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MOLECULAR BIOLOGY OF BAMBOO 
MOSAIC VIRUS – A TYPE MEMBER OF 
THE POTEXVIRUS GENUS

Electron micrograph of purified Bamboo mosaic virus in 0.05 M borate buffer, pH 8.0, stained with 2% 
uranyl acetate. 

Image: Drs. Hsiung Wu and Chun-Chieh Chen.
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The flexible filamentous plant viruses are responsible for more than half of all agricultural loss 
worldwide. Potexvirus is one of the two most important flexible filamentous plant viruses. 
Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus, is a member of the 
Potexvirus genus of Alphaflexiviridae. It can infect at least 12 species of bamboo, causing a 
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huge economic impact on the bamboo industry in Taiwan. The study of BaMV did not start 
extensively until the completion of the full-length sequencing of genomic RNA of BaMV and 
generation of the BaMV infectious cDNA clone in the early 1990s. Since then, BaMV has been 
extensively studied at the molecular, cellular and ecological level, covering both basic and applied 
researches, by a group of researchers in Taiwan. 

In this eBook, the content comprises 6 reviews and 4 articles. Seven of them are involved in the 
infection of BaMV covering viral RNA replication, viral RNA trafficking, and the host factors. 
Two of them are related to the vector transmission and the ecology of BaMV. The last one is the 
application of using BaMV as a viral vector to produce vaccines in plants.
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Editorial on the Research Topic

Molecular Biology of Bamboo mosaic Virus—AType Member of the Potexvirus Genus

Bamboo mosaic was first reported in Brazil in 1975, then in Taiwan, Australia, USA, India, China,
etc. The causal agent, Bamboo mosaic virus (BaMV), is a member of the Potexvirus genus of
Flexiviridae. BaMV can infect at least 12 species in 3 genera of bamboo. Symptoms include chlorotic
mosaic on infected leaves and necrotic streaking on shoots and culms. With a high incidence
of more than 90% infection in many bamboo plantations, the virus causes great economic loss,
particularly in Taiwan, in terms of the quality and quantity of bamboo shoot production, a popular
food.

However, study of BaMV did not start extensively until BaMV was identified as a member of
the Potexvirus genus at the molecular level, in the early 1990s. Furthermore, the satellite RNA
(satRNA) associated with BaMV (satBaMV) was found to be the only satRNA in Potexvirus. After
completion of the full-length sequencing of genomic RNA of BaMV and generation of the BaMV
infectious cDNA clone, study of BaMV stepped into a new dimension. Since then, BaMV has been
extensively studied at the molecular level, covering different both basic and applied research, by a
group of researchers in Taiwan. To date, more than 100 BaMV papers have been published in SCI
international journals.

Like all potexviruses, BaMV has a flexuous morphology with a single-stranded positive-sense
RNA genome. By investigating BaMV, the filamentous structure of flexible viruses was first
determined at the near-atomic level by cryo-electron microscopy. This finding solved the mystery
of how flexible virus particles maintain structural integrity as mechanical forces deform their
structure. In addition, two types of subviral agents, defective RNA and satellite RNA, were found
associated with BaMV in the field. Besides studying the viral RNA genomic structure and function,
BaMV research has also focused on the virus-host interaction.

In this Research Topic, we summarize the BaMV research with 6 reviews and 4 research
articles. To uncover the functional activity of replicase encoded by a positive-sense RNA virus,
Meng and Lee describe the enzymatic activities associated with each of the functional domains of
the BaMV-encoded replicase, including its unique capping mechanism, which may be conserved
across the alphavirus superfamily (Meng and Lee). The authors also detail the interactions
between replicase and the host proteins identified in Nicotiana benthamiana. Chen et al. cover
the location of cis-acting elements in the viral RNA and their specific functions, including
the recognition of the replicase complex for minus-strand, plus-strand and subgenomic RNA

syntheses, viral RNA packaging, and viral movement. Moreover, the authors reveal the host
factors that might be involved in delivering BaMV cargoes during intracellular movement,

5
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including the delivery of viral RNA to the chloroplast for
replication and viral RNA complex to move cell to cell (Cheng).
Huang et al. describe the strategies used to identify the host
proteins positively and negatively regulating the BaMV RNA
replication and viral movements. One of the host proteins
reported to be downregulated after BaMV infection is now
revealed as carbonic anhydrase (Chen et al.). Nuclear-encoded
chloroplast carbonic anhydrase may be involved in the re-
initiation step of BaMV RNA replication.

In addition to host factors revealed in replication and
movement, the study of BaMV-plant interactions explores a
role for abscisic acid (ABA), a plant hormone, in the antiviral
silencing pathway that could lead to interference in virus
accumulation. Alazem and Lin describe how ABA affects the
accumulation of BaMV and other viruses via the gene silencing
pathway (Alazem and Lin). BaMV is unique in some isolates
carrying satBaMVs, particularly the interfering satBaMV, with
crucial roles in modulating BaMV replication and viral symptom
development. Lin and Lin summarize the molecular mechanisms
underlying the interaction of interfering satBaMV and BaMV
(Lin and Lin).

Two papers are related to BaMV ecology. No insect vector for
potexviruses has yet been uncovered. Chang et al. investigated
the possibility of insect-mediated transmission of BaMV among
bamboo clumps and found that two dipteran insects, Gastrozona
fasciventris and Atherigona orientalis, could transmit BaMV to
bamboo seedlings. The findings should help in managing BaMV
infection by integrating the dipteran insect control. In addition,
with decades of collections across a wide geographic area in Asia,
Wang et al. have accumulated a sizable number of BaMV and
satBaMV isolates for reconstruction of the BaMV and satBaMV
phylogeny. The clustering results suggest that the Taiwan Strait

was a physical barrier to gene flow in the evolutionary history
of both BaMV and satBaMV.

Finally, Chen et al. describe a BaMV-based vector system
for peptide presentation. Chimeric BaMV virus expressing the
epitope of Japanese encephalitis virus (JEV) could stimulate
effective neutralizing antibodies against JEV infection in mice.
This study demonstrates an alternative way to produce an
effective vaccine candidate against JEV in plants by the BaMV-
based vector system.

We thank our colleagues and friends, in total 27 authors,
for their valuable contributions to this eBook and cohesive
collaboration in the study of BaMV biology in the past 2 decades.
We are also grateful to Dr. Anne Simon (University ofMaryland),
who encouraged us to initiate this Research Topic. We hope
the knowledge we have gained from BaMV can serve as the
groundwork and biotechnological application for Potexvirus
research and RNA research as well.
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Function and Structural Organization
of the Replication Protein of Bamboo
mosaic virus
Menghsiao Meng* and Cheng-Cheng Lee

Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan

The genus Potexvirus is one of the eight genera belonging to the family Alphaflexiviridae
according to the Virus Taxonomy 2015 released by International Committee on
Taxonomy of Viruses (www.ictvonline.org/index.asp). Currently, the genus contains 35
known species including many agricultural important viruses, e.g., Potato virus X (PVX).
Members of this genus are characterized by flexuous, filamentous virions of 13 nm in
diameter and 470–580 nm in length. A potexvirus has a monopartite positive-strand
RNA genome, encoding five open-reading frames (ORFs), with a cap structure at the
5′ end and a poly(A) tail at the 3′ end. Besides PVX, Bamboo mosaic virus (BaMV) is
another potexvirus that has received intensive attention due to the wealth of knowledge
on the molecular biology of the virus. In this review, we discuss the enzymatic activities
associated with each of the functional domains of the BaMV replication protein, a 155-
kDa polypeptide encoded by ORF1. The unique cap formation mechanism, which may
be conserved across the alphavirus superfamily, is particularly addressed. The recently
identified interactions between the replication protein and the plant host factors are also
described.

Keywords: Bamboo mosaic virus, Potexvirus, RNA-dependent RNA polymerase, mRNA capping, virus-host
interaction, positive-strand RNA virus, guanylyltransferase

BaMV GENOME

Bamboo mosaic virus (BaMV) primarily infects members of the Bambusoideae in nature;
nonetheless, it also replicates in Nicotiana benthamiana, which thereby has been used as the
surrogate in laboratories. The RNA genome of BaMV contains 6366 nucleotides (nts) plus a 5′
m7GpppG (cap0) structure and a 3′ poly(A) tail (Figure 1A). It is functionally organized into a
94-nt 5′ untranslated region (UTR), five ORFs, and a 142-nt 3′ UTR (Lin et al., 1994). Two major
subgenomic RNAs, co-terminal with the viral 3′ UTR, would be produced once the virus starts to
replicate in host cells. The first ORF encodes a 155-kDa non-structural protein (REPBaMV) that has
been thought to be essential for replication/transcription of the viral genome and the formation
of the 5′ cap based on the presence of signature motifs of Sindbis virus-like methyltransferase
(Rozanov et al., 1992), helicase (Habili and Symons, 1989), and RNA polymerase (Koonin and
Dolja, 1993). As many positive strand RNA viruses, BaMV must encode its own enzymes for
replication/transcription and 5′ cap formation because it replicates only in the cytoplasm. ORF2, 3
and 4 are overlapped, often referred to as the triple gene block (TGB), and their translated proteins,
TGBp1, TGBp2, and TGBp3, respectively, are indispensable for BaMV movement in plants (Lin
et al., 2004, 2006). In-depth discussions about the functions of each of the TGB proteins of PVX in
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FIGURE 1 | (A) The genome organization of Bamboo mosaic virus (BaMV). REPBaMV, the translation product of ORF1, associates with host factors to form the viral
replication complex. Different subsets of host factors may be recruited to perform negative- and positive-strand replication and transcription. (B) Functional domains
in RFPBaMV . The conserved residues in the N-terminal capping enzyme domain and the featured motifs suggestive of the helicase-like domain (HLD) and the
C-terminal RdRp domain are indicated. The domains are separated by a disordered hydrophilic region and a proline rich segment (PRS).

