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The World Health Organization estimates that over  
1.9 billion people worldwide are now obese or overweight 
[body mass index (BMI) > 27 Kg/m2]. Type 2 diabetes 
(T2D) is now recognized as the most devastating 
complications of obesity. Intimate relationship exists 
between obesity, innate (neutrophils, dendritic cells, 
macrophages, mast cells, and eosinophils) and adaptive 
(B and T lymphocytes) immune cells. Cells of the innate 
immune system produce inflammatory cytokines, and 
other factors leading to impaired insulin secretion and 
insulin resistance. Likewise, B lymphocytes (mostly B2 
cells) are activated in obese adipose tissue and contribute to 
proinflammatory activation of adipose tissue macrophages 
and T cells resulting in insulin resistance. Thus, obesity-
induced low-grade inflammation in adipose tissue, liver, 
skeletal muscle, and pancreas not only activates the innate 
and adaptive systems affecting metabolic homeostasis, it 
also results in fibrosis and necrosis. It is now becoming 
increasingly evident that fibrosis is a major contributor to 
metabolic dysregulation in obese and T2D patients and 

that advanced liver fibrosis leads to cirrhosis and death. The health risks associated with obesity 
are further exaggerated by smoking. This research topic consisting of 10 articles (9 reviews and one 
original) provide a comprehensive assessment of the impact of obesity on immunometabolism, 
cardiac functions, the connections of nicotine to non-alcoholic fatty liver disease (NAFLD), the 
expression of hepatic carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1), 
the role chromogranin A (CgA) and its peptides pancreastatin (PST) and catestatin (CST) in 
insulin sensitivity, the loss of skeletal muscle mass and function, and the alternate RNA splicing.
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Editorial on the Research Topic

Obesity, Smoking, and Fatty Liver Disease

Obesity is on the rise worldwide and is doing so at an alarming rate. Obesity constitutes a major risk 
factor for diabetes and associated disorders like altered innate (neutrophils, dendritic cells, mac-
rophages, mast cells, and eosinophils) and adaptive (B and T lymphocytes) immune cell responses to 
metabolism, diabetic cardiomyopathy (DCM), cardiovascular dysfunctions, non-alcoholic fatty liver 
disease (NAFLD), and certain forms of cancer. The health risks associated with obesity are further 
exaggerated by smoking. This research topic consisting of 10 articles (9 reviews and 1 original) 
provides a comprehensive assessment of the impact of obesity on immunometabolism, cardiac func-
tions, the connections of nicotine to NAFLD, the expression of hepatic carcinoembryonic antigen-
related cell adhesion molecule 1 (CEACAM1), the role chromogranin A (CgA) and its peptides 
pancreastatin (PST) and catestatin (CST) in insulin sensitivity, the skeletal muscle regeneration, and 
the alternate RNA splicing.

The first article by Mayoral Monibas et  al. discusses the identification and contribution of 
hepatic non-parenchymal cells such as resident Kupffer cells (KCs), recruited monocyte-derived 
hepatic macrophages (RHMs), resident innate lymphocytes or natural killer cells, and fat  
storing hepatic stellate cells (HSCs) in the development of NAFLD, non-alcoholic steatohepa-
titis (NASH), and fibrosis through the use of cell surface markers. The authors underscore the 
polarization of hepatic macrophages from anti-inflammatory (M2) to proinflammatory (M1) types 
during obesity, macrophage regulation of NAFLD/NASH, and the expression of hepatic genes 
during obesity. In a schematic diagram, they have shown that in obese liver M1-KCs and Ly6Chi 
macrophages stimulate HSCs that activate myofibroblast leading to fibrosis. The second article by 
Ray et al. highlights the interaction between the innate/adaptive immune system and the obesity-
induced changes in metabolism. They discuss how TNF-α released by M1-macrophages during 
obesity and lipopolysaccharide released by gut bacteria signal via the TNF receptor and toll-like 
receptors, respectively, and induce inflammation and consequent upregulation of proinflammatory 
genes. The authors describe polarization of anti-inflammatory adipose tissue M2 macrophage to 
proinflammatory adipose tissue M1 during obesity. The authors also highlight that polarization 
of anti-inflammatory M2-KCs to M1-KCs and RHMs including Ly6Chi during obesity results 
in decreased hepatic insulin sensitivity. The third article by Heinrich et al. highlights the role of 
hepatic CEACAM1 in obesity across multiple species and most notably demonstrates a significant 
reduction in hepatic CEACAM1 in obese subjects with fatty liver disease. The fourth article by 
Bandyopadhyay and Mahata underline contributions of two CgA-derived peptides, namely, PST and 
CST in regulation of obesity and insulin sensitivity. The authors discuss the mechanisms underlying 
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inhibition of glucose-stimulated insulin secretion, hepatic glu-
coneogenesis, and insulin-stimulated lipid synthesis by PST. 
Furthermore, they underscore how PST induces inflammation 
and endoplasmic reticulum stress leading to the development of 
insulin resistance. CST, on the other hand, decreases hyperten-
sion by inhibiting catecholamine secretion and releasing hista-
mine. They underline that CST alleviates adiposity by increasing 
lipolysis followed by increased β-oxidation of fatty acids. They 
also emphasize that CgA is proteolytically processed to counter-
regulatory peptides such as PST and CST for fine tuning and 
maintenance of metabolic homeostasis. The fifth article by 
Sinha-Hikim et al. critically reviews the connections of nicotine 
and high-fat diet (HFD) to NAFLD. Nicotine when combined 
with an HFD leads to NAFLD through multiple mechanisms, 
including generation of severe oxidative stress and increased 
hepatocellular apoptosis as well inducing adipose tissue lipolysis 
resulting in excess delivery of free fatty acid and perturbation 
of hepatic lipid homeostasis through inactivation of AMP-
activated protein kinase. Evidence also suggests a central role of 
the gut microbiota in obesity and its related disorders, including 
NAFLD. The pathogenesis of human NAFLD remains unclear, in 
particular in the context of its relationship to insulin resistance 
and visceral obesity. The sixth article by Sinha et al. underscores 
that skeletal muscle maintenance is a dynamic process and 
undergoes constant repair and regeneration. However, skeletal 
muscle regenerative capacity declines in obesity. They focus on 
obesity-associated changes in inflammation, metabolism, and 
impaired insulin signaling, which are pathologically dysregu-
lated and ultimately result in a loss of muscle mass and function. 
The seventh article (original) by Heinrich et  al. demonstrates 
that loss of hepatic CEACAM1 provides a unifying mechanism 
linking insulin resistance to obesity and NAFLD. The eighth 
article by Mishra et al. underlines the physiological steps leading 
to the development of DCM. The early steps include changes in 
substrate metabolism (abandoning glucose and relying mostly 
on fatty acids), oxidative and endoplasmic reticulum stress, 
formation of extracellular matrix proteins, and advanced glyca-
tion end products. The late steps embrace steatosis, apoptosis, 

fibrosis, and remodeling of cardiomyocytes resulting in DCM 
constituting left ventricular hypertrophy and reduced diastolic 
function. In a schematic diagram, they have shown how CCL7 
released by activated B  cells during obesity causes infiltration 
of monocyte-derived macrophages and subsequent stimulation 
of mast cells and infiltration of neutrophils. TGF-β secreted by 
activated monocyte-derived macrophages stimulates myofibro-
blasts to induce fibrosis. They also emphasize the differential 
expressions of various miRNAs in diabetic hearts and their roles 
in cardiac function and metabolism. The ninth article by Webster 
underlines the mechanisms underlying alternate RNA splicing 
and their implications in the development of liver, hepatic 
steatosis, and hepatocellular carcinoma. The author provides a 
detailed information on alternative splicing in liver and genetic 
manipulation of RNA-binding proteins in vivo. In addition, he 
has thoroughly described the RNA splicing SR proteins (with 
long repeats of serine and arginine) and their crucial roles in 
the development of hypertrophic and dilated cardiomyopathy, 
liver damages, and secretion of very low-density lipoproteins 
and triglycerides. The 10th article by Khullar et  al. discusses 
how cumulative interactive effects of genetic and environmental 
factors result in the development of diabetes. In particular, the 
authors describe how modifications in histone acetyl transferases 
and histone deacetylases with consequent change in gene expres-
sion cause diabetes-induced microvascular complications.
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Non-alcoholic fatty liver disease (NAFLD) poses a serious health hazard affecting 20–40% 
of adults in the general population in the USA and over 70% of the obese and extremely 
obese people. In addition to obesity, nicotine is recognized as a risk factor for NAFLD, 
and it has been reported that nicotine can exaggerate obesity-induced hepatic steatosis. 
The development of NAFLD has serious clinical complications because of its potential 
progression from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH), liver 
cirrhosis, and hepatocellular carcinoma. Multiple mechanisms can be involved in nicotine 
plus high-fat diet-induced (HFD) hepatic steatosis. Emerging evidence now suggests 
that nicotine exacerbates hepatic steatosis triggered by HFD, through increased oxi-
dative stress and hepatocellular apoptosis, decreased phosphorylation (inactivation) 
of adenosine-5-monophosphate-activated protein kinase and, in turn, up-regulation 
of sterol response-element binding protein 1-c, fatty acid synthase, and activation of 
acetyl-coenzyme A-carboxylase, leading to increased hepatic lipogenesis. There is also 
growing evidence that chronic endoplasmic reticulum stress through regulation of several 
pathways leading to oxidative stress, inflammation, perturbed hepatic lipid homeostasis, 
apoptosis, and autophagy can induce hepatic steatosis and its progression to NASH. 
Evidence also suggests a central role of the gut microbiota in obesity and its related 
disorders, including NAFLD. This review explores the contribution of nicotine and obesity 
to the development of NAFLD and its molecular underpinning.

Keywords: nicotine, high-fat diet, obesity, oxidative stress, non-alcoholic fatty liver disease

inTRODUCTiOn

In 2009, approximately 20% (~60 million) of Americans smoked and about ~88 million non-smokers 
were exposed to secondhand smoke (1). Unless dramatic progress is made in diminishing the initia-
tion and increasing cessation of combustible tobacco product use, a billion of preventable death will 
occur in twenty-first century worldwide (2). Thus cigarette smoking needs to be viewed as a chronic 
disease, and in addition to research on the difficult problem of smoking cessation, research also 
needs to be conducted on the detrimental effects of chronic cigarette use. The prevalence of smoking 
was 31.1% among persons below the federal poverty level (1), so smoking should be considered a 
health disparity. Cigarette smoking is the leading preventable cause of death and disability worldwide 
(3, 4). Smoking is a major risk factor for chronic obstructive pulmonary disease and lung cancer 
and devastating cardiovascular disease (CVD), such as myocardial infarction, sudden death, stroke, 
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and peripheral vascular disease (5–8), with a dose–response cor-
relation between CVD morbidity and mortality and the number 
of cigarettes smoked (8). Furthermore, usages of nicotine only 
formulations, such as transdermal patches, nicotine gum, and 
electronic cigarettes, in particular, are increasing (9, 10). The lack 
of targeted and effective strategies to control tobacco consumption 
contribute to large burden of cardiovascular disorders in low- and 
middle-income people worldwide, where CVD has become the 
leading cause of morbidity and mortality (8). Moreover, smoking 
leads to substantial financial costs to society. Between 2009 and 
2012, smoking cost the USA approximately $289–332.5 billion, 
with 46–53% of this amount spent on adult medical care and the 
rest due to loss of workplace productivity (4). The negative effects 
of smoking, thus, leads to reduced quality of life and loss of life and 
can lead to personal and national financial burden. The health risk 
associated with smoking can be exaggerated by obesity (11, 12).

Nicotinic acetylcholine receptors (nAChRs) are a family of 
ionotropic receptor proteins formed by five homologous or iden-
tical subunits and are involved in signal transduction between 
neurons and muscle cells (10, 13, 14). nAChRs are divided into 
muscle (α1, β1, γ/ε, and δ) and neuronal nAChRs (α 2–10 and 
β 2–4) (10, 14, 15). Neuronal nAChRs are further subdivided 
into those that form homomeric receptors when expressed in 
heterologous systems (α7-10) and those that form heteromeric 
receptors (α2-6 and β2-4) in different combinations (10, 14, 
15). nAChRs are also expressed in various tissues, including 
adipocytes, pancreatic beta cells, hepatocytes, myocytes, and 
cardiomyocytes (16–19). The nAChRs, which are activated by 
nicotine or its metabolites cotinine, can activate various signaling 
pathways that can alter cellular metabolic homeostasis (10). This 
review discusses emerging evidence of contribution of nicotine 
when combined with obesity to the development of hepatic 
steatosis and insights into the molecular mechanisms by which 
nicotine contributes to non-alcoholic fatty liver disease (NAFLD).

nAFLD is Highly Prevalent in Obese 
individuals and Can Be exaggerated by 
Smoking
Non-alcoholic fatty liver disease is the most common liver disorder 
and is associated with metabolic syndrome and diabetes mellitus. 
It includes the whole spectrum of fatty liver, ranging from simple 
steatosis to steatohepatitis [non-alcoholic steatohepatitis (NASH)], 
which can progress to liver cirrhosis and hepatocellular carcinoma 
(20–22). Data from the Framingham Heart Study showed that fatty 
liver is characterized by dysglycemia and dyslipidemia independ-
ent of visceral adipose tissue (23). There is increasing evidence 
that smoking can also contribute to NAFLD. Multiple logistic 
regression analysis from a retrospective follow-up study over a 
10-year period, involving 2,029 Japanese subjects, demonstrated 
that cigarette smoking (adjusted odd ratio 1.91; 95% confidence 
interval 1.34–2.72) is an independent risk factor for NAFLD (24). 
A statistically significant association between smoking history and 
severity of liver fibrosis was demonstrated in a large multicenter 
cohort of 1,091 subjects with biopsy-proven NAFLD (25). Of fur-
ther importance, the health risk associated with smoking, whether 
passive or active, is exaggerated by obesity, and smoking and obesity 

are the leading causes of morbidity and mortality worldwide (11, 
12). The life expectancy of an obese smoker is 13 years less than 
that of a normal-weight non-smoker (11). Furthermore, smoking 
lowers the body weight and body mass index (BMI), which make 
many people reluctant to quit smoking (11).

In the United States, 72% of the adult male population is 
overweight or obese out of which 11% have a BMI of 35 kg/m2 
and 4% a BMI of at least 40 kg/m2 (26). Obese men are at a higher 
risk to develop atherosclerosis, coronary heart disease, diabetes, 
hypertension, dyslipidemia, and NAFLD (27). NAFLD, in turn, 
can also be an independent risk factor of atherosclerosis and 
CVD (28, 29). Currently, 34% of the general population and over 
75% of the obese and extremely obese individuals are estimated to 
have hepatic steatosis (30). Hispanics have the highest prevalence 
of hepatic steatosis followed by Caucasians and then African-
Americans (31).

Mechanisms Linking nicotine to nAFLD
The hallmark of NAFLD is accumulation of triglycerides (TG) in 
the hepatocytes (steatosis). Multiple mechanisms have proposed 
to explain the accumulation of TG in the liver, including (i) 
increased dietary fat intake, (ii) excess free fatty acid (FFA) deliv-
ery from lipolysis of white adipose tissue, (iii) increased de novo 
lipogenesis, (iv) reduced fatty acid β-oxidation, and (v) reduced 
fat export in the form of very low-density lipoprotein (VLDL) 
(21, 32). The precise molecular mechanisms of the pathogenesis 
of steatosis and its progression to NASH are not well understood. 
AMP-activated protein kinase (AMPK) is a central regulator of 
lipid homeostasis and mediates suppression of lipogenic gene 
expression, such as acetyl-coenzyme A-carboxylase (ACC) and 
fatty acid synthase (FAS) through inhibition of sterol regula-
tory element binding protein-1c (SREBP1-c) and carbohydrate 
response-element binding protein (ChREBP) (33–35). ACC is 
the rate determining enzyme for the synthesis of malonyl-CoA, 
both a critical substrate for fatty acid biosynthesis and a potent 
inhibitor of fatty acid oxidation (33). AMPK can phosphorylate 
and inactivate ACC leading to inhibition of de novo fatty acid and 
cholesterol synthesis (33). AMPK can also increase the activity 
of malonyl-CoA decarboxylase to further decrease malonyl-CoA 
levels (33). Lipogenesis is further regulated by glucose, which 
activates ChREBP, which, in turn, activates gene expression of 
most enzymes involved in lipogenesis (21).

Two-Hit or Multiple-Hit Hypothesis
Steatosis can prime the liver to develop more progressive liver 
pathologies in response to additional metabolic and/or environ-
mental stressors. Mechanistically, this is commonly mediated by 
the prevalent “two-hit” hypothesis that implies accumulation of 
TG in hepatocytes (steatosis) in the first hit, followed by triggering 
progression to inflammation, oxidative stress, and apoptosis in 
the second hit (22, 35, 36). In more advanced cases, fibrosis is also 
exacerbated, leading to the progressive form of NAFLD, known 
as NASH. Environmental stressors [such as high-fat diet (HFD), 
cigarette smoke, drugs, and pollutants] or metabolic stressors 
(such as obesity, diabetes, hypertension, hypertriglyceridemia 
and hypercholesterolemia) are known to trigger progression to 
the second phase. Nonetheless, the molecular underpinning of 
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FigURe 1 | Representative H&e-stained liver sections from mice fed with normal chow diet (nCD) without (A) or with (B) nicotine exhibit normal 
histological appearance. Compared with a mouse on a high-fat diet (HFD), where a modest increase in lipid accumulation (arrow) is detected (C), combined 
treatment with nicotine and HFD causes a marked increase in lipid accumulation in the liver (D). (e–H) Representative light microscopic images of glutaraldehyde-
fixed, osmium tetroxide post-fixed, epoxy-embedded, and toluidine-blue-stained live sections from different treatment groups show nicotine plus a HFD (H) causes 
a striking increase in lipid accumulation of varying sizes in hepatocytes compared to those from mice on a HFD alone [(g), arrow]. Mice fed with NCD with (F) or 
without nicotine (e) have normal liver morphology. Scale bar = 25 μm [reproduced with permission from Friedman et al. (42)].
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steatosis is not well understood. Oxidative stress coupled with 
hepatocyte apoptosis is believed to play a pivotal role in patho-
genesis of NAFLD (22, 37, 38). In fact, emerging data suggest that 
hepatocyte apoptosis plays a key component in the progression of 
simple steatosis to NASH (22, 37). Notably, a proof-of-principle, 
randomized, double blind, placebo-controlled study of GS-9450 
(selective inhibitor of caspases 1, 8, and 9) suggests that reducing 
hepatocellular apoptosis may be a valuable therapeutic strategy in 
patients with NASH (39).

Smoking exacerbates effects  
of Dietary Fat on Liver
Animal experiments using first-hand (delivered via a smoking 
device designed to puff the smoke into the inhalation chamber 
housing the animals), second-hand smoke (side-stream whole 
smoke solution delivered via a puffer box), or nicotine and 
models of genetic or diet-induced obesity (DIO) provide perhaps 
the strongest evidence linking nicotine to hepatic steatosis and 
NAFLD. Yuan and colleagues (40) demonstrated that HFD-fed 
apoB100 transgenic mice on C57Bl6J background exposed to 
second-hand smoke exhibit lipid accumulation in the liver and 
this effect was mediated by inactivation of AMPK and activation 
of its downstream target SREBP-1. In another study, Azzalini and 
colleagues (41) demonstrated that first-hand smoke exacerbates 
NAFLD in obese Zucker rats. The effect of first-hand smoke on the 
severity of hepatic steatosis was associated with increased oxida-
tive stress, hepatocyte apoptosis, expression of key genes involved 
in hepatic fibrogenesis, and inactivation of Akt but stimulation 
of extracellular signal regulated kinase (ERK) signaling. We used 
the model of DIO in C57BL6J mice to study the mechanisms 
underlying the detrimental effects of nicotine and HFD in the 
development of fatty liver disease (42). Like humans, these mice, 

when fed a HFD deriving 60% of calories from fat, developed 
visceral adiposity, hyperglycemia, insulin and leptin resistance, as 
well as hepatic steatosis (43, 44). We elected to use a single drug 
(nicotine) as opposed to first-or second-hand smoke in order to 
eliminate the confounding effects of other components involved 
in cigarette smoking. Adult C57BL6 male mice were fed a normal 
chow diet or HFD and received twice daily injections of nicotine 
(0.75  mg/kg BW, IP) or saline for 10  weeks. Of note, the daily 
dosage of 1.5 mg/kg BW in mice results in a serum concentration 
of nicotine that is similar to the clinically relevant concentrations 
found in habitual cigarette smokers and nicotine-containing 
chewing gum users (19). We purposely used shorter (10-week) 
duration to examine the synergistic effects of these two insults 
in the initiation of NAFLD, as a longer exposure to HFD alone 
results in extensive steatosis (45) and systemic inflammation (46). 
We found that nicotine alone did not lead to hepatic steatosis, 
but it caused hepatic steatosis only when combined with HFD 
(Figure 1) (42). A significant (p < 0.01) increase in the Vv% of 
lipid droplets together with a reduction in the Vv% of endoplasmic 
reticulum (ER) (67.8%) and glycogen (49.2%) was also noted in 
hepatocytes from mice on HFD plus nicotine, compared to mice 
on HFD alone. The additive effects of nicotine on the severity of 
HFD-induced hepatic steatosis was associated with significantly 
greater oxidative stress, increased hepatic TG levels, higher inci-
dence of hepatocellular apoptosis, inactivation (dephosphoryla-
tion) of AMPK, and activation of its downstream target ACC (42).

Indeed, these above studies, using various experimental models, 
demonstrated that nicotine further worsens HFD-induced hepatic 
steatosis. Summation of the results further indicate that increased 
oxidative stress and hepatocellular apoptosis, inactivation of Akt 
and AMPK, and activation of its downstream targets SREBP-1 
and ACC, together with stimulation of ERK are involved in the 
pathogenesis of nicotine plus HFD-induced hepatic steatosis.
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FigURe 2 | Potential mechanisms of nicotine plus HFD-induced hepatic steatosis in obese mice. Nicotine plus a HFD promotes abdominal lipolysis, 
resulting in free fatty acid (FAA) release from adipose tissue into the circulation, thereby contributing to the buildup of lipids as triglyceride in the liver. In addition, 
nicotine plus a HFD may also promote de novo lipogenesis through inactivation of AMP-activated protein kinase (AMPK) and activation of its downstream target  
acetyl-coenzyme A-carboxylase (ACC), leading to the development of hepatic steatosis. Inactivation of AMPK can also stimulate lipogenesis through upregulation of 
key genes in the lipogenic pathway, such as fatty acid synthase (FAS) and ACC, by activating the transcription factor sterol regulatory element binding protein 1 c 
(SREBP-1c). Intrahepatic lipid accumulation can also trigger hepatocellular apoptosis through generation of oxidative stress coupled with activation of c-Jun 
NH2-termina kinase (JNK)-mediated apoptotic signaling. AMPK inactivation could further sensitize liver cells to nicotine plus HFD-induced apoptosis. There is also 
growing evidence that chronic endoplasmic reticulum stress through regulation of several pathways leading to oxidative stress, inflammation, perturbed hepatic lipid 
homeostasis, apoptosis, and autophagy, can also induce hepatic steatosis and its progression to non-alcoholic steatohepatitis. Evidence also suggests a central 
role of the gut microbiota in obesity and its related disorders, including non-alcoholic fatty liver disease (NAFLD). It is possible nicotine plus a HFD through changes 
in short-chain fatty acids metabolism, increased intestinal permeability and lipopolysaccharides activation of Toll-like receptors and inflammasomes, endogenous 
ethanol production, decreased choline availability and increased trimethylamine (TAM) production could cause NAFLD. The multiple mechanisms of nicotine and 
obesity-induced hepatic steatosis can results from both its nicotinic acetylcholine receptor-mediated and non-receptor effects.
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Contribution of Adipose Tissue Lipolysis 
to nicotine and HFD-induced Hepatic 
Steatosis
Adipose tissue has the unique function of storing TG in lipid 
droplets and upon lipolysis, to provide FFA to other organs 
during time of energy shortage (47). In obesity and other condi-
tions where cellular lipid homeostasis is perturbed, lipolysis can 
contribute to ectopic lipid accumulation (48). Mounting experi-
mental evidence supports that nicotine considerably decreases 
HFD-induced adiposity in mice, as determined by dual-energy 
X-ray absorption densitometry, computed tomography, as well 
as by magnetic resonance imaging, with no change in lean body 
mass (19, 49). Nicotine when combined with a HFD, however, 
significantly increases the levels of serum, hepatic TG, and 
circulating FFA (19, 42, 50). These results indicate that nicotine 
in mice on a HFD promotes lipid distribution from adipose 
tissue to other organs. Decisive evidence that increased adipose 
tissue lipolysis contributes to nicotine plus HFD-induced hepatic 
steatosis derives from studies showing that acipimox, an inhibitor 
of adipose tissue lipolysis, treatment significantly prevented nico-
tine plus HFD-induced increase in hepatic TG levels and hepatic 
steatosis (Figure  2) (42). A recent study (19) has also demon-
strated that acipimox treatment significantly prevented nicotine 
plus HFD-induced increase in serum FFA levels and serum and 

hepatic TG levels, as well as hepatic steatosis (Figure 2). This con-
cept is supported by another evidence showing that inhibition of 
adipose tissue lipolysis by adipose-specific ablation of desnutrin 
prevented ectopic lipid accumulation in the liver even when fed 
with a HFD (51). Together, these results suggest that adipose 
tissue lipolysis plays a major role in the development of nicotine 
plus HFD-induced hepatic steatosis.

Mechanistically, nicotine activates AMPKα2 in adipocytes, 
which phosphorylates MAP kinase phosphatase-1 (MKP1) at 
serine 334, resulting its proteasome-dependent degradation (19). 
Nicotine-induced reduction in MKP1, in turn, activates both p38 
mitogen-activated protein kinase (p38 MAPK) and c-jun-NH2-
terminal kinase (JNK), which phosphorylates insulin receptor 
substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to 
its degradation and the subsequent inhibition of Akt, resulting in 
increased adipose tissue lipolysis and circulating FFA levels (19).

The Role of eR Stress
Chronic ER stress induces several pathways leading to oxida-
tive stress, inflammation, perturbed hepatic lipid homeostasis, 
apoptosis, and autophagy that can lead to hepatic steatosis and its 
progression to NASH [reviewed in Ref. (52)]. ER stress is related 
with hepatic lipid metabolism by directly increasing lipogenesis 
and limiting VLDL formation. It has been demonstrated that 
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ER stress contributes to increased hepatic lipogenesis in ob/ob 
mice through SREBP1c activation while overexpression of ER 
chaperone BIP decreased ER stress and inhibited lipogenesis 
by inactivating SREBP1 (53). Furthermore, ER stress modulates 
several factors, including nuclear factor 2 erythroid-related factor 
2 (Nrf2), JNK, nuclear factor κB (NF-κB), and c/EBP homologous 
protein (CHOP), all of which play a role in the inflammatory pro-
cess, cellular defense against oxidative stress, and cell death. For 
example, Nrf2 serves as master regular of a cellular defense system 
against oxidative stress (54, 55). Under physiological conditions, 
Nrf2 is sequestered in the cytoplasm by Keap1, which facilitates its 
ubiquitination and proteasomic degradation. Upon exposure to 
oxidative stress, the sequestration complex brakes down and the 
dissociated Nrf2 translocates into the nucleus, where it binds to cis-
acting antioxidant response elements and promotes the transcrip-
tion of a large number of cytoprotective genes (56, 57). However, 
under pathological conditions, such as NASH, NRf2 activity is 
impaired (52). Consistent with the role of NrF2 in NAFLD, it has 
been demonstrated that genetic ablation of Nrf2 markedly exac-
erbates NASH (58). Conversely, enhanced expression of Nrf2 in 
mice bearing a hepatocyte-specific knockdown of Keap1 attenu-
ated the fatty liver induced by a methionine- and choline-deficient 
diet (59). JNK is activated in various animal models of obesity and 
also in patients with NASH and its deletion results in attenuation 
of fatty liver (22). Activation of JNK has also been documented 
in HFD-induced hepatic steatosis in apoplipoprotein E knockout 
mice (60) or nicotine plus HFD-induced hepatic steatosis in obese 
mice (42). NF-κB is a transcription factor and a primary regula-
tor of inflammatory action. Activation of NF-κB dimers is due 
to inhibiton of NF-κB kinase (IKK)-mediated phosphorylation-
induced proteasomal degradation of IκB, enabling the active 
NF-κB transcription factor subunits to translocate to the nucleus 
and induce target gene expression. Persistent activation of NF-κB 
signaling has been shown in animal models of NAFLD as well as 
in patients with NASH (35). Furthermore, CHOP plays a pivotal 
role in ER-induced cell death. Deletion of CHOP decreases 
hepatocyte apoptosis in alcohol-induced liver disease and reduces 
cholestsis-induced liver fibrosis (61, 62).

It is worth noting here that both nicotine (63, 64) and HFD 
(65, 66) are capable of generating hepatic ER stress. Thus, it is 
possible that nicotine plus HFD could generate severe hepatic 
ER stress leading to hepatic steatosis. Clearly, further studies are 
needed to define the role of ER stress in fatty liver disease trig-
gered by nicotine and HFD.

Connections of gut Microbiota to nAFLD
Evidence linking dysbiosis (also known as disruption of the nor-
mal gut microbiota) contributes to the pathogenesis of NAFLD 
has accumulated rapidly (67–69). Early studies have shown that 
patients with biopsy-proven NAFLD had significantly increased 
gut permeability compared to healthy volunteers (70). Both the 
increased gut permeability and prevalence of small intestinal 
bacterial overgrowth correlated with severity of steatosis in the 
patients with the NAFHD (70). The strongest evidence support-
ing the role of dysbiosis in NAFLD, however, stems from animals 
studies where the gut microbiome has been manipulated. It 
has been shown that microbiome from obese mice is linked to 

increased energy from the diet and this trail can be transmissible 
to lean adult germ-free mice by co-housing with obese mice (71). 
A growing number of studies examining how dysbiosis might 
drive NAFLD have identified a number of plausible mechanisms, 
including changes in short-chain fatty acids (SCFAs) metabolism, 
increased intestinal permeability and lipopolysaccharides (LPS) 
activation of toll-like receptors (TLRs) and inflammasomes, 
endogenous ethanol production, decreased choline availability, 
and trimethylamine production (69). For example, it has been 
shown that SCFAs can lower FAS activity and hepatic lipid syn-
thesis in HFD-fed mice through activation of AMPK and inac-
tivation of its downstream substrate ACC (72). Evidence exists 
that smoking can also induce profound changes in intestinal 
microbiota (73, 74). Taken together, it is possible that nicotine 
plus a HFD through changes in SCFAs metabolism, increased 
intestinal permeability and LPS activation of TLRs and inflam-
masomes, endogenous ethanol production, decreased choline 
availability and trimethylamine production could cause NAFLD.

COnCLUSiOn AnD PeRSPeCTiveS

Nicotine when combined with a HFD leads to NAFLD through 
multiple mechanisms, summarized in Figure 2, including gen-
eration of severe oxidative stress and increased hepatocellular 
apoptosis as well inducing adipose tissue lipolysis resulting in 
excess delivery of FFA and perturbation of hepatic lipid homeo-
stasis through inactivation of AMPK. There is also growing 
evidence that chronic ER stress through regulation of several 
pathways leading to oxidative stress, inflammation, perturbed 
hepatic lipid homeostasis, apoptosis, and autophagy, can also 
induce hepatic steatosis and its progression to NASH. Evidence 
also suggests a central role of the gut microbiota in obesity and its 
related disorders, including NAFLD. The multiple mechanisms 
of nicotine and obesity-induced hepatic steatosis is mediated by 
both its nAChR-mediated and non-receptor effects.

A better understanding of the mechanisms and various diverse 
signaling pathways responsible for nicotine plus HFD-induced 
NAFLD may also unveil novel pharmacological targets to treat 
fatty liver disease and adverse metabolic sequelae. The emerg-
ing knowledge about a direct connection of smoking or tobacco 
products to obesity and fatty liver disease should be considered 
during the evaluation of regulations on nicotine product manu-
facturing, distribution, and marketing.
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The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, 
in particular in the context of its relationship to insulin resistance and visceral obesity. 
Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in 
mice has resolved some of the related questions. CEACAM1 promotes insulin clearance 
by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a 
negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 
to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, 
global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, 
and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic 
of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a 
significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered 
by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic 
response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links 
NAFLD to insulin resistance and obesity.

Keywords: insulin clearance, insulin resistance, lipogenesis, fatty liver oxidation, lipolysis, NAFLD, visceral obesity

PHYSiOLOGiC ReGULATiON OF CARCiNOeMBRYONiC 
ANTiGeN-ReLATeD CeLL ADHeSiON MOLeCULe 1 (CeACAM1)

The CEACAM1 is a transmembrane glycoprotein that undergoes phosphorylation by the insulin 
receptor tyrosine kinase (1). Among insulin target tissues, CEACAM1 is predominantly expressed 
in the liver (2). This is consistent with its role in promoting insulin clearance, which occurs mostly 
in liver and to a lower extent in kidney. Consistent with the important role of the liver in regulating 
insulin and lipid metabolism, Ceacam1 transcription is coordinately regulated by insulin and fatty 
acids during fasting–refeeding conditions, with fatty acids at fasting repressing it via a mechanism 
depending on the peroxisome proliferator-activated receptor alpha (PPARα) (3, 4) and insulin 
inducing it in the first few hours of refeeding (3, 5).
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CeACAM1 PROMOTeS iNSULiN 
CLeARANCe AND MeDiATeS AN ACUTe 
NeGATive eFFeCT OF iNSULiN ON 
HePATiC DE NOVO LiPOGeNeSiS

Insulin is released from pancreatic β-cells in a pulsatile manner 
(6). The acute rise of insulin in the portal vein causes phospho-
rylation and activation of the insulin receptor tyrosine kinase in 
the hepatocyte (7, 8). This, in turn, leads to phosphorylation of 
substrates, including CEACAM1 (1). Upon its phosphorylation, 
CEACAM1 promotes receptor-mediated insulin uptake into 
clathrin-coated pits/vesicles of the hepatocyte to be eventually 
degraded and cleared from the blood (9, 10). This process medi-
ates the rapid extraction of ~50% of secreted insulin through its 
first pass into the liver.

