
exhibiting m/z values below 600 or above 900. For purpose of
illustration, at 50 eV, one of the most abundant ion was at m/z
625, and its fragmentation produced the major product ions at m/z
449, 405, 378, 322, and 181, which are not in agreement with the
fragmentation pattern of beauvericin analogs.

To enhance the specificity of the search for beauvericin
analogues and to define a precise sequence of N-MePhe and
D-Hiv residues, the second query was employed (query 2) where
conserved ions were systematically concatenated. This methodology
aimed to refine the search parameters, thereby providing a more
targeted examination of potential analogues. Upon implementing
this query, CID energy levels of 25, 50, and 70 eV yielded 27, 54, and
65 scans, respectively. The significant reduction in the number of
returned MS/MS spectra points out the increased specificity of this
search strategy.

Given the potential modifications at the N- or C-termini of
beauvericin analogues, identifying all derivatives via
pseudoprecursor ion scanning and specific product ion formation
becomes challenging without priorly conducting a fragmentation
study, as demonstrated previously. To address this challenge, an
alternative method was employed (query 3), which involved
searching for a neutral loss sequence that included at least one

FIGURE 3
FBMNof beauvercin analogues at different collision energies (25, 50, and 70 eV). Each dataset was obtained from replicates of the same fungi extract
and contains a similar number of MS/MS features. Nodes are colored according to the mass of the parent ions, in which yellowish colors represent lower
masses (~m/z 250) and purple-like nodes constitute higher masses (~m/z 1,200).
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FIGURE 4
Elucidation of structural isomers from the beauvericin molecular class. Two sodiated ions at m/z 806 and m/z 792 have been clustered separately
and contain different fragmentation patterns. The group colored in green belongs to the known compounds, beauvericin (m/z 806.4,031) and
beauvericin D (m/z 792.3874) and elute at later retention time (~38 min). The other group, colored in blue, elutes at earlier retention times (~30 min) and
belongs the to the novel beauvericin analogues (1,m/z 806.3695) and (2,m/z 792.3536). Thesemetabolites contain an unusual methionine sulfoxide
residue and a diagnostic loss of 64 Da, corresponding to the neutral loss of methanesulfenic acid. Both groups display the diagnostic beauvericin ions at
m/z 266, 284, 384.
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TABLE 2 MassQL strategies used for the search of beauvericin analogues. Queries 1 and 2 search for product ion formation, whereas the third uses neutral loss or
delta mass.

Query N Description Targeted IONS Main findings

QUERY 1 Search for conserved ions individually Protonated: m/z 362 or 262 or 244 or 134; Sodiated: m/z 384 or
284 or 266

112 (25 eV), 167 (50eV), and 156
(70 eV) scans

QUERY 2 Search for conserved ions systematically
concatenated

Protonated: m/z 362 and 262 and 244; Sodiated: m/z 384 and
284 and 266

27 (25 eV), 54 (50eV), and 65
(70 eV) scans

QUERY 3 Search for a neutral loss sequence of MePhe→Hiv→
MePhe residues

Addition of a delta mass of 161 (X+161), followed by 100 (X+261)
and then 161 (X+422)

150 (25 eV), 212 (50eV), and 81
(70 eV) scans

TABLE 1 Beauvericin analogues identified by FBMN and MassQL in Fusarium oxysporum extracts. All ions have been clustered with known beauvericin analogues
and contain at least one of the diagnostic ions for the beauvericin molecular class. Molecules have been annotated by comparison with curated databases.
Compound 1 and 2 have never been reported in literature and its putative annotation is described in the Supplementary Materials. Ions with (*) were identified by
MassQL only. Compounds that have not been putatively annotated had their molecular formula proposed.

Exp. m/z Theoretical
m/z

Error
(ppm)

RT
(min)

Putative
annotation

Proposed Most abundant fragments at
50 eV

Molecular
formula

1 792.352
[M + Na]+

792.3505 1.89 30.33 Compound 2 C40H55N3O10S 306, 384, 467, 567, 728, 792

2 806.3695
[M + Na]+

806.3662 4.09 30.61 Compound 1 C41H57N3O10S 320, 384, 481, 581, 742, 806

3 808.378
[M + Na]+

- - 32.54 - C45H59N3O9 284, 384, 547, 575, 647, 728, 808

4 822.396
[M + Na]+

822.3941 2.31 32.7077 Beauvericin J C45H57N3O10 384, 400, 545, 563, 645, 663, 822

5 820.411
[M + Na]+

820.4149 4.75 33.74 Beauvericin A/F C46H59N3O9 384, 398, 559, 659, 820

6 824.3755
[M + Na]+

- - 35.03 - C45H59N3O10 384, 402, 563, 663, 824

7 825.464
[M + Na]+

- - 35.04 - C45H58N2O11 402, 563, 663, 825

8 808.413
[M + Na]+

- - 35.78 - C45H59N3O9 206, 386, 547, 647, 808

9 788.432
[M + Na]+

- - 36.24 - C48H58N3O7 366, 384, 527, 627, 645, 788

10 822.3944
[M + Na]+

822.3941 0.36 36.39 Beauvericin J C45H57N3O10 300, 384, 400, 563, 663, 822

11 778.3641
[M + Na]+

778.3679 4.88 36.85 Beauvericin G2 C43H53N3O9 356, 384, 517, 617, 778

12 758.3961
[M + Na]+

758.3992 4.08 37.10 Beauvericin E C41H57N3O9 758, 597, 525, 497, 384, 336

13 792.387
[M + Na]+

792.3836 4.29 37.2159 Beauvericin D C44H55N3O9 792, 631, 531, 384, 370

14 806.403
[M + Na]+

806.3992 4.71 38.17 Beauvericin C45H57N3O9 806, 645, 545, 384

15 722.3968* - - 36.2046 - C40H55N3O9 433, 362, 333, 300, 262, 134

16 750.4325*
[M + H]+

750.4329 0.5 38.3355 Beauvericin K C42H59N3O9 489, 362, 328, 262, 134

17 764.4355* - - 39.4984 - C43H61N3O9 503, 603, 362, 342, 262, 134

18 780.4490* - - 34.5900 - C43H61N3O10 537, 437, 262, 180
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Hiv and two N-MePhe unit in the analogs. The MassQL query
involved the addition of a delta mass of 161 (X+161), followed by
100 (X+261) and then 161 (X+422); this indicates the formation of a
product ion at m/z = X, resulting from the sequential neutral loss of
the MePhe→Hiv→MePhe residues. The query yielded 150, 212 and
81 scans for CID energies of 25, 50, and 70 eV, respectively. The
higher number of identifications, compared to the results from the
product ion scan (query 2), can be attributed to a greater sensitivity
to mass deviation. This is because the query measures the relative
mass loss between a precursor ion and a particular fragment ion. For
example, in the dataset obtained at 50 eV, the query successfully
pinpointed the beauvericin derivatives with precursor ions at m/z
784 [M + H]+ (RT = 30.59 min), and m/z 784 [M + H]+ (RT =
38.19 min), returning 12 scans and 2 scans for each respective MS/
MS spectrum.

Given that themostpromising resultswereobtained fromthe secondand
third queries, and to simplify the comparison of query results while avoiding
redundancy, molecular networks were constructed using data derived from
MassQL (Supplementary Figure S6). The dataset from each CID energy (25,
50, and 70 eV) contributed to the formation of distinctive clusters within the
molecular network, displaying similar results as the preliminary FBMN.Upon
visual inspection of the precursor ion clusters generated based on the proposed
queries, itwasobserved that sodiated ionsdemonstrated improved clustering at
higher fragmentation energies, with themost optimal clustering seen at a CID
energy of 70 eV. On the contrary, protonated ions presented an opposite
pattern. These findings are consistent with the FBMN results previously
presented. In the context of sodiated ions clustering, query 03 appeared to be
more effective, whereas query 02 identified two precursor ions atm/z 676 and
748 that do not fall within the beauvericin analogs. Furthermore, the identified
sodiated precursor ions align with those manually analyzed in the molecular
network generated by the FBMN approach.

With regard to protonated ions, query 02 demonstrated superior
selectivity. Analyzing the molecular networks of the protonated ions
at collision energies of 25 and 50 eV, it was possible to identify
precursor ions that were not distinguished at the higher energy level
or for the corresponding sodiated ions. The analysis of MS/MS mass
spectra for the precursor ions identified in these clusters, specifically
at m/z 722, m/z 750, m/z 764, and m/z 780, showed fragmentation
patterns characteristic of beauvericin analogues (Supplementary
Figure S7; Table 1). These precursor ions demonstrated similar
fragmentations, due to the formation of the product ions atm/z 362,
262, and 134, along with consecutive neutral losses of 161 Da and
100 Da. As an illustration, the precursor ion at m/z 750 generated
sequential neutral losses of 161, 100, and 127 Da; the neutral loss of
127 Da suggests that this ion contains an N-leucine/isoleucine unit
in place of a phenylalanine unit (Xu et al., 2016). The annotation
derived from structure-based propagation for the other ions implies
that the modification occurs at the amino acid unit, as indicated by
the observed mass differences of 128, 141 and 157 Da.

4 Discussion

4.1 Finding conserved ions by PCA-based
molecular fingerprinting

Initially, we conducted PCA analysis on the MS/MS data,
revealing a positive and correlation between collision energy and

the percentage of variance explaining the presence of beauvericin.
This correlation can be attributed to the promotion of successive
cleavages at increasing energies, leading to the generation of building
block structures (‘ions”) formed by single amino acid residues. This
evidence is more prominent by analysis of PC1, which contains the
highest explained variance of all PCs, embracing 21.22%, 26.70%,
and 73.69% of the whole abundance variability.

PCA analysis for high collision energies data showed that
beauvericin analogues were grouped based on the type of adduct
(protonated or sodiated). Based on this distinction, two sets of
particular fragments were discovery for the identification of these
hexadepsipeptides: ([M +H]+)m/z 134, 244, 262, and 362 and ([M +
Na]+) m/z 266, 284 and 384. To date, numerous LC-MS/MS
methods have been developed to detect enniantins and
beauvericins. However, most of these methods target the specific
congeners at m/z 362, or semi-targeted relying on one or two
product ions. Consequently, identifying a total of seven
diagnostic fragments could assist in the identification of this
molecular class, enabling a more automatic detection of
analogues, reducing analysis time and minimizing compound
overestimation.

Interestingly, sodiated adducts exhibited a lower overall
abundance of the fragments, implying that these adducts are less
prone to fragmentation than their protonated counterparts. This
limited number of fragments can be attributed to the chelation effect
of the carbonyl groups from the six amino acid residues with the
sodium ion, further stabilizing the cycle and increasing the energy
necessary for the cleavage of the peptides. On the one hand, this
chelation effect makes the annotation of known beauvericin more
straightforward given the spectra usually contains only b2-
fragments, which preserve the entire amino acid residue.
However, for unknown analogues, the information derived by
other fragments in the protonated MS/MS spectra can aid in the
determination of the right amino acid residues based on specific
losses. The MePhe residue (m/z 134) was the only ion that appeared
in both sodiated and protonated forms. This fragment thus
represents the sole conserved ion presents in both adducts,
making it a valuable fragment for this molecular class.

While this unsupervised analysis provided valuable insight into
the presence of class-conserved ions, PCA alone falls short of
clustering molecular features based on their fragmentation
patterns, thus failing to identify compounds with similar MS/MS
losses. Furthermore, the number of observed protonated and
sodiated ions in the PCA is lower than the actual number of
beauvericin analogues, and conserved ions often go unnoticed in
lower intensity spectra. This limitation presents challenges,
particularly for molecular classes that lack class-specific
fragments. In such cases, a comprehensive assessment of the MS/
MS data requires the integration of complementary tools that
incorporate similarity outputs into the analysis process.

4.2 Exploration of beauvericin analogues by
FBMN

Molecular networking has been widely used in natural product
research to visualize and interpret untargeted MS/MS data. This
algorithm is based on principle that structurally related molecules
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tend to exhibit similar fragment patterns. As a result, MS/MS spectra can
be mapped as molecular networks by comparing the spectral similarity
between each pair of spectra. Given the structural relation of beauvericin
analogues, these cyclic depsipeptides generate highly similar fragment
patterns in tandemmass spectrometry. Consequently, these patterns can
be organized into molecular families within the network, facilitation the
annotation of known novel analogues. This approach has already been
successfully applied to beauvericin and enniatin analogues, leading to the
discovery of four enniatins and three beauvericin-producing fungi, as well
as the identification of one new isomers of enniatin A and three new
bassianolide analogs (Li et al., 2020).

Although MN has been extensively employed for compound
mapping, only a few studies have used this approach to investigate
fragmentation differences within a specific molecular class. Varying
collision energies for the same molecule renders distinct MS/MS
spectra, providing a deeper understanding of the chemical structure,
fragment stability, and the accurate compound characterization.

To address the fragmentation pattern variations of beauvericin
under different collision energies, we subjected each dataset (25, 50, and
70 eV) to feature-based molecular networking. This approach provided
a visual representation of the clustering pattern and revealed differences
between subclasses and adducts. For instance, the lower number of
singletons at lower collision energies illustrates the reduced
fragmentation at 25 eV, resulting in spectra formed mainly by the
precursor ions and a weaker contribution of the fragments for overall
fragmentation pattern. Moreover, at higher CID energies, there is a
higher number of clusters that contain less than 10 nodes. This indicates
that the increased number of fragments enhances specificity of the MS/
MS spectra, differentiating fragmentation patterns even within the same
molecular class.

Interesting, when we conducted a targeted search of the ions
clustered on the PCA analysis for sodiated and protonated adducts,
we observed a similar separation within MN. This finding was
unexpected, considering that both types of ions theoretically have
the same tendency of losing amino acid residues at the peptide
bond. However, this discrepancy highlights the capacity of FBMN to
distinguish classes not only based on their primary losses (such as
b-fragments), but also on the more subtle spectral differences, as the
presence of a and c-fragments, conserved ions, and losses specific to
particular amino acid residues.

The protonated ions of beauvericin were consistently
clustered together, irrespective of the collision energy applied
(Figure 5). This suggests that the beauvericin analogues exhibit
both diagnostic fragments and similar fragmentation patterns
even at lower CID energies. However, a closer examination of the
protonated cluster revealed that the highest number of ions were
obtained at 50 eV. This improved accuracy in identifying this
molecular class can be attributed to presence of MePhe, MePhe-
Hiv, and Hiv-MePhe-Hiv fragment peaks at similar abundances
(ranging from 50%–100%). At 70 eV, the cleavage of fragments
containing two and three amino acid residues, increases the
abundance and prevalence of the single-residue MePhe
fragment. Consequently, other peptides that do not belong to
the beauvericin analogs but also contain MePhe residues, such as
pentacyclic peptides atm/z 522, 541, and 654, are clustered in the
same group. This increases the specificity of peptides as opposed
to specifically finding beauvericin hexadepsipeptides. Lastly,
despite the protonated clusters at 25 eV contains the lowest

number of ions grouped together, this ionization energy gives
the most detailed chemical information about the amino acid
residues, displaying the majority of the b-fragments and thereby
facilitating the annotation of known and novel compounds
(Figure 5).

The opposite scenario is encountered for sodiated beauvericin
ions. At low CID energies, the fragmentation of these molecules is
insufficient due to the chelation effect on the sodium ion.
Consequently, beauvericin nodes either appear as singletons or
clustered with nodes from other molecular classes that also do
not fragment. At higher energies, MS/MS spectra contains a
higher number of fragments. Therefore, its FBMN reveals the
clustering of analogs based on their diagnostic fragmentation,
resulting in smaller and more specific clusters (Figure 6). At
50 eV, the MS/MS spectra exhibited all the conserved ions (m/z
266, 284, and 384), leading to the most accurate detection of
analogs. At energies above 50 eV, the specificity of these
conserved ions diminishes in favor of providing information
about amino acid residues other than MePhe and Hiv. This
results in the formation of a larger number of small networks
representing subclasses of beauvericin, which encompass the ions
at m/z 266, 284, and 384 as well as residue-specific
fragmentations.

The analysis of sodiated ions at high collision energies allowed
the identification of two clusters that contain precursor masses of
m/z 792 and 806. The first was annotated as beauvericin and its
analogue beauvericin D. The latter has been previously isolated
from Beauveria species (Fukuda et al., 2004), however, it has never
been reported for F. oxysporum. The second group had their
metabolites elucidated as the novel beauvericin analogues
(MePhe-Hiv-MePhe-Hiv-MeMet(O)-Hiv and MePhe-Hiv-
MePhe-Hiv-Met(O)) that contain an unusual methionine
sulfoxide residue. Both compounds have never been reported
for this species, although Gunasekera and co-workers have
already shown the potential of bacteria to produce cyclic
depsipeptides with this type of residue (Gunasekera et al.,
2008). Putative annotation was mainly based on the neutral loss
of 64 Da, which has been previously associated to the loss of
methanesulfenic acid from precursors containing the oxidized
methionine Met(O) residue (Pilo and McLuckey, 2014). This
neutral loss is unique to Met(O) and was essential to
differentiate between this residue and phenylalanine, given that
both contain the same nominal mass.

Lastly, FBMN enabled the identification of beauvericin and
other 13 analogues that share the same MS/MS fragmentation
pattern. These include known analogues that have not been
described for this species and unknown molecules, highlighting
the potential of the molecular networking for the identification of
novel secondary metabolites, as well as F. oxysporum potential to
produce hexadepsipeptides.

Overall, FBMN provided valuable insights in several areas: (1)
establishing the relationship between adducts and the
fragmentation patterns, (2) identifying clusters specific to
beauvericin, (3) characterizing both known and unknown
analogues, and (4) differentiating between structural isomers.
However, the extensive data generated by LC-MS/MS analysis,
along with the occurrence of multiple fragmentation events during
mass spectrometry analysis, can complicate the molecular
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networking process leading to inaccuracies in clustering and
annotations. The fragmentation patterns, depending on the
collision energy, may result in clustering of metabolites that are
not exclusive to the beauvericin family, as observed for the sodiated
ions at 25 eV (where no fragments were formed) and the
protonated cluster at 70 eV (where only one abundant fragment
was formed). Moreover, without prior knowledge derived from
PCA regarding diagnostic fragments, determining the optimal
collision energy for the FBMN and identifying its clusters

become limiting, relying solely on manual validation and visual
inspection of the MS/MS spectra.

4.3 Identification of beauvericin analogues
by MassQL

Based on the analysis of the fragmentation pattern of beauvericin
analogues and the insights derived from PCA and FBMN analysis, a

FIGURE 5
Protonated beauvericin clusters from the FBMN at 25, 50, and 70 eV. Nodes colored in yellow are found in all CIDswhereas nodes colored in gray are
specific for only one CID. Example of the most abundant ions found on the protonated cluster. MS/MS spectra of the ions m/z 766 and m/z 770 are
sequentially shown in all three collision energies. The diagnostic fragments for this molecular class are colored in the spectra as m/z 134, 244, 262,
and 362.
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series of investigations were conducted using the MassQL tool. The goal
of this investigative process was to demonstrate the functionality of
MassQL and to highlight its significant potential for mining beauvericin-
like structures. The implementation of this tool was specifically designed
to automate the search for spectra containing specific fragments
associated with beauvericin. The automation facilitated by MassQL
streamlines the identification process, enhancing the efficiency and
accuracy of beauvericin analogue detection.

The application of combined multiple ion search proved to be
a potent strategy to refine the search parameters, thereby
increasing specificity and selectivity in the search for
beauvericin analogues. Conserved ions serve as distinctive
signatures in mass spectrometry studies, which enable efficient
identification and grouping of compound analogues. This

principle of structural similarity allows for a more targeted
and efficient search within complex datasets, reducing false
positives and enhancing the discovery of known and
potentially novel analogues. However, the effectiveness of this
method relies heavily on a thorough understanding of the
fragmentation behavior of the compound class, and accurate
identification of the conserved ions. Therefore, careful
interpretation and validation of results are key to ensuring the
correct grouping of analogues and the discovery of potential
new ones.

The neutral loss process, on the other hand, focused on
identifying specific mass differences between the precursor ion
and its subsequent fragment ions, corresponding to the loss of a
particular neutral moiety during fragmentation. This approach can

FIGURE 6
Sodiated beauvericin clusters from FBMN at 25, 50, and 70 eV. Nodes can be tracked by their color in all three collision energies, except for the
nodes colored in gray which are specific for only one CID energy. Example of the most abundant ions found on the protonated cluster. MS/MS spectra of
the ions m/z 822 and m/z 792 are sequentially shown in all three collision energies. The diagnostic fragments for this molecular class are colored in the
spectra as m/z 266, 284, and 384.
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thus account for variability in fragmentation patterns. If a precursor
ion can lose a specific group or moiety during fragmentation, the
resulting mass difference can be tracked across various spectra,
regardless of the exact identity of the fragment ions.

Neutral loss searches allowed for the identification of a broader
range of compounds that contain the same functional group or
moiety, even if their overall structures are different. This is especially
important when studying a family of compounds, like beauvericin
analogues, where subtle structural differences can lead to significant
variations in fragmentation pattern.

These different strategies demonstrate the adaptability of mass
spectrometry-based techniques for compound identification.
Using an ion-focused approach to conserved products can
provide high selectivity, which is beneficial when studying
specific subclasses or known structures. On the other hand, a
strategy focused on neutral losses can be employed when the goal is
a more exhaustive search in a class of compounds. It is the careful
choice and combination of these strategies that allows for a robust
and differentiated exploration of complex mass spectrometry
datasets.

5 Conclusion

In the present study, we demonstrate the potential of combining
PCA, spectral similarity networking and MassQL as an effective
approach for decoding mass fragmentation pathways of
beauvericins. To achieve this objective, we employed these
approaches in a combination of different collision energies from
ESI-MS/MS experiments from a F. oxysporum extract to determine
both the mass fragmentation pathways and the identification of
known and novel hexadepsipeptides.

PCA and FBMN offered great insights into the correlation of
the type of ions (protonated and sodiated adducts) and
fragmentation patterns. Sodiated ions have a chelation effect
on the sodium and the carbonyl from the peptide bond,
further stabilizing the cycle and increasing the energy
necessary for fragmentation. Based on this distinction, two
sets of particular fragments were discovery for the
identification of these hexadepsipeptides: ([M + H]+) m/z 134,
244, 262, and 362 and ([M + Na]+) m/z 266, 284 and 384.
Currently, most methods for the screening of beauvericin are
targeted to a few product ions. Hence, the identification of these
seven diagnostic fragments could help in the search for this
molecular class, decreasing analysis time and overestimation
of compounds.

By using these fragments, MassQL accurately found other
analogues of the same molecular class, identifying
18 beauvericins in this fungi extract, including 4 which were
not found when analyzing FBMN alone. The superior potential
of MassQL in detecting beavuericin analoges is due to the direct
search of diagnostic ions, overcoming the inaccuracies in
clustering and annotations of FBMN caused by the
occurrence of multiple fragmentation events during MS
analysis. Hence, the implementation of this tool enabled the
automated search for beauvericins, streamlining the
identification process and enhancing the efficiency and
accuracy of analogue detection.

Lastly, FBMN analysis of sodiated beauvericins at 70 eV revealed
subclasses with distinct amino acid residues, allowing distinction
between beauvericins (beauvericin and beauvericin D) and two
previously unknown structural isomers with an unusual
methionine sulfoxide residue (MePhe-Hiv-MePhe-Hiv-MeMe(O)-
Hiv and MePhe-Hiv-MePhe-Hiv-Me(O)-Hiv). Beauvericin D has
been previously isolated from Beauveria species; however, it has
never been reported for F. oxysporum. Similarly, these novel
compounds had never been reported for fungi species, although
previous studies have already shown the potential of bacteria to
incorporate these residues into cyclic depsipeptides.

Ultimately, this approach revealed the correlation between
adducts and the fragmentation patterns, the identification of
beauvericin clusters, the characterization of known and unknown
analogs, and the differentiation between structural isomers. The
combination of different tools could shed light on conserved MS
characteristics, facilitating the identification of metabolites in
complex mixtures.
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Introduction: Systemic sclerosis (SSc) is a chronic autoimmune disease, marked
by an unpredictable course, high morbidity, and increased mortality risk that
occurs especially in the diffuse and rapidly progressive forms of the disease,
characterized by fibrosis of the skin and internal organs and endothelial
dysfunction. Recent studies suggest that the identification of altered metabolic
pathwaysmay play a key role in understanding the pathophysiology of the disease.
Therefore, metabolomics might be pivotal in a better understanding of these
pathogenic mechanisms.

Methods: Through a systematic review of the literature following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA),
searches were done in the PubMed, EMBASE, Web of Science, and Scopus
databases from 2000 to September 2022. Three researchers independently
reviewed the literature and extracted the data based on predefined inclusion
and exclusion criteria.

Results: Of the screened studies, 26 fulfilled the inclusion criteria. A total of
151 metabolites were differentially distributed between SSc patients and healthy
controls (HC). The main deregulated metabolites were those derived from amino
acids, specifically homocysteine (Hcy), proline, alpha-N-phenylacetyl-L-
glutamine, glutamine, asymmetric dimethylarginine (ADMA), citrulline and
ornithine, kynurenine (Kyn), and tryptophan (Trp), as well as acylcarnitines
associated with long-chain fatty acids and tricarboxylic acids such as citrate
and succinate. Additionally, differences in metabolic profiling between SSc
subtypes were identified. The diffuse cutaneous systemic sclerosis (dcSSc)
subtype showed upregulated amino acid-related pathways involved in fibrosis,
endothelial dysfunction, and gut dysbiosis. Lastly, potential biomarkers were
evaluated for the diagnosis of SSc, the identification of the dcSSc subtype,
pulmonary arterial hypertension, and interstitial lung disease. These potential
biomarkers are within amino acids, nucleotides, carboxylic acids, and
carbohydrate metabolism.

Discussion: The altered metabolite mechanisms identified in this study mostly
point to perturbations in amino acid-related pathways, fatty acid beta-oxidation,
and in the tricarboxylic acid cycle, possibly associated with inflammation, vascular
damage, fibrosis, and gut dysbiosis. Further studies in targeted metabolomics are
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required to evaluate potential biomarkers for diagnosis, prognosis, and treatment
response.

KEYWORDS

systemic sclerosis, metabolomics, metabolic pathways, biomarkers, amino acids

1 Introduction

Systemic sclerosis is a chronic and rare autoimmune disease of the
connective tissue, whose etiology remains unknown, and the
pathogenesis is still partially understood, thus representing a clinical
challenge and an unmetmedical need (Denton andKhanna, 2017; Tsou
et al., 2021). SSc is characterized by a pathogenic triad consisting of
microvascular damage, innate and adaptive immune system
abnormalities with autoantibody production and cell-mediated
autoimmunity, and fibroblast dysfunction with excessive collagen
deposition, which leads to progressive fibrosis of the skin and
internal organs (Allanore et al., 2015; Pattanaik et al., 2015).

A striking characteristic of the disease is the variability within
patients, with great heterogeneity in the clinical manifestations, the
serological profiles, and the disease progression rate. SSc is
characterized by high morbidity and mortality, higher than any
other rheumatic disease (Elhai et al., 2017). Worldwide, the
prevalence of SSc is approximately 17.6 cases per
100,000 population, and the incidence rate is 1.4 per
100,000 person-years; however, there is great variability among
geographic populations (Bairkdar et al., 2021). Recent studies have
reported a mortality rate of 1.39–5.1 times higher than the general
population (Elhai et al., 2012; Rubio-Rivas et al., 2014; Hao et al., 2017;
Kang et al., 2018). SSc has a disease-related mortality rate of
approximately 55%, with the leading causes of death being
pulmonary complications such as interstitial lung disease (ILD),
followed by pulmonary arterial hypertension (PAH) (Tyndall et al.,
2010). ILD has a 19%–52% prevalence in SSc patients (Perelas et al.,
2020; Kuwana et al., 2022), and approximately 40% of these patients
die within 10 years of diagnosis (Akter et al., 2014). The pathogenesis
of SSc-ILD begins with a permanent injury to the alveolar epithelium,
secondary to an activation of the immune system promoting
profibrotic stimuli that induce fibroblast recruitment and
differentiation to a myofibroblast phenotype and extracellular
matrix (ECM) overproduction (Nihtyanova and Denton, 2020).
Moreover, in SSc patients, PAH occurs with a prevalence of 5%–
15% (Morrisroe et al., 2017; Naranjo and Hassoun, 2021). PAH is
characterized by arterial remodeling, and an increased pulmonary
vascular resistance secondary to abnormal vascular proliferation,
disequilibrium in vasodilators, proliferative mediators, and
thrombosis of the pulmonary vasculature resulting in right heart
failure, which can eventually lead to death (Launay et al., 2017).

In relation to skin involvement, SSc can be subclassified into
diffuse cutaneous systemic sclerosis (dcSSc) and limited cutaneous
systemic sclerosis (lcSSc) (Young and Khanna, 2015). LcSSc is the
most frequent subtype presentation (Coral-Alvarado et al., 2009),
characterized by a gradual and early onset of Raynaud’s
phenomenon and skin fibrosis restricted to certain areas, such as
the face and distal extremities, with minor systemic involvement
(Herrick, 2018). In contrast, in the dcSSc subtype, Raynaud’s
phenomenon coexists with skin fibrosis extended proximally to

knees, elbows, and the trunk with a more aggressive progression
characterized by severe internal organ manifestations, mainly in the
gastrointestinal tract, lungs, heart, and kidneys (Kowalska-
Kępczyńska, 2022).

A better understanding of the pathophysiology of SSc is crucial
to tackle the processes leading to disease progression and to discover
effective therapies to improve the long-term survival of SSc patients.
Recent studies suggest that metabolic perturbations may play an
important role in SSc pathogenesis and are exhibited in different
patients as a result of the disease heterogeneity and erratic course
(Wishart, 2016; Cambiaghi et al., 2017; O’Reilly, 2022). Therefore,
metabolomics may play an important role in understanding the
pathophysiology of the disease.

Metabolic characterization represents a promising approach
that can be applied for diagnosis, disease typing, and individual
treatment of SSc, as well as biomarker discovery (Zhang et al.,
2015a). Thus, this review aimed to identify altered metabolic
pathways possibly responsible for the mechanisms associated
with the appearance of SSc, in order to improve diagnosis,
prognosis, and treatment. Additionally, it identifies metabolites
that allow the segregation of patients with dcSSc and lcSSc.

2 Methods

2.1 Information sources and search strategy

A systematic review of the literature was conducted following
the recommendations of the PRISMA guidelines (Page et al., 2021).
Published studies related to the topic were retrieved after a literature
search in four databases: PubMed, EMBASE, Web of Science, and
Scopus, from January 2000 to September 2022. The references listed
in the articles were manually searched. Only English and Spanish
language articles were included. A search strategy combining MESH
terms and free words were developed: (“Metabolomics,”
“Untargeted Metabolomics,” “Metabolomic Fingerprinting,”
“Metabonomic,” “Targeted Metabolomics,” “Metabolic
footprinting,” “Metabolic profiling,” “Metabolome,” “Metabolic
profile,” “Lipidomics,” “Lipidome” OR “Lipidomes”) AND
(“Scleroderma, Systemic,” “Scleroderma, Diffuse,” “Scleroderma,
Limited,” “CREST Syndrome,” “Systemic Sclerosis,” “Systemic
Scleroderma” OR “Sclerosis, Systemic”). Supplementary Table S1
depicts the search strategy 1. This systematic review was not
registered. Protocol was not written prior to the elaboration of
the systematic review.

2.2 Eligibility criteria

Studies meeting the following criteria were included: 1)
analytical observational studies (i.e., cross-sectional, case-control,
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and cohort studies) that evaluated altered metabolites in biological
samples such as serum, plasma, urine, and exhaled breath by high-
throughput techniques in patients diagnosed with SSc in
comparison to HC; 2) studies published in English and/or
Spanish and 3) studies implemented in adults. The exclusion
criteria were as follows: 1) animal or in vitro cell studies; 2) non-
original articles; 3) conference abstracts, guidelines, or editorials; 4)
studies using irrelevant metabolomics techniques and 5) article data
incomplete or missing.

2.3 Study selection

Three reviewers (VM, JC, DG), after removing duplicate articles,
independently reviewed all the selected studies in the initial research
in a two-step procedure assessing their eligibility. In the first phase,
all identified titles and abstracts were evaluated to determine which
records were possibly eligible for inclusion. Subsequently, the
potentially relevant articles were selected and assessed again in

the second phase. In this step, a full-text review was done to
determine the eligible records according to the above criteria.
Discrepancies in the final decision were resolved by consensus.
The reasons for excluding studies were recorded. The primary
outcome was to identify the differences in metabolic patterns
between patients with SSc and HC. Secondary outcomes included
comparing the differences in metabolic patterns across dcSSc and
lcSSc subtypes and cardiopulmonary complications, as well as
identifying potential metabolite biomarkers for SSc diagnosis and
classification.

2.4 Data extraction and result synthesis

Data from each study were manually extracted and transferred
into a Microsoft Excel form to include the following variables:
(Denton and Khanna, 2017): publication information including
first author, year of publication, and study geographic location;
(Tsou et al., 2021); patients characteristics including age and sex;

FIGURE 1
Preferred Reporting Items for Systematic Reviews and Meta-analyses flow chart.
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(Allanore et al., 2015); sample size; (Pattanaik et al., 2015); sample
type; (Elhai et al., 2017); methods used for metabolite identification
and analysis, and (Bairkdar et al., 2021) differentially distributed
metabolites across comparison groups. Key metabolites features
were manually extracted based on statistical significance (p-values
below a threshold of 0.05 or an area under the receiver-operator
curve (AUC) greater than 0.70). These metabolites were then
categorized according to the body fluid that was studied (plasma,
serum, urine, and exhaled breath) and imported into the software
MetaboAnalyst 5.0 for the generation of metabolic pathways
enrichment analysis, which provides p values adjusted for
multiple testing and uses the high-quality SMPDB metabolic
pathways as the metabolite set library. There were no methods
required for data conversion or the processing of missing summary
statistics. Three reviewers (VM, JC, DG) independently extracted the
information. Consensus was used to settle any inconsistencies or
missing information. Tables were used to present the extracted
metabolites.

2.5 Quality assessment

The quality of the eligible studies was evaluated using the
QUADOMICS evaluation tool (Lumbreras et al., 2008). This
scale represents an adaptation of the Quality Assessment of
Diagnostic Accuracy Assessment (QUADAS) which assesses the
quality of studies on omics-based research. This evaluation tool has
16 items, each of which can be answered with “yes,” “no” or
“unclear.” The quality of the included articles was evaluated by
three researchers independently, and the discrepancies were
resolved by consensus after a comprehensive discussion. The
PRISMA checklist for systematic reviews is presented in
Supplementary Table S2.

3 Results

3.1 Study selection

A total of 18,031 records were retrieved from the initial database
search, of which 1,330 duplicates were removed by electronic and
manual double examination, obtaining a total of 16,701 articles.
These were screened by titles and abstracts, excluding 16,507 for
being unrelated to the topic of interest. The full text of the remaining
194 articles was fully assessed for eligibility, and finally, 26 articles
fulfilled the inclusion criteria. Figure 1 displays the search results and
the selection strategy.

3.2 Study characteristics

The characteristics of the selected studies are summarized in
Table 1. In the selected studies, a total of 2004 individuals were
enrolled, including 1,338 patients diagnosed with SSc, most of them
within the lcSSc subtype and 666 HC. Most patients diagnosed with
SSc included in the studies were women (87.9%). Patients had an
average age of 56.3 years. Most of the selected articles were analytical
cross-sectional studies (n = 23). Twenty-three of the twenty-six

studies conducted metabolomics comparisons between SSc cases
and HC, two studies compared metabolomic patterns between SSc
patients with PAH and SSc patients without PAH (Thakkar et al.,
2016; Deidda et al., 2017) and one study compared SSc cases with
systemic lupus erythematosus (LES) (Bengtsson et al., 2016).
Fourteen studies assessed the metabolome in plasma, eight in
serum, two in urine, one in urine and plasma, and one study
evaluated in exhaled breath. Most of these studies used high-
performance liquid chromatography quadrupole time-of-flight
mass spectrometry (HPLC-Q-TOF-MS), high-performance liquid
chromatography with fluorescence detection (HPLC-FLD); and to a
lesser extent high-performance liquid chromatography quadrupole-
linear ion-trap hybrid mass spectrometry (HPLC-QTRAP-MS),
high-performance liquid chromatography with on-line UV
system. (HPLC-UV) and gas chromatography electron impact
mass spectrometry (GC-EI-MS). Proton nuclear magnetic
resonance spectroscopy (H NMR), and capillary gas
chromatography with flame ionization detection (CGC-FID) were
also described.