the intracellular trafficking and intercellular transport can be
referred in a couple of recent reviews (Verchot-Lubicz et al., 2010;
Park et al., 2014). ORF5 encodes the viral coat protein (CP) that
is the only structural protein required for the assembly of BaMV
virions. CP also exerts a critical function in the accumulation
of BaMV RNAs in protoplasts (Lee et al., 2011). It is unclear
whether CP protects BaMV RNAs from being destroyed by the
host defense mechanisms or if it actually participates in the viral
replication process. In addition, CP of potexvirus was reported
to play a role in the virus movement. For instance, White clover
mosaic virus needs CP to spread efficiently in plants (Forster et al.,
1992), and PVX is defective in cell-to-cell movement if it carries a
C-terminally truncated CP (Fedorkin et al., 2001). Occasionally,
an 836-nt satellite RNA (satBaMV) is found in association with

BaMV in nature (Lin and Hsu, 1994). satBaMV contains one ORF
that encodes a 20-kDa polypeptide (P20). P20 is not necessary for
the replication of satBaMV; nonetheless, the accumulation rate of
satBaMV in systemic leaves decreases in the absence of P20 (Lin
et al., 1996).

DOMAIN ORGANIZATION OF REPBaMV

There are apparently three functional domains in REPBaMV
(Figure 1B), separated by a disordered hydrophilic region, from
approximately amino acid residues 406–520, and a proline-
rich segment (PRS), residues 895–910, according to a secondary
structure prediction using the PHD algorithm (Rost et al.,
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1994). The N-terminal one-third of REPBaMV shares a few
dispersedly conserved residues with the putative Sindbis-like
methyltransferase domains (Rozanov et al., 1992) of a variety
of plant and animal alphavirus-like viruses such as Brome
mosaic virus and Semliki Forest virus (Li et al., 2001a). Sequence
comparison also revealed that the central domain contains
several NTP-binding motifs of RNA helicase superfamily 1
(SF1) (Kadaré and Haenni, 1997) and the C-terminal domain
contains featured motifs of RNA polymerases, e.g., the catalytic
GDD motif (Koonin and Dolja, 1993). Since REPBaMV is barely
discernible in BaMV-infected N. benthamiana, the enzymatic
activity associated with each of the domains has been investigated
using the domains expressed in heterologous hosts such as
Escherichia coli and Saccharomyces cerevisiae.

CAPPING ENZYME DOMAIN

The enzymatic activity of the N-terminal 442 amino acids of
REPBaMV was successfully characterized by using the domain
expressed in S. cerevisiae (Li et al., 2001a). The recombinant
domain, strongly associated with the yeast membrane, could be
radiolabeled by [α-32P]GTP if S-adenosylmethionine (AdoMet)
was provided in the reaction buffer. Alternatively, it could be
radiolabeled by Ado[methyl-3H]Met when GTP was present.
The radiolabeled moiety covalently linked to the domain was
subsequently determined to be m7GMP. This [m7GMP-enzyme]
adduct was thought to represent an intermediate in the pathway
to form the 5′ cap. In other words, this viral domain could
be a guanylyltransferase (mRNA capping enzyme) except that
it is covalently modified by m7GMP rather than GMP. In
addition, this N-terminal domain of REPBaMV was found
capable of catalyzing a methyl transfer reaction from AdoMet
to GTP, leading to the formation of m7GTP, consistent with
the prediction of its function as a methyltransferase. This viral
domain was therefore proposed to possess an AdoMet-dependent
guanylyltransferase activity, by which the methyl group of
AdoMet is transferred to GTP, leading to m7GTP formation, and
then the m7GMP moiety of m7GTP was transferred to an active-
site residue to form the covalent [m7GMP-enzyme] intermediate.
Analogous reactions have been observed also in other members
of alphavirus-like superfamily including alphavirus (Ahola and
Kääriäinen, 1995), Brome mosaic virus (Ahola and Ahlquist,
1999), Semliki Forest virus (Ahola et al., 1997), Hepatitis E virus
(Magden et al., 2001) and Tobacco mosaic virus (TMV) (Merits
et al., 1999), suggesting that this unique mRNA capping process
is conserved throughout diverse members within the superfamily
in spite of the fact that only limited amino acid identities (e.g.,
H68, D122, R125, and Y213 in REPBaMV) are conserved.

Site-directed mutagenesis indicated that H68, D122, R125, and
Y213 are essential for the BaMV capping domain to form the
covalent [m7GMP-enzyme] intermediate (Huang et al., 2004).
Alanine substitution for each of the conserved residues, except
H68, also disabled the domain to produce m7GTP (Huang et al.,
2004). Intriguingly, H68A mutant increased m7GTP production
by a factor of ∼10, implying a special role of H68 in the
pathway to form the covalent [m7GMP-enzyme] intermediate.

The H68A mutant was thus treated as the pseudo wild type to
investigate the aromatic residues important for the formation
of m7GTP (Hu et al., 2011). A number of aromatic residues,
including Y126, F144, F161, Y192, Y203, Y213, and W222, were
found critical for AdoMet recognition. Alanine substitution for
these residues, except Y213, also reduced the binding affinity to
GTP. Probably, the BaMV capping domain binds AdoMet and
GTP in close proximity and many of these aromatic residues
participate in the binding of the two substrates simultaneously.
It is noteworthy that all the indicated aromatic residues are
well conserved among the capping domains of potexviruses. The
primary function of Y213 is to bind AdoMet. The inability to
substitute phenylalanine for Y213 suggests that the hydroxyl
group on Y213 provides an essential hydrogen bond to AdoMet.
Presumably, Y231 locks AdoMet in a correct spatial position so
that the methyl group from the electrophilic methylsulfonium of
AdoMet can be transferred to the N7 of GTP.

Peptide mapping using alkaline hydroxylamine, which
specifically cleaves the asparaginyl-glycyl bond (Bornstein and
Balian, 1977), indicated that the m7GMP-linking residue of
the BaMV capping domain is located within the region of
residues 44–76 (Lin et al., 2012). The covalent [m7GMP-enzyme]
intermediate was sensitive to 0.1 N HCl but tolerant of 0.1 N
NaOH (Lin et al., 2012), suggesting that the link connecting the
domain and m7GMP is a phosphoamide bond (Duclos et al.,
1991). Amino acids with nucleophilic side chains including
lysine, arginine, asparagine, glutamine, serine, threonine,
tyrosine, and cysteine were used to replace His68 (Lin et al.,
2012). All the mutants, except H68C, failed to form the covalent
[m7GMP-enzyme] intermediate. H68C retained a detectable
activity for the covalent intermediate formation despite at
considerably lower extent. The bond connecting m7GMP and the
H68C mutant enzyme was moderately stable in 0.1 N HCl and 0.1
N NaOH (Lin et al., 2012), a characteristic of a phosphocysteine
bond (Duclos et al., 1991). The change of the nature of the bond
connecting the enzyme and m7GMP and the result of peptide
mapping lead to the conclusion that His68 acts as the nucleophile
to attack the α-phosphate of m7GTP, consequently leading to the
formation of the covalent [m7GMP-enzyme] intermediate.

The catalytic step after formation of the [m7GMP-enzyme]
intermediate was characterized by monitoring the transfer of
32P-radiolabeled m7GMP of the covalent intermediate to various
RNAs (Huang et al., 2005). A RNA transcript with 5′-terminal
diphosphate is a prerequisite to receive m7GMP from the
covalent intermediate, and RNA led by GDP is a better substrate
than that led by ADP. The putative stem-loop structure in the 5′
region of BaMV genome, nts 34–118, has a critical effect on the
capping efficiency of the genomic RNA, suggesting that most of
the cap formation events occur after the stem-loop sequence has
been synthesized in nascent transcripts. This result also implies
that the RNA polymerase domain and the capping domain of
REPBaMV need to coordinate to some extent.

According to the data aforementioned and others, the cap
formation pathway catalyzed by the capping domain of REPBaMV
is delineated in Figure 2. (1) GTP and AdoMet bind to the
capping domain of REPBaMV in proximity (Hu et al., 2011). The
presence of AdoMet actually enhances the binding affinity of the
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FIGURE 2 | The cap0 formation pathway of BaMV. The AdoMet-dependent guanylyltransferase activity exhibited by REPBaMV is composed of activities of (I) GTP
methyltransferase and (II) m7GTP:RNA guanylyltransferase, which can be further divided into two half reactions with the [m7GMP-enzyme] adduct as the
intermediate.

domain for GTP. (2) The precise disposition of GTP and AdoMet
in the domain facilitates a nucleophilic attack of the N7 of GTP
on the methyl group of AdoMet, leading to the production
of m7GTP and S-adenosyl-L-homocysteine (AdoHcy). (3) The
nitrogen atom (not determined whether Nδ1 or Nε2) of His68
functions as a nucleophile attacking the α-phosphate of m7GTP,
under the assistance of Mg2+, to form the covalent [m7GMP-
enzyme] intermediate (Lin et al., 2012). This step is reversible
because excess pyrophosphate could drive the m7GMP moiety
on the covalent intermediate backward to form m7GTP (Huang
et al., 2004). (4) The 5′-terminal diphosphate of nascent RNA
binds to the domain in proximity to the m7GMP moiety. The
5′ β-phosphate of the RNA launches a nucleophilic attack on
the phosphorus atom of m7GMP, leading to the break of the
phosphohistidine bond. (5) Finally, the RNA with a 5′ cap0
structure is released from the domain.