Internalization of phosphorylated CEACAM1 as part of the 
insulin-receptor complex leads to its binding to fatty acid syn-
thase (FASN) (11), a key enzyme that catalyzes the conversion 
of malonyl-CoA to palmitic acid during de novo lipogenesis. 
CEACAM1 association downregulates FASN enzymatic activity 
and restricts hepatic de novo lipogenesis, likely to protect the liver 
against the potential lipogenic effect of approximately twofold to 
threefold higher level of insulin in the portal than the systemic 
circulation (12). Thus, CEACAM1 phosphorylation by the insu-
lin receptor in response to acute rise of insulin constitutes a key 
mechanism that underlies the maintenance of physiologic insulin 
levels, at the same time as mediating a suppressive acute effect of 
insulin on lipogenesis in liver. Combined, this restricts hepatic 
lipid production under normal physiologic conditions; assign-
ing a major role for CEACAM1 in integrating the regulation of 
insulin and lipid metabolism in the hepatocyte. Under condi-
tions of hyperinsulinemia, the pulsatility of insulin secretion is 
compromised (6), limiting insulin signaling in the hepatocyte, 
including CEACAM1 phosphorylation, and subsequently, the 
acute negative effect of insulin on FASN activity is removed to 
contribute to hyperinsulinemia-driven lipogenesis (11). This 
paradigm emphasizes the contrast between the previously unap-
preciated suppressive effect of acute insulin pulses on fatty acid 
synthesis and the well-recognized positive effect of chronically 
elevated levels of insulin on lipogenic genes’ expression by the 
coordinated action of sterol regulatory element-binding protein 
(SREBP1c) (13) and the upstream stimulatory factor 1 (14). 
Suppression of hepatic FASN activity by pulsatile insulin release 
proposes to include elevation in de novo lipogenesis as a manifest 
of hepatic insulin resistance in addition to increased hepatic glu-
cose production (via glycogenolysis and gluconeogenesis) (8, 15).

MUTATiNG CeACAM1 iN LiveR  
CAUSeS iNSULiN ReSiSTANCe AND 
NON-ALCOHOLiC STeATOHePATiTiS 
(NASH)

Mice with liver-specific inactivation (L-SACC1) or with global 
null mutation of Ceacam1 (Cc1−/−) exhibit impairment in insulin 
clearance leading to chronic hyperinsulinemia and systemic 

insulin resistance (owing to downregulation of insulin receptor 
expression) (16–18). They also exhibit elevated lipid production 
in liver and redistribution to the white adipose tissue to be stored; 
thus, contributing to visceral obesity and increased release of free 
fatty acid (FFA) and adipokines (19).

Mutant Ceacam1 mice also develop inflammation in 
liver, in part due to the loss of the anti-inflammatory effect of 
CEACAM1 (20), apoptosis, and oxidative stress. Additionally, 
they manifest chicken-wire bridging fibrosis, a characteristic 
feature of NASH, even when fed a standard chow diet, making 
them rare mouse models of spontaneous fibrosis on the C57BL/6J 
genetic background. The underlying mechanisms of fibrosis in 
Ceacam1 mutants are the subject of intense investigations in our 
laboratories.

DieTARY FAT ReDUCeS HePATiC 
CeACAM1 eXPReSSiON iN C57BL/6J 
MiCe

In uncomplicated obesity with low-grade insulin resistance, FFA 
are mobilized from white adipose tissue mainly to the liver to be 
removed by β-oxidation (21). This is supported by experimental 
evidence in rodents showing occurrence within few days of the 
initiation of high-fat intake as a result of dysregulated hypotha-
lamic control in the adipose tissue (22). While this early lipolysis 
occurs in the absence of insulin resistance in the adipose tissue, 
the released FFA can rapidly initiate hepatic insulin resistance 
(23), in part by activating PKCδ-mediated pathways (24).  
As the nutritional burden persists, hepatic lipotoxicity develops 
in response to progressively compromised β-oxidation relative 
to re-esterification. Concomitantly, hepatic insulin resistance 
progresses into systemic insulin resistance to be manifested in 
peripheral tissues, including the white adipose tissue with ensu-
ing advancement of a pro-inflammatory state (25).

Recent reports from our laboratories show that high-fat diet 
progressively reduces hepatic CEACAM1 level in C57BL/6J mice 
until it reaches >50% after 3 weeks, at which point, insulin clear-
ance is impaired and hyperinsulinemia develops with attendant 
hepatic insulin resistance and steatohepatitis (26). Consistent 
with the key role for CEACAM1 in diet-induced insulin resist-
ance and hepatosteatosis, adenoviral-mediated redelivery of 
wild-type, but not phosphorylation-defective CEACAM1 to the 
liver, completely reverses these metabolic abnormalities even 
while maintaining mice on a high-fat diet (27), demonstrating 
a causative role for the decrease in hepatic CEACAM1 level in 
sustaining diet-induced systemic insulin resistance and hepatic 
steatosis. That impairment of insulin clearance plays a significant 
role in hepatic insulin resistance in response to high-fat diet has 
recently been demonstrated in Asian men (28). Using a two-step 
hyperinsulinemic-euglycemic clamp, Bakker et  al. (28) showed 
that in contrast to age- and sex-matched Caucasians, young and 
healthy South Asian men develop impairment of insulin clear-
ance as well as hepatic insulin resistance in the absence of other 
metabolic alterations in skeletal muscle and white adipose tissue 
following 5 days of a high-fat Western diet intake. Several other 
studies in humans (28) as well as dogs (29) have supported the 
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FiGURe 1 | A pivotal role for carcinoembryonic antigen-related cell 
adhesion molecule 1 (CeACAM1) reduction in the pathogenesis of 
fatty liver disease and obesity. Reduction or mutation of Ceacam1 in the 
liver results in decreased insulin clearance from the portal circulation. 
Reduced clearance leads to hyperinsulinemia followed by insulin resistance 
(owing to downregulation of the insulin receptor) and increased hepatic 
lipogenesis. Elevation in hepatic lipogenesis leads to lipid redistribution to the 
while adipose depot to increase visceral adiposity. This leads to 
hyperleptinemia, which along with hyperinsulinemia, increases food intake 
and energy imbalance, further exacerbating obesity. Hyperinsulinemia drives 
hepatic lipogenesis and fat accumulation in liver.
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findings that defective hepatic insulin clearance is implicated in 
diet-induced insulin resistance.

The decrease in hepatic CEACAM1 by high-fat diet is attrib-
uted to lipolysis-derived FFA, in agreement with reducing hepatic 
CEACAM1 levels by intralipid–heparin infusion (24) and the 
negative effect of FFA on insulin clearance (30, 31). The underly-
ing mechanism of CEACAM1 repression by FFA is via PPARα 
activation (4). In the presence of normoinsulinemia, this provides 
a positive feedback mechanism on fatty acid β-oxidation as it 
limits the negative effect of CEACAM1 on FASN activity (11) and 
subsequently, reduces malonyl-CoA-mediated inhibition of fatty 
acids translocation to the mitochondria (3). When CEACAM1 
level is reduced by >50%, hepatic insulin clearance fails and 
chronic hyperinsulinemia develops, causing hepatic insulin 
resistance, at least in part by downregulating insulin receptors in 
the hepatocyte (32, 33) and triggering de novo lipogenesis by acti-
vating SREBP1c-mediated transcription of lipogenic genes (13), 
including acetyl-CoA carboxylase (ACC), a limiting enzyme in 
lipid biosynthesis. Elevation in ACC level (and activity) induces 
malonyl-CoA level, which in turn, inhibits fatty acid transport 
to the mitochondria and β-oxidation. Potentially contributing 
to the downregulation of β-oxidation under hyperinsulinemic 
conditions is the maintenance of insulin-stimulated phospho-
rylation and inactivation of Foxa2-mediated suppression of the 
transcription of genes involved in fatty acid β-oxidation (34, 35). 
Collectively, this limits fatty acid β-oxidation while promoting 
de novo lipogenesis, leading to hepatosteatosis. With the loss of 
the potential counter-regulatory anti-inflammatory function of 
CEACAM1, this causes a more robust change in the inflammatory 
milieu of the liver and steatohepatitis develops. Together, the data 
identify reduction in CEACAM1 expression as a novel molecular 
underpinning of the integrated regulation of lipid oxidation and 
hepatic insulin resistance (gluconeogenesis) by FFA mobilization 
from white adipose tissue (36–38).

ReDUCeD HePATiC CeACAM1 LeveLS 
CAUSeS OBeSiTY BY CONTRiBUTiNG  
TO eNeRGY iMBALANCe

High-fat diet represses hepatic CEACAM1 levels to impair 
insulin clearance and cause hyperinsulinemia that in turn, drives 
increased hepatic lipid production and output to the white adipose 
depot for storage (39). This is consistent with the well-accepted 
association of hyperinsulinemia and liver steatosis with high 
plasma Apolipoprotein B levels and visceral obesity in humans 
and rodents (40–45). Together with visceral obesity, sustained 
hyperinsulinemia reduces glucose transporter 4-mediated glu-
cose transport to cause insulin resistance in adipose tissue (46), 
as supported by hyperinsulinemic-euglycemic clamp analysis in 
Ceacam1 mutants (16–18, 47) and in the diet-induced model (26).

Consistent with the finding that reduction of hepatic 
CEACAM1 plays a critical role in diet-induced altered meta-
bolic response, transgenic protection of hepatic CEACAM1 in 
L-CC1 mice prevents hyperinsulinemia, insulin resistance, and 
hepatosteatosis in response to high-fat diet (26). It also limits the 
size of adipocytes and total fat mass by countering the negative 

effect of high-fat diet on energy expenditure and spontaneous 
physical activity (26). Similarly, adenoviral-redelivery of wild-
type CEACAM1 in the liver protects energy balance against 
high-fat intake, thereby reversing the gain in body weight and 
visceral adiposity (27). Given that CEACAM1 is not detected in 
the adipocyte at the protein level (2), it is likely that the gain-
of-function of hepatic CEACAM1 drives this positive effect on 
energy expenditure and adipose tissue biology (limited adipocyte 
size, fibrosis, and inflammation) (27, 39). The beneficial effect of 
hepatic CEACAM1 gain-of-function on insulin response in white 
adipose tissue could be mediated, at least in part, by the rise in 
plasma FGF21 (48, 49) that induces the locomotor activity (50) 
and energy expenditure (51, 52).

Both L-SACC1 and Cc1−/− mutant mice display visceral obesity 
and a higher body mass than their wild-type counterparts (16–18). 
Visceral obesity, which is partly caused by elevated hepatic lipid 
production and redistribution to white adipose tissue (19), leads 
to hyperleptinemia, which could in turn, alter response to leptin 
and cause energy imbalance. Consistently, global Cc1−/− null mice 
develop elevated production and secretion of leptin from their 
expanded while adipose depot in addition to increased total fat 
mass and obesity resulting from hyperphagia and reduced spon-
taneous physical activity (53). In addition to leptin resistance, 
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hyperinsulinemia also contributes to the obesity phenotype in 
these mice, at least in part, by inducing hypothalamic FASN level 
and activity (53), which in turn, causes hyperphagia (54) and 
lower physical activity (55, 56). Together, this demonstrates that 
altered CEACAM1-dependent insulin clearance pathways drive 
hyperinsulinemia-mediated link of hepatic steatosis to visceral 
obesity and increased total fat mass.

CONCLUDiNG ReMARKS

The mechanisms underlying the pathogenesis of non-alcoholic 
fatty liver disease (NAFLD) in humans remain unclear (57) 
and whether insulin resistance plays a role in NAFLD has been 
debated, owing to the lack of appropriate animal models that 
replicate all features of the human disease and its progression to 
NASH (58, 59). As summarized in this review, our laboratory has 
demonstrated in the last couple of decades that loss in hepatic 
CEACAM1 expression and its defective phosphorylation impair 
insulin clearance and subsequently, play a pivotal role in insulin 
resistance, fatty liver disease, and obesity (Figure 1) (9, 10, 16–19, 
25, 27, 39, 53, 60, 61). Demonstration of a role for impaired insu-
lin clearance in insulin resistance in human disease is emerging 
(62–65). In this regard, compromised hepatic insulin extraction 
has been shown to constitute a risk factor for obesity (66, 67), 
type 2 diabetes (68), metabolic syndrome (65, 69), and fatty liver 
disease (70). The study by Lee (71) showing a marked decline in 
hepatic CEACAM1 levels in patients with high-grade fatty liver 
and obesity coupled with our mechanistic studies demonstrating 
that redelivering CEACAM1 to the liver reverses diet-induced 
insulin resistance, fatty liver, and visceral obesity (27) emphasizes 
a critical role for CEACAM1 in metabolic control. Of note, while 

our studies show that reduction of hepatic CEACAM1 causes 
insulin resistance, hepatosteatosis, and visceral obesity, they 
also show that diet-induced visceral obesity represses hepatic 
CEACAM1 to cause fat accumulation in liver and insulin 
resistance (3, 26, 27). Further emphasizing the metabolic role of 
hepatic CEACAM1, liver-specific overexpression of CEACAM1 
curbs the metabolic abnormalities caused by high-fat diet and 
prevents insulin resistance and hepatosteatosis (26). Similarly, 
adenoviral-mediated redelivery of CEACAM1 to the liver reverses 
diet-induced metabolic derangement (27). Collectively, this posi-
tions the loss of hepatic CEACAM1 expression (and its resulting 
hyperinsulinemia and insulin resistance) on the crossroad of the 
pathogenesis of NAFLD and obesity.
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Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent due to the 
worldwide obesity epidemic and currently affects one-third of adults or about one billion 
people worldwide. NAFLD is predicted to affect over 50% of the world’s population by 
the end of the next decade. It is the most common form of liver disease and is associated 
with increased risk for progression to a more severe form non-alcoholic steatohepatitis, 
as well as insulin resistance, type 2 diabetes mellitus, cirrhosis, and eventually hepa-
tocellular carcinoma. This review article will focus on the role of alternative splicing in 
normal liver physiology and dysregulation in liver disease.

Keywords: non-alcoholic fatty liver disease, RNA splicing, hepatocellular carcinoma, splicing factors, microarrays

iNTRODUCTiON

Publication of the human genome sequence in 1995, and subsequently other mammalian genomes 
in the following two decades, has revealed a surprisingly small number of genes that must account 
for tremendous species diversity. Indeed, recent estimates have suggested that the number of human 
protein-coding genes may be as low as 19,000 (1). This is surprising given that the Drosophila mela-
nogaster and Caenorhabditis elegans genomes encode 17,000 and 21,733 genes, respectively (2, 3), 
and even the lowly amoeboflagellate Naegleria gruberi, a free-living unicellular eukaryotic organism, 
has 15,727 genes (4). These observations posed a diversity paradox for genetics and challenged the 
one gene-one protein hypothesis. Unlike prokaryotic and lower eukaryotic genes, most mammalian 
genes are composed of multiple coding exons with intervening non-coding introns of variable 
length. Very often these exons encode discreet protein modules or substructures. Transcription 
of these split genes produces a primary transcript that requires further processing to remove the 
intronic sequences, a process called RNA splicing. Much of our understanding of the mechanism of 
RNA splicing comes from elegant biochemical and genetic studies in yeast and has been extensively 
reviewed (5). The presence of exons and introns provides a solution to the diversity paradox by 
allowing assembly of different proteins by modular construction of RNA transcript isoforms through 
a process termed alternative splicing (6, 7). The diversity of RNA transcripts is further amplified 
by the use of alternative transcription start sites and polyadenylation sequences. Transcriptome 
sequencing has shown that upward of 90% of mammalian genes have multiple transcript isoforms, 
and an estimated 160,000 alternatively spliced transcripts are protein encoding (8, 9). Although 
85% of these genes have a predominant RNA transcript isoform (10), the minor isoforms can have 
different functions and may play an important role in disease.

Alternative splicing and the generation of protein diversity have broad implications for clinical 
disease. It is estimated that 50–60% of 31,250 disease-causing mutations in the Human Gene Mutation 
Database affect splicing (11, 12). Approximately 16% of these mutations are located directly in splice 
sites (13), and 66% are SNPs, microdeletions, or insertions within exons. While some of these latter 
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mutations have a pathogenic effect by altering protein sequence, 
a large proportion do not, but rather interfere with splicing by 
interrupting exonic splicing enhancers or silencers. Cancer has 
been termed a disease of the genome due to the accumulation 
of DNA damage and genetic alterations that cumulatively cause 
transformation and malignancy. Indeed many mutations alter 
protein function by creating constitutively active oncogenic 
proteins or disrupting tumor suppressor proteins. However, it is 
now increasingly recognized that many cancer-associated RNA 
transcripts do not result from point mutations in the RNA itself, 
but rather by changes in expression or function of splicing factors 
that regulate the ordered splicing of primary gene transcripts giv-
ing rise to aberrant expression of oncofetal isoforms with greater 
proliferative capacity.

MeCHANiSM OF ALTeRNATive RNA 
SPLiCiNG

Much of our understanding of mechanism of RNA splicing comes 
from genetic studies in yeast and biochemical reconstitution experi-
ments (5, 14). These studies have shown that the ends of an intron 
are aligned for excision by a complex network of RNA and protein 
interactions involving both splice sites in a large complex called 
the spliceosome. Initially the 5′ splice site is recognized by the U1 
small nuclear ribonucleoprotein particle (snRNP) by base pairing 
of the U1 small nuclear RNA to the 5′ splice site. The U2 snRNP 
is then recruited to the 3′ splice site and branch point sequence 
by the accessory factor U2AF. The complex containing the pre-
RNA, and the U1 and U2 snRNPs is called the pre-spliceosomal 
complex and defines the intron. This complex then recruits the 
U4/U5/U6 tri-snRNP, and the spliceosome undergoes a number 
of rearrangements including replacement of the U4:U6 duplex 
with a U2:U6 duplex, loss of the U4 snRNP, and displacement of 
the U1 snRNP on the 5′ splice site by the U6 snRNP to create 
the catalytically competent splicing complex. The actual splicing 
reaction then proceeds by two transesterification reactions first 
by the branch point adenine at the 5′ splice site then by the exonic 
terminal hydroxyl group at the 3′ splice site resulting in ligation of 
the two exons and liberation of an intron-lariat structure.

What defines whether an exon is recognized in a primary 
RNA transcript? While U1 and U2 snRNPs can interact across 
short introns to define the intron in typical in vitro splicing reac-
tions, this interaction is much less efficient when the size of the 
intron increases above 250 nucleotides (15). As most introns are 
kilobases in length, yet the average size of an exon is ~200  nt, 
definition of the splice sites in vivo is generally thought to occur 
across exons rather than introns, a process termed exon definition 
(16). Thus, exons are defined by binding of U1 and U2 snRNP 
across the exon in the primary transcript followed by the long-
range splice site pairing across the intron to assemble functional 
spliceosomes. Support for this exon-definition model comes from 
the finding that mutation of the downstream 5′ splice site on an 
exon can alter splicing of the upstream intron, so the sequential 
splicing of introns is coordinated and does not occur independent 
of each other.

How does this process allow for the use of different exons or 
splice sites during alternative splicing? In general, alternative exons  

contain weak splice sites that are not recognized efficiently 
(14). For genes that are co-transcriptionally spliced, this can be 
explained by a kinetic competition for assembly of the U1–U2 
complex across alternative exons, or for non-co-transcriptionally 
spliced genes, this could be explained by the differences in the 
stability of the resulting complexes. Whether these weak exons 
are recognized is determined to a large extent by the presence 
of cis-acting binding sites for RNA-binding proteins within the 
exon or adjacent introns in the primary RNA transcript (17–19). 
Two of the most well-studied families of RNA-binding splicing 
regulators are the SR proteins (16 members) and the hnRNPs (20 
members) (20–24), but there are also a number of less-studied 
families of RNA-binding proteins that regulate splicing, includ-
ing the CELF/BRUNOL family, the Zinc-finger proteins, and 
the RBM family (25–27). All proteins contain RNA-binding 
domains allowing sequence specific-binding to RNA. Proteins 
of the SR family have an RNA recognition motif (RRM) at the 
amino-terminus, and a C-terminal domain that is enriched in 
arginine/serine dipeptides (RS domain) and heavily phospho-
rylated. hnRNP proteins show greater structural diversity than 
SR proteins, with RRM, RGG (arginine/glycine rich box), or 
KH (K homology box) RNA-binding domains. Additionally, 
the hnRNPs have auxiliary functional domains, which mediate  
protein–protein interactions and/or localization, and are diver-
gent in protein sequence and structure (28). Both SR proteins and 
hnRNPs can promote or inhibit exon recognition depending on 
sequence context, thus modulating the usage of alternative exons 
or splice sites (14, 29, 30).

ALTeRNATive SPLiCiNG iN LiveR 
DeveLOPMeNT

While liver-specific transcriptional regulation is well established 
and has been studied for decades, liver-specific alternative splic-
ing is less well understood. Alternative splicing has traditionally 
been studied on a gene-by-gene basis, which required prior 
knowledge of the gene transcripts, but the development of high-
throughput array and RNA sequencing (RNA-seq) technologies 
has allowed an unbiased assessment of alternative splicing events 
(Table  1) (31). In a recent study, Nellore et  al. aligned 21,504 
human RNA-seq samples from the Sequence Read Archive to 
the human genome and compared exon–exon junctions to the 
known gene annotation databases (32). Approximately 19% of 
splice junctions (56,861) that were found in at least 1,000 samples 
were not previously annotated, indicating that a great deal of 
transcript diversity is still to be discovered. Brain, liver, and testis 
show the greatest diversity in transcripts with ~35–40% of genes 
showing alternative exon or splice site usage (33).

Changes in alternative RNA splicing have been detected dur-
ing the development of many tissues including the brain, heart, 
and skeletal muscle, and more recently in liver (31). Fetal liver 
does not perform a metabolic function as nutrients are provided 
from the mother via the placenta. Instead the fetal liver supports 
hematopoiesis in the embryo (34). Hepatocytes in the embryo are 
proliferative but they growth arrest and differentiate after birth as 
the liver takes on a metabolic function (35–37). Hematopoiesis 
also switches from the liver to the bone marrow during late 
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TAbLe 1 | Studies reporting alterations of RNA splicing factor expression or alternative splicing in liver.

Study Objective Method Reference

Ameur et al. Nascent transcripts and co-transcriptional splicing in 
brain and liver

RNA sequencing (RNA-seq) on human and chimpanzee RNA from 
brain and liver

(31)

Nellore et al. Alternative splicing across Sequence Read Archive Re-aligned 21,504 RNA-seq samples from SRA (32)

Yeo et al. Alternative splicing across human tissues Re-aligned cDNA and EST alignments (33)

Bhate et al. Alternative splicing during mouse liver development RNA-seq on FVB/NJ mice at embryonic day 18, and postnatal days 
14, 28, and 90

(39)

Peng et al. Transcriptome and alternative splicing during liver 
development

RNA-seq on male C57BL/6 mice (n = 3) at e17, postnatal days 0,  
1, 3, 5,10, 15, 20, 25, 30, 45, and 60

(40, 41)

Lake at al Transcriptome of non-alcoholic fatty liver disease 
(NAFLD)

Microarrays on 10 steatotic, 9 non-alcoholic steatohepatitis (NASH) 
with fatty liver, 7 NASH w/o fatty liver, and 19 normal subjects

(76)

Moylan et al. Transcriptome in NAFLD Microarrays on 40 mild NAFLD and 32 severe NAFLD subjects (77)

Pihlajamaki et al. Comparison of liver transcriptomes in obese and lean 
humans and mice

Microarrays on 5 lean non-diabetics and 8 obese subjects  
undergoing bariatric surgery

(79)

Zhu et al. Liver transcriptome and alcohol-metabolizing genes  
in NAFLD

Microarrays on 40 mild NAFLD, 32 severe NAFLD, 15 alcoholic 
hepatitis, and 7 normal subjects

(83)

Ye and Liu NAFLD transcriptional networks Microarrays on 10 steatotic, 16 NASH, and 19 normal subjects (86)

Ahrens et al. Liver transcriptome and methylome after bariatric 
surgery

Microarrays on 15 NASH, 12 NAFLD, 18 obese and 18 control 
subjects, and 23 post-bariatric surgery

(87)

Teufel et al. Comparison of liver transcriptomes in mouse models  
of NAFLD with human NAFLD or NASH

Microarrays on C57BL/6 mice, and 25 obese, 27 NAFLD, 25 NASH, 
and 39 normal human subjects

(88)

Lin et al. Transcriptome in hepatocellular carcinoma (HCC) RNA-seq on 56 paired tumor and non-tumor tissue; HBV+, HCV+,  
and non-viral

(104)

Burchard et al. Liver transcriptome in HCC Microarrays on 96 HBV-related HCC patients (paired  
tumor + adjacent non-tumor)

(105)

Shiraishi et al. Transcriptome alterations and somatic mutations in  
liver cancer

RNA-seq on 22 paired HBV-related HCC (tumor and non-tumor  
tissue)

(107)

Huang et al. Transcriptome of HBV-related HCC RNA-seq on 10 paired HBV-related HCC (tumor and non-tumor  
tissue)

(108)

Tremblay et al. RNA splicing in HCC Reanalysis of 377 HCC samples from TCGA; HBV+, HCV+, HBV/
HCV+, and non-viral

(109)
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gestation. The transcription factors regulating this transition 
in hepatocytes and cholangiocytes have been well documented  
(37, 38), but many genes also show a switch in fetal-to-adult RNA 
isoform expression reflecting changes in alternative splicing. 
Bhate et al. profiled the mouse liver transcriptomes at embryonic 
day 18 and postnatal days 14 and 28 and at 3 months by RNA-seq 
(39). In addition to 4,882 changes in gene expression between 
e18 and adult, the authors found 529 genes that underwent a 
change in RNA splicing and 214 genes that underwent a change 
in polyadenylation. The majority of these changes in alternative 
splicing were conserved between mouse liver and in human fetal 
(22 weeks) and adult (51 years) liver tissue.

A more extensive study by Peng et  al. profiled mouse liver 
transcriptomes at embryonic day 18, and postnatal days 0, 1, 
3, 5, 10, 15, 20, 25, 30, 45, and 60 of mouse liver development  
(40, 41). They found 7,289 genes that were differentially expressed 
at some point during development, and 829 of these had multiple 
annotated splicing variants with 90 being differentially expressed. 
In addition, they found evidence for 2,383 novel splice isoforms, 
of which 1,455 were detected at multiple times suggesting that 
there is a great deal of liver transcript information yet to be 

annotated. As might be expected, both studies indicated that 
genes associated with amino acid, fatty acid, cholesterol, bile, 
glucose, steroid, urea, and drug metabolism were upregulated in 
adult liver, whereas those associated with hematopoiesis, DNA 
repair and metabolism, cell cycle, and chromosome reorganiza-
tion were downregulated. The changes in alternative splicing 
were not the result of altered cell populations in the liver as the 
majority (88%) were still observed in purified hepatocytes (39). 
A number of splicing factors decreased in expression, including 
Celf1, Celf2, Mbnl1, Ptbp1, Srsf1, 2, 3, 4, 6, 7, and 10, Hnrnpa1, and 
Hnrnph, but Esrp2 was increased in both studies.

A number of these genes have been studied in vitro, knocked 
out in the whole animal or deleted in hepatocytes (Table  2). 
Surprisingly, the Mbnl and Celf family proteins were identified 
in fetal liver. These proteins are expressed highly in muscle and 
have been studied extensively for their involvement in myotonic 
dystrophy (MD) (42–44). The whole-body knockout of Mbnl1 
causes muscle and eye abnormalities reminiscent of MD (45). 
Subsequently, two studies reported that loss of Mbnl2 had no 
muscle phenotype but a third reported myotonia (46–48). 
Interestingly, one Mbnl2 knockout mouse had a brain phenotype 
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TAbLe 2 | Genetic manipulation of RNA-binding proteins in vivo.

Gene Class Model Phenotype Reference

Celf1 CELF/BRUNOL 
family

Homozygous knockout No liver phenotype/growth retardation? No assessment of splicing (50)
Transgenic overexpression Hepatocyte proliferation in young livers. Myotonia and dystrophic muscle histology. 

Altered splicing
(51, 55)

Esrp2 RBM family Homozygous knockout Increased proliferation, diploid and tetraploid hepatocytes, smaller hepatocytes, no 
metabolic changes, or liver damage. Altered splicing

(39)

Hnrnpa1 HNRNP family Homozygous knockout Perinatal lethality. Muscle developmental defects. Impaired cardiac function. Altered 
splicing

(58)

Mbnl1 Zn-finger protein Homozygous knockout No liver phenotype, muscle and eye abnormalities characteristic of myotonic dystrophy. 
Altered splicing

(45)

Mbnl2 Zn-finger protein Homozygous knockout No liver phenotype, defects in spatial memory, abnormal REM sleep. Altered splicing (46–48)

Ptbp1 HNRNP family Homozygous knockout Embryonic lethal. No assessment of splicing (60, 61)

Slu7 Zn-finger protein AAV-shRNA knockdown 
in liver

Reduced gluconeogenesis, insulin resistance, enhanced glucose uptake and glycolysis, 
hepatocyte proliferation, dyslipidemia. Altered splicing

(111)

Srsf1 SR protein family Homozygous knockout Embryonic lethal postimplantation. No assessment of splicing (66)
Hepatocyte knockout No liver phenotype. No assessment of splicing (57)
Cardiomyocyte knockout Excitation coupling defects. Hypertrophic cardiomyopathy. Death due to heart failure (66)

Srsf2 SR protein family Homozygous knockout Embryonic lethal postimplantation. No assessment of splicing (56)
Hepatocyte knockout Apoptosis, liver damage, liver failure. Altered splicing (57)
Cardiomyocyte knockout Dilated cardiomyopathy. Stress-induced death. No assessment of splicing (56)

Srsf3 SR protein family Homozygous knockout Embryonic lethal at blastocyst stage. No assessment of splicing (67)
Hepatocyte knockout Metabolic dysfunction, steatosis, fibrosis, apoptosis and proliferation, liver damage, 

altered ploidy, hepatocellular carcinoma. Altered splicing
(68, 
110)

Srsf10 SR protein family Homozygous knockout Late embryonic lethal with cardiac hypertrophy and liver degeneration. Altered splicing (80)
Heterozygous knockout Increased VLDL secretion and plasma triglycerides. Altered splicing (79)
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with impaired hippocampal plasticity and synaptic transmission 
consistent with high-level expression of Mbnl2 in the brain (48). 
Loss of neither family member is associated with liver defects, 
however, but MBNL1 has been reported to regulate hematopoie-
sis in the fetal liver (49) potentially by regulating splicing of the 
Ndel1 gene. In contrast, CUGBP1 (Celf1) is highly expressed in 
the liver but its effects appear unrelated to its role as a splicing 
factor, but rather are due to its role as a translational regulator as 
it forms a complex with eIF2 to support translation of proteins 
involved in liver function and regulates hepatic stellate cell activa-
tion (50–55).

Mice with complete deletion of Srsf2 die just after embryo 
implantation but mice with hepatocyte-specific deletion of Srsf2 
are viable and have normal size at birth (56, 57). The mice fail to 
thrive, however, and die by 2–3 weeks of age. The cause of death 
is liver failure. In contrast, hepatocyte-specific deletion of Srsf1 
did not have a phenotype and the mice were healthy. Livers in 
the newborn Srsf2 KO mice appear normal in size and color but 
by day 11 the livers are pale and firmer. Histologically, the livers 
show hepatocyte ballooning with periportal fibrosis and inflam-
mation. The liver failure is likely due to the lack of proliferation of 
hepatocytes in the neonatal liver, and increased apoptosis possibly 
due to endoplasmic reticulum and oxidative stress. Metabolically, 
the knockout livers show steatosis and lack glycogen. RNA-seq 
analysis indicated that the mice livers have altered cholesterol and 
bile homeostasis as SRSF2 stimulates expression of liver transcrip-
tion factors Srebp1c, Cebpa, Ppara, Nr1i3 (CAR1), Nr1h4 (FXR), 
Mlxipl (CHREBBP), and Foxa2. Thus, SRSF2 has effects on liver 

RNA splicing that are not compensated by other SR proteins, 
unlike the role of SRSF1 that appears redundant.

Homozygous deletion of Hnrnpa1 causes perinatal lethality 
within 30 min of birth because of muscle developmental defects. 
Death was due to cardiac dysfunction with higher blood pres-
sure and heart rate, but defects were also observed in smooth 
and skeletal muscle (58). No liver phenotype was reported. The 
polypyrimidine tract binding protein PTBP1 (HNRNPI) binds 
to intronic sequences upstream of the 3′ splice site and represses 
splicing of pre-mRNAs (59). The effect of PTBP1 on liver func-
tion in  vivo has not been studied as the homozygous deletion 
of Ptbp1 is embryonic lethal at the implantation stage (60, 61). 
In HepG2 hepatoma cells, however, PTBP1 modulates splicing 
of multiple genes involved in cholesterol synthesis and uptake 
including LDLR, MVK, HMGCS1, and PSCK9. It also regulates 
splicing of the fatty acid desaturase genes 2 and 3 (FADS2 and 
3) that are involved in fatty acid elongation and unsaturation  
(62, 63). Consequently, omega-3 and omega-6 poly-unsaturated 
fatty acids were reduced following Ptbp1 knockdown, but 
saturated and mono-unsaturated fatty acids were not altered. 
Interestingly, PTBP1 is upregulated during hepatitis B virus 
infection and reduces expression of the proapoptotic form of FAS, 
which may contribute to the survival of infected hepatocytes (64).