3.3 Quality assessment

The results of the methodologic quality assessment by the
QUADOMICS tool are summarized in Supplementary Table S3.
Because all the studies included in this evaluation were in phase I, the
second and 14th QUADOMICS items were not applicable. Overall,
the studies meet the majority of the QUADOMICS criterion,
indicating that the quality of the included studies is good. All
studies described the selection criteria (item 1) and the sample
type (item 3), but none met item 12, indicating that the index test
findings were interpreted with knowledge of the reference standard.
Twenty of the 26 studies found fully comparable data between SSc
patients and HC in terms of crucial characteristics including gender
and age. Most studies did not avoid overfitting due to the lack of an
independent validation set.

3.4 Metabolites and metabolic pathways
associated with systemic sclerosis

In total, 151 altered metabolites were identified in the selected
studies. Since the expression of the metabolites can be influenced by
the sample used (Kaluarachchi et al., 2018; Lau et al., 2018) the
altered metabolites were detailed according to each fluid.

3.4.1 Plasma
Fourteen studies assessed the metabolome in plasma samples of

SSc patients (Caramaschi et al., 2007; Caramaschi et al., 2003; Tikly
et al., 2006; Szamosi et al., 2009; McNearney et al., 2010; ichiro et al.,
2014; Atteritano et al., 2016; Bellocchi et al., 2018; Ottria et al., 2020;
Smolenska et al., 2020; Bögl et al., 2022; Geroldinger-Simić et al.,
2021; Fernández-Ochoa ÁQuirantes-Piné et al., 2019; Neumann
Andersen et al., 2000). The greatest alterations found are grouped
into two chemical classes: amino acids and lipids.

According to amino acids, four studies evaluated plasma Hcy
levels in SSc patients vs. HC (Caramaschi et al., 2007; Caramaschi
et al., 2003; Szamosi et al., 2009; ichiro et al., 2014). Consistently
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TABLE 1 Characteristics of studies included in the systematic review.

Sample type Sample size Gender
(M/F)

Age average
(years)

Analytical
technique

Altered metabolites in SSc vs. HC Study

Plasma SSc: 27 4/23 56.9 GC-MSa Increased: Nitrate Neumann Andersen et al. (2000)

Controls: 27 Decreased: NR

SSc: 71 10/61 58.5 HPLC-FLD Increased: Homocysteine Caramaschi et al. (2003)

Controls: 30 Decreased: NR

SSc: 15 NR 42.2 GC-MSa Increased: Malondialdehyde Tikly et al. (2006)

Controls: 13 Decreased: NR

SSc: 60 4/56 54.6 HPLC-FLD Increased: Homocysteine Caramaschi et al. (2007)

Controls: 30 Decreased: NR

SSc: 40 38/2 58.4 HPLC-MSa Increased: NR Atteritano et al. (2016)

Controls: 40 Decreased: Vitamin D

SSc: 59 7/52 56.5 UHPLC-Q-TOF-MS Increased: DL-2-aminooctanoic acid, Diacylglycerol 38:5, 1-(9Z-
pentadecenoyl)-glycero-3-phosphate, phosphatidylcholine 36:4, 2,4-
dinitrobenzenesulfonic acid, alpha-N-phenylacetyl-l-glutamine

Bellocchi et al. (2018)

Controls: 28 Decreased: NR

SSc: 20 3/17 57 UHPLC-Orbitrap-MS Increased: Lauric acid, myristic acid, arachidic acid, carnitine, isovaleryl-
carnitine

Ottria et al. (2020)

Controls: 7 Decreased: Octanoyl-carnitine, palmitoyl-carnitine

SSc: 42 7/35 59.9 HPLC-TQ-MS Increased: Glutamine, proline, 1-methylhistidine, betaine,
methylnicotinamide, asymmetric dimethylarginine

Smolenska et al. (2020)

Controls: 27 Decreased: Tryptophan

SSc: 52 8/44 60 HPLC-IM-Q-TOF-MS Increased: Phosphatidylcholine 34:1, 34:2, 34:3; sphingomyelin 33:1, 35:1,
35:2

Geroldinger-Simić et al. (2021)

Controls: 48 Decreased: NR

SSc: 52 8/44 60 HPLC-IM-Q-TOF-MS Increased: Kynurenine, dimethylarginine, citrulline, ornithine,
phenylacetylglutamine, 1-methylhistidine, 3-methylhistidine

Bögl et al. (2022)

Controls: 48 Decreased: Tryptophan, OH-tryptophan, alanine,
lysophosphatidylcholine 22:4a, 22:4b, 20:2; sphingomyelin 34:1, 40:3

SSc: 59 7/52 56.5 HPLC-ESI-QTOF-MS Increased: Alpha-N-phenyl acetyl-L-glutamine, butyrylcarnitine,
valerylcarnitine, 2-4-dinitrobenzenesulfonic acid, oleic acid, 1-
arachidonoylglycerol monoacylglycerol (20:4), monoacylglycerol (20:5)

Fernández-Ochoa ÁQuirantes-Piné et al.
(2019)

Controls: 28 Decreased: NR

(Continued on following page)

Fro
n
tie

rs
in

M
o
le
cu

lar
B
io
scie

n
c
e
s

fro
n
tie

rsin
.o
rg

M
o
rale

s-G
o
n
zále

z
e
t
al.

10
.3
3
8
9
/fm

o
lb
.2
0
2
3
.12

15
0
3
9

86

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1215039


TABLE 1 (Continued) Characteristics of studies included in the systematic review.

Sample type Sample size Gender
(M/F)

Age average
(years)

Analytical
technique

Altered metabolites in SSc vs. HC Study

Serum SSc: 10 0/10 47 HPLC-QTRAP-MS Increased: Arachidonoyl-lysophosphatidic acid, sphingosine 1-phosphate Tokumura et al. (2009)

Controls: 13 Decreased: NR

SSc: 68 0/68 67.6 HPLC-TQ-MS Increased: 17β-estradiol, estrone Aida-Yasuoka et al. (2013)

Controls: 35 Decreased: NR

SSc: 19 3/16 55 GC-TOF-MS Increased: Aminomalonic acid, arachidonic acid, arginine, aspartic acid,
beta-alanine, cholesterol, inositol-1-phosphate, lauric acid, oleamide,
ornithine-1,5-lactam, picolinic Acid, pyroglutamic acid, ribose, succinic
Acid, urea, uric acid

Bengtsson et al. (2016)

Controls: 18 Decreased: Alanine, cysteine, lactic acid, malic acid, nonanoic acid,
taurine, threonic acid

SSc: 37 8/29 58.7 H-NMRS GC-MSa Increased: Glutamine, 3-OH-butyrate Murgia et al. (2018)

Controls: 20 Decreased: Citrate, aspartate, alanine, choline, glutamate, glutarate,
glycerate, threonate

SSc: 97 16/81 59 HPLC-FLD Increased: Kynurenine Campochiaro et al. (2019)

Controls: 10 Decreased: Tryptophan

SSc: 36 6/30 61.5 UHPLC-Q-TOF-MS Increased: 1-methyladenosine Meier et al. (2020)

Controls: 12 Decreased: L-tryptophan, L-tyrosine

SSc: 30 6/24 46.3 UHPLC-Q-TOF-MS Increased: Vitamin E, alpha-N-phenylacetyl-L-glutamine, L-glutamine,
L-isoleucine, phenol, 2-oxoadipic acid, 1-palmitoyl-2-hydroxy-sn,
glycero-3-phosphoethanolamine, chenodeoxycholate, indoxyl sulfate,
D-quinovose

Sun et al. (2022)

Controls: 30 Decreased: 3b-hydroxy-5-cholenoic acid, 1-stearoyl-glycerol, trans-
dehydroandrosterone, 4-nonylphenol, norethindrone acetate, cis-9,10-
epoxystearic acid, 16-hydroxypalmitic acid, 2-ethyl-2-hydroxybutyric acid,
stearic acid, hexadecanedioic acid, 3 hydroxy caproic acid, androsterone
sulfate, benzenebutanoic acid, pregnenolone sulfate, arachidonic acid,
dodecanoic acid, palmitic acid, myristic acid, cholesterol 3-sulfate, caprylic
acid, Cis-(6,9,12)-linolenic acid, alpha-ketocaproic acid, azelaic acid

(Continued on following page)
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TABLE 1 (Continued) Characteristics of studies included in the systematic review.

Sample type Sample size Gender
(M/F)

Age average
(years)

Analytical
technique

Altered metabolites in SSc vs. HC Study

Urine SSc: 59 7/52 56.5 HPLC-Q-TOF-MS Increased: D-Sorbitol, N-cyclohexylformamide, Ser-Pro-Pro, dihydroxy-
1H-indole glucuronide, 2-(2-phenylacetoxy)propinylglycine, alpha-N-
phenylacetyl—L glutamine, pyroglutamic acid

Fernández-Ochoa ÁQuirantes-Piné et al.
(2019)

Controls: 28 Decreased: N-Methylnicotinamide, proline betaine, creatinine,
vinylacetylglycine, N1-methyl-4pyridine-3-carboxamide, N1-methyl-2-
pyridine-5-carboxamide, hydroxyprolyl-valine, L-beta-aspartyl-L-
Leucine, Hypaphorine, 2-octenoyl-carnitine, decatrienoylcarnitine, 2-
nonenoylcarnitine, 2,6-dimethylheptanoyl carnitine, 9-decenoylcarnitine,
9-hydroxydodecenoylcarnitine, undecenoyl carnitine

SSc: 11 0/11 51 GC-EI-MS Increased: 15-F-2t-isoprostane Cracowski et al. (2002)

Controls: 11 Decreased: NR

SSc: 43 1/42 54.1 HPLC-UV Increased: 8-isoprostaglandin-F2a Volpe et al. (2006)

Controls: 43 Decreased: NR

Exhaled breath SSc: 46 NR 54 CGC-FID Increased: Ethane Cope et al. (2006)

Controls: 21 Decreased: Ethanol

aDetector is not specified in the document.

Increased and decreased metabolites shown in the table correspond to altered metabolites in SSc, patients compared to HC. Abbreviations: SSc, Systemic sclerosis; GC-MS, Gas chromatography-mass spectrometry; HPLC-FLD, High-performance liquid

chromatography with fluorescence detection; UHPLC-Q-TOF-MS, Ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry; UHPLC-Orbitrap-MS, Ultra-high-performance liquid chromatography coupled with ion trap mass

spectrometry; HPLC-TQ-MS, High-performance liquid chromatography coupled to triple-stage quadrupole mass spectrometer; HPLC-IM-Q-TOF-MS, High-performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry;

HPLC-ESI-QTOF-MS, High-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry; HPLC-QTRAP-MS, High-performance liquid chromatography quadrupole-linear ion trap hybrid mass

spectrometry; GC-TOF-MS, Gas chromatography time-of-flight mass spectrometry; H NMRS, proton nuclear magnetic resonance spectrometry; HPLC-QTOF-MS, High-performance liquid chromatography quadrupole time-of-flight mass spectrometry; GC-EI-MS,

gas chromatography electron impact mass spectrometry; HPLC-UV, High-performance liquid chromatography with on-line UV, system; CGC-FID, capillary gas chromatography flame ionization detection; NR, Not Reported.
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increased levels of Hcy were found across the studies; however, two
of them did not find significant differences in Hcy levels in
patients with SSc compared to HC, yet, researchers did find
significant differences in the concentrations in patients with
vascular and thromboembolic manifestations (Szamosi et al.,
2009; ichiro et al., 2014). One study looked at endogenous
enkephalin levels in early SSc; nevertheless, they found no
significant changes in enkephalin levels between SSc and HC
patients, although they did find that low levels were associated
with Raynaud syndrome, myositis, and telangiectasias
(McNearney et al., 2010). ADMA, Kyn, 1-Methylhistidine,
alpha-N-phenylacetyl-L-glutamine, glutamine, proline,
citrulline, and ornithine were consistently increased across the
studies (Bellocchi et al., 2018; Fernández-Ochoa ÁQuirantes-Piné
et al., 2019; Smolenska et al., 2020; Bögl et al., 2022). On the
contrary, Trp and alanine were found with downward trends
(Smolenska et al., 2020; Bögl et al., 2022).

Lipid content was represented by the classes carnitines, fatty
acids (FA), glycerolipids, glycerophospholipids, sphingolipids, and
steroids. Short-chain carnitines such as carnitine, butyrylcarnitine,
and valerylcarnitine were increased across the studies (Fernández-
Ochoa ÁQuirantes-Piné et al., 2019; Ottria et al., 2020). On the
contrary, acylcarnitines associated with long-chain fatty acids:
octanoyl-carnitine, and palmitoyl-carnitine, were observed with
downward trends in SSc patients when compared to HC (Ottria
et al., 2020) Regarding FA, high levels of saturated (e.g., lauric acid,
myristic acid, and arachidic acid) and unsaturated FA (e.g., oleic
acid) were observed (Fernández-Ochoa ÁQuirantes-Piné et al.,
2019; Ottria et al., 2020) Similarly, trends in other lipid metabolites
were consistently observed. For example, glycerolipids such as DG
38:5, MG 20:4, and MG 20:5 were consistently elevated (Bellocchi
et al., 2018; Fernández-Ochoa ÁQuirantes-Piné et al., 2019), yet

trends observed in glycerophospholipids, and sphingolipids were
not uniform (Bellocchi et al., 2018; Geroldinger-Simić et al., 2021;
Bögl et al., 2022). For example, metabolites such as 1-(9Z-
pentadecenoyl)-glycero-3-phosphate, phosphatidylcholine 34:1,
34:2, 34:3, 36:4, and sphingomyelin 33:1, 35:1, 35:2 were found
to be increased (Bellocchi et al., 2018; Geroldinger-Simić et al.,
2021), while lysophosphatidylcholine 22:4, 22:4, 20:2,
sphingomyelin 34:1, 40:3 were decreased (Bögl et al., 2022).

Lastly, it was found that vitamin D levels were decreased in
patients with SSc, and this deficiency was linked to scleroderma and
increased systolic pulmonary artery pressure (Atteritano et al.,
2016).

3.4.2 Serum
Seven studies assessed the metabolome in serum SSc patients

compared to HC (Tokumura et al., 2009; Aida-Yasuoka et al., 2013;
Bengtsson et al., 2016; Murgia et al., 2018; Campochiaro et al., 2019;
Meier et al., 2020; Sun et al., 2022). The most significant changes
identified in serum are classified into amino acids, lipids, and
tricarboxylic acids.

Trends of some altered amino acids in plasma are conserved in
serum samples. For example, increased levels of Kyn, alpha-N-
phenylacetyl-L-glutamine, glutamine, and ornithine were
observed in both fluids (Bengtsson et al., 2016; Murgia et al.,
2018; Campochiaro et al., 2019; Sun et al., 2022), meanwhile,
Trp, glutamate, and alanine levels remained decreased in serum
and plasma (Bengtsson et al., 2016; Murgia et al., 2018;
Campochiaro et al., 2019; Meier et al., 2020). Discrepancies were
found in levels of aspartic acid. Bengtsson et al. (2016) reported
increased levels of aspartic acid in SSc patients when compared to
LES patients; however, decreased levels of these metabolites were
also observed (Murgia et al., 2018).

FIGURE 2
Enrichment analysis of altered pathways in SSc, The significance of pathway alteration is indicated according to the color scale. The bars in red and
blue represent the biosynthetic pathways of greater and lesser impact, respectively.
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The altered lipid content in serum is diverse. In the case of FA
and steroids, no clear trends were observed. Some FA, such as lauric
acid, 3-OH-butyrate, cholesterol, and chenodeoxycholate, were
found to be increased (Bengtsson et al., 2016; Murgia et al., 2018;
Sun et al., 2022). On the contrary, FA such as nonanoic acid, azelaic
acid, cis-9,10-epoxystearic acid, 16-hydroxypalmitic acid, 2-ethyl-2-
hydroxybutyric acid, stearic acid, hexadecanedioic acid,
hydroxycaproic acid, dodecanoic acid, palmitic acid, myristic acid
and caprylic acid, cis-(6,9,12)-linolenic acid were downregulated
(Bengtsson et al., 2016; Sun et al., 2022). Other lipid compounds,
such as arachidonoyl-lysophosphatidic acid, were found to be
increased in serum from SSc patients (Tokumura et al., 2009).
Regarding steroids, 17β-estradiol, estrone, and vitamin E were
found to be increased (Aida-Yasuoka et al., 2013; Sun et al.,
2022), while androsterone sulfate, pregnenolone sulfate, and
cholesterol 3-sulfate were decreased (Sun et al., 2022).

Metabolites indicating altered energy metabolism were
identified; however, trends were not consistent. Increased levels
of tricarboxylic acid cycle (TCA) metabolites such as succinate were
observed (Bengtsson et al., 2016), while citrate and malate levels
were found to be decreased (Bengtsson et al., 2016; Murgia et al.,
2018). Increased levels of other metabolites such as purines,
pyrimidines, and carbohydrates such as uric acid, 1-
methyladenosine, picolinic acid, ribose, and D-quinovose were
observed (Bengtsson et al., 2016; Meier et al., 2020; Sun et al.,
2022) as well as low levels of lactate, choline, taurine, threonate and
glycerate in SSc patients (Bengtsson et al., 2016; Murgia et al., 2018).

3.4.3 Urine
Three studies assessed the metabolome in urine (Cracowski

et al., 2002; Volpe et al., 2006; Fernández-Ochoa ÁQuirantes-Piné
et al., 2019). Themost significant changes found in urine samples are
chemically categorized into amino acids and carnitines. Urinary
levels of alpha-N-phenylacetyl-L-glutamine were found to be
increased, as they were in plasma and serum samples
(Fernández-Ochoa ÁQuirantes-Piné et al., 2019). Additionally,
pyroglutamic acid was upregulated in urine samples in
concordance with serum samples (Fernández-Ochoa ÁQuirantes-
Piné et al., 2019). Consistent with the results in plasma, urine
samples reported decreased levels of acylcarnitines associated
with long-chain fatty acids in SSc patients compared to HC
(Fernández-Ochoa ÁQuirantes-Piné et al., 2019). Lastly, high
levels of 8-isoprostaglandin-F2a were found in urine samples of
SSc patients, which were related to more severe lung involvement
and active patterns in nailfold video capillaroscopy (Volpe et al.,
2006).

3.4.4 Exhaled breath
One study evaluated metabolites in exhaled breath of SSc

patients (Cope et al., 2006). They found high breath ethane
concentrations which were inversely associated with the diffusing
capacity for carbon monoxide, and decreased levels of ethanol
concentrations, compared to HC.

3.4.5 Metabolic pathways
Deregulated metabolites were imported to the MetaboAnalyst

platform for the generation of metabolic pathway analyses and
SMPDB metabolic pathways were used as a library of metabolite

clusters. Figure 2 depicts the altered metabolic pathways in patients
with SSc versus HC. Based on the hypergeometric p-value test, this
software shows whether a metabolic pathway is more strongly
represented in the list of compounds. The pathways in red
represent the most significant deregulated pathways in SSc
patients, while the pathways in blue represent the least significant
deregulated pathways in these patients. Several of the amino acids
that were found to be deregulated participate in the metabolism of
the different pathways that were found to be significantly enriched.
As for the urea cycle, several amino acids involved in this cycle, such
as glutamic acid, alanine, aspartic acid, ornithine, arginine, urea,
glutamine, and citrulline, were found to deregulate, as well as various
amino acids involved in the arginine and proline metabolism (e.g.,
creatinine, glycine, glutamic acid, proline, aspartic acid, ornithine,
succinic acid, urea, arginine, and citrulline) several who also
participate in the glycine and serine metabolism such as betaine,
glycine, alanine, Hcy, arginine, and glyceric acid making them part
of the most significant enriched pathways. Similarly, in FA
biosynthesis and beta-oxidation of very long-chain FA, several
deregulated FA and carnitines were found to be involved in these
two pathways (e.g., butyric acid, caprylic acid, myristic acid,
dodecanoic acid, caproic acid, and L-carnitine).

3.5 Altered metabolism in lcSSc and dcSSc
subtypes

Deregulated metabolites in dcSSc versus lcSSc subtypes and HC
are described in Table 2. Overall, 7 of the 26 selected studies
conducted metabolomics comparisons between dcSSc and lcSSc
subtypes in order to discriminate them (Tokumura et al., 2009;
Murgia et al., 2018; Fernández-Ochoa ÁQuirantes-Piné et al., 2019;
Smolenska et al., 2020; Geroldinger-Simić et al., 2021; Bögl et al.,
2022; Sun et al., 2022). Of these, one study evaluated serum samples
from SSc subtypes and compared them to HC, finding that levels of
sphingosine 1-phosphate were significantly increased in dcSSc
patients versus HC (Tokumura et al., 2009). In serum samples
from dcSSc patients compared to lcSSc patients, levels of several
amino acids, such as valine, glutamate, lysine, and betaine, such as
valine, glutamate, lysine, and betaine, carbohydrates, including
fructose, glycerol, and glycerate and carboxylic acids, such as
acetate and glutarate were found to be significantly increased
(Murgia et al., 2018; Sun et al., 2022). On the contrary, levels of
glutamine, lactate, and glucose were significantly decreased (Murgia
et al., 2018), as well as glycerophosphocholines (Sun et al., 2022). As
for plasma samples, dcSSc patients also had higher concentrations of
various amino acids and derivatives and phosphatidylcholine species
(e.g., Kynurenine, citrulline, ornithine, N(G)-nitro-L-arginine
methyl ester (L-NAME), beta-alanine, Phosphatidylcholine 32:0),
and lower levels of sphingomyelins and
glycerophosphoethanolamines (Smolenska et al., 2020;
Geroldinger-Simić et al., 2021; Bögl et al., 2022). On the other
hand, urinary metabolites detected in dcSSc patients showed
increased levels of amino acids, including L-arogenate and
indospicine and N(5-amino-2hydroxybenzoyl)glycine, and
decreased levels of carnitines and decreased levels of carnitines in
comparison to the lcSSc subtype (Fernández-Ochoa ÁQuirantes-
Piné et al., 2019).
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In order to further understand these alterations, deregulated
metabolites in patients with dcSSc subtype were imported to
MetaboAnalyst 5.0 platform for the generation of metabolic
pathways analysis, identifying relevant pathways associated with
the development of this subtype, using the high-quality SMPDB
metabolic pathways as the metabolite set library (Figure 3).
Pathways in red represent the most significant deregulated
pathways in dcSSc patients. In contrast, the pathways presented
in blue represent the least significant deregulated pathways in these
patients. The biosynthetic pathways with the greatest impact were
the aspartate metabolism, urea cycle, amino sugar metabolism,
glycine and serine metabolism, and phenylacetate metabolism.
These pathways are associated with alterations in amino acids
(e.g., aspartate metabolism, urea cycle, glycine and serine
metabolism, and phenylacetate metabolism) with several
deregulated amino acids such as beta-alanine, glutamic acid,
glutamine, citrulline, ornithine, betaine, and alpha-N-
Phenylacetyl-L-glutamine. On the other hand, carbohydrates such
as fructose, glyceric acid, and carboxylic acids (e.g., acetic acid) were
also involved.

3.6 Metabolites associated with pulmonary
complications in SSc patients

Of the selected studies, nine evaluated the alterations in the
metabolomic profile of pulmonary complications in SSc patients,
particularly PAH (Thakkar et al., 2016; Deidda et al., 2017) and ILD
(Caramaschi et al., 2003; ichiro et al., 2014; Smolenska et al., 2020;
Geroldinger-Simić et al., 2021; Fernández-Ochoa ÁQuirantes-Piné
et al., 2019; Sun et al., 2022; Meier et al., 2020). Table 3 describes the
identified metabolites associated with pulmonary complications in
SSc patients Thakkar et al. (2016) found ADMA levels to be
significantly higher and L-arginine levels were significantly lower
in SSc-PAH compared with Non-PAH patients. Additionally,
studies found that SSc-PAH patients had higher amounts of
carboxylic acids (e.g., lactate), and lipoproteins, and lower levels of
amino acids, notably L-arginine, in comparison to SSc Non-PAH
patients (Deidda et al., 2017). In terms of altered metabolites
associated with ILD patients, increased levels of amino acids, such
as Hcy, arginine, and valine, and fructosamines derived from branch-
chain amino acids were discovered, while lower levels of

TABLE 2 Deregulated metabolites in dcSSc vs. HC and lcSSc subtypes.

Sample type Sample
size

Analytical
technique

Altered metabolites in dcSSc vs. lcSSc Study

Serum dcSSc: 7 HPLC-QTRAP-MS Increased: Sphingosine 1-phosphate Tokumura et al. (2009)

lcSSc: 3 Decreased: NR

Controls: 13

dcSSc: 14 H-NMRS GC- MSa Increased: Valine, acetate, fructose, glutamate, glycerol, lysine,
glycerate, glutarate

Murgia et al. (2018)

lcSSc: 23 Decreased: Sorbitol, glucose, lactate, glutamine

dcSSc: 12 UHPLC-Q-TOF-MS Increased: Trans-dehydroandrosterone, betaine, 1-stearoyl-2-
oleoyl-sn-glycerol 3-phosphocholine

Sun et al. (2022)

lcSSc: 18 Decreased: 1-palmitoyl-sn-glycero-3-phosphocholine

Plasma dcSSc: 21 HPLC-TQ-MS Increased: Sarcosine, beta-alanine, methylnicotinamide, N(G)-
nitro-L-arginine methyl ester (L-NAME)

Smolenska et al. (2020)

lcSSc: 21 Decreased: NR

dcSSc: 11 HPLC-IM-Q-TOF-MS Increased: Phosphatidylcholine 32:0 Geroldinger-Simić et al. (2021)

lcSSc: 39 Decreased: Phosphatidylethanolamine 38:5, 38:6;
sphingomyelin 32:2, 40:4, 30:1

dcSSc: 11 HPLC-IM-Q-TOF-MS Increased: Kynurenine, citrulline, ornithine,
phenylacetylglutamine

Bögl et al. (2022)

lcSSc: 39 Decreased: Tryptophan, lysophosphatidylcholine 22:4

Urine dcSSc: 10 HPLC-ESI-QTOF-MS Increased: L-arogenate, N (5-amino-2hydroxybenzoyl)glycine,
indospicine

Fernández-Ochoa ÁQuirantes-Piné et al.
(2019)

lcSSc: 43 Decreased: 3-methylglutarylcarnitine, 5-hydroxyindoleacetic
acid

aDetector is not specified in the document.

Increased and decreased metabolites shown in the table correspond to altered metabolites in dcSSc, patients compared lcSSc, or HC. Abbreviations; dcSSc, diffuse cutaneous systemic sclerosis;

lcSSc, limited cutaneous systemic sclerosis; HPLC-QTRAP-MS, High-performance liquid chromatography quadrupole-linear ion trap hybrid mass spectrometry; H NMRS, proton nuclear

magnetic resonance spectrometry; GC-MS, Gas chromatography-mass spectrometry; UHLPC-Q-TOF-MS, Ultra-high-performance liquid chromatography quadrupole time-of-flight mass

spectrometry; HPLC-TQ-MS, High-performance liquid chromatography coupled to triple-stage quadrupole mass spectrometer; HPLC-IM-Q-TOF-MS, High-performance liquid

chromatography coupled to ionmobility quadrupole time-of-flight mass spectrometry; HPLC-ESI-QTOF-MS, high-performance liquid chromatography coupled to electrospray ionization and

quadrupole time-of-flight mass spectrometry; NR, Not reported.
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glycerophosphoethanolamines (e.g., phosphatidylethanolamine 36:3,
38:5, 38:6) and steroids, including androsterone sulfate were found
compared to non-ILD (Caramaschi et al., 2003; ichiro et al., 2014;
Smolenska et al., 2020; Geroldinger-Simić et al., 2021; Fernández-
Ochoa ÁQuirantes-Piné et al., 2019; Sun et al., 2022). One study
compared progressive ILD versus stable ILD patients finding
increased levels of branched-chain amino acids (BCAAs) and one
purine (xanthosine) and decreased levels of adenosine
monophosphate in patients with progressive ILD (Meier et al.,
2020). Lastly, one study compared urine samples between non-ILD
patients and ILD patients, discovering that the latter group also had
increased levels of amino acids (e.g., valyl valine, kynurenic acid,
L-proline, proline-histidine) (Fernández-Ochoa ÁQuirantes-Piné
et al., 2019).

3.7 Metabolites as potential biomarkers

Potential biomarkers identified in the review are described in
Table 4. Of all selected articles, five studies assessed the diagnostic
capability of biomarkers using AUC, reporting at least one
biomarker with an AUC > 0.7 (Thakkar et al., 2016; Murgia
et al., 2018; Fernández-Ochoa ÁQuirantes-Piné et al., 2019;
Meier et al., 2020; Sun et al., 2022). Of these, three studies
evaluated the potential of metabolic biomarkers or panels to
diagnose SSc (Murgia et al., 2018; Fernández-Ochoa ÁQuirantes-
Piné et al., 2019; Meier et al., 2020), and one study examined
diagnostic biomarkers for PAH (Thakkar et al., 2016) finding
that serum ADMA levels ≥0.7 μM in PAH patients had a
sensitivity of 86.7% and a specificity of 90.0%, two studies
evaluated biomarkers for the classification of dcSSc subtype

(Murgia et al., 2018; Sun et al., 2022), one study evaluated
biomarkers for ILD (Sun et al., 2022), and one study evaluated
biomarkers to distinguish progressive SSc-ILD from stable SSc-ILD
(Meier et al., 2020). The latter validated their results using an
enzymatic assay, obtaining similar results with significantly
higher values detected in progressive SSc-ILD patients compared
to stable SSc-ILD. These results were also found in another cohort of
SSc- ILD patients (Meier et al., 2020).

3.8 Targeted metabolomics analysis in
patients with systemic sclerosis

A total of 10 studies utilized targeted techniques to assess
metabolite levels, primarily focusing on amino acids, in patients
with SSc (Table 5). In plasma, SSc patients exhibited higher
concentrations of metabolites such as Hcy, glutamine, proline, 1-
methylhistidine, ADMA, betaine, malondialdehyde, and
methylnicotinamide when compared to healthy controls
(Caramaschi et al., 2003; Tikly et al., 2006; Caramaschi et al.,
2007; Smolenska et al., 2020) Conversely, vitamin D and Trp
showed lower concentrations in SSc patients, revealing a distinct
trend compared to healthy individuals (Atteritano et al., 2016;
Smolenska et al., 2020). Additionally, studies conducted on
serum found elevated concentrations of arachidonoyl (20:4)-LPA
in SSc patients compared to healthy individuals (Tokumura et al.,
2009). Furthermore, there were increased levels of ADMA and
symmetric dimethylarginine and decreased levels of arginine
observed in SSc-PAH patients compared to SSc Non-PAH
individuals (Thakkar et al., 2016). Lastly, urine and exhaled
breath investigations demonstrated higher concentrations of 15-

FIGURE 3
Enrichment analysis of altered pathways in dcSSc. The significance of pathway alteration is indicated according to the color scale. The bars in red and
blue represent the biosynthetic pathways of greater and lesser impact, respectively.
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F-2t-isoprostane, 8-isoprostaglandin-F2a, and ethane, while the
ethanol concentration was reduced in SSc patients (Cracowski
et al., 2002; Cope et al., 2006; Volpe et al., 2006). However,
comparing metabolites across studies can be complex due to
variations in cohorts, analytical techniques, and statistical
analysis. Higher concentrations of Hy (11.1–11.8 μmol/L) were
observed in the plasma of SSc patients compared to healthy
individuals (3.5–6.9 μmol/L), with an approximate increase of
45.41% in Hcy found in SSc patients (Caramaschi et al., 2003;
Caramaschi et al., 2007).

4 Discussion

In this study, we systematically reviewed 26 studies on the
metabolomic profiling of SSc and summarized key findings on
the dysregulation of major metabolic pathways in SSc, primarily
amino acid-related pathways, lipid metabolism, and the TCA cycle.
To our knowledge, this is the first systematic review of metabolomic
analysis in SSc.

Altered amino acid metabolism was a common finding in
analyzed samples of SSc patients, possibly associated with protein

TABLE 3 Deregulated metabolites associated with pulmonary complications in SSc patients.

Pulmonary
complications

Sample
type

Sample size Analytical
technique

Altered metabolites Study

PAH Serum SSc- PAH: 15 HPLC-FLD Increased: Asymmetric dimethylarginine,
symmetric dimethylarginine

Thakkar et al. (2016)

SSc Non-PAH: 30 Decreased: L-Arginine

Plasma SSc- PAH: 8 H NMRS Increased: Acetoacetate, Alanine, Lactate,
VLDL, LDL

Deidda et al. (2017)

SSc Non-PAH: 10 Decreased: γ-Aminobutyrate, arginine,
betaine, choline, creatinine, glucose,
glutamate, glycine, histidine, phenylalanine,
tyrosine

ILD Plasma SSc-ILD: 65 HPLC-FLD Increased: Homocysteine ichiro et al. (2014)

SSc Non-ILD: 151 Decreased: NR

SSc-ILD: 62 HPLC-FLD Increased: Homocysteine Caramaschi et al. (2003)

SSc Non-ILD: 9 Decreased: NR

SSc-ILD: 18 HPLC-Q-TOF-MS Increased: N-(1-deoxy-1-fructosyl)-Valine,
N-(1-deoxy-1-fructosyl)-leucine, N-(1-
deoxy-1-fructosyl)-Isoleucine

Fernández-Ochoa
ÁQuirantes-Piné et al. (2019)

SSc Non-ILD: 41 Decreased: NR

SSc-ILD: 26 HPLC-TQ-MS Increased: Valine, Arginine Smolenska et al. (2020)

SSc Non-ILD: 16 Decreased: NR

SSc-ILD: 14 HPLC-IM-Q-
TOF-MS

Increased: NR Geroldinger-Simić et al. (2021)

SSc Non-ILD: 38 Decreased: Phosphatidylethanolamine 36:3,
38:5, 38:6

Serum Stable SSc-
ILD: 12

UHPLC-Q-TOF-MS Increased: L-Leucine, L-Isoleucine,
Xanthosine

Meier et al. (2020)

Progressive SSc-
ILD: 12

Decreased: Adenosine monophosphate

SSc-ILD: 19 UHPLC-Q-TOF-MS Increased: L-Glutamine Sun et al. (2022)

SSc Non-ILD: 11 Decreased: Ile-Ala, Androsterone sulfate

Urine SSc-ILD: 18 HPLC-Q-TOF-MS Increased: Valyl valine, kynurenic acid,
L-proline, proline-histidine, quinolinic acid,
β-D-glucopyrapyranosil anthranilate

Fernández-Ochoa
ÁQuirantes-Piné et al. (2019)

SSc Non-ILD: 41 Decreased: NR

Increased and decreased metabolites shown in the table correspond to altered metabolites in PAH, patients compared to non-PAH, patients and in ILD, patients compared to non-ILD, patients.

Abbreviations: PAH, pulmonary arterial hypertension; ILD, interstitial lung disease; HPLC-SPE, High-performance liquid chromatography with solid phase extraction; H NMRS, proton

nuclear magnetic resonance spectrometry; HPLC-FLD, High-performance liquid chromatography with fluorescence detection; HPLC-Q-TOF-MS, High-performance liquid chromatography

quadrupole time-of-flight mass spectrometry; HPLC-MS, High-performance liquid chromatography-mass spectrometry; HPLC-IM-Q-TOF-MS, high-performance liquid chromatography

quadrupole time-of-flight mass spectrometry; UHPLC-MS, ultra-high-performance liquid chromatography-mass spectrometry; UHPLC-Q-TOF-MS, ultra-high-performance liquid

chromatography quadrupole time-of-flight mass spectrometry; NR, not reported.
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TABLE 4 Potential metabolite biomarkers for diagnosis and classification of SSc.