HELICASE-LIKE DOMAIN (HLD)

The HLD of REPBaMV (residues 514–895) forms inclusion bodies
when it is expressed in E. coli. This domain resumes soluble after
denaturation and refolding processes. The purified HLD is able

to remove the γ phosphate from nucleoside triphosphates as well
as RNA (Li et al., 2001b); in other words, it can be a nucleoside
triphosphatase (NTPase) or RNA 5′-triphosphatase (5′-TPase),
depending on the substrate. Both of these reactions required the
presence of divalent Mg2+ or Mn2+ cations. Mutations at any
of the signature motifs I, II, III, or VI of SF1 abrogate both
types of activity (Han et al., 2007). Adenylyl-imidodiphosphate
(AMPPNP), a non-hydrolyzable ATP analog, is a competitive
inhibitor of the RNA 5′-TPase activity. The inhibition constant
Ki(AMPPNP) was determined to be 93 µM, which is close to
the Km value of ATP (150 µM) for the NTPase activity (Han
et al., 2007). The closeness between the values of Ki(AMPPNP)

and Km(ATP) and the simultaneous inactivation of both activities
by mutations at the featured motifs of helicases suggest that
a common catalytic site is used for the hydrolysis of both
NTP and RNA. Nonetheless, the greater value of Km(ATP) than
Km(RNA), which is about 2.5 fold, suggests that more active-
site residues are involved in RNA binding. The peptidyl regions
employed by the HLD to bind biotinylated RNA were mapped
by the reversible formaldehyde crosslinking method followed
by tandem mass spectrometry (Han et al., 2009). Five peptidyl
regions were identified. Regions of residues 625–645 and 696–
706 encompass the helicase motif I and II, respectively; while
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regions of residues 585–610, 789–799, and 833–843 do not
contain conserved sequences known to SF1. Compared with the
well-characterized members in SF1, e.g., DNA helicase PcrA,
the BaMV HLD seems to bind RNA using a different set of
peptidyl regions. Mutagenesis of positively charged residues in
these regions showed that some residues, e.g., K603 and R628,
have a role in the virus movement (Han et al., 2009).

TGBp1 of BaMV is also a member of SF1. TGBp1 is capable of
hydrolyzing NTPs but not RNA (Li et al., 2001b), implying that
the RNA 5′-TPase activity embedded in the HLD of REPBaMV is
not necessarily a property of all helicase proteins. The biological
relevance of the RNA 5′-TPase activity was demonstrated in an
in vitro assay, in which an RNA transcript would be capped at
the 5′ end by the capping domain of REPBaMV only if the RNA
transcript had been pretreated with the HLD (Li et al., 2001b).
Taken together, the first two domains of REPBaMV work in a
concerted manner to complete the formation of the 5′ cap on
the nascent viral positive-strand RNAs. Besides participating in
5′ cap formation, the HLD of REPBaMV has also been proposed to
act as a bona fide helicase in the replication/transcription process
of BaMV. Unfortunately, convincing evidence for duplex RNA-
unwinding activity is still lacking even though a great deal of
time and effort has been spent. To our knowledge, no helicase
activity has been reported in the HLD of any other potexviruses.
Perhaps, a more sophisticated assay is needed to discern this
peculiar helicase activity. It is also possible that a host protein
(other than a host helicase) may be recruited as an accessory
subunit of the helicase to confer unwinding activity on the viral
protein.

Yeast two-hybrid screen using a cDNA library prepared from
BaMV-infected leaves of N. benthamiana identified a strong
protein–protein interaction between the HLD of REPBaMV and
the viral CP (Lee et al., 2011). Interacting with CP does not
alter the in vitro enzymatic activity of the HLD. Mutations
of A209G and N210S in CP, which diminish the CP-HLD
interaction, were identified by a bacterial two-hybrid screen
using a CP random mutant library generated by error-prone
PCR (Lee et al., 2011). Mutant BaMV carrying A209G and/or
N210S reproduces as efficiently as the wild type virus in
N. benthamiana protoplasts (Lee et al., 2011). CP with the
mutations retains a full activity for RNA binding, and the mutant
virions exhibit similar morphologies as the wild type under
transmission electron microscope (Lee et al., 2011). Nonetheless,
the CP mutations do exert a profound effect on BaMV cell-
to-cell movement in plants. With the A209G mutation, BaMV
spreads much less effectively in leaves of N. benthamiana and
Chenopodium quinoa (Lee et al., 2011). Notably, A209 of BaMV
CP is well conserved among many potexviruses such as PVX
and Foxtail mosaic virus (FoMV). A230G mutation in FoMV
CP, analogous to BaMV A209G, also reduces the viral HLD-
CP interaction and restricts the cell-to-cell movement of FoMV
in C. quinoa (Lee et al., 2011). This finding suggests that
the HLD-CP interaction is rather common in potexviruses;
moreover, this interaction is relevant to the ability of the virus to
move between cells. The critical role of the HLD-CP interaction
in BaMV movement prompts us to suspect that REPBaMV is
recruited into the viral movement complex, which is composed

of mainly the viral RNA, TGBps, and CP. More importantly,
REPBaMV may pass through plasmodesmata along with the viral
RNA. With this strategy, the viral RNA can be re-replicated
immediately in the newly invaded cells so that the virus has a
greater chance to defeat the silencing mechanism imposed by
the hosts. Involvement of the replication protein in the viral
movement complex has also been proposed in TMV based on
the observation that TMV requires a significantly longer time
for movement from primary inoculated cells to secondary cells
than is required for movement from secondary to tertiary cells
(Kawakami et al., 2004).

A DISTINCT PATHWAY/MACHINERY FOR
THE 5′ CAP FORMATION

The 5′ cap0, m7G(5′)ppp(5′)Np, in eukaryotic mRNAs is a
basic structural unit required for mRNA export from the
nucleus, prevention of mRNA degradation by 5′-exonucleases,
and recognition by eIF4F complex to initiate the translation
process (Furuichi and Shatkin, 2000; Shuman, 2001). Different
pathways leading to the formation of the cap structure
have been reported (Figure 3). Three consecutive enzymatic
reactions are responsible for the cap formation in the nucleus.
First, the γ-phosphate of a nascent mRNA is removed by
RNA 5′-triphosphatase. The GMP moiety of GTP is then
transferred to the 5′ end of the 5′-diphosphorylated mRNA
via a covalent enzyme-lysyl-GMP intermediate by GTP:mRNA
guanylyltransferase. Finally, the guanine-N7 of G(5′)ppp(5′)Np
cap is methylated by RNA (guanine-N7) methyltransferase
to produce the cap0 structure (Mizumoto and Kaziro, 1987;
Shuman, 1995). This canonical cap formation pathway also
occurs in some DNA viruses, e.g., vaccinia virus (Shuman et al.,
1980; Niles and Christen, 1993) and chlorella virus (Håkansson
et al., 1997), and the double-stranded RNA reovirus (Luongo
et al., 2000; Luongo, 2002). In the case of BaMV, the RNA 5′-
triphosphatase activity embedded in the helicase-like domain
of REPBaMV catalyzes the removal of γ-phosphate from the
5′ end of nascent positive-strand RNA (Li et al., 2001b). The
capping domain of REPBaMV exhibits an AdoMet-dependent
mRNA guanylyltransferase activity, by which the methyl group
of AdoMet is transferred to the N7 of GTP, and then the
m7GMP moiety is transferred from the newly formed m7GTP
to the 5′ end of a 5′-diphosphorylated RNA via a covalent
enzyme-histidyl-m7GMP intermediate (Li et al., 2001a,b; Huang
et al., 2005; Lin et al., 2012). Plausibly, this type of cap
formation pathway for BaMV also occurs across the alphavirus-
like superfamily of human, animal, and plant-infection positive-
strand RNA viruses. Vesicular stomatitis virus (VSV) performs
another unconventional mRNA 5′ cap formation pathway (Ogino
and Banerjee, 2007; Ogino et al., 2010). Besides exhibiting a RNA-
dependent RNA polymerase activity, the L protein of VSV has a
RNA:GDP polyribonucleotidyltransferase activity that catalyzes
the transfer of the 5′-monophosphorylated viral mRNA to GDP
via an enzyme-histidyl-pRNA intermediate. Two methylation
reactions at the capped RNA follow to form the cap1 structure
by the viral methyltransferase activity.
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FIGURE 3 | The distinct cap formation pathways among eukaryotic nucleus, Bamboo mosaic virus, and Vesicular stomatitis virus. (A) In nucleus,
GTP:mRNA guanylyltransferase (GT) and RNA (guanine-N7) methyltransferase (MT) are responsible for the cap formation. (B) Only the capping enzyme domain (GT)
of REPBaMV is required for Bamboo mosaic virus to form the cap structure. (C) Whereas, the L protein of Vesicular stomatitis virus possesses both the activities of
RNA:GDP polyribonucleotidyltransferase and mRNA methyltransferase.

The BaMV enzymes performing the catalytic steps in
the pathway are also unique from the viewpoint of protein
structures. Apparently, the BaMV RNA 5′-triphosphatase activity
has emerged from the helicase motif-containing domain.
By contrast, the RNA 5′-triphosphatases of yeast and DNA
viruses, e.g., vaccinia virus and baculovirus, belong to a
metal-dependent phosphohydrolase family (Lima et al., 1999),
while those of animals and plants are classified into a
cysteine phosphatase superfamily (Changela et al., 2001).
Moreover, the capping domain of REPBaMV does not share
similarity in amino acid sequence with either GTP:mRNA
guanylyltransferase or RNA (guanine-N7) methyltransferase of
eukaryotic cells and DNA viruses. With the limited genome
size, BaMV has evolved an efficient capping enzyme, with
merely 442 amino acids, to accomplish the work of forming
the 5′ cap.