Changes in alternative splicing during the mesenchymal to 
epithelial differentiation have been attributed to the splicing fac-
tors ESRP1 and ESRP2 (65). Expression of Esrp2 was increased in 
the adult liver and ablation of Esrp2 led to impaired adult splic-
ing patterns implicating this splicing factor in the fetal-to-adult 
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transition in hepatocytes (39). The livers did not show changes in 
morphology, however, nor did they display signs of liver damage, 
or any alterations in lipid, cholesterol, or glucose metabolism.

Other splicing factors have also been implicated in hepatocyte 
differentiation. Mice with complete loss of Srsf1 or Srsf3 die dur-
ing early embryogenesis, but mice carrying a hepatocyte-specific 
deletion of Srsf1 or Srsf3 are viable (66, 67). The hepatocyte-
specific deletion of Srsf1 did not show an overt liver phenotype 
but loss of Srsf3 caused impaired hepatocyte maturation (57, 68). 
The impaired differentiation was consistent with mis-splicing of 
Hnf1a that is critical for liver development, leading to reductions 
in other liver-enriched transcription factors including HNF6α 
(Onecut1), HNF3α (Foxa3), and C/EBPα. Consequently, the 
livers continued to express fetal markers such as α-fetoprotein 
(Afp) and H19. The impaired differentiation was associated with 
disrupted hepatic architecture characterized by large irregular 
hepatocytes, with compressed sinusoidal spaces and bile canali-
culi, and reduced binuclearity. Interestingly, expression of Esrp2 
is significantly reduced in the Srsf3 knockout, which may partly 
explain the impaired differentiation phenotype. The entire 
phenotype cannot be explained by loss of Esrp2, however, as 
Esrp2 ablated mice do not show changes in liver morphology or 
histology. Loss of Srsf3 also causes alterations in glucose and lipid 
homeostasis characterized by reduced glycogen storage, fasting 
hypoglycemia, increased insulin sensitivity, and reduced choles-
terol synthesis although the target genes are distinct from those 
altered in the Srsf2 knockout. Like the Srsf2 knockout, loss of Srsf3 
causes endoplasmic reticulum stress, hepatocyte apoptosis and 
proliferation, and liver damage but did not cause the liver failure 
seen in the Srsf2 knockout.

ALTeRNATive SPLiCiNG AND  
FATTY LiveR

Overnutrition and obesity leads to non-alcoholic fatty liver disease 
(NAFLD) and its more severe form non-alcoholic steatohepatitis 
(NASH) (69, 70). These metabolic disturbances are becoming 
more common in the general population due to the current obe-
sity epidemic (71–73). Both NAFLD and NASH are associated 
with the metabolic syndrome and insulin resistance, and are risk 
factors for type 2 diabetes, non-alcoholic liver cirrhosis, and for 
the development of hepatocellular carcinoma (HCC) (74, 75). So 
understanding the changes that occur in the fatty or NASH liver 
is important to elucidate mechanisms underlying the heightened 
risk for subsequent disease progression. Transcriptome profiling 
by microarray has been performed in humans with NAFLD  
(76, 77). While this allows gene expression changes to be moni-
tored, most studies do not address changes in RNA alternative 
splicing (78). Toward the goal of understanding changes in splic-
ing, Pihlajamaki et al. profiled gene expression in liver samples 
from insulin-resistant humans with obesity (79). The top-ranked 
pathway downregulated in obese liver samples related to RNA 
processing and splicing. A number of splicing factors were 
decreased including SRSF10, SRSF7, SF3A1, SRSF2, SFPQ, and 
HNRNPs A1, K, D, and H. The authors showed that knockdown 
of SRSF10 increased lipogenesis in vitro in HepG2 cells and that 
heterozygous loss of Srsf10 in mice increased plasma triglycerides 

due to increased secretion of VLDL and mis-splicing of the lipid 
storage protein LIPIN-1 (Lpin1). Homozygous deletion of Srsf10, 
however, causes embryonic lethality with liver degeneration (80). 
This was the first example of how a change in RNA splicing could 
cause a change in lipid metabolism in the obese liver. SRSF10 
may also regulate the splicing of the scavenger receptor class B, 
member 1 gene (SCARB1) that encodes the SR-BI and SR-BII 
proteins that mediate reverse cholesterol transport (81). The loss 
of SRSF10 in obesity remains controversial, however, as it was not 
seen in another study (82).

Another large microarray study examined liver gene expres-
sion in 72 subjects with mild or advanced NAFLD, 10 normal 
liver, and 17 subjects with HBV-associated liver failure (77, 83, 
84). Ninety-two splicing factor genes were altered in this dataset 
with 30 splicing factors being altered in either mild or advanced 
NAFLD. Many of these were also identified in the Pihlajamaki 
study. Another study has shown a decrease in SRSF4 in NASH 
(85). A systems biology weighted gene co-expression network 
analysis of 16 human NASH, 10 NAFLD, and 19 normal liver 
samples identified a highly significant module (p  <  2  ×  10−6) 
associated with RNA processing (86). These changes are not in 
all datasets, however, as a German study in 45 morbidly obese 
subjects with NAFLD or NASH did not show alterations in splic-
ing factor expression (87, 88). Studies in mice have shown similar 
changes in the expression of splicing factors in diet-induced 
obesity and NASH models (79, 85, 88, 89). So NAFLD and NASH 
are associated with changes in RNA splicing factor expression in 
the liver, and this likely contributes to alterations in RNA splicing. 
Transcriptome profiling by RNA-seq could potentially provide a 
measure of RNA splicing although such an approach has not been 
published. It will be interesting to see whether these alterations in 
RNA splicing can contribute to the pathophysiology.

ALTeRNATive SPLiCiNG AND HCC

Worldwide, more than 700,000 people are diagnosed and 600,000 
people die each year of liver cancer. HCC is the most common 
primary liver cancer (70–85%) (90) and usually arises after years 
of liver disease and inflammation (91) either due to chronic hepa-
titis B or C virus (HBV/HCV) infection (92), or alcoholic and 
non-alcoholic cirrhosis. The relative importance of these HCC 
subtypes depends on geography. HCC in HBV/HCV endemic 
regions in Asia and Africa is 80–90% virus associated, compared 
to only 20–50% of HCC in the US (93–95). Approximately 
15–25% of HBV-infected individuals will develop chronic liver 
disease including cirrhosis, liver cancer, or failure, and 5–20% 
of HCV-infected individuals develop cirrhosis. A large majority 
(80%) of patients with HCC have cirrhosis, so cirrhosis is a major 
risk factor, but only 8% of patients with cirrhosis will develop 
HCC (96). In addition to chronic alcoholism, cirrhosis can have 
viral or metabolic causes (97–99), and alcohol use by at-risk 
individuals substantially increases the risk of cirrhosis and HCC. 
From a metabolic standpoint, obesity, NAFLD, and NASH are all 
risk factors for cirrhosis (75).

Alterations in RNA splicing in cancer have been known for 
over 30 years (11, 100, 101). Profiling the molecular alterations 
that occur in HCC has uncovered a number of targets with 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


25

Webster RNA Splicing and Liver Disease

Frontiers in Endocrinology | www.frontiersin.org June 2017 | Volume 8 | Article 133

altered RNA splicing including the DNMT3b, AURKB, MDM2, 
TENSIN2, MAD1, KLF6, SVH, TP73, TP53, and FN1 genes 
(102). Many of these changes have been shown to have functional 
effects to promote proliferation, prevent apoptosis, and support 
transformation in cell culture experiments. RNA splicing is also 
important for HBV and HCV viral expression, and many viruses 
hijack the cellular splicing machinery to allow splicing of viral 
RNAs (103). More recent studies have utilized high-throughput 
technologies to survey the HCC transcriptome (104–107). A 
2011 study sequenced the transcriptomes of 10 matched pairs 
of cancer and non-cancerous liver tissue from HBV-infected 
individuals (108). A total of 1,378 differentially expressed genes 
were identified in HCC, but more surprisingly 24,338 exons were 
differentially expressed, and the vast majority of differentially 
expressed genes also contained differentially expressed exons. 
A recent study utilized the RNA-seq data available through the 
TCGA database. Sequence data from 377 liver samples were 
reanalyzed to assess alterations in RNA splicing, uncovering 
~45,000 alternative splicing events (109). These events were fur-
ther filtered allowing the identification of 3,250 transcripts from 
2,051 genes whose expression was altered in HBV-associated 
HCC, 1,380 transcripts from 907 genes that were altered in HCV-
associated HCC, and 1,517 genes altered in non-viral HCC. Of 
these transcripts, 1,336 were shared by at least two groups. The 
authors also assessed splicing factor expression in these samples 
and found altered expression of 26 splicing factors, including 
ESRP2, SRSF2, CELF2, MBNL1, HNRNPA1, and HNRNPH, 
that were found altered in hepatocyte maturation study by Bhate 
et al. (39), that is consistent with oncofetal transformation. These 
studies are likely underestimates of the true dysregulated RNA 
splicing as most approaches rely on databases of known anno-
tated RNA isoforms, so will exclude reads that do not correspond 
to known splicing events.

CONCLUSiON AND FUTURe 
PeRSPeCTiveS

Although gross alterations in gene expression have been docu-
mented in nearly every disease state, recent data indicate that 
more subtle qualitative changes also occur, which may be just 
as important in disease pathogenesis. Recent high-throughput 
technologies are allowing a reassessment of these transcriptional 
changes with much higher resolution, providing a comprehensive 
documentation of individual transcript isoform identity and 

relative expression. These isoforms ultimately encode different 
proteins that could influence cellular function. Do these changes 
play a causal role in disease pathogenesis or are they simply a 
side effect of the disease? Traditionally, cancer was considered 
a disease of the genome and many of the changes in RNA splic-
ing were thought to be a result of global alterations in gene 
expression in the cancer genome. Recent data, however, are 
indicating that subtle alterations in RNA splicing are observed 
in early disease, long before genomic alterations have occurred, 
and these alterations may play a role in predisposition to later 
disease. Data from mouse studies have suggested that altered 
splicing may cause cancer. Overexpression of the SR proteins 
SRSF1, SRSF3, and TRA2β (SRSF10) transforms fibroblasts and 
accelerates tumor growth in nude mice, and the proteins have 
been found to be elevated in certain cancers suggesting that they 
are proto-oncogenes. Interestingly, SRSF3 loss in hepatocytes 
also leads to liver cancer in mice (110), and SRSF3 is reduced in 
human HCC (111), so the properties of individual splicing fac-
tors may depend on cellular context. Aside from the SR proteins, 
other RNA-binding proteins that have been implicated as hnRNP 
proteins hnRNPA1, hnRNPA2, hnRNPH, and hnRNPI (PTB) are 
overexpressed in certain cancers (24, 100, 112–114), and knock-
down of the proteins causes apoptosis in vitro. Overexpression of 
the zinc-finger protein MBNL2 in HCC correlates with smaller 
lower grade tumors and inhibits tumor growth and invasion 
in mice (115). Somatic mutations in splicing factor genes have 
also been found in cancers, the most frequently mutated being 
SF3B1, U2AF1, SRSF2, and ZRSR2 (116). Thus, dysregulation of 
RNA splicing may precede and predispose to carcinogenesis, and 
changes in splicing may be an early event in cancer initiation and 
warrant further investigation. Further studies testing individual 
transcript changes will be required to complete our understand-
ing of the subtleties of gene expression that underlie early disease 
pathogenesis.
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Obesity is a complex metabolic disorder associated with the development of non-
communicable diseases such as cirrhosis, non-alcoholic fatty liver disease, and type 2 
diabetes. In humans and rodents, obesity promotes hepatic steatosis and inflammation, 
which leads to increased production of pro-inflammatory cytokines and acute-phase 
proteins. Liver macrophages (resident as well as recruited) play a significant role in hepatic 
inflammation and insulin resistance (IR). Interestingly, depletion of hepatic macrophages 
protects against the development of high-fat-induced steatosis, inflammation, and IR. 
Kupffer cells (KCs), liver-resident macrophages, are the first-line defense against invading 
pathogens, clear toxic or immunogenic molecules, and help to maintain the liver in a 
tolerogenic immune environment. During high fat diet feeding and steatosis, there is an 
increased number of recruited hepatic macrophages (RHMs) in the liver and activation of 
KCs to a more inflammatory or M1 state. In this review, we will focus on the role of liver 
macrophages (KCs and RHMs) during obesity.

Keywords: obesity, insulin resistance, inflammation, hepatocytes, Kupffer cells, immunometabolism

inTRODUCTiOn

The rising prevalence of obesity represents a major global health challenge, not least because it 
is considered a significant risk factor for a wide array of non-communicable diseases. Prominent 
among these are diseases of the liver, ranging from steatosis through to cirrhosis, collectively termed 
non-alcoholic fatty liver disease (NAFLD) (1). However, the etiology linking obesity with liver 
pathology is incompletely understood, hindering attempts to treat these conditions.

A landmark discovery offering therapeutic potential for the metabolic syndrome was the find-
ing that the adipose tissue of obese mice and humans displays hallmarks of an inflammatory state, 
including increased concentrations of tumor necrosis factor alpha (TNF-α) and increased mono-
cyte/macrophage infiltration (2–4). Indeed, TNF-α is sufficient to induce features of the metabolic 
syndrome, such as insulin resistance (IR), and many chemical and genetic depletion studies have 
demonstrated the importance of inflammation and inflammatory macrophages in this process 
[recently reviewed in Ref. (5)]. Macrophage accumulation also occurs in other key metabolic tissues 
including muscle (6–9), liver (10–12), and pancreas (13, 14), which contribute to the dysregula-
tion of glucose homeostasis. In this review, we focus on the composition and behavior of hepatic 
macrophage populations in obese mice and highlight recent advances that could aid in the targeting 
of this axis to treat aspects of the metabolic syndrome.
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THe LiveR AT THe inTeRFACe BeTween 
MeTABOLiSM AnD iMMUniTY

The liver is a key metabolic organ, which regulates a variety of 
processes vital for maintaining metabolic homeostasis. These 
include control of glucose production and lipid metabolism, dys-
regulation of which are symptomatic of the metabolic syndrome. 
The liver also plays key roles as part of the immune system secret-
ing acute-phase proteins, complement components, cytokines, 
chemokines, and being positioned, along with the gastrointestinal 
tract, at the major interface between ourselves and our external, 
even microbial environment (15, 16). This unique position where 
metabolism and immunity are intertwined is reflected in the liver 
architecture, whereby immune cells are intimately connected to 
hepatocytes and liver sinusoidal endothelial cells (LSECs) (17, 
18), as well as the cross-regulation whereby metabolic stress 
can result in hepatic immune activation leading to metabolic 
dysregulation (19, 20).

The liver maximizes nutrient absorption as blood flows 
through a system of sinusoidal vessels and fenestrations through 
beds of hepatocytes (17). The majority of blood within the 
sinusoid derives from the intestines via the hepatic portal vein 
and is rich in both nutrients, and also potentially immunogenic 
microbial molecules, or in cases of opportunistic infection 
microbes themselves (17). Therefore, in addition to facilitating 
nutrient absorption, sinusoids must also enable the removal of 
immunogenic material and allow the immune system to com-
bat of infection. Kupffer cells (KCs) are located in the hepatic 
sinusoids and play a key role in this process (18). They bind a 
range of microbes or microbial ligands via microbe-associated 
molecular patterns (MAMPs), and by phagocytosis prevent them 
penetrating into the general circulation (18). Lipopolysaccharide 
(LPS), for example, is readily detectable in portal blood, but 
only rarely detectable in systemic circulation (21). Compared 
with macrophages from other locations, KCs are predisposed 
to respond to activation signals in a less inflammatory fashion 
and are especially characterized by producing high concentra-
tions of the anti-inflammatory cytokine, interleukin 10 (IL-10) 
(22). Furthermore, KCs, along with other antigen-presenting 
cells in the liver, express low levels of co-stimulatory molecules 
required to initiate an adaptive immune response and high levels 
of molecules that suppress T cell activation, such as programed 
death-ligand 1 (PDL-1) (17). Thus, during homeostasis KCs in 
collaboration with other hepatic immune cell populations clear 
microbial material while maintaining the inflammatory tone of 
the liver at a level sufficient for essential functions such as patho-
gen killing, tissue remodeling, and sinusoidal permeability, but 
below that which would result in overt inflammation and tissue 
damage (5, 18, 23). The factors maintaining KCs in this tolero-
genic state are not completely clear but are critically important 
when we consider how these cells and the hepatic macrophage 
pool in general are altered during obesity.

The phenotype of tissue macrophages is thought to be depend-
ent on their respective ontogeny, as well as their respective polari-
zation state in the tissue environment (24). Polarization was most 
clearly described by in  vitro studies, which used cytokines to 
induce different extremes of macrophage phenotype classified as 

M1 or classically activated macrophages, considered more pro-
inflammatory, and M2 or alternatively activated macrophages 
that have an anti-inflammatory tone (25). M1 macrophage dif-
ferentiation can be induced by interferon gamma (IFN-γ), alone 
or with microbial products such as LPS or inflammatory cytokine 
TNF-α. In contrast, interleukin 4 (IL-4), interleukin 10 (IL-10), 
interleukin 13 (IL-13), interleukin 33 (IL-33), transforming 
growth factor beta (TGF-β), and granulocyte colony-stimulating 
factor (G-CSF) activate macrophages to differentiate to M2. 
However, given the range of factors now known to influence 
macrophage polarization, including cellular metabolic state 
(26), it is likely that a spectrum of macrophage phenotypes occur 
in vivo even within the same tissue macrophage pool (25). In lean 
mice, KCs have an M2-like phenotype maintained by the type 2 
cytokine, IL-4, and the nuclear hormone receptor peroxisome 
proliferator activator receptor delta (PPAR-δ) (27, 28). Thus, KCs 
are specialized by virtue of their derivation from the yolk sac 
early in development (24, 29), and by factors in the liver environ-
ment, which maintain them in a less inflammatory, M2-like state 
(27, 28).

PARenCHYMAL AnD  
nOn-PARenCHYMAL CeLLS in LiveR

Hepatocytes are the major parenchymal cells, while the non-
parenchymal cells integrate five cell populations including resi-
dent macrophages or KCs (30), recruited hepatic macrophages 
(RHMs), resident innate lymphocytes or natural killer cells (NKs) 
(31, 32), fat storing cells termed Ito or stellate cells (HSCs) (33), 
and LSECs (34) (Figure 1).

These non-parenchymal cell populations can be identified 
by a variety of cell surface markers. In general, KCs and RHMs 
both express epidermal growth factor-like module-containing 
mucin-like hormone receptor-like 1 (F4/80) (35), NKs form two 
pools distinguished by mutually exclusive expression of CD49a or 
DX5 (36), HSCs express glial fibrillary acidic protein (GFAP) (37, 
38), and LSECs express CD34 (39). In addition, these liver cell 
populations can also be distinguished by their physical location 
within the liver and specific ultrastructural characteristics. For 
example, hepatocytes contain many microvilli, which project into 
space of Disse (perisinusoidal space) between the endothelial 
cells and hepatocytes. KCs (~15% of all liver cells) represent the 
largest population of tissue macrophages (80–90% of resident 
macrophages in the whole body) (40). KCs are found attached to 
the luminal surface or inserted in the endothelial lining of hepatic 
sinusoids (41, 42), which make them the first macrophages to 
come into contact with gut-derived foreign and potentially nox-
ious material. The size and function of KCs also depend on their 
specific location in the liver (43) with KCs in periportal regions 
being larger and more phagocytic with higher lysosomal enzyme 
activity than KCs in midzonal and perivenous locations (44). 
Unlike hepatocytes, KCs are amoeboid in shape. Fenestrae form 
open connections between the lumen of the sinusoid and the 
space of Disse (45). The transport and exchange of fluid, solutes, 
and particles between the sinusoidal lumen and the space of Disse 
containing the parenchymal cell surface are believed to occur 
through these open fenestrae (46). While KCs utilize phagocytosis 
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to incorporate large particles such as erythrocytes and bacteria, 
they take up small particles and molecules via pinocytic vesicles 
(47–50). NKs reside in sinusoids and eliminate virus-infected or 
transformed cells and regulate adaptive immune responses via 
contact-dependent signals and the secretion of cytokines (36, 
51–53). HSCs are perisinusoidal cells, which contain characteris-
tic lipid droplets. HSCs maintain vitamin A homeostasis as they 
store 80% of total vitamin A in the body. Inflammatory signals 
transform HSCs into myofibroblasts, resulting in collagen pro-
duction and development of liver fibrosis (54, 55). LSECs possess 
a high-rate, high-capacity system to remove colloids and water-
soluble waster macromolecules from the circulation (34, 56). At 
the ultrastructural level, LSECs constitute the only mammalian 
endothelial cells that combine non-diaphragmed fenestrae with a 
discontinuous basement membrane, which allows blood plasma 
to enter the space of Disse.

LiveR MACROPHAge POPULATiOnS 
DURing OBeSiTY

During the course of obesity, the adipose tissue’s ability to 
store excess energy is compromised, leading to ectopic lipid 
accumulation in non-adipose tissues such as muscle and liver 
(57). Intracellular lipid accumulation in ectopic tissues is associ-
ated with a phenomenon known as lipotoxicity, which induces 
cell death, cytokine secretion, and activation of inflammatory 
processes, especially in the liver (58, 59). Furthermore, dietary 
stress and obesity can lead to excessive activation of the hepatic 
immune system due to increased penetration of microbial mate-
rial (60–62). The response of the liver to damage and inflamma-
tion is a complex process involving parenchymal (hepatocytes) 
and non-parenchymal cells (KCs, NKs, HSCs, and LSECs), as 
well as monocyte-derived hepatic macrophages, RHMs (12, 63). 

The failure to regulate this inflammation during the progression 
of the obesity causes pathological chronic hepatic inflammation 
characterized by the advance of fatty liver to steatohepatitis, 
fibrosis, cirrhosis, and eventually liver failure (18, 64). Depletion 
of phagocytic cells in the liver (including both KCs and RHMs) 
through the administration of either liposome-encapsulated 
clodronate or gadolinium chloride protects against high-fat- or 
high-sucrose-induced steatosis, inflammation, and IR, demon-
strating critical role of hepatic macrophages in the development 
of metabolic dysfunction (65).

MACROPHAge RegULATiOn DURing 
nAFLD/nASH

Hepatic lipid accumulation and peroxidation leads to chronic 
hepatocyte endoplasmic reticulum (ER) stress, the production 
of reactive oxygen species (ROS), and toll-like receptor (TLR) 
activation, which converts KCs into an M1 phenotype defined 
by production of pro-inflammatory cytokines, oncostatin, and 
prostaglandins (Figure  2) (20, 66, 67). Circulating cytokines, 
adipokines, and free fatty acids (FFAs) released from inflamed 
adipose tissue in the obese state or immunogenic material derived 
from an altered intestinal microbiota can also contribute to KC 
polarization. M1-KCs secrete chemokine (C-C motif) ligand 2 
(CCL2), pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), 
macrophage inflammatory protein (MIP)-1a, MIP1b, RANTES, 
oncostatin, and prostaglandins (PGE2), which contribute to 
the alteration of the liver homeostasis and worsen the hepatic 
inflammatory response (29). PGE2 regulates cytokine production 
(IL-1, IL-6, TNF-α, and TGF-β) (68, 69), acts synergistically with 
IL-6 to induce IR (70), and induces production of oncostatin M 
(OSM) in KCs (71). Increased OSM contributes to hepatic IR 
and the development of non-alcoholic steato hepatitis (NASH) 
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(71). High levels of TNF-α released by M1-KCs stimulate hepatic 
expression of CCL2 (also known as MCP1), a powerful mono-
cyte chemoattractant, which recruits CCR2+Ly6Chigh monocytes 
from the vasculature into the liver (72), where they differentiate 
into Ly6Chigh macrophages. The Ly6Chigh macrophages amplify 
the severity of obesity-induced inflammation and hepatic IR 
through the secretion of TNF-α and interleukin 6 (IL-6) (12). C-C 
chemokine receptor type 2 (CCR2)-deficient mice are protected 
against weight gain and display reduced development of obesity, 
illustrating the importance of this chemokine system (73). Once 
established, this vicious circle of immune cell attraction, infiltra-
tion and activation, hepatocyte injury, and further inflammation 
promotes and defines the pathophysiology of NASH (74).

MACROPHAge RegULATiOn OF HePATiC 
FiBROSiS

Fibrosis is increasingly appreciated as a major contributor to 
metabolic dysregulation in obese humans and type 2 diabetic 
patients (75). Both KCs and recruited Ly6Chigh macrophages 
contribute to the development of hepatic fibrosis. KCs activate 
HSCs through increased production of pro-fibrotic cytokine 
TGF-β and platelet-derived growth factor (PDGF) (76) leading 
to fibrosis. Ly6Chigh macrophages also interact with HSCs to 
promote fibrosis through increased production of TGF-β, con-
nective tissue growth factor (CTGF), and PDGF (77). Therefore, 
inhibition of monocyte recruitment through depletion of the 
pro-inflammatory signal CCL2 results in attenuation of liver 
fibrosis (77–79). In addition, pharmacological inhibition of CCL2 
by the RNA-aptamer mNOX-E36 attenuates liver fibrosis, thereby 
strengthening a pro-fibrotic function of Ly6Chigh macrophages 
(80, 81).

MACROPHAge SURFACe MARKeRS

Due to the distinct functions of RHMs and KCs in suppressing or 
perpetuating the immune activation (29, 82), it is important to be 
able to clearly isolate pure populations of each cell type. However, 
distinguishing RHM from KC has proven difficult mainly due to 
technical difficulties in isolating and identifying macrophages 
from the obese liver. KCs (CXCR1−) appear histologically as 
larger cells with multiple phagocytic granules and have been 
defined by surface marker expression as CD45+/CD11c−/
F4/80high/CD11blow (12, 83). RHMs (CXCR1+) are smaller than 
KC, contain fine granules in the cytoplasm, and have been defined 
by surface marker expression as F4/80dim/CD45+/CD11b+/CCR2+ 
(10), CD11b+/Ly6Chigh/Ly6G− (83), or CD45+/CD11c−/F4/80low/
CD11bhigh markers (83) depending on the publication. However, 
these factors alone do not sufficiently identify pure KC or RHM 
populations as there is significant size and surface marker over-
lap with other cell populations, including dendritic cells (DCs), 
eosinophils, and undifferentiated monocytes (84). KCs, unlike 
RHMs, have the unique ability to survive to lethal irradiation 
(85), which has enabled studies into these distinct cell types. The 
result of these investigations suggests that the number of KCs 
remains unchanged during the course of obesity, whereas accu-
mulation of RHMs increases several-fold (12). Transcriptome 

analysis of these RHM and KC populations isolated from lean and 
diet-induced obese (DIO) mice revealed statistically marked dif-
ferences between the two cell types on both diets. Furthermore, 
the Gene Ontology analysis of these transcriptomes showed 
a restricted list of 16 KC marker genes and 11 RHM markers 
genes differentially expressed from lean to DIO mice that could 
provide the opportunity for direct isolation strategies using 
specific surface markers (12). Interestingly, factors secreted in 
the culture media from isolated high fat diet (HFD)-RHMs, but 
not from isolated HFD-KCs, can promote hepatic glucose output 
and attenuate insulin’s normal inhibitory effects on this aspect 
of hepatic metabolism suggesting that RHMs are the dominant 
immune cell type inducing hepatic IR (12, 82).

HePATiC gene eXPReSSiOn CHAngeS 
DURing OBeSiTY

To identify potential mechanisms underlying the development of 
obesity and diabetes, many studies have been conducted to char-
acterize changes in hepatic gene expression (86–91). Complex 
phenotypes such as obesity and IR involve many different inter-
acting biological pathways, but recent technological advances in 
high throughput sequencing have greatly improved our ability to 
quantitatively detect gene expression changes in an unbiased way. 
Investigation of the hepatic gene expression profiles in obese db/
db (leptin receptor deficient) mice compared with control mice 
revealed significant changes in lipid metabolism, gluconeogen-
esis, mitochondrial dysfunction, and oxidative stress (88, 89). 
Similar studies using HFD feeding to generate obesity resulted 
in increased hepatic expression of genes involved in fatty acid 
catabolism and ketone body synthesis, such as acyl-CoA oxidase1 
(Acox1) and HMG-CoA lyase (Hmgcl), while genes involved in 
lipogenesis and cholesterol synthesis, such as fatty acid synthase 
(Fasn) and acetyl-CoA synthetase 2 (Acsl6), were drastically 
decreased in the HFD group (86). Further studies also identified 
upregulation of hepatic gluconeogenic genes and downregulation 
of expression of lipogenic genes in diabetic Zucker rats (92), with 
activation of distinct transcriptional regulatory networks during 
diabetic progression (93).

Due to the practical limitations in obtaining human liver tis-
sue, the most detailed hepatic expression studies have, so far, been 
conducted in rodent models (86–89, 92, 93). However, with the 
increasing use of gastric bypass surgery in obese patients, obtain-
ing liver biopsies has become more feasible (91). Comparison of 
hepatic gene expression before and after weight loss in morbidly 
obese women identified differentially expressed genes involved 
in lipid and energy homeostasis, pro-inflammatory tissue repair, 
and bile acid transport (91). Liver samples from morbidly obese 
patients with all stages of NAFLD and controls were analyzed 
by array, and NAFLD specific expression differences were seen 
for nine genes involved in intermediate metabolism including 
pyruvate carboxylase (Pc), ATP citrate lyase (Acly), and phospho-
lipase C-gamma-1 (Plcg1) as well as insulin/insulin-like signaling 
including insulin-like growth factor-1 (Igf1), insulin-like growth 
factor binding protein 2 (Igfbp2), and protein kinase C epsilon 
(Prkce) (94). In additional studies, comparison of transcriptional 
profiles from NASH patients versus non-obese controls also 
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revealed significant changes in genes involved in metabolism, 
insulin signaling, and inflammation (90). For example, high 
levels of the central enzyme controlling unesterified arachidonic 
acid levels of Acyl-CoA synthetase long chain family member 
4 (Acsl4) and lower levels of insulin signaling genes including 
Igfbp2 were observed in NASH versus non-obese controls (95).

Therefore, many hepatic gene expression studies in rodents 
and humans have been conducted at the level of the whole 
liver, but whether these changes occur within the hepatocyte or 
non-parenchymal cells is yet to be fully investigated. Increased 
understanding of the changes induced in the obese state in the 
hepatocytes, liver-resident macrophages, and each immune cell 
population may allow us to specifically target potentially harmful 
populations while promoting anti-inflammatory populations 
(96). These studies will also help clarify the molecular mecha-
nisms behind the development of IR and identify potential targets 
for therapeutic intervention. Furthermore, future integration of 
transcriptomics data with metabolomics and proteomics data will 
further our understanding of the mechanisms behind obesity-
associated liver disease and help identify biomarkers for the 
development of disease progression (89).

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

Although KCs are reemerging in obesity and metabolic syn-
drome as a critical player in the onset of hepatic IR, as well as 
NAFLD, their role in metabolism is still largely unknown. We are 
yet to define the direct role of KCs in metabolic diseases as well 
as their interactions with neighboring cells and distant organs 

that modulate liver function and whole body metabolism. After 
a hepatic insult, KCs secrete important factors involved in the 
recruitment and transformation of blood monocytes, which 
are involved in the subsequent development of the hepatic IR. 
During obesity, the inflammatory state in the liver is associated 
with a large increase in RHMs with a M1 phenotype, targeting 
specifically these immune cells or manipulating the activation 
of KC may be an effective therapeutic strategy in obesity-related 
chronic liver and NASH. The use of new technologies such as 
next-generation or single-cell sequencing at different stages of 
obesity and IR and approaches to isolate and identify the diverse 
macrophage population and profile their transcriptomes in 
the liver could provide the opportunity for a direct targeting 
strategy using specific surface markers. Further research in the 
field of immunometabolism, including a better understanding 
of how changes in the microbiota affect the development of 
inflammation and more knowledge about the factors that direct 
the polarization state of macrophages toward either the pro- or 
anti-inflammatory state, is necessary to design new therapeutic 
strategies for treating T2D and NAFLD.
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Obesity, characterized by chronic activation of inflammatory pathways, is a critical factor 
contributing to insulin resistance (IR) and type 2 diabetes (T2D). Free fatty acids (FFAs) 
are increased in obesity and are implicated as proximate causes of IR and induction 
of inflammatory signaling in adipose, liver, muscle, and pancreas. Cells of the innate 
immune system produce cytokines, and other factors that affect insulin signaling and 
result in the development of IR. In the lean state, adipose tissue is populated by adipose 
tissue macrophage of the anti-inflammatory M2 type (ATM2) and natural killer (NK) cells; 
this maintains the insulin-sensitive phenotype because ATM2 cells secrete IL10. In con-
trast, obesity induces lipolysis and release of pro-inflammatory FFAs and factors, such as 
chemokine (C–C motif) ligand 2 (CCL2) and tumor necrosis factor alpha (TNF-α), which 
recruit blood monocytes in adipose tissue, where they are converted to macrophages 
of the highly pro-inflammatory M1-type (ATM1). Activated ATM1 produce large amounts 
of pro-inflammatory mediators such as TNF-α, interleukin-1β, IL-6, leukotriene B4, 
nitric oxide (NO), and resistin that work in a paracrine fashion and cause IR in adipose 
 tissue. In the liver, both pro-inflammatory Kupffer cells (M1-KCs) and recruited hepatic 
macrophages (Ly6Chigh) contribute to decreased hepatic insulin sensitivity. The present 
mini-review will update the bidirectional interaction between the immune system and 
obesity-induced changes in metabolism in adipose tissue and liver and the metabolic 
consequences thereof.