Sample
type

Analytical
technique

Metabolites ROC curve Validation Study

SSc Serum H-NMRS Aspartate AUC: 0.81 (CL 95%
0.7–0.93)

NR Murgia et al. (2018)

GC-MSa Alanine Citrate

UHPLC-Q-
TOF-MS

L-tryptophan AUC 0.884 (CI 95%
0.788–0.981)

NR Meier et al. (2020)

1-methyl-adenosine AUC 0.822 (CI 95%
0.705–0.939)

L-tyrosine AUC 0.812 (CI 95%
0.667–0.958)

Urine HPLC-Q-
TOF -MS

N1-methyl-4-pyridine-3-carboxamide AUC: 0.818 (CI 95%
0.709–0.903

NR Fernández-Ochoa
ÁQuirantes-Piné et al.

(2019)
N1-methyl-2-pyridine-5-carboxamide AUC 0.766 (CI 95%

0.674–0.858)

D-sorbitol AUC: 0.802 (CI 95%
0.688–0.881)

2,6 Dimethyl-heptonoylcarnitine AUC: 0.778 (CI 95%
0.67–0.86)

Plasma HPLC-Q-
TOF -MS

Alpha- N-phenylacetyl-L-glutamine AUC. 0.766 (CI 95%
0.656–0.86)

NR Fernández-Ochoa
ÁQuirantes-Piné et al.

(2019)
1-arachidonoylglycerol
monoacylglycerol (20:4)
Monoacylglycerol (20:5)

AUC: 0.793 (CI95%
0.687–0.875)

AUC: 0.748 (CI 95%
0.64–0.858)

dcSSc Serum UHPLC-Q-
TOF-MS

1-Palmitoyl-sn-glycero-3-
phosphocholine

AUC 0.650b NR Sun et al. (2022)

Trans-dehydroandrosterone AUC 0.720b

Betaine AUC 0.771b

1-stearoyl-2-oleoyl-sn-glycerol 3-
phosphocholine

AUC 0.725b

H-NMRS GC-MSa Acetate AUC: 0.84 (CI 95%
0.7–0.98)

NR Murgia et al. (2018)

Fructose

Glutamate

Glutamine

Glycerol

Glutarate

PAH Serum HPLC-FLD Asymmetric dimethylarginine AUC 0.86 (CI 95%
0.7–1.0)

NR Thakkar et al. (2016)

Symmetric dimethylarginine AUC 0.88 (CI 95%
0.74–1.0)

Progressive
ILD

Serum UHPLC-Q-
TOF-MS

L-Leucine AUC 0.847 (CI 95%
0.695–1.00)

External validation
Paris Cohort

Meier et al. (2020)

L-Isoleucine AUC 0.826 (CI 95%
0.656–0.997)

Progressive SSc-ILD
(n = 7)

Adenosine monophosphate AUC 0.785 (CI 95%
0.598–0.971)

Controls (n = 27)

Xanthosine AUC 0.771 (CI 95%
0.551–0.9)

(Continued on following page)
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synthesis and catabolic processes for energy production (Akram
et al., 2011). Increased Hcy levels cause vascular injury by supporting
oxidative stress through the production of reactive oxygen species,
thus inhibiting antioxidant enzymes, and inducing low-density
lipoprotein oxidation in arterial muscle cells (Zhang et al., 2018).
Moreover, it induces endothelial dysfunction by inactivating
anticoagulant substances (Škovierová et al., 2016). It is
noteworthy that both Szamosi et al. (2009) and ichiro et al.
(2014) found no difference in Hcy levels between SSc patients
and HC; however, significantly higher Hcy concentrations were
found in patients with vascular or thromboembolic events in
comparison to SSc patients without these manifestations
(Szamosi et al., 2009). Likewise, elevated Hcy levels were
positively correlated with SSc-ILD (ichiro et al., 2014).

The upregulation of amino acid metabolites such as glutamine,
ornithine, proline, and citrulline can lead to the augmentation of
collagen synthesis with subsequent fibrosis of the skin and internal
organs (Ung et al., 2021). Urea cycle intermediates, such as ornithine
and citrulline are involved in proline synthesis (Albaugh et al., 2017).
Proline a key component in the synthesis of collagen and the ECM
(Karna et al., 2020), is increased in transforming growth factor beta
(TGFβ) stimulated fibroblasts, increasing collagen formation and
accounting for fibrosis (Schwörer et al., 2020). Glutamine promotes
the novo synthesis of proline and sustains collagen synthesis in
fibroblasts (Kay et al., 2021). Glutaminolysis is required for the
formation of a-ketoglutarate, one of the main collagen I precursors,
implying that glutamine metabolism is also important in the
development of fibrosis (Ge et al., 2018). Hamanaka et al. (2019)
found that the conversion of glutamine to glutamate is required for
collagen protein production induced by TGFβ stimulated lung
fibroblasts. Additionally, Bernard et al. (2018), tested the role of
glutaminolysis in TGF-β1-dependent myofibroblast development
and found that TGF-1-differentiated myofibroblasts were compared
to controls, glutamate concentrations increased, but glutamine levels
decreased, indicating accelerated glutaminolysis. This was linked to
TGF- β1 induced mRNA and protein production of the glutaminase
(GLS) isoform GLS1 that converts glutamine to glutamate. In this
case, extracellular glutamine depletion inhibited TGF-β induced
myofibroblast differentiation. Also, glutaminolysis is considered
one of the main energy sources for effector T cells and facilitates
Th17 proinflammatory phenotype (Cruzat et al., 2018). Several
studies have found that the level of Th17 cells in SSc patients is

increased compared to HC (Maddur et al., 2012). In SSc, Th17 cells
release cytokines that can promote the proliferation and migration
of dermal vascular smooth muscle cells inducing endothelial
inflammation (Xing et al., 2013). Nevertheless, conflicting roles in
Th17 function and fibrosis development have been discussed (Wei
et al., 2022). Some studies claimed that Th17 cells induced type I
collagen synthesis and secretion to promote fibrosis of murine SSc
models (Wilson et al., 2010; Lei et al., 2016; Ramani and Biswas,
2019); however, other researchers propose Th17 cells decrease type I
collagen production by dermal fibroblasts (Brembilla et al., 2013;
Chizzolini et al., 2018). Additionally, it has been revealed that
increased expression of endothelial CCR6, a surface marker of
Th17 cell subsets, contributes to the development of SSc
vasculopathy (Ikawa et al., 2021). These actions are associated
with chronic inflammation and fibrosis, bolstering Th17 cell
function in SSc patients.

Furthermore, activation of arginine methyltransferases by
inflammation and oxidative stress leads to increased levels of
ADMA, the principal endogenous inhibitor of nitric oxide
synthase (NOS) (Zhang et al., 2015b). It also leads to an
impairment of nitric oxide synthesis, contributing to the
augmentation of vasoconstrictor episodes and pathological
changes in the vascular system, generating endothelial
dysfunction and vascular remodeling (Curtiss et al., 2019). The
kynurenine pathway (KP) plays an important role in autoimmune
disorders (Boros and Vécsei, 2019). In conditions characterized by
inflammation, proinflammatory cytokines such as interferon γ, IL-6,
and tumor necrosis factor induce Trp conversion to Kyn by the
immune regulatory enzyme indoleamine-2,3-dioxygenase (IDO)
(Zou, 2015). Upregulation of IDO enzyme can inhibit mTOR, a
regulator of T cell differentiation, and therefore can inhibit effector
T cells while promoting regulatory T cells (Treg) (Kurniawan et al.,
2020; Sharabi and Tsokos, 2020); however, it has also been
demonstrated in vitro that Kyn can stimulate mTORC1 activity
(Qin et al., 2022). On the other hand, Kyn binds to the aryl
hydrocarbon receptor in T cells and dendritic cells promoting the
conversion of effector T cells into Treg and promoting IDO
induction, therefore establishing a loop to maintain
immunotolerance (Lionetto et al., 2021). Additionally, Trp
deprivation via IDO mediates cell cycle arrest in the mid-G1
resulting in T cell death and suppression of antigen-specific
T cell responses (Krupa and Kowalska, 2021). The Kyn/Trp ratio

TABLE 4 (Continued) Potential metabolite biomarkers for diagnosis and classification of SSc.

Sample
type

Analytical
technique

Metabolites ROC curve Validation Study

ILD Serum UHPLC-Q-
TOF-MS

Ile-Ala AUC 0.807b NR Sun et al. (2022)

L-Glutamine AUC 0.756b

Androsterone sulfate AUC 0.778b

aDetector is not specified in the document.
bIC, 95% Not reported.

Abbreviations: SSc, Systemic sclerosis; dcSSc, diffuse cutaneous systemic sclerosis; PAH, pulmonary arterial hypertension; ILD, interstitial lung disease; H NMRS, proton nuclear magnetic

resonance spectrometry; GC-MS, Gas chromatography-mass spectrometry; UHPLC-Q-TOF-MS, Ultra-high-performance liquid chromatography quadrupole time-of-flight mass

spectrometry; HPLC-Q-TOF-MS, high-performance liquid chromatography quadrupole time-of-flight mass spectrometry; HPLC-FLD, High-performance liquid chromatography with

fluorescence detection; ROC, receiver operating characteristic curve; AUC, area under the curve; NR, not reported.
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is a useful marker of IDO activation that reflects the state of immune
activation in proinflammatory disorders. Therefore, an increased
Kyn/Trp ratio in patients with SSc can be an indicator of increased
inflammation and immune system activation.

Alterations in the TCA cycle, the central metabolic pathway for
aerobic metabolic processes (Cavalcanti et al., 2014; Arnold and
Finley, 2023), were also observed in analyzed samples of SSc patients
compared to HC. Increased levels of succinate, a TCA cycle
intermediate, were also found. In a study by Tannahill et al.
(2013), bone-marrow-derived macrophages stimulated with
lipopolysaccharides (LPS) showed that succinate is induced by
LPS, impairing propyl hydroxylase (PHD) activity that leads to

hypoxia-inducible factor 1-α (HIF-1 α) stabilization and activation,
enhancing IL-1b production during inflammation. Therefore, LPS-
induced succinate can serve as a signal to enhance IL-1b expression
via HIF-1 α. Furthermore, the accumulation of succinate in lung
tissue and myofibroblast can contribute to metabolic dysregulation
in fibroblasts disrupting PHD activity and enhancing HIF-1 α,
promoting the development of lung fibrosis (Wang et al., 2021a).
Additionally, Henderson et al. (2020) performed in vitro studies in
dermal fibroblasts derived from SSc patients and stimulated isolated
normal healthy dermal fibroblasts (NHDFs) with TGF-β1 to activate
fibrotic pathways and measured succinate levels. After stimulation,
they found significantly higher levels of this metabolite in NHDFs, as

TABLE 5 Relevant metabolites in SSc patients identified through targeted metabolomics studies.

Sample
type

Sample size Analytical
technique

Quantified metabolite Concentration patients vs.
controls (mean ± SD)

Study

Plasma SSc: 60 HPLC-FLD Homocysteine 11.8 (10.3–14.5) vs. 6.5 (5.4–8.8) μmol/Lb Caramaschi et al.
(2007)

Controls: 30

SSc: 15 GC-MSa Malondialdehyde 20.3 vs. 2.48 nmol/L Tikly et al. (2006)

Controls: 13

SSc: 71 HPLC-FLD Homocysteine 11.1 vs. 6.9 μmol/L Caramaschi et al.
(2003)

Controls: 30

SSc: 40 HPLC-MSa Vitamin D 25.77 (±12.84) vs. 35.08 (±9.07) ng/mL Atteritano et al.
(2016)

Controls: 40

SSc:
42 Controls: 27

HPLC-TQ-MS Glutamine 689 (±122.3) vs. 618.4 (±165.3) μmol/L Smolenska et al.
(2020)

Proline 178.8 (±55.2) vs. 152.5 (±47.3) μmol/L

1-Methylhistidine 5.7 (±3.9) vs. 4.1 (±1.5) μmol/L

Asymmetric dimethylarginine 0.344 (±0.112) vs. 0.289 (±0.10) μmol/L

Betaine 64.8 (±20.8) vs. 52.8 (±17.8) μmol/L

Tryptophan 32.5 (±9.6) vs. 40.8 (±12.3) μmol/L

Methylnicotinamide 0.312 (±0.166) vs. 0.232 (±0.106) μmol/L

Serum SSc: 10 HPLC-QTRAP-MS Arachidonoyl (20:4)-LPA 2.54 (±0.15) vs. 1.15 (±0.37) nmol/mL Tokumura et al.
(2009)

Controls: 13

SSc- PAH: 15 HPLC-FLD Arginine 97.28 (±27.4) vs. 117.45 (±26.07) μmolc Thakkar et al.
(2016)

SSc Non-
PAH: 30

Asymmetric dimethylarginine
Symmetric dimethylarginine

0.76 (±0.14) vs. 0.59 (±0.07) μmolc 0.76
(±0.26) vs. 0.46 (±0.07) μmolc

Urine SSc: 11 GC-EI-MS 15-F-2t-isoprostane 178 (±32) vs. 95 (±1) μmoles/mmole of
creatinine

Cracowski et al.
(2002)

Controls: 11

SSc: 43 HPLC-UV 8-isoprostaglandin-F2a 341.7 vs. 147.6 pg/mg creatinine Volpe et al. (2006)

Controls: 43

Exhaled breath SSc: 46 GC-FID Ethane 5.27 vs. 2.72 μmol ml−1 CO2 Cope et al. (2006)

Controls: 21 Ethanol 32.5 vs. 76.0 μmol ml−1 CO2

aDetector is not specified in the document.
bIQR, interquartile range.
cComparison between SSc, patients with PAH vs. SSc, patients without PAH.

Abbreviations: SSc, Systemic sclerosis; SD, standard deviation; PAH, pulmonary arterial hypertension; GC-MS, Gas chromatography-mass spectrometry; HPLC-TQ-MS, High-performance

liquid chromatography coupled to triple-stage quadrupole mass spectrometer; HPLC-QTRAP-MS, High-performance liquid chromatography quadrupole-linear ion trap hybrid mass

spectrometry; HPLC-FLD, High-performance liquid chromatography with fluorescence detection; GC-EI-MS, gas chromatography electron impact mass spectrometry; HPLC-UV, High-

performance liquid chromatography with on-line UV, system; CGC-FID, capillary gas chromatography flame ionization detection.
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well as elevated levels of succinate receptor GPR91 in SSc dermal
fibroblasts suggesting that succinate released from macrophages can
activate fibroblast to undergo fibrotic changes leading to enhanced
ECM. Succinate activation of GPR91 has been shown to be
important for fibroblast activation and ECM formation in murine
intestinal fibrosis and non-alcoholic steatohepatitis (NASH)-
associated fibrosis, as well as in fibrotic lung tissue from
idiopathic pulmonary fibrosis patients and bleomycin-induced
mice (Macias-Ceja et al., 2019; Liu et al., 2020).

On the contrary, citrate levels were significantly decreased. As a
TCA cycle intermediate, citrate is crucial for energy production
(Iacobazzi and Infantino, 2014). The high consumption of citrate to
meet energy charges could explain its low levels, reflecting a
reduction in energy availability and increased demand under
inflammatory conditions. Various studies have reported
decreased levels in samples of patients with autoimmune diseases
underlining its importance in immune-mediated inflammatory
pathologies (Ouyang et al., 2011; Alonso et al., 2016). Moreover,
Yang et al. (2015) demonstrated that a decrease in citric acid
accompanied by a decrease in glucose means an increase in
energy consumption. Increased glycolysis plays a critical role in
fibroblast differentiation and the progression of fibrosis (Zhu et al.,
2019). It has been shown that TGF-β1 can cause a rewiring of
cellular metabolism, including a shift toward glycolysis, uncoupling
from mitochondrial oxidative phosphorylation, and increasing
glutamine metabolism (Hewitson and Smith, 2021). In
experimental models of SSc, the profibrotic M2 macrophages
isolated from bleomycin-induced fibrotic mouse lungs showed

increased glycolysis, suggesting its importance in assuring energy
efficiency (Xie et al., 2017).

In the case of lipid metabolism, SSc patients showed alterations
in carnitines, FA, glycerophospholipids, glycerolipids, sphingolipids,
and steroids. Acyl-carnitines play an important role in cellular
energy metabolism as a transporter of FA chains into the
mitochondria, where long-chain FA are further oxidized (Fielding
et al., 2018). Therefore, the downregulation of acyl-carnitines leads
to perturbations in fatty acids oxidation (FAO), subsequently
increasing FA metabolism (Beger et al., 2018). Furthermore,
perturbations of FAO can shift T helper cell differentiation
towards a proinflammatory Th17 phenotype (Slack et al., 2015).
Additionally, in vitro studies have demonstrated that FA
accumulation in non-adipose tissues, defined as lipotoxicity, due
to FAO inhibition, promotes inflammation, oxidative stress, and
fibrosis in renal tubular epithelial cells (Kang et al., 2015a).
Moreover, in macrophages, increased FA metabolism can induce
a switch to a profibrotic M2 phenotype, playing an important role in
fibrosis (Nomura et al., 2016; Wang et al., 2017). In tissues, the
healing process depends on whether the initial insult persists or not.
If the insult persists, chronic activation of M2 can directly regulate
the development and progression of fibrotic lung diseases through
the production of chemokines, tissue inhibitor of
metalloproteinases, and fibronectin, as well as the capability of
M2 to differentiate into fibrocyte-like cells that express collagen,
opposite to their primary anti-inflammatory activity through the
release of TGF-β, IL10, and arginase, controlling wound healing and
tissue regeneration (Braga et al., 2015; Kishore and Petrek, 2021). In

FIGURE 4
Overview of the deregulations found in metabolites and metabolic pathways and their association with the pathophysiology of the SSc. The main
deregulatedmetabolites andmetabolic pathways identified in SSc are represented inside the cell. Themetabolites linked with fibrosis are shown in green,
those related to the presentation of vascular injury in blue, and those associated with the development of inflammation in purple. Increased metabolite
levels are shown by up arrows, whereas decreasedmetabolite levels are represented by down arrows. Representation of the pathogenic triad of SSc:
fibrosis of the skin and internal organs (green), vascular damage (blue), and inflammation (purple). The main clinical manifestations and complications of
SSc are represented in the human figure. P5C, sphingosine-1-phosphate receptor; TCA cycle: tricarboxylic acid cycle; FAO, fatty acid beta-oxidation; NO,
Nitric oxide; NOS, Nitric oxide synthase; ADMA, Asymmetric dimethylarginine; H2S, hydrogen sulfide.
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the kidney, M2 macrophages induce Th2-type immune responses,
secrete large amounts of TGF-β and anti-inflammatory cytokines,
transform into myofibroblasts in the injured kidney, inhibit immune
responses, and promote wound healing and tissue fibrosis (Wang
et al., 2021b).

Regarding sphingolipids, increased levels of sphingosine 1-
phosphate (S1P) were observed. Deregulation of S1P in the
pulmonary endothelium can lead to vasoconstrictive episodes and
vascular remodeling increasing pulmonary vascular resistance
(Gluschke et al., 2022). Moreover, S1P influences antigen uptake
and presentation by dendritic cells (Arlt et al., 2014). Additionally,
the S1P receptor, sphingosine-1-phosphate, modulates early
fibrogenesis (Schmidt et al., 2017).

DcSSc and lcSSc subtypes are each characterized by different
clinical manifestations, and disease progression (Herrick, 2018);
however, the dcSSc subtype is associated with more severe and
aggressive organ involvement (Smeets et al., 2020). Therefore, early
identification of the disease subtype is imperative to achieve the
effectiveness of therapeutic interventions. In this review, analyzed
samples of dcSSc patients in comparison with lcSSc demonstrated
significantly increased levels of amino acid-related pathways,
involved in fibrosis, endothelial dysfunction, and gut dysbiosis.
L-NAME, a NOS inhibitor was increased in the dcSSc subtype,
suggesting a more severe endothelial dysfunction that could lead to
vascular complications (Dooley et al., 2006). As for gut dysbiosis,
phenylacetylglutamine (PAG), a gut microbiota-derived metabolite
(Teufel et al., 2010), is consistently upregulated in SSc patients. A
reduced number of commensal bacteria promotes an excess of
substrate favoring PAG formation, suggesting that its
deregulation could be an indicator of gastrointestinal
involvement (Poesen et al., 2016).

In SSc patients, cardiopulmonary complications are the
leading cause of death (Bruni et al., 2021). In this context,
screening for PAH and ILD in SSc has emerged as an
important consideration. Thakkar et al. (2016) displayed
decreased levels of L-arginine, a common substrate of NOS
(Cziráki et al., 2020), and increased levels of ADMA,
suggesting an association with SSc-PAH. Decreased levels of
amino acids with protective effects against endothelial
dysfunction and anti-inflammatory effects by inhibition of
proinflammatory cytokines, and oxidative stress reduction
(Zhong et al., 2003; Hasegawa et al., 2012; Zhao et al., 2018),
such as glycine, histidine, and betaine were also found in these
patients. Furthermore, elevated levels of low-density lipoprotein
in the lungs may lead to lipotoxicity, inducing inflammation and
oxidative stress, which causes pulmonary vascular remodeling
(Calvier et al., 2022). In SSc-ILD patients, metabolites such as
Hcy, proline, glutamine, and BCAAs were elevated, which are
involved in the amino acid pathways associated with fibrosis and
inflammation. The upregulation of BCAAs can enhance
proinflammatory phenotype by activating nuclear factor kappa
B in immune cells and over-expression of IL-6 and tumor
necrosis factor (Zhenyukh et al., 2017). On the other hand,
phosphatidylethanolamine (PE) levels were decreased.
Vazquez-de-Lara et al. (2018) demonstrated that PE could
attenuate bleomycin-induced lung fibroblast, by decreasing the
soluble collagen concentration in mice lungs.

To summarize, Figure 4 depicts a graphic overview of the main
deregulated metabolites and metabolic pathways identified in SSc, as
well as the role that these could play in the pathophysiology of the
disease, leading to the appearance of clinical manifestations and
complications associated with the disease.

Metabolomics, as a fast-developing technique in biomedical
research, can be used to identify novel biomarkers (Kang et al.,
2015b) and as a promising predictive or personalized medicine
research technique (Zhou and Zhong, 2022). However, this
systematic review has certain limitations, the most significant one
is the challenge of comparing the metabolomic acquired across
studies due to different limitation factors. Due to the scarcity of
available quantitative data, the potential application of meta-analysis
is limited, reducing the capacity to make more solid and
generalizable conclusions. Variations in sample sources, sample
preparation techniques, and metabolite detection methods may
be to blame for the heterogeneity of results among studies.
Another key constraint is the requirement for further research to
validate metabolomics findings in multiple cohorts or independent
populations. Validation of results is critical to ensuring the
robustness and therapeutic usefulness of the proposed
biomarkers. Likewise, most of the studies evaluated were cross-
sectional, preventing us from determining a causal association in the
metabolic changes associated with SSc. Despite these limitations,
metabolomics remains a valuable tool, offering a unique opportunity
to understand the metabolic basis of the disease and develop new
diagnostic and treatment strategies.

In this review, potential biomarkers were described for the
diagnosis of SSc, the identification of the dcSSc subtype, and the
identification of primary pulmonary complications such as PAH,
and ILD. These potential biomarkers were mainly within amino
acids, nucleotides, carboxylic acids, and carbohydrate metabolism.
More data are necessary concerning the specificity of biomarkers; as
well as external validation studies in other and larger populations;
however, we expect that metabolomics will provide more accurate
and more validated biomarkers for the detection of SSc.

5 Conclusion

The data extracted from the 26 studies showed distinct
metabolic profiles between SSc patients and HC and distinct
profiles between SSc subtypes, generating new insights for non-
invasive prognostic and early diagnostic biomarkers to improve
individualized treatment and delay disease progression. Although
the metabolic profile can still be affected by a series of other factors,
the results obtained suggest the presence of a metabolic fingerprint
of the disease. The disrupted metabolite mechanisms identified in
this study, mainly, but not exclusively, involving amino acids and
lipid metabolism, as well as TCA cycle dysregulation are associated
with autoimmune inflammation, vascular damage, fibrosis, and gut
dysbiosis, which might be relevant for the development of SSc.
Nevertheless, further studies are required to evaluate the role of these
alterations in the pathophysiology of the disease, as well as to assess
whether these metabolomic networks have potential as treatment
targets or as biomarkers not only for diagnosis but also for prognosis
and treatment response.
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Chagas disease (ChD), caused by Trypanosoma cruzi, is endemic in American
countries and an estimated 8 million people worldwide are chronically infected.
Currently, only two drugs are available for therapeutic use against T. cruzi and their
use is controversial due to several disadvantages associated with side effects and
low compliance with treatment. Therefore, there is a need to search for new
tripanocidal agents. Natural products have been considered a potential innovative
source of effective and selective agents for drug development to treat T. cruzi
infection. Recently, our research group showed that hexanic extract from Clethra
fimbriata (CFHEX) exhibits anti-parasitic activity against all stages of T. cruzi
parasite, being apoptosis the main cell death mechanism in both epimastigotes
and trypomastigotes stages. With the aim of deepening the understanding of the
mechanisms of death induced by CFHEX, the metabolic alterations elicited after
treatment using a multiplatform metabolomics analysis (RP/HILIC-LC-QTOF-MS
and GC-QTOF-MS) were performed. A total of 154 altered compounds were
found significant in the treated parasites corresponding to amino acids (Arginine,
threonine, cysteine, methionine, glycine, valine, proline, isoleucine, alanine,
leucine, glutamic acid, and serine), fatty acids (stearic acid),
glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine and
phosphatidylserine), sulfur compounds (trypanothione) and carboxylic acids
(pyruvate and phosphoenolpyruvate). The most affected metabolic pathways
were mainly related to energy metabolism, which was found to be decrease
during the evaluated treatment time. Further, exogenous compounds of the
triterpene type (betulinic, ursolic and pomolic acid) previously described in C.
fimbriata were found inside the treated parasites. Our findings suggest that
triterpene-type compounds may contribute to the activity of CFHEX by altering
essential processes in the parasite.
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1 Introduction

The parasite Trypanosoma cruzi is the etiological agent of
Chagas disease (ChD), a neglected tropical disease that affects
more than 8 million people worldwide (WHO, 2021). Although,
ChD is endemic to American countries, population movement has
led to its spread to non-endemic countries (Klein et al., 2012),
making it a global public health concern (Rassi et al., 2010; Tarleton,
2016; Pérez-Molina and Molina, 2017). In Colombia, it has been
reported that approximately 436,000 people are infected and that
about 11% of the population is at risk of acquiring the infection
(Rassi et al., 2010; World Health Organization, 2015; Olivera et al.,
2019).

There is no vaccine available for ChD, but there have been
two drugs used since the 1970s: Nifurtimox (NFX) and
Benznidazole (BNZ) (Nunes et al., 2013; Bustamante and
Tarleton, 2014; Bern, 2015). However, the difficulty in
conducting clinical trials during the chronic phase of the
infection has made it challenging to determine the
effectiveness of treatment during this phase (Urbina, 2010;
Urbina, 2015). Additionally, the treatment with NFX and
BNZ is associated with several issues, including high toxicity,
side effects and a prolonged treatment time (Bern, 2015; Manne-
Goehler et al., 2016). Furthermore, the presence of T. cruzi
isolates with different degrees of susceptibility to these drugs
has been reported (Castro et al., 2006; Mejía-Jaramillo et al.,
2012). In addition to this, it has been found that T. cruzi has the
ability to enter a dormant state known as non-replicating
amastigote, which allows the parasite to resist the
pharmacological stress induced by BNZ (Sánchez-Valdéz
et al., 2018). Therefore, the development of safer and more
efficient therapeutic alternatives for the treatment of ChD is
essential.

Plants have been used for a long time in the treatment of
multiple diseases and recently have gained renewed interest as a
starting point to propose new natural products with specific
bioactivities (Schmidt et al., 2012; Lopera Valle et al., 2013). In
fact, an estimated 60% of currently available drugs are derived from
natural products (Newman and Cragg, 2016; Newman and Cragg,
2020), suggesting the importance of natural sources in drug
discovery. Colombia’s distinct geographical location affords a
varied range of ecosystems that support one of the world’s
highest diversity and dispersion of animals, fungi, and plants
(Gori et al., 2022). As a result, the country is considered a
promising source of chemical structures with specific biological
activities.

Our research group recently evaluated the trypanosomicidal
effects of the native Colombian plant Clethra fimbriata, finding that
the ethanolic and hexanic extracts are effective against the different
stages of T. cruzi. Further, the extracts induce the production of
cytokines and cytotoxic molecules in CD4+ and CD8+ T cells from
healthy donors, an effect that may be associated with the high
content of pentacyclic triterpenes found in C. fimbriata (Castañeda
et al., 2021; Pardo-Rodriguez et al., 2022). Based on these findings,
this research focused on associating metabolic alterations and death
mechanisms induced after treatment of epimastigotes with the
CFHEX extract, using a multiplatform untargeted metabolomics
approach.

2 Materials and methods

2.1 Plant material and extraction

Plant material was collected under the “Permit for wild species
specimen collection of biological diversity for research with non-
commercial purposes” (Permiso marco de recolección de
especímenes de especies silvestres de la diversidad biológica para
investigación con fines no comerciales) granted to the Pontificia
Universidad Javeriana (Resolution 778 of 7 July 2017) issued by the
“National Environmental Licensing Authority”. C. fimbriata was
collected in Majuy Hill, Via Cota, Cundinamarca, Colombia, and
taxonomically identified by the Colombian National Herbarium
(voucher specimen number COL 610805). C. fimbriata aerial parts
were dried and crushed, followed by extraction by successive
maceration (Five extractions) with 1:10 sample to solvent ratio,
using hexane (CFHEX). Obtained extract was concentrated by
evaporation in vacuo. Prior to biological tests, the extract was
resuspended in ethanol.

2.2 Parasite maintenance

T. cruzi Y-strain epimastigotes (MHOM/BR/00/Y); a discrete
typing unit (DTU TcII) (Pavia et al., 2012), were maintained in the
exponential growth phase in Liver Infusion Tryptose (LIT) medium
supplemented with 15% heat inactivated fetal bovine serum (FBSi)
(Eurobio), 100 U/mL penicillin and 100 μg/mL streptomycin
(Eurobio), at 26°C.

2.3 Sample preparation

Epimastigotes of T. cruzi were cultured in LIT medium
supplemented with 15% FBSi at 26 °C. Once they reached an
exponential growth phase, 1 × 108 parasites were transferred to
fresh culture medium, and incubated with the IC90 (690 μg/mL) of
the CFHEX for 36 h. As a negative control the parasites were
incubated with fresh culture medium. After the incubation time,
the parasites were washed three times with phosphate buffered saline
(PBS) at 4 °C and immediately frozen in liquid nitrogen and kept
at −80 °C until further processing. Each treatment was evaluated in
six independent biological replicates.

2.3.1 Metabolite extraction
For the extraction of metabolites from the treated and control

parasites, 500 µL of a solution of MeOH-water (4:1 v/v) were added
to each of the samples. Then, two-3 mm tungsten carbide beads were
added to each of the cryovials and vortexed at 3,200 rpm for 1 min.
Subsequently, the samples were taken to the Tissue Lyser to perform
5 cycles of 30 Hz for 1 min. The samples were centrifuged at
15,700 g, at 4 °C for 20 min and filtered through 0.22 µm filters.
Finally, 200 µL of the extracts were taken, which were used for
subsequent analysis by reverse phase liquid chromatography
coupled to mass spectrometry with a time-of-flight analyzer (RP-
LC-QTOF/MS) in positive and negative polarity and hydrophilic
interaction chromatography coupled to mass spectrometry with a
time-of-flight analyzer (HILIC-LC-QTOF-MS) (Rojo et al., 2015).
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2.3.2 Untargeted metabolomics by RP-LC-
QTOF-MS

Samples were analyzed using an Agilent Technologies
1,260 liquid chromatography system coupled to a 6545 Q-TOF
quadrupole time-of-flight mass analyzer with electrospray
ionization. Five µL of the sample were injected onto a C18

column (InfinityLab Poroshell 120 EC-C18 (100 × 3.0 mm,
2.7 µm)) at 30 °C and compound gradient elution: 0.1% (v/v) of
formic acid in Milli-Q® water (Phase A) and 0.1% (v/v) of formic
acid in acetonitrile (Phase B) with a constant flow of 0.4 mL/min.
The elution gradient started at 25% with respect to B and increased
over 35 min to 95% B. Finally, the gradient decreased to 36% B over a
period of 1 min and was maintained for a further 9 min until the
system was rebalanced. Detection by mass spectrometry was
performed in positive and negative ESI mode in full scan from
100 to 1,100 m/z. Throughout the analysis, two reference masses
were used for mass correction: m/z 121.0509 [C5H4N4]

+, m/z
922.0098 [C18H18O6N3P3F24]

+ in positive mode and m/z
112.9856 [C2O2F3(NH4)]

-, m/z 1,033.9881 [(C18H18O6N3P3F24+
trifluoroacetic acid)-H]- in negative mode.

2.3.3 Untargeted metabolomics by HILIC-LC-
QTOF-MS

Two µL of the sample was injected onto a Kinetex HILIC 100 A
column (150×3.0 mm, 2.6 µm) at 40 °C and a gradient elution composed
of: 10mMammonium acetate in acetonitrile:water (50:50) (Phase A) and
10mM ammonium acetate in acetonitrile: water (95:5) (Phase B) with a
constant flow of 0.4 mL/min. The elution gradient started at 99% with
respect to B and decreased for 15min until reaching 50% B, where it was
maintained for 1 min. Finally, the gradient increased to 99% B and was
maintained for an additional 6 min until the system re-equilibrated.
Detection by mass spectrometry was performed in negative ESI mode in
full scan from 50 to 1,100m/z. Throughout the analysis, two reference
masses were used formass correction:m/z 112.9856 [C2O2F3(NH4)]

- and
m/z 1033.9881 [C18H18O6N3P3F24+trifluoroacetic acid)-H]

-.

2.3.4 Untargeted metabolomics by GC-QTOF-MS
One hundred µL of the extracts were dried in a speedvac for 3 h

at 35 °C. 10 μL of O-methoxyamine in pyridine (15 mg/mL) were
added and vortexed at 3,200 rpm for 10 min. Subsequently, samples
were kept in the dark for 16 h and 10 µL of N,O-
Bistrifluoroacetamide with 1% trimethylsilyl chloride were added
and incubated at 70 °C for 1 h. Finally, the samples were allowed to
cool to room temperature for 30 min, 100 µL of methyl stearate in
heptane as internal standard (10 mg/L) were added and the blend
was vortexed for 10 min at 3,200 rpm. The derivatized samples were
immediately analyzed according to the following methodology.

For data acquisition, an Agilent Technologies 7890B gas
chromatograph coupled to an Agilent Technologies GC/Q-TOF
7250 time-of-flight mass selective detector, equipped with a split/
splitless injection port (250 °C, ratio split 30) and an Agilent
Technologies 7693A autosampler. The electron ionization (EI)
source was operated at 70 eV. An Agilent Technologies J&W
HP-5MS column (30 m, 0.25 mm, 0.25 µm) was used. The carrier
gas flow was helium at a constant flow of 0.7 mL/min. The oven
temperature was programmed from 60 °C (1 min) to 325 °C
(10 min). The temperature of the transfer line to the detector, the
source filament and the quadrupole were maintained at 280 °C,

230 °C and 150 °C, respectively. Detection by mass spectrometry was
carried out between 50 and 600 m/z at a speed of 5 spectra/min.

2.3.5 Quality controls samples (QC)
Quality control (QC) samples were prepared by mixing equal

volumes of the metabolic extract from each sample. Subsequently,
the preparation and analysis of the QC samples were performed
following the procedures described above in each of the analytical
platforms. To determine the reproducibility of sample preparation
and the stability of the analytical platform used, several QC elutions
were performed until the analytical system equilibrated.
Subsequently, the QC samples were analyzed every three
randomly injected samples.

2.4 Data processing and analysis

The data obtained by LC-MS was processed using the Agilent
MassHunter Profinder program for deconvolution, alignment and
integration of the data using the recursive and molecular feature
extraction algorithms. Treatment of the GC-MS data obtained
consisted of deconvolution and identification of the metabolites
using the Agilent MassHunter Unknowns Analysis program and the
Fiehn and NIST libraries. Then the alignment of the retention times
was carried out in the Agilent Mass Profiler Professional program,
the results were exported to the Agilent MassHunter Quantitative
program for data integration. Finally, the data obtained from GC-
MS and LC-MS data processing were manually inspected. Then, the
data was filtered by presence and by reproducibility, keeping only
the metabolites present or absent in 100% of the samples belonging
to the same group and with a coefficient of variation in the QC of less
than 20%.