RNA-DEPENDENT RNA POLYMERASE
DOMAIN

The C-terminal domain of REPBaMV had been thought to
be the key component of the viral replication complex, due
to the presence of the hallmark signature of polymerase

S/TGX3TX3NS/TX22GDD (Koonin and Dolja, 1993). This
domain (residues 893–1364), expressed in E. coli with a
thioredoxin tag fused at the N terminus, exhibits an in vitro
RNA polymerase activity, preferentially taking the 3′-terminal
fragments of both positive and negative strands of BaMV as
templates (Li et al., 1998). Mutational analysis confirmed the
essential role of the GDD motif in the catalysis of polymerization
reaction. Structure mapping based on selective RNA hydrolysis
using a variety of ribonucleases and chemicals suggested that
the 3′ UTR of BaMV folds into four consecutive stem-loop
domains (A–D), followed by a tertiary pseudoknot structure
(Cheng and Tsai, 1999). The hexanucleotide ACC/UUAA,
conserved in the 3′ UTR of potexviruses, is situated in the
apical loop of the D domain. A competition binding assay
suggested that the E. coli-expressed BaMV polymerase domain
binds independently to the D domain and the poly(A) tail
(Huang et al., 2001). A footprinting assay further defined the
D loop as the primary region protected by the polymerase
domain of REPBaMV against chemical cleavages (Huang et al.,
2001). Similarly, the 3′-terminal fragment (77 nts) of the BaMV
negative-strand RNA was mapped to contain a 5′stem-loop,
followed by a spacer and the 3′-CUUUU sequence (Lin et al.,
2005). Reducing the number of uridylate in the 3′-CUUUU to less
than three or changing the penultimate U to other nucleotides

Frontiers in Microbiology | www.frontiersin.org March 2017 | Volume 8 | Article 522 | 12

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00522 March 25, 2017 Time: 12:55 # 7

Meng and Lee Replication Protein of BaMV

is deleterious to BaMV accumulation in plants (Chen et al.,
2010). UV-crosslinking and competition assay indicated that
the E. coli-expressed BaMV polymerase domain also binds to
the 3′-terminal fragment of the negative-strand RNA through
a specific interaction particularly with the 5′stem-loop (Chen
et al., 2010). In summary, the polymerase domain of REPBaMV
recognizes the specific sequence and structural feature formed on
the 3′-terminal region of both the positive and negative strands
of BaMV, enabling the viral RNA replication to be initiated
at the precise positions. Without these specific protein–RNA
interactions, the replication of the viral RNAs would be incorrect
or even impossible.

SUBCELLULAR LOCALIZATION OF
REPBaMV

In general, the replication complexes of plant positive-strand
RNA viruses, which consist of the viral replication proteins, the
viral genomic RNAs, and co-opted host factors, are embedded in
membrane-enclosed micro-compartments derived from various
cellular organelles (Novoa et al., 2005; Miller and Krijnse-
Locker, 2008). Virus replication within the microenvironments
should benefit the viral RNAs from being destroyed by the
host defense mechanisms. For instances, Brome mosaic virus
and Red clover necrotic mosaic virus recruit the membrane
derived from endoplasmic reticulum to constitute their
replication complexes (Noueiry and Ahlquist, 2003; Turner
et al., 2004), while Flock house virus and Tomato bushy stunt
virus employ the membrane of mitochondria and peroxisome,
respectively, for replication complex assembly (Miller et al.,
2001; McCartney et al., 2005). REPBaMV is also a membrane-
associated protein. In fact, the membrane fraction P30 of
BaMV-infected leaves, the pellet of cell extract after 30000 × g
centrifugation, exhibits an in vitro BaMV RNA-dependent
RNA polymerase activity; therefore, the P30 has been used
in analysis of the cis-acting RNA elements required for the
viral genome replication (Chen et al., 2003, 2005, 2010; Lin
et al., 2005). To locate the subcellular organelle where BaMV
replicates, a genetically modified BaMV positive-strand RNA
that contains a phage MS2 CP-recognized sequence was
inoculated into N. benthamiana leaves that had been infiltrated
with Agrobacterium tumefaciens carrying the NLS-GFP-MS2
fusion protein-encoding gene (Cheng et al., 2013). The viral
RNA was found located in chloroplasts according to the
green fluorescent imaging of the infected cells under confocal
microscope. Therefore, BaMV was proposed to replicate in
chloroplasts although REPBaMV per se was invisible in the
virus-infected leaves under microscope due to the low expression
amount.

The chloroplast is a common target of a large number
of plant viruses belonging to a variety of genera. Subcellular
localization of the virus-encoded proteins in the chloroplast may
constitute a basis for the viral pathogenesis or/and is critical
for the viral propagation (Zhao et al., 2016). Besides BaMV,
Alternanthera mosaic virus (AltMV) and PVX are two other
potexviruses that have been demonstrated to be associated with

chloroplasts in their infection processes. The TGB3 of AltMV
preferentially accumulates around the chloroplast membrane and
disruption of TGB3 targeting to chloroplast impairs cell-to-cell
movement of the virus (Lim et al., 2010). Furthermore, AltMV
TGB3 strongly interacts with the photosystem II oxygen-
evolving complex protein PsbO and this interaction correlates
with chloroplast vesiculation and veinal necrosis caused by
TGB3 over-expression (Jang et al., 2013). In the case of
PVX, the viral CP interacts with the transit peptide of
plastocyanin, a protein involved in photosynthesis, and silencing
of plastocyanin prior to PVX infection reduces CP accumulation
in chloroplasts and ameliorates symptom severity in host plants
(Qiao et al., 2009).

HOST PROTEINS ASSOCIATED WITH
REPBaMV

A number of approaches have been used in the search
for host proteins involved in regulation of the polymerase
activity of REPBaMV. A biochemical protocol, basically involving
steps of (1) UV-induced crosslinking of proteins in leaf cell
extract to the 32P-radiolabeled 3′ UTR of BaMV, (2) nuclease
digestion, and (3) radiolabeled protein identification using mass
spectrometry, has identified several 3′ UTR-interacting proteins
including chloroplast phosphoglycerate kinase (PGK), cytosolic
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and heat
shock protein 90 homolog (NbHsp90). PGK promotes BaMV
accumulation presumably by facilitating transport of the viral
genomic RNA to chloroplasts, the plausible replication site for
BaMV (Lin et al., 2007; Cheng et al., 2013). GAPDH binds to
the pseudoknot poly(A) tail of BaMV and reduces the replication
efficiency of the viral negative-strand RNA probably through a
competition with REPBaMV for RNA binding (Prasanth et al.,
2011). NbHsp90 enhances BaMV replication presumably by
either promoting the maturation of REPBaMV or bridging the
interaction of REPBaMV with the viral RNA (Huang et al., 2012).
The physical interaction between NbHsp90 and REPBaMV was
actually confirmed by a yeast two-hybrid assay. Yeast two-hybrid
screen was also used to search for host proteins interacting
with the polymerase domain of REPBaMV. An uncharacterized
host AdoMet-dependent methyltransferase (PNbMTS1) was thus
isolated from the cDNA library prepared from N. benthamiana
leaves (Cheng et al., 2009). PNbMTS1 exhibits an AdoMet-
dependent inhibitory effect on BaMV CP accumulation in
protoplasts. By contrast, Tobacco rattle virus-induced gene
silencing of PNbMTS1 increased BaMV CP and genomic RNA
in N. benthamiana. Both the membrane-targeting signal peptide
and the AdoMet-binding motifs are essential for PNbMTS1
to suppress BaMV accumulation. Collectively, PNbMTS1 may
have a role in the plant innate defense mechanism. Nonetheless,
the target of PNbMTS1 relevant to the inhibition effect is still
unknown.

Recently, we found that the expression of REPBaMV in
N. benthamiana could be significantly enhanced if satBaMV was
co-expressed. Probably, the positive-strand RNA of satBaMV
might act as a template to facilitate the folding of REPBaMV or
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prevent REPBaMV from being degraded by host proteases.
Based on this finding, a proteomic approach was set up
to find out the plant proteins differentially present in the
REPBaMV-enriched P30 fraction (Lee et al., 2016). This
approach includes steps of (1) transient expression of the
hemagglutinin tag (HA)-fused REPBaMV and satBaMV, or
satBaMV alone as the comparative control, in N. benthamiana
by agroinfiltration, (2) preparation of the P30 fraction from
the agroinfiltrated leaves, (3) protein solubilization using
anionic detergent Sarkosyl, (4) protein precipitation using anti-
HA antiserum, and (5) identification of the co-precipitated
proteins by tandem mass spectrometry. Accordingly, dozens
of host proteins were identified. To examine the role of
the proteins in BaMV replication, each of the genes was
transiently silenced in N. benthamiana. Those plants without
apparent changes in phenotype were then challenged with a
genetically modified BaMV that carries GFP as a reporter
gene. Several potential host factors affecting BaMV replication
were thus identified based on the effect of gene silencing
on GFP expression. A cytoplasmic 5′→3′ exoribonuclease
(NbXRN4), a ripening-related protein, S-adenosylmethionine
synthetase, and a respiratory burst oxidase homolog were
found capable of promoting BaMV replication. By contrast,
NADP+-dependent isocitrate dehydrogenase and MAP kinase
phosphatase-like protein appeared to suppress BaMV replication.
The relevance between the activity of NbXRN4 and BaMV
replication was further investigated. In brief, NbXRN4 benefits
BaMV replication, probably by removal of the uncapped
genomic and subgenomic RNAs produced erroneously during
the replication/transcription process.