Keywords: obesity, insulin resistance, macrophages, eR stress, reactive oxygen species, type 2 diabetes,  
non-alcoholic fatty liver diseases

inTRODUCTiOn

Multicellular organisms rely on two highly conserved mechanisms for their survival: the ability to 
store energy to prevent starvation (metabolic pathways) and the ability to fight infection (immune 
pathways). When nutrients are in excess, adipose tissue stores lipids and the liver stores glycogen for 
use during starvation or to combat stressful situations. In addition, both adipose tissue and liver are 
populated with innate and adaptive immune cells. Thus, immune cells modulate whole-body metab-
olism [in metabolic syndromes such as type 2 diabetes (T2D) and obesity] via effects on adipocytes 
and hepatocytes, and reciprocally, host nutrition and commensal microbiota-derived metabolites 
modulate immunological homeostasis. This bidirectional interaction between the immune system 
and whole-body metabolism has created the field of immunometabolism, which has witnessed a 
renaissance in the past 15 years. The landmark discovery by Hotamisligil et al. in 1993 suggested 
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that tumor necrosis factor (TNF) levels are elevated in the adipose 
tissue of obese and diabetic rodents and that its neutralization 
improves  insulin-stimulated glucose uptake, which formed the 
cornerstone for immunometabolism (1). The second ground-
breaking discovery in the field of immunometabolism came 
from Ferrante and Chen’s group, who reported simultaneously 
that adipose tissue of obese mice is infiltrated with macrophages 
that contribute to adipose tissue inflammation and IR (2, 3). 
Since these initial discoveries in immunometabolism, it has been 
shown that a large number of immune cells and pathways regulate 
metabolic homeostasis in obese animals (4–11).

Obesity, an epidemic of the twenty-first century, continues 
to rise throughout the world, even in the countries where pov-
erty and malnutrition are major problems. The World Health 
Organization estimates that globally there are more than 1.9 
billion overweight adults [body mass index (BMI) > 27 kg/m2]. 
Of them, 600 million people are obese with BMI more than 
30  kg/m2 (WHO obesity and overweight fact sheet, updated 
in June 2016: http://www.who.int/mediacentre/factsheets/
fs311/en/). Obesity provides bacterial and metabolic danger 
signals that activate a plethora of inflammatory cascades that 
drives M1 macrophage phenotype. In addition, immune and 
metabolic pathways are tightly balanced in that the immune 
response is highly energy demanding and shifts energy away 
from  non-essential functions (12). In contrast, infection and 
sepsis often result in metabolic disruptions including IR (13). 
Obesity- and T2D-induced alterations in components of the 
immune system are most apparent in adipose tissue, the liver, 
and the pancreatic islets. Therefore, this review will focus on 
obesity-induced changes in immune system and metabolism 
in adipose tissue and liver and the consequent development of 
disease states such as IR, T2D, non-alcoholic fatty liver disease 
(NAFLD), and non-alcoholic steatohepatitis (NASH).

OBeSiTY: innATe AnD ADAPTive 
iMMUne ReSPOnSeS AnD THeiR 
SiGnALinG

The mammalian immune system consists of two types of 
immune responses: innate and adaptive. Innate immune cells 
include neutrophils, dendritic cells, macrophages, mast cells, and 
eosinophils, which respond to general danger signals associated 
with invading pathogens. Neutrophils are the first responders to 
invading pathogens and are generally among the first immune 
cells to arrive at the site of inflammation. Macrophages are 
long lived and highly dynamic. They readily switch from anti-
inflammatory M2 type to pro-inflammatory M1-type in resident 
tissues. Besides bacterial danger signals mediated by lipopoly-
saccharide (LPS), the toll-like receptor 4 (TLR4) ligand, obesity-
associated metabolic danger signals also play an important role 
in macrophage polarization. To provide local immune responses, 
macrophages get assistance from other immune cells, such as 
TLR-proficient mast cells (14). Eosinophils are  anti-inflammatory 
in nature and maintain the M2 macrophage population. Adaptive 
immune cells include B-2 and T lymphocytes, which exert 
specific and decisive adaptive immune functions and provide 

immunological memory (15). B-2 and T lymphocytes are also 
involved in sterile inflammation and autoimmune disorders  
(16, 17). TNF-α released by M1 macrophage initiates inflam-
matory signaling through its receptor TNFR1 with consequent 
regulation of gene expression. In the cytoplasm, NF-κB is seques-
tered by the inhibitor of κB (IκB) to prevent nuclear translocation. 
The activation of the IκB kinase leads to phosphorylation of IκB 
and release of NF-κB, which then translocate to the nucleus and 
bind to the promoters of pro-inflammatory genes and initiates 
transcription (9, 18) (Figure 1). Alternatively, the inflammatory 
signaling can be initiated by the microbial-derived LPS, which 
acts through the TLRs. TLRs can sense lipids and saturated fatty 
acids and are able to induce activation of TLR2 and TLR4 through 
myeloid  differentiation primary response protein 88-dependent 
pathways, whereas unsaturated fatty acids block TLR-mediated 
signaling pathways and gene expression (Figure  1). Receptors 
of advanced glycation end product bind to lipids and nucleic 
acids resulting in oxidative stress, activate NF-κB, and promote 
transcription of pro-inflammatory factors (19, 20) (Figure  1). 
The inflammasome, an oligomeric protein complex, comprises 
scaffold, adaptor, and caspase proteins that mediate the matura-
tion and secretion of inflammatory cytokines interleukin-1β 
(IL-1β) and IL-18 (21). The NLR family pyrin domain containing 
3 inflammasome recruits and activates pro-caspase 1 to produce 
caspase-1, which then cleaves pro-IL-1β and pro-IL-18 to mature 
IL-1β and IL-18, respectively (22).

iMMUne CeLLS AnD THeiR 
POLARiZATiOn in ADiPOSe TiSSUe

The adipose tissue comprises adipocytes, immune cells (mac-
rophages and lymphocytes), pre-adipocytes, and endothelial 
cells. Under lean conditions, Th2 T cells, Treg cells, eosinophils, 
and ATM2-like resident macrophages predominate in the adipose 
tissue (Figure  2). ATM2 macrophages express CD11b, F4/80, 
CD301, and CD206 and promote local insulin sensitivity through 
production of anti-inflammatory cytokines, such as IL-10 (18). Treg 
cells not only secrete IL-10 but also stimulate ATM2 macrophage 
to secrete IL-10. Eosinophils, on the other hand, secrete IL-4 
and IL-13. In the lean state, IL-4, IL-10, and IL-13 maintain the 
anti-inflammatory and insulin-sensitive phenotype. In contrast, 
obesity induces lipolysis and release of pro-inflammatory free 
fatty acids (FFAs) and factors such as C–C motif ligand 2 (CCL2) 
and TNF-α that recruit blood monocytes in adipose tissue, where 
they become polarized to the highly pro-inflammatory M1-like 
state (Figure 2). FFAs serve as ligands for the TLR4 complex (23), 
activate classical inflammatory response, and drive accumulation 
of ATM (24, 25). Activated ATM1 express CD11c in addition to 
CD11b and F4/80 and produce large amounts of pro-inflamma-
tory mediators such as TNF-α, IL-1β, IL-6, leukotriene B4, NO, 
and resistin that work in a paracrine fashion and causes IR in 
adipose tissue (26). The anti-inflammatory eosinophil population 
declines in obese adipose tissue. In addition, obesity decreases Treg 
content and an increase in CD4+ Th1 and CD8+ effector T cells, 
which also secrete pro-inflammatory cytokines. Obesity increases 
B cell numbers and activates T cells, which potentiate M1-like 
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FiGURe 1 | Molecular events that connect inflammation to insulin resistance in obesity. Saturated fatty acids (SFAs) bind to Fetuin-A, an endogenous 
ligand of toll-like receptor 4 (TLR4) and TLR2, and initiate transcription of interferon regulatory factor 3 (IRF3) in a myeloid differentiation primary response protein 88 
(MyD88)–TIR-domain-containing adapter-inducing interferon-β-dependent pathway. Activated IRF3 then translocates to the nucleus and binds to target DNA 
sequences. Tumor necrosis factor (TNF) protein binds to its receptor and initiates inhibitor of κB (IκB)–NF-κB signaling pathway leading to translocation of NF-κB to 
the nucleus where it binds to AP-1 DNA sequences. Stimulation leukotriene B4 receptor 1 (LTB41) activates the c-Jun N-terminal kinase pathway, leading to 
phosphorylation and binding of the c-Jun–c-Fos heterodimer to target genes. NF-κB, c-Jun–c-Fos, and IRF3 induce expression of inflammatory factors such as 
cytokines, chemokines, and components of the inflammasome. When inflammasome is assembled, pro-caspase-1 is converted to caspase-1, which then converts 
pro-interleukin-1β (IL-1β) and pro-IL-18 to IL-1β and IL-18, respectively. I, insulin; insulin receptor; IRS, insulin receptor substrate.
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macrophage polarization, inflammation, and IR. Cytokines and 
chemokines are also released from the adipose tissue and promote 
inflammation and consequent IR in liver, muscle, and pancreas.

iMMUne CeLLS AnD THeiR 
POLARiZATiOn in LiveR

In the lean liver, hepatocytes are the major parenchymal cells, 
while the non-parenchymal cells integrate five cell populations 
including resident macrophages of M2-type or Kupffer cells (27), 
recruited hepatic macrophages, resident innate lymphocytes or 
natural killer cells (NKs) (28, 29), fat storing cells termed Ito or 
stellate cells (HSCs) (30), and liver sinusoidal endothelial cells 
(LSECs) (31). Under lean conditions, Kupffer cells (KCs) in 
collaboration with other hepatic immune cell populations clear 
microbial material while maintaining the inflammatory tone of 
the liver at a level sufficient for essential functions such as pathogen 
killing, tissue remodeling, and sinusoidal permeability, but below 
that they would result in overt inflammation and tissue damage 

(32–34). NKs eliminate virus-infected or transformed cells and 
regulate adaptive immune responses via contact-dependent 
signals and the secretion of cytokines (35–38).

Hepatic lipid accumulation and peroxidation lead to chronic 
hepatocyte endoplasmic reticulum stress, the production of 
reactive oxygen species, and TLR activation, which converts 
KCs into an M1 phenotype defined by production of pro-
inflammatory cytokines, oncostatin, and prostaglandins (PGE2) 
(39–41). Circulating cytokines, adipokines, and FFAs released 
from inflamed adipose tissue in the obese state or immunogenic 
material derived from an altered intestinal microbiota can also 
contribute to KC polarization. M1-KCs secrete chemokine CCL2 
(also known as MCP1), pro-inflammatory cytokines (TNF-α, 
IL-1β, and IL-6), macrophage inflammatory protein (MIP)-1a, 
MIP1b, RANTES, oncostatin, and PGE2, which contribute to the 
alteration of the liver homeostasis and worsen the hepatic inflam-
matory response (42). PGE2 regulates cytokine production (IL-
1β, IL-6, TNF-α, and TGF-β) (43, 44), acts synergistically with 
IL-6 to induce IR (45), and induces production of oncostatin M 
(OSM) in KCs (46). Increased OSM contributes to hepatic IR and 
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FiGURe 2 | Schematic diagram showing obesity-induced inflammation in peripheral organs including adipose tissue, the liver, skeletal muscle, and 
the pancreas to cause dysbiosis in the intestine. In adipose tissue, pro-inflammatory signaling induces lipolysis and release of free fatty acids eventuating in the 
development of insulin resistance. In the liver, obesity induces pro-inflammatory cytokine production and M1 macrophage recruitment, resulting in insulin resistance 
and steatosis. In skeletal muscle of obese rodents, accumulations of lipid and pro-inflammatory macrophage inhibit insulin signaling, which result in the development 
of insulin resistance. In the pancreas, obesity induces macrophage infiltration, interleukin-1β secretion, and decreases insulin secretion. Because of the change in the 
composition of the microbial population, dysbiosis occurs in the intestine. AC, adipocyte; KC, Kupffer cell; L, lipid droplets; M1Φ, classically activated macrophages/
pro-inflammatory macrophages; M2Φ, alternatively activated macrophages/anti-inflammatory macrophages; NK, natural killer cell; PMN, polymorphonuclear 
neutrophil; WAT, white adipose tissue.
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the development of NASH (46). High levels of TNF-α released by 
M1-KCs stimulates hepatic expression of CCL2, a powerful mono-
cyte chemoattractant, which recruits CCR2+Ly6Chigh monocytes 
from the vasculature into the liver (47), where they differentiate 
into Ly6Chigh macrophages. The Ly6Chigh macrophages amplify the 
severity of obesity-induced inflammation and hepatic IR through 
secretion of TNF-α and IL-6 (48).

ADiPOSe TiSSUe FiBROSiS AnD 
MeTABOLiC DYSFUnCTiOn

Adipocytes and their progenitor cells (pre-adipocytes) are embed-
ded in a network of extracellular matrix (ECM), which tightly 
regulates the function of adipose tissue (49). Fibrosis, the exces-
sive accumulation of ECM components, is a highly conserved and 
coordinated protective response to tissue injury and is a common 
pathological consequence of inflammatory diseases (50). Fibrosis 
develops from an imbalance between excess synthesis of ECM 
components including collagens (I, III, and VI), elastins, and 
proteoglycans (51, 52), and an impairment in degradation of 
these proteins. Fibrosis limits the expandability of adipose tissue 
and contributes to ectopic fat accumulation and the development 

of IR (53). It has been recently shown that treatment with the 
antidiabetic drug metformin inhibits excessive ECM deposition 
in white adipose tissue (WAT) of leptin-deficient ob/ob mice and 
mice with diet-induced obesity (54). Fibrotic disorders cause 45% 
deaths in the United States (52). In adipose tissues, ECM under-
goes constant remodeling to allow adipocytes to rapidly expand 
and shrink in parallel with weight gain and loss and function in 
adaptation to nutritional clues (55). Adipocytes undergo dramatic 
expansion during the development of obesity. Macrophages are 
believed to be the master “regulators” of fibrosis as they produce 
soluble mediators including TGF-β1 and platelet-derived growth 
factor (PDGF), which directly activate fibroblasts and control 
ECM dynamics by regulating the balance of various matrix met-
alloproteinases (MMPs) and tissue inhibitors of MMP (TIMP) 
(56). Myofibroblasts, macrophages, and endothelial cells also 
produce MMP and TIMP for ECM regulation (57). While MMPs 
are responsible for the degradation of virtually all ECM proteins 
(58), TIMP inhibits MMPs and is responsible for degrading excess 
ECM (59). Macrophages also regulate fibrogenesis by releasing 
chemokines and attract fibroblasts and other inflammatory cells. 
Thus, IL-13 produced by Th2 CD4+ T cells (52, 60, 61) and TGF-
β1 activate fibroblasts to differentiate into α-smooth muscle actin 
(α-SMA) expressing myofibroblasts to produce ECM (62–64).
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LiveR FiBROSiS AnD MeTABOLiC 
DYSFUnCTiOn

Liver fibrosis results from the would-healing response of the 
liver to repeated injury such as hepatitis C virus (HCV) infec-
tion, alcohol abuse, and NASH (65, 66). Fibrosis is increasingly 
appreciated as a major contributor to metabolic dysregulation 
in obese humans and T2D patients (67). Advanced liver fibrosis 
leads to cirrhosis and death (68). Increased gut permeability and 
hepatic TLR4 signaling promotes fibrogenesis. Both KCs and 
recruited Ly6Chigh macrophages contribute to the development of 
hepatic fibrosis (69). HSCs are the main collagen-producing cells 
in liver (70, 71). KCs activate HSCs through increased production 
of profibrotic cytokine TGF-β and mitogenic PDGF (72)  leading 
to fibrosis. TGF-β leads to transdifferentiation of HSCs into 
myofibroblasts. PDGF stimulates myofibroblast proliferation. 
Inhibition of PDGF by anti-sense strategy attenuates liver fibro-
genesis (73). HSC-derived myofibroblasts express α-SMA and 
collagen I. During fibrogenesis, LY6Chigh monocytes are recruited 
to the inflamed liver via the CCL2/CCR2 (C–C chemokine recep-
tor type 2) axis, forming a profibrotic Ly6Chigh macrophage, which 
has been shown to be the predominant pro-fibrogenic popula-
tion in the liver (74, 75). These cells express TNF-α and IL-1β, 
which perpetuate hepatocellular injury and enhance the survival 
of hepatic myofibroblasts. In addition, Ly6Chigh macrophages 
express high levels of TGF-β-activating thrombospondin 1 (76). 
Macrophages also express the potent mitogen PDGF and the Th2 
cell cytokines IL-4 and IL-13, which directly stimulate  collagen 
synthesis in myofibroblasts. Chemokine expression such as 
CCL8 (also known as MCP2) and CCL7 (also known as MCP3) 
by these macrophages promotes the recruitment of monocytes, 
other inflammatory cells, and HSCs (77). Ly6Chigh macrophages 
also interact with HSCs to promote fibrosis through increased 
production of TGF-β, connective tissue growth factor (CTGF), 
and PDGF (78). Inhibition of the main monocyte chemoat-
tractant CCL2 in rats or genetic deletion of its receptor CCR2 
in mice decreased macrophage infiltration in response to injury 
and markedly inhibited liver fibrosis, implicating monocyte 
recruitment as an essential component in liver fibrogenesis 
(78–82). In addition, pharmacological inhibition of CCL2 by 
the RNA-aptamer mNOX-E36 attenuates liver fibrosis, thereby 
strengthening a profibrotic function of Ly6Chigh macrophages 
(83, 84). Hepatic myofibroblasts express TIMP1, which inhibits 
MMP activity and augments the accumulation of ECM in the 
scar tissue.

OBeSiTY, TiSSUe inFLAMMATiOn, AnD 
inSULin ReSiSTAnCe

Components of the immune system are affected in obesity 
and T2D and inflammation participates in the pathogenesis of 
T2D. Thus, obesity affects the immune system and promotes 
inflammation with consequent development of IR (85–87). 
Obesity-induced increased levels of glucose and FFAs create 
stress in pancreatic islets, adipose tissue, liver, and muscle, 
resulting in increased local production and release of cytokines 

and chemokines such as IL-1β, TNFα, CCL2, CCL3, and CXC-
chemokine ligand 8 (CXCL8, also known as IL-8). These changes 
promote recruitment of immune cells in insulin-sensitive tissues 
and contribute to tissue inflammation and further production 
and release of cytokines and chemokines. The augmented release 
of cytokines and chemokines promotes inflammation in liver, 
muscle, and pancreatic islets. Obesity affects insulin signaling and 
causes IR by the following mechanisms: (i) inflammatory stimuli 
phosphorylate IκB resulting its dissociation from IκB/NF-κB 
complex followed by degradation in the cytoplasm. This allows 
translocation of free NF-κB to the nucleus, where it binds to 
cognate DNA response elements and transactivates the transcrip-
tion of inflammatory genes. (ii) Phosphorylation and activation 
of c-Jun N-terminal kinase (JNK) leading to phosphorylation of 
the N-terminus of c-Jun. This initiates a switch of c-Jun dimers 
for c-Jun–c-Fos heterodimers with consequent stimulation of 
transcription of inflammatory target genes. (iii) Production 
of “second messengers,” such as FFAs, that promote IR. (iv) 
Augmented transcription of genes involved in lipid processing, 
including the enzymes that synthesize ceramide, which inhibits 
the activation of AKT (88, 89).

Recent studies in both rodents and humans implicate gut 
microbiota as a contributor to metabolic disorders (90). The gut 
microbiota plays a part in the host’s genomic profile and meta-
bolic efficiency (91). Obesity in humans and rodents is associated 
with changes in the composition of the intestinal microbiota (92, 
93). Dysbiotic microbiota in obesity enhances the digestion of 
complex carbohydrates and macronutrient absorption, leading to 
the development of obesity (94). In addition, gut microbiota has 
the capacity to harvest energy from nutrients and stores energy in 
the form of fat (95). The gut microbiota is also capable of inducing 
“metabolic endotoxemia” by increasing exposure to bacterial LPS 
coming from gut (96). LPS in the bloodstream contributes to IR 
by promoting tissue inflammation (97, 98).

OBeSiTY AnD nAFLDs

Non-alcoholic fatty liver disease, the liver manifestation of the 
metabolic syndrome, has become the most common disorder in 
the United States and other developed countries, affecting over 
a third of the population (99). NAFLD begins with a simple 
steatosis that may evolve into NASH, a medley of inflammation, 
hepatocellular injury, and fibrosis, often resulting in cirrhosis and 
even hepatocellular cancer (100–102). KCs differ in their popula-
tion density, morphological characteristics, and physiological 
functions depending on their position within the liver sinusoids 
(103, 104). Severity of human NAFLD is associated with higher 
population of KCs (105). However, NASH is associated with 
aggregates of enlarged KCs (106). Selective depletion of large KCs 
by administration of gadolinium chloride markedly attenuates 
liver injury induced by thioacetamide (107), carbon tetrachloride 
(108), alcohol (109), and ischemia/reperfusion (110), indicating 
the critical roles played by larger KCs in liver damage in these 
condition. In experimental NAFLD induced by methionine/
choline deficient diet, liposome-encapsulated dichloromethylene 
bisphosphonate (clodronate) effective blunts all histological evi-
dence of NASH (111). These findings indicate that the activation 
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of KCs positioned at the “frontline” is an essential element in the 
pathogenesis of NAFLD similar to other types of liver injury.

THeRAPeUTiC PeRSPeCTiveS On 
iMMUnOMODULATiOn

Although it is yet to be definitely established whether tissue 
inflammation causes IR in humans, several anti-inflammatory 
approaches have been tested in clinical studies of obese individu-
als with IR. Thus, salsalate, an analog of salicylate, has been shown 
to improve insulin clearance and insulin sensitivity (112–115). 
Anti-TNF antibodies were found to decrease blood glucose in 
obese individuals (116). Anti-IL-1β monoclonal antibody therapy 
improved glycemic condition and β-cell insulin secretion (117–
119). The antidiabetic thiazolidinediones (e.g., rosiglitazone and 
pioglitazone) decreased adipose tissue macrophage content (120, 
121) and increase circulating levels of adiponectin and FGF21, 
thereby mediating redistribution of adipose tissue lipid stores  
(122, 123). Orexin-1 receptor antagonist has been shown to exert 
anti-obesity effects in obese leptin-deficient ob/ob mice (124, 
125). While obese mice fed a high-fat diet supplemented with ω-3 
fatty acids caused a decrease in inflammation, improved insulin 
sensitivity, and normalized glucose tolerance (126), fish-oil sup-
plementation yielded mixed results on metabolic end points in 
human studies (127, 128).

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

Although the last 15 years has witnessed a renaissance in the field 
of immunology and metabolism, immunometabolism is still a 

young field with many questions to be answered. (i) To what extent 
are obesity and inflammation triggered in parallel or in sequence? 
(ii) What is the ontogeny and fate of stromal cells that populate 
WAT and liver? (iii) Do macrophage localization and origin 
regulate immunometabolic phenotype? (iv) By what pathway(s) 
does inflammation provoke T2D? (v) Can genetic and environ-
mental factors reinforce or dissociate the link between metabolic 
and immunological abnormalities? (vi) Do anti-inflammatory 
strategies target the underlying mechanisms of the disease, and 
if so, would starting these therapies early prevent progression 
or even the overt manifestation of the disease? Answers to the 
above questions and a more detailed understanding of immuno-
metabolism will permit more focused immune therapies to target 
metabolic diseases.
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The heart possesses a remarkable inherent capability to adapt itself to a wide array of 
genetic and extrinsic factors to maintain contractile function. Failure to sustain its com-
pensatory responses results in cardiac dysfunction, leading to cardiomyopathy. Diabetic 
cardiomyopathy (DCM) is characterized by left ventricular hypertrophy and reduced dia-
stolic function, with or without concurrent systolic dysfunction in the absence of hyper-
tension and coronary artery disease. Changes in substrate metabolism, oxidative stress, 
endoplasmic reticulum stress, formation of extracellular matrix proteins, and advanced 
glycation end products constitute the early stage in DCM. These early events are fol-
lowed by steatosis (accumulation of lipid droplets) in cardiomyocytes, which is followed 
by apoptosis, changes in immune responses with a consequent increase in fibrosis, 
remodeling of cardiomyocytes, and the resultant decrease in cardiac function. The heart 
is an omnivore, metabolically flexible, and consumes the highest amount of ATP in the 
body. Altered myocardial substrate and energy metabolism initiate the development of 
DCM. Diabetic hearts shift away from the utilization of glucose, rely almost completely 
on fatty acids (FAs) as the energy source, and become metabolically inflexible. Oxidation 
of FAs is metabolically inefficient as it consumes more energy. In addition to metabolic 
inflexibility and energy inefficiency, the diabetic heart suffers from impaired calcium han-
dling with consequent alteration of relaxation–contraction dynamics leading to diastolic 
and systolic dysfunction. Sarcoplasmic reticulum (SR) plays a key role in excitation– 
contraction coupling as Ca2+ is transported into the SR by the SERCA2a (sarcoplasmic/
endoplasmic reticulum calcium-ATPase 2a) during cardiac relaxation. Diabetic cardio-
myocytes display decreased SERCA2a activity and leaky Ca2+ release channel resulting 
in reduced SR calcium load. The diabetic heart also suffers from marked downregulation 
of novel cardioprotective microRNAs (miRNAs) discovered recently. Since immune 
responses and substrate energy metabolism are critically altered in diabetes, the present 
review will focus on immunometabolism and miRNAs.

Keywords: obesity, insulin resistance, inflammation, cardiomyopathy, innate and adaptive immunity, glucose 
metabolism, fat metabolism, miRnA
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inTRODUCTiOn

Insulin deficiency and/or resistance and elevated plasma glucose 
level characterize diabetes, a chronic and progressive metabolic 
disorder. While type 1 diabetes mellitus (T1DM) accounts for 
5–10% of all cases of diabetes (1), type 2 diabetes mellitus (T2DM) 
accounts for the remaining ~90% of all cases of diabetes (2). As of 
2015, 415 million people across the globe have diabetes mellitus 
(DM) (www.diabetesatlas.org), which will cost 12% of all global 
health expenditures (accounting for $320 billion in the USA alone) 
(3). The International Diabetic Federation predicts that 552 mil-
lion people will suffer from diabetes by 2030. T2DM is recognized 
as an independent risk factor for heart failure (HF). Patients with 
T2DM have a greater probability of death in established HF; suffer 
from worse prognosis after myocardial infarction (MI) (4–8); and 
accounts for 5.2% of all deaths globally (9, 10). T2DM is strongly 
associated with obesity and sedentary lifestyle coupled with 
increasingly westernized diet (2, 11). Diabetic patients are also 
highly susceptible to diastolic dysfunction, ventricular hypertro-
phy, and decreased myocardial strain (12).

Rubler and colleagues initially reported diabetic cardiomyo-
pathy (DCM) from their observation of cardiac hypertrophy on 
post-mortem hearts from four diabetic patients who died of HF 
without cardiovascular disease, which was subsequently followed 
by various other studies (13–16). The Strong Heart Study, the 
Cardiovascular Health Study, and the Framingham Study revealed 
cardiac hypertrophy with compromised systolic and diastolic 
function in DCM patients (4, 17–19). Of note, diastolic dysfunc-
tion has been reported in diabetic hearts without hypertrophy 
(20–22). In fact, DCM starts with diastolic dysfunction in patients 
with T1DM or T2DM followed by systolic dysfunction (23–27). 
Rodent models of T1DM including streptozotocin (STZ)-treated 
(28) or alloxan-treated animals (29) and T2DM models such as 
Goto-Kakizaki rat (30), Zucker fatty rats, Zucker diabetic fatty rats, 
leptin-deficient ob/ob mice, and leptin receptor-deficient db/db 
mice consistently show the human DCM phenotypes (31–33). Of 
note, STZ- and alloxan-induced diabetes is characterized by myo-
cardial atrophy including loss of contractile proteins as opposed 
to cardiac hypertrophy in T2DM models (34–36). In addition, in 
T1DM animals, the progress of systolic dysfunction is positively 
correlated with the progress of the magnitude and duration of 
hyperglycemia (hypoinsulinemic/hyperglycemia → systolic dys-
function) (31, 35–38). By contrast, mouse models of T2DM are 
characterized by hyperinsulinemia, hyperglycemia (later stages), 
and hyperlipidemia (hyperinsulinemic/hyperglycemic → hyper-
trophy and diastolic dysfunction) (31, 39–41).

Autophagy is reduced in the mouse hearts of OVE26 (a trans-
genic model of insulinopenic diabetes) and STZ-induced diabetic 
mouse hearts (42–44). Metformin has been shown to prevent 
DCM by stimulating AMP-activated protein kinase (AMPK) 
activity and enhancing autophagic capacity (43).

Recently, DM is identified as a microRNA (miRNA)-related 
disease (45), and several diabetic complications are associated 
with differential expressions of various miRNAs (46). Further, 
miRNAs play a vital role in the regulation of metabolism (47) and 
since DM is a metabolic disease it is logical to examine the role 
of miRNAs in DM. Thus the present review will focus on altered 

metabolism of glucose and fatty acids (FAs) as well as immune 
responses in diabetes.