The identification of the molecular characteristics with
statistically significant differences between the two groups
(treated and untreated parasites) was carried out using univariate
(UVA) and multivariate (MVA) statistical analysis. Regarding the
UVA analysis, the p-value was determined by nonparametric tests
(Mann-Whitney U test) using SIMCA-P + 16.0 (Umetrics). For the
MVA analyses, an unsupervised principal component analysis
(PCA) was performed to observe the unsupervised distribution of
the analyzed samples. Subsequently, supervised orthogonal partial
least squares discriminant analysis (OPLS-DA) models were
performed to select the molecular features responsible for the
separation between the groups. The MVA was performed using
the SIMCA-P+16.0 software (Umetrics). The selected statistically
significant molecular characteristics met at least one of the following
requirements: 1) UVA: p-value < 0.05 and 2) MVA: Variance
Important in Projection (VIP) > 1.

2.4.1 Annotation of statistically significant
molecular features

The metabolites obtained by GC-MS analysis were identified using
the Fiehn version 2013 libraries and MassHunter Personal Compound
Database and Library Manager Software B.08.00. Whereas the
significant characteristics obtained by LC-MS were putatively
assigned in the CEU Mass Mediator annotator (http://ceumass.eps.
uspceu.es) by matching the exact observed mass of each compound
with the availablem/z values. online at METLIN (http://metlin.scripps.
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edu), KEGG (http://genome.jp/kegg), and LIPIDMAPS (http://
lipidMAPS.org), using the following likely adducts: [M + H]+, [M +
H-[H2O]]

+, [M + Na]+, and [M-H]−, [M + Formic acid-H]−, [M + Cl]−,
[M-H-[H2O]]

− for positive and negative ionization modes, respectively.
Furthermore, to confirm the identity of the metabolite, MS/MS analysis
was performed.

2.4.2 Altered metabolite pathway mapping
The analysis of the affected metabolic pathways in the treated

parasites was performed using the “Pathway Analysis” tool of the
MetaboAnalyst 5.0 server (http://www.metaboanalyst.ca/). For
which, the altered compounds were annotated and compared
with the Trypanosoma brucei (KEGG) metabolome available on
the same server.

3 Results

Conditions associated with exposure to CFHEX (IC90: 690 μg/
mL) in the epimastigote stage of T. cruzi were evaluated using
untargeted metabolomics analysis. A multiplatform approach was
used to detect the largest possible number of altered metabolites. The
performance of the different analytical platforms was evaluated
using unsupervised PCA models. The inspection of the clusters
evidenced the clear grouping of the samples belonging to the quality
control in the different analytical platforms used (Figure 1, orange
dots). After verifying the performance of each analytical platform,
the supervised orthogonal partial least squares regression method
(OPLS-DA) was implemented to maximize the differences between
the group made up of treated parasites and the group of untreated
parasites (Figure 2) and to identify the molecular features with

greater weight in the separation of the groups. The Pareto scaling
method was used before the statistical analysis.

The OPLS-DA scoring plot presented in Figure 2 showed a clear
separation between the groups: CFHEX-treated parasites (yellow dots)
and untreated parasites (violet dots). Likewise, the variables R2 and Q2,
which measure the goodness of fit and the predictive capacity of the
model developed from the data matrix, respectively, show adequate
settings (R2 > 0.402) and good predictive capacity (Q2 > 0.961) (Triba
et al., 2015). Finally, to evaluate the reliability of themodels, the variance
cross-validation (CV-ANOVA) was performed, evidencing highly
significant models in the four platforms analyzed (CV-
ANOVA <0.05) (Eriksson et al., 2008). The individual differentiating
metabolites were determined by a combination of MVA (VIP>1) and
UVA (p < 0.05), obtaining a total of 154 altered compounds in the
treated parasites, of which 25.16%, 30.97%, 14.84% and 12.26% were
identified by LC/MS−, LC/MS+, GC/MS and HILIC/MS, respectively.
In addition, the identification of some metabolites was achieved
simultaneously by several platforms: 11.61% of compounds were
found by LC/MS−/+, 1.29% by LC/MS+ and GC/MS, 1.94% by LC/
MS− and HILIC/MS, and 1.94% by LC/MS−/+ and HILIC/MS.

The consolidated analysis of the metabolic modifications of the
treated parasites showed 57.41% of the metabolites increased and
42.58% decreased. From these, 77.41% of the fluctuations were
related to lipid chemical classes as follows: glycerophospholipids
(65 compounds, 42.58%), fatty acids (36 compounds, 23.22%),
sphingolipids (9 compounds, 5.81%), glycerolipids (6 compounds,
3.87%) and steroidal lipids (3 compounds, 1.93%). The remaining
22.58% of the changed metabolites belonged to chemical classes
such as organic acids (21 compounds, 13.54%), nucleosides
(5 compounds, 3.22%), oxygenated organic compounds
(4 compounds, 2.58%), among others (5 compounds, 3.22%) (Figure 3).

FIGURE 1
PCA score charts. (A). LC/MS (+) R2: 0.662, Q2: 0.323. (B). LC/MS (−) R2: 0.841, Q2: 0.654. (C). GC/MS(+) R2: 0.532, Q2: 0.177. (D). HILIC/MS(−) R2:
0.813, Q2: 0.66. Dots in orange color denote quality control, gray dots correspond to samples.
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Due to the number of modified metabolites found in parasites
treated with CFHEX, it was decided to group them into two large
groups. Supplementary Tables S1 and S2 summarize the lipidic and
non-lipidic metabolites identified in the treated parasites and
present information regarding retention times, coefficient of
variation of the chromatographic signal in the QC group,
statistical parameters for its selection, probable adducts, fold
change (FC), and type of confirmation, among others. Besides,
the set of altered metabolites between the two groups was

analyzed using heat maps that allow the visualization of
metabolite patterns changing between the groups. Thus, blue
colors indicate decreased metabolite levels and red colors indicate
increased metabolites in treated parasites (Figure 4; Figure 5).
Besides, lipid metabolism experienced the greatest variation, with
the glycerophospholipid, fatty acid (FA) and sphingolipid classes
being the largest representatives (Supplementary Table S1). The
group of glycerophospholipids was mainly constituted by
lysophospholipids (LPL), of which lysophosphatidylcholines (LPC),

FIGURE 2
OPLS-DA models with Pareto scaling for metabolic analysis of treated parasites and control group. (A). LC/MS (+): R2: 0.402, Q2: 0.961, CV ANOVA:
5.2e−5, (B). LC/MS(−): R2: 0.789, Q2: 0.976, CV ANOVA: 1.0e−5, (C). GC/MS: R2: 0.715, Q2: 0.978, CV ANOVA: 5.7e−4, (D). HILIC/MS: R2: 0.713, Q2: 0.982, CV
ANOVA: 3.2e−6. Dots in yellow color denote parasites treated with CFHEX and the violet dots the control group (untreated parasites).

FIGURE 3
Altered metabolites in the treated parasites according to their chemical classes. The chemical classes are shown according to the color code.
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lysophosphatidylethanolamines (LPE), lysophosphatidylinositols (LPI),
lysophosphatidylglycerol (LPG) and lysophosphatidylserine (LPS), were
observed to be increased (Figure 4, colored metabolites on the red color
scale). The trends found in the FA subclass (fatty amides, and fatty
esters (carnitines)), as well as in the sphingolipids subclass
(phosphosphingolipids, sphingoid bases, steroidal lipids and
glycerolipids) were also found to have an upward trend (Figure 4,
metabolites on the red color scale).

On the other hand, non-lipid compounds were mainly grouped
into the classes of nucleosides, acids, and oxygenated organic
compounds (Supplementary Table S2). Particularly, in the group
of nucleosides, metabolites such as uridine diphosphate (UDP),
UDP-acetylgalactosamine, UDP-galactose, 5′-methylthioadenosine
and adenosine were identified, all of which showed downward
trends (Figure 5, metabolites in the blue color scale). Similar
trends were also found in amino acids and peptides (proline,
glycine, L-valine, L-isoleucine, serine, Pro-Pro, Pro-Phe, and Pro-
Pro-Phe), carboxylic acids (pyruvate and phosphoenolpyruvate),
oxygenated organic compounds (glycerate 3 phosphate, glyceric
acid, and D-alose), and in other metabolites such as
trypanothione, protoporphyrin IX, aminopentanoic acid,
hydroxyisovaleric acid, hydroxybutyric acid, xanthine,
hypoxanthine and L-carnitine (Figure 5, metabolites in blue color
scale).

After an individual analysis of the total altered metabolites in the
CFHEX-treated parasites, it was found that the greatest upward changes
(FC > 3) occurred in the following compounds: lysophosphatidic acid
(18:1); lysophosphatidylcholines (22:1, 18:3, 16:1);
lysophosphatidylethanolamines (21:0, 20:0, 20:3, 18:1, 18:3, 17:1),
phosphatidylethanolamine (37:2); lysophosphatidylglycerol (28:0);
lysophosphatidylinositols (20:4, 18:1, 18:3, 17:1) phosphatidylinositol
(40:1); lysophosphatidylserines (21:0, 20:2, 20:3), phosphatidylserine
(40:4); dodecanoylcarnitine (12:0), tetradecanoylcarnitine (14:0),
palmitoylcarnitine (16:0), hydroxyhexadecanoylcarnitine (16:1),
hydroxypalmitoleoylcarnitine (16:1; O), oleoylcarnitine (18:1),

linoleoylcarnitine (18:2), carboxyheptadecanoylcarnitine (18:1; O2);
hexadecanoyl sphinganine phosphomyo-inositol (34:0; O2),
hexadecanoyl eicosaphingenine phosphomyo-inositol (36:1; O2);
hydroxyeicosadienoic acid (20:2; O), Prostaglandin F2α (20:2; O2);
cholestane derivatives (27:0; O5, 27:0; O3), oleoyl glycerol, stearoyl
lactic acid, stearoyl glutamic acid, palmitoyl serine, arachidonoyl
tyrosine and ethyl glycine.

In contrast, the greatest downward changes (FC < 0.5) were
observed in the lipids: lysophosphatidylcholines (22:2, 20:4, 18:2, 14:
0, 13:0, 12:0, 11:0), lysophosphatidylethanolamines (22:5, 15:0, 14:0),
lysophosphatidylglycerol (18:2, 16:2), phosphatidylglycerols (40:7,
36:4), lysophosphatydilsernines (20:5, 18:2), ethylacryloylcarnitine
(5:1); tetradecanoyl sphingenine phosphomyoinositol (31:1; O2) and
in the non-lipid metabolites L-carnitine, hydroxybutyric acid,
hydroxyisovaleric acid, trypanothione, UDP-acetylgalactosamine,
proline, and the peptides Pro-Phe and Pro-Pro-Phe.

The summary of the main routes affected in the treated
parasites is presented in Figure 6. The results of the pathway
enrichment analysis with the topology analysis show that while the
metabolic pathways with the greatest displacement in the Y-axis,
denoted in dark colors, indicate the greatest changes in the
metabolic pathway according to the number of metabolites
participating in each affected pathway, the displacement on the
X-axis, related to the size of the circle, indicates the impact on the
metabolic pathway according to the importance of the altered
metabolite, measured according to the number of connections that
it presents on the pathway (Figure 6) (Xia et al., 2011). The
metabolic pathways that were observed to be the most affected
by CFHEX treatment (denoted in the red color scale and larger
circles) were related to amino acid metabolism, which was found to
be preferentially decreased. Thus, the biosynthesis of transfer RNA
stands out due to the alteration of glycine, serine, valine, alanine,
isoleucine, leucine, proline, and glutamate aminoacyl-tRNAs.
Changes in the metabolism of glycine, serine, threonine,
alanine, aspartate, glutamate, cysteine, and methionine were

FIGURE 4
Heat map of lipid metabolites with statistically significant variation between Trypanosoma cruzi epimastigotes treated with CFHEX and the control
group. The columns correspond to each altered metabolite identified, the rows correspond to the analyzed samples divided into the clades: CFHEX-
treated parasites (yellow) and untreated parasites (violet). The level of variation is indicated on the right side on a color intensity scale representing relative
abundance, where red colors denote metabolite increase and blue colors denote metabolite decrease.
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also observed as well as on the arginine biosynthesis. Another
altered pathway was glycolysis caused by the decrease of
phosphoenolpyruvate, glycerate 3-phosphate, and pyruvate.
Finally, the metabolism of sphingolipids and
glycerophospholipids was also affected by the overproduction of
sphingosine 1 phosphate, sphingosine, sphinganine, phosphatidic
acid, phosphatidylcholines and phosphatidylethanolamines.

In addition to the metabolomic alterations described in the
treated parasites, a series of compounds exogenous to T. cruzi were
detected and found exclusively in the treated parasites and those
would be constituents of the CFHEX extract (Pardo-Rodriguez et al.,
2022). These compounds were: betulinic acid, ursolic acid, pomolic
acid and their oxidized forms, betulonic acid, ursonic acid and
pomonic acid. All these compounds are classified as pentacyclic
triterpenes (compounds with a skeleton of 30 carbons that form five
cycles) that are widely distributed in plant families and had been
previously reported in C. fimbriata (Pardo-Rodriguez et al., 2022)
(Figure 7).

4 Discussion

T. cruzi is a protozoan with a complex life cycle that involves
vertebrate and invertebrate hosts and extracellular and intracellular
stages (Rassi et al., 2010), exposing it, among other factors, to various
sources of carbon as glucose and lipids in the mammalian host and
amino acids, mainly proline in the insect vector (Cazzulo et al., 1985;
Cazzulo, 1992; Michels et al., 2021). In particular, the epimastigote
stage can use multiple carbon sources, however, in culture media it
preferentially uses carbohydrates as a substrate for energy
metabolism during the exponential phase and amino acids
during the stationary phase (Cazzulo et al., 1985; Cazzulo, 1992;
Silber et al., 2002; Barisón et al., 2017).

Glucose metabolism occurs in a similar way to other
trypanosomatids, part of the enzymes of the glycolytic pathway
in T. cruzi are compartmentalized within organelles of peroxisomal
origin called glycosomes (Van Hellemond et al., 2005; Quiñones
et al., 2020; Michels et al., 2021). Additionally, T. cruzi has a

FIGURE 5
Heat map of non-lipid metabolites with statistically significant variation between Trypanosoma cruzi epimastigotes treated with CFHEX and the
control group. The columns correspond to each altered metabolite identified, the rows correspond to the analyzed samples divided into the clades:
CFHEX-treated parasites (yellow) and untreated parasites (violet). The level of variation is indicated on the right side on a color intensity scale representing
relative abundance, where red colors denote metabolite increase and blue colors denote metabolite decrease.
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mitochondrial system that includes enzymes of the tricarboxylic acid
cycle (TAC), as well as mitochondrial electron transport chain
complexes (Stoppani et al., 1980; César Carranza et al., 2009),
present at all stages of the parasite’s life cycle. The glycolytic
pathway is organized such that the first seven enzymes that
catabolize glucose to glycerate 3-phosphate (G3P) are found
within glycosomes, while the last three enzymes in the pathway
reside in the cytosol (Bringaud et al., 2006; Michels et al., 2021), with
the latter three enzymes being phosphoglycerate mutase, enolase
and pyruvate kinase responsible for the transformation of G3P,
phosphoenolpyruvate (PEP) and pyruvate (PYR), respectively.

G3P, PEP and PIR were found decreased after epimastigotes-
CFHEX treatment, which may suggest energetic alterations in the
treated parasites, as well as effects on metabolic pathways that use
these substrates or derivatives of them. On the other hand, exposure
of epimastigotes to CFHEX extract also reduced the levels of some
nucleosides, which in normal conditions contribute to energy
generation. The pathway that allows the formation of UDP-
galactose is linked to the generation of glucose 6-phosphate and
this last metabolite could be incorporated into the glycolytic
pathway to generate ATP and feed other metabolic pathways
such as pentose phosphate (Roper and Ferguson, 2003). Other
biosynthetic pathways that participate as carbon and energy

sources through the generation of intermediates for the TAC,
such as the amino acids proline (Silber et al., 2002; Silber et al.,
2005; Martins et al., 2009; Paes et al., 2013), valine, isoleucine, and
serine (Hamptont, 1971; Sylvester and Krassner, 1976; Cazzulo,
1994; Silber et al., 2005; Manchola et al., 2016), were also found
downward trends.

The effects observed on processes related to carbohydrate and
amino acid-dependent energy production in epimastigotes are like
those reported after nutritional stress induced by long periods of
starvation. Souza et al. evaluated the role of FA oxidation after
depriving T. cruzi epimastigotes cultures of glucose, finding that, in
the absence of glucose, lipid droplets become the main sources of
FA, which help the body survive nutritional stress by producing
acetyl-CoA that fuels TAC, contributing to mitochondrial ATP
production (Souza et al., 2021). In summary, epimastigotes use
FA as carbon and energy source when glucose and amino acids are
not available. In this context, the use of lipids as a source of carbon
and energy in the treated parasites is suggested by the findings that
the family of lipids conjugated to carnitine presented upward trends.

Interestingly, carnitines were the family of compounds that
presented the greatest alteration in the study. Acyl-carnitines
have the biological function of transporting FA into the
mitochondria to be substrates for β-oxidation. To do this,

FIGURE 6
Impact analysis on metabolic pathways. enrichment (y-axis) and topology (x-axis) analysis. 1. Glyoxylate and dicarboxylate metabolism, 2. Taurine
and hypotaurine metabolism, 3. Nitrogen metabolism, 4. Porphyrin metabolism, 5. Citrate cycle, 6. Valine, leucine and isoleucine degradation, 7.
Nicotinate metabolism and nicotinamide, 8. Metabolism of lipoic acid, 9. Metabolism of aminosugars and sugar nucleotides, 10. Degradation of fatty
acids, 11. Metabolism of arginine and proline, 12. Metabolism of purines, 13. Metabolism of glutathione. The darker colors indicate a greater number
of changes in the metabolic pathway, while the size of the circle corresponds to the impact on the pathway according to the importance of the altered
metabolite.
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carnitines form conjugates with the FA that will be oxidized,
generating NADH, FADH2 and acetyl CoA in each round
(Longo et al., 2016). Both NADH and FADH2 enter the electron
transport chain to produce ATP (Carracedo et al., 2013). On the
other hand, the acetyl CoA generated in the oxidation processes can
feed the production of TAC intermediates or be part of new lipid
synthesis (Ginger et al., 2000; Carracedo et al., 2013). However, it
cannot be ruled out that the accumulation of carnitines is due to a
malfunction of mitochondrial activity that prevents the catabolism
of this type of metabolite.

FA can be acquired in three ways: exogenous FA that enter cells;
FA that arise through de novo synthesis from acetyl-coA; and fatty
acids that are released within the cell by hydrolysis of acylated
proteins, phospholipids, and triglycerides (Koundouros and
Poulogiannis, 2020). The lipid composition found in T. cruzi
varies according to the stage analyzed; however, they are mainly
represented by triacylglycerides, phosphatidylcholines,
phosphatidylethanolamines and phosphatidylinositols (Cunha-E-
Silva et al., 2002; Booth and Smith, 2020). These types of
compounds incorporated the greatest global changes in the
metabolism of the treated parasites, with a large part of these
showing upward trends. Of these, the group of LPL had the
largest number of representatives. LPL are metabolic
intermediates normally generated through the active
hydrolyzation of phospholipases. These enzymes cleave
intracellular phospholipids from the cell membrane, generating a
variety of products such as LPL, FA, diacylglycerols,
phosphocholine, phosphoinositides and phosphatidic acid, among
others (Belaunzarán et al., 2011). All these intermediate metabolites
can contribute to the generation of ATP through oxidation to acetyl-
coA and then be incorporated into TAC. However, the role of this
mechanism in energy generation during nutritional stress events is
still unknown. Other studies carried out in pathologies in which
there is an increase in reactive oxygen species (ROS), such as

diabetes and obesity, have associated the selective loss of a
glycerophospholipid fatty acyl residue with the overproduction of
ROS through lipid peroxidation. However, this mechanism is still
under study (Reis and Spickett, 2012; Fuchs, 2014; Chen et al., 2018;
Engel et al., 2021).

The use of glycerophospholipids as a substrate to produce
intermediates such as LPL can affect the composition of
biological membranes and, consequently, their selective
permeability, leading to cell lysis. Importantly, the accumulation
of this type of lipid in the treated parasites entails toxic effects, since
high concentrations alter the structure of the membrane and cause
cell lysis. Finally, some research suggests that FA oxidation may be a
permanent source of reactive oxygen species, which can cause
endoplasmic reticulum stress and changes in mitochondrial
membrane potentials, causing apoptotic death (Bowes et al.,
1993; Ly et al., 2017; Tan et al., 2020).

Although the observed alterations have been related to a possible
mechanism of energy alteration, the increases or deficiencies of some
metabolites suggest involvement in other biological processes.
Changes in the content of amino acids such as proline,
glutamate, serine, glycine, and leucine can affect protein
synthesis, resistance to nutritional, osmotic, thermal, and
oxidative stress, as well as invasion, replication, and
metacyclogenesis processes, among others (Contreras et al., 1985;
Pereira et al., 2002; Silber et al., 2005; Magdaleno et al., 2011; Paes
et al., 2013; Marchese et al., 2018). On the other hand, alterations in
nucleosides would directly affect the construction of
macromolecules such as glycoconjugates, DNA and RNA, which
would affect the invasion and processes dependent on nucleic acids,
such as replication, transcription and protein synthesis (Landfear
et al., 2004; MacRae et al., 2006). Finally, both energy imbalances
and low trypanothione levels, observed in parasites treated with
CFHEX, may suggest an increase in reactive oxygen species (ROS) as
well as imbalances in redox potentials (Fairlamb et al., 1985; Bond

FIGURE 7
Exogenous metabolites found in epimastigotes treated with CFHEX extract. (A) Betulinic acid, (B) Ursolic acid, (C) Pomolic acid, (D) Betulonic acid,
(E) Ursonic acid, (F) Pomonic acid.
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et al., 1999; Schönfeld et al., 2010; Menna-Barreto and De Castro,
2014). ROS can oxidize macromolecules such as lipids, nucleic acids,
and proteins. Besides, it can cause endoplasmic reticulum stress and
mitochondrial damage, alterations that can promote, among many
other effects, programmed cell death (Jarzab and Stryjecka-Zimmer,
2008).

Previously, the analysis of the mechanisms of death induced by
the CFHEX extract in epimastigotes and trypomastigotes of T. cruzi
evidenced a trypanosomicidal mechanism associated with
programmed cell death. The present investigation found a series
of highly expressed proapoptotic compounds such as sphingosine,
sphingosine 1 phosphate and ceramides (Cuvillier, 2002; Davaille
et al., 2002; Koeller and Heise, 2011), which support the effects of
programmed cell death previously evidenced (Pardo-Rodriguez
et al., 2022). The trypanosomicidal effects can be related to the
presence of exogenous terpenes found in the parasites and
previously described in C. fimbriata (Pardo-Rodriguez et al.,
2022). Ursolic acid induced a significant reduction in amastigotes
in RAW macrophage cultures infected with trypomastigotes
compared with the untreated cultures (Vanrell et al., 2020).
Other studies conducted in models of acute infection in BALB/c

albino male mice found that oral treatment with ursolic acid at a
concentration of 20 mg/kg/day reduced parasitemia, measured at
the parasitemic peak, after infection with trypomastigotes of strain Y
by 60% (Da Silva Ferreira et al., 2013). On the other hand, betulinic
acid inhibits cellular populations of all three stages of T. cruzi
without causing toxicity in LLC-MK2 cells at the concentrations
used. (200-1,600 μM). Furthermore, the treated parasites displayed
alterations in cell membrane integrity, mitochondrial membrane
potential, and reservosome inflammation, along with an increased
production of reactive oxygen species (Sousa et al., 2017).

In summary, the metabolic alterations observed in parasites
treated with CFHEX may reflect energetic alterations associated
with glucose, hexoses and some amino acids which suggests that
the energy demands of the parasite could be supplied from the β-
oxidation of FA and the production of TAC intermediates
(Figure 8). Although, with the results obtained here, it is not
possible to specify the mechanism by which the alteration of
energy metabolism is taking place, investigations carried out
with betulinic, ursolic and oleanolic acids have shown a
deprivation of glycolytic metabolism in cancer cells. In these
studies, the glycolytic decline is associated with signaling

FIGURE 8
Metabolic processes for energy generation in Trypanosoma cruzi. The metabolites found in lower concentration are represented in blue, while the
metabolites found in higher concentration in parasites treated with CFHEX compared to untreated parasites are represented in red. Numbers indicate
participating enzymes: 1, hexokinase; 2, glucose-6-phosphate isomerase; 3, phosphofructokinase; 4, aldolase; 5, triose-phosphate isomerase; 6,
glycerol-3-phosphate dehydrogenase; 7, glycerol kinase; 8, glyceraldehyde-3-phosphate dehydrogenase; 9, phosphoglycerate kinase B; 10,
phosphoglycerate mutase; 11, enolase; 12, phosphoenolpyruvate carboxykinase; 13, pyruvate phosphate dikinase; 14, glycosomal malate
dehydrogenase; 15, cytosolic fumarase; 16, glycosomal NADH-dependent fumarate reductase, 17, pyruvate kinase; 18, cytosolic malic enzyme; 19,
mitochondrial malic enzyme; 20, pyruvate dehydrogenase complex; 21, acetate:succinate CoA-transferase; 22, acetyl-CoA thioesterase; 23, succinyl-
CoA synthetase; 24, mitochondrial fumarase; 25, mitochondrial NADH-dependent fumarate reductase; 26, succinate dehydrogenase (respiratory chain
complex II); 27, mitochondrial malate dehydrogenase; 28, citrate synthase; 29, aconitase; 30, isocitrate dehydrogenase; 31, α-ketoglutarate
dehydrogenase; 32, L-proline dehydrogenase; 33, pyrroline-5-carboxylate dehydrogenase; 34, alanine aminotransferase; 35, glutamate dehydrogenase;
36, FAD-dependent mitochondrial glycerol-3-phosphate dehydrogenase; 37, rotenone-insensitive NADH dehydrogenase; 38, alternative oxidase; 39,
FoF1-ATP synthase; 40, ADP/ATP carrier; 41, L-threonine dehydrogenase; 42, AKCT, 2-amino-3-ketobutyrate CoA-transferase; 43, methylglyoxal
reductase; 44, lactaldehyde dehydrogenase; 45, Fatty acid β-oxidation; I, III, IV, respiratory chain complexes.
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pathways such as mTOR, and AKT, which modulate the
expression of glycolytic pathway enzymes such as hexokinase,
phosphofructokinase, and pyruvate kinase. Additionally, it has
been observed that apoptotic processes induced by oxidative
stress are favored in cells treated with ursolic, betulinic and
pomolic acids (Liu et al., 2014; Lewinska et al., 2017; Zheng et al.,
2019; Wang et al., 2021). Other studies have found inhibitory
effects in trypanosomatid species after exposure to betulinic and
ursolic acids associated with alterations in the mitochondrial
membrane potential and increases in oxidative stress, which in
turn implies effects on oxidative phosphorylation (Yamamoto
et al., 2015; Bossolani et al., 2017; Sousa et al., 2017; Albuquerque
et al., 2020).

With this panorama, two possible hypotheses arise as an
explanation for glucose deprivation or depletion. The triterpenes
that constitute CFHEX (betulinic, ursolic and pomolic acid),
which were found inside the treated parasites, can inhibit the
uptake of glucose or its metabolization by modulating signaling
pathways (Liu et al., 2014; Lewinska et al., 2017; Zheng et al.,
2019; Wang et al., 2021). Likewise, and although it is an approach
little studied, the possible inhibition exerted by triterpenes on
glucose transporters and enzymes of the glycolytic pathway of T.
cruzi cannot be ruled out. This last point becomes relevant when
comparing the identities of the transporters and enzymes present
in trypanosomatids with respect to those found in humans. In
summary, the inhibition of glycolysis would induce the
consumption of other carbon sources such as amino acids and
lipids, which would serve as generators of TAC intermediates,
that would directly feed mitochondrial oxidative
phosphorylation, making the treated parasites dependent on
this last mechanism to meet energy demands.

However, a second mechanism has been proposed for certain
triterpenes, and it has been found that those compounds could
modify the potentials of mitochondrial membranes (Ψm)
(Hordyjewska et al., 2019), which, in turn, may impact electron
transport and oxidative phosphorylation. These findings may
suggest that the triterpenes found as major compounds in
CFHEX have the ability to uncouple mitochondrial function and
promote metabolic changes that induce a death similar to apoptosis
in the treated parasites.

Collectively, our results showed that the hexanic extract of C.
fimbriata induces alterations in energy metabolism in T. cruzi
epimastigotes that are compatible with CFHEX induced
apoptosis-like death. The finding of pentacyclic triterpenes in the
metabolome of C. fimbriata treated parasites renders this extract as a
novel source of triterpene compounds, which in the future may
contribute to new alternatives for the control of T. cruzi infection. To
our knowledge, this is the first investigation where the general
metabolic context of T. cruzi correlated to the exposure of
extracts rich in pentacyclic triterpenes. The metabolomic analyses
performed on the epimastigote stage reflect the changes generated
generated from the CFHEX treatment, however, they would only
indicate the steady states of the metabolites at the selected treatment
time (36 h). Therefore, the discussion was carried out by correlating
the states of the altered metabolites with their biological functions. It
is necessary for future studies to establish the metabolic pathway
fluxes involved in the inhibition mechanisms induced in the T. cruzi
stages by the CFHEX extract.

5 Conclusion

The effect of the hexanic extract of C. fimbriata on the
metabolism of T. cruzi epimastigotes is related to multiple
biosynthetic pathways, among which those associated with energy
metabolism stand out, which in turn is connected to the induction of
apoptosis-like observed in treated parasites. The constituent
triterpenes of CFHEX such as betulinic and ursolic acids were
found inside the treated parasites and may be related to the
trypanosomicidal effects together with the metabolomic
modifications.
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Glossary

CAR Carnitine

CER Ceramide

CFHEX C. fimbriata hexanic extract

GC-MS Gas chromatography coupled to mass spectrometry

EtOH Ethanol

FA fatty acid

FADH2 Flavin adenine dinucleotide

FBS Fetal Bovine Serum

FC Fold change

PEP Phosphoenolpyruvate

G3P Glycerate 3 phosphate

HILIC Hydrophilic Interaction Liquid Chromatography

IC90 90% Inhibitory Concentration

SL Steroidal lipid

LC-MS Liquid chromatography coupled to mass spectrometry

LIT Liver Infusion Tryptose

LPC Lysophosphatidylcholines

LPE Lysophosphatidylethanolamines

LPG Lysophosphatidylglycerol

LPI Lysophosphatidylinositols

LPL Lysophospholipids

LPS Lysophosphatidylserine

MeOH Methanol

MG Monoglyceride

NADH Nicotine Adenine Dinucleotide

OPLS-DA Orthogonal Partial Least Squares with Discriminant Analysis

PCA Principal Component Analysis

PIR Pyruvate

PLS Partial Least Squares

QC Quality Control

TAC Tricarboxylic Acid Cycle

ROS Reactive oxygen species

TR Retention Time

UDP Uridine Diphosphate

VIP Importance of the variable in the projection
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In recent years, the popularity of fermented foods has strongly increased based on
their proven health benefits and the adoption of new trends among consumers.
One of these health-promoting products is water kefir, which is a fermented
sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and
acetic acid bacteria). According to previous knowledge and the uniqueness of
each water kefir fermentation, the following project aimed to explore the
microbial and chemical composition of a water kefir fermentation and its
microbial consortium, through the integration of culture-dependent methods,
compositional metagenomics, and untargeted metabolomics. These methods
were applied in two types of samples: fermentation grains (inoculum) and
fermentation samples collected at different time points. A strains culture
collection of ~90 strains was established by means of culture-dependent
methods, mainly consisting of individuals of Pichia membranifaciens,
Acetobacter orientalis, Lentilactobacillus hilgardii, Lacticaseibacillus paracasei,
Acetobacter pomorum, Lentilactobacillus buchneri, Pichia kudriavzevii,
Acetobacter pasteurianus, Schleiferilactobacillus harbinensis, and Kazachstania
exigua, which can be further studied for their use in synthetic consortia
formulation. In addition, metabarcoding of each fermentation time was done
by 16S and ITS sequencing for bacteria and yeast, respectively. The results show
strong population shifts of the microbial community during the fermentation time
course, with an enrichment of microbial groups after 72 h of fermentation.
Metataxonomics results revealed Lactobacillus and Acetobacter as the
dominant genera for lactic acid and acetic acid bacteria, whereas, for yeast, P.
membranifaciens was the dominant species. In addition, correlation and
systematic analyses of microbial growth patterns and metabolite richness
allowed the recognition of metabolic enrichment points between 72 and 96 h
and correlation between microbial groups and metabolite abundance (e.g., Bile
acid conjugates and Acetobacter tropicalis). Metabolomic analysis also evidenced
the production of bioactive compounds in this fermentedmatrix, which have been
associated with biological activities, including antimicrobial and antioxidant.
Interestingly, the chemical family of Isoschaftosides (C-glycosyl flavonoids) was
also found, representing an important finding since this compound, with
hepatoprotective and anti-inflammatory activity, had not been previously
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reported in this matrix. We conclude that the integration of microbial biodiversity,
cultured species, and chemical data enables the identification of relevant microbial
population patterns and the detection of specific points of enrichment during the
fermentation process of a foodmatrix, which enables the future design of synthetic
microbial consortia, which can be used as targeted probiotics for digestive and
metabolic health.

KEYWORDS

microbial communities, fermentation dynamics, probiotics, digestive health, multiomics
approach, fermented food analysis

1 Introduction

Microbial consortia are present in a wide range of environments
including soils, biofilms, and food products, such as beer, kombucha,
and dairy products (Padmaperuma et al., 2019). These associations
play an important role in soil management and nutrient
mobilization, and they have also been studied due to their
potential in the industry and economic importance, as they are
involved in the development of fermented foods, which confer
nutritional properties to their consumers (Madigan et al., 2015;
McCaughey et al., 2022). Fermented products have long been
considered basic foods in many countries because the
fermentation process is an old technique to produce, conserve, or
transform the organoleptic properties of foods and beverages
(Fiorda et al., 2017; Villarreal-Morales et al., 2018; Bengoa et al.,
2019). Most of these matrices are spontaneous or can be fermented
using a starter culture (culture-dependent ferments), so there are
several variables in the process of their fermentation, including the
source of microorganisms, their nutritional ingredients, and
environmental conditions, resulting in thousands of different
variations of these products (Villarreal-Morales et al., 2018;
Dimidi et al., 2019; Sharma and Yaiphathoi, 2020; Safak et al., 2023).

In recent years, the popularity of these foods, including
kombucha and kefir, has increased based on the potential health
benefits that have been ascribed to them based on the metabiotics,
which can be grouped into prebiotics, probiotics, and postbiotics
produced by these products (Marco et al., 2020; Pihurov et al., 2023).
These biological activities can be related to the production of
biochemical reactions triggered by multiple microorganisms that
result in the release of vitamins, amino acids, exopolysaccharides
(EPS), and organic acids, among other bioactive compounds (Diez-
Ozaeta and Astiazaran, 2022). Water kefir has been studied, mainly
for its impact on the immune system and gastrointestinal health,
being beneficial for preventing non-communicable diseases such as
lactose malabsorption, diabetes, obesity, inflammation, and
cardiovascular conditions through the modulation of gut
microbiota (Fiorda et al., 2017; Dimidi et al., 2019; Calatayud
et al., 2021; Araújo et al., 2023). The composition of water kefir
is known to be a stable microbial community of lactic acid bacteria
(LAB), acetic acid bacteria (AAB), and yeasts, as shown by both
culture-dependent and culture-independent-based studies (Laureys
and De Vuyst, 2014; Zanirati et al., 2015; Farag et al., 2020).