PERSPECTIVE

Studies on replication-related proteins of plant RNA viruses
have long been limited by inefficient protein expression and
difficulty in protein purification. The catalytic characteristics of
REPBaMV may thus not only apply to other members of the
Potexvirus but also serve as references for those of other genera
that also belong to the alphavirus-like superfamily. Nonetheless,
the structural information at the atomic level regarding the
functional domains of REPBaMV is still lacking, thanks mostly to
the aggregation nature of these viral proteins. Methods that can
overcome this obstacle are urgently needed. The search for host
proteins, including those either boost or attenuate the enzymatic
activity of REPBaMV, should be continued. More importantly, the
mechanism underlying the function of host proteins should be
elucidated so that the holistic and dynamic interplay between
REPBaMV and its host can be understood.
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Bamboo mosaic virus (BaMV), which belongs to the genus Potexvirus in the
family Alphaflexiviridae, has a single-stranded positive-sense RNA genome that is
approximately 6400 nucleotides (nts) in length. Positive-sense RNA viruses can use
genomic RNA as a template for translation and replication after entering a suitable host
cell. Furthermore, such viral RNA is recognized by capsid protein for packaging and by
viral movement protein(s) or the movement protein complex for cell-to-cell and systemic
movement. Hence, viral RNA must contain signals for different functions to complete the
viral infection cycle. In this review, we examine various cis-acting elements in the genome
of BaMV. The highly structured 3′ untranslated region (UTR) of the BaMV genomic RNA
plays multiple roles in the BaMV infection cycle, including targeting chloroplasts for RNA
replication, providing an initiation site for the synthesis of minus-strand RNA, signaling
for polyadenylation, and directing viral long-distance movement. The nt at the extreme
3′ end and the structure of the 3′-terminus of minus-strand RNA are involved in the
initiation of plus-strand genomic RNA synthesis. Both these regions have been mapped
and reported to interact with the viral-encoded RNA-dependent RNA polymerase.
Moreover, the sequences upstream of open reading frames (ORFs) 2, 3, and 5 are
involved in regulating subgenomic RNA synthesis. The cis-acting elements that were
identified in BaMV RNA are discussed and compared with those of other potexviruses.

Keywords: positive-sense RNA virus, Bamboo mosaic virus, cis-acting elements, viral RNA replication, potexvirus

INTRODUCTION

For a positive-sense RNA virus to establish a successful infection in a host, the viral RNA must
house diverse cis-acting elements for minus-strand, plus-strand, and possibly subgenomic RNA
syntheses (Dreher, 1999; Newburn and White, 2015). Furthermore, cis-acting elements could also
be involved in cell-to-cell or systemic movement and encapsidation of viral RNA (Kwon et al.,
2005; Lough et al., 2006; Cho et al., 2012; Rossmann, 2013). Studying the mechanisms of viral
infections, localizing these cis-acting elements, and revealing their functional structures are critical
steps in understanding viral infections at the molecular level. A few approaches were used to
determine the minimum length and structures of viral cis-acting elements required for various
functions. An in vitro replication assay is one of the most frequently used strategies to define the
minimal requirement of cis-acting RNA elements for replication (Lin et al., 2005a,b; Osman et al.,
2014). However, the difficulty involved in isolating a competent replicase preparation that can
synthesize minus- or plus-strand RNAs, specifically with the cis-acting elements provided, limits
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its use. The cis-acting elements discovered using this strategy
were designated as promoters and are structured to specifically
interact with the replicase. Structures of cis-acting elements have
been computationally predicted and validated using enzymatic
or chemical structural probing (Cheng and Tsai, 1999; Sun and
Simon, 2006; McCormack et al., 2008). However, the structured
cis-acting elements must be functionally verified by mutational
analysis in either an in vitro replication assay or an in vivo
infection assay.

Bamboo mosaic virus (BaMV) has a single-stranded positive-
sense RNA genome that is approximately 6.4 kb in length with a
5′-cap structure and a 3′ poly(A) tail. The genome contains five
open reading frames (ORFs) (Figure 1). ORF1 encodes a replicase
for viral RNA replication, ORF2 encodes a 28-kDa protein (a
silencing suppressor) required for viral movement, ORF3 and
ORF4 encode membrane-anchoring proteins required for virus
movement, and ORF5 encodes a 25-kDa capsid protein for viral
encapsidation, movement, and symptom development.

The cis-acting elements of BaMV RNA involved in viral
RNA replication, intracellular trafficking, and movement have
been extensively studied in the last two decades. This report
comprehensively reviews these studies and discusses the common
theme of the roles of these cis-acting elements that could be
applied to other members of potexvirus including the Potato virus
X (PVX), one of the top 10 plant viruses in molecular plant
pathology (Scholthof et al., 2011), and even to certain animal
viruses of Alphaviruses.

VIRAL RNA INTRACELLULAR
TRAFFICKING

When a positive-sense viral RNA enters a host cell, the host
translation system is used to synthesize the viral proteins. The
newly translated viral proteins target a specific membrane,
usually an organelle-associated membrane, and modify the
membrane suitable for viral RNA replication (Ahlquist et al.,
2003; Laliberte and Sanfacon, 2010; Diaz et al., 2012; Nagy,
2016). The RNAs of Tobacco mosaic virus (Kawakami et al.,
2004; Nishikiori et al., 2006), PVX (Bamunusinghe et al., 2009),
Tomato ringspot virus (Han and Sanfacon, 2003), Cowpea mosaic
virus (Carette et al., 2000), and Tobacco etch virus (Schaad et al.,
1997) are transported to the endoplasmic reticulum membranes.
The RNA of Tomato bushy stunt virus is transported to the
peroxisomes (McCartney et al., 2005). The RNA of Melon
necrotic spot carmovirus is associated with the mitochondria
(Mochizuki et al., 2009). The RNAs of Turnip yellow mosaic
virus (Prod’homme et al., 2003) and Turnip mosaic virus (Wei
et al., 2010) are transported to the chloroplast membranes. These
observations indicate that different viruses associate with distinct
organellar membranes for replication (Laliberte and Sanfacon,
2010).

The mechanisms underlying the specific trafficking of viral
RNA to targeted organelles for replication remain less known.
In a recent study, BaMV was demonstrated to associate with
chloroplasts for replication (Cheng et al., 2013). When the
interaction between the 3′ untranslated region (UTR) of BaMV

RNA (Figure 1) and host proteins in the replicase complex
was studied, the involvement of elongation factor 1a (eEF1a)
and chloroplast phosphoglycerate kinase (PGK) was revealed
(Lin et al., 2007). A further study of the interactions indicated
that a pseudoknot, including the poly(A) sequence at the
extreme 3′ end, is the target of PGK. In vitro and in vivo
studies revealed that the interaction is required for efficient
replication (Lin et al., 2007; Cheng et al., 2013). Notably,
the chloroplast PGK can be replaced by a chimeric protein
composed of cytoplasmic eEF1a and chloroplast RuBisCo small
subunit (rbcS) (Cheng et al., 2013). These results suggest that
nuclear-encoded chloroplast proteins, such as PGK and rbcS may
serve to transport chloroplast-unrelated macromolecules into the
chloroplasts by using their transit peptide. Once inside the host
cell, the 3′-terminal pseudoknot and poly(A) sequence of BaMV
RNA interact with PGK. The chloroplast PGK transit peptide
facilitates entry into the chloroplast transport system. PGK
and its associated macromolecules (BaMV RNA and possibly
the translated replicase or the entire replicase complex) are
transported into the chloroplasts (Cheng et al., 2013).

MINUS-STRAND RNA SYNTHESIS

During initiation of minus-strand RNA synthesis, cis-acting
elements located at the 3′ end (usually in the 3′ UTR) in most
viruses play a critical role in recognition by the replicase complex.
Typically, the 3′-terminal nucleotides (nt) or penultimate nt of
non-poly(A)-tailed RNA viruses is used as the initiation site
for minus-strand RNA synthesis (Dreher, 1999, 2009). However,
the poly(A)-tailed RNA viruses have RNA genomes containing
approximately 250 adenylates at the 3′ end in the case of
BaMV (Chen et al., 2005). Thus, cis-acting elements in the
3′ UTR are far from the extreme 3′ end of the initiation
site if poly(A)-tailed viruses use a similar synthesis mechanism
as described for non-poly(A)-tailed RNA viruses. Therefore,
poly(A)-tailed RNA viruses might have a different strategy or
use initiation sites that are close to the cis-acting elements. In
vitro and in vivo studies of BaMV revealed that the extreme
5′ end of minus-strand RNA contains stretch of uridine residues
ranging from 1 to 15 nt, usually about 7–10 uridines (Cheng
et al., 2002). These results indicate that the replicase complex
assembles on the cis-acting elements in the 3′ UTR, and
that synthesis of minus-strand RNA initiates with uridylate.
The consequence of minus-strand RNA synthesis is that the
subsequently synthesized plus-strand genomic RNA would have
only a short stretch of adenylates at the extreme 3′ end (<15 nts
in length).