DeCReASeD GLUCOSe UPTAKe  
AnD MeTABOLiSM

The heart consumes about 6  kg of ATP, or ~20 times its own 
weight, per day (48) that comes from the breakdown of fat, carbo-
hydrate, protein, ketone bodies, or lactate. Of note, the amount of 
ATP in the heart is small (~10 mM, enough for only a few beats) 
compared with the demand (~10,000 times greater) (49). About 
95% of total energy is generated from oxidative phosphorylation 
of FAs and glucose (50–52). A dramatic metabolic shift takes place 
in diabetic heart, as they rely almost completely on FAs for their 
energy source. As for example, 46 atoms of oxygen are required 
to generate 105 molecules of ATP from oxidation of 1 molecule of 
palmitate. By contrast, oxidation of 1 molecule of glucose utilizes 
12 atoms of oxygen to generate 31 molecules of ATP. Therefore, 
oxidation of FAs consumes ~0.3 oxygen molecules more than 
glucose to generate each molecule of ATP. Thus, the diabetic 
heart suffers from metabolic inflexibility due to its reliance on 
FAs. The lack of insulin production in T1DM patients causes 
a dramatic decrease in cardiac glucose uptake (53, 54) where 
hyperglycemia increases glucose oxidation and mitochondrial 
generation of superoxide (55–57). Increased production of super-
oxide damages DNA and activates poly (ADP ribose) polymerase 
1 (PARP-1) (58), which mediates inflammation and fibrosis in 
liver (59). PARP-1 inhibition improves cardiac function (60) and 
prevents hyperglycemia-induced pathological processes (61). 
While decreased glucose transporter type 4 (Glut4) expression in 
T1DM animals causes decreased glucose uptake in cardiac and 
skeletal muscle (62, 63), glucose uptake is impaired in T2DM 
hearts by decreased expression and translocation of Glut4/Glut1 
(64, 65). Diabetic db/db mice show decreased glucose oxidation 
and increased reliance on FAs, indicating that insulin resistance 
is not responsible for metabolic switch (66–69). The high rate of 
FA oxidation in T2DM patients and rodents increases produc-
tion of acetyl CoA and NADH, resulting in activation of pyruvate 
dehydrogenase kinase 4 (PDK4). PDK4 is also activated by per-
oxisome proliferator-activated receptor alpha (PPARα), which 
is overexpressed in diabetic rodents (70–73). Activated PDK4 
inhibits pyruvate dehydrogenase complex, thereby preventing 
oxidation of pyruvate (74, 75) (Figure 1). In addition, increased 
accumulation of FAs and their derivatives fatty acyl CoA, diacylg-
lycerol, and ceramide activate protein kinase C, c-Jun N-terminal 
kinases, mammalian target of rapamycin, and inhibitor of κB 
kinase β with consequent decrease in insulin signaling (76–79).

inCReASeD FORMATiOn OF ADvAnCeD 
GLYCATiOn enD PRODUCTS (AGes)

In the diabetic heart, glucose forms covalent adducts with the 
plasma proteins through a non-enzymatic reaction between the 
free amino groups of proteins and carbonyl groups of reducing 
sugars, resulting in the formation of stable glycosylation products 
by Amadori rearrangement, which is called glycation (91–94). 
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FiGURe 1 | Schematic diagram showing changes in cardiac metabolism in diabetic cardiomyopathy. In the diabetic heart, glucose oxidation is inhibited at 
multiple steps: (i) uptake of glucose is inhibited by reduced expression of glucose transporter Glut4 as well as by blunted translocation of Glut4 in response to insulin 
(64, 65); (ii) inhibition of hexokinase activity by fatty acids (FAs) resulting in reduced conversion of glucose to glucose-6-phosphate (80); (iii) inhibition of 
phosphofructokinase activity by FA, leading to reduced formation of fructose-1,6-bisphosphate by fructose-6-phosphate (69); (iv) inhibition of pyruvate 
dehydrogenase phosphatase activity by FA resulting in reduced pyruvate dehydrogenase (PDH) activity, which leads to reduced conversion of pyruvate to acetyl 
CoA. In the diabetic heart, PPARα expression is activated by increased FA uptake (81, 82). Activated PPARα upregulates PDH kinase 4 enzymes, which inhibits PDH 
resulting in reduced production of acetyl CoA (83–85). FA transporters CD36 and FA transport protein import FAs into the cell. After import, FAs can be stored as 
triacylglycerol (TAG) or converted to fatty acyl CoA by fatty acyl-CoA synthetase (FACS). Carnitine palmitoyltransferase 1 (CPT1) transfers the acyl group of fatty acyl 
CoA to carnitine, which then shuttles into the mitochondria by carnitine translocase (CT). PPARα activates transcription of CPT1 (86). In the matrix, CPT2 reconverts 
the acylcarnitine back into free carnitine and fatty acyl CoA (87), which is then converted to acetyl CoA that can be used in the tricarboxylic acid to produce 
adenosine triphosphate by β-oxidation. Diabetes upregulates mitochondrial generation of reactive oxygen species (57, 88, 89), which affects Ca2+ signaling (90).
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Glycated proteins undergo a series of oxidation, dehydration, 
and cyclization reactions to form long-lived AGEs (95, 96). 
Both AGE and its receptor RAGE are overexpressed in diabetes 
(97) leading to the generation of reactive oxygen species (ROS) 
and subsequent activation of RAS–MAP kinase pathway (98). 
Activation of RAS–MAPK pathway in turn activates NF-κB 
pathway resulting in decreases in contractile proteins such as 
α-actin and myosin ATPase activity (35, 36) and shifts in myosin 
heavy chain isoforms from α to β with consequent develop-
ment of decreased systolic tension (36–38, 97, 99). In diabetes, 
increased serum levels of AGEs show positive correlation with 
ventricular isovolumetric relaxation time, arterial stiffness, 
and carotid intimal thickness (100–102). Treatment of diabetic 

animals with aminoguanidine (an inhibitor of AGE formation)  
(103, 104) or with alagebrium (ALT-711; disrupts AGE cross-link) 
(105) restored LV function and reduced myocardial collagen, 
highlighting the importance of AGE in cardiac dysfunction. AGEs 
also impair collagen degradation by matrix metalloproteinases 
(MMPs), such as MMP2, resulting in increased fibrosis (106, 
107). Fibrosis increases myocardial stiffness and impairs diastolic 
function (104). In T1DM heart, AGEs also induce cross-linking 
of SERCA2a pump, thereby attenuating sarcoplasmic reticulum 
(SR) Ca2+ reuptake (108, 109) with consequent attenuation of the 
maximum and minimum rate of pressure change in the ventricle 
and LV developed pressure (108). Of note, the type 2 ryanodine 
receptor-dependent Ca2+ release not only plays critical roles for 
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excitation–contraction coupling in cardiomyocytes but plays 
crucial roles in the regulation of insulin secretion and glucose 
homeostasis (110, 111). Genetic ablation of the RAGE gene 
improves hemodynamic dysfunction, thereby providing AGE/
RAGE pathway as a potential therapeutic target to alleviate 
cardiac dysfunction in diabetes.

inCReASeD FA UPTAKe AnD 
MeTABOLiSM

The heart has a limited capacity for de novo synthesis of FAs. 
Therefore, it relies heavily on the circulating FAs (112). FAs trans-
locate from blood to cardiomyocytes using three FA transporters: 
cluster of differentiation 36 (CD36), FA transport protein 1, and 
the plasma membrane form of FA-binding protein (113–116). 
Increased PPARα expression in diabetic hearts (70–73, 117) aug-
ments transcription of FA transporters. About 75% of the trans-
located FAs are transferred to mitochondria for the generation of 
ATP and the rest are converted to triacylglycerol (TAG) for future 
use (118). Translocated FAs are activated by esterification to fatty 
acyl CoA by the action of cytosolic fatty acyl-CoA synthetase 
(FACS). Carnitine palmitoyltransferase 1 (CPT1) exchanges 
the CoA moiety of fatty acyl CoA for carnitine resulting in the 
formation of acylcarnitine. Acylcarnitine is transported across 
the inner mitochondrial membrane into the matrix by carnitine– 
acylcarnitine translocase. PPARα augments transcription of CPT1 
(119, 120). In the matrix, CPT2 reconverts the acylcarnitine back 
into free carnitine and fatty acyl CoA. PPARα increases transcrip-
tion of CPT2 (120). Fatty acyl CoA is then converted to acetyl 
CoA for β-oxidation and generation of ATP. PPARα increases 
conversion of fatty acyl CoA in the mitochondrial matrix to  
acetyl CoA. Thus, PPARα plays critical roles in metabolic repro-
graming in diabetic hearts.

Since the diabetic heart relies on FAs for ATP generation, it 
consumes ~30% more oxygen compared with non-diabetic heart 
to generate similar levels of ATP (87, 121) and generate the same  
or the reduced amounts of contractile force (41). This dis-
proportionate use of FAs also alters cellular ATP shuttling as 
long-chain acyl CoA derivatives inhibit the adenine nucleotide 
translocator for the transport of ATP from mitochondria to the 
cytosol (122–124), eventuating in inefficient delivery of ATP to 
myofibrils that affects cardiac contractility.

inFLAMMATiOn, innATe, AnD ADAPTive 
iMMUne ReSPOnSeS

Metabolic disturbances induce subcellular low-grade inflamma-
tion in the heart (125). Inflammation is a key pathogenic feature 
of lipid excess and diabetes. The innate immune system com-
prising of neutrophils, dendritic cells, macrophages, mast cells, 
and eosinophils also induces chronic metabolic inflammation  
(126, 127). Myocardial inflammation is implicated in the 
development of DCM (128–131). Nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB), a primary regula-
tor of inflammatory responses, is activated in the heart upon 
exposure to FAs or glucose (132, 133). NF-κB induces not only 

the expression of pro-inflammatory cytokines, such as tumor 
necrosis factor alpha (TNFα), interleukin 6 (IL6), pro-IL1β, and 
pro-IL18, but it also induces the expression of NLR family pyrin 
domain-containing 3 (NLRP3) inflammasome (134). Activated 
RAGE also triggers an inflammatory response by heterodi-
merizing with TLR-4 leading to the production of pro-IL1β, 
Pro-IL18, and NLRP3 (135). Activated NLRP3 inflammasome 
activates caspase-1 and mediates the processing and release of 
pro-inflammatory cytokines IL1β and IL18 resulting in inflam-
matory cell infiltration and amplification of the inflammatory 
response (125, 136–138). Likewise, depletion of NLRP3 attenu-
ates inflammation and cardiomyopathy in T2DM rats (137). Of 
note, activated inflammasomes play critical roles in the patho-
genesis of HF (139). Resident immune cells in the resting heart 
include the following: macrophages, residing near endothelial 
cells or within the interstitial space (140–143); mast cells that 
are responsible for early triggers of immune responses (144); a 
small number of adaptive immune cells: B cells and regulatory  
T (TReg) cell subsets (142, 145, 146); and dendritic cells that test 
sample antigens (142, 147) (Figure 2A). The differential expres-
sion of major histocompatibility complex (MHC) class II and 
CC chemokine receptor 2 (CCR2) distinguishes three different 
subsets of cardiac macrophages: MHC class IIhigh (CCR2−), MHC 
class IIlow (CCR2−), and CCR2+ macrophages. The first two 
are the preponderant macrophages in the heart, derived from 
embryogenic progenitors and renewed through in situ prolifera-
tion, rather than through monocyte input. By contrast, CCR2+ 
macrophages derive from and replenished by circulating blood 
monocytes, which comprise of Ly6Chigh and Ly6Clow (148–150). 
Studies in Ccr2 knockout mice (lacking circulating monocytes) 
reveal increased cardiac pathology (151, 152). The loss of 
Ly6Chigh monocytes prevents hypertension-induced cardiac 
fibrosis and improves cardiac function after MI (141, 153, 154).  
Monnerat et al. suggest that diabetes enhances IL1β production 
from cardiac MHC IIhigh pro-inflammatory macrophages through 
activation of TLR2–NLRP3 inflammasome axis (155). The 
increased level of IL1β leads to a reduction in potassium current 
and an increase in calcium sparks in cardiomyocytes, which cause 
cardiac arrhythmias (156). By contrast, M2-like macrophages 
(CD206+F4/80+CD11b+) exert profound functions on tissue 
repair in heart depending on IL4 secretion (156). Recent stud-
ies implicate TNFβ producing B cells as a major contributor to 
myocardial fibrosis (153, 157). Antigen and cytokine stimulation 
are known to differentiate naive T cells into distinct T cell sub-
populations that include T helper cells and CD4+CD25+FOXP3+ 
TReg cells (158). TReg cells comprise a subset of CD4+ lymphocytes 
that suppress activation, proliferation, and effector responses of 
both innate and adaptive immune cells (159–161). As opposed 
to B cells, depletion of TReg cells aggravates myocardial fibrosis 
and adoptive transfer of exogenous TReg cells into these mice 
attenuates the extent of myocardial fibrosis (158). The following 
pro-inflammatory changes with oxidative stress and decreased 
cardiac function were detected in STZ-induced rat model of 
T1DM (162): (i) significant increases in myocardial intercellular 
adhesion molecule 1 and vascular cell adhesion molecule 1, (ii) 
increased expression of beta2-leukotrienes-integrins+ (CD18+, 
CD11a+, CD11b+), (iii) increased expression of TNFα, and 
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FiGURe 2 | (A) Schematic diagram showing immune cells in the healthy heart. Macrophages are the preponderant immune cells in the resting heart and reside 
primarily surrounding endothelial cells and also in the interstitium among cardiomyocytes (141–143). The less preponderant immune cells include the following: mast 
cells, dendritic cells, B cells, and regulatory T (TReg) cells (142, 144, 147). Neutrophils and monocytes, in general, are not detected in the resting heart. (B) Schematic 
diagram showing infiltration of neutrophils and monocytes from the circulation and their effects on resident immune cells in the diabetic cardiomyopathy (DCM) heart. 
In DCM, activated B cells release CCL7 that activates blood monocytes (146). Upon infiltration activated monocytes stimulate mast cells to release histamine, TNF, 
and interleukin 1β (IL1β), which activate neutrophils in circulation (144, 174). Activated neutrophils infiltrate heart and activate mast cells through damage-associated 
molecular patterns as well as blood neutrophils. Activated monocytes secrete TGFβ, which activates fibroblasts to induce formation of collagen.
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(iv) IL1β (Figure  2B). Treatment of STZ-induced DCM rats 
with irbesartan (AT-1 receptor antagonist) has been reported 
to improve cardiac functions by attenuating cardiac inflamma-
tion (IL1β, TNFα, and TGFβ) and restoration of MMP activity 
with consequent decrease in fibrosis (107). Similar results were 
reported after neutralization of TNFα (163) or genetic deletion 
of neurokinin receptor B (164) in rodent models of T1DM. 
Subsequently, several studies confirmed the pro-inflammatory 
phenotypes in diabetic rodent heart (165–167). As opposed to 
metabolic responses, immune responses in T1DM and T2DM 
are comparable as both of them show consistent activation of 
pro-inflammatory transcription factor NF-κB. Cytokines (i) 
increase formation of peroxynitrite, which play critical roles in 
cardiac dysfunction (168), (ii) exert direct effects on the function 
of SR as well as on the regulation of SR calcium ATPase expres-
sion (168, 169), and (iii) increase fibrosis (170). Treatment of rats 

and humans with statins (171), renin angiotensin aldosterone 
system (RAAS) inhibitors (107), metformin (172), and thiazoli-
dinediones (173) reduces inflammation in the heart and improve 
cardiac function.

miRnA in DiABeTiC HeARTS

MicroRNAs are highly conserved endogenous small non-coding 
RNAs, ~22 nucleotides in length, that regulate gene expression by 
binding to partially complementary sequences of mRNA (175). 
The failing hearts consistently show chronic immune activation 
and aberrant miRNA expression (176). Thus, miR-155 plays an 
important role in the mammalian immune systems as well as dur-
ing HF and is abundantly expressed in T-cells, B-cells, and mono-
cytes (177–180). miRNAs are also differentially expressed during 
HF (181). STZ-induced diabetic heart expresses higher levels of 
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miR-195 and silencing of miR-195 reduces DCM (182). Likewise, 
miR-141 is increased in diabetic heart and affects mitochondrial 
function and ATP generation (183). Palmitate-stimulated neo-
natal rat cardiomyocytes (NRCs) and diet-induced obese (DIO) 
mouse heart also showed increased expression of miR-451, which 
decreases LKB1/AMPK signaling (184). Expression of miR-133a 
reduces Glut4 expression with consequent decrease in insulin-
mediated glucose uptake in NRCs (185). While overexpression of 
miR-223 in NRCs significantly increased glucose uptake by increas-
ing total Glut4 level and its translocation, inhibition of miR-223 
in the heart resulted in a significant decrease in Glut4 expression 
(186). In contrast to the findings in NRCs, expression of miR-133a 
is decreased in the hearts of diabetic mice and is associated with 
increased fibrosis. Of note, overexpression of miR-133a in the heart 
attenuates cardiac fibrosis (187). Murine miR-322 has recently 
been shown to provide cardioprotection against consequences of 
hyperinsulinemia and hyperlipidemia (188). In Ins+/– Akita mice, 
a model for T1DM, the majority of miRNAs are downregulated in 
the heart (189), including miR-133a which regulates contractility 
of the diabetic heart (190). Even after treatment with insulin, which 
normalizes blood glucose levels, there are several miRNAs that 
remain differentially regulated in the diabetic heart, and they can 
potentially contribute to pathological remodeling of the diabetic 
heart (191). These miRNAs could be a potential target for develop-
ing a novel therapeutic strategy for the treatment of diabetic HF.

Diabetes mellitus is a metabolic disease, and miRNAs play a 
crucial role in the regulation of metabolism (47). Increased levels 
of plasma cholesterol and triglyceride are common in diabetes, 
and liver specific ablation of miR-122, the most abundant miRNA 
in the liver, reduces plasma cholesterol and triglyceride levels 
(192, 193). The intracellular cholesterol and FA homeostasis are 
controlled by miR-33a and miR-33b, which target genes involved 
in cholesterol export including adenosine triphosphate-binding 
cassette transporters (194–196). Endogenous inhibition or 
knockout of miR-33 leads to increased plasma high-density lipid 
levels (194–197). MiR-223 controls the expression of Glut4 gene 
in cardiomyocytes, and miR-223 is upregulated while Glut4 is 
downregulated in human diabetic hearts (186). The switch of gly-
colysis to FA oxidation is regulated by PPARδ, which is regulated 
by the miR-199/miR-214 cluster. The miR-199/miR-214 cluster 
downregulates PPARδ and impairs FA oxidation (198). ROS 
stimulates apoptosis by mitochondrial cytochrome c release and 
ceramide generation (199). In rat cardiomyocytes, high glucose 
upregulates miR-34a and miR-1 that reduces the levels of B-cell 
lymphoma 2 (Bcl-2) and insulin-like growth factor 1 (Igf-1) 
genes, respectively, and induces apoptosis (200, 201). Recently, 
Kuwabara et  al. has elegantly shown that miR-451 plays a key 
role in exacerbating lipotoxicity in cardiac myocytes and high-fat 
diet-induced cardiac hypertrophy in mice through suppression of 

the LKB1/AMPK pathway (184). MiR-133a, the most abundant 
miRNA in the heart, is downregulated in the diabetic mice heart 
with consequent induction of cardiac hypertrophy (202) and 
fibrosis (187). Lack of miR-133a also causes contractile dysfunc-
tion in the diabetic mice heart (190). These changes cause dias-
tolic dysfunction, which if untreated leads to potential systolic 
dysfunction (28).

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

Cardiovascular disease has remained the leading cause of mortality 
and morbidity in individuals with diabetes. DCM is emerging as 
an increasing health concern with the epidemic rise in DM world-
wide. Animal studies have clearly shown that glycemic control at 
an early stage prevents the development of DCM, and that certain 
anti-diabetic drugs exert anti-remodeling effects. While a large 
body of epidemiological evidence (50,000 T2DM patients) indicate 
a positive correlation between blood glucose level and/or HbA1c 
and the risk of HF (203–205), a meta-analysis of randomized 
controlled trials (37,229 patients) showed no effect of intensive 
glycemic control on the risk of HF in T2DM patients (206).

Therapeutic approach for DCM depends mainly on (i) gly-
cemic control, (ii) glucose-lowering drug administration, (iii) 
improvement of autophagy, and (iv) an active life style. Earliest 
detection, helped by current research on miRNAs, will enhance 
therapeutic efficacy. The current burst of scientific evidence for 
the potential use of circulating miRNAs as biomarkers for car-
diomyopathy is generating hopes that someday soon detection of 
specific miRNAs in biofluids of patients will help early treatment 
of both diabetes and cardiomyopathy.
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Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and 
neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. 
The intracellular functions of CgA include the initiation and regulation of dense-core 
granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein 
is co-stored and co-released with secreted hormones. The extracellular functions of 
CgA include the generation of bioactive peptides, such as pancreastatin (PST), vaso-
statin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) 
hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic 
insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual 
CgA-derived peptides may regulate different physiological functions. Indeed, additional 
studies have revealed that the pro-inflammatory PST influences insulin sensitivity and 
glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will 
focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and 
insulin-resistant models, and their potential use as therapeutic targets.

Keywords: obesity, insulin resistance, inflammation, chromogranin A knockout, pancreastatin, catestatin

inTRODUCTiOn

The human chromogranin A (gene, CHGA; protein, CgA) gene encodes a 439-amino-acid mature 
protein of approximately 48–52 kDa with a coiled-coil structure (1–6). Initially detected in chromaf-
fin granules of the adrenal medulla, this evolutionarily conserved protein is ubiquitously distributed 
in secretory vesicles of endocrine, neuroendocrine, and neuronal cells. CgA plays a pivotal role in the 
initiation and regulation of dense-core secretory granule biogenesis and hormone sequestration at 
the trans-Golgi network in neuroendocrine cells (4, 7–9). Increased levels of CgA have been identi-
fied in the blood of patients suffering from carcinoids or other neuroendocrine tumors (10–14), heart 
failure, renal failure, hypertension, rheumatoid arthritis, and inflammatory bowel disease (15–23), 
indicating an important role of CgA to influence human health and disease (24). Structurally, CgA 
has 8–10 dibasic sites and is proteolytically cleaved by prohormone convertases (25–27), cathepsin 
L (28), plasmin (29, 30), and kallikrein (31), generating biologically active peptides including the 
dysglycemic peptide pancreastatin (PST) (CgA250–301) (32, 33); WE14 (hCgA324–337) which acts as 
the antigen for highly diabetogenic CD4+ T cell clones (34–38); the vasodilating, antiadrenergic, 
and antiangiogenic peptide vasostatin 1 (CgA1–76) (39–43); the antiadrenergic, antihypertensive, 
antibacterial, proangiogenic, and antiobesigenic peptide catestatin (CST) (CgA352–372) (44–56); and 
the proadrenergic peptide serpinin (CgA402–439) (57, 58). Several of these CgA-derived peptides 
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A

B

FigURe 1 | (A) Schematic depiction of the domains of the chromogranin A (CgA) protein. Relative locations of vasostatin (VS1), pancreastatin (PST), WE14, 
catestatin (CST), and serpinin domains in CgA have been illustrated along with the description of their basic functional properties. (B) PST homology in mammals. 
Clustal-W program of MacVector (version 9.0) was used for PST domain alignments across 26 mammalian species. PST amino acid domains were shown on the 
left and percentage homology as compared to human sequence (100%) was shown on the right. The following gene accession numbers were used for this 
analysis: human (J03483), chimpanzee (XM_510135), western lowland gorilla (XM_004055595), northern white-cheeked gibbon (XM_003260903), olive baboon 
(NC_018155.1), rhesus monkey (XM_001092629), crab-eating macaque (AB_169793), Bolivian squirrel monkey (XM_003939842), white-tufted-ear marmoset 
(XM_002754214), small-eared galago (XM_003786997), Norway rat (XM_346781), house mouse (NM_007693), Chinese hamster (NW_003614307), dog 
(XM_003639191), cat (XM_003987967), Pacific walrus (XM_004394490), horse (NM_001081814), southern white rhinoceros (XM_004434217), cow (NM_181005), 
pig (XM_001925714), sheep (XM_004017959), killer whale (XM_004262352), bottle-nosed dolphin (XM_004315772), Florida manatee (XM_004376681), 
nine-banded armadillo (XM_004475519), and Tasmanian devil (XM_003756143). -, gaps in the alignment.
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have opposing counter-regulatory effects. For example, cardiac 
contractility in rodents is controlled by vasostatin (hCgA1–76) and 
CST (hCgA352–372), which are antiadrenergic (51, 59) as well as 
serpinin (hCgA402–439), which is proadrenergic (58) (Figure 1A). 
Likewise, angiogenesis is controlled by vasostatin acting in an 
antiangiogenic manner (43, 56) and CST acting as in a proan-
giogenic manner (50, 56). These CgA-derived peptides, with 
diverse functions, emphasize the importance of the CgA pro-
protein in the regulation of physiological functions (Figure 1A). 
Accordingly, Chga whole-body knockout mice present a complex 
set of metabolic phenotypes and are obese, hyperadrenergic, and 
hypertensive (48, 60–63). Chga-KO mice have become an impor-
tant model to study the roles of individual CgA-derived peptides 

through analysis of phenotypes after supplementation (48, 55, 60, 
61, 64). Here, we will focus on how two of these peptides, PST 
and CST, act as important modulators of insulin sensitivity and 
glucose metabolism.

PST inHiBiTS gLUCOSe-STiMULATeD 
inSULin SeCReTiOn (gSiS)

PST, a C-terminally glycine-amidated 49-mer peptide, was iden-
tified in 1986 as a potent inhibitor of glucose-stimulated insulin 
secretion (GSIS) (32). Two molecular forms were detected in 
human plasma: a 52 amino acid form (CgA250–301) and a larger 
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FigURe 2 | (A) Schematic representation of the role of pancreastatin (PST) in the regulation of insulin secretion from pancreatic beta cells. PST-induced nitric oxide 
(NO) production, following a guanylate cyclase–cGMP–NOS pathway, inhibits glucose-stimulated insulin secretion (GSIS). (B) Schematic diagram showing PST 
inhibition of gluconeogenesis in hepatocytes. PST initiates a GTP-binding protein linked signaling cascade leading to activation of diacylglycerol (DAG) and 
calcium-dependent conventional PKC (cPKC), which attenuates IRS–PI3K–PDK1–AKT signaling pathway. In addition, stimulation of the cGMP–NOS pathway also 
assaults this signaling pathway by nitrosylation of IRS. Thus, PST-mediated suppression of this pathway allows forkhead box protein O1 (FoxO1) and sterol 
regulatory element-binding transcription factor 1c (SREBP1c) to stimulate expression of gluconeogenic genes, phosphoenolpyruvate carboxykinase 1 (Pck1) (also 
known as Pepck) and glucose-6-phosphatase (G6pc) (also known as G6Pase), and thus prevent insulin action. Under control conditions, insulin would have 
activated this signaling pathway, causing phosphorylation of FoxO1 (promoting its exclusion from the nucleus) and preventing processing of SREBP1 proprotein to 
SREBP1c with consequent inhibition of expression of gluconeogenic genes and gluconeogenesis. (C) Catestatin (CST) stimulation of lipolysis in adipocytes. 
Activation of α2-adrenergic receptor (α2-AR) inhibits β1/2-AR-induced lipolysis in a dominant way in obesity. CST enhances lipolysis by inhibiting α2-AR, which 
promotes β1/2-AR action and the consequent downstream signaling. Hormone-sensitive lipase (HSL) is an intracellular, neutral lipase that has broad substrate 
specificity, catalyzing the hydrolysis of triacylglycerol (TAG), diacylglycerol (DAG), monoacylglycerol (MAG), and cholesteryl esters. Its activity against DAG is about 
10- and 5-fold higher than its activity against TAG and MAG, respectively, whereas its activity against cholesteryl esters is about twice its activity toward TAG. The 
hydrolytic activity of HSL against TAG and cholesteryl esters, but not against DAG, is stimulated by phosphorylation mediated primarily by PKA (84). AC, adenylyl 
cyclase; FFA, free fatty acids; MGL, monoacylglycerol lipase; PKA, protein kinase A. (D) Summary of PST and CST actions.
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form with a molecular weight of 15–21 kDa (65). Although the 
PST sequence is well conserved in mammals, showing 41.5% 
homology between humans and the Tasmanian devil, no homol-
ogy could be detected in submammalian vertebrates (Figure 1B) 
(66–68). PST inhibits GSIS in vivo in mice, rats, dogs, and pigs, 
as well as in  vitro from isolated rat islets (69). In the perfused 
rat pancreas, PST inhibits unstimulated and stimulated insulin 
secretion (70–73). In PST-deficient Chga-KO mice, GSIS 

was ~1.7-fold higher at 7 and 15  min after administration of 
glucose, confirming the inhibitory role of PST in GSIS (60). 
In addition, PST inhibits glucagon secretion induced by low 
glucose (74) but had no effect on somatostatin secretion (75).  
In addition to inhibition of GSIS, PST inhibits insulin-stimulated 
glucose transport in primary rat and mouse adipocytes (60, 
76, 77), differentiated 3T3-L1 adipocytes (68, 78), and primary 
hepatocytes (60). PST also increases nitric oxide (NO) levels in 
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HTC rat hepatoma cells (79), L6 myotubes (68), and in livers of 
Chga-KO mice (60), showing that PST inhibits insulin action. 
Since NO inhibits GSIS (80) and PST increases NO production 
(60, 68, 79), we believe that PST likely inhibits GSIS through 
activation of the NO pathway (Figure 2A).

PST RegULATeS HePATiC gLUCOSe 
MeTABOLiSM

PST treatment inhibits insulin-stimulated glycogen synthesis 
in primary hepatocytes (81) and activates glycogenolysis in 
the rat liver, implicating a direct anti-insulin effect on liver 
metabolism (82, 83). PST-deficient Chga-KO mice show 
greater suppression of hepatic glucose production (HGP) com-
pared to wild-type (WT) mice during insulin clamp studies 
(60). Decreased glucose production in Chga-KO mice was also 
supported by decreased glucose production during pyruvate 
tolerance tests and decreased mRNA transcript levels of the 
gluconeogenic genes, such as the phosphoenolpyruvate car-
boxykinase 1 and glucose-6-phosphatase (G6pc), compared to 
WT mice that were restored to WT levels after supplementation 
of PST to Chga-KO mice (60). PST activates gluconeogenesis 
by decreasing phosphorylation of insulin receptor substrate 2 
at tyrosine residues through activation of conventional PKC 
and increases production of NO with subsequent attenuated 
phosphorylation of protein kinase B (AKT), forkhead box 
protein O1, and reduced matured sterol regulatory element-
binding transcription factor 1c (SREBP1c) (Figure  2B) (60). 
These findings are consistent with the anti-insulin action  
of PST.

PST inFLUenCeS LiPiD MeTABOLiSM

In addition to glucose metabolism, PST also modulates lipid 
metabolism. PST decreases insulin-stimulated synthesis of lipids 
in rat adipocytes (85), which is consistent with the PST-dependent 
increased expression of hepatic lipogenic genes in Chga-KO mice, 
including Srebp1c, peroxisome proliferator-activated receptor-
gamma, and glycerol-3-phosphate acyltransferase (Gpat) (60). 
PST also stimulates release of glycerol and free fatty acids from 
rat adipocytes, which is completely inhibited by insulin (85). In 
humans, PST augments free fatty acid efflux into the circulation, 
resulting in an overall spillover of ~4.5-fold, which is consistent 
with the reported lipolytic action of PST (85), confirming the 
anti-insulin effects of PST.

PST PROMOTeS inFLAMMATiOn AnD 
inSULin ReSiSTAnCe

Since PST inhibits the action of insulin on glucose and lipid 
metabolism, one would expect improved insulin sensitivity in 
PST-deficient mice. Indeed, Chga-KO mice show improved 
hepatic insulin sensitivity as assessed by insulin tolerance tests 
(ITTs) showing increased hypoglycemia, and insulin clamp stud-
ies showing increased suppression of HGP. Improved hepatic 

insulin sensitivity was abolished when Chga-KO mice were 
treated with PST, implicating a positive correlation between PST 
and the development of insulin resistance (60). Similarly, type 2 
diabetes mellitus (T2DM) patients show a substantial increase in 
plasma PST levels (~3.7-fold) (77). Gestational diabetic subjects 
and patients with non-insulin-dependent diabetes mellitus also 
show increased plasma PST levels (86, 87).

Feeding mice a high fat diet (HFD) creates obesity, leading 
to hyperinsulinemia and inflammation (88–92). ITT studies 
revealed that HFD-fed Chga-KO mice displayed improved 
insulin sensitivity compared to WT mice, demonstrating the 
importance of PST in the development of IR (64). This was rein-
forced by hyperinsulinemic–euglycemic clamp studies, where 
Chga-KO-HFD mice displayed increased glucose infusion rates, 
higher insulin-stimulated glucose disposal rates (IS-GDRs), and 
suppressed HGP. Recent studies implicate dissociation between 
obesity and insulin resistance as long as the inflammation is 
suppressed (64). The presence of supraphysiological levels of 
PST can reconnect obesity with insulin resistance by introduc-
ing inflammation. In the absence of PST, animals are insulin 
sensitive despite obesity. This is reminiscent of rosiglitazone-
treated WT-HFD mice, which are insulin sensitive but obese 
(93–95).

The hallmarks of insulin resistance in HFD mice are obe-
sity, hyperinsulinemia, and increased inflammation (88–92). 
Suppression of inflammation in HFD mice can improve insulin 
sensitivity (93–95). Therefore, the resistance to diet-induced 
insulin resistance in Chga-KO mice may reflect less inflamma-
tion in Chga-KO mice even after HFD feeding. PST treatment 
caused increased expression of the pro-inflammatory genes 
interleukin 1-beta, tumor necrosis factor alpha (Tnfa), inter-
leukin 6 (IL6), chemokine C–C motif ligand 2 (Ccl2), and nitric 
oxide synthase 2a. Whereas expression of anti-inflammatory 
genes such as arginase 1 (Arg1), interleukin 10 (IL10), and 
C-type lectin domain family member 10a (Clec10a) in adipose 
tissues was higher in Chga-KO-HFD mice than WT controls, 
PST treatment significantly reduced the expression of Arg1 and 
IL10. Consistent with gene expression data, the plasma levels 
of IL12p70, Ifng, and chemokine C–C motif ligand 3-like 1 
(Ccl3l1), IL6, and chemokine C–X–C motif ligand 1 (Cxcl1) 
showed significantly decreased levels in Chga-KO-HFD versus 
WT-HFD plasma. PST treatment of Chga-KO-HFD mice raised 
plasma levels of IL12p70 and Ccl2, but had no effect on other 
proteins measured. PST also exerted direct effects on peritoneal 
macrophage cultures obtained from WT and Chga-KO mice. 
CgA-deficient peritoneal macrophages demonstrated attenuated 
response to LPS in the expression of pro-inflammatory cytokines 
as well as decreased chemotaxis in response to cytokines (64). 
PST treatment increased the expression of Tnfa and Ccl2 in 
Chga-KO macrophages (64). Thus, it appears that PST acts as 
a pro-inflammatory peptide but its loss is likely only partially 
responsible for the improved inflammation seen in Chga-KO 
mice (Figure 2D).

Although clamp studies with Chga-KO mice fed normal 
chow diet (NCD) indicated decreased glucose disposal, mean-
ing muscle insulin resistance (60), surprisingly, reduced muscle 
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insulin sensitivity in lean Chga-KO mice was reversed by HFD 
feeding as demonstrated by improved IS-GDR in muscle of 
HFD-fed Chga-KO mice. Can feeding a high amount of lipids to 
CgA-deficient mice regenerate cells and repair muscle dysfunc-
tion? What kind of lipid could that be? These unorthodox results 
on the regulation of muscle insulin sensitivity by a CgA-derived 
protein need further investigation. In this regard, one provoca-
tive speculation may deserve some investigation. HFD-induced 
ceramide and sphingolipids were implicated in the mobilization 
and differentiation of bone marrow-derived stem/progenitor 
cells, which are involved in the repair of tissues in ischemic heart 
disease (96). More specifically, sphingosine-1-phosphate (S1P) 
acts as a trophic factor for skeletal muscle cell regeneration (97). 
Sphingolipids are important structural components of cell mem-
branes and are derived from ceramide. Ceramide production is 
increased in obesity and after HFD feeding (98, 99). Ceramide 
can be deacylated to sphingosine, which is then phosphorylated 
by sphingosine kinases to yield S1P. Since this improvement in 
muscle insulin sensitivity by HFD happened in Chga-KO mice, not 
in WT-DIO mice, absence of CgA protein or peptides triggered 
this unusual phenomenon. Therefore, it will be very important to 
investigate the roles of these dietary lipids in muscle repair and 
the functional relationship of these lipids with the CgA protein 
and CgA-derived peptides. Alternatively, it is also possible that 
the absence of CgA protein and its derivatives stimulated release 
of some myokines in response to dietary lipids, which would 
otherwise remain suppressed in WT-DIO mice. This response to 
HFD in Chga-KO mice could be muscle specific because muscle 
expresses CgA (100), and liver and adipose tissue do not (3, 46). 
Effects of CgA deficiency on liver and adipose tissue may be more 
systemic in nature, a part of which is carried out by CgA-deficient 
macrophages (64).