For many years, research projects on water kefir have relied on
conventional culture-dependent methods consisting of the isolation
and culturing of microbes prior to their identification according to
either morphological, biochemical, or genetic characteristics

(Jianzhong et al., 2009). These culture-dependent approaches aim
to test different culture conditions (growth temperature, pH, carbon,
and nitrogen source) that could help optimize culturing methods for
target microbes in fermented food matrices such as water kefir
(Wuyts et al., 2020). Furthermore, molecular culture-independent
methodologies, specifically metabarcoding and shotgun sequencing,
have proven to be a powerful tool to provide a more complete
microbial diversity spectrum in food samples, especially for those
microbial groups that are difficult to isolate by culture-dependent
methods (Verce et al., 2019). Recent studies that have characterized
the microbial populations of water kefir have found that the most
common microorganisms are lactic acid bacteria of the
Lactobacillus, Leuconostoc, and Lactococcus genus, acetic acid
bacteria of the genus Acetobacter and Gluconobacter, and yeast
such as Saccharomyces cerevisiae and Zygotorulaspora florentina
(Gulitz et al., 2011; Fiorda et al., 2017; Chen et al., 2021; Spizzirri
et al., 2023). Nevertheless, given the variability of substrates and
water kefir grain origins, a diverse composition of species and strains
can be found in each beverage (Moretti et al., 2022). For instance, the
same report by Moretti et al. (2022) exemplifies the uniqueness of a
WK beverage prepared in Antioquia, Colombia, which is called
“Arroz de indio” or “Indiecitos”, based on the fermentation of
“Aguapanela” or dry sugar cane solution, sharing some
similarities with but not identical to the WK system of this study.

Furthermore, the health benefits of water kefir are not only
related to the presence of certain microorganisms but also to the
compounds produced during fermentation. Several studies have
focused on determining the concentration of specific compounds
including simple and short chain sugars, exopolysaccharides (EPS),
organic acids, amino acids, and volatile compounds (Chen et al.,
2021; Patel et al., 2022). Metabolite screening was carried out
through different analytical platforms to perform targeted and
untargeted studies such as gas chromatography/mass
spectrometry (GC-MS), chromatography/mass spectrometry (GC/
MS), liquid chromatography/mass spectrometry (LC/MS), and
capillary electrophoresis/mass spectrometry (CE/MS). However,
LC/MS has proven to deliver accurate qualitative and quantitative
capability and provides the convenience of simultaneous multi-
component analysis (Azi et al., 2021). For the water kefir biological
system, most existing studies have been performed using targeted
metabolomic techniques, the two most commonly used techniques
being high-pressure liquid chromatogram coupled with triple
quadrupole mass spectrometry (HPLC-MSMS) and headspace/
solid phase microextraction coupled with gas chromatogram and
mass spectrometry (HS/SPME-GC–MS) (Hu et al., 2014; Patel et al.,
2022). These methods have resulted in the identification of bioactive
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compounds such as organic acids, amino acids, flavonoids, and
phenols, which have been reported as health-promoting agents (Azi
et al., 2021).

Based on the statements above, evidence suggests that
understanding complex biological systems, such as water kefir,
requires the application of multiple methods that provide
different perspectives (Weckx et al., 2019). Accordingly, the
following project aimed to explore and characterize the microbial
chemical space of a water kefir fermentation by integrating three
different -omics approaches. Also of interest when developing the
study was identifying different points of microbial enrichment
during fermentation, which can serve as the knowledge basis for
the future rational design of synthetic consortia, with a potential
application as a health-beneficial food supplement. This can be
reached using the knowledge provided by this study on the WK
matrix and the strains collection isolated during its development.
We consider that this approach not only deciphers the microbial
chemical diversity of a locally produced (in Colombia) and modified
fermented food but also enables its further use as a therapeutic
ingredient, such as in probiotics and postbiotics.

2 Materials and methods

2.1 Water kefir fermentation and sampling

The water kefir fermentation was obtained from a private
company in Colombia (Rionegro, Antioquia). As the origin of
the sample remains unknown, the applied methods did not
require the management of permits for the collection of
biological material or access to genetic resources under the
authorization of MinAmbiente (Colombia). Figure 1 shows the

schematic diagram of the experimental setup. Two independent
fermentation curves were performed using 12 g of kefir grains
(which can be obtained for reproducibility assays upon request to
the authors) in 100 mL of diluted molasses (14° Bx) on each sterile
glass flask, then fermentation was set at room temperature (18°C)
until the specific sampling time. Briefly, for the first curve,
fermentation samples (grains and liquor) were collected every
10–12 h by duplicates, for 5 days, to perform microbial
composition analysis and culturable-dependent population
analysis. In total, 22 fermentation liquor samples (corresponding
to data from 11 times by duplicates) and 2 inoculum (grains)
samples were collected. The second growth curve was sampled
every 24 h for 5 days (six different time points, in duplicates—14
samples), for the identification of non-culturable microorganisms
and performing non-targeted metabolomic analysis (chemical space
screening).

2.2 Culture-dependent methods

Three semi-selective and one non-selective culture media were
chosen: MRS media, for lactic acid bacteria (62 g agar per L of
distilled water liter (PanReac AppliChem, Darmstadt, Germany));
YM agar media for yeast (5 g of Peptone, 3 g Yeast extract, 3 g Malt
extract, 10 g Dextrose, and 20 g Agar per L of distilled water, all
substances from PanReac AppliChem, Darmstadt, Germany); WL,
for acetic acid bacteria, (80,25 g per L of distilled water, Sigma-
Aldrich, Saint Louis, United States); and MM, standardized culture
media for total molasses degrading microbial biomass, which
consist of diluted molasses to 14° Bx plus 15 g/L of
bacteriological agar. Culture media were inoculated with 50 μL
of serial dilutions of kefir grains homogenized with sterile 0.9%

FIGURE 1
Experimental setup for microbial consortium sampling.
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saline solution and liquor at different fermentation times (10–2,
10–3, 10–4) then incubated at room temperature (+/−25°C) for 72 h
(3 days). Each dilution was cultured in duplicates. Afterward,
colonies were counted in each dilution plate, differentiating by
morphotypes, and registering CFU/mL for each culture media and
fermentation time. Simultaneously, the isolation of representative
morphotypes found in each culture media and fermentation time
was registered. The purified morphotypes were Gram stained as a
preliminary classification and then cryopreserved by duplicates
at −80°C for downstream DNA extraction to constitute the first
version of the strains collection derived from this microbial
consortium.

2.3 Strains collection derived from
representative morphotypes

Total DNA extraction from the resulting isolates was performed
using the DNeasy Ultraclean Microbial Kit (QIAGEN, Hilden,
Germany) for molecular identification through Sanger sequencing
performed in the Macrogen Inc. sequencing facility (Seoul, South
Korea). Primers used to perform the analysis were 27F (5′
AGAGTTTGATCMTGGCTCAG 3′) and 1492R (5′
TACGGYTACCTTGTTACGACTT 3′) for bacterial 16S rRNA
hypervariable region (M. Y. Chen et al., 2022), and for yeast, the
internal transcribed spacer ITS1 (5′ TCCGTAGGTGAACCTGCGG
3′) and ITS4 (5′ TCCTCCGCTTATTGATATGC 3′) (Taheur et al.,
2017; Tan et al., 2022). Then, obtained data was uploaded to Geneious
Prime ® 2021.2.1 software (https://www.geneious.com) to perform
sequence trimming, alignment, and finding of consensus for
subsequent BLAST classification (using 100% accuracy parameter).
Finally, the collection of purified strains was stored at the Laboratory
Center of Universidad EAFIT in Medellín, Colombia.

2.4 Total DNA extraction and library
preparation

Genomic DNA extraction from 1.8 mL of sample
(homogenized kefir grains and fermentation liquor) was
performed using the DNeasy Ultraclean Microbial Kit
(QIAGEN, Hilden, Germany) with the following modifications:
treatment of the kefir grains with 0.9% saline solution prior to
extraction and two additional steps to improve the cell lysis
consisting of lysozyme incubation (37°C) for 15 min and water
bath (70 °C) for 10 min + enzyme treatment with Proteinase K
(QIAGEN, 2020). Extracted DNA for each sample was verified for
its quality and integrity through electrophoresis gel and nanodrop
quantification. Genomic samples were used to construct multi-
amplicon libraries using the SWIFT AMPLICON® 16S + ITS
PANEL protocol (Swift Biosciences, Ann Arbor, United States)
with a primers pool covering all variable regions of the 16S rRNA
gene (V1-V9) and the fungal ITS 1 and ITS 2 genes for the
identification of bacteria and yeast (Swift Biosciences, 2018; Gao
and Zhang, 2019). The sequencing process was performed using
the Iseq 100 system with a 2 × 150 bp read length (Illumina,
United States) at EAFIT University sequencing facility
(AXOMICS).

2.5 Metabarcoding sequencing and data
preprocessing

Sequence data processing was subjected to quality checks and
analyzed using Qiime 2 workflow (Bolyen et al., 2019). For the
bacterial analysis, obtained reads were divided by each region
(V1–V9 of the 16S rRNA gene), and reads from the V4 region
were selected to arrange the data into Amplicon Sequence Variants
(ASVs) using DADA2, also correcting errors in sequences by
removing singletons, chimeric sequences, and dereplicating data
(Callahan et al., 2016). Data was then clustered into OTUs
(Operational Taxonomic Units) with a 97% similarity. The
taxonomic classifier for the classification was SILVA 138 SSU
and GTDB databases for bacterial reads and UNITE for yeast
identification (Beccati et al., 2017; Kõljalg et al., 2020; Parks
et al., 2020). After quality checks and taxonomic categorization
were done, alfa and beta diversity metrics were determined using the
Phyloseq package and the integrated development environment for
R, RStudio (version 1.4.1106) (RStudio Team, 2020).

2.6 Untargeted metabolomics analysis

As stated in Figure 1, samples were collected from a second
curve at five different fermentation times (0, 72, 82, 92, and 120 h)
and one media control (molasses) was also included. These samples
were stored at −80°C until metabolite extraction was performed.
Each fermentation time had four replicates resulting in a complete
dataset of 24 samples to be analyzed. Liquor and control extracts
were obtained by methanolic extraction using 50% MeOH. Briefly,
20 mL of each homogenized sample was mixed with 4X solvent in
sterile glass flasks; afterward, the solution was sonicated at 30%
amplitude for 20 min (pulse function 1 min on + 30 s off) and
agitated in the dark at 200 rpm for 4 h. The resulting solution was
centrifuged at maximum speed (4,500 rpm) for 15 min and filtered
with a vacuum pump and Whatman filter papers (grade 2). Solvent
evaporation was performed with a Rotavapor R-300 using the
manufacturer’s instructions (BÜCHI, Flawil, Switzerland).
Extracts were vacuum evaporated with the Concentrator Plus
system (Eppendorf; Hamburg, Germany). The final solid residue
was Weighed and resuspended in 2 mL of 50% MeOH for
downstream procedures.

2.7 Metabolomic data acquisition and pre-
processing

The resulting 24 extracts (4 replicates per sample) were sent to
the Metabolomic Core Facility (MetCore) at the Universidad de los
Andes in Bogotá-Colombia. Samples were vortexed at 3,200 rpm
and filtered on 0.22 µm filters. Then, 80 µL of each extract was taken
for subsequent untargeted metabolomic analysis using an Agilent
Technologies 1260 Liquid Chromatography system coupled to a
6545 Q-TOF quadrupole time-of-flight mass analyzer with
electrospray ionization (RP-LC/MS-QTOF). For the reverse
phase, the injection volume of the samples was 10 uL and the
compound separation was done on a C18 column (InfinityLab
Poroshell 100 × 3.0 mm, 2.7 μm) at 40°C. The mobile phases
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used for elution were composed of 0.1% (v/v) formic acid in Milli-Q
water (Phase A) and 0.1% (v/v) formic acid in acetonitrile (Phase B)
pumped at 0.4 mL/min. The mass detection was performed in
positive ESI mode on autoMS/MS from 50 to 2000 m/z. Tandem
mass spectrometry data obtained was pretreated and converted to
mzML format using MSConvert GUI (Adusumilli and Mallick,
2017). Throughout the analysis, two reference masses were used
for mass correction: m/z 121.0509 (C5H4N4), and m/z 922.0098
(C18H18O6N3P3F24) corresponding to protonated purine and
protonated hexakis, respectively.

2.8 Molecular networking and metabolites
identification

mzML converted files were uploaded to the GNPS server using
an FTP client with the corresponding input parameters. Then, the
files (ftp://massive.ucsd.edu/MSV000091955/) were used to
perform Classical Molecular Networking) in the same platform
(Wang et al., 2016), and the resulting networks were visualized on
Cytoscape version 3.9.1 (Shannon et al., 2003). Different analyses
were run by changing some of the network parameters, including
min pairs cosine value, min of fragment ions, and number of
matched peaks with final parameters stated in Table 1. After these
analyses, the molecular network that best suited the objective
(broad identification with rigor of a minimum of six peaks
identified) was selected to perform manual curation and
annotation of the chemical families. The resulting feature table
with all nodes’ information was downloaded in “.csv” format from
Cytoscape version 3.9.1. Then, each subnetwork information was
downloaded and treated as a cluster or chemical family. Each
annotation or library identification within a subnetwork was
revised for its level of identification (either gold or bronze and
number of shared peaks) with reference to the spectra and peak list
downloaded from public databases (MassBank of North
America—MoNA (https://mona.fiehnlab.ucdavis.edu/) and CEU
Mass Mediator (Gil-De-La-Fuente et al., 2019). In this way, when a
single node or feature was annotated within a cluster (subnetwork),
all neighbor nodes were grouped and named under the chemical
family of this annotated compound, since the clustering algorithm
groups by structural similarity according to the parameters set for
the network (Table 1) (Schrimpe-Rutledge et al., 2016). Thus, each
cluster was named when a single or multiple features in it were
correctly annotated by library detection in GNPS, and the
reference MS/MS of the compound was checked from public
repositories using MassBank of North America—MoNA

(https://mona.fiehnlab.ucdavis.edu/) and CEU Mass Mediator
(Gil-De-La-Fuente et al., 2019). This procedure was specifically
done for nodes denoting a weak annotation (six shared peaks and
bronze standard). For the nodes that were not identified by GNPS
libraries and with the aim of expanding the networks’ annotation, a
manual search of selected features was done using the precursor
mass value as a query in chemical databases, namely, PubChem
(Kim et al., 2021) ChemSpider (Pence and Williams, 2010), the
Atlas of Natural Products (Santen et al., 2022). Each precursor
mass on each node was also checked to unveil the presence of any
of the three most common adducts, e.g [M + H+]. If a hit was
found, the reference MS/MS was compared with the network
feature, and if more than six peaks were found in common, an
annotation hit was called. As an alternative way of propagating
annotation of the network, if a cluster had more than one identified
node, the chemical family that grouped all the annotations of the
cluster was selected to name the cluster (e.g., haematommic acid
and L-beta-3-phenyllactic acid were identified in the same cluster,
both with a benzene ring in the structure and belonging to the
more general category of phenolic acids). Finally, the modified
network with the annotated notes was downloaded in a high-
resolution image format (“.png” with 600 DPI), with the annotated
chemical families highlighted in circles and named after each
search.

2.9 Statistical analysis using
metaboanalyst 5.0

Simultaneously to the molecular networks, raw data obtained
from RP-LC/MS-QTOF was converted to mzML format and
uploaded to the Metaboanalyst 5.0 (https://www.metaboanalyst.
ca/) (Pang et al., 2022). This platform was used to perform
multivariate analyses on all samples from the ‘LC-MS Spectra
Processing’ option. Principal components analysis (PCA) was
performed using the default parameters in order to validate the
significance of the sampling and to obtain insights about the
treatments used in the experiment (fermentation times).

2.10 Statistical and integrative analyses

After the analyses were performed, statistical methods were
applied to visualize the distribution patterns between the two
types of samples (kefir grains and liquor) and the fermentation
times using the integrated development environment for R, RStudio
(version 1.4.1106) (Rstudio Team, 2020). Filtered data from the
compositional metagenomic approach consist of ASVs that had
more than 32 sequencing reads. Then, dominant species ASVs were
selected to perform statistical validation through a non-parametric
Mann—Whitney U test (p-value <0.05) using the function wilcox.
test() in the R Stats package, looking for significant differences
between the treatments (fermentation times and sample origin)
(Supplementary Additional file S4) (Rstudio Team, 2020). In
addition, the Pearson correlation test was conducted as a primary
approximation to the association between observed ASV and
annotated chemical families through the R function cor() from
the R Corrplot package (Wei and Simko, 2021).

TABLE 1 Parameters used for Classical Molecular Networking in GNPS
platform.

Parameters Values

Minimum pairs cosine 0,7

Minimum fragmented ions 6

Cluster size 2

Minimum matched peaks 6

Search analogs Do search
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3 Results

3.1 Culturable microbial communities in
water kefir

The dynamics of representative microbial groups cultured from
the fermentation are shown in Figure 2. It was observed that the
groups under study had a relatively similar growth pattern during
the fermentation process until 72 h post-inoculation of the grains
was reached. Molasses culture media (MM) reflects an average of the
culturable biomass, non-biased to specific nutritional compositions
of the other media but supporting the growth of the entire
community in the fermentation. The total biomass in the media
was the lowest after 72 h (4.22E+07 CFU/mL), reflecting a stationary
phase with a slight negative slope. Instead, for the other culture
media that were selective for specific microbial groups (SeeMaterials
and Methods), high microbial growth was observed at 72 h for
Lactobacillus sp. communities that were selectively grown in MRS
media (Figure 2), which decreased rapidly in nearly 1 order of
magnitude and retook a second stage of growth after 96 h. For acetic
acid bacteria growing selectively in WL medium, the peak growth
was observed before 72 h and lasted until after 96 h of fermentation,
then rapidly decreasing and alternating with the regrowth of
Lactobacillus sp. For yeasts growing in YM agar media, the peak
growth is observed at the end of the fermentation, at exactly 96 h,
after which, it starts to decline.

3.2 The strains collection includes the most
representative groups reported for water
kefir, exhibiting probiotic potential

A total of 95 samples were isolated, 73.7% represented by
bacteria and 26.3% by yeasts. In addition, they were classified by
the source of isolation resulting in 63.12% of the strains coming from

fermentation liquor and 29.47% from kefir grains (Table 1,
Supplementary Additional file S1). Among the microorganisms
identified by Sanger sequencing, we could identify
Lentilactobacillus hilgardii, Lactobacillus buchneri,
Lacticaseibacillus paracasei, Schleiferilactobacillus harbinensis,
Acetobacter pasteurianus, and A. tropicalis (Gulitz et al., 2011;
Olivo et al., 2017; Lynch et al., 2021; Rodríguez et al., 2022) and
yeasts such as Pichia membranifaciens and Kazachstania exigua
(Nejati et al., 2020; Moretti et al., 2022). These microorganisms have
been previously reported to have probiotic effects and, thus, provide
a useful resource for the underlying interest of the project in
providing a knowledge and resource basis for the future
development of health-beneficial microbially derived supplements,
such as probiotics and postbiotics.

3.3 Total microbial communities obtained
through compositional metagenomics
reflect similar patterns to what is observed in
culturable population dynamics and suggest
an enrichment of species at 72 h of
fermentation

The successful sequencing of the prepared libraries derived from
the grains inoculum (2) and fermentation liquor (22) resulted in a
dataset of 24 samples with a combined size of approximately 6.23 Gbp
and a quality score (Q30) of 94.48% (Supplementary Table S2,
Supplementary Additional file S1). The obtained results from
compositional metagenomics (V4 region of the 16S rRNA gene)
support the hypothesis that the microbial consortium corresponds
to a water kefir-derived product since the main groups belong to lactic
acid bacteria, acetic acid bacteria, and yeasts (Fiorda et al., 2017; Çevik
et al., 2019; Guzel-Seydim et al., 2021; Patel et al., 2022; Yerlikaya et al.,
2022). According to the relative abundances of the six dominant
species that can be observed in Figure 3, it was possible to observe that

FIGURE 2
Population dynamics based on culture-dependentmethods of the fourmicrobial groups in the study. The orange line indicates the growth of lactic
acid bacteria (MRSmedia), the green line indicates acetic-acid bacteria (WLmedia), the purple line indicates yeasts (YMmedia), and the gray line indicates
total molasses degrading biomass (MM media).
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L. hilgardiiwas dominant in the grain sample, representing ~90%of it,
and at early fermentation times until 34 h, starting to decrease after
48 h of the process to ~50% representation. For acetic acid bacteria
instead, they increased from 1%–12%–~40% between 34 and 48 h of
fermentation.

The kefir grains that were used as fermentation inoculum were
mostly represented by lactic acid bacteria, which is consistent with
previous studies in sugary beverages (Yerlikaya et al., 2022)
(Supplementary Additional file S2). The results are partially in
accordance with the observations in the population dynamics of
culturable microbial groups (Figure 2); other species, mainly
Acetobacter orientalis and Lactobacillus buchneri, unlike those in

the grain (mainly L. hilgardii), increased significantly after 72 h,
which can be explained from the perspective of the multispecies
interactions and metabolite production taking place in the system.
For the case of L. hilgardii and L. buchneri, statistically significant
differences were found between the grains and fermentation liquor
(p-value = 0.007246) through the Mann-Whitney U test. For the
members of the family Acetobacteraceae, no significant test were
performed since this group was not detected on the grain inoculum,
but it is obvious that the population change is significant, passing
from almost non detectable to representing ~40% of the microbial
community in the matrix. Regarding the metabarcoding results for
the ITS region (ITS1-ITS2), all obtained reads were classified as

FIGURE 3
Relative abundance of dominant bacterial ASV identified through compositional metagenomics analysis. (A) Relative abundance of the six dominant
bacterial ASVs on each fermentation time sample between 0 h and 120 h, including the grain inoculum. (B–G) Ind Individual kinetics showing the behavior
of each identified ASV over time (L. hilgardii, L. buchneri, L. harbinensis, A. orientalis, A. tropicalis, and K. saccharivorans). The (*) in grain samples for L.
hilgardii and L. buchneri indicates statistically significant differences in the abundance values for these groups according to sample origin (Mann-
Whitney U test, p-value = 0.007246).
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FIGURE 4
Estimation of diversity indices of the microbial communities during the fermentation process, based on the normalized ASVs counts/ per volume of
sample for the microbial communities identified during the fermentation process. (A) Scatter plot showing the Shannon index (alpha diversity) estimated
for each fermentation time, according to the identification of ASVs and grouped by fermentation sample. (B) Scatter plot of the number of identified ASVs
on each sample classified by fermentation sample. (C) Scatterplot for the Bray-Curtis dissimilarity index (beta diversity) for classified ASVs on the
fermentation liquor samples and grains inoculum. (D) Scatterplot for the Bray-Curtis dissimilarity index estimated by fermentation sample type.

FIGURE 5
Principal Components Analysis (PCA) among molasses and fermentation samples generated by Metaboanalyst 5.0. (A) Red and Yellow clusters
represent samples from molasses and fermentation time 0 h; green, purple, blue and orange clusters represent samples from the latest fermentation
times from 72 to 120 h. (B) Distribution of the four replicates for each of the six fermentation samples.
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P. membranifaciens, given its high abundance. Besides, there is
evidence of coverage of the panel used for the metataxonomic
libraries preparation favoring the 16S rRNA gene regions for
bacterial identification (Figure 1, Supplementary Additional file S1).

3.4 Biodiversity of the water kefir
fermentation decreases in the first stages of
fermentation and restarts again after 48h
post-inoculum

The biodiversity of the grains inoculum and fermentation
liquors was measured in terms of ecological indices using the
Phyloseq package from the integrated development environment
for R, RStudio (version 1.4.1106) (Supplementary Additional file
S2). Alpha diversity was measured as the richness or dominance of
species in themicrobial communities of each sample. Shannon index
values between 0.7 and 1.2 were obtained (Figure 4A). These
diversity values indicated a gradual decrease in diversity between
10 and 34 h, which increased again after 48 h of fermentation.

In the same way, it was observed that the number of identified
ASVs presents differences according to each fermentation time
(Figure 4B). This result coincides with previous studies that show
that the grain and liquor environment differ in microbial
composition, with the grains typically having a higher microbial
load (Moretti et al., 2022; Patel et al., 2022). Regarding the
replicates, differences were observed between the values of the
Shannon index and the number of ASVs for some of the replicates
at each time, specifically in the grain inoculum and fermentation
liquor at 48, 58, 82, 96, and 106 h.

In terms of b-diversity, the Bray-Curtis dissimilarity index was
calculated and visualized by each fermentation time and the
sample type. There was not a clear clustering based on the
fermentation time; however, it was possible to observe a
“vanishing” pattern from the top to the bottom of the graph
(Figure 4C). According to the sample type, it was found that
the two grain samples differed from each other, and for the
fermentation liquor, there was no clustering pattern (Figure 4D).

3.5 Chemical space of the biological system
composed by the water kefir community
clusters in two groups according to
multivariate statistical analysis

In order to analyze the system from a chemical point of view, a
multivariate statistical analysis using Metaboanalyst was
performed and allowed to group the samples by their chemical
composition in two clusters based on the principal component 1
(PC1), suggesting that samples corresponding to molasses and
early stages of fermentation exhibit a similar metabolite profile
among them, while the samples from the latest times (72–120 h) of
the fermentation share a common chemical profile (Figure 5A).
This clustering was consistent with enrichment points identified by
previous methods, indicating microbial interactions that could
lead to the release of different amounts of metabolites. In
addition, the four replicates of each treatment (fermentation
time or control/molasses) were able to cluster together. This

indicates that there are no significant differences within each
replicate of a treatment between fermentation times (Figure 5B).

3.6 Untargeted metabolomics evidences a
rich chemical biology derived from the
water kefir fermentation, with different
reported bioactivities

757 nodes and 260 compound annotations were obtained from
the molecular network generated by GNPS bioinformatic platform
(https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
2c80ff4b1e2a49fea7e844644198bbf3) with the selected criteria
(Table 1). After manual curation and annotation, it was possible
to identify 18 chemical families, such as phenolic acids, quinolines,
flavonoids, monoterpenoids, organic acids such as lactic acid, and
amino acids (Figure 6, Supplementary Additional file S3 Spectra_
confirmation). It was possible to highlight the fermentation sample
where each family was prevalent based on the number of spectra
identified in each sample. At the beginning of the fermentation
(Molasses and FT 0 h), the chemical families identified were
glycerolipids and monoterpenoids. Families such as phenolic
acids, flavonoids, and benzene products were found during the
latest times (between 72 and 120 h).

3.7 Bacterial group presence in specific
times of water kefir fermentation correlates
with the enrichment of chemical families
identified through metabolomics

The correlation was estimated between the six dominant ASVs
identified down to the species level and the six dominant chemical
families from the fermentation extracts (Figure 7). Lactobacillus
hilgardii, L. buchneri, and L. harbinensis decrease in a direct
correlation with glycerolipidss, a chemical family of compounds that
plays important roles in cell signaling, membrane trafficking, and
anchoring of membrane proteins (Henry et al., 2012). Acetobacter
orientalis and A. tropicalis were positively correlated with four out of
six chemical families. Furthermore, some metabolites of interest (e.g.,
phenolic acids) were plotted individually with observed dominant ASVs
(Figures 7B–E), finding that A. tropicalis and bile acids conjugate
correlate directly (Figure 7C), while L. hilgardii and glycerolipids
have a direct correlation more pronounced at later stages of the
fermentation, while A. tropicalis and the same chemical family have
a negative correlation (Figures 7A, D, respectively), suggesting the
sensibility of this species for these compounds or a capacity for
degradation. Furthermore, phenolic acid concentration inversely
correlates with populations of L. harbinensis.

4 Discussion

The use of different ‘omics’ techniques to study fermented matrices
has significantly increased during the last decade, given the broader
scope they offer to gain an understanding of the different layers involved
in any biological system. Nevertheless, no reports of the integration of
culture-dependent methods with compositional metagenomics have
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been found prior to this research, making this the first of its kind.
According to the findings of the study, the WK fermentation of the
study, including its modifications according to local Colombian culture,
still corresponds to a water kefir-derived product. The before is stated,
since the main microbial groups found belong to lactic acid bacteria,
acetic acid bacteria, and yeasts, as is expected from this kind of biological
system (Fiorda et al., 2017; Çevik et al., 2019; Guzel-Seydim et al., 2021;
Patel et al., 2022; Yerlikaya et al., 2022). The majority of reports on the
composition of water kefir report Lactobacillus and Acetobacter as the
representative genera in these fermentation processes (Gulitz et al.,
2011; Fiorda et al., 2017; Verce et al., 2019). Some previous studies have
also described dominant bacteria of the genera Streptococcus,
Leuconostoc, and Lactococcus and yeast genera such as Dekkera and
Saccharomyces (Laureys et al., 2022; Pihurov et al., 2023). Contrary to
this last report, we found in our WK a hybrid matrix with a major
presence of Lactobacillus sp. and Acetobacter sp but an absence of
Lactococcus, Leuconostoc, and Streptococcus sp. on the bacterial
composition. Regarding yeasts, we found a high abundance of P.
membranifaciens, Pichia kudriavzevii, and K. exigua. This finding is

interesting since some studies, which even change substrate conditions
(Laureys and de Vuyst, 2016; Zannini et al., 2023), have not detected P.
membranifaciens nor K. exigua, denoting the uniqueness of this WK
fermentation and its chemical space. Specifically, this species, K. exigua,
has been more commonly found in olive brine, wine, and other
fermented matrices (Jood, I et al., 2017). There have also been some
reports of its presence in superficial and subterraneous waters,
sediments, and soils in crude extracting zones (SIB Colombia, 2023).
According to the relative abundances of dominant species (Figure 3), L.
hilgardii was observed to be dominant in the grain sample and during
early fermentation times, starting to decrease after 48 h of the
fermentation, which is probably related to the proliferation of other
community members that compete for substrate and generate a novel
chemical environment. Furthermore, this species has been associated
with water kefir fermentations and is thought to be responsible for the
growth of kefir grains due to the production of EPS, such as dextran,
which is a sucrose derivate with great potential in the industry due to its
relative stability and good solubility (Lebeaux et al., 2014; Laureys and
de Vuyst, 2016; Lynch et al., 2021). Lactic acid bacteria are a commonly

FIGURE 6
Curated molecular network with identified chemical families from the extracts processed by RP-LC/MS-QTOF. Nodes are colored by treatments:
molasses control (pink), 0 h liquor (dark blue), 72 h liquor (yellow), 82 h liquor (green), 96 h liquor (brown), 120 h liquor (purple), molasses +0 h liquor
(cyan), from 82 h to 120 h (orange), from 72 h to 120 h (gray), and presence in all groups (dark green).
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known group due to their probiotic effects and the production of
organic acids that preserve and improve the aromatic and bioactive
qualities of water kefir and other fermented foods (Azi et al., 2021;
Spizzirri et al., 2023). Even though we found a high abundance of
various Lactobacillus species among the most abundant microbial
groups, several other species of acetic acid bacteria and some yeasts
increased after 72 h, suggesting that multispecies interactions and
metabolite production contributed to their growth. These
observations could be explained by the associations between
different microorganisms, e.g., the acidification of the media by
Lactobacillus species and the use of end-products as an energy
source can improve the growth of acetic acid bacteria and yeasts;
meanwhile, essential nutrients released by yeasts can support bacterial
growth (Pendón et al., 2021). Regarding the fermentation substrate,
molasses has been previously reported as a low-cost alternative for

industrial fermentation of water kefir with a variety of potential
biological activities, such as antioxidant capacity, due to the presence
of sugar-derived compounds that induce the growth ofmicroorganisms
of interest as well as the production of metabolites that facilitate
multispecies interactions (Deseo et al., 2020; Mordenti et al., 2021).

As we stated before, the relative number of reads for lactic acid
bacteria decreased in time, and we observed that acetic acid bacteria
species appeared in a relatively high abundance after 34 h, which
could be due to their ability to grow in low concentrations of oxygen
and, at the beginning of the fermentation, there is high oxygen
availability and higher sugar levels in the media (Pendón et al., 2021)
(Figures 3E, G). The genus Acetobacter has been reported in the
microbial communities of kefir-based fermentations, but its role has
not been fully elucidated, except for the fact that they can contribute
to the flavor and aroma of the final fermented product and

FIGURE 7
Correlation between compositional metagenomics and identified chemical families during the fermentation of the microbial consortia. (A)
Correlation visualization between dominant ASVs, three Lactobacillus, and three Acetobacter taxa with dominant chemical families reported from GNPS
molecular network. (B–E) Individual plots showing the change in each metabolite and taxa of interest over time (L. hilgardii, L. harbinensis, A. orientalis,
and A. tropicalis), supporting the association obtained by Pearson’s correlation.
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metabolize sugar and alcohol through the pentose phosphate
pathway to accumulate large amounts of diverse fermentative
products including D-sorbitol, ascorbic acid, and the prebiotic
levan, which are derived from the principal metabolite of this
group, acetic acid (Azi et al., 2021; Patel et al., 2022; Yerlikaya
et al., 2022). Acetobacter orientalis and A. tropicalis have been
reported as the dominant species in previous studies. These
species are known as fermentation stabilizers and contributors to
the aroma of water kefir (Gulitz et al., 2011; Martínez-Torres et al.,
2017; Guzel-Seydim et al., 2021). We corroborate these findings,
with the twomost prominent acid bacteria species beingA. orientalis
and A. tropicalis but correlating their appearance in the
fermentation with phenolic acids of several classes and molecular
weights, with monoglycerides, isoleucine derivatives, and flavones
(Figures 6, 7). Also, an interesting proportion of the acetic acid
bacteria Komagataeibacter saccharivorans was found in this system.
This one is a producer of cellulose and has beenmostly found inmilk
kefir but not in water kefir grains.

On the other side, regarding biodiversity measures, low diversity
values for index at the start of the fermentation could be explained
due to the dominant microorganisms found in the matrix that
belong to a few genera, such as Lactobacillus and Acetobacter. These
diversity values indicate a gradual decrease in diversity between
10 and 34 h, which increased again after 48 h of fermentation. This
behavior was associated with previous studies, such as that of Patel
et al. (2022) and their diversity analysis in kefir grains and liquid
from the sequencing of the V3-V4 region of the 16S rRNA gene.
Similarly, it was observed that the number of identified ASVs
presented differences according to the fermentation sample. This
result coincides with previous studies in which it has already been
established that the grain and liquor environments differ in
microbial composition, with the grains typically having a higher
microbial load (Moretti et al., 2022; Patel et al., 2022). This result
could be explained since the kefir grains are the main source of
microorganisms, and biodiversity in the beverage can vary based on
the substrate, culture conditions, and microbial interactions that
occur during the fermentation (Fiorda et al., 2017; Pendón et al.,
2021; Moretti et al., 2022). Apparent differences between replicates
were also observed, which could be related to population dynamics
and/or sample manipulation, considering that they differ more in
the value of diversity and not in the number of taxa identified (e.g.,
grain replicates). In terms of b-diversity, the results suggest that at
the beginning of fermentation, there are more different species,
while at the end of the process, the samples share a greater number of
species. Furthermore, no clustering was observed for fermentation
liquor samples. This can be explained by the fact that the microbial
consortium is a complex and dynamic biological system that can
exhibit different characteristics under similar conditions.

The results of metabolite screening were consistent with
previous targeted studies designed to look for organic acids,
alcohol levels, produced EPS, and other compounds derived from
the fermentation process of water kefir grains (Plessas et al., 2017;
Azizi et al., 2021; Moretti et al., 2022; Esatbeyoglu et al., 2023). From
the identified metabolites, it was observed that there could be a
correlation between the microorganisms found and the biological
potential of the fermented product. For example, inhibitory effects
against pathogens have been associated with the production of
protective organic acids by lactic acid bacteria and ethanol

produced by yeasts (Yerlikaya, 2019). The formation of organic
acids released by LAB species in water kefir is an important indicator
of enhanced metabolic activity since they may be used as a substrate
by other groups of microorganisms (Bulat and Ali, 2021; Satir,
2022). Previous studies have shown that ß-glycoside enzyme and
phenolic acids (e.g., haematommic acid and lactic acid) produced
during the microbial fermentation release glycosylated or bound
flavonoids such as saponarin and puerarin and produce new
polyphenols (Azi et al., 2021). Furthermore, water kefir has a
high antioxidant potential due to the phenolic compounds and
enzymes found as fermentation end-products (Cai et al., 2020;
Yerlikaya et al., 2022). Most of the bioactive components are
classified as polyphenolic compounds in nature, which include
the identified cinnamic acid, coumarin, thymol, and myrcene
(Satir, 2022). In the generated molecular network, it was found
that this chemical family was dominant in the latest times of
fermentation, suggesting its relationship with acetic acid bacteria
metabolism and other multispecies interactions. In addition to their
role against oxidative stress, some phenolics have been reported as
antimicrobial agents, including benzoic acid, which was also
annotated in the molecular network (Rodrigues et al., 2016; Azi
et al., 2022). In this way, the increase in the total phenolic
compounds is strongly correlated with an increase in antioxidant
activity, which is also associated with an anti-inflammatory effect of
water kefir fermentations (Rodrigues et al., 2016). From the
identified metabolites, it was possible to annotate and validate by
reference spectra a compound of interest that had not been reported
for water kefir-based fermentations. Isoschaftoside is a C-glycosyl
flavonoid originally extracted from root exudates of Abrus
cantoniensis (Guan et al., 2022). Generally, C-glycosyl flavonoids
are part of the diet and have been reported to have a wide range of
pharmacological activities including blood-lipid-lowering,
hypoglycemia, neuroprotective, antitumor, and antioxidant
capacities (Tremmel et al., 2021; Guan et al., 2022). The
C-glycosylation of flavonoids gives rise to more stable,
biologically active metabolites with different spectral properties
and increased solubility in polar media compared to O-glycosides
(Brazier-Hicks et al., 2009; Vanegas et al., 2018; Khodzhaieva et al.,
2021).