Cis-acting elements for minus-strand RNA synthesis, as
mentioned previously, are usually situated in the 3′ UTR and
form secondary or tertiary structures, such as the stem–loops of
Alfalfa mosaic virus (Houser-Scott et al., 1994; Reusken and Bol,
1996; Houser-Scott et al., 1997) and Turnip crinkle virus (Song
and Simon, 1995) and the tRNA-like structures of Brome mosaic
virus, Tobacco mosaic virus, and Turnip yellow mosaic virus (Kao
and Sun, 1996; Osman and Buck, 1996; Deiman et al., 1997, 1998;
Singh and Dreher, 1997).
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FIGURE 1 | Illustration of the genome organization of BaMV. BaMV genome, the minus-strand RNA indicated as (–)vRNA, three subgenomic RNAs (sgRNA),
and satellite BaMV (satBaMV) are illustrated. The promoter structures for minus- and plus-strand RNA synthesis at the 3′ UTR of BaMV genome and the 3′-end of
(–)vRNA, respectively, are indicated. The conserved sequence among the promoters of BaMV sgRNA synthesis is also indicated on the (–)vRNA.

The cis-acting elements for BaMV minus-strand RNA
synthesis were also identified in the 3′ UTR. The 3′ UTR can
be divided into three portions: the 5′ part consisting of three
stem–loops that form a cloverleaf-like structure, designated as
the ABC domain; the middle part following the ABC domain,
which is a major stem–loop with a bulge and an internal loop,
designated as the D domain; and the 3′ part of the UTR that forms
the pseudoknot, described previously that interacts with eEF1a
and PGK, covering a part of the poly(A) sequence adjoining the
3′ UTR, designated as the E domain (Figure 2). Furthermore,
results derived from ultraviolet (UV)-crosslinking and foot-
printing assays indicate that the polymerase and helicase-like
domains of the replicase (ORF1 of BaMV) interact with the D
and E domains and ABC domain of the 3′ UTR, respectively.
The potexviral conserved hexamer motif (ACXUAA) involved in
the accumulation of virus was discovered in Clover yellow mosaic
virus (White et al., 1992) and BaMV (Cheng and Tsai, 1999). This
motif is located at the apical loop of the D domain in the 3′ UTR
of BaMV (Figure 2), and was protected from RNase digestion
during interaction with the polymerase (Huang et al., 2001). The
results of mutagenesis of this motif (ACCUAA in BaMV) indicate
that the extreme 5′ adenylate is a purine-specific nt, and the
subsequent nt is by necessity a pyrimidine. The last three residues
(UAA) are unalterable. The third nt affects viral accumulation less
than the first two (Chiu et al., 2002).

Maintaining the structures of D and E domains is critical
for efficient viral RNA replication (Tsai et al., 1999). Mutations
that disrupt the stems resulted in inefficient accumulation of
viral RNAs. When compensatory mutations were introduced to
re-form the stems, viral replication was restored. Furthermore,

retaining the pseudoknot structure of the E domain required 15
adenylates downstream (Cheng and Tsai, 1999). Viral full-length
transcripts with <10 adenylates could not replicate sufficiently to
be detected in the protoplasts. Transcripts with 15 adenylates at
the 3′ end could accumulate only up to 26% of the amount of
wild-type transcripts with 25 adenylates (Tsai et al., 1999). These
results suggest that the polymerase domain of the BaMV replicase
interacts with stem–loop D specifically with the hexamer motif
(ACCUAA) and the pseudoknot for initiation of minus-strand
RNA synthesis. The initiation site for the minus-strand RNA
synthesis in BaMV is not fixed at one position, but initiation starts
at one of the 15 adenylates adjoining the 3′ UTR (Cheng et al.,
2002).

The stem–loops B and C of the ABC domain in the 3′
UTR play a lesser, but significant, role in RNA replication
(Chen et al., 2003). Accumulation of viral RNA in mutants with
deleted stem–loop B or C was approximately 30% of wild type.
Notably, accumulation of viral products of mutants with deleted
stem–loop A did not differ significantly from that of wild type
in protoplasts and inoculated leaves, but accumulation decreased
dramatically in systemic leaves. These results suggest that
stem–loop A is a cis-acting element for long-distance movement
and does not play a role in RNA replication (Figure 2).

PLUS-STRAND RNA SYNTHESIS

In an in vitro transcription assay, short transcripts of 39, 77, and
173 nts in length, corresponding to the 3′ terminus of minus-
strand RNAs, were used as templates to examine their ability
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FIGURE 2 | Tertiary structure of BaMV 3′ UTR and replicase binding sites. The tertiary structure of BaMV 3′ UTR interacts with the RNA-dependent RNA
polymerase (RdRp) and the helicase-like domains shown in light orange and light purple ovals, respectively. The functional roles of these cis-acting elements in the 3′

UTR are indicated in boxes. SL: stem–loop (adapted from Cheng et al., 2007).

to direct RNA synthesis. The 3′-terminal 77-nt RNA, designated
Ba-77, was the most efficient RNA template (Figure 3). It harbors
two complete stem–loops confirmed by enzymatic structural
probing and is required for plus-strand RNA synthesis (Lin et al.,
2005a).

The terminal UUUUC pentamer is the most critical
cis-acting element in BaMV for plus-strand RNA synthesis.
Ba-77/15, which lacks the terminal pentamer, exhibited
only 7% template activity compared with that of
Ba-77 in vitro. Ba-77 with an internal deletion of 16 or 31
nts (starting after the terminal pentamer) (Figure 3) and
retaining the terminal UUUUC preserves up to 60% of the
template activity of Ba-77 (Lin et al., 2005a). Furthermore,
the sequence and structure of the large stem–loop at the
extreme 5′ end of Ba-77 are also vital for RNA synthesis. In
mutants with altered sequences of the large stem–loop, RNA
synthesis in vitro and viral RNA accumulation in vivo decreased
significantly. Moreover, the sequence between the terminal
pentamer initiation site and the large stem–loop may also play a
significant role as mutants with shortening the sequence between

the terminal UUUUC and the stem–loop exhibited decreased
accumulation of BaMV RNA in vivo and plus-strand RNA
synthesis in vitro (Lin et al., 2005a).

At least three cis-acting elements at the 3′ end of BaMV
minus-strand RNA are required for efficient plus-strand genomic
RNA synthesis, namely the 3′-terminal UUUUC pentamer
motif, the sequence and structure of the large stem–loop, and
the distance between these two regions. Accordingly, these
cis-acting elements constitute the promoter for genomic RNA
synthesis. The replicase contains two domains that interact with
the promoter: the replicase catalytic center interacts with the
terminal UUUUC sequence, and the specificity domain interacts
with the large stem–loop (Figure 3) (Chen et al., 2010).

As mentioned previously, the extreme 5′ end of minus-strand
RNA has a short run of uridylates, copying from the poly(A) tail;
therefore, the extreme 3′ end of plus-strand RNA immediately
after synthesis accordingly has a short run of adenylates (most
frequently 7–10). However, to maintain the approximately 250
adenylates at the extreme 3′ end of genomic RNA after synthesis,
the cis-acting element AAUAAA in the 3′ UTR plays a role
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FIGURE 3 | Secondary structure of the 3′-terminal 77 nts of BaMV minus-strand RNA and replicase binding sites. The secondary structure of the
cis-acting elements for genomic RNA synthesis interacts with the polymerase (RdRp) and helicase-like domains shown in light orange and light purple, respectively.
The broken lines between base-pairing indicate that this region could be unstructured or has potentially unstable according to the probing results. The initiation site is
numbered +1 for plus-strand RNA synthesis (adpated from Cheng et al., 2007).

in polyadenylation (Chen et al., 2005). Interestingly, the cis-
acting element for polyadenlyation of BaMV RNA is identical
to that of nuclear-encoded mRNAs. Whether BaMV uses an
identical set of proteins as do nuclear-encoded host mRNAs for
polyadenylation is an interesting question. A few observations
oppose the aforementioned hypothesis on the use of identical
proteins for polyadenylation. The host poly(A) polymerase is
located mainly in the nucleus. Furthermore, the polyadenylation
of mRNAs with poly(A) polymerase is independent of the
recognition of the AAUAAA motif, whereas the polyadenylation
of BaMV is associated with the AAUAAA motif (Chen et al.,
2005).

SUBGENOMIC RNA SYNTHESIS

The genomes of many positive-sense RNA viruses are
multicistronic organizations that produce subgenomic RNAs
(sgRNAs) to serve as messengers, allowing the translation
of downstream ORFs (Sztuba-Solinska et al., 2011). A few
strategies for synthesizing sgRNAs have been demonstrated,
including internal initiation (Miller et al., 1985; Haasnoot
et al., 2000), premature termination (White, 2002; Jiwan and
White, 2011), and discontinuous synthesis (Sawicki and Sawicki,
1998; Pasternak et al., 2001). A short non-coding RNA derived
from genomic RNA generated by host exonuclease is another

strategy to synthesize subgenomic RNA (Iwakawa et al., 2008).
They commonly rely on cis-acting RNA elements to direct the
viral-encoded RdRp to transcribe these RNAs (Newburn and
White, 2015).