PST PROMOTeS enDOPLASMiC 
ReTiCULUM (eR) STReSS BY 
ATTenUATing eXPReSSiOn OF grp78

The accumulation of unfolded and misfolded proteins in the ER 
lumen, termed ER stress, leads to activation of signaling pathways 
to counteract defects in protein folding (101–106). This unfolded 
protein response (UPR) increases repair activities, reduces global 
protein synthesis, and activates ER-associated protein degrada-
tion. However, if ER stress becomes chronic and UPR cannot 
cope with the repair demands, protein-folding homeostasis 
breaks down, leading to activation of apoptotic pathways (103, 
107, 108). Thus, ER stress and the UPR play important roles in 
the pathogenesis of multiple human metabolic diseases includ-
ing insulin resistance, diabetes, obesity, non-alcoholic fatty liver 
disease, and atherosclerosis (109, 110). The immunoglobulin 
binding protein (BiP) [also called glucose-regulated protein 78 
(Grp78)], is an ER chaperone that is required for protein folding. 
BiP/Grp78 is a peptide-stimulated ATPase of the Hsp70 family 
that prevents protein aggregation by stabilizing intermediates in 
the protein-folding process.

Using ligand affinity chromatography with biotinylated 
human PST (hCgA273–301-amide) as “bait” on a murine liver 

homogenate (as “prey”), we found that PST interacts in a 
pH-dependent fashion with Grp78 (78). Whereas NCD-fed 
Chga-KO livers show increased expression of Grp78, PST caused 
dose-dependent inhibition of Grp78 ATPase activity and inhib-
ited increased expression of Grp78 during UPR activation (by 
tunicamycin) in hepatocytes (78). In hepatocytes, PST increased 
expression of G6pc. These results indicate that a major hepatic 
target of PST is the adaptive UPR chaperone Grp78 and that 
ATPase activity associated with Grp78 is involved in the sup-
pression of glucose production by attenuating G6pc expression 
(78). Grp78s ATPase activity is required to suppress expression 
of G6pc; ER stress and suppression of glucose utilization appear 
to augment Grp78 expression (111). Although it is not clear how 
circulating PST might contact the ER luminal protein Grp78 
to modulate ER and insulin action, it has been reported that 
Grp78 translocates to the cell surface under some pathological 
conditions (112, 113).

MODULATiOn OF MeTABOLiSM BY 
nATURALLY OCCURRing vARiAnTS 
OF PST

Single-nucleotide polymorphism analysis of PST, both in vivo 
and in  vitro, showed greater inhibition of insulin-stimulated 
glucose uptake by Gly297Ser variants followed by the 
Glu287Arg variants compared to WT-PST (77). The in  vitro 
studies also revealed increased expression of gluconeogenic 
genes by PST variants as compared to WT-PST, with compa-
rable potencies by Glu287Arg and Gly297Ser variants (68). 
The Gly297Ser subjects displayed markedly elevated plasma 
glucose and cholesterol compared to the Gly297Gly individu-
als. Interestingly, whereas the variants of PST in the C-terminal 
half of the molecule at 287 (Glu287Arg) and at 297 (Gly297Ser) 
enhance anti-insulin effects and elevate plasma glucose by 
inhibition of glucose uptake and stimulation of gluconeogenic 
effects, experimental deletion of the three N-terminal amino 
acids Pro–Glu–Gly on human WT-PST demonstrated the 
opposite effects by reducing plasma glucose level and hepatic 
gluconeogenesis in a rodent model of obesity (64). Therefore, 
finding variants in the N-terminal end of PST among the 
human population may lead to discovery of an allele which 
would confer protection against insulin resistance and can be 
used as an insulin-sensitizing peptide such as a N-terminal 
variant of PST (lacking three amino acids from the N-terminal 
end) called PSTv1 (64).

RegULATiOn OF inSULin SenSiTiviTY 
BY THe PST AnTAgOniST PSTv1

The elevated levels of plasma PST observed in T2DM patients 
(77) implied that preventing PST action might serve a therapeutic 
purpose of controlling insulin resistance and diabetes. To dem-
onstrate a direct in vivo role of PST in the regulation of insulin 
sensitivity, WT-HFD mice were injected with the PST variant, 
PSTv1, which is a competitive antagonist of native PST. PSTv1 
lacks the first three N-terminal residues of native PST and blocks 
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PST-mediated inhibition of glucose uptake and leptin secretion 
in 3T3-L1 preadipocytes. As predicted, chronic PSTv1 treatment 
lowered fasting plasma glucose levels in WT-HFD mice and 
improved glucose tolerance and insulin sensitivity (64). These 
results suggested that in WT-HFD mice, where the level of PST 
is high, PSTv1 administration competes with the native PST and 
phenocopies Chga-KO mice. This demonstrates the potential of 
PST as a therapeutic target for treatment of insulin resistance and 
diabetes.

CST DeCReASeS HYPeRTenSiOn AnD 
OBeSiTY

Hypertensive patients show elevated levels of plasma CgA but 
decreased plasma CST (114, 115). Low plasma CST predicts 
augmented pressor responses to environmental stimuli (114). In 
rats, CST reduces blood pressure responses to activation of sym-
pathetic outflow by electrical stimulation (116). This vasodepres-
sor effect of CST was mediated by massive release of histamine 
with subsequent vasodilation by histamine-induced production 
of NO. CST is a potent endogenous inhibitor of catecholamine 
secretion (44–47, 117–120) and catecholamine-mediated hyper-
tension (48, 121). Chga-KO mice showed hyperadrenergic and 
hypertensive phenotypes that were normalized by intraperitoneal 
administration of CST (48). CSTs hypotensive effect was also 
documented in a polygenic model of high blood pressure mice 
(121). Other studies showed that CST also provides cardioprotec-
tion by inhibiting the opening of the mitochondrial permeability 
transition pore and stimulating the reperfusion injury salvage 
kinase pathway (122–127).

Catestatin-deficient Chga-KO mice are obese on an NCD 
(48). Chronic CST administration to Chga-KO mice reduced 
epididymal fat pad size to WT level (~25% reduction with 
respect to body weight of Chga-KO mice) (55). CST decreased 
plasma triglyceride levels in Chga-KO mice by increasing 
lipolysis (increased plasma glycerol and non-esterified fatty 
acids) through inhibition of α2-adrenergic receptor (α2-AR) 
(Figure 2C) (55). While inhibition of α2-AR by CST indirectly 
facilitates β-AR mediated lipolysis, CST can also have direct 
effect on ATGL (adipose triacylglycerol lipase) and HSL (hor-
mone sensitive lipase) via activation of AMPK (128) as it has 
been demonstrated that activation of AMPK promote lipolysis 
in adipose tissue through ATGL and HSL. CST-treated Chga-KO 
mice show increased palmitate oxidation but decreased incorpo-
ration into lipids, which indicates that CST inhibits expansion 
of adipose tissue but promotes fatty acid uptake in the liver 
for oxidation. CST induced expression of several fatty acid 
oxidation genes including carnitine palmitoyltransferase 1a, 
peroxisome proliferator-activated receptor-a, acyl-CoA oxidase 
1, and uncoupling protein 2, supporting increased fatty acid 
oxidation in the liver. In addition, CST increased expression 
of the fatty acid transporter gene Cd36 and the lipogenic gene 
glycerol-3-phosphate acyltransferase 4 (Gpat4), indicating that 
CST stimulates fatty acid incorporation into triglycerides but 
not de novo lipogenesis. Overall, CST promoted lipid flux from 

the adipose tissue toward the liver for beta-oxidation (55). These 
obesity-reducing effects of CST are mediated by inhibition of 
α2-AR signaling and enhancement of leptin receptor signaling. 
In contrast to the negative metabolic effects of PST, CST has 
beneficial effects that could be utilized in therapeutic treatment 
of hypertension and obesity.

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

Chromogranin A is one of the few protein molecules, which can 
be processed into both negative and positive regulators such 
as PST and CST for fine-tuning and maintaining metabolic 
homeostasis. With respect to the pathway of lipid disposal, 
studies on the direct effect of CST, through activation of AMPK, 
on lipolytic activities of ATGL and HSL may generate exciting 
information. Although the metabolic effects of PST and CST 
have been well investigated, how they transmit signals into 
cells remains to be determined. Are there specific receptors for 
these peptides? Alternatively, can they opportunistically bind to 
some non-specific BiPs on the cell surface and get endocytosed? 
In some cells such as neutrophils, CST has been shown to be 
permeable (53). With respect to PST, its binding to Grp78 may 
occur opportunistically on the cell surface when Grp78, usually 
a luminal protein, translocates to the cell surface, which occurs 
under some pathological conditions (112, 113). Whether such 
interaction happens or not should be a matter of future inves-
tigation. If that happens, Grp78 would be able to carry PST to 
the luminal compartment and initiate a reaction with a small 
G-protein binding molecule leading to a cascade described in 
Figure 2B. In addition, although PST has been established as an 
anti-insulin peptide, the mechanisms underlying PST-dependent 
regulation of insulin secretion are poorly understood. Other 
CgA-derived pro-insulin peptides may also exist and need to be 
further investigated. These efforts, as well as generation of PST 
antagonists, may lead to development of powerful therapeutic 
treatments for insulin resistance and diabetes. Beyond PST and 
CST, additional studies should shed light on the role of other 
CgA-derived peptides in metabolism, with implications for 
treatment of metabolic disease.
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Impairment of insulin clearance is being increasingly recognized as a critical step in 
the development of insulin resistance and metabolic disease. The carcinoembryonic 
antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null 
deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin 
clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological 
analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver 
disease. Thus, we aimed to determine whether this occurs at the hepatocyte level 
in response to systemic extrahepatic factors and whether this holds across species. 
Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein 
levels are reduced in liver tissues of obese individuals compared to their lean age-
matched counterparts. Furthermore, Western analysis reveals a comparable reduction 
of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. 
Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, 
is significantly reduced in the livers of obese Zucker (fa/fa, ZDF) and Koletsky (f/f) rats 
relative to their age-matched lean counterparts. These studies demonstrate that the 
reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify 
the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple 
species.

Keywords: insulin clearance, insulin resistance, obesity, carcinoembryonic antigen-related cell adhesion molecule 
1, hyperinsulinemia, fatty liver disease

inTrODUcTiOn

The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is ubiquitously 
expressed (1). CEACAM1 protein is expressed highly in liver, but to an insignificant extent in white 
adipose tissue and skeletal muscle, among classical insulin target peripheral tissues (1). Upon its 
phosphorylation by the insulin receptor tyrosine kinase in the hepatocyte (2), CEACAM1 promotes 
the uptake of insulin via its receptor to be degraded and cleared (3, 4). Bolstering this function of 
CEACAM1, defective hepatic insulin clearance and subsequently, chronic hyperinsulinemia develops 
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in mice with global null mutation (Cc1−/−) or with liver-specific 
overexpression of the dominant-negative phosphorylation-
defective inactive isoform of Ceacam1 (L-SACC1) (5–7). At 
least in part by downregulating the insulin receptor number (8), 
chronic hyperinsulinemia causes insulin resistance in these mice 
(5–7). Consistent with its positive effect on de novo lipogenesis 
(9), hyperinsulinemia also causes hepatic lipid accumulation, as 
well as lipid redistribution to the white adipose depot for storage, 
resulting in elevated visceral obesity. Contributing to visceral 
obesity and increased total fat mass in Cc1−/− mice is leptin 
resistance, manifested by hyperphagia and reduced spontaneous 
physical activity (10).

In humans and rodents, high-fat diet causes insulin resistance 
and visceral obesity. Recent data from our laboratories show 
that high-fat intake causes a decrease in hepatic CEACAM1 
level by >50% within 3  weeks (11), and that this appears to 
play a causative role in diet-induced insulin resistance inso-
far as adenoviral-mediated delivery of CEACAM1 in liver 
reverses the metabolic abnormalities associated with increased 
fat intake, including insulin resistance, hepatosteatosis, and 
visceral obesity (12). Similarly, transgenic overexpression of 
CEACAM1 in liver protects against diet-induced insulin resist-
ance, visceral obesity, hepatosteatosis, and fibrosis in adipose 
tissue (11).

Together, this assigns a significant role for reduced hepatic 
CEACAM1 levels in hyperinsulinemia-driven metabolic abnor-
malities, including insulin resistance and hepatic steatosis in 
mice. It also provided the impetus to investigate whether reduc-
tion of hepatic CEACAM1 level occurs at the hepatocyte level and 
whether it is common in obesity across multiple species.

MaTerials anD MeThODs

animal care and husbandry
Obese male Zucker fatty (fa/fa—8  weeks of age) and Zucker 
Diabetic Fatty rats (ZDF—12  weeks of age), and Koletsky 
spontaneous hypertensive rats (f/f—16  weeks of age) and their 
age-matched lean controls were purchased from Charles River 
Laboratories. Rats were fed ad  libitum a regular chow diet and 
kept in a 12-h dark–light cycle. All procedures were approved 
by the Institutional Animal Care and Utilization Committee at 
the University of Toledo College of Medicine and Life Sciences 
(formerly known as the Medical College of Ohio). All experi-
ments were conducted in accordance with the recommendations 
of the committee, confirming to the Guide for the Care and Use 
of Laboratory Animals published by the US National Institutes of 
Health (NIH Publication No. 85-23, revised 1996).

assessment of Plasma Biochemistry
Biochemical parameters were assessed in plasma drawn from 
overnight fasted rats. Plasma insulin and C-peptide levels were 
determined by radioimmunoassays (Linco Research) and their 
molar ratio at steady state was calculated as a marker of insulin 
clearance. Plasma triglyceride (TG) levels were assayed by 
Triglycerides reagent (Pointe Scientific) and plasma free fatty 
acids (FFA) by NEFA C kit (Wako). Hepatic TG content was 

assayed in tissues separated by chloroform–methanol, as previ-
ously described (12).

human Primary hepatocytes
Livers and freshly isolated primary hepatocytes derived from the 
same lean and obese subjects were purchased from Cellzdirect 
(www.cellzdirect.com). The subjects include seven anonymous 
coded obese (body mass index >30  kg/m2) 45- to 50-year-old 
male subjects and four age-, sex-, and race-matched lean subjects. 
All subjects were non-smokers, non-alcoholics with no history 
of drug abuse, or other known health conditions or exposure to 
infectious diseases.

Specimens and cells were sent de-identified, labeled with a 
code with no other identifiable information. Hence, studies were 
exempted by the Institutional Review Board at the University of 
Toledo College of Medicine and Life Sciences (previously known 
as the Medical College of Ohio).

Western Blot analysis of human 
ceacaM1 Protein levels
Lysates from primary hepatocytes and liver were analyzed 
by 4–12% SDS-PAGE followed by immunoblotting (Ib) with 
polyclonal antibody against CEACAM1 (13), and normalization 
against GAPDH (Santa Cruz).

northern Blot analysis of rat Ceacam1 
mrna level
As previously described (11), Northern blot analysis was per-
formed on total liver RNA extracted by TRIzol (Invitrogen), 
purified by MicroPoly (A) Pure Kit (Ambion), and sequentially 
probed with cDNAs for Ceacam1 followed by Gapdh for 
normalization, using the Random Primed DNA Labeling Kit 
(Roche).

Quantitative rT-Pcr analysis of rat 
CEACAM1 mrna level
qRT-PCR was performed in homogenized liver lysates as 
routinely performed (14). Briefly, total RNA was extracted by 
TRIzol (GIBCO BRL) and first strand cDNA was synthesized 
using Superscript II (Invitrogen) and oligo dT, and real-time 
RT-PCR was carried out using the Applied BioSystem. The 
long isoform of CEACAM1 was amplified using the following 
primers: F: 5′-CAGCGCTGGCATACTTCCTT-3′, R: 5′-CACT 
TCCCCCGCCAGTCT-3′. As control, β-Actin was amplified 
using the primers: F: 5′-ATCAAGATCATTGCTCCTCCTGA-3′, 
R: 5′GAGCCACCAATCCACACAGAG-3′. At least one primer 
of each pair is located in the junction of two exons to avoid 
amplification of genomic DNA. Ct values (cycle threshold) were 
used to calculate the amount of amplified PCR product relative 
to β-Actin. The relative amount of mRNA was calculated as 2−ΔCT.

statistical analysis
Data were analyzed with SPSS software using one-factor ANOVA 
analysis or Student’s t-test. Values are expressed as mean ± SEM. 
AP < 0.05 obese versus lean/genotype.
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FigUre 1 | carcinoembryonic antigen-related cell adhesion molecule 
1 (ceacaM1) level in human livers. Livers derived from anonymous 
obese (body mass index >30 kg/m2) 45- to 50-year-old male subjects and 
age-, sex-, and race-matched lean subjects. (a) CEACAM1 mRNA (CC1) 
was analyzed by Northern blot analysis of total liver mRNA and sequentially 
probed with cDNAs for CEACAM1 (CC1) followed by GAPDH for 
normalization. (B) Liver lysates from obese and lean subjects were analyzed 
by 4–12% SDS-PAGE followed by immunoblotting (Ib) with polyclonal 
antibody against CEACAM1 (CC1) and normalization against GAPDH. For 
simplicity, only two samples of each group are shown as representatives of 
three independent experiments. The graph on the right represents 
densitometry analysis of CEACAM1 bands relative to those of GAPDH in all 
tissues. Values shown as mean ± SEM with *P < 0.05 being statistically 
significant.

FigUre 3 | hepatic carcinoembryonic antigen-related cell adhesion 
molecule 1 (ceacaM1) level in obese rodents. Ceacam1 mRNA was 
analyzed by qRT-PCR analysis of total liver RNA, normalized to β-Actin, from 
livers derived from obese fa/fa, ZDF, and Koletsky f/f rats and age-matched 
lean controls (n = 10/lean or obese/each strain). Values shown as 
mean ± SEM with *P < 0.05 being statistically significant.

FigUre 2 | carcinoembryonic antigen-related cell adhesion molecule 
1 (ceacaM1) level in human primary hepatocytes. Primary cells were 
derived from the livers of the same anonymous donors and analyzed by 
Western analysis as in Figure 1, immunoblotting (Ib) with polyclonal antibody 
against CEACAM1 (CC1) and normalizing against GAPDH. For simplicity, only 
two samples of each group are shown as representatives of three 
independent experiments. The graph on the right represents densitometry 
analysis of CEACAM1 bands relative to those of GAPDH in all cells. Values 
shown as mean ± SEM with *P < 0.05 being statistically significant.
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resUlTs

reduced hepatic ceacaM1 levels in 
Tissues from Obese humans
Northern analysis indicates that CEACAM1 mRNA levels, nor-
malized to GAPDH, are significantly lower (by ~>60%) in the 
liver of obese human subjects by comparison to those derived 
from their lean sex-, race-, and age-matched counterparts 
(Figure  1A). This translates into reduced hepatic CEACAM1 
protein levels in lysates derived from livers (Figure 1B) of obese 
human subjects, as assessed by Western blot analysis using Ib 
with antibodies against human CEACAM1 and GAPDH (to nor-
malize against total protein loading). Moreover, obese subjects 
exhibit hepatic fat accumulation, as assessed by the twofold to 
threefold higher hepatic TG level in obese subjects (50.2 ± 4.5 
versus 20.3 ± 2.2 mg/g liver tissue, P < 0.05).

reduced ceacaM1 Protein content in 
Primary hepatocytes from Obese humans
Because metabolic factors such as insulin and fatty acids regu-
late Ceacam1 expression in hepatocytes, with insulin inducing 
its transcription (15) and fatty acids repressing it (16), we then 
aimed to examine whether the decline in hepatic CEACAM1 
occurs at the hepatocyte level. To this end, we examined the 
protein level of CEACAM1 in primary hepatocytes derived from 
the same obese and lean subjects whose livers were used to assess 
hepatic CEACAM1 levels (see above). Western blot analysis using 

antibodies against human CEACAM1 for Ib indicates ~50% 
reduction (graph) in CEACAM1 protein level in primary 
hepatocytes derived from obese as compared to their sex- and 
age-matched lean counterparts (Figure 2).

reduced hepatic ceacaM1 levels  
in Obese rats
To investigate whether the reduction in hepatic CEACAM1 in 
obesity is common among species, we then examined mRNA 
levels of Ceacam1 in the livers of obese male rats. These include 
obese Zucker hyperphagic rats without diabetes (fa/fa) or with 
diabetes (Zucker Diabetic Fatty rats—ZDF) (17), and obese spon-
taneous hypertensive Koletsky rats (f/f) (18). qRT-PCR analysis 
revealed a ≥50% decrease in hepatic Ceacam1 mRNA levels in 
obese relative to lean rats (Figure 3). Consistent with a role for 
CEACAM1 in insulin clearance (6), obese rats display reduced 
insulin clearance (as measured by steady-state C-peptide/insulin 
molar ratio) and hyperinsulinemia (Table 1). As expected, they 
also exhibit elevated body weight, fasting plasma FFA, and plasma 
and hepatic TG levels (Table 1).

DiscUssiOn

Using several genetically modified mouse models of loss- and 
gain-of-function of Ceacam1, we have demonstrated that 
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TaBle 1 | Biochemical parameters in obese rats.

Zucker fa/fa Zucker ZDF Koletsky (f/f)

lean Obese lean Obese lean Obese

Body weight (g) 254 ± 10 330 ± 9A 275 ± 11 352 ± 10A 315 ± 9 458 ± 12A

Insulin (ρM × 102) 3.0 ± 0.8 18.2 ± 1.6A 0.9 ± 0.1 7.2 ± 1.0A 1.0 ± 0.3 25.5 ± 0.6A

C-peptide (ρM × 103) 1.1 ± 0.2 3.3 ± 0.2A 1.3 ± 0.1 3.0 ± 0.4A 1.5 ± 0.4 5.2 ± 0.2A

C-peptide/insulin ratio 3.8 ± 0.6 1.8 ± 0.1A 15.7 ± 1.3 5.0 ± 0.5A 14.6 ± 0.6 2.0 ± 0.1A

FFA (mEq/l) 0.5 ± 0.0 1.4 ± 0.1A 0.6 ± 0.1 1.1 ± 0.2A 0.7 ± 0.1 1.1 ± 0.2A

TG (mg/dl) 14 ± 3 246 ± 42A 65 ± 3 531 ± 58A 112 ± 8 385 ± 29A

Hepatic TG (mg/g tissue) 23 ± 2 63 ± 7A 27 ± 3 73 ± 5A 34 ± 4 78 ± 9A

Frozen liver tissues and plasma were extracted from 10 obese and 10 age-matched lean overnight fasted rats. These include fa/fa (8 weeks of age); ZDF (12 weeks of age), and 
Koletsky f/f (16 weeks of age). Values are expressed as mean ± SEM. AP < 0.05 obese versus lean/genotype. C-peptide/insulin molar ratio was used as determinant of insulin 
clearance. FFA, free fatty acids; TG, triglycerides.
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CEACAM1 plays a critical role in promoting hepatic insulin 
clearance, and that its loss in the liver causes chronic hyperin-
sulinemia followed by systemic insulin resistance, altered lipid 
homeostasis, hepatosteatosis, and visceral obesity (5–7). That 
defective insulin clearance contributes significantly to these 
obesity-associated metabolic abnormalities has been demon-
strated in several species, including humans (19–22). Thus, it has 
become imperative to investigate whether hepatic CEACAM1 
level is commonly reduced among species. The current studies 
demonstrate that by comparison to lean controls, CEACAM1 
level is reduced in the liver of age- and sex-matched obese human 
subjects and in three rat models of obesity resulting from null 
mutation of leptin receptor (17, 23).

Although the data on human subjects need to be strength-
ened by a much larger cohort of patients, they are consistent 
with a report finding a marked decline in hepatic CEACAM1 
levels in 29% of 99 obese subjects with insulin resistance and 
non-alcoholic fatty liver disease, with a higher incidence of 
CEACAM1 loss in individuals with high-grade fatty liver and 
severe obesity, independently of type 2 diabetes (24). That this 
occurs independently of diabetes and fasting hyperglycemia is 
consistent with normal insulin secretion and fasting normo-
glycemia in Ceacam1 mutant mice (7). Moreover, sustained 
reduction of CEACAM1 protein content in primary hepatocytes 
derived from the same steatotic livers of obese donors demon-
strates that the defect in CEACAM1 expression occurs at the 
hepatocyte level. We have recently shown that the rise in fatty 
acids release from adipocytes during high-fat feeding of mice 
progressively represses Ceacam1 expression in the hepatocyte 
by activating a mechanism depending on the activation of per-
oxisome proliferator-activated receptor α by fatty acids (25) and 
that this bestows a positive feedback mechanism on fatty acid 
β-oxidation (12). When the loss of hepatic CEACAM1 reaches 
more than 50% and impairment of insulin clearance develops, 
chronic hyperinsulinemia followed by hepatic steatosis ensues 
(12). Increased lipolysis-driven hepatic fatty acid β-oxidation in 
humans with uncomplicated obesity (26) and its role in regulat-
ing hepatic de novo lipogenesis (27, 28) propose an important 
role for the loss of hepatic CEACAM1 in the regulation of lipid 
homeostasis in hepatocytes derived from obese humans.

Obese Zucker and Koletsky hyperphagic obese rats display 
a decline in their hepatic CEACAM1 content likely causing 
impaired insulin clearance and hyperinsulinemia. They also 
manifest elevated visceral obesity with high fasting plasma FFA, 
and an increase in plasma and hepatic TG levels, consistent with 
the phenotype of Ceacam1 mutant mice (5–7).

Similarly, rats selectively bred for low aerobic running capacity 
(LCR) exhibit metabolic syndrome, including hyperinsulinemia, 
insulin resistance, obesity, and hypertension. By comparison to 
age-matched high capacity runners (HCR) (29), they also exhibit 
hepatic steatosis (30). Hyperinsulinemia in LCR rats is associ-
ated with impaired hepatic insulin clearance in correlation with 
reduced Ceacam1 mRNA (29) and protein levels (14). Caloric 
restriction reduces their hyperinsulinemia, and subsequently, 
hepatic fatty acid synthase level and steatosis, in parallel to 
inducing hepatic CEACAM1 levels and normalizing hepatic 
insulin extraction to the level of HCR (14). Whether low hepatic 
Ceacam1 level in LCR by comparison to HCR is a cause or a 
consequence of increased release of plasma FFA from the white 
adipose tissue in these rats (12, 25) remains to be determined, 
but it is intriguing that CEACAM1 expression is modulated by 
the selection for low aerobic running capacity that leads to the 
metabolic anomalies of LCR rats.

In summary, the current studies demonstrate a strong associa-
tion between reduced CEACAM1 expression in hepatocytes with 
obesity, hepatic steatosis, and dyslipidemia across species and 
multiple rat strains.
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Skeletal muscle maintenance is a dynamic process and undergoes constant repair and 
regeneration. However, skeletal muscle regenerative capacity declines in obesity. In 
this review, we focus on obesity-associated changes in inflammation, metabolism, and 
impaired insulin signaling, which are pathologically dysregulated and ultimately result in 
a loss of muscle mass and function. In addition, we examine the relationships between 
skeletal muscle, liver, and visceral adipose tissue in an obese state.

Keywords: skeletal muscle, obesity, inflammation, metabolism, insulin

inTRODUCTiOn

Current estimates are that one-third of the United States population is obese, and this number is 
rapidly escalating (1). Many of these patients additionally suffer from preclinical or overt type 2 dia-
betes mellitus (T2DM) (1, 2). Multiple studies suggest that skeletal muscle wasting in these patients, 
especially those above the age of 60  years, can be severe (3–5). Diminished capacity for skeletal 
muscle regeneration likely contributes to the loss of lean muscle mass seen in diabetic patients (6). 
Obesity, a common precursor to T2DM, is also noted to have significant and independent negative 
effects on lean skeletal muscle mass (7). This is correlated with insulin resistance and reduced mus-
cle performance (8). Overall, these patients suffer from a significant decline in muscle strength, as 
compared to age-matched controls, and a loss of functional independence (3–5). However, the effects 
of obesity on skeletal muscle regeneration remain largely unknown. Stimulation or preservation 
of skeletal muscle regeneration could possibly enable these patients to improve their strength and 
functional activity, as well as maintain skeletal muscle mass (8, 9).

Recent studies demonstrate that mice fed a high-fat diet (HFD) exhibit reduced hind limb 
muscle mass and form fewer and smaller fibers following skeletal muscle injury (10). Additionally, 
there exists a reduction in the total number of satellite cells, which are required for skeletal muscle 
regeneration (10, 11). Therefore, it is of significant clinical importance to understand how obesity 
impacts muscle regeneration and identify mechanisms that may be targeted for therapeutic benefit. 
Skeletal muscle mass in these patients is not only essential for ambulation but also necessary for 
glucose utilization and maintaining insulin sensitivity (12). Multiple factors affect muscle mass in 
patients with obesity including satellite cell function, inflammation, insulin signaling, and metabolic 
derangements. Furthermore, obesity-related increases in visceral adipose tissue (VAT) and fatty acid 
accumulation in the liver, as with non-alcoholic fatty liver disease (NAFLD), are intimately linked to 
the maintenance of muscle mass. When evaluating obesity and corollary loss of skeletal muscle mass, 
systemic mediators and their effect on muscle regeneration must be considered.

SATeLLiTe CeLLS

Satellite cells in skeletal muscle are located beneath the basal lamina of mature muscle fib-
ers and are thought to be the major source of regeneration following muscle injury (13). It 
is now known that the satellite cell population is heterogeneous and contains both myogenic 
and non-myogenic cell populations. Using fluorescence-activated cell sorting (FACS), unique, 
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myogenic stem cells, or skeletal muscle precursors (SMPs), 
within the satellite cell pool can be identified and isolated for 
further study (14). Early life obesity, induced by HFD, results 
in both a reduction in SMP cell frequency and impaired differ-
entiation (10). Specifically, myogenic differentiation (MyoD), 
a critical factor in promoting skeletal muscle differentiation, is 
significantly reduced in satellite cells isolated in a diet-induced 
obesity (DIO) murine model (15).

In addition, satellite cell activation in a murine DIO model is 
impaired, which can be partially attributed to a loss in hepatocyte 
growth factor (HGF) signaling in skeletal muscle (16). Skeletal 
muscle-specific decrease in active HGF following injury limits 
activation of satellite cells from their quiescent state. HGF activa-
tion of SMPs requires AMP-activated protein kinase (AMPK), 
a protein essential to maintain satellite cell number and induce 
myotube formation. The active, or phosphorylated form of AMPK, 
promotes skeletal muscle glucose uptake and increases insulin 
sensitivity. Recent studies suggest that the satellite cells isolated 
from injured muscles of DIO mice demonstrate decreased AMPK 
activity and impaired regeneration (17). Fibrogenic/adipogenic 
precursors (FAPs) are a separate and distinct population in the 
satellite cell compartment (18). These cells are unable to directly 
form myofibers but can promote the differentiation of SMPs or 
form adipose tissue based on the local environment (18–20). 
A common observation in conditions associated with impaired 
skeletal muscle insulin sensitivity is an accumulation of ectopic 
lipids within (intracellular) and between (extracellular) skeletal 
muscle fibers (21), which is linked to reduced insulin sensitivity 
and diminished muscle function (22). The contribution of FAPs 
to these intramuscular lipid deposits remains unknown, as does 
their precise contribution to skeletal muscle regeneration in a 
model of obesity.

inFLAMMATiOn

Obesity results in chronic, low-grade skeletal muscle inflam-
mation (23). Recent studies further suggest DIO alone can 
reprogram both skeletal muscle and liver to increase the produc-
tion of proinflammatory cytokines, including tumor necrosis 
factor-alpha (TNF-α), interleukin 1-beta (IL-1β), and IL-6 (24). 
Increased IL-6 has been shown to limit skeletal muscle differen-
tiation in vitro (25). In murine models of cachexia, both IL-6 or 
nuclear factor-kappa B (NF-κB) overexpression in skeletal muscle 
causes severe muscular atrophy (26, 27). Separately, in persistent 
inflammatory conditions, IL-6 actions are associated with 
increased muscle wasting (28). Despite multiple studies suggest-
ing that skeletal muscle-specific upregulation of proinflammatory 
cytokines induces muscle wasting; this area warrants further 
research in regard to obesity. To date, no studies have shown 
that IL-6 or NF-κB inhibition, either systemically or in skeletal 
muscle, improves regeneration in an obesity model. In addition, 
it remains unclear whether local inflammation from skeletal 
muscle, increased cytokine release from liver or visceral fat, or a 
combination are required for impaired muscle regeneration and 
loss of muscle mass.

TNF-α, another proinflammatory cytokine, also has catabolic 
effects on muscles in chronic inflammatory state. Elevated TNF-α 

circulation in obese models can cause muscle wasting, inflamma-
tory myopathies, and insulin resistance by regulating activation 
and secretion of other proinflammatory cytokines (29, 30). TNF-
α supplementation additionally limits C2C12 muscle myoblast 
cell differentiation in  vitro by repressing MyoD synthesis. The 
effects of TNF-α on skeletal muscle regeneration in an obese 
model remains unknown.

In addition, obesity further promotes deposition of mac-
rophages in VAT, which contributes to inflammation, increased 
lipolysis, and subsequently ectopic fat deposition in skeletal 
muscles (31). In the early stages of obesity, an increase in these 
macrophages precedes T cell accumulation. T cells, in turn, are 
polarized into proinflammatory Th1 cells that cause myocyte 
inflammation through interferon secretion. The inhibition of 
ectopic macrophage accumulation in fat may reverse insulin 
resistance and thereby improve muscle function (32, 33). These 
points further highlight that muscle wasting in obesity is a 
systemic issue, instead of secondary to local changes in skeletal 
muscle alone.

inSULin ReSiSTAnCe

An array of growth factor signaling cascades, regulated by 
insulin, are required for the proper maintenance of skeletal 
muscle mass. Obesity-associated insulin resistance alters these 
pathways and can variably inhibit muscle regeneration. Insulin 
signaling is a highly complex pathway within skeletal muscle, 
mediated by insulin growth factor-1 (IGF-1) (34). Specifically, 
downstream of IGF-1, both the mitogen-activated protein 
kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 
3-kinase (PI3K) pathways are known to regulate skeletal muscle 
regeneration (35).