From the resulting molecular network, an estimate of the relative
abundances for each chemical family was obtained based on the
number of spectra found on each sample. The dominant chemical
family among the fermentation was that of phenolic acids, with
increasing values after 72 h, which suggests their association with
microbial interactions. As mentioned above, phenolic acids are
known as bioactive compounds with a wide range of applications
and have been associated as end-products from lactic-acid bacteria
metabolism, which could explain their relative high abundance since
the beginning of the fermentation, where lactic-acid bacteria are
more abundant and increase in the latest times, possibly related to
the presence of yeast and acetic acid bacteria (Păcularu-Burada et al.,
2022).

Finally, correlation primary analyses suggested that
Lactobacillus hilgardii, L. buchneri, and L. harbinensis showed a
positive correlation with glycerolipids, a chemical family of
compounds that play important roles in cell signaling, membrane
trafficking, and anchoring of membrane proteins (Henry et al.,
2012), an association that could be explained by their decrease in
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relative abundance over the fermentation course and the changes in
the fermentation conditions (e.g., pH values, oxygen levels,
multispecies interactions), which could also support its negative
correlation with Acetobacter, representing microorganisms that are
tolerant to these environmental conditions or that can degrade this
family of compounds. Acetobacter orientalis and A. tropicalis were
reported to be positively correlated with five out of six chemical
families, including phenolic acids of several classes and molecular
weights, with monoglycerides, isoleucine derivatives, and flavones,
which support the hypothesis that the latest fermentation times
represent key stages for bioactive compound detection and the
production of interesting molecules from the therapeutic and
functional nutrition point of view (Figure 7). These findings
altogether, namely, the integration of metataxonomic data with
the enrichment of chemical families, and the identification of
representative strains isolated from this biological system (water
kefir fermentation) represent a straightforward approach to
unlocking the potential of fermented foods with proven health
benefits, taking a step further toward the design of targeted
formulations based in microorganisms and their metabolites
(probiotics or live microbial biotherapeutics, postbiotics).
Strategies like the one we propose in this research can translate
the benefits of fermented foods beyond their prescription to be
consumed daily into active pharmaceutical products or active
ingredients since most of them do not naturally reach the
required concentrations to be considered therapeutic or efficient,
but the rational design of a product based on their properties and
their microbial strains can be harnessed using bioprocesses and
biotechnology to achieve this status.

5 Conclusion

Functional foods are gaining interest due to the increase in non-
communicable diseases like diabetes, obesity, and cardio-metabolic
conditions. The results presented in this work correspond to a primary
study developed on a water kefir product, a type of fermented food
locally produced in Colombia, with modifications to its traditional
way of preparation. The results of culture-dependent and molecular
methods showed consistent findings in microbial richness and
metabolite production increasing between 72–96 h, with dominant
microorganisms identified as L. hilgardii (LAB), A. orientalis (AAB),
and P. membranifaciens (yeast). Untargeted metabolomics using
molecular networking allowed the generation of hypotheses on
which small molecules are being produced during fermentation.
Phenolic acids, flavonoids, and monoterpenoids are of great
interest given the reported health benefits represented in the most
abundant chemical families, which are produced to a greater extent by
bacteria, namely, by Acetobacter species, specifically L. hilgardii for
beneficial lipids and A. tropicalis for phenolic compounds and bile
acid conjugates. In addition, we annotated and subsequently
confirmed by reference spectra the presence of Isoschaftosides, a
group of compounds that can be promising for the development of
products derived from this microbial consortium. This study is the
first of its kind in a fermented water kefir matrix locally produced in
Colombia and the first to report the enrichment of chemical families,
such as Isoschaftosides and other flavonoids produced by
fermentation of a WK-derived microbial consortium, This study,

despite being a first approximation of the chemical space of a
Colombian-based WK fermentation and its correlation to the
microbial taxa involved, provides a solid basis for future studies
elucidating the mechanism of action of these functional fermented
foods by directed metabolomics or analytical chemistry or on the
isolation of chemical compounds of nutritional and therapeutic
interest from fermented food matrices. We conclude that this
study contributes to the existing knowledge on the dynamics of
kefir fermentation and highlights the unique biological potential
that each version can exhibit, as well as providing specific
knowledge that could be easily applied to the rational development
of novel probiotic and postbiotic ingredients for functional nutrition.
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Untargeted metabolomic and
lipidomic analyses reveal lipid
dysregulation in the plasma of
acute leukemia patients
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Lina Arbeláez3, Paula Sánchez3, Ricardo Ballesteros-Ramírez1,
Monica Arevalo-Zambrano3, Sandra Quijano1,3, Mónica P. Cala2*
and Susana Fiorentino1*
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Bogotá, Colombia, 2MetCore—Metabolomics Core Facility, Vice-Presidency for Research, Universidad de
Los Andes, Bogotá, Colombia, 3Hospital Universitario San Ignacio, Bogotá, Colombia

Acute leukemias (AL) are aggressive neoplasms with high mortality rates.
Metabolomics and oxidative status have emerged as important tools to identify
new biomarkers with clinical utility. To identify the metabolic differences between
healthy individuals (HI) and patients with AL, a multiplatform untargeted
metabolomic and lipidomic approach was conducted using liquid and gas
chromatography coupled with quadrupole-time-of-flight mass spectrometry
(LC-QTOF-MS or GC-QTOF-MS). Additionally, the total antioxidant capacity
(TAC) was measured. A total of 20 peripheral blood plasma samples were
obtained from patients with AL and 18 samples from HI. Our analysis revealed
135 differentially altered metabolites in the patients belonging to 12 chemical
classes; likewise, the metabolic pathways of glycerolipids and sphingolipids were
the most affected in the patients. A decrease in the TAC of the patients with
respect to the HI was evident. This study conducted with a cohort of Colombian
patients is consistent with observations from other research studies that suggest
dysregulation of lipid compounds. Furthermore, metabolic differences between
patients and HI appear to be independent of lifestyle, race, or geographic location,
providing valuable information for future advancements in understanding the
disease and developing more global therapies.

KEYWORDS

untargeted metabolomics, acute leukemia, lipids, antioxidant capacity, acute myeloid
leukemia, acute lymphoid leukemia

Introduction

AL are a heterogeneous group of hematological malignancies that involve blocked
hematopoietic progenitors and accumulate in the early phases of cell differentiation, leading
tomarrow failure, and can be classified into two large groups: acute myeloid leukemia (AML)
and acute lymphoid leukemia (ALL) (B-ALL or T-ALL) (Arber et al., 2016). In the process of
clonal evolution, leukemic cells accumulate mutations that can lead to aberrant metabolic
programs that are necessary to meet bioenergetic and biosynthetic demands and maintain a
redox balance for tumor survival and proliferation (DeBerardinis and Chandel, 2016;
Romer-Seibert and Meyer, 2021). In the Colombian population, remission rates are low
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compared to those in developed countries, so exploring the
metabolic profiles in these cases is intriguing (Combariza et al.,
2007; Ballesteros-Ramírez et al., 2020; Sossa et al., 2021). Increased
glucose consumption by leukemic progenitor cells is beneficial for
producing metabolic intermediates involved in other metabolic
pathways and for ATP generation. On the other hand, leukemia-
initiating cells (LICs) in AML are characterized by their dependence
on oxidative phosphorylation and branched-chain amino acids, low
glucose consumption, low production of reactive oxygen species
(ROS), and high levels of glutathione (GSH) (Jones et al., 2018).
While in B-ALL, LICs that carry alterations in the PAX5 (Paired Box
5) or IKZF (IKAROS Family Zinc Finger 1) genes are related to
unlimited glucose consumption (Boag et al., 2006).

The evaluation of specialized tumor metabolism can be
measured at the systemic level by evaluating the TAC and using
metabolomic platforms, such as mass spectrometry (MS) and
nuclear magnetic resonance (NMR), to identify unique metabolic
fingerprints, which may allow the identification of biomarkers and
therapeutic targets (Muthu and Nordström, 2019; Schmidt et al.,
2021). Some authors have demonstrated its usefulness in blood
plasma for diagnosis (Morad et al., 2022), response to treatment and
follow-up of patients with AL (Naz et al., 2013; Grønningsæter et al.,
2019; Kim et al., 2021), and to assess cellular response to
antileukemic agents (Dhakshinamoorthy et al., 2015). In this
sense, metabolic differences between HI and adult patients with
AL have been reported using 1H NMR (Musharraf et al., 2016; Yang
et al., 2021). Other authors have managed to define groups of
metabolites (mainly energy) associated with prognosis in patients
with AML using gas chromatography-time-of-flight mass
spectrometry (GC-TOF-MS) or liquid chromatography-mass
spectrometry (LC-MS) (Chen et al., 2014; Dong et al., 2019).
However, there are few publications describing differential
metabolites between ALL and AML by LC-MS or 1H NMR
(Musharraf et al., 2017; Hao et al., 2022). In addition, few studies
have focused on the oxidative stress profile in AL. Particularly, Naz
et al. (2013) showed that patients in complete remission decreased
their total antioxidant status (Naz et al., 2013); however, in pediatric
patients with ALL, the differences in the levels of some antioxidants
are not clear (Olaniyi et al., 2011).

Tumor metabolism is influenced by intrinsic factors, such as
genetic alterations or lineage/tissue of origin, and extrinsic factors,
such as access to nutrients and oxygen, interaction with cells in the
microenvironment, and exposure to radiation or chemotherapy
(Vander Heiden and DeBerardinis, 2017). In other words,
population characteristics such as race, genetics, food culture, or
healthy habits can also influence tumor metabolism and have great
relevance to the risk of development or progression of the disease,
the risk of recurrence, the risk of disease, and mortality for some
types of cancer (Faulds and Dahlman-Wright, 2012; Islami et al.,
2018; Peng et al., 2022).

Based on the aforesaid considerations, the current study
examined the metabolomic profiles of cohorts comprising
Colombian patients diagnosed with AL, using an untargeted
metabolomic and lipidomic approach by LC-QTOF-MS and GC-
QTOF-MS. Furthermore, the study established the total antioxidant
capacities within these cohorts. To our knowledge, this is the first
report to investigate the metabolic and lipid alterations associated
with AL, specifically in the Colombian population. These findings

hold significant potential for the development of future diagnostic
and prognostic biomarkers for this population.

Materials and methods

Study participants

Between 2019 and 2020, twenty patients with AL who attended
the Hospital Universitario San Ignacio (Bogotá D.C., Colombia)
were linked to this study. They were patients older than 18 years,
who were diagnosed for the first time and had not received previous
therapy. The study was approved by the Ethics Committee of the
Hospital Universitario San Ignacio and the Centro Javeriano de
Oncología (Bogotá D.C., Colombia). Following the Declaration of
Helsinki, written informed consent was obtained from all
participants prior to clinical data collection and sample
collection. The diagnosis was made according to the World
Health Organization classification of tumors of hematopoietic
and lymphoid tissues 2017 (Arber et al., 2016).

Sample collection

Peripheral blood samples were obtained from twenty patients
with a de novo diagnosis of acute leukemia before starting
chemotherapy treatment. Samples were collected with a
minimum fast of 8 h in K2EDTA tubes, and peripheral blood was
centrifuged exactly 4 h after collection, at 3,500 rpm at 4°C for
10 min. The plasma obtained was aliquoted and stored at −80°C
until processing. As a control group, 18 plasmas were collected from
HI matched by age and sex under the same conditions. According to
the NCCN Clinical Practice Guidelines in Oncology ® (Chang et al.,
2021; Pollyea et al., 2021) and given the number of samples collected,
the response to treatment at the end of induction was divided into
two groups of patients: Complete remission (CR) [including CR
with negative EMR (minimal residual disease)] and non-responders
(NR) (including CR with a partial hematological response (CRp),
CR with an incomplete hematological response (Cri) and CR with
positive EMR or unknown), patients with premature death and NR).

Untargeted metabolomic and lipidomic
analysis

Metabolomic analysis by LC-QTOF-MS and GC-
QTOF-MS

For metabolomic analysis by reverse phase liquid
chromatography coupled to mass spectrometry with a time-of-
flight analyzer (RP-LC-QTOF-MS), samples were extracted using
40 µL of plasma mixed with 120 µL of cold methanol and ethanol (1:
1, v/v) (−20°C) and samples were vortex-mixed for 5 min. Samples
were incubated for 20 min at −20°C to precipitate proteins. Then, the
samples were centrifuged for 10 min (16,000 g, 4°C). Metabolomic
analysis was performed using the UHPLC system (Agilent
1260 Infinity LC System) coupled with the Q-TOF LC/MS
system (Agilent Technologies, Waldronn, Germany) equipped
with an electrospray ionization (ESI) source 2 µL of the extracted

Frontiers in Molecular Biosciences frontiersin.org02

Arévalo et al. 10.3389/fmolb.2023.1235160

135

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1235160


sample was injected into the InfinityLab Poroshell 120 EC-C18
(100 mm × 3.0 mm, 2.7 µm) column at 30°C using 0.1% (v/v) formic
acid in water (A) and 0.1% (v/v) formic acid in acetonitrile (B) as a
mobile phase with a flow rate of 0.3 mL/min. Gradient elution
started with 25% B and increased to 95% within 35 min. Then,
the gradient returned to initial conditions at 35.1 min and held there
for 8 min to allow column re-equilibrium. For constant mass
correction, two reference masses were used and continuously
infused into the system: m/z 121.0509 (C5H4N4 + H)+ and m/z
922.0098 (C18H18O6N3P3F24 + H)+ for positive ionization mode
(ESI+) and m/z 112.9856 (C2O2F3 – NH4)

- and m/z 1033.9881
(C18H18O6N3P3F24 + FA-H)- for negative ionization mode (ESI -).
The system was operated in full scan mode from 100 to 1,100m/z;
the capillary voltage was set to 3000, the drying gas flow rate was
12 L/min at 290°C, the gas nebulizer 52 psi, fragmentor voltage was
175 V and the skimmer 65 V and octopole radio frequency voltage
(OCT RF Vpp) 750 V for both, positive and negative ionization
modes. Data were collected in centroid mode at a scan rate of
1.02 spectrum per second.

For metabolomic analysis by gas chromatograph coupled to
mass spectrometry with a time-of-flight analyzer (GC-QTOF-
MS), samples were extracted using 140 µL of plasma mixed with
420 µL of cold methanol (−20°C) and vortex-mixed for 5 min.
Samples were incubated for 20 min at −20°C to precipitate
proteins. Then, the samples were centrifuged for 10 min
(16,000 g, 4°C). An aliquot of 100 µL was transferred into glass
inserts and evaporated to dryness in a speed vacuum
concentrator (Thermo Scientific). The dry residue was
dissolved in 10 µL of methoxyamine hydrochloride in pyridine
(15 mg/mL) and vortex-mixed for 5 min. The samples were
incubated for 16 h at room temperature in the dark. The
silylation process was followed by adding 10 µL of
bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1%
trimethylchlorosilane (TMCS). After vortex-mixing (5 min)
and incubation for 1 h at 70°C, the samples were diluted with
50 µL of internal standard (methyl stearate in heptane C18:0,
10 ppm). GC-QTOF-MS experiments were performed on an
Agilent Technologies 7890B GC system coupled to
7250 QTOF mass spectrometer system (Agilent Technologies).
Derivatized samples were injected (1 µL) with a split ratio of 30:
1 onto an HP-5MS capillary column (30 m × 0.25 mm; 0.25 µm)
(Agilent Technologies) at a constant gas flow (helium) of 0.7 mL/
min. The injector temperature was 250°C. The temperature
gradient was kept at 60°C for 1 min and then programmed to
320°C at 10°C/min. Mass spectra were recorded at 70 eV in full
scan mode with m/z values ranging from 50 to 600. The transfer
line, filament source, and quadrupole temperature were fixed at
280°C, 230°C, and 150°C, respectively.

Lipidomic analysis by LC-QTOF-MS
For lipids extraction, 100 µL of plasma was extracted with

350 µL of cold methanol and 350 µL of MTBE and vortex mixed
for 5 min. Then, the samples were centrifuged at 13,000 g for
10 min at room temperature. Lipidomic analysis was performed
using the same RP-LC–QTOF–MS system employed for
metabolomics analysis. A 1 µL of the extracted sample was
injected into the InfinityLab Poroshell 120 EC-C8 (100 mm ×
2.1 mm, 2.7 µm) column at 60°C using 5 mM ammonium formate

in Mili-Q water) (A) and 5 mM ammonium formate in
isopropanol: methanol (15:85) (B) as a mobile phase with a
0.4 mL/min flow rate. Gradient elution started with 75% B,
then increased to 96% within 23 min, and kept there for
13 min, then increased to 100% and kept constant for 4 min.
Then, the gradient returned to initial conditions at 42 min and
held there for 11 min to allow column re-equilibrium. The same
reference masses were used throughout the analysis as described
in metabolomics analysis by LC-QTOF-MS for positive and
negative ionization modes. The system was operated in full
scan mode from 100 to 1,800 m/z; a capillary voltage was set
to 3,000 V, the drying gas flow rate was 12 L/min at 290°C; and
the gas nebulizer 45 psi, fragmentor voltage 175 V, the skimmer
65 V and octopole radio frequency voltage (OCT RF Vpp) 750 V.
Data were collected in centroid mode at a scan rate of
1.02 spectrum per second.

Quality assurance (QA) and quality control (QC)
procedures

Quality assurance and quality control procedures were
implemented according to published guidelines to reduce
unwanted variation (26) (Kirwan et al., 2022). Pure solvents and
extraction blanks were evaluated at the beginning of each sequence
to ensure the cleanliness of equipment and materials used in sample
preparation. To equilibrate the chromatographic system, pooled
samples (QC) were injected, which were prepared by mixing equal
volumes of each plasma sample using the same procedure for both
metabolomic (LC and GC) and lipidomic analysis. To monitor the
system’s stability, these QC samples were injected every ten samples.
Additionally, biological samples were randomized within the
sequence to reduce the possibility of bias (Sumner et al., 2007).

Data treatment
All raw LC-QTOF-MS datasets were processed using Agilent

MassHunter Profinder B.10.0 Software for deconvolution,
alignment, and integration, using algorithms such as molecular
feature extraction and recursive feature extraction; then, the raw
data were inspected manually to remove background noise and
unrelated ions. For GC-QTOF-MS, samples were normalized by
internal standards prior to the statistical analysis. Finally, for all
platforms, the data was filtered by presence and reproducibility, and
the coefficient of variation (CV) in the QC lower than 20% to LC (or
30% to GC) was used for statistical analysis.

Statistical analysis
For both LC-MS and GC-MS data, the identification of the

molecular characteristics with statistical differences between HI and
AL patients were carried out using univariate and multivariate
statistical analysis. First, the p-value was determined by Mann-
Whitney U test (nonparametric tests) with a Benjamini-
Hochberg False Discovery Rate post hoc correction (FDR) using
MatLab (R2019b, Mathworks, Inc., Natick), while for the
multivariate analysis, an unsupervised principal component
analysis (PCA) and orthogonal partial least squares regression
(OPLS-DA) was applied using SIMCA-P + 16.0 software. The
statistically significant variables were selected based on p-value
with FDR p < 0.05 and variance important in projection (VIP) >
1 with Jack-knife confident interval (JK).
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Metabolites identification
The identification of metabolites was carried out based on a 4-

level confidence system for high-resolution mass spectrometry
analysis following the parameters (Schymanski et al., 2014).
Metabolites by LC-MS were annotated using various online
database (http://hmdb.ca), (http://genome.jp/keg), (https://
massbank.eu/MassBank/), (http://lipidmaps.org) and (http://
metlin.scripps.edu) utilized for this purpose CEU Mass Mediator
tool (http://ceumass.eps.uspceu.es/). The metabolite’s identity was
confirmed by iterative MS/MS data with Agilent Lipid Annotator
software, MS-DIAL 4.80 (http://prime.psc.riken.jp/compms/msdial/
main.html), and CFM-ID 4.0 (https://cfmid.wishartlab.com/) for in
silico mass spectral fragmentation. For GC-QTOF-MS
chromatograms were deconvoluted and compared with Fiehn
GC-MS Metabolomics RTL Library (Kind et al., 2009).

Pathway analysis
Metabolic pathway analysis was performed with the

MetaboAnalyst 5.0 tool (http://www.MetaboAnalyst.ca/),
integrating enrichment and topology pathway approaches. A list
of identified significant metabolite compound names was loaded and
processed using the “Homo sapiens” library. The KEGG pathway
information was obtained in October 2019, and the specific pathway
analysis parameters were the visualization method by scatter plot
(testing significant features), enrichment method (hypergeometric
test), topology analysis (relative-betweenness centrality), and
selecting a pathway library by H. sapiens.

Determination of TAC in plasma

The antioxidant capacity was evaluated using the e-BQClab
device (Bioquochem, Asturias, Spain) that measures the redox
potential, which is expressed in micro coulombs (μC). The
results in μC were transformed to Trolox Equivalent Antioxidant
Capacity Units (TEAC). The e-BQClab device using
electrochemistry can distinguish between fast and slow
antioxidants: the Q1 value refers to the antioxidant capacity of
the compounds with the highest free radical scavenging rate
(examples, uric acid, GSH, vitamin E), while the Q2 value refers
to the antioxidant capacity of the compounds with the lowest rate of
free radical uptake (examples, polyphenols, resveratrol). The QT
value is the sum of both. The measurement was performed in
duplicate using 50 μL of all collected plasma samples.

Results

Characteristics of AL patients and HI

The mean age at diagnosis of the patients evaluated was
45.8 years (range 21–76), and 55% were female patients. We
collected 9 patients with B-ALL, 9 patients with AML, 1 patient
with acute promyelocytic leukemia, and 1 patient with mixed-
phenotype acute leukemia (B-lymphoid and myeloid
differentiation). The karyotype was normal in 40% (8) of the
patients, abnormal in 50% (10), and there was no growth in 10%
(2). According to the risk categories, 80% of the patients were

classified as high-risk and the remaining 20% as intermediate-
risk. The mean white blood cell count was 76,786 cells/µL
(interval 800–403,000), hemoglobin was 9.0 g/dL (3.2–12),
platelets were 68,130 cells/µL (interval 8,300–228,000), and the
mean number of tumor cells over the total nucleated cells in
bone marrow was 68.8% (interval 20–93.9). The first phase of
chemotherapy (induction therapy) was based on the PETHEMA
protocols for all patients, 7x3 or 5-Azacytidine for AML patients,
and AIDA-PETHEMA for acute promyelocytic leukemia patients.
Of the total number of patients at the end of induction, 10% (2)
achieved CR, 70% (14) were NR, and 20% (4) could not be evaluated.
In total, 18 samples were collected from HI; the group had a mean
age of 31.9 years (range 19–61), and 55% were women. The clinical
and demographic data of the patients are summarized in Table 1,
along with the HI data. Clinical data related to treatment and
response are detailed in Supplementary Table S1.

Alterations in lipid metabolism at the plasma
level, differentiate HI from AL patients

Multiplatform metabolomic and lipidomic analyses of AL and
HI plasma samples were conducted using different approaches
aimed at detecting the largest possible number of metabolites.
The performance of the different analytical platforms was
evaluated by clustering the quality control (QC) samples using
PCA models. In these models, a clear grouping of the QC
samples belonging to each analytical platform was observed,
indicating reliable, consistent performance and the conservation
of biological variation across the platforms used (Supplementary
Figure S1). Following the supervised OPLS-DA analyses, a
discrimination between the HI group (green dots) and the AL
patients (red dots) was observed for each platform, as depicted in
Figure 1. This suggests distinct metabolomic profiles associated with
the development of leukemia. The results indicated acceptable values
ranging between 0.972 and 0.925 for R2 and 0.670 and 0.852 for Q2 in
the cross-validation test in the metabolomic and lipidomic analyses
on all analytical platforms used (Wheelock and Wheelock, 2013).
On the other hand, volcano plots were generated to show the
metabolites that were significant [p < 0.05, Log2(FC) < 1.3] by
univariate analysis (Supplementary Figure S2).

A total of 328 metabolites differentially expressed between HI
and ALwere determined using a combination ofMVA (VIP > 1 with
JK), UVA (p < 0.05) applied on adjusted p-values, and fold change
Log2(FC) > 1 and < 1). The detected metabolites during data
processing across the different analytical techniques used are
presented in Supplementary Table S2, and A typical metabolic
fingerprint from each platform is presented in Supplementary
Figures S3–S5. The compounds altered between AL patients and
HI showed 61.28% (201 metabolites) downregulated metabolites
and 38.72% (127 metabolites) upregulated metabolites. In respect of
downregulated metabolites, we found glycerophospholipids
(47.25%) to be the most representative, sphingolipids (23.37%),
and a lower percentage (<7%) of sterol lipids, steroids, amino
acids, bile acids, fatty acyls, organic acids, organooxygen
compounds, and carnitines (Figure 2A). In the upregulated
group, we observed that 47.25% of those metabolites were
glycerophospholipids, 10.26% sphingolipids, 49.57% glycerolipids,
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4.27% fatty acyls, and less than 8% corresponded to sterol lipids,
amino acids, bile acids, organic acids, imidazopyrimidines, and
steroids (Figure 2B).

For greater reliability, the Log2(FC) was adjusted to ≥ 1.5 and ≤ 0.5,
and 135 metabolites. The set of altered metabolites (FC > 1.5 or < 0.5)
between the two groups was analyzed using heatmaps, which enable the
visualization of patterns of metabolite changes among the groups.
Therefore, blue colors indicate decreased metabolite levels, while red
colors indicate increasedmetabolite levels in AL patients (Figure 3). The
clustering analysis in the heatmap reveals a clear grouping of samples
from AL patients (green) and HI patients (red), indicating similarity in
the metabolomic profiles among individuals within each group.

The most significant variations between AL patients and HI are
observed in the glycerophospholipids group, which includes
metabolites such as lysophosphatidylcholines, phosphatidylcholines
(PCs), phosphatidylserine, phosphatidylethanolamine,
lysophosphatidylethanolamines, and some sphingolipids like
sphingomyelin. These metabolites were predominantly found to be
downregulated in AL patients (represented by blue colors in the
heatmap). In contrast, the glycerolipids group, including
triacylglycerols (TG), diacylglycerols (DG), some organic acids like

pyruvic acid and hydroxyglutaric acid, and amino acids such as 4-
acetamido-amino butanoic acid, glutamic acid, amino butanoic acid,
and leucylproline, showed trends towards upregulation in AL patients
(represented by red colors in Figure 3). These results suggest
significant alterations in biochemical metabolites, particularly lipid
compounds, in the plasma of AL patients compared to the control
group.

Metabolic pathways associated with
sphingolipid and glycerophospholipids are
altered in AL patients

For a better understanding of the metabolic dysregulation
between the two groups, differential metabolites were imported
into MetaboAnalyst 5.0 to perform the Metabolomic Pathway
Analysis. The x-axis represents the pathway impact value
computed from pathway topological analysis, and the y-axis is the-
log of the p-value obtained from pathway enrichment analysis. The
pathways that were most significantly changed are characterized by
both a high-log(p) value and a high impact value (top right region).

TABLE 1 Summary description of the clinical characteristic of AL patients and date of healthy individuals.

Characteristic n (%)

Sex (female) 11 (55)

Age (years), median (interval) 45.8 (21–76)

Immunophenotype

B-ALL 9 (45)

AML 9 (45)

B/M AL 1 (5)

AML M3 1 (5)

Karyotype

Normal 8 (40)

Abnormal 10 (50)

No growth 2 (10)

Risk

Intermedium 4 (20)

High 16 (80)

Hematological parameters

WBC count (µL), median (interval) 76,786 (800–403,000)

Hb (g/dL), median (interval) 9.0 (3.2–12)

Platelet count (µL), median (interval) 68,130 (8,300–228,000)

Tumor cells in bone marrow (%), median (interval) 68,8 (20–93,9)

Healthy Individuals

Sex (female) 10 (55)

Age (years), median (interval) 31.9 (19–61)

B-ALL, B-acute lymphoid leukemia; AML, Acute myeloid leukemia; B/M AL, mixed-phenotype acute leukemia patient (B-lymphoid and myeloid differentiation); AML M3,

Promyelocytic—acute myeloid leukemia; Hb, Hemoglobin; WBC, White blood cells.
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The node color of each pathway is determined by the p-value (red =
lowest p-value and highest statistical significance), and the node radius
(size) is based on the pathway impact factor, with the biggest
indicating the highest impact (Mashabela et al., 2022). The

metabolic pathways that were significantly altered in patients with
AL compared with HI were sphingolipids, glycerophospholipids,
alanine, aspartate, and glutamate metabolism (Figure 4). The
metabolites identified within these altered pathways are a

FIGURE 1
OPLS-DA score plot with Pareto scaling for a metabolic analysis of HI and AL patients. (A) GM-LC/MS (+) R2: 0.958, Q2: 0.852, pCV-ANOVA: 1.948e

−11.
(B)GM-LC/MS (−) R2: 0.925, Q2: 0.838, pCV-ANOVA: 7.3713e

−11. (C)GL-LC/MS (+) R2: 0.945, Q2: 0.670, pCV-ANOVA: 1.986e
−4. (D)GL-LC/MS (−) R2: 0.972, Q2:

0.789, pCV-ANOVA: 6.991e
−8. (E) GC/MS R2: 0.937, Q2: 0.743, pCV-ANOVA: 9.262e

−7. Red dots correspond to AL patients, and green dots are HI.
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significant increase in pyruvate and AA and a significant decrease in
linoleic acid, phosphatidylcholine, phosphatidylethanolamine, and
lysophosphatidylcholine were found in the patients. A summary
graph of the main altered 328 metabolites and their participation
in the different metabolic pathways associated with leukemia is shown
in Figure 5.

The HI have higher TAC than the AL patients

This work shows a higher concentration of slow antioxidants (Q2)
than fast antioxidants (Q1), both in HI and in patients. Also, significant
differences in rapid antioxidants (Q1) between HI and patients with AL

were observed. Regarding theQT value, the patients presented less TAC
than the HI (Figure 6; Supplementary Table S3). It is possible that there
is a relationship between the decrease in TAC and the lipid alterations
present in the patients. The decrease in antioxidant systems would favor
an increase in ROS, which could stimulate survival signals or oxidize
macromolecules such as lipids, inducing cell death (Barrera, 2012).

Discussion

Thanks to the technical progress of metabolomics and the
complexity of biological samples, the simultaneous use of several
analytical platforms allows expanding the coverage of identification

FIGURE 2
The chemical classes altered between AL patients and HI. The chemical classes and percentages are shown in a pie chart. (A) Downregulated
metabolites (B) Upregulated metabolites.

FIGURE 3
Heatmap of the metabolites and lipids with statistically significant variation. Fold Change ≥ 1.5 and ≤ 0.5, p < 0.05 between AL patients and HI.
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and characterization of metabolites, making it possible to find new
non-invasive biomarkers for the diagnosis and prognosis of AL, as
well as delving into the characteristics and biological differences of
the lineage of origin of the disease, lymphoid or myeloid (Bruno
et al., 2018). In this study, metabolic differences were analyzed at the
plasma level between 18 HI and 20 AL patients, using metabolomics
by LC-QTOF-MS and GC-QTOF-MS and lipidomics by LC-
QTOF-MS.

Among the results obtained, it was shown that the primary
metabolic alterations in patients with AL are related to lipid
metabolism, in agreement with previous reports in the literature
(Musharraf et al., 2016). Lipids are essential components of
malignant tumors, as they are necessary for the growth and
spread of the tumor. Fatty acids, cholesterol, and phospholipids
are the most important sources of energy production, function as
signaling molecules, and participate in the biogenesis of cell
membranes. They can be provided by the tumor
microenvironment or by cancer cells themselves through the
activation of de novo synthesis pathways. Importantly, especially
cells of the immune system, cancer-associated fibroblasts, and
cancer-associated adipocytes, can also undergo changes in lipid
content, hindering or promoting tumor aggressiveness (Fu et al.,
2020; Vasseur and Guillaumond, 2022). In AML, lipids have been
used to identify genetic signatures related to prognosis, the
immunological panorama, and characteristics of the tumor

microenvironment (Ding et al., 2022) and, in turn, as markers to
predict the risk of acute graft-and-host disease (aGvHD) from
allogeneic hematopoietic stem cell transplantation (alloHSCT)
(Liu et al., 2019).

Fatty acids are the main building blocks of several lipid species,
they can be channeled into various metabolic pathways to synthesize
complex lipid species, including glycerolipids such as DG and TG,
glycerophospholipids such as phosphatidic acid,
phosphatidylethanolamine, PS, phosphatidylglycerol and
phosphatidylcholine, sphingolipids and cholesterol (CL) including
cholesterol ester (Koundouros and Poulogiannis, 2020). We
observed a decrease in glycerophospholipids and an increase in
glycerolipids in AL patients. Since glycerophospholipids are the
main constituents of cell membranes, it is possible that they are
being rapidly consumed by proliferating cells at the expense of
Increased glycerolipids that serve as central intermediates in
glycerophospholipid synthesis or as lipid storage molecules (Pan
et al., 2021).

Within the increase in glycerolipids, TG was the most relevant.
Altered glycerophospholipid metabolism has previously been
associated with disease progression in pediatric ALL patients
(Yunnuo et al., 2014) and an increase in TG in conjunction with
a decrease in CL has been reported in both AML and ALL (Nahid
et al., 2013), which has been related to a poor response to treatment
(Guzmán and Sandoval, 2004). Particularly, Pabst et al. (2017)

FIGURE 4
Summary of Metabolomic Pathway Analysis (MetPA) as generated by MetaboAnalyst 5.0 software package in AL patients. Using the KEGG database
(All the matched pathways are displayed as circles). The color of each circle is based on p-values (darker colors indicate more significant changes of
metabolites in the corresponding pathway). In contrast, the circle size corresponds to the pathway impact score. The most impacted pathways having
high statistical significance scores are annotated (p-value < 0.05; pathway impact values ≥ 0.2.
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analyzed 20 samples from individuals with AML and 20 HI by GC-
MS and ultraperformance liquid chromatography-electrospray
ionization-quadrupole time-of-flight mass spectrometry (UPLC-
ESI-QTOFMS), obtaining similar results, a decrease in PCs,
cholesterol ester, and CL in the patients, however, they found a
reduction in TG in the patients, probably associated with
consumption by proliferating AML cells. From the point of view
of the evolution of the disease, it has been described in other works,
that patients with myelodysplastic syndromes who progressed to AL
had higher TG levels than those who did not evolve (Qiao et al.,
2022) and that in patients with ALL, after a 5-year disease-free
period, they developed dyslipidemia with increased plasma TG,
increased LDL CL, and decreased HDL CL, which was associated
with an increased risk of atherosclerotic disease (Morel et al., 2017).
These findings indicate that metabolic alterations at the lipid level
with increased TG play an essential role in leukemogenesis,
maintenance, and tumor progression but are also associated with
clinical complications in these patients, such as atherosclerosis.