BaMV infection produces three sgRNAs with 3′ cotermini.
Two major sgRNAs of approximately 2 and 1 kb in length direct
translation of ORF2 and ORF5, respectively (Lin et al., 1992).
The other sgRNA, responsible for the translation of ORF3 and
ORF4, is 1.5 kb in length accumulates in infected cells at a very
low level. The satellite RNA of BaMV (satBaMV) was previously
designed to be an expression cassette for examining cis-acting
elements required for sgRNA synthesis (Lee et al., 2000). A cDNA
covering the putative promoter region of BaMV sgRNA (SGP)
was inserted into this cassette and resulted in sgRNA promoter-
directed RNA synthesis in infected cells when coinoculated with
BaMV. The cis-acting element of the SGP for synthesis of the
1-kb sgRNA covers the region between nt −91 to +52 (the
transcription start site is designated as +1). Further analysis
indicated that the SGP can be split into four elements: the
core (nt -30 to +16), two upstream enhancers (nt −59 to −31
and −91 to −60), and a downstream enhancer (nt +17 to +52).
The core sequence is the minimum region required for 1-kb
sgRNA synthesis, which folds into two stem–loops, stem–loop
(SL)1 and SL2, in minus strand (Figure 4A). Maintaining the
integrity of SL2 structure and the conserved octamer motif
(3′-CAAUUCAA-5′) in the loop are essential for 1-kb sgRNA
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FIGURE 4 | Putative long-distance RNA–RNA interactions for subgenomic RNA synthesis. (A) The predicted structure of the core sequence for BaMV 1-kb
sgRNA synthesis (adapted from Lee et al., 2000). (B) Putative interaction of the 3′-end sequence of PVX, BaMV, or satBaMV minus-strand RNA with the conserved
octamer motif upstream of the BaMV or PVX coat protein gene are indicated. The conserved octamer motif is indicated in bold font. The subgenomic RNA
transcription start site is indicated using an asterisk. The predicted complementary base pairing is denoted.

synthesis. Furthermore, the cis-acting elements of SGP for 2-kb
sgRNA synthesis are located at nt−119 to+11 (the transcription
start site of the 2-kb sgRNA is designated as +1). The minus-
strand SGP sequence for 2-kb sgRNA synthesis was predicted to
have similar stem–loops to those of the 1-kb SGP. The conserved
octamer motif (3′-CAAUUCAU-5′) is also located in the loop of
SL2 (Lee et al., 2000). Furthermore, the expected octamer motif
(3′-CAAUUCCU-5′) for BaMV 1.5-kb sgRNA is located 12-nt
upstream of the transcription start site.

Compared with the putative SGPs of ORF2 and ORF5
of potexviruses, the octamer motif is highly conserved (Kim
and Hemenway, 1997; Lee et al., 1998). The long-distance
RNA–RNA interaction between the conserved octamer motif
and the 3′-terminal sequence of minus-strand genomic RNA
was demonstrated to be required for transcription of PVX
sgRNAs (Figure 4B) (Kim and Hemenway, 1999). As in an

ortholog, a similar interaction was revealed in BaMV with shorter
complementary pairing than those in PVX (Figure 4B). Although
BaMV SGPs were inserted into the satBaMV cassette without
a BaMV minus-strand 3′-terminal sequence, the octamer motif
could also interact with the 3′-terminal sequence of minus-
strand satBaMV RNA (Figure 4B) (Lee et al., 2000). Redundant
SGPs in a PVX-based expression vector were found to lead to
genetic instability. The heterologous SGP from BaMV used in
the PVX vector improves its stability for long-term production
of proteins (Dickmeis et al., 2014). Complementarity between
the octamer motif from the BaMV SGP and the 3′-terminal
sequence of the minus-strand genomic RNA is required for
transcription of sgRNA synthesis (Figure 4B). The long-distance
RNA–RNA interaction between of the 3′-terminal sequence and
the conserved octamer motif of the SGPs observed in PVX and
BaMV favors the internal initiation mode of sgRNA synthesis.
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CONCLUDING REMARKS AND FUTURE
PROSPECTIVES

For accomplishing an efficient infection by a positive-sense
RNA virus, the viral genome consists of various cis-acting
elements for intracellular trafficking to organellar membranous
target sites, minus-strand RNA synthesis, plus-strand genomic
RNA synthesis, subgenomic RNA synthesis, viral movements,
and viral encapsidation. In this review, we summarize studies
of most of the cis-acting elements identified in the BaMV
genome, except for those involved in viral movement and viral
encapsidation. The signal for BaMV genomic RNA encapsidation
is very likely in the 5′ UTR, similar to those identified in
PVX (Kwon et al., 2005; Karpova et al., 2006; Petrova et al.,
2013, 2015). The structural elements and the functional roles for

the encapsidation of BaMV RNA will be revealed in the near
future.
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To complete the infection cycle efficiently, the virus must hijack the host systems
in order to benefit for all the steps and has to face all the defense mechanisms
from the host. This review involves a discussion of how these positive and negative
factors regulate the viral RNA accumulation identified for the Bamboo mosaic virus
(BaMV), a single-stranded RNA virus. The genome of BaMV is approximately 6.4 kb
in length, encoding five functional polypeptides. To reveal the host factors involved
in the infection cycle of BaMV, a few different approaches were taken to screen the
candidates. One of the approaches is isolating the viral replicase-associated proteins by
co-immunoprecipitation with the transiently expressed tagged viral replicase in plants.
Another approach is using the cDNA-amplified fragment length polymorphism technique
to screen the differentially expressed genes derived from N. benthamiana plants after
infection. The candidates are examined by knocking down the expression in plants
using the Tobacco rattle virus-based virus-induced gene silencing technique following
BaMV inoculation. The positive or negative regulators could be described as reducing
or enhancing the accumulation of BaMV in plants when the expression levels of these
proteins are knocked down. The possible roles of these host factors acting on the
accumulation of BaMV will be discussed.

Keywords: Bamboo mosaic virus, host factors, virus replication, virus movement, defense proteins

INTRODUCTION

When a positive-sense RNA virus infects a host cell, it needs to produce its progeny and move
it to the neighboring cells efficiently. In general, the entire infection cycle starts at the viral
RNA entry, using the host translation system to produce the viral-specific replicase, transition
the viral template from translation status to replication status, targeting the specific organelle
for replication, rearrangement of the cellular membrane, recruitment of ancillary proteins to the
replication site, viral RNA replication to synthesize the minus- and plus-strand RNAs, subgenomic
RNA synthesis in some species, and finally, the viral-encoded movement proteins (MPs) and coat
proteins accumulated for cell-to-cell movement and encapsidation, respectively. Some of the viral-
encoded proteins that evolved not only fulfilled a specific role apart from amplification, but also
performed counter-defense functions such as silencing suppressors against the virus-induced gene
silencing system (Qu and Morris, 2005) or preventing the spread of the gene silencing signal
(Voinnet et al., 2016).

Bamboo mosaic virus (BaMV) is a positive-sense, single-stranded RNA virus, belonging to the
genus Potexvirus of the family Alphaflexiviridae. The genome of BaMV is approximately 6.4 kb in
length with a 5′m7GpppG structure and a 3′-end poly(A) tail and contains five open reading frames
(ORFs) (Lin et al., 1994). The 3′ untranslated region (UTR) was demonstrated to form a complexed
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structure (including a cloverleaf-like structure, a major stem-
loop, and a pseudoknot) and acted as a cis-acting element for
minus-strand RNA synthesis, polyadenylation, an intracellular
trafficking signal, and long distance movement (Cheng and
Tsai, 1999; Tsai et al., 1999; Chen et al., 2005; Lin et al.,
2005; Cheng et al., 2013). ORF 1 encodes replicase, including
a capping enzyme domain (Li et al., 2001a; Huang et al.,
2004), a helicase-like domain (Li et al., 2001b), and an RNA-
dependent RNA polymerase domain (Li et al., 1998). ORFs 2-4
overlapping genes termed “triple-gene-block” (TGB) encode the
MPs (TGBp1, TGBp2, and TGBp3) involved in virus movement
(Lin et al., 1994). ORF 5 encodes the capsid protein (CP) for
virus encapsidation, movement, and symptom development (Lin
et al., 1994; Lan et al., 2010; Lee et al., 2011; Hung et al.,
2014). Furthermore, a satellite RNA (satBaMV) was identified to
associate with BaMV and could be amplified by BaMV replicase
(Lin and Hsu, 1994; Lin et al., 2006).The tertiary structures of the
5′ and 3′ UTRs of satBaMV were revealed to be similar to those
of BaMV (Huang et al., 2009; Chen et al., 2010).

As mentioned previously, the positive-sense RNA virus has
to establish an efficient replication after entry into a host cell;
the host factors are usually required to join and form a multi-
functional replication complex (Ahlquist et al., 2003; Nagy and
Pogany, 2008; Huang et al., 2012a). The replicase complex
isolated from Qβ-infected cells is composed of bacterial proteins,
elongation factors EF-Tu and -Ts and ribosomal protein S1,
and Qβ RdRp for plus-strand RNA synthesis (Blumenthal and
Carmichael, 1979; Blumenthal, 1980). Additional bacteria protein
HF1, a ribosome-associated protein, is required for the complex
to synthesize the minus-strand RNA (Barrera et al., 1993).
The eukaryotic translational elongation factor 1a (eEF1a) was
revealed to be part of the replicase complex in tobamoviruses,
tymoviruses, potyviruses, and tobusviruses (Joshi et al., 1986;
Mans et al., 1991; Dreher et al., 1999; Nishikiori et al., 2006;
Yamaji et al., 2006; Thivierge et al., 2008; Li et al., 2010; Luan et al.,
2016).