Mitogen-activated protein kinases are enzymes that become 
catalytically activated in response to diverse stimuli such as 
mitogens, osmotic stress, and proinflammatory cytokines. 
MAPK activity mediates the crosstalk between canonical and 
non-canonical transforming growth factor (TGF-β) in a DIO 
model (36). In skeletal muscle, TGF-β1 inhibits differentiation 
of fetal myoblasts (37). Separately, increased levels of TGF-β can 
cause muscle injury to heal with fibrosis, rather than regenerated 
skeletal muscle (38). Increased p38 MAPK and TGF-β activity 
within ectopic adipocytes may induce satellite cell senescence 
(39). Paradoxically, results from C2C12 studies, a murine 
myoblast model for skeletal muscle development, demonstrates 
a positive role for activated MAPK in cell migration (40). 
MAPK signaling and activity remain controversial with respect 
to skeletal muscle regeneration in obesity, and this topic war-
rants further research. Interestingly, follistatin supplementation 
improves muscle growth in circumstances with elevated TGF-β 
signaling (41).

In models of muscular dystrophy, an increase in PI3K 
activity can be beneficial for regeneration, as it increases Akt 
activity and downstream, promyogenic factors, which stimulate 
muscle growth. Akt activation also helps in preventing muscle 
atrophy by inducing the expression of mammalian target of 
rapamycin and ribosomal protein S6 kinase beta-1 (S6K1) 
(42). Specifically, in DIO models, an increase in Akt activity by 
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phosphatase and tensin homolog (PTEN) inhibition restores 
skeletal muscle regeneration (11). The role of decreased insulin 
signaling with regard to skeletal muscle injury remains a topic 
of active research.

MeTABOLiSM

Obesity and chronic overnutrition are closely associated with 
increased mitochondrial-derived oxidative stress (43, 44). 
Skeletal muscle from obese or diabetic patients shows decreased 
mitochondrial content and a corollary loss of fatty acid oxida-
tion (45, 46) associated with excess caloric consumption and 
non-inherent mitochondrial dysfunction (47). In patients 
with T2DM, targeted overexpression of catalase within mito-
chondria can protect skeletal muscle from ischemic injury, but 
the role of oxidative stress and mitochondrial dysfunction in 
obesity-related loss of skeletal muscle regeneration remains 
unknown (48, 49). In the context of obesity, skeletal muscle 
undergoes a protective shift to retain its functional capacity 
by converting to glycolytic, type II muscle fibers, mediated 
by Brg1/Brm-associated factor (Baf60c) (50–52). The Baf60c 
pathway increases Akt activation, which, as discussed previ-
ously, improves diet-based glucose tolerance and increases 
insulin sensitivity. Independently, muscle-specific Akt activa-
tion also leads to hypertrophy of type II muscle fibers with 
subsequent resolution of hepatic steatosis, decreased fat mass, 
and improved metabolic parameters (53). However, Baf60c 
signaling is decreased in obese rodent models, possibly due to 
the inhibitory effects of TNF-α (51, 52).

In contrast, many studies suggest that hypertrophy of 
oxidative muscle fibers (type I) can also promote metabolic 
homeostasis. Muscle-specific overexpression of peroxisome 
proliferator-activated receptor-delta (PPAR-δ) (54, 55) promotes 
higher levels of type I fibers relative to type II fibers, improved 
performance in endurance, exercise, and resistance to DIO. 
Conversely, mice that are deficient in peroxisome proliferator-
activated receptor-gamma (PPAR-γ) coactivator 1-alpha (PGC-
1α) display abnormal oxidative fiber growth and develop an 
increase in body fat (56). These studies suggest that increased 
energy expenditure in skeletal muscle mediated by hypertrophy 
can protect against weight gain and metabolic dysfunction. In 
addition, myostatin-deficient mice are resistant to DIO (57), but 
this metabolic effect may be due to either changes in type I or 
type II fibers, or from the direct action of myostatin on adipose 
tissue (58). Overall, it remains unclear whether or not a type 
I or type II fiber majority contributes to the improvement in 
metabolic parameters in DIO, but an increase in muscle mass, 
in general, appears to counteract the metabolic derangements 
seen in obesity.

In the absence of muscle hypertrophy, reactive oxygen 
species (ROS) accumulate in skeletal muscle. In obese condi-
tions, increased ROS production is associated with contractile 
dysfunction, chronic oxidative stress followed by protein loss, 
and muscle atrophy (59). ROS is also capable of modulating the 
insulin signaling pathway, although the exact mechanism remains 
unclear. Studies suggest that ROS decreases insulin response 

and contributes to impaired mitochondrial activity (60). Sirtuin 
(SIRT), a NAD(+)-dependent histone deacetylase (HDAC) 
localized in mitochondria, has been found to regulate several 
mitochondrial genes and is important in muscle differentia-
tion, activation of myogenesis, and skeletal muscle metabolism. 
Specifically, SIRT1 promotes glycolysis and inhibits adipogenesis, 
thereby attenuating obesity-related insulin resistance (61–63). 
Conversely, in T2DM, inhibition of SIRT1 alters mitochondrial 
metabolism and increases the production of ROS (64).

Histone deacetylases, in general, are a group of enzymes 
that regulate gene expression by altering chromatin structure. 
In obesity models, HDAC inhibition restores PPAR-γ function 
improving skeletal muscle glucose and fatty acid metabolism. 
HDAC inhibition also generates non-traditional effects such 
as reducing adipose tissue expansion, resistance to obesity, and 
improvement in insulin sensitivity (65, 66). HDAC inhibitors 
have proven their potency in hampering fibrosis and favorably 
encouraging therapeutic muscle regeneration (67). Evaluation 
of HDAC inhibitors for the treatment of obesity-related muscle 
wasting is underway (68).

In skeletal muscle, glucose transporter 4 (GLUT4) levels 
are directly associated with increased oxidative capacity (69). 
Increases in GLUT4 translocation to the plasma membrane 
promotes improved rates of satellite cell proliferation and dif-
ferentiation (70). AMPK increases GLUT4 gene expression in 
human skeletal muscles (71). AMPK is also a widely recognized 
regulator of energy metabolism. Decreased AMPK activity is 
associated with metabolic disorders such as obesity and T2DM 
(18, 72). AMPK also plays a key role in upregulating the tran-
scription levels of paired box protein 7 (Pax7), myogenic factor 
5, myogenin, and MyoD, all of which are necessary for muscle 
growth. Although metabolic rate is stimulated through AMPK 
activity, ATP/AMP ratios for the AMPK activation pathways are 
not affected by obesity (18, 73).

Skeletal muscle isolated from patients with T2DM shows 
reduced levels of diacylglycerol kinase-delta (DGKδ), a key 
enzyme in triglyceride biosynthesis required for appropriate 
AMPK function. DGKs control the expression levels of diacylg-
lycerol (DAG) by catalyzing its conversion to phosphatidic acid 
utilizing ATP (74). Elevated plasma free fatty acid (FFA) levels 
from enlarged adipose tissue in obese models force intramyo-
cellular DAG accumulation (75). In an obese population, 
increased DAG accumulation, secondary to reduced DGK or 
increased, circulating FFA, results in inhibition of both glucose 
uptake and glycogen synthesis. This further exacerbates insulin 
resistance.

LiveR AnD FAT

As previously noted, obesity-associated liver dysfunction can 
have a profound impact on skeletal muscle maintenance and 
regeneration. NAFLD commonly occurs in obesity and is cor-
related with sarcopenia, even in the absence of insulin resistance 
(76, 77). Loss of muscle mass reduces a key cellular target for 
insulin action, contributing to glucose intolerance and, in turn, 
further muscle depletion. In addition, NAFLD is associated with 
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FigURe 1 | Systemic regulators of obesity mediated loss of skeletal muscle regeneration. Obesity results in both increased visceral adipose tissue and 
fatty acid accumulation in the liver. These changes manifest as increased circulating fatty acids, inflammatory mediators, and insulin resistance, leading to metabolic 
derangements within skeletal muscle, and ultimately, decreased skeletal muscle regeneration by the deregulation of multiple signaling pathways. This figure 
summarizes key factors limiting muscle regeneration in an obese state.
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the production of multiple proinflammatory factors, including 
NF-κB, IL-6, and TNF-α, all of which are known to be protein 
catabolic (78). VAT also releases circulating FFA, leading to 
further liver damage (79). Independently, VAT can also result 
in higher levels of proinflammatory cytokines, similar to the 
liver (80). Thereby, liver damage and VAT accumulation work 
synergistically to impair skeletal muscle regeneration in obesity 
by increasing FFA circulation, proinflammatory cytokines, and 
limiting promyogenic insulin actions on muscle. These pathways 
are depicted in Figure 1.

COnCLUSiOn AnD PeRSPeCTiveS

Obesity is accompanied by significant health concerns, includ-
ing severe loss of skeletal muscle mass. The maintenance of 
skeletal muscle is necessary for ambulation, proper insulin 
signaling, and glucose homeostasis. Obesity-related loss of 
muscle mass perpetuates a cycle of increasing metabolic 
abnormality, associated liver dysfunction, and further muscle 
loss. Effective methods to target obesity-associated muscle 
wasting must account for multiple systemic changes that occur, 
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Genes, dietary, and lifestyle factors have been shown to be important in the patho-
physiology of diabetes and associated microvascular complications. Epigenetic 
modifications, such as DNA methylation, histone acetylation, and post-transcriptional 
RNA regulation, are being increasingly recognized as important mediators of the 
complex interplay between genes and the environment. Recent studies suggest that 
diabetes-induced dysregulation of epigenetic mechanisms resulting in altered gene 
expression in target cells can lead to diabetes-associated complications, such as 
diabetic cardiomyopathy, diabetic nephropathy, retinopathy, and so on, which are the 
major contributors to diabetes-associated morbidity and mortality. Thus, knowledge of 
dysregulated epigenetic pathways involved in diabetes can provide much needed new 
drug targets for these diseases. In this review, we constructed our search strategy to 
highlight the role of DNA methylation, modifications of histones and role of non-coding 
RNAs (microRNAs and long non-coding RNAs) in vascular complications of diabetes, 
including cardiomyopathy, nephropathy, and retinopathy.

Keywords: diabetes, cardiovascular complication, epigenetics, DNA methylation, histone modifications, non-
coding RNAs

iNTRODUCTiON

In spite of adequate glycemic control, incidence of vascular complications associated with dia-
betes, such as diabetic cardiomyopathy, retinopathy, nephropathy, and neuropathy, remains high 
contributing to increased morbidity and mortality in diabetic patients. Recent studies suggest that 
a complex interplay between genes and environment may significantly contribute to pathogenesis 
of microvascular complications associated with diabetes (1–3). Emerging evidence suggests that 
environmental factors modulate aberrant expression of several key genes through epigenetic 
mechanisms in type II diabetes mellitus (T2DM) (4). Epigenetic changes, such as DNA methyla-
tion, histone modifications, and interference of RNAs, comprise the major epigenetic regulators 
of gene expression. A large volume of data has emerged supporting aberrant DNA methylation, 
histone modifications, and expression of microRNAs and long non-coding RNAs (lncRNAs) 
contributing to deregulation of signaling pathways (oxidative stress, inflammation, and apoptosis, 
etc.) in T2DM. However, our knowledge on epigenetic regulation in diabetes-associated microvas-
cular complications remains limited. Thus, elucidation of epigenetic changes could provide better 
understanding of pathophysiology and therapeutic management of these diseases. In this article, 
we briefly summarize recent findings on the role of DNA methylation, histone modifications, and 
post-transcriptional RNA regulation in microvascular complications of diabetes.
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FigURe 1 | Epigenetic modifications in diabetes: effect of various 
environmental/physiological factors on gene expression through epigenetic 
modifications, such as altered DNA methylation, histone modifications, and 
post-transcriptional RNA regulation.
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SeARCH MeTHODOLOgY

Literature searches of several electronic databases including 
Embase, Google Scholar, Ovid SP, Pubmed/Medline, and Web 
of Science were searched using the following search terms (free 
text, truncation, and MeSH or EMTREE terms): “DNA methyla-
tion” OR “histone acetylation,” non-coding RNAs, microRNAs, 
long non-coding RNAs, post-transcriptional RNA regulation, 
epigenetic modifications, vascular, cardiovascular, renal, and 
retinal complications of diabetes for relevant publications in 
English language from 2006 to till date to evaluate the association 
between the role of DNA methylation, post-transcriptional RNA 
regulation, and histones modifications in diabetes-associated 
microvascular complications. Reference lists of included studies 
were hand-searched to identify other potentially eligible studies. 
Three authors (Madhu Khullar, Satish K. Raut, and Balneek Singh 
Cheema) reviewed the titles and abstracts to identify potentially 
eligible papers. These papers were examined in full detail. Final 
decision regarding inclusion was resolved by discussion. A manual 
review has been used for related publications and references of 
retrieved articles. We included randomized or non-randomized 
controlled clinical trials with or without blinding as well as 
cross-sectional and interventional studies that provided sufficient 
information.

ePigeNeTiC MODiFiCATiONS iN 
DiABeTeS-iNDUCeD MiCROvASCULAR 
COMPLiCATiONS

Evidence from both animal studies and clinical studies in 
diabetic patients has provided strong evidence linking histone 
modifications, post-transcriptional RNA regulation, and DNA 
methylation in microvascular complications of diabetes by 
regulating molecular pathways involved in pathophysiology of 
microvascular complications in diabetes (Figure 1).

These changes are inheritable and persist even after adequate 
glycemic control and contribute to metabolic memory and have 

been suggested to significantly contribute to diabetes-induced 
vascular complications (5).

HiSTONe MODiFiCATiONS iN  
DiABeTeS-iNDUCeD MiCROvASCULAR 
COMPLiCATiONS

Histone acetyl transferases (HATs) and histone deacetylases 
(HDACs) are the enzymes involved in histone acetylation/
deacetylation and have been recently shown to be involved in 
regulating gene expression of several key molecules involved in 
microvascular complication of diabetes (6).

HDACs iN DiABeTeS-iNDUCeD 
MiCROvASCULAR COMPLiCATiONS

Histone deacetylases silence gene expression by deacetylating 
histone tails resulting in condensed euchromatin. Recent studies 
have implicated HDACs in diabetes and its associated micro-
vascular complications; for example, HDAC1 and HDAC2 were 
shown to modulate expression of cardiac hypertrophy genes (6).

O-linked β-N-acetylglucosamine (O-GlcNAc) is an impor-
tant signaling molecule which regulates cell function through 
O-GlcNAcylation of serine and threonine residues of proteins 
(7). O-GlcNAc plays a central role in regulating cardiovascular 
function. Increased O-GlcNAc levels observed in diabetic hearts 
and have been linked to diabetic cardiomyopathy (8). Cox and 
Marsh have reported decreased levels of Mammalian switch-
independent 3  A (mSin3A), HDAC1, HDAC2, and increased 
expression of HDAC2 mRNA and HDAC1/2 deacetylase activ-
ity in hearts from diabetic rats. These authors have suggested 
that there is a decreased physical association of O-GlcNAc with 
mSin3A/HDAC1/2 in the heart which results in their altered 
activity and expression in the diabetic heart and impacts its func-
tion. However, physical exercise increased cardiac O-GlcNAc of 
these proteins resulting in beneficial effects on cardiac function 
and proposed that anti-hypertrophic effects of exercise on 
diabetic hearts were mediated by O-GlcNAc mediated post 
translation modification of HDAC1, 2 and mSin3A (9).

HDAC3 has been shown to exert pro-hypertrophic effect in 
diabetic mice. Xu et  al. have reported significantly increased 
cardiac HDAC3 activity in the OVE26 diabetic mice. They 
showed that HDAC3 was exerting its pro-hypertrophic activ-
ity by downregulating DUSP5 (a MAP Kinase phosphatase) 
expression, by deacetylation of histone H3 in the primer region 
of DUSP5 gene (10). There are several studies showing beneficial 
and preventive effects of HDAC inhibition on diabetes-induced 
cardiovascular function. (This has been given in detail in a 
separate section.) However, further research is warranted to 
identify the specific HDAC isoforms that are dysregulated and 
their molecular targets that result in diabetic cardiomyopathy.

The role of HDACs in diabetic nephropathy has been reviewed 
recently by Li et  al. (11). The available literature suggests that 
different HDAC isoforms targeting different molecular path-
ways are involved in pathophysiology of diabetic nephropathy. 
For example, HDAC1, HDAC2, and HDAC5 were shown to 
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modulate expression of genes induced by TGF-β1 (12), TGF- β 
(13), and HDAC4 inhibited autophagy by deacetylating STAT1 
(14).

Increased histone acetylation has been also reported in dia-
betic retinopathy and has been partly attributed to high glucose-
mediated decreased HDAC activity in retinal cells. HDAC 
activators and HDAC inhibitors were found to mitigate or poten-
tiate diabetes-induced histone acetylation and expression of pro-
inflammatory proteins in high glucose-treated cultured retinal 
Müller glia cells, confirming contribution of histone acetylation 
of retinal cells in pathophysiology of diabetic retinopathy (14). 
Decreased IL-10 levels are seen in diabetic retinopathy patients 
that have been suggested to be due to increased HDAC11 activity 
in conjunction with miR-19a in peripheral B  cells of diabetic 
retinopathy patients (15).

Thus, available evidence supports a pathogenic role for aber-
rant HDAC activity in DC, DN, and DR by promoting histone 
acetylation and repression of genes of various signaling pathways, 
such as pro-inflammatory, pro-fibrotic, and antioxidant pathways.

HATs iN DiABeTeS-iNDUCeD 
MiCROvASCULAR COMPLiCATiONS

Histone acetylation mediated by HATs is another important 
epigenetic mechanism in gene regulation. HATs acetylate specific 
lysine residues of core histones at the N-terminal tail, causing 
DNA uncoiling, increased accessibility to transcription factors, 
and increased gene expression. Thus, altered HAT activity could 
regulate gene expression and affect cell function. Indeed, HATs 
have been implicated in several diseases, such as cancer, diabetes, 
cardiac hypertrophy, asthma, and so on.

Recent evidence suggests that HATs may participate in the patho-
physiology of microvascular complications of diabetes by regulating 
the expression of inflammatory pathway genes. For example, high 
glucose treatment of monocytes was found to increase transcrip-
tional activity of HATs CBP and p/CAF, resulting in increased 
histone lysine acetylation of promoter regions of inflammatory 
genes, cyclooxygenase-2 (COX-2) and TNF-α gene, and increased 
gene expression of these cytokines in cultured monocytes (16). 
An increased promoter histone lysine acetylation of inflamma-
tory genes has been reported in monocytes from both T1DM 
and T2DM patients (17). Furthermore, HAT-mediated lipid 
oxidation has been also found to increase inflammation by 
increasing histone acetylation of inflammatory genes (18). Yun 
et al. observed that HATs-mediated increased pro-inflammatory 
cytokine expression could be attenuated by curcumin in high 
glucose-treated human monocytes (19). Curcumin was shown to 
decrease high glucose-induced HAT activity, p300 gene expression, 
and acetylation of CBP/p300, a complex that functions as a coac-
tivator of NF-κB. The role of HATs in diabetic nephropathy has 
been recently reviewed by Li et al. (11) and provides evidence that 
high glucose-induced increased activity and levels of HATs, such 
as p300, CBP, and p/CAF, are mediating the activation of pro-
inflammatory cytokines, ECM proteins, endothelial function, 
and fibrotic processes in diabetic nephropathy, via acetylation of 
both histone and non-histone proteins, such as Smads, p53, SP1, 
and NF-κB.

SiRTUiNS iN DiABeTeS-iNDUCeD 
MiCROvASCULAR COMPLiCATiONS

Recently, another class of HDACs, Sirtuins has been shown to 
regulate key cellular and metabolic processes by deacetylating the 
lysine residues of proteins involved in these processes. Sirtuins 
are a highly conserved protein family of HDACs and have been 
found to have protective effects against several diseases, such as 
diabetes, cancer, cardiovascular, and neurodegenerative diseases 
(20). Sirtuins exert these beneficial effects by modulating the 
expression of the genes involved in energy metabolism, DNA 
repair, inflammation, fibrosis, and oxidative stress (21).

Sirtuins regulate enzymes of carbohydrate metabolism, lipid 
metabolism, adipogenesis, and insulin secretion in diabetic 
patients (15). SIRT1 regulates glucose metabolism in liver, pan-
creas, muscle, and adipose tissue, mainly by regulating PGC-1α 
(22). SIRT1 induces gluconeogenic genes through deacetylation 
of PGC-1α in fasting state. FOXO group of transcriptional fac-
tors promote gluconeogenesis via STAT3; SIRT1 inhibits gluco-
neogenesis by inhibiting gluconeogenic genes via deacetylation 
of FOXO transcription factors and STAT3 in liver (22). Increased 
SIRT1 is also shown to increase glucose-induced insulin secre-
tion in pancreatic β-cells which is partly due to SIRT1-mediated 
inhibition of UCP-2 in pancreatic islet β-cells (22). SIRT3, a 
mitochondrial protein deacetylase was found to be effective in 
increasing insulin sensitivity and decreasing serum glucose (16). 
SIRT4, another sirtuin involved in glucose homeostasis acts by 
repressing enzyme glutamate dehydrogenase (GDH) inhibiting 
insulin secretion (23). Decreased levels of SIRT1, 3, and 4 have 
been observed in diabetic patients and were associated with 
hepatosteatosis. Apart from this, sirtuins have been also shown 
to regulate activity of NFkB and expression of its downstream 
inflammatory genes in diabetes (18, 19).

Recent studies show that cardiac Sirtuins expression is dys-
regulated in diabetic patients. Bagul et  al. reported a decrease 
in cardiac SIRT-1 and increase in SIRT-3 activity in the T2DM 
rat and downregulation of all sirtuins except SIRT-2, which 
was increased in T1DM rat heart (24). In a recent review on 
sirtuins in cardiac complications of diabetes, sirtuins were sug-
gested to attenuate the effects of insulin resistance and oxidative 
stress pathways in heart (25). SIRT-1 has been found to be the 
most important modulator of vascular function and is being 
targeted for therapeutic potential in various pre-clinical studies 
to improve cardiovascular functions. Bagul et al. have recently 
shown beneficial effect of reservatol on diabetic rat heart through 
modulating expression of SIRT-1 in T2DM and SIRT-1, 2, 3, and 
5 in T2DM (24).

Recently, role of Sirtuins in vascular homeostasis has been 
reviewed nicely (26). Sirtuins were shown to regulate endothelial 
damage and vascular repair mechanisms. Sirtuins, by acting on 
specific endothelial targets, regulate several processes, including 
inflammation by modulating cytokine expression (IL-6, TNF-
α, NF-KB, MMP-14), oxidative stress [manganese superoxide 
dismutase (MnSOD), FOXOs], and deacetylation of histone 
H3K14 and H4K16 (27).

High glucose milieu has been found to induce endothelial 
cell senescence and functional abnormalities by repressing 
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SIRT1 expression high glucose-treated endothelial cells. SIRT1 
upregulation in these cells was found to be protective against 
glucose-induced endothelial dysfunction indicating its potential 
protective role in diabetic vascular complications (21). Advanced 
glycation end products (AGEs), important mediators of diabe-
tes, induced vascular abnormalities. AGEs have been shown to 
decrease SIRT1 levels and promote apoptosis in human endothe-
lial Eahy926 cells which could be reversed by increasing SIRT1, 
confirming that AGEs were inducing apoptosis by repressing 
SIRT1 in endothelial cells (28). The downregulation of SIRT1 by 
high glucose and in diabetic has been proposed to be mediated 
by glucose-induced oxidative stress in endothelial cells. Mortuza 
et  al. showed that high glucose-induced downregulation of 
SIRT1 was accompanied by FOXO1-mediated decreased levels 
of antioxidant enzyme, suggesting that SIRT1/FOXO1 axis was 
regulating oxidative status in endothelial cells (27).

Decreased SIRT1 expression has been also implicated in 
increased cellular senescence in renal glomerulus and retinal 
blood vessels in diabetic male C57BL/6 mice which were medi-
ated by p300 and FOXO1 mediated reduction in mitochondrial 
antioxidant enzyme MnSOD in these cells (27). Furthermore, 
SIRT1 overexpression has been also shown to be protective 
in diabetes-induced renal and retinal injury in diabetic mice, 
through attenuated p300, endothelin-1 (ET-1), and TGF-β1 
expression (29). Downregulation of SIRT1 has been also shown 
to promote diabetic retinopathy by inducing increased MMP-9 
expression in retinal endothelial cells (RECs) via acetylating 
transcriptional factor AP-1 (30). AGEs have been recently 
reported to decrease SIRT3 levels and SIRT3 knock down was 
associated with endothelial dysfunction in endothelial progeni-
tor cells (EPCs). Moreover, SIRT3 augmentation ameliorated 
cellular dysfunction and enhanced antioxidant machinery (31). 
SIRT6 deficiency has been found to impair wound healing in 
diabetic db/db mice and induce pro-inflammatory cytokines 
and oxidative stress, and decrease angiogenesis, suggesting its 
potential role in diabetic vasculopathy (32).

The role of other sirtuins in diabetic vascular complications 
is not known and needs to be investigated. Overall, diabetes-
induced downregulation of sirtuins (SIRT1, 3 and 6) appears 
to promote oxidative stress and endothelial dysfunction, and 
induce cellular fibrosis, suggesting these molecules to be of 
potential therapeutic use in diabetes and associated vascular 
complications.

HiSTONe MeTHYLATiON iN  
DiABeTeS-iNDUCeD MiCROvASCULAR 
COMPLiCATiONS

Methylation of core histone tails at lysine or arginine residues 
are known to modulate gene expression by changing chromatin 
structure. For example, methylation at H3-K9 and H3-K27 medi-
ates heterochromatin formation and results in silencing gene 
expression. Aberrant histone lysine methylation has been found 
to be involved in several pathological processes such as cancer, 
diabetes, cardiovascular diseases, etc. High glucose has been 
shown to induce increased histone H3 lysine 9 dimethylation 

in THP1 monocytes. Miao et  al. showed that high glucose 
exposure caused increased H3K4me2 and H3K9me2 of specific 
chromatin regions and their associated genes. They reported 
increased H3K4me2 was associated with increased methylation 
of nine genes, including ICAM3, FOS, GSTA-4, IL-8, and BCL-9, 
showed decreased methylation following HG exposure. Similarly, 
H3K9me2 methylation resulted in increased methylation of 
39 genes and decreased methylation of 11 genes. They further 
observed increased H3K9me2 at the coding and promoter regions 
of two candidate genes (IL-1A and PTEN) in blood monocytes of 
diabetic patients, indicating that diabetic milieu induced aberrant 
histone methylation is an important contributor to diabetes-
associated complications (33).

Histone methyl transferases (HMTs) carry out methylation 
at specific lysine or arginine residues. HMTs Suv39 and G9a 
family methylate histone H3 at Lys9 and cause gene silencing 
whereas SET1/2 family HMTs methylate histone H3 at Lys4 and 
correlate with gene activation. Okabe et al. reported sustained 
vascular gene expression of H3K4 methyl transferase, Set7 as 
a responsive measure to hyperglycemia in vascular endothelial 
cells. They showed that metabolic memory of prior exposure 
to hyperglycemia was induced by Set7 and proposed that Set7 
was a potential molecule for the phenomenon of hyperglycemic 
memory (34). This was further supported by an another study 
which showed that high glucose exposure altered ratio of cyto-
plasmic/nuclear ratio of Set7 protein without changing overall 
level of Set7 in vascular endothelial cells, indicating a role of 
Set7 and its role in hyperglycemia-induced gene activation of 
vascular endothelial cells (35).

The role of histone methylation in diabetic retinopathy 
has been also documented. For example, Zhong et  al. showed 
that retinal superoxide dismutase gene (SOD2) was epigeneti-
cally regulated in diabetes through methylation/acetylation of 
H4K20me3, acetyl H3K9, and NF-kB p65 on the histones at the 
promoter/enhancer location of retinal SOD2 in diabetes (36). 
These authors showed that these modifications continued after 
termination of hyperglycemia, supporting a diabetes-induced 
epigenetic regulation of retinal SOD2 (36). Their study suggests 
that promoter region methylation of SOD2 histones might 
play an important role in progression of diabetic retinopathy. 
Similarly, H3K9-specific demethylase JHDM2A (also known as 
JHMJD1A and KDM3A) has also been shown to be involved in 
regulating the expression of metabolic genes, strengthening the 
role of epigenetic regulation of metabolic genes in microvascular 
complications of diabetes (37). These authors observed that 
JHDM2A regulates the expression of PPARα and β-adrenergic 
signaling pathway genes and suggested that JHDM2A might 
regulate energy mediated β-adrenergic signaling pathway (37).

The fetal exposure to maternal milieu such as nutrition is 
known to result in intrauterine growth restriction (IUGR) 
and influence susceptibility to several diseases such as insulin 
resistance in adults. Hepatic insulin growth factor 1 (IGF-1) 
modulates insulin sensitivity, thus decreased IGF-1 levels 
are linked to insulin resistance. Decreased post natal plasma 
IGF-1 levels have been reported in IUGR infants and in new 
born rats with induced IGUR (38). Fu et al. have shown that 
IUGR affects IGF-1 gene expression by modulating the region 
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and gender-specific histone modifications (methylation and 
acetylation) along the length of IGF-1 gene. The authors showed 
that IUGR significantly increased H3K4me2 in males and H3 
K4me3 in females new born rats with induced IUGR. Since, 
there is a dynamic association between histone methylation 
and associated DNA methylation which affects gene transcrip-
tion, these histone modifications resulted in decreased IGF-1 
expression in new born rats. These findings suggest that that 
aberrant methylation of core histone tails of hepatic IGF-1 
regulate IGF-1 expression.

Yu et  al. (39) have shown that combination of diabetes and 
renal failure accelerated cardiomyopathy by epigenetic altera-
tions (increased acetylation, phosphorylation, K4 dimethylation, 
and reduced K9 dimethylation) of the cardiac histones H3. 
They observed increased H3 dimethylation at lysine 4 and 9 
and decreased H3 dimethylation at lysine 9 in hearts of uni-
nephrectomized db/db mice resulting in transcriptionally active 
chromatin and proposed that these changes were associated 
with increased expression of cardiac hypertrophy related genes. 
However, factors causing these changes are not known and need 
to be determined.

Histone methylation in etiology of diabetic nephropathy has 
been widely investigated and reviewed recently (40). Diabetic 
nephropathy is characterized by glomerular mesangial expan-
sion, inflammation, renal fibrosis, and hypertrophy. In a recent 
study, Li et  al. (41) showed that increased p21 expression seen 
in high glucose-treated mesangial cells was mediated by reduced 
histone H3-lysine9-dimethylation (H3K9me2), increased his-
tone H3-lysine4 methylation (H3K4me1/3) and increased trans-
location of SET7/9 at the p21 promoter region. Similarly, Yuan  
et  al. (12) also showed that oxidized lipid products such as 
2(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] increased tran-
scriptional activity of SET7, which in turn increased expression 
of pro-fibrotic genes in HETE treated mesangial cells. Losartan, 
an AT1R inhibitor, a common drug used in treatment of diabetic 
nephropathy has been shown to decrease H3K9/14Ac at RAGE, 
PAI-1, and MCP-1 promoters, in mesangial cells from db/db 
diabetic mice, suggesting that AT1R action may be also mediated 
by attenuation of epigenetic changes of the key genes involved in 
diabetic nephropathy.

Altered histone methylation of RECs has been reported 
in diabetic retinopathy. For example, decreased expression of 
MnSOD was found to be associated with altered H3K4me1/
me2in diabetic retinas and endothelial cells (42). These changes 
were found to persist even after normalization of blood glucose 
levels, indicating that these changes acted as markers of meta-
bolic memory (42).

Decreased H3K9me2 promoter methylation of MMP9, pro-
moting increased expression has been also seen in diabetic 
retinas and suggested to be associated with increased ECM 
accumulation (42). Increased expression of PRMT4, a methyl-
transferase which specifically methylates H3R17 histones and 
promotes cell death has been observed in retinal pigment epi-
thelial layer of diabetic rats even before development of diabetic 
retinopathy (43). Wang et  al. (44) reported differential meth-
ylation on H3, H4, H2A, H2B, and H1 sites in diabetic retinas 
specifically they observed increased mono- and dimethylation 

of histone H4 lysine 20 (H4K20me1/me2), and were associ-
ated with DNA damage in retinas of diabetic rats and these 
methylation patterns could be partly reversed by minocycline, 
a strong neuroprotective drug and used in treatment of diabetic 
retinopathy. Thus, altered histone methylation appears to be 
important in development of diabetic retinopathy in animal 
models and in vitro conditions, however, these changes need to 
be replicated in diabetic patients.

Thus, in summary, hyperglycemia-induced differential histone 
methylation/acetylation appears to regulate expression of several 
genes of cellular pathways, such as endothelial activation, oxida-
tive stress, adrenergic signaling pathway, and so on, involved in 
diabetes-induced vascular complications.