It should be noted that LICs or their equivalents in other cancer
stem cells tumor models as initiating cells of the leukemogenesis
process have a profile of genetic alterations associated with high risk
and a specific metabolic profile, which are relevant as mechanisms
implicated in treatment resistance and disease relapse (Marchand
and Pinho, 2021). In particular, the increase in the synthesis of lipids
in the LICs favors their self-renewal capacity by increasing the

production of NADPH, which is an essential cofactor in reducing
oxidized GSH to reduced GSH and in the maintenance of low ROS
levels (Liu et al., 2022). Interestingly, Ito et al. (2012) showed that the
PML gene controls asymmetric and symmetric HSC division
through PPARδ activity, a regulator of fatty acid synthesis. In
prostate cancer, a high lipid diet may accelerate tumor cell
proliferation by increasing levels of insulin-like growth factor 1,
IL-1α, IL-1β, IL -6, or TNF-α (Xu et al., 2014) or through activation
of signaling pathways such as MCP-1/CCR2 (monocyte
chemoattractant protein-1/C-C Motif Chemokine Receptor 2)
(Huang et al., 2012). In addition, a high lipid diet accelerates the
development of AML in a murine knock-in model for MLL-AF9
through the activation of the FLT3 receptor (Fms Related Receptor
Tyrosine Kinase 3) on the membrane of c-KIT + primitive
hematopoietic stem cells, with subsequent activation of the JAK3-
STAT3 (Janus kinase/signal transducer and activator of
transcription) signaling pathway (Hermetet et al., 2020).

Of the lipids, the ones best characterized in oncogenic signaling
are phosphoinositols (PI) and ceramides/sphingolipids (SF), which
we found decreased in patients compared to HI. However, this is one
of the few studies that reflect this alteration at plasma levels in
patients with AL (Calderon-Rodríguez et al., 2019). PIs are
precursors of phosphoinositide, such as PI(3,4,5)P3, which can
promote tumorigenesis by activating the AKT/mTORC1/
2 pathway, which is frequently altered in AL (Nepstad et al.,

FIGURE 5
Significantly altered metabolomic pathways in AL. The main metabolic pathways altered in patients with AL vs. HI, identified by different
metabolomic and lipidomic analytical platforms in peripheral blood plasma, are represented. In red upregulated and in blue downregulated metabolites.
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2020), while SF participates in regular signals of cell survival or
apoptosis (Ogretmen, 2018). Relevantly, the activation of cell
signaling pathways due to mutations in oncogenes such as Ras
and FLT3 plays a vital role in the metabolic reprogramming of
leukemic blasts (Wojcicki et al., 2020). In fact, recent in vitro studies
have shown that distinct genetic changes in AML are associated with
improved dynamics andmetabolism of different types of lipids, such
as ceramides. Additionally, it has been found that patients with
abnormal karyotypes, particularly those who have recurrent AML
genetic changes like the t(8; 21)(q22; q22.1);RUNX1-RUNX1T1
translocation or inv(16)(p13.1q22) inversion, have higher levels
of ceramide/sphingolipid production (Stefanko et al., 2017).

The other altered metabolites were amino acids. Leucylproline,
4-acetamido-amino butanoic acid, glutamate, amino butanoic acid,
and methylmethylproline were found to be increased in the patients.
Leucylproline is a dipeptide formed by leucine and proline residues.
On the one hand, leucine is part of the branched-chain amino acids
(BCAA), which have been shown to be essential for the proliferation
of leukemic cells (independent of their lineage). Since it supports the
synthesis of non-essential amino acids and the TCA cycle (Tabe
et al., 2019). Most patients with AML and ALL have a high level of
BCAA transporters (BCAT1), while serum BCAA levels are reduced,
suggesting active absorption of BCAA (Kikushige et al., 2023) and
the formation of secondary metabolites (dipeptides). We found a
reduction in glutamine and an increase in glutamate, suggesting an
active metabolism of glutamine. Particularly, glutamate has been
described as an exquisite source for leukemic cells since it promotes
a tumor phenotype by participating in signaling reactions; it is a
source of nitrogen for DNA synthesis and other amino acids; it
participates in redox reactions through GSH; and it is a source of
biomass and energy as it is incorporated into the TCA cycle (Kreitz

et al., 2019). Carnitines are a fundamental part of the synthesis of
fatty acids and are vital mediators for tumor metabolic plasticity
(Melone et al., 2018). Like us, Morad et al. (2022) demonstrated a
reduction in plasma O-acetyl carnitine in patients with ALL and
AML. However, the metabolism of carnitines must be studied in
depth because some chemotherapeutic drugs interfere with the
absorption, synthesis, and excretion of carnitine in non-tumor
tissues, leading to secondary carnitine deficiency and therefore
multi-organ toxicity, which can be reversed with carnitine
treatment without affects effectiveness. Anticancer by affects
effectiveness anticancer (Sayed-Ahmed, 2010).

Tumor cells develop a mechanism where they adjust to the high
ROS by expressing elevated levels of antioxidant proteins to detoxify
them while maintaining pro-tumorigenic signaling and resistance to
apoptosis. At the systemic level, a reduction in the expression of
antioxidant enzymes and antioxidant capacity has been reported in
AL samples (Rasool et al., 2015; Chaudhary et al., 2023). The
reduction in TAC could reflect the consumption of endogenous
antioxidants due to the generation of free radicals by the leukemic
process (mutations or enzyme alterations) and maintain the redox
balance The lower concentration of fast antioxidants (Q1) is
expected given their oxidative potential. The increase in free
radicals can cause lipid peroxidation, where polyunsaturated fatty
acids are more susceptible, such as arachidonic acid. Iron-dependent
lipid peroxidation is an important driver of ferroptosis, and
ferroptosis is critically involved in the pathogenesis of AL.
Interestingly, circulating antioxidants related to dietary intake
(vitamin C, carotenoids, vitamin A, and vitamin E) may impact
tumor progression in some types of cancer and vary depending on
the dietary culture (Abenavoli et al., 2019; Yin et al., 2022).

We recognize that our study consolidates a low number of
patients, however, there are not a huge number of primary acute
leukemia samples in our region, which is reflected by the number of
patients included in recent papers in Colombia (Calderon-
Rodríguez et al., 2019) and in Latin America (Aguirre-Guillén
et al., 2017). Therefore, our study is pioneering in a different
social and cultural context and our findings may inspire more
research on the metabolism of malignant hemopathies. We will
verify the data in a larger cohort of patients in the medium term.
Likewise, this metabolic profile will help us to follow the evolution of
acute leukemia patients recruited in a clinical trial in which a new
medicant directed to metabolism regulation is tested. We also
consider integrating other omics techniques, particularly
transcriptomics with metabolomics, to strengthen longitudinal
studies, offering the opportunity to design and apply personalized
treatments and advance in the search for biomarkers predictive of
clinical response.

Conclusion

This study reinforces previous observations of lipid
abnormalities in patients with acute leukemia (AL), highlighting
the significance of these metabolic dysregulations in the disease. Our
findings indicate that glycerophospholipid metabolism, sphingolipid
metabolism, and the metabolism of alanine, aspartate, glutamate,
and glutamine are the primary deregulated pathways in AL patients.
Additionally, we observed a lower total antioxidant capacity (TAC)

FIGURE 6
Plasma metabolic differences between AL patients and HI. TAC
levels in the peripheral blood plasma of patients, and HI are expressed
in Trolox Equivalent Antioxidant Capacity (TEAC). In all cases, data are
represented as the mean ± SEM.
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in AL patients, reflecting the consumption of antioxidants during
the leukemogenic process. These metabolic findings contribute to a
deeper understanding of the physiological characteristics of
leukemia and provide valuable insights for targeted therapeutic
interventions and personalized treatment strategies. Furthermore,
to our knowledge, this research represents the first metabolomics
investigation conducted on the Colombian population,
underscoring the novelty of our results. Future validation studies
are necessary to confirm these findings with a larger cohort and
elucidate their clinical implications.
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COVID-19 was themost significant infectious-agent-related cause of death in the
2020-2021 period. On average, over 60% of those admitted to ICU facilities with
this disease died across the globe. In severe cases, COVID-19 leads to respiratory
and systemic compromise, including pneumonia-like symptoms, acute
respiratory distress syndrome, and multiorgan failure. While the upper
respiratory tract and lungs are the principal sites of infection and injury, most
studies on the metabolic signatures in COVID-19 patients have been carried out
on serum and plasma samples. In this report we attempt to characterize the
metabolome of lung parenchyma extracts from fatal COVID-19 cases and
compare them with that from other respiratory diseases. Our findings indicate
that the metabolomic profiles from fatal COVID-19 and non-COVID-19 cases are
markedly different, with the former being the result of increased lactate and amino
acid metabolism, altered energy pathways, oxidative stress, and inflammatory
response. Overall, these findings provide additional insights into the
pathophysiology of COVID-19 that could lead to the development of targeted
therapies for the treatment of severe cases of the disease, and further highlight the
potential of metabolomic approaches in COVID-19 research.

KEYWORDS

biomarkers, COVID-19, ICU patients, lung parenchyma, NMR-based metabolomics

1 Introduction

As experienced during the 2020–2023 COVID-19 pandemic, SARS-CoV-2 infections can
result in a variety of respiratory conditions, including pneumonias-like symptoms, acute
respiratory distress syndrome (ARDS), and multiorgan failure (Chavez et al., 2021). Potential
risk factors for mortality among patients admitted to ICU included age, obesity, and
comorbidities such as hypertension, diabetes, and cardiovascular disease (Ejaz et al., 2020;
Ahlström et al., 2021; Booth et al., 2021). It was also observed that the clinical symptoms of
COVID-19 could be influenced by viral load as well as by respiratory and gut microbiota
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dysbiosis (Liu et al., 2020; Brosseau et al., 2021). While most of the
patients diagnosed with COVID-19 attended the disease at home, 13%-
14%needed hospitalization inmoderate care facilities, and between 5%-
6% were admitted to intensive care units (Verity et al., 2020; Gosangi
et al., 2022). Hospital mortality was between 30%–60% in case series
reported in the first wave, increasing significantly for patients admitted
to the ICU who required mechanical ventilation (Abate et al., 2020;
Bastos et al., 2021; Estenssoro et al., 2021; Kurtz et al., 2021; Ranzani
et al., 2021; Dongelmans et al., 2022). Uruguay was no exception, and
towards the end of 2020 the average number of new cases increased
exponentially to over 400 cases per day (GUIAD-COVID-19, 2022). In
addition, the most prevalent viral variant during the first wave was
B.1.1.28 (now designated as P.6), and vaccines were not yet available
(Moreno et al., 2020; Elizondo et al., 2021; Rego et al., 2021).

A number of studies have established that SARS-CoV-2 infections set
off a chain of events that can lead to a cytokine storm, an immune system
overreaction thatmay result in ARDS (Koçak Tufan et al., 2021), which is
the most frequent complication of severe COVID-19 cases. However,
there are still several aspects of the disease that remain unknown. In order
to elucidate the pathophysiological effects of COVID-19 and improve
clinical care through the selection of appropriate treatments, particularly
for patients with severe manifestations of the disease, a thorough
understanding of the metabolic alterations and early acute lung injury
biomarkers are required.

Metabolomic profiling can complement the lack of knowledge
regarding the molecular mechanisms underlying clinical
manifestations and pathogenesis of COVID-19. Consequently,
several studies have employed metabolomic approaches to better
understand the metabolic pathways involved in COVID-19
pathogenesis (Ansone et al., 2021; Chen et al., 2022; Murali et al.,
2023). Serum-based metabolomic studies in COVID-19 patients
revealed altered glycolytic pathways as well as amino acid, lipid, and
anaplerotic metabolism, suggesting an impact on energy pathways,
inflammatory response, and oxidative stress, and confirming the
systemic nature of the disease (Kimhofer et al., 2020; Lorente et al.,
2021; Shi et al., 2021; Valdés et al., 2022). Additionally, metabolomic
studies have been conducted in different biofluids, including sweat,
saliva and used face masks, as well as exhaled breath, serum and
plasma, to identify differential metabolites and metabolic changes
associated with COVID-19 (Barberis et al., 2020; Barberis et al.,
2021; Hasan et al., 2021). However, there are no studies focusing on
changes in the metabolic profile in lung tissue, which is SARS-CoV-
2 primary site of infection. In the present communication we use an
NMR-based non-targeted metabolomics approach to characterize
the metabolome of lung parenchyma from fatal COVID-19 cases
and compare it with other fatal respiratory diseases. As discussed
herein, we found statistically significant differences between
metabolites related to energy metabolism and inflammatory
processes, revealing a unique metabolic profile in the infected tissue.

2 Materials and methods

2.1 Sample acquisition and experimental
design

The inclusion criteria comprised adults 18 years or older
admitted to the ICU with respiratory sepsis and respiratory

failure and which had received mechanical ventilation. Clinical
information was obtained by retrospective chart review, and
data of the Acute Physiology and Chronic Health disease
Classification System II (APACHE-II) scores on admission,
arterial oxygen pressure/inspired fraction of oxygen (PaO2/
FiO2 or PAFI), the need of vasopressor support, renal or
multiorgan failure, and the presence of comorbidities, such as
diabetes, hypertension, or obesity, were collected. Fragments of
lung tissue were collected during clinical autopsies performed
on ICU patients deceased between November 2020 and February
2021 who had SARS-CoV-2 infection confirmed by RT-qPCR
(n = 8). As stated above there was no vaccination strategy in
place at the time, and therefore none of these patients had
received immunization. In addition, lung fragments from
non-COVID-19 deceased patients were collected between
December 2016 and June 2018 at the same facility and with
the same ethical safeguards. This group included
microbiological and serological positive results for Klebsiella
pneumoniae, Leptospira interrogans, and respiratory syncytial
virus (n = 7). In all cases, tissue samples were obtained in the first
2 h post-mortem and stored at −80 °C until processed for NMR
analysis.

2.2 NMR sample preparation and data
acquisition

An adaptation of previously published methods was followed
(Nakayasu et al., 2016). Briefly, lung tissue samples between 50 and
100 mg in wet weight were homogenized and extracted with 0.7 mL
MeOH/H2O (4:3) in a bullet blender (Next Advance,
United States). Subsequently, chloroform was added to reach a
final CHCl3/MeOH/H2O ratio of 8:4:3, vortexed for 5 min, and
centrifuged for 5 min at 5,000 g. The aqueous phases were
lyophilized and resuspended in a phosphate buffer prepared in
D2O (pH 7.4) (Dona et al., 2014).

Water-suppressed 1D-NOESY 1H NMR spectra of aqueous
tissue extracts were obtained at 25 °C on a Bruker AVANCE III
500 operating at a 1H frequency of 500.13 MHz. A spectral width
of 10 kHz, a data size of 32 K, and a total of 128 scans were
employed to record each spectrum, using a relaxation delay of 4 s
between scans. 1D-TOCSY and HSQC spectra were acquired
and processed using parameters provided with the spectrometer.

2.3 NMR data processing

NMR data were processed and analyzed with MNova (version
14.0, MestreLab Research, S.L., Santiago de Compostela, Spain).
Free induction decays were zero-filled to 64 K points and
apodized with a 0.3 Hz exponential window function prior to
Fourier transformation. All spectra were manually phase- and
baseline-corrected, and referenced to the anomeric proton signal
of α-glucose (5.22 ppm). Spectra were manually aligned, and the
data was normalized to the total spectral area after excluding the
residual water resonance region and regions without signals. No
binning was employed to construct the data matrices used for the
multivariate statistical analyses.
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2.4 Metabolite identification and estimation
of relative concentrations

Metabolites were identified by comparison of 1H NMR data
against spectral repositories, including the Biological Magnetic
Resonance Bank (BMRB) (Hoch et al., 2023), the Human
Metabolome Database (HMDB) (Wishart et al., 2022), and
Chenomx (version 9, Chenomx, Inc., Edmonton, Canada). When
required, metabolite identification was confirmed with data from
1D-TOCSY and HSQC spectra.

Given the characteristics of lung parenchyma and the difficulties
of obtaining precise dry weights in biologically-hazardous samples,
variations in metabolite levels were estimated using relative
concentrations. This figure was computed as the ratio between
the area from individual metabolite 1H NMR signals and the
total area of the spectrum.

2.5 Statistical analysis

Multivariate statistical analyses, including principal component
analysis (PCA) and orthogonal partial least squares discriminant
analysis (OPLS-DA), were carried out with the PLS_Toolbox
package (version 8.5, Eigenvector Research Inc., Manson, WA,
United States) implemented for MATLAB (revision 2014a, The
MathWorks Inc., Natick, MA, United States). For all models, the
data was mean-centered and scaled using a Pareto factor (Van Den
Berg et al., 2006). Analysis of the data was first performed with PCA,
which reduces data dimensionality and facilitates the identification
of clusters or trends (Wold et al., 1987; Trygg andWold, 2002; Trygg
et al., 2006). The PCA scores plot was also employed to identify
strong outliers outside the 95% significance region of Hotelling’s
T2 ellipse. Cross-validation of OPLS-DAmodels was achieved using
the random subset method, which involved 20 iterations over data
split into 5 equally-sized parts. Receiver operating characteristic
(ROC) curves were plotted, and areas under the curves were
calculated to ensure the goodness of fit of the resulting models
(Ekelund, 2012; Simundic, 2012). Permutation tests with
100 iterations were also performed to determine the degree of
over-fitting and further validate the discriminant analyses (Ni
et al., 2008). When needed, statistical total correlation
spectroscopy (STOCSY) analyses were performed with an in-
house MATLAB script based on the algorithm described
elsewhere (Cloarec et al., 2005).

Pairwise t-test comparisons were carried out between
continuous demographic variables as well as between the relative
concentrations of all identified metabolites in COVID-19 and non-
COVID-19 samples using GraphPad Prism (version 7.0, GraphPad
Software, Inc., San Diego, CA, United States).

2.6 Metabolic pathways analyses

Metabolic pathway analysis was performed using the Pathway
Analysis module of Metaboanalyst v.5.0 (Xia et al., 2011; Chong
et al., 2019), which combines results from robust pathway
enrichment analysis with pathway topology analysis to identify
the most relevant pathways involved in the conditions under

study (Aittokallio and Schwikowski, 2006; Kankainen et al.,
2011). The selected pathway enrichment analysis method was
GlobalAncova (Hummel et al., 2008), the node importance
measure for topological analysis was out-degree centrality, and
KEGG metabolic pathways were used as the backend
knowledgebase.

3 Results

3.1 Clinical characteristics of study patients

All patients in this study had been diagnosed with pneumonia,
presented respiratory sepsis, and exhibited high APACHE-II scores
upon admission to the ICU (Table 1). They all required mechanical
ventilation, and more than 80% were on vasopressor support. The
average ICU stay was 17.6 ± 4.9 days for COVID-19, and 11.2 ±
8.3 for non-COVID-19 patients. When compared to non-COVID
patients, those with COVID-19 had a higher percentage of
comorbidities on admission (diabetes, hypertension, chronic
obstructive pulmonary disease, and obesity) and a lower PAFI score.

3.2 Metabolomic analysis

We initially compared 1H NMR profiles from lung tissue
extracts from COVID-19 autopsies against those from non-
COVID-19 autopsies (Figure 1). As shown in Figure 2A, a PCA
derived from the 1H NMR data showed good discrimination
between groups despite the low number of samples. Indeed,
inspection of the loading plot from an OPLS-DA model obtained

TABLE 1 Demographic and clinical characteristics of the study population upon
admission in ICU. Variations in continuous variabbles with p-values <0.05 are
indicated with bold numbers.

Parameter COVID-19 Non-COVID-19 p-value

Cohort size (n) 8 7 -

Mean age 68.6 ± 8.2 57.3 ± 17.1 0.992

Female 3 (37%) 3 (50%) -

COPDa 4 (50%) 2 (33%) -

Diabetes 3 (38%) 0 (0%) -

Hypertension 7 (88%) 1 (17%) -

Obesity 3 (38%) 0 (0%) -

Renal failure 5 (63%) 2 (33%) -

APACHE-II score 20.6 ± 8.4 19.2 ± 10.2 >0.999

PAFIb on day 1 115 ± 31 230 ± 162 0.001

Vasopressor support 8 (100%) 5 (83%) -

Days of mechanical
ventilation

16.4 ± 5.3 9.7 ± 7.1 >0.999

Length of ICU stay 17.6 ± 4.9 11.2 ± 8.3 >0.999
aChronic obstructive pulmonary disease.
bArterial oxygen pressure/inspired fraction of oxygen (PaO2/FiO2 or PAFI).
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with the same data identified an important number of
discriminating 1H signals (Figures 2B, C). Dereplication using a
combination of STOCSY analyses, classical 1D and 2D NMR
experiments, and comparison to data from various 1H spectral
repositories allowed us to identify 21 metabolites (Figure 2C),
11 of which had significant differences in levels among the two
cohorts (Table 2). The relative concentrations of the amino acids
valine, alanine, methionine, glycine, tryptophane, phenylalanine,
tyrosine, and asparagine were significantly increased in samples
from COVID-19 patients. On the other hand, choline and glycerol-
3-phosphate levels, as well as that of the metabolic intermediate
succinate, were significantly lower among these samples.

3.3 Pathway analysis results

Metabolic pathway analysis was performed to identify the most
relevant pathways involved in COVID-19 lung autopsy (Figure 3).
This pathway analysis identified alterations in amino acids
biosynthesis and degradation, anaplerotic alanine-aspartate-
glutamate metabolism, glycine-serine-threonine metabolism,
synthesis and degradation of ketone bodies and
glycerophospholipid metabolism.

4 Discussion

One of the most salient aspects from the results presented above
is the general increase in the levels of essential amino acids, generally
recognized as sepsis biomarkers (Mierzchala-Pasierb et al., 2020;
Ahn et al., 2021), in patients with COVID-19. Indeed, branched
chain amino acids (BCAAs), including isoleucine and valine
(Table 2), are involved in stress, energy, and muscle metabolism

(Neinast et al., 2019). BCAAs have different metabolic routes, with
valine going solely to carbohydrates (glucogenic), leucine solely to
fats (ketogenic), and isoleucine being both a glucogenic and a
ketogenic amino acid. These metabolites can also regulate
immune responses and influence viral infection (Atila et al.,
2021). Hence, the maintenance of metabolic homeostasis is
essential for the body’s normal physiological functioning, and
disruptions in metabolic homeostasis could potentially facilitate
virus infection. Our results in lung autopsies of COVID-19
patients show a significant enrichment in valine (Table 2). This is
also evidenced by the metabolic pathway analysis, which revealed
that valine, leucine, and isoleucine degradation and, to a lesser extent
synthesis pathways, are significantly affected (Figure 3). High levels
of BCAAs are associated with metabolic encephalopathy, often
linked with respiratory suppression, epileptic seizures, and brain
damage due to lack of oxygen (Ozturk et al., 2022). These results
contrast those from a previous study conducted in serum, where the
metabolic profiles of patients with ARDS due to COVID-19 and
H1N1 were compared (Lorente et al., 2021). This report by Lorente
and coworkers is particularly noteworthy, as it presents a footprint
analysis in patients with the same severity of ARDS. On the other
hand, most existing metabolomic studies contrast SARS-CoV-
2 infected patients with healthy controls and cannot discern
between metabolic dysregulations caused by the virus or the
development of ARDS. These authors found that amino acid
metabolism was decreased in COVID-19 patients, and the
concentration of BCAAs, including isoleucine and valine, were
also lower when compared with influenza A patients. Although
different biofluids are commonly used for biomarker discovery, it is
necessary to consider lung tissue metabolome as a complementary
input. Indeed, it is not uncommon to find that certain metabolites
are decreased in serum but increased in the tissue (Bernatchez and
McCall, 2020).

FIGURE 1
Representative 1H NMR spectrum of a lung parenchyma extract sample. Signals corresponding to formate (1), tryptophan (2), phenylalanine (3),
tyrosine (4), fumarate (5), uracil (6), α-glucose (7), β-glucose (8), asparagine (9), lactate (10), glycerol-3-phosphate (11), glycine (12), betaine (13), choline
(14), phosphocholine (15), creatine (16), citrate (17), pyruvate (18), glutamine (19), glutamate (20), methionine (21), acetate (22), alanine (23), valine (24), and
isoleucine (25) are annotated. The grayed-out region corresponds to the residual HDO signal.
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Other metabolites found to be significantly more abundant in
patients with COVID-19 were tyrosine, phenylalanine, and
tryptophan. Absorption of the latter metabolite is mediated by
angiotensin converting enzyme 2 (ACE2), the primary receptor
of SARS-CoV-2, and has been recognized as a marker of
inflammation in severe COVID-19 cases (Takeshita and
Yamamoto, 2022). Similarly, elevated plasma or serum levels
of tyrosine are observed in a variety of ailments, including
hyperphenylalaninemia, sepsis, severe burns, transient
tyrosinemia and hyperphenylalaninemia of the newborn,
phlebotomus fever, viral hepatitis, or hepatic encephalopathy
(Rosen et al., 1977; Watanabe et al., 1979; Rudnick and Ebach,
2004; Ansone et al., 2021). High levels of this non-essential amino
acid synthetized from phenylalanine have also been detected in
septic patients (Freund et al., 1978). Also, increased
phenylalanine serum concentrations have been associated with
immunological activation and an increased risk of cardiovascular

events in sepsis and other viral infections (Ansone et al., 2021).
This could be explained due to muscle tissue catabolism leading
to amino acid release, which, together with the body’s differential
metabolic capacity for different amino acids, results in their
accumulation. Indeed, despite muscle tissue is easily able to
oxidize BCAAs to support its own energy requirements,
aromatic amino acids as well as sulfur-containing amino acids
such as taurine, cysteine, and methionine are not as easily
metabolized, and may account for the increase in the levels of
tyrosine seen during sepsis (Freund et al., 1978). It has also been
reported that as disease severity progresses, there is a significant
increase in phenylalanine serum concentrations (Martínez-
Gómez et al., 2022). Taken together with our results, these
findings support the idea that these aromatic amino acids
could be used as biomarkers of COVID-19 severity.

Additionally, succinate was found significantly depleted in
COVID-19 patients. This metabolite plays a key role in hypoxia,

FIGURE 2
PCA score plot obtained from lung parenchyma extract 1H NMR data (A), and score and loading factor plots obtained from the OPLS-DA comparing
COVID-19 and non-COVID samples (B and C, respectively). Metabolites that differentiate the COVID-19 from the non-COVID-19 cohorts are annotated
in the loading factor plot, including tryptophan (1), phenylalanine (2), tyrosine (3), glycerol-3-phosphate (4), glycine (5), choline (6), creatine (7), asparagine
(8), succinate (9), methionine (10), alanine (11), lactate (12), valine (13), and isoleucine (14). The OLPS-DA model had R2Y and Q2Y coefficients of
0.75 and 0.32, respectively, and its ROC curve had an AUC value of 0.98 (Supplementary Figures S1, S2).
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where it acts inhibiting the prolyl hydroxylase domain-
containing enzymes (PHD) (Yang et al., 2012). Under normal
oxygenation, PHD constantly degrades the hypoxia-inducible
transcription factor (HIF). This O2-sensitive factor mediates the
response to hypoxia through the expression of genes that
regulate cellular energy production, biosynthesis, cell growth,
and redox homeostasis (Yang et al., 2014). In our cohort of
severe COVID-19 patients lower initial PAFI scores were
observed, indicating decreased blood oxygenation (Yang
et al., 2012). While increased succinate levels would be
expected in this scenario, it is known that mechanical
ventilation periods like the ones experienced by our patients
lead to succinate downregulation (Mussap and Fanos, 2021). As
previously reported, these results indicate that despite high
sensitivity, changes in succinate levels are not suitable
indicators of disease severity or patient prognosis (Mussap
and Fanos, 2021).

Choline levels were also found to be significantly lower in
COVID-19 samples. This has also been reported in serum from
severe COVID-19 patients, where an increase in the
consumption of this trimethylamine caused by activation of
macrophage innate immune receptors was linked to

extracellular cytokine secretion (Sanchez-Lopez et al., 2019).
The presence of pro-inflammatory components in
bronchoalveolar lavage fluid is elevated even in severe
COVID-19 patients treated with glucocorticoids, suggesting
that slowing down the cytokine storm is a critical strategy
for disease control (Barberis et al., 2020).

Similarly, we found a significant drop in glycerol-3-
phosphate levels among COVID-19 samples. This
phosphorylated polyol is tightly related to phospholipid
metabolism, which is now known to be deregulated in
COVID-19 patients based on serum metabolomic analyses
(Shen et al., 2020; Shi et al., 2021). More importantly, it has
been reported that the decrease in the levels of this species are
directly related to severity in COVID-19 patients (Wu et al.,
2020). Although the reduction in glycerol-3-phosphate
concentration at the site of SARS-CoV-2 infection warrants
further investigation, our results corroborate that this
metabolite could be considered as a biomarker of severe
manifestations of the disease.

Finally, lactate was the most widely expressed metabolite
across both cohorts with no statistically significant differences
between them. This finding is consistent with the known fact that

TABLE 2 Metabolite relative concentrations in COVID-19 and non-COVID-19 patients. Variations with p-values <0.05 are indicated with bold numbers.

Metabolite COVID-19 Non-COVID-19 Fold changea p-value

Alanine 1.842 ± 0.205 1.306 ± 0.304 −1.41 0.001

Asparagine 0.145 ± 0.047 0.070 ± 0.030 −2.07 0.002

β-Hydroxybutyrate 0.246 ± 0.116 0.205 ± 0.063 −1.20 0.217

Betaine 0.395 ± 0.330 0.330 ± 0.211 −1.20 0.327

Choline 3.262 ± 0.808 5.341 ± 1.662 1.64 0.008

Creatine 0.655 ± 0.236 0.523 ± 0.214 −1.25 0.139

Glucose 0.269 ± 0.090 0.679 ± 0.561 2.52 0.081

Glutamate 2.309 ± 0.426 2.465 ± 0.488 1.07 0.263

Glycine 1.645 ± 0.229 1.202 ± 0.207 −1.37 0.001

Glycerol-3-phosphate 0.027 ± 0.004 0.036 ± 0.006 1.33 0.002

Histidine 0.129 ± 0.123 0.040 ± 0.014 −3.25 0.052

Isoleucine 1.508 ± 2.527 0.400 ± 0.132 −3.77 0.128

Lactate 15.958 ± 4.933 17.677 ± 3.053 1.11 0.214

Methionine 0.212 ± 0.116 0.109 ± 0.038 −1.94 0.021

Phenylalanine 0.564 ± 0.254 0.272 ± 0.067 −2.07 0.007

Phosphocholine 1.050 ± 0.342 1.010 ± 0.250 −1.04 0.400

Succinate 0.006 ± 0.002 0.013 ± 0.004 2.17 0.002

Tyrosine 0.415 ± 0.134 0.180 ± 0.052 −2.31 0.001

Tryptophan 0.054 ± 0.026 0.028 ± 0.003 −1.92 0.011

Uracil 0.074 ± 0.018 0.059 ± 0.022 −1.25 0.102

Valine 1.480 ± 0.677 0.723 ± 0.246 −2.05 0.008

aFold changes were computed according to the guidelines of Vinaixa and coworkers (Vinaixa et al., 2012).
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high plasma lactate concentration is a marker of poor prognosis
and an indicative of metabolic acidosis in critically ill patients,
and was expected to be higher in both groups (Martha et al.,
2021).

In conclusion, distinct metabolic signatures associated with
energy metabolism and inflammatory pathways differentiate
COVID-19 from fatal pneumonias caused by other respiratory
infections. In particular, we found a significant increase in the
levels of branched-chain, aromatic, and sulfur-containing amino
acids in lung tissue from fatal COVID-19 cases. Many of these have
been recognized as sepsis and inflammatory markers and are
associated with lung injury, a condition that commonly leads to
severe refractory hypoxemia and is one of the main causes of
mortality in COVID-19 patients (Dhont et al., 2020; Donina,
2022; Ribeiro et al., 2022).

To our knowledge, this is the first comparative metabolomic
study employing lung tissue samples from COVID-19 patients. In
spite of the heterogeneity and wide range of symptoms observed,
our findings provide additional insights into the pathogenesis of
COVID-19 and have helped identify potential biomarkers for
disease severity and treatment efficacy. Notwithstanding, the

nature of the samples led to small cohorts affected differently
by comorbidities. Some of these, such as diabetes, could have a
sizable impact on the metabolic pathways identified as altered in
our analyses (Felig et al., 1977). Therefore, the preliminary results
reported in this work should be further corroborated in larger
scale studies.
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Nutrition during the perinatal period is an essential component of health and one
that can severely impact the correct development of a human being and its
overall condition, in all the subsequent stages of life. The availability of several
compounds, mainly macronutrients and micronutrients, plays a key role in the
balanced nutrition of both mother and baby and is a process with direct relation
to the gut microbiome. Thus, we hereby refer to the set of small molecules
derived from gut microbiome metabolism as the gut metabolome. These
continuous processes occurring in the gut of a gestating or lactating mother
related to microbial communities and nutrients, can be revealed by
metabolomics. In this study, we explore for the first time the gut metabolome
of pregnant and lactating women, from our region of Antioquia-Colombia,
applying untargeted metabolomics by LC-QTOF-MS, and molecular
networking. Regarding the gut metabolome composition of the cohort, we
found, key metabolites that can be used as biomarkers of microbiome
function, overall metabolic health, dietary intake, pharmacology, and lifestyle.
In our cohort, pregnant women evidenced a significantly higher abundance of
prostaglandins, alkaloids, corticosteroids, organosilicons, and natural toxins,
while in lactating women, lipids stand out. Our results suggest that unveiling
the metabolic phenotype of the gut microbiome of an individual, by untargeted
metabolomics, allows a broad visualization of the chemical space present in this
important niche and enables the recognition of influential indicators of the host’s
health status and habits, especially of women during this significant perinatal
period. This study constitutes the first evidence of the use of untargeted LC-
QTOF-MS coupled with molecular networking analysis, of the gut
microbiome in a Colombian cohort and establishes a methodology for
finding relative abundances of key metabolites, with potential use in
nutritional and physiological state assessments, for future personalized
health and nutrition practices.

KEYWORDS

gut microbiome, pregnancy, lactation, perinatal nutrition, untargeted metabolomics,
molecular networking, gut metabolome
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Introduction

All nutrients come from the diet, and diet is one of the most
important aspects impacting and modulating health and the gut
microbiota. This ‘microbial’ organ within our guts, and the set of
genes it contains, called the microbiome (El Hage et al., 2017) have
been extensively studied over the last decade. Several of these studies,
now published in prestigious journals, have uncovered that
dysbiosis, or an imbalance of the intestinal microbial
communities (microbiota) and the decrease in ecological diversity
within the gut, are related to gastrointestinal, metabolic, and
autoimmune diseases, mental disorders, and even some types of
cancer (Derrien and Veiga, 2017; Deng et al., 2021; Zhao et al., 2021;
Christovich and Luo, 2022; Horn et al., 2022). Since the gut
microbiome has a crucial role in the absorption and metabolism
of nutrients, both macro and micro, aiming for a balanced microbial
community in the gut, helps maintain the host homeostasis, and
builds the intestinal barrier (DAS & Nair, 2019). The presence or
absence of specific microbial genera or species has been associated
with multiple diseases, most of them, non-communicable ones, such
as inflammatory bowel disease, diabetes, obesity, some types of
cancer, Parkinson’s, and Alzheimer’s, among others (Novakovic
et al., 2020; Zhang et al., 2020; Bardenhorst et al., 2023).
Regarding micronutrient absorption, Hadadi and collaborators
(2021) addressed the importance of the gut microbiome for
maintaining the balance of the host vitamins and minerals. They
also address the micronutrient-microbiome axis as a bidirectional
entity, and according to other studies, several micronutrient
deficiencies could be positively or negatively associated with the
gut microbiota (Hadadi et al., 2021). Another study carried out by
Maynard and Weinkove has revealed that certain host microbes,
such as C. elegans and E.coli, play a role in the effective
supplementation of micronutrients by the secretion of
siderophores (iron and B12), or the uptake and conversion into
more readily absorbable derivatives or micronutrients, such is the
case of folic acid (Maynard and Weinkove, 2020). Moreover, Bielik
and Kolisek (2021) reported the positive effect of probiotics on
mineral absorption, stating they are promising due to their ability to
modulate the composition and metabolism of the gut microbiota
(Bielik and Kolisek, 2021).

On the other hand, the perinatal period is marked by hormonal,
immunological, and—especially during the late stages of healthy
pregnancies without complications—by inflammatory changes that
alter the function and bacterial composition of the mother’s gut
(Mandal et al., 2016). Estrogen and progesterone also impact this
composition through their effect on bacterial metabolism and the
increase in abundance of pathogenic bacteria (Edwards et al., 2017).
It is also known that the gut microbiota contributes to the regulation
of glucose metabolism in pregnancy (Brantsæter et al., 2011). For
example, the abundance of the genus Collinsella sp. Is positively
correlated with circulating insulin, and low dietary fiber intake was
associated with a gut microbiota favoring lactate fermentation, while
high fiber intake promotes short-chain fatty acid-producing bacteria
(Fu et al., 2022). Related to this, low dietary fiber may enable the
overgrowth of Collinsella sp. and alter the overall fermentation
pattern in gut microbiota (Gomez-Arango et al., 2018). This
suggests that dietary choices during pregnancy can modify the
nutritional ecology of the gut microbiota. Besides, in a study

conducted on pregnant women, it was shown that there are
significant differences in the relative abundance of several genera
in women on a vegetarian diet, specifically a reduction in Collinsella
sp., Holdemania sp., and an increase in the relative abundances of
Roseburia sp. and Lachnospiraceae sp. (Barrett et al., 2018). The
most recent research on gut microbiome during the perinatal period
in mice shows that the characteristic microbiota of the third
trimester of pregnancy, increases weight gain, insulin resistance,
and a greater inflammatory response when transferred to germ-free
mice (Koren et al., 2012). Studies in other populations different from
the American and European ones, such as those from Latin America,
the Caribbean, Asia and African, or from women and children’s
cohorts, are urgently needed as well as their underlying data (Magne
et al., 2016), in order to properly acknowledge the gut microbiome in
world-population scale, and be able to develop solutions to improve
the health status of the groups belonging to these communities, in
need of tools for this purpose.

In the quest for the characterization of generalizable traits of the
gut microbiome, metabolomics has appeared as one of the most
useful techniques to study it, being defined as a comprehensive
analysis of all metabolites in a biological system with their proper
identification and quantification (Fiehn, 2002), and is recognized as
a powerful top-down systems biology approach, for understanding
the genetics-environment-health paradigm and identifying clinically
relevant biomarkers (Moco et al., 2013). Metabolomics studies
within the gut, which we name here the gut metabolome, have
been increasing in the last years due to the strong relationship found
between some gut microbiome metabolic pathways and diseases,
especially non-communicable ones, and due to the involvement of
the gut microbiota in several biochemical functions directly
associated with perturbations that can lead to the development of
diseases (De Preter et al., 2015). Moreover, the identification and
relative quantification of metabolites in these environments can
point out lifestyle and dietary habits, and nutrient balance in the gut,
which in turn, allows the highlighting of specific disease
predispositions (Vernocchi et al., 2012), such as a mineral or
vitamin deficiency of (Lai et al., 2022; Wan et al., 2022), an
excess of an inflammatory molecule (Zhang et al., 2021), among
others. Metabolomics is a technique that can be performed over
different biological matrices such as cells, tissues, stool samples, and
biofluids such as plasma, saliva, urine, and blood. The sample
selection will always depend on the research or clinical question,
but biofluids are typically used to identify biomarkers, whereas
tissues and cells are used to investigate mechanisms associated
with the pathophysiological process (Chetwynd et al., 2017).
Regarding human stool samples, which reflect the gut
metabolome, most of the published research has focused on
characterizing its complex bacterial composition using next-
generation microbial DNA sequencing and sophisticated
metagenomic techniques. However, a growing number of
microbiome researchers are recognizing that considerable
information could be gained by using a more integrative
approach that also includes comprehensive fecal metabolite
analysis (Karu et al., 2018; Haffner et al., 2022).

One of the techniques widely used to study the gut (fecal)
metabolome, is liquid chromatography coupled to mass
spectrometry (LC-MS), which does not usually include
derivatization steps. The technique can be performed in a
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targeted or untargeted mode, depending on the experimental design,
and multiple approaches can be taken to analyze the raw data, thus
allowing the recognition of multiple chemical families and the
greater elucidation of the chemical space, phenotype, and
nutrients composition of the gut. In this research, we used
classical molecular networking and untargeted metabolomics to
make a pilot and first approach toward the characterization of
the chemical space of the gut microbiota (gut metabolome) of
women from Antioquia, Colombia. These women conform to a
pilot cohort (n = 23) of pregnant, 7) lactating 9), and reproductive-
age women 7) acting as controls. By using LC-QTOF-MS/MS
metabolomic techniques and data analysis, we aimed at the
identification and quantification of several compounds of
nutritional importance for the baby’s appropriate development,
which are supplied by the mother during these fundamental
stages of pregnancy and lactation. As stated above,
macronutrients, micronutrients, and derived metabolites play a
key role in the balanced nutrition of both mother and baby, and
both are intrinsically related to the gut microbiome. Thus, with this
pilot study, we wish to contribute to the maternal nutritional body of
knowledge in our area of the world since to date, there are no
published studies that explore the chemical diversity of the
Colombian female population during the mentioned stages,
despite these being key interventional periods for nutrition. It is
our wish that the knowledge derived from this pilot study and its
validation in larger cohorts can help avoid future developmental
complexities in an individual during later stages of their lives also
avoiding future health complications. Thus, the relevance of this
kind of pilot study and as mentioned earlier, the further validation of
its preliminary results in larger cohorts is evident, to broaden our
knowledge of the gut microbiome chemical space and phenotype in
the populations in Colombia, Latin America, and the Caribbean.

Materials and methods

Study cohort and sample collection

A group of twenty-three women volunteers, from Antioquia,
Colombia between 23 and 35 years old were enrolled in the study,
between August 2020 and May 2021. Nine of them were lactating,
seven were pregnant and seven were control group (non-pregnant or
lactating women) of reproductive age (Figure 1). Both pregnant and
lactating women were enrolled since they complied with a healthy
pregnancy/lactation stage, without complications. Average values of
the different variables measured for each group of the cohort are
detailed in Table 1, as well as detailed information for each volunteer
(age, height, weight, pregnancy or postpartum week, lipid profile)
which was saved as correlated metadata for the study. As inclusion
criteria, the selected cohort must declare non-consumption of
antibiotics in the past 6 months before the sample collection.
Two different samples were taken from each volunteer, a blood
sample was collected in collaboration with Abad Laboratory, to
measure the lipid profile (low-density lipoprotein (LDL), high-
density lipoprotein (HDL), triglycerides, and total cholesterol),
and a stool sample was provided. This last sample was processed
at Universidad EAFIT, within the next 24 h of collection, in an
anaerobic chamber (Vinyl Anaerobic Chamber Type B from Coy

Laboratory Products). Briefly, 200 mg of it was homogenized in
1 mL pH 7.2 buffer solution (0.05% K2HPO4, 0.05% KH2PO4,
0.05% MgSO4 x 7H2O, 0.0005% FeSO4 x 7H2O, 0.005% (NH4)
2SO4, 0.1% cysteine, 0.001% resazurin, and 20% glycerol) (Hayashi
et al., 2002) and stored at −80°C for any subsequent use.

Sample treatment

Frozen Stool samples were weighted, lyophilized at −80°C for 72 h,
and weighed again to determine the removed water content percentage.
Then, nitrogen gas was injected for 10 min into each sample to guarantee
an inert environment. For extraction, 60 mg of each lyophilized sample
was mixed with 300 µL of MeOH and vortex-mixed for 5 min.
Subsequently, samples were taken to an ultrasound for 30 min and
vortex-mixed again for 5 min. Finally, samples were centrifuged at
180,00x g, 4°C for 15 min and 100 µL of the extract was used for the
analysis by LC-QTOF-MS (Cheng et al., 2020).

Metabolomic analysis

Data acquisition for untargeted metabolomics and
molecular networking using RP-LC/MS and HILIC-
LC/MS

Metabolomics data from fecal samples were acquired using an
Agilent Technologies 1,260 Liquid Chromatography system coupled
to a 6545 Q-TOF quadrupole time-of-flight mass analyzer with
electrospray ionization. For the reversed-phase, 2 µL of the sample
was injected into a C18 column (InfinityLab Poroshell 120-EC 100 ×
2.1 mm, 1.9 µm) at 40°C. The mobile phases used for elution were
composed of 0.1% (v/v) formic acid inMilli-Qwater (Phase A) and 0.1%
(v/v) formic acid in acetonitrile (Phase B) pumped at 0.4 mL/min with a
gradient starting at 5% B, increased at 96% B in 15min and kept there
1 min and then, at 16.1 min, going back to the initial conditions until
20 min. Detection by mass spectrometry was performed in positive ESI
mode in full scan and autoMS/MS from 50 to 1,100 m/z and 20eV.
Throughout the analysis, two reference masses were used for mass
correction: m/z 121.0509 [C5H4N4 +H]+, and m/z
922.0098 [C18H18O6N3P3F24 + H]+, corresponding to protonated
purine and protonated hexakis, respectively.

For hydrophilic interaction chromatography, 5 µL of the sample
was injected into a HILIC-Z (InfinityLab Poroshell 100 × 2.1 mm,
1.9 µm) column, which was thermostated at 30°C. The elution
gradient was composed of 10% (200 mM ammonium formate
pH 3): 90% H2O (Phase A) and 10% (200 mM ammonium
formate pH 3): 90% ACN (Phase B) with a constant flow of
0.5 mL/min. The chromatography gradient started at 100% of
phase B and decreased to 70% B in 10 min. The starting
condition was returned by minute 11 and kept there for 5 min
for re-equilibration time. Data were collected in negative mode
operated in full scan and MS/MS mode at 20 eV from 50 to
1,100 m/z.

Data processing and analysis for untargeted
metabolomic analysis approach

The full scan raw data from RP-LC/MS and HILIC-LC/MS was
processed using Agilent MassHunter Profinder Software B.08.00.
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The software uses the Molecular Feature Extraction (MFE)
technique and Recursive Feature Extraction algorithms for noise
reduction, feature deconvolution, and alignment. The data matrices
from each platform were filtered by presence and reproducibility,
keeping only the metabolites detected in at least 80% of all stool
samples and using a threshold of 20% based on the coefficient of
variation (CV) of metabolite levels in the quality controls (QCs).
Differences among the groups were explored using bothmultivariate
(MVA) and univariate (UVA) statistical analyses. For MVA, a
partial least-squares discriminant analysis PLS-DA model was
used for sample classification and to detect differences between
the groups using MetaboAnalyst 5.0 (https://www.metaboanalyst.
ca/MetaboAnalyst/ModuleView.xhtml). Metabolites with variable
importance in projection (VIP) ≥ 1 and a jackknifing confidence
interval that did not include zero were considered statistically
significant from the PLS-DA models. The univariate analysis
employed in this study used the Mann-Whitney U test in
MATLAB R2021b to evaluate the significant differences between

each metabolite (p-value < 0.05) in the following comparisons:
Lactating vs Control, Pregnant vs Lactating, and Pregnant
vs Control.

Metabolite identification

To annotate statistically significant metabolites, the CEU Mass
Mediator tool (http://ceumass.eps.uspceu.es/) was used, which
matches metabolites with libraries, in addition to analyzing their
correspondence with the mass spectral library and the generated
molecular formula. The databases Kegg (http://genome.jp/keg),
HMDB (http://hmdb.ca), METLIN (http://metlin.scripps.edu),
and Lipid MAPS (http://lipidmaps.org), as well as the software
MS-DIAL 4.80 (http://prime.psc.riken.jp/compms/msdial/main.
html) and Agilent MassHunter qualitative analysis software, were
also utilized for this purpose. The identification level assigned to
each compound was according to the Metabolomics Standards

FIGURE 1
Study design, cohort composition, samples used, and metabolomic analysis. aClassical molecular network was performed using GNPS and
Cytoscape. bUntargeted metabolomics used MetaboAnalyst 5.0, MATLAB R2021b, and CEUmass mediator, the libraries Kegg, HMDB, METLIN, lipid
maps, and MS-DIAL 4,80 software for metabolite identification.

TABLE 1 Characteristics of the study cohort. Values of total cholesterol, LDL, HDL, and triglycerides are presented in (mg/dL) units.

Lactating Pregnant Control

Number of volunteers 9 7 7

Age (years) 32.9 ± 2 28.6 ± 4.4 30.4 ± 10.7

BMI 22.5 ± 2.1 25.7 ± 67 21.4 ± 1.2

Total Cholesterol 215.67 ± 55.1 243 ± 50.4* 175.6 ± 32.8*

LDL 129.59 ± 51.8 127.9 ± 39.4 101.5 ± 29.2

HDL 62.3 ± 6.8* 78.9 ± 15.6* 60.5 ± 12.1*

Triglycerides 100.8 ± 49.8* 181 ± 45.1* 68.2 ± 17.3*

Gestational week 0 27.29 ± 3.9 0

Postartum week 13.3 ± 15.9 0 0

Super index *: Triglycerides and HDL (p-value = 0.01 and 0.03 respectively) were statistically different in pregnant women compared to lactating women. Triglycerides had a (p-value = 0.01) for

lactating women vs. the control group. Triglycerides, HDL, and total.cholesterol (p-value = 0.002, 0.03, and 0.04 respectively) were statistically significant between the pregnant and control

group.
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Initiative (MSI) by Fiehn (Sumner et al., 2007) where level
1 corresponds to the metabolites identified by reference standard,
level 2 to those that have MS/MS spectrum match and molecular
formula, level 3 with unequivocal molecular formula, and level
4 only with m/z database match.

Data processing and analysis for molecular
networking approach

For classical molecular networking, raw data (.d files) obtained
from the data acquisition with C18 and HILIC columns, were
converted into (.mzXML) format using MSconverGUI (Holman
et al., 2014). Once the data were confirmed to be reproducible and a
separation between groups was observed, the datasets were uploaded
to GNPS web platform GNPS–Analyze, Connect, and Network with
your Mass Spectrometry Data (ucsd.edu) (Wang et al., 2016) under
de massive code MSV000088880 MassIVE Dataset Summary (ucsd.
edu) for C18 data, and MSV000089161 MassIVE Dataset Summary
(ucsd.edu) for HILIC data. Two classical molecular networks were
built to visualize the features present in the samples’ chemical space,
and clustered by chemical families. In a second layer of information,
each feature was classified by color, as being part of either one cohort
group, two of them, or being a shared feature across the three groups
in the study. Each group (lactating, pregnant, control) had seven
volunteers meaning seven different datasets that act as replicates of
the chemical space of the said physiological state; we included a
fourth group which consisted of a mix of pure standards of dietary
choline derivatives as a control for this specific micronutrient, highly
important during pregnancy and lactation. Several of choline’s
biochemical route derivatives in the gut microbiome were
included, these being acetylcholine, betaine, phosphatidylcholine,
choline chloride, and trimethylamine. The network parameters set
in the GNPS platform were (Min pairs cosine: 0.75, Min fragmented
ions: 0.6, Min matched peaks: 6, Cluster size: 2, Analog search: do
search). Then, the generated molecular networks were exported to
Cytoscape (Ideker, 2003), followingmanual annotation and curation
of the clusters.

Network curation and annotation

This procedure was followed as proposed by Sierra-Zapata et al.
(2020). The total features table was exported from Cytoscape as
(.csv) file to analyze the abundances of each feature based on the
spectral count and the identification provided by the platform
(GNPS) for each feature. A query was used to extract the nodes
information of each sub-network (Supplementary Tables S1, S2) and
based on the library hit found for a feature through GNPS, we
assigned a chemical family name to each sub-network, by looking at
the metabolite’s functionality in PubChem. When non-conclusive, a
search in ChemSpider and the Human metabolome database was
done as well. In the cases where a unique node from the sub-network
was annotated, the entire sub-network was labeled by the same
chemical family, and when different nodes were identified, the
family name was given following the functionality that grouped
all of them. This is done in accordance with the algorithm of GNPS,
where a single node’s annotation, can be propagated to its
neighboring nodes connected by edges, given structural similarity
clustering (Wang et al., 2016). In Cystoscope, the nodes were colored

according to their presence in each group of the cohort: light blue for
the lactating group, dark green for the pregnant group, orange for
the control group, red for standard metabolites, and purple for the
group of metabolites present in both lactating and pregnant women.
This network was exported in (.pdf) format with the precursor mass
available as a label on the nodes, and the chemical family was then
added as a circle grouping the cluster of nodes. Given the family
name and its abundance (in numbers of spectra) among the
treatments, the relative abundance for each chemical family was
calculated in each group of the cohort to see any statistical difference
(Supplementary Material S1, S2). Also, a PCA was performed into
MetaboAnalyst using the raw data to visualize any clustering of the
chemical space of the cohort’s groups.

Results

Untargeted metabolomics analysis by RP-
LC/MS and HILIC-LC/MS

The cohort of volunteers and their characteristics, from where
the data were obtained, can be revised in Figure 1 and
Supplementary Datasheet S1. First, untargeted metabolomics
analysis of the data acquired from the volunteers’ samples,
according to the methods described above, was performed. A
multivariate analysis (MVA) was made using PLS-DA (Figure 2)
to compare data from Lactating vs. Control, Pregnant vs. Control,
and Lactating vs. Pregnant treatments. The PLS-DA model shows
values of R2 ranging from 0.95 to 0.99 and Q2 from 0.21 to
0.40 indicating a clear separation between the comparison of
features acquired by RP-LC/MS and HILIC-LC/MS and thus can
be considered a good feature selector model. Then, a univariate
analysis (UVA) was conducted to identify the differential
metabolites between the proposed comparisons. A total of
200 differential molecular features were identified in both
platforms through UVA and MVA analyses, considering those
with a p-value < 0.05 or VIP>1. Among them, 85 metabolites
were statistically different when comparing lactating and control
groups, 67 metabolites when comparing pregnant and control
groups, and 48 metabolites between pregnant and lactating
groups. Supplementary Table S3 shows the metabolites that were
detected as up or downregulated among the groups of the study,
including the significance metrics provided by the MVA and UVA
(VIP and p-value).

For pregnant women compared to lactating ones, it has been
found that piperine, benzenoids, hydroxypregnene,
glycerophosphoserines, glycerophosphates, deoxyinosine,
prostaglandins, biotin, and steroids (Figure 3A, Supplementary
Table S3) Pregnant vs. Lactating) were upregulated. Specifically,
hydroxypregnene, deoxyinosine, prostaglandins, and steroids were
detected as diminished in lactating women vs controls, thus being
differentially detected in the guts of pregnant, lactating, and women
of reproductive age.

Then, when comparing pregnant women with non-pregnant nor
lactating controls (Figure 3B) increased levels of alkaloids, bile acids,
carbohydrates, corticosteroid hormones, some fatty acids,
glycerophosphocholines, glycerophosphoserines, glycerophosphates,
sphingolipids, and sterols were found. Meanwhile,
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FIGURE 2
Supervised PLS-DA models for metabolomics by reverse-phase (RP) in positive mode and Hydrophilic interaction chromatography (HILIC) in
negative mode. (A) R2:0.95404, Q2:0.21976; (B) R2: 0.956, Q2: 0.29733; (C) R2: 0.9692, Q2: 0.12499; (D) R2: 0.99479, Q2: 0.37436; (E) R2: 0.99663, Q2:
0.27773; (F) R2: 0.99622, Q2: 0.40789.

FIGURE 3
Hierarchical Clustering Heatmaps of metabolome data (A). Pregnant vs. Lactating (B). Pregnant vs. Control (C). Lactating vs. control.
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glycerophosphoglycerols, steroids, and 53% of the total fatty acids found
showed a decrease in the pregnant group. Specifically,
glycerophosphocholines and glycerophosphoserines, corticosteroid
hormones, bile acids, fatty acids, carbohydrates, and sterols are
increased both in lactating and pregnant women gut metabolome
when compared to control women in the cohort, as found by this
methodology of untargeted metabolomics.

Importantly, for lactating women compared to non-pregnant nor
lactating women of reproductive age, it has been found that amines,
phthalic acid, urobilinogen, acetylglucosamine, corticosteroid hormones
such as hydroxypregnene, fatty amides, glycerophosphoglycerols,
glycerophosphoethanolamines, glycerophosphoinositol, prostaglandins,
peptides and proteins, polyketides, steroids, and vitamin D were
mostly downregulated in a range of 0.1 to 0.7 fold change
(Figure 3C; Lactating vs. Control). On the other hand, in the
lactating group, there were also notable upregulations compared
to controls observed in various chemical families, such as bile acids,
carnitines, ceramides, glycerolipids, glycerophosphocholines,
glycerophosphoserines, and palmitoyl dopamine. Furthermore,
amino acids and derivates showed a 40% increase, as did
carbohydrates (50%), benzoic acids (67%), fatty acids (63%),
corticosteroid hormones (67%), and sterols (80%).

Chemical space defined by molecular
networking

Before analyzing the data by molecular networking, a principal
component analysis was performed by MetaboAnalyst (Xia et al.,
2009), evidencing that for the HILIC platform, samples from the
pregnant group clustered together and correlated (Figure 4B),
separating themselves from the other cluster of control and
lactating groups of volunteers. However, in the analysis by RP-
LC grouping is not as evident as in the data obtained by HILIC,
although a distinction is still observed between the volunteers in

each group (control vs lactating vs pregnant ones, Figure 4A). When
running the classical molecular network at the GNPS platform, we
obtained 382 annotated metabolites (nodes or features) out of 1,583
(24% of the chemical space identified), for the C18 column, and
118 out of 465 (~25% of the chemical space identified) for the
HILIC column. A chemical family was assigned as the name to
each sub-network that had at least one annotated metabolite,
getting a total of 32 chemical families for the C18 column
(Figure 5), and the relative abundance compared across groups
of the study of the most biologically significant of them (20) is
shown in (Figure 7A).

Among the chemical families identified, we observed the
following in concordance with the untargeted metabolomics
approach (results presented in the section above):
glucosylceramides, sphingolipids, bilirubin metabolism,
phosphocholine and derivatives, indole acetic acid and related
hormones, glucosyIceramides, diacylglycerol, primary bile acids,
amino acid (tryptophan), carnitine derivatives, omega-6, omega-3
fatty acids and derivatives. Of these, carnitine derivatives, ceramides,
lysophospholipids, phosphocholine derivatives, secondary bile
acids, and tryptophan were in higher abundance in lactating
women. Nevertheless, we also observed a larger identification of
phytonutrients or plant-derived metabolites in the gut metabolome
of the cohort such as monoterpenoids, terpenoids, and aromatic
compounds from plants, vitamin E related compounds, coumarin-
related compounds, caffeic acid and from rosemary plant; as well as
pharmaceutical molecules (glucocorticoids and allergic conditions
treatment, human aspirin metabolism, cardiac glycoside,
anticoagulant warfarin) when using this molecular networking
untargeted metabolomics approach. We also detected compounds
with a broad classification as organosilicons and other natural
toxins, in the gut metabolome of the cohort, in a significantly
higher abundance in control women (of reproductive age).

For the HILIC column, 11 chemical families were annotated
(Figure 6) and the relative abundances of all of them are shown in

FIGURE 4
Principal component analysis (PCA) from LC-MS/MS raw data, (A) using C18 column and (B) HILIC column.
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(Figure 7B). The HILIC column, as a method able to detect polar
compounds, allowed us to identify the following chemical families:
betaine, phytonutrients as lignans and neolignans from plants,
gIycoside and lipids derivatives from plant food sources, plant
polyphenols, raffinose trisaccharides, glucosinolates and
lipopolysaccharides which are proven prebiotic compounds
(Zhang et al., 2022), glutamic acid derivatives, benzene
derivatives, sphingolipids.

Discussion

The gut microbiome of humans is estimated to comprise around
45 million non-redundant genes (Sender et al., 2016; Tierney et al.,
2019).When compared to the human genome and its approximately
20.000 genes, the microbiota exceeds this capacity more than
1,000 times, evidencing its profound potential to influence the

biochemical environment of the host (Lee-Sarwar et al., 2020).
More surprisingly, the Human Microbiome Project discovery of
metabolic pathway abundances in the gut is relatively consistent
across populations, while taxonomic composition varies between
individuals. This denotes that a core set of conserved pathways is
associated with microbial genes, but their abundance varies
depending on the taxonomic composition of this environment
(Huttenhower et al., 2012). Besides, microbial functions are
closely reflected by the composition of the metabolome, or better
said, the collection of small molecules present in a sample. Although
the human body houses many discrete microbiomes and
metabolomes, the gut is taxonomically the most diverse and
largest site (Thursby and Juge, 2017). Gathering the ideas
exposed before, gut metabolome studies are now being
considered the next Frontier to unveil the gut microbiome and
are becoming prevalent in studies concerning this so-called organ,
since they reflect the phenotype of the individual and thus, provide a

FIGURE 5
The molecular network created in GNPS for LC-MS/MS data acquired using the C18 column. Each node represents a single metabolite precursor
mass (feature) and the color indicates the physiological state where each metabolite was found. Lactating (light blue), pregnant (green), control (orange),
lactating and pregnant (purple), lactating and control (dark blue), pregnant and control (light green), lactating, pregnant and control (yellow), and the
standards (red). Grey nodes denote the confluence of that feature in all groups within the study.

Frontiers in Molecular Biosciences frontiersin.org08

Londoño-Osorio et al. 10.3389/fmolb.2024.1250413

163

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1250413


more accurate perspective of the biochemical and metabolic
processes taking place in this environment.

In this respect, our study offers various conclusions, some of
them new and others reinforcing previous evidence from the
scientific community on the gut microbiome and its associated
metabolome. First, the gut metabolome or chemical space
associated with the gut is a rich environment where important
biomarkers of health can be detected (Figures 3–7). This is
important in the way that the same metabolites are not always
detected in serum metabolomics (Dhakan et al., 2019; Wen et al.,
2020). Second, although our cohort is small (n = 23), the gut
metabolome of pregnant, lactating, and women of reproductive
age from our region of Antioquia (Colombia), evidences

structural differences between groups both in its composition
and relative abundance, denoting a plausible different core
composition of microbial and host metabolism (Figures 2–6).
In the case of microbial metabolism, these differences can be
attributed to the differential taxonomic communities associated
with each group of women according to their physiological state,
as stated before (Koren et al., 2012). Specifically in this study, our
findings suggest that, for the physiological stages of pregnancy
and lactation, metabolites related to fats mobilization and
membrane formation such as glycerophosphocholines,
glycerophosphoserines, and fatty acids; hormones
(corticosteroids); bile acids; carbohydrates and sterols are
increased, being significantly overexpressed both in lactating

FIGURE 6
Molecular network created in GNPS for LC-MS/MS data acquired using HILIC column. Each node represents a single metabolite mass and the color
indicates the physiological state where each metabolite was found. Lactating (light blue), pregnant (green), control (orange), lactating and pregnant
(purple), lactating and control (dark blue), pregnant and control (light green), lactating, pregnant and control (yellow), and the standards (red). Grey nodes
denote the confluence of that feature in all groups within the study.
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and pregnant women’s gut metabolome (Figures 3–7). This result
is expected since, specifically for lipids metabolism, previously
published findings reporting multiple physiological changes that
occur in healthy, gestating women, which contribute to the
alterations in lipid profiles, mainly to support the developing
fetus to whom cholesterol and essential fatty acids are essential
for normal development (Wild and Feingold, 2000). Also, larger
doses of foods rich in healthy fats are needed to meet the
metabolic demand, especially for the nutrient choline, which is
highly available in fats (Zeisel, 2013). Our findings, also correlate
with a transformation of the gut microbiota into a
proinflammatory immune state as pregnancy progresses
(Koren et al., 2012; Trevisanuto et al., 2013), since
prostaglandins, a main biomarker of both the promotion and
resolution of inflammation (Ricciotti and Fitzgerald, 2011), are
increased in this last group (Figure 3A). Also, corticosteroids
such as hydroxypregnene are decreased in the lactating stage but
increased in pregnancy, which could be an indication of
prescription of corticosteroids to treat symptoms of
autoimmune conditions or of inflammation, as well as being
one of the most important antenatal therapies available to
improve newborn outcomes before anticipated preterm birth
(El-Sayed et al., 2017). Also, interestingly, glucocorticoid
compounds with anti-inflammatory and immunosuppressive
effects are commonly used to treat inflammatory bowel
disease, asthma, allergies, and rheumatic diseases and are
upregulated among the pregnant group as well, denoting a
normal behavior in pregnancy where maternal glucocorticoids
critically rise reaching up to a 20-fold increase of mid-pregnancy
concentrations (Solano and Arck, 2020). Also, in lactating
women, we found an increased ratio of palmitoyl dopamine,
which is an endogenous, long-chain, linear fatty acid dopamide
with entourage effects in the endocannabinoid system
(Matsumoto et al., 2016). This is of high interest since its
biological significance in lactation is understudied and it is
then an interesting metabolite to further analyze as a biomarker.

Continuing with deeper insights into the unique metabolic traits
of each group of the cohort, it can be observed in Figures 3A,C, that
sphingolipids and ceramides are upregulated among the lactating
group. These metabolites are involved in the regulation of insulin
resistance during the perinatal period (Rico et al., 2017). It is also

abundant in human breast milk and has a positive impact on
cognitive functions and brain development of the infant (Dei Cas
et al., 2020). In addition, prostaglandins are known to affect uterine
contractility and cervical ripening and are important in the initiation
of labor (Wood et al., 2021). These we found as being upregulated in
pregnant women, which denotes the correct reflection of the gut
chemical environment with the state of the individual. Also, these
findings are in accordance with what Liang and collaborators found
in 2022. They found nine metabolites differentially expressed in
stool samples from pregnant women in the third trimester and full
term. These included levels of lipids and lipid-like molecules, such as
long-chain fatty acids and 21-hydroxysteroids, being upregulated in
pregnant women compared to full-term, whereas the levels of amino
acids and dipeptides showed a downregulation. On the other hand,
20-hydroxyarachidonic acid and palmitic acid were enriched at the
time of full-term pregnancy. Other metabolites like
cyclohexylsulfamate, 3,3-dimethylacrylic acid, hydroxyisocaproic
acid, and phenylalanylphenylalanine (Phe-Phe) were also
identified in fecal samples from Chinese pregnant women (Liang
et al., 2022).

In summary, for the chemical space composition of the gut or as
called by us in this research, the gut metabolome of our cohort, we
mainly observe metabolites that are either produced by the gut
microbiome bacterial metabolism or modified by it. Examples of
these compounds are bile acids, bilirubin (van Best et al., 2020;
Garcia et al., 2022), tryptophan (Stoll et al., 2016; Gao et al., 2020),
hormones (Jiang et al., 2021; Marć et al., 2022),
glycerophosphocholines. Thus, we can suggest that the gut
metabolome can be seen as a reflection of an appropriate gut
microbiome profile, understating appropriate as the balance of
the communities according to what has been reported for a
healthy state in a certain condition. Also, we prove that fecal
samples, which contain small and large molecules from the gut
microbiome, can indeed reflect the net result of nutrient ingestion,
digestion, and absorption by both gut bacteria and the
gastrointestinal tract (Ulaszewska et al., 2019.)

Another interesting finding in this study, regarding a more
general behavior of the population, is the reinforcement that gut
metabolomics reflects diet, drug consumption, and
pharmacokinetics, even if the person does not declare it or the
initial data collected in the enrolling questionnaires, such as the

FIGURE 7
Relative abundance of the chemical families among the groups, detected by C18 (A) and HILIC (B) column. Asterisks represent those chemical
families that are significantly different between groups (fold change ratio >1.8).
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one used in this study. For example, metabolites such as
coumarin, omega-3 and omega-6 fatty acids, and vitamin E
were detected, which are associated mostly with a plant-based
diet (Pistollato et al., 2015; Sebastiani et al., 2019); drugs such as
antihistamines and anticoagulants were found in the volunteers
that declared its consumption. Central nervous system
stimulants like caffeine were found significantly higher in the
control group, and it is coherent with behavior during pregnancy
and lactation, a time when women avoid high doses of this
metabolite.

These findings are in accordance with the ones by (Pires et al.,
2019), where the authors found significant metabolic changes in the
chemical ecology of the gut environment between populations of
individuals living in the Amazon, and those from an urban,
industrialized setting, which was mainly attributed to dietary
differences as well as diverse patterns of environmental exposure.
Furthermore, organosilicons and other toxins coming from the
heating of food, plastics, and agrochemicals, which can be
harmful as they accumulate over time only when they have small
particle sizes, are significantly abundant among the group of
pregnant women from our region (Antioquia) which is not an
encouraging finding from the public health perspective.
Considering these compounds, specifically, those with a low
silicon particle size, can overcome biological membranes and skin
barriers, being possibly transferred to the baby (Dixon and
Williamson, 2016), and can be endocrine disruptors.
Organosilicon compounds are widely encountered in commercial
products such as sealants, adhesives, coatings, medical products, and
cosmetics (Mojsiewicz-Pienkowska et al., 2016).

Additionally, other, natural, compounds were found at toxic
levels suggesting the ability of the methodology followed in the study
to detect abnormal levels of naturally present molecules. Such is the
case of volunteer 14, part of the pregnant women group, who
showed significantly higher levels of primary bile acids which
could be related to cholestasis and cause irreversible toxicity to
the fetus (Mazzella et al., 2001).

We would like to highlight as well, that studies in other
populations different from the American and European ones,
such as Latin peoples, Asian people, African people, or women
and children, are urgently needed as well as obataining the
underlying data to properly acknowledge the gut microbiome
and its associated chemical space on a world-populationscale.
This will allow an appropriate and significant characterization of
the gut microbiome of other countries and regions, as well as of
different conditions such as healthy pregnancies and lactation in
women. Furthermore, gut microbial communities change with
age and sex; with one study showing a strong positive association
between age and alpha diversity in young adults (less than
40 years old), and women were found to have more diversity
than men (De la Cuesta-Zuluaga et al., 2019), thus groups like
women, which have been previously excluded from study cohort
in microbiome studies, should be included. Finally, there is a
need to convert findings like the ones in this study into affordable
and accessible strategies to measure gut health in every
population. This reinforces the need for more studies on the
gut metabolome in larger, and the use of ordinated (e.g., PCAs),
clustering approaches, supervised models, or the employment of
unsupervised models like NMF which have the added advantage

that pre-calculated signatures of bacterial assemblages can be
reapplied to even a single metagenome, removing the need for
large cohort sizes capturing microbiome variation (Frioux
et al., 2023).

Overall, this exploratory study serves as a starting point to
describe the gut metabolome of healthy pregnant and lactating
women from Antioquia, Colombia, a special population
regarding the requirements of these physiological states and
the profound impact that maternity can have on child
development in terms of healthy growth, but also in its
adequate cognitive development, as well as its regional nature.
The two approaches to analyzing metabolomics data were
complementary in the study, we could say that molecular
networking serves as the starting point to have a broad
panoramic view of the metabolites present in the chemical
space. These can be later found in a more stringent and
quantitative way by the untargeted metabolomic analysis.

Conclusion

Gut metabolomics studies can shed light on the phenotype
differences of a population with a specific condition, such as
healthy pregnancies and lactation, from others. In this study,
within a cohort of women from Antioquia, Colombia, we found
that lactating women can be differentiated from other pregnant
and reproductive-age non-pregnant nor lactating women by a
gut metabolomic profile enriched in carnitine derivatives,
glycerophosphocholines, bile acids, ceramides, glycerolipids,
and glycerophosphoserines. Pregnant and lactating women,
when compared to reproductive age controls, are enriched in
glycerophosphocholines and glycerophosphoserines,
corticosteroid hormones, bile acids, fatty acids, carbohydrates,
and sterols. These metabolites can be further studied in a larger
population, to scale their occurrence, and plausibly develop
preventive biomarkers for healthy pregnancies. Metabolites
such as toxins, xenobiotics, and environmental contaminants,
which can be missed by other techniques, and are ubiquitous
harmful foreign chemicals present in the environment, were
detected in this study in fertile age, non-pregnant nor lactating
women denoting a presence in the diet and lifestyle of women
that can become pregnant in the future, posing a risk to the
infant’s health. The metabolite Palmitoyl domamine was found
as upregulated in lactating women, being reported for the first
time in a gut metabolomics study, and in this specific population.
Fibers and phytonutrients such as lignans and neolignans,
glycosides, and lipid-derivatives from plant food sources,
plant polyphenols, raffinose trisaccharides, glucosinolates, and
lipopolysaccharides which are proven prebiotic compounds,
were also found by molecular networking analysis in this
cohort, denoting the capacity of this method to detect dietary
compounds. Although our cohort is still limited for scaling these
conclusions to a population level, this research sets an initial
basis in our country and region, Latin America, for future
population level measurements of a normal gut metabolome
composition during the important perinatal period, which can
provide valuable information to enhance public health nutrition
strategies in middle-income countries.
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