MODULATiON OF HDACs AND HATs  
AS A THeRAPeUTiC APPROACH

Since HDACs along with HATs have been shown to have a 
critical role in regulating expression of genes involved in diabetic 
vascular complications, modulation of these molecules is being 
investigated for therapeutic applications in diabetic cardiomyo-
pathy, nephropathy, retinopathy, and endothelial dysfunction 
associated with diabetes (45).

For example, acetylation of 20 S proteasome subunits in the 
heart has been shown to mediate proteolytic activity of injured 
myocardium (46), it has been suggested that modulation of 
HDACs, the key regulators of acetylation in the cell could be used 
effectively in the treatment of cardiac injury (47, 48). Christensen 
et al. reported that HDAC inhibition could ameliorate late dia-
betic microvascular complications along with improving insulin 
resistance and β-cell function (49). HDAC inhibition was also 
shown to improve cardiac function and attenuated cardiac 
remodeling in the diabetic myocardium of the streptozotocin-
treated ICR mice. Chen et al. observed that diabetic mice given 
1% butyrate in drinking water resulted in HDAC inhibition in 
the diabetic myocardium, specifically myocardial HDAC4 was 
found to be significantly decreased. HDAC inhibition caused 
upregulation of GLUT 1 and 4, increased Caspase 3, increased 
myocardial superoxide dismutase, decreased cardiac interstitial 
fibrosis and myocyte hypertrohy resulting in improvement in 
cardiac performance in diabetic mice (50).

Chen et  al. have also recently shown that HDAC inhibition 
promotes stem cell-derived myocardial repair, thereby improving 
cardiac function and attenuating cardiac remodeling in diabetic 
rats, further confirming a protective role of HDAC inhibitors 
against myocardial injury (50).

Peroxisome proliferator-activated receptors (PPARs) play an 
important role in diabetes-associated heart diseases by regulat-
ing cardiac glucose and lipid homeostasis. HDAC inhibitor, 
MPT0E014, was shown to decrease cardiac inflammation and 
dyslipidemia by modulating myocardial PPARs, and attenuated 
diabetic cardiomyopathy (51).

DUSP 5 is a dual-specific phosphatase which dephosphoryl-
ates and inactivates ERK1/2 MAP Kinase, a known promoter 
of cardiac hypertrophy (10). Xu et  al. recently reported that 
HDAC3 inhibition with its selective inhibitor, RGFP966, 
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increased the expression of MAP kinase phosphatase, DUSP 
5 and prevented development of diabetic cardiomyopathy 
in Type 1 diabetes OVE26 mice, suggesting a therapeutic 
potential of HDAC3 inhibition in prevention of diabetic 
cardiomyopathy (10).

Histone deacetylase inhibitors have been also found to be 
effective in preventing diabetes-induced renal damage. Gilbert 
et  al. (52) reported that HDAC inhibitor, Vorinostat, blunted 
renal damage in diabetic rats by reducing renal growth and 
glomerular hypertrophy via modulating renal EGFR expres-
sion. Vorinostat has been also shown to attenuate renal damage 
in strptozotocin-treated mice by decreasing eNOS expression 
and oxidative stress (53). Valproic acid (VPA), a known HDAC 
inhibitor also has been shown to ameliorate diabetes-induced 
renal injury by inhibiting renal fibrosis (54). Increased oxidative 
stress is an important contributor to diabetic nephropathy; Dong 
et  al. recently showed that sodium butyrate inhibited HDAC 
activity and elevated the expression of NRF2 and its downstream 
targets heme oxygenase 1 and NAD(P)H dehydrogenase qui-
none 1. Deletion of the NRF2 gene completely abolished sodium 
butyrate activation of NRF2 signaling and protection against 
diabetes-induced renal injury (55). Trichostatin A (TSA), an 
antifungal antibiotic has been shown to inhibit HDACs 1, 3, 
and 4. TSA suppresses redox signaling by decreasing NADPH 
Oxidase 4 (Nox4) expression by inhibiting p300-HAT-dependent 
pathway in endothelial cells (56). Cao et  al. showed that TSA 
decreased transverse aortic constriction (TAC), induced cardiac 
hypertrophy and phenylephrine (PE) or ET-1, and induced 
cardiomyocyte hypertrophy by inhibiting autophagy, and sug-
gested that TSA-mediated HDAC inhibition suppresses load- or 
agonist-induced autophagy in stressed myocardium (57).

Pancreatic duodenal homeobox 1 (PDX1) is a transcription 
factor associated with pancreatic β-cell function and survival. 
PDX1 deficiency results in defective B-cell function and diabe-
tes. Park et al. observed that IUGR decreased fetal and postnatal 
PDX1 levels by histone modification of PDX1 gene in primary 
islets. IUGR promoted deacetylation of histones H3 and H4 by 
recruiting HDAC1 and corepressor Sin3A; and histone 3 lysine 
4 (H3K4) was demethylated and histone 3 lysine 9 (H3K9) was 
methylated, resulting in silencing of the PDX1. These authors 
suggested that IUGR-induced PDX1 gene silencing in the β cell 
was linked with development of T2DM (58).

Johnson and Marsh recently reported that treatment of Type 
2 diabetic db/db mice with a chemotherapeutic class 1 HDAC 
inhibitor, romidepsin (FK228), at a low dose [(0.56 mg/kg twice 
a week) for 8 weeks], decreased blood glucose reduction inde-
pendent of plasma insulin level. These authors have suggested 
that these anti-diabetic effects of romidepsin were mediated 
through HDAC2-mediated potentiation of intracellular insulin 
signaling (59).

Thus, available information till date suggests that HDAC 
inhibition has beneficial effects in ameliorating diabetic micro-
vascular complications by targeting multiple dysregulated path-
ways. However, its translation into an effective therapy requires 
further studies such as evaluating association between HDACs 
and environmental and genetic factors.

DNA MeTHYLATiON iN  
DiABeTeS-iNDUCeD MiCROvASCULAR 
COMPLiCATiONS

DNA methylation involves methylation at 5′ position of cytosine 
residues in CpG islands, mostly in the promoter regions and is car-
ried out by DNA methyl transferases (DNMTs). Promoter DNA 
methylation is an important epigenetic mechanism regulating 
gene expression and is known to be affected in various diseases, 
including cardiovascular diseases and diabetes (60). Altered DNA 
methylation of inflammatory genes, glucose, and lipid metabolism 
genes, genes involved in oxidative stress, has been reported in 
diabetes (61).

DNA methylation in vascular complications of diabetes have 
been investigated and reviewed in a recent review (62). El-Osta 
(63) reported that short-term exposure of aortic endothelial 
cells to high glucose-induced promoter DNA methylation of 
NF-kB p65 subunit, an important mediator of cardiac fibrosis. 
These authors showed that DNA methylation was mediated  
by hyperglycemia-induced increased methylglyoxal generation. 
Pirola et al. (35) observed that hyperglycemia significantly affects 
human vascular chromatin resulting in differential methylation 
and acetylation pattern with the transcriptional upregulation 
of genes involved in metabolic and cardiovascular disease.  
A good correlation was seen between hyper-acetylation and DNA 
methylation and induction of genes in glucose-treated cells, and 
suggested that hyperglycemia-induced gene induction was medi-
ated by distinct changes in methylation and acetylation pattern 
of the genes.

Distinct promoter methylation profiling has been reported 
in diabetic hearts too. Movassagh et  al. (64) examined DNA 
methylation profiles in left ventricular tissues from patients with 
idiopathic and end stage heart failure and observed increased 
promoter methylation of 3 genes, PECAM1, ARHGAP24, and 
AMOTL2, related to angiogenesis in cardiomyopathic hearts, 
suggesting a role of DNA methylation-induced altered gene 
expression in cardiomyopathy.

However, DNA methylation pattern seen in diabetic hearts 
is distinct from that seen in heart failure patients (9). A specific 
DNA methylation CpG site of β-myosin heavy chain (β-MYH7) 
gene that was found to be extensively methylated in T2DM hearts 
as compared to controls and 3 CpG sites of failing human hearts. 
Similar DNA methylation changes were also seen T1DM hearts 
and in steroid induced diabetic hearts (9), suggesting altered DNA 
methylation of specific CpG site of β-MHC may be contributing 
to ventricular dysfunction seen in diabetic patients.

In a similar study, Mönkemann et  al. (65) reported altered 
methylation status of P53-inducible p21WAF1/CIP1 promoter, 
resulting in activation of apoptotic pathway leading to cell death 
of cardiomyocytes and cardiomyopathy in diabetic rats. They 
proposed that oxidative stress was the major trigger contributing 
to de novo methylation of p53-inducible p21WAF1/CIP1 gene.

Diabetes-induced oxidative stress is an important mediator 
of diabetes-associated cardiovascular complications. Zhong et al. 
(66) recently reported significant hypomethylation of KEAP1 
promoter in diabetic cardiomyopathy patients, with concomitant 
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increase in KEAP1 protein levels in these patients. KEAP1 
protein is known to bind to NF-E2-related factor 2 (NRF2), and 
promotes its degradation. NRF2 is known to activate several anti-
oxidant enzymes. Studies have proposed that reduction of NRF2 
antioxidant system in diabetic hearts may alter redox balance and 
contribute to increased oxidative stress in the heart of diabetic 
patients (67).

Vecellio et  al. (68) have recently reported a decreased pro-
liferation, differentiation potential, and premature cell death of 
cardiac mesenchymal stem cells in T2DM patients. Furthermore, 
they observed hypermethylation of promoter CpG islands of 
genes of cell cycle and DNA repair genes along with reduced 
acetylation of histone H3 lysine 9 (H3K9Ac) and lysine 14 
(H3K14Ac) and increased trimethylation of H3K9Ac and lysine 
27. They proposed that reduced HAT activity in diabetic hearts 
was responsible for increased DNA CpG methylation resulting 
in decreased cell differentiation and proliferation of cardiac mes-
enchymal stem cells in diabetic cardiomyopathy. However, these 
effects could be reversed by increasing HAT activity, suggesting 
a potential therapeutic application of epigenetic modulators in 
diabetes-associated cardiovascular complications.

Decreased promoter methylation of liver X receptor α (LXRa) 
(69) and AT1b angiotensin (67) receptor gene leading to their 
increased expression has been observed in diabetic hearts. 
TNF-α-mediated increased promoter methylation of sarcoplas-
mic reticulum Ca-ATPases (SERCA2a) resulting in decreased 
SERCA2a expression has been observed in high glucose-treated 
cardiomyocytes (70). These results suggest that diabetic milieu 
can cause increased or decreased methylation of different genes, 
resulting in their aberrant expression in heart.

Altered methylation of several genes dysregulated in diabetic 
nephropathy and diabetic retinopathy has been reported in dia-
betic patients and in vitro studies (35, 71, 72). A distinct differential 
promoter DNA methylation pattern has been reported in diabetic 
nephropathy patients with end-stage renal disease as compared 
to those who do not progress to this stage (73), suggesting that 
diabetic environment results in distinct epigenetic changes in 
specific genes, which could be used as prognostic biomarkers. 
Similarly, in diabetic retinopathy, Agardh et al. (74) reported dif-
ferential DNA methylation of nearly 233 unique genes, with genes 
from natural killer cell-mediated cytotoxicity pathway genes to be 
hypomethylated in proliferative diabetic retinopathy (PDR) and 
suggested that this distinct methylation pattern could be used 
as a prospective marker of PDR. Mishra and Kowluru (75) have 
shown that increased DNA methylation of mitochondrial DNA 
(mtDNA) causes decreased transcription of mtDNA, impairing 
mitochondrial functions and increasing apoptosis in diabetic 
retinopathy. A dynamic balance between methyl cytosine and 
hydroxyl methylation of MMP9 was found to be important in 
MMP9 expression and in maintaining mitochondrial integrity 
and function in RECs and in preventing diabetic retinopathy 
(76). Diabetes-induced oxidative stress appears to be a major 
trigger of these epigenetic changes.

Thus, there is substantial evidence to suggest that hyperglyce-
mia causes aberrant methylation of regulatory regions of several 
distinct genes resulting in their dysregulated expression. These 
molecular changes appear to be important in the pathogenesis 

of diabetes-induced microvascular changes in heart, kidney, and 
retina of the diabetic patients. Furthermore, diet, exercise, envi-
ronment, and genetic factors, which are important contributors to 
risk of diabetes, are also potent modulators of epigenetic changes. 
Hence, their role in inducing epigenetic changes in microvascular 
complications in diabetic milieu needs to be explored.

NON-CODiNg RNAs AND DiABeTeS

Non-coding RNAs are non-protein coding RNAs, and include 
microRNAs, long non-coding RNAs (LncRNAs), circular 
RNAs, etc. have been identified as important regulators of gene 
expression. These molecules have been shown to be important 
in developmental, physiological, and pathological processes. 
Dysregulated expression of microRNAs and long non-coding 
RNAs (lncRNAs) has been implicated in various diseases, 
including vascular complications of diabetes.

MiCRORNAs ASSOCiATeD wiTH 
DiABeTeS-iNDUCeD CARDiOMYOPATHY

MicroRNAs are small non-coding RNAs which regulate gene 
expression by mRNA degradation or translational repression 
of mRNAs. The role of microRNAs has been widely studied in 
diabetes and its vascular complications and has been reviewed 
recently in several articles (17, 77, 78). Dysregulated expression 
of several microRNAs has been reported in Diabetic cardio-
myopathy, retinopathy, nephropathy, and neuropathy regulating 
genes involved in diabetes (Table 1). Most of these microRNAs 
are involved in fibrogenesis, hypertrophy, apoptosis, inflamma-
tion, angiogenesis, and ECM accumulation. These functions are 
mainly regulated by microRNAs by regulating the expression of 
target genes involved in these cellular processes.

Several microRNAs have been reported to contribute to 
pathophysiological processes of diabetic cardiomyopathy, such 
as myocardial fibrosis, cardiomyocyte hypertrophy, cardiomyo-
cyte apoptosis, and mitochondrial dysfunction (Figure 2). For 
example, miR-30c, miR-133a, miR-150, and miR-373 were found 
to be downregulated and miR-451 was found to be upregulated 
in diabetes-induced cardiomyocyte hypertrophy (84). Whereas, 
in diabetes-induced cardiac fibrosis, the expression of miR-133a 
was found to be decreased and the expression of miR-21 was 
significantly increased (84). miR-34a, miR-1, miR-206, miR-195, 
and miR-30d have been implicated in diabetes-associated car-
diac apoptosis and mitochondrial dysfunction (84). Raut et al. 
showed that the expression of putative target genes of miR-30c 
(CDC42 and PAK1) were increased in hearts of diabetic rats and 
in HG treated cardiomyocytes (85, 86). miR-30c overexpression 
attenuated hyperglycemia-induced cardiomyocyte hypertrophy, 
whereas miR-30c inhibition resulted in myocyte hypertrophy 
in high glucose-treated cardiomyocytes, suggesting anti-
hypertrophic potential of miR-30c in diabetic cardiomyopathy 
(85). miR-200c has been found to be pro-hypertrophic and its 
expression was shown to be significantly increased in diabetic 
hearts and in high glucose-treated cardiomyocytes. It was found 
to induce diabetes-associated cardiac hypertrophy by down 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FigURe 2 | Schematic model of epigenetic role of microRNAs in diabetic cardiomyopathy.

TABLe 1 | Dysregulated microRNAs in microvascular complications of diabetes.

MicroRNAs Targets Functions Reference

Nephropathy
miR-192 TGF-β ECM (53)
miR-200b/c Collagen, fibrosis (46)
miR-21 PTEN Renal cell hypertrophy and Fibrosis (8)
miR-195 Bcl-2 Podocyte apoptosis (70)
miR-377 Fibronectin Fibrosis (79)
miR-29 family Collagen I, III, IV Fibrosis (53)
miR-93 VEGF-A Glomerular function (80)

Retinopathy
miR-146, miR-155, miR-132, miR-21 (upregulated in retina) Nf-κβ Pro-apoptosis of retinal pericytes (81)
miR-17-5p, miR-18a, miR-20a, miR-21, miR-31, miR-155 
(upregulated in retinal endothelial cells)

Vascular endothelial growth factor Vascular permeability (82)

miR-200b VEGF-A Vascular permeability (83)
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regulating expression of dual-specific phosphatase-1 (DUSP-1). 
Inhibition of miR-200c augmented the expression of the DUSP-1 
causing decreased expression of phosphorylated ERK, p38, and 
JNK and attenuated cardiomyocyte hypertrophy in high glucose-
treated neonatal rat cardiomyocytes (87). In another study, miR-
133a expression was reduced in diabetic cardiomyopathy along 
with augmented gene expression of MEF2A, MEF2C, SGK1, 
and IGF1R. Over expression of this microRNA inhibited altered 
gene expression and hypertrophic changes, indicating that 
miR-133a participated in mediating glucose-induced cardio-
myocyte hypertrophy in diabetes (88). Duan et al. (89) reported 
significantly reduced expression of miR-150 in high glucose-
treated cardiomyocytes; this microRNA was shown to increase 
p300 expression, resulting in cardiomyocyte hypertrophy. 
miR-373 has also been shown to be involved in the pathogenesis 
of diabetes-induced cardiac hypertrophy. The expression of miR-
373 was found to be markedly down regulated in STZ-induced 

diabetic mice, and neonatal rat cardiomyocytes in response to 
high glucose. Over expression of miR-373 in cardiomyocytes 
using synthetic miR-373 mimics resulted in decreased expres-
sion of MEF2C gene and attenuated cardiomyocyte hypertrophy 
in high glucose-treated cardiomyocytes (90). Kuwabara et  al. 
identified calcium-binding protein 39 (CAB39), a component 
of AMPK signaling pathway as direct target of miR-451. They 
demonstrated that in miR-451 knockout mouse the protein 
expression of CAB39 and phosphorylated AMPK was increased 
significantly, indicating that miR-451 was involved in diabetic 
cardiomyopathy via suppression of the LKB1/AMPK signaling 
pathway (91).

Several miRNAs, such as miR-21 and miR-29, have been 
shown to promote cardiac fibrosis in diabetic hearts. Liu et  al. 
demonstrated increased miR-21 expression after high glucose 
treatment in cardiac fibroblasts (92). miR-21 was shown to 
promote fibroblast survival by down regulating SPRY1 (93). 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


88

Khullar et al. Epigenetics in Vascular Complications of Diabetes

Frontiers in Endocrinology | www.frontiersin.org October 2017 | Volume 8 | Article 237

Silencing of miR-21 using synthetic mimics in mouse model of 
diabetic cardiomyopathy resulted in decreased interstitial fibrosis, 
suggesting potential role of miR-21 in cardiac fibrosis associated 
with diabetic cardiomyopathy. Liu et  al. also showed that gain 
and loss of miR-21 function negatively regulated expression of 
DUSP8, a MAPK phosphatase, and enhanced cell proliferation 
and collagen synthesis via MAPK signaling pathway (92). Kumar 
et al. (94) have reported that miR-21 may also promote cardiac 
fibrosis by activation of AKT/PKB signaling. In addition to 
cardiac hypertrophy, miR-133a was found to mediate diabetes-
induced cardiac fibrosis. Chen et  al. observed that miR-133a 
expression was significantly decreased in hearts of STZ-induced 
diabetic mice, along with increased expression of transcriptional 
co-activator p300, as well as fibrosis markers (95).

miR-1 and miR-206 are cardiac-specific microRNAs (96). 
Increased miR-1 and miR-206 levels have been observed in 
high glucose-treated cardiomyocytes. Both these miRNAs were 
proposed to induce cardiomyopathy by inducing mitochondrial 
dysfunction and apoptosis (97). These microRNAs have been 
shown to bind to the same site in the 3′-UTR of HSP60 mRNA 
and thereby could regulate HSP60 expression and glucose-
mediated apoptosis in diabetic myocardium; however, this 
needs experimental validation (97). miR-34 too has been shown 
to promote HG-induced apoptotic changes in H9C2 cells (96). 
Pyroptosis is pro-inflammatory programmed cell death and is 
unlike from apoptosis or necrosis (26). Li et  al. in their study 
showed that miR-30d expression was substantially increased in 
diabetic cardiomyopathy and this increased expression promoted 
cardiomyocyte pyroptosis; conversely, knockdown of miR-30d 
attenuated it (98).

It has been proposed that diabetic milieu may induce or 
repress the microRNAs by several different mechanisms, such 
as oxidative stress and ER stress, epigenetically regulating genes 
coding for microRNAs.

Role of microRNAs in diabetic nephropathy has been 
investigated widely and there are several recent reviews on this 
topic (99). Existing literature supports a pathogenic role for 
several microRNAs by promoting renal fibrosis by increased 
accumulation of extracellular matrix proteins related to fibrosis,  
glomerular hypertrophy, and renal cell apoptosis (100). Some 
of these microRNAs have been shown to have a potential as 
biomarkers as these were found to be dysregulated in early stages 
of nephropathy. However, more evidence is required for these 
data to be translated to clinical application. Furthermore, it has 
been observed that modulation of these microRNAs with either 
mimics or antagomiRs could attenuate the disease, suggesting 
that these microRNAs could be potential therapeutic targets.

A differential microRNA expression has been reported in 
patients with diabetic retinopathy as compared to controls. 
Animal and in vitro studies on RECs too showed altered retinal 
microRNA profile in diabetic animals and RECs treated with 
high glucose (35). Zampetaki et al. (101) showed that miR-27b 
and miR-320a increased risk of diabetic retinopathy by repress-
ing antiangiogenic thrombospondin-1. Qin et al. have reported 
decreased miR-20b and correlated increase in its target genes 
VEGF and AKT3 in the retina and RECs in diabetic rats. These 
authors suggested that hyperglycemia-induced changes in 

retinal tissues were mediated by miR-20b via modulating VEGF 
and AKT3 in diabetic retinopathy (102). Similarly miR-15a too 
has been found to be protective toward developing diabetic 
retinopathy by inhibiting pro-inflammatory and pro-angiogenic 
pathways through its target genes ASM and VEGF-A (103). In 
a recent study, Zhou et  al. (104) showed that transgenic mice 
over expressing let-7 show features similar to non-proliferative 
diabetic retinopathy suggesting its pathological role in non-
proliferative diabetic retinopathy.

In addition, genetic variants in microRNA genes, such as  
miR-4513 rs2168518, miR-499 rs3746444, miR-196a2 rs11614913, 
and miR-423 rs6505162, have also been shown to be associated 
with the risk of cardiovascular complication of diabetes (105).

Taken together, available literature shows a definitive role 
of microRNAs, specifically targeting pro-angiogenic and pro-
inflammatory genes in pathogenesis of diabetic retinopathy, thus 
providing their therapeutic potential in preventing and treatment 
of diabetic retinopathy.

MiCRORNAs AS BiOMARKeRS OF 
DiABeTiC vASCULAR COMPLiCATiONS

As serum levels of different miRNAs have been shown to be 
elevated in cardiovascular complication of diabetes, they 
could serve as sensitive and cost-effective biomarkers for 
these conditions. For example, the expression levels of seven 
diabetes-related miRNAs (miR-9, miR-29a, miR-30d, miR-34a, 
miR-124a, miR-146a, and miR-375) in serum were shown to 
be significantly elevated in T2DM subjects compared with 
pre-diabetes and/or normal glucose tolerance suggesting that 
during the pathogenesis of T2DM, the peripheral diabetes-
related miRNAs have not changed significantly from susceptible 
individual with normal glucose tolerance at pre-diabetic stage 
(106). miR-1 and miR-133a have been found to be good pre-
dictors of myocardial steatosis in diabetic patients (105). The 
fact that miR-1 and miR-133a are poorly associated with other 
clinical, biochemical, metabolic, hemodynamic, and cardiac 
parameters, and even with verified absence of clinically evident 
myocardial ischemia and/or damage supports the hypothesis 
that these miRNAs are independent predictors of myocardial 
steatosis.
miR-21, miR-29a/b/c, and miR-192 could reflect DN pathogen-
esis and serve as biomarkers during DN progression as there 
levels were significantly enriched in the overt proteinuria group 
compared with microalbuminuria and/or overt proteinuria 
groups. Authors observed that miR-192 suppressed the transla-
tion of SIP1/E-box repressors ZEB2, leading to elevated collagen 
deposition in vivo indicating a role of miR-192 in the development 
of the matrix accumulation observed in DN. Whereas, miR-21 
prevented mesangial hypertrophy by targeting the PTEN/PI3K/
AKT pathway and miR-29 was negatively regulated by TGF-β1 
via SMAD3 signaling pathway, thereby promoting collagen 
matrix expression (107).

Some microRNAs have been found significantly increased 
in blood samples of diabetic patients with retinopathy; for 
example, Qing et al. (108) have reported that circulating miR-21, 
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miR-181c, and miR-1179 together could be good biomarkers 
for differentiating between proliferative and non-proliferative 
retinopathy. Barutta et al. (109) recently reported that circulat-
ing miR-126 levels were significantly lower in diabetic patients as 
compared to controls and were associated with both micro- and 
macrovascular complications, especially with proliferative retin-
opathy In a large cohort of type 1 diabetic subjects. Circulating 
microRNAs as biomarkers of diabetes-induced cardiomyopathy 
have also been reviewed recently (110).

Exosomes are small extracellular vesicles present in blood and 
urine is rich in microRNAs and is being investigated as potential 
disease markers. Mohan et al. (111) showed that urinary exoso-
mal microRNAs 451-5p levels increased and correlated with renal 
damage in diabetic rats and suggested these to be useful as early 
biomarkers of diabetic nephropathy. Thus, microRNAs show 
promising potential as biomarkers for vascular complications of 
diabetes.

MiCRORNAs AS THeRAPeUTiCS  
iN MiCROvASCULAR COMPLiCATiONS 
OF DiABeTeS

MicroRNAs have been explored for their potential as new 
therapeutic targets in diabetes vascular complications; for 
example, Kovacs et  al. (82) showed that miR-146 through its 
inhibition of NF-kβ activation could be a potential therapeutic 
target in cardiovascular complication of diabetes. miR-130a 
is shown to improve EPCs function by negatively regulating 
RUNX3 and through ERK/VEGF and AKT pathways and could 
have a potential use in improving endothelial function (112). 
Downregulation of miR-200b has been implicated in Glucose-
induced augmented vascular endothelial growth factor (VEGF) 
production through histone H3 lysine-27 trimethylation (113). 
Thus, methyltransferase inhibitors like COMT inhibitor could 
be used to control VEGF augmentation by upregulation of 
miR-200b. On similar grounds, in a recent study, vitamin B3 
and nicotinic acid have been shown to have a protective effect 
in diabetic retinopathy by upregulating miR-126 (114). miR-
34 family modulates changes in proliferation and migration 
of retinal pigment epithelial cells through downregulation of 
leucine-rich repeat-containing G-protein coupled receptor 
4 (LGR4) expressions, indicating G protein (heterotrimeric) 
inhibitors as potential therapeutics (115). Apart from this, miR-
21 is an important miRNA frequently upregulated in T2DM and 
cardiovascular complication of diabetes (116). miR-21 targets 
SMAD7 pathway and also blocks the expression of PDCD4 and 
thereby, suppress activation of the TGF-β and NF-κB signaling 
pathways. Since miR-21 is upregulated in cells related to diabetic 
complications, their exclusive molecular signatures can be used 
as prognosis, diagnosis, and therapeutic targets. Sekar et al. (79) 
have also shown that targeting miR-21 by synthetic anti-miRNA 
oligonucleotides (AMOs) with 2-O-methylmodification effec-
tively inhibited the miRNA 21 in cell culture and xenograft 
mouse models. In addition to this, antisense-RNA, miRNAs 
mimics, and tumor suppressor miRNAs could be also used to 
inhibit the expression of miR-21.

LONg NON-CODiNg RNAs  
AND vASCULAR COMPLiCATiONS  
OF DiABeTeS

Long non-coding RNAs (lncRNAs) are >200-nt-long non-
coding RNAs and are increasingly being recognized as important 
gene regulators. lncRNAs repress gene expression by binding to 
specific DNA/RNA or protein moieties (80). For example, they 
can bind to miRNAs and thereby prevent their binding to target 
mRNAs and, hence, gene expression (81) or they may regulate 
activity of regulatory proteins by altering their affinity or cellular 
localization for other proteins (83). Aberrant expression of lncR-
NAs has been implicated in pathophysiology of several diseases 
such as tumorigenesis and cardiovascular diseases; however, 
their role in vascular complications of diabetes remains largely 
unknown. Recent studies have identified several lncRNAs with 
potential role in diabetic nephropathy, retinopathy, neuropathy, 
and cardiomyopathy.

Data on lncRNAs in diabetic cardiomyopathy are sparse. Zhang 
et  al. (117) recently reported increased expression of lncRNAs 
MALAT1 in the heart tissue of diabetic rats, and observed that 
its inhibition Improved left ventricular function, by attenuating 
cardiomyocyte apoptosis. A downregulation of lncRNA H19 has 
been also seen in diabetic hearts and it has been shown to increase 
expression of miRNA-675 and downregulation of its target 
VDAC1 leading to decreased cardiomyocyte apoptosis of car-
diomyocytes in high glucose milieu (118). Zhuo et al. (119) have 
recently showed that H19 also inhibited autophagy in glucose-
treated cardiomyocytes by silencing pro-autophagy DIRAS3. lnc 
H19 has been suggested as a potential biomarker and therapeutic 
target for diabetic cardiomyopathy. However, more research 
is needed to explore the potential role of lncRNAs in diabetic  
cardiomyopathy.

Wang et al. (120) reported downregulation of CYP4B1-PS1-001 
in both in early stages of diabetic nephropathy and suggested its 
role in mesangial cell proliferation and fibrosis. Alvarez et al. (100) 
earlier showed that a long non-coding RNA, the plasmacytoma 
variant translocation 1 (PVT1), increased fibronectin 1 (FN1) 
ECM accumulation in the glomeruli under hyperglycemic condi-
tions, suggesting its role in diabetic nephropathy. They recently 
reported that miR-1207-5p, a PVT1-derived microRNA, was also 
independently involved in pathogenesis of diabetic nephropathy. 
Similarly lncRNA ENSMUST00000147869 associated with 
Cyp4a12a has been shown to mediate diabetic nephropathy by 
increasing proliferation and fibrosis of mesangial cells (121). 
Several other lncRNAs, such as MALAT1 (122), myocardial 
infarction-associated transcript (MIAT) (123) and lnc-MGC, 
have been found to be dysregulated in diabetes-induced renal 
injury and are potential therapeutic targets for treating diabetes-
induced nephropathy.

lncRNA-RNCR3 has been implicated in diabetes-induced 
retinopathy. Liu et al. (67) recently showed that lncRNA-RNCR3 
knockdown decreased cytokine levels, retinal cell apoptosis, 
improved visual function, and inhibited retinal reactive gliosis in 
diabetic animals, indicating its role in diabetes-induced neurode-
generation. Shan et al. have increase in RNCR3 levels following 
high glucose stress both in  vitro and in  vivo. They observed 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


90

Khullar et al. Epigenetics in Vascular Complications of Diabetes

Frontiers in Endocrinology | www.frontiersin.org October 2017 | Volume 8 | Article 237

that RNCR3 knockdown inhibited RECs proliferation, and cell 
migration and tube formation in vitro and improved endothelial 
function in  vivo (124) via RNCR3/KLF2/miR-185-5p pathway, 
suggesting RNCR3 inhibition as a therapeutic option in treating 
diabetic retinal abnormalities.

The studies done so far indicate that lncRNAs are important 
mediators of various vascular complications of diabetes and 
potential therapeutic targets and need to be explored further.

CONCLUDiNg ReMARKS

Metabolic disorders such as diabetes are due to cumulative 
interactive effects of genetic and environmental factors. These 
effects are primarily induced by diabetes-associated factors, 
such as hyperglycemia, oxidative stress, inflammation, obesity, 
and so on, and are manifested as epigenetic changes in the 
genome. These epigenetic changes include DNA methylation, 
histone methylation and acetylation, deregulated expression of 
microRNAs and lncRNAs etc. and are responsible for altered 
gene expression of the key regulatory pathways mediating 
diabetes-associated vascular complications and also are major 
contributors to metabolic memory associated with diabetes. 
Thus, study of epigenetic mechanisms assumes a significant 
role in elucidating pathophysiology of diabetes and its com-
plications. However, our understanding of these mechanisms 
is incomplete and awaits translational application. Further 
research focus is needed to elucidate the mechanisms especially 
with respect to non-coding RNAs and chromatin structure. The 
information being generated in microRNAs and lncRNAs shows 
that we are at threshold of unveiling of important biological role 
of these molecules in disease etiology, pathology, progression, 

and therapeutics, besides being non-invasive diagnostic and 
prognostic biomarkers of vascular complications, such as 
nephropathy and cardiomyopathy.

To gain a deeper understanding of T2DM and its associated 
microvascular complications, an incorporation of a range of novel  
tools and techniques, such as RNAseq, transcriptomics, metabo-
lomics, epigenomic profiling, and chromatin 3D mapping, is 
needed to be integrated in diabetes research. Tissue- and cell-
specific profiling of methylation levels and histone modifications 
of major pathophysiological genes would increase our under-
standing of the pathology of T2DM and associated complica-
tions. Elucidation of association between epigenetic modulations 
of the genome involved in microvascular complication with 
those of macrovascular complications of diabetes is also needed.  
The knowledge gained through epigenetics gene expression 
alteration in diabetic cardiomyopathy will provide better 
approaches in attenuating hyperglycemia-induced damage to the 
heart and other affected organs, such as kidney and brain. Thus, 
elucidation of epigenetic mechanisms in conjunction with envi-
ronmental and genetic factors would fine tune the understanding 
of pathophysiology of diabetic cardiomyopathy. And, epigenetic 
factors could provide a wholesome picture of the role of genes and 
their expression in T2DM and its micro as well as macrovascular 
complications.
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