A few strategies were used to identify the host factors involved
in virus infection cycles. By screening the host cDNA library
constructed in yeast with the two-hybrid technique, one can
discover the specific host factor that interacted with the viral-
encoded target protein, such as the replicase, MPs, or CP (Ren
et al., 2000; Nagy, 2008; Schoelz et al., 2011). The virus-encoded
proteins can also be used as a ligand to co-immunoprecipitation
the possible candidates for interaction with the host (DeBlasio
et al., 2015, 2016). In the UV cross-linking competition
technique, host proteins could be identified as interacting with
the viral RNA, such as the 5′ or 3′ UTRs (Lin et al., 2007; Huang
et al., 2012b; Hyodo et al., 2014). The identities of the interacted
candidates derived from co-immunoprecipitation or UV cross-
linking techniques could be revealed by LC/MS/MS. The cDNA-
amplified length polymorphism (AFLP), a highly sensitive and
efficient technique used for studying gene expression (Money
et al., 1996) and demonstrated to deliver reproducible results
(Bachem et al., 1996; Ditt et al., 2001), was used to screen
the host’s differentially expressed genes in a post-virus infection
(Cheng et al., 2010). The up- and downregulated cDNA
fragments could be easily visualized and compared when run

in parallel on the gel. These differentially expressed cDNA
fragments could be straightforwardly isolated, amplified, cloned,
and sequenced.

To reveal the relationship of the interacting host proteins
with viral proteins or RNAs and the differentially expressed
proteins in a post-virus infection, the Tobacco rattle virus (TRV)-
based virus-induced gene silencing (VIGS) technique (Ruiz et al.,
1998; Ratcliff et al., 2001) could be used to knock down the
expressions and examine their effect on virus accumulation
(Cheng et al., 2010). The results derived from the specific gene
knockdown experiment (i.e., a loss of function) can be further
confirmed by the complementary results derived from a transient
expression of the same gene (i.e., a gain of function). These results
would reveal whether the specific gene is playing an assistant or
defense role in the virus’ life cycle. Furthermore, the results of
viral accumulation in the specific gene knockdown plants and
protoplasts could specify that the host factor is acting in the
replication or movement step of the infection cycle.

The following sections provide discussions of how the host
factors identified by the techniques described above participate
in BaMV replication and movement. The study of virus infection
mechanisms and hosts’ responses to them will provide a better
understanding of the relationship between pathogens and hosts.
This learning would lead to designing the better strategies for
pathogen control on plants.

THE FACTORS INVOLVED IN ASSISTING
BAMV RNA REPLICATION

The entire replication processes of a positive-sense RNA
virus could be divided into a few different steps. First, once
BaMV enters a host cell, with bamboo as a natural host and
N. benthamiana as an experimental host, the RNA genome is used
as a template for translation to synthesize the replication enzyme,
replicase (Figure 1). At this stage, the 3′ UTR is playing a critical
role in trapping a few different factors that would lead to the next
step of the replication process, targeting the replication site. At
least four host proteins, glutathione transferase U4 (NbGSTU4),
the eEF1a, chloroplasts PGK (chlPGK), and heat shock protein 90
(Hsp90), were discovered to interact with the 3′ UTR of BaMV.
In particular, the eEF1a was shown to play a negative role in
BaMV RNA replication (Lin et al., 2007). Since the binding site
of the eEF1a in the 3′ UTR of BaMV is overlapped with that of
the RdRp, the eEF1a might play a role in the template switch
that blocks viral replication during translation. The eEF1a has
commonly been demonstrated to bind the tRNA-like structure
of Brome mosaic virus (BMV) (Bastin and Hall, 1976) and Turnip
yellow mosaic virus (TYMV) (Joshi et al., 1986). This interaction
was claimed to function in the negative-regulation of TYMV
minus-strand RNA synthesis (Matsuda et al., 2004); however, a
similar interaction in West Nile virus was revealed to facilitate
minus-strand RNA synthesis (Davis et al., 2007).

The nucleus-encoded chlPGK interacting with the 3′ UTR
(Lin et al., 2007) was demonstrated to play a role in ushering
the viral RNA and its associated proteins, including replicase,
into chloroplasts for replication (Figure 1) (Cheng et al., 2013).
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FIGURE 1 | A schematic representation of the model for BaMV RNA-replicase-host factors interaction in the replication steps. (1) Once BaMV RNA
entering the cell, the viral replicase is translated using the host translation system. (2) The 3′ untranslated region of BaMV genomic RNA shown as (+)vRNA is
interacted with several host factors which regulate BaMV replication positively including chloroplast phosphoglycerate kinase (chlPGK), heat shock protein 90
(Hsp90), thioredoxin transferase GSTU4, and negatively indicated with red arrows including elongation factor 1a (eEF1a) and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). Another host factor a putative methyltransferase (PMTS1) is also shown as a negative regulator for BaMV replication through the
interaction with viral replicase. (3) The (+)vRNA is transported to the chloroplasts through the interaction with chlPGK for replication. (4) Some of host factors required
for BaMV replication can be transported into chloroplasts by the endomembrane trafficking system using one of the Rabs, NbRabG3f. (5) The minus-strand RNA
shown as (–)vRNA is synthesized inside the chloroplasts. (6) The plus-strand (+)vRNA is then synthesized following with (–)vRNA synthesis.

The genomic RNA was visualized in the chloroplast by confocal
microscopy after being labeled with a green fluorescent protein
fusion MS2 coat protein construct (NLS-MS2-GFP) that could
recognize the BaMV RNA containing the MS2 hairpins (Cheng
et al., 2013). The advantage of BaMV targeting a chloroplast
for replication is that it might be a way to hide from the host
scavenging system, including the RNA silencing pathway. To
get into the chloroplast for replication, the entire replication
complex—including the viral RNA [approximately 6.4 kb plus the
poly(A) tail], replicase, and other associated host factors—must
be transporting into the chloroplasts through the chloroplast
transporting complex. This gigantic viral RNA-protein complex
can enter into the chloroplasts because Hsp90 interacting with
the 3′ UTR of BaMV was demonstrated to play a positive role
in the very early event of BaMV replication (Huang et al.,
2012b). Heat shock proteins acting as chaperones on protein
complex folding, protein degradation, and protein translocation
across membranes (Mayer and Bukau, 2005; Taipale et al.,
2010) could help transport the viral RNP complex into the
chloroplasts (Figure 1). HSPs were shown to be assisting the
viral RNA recruitment and viral replication complexes (VRCs)
assembly (Pogany et al., 2008; Wang et al., 2009a,b; Huang
et al., 2012b). Accordingly, Hsp90 involved in the early event
of BaMV replication could be implied to assist the viral RNP

complex entry into the chloroplasts and stimulate the replication
complex assembly on the right location in order to initiate the
minus-strand RNA synthesis.

Another 3′ UTR-associated protein, NbGSTU4, was
demonstrated to be upregulated post BaMV infection and
involved in assisting the replication of BaMV in vitro and
in vivo (Chen et al., 2013). In general, GSTs are involved in the
antioxidation process; the oxidative stress triggered by a pathogen
infection could be attenuated via the enzymatic reaction of GSTs.
A chloroplast is one of the major reactive oxygen species (ROS)
producer in which the relative concentration of ROS should be
higher than that of other organelles. Once BaMV enters into the
chloroplasts for replication, the viral RNAs face the obstacle of
the higher levels of ROS produced either from the photosynthesis
process or the virus infection. NbGSTU4 moving with BaMV
RNA in the presence of Glutathione (GSH) could play a role
in eliminating the effects of ROS. We have demonstrated that
NbGSTU4 could interact with the 3′ UTR in the physiological
concentration of GSH, which is approximately 10 mM (Chen
et al., 2013). These results imply that NbGSTU4 could also be
one of the host proteins associated with viral RNA and was
transported together into the chloroplasts.

A 5′ to 3′ exonuclease (XRN4), a protein component
enriched in BaMV RdRp preparation, was demonstrated to
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enhance the accumulation of BaMV (Lee et al., 2015). The
members of the XRN_N family are divided into two groups,
the cytoplasmic (XRN1/PACMAN or XRN4) and the nuclear
enzymes (XRN2/RAT1 and XRN3), and display the RNase
activities for mRNA degradation (Kastenmayer and Green, 2000;
Souret et al., 2004). Although XRN4 was revealed to conduct
antiviral activity against Tomato bushy stunt virus (TBSV) and
Tobacco mosaic virus (TMV) (Cheng et al., 2007; Jaag and Nagy,
2009; Peng et al., 2011), the presence of XRN4 could elevate the
accumulation of BaMV. Because XRN4 was demonstrated to have
a role in reducing the activities of siRNA- and miRNA-mediated
RNA decay in Arabidopsis (Souret et al., 2004), downregulated the
silencing pathway might result in a positive regulation of BaMV
RNA accumulation.

Some host factors identified by cDNA-AFLP could influence
the replication of BaMV in an indirect manner so that these
proteins could not be revealed by using the strategy of detecting
the direct interaction with viral products. NbRabG3f was
demonstrated to be a positive regulator in BaMV replication
by loss- and gain-of-function assays (Huang et al., 2016). Rabs
are a group of small GTPases involved in vesicles transport,
uncoating, tethering, and fusion (Seabra et al., 2002). A deletion
mutant of NbRabG3f failure in membrane-anchoring lost the
ability to assist the accumulation of BaMV. A mutant with
the fixed GDP-bound RabG3f (T22N) was trapped at the
Golgi and could not assist the accumulation of BaMV. Overall,
these results suggest that NbRabG3f is involved in a vesicle
budding from the Golgi and transports the cargos containing
the unidentified host factors to the destination site for BaMV
replication (Figure 1).

Based on the host factors identified so far for BaMV
replication, BaMV RNA entry into the host cell would require
chlPGK to usher the viral RNA into the chloroplasts. The
transport of the viral RNP complex needs the chaperon Hsp90
to cross the membrane and assemble the functional replication
complex. During this process of trafficking from the cytoplasm
to the chloroplasts, NbXRN4 might be involved in reducing the
activities of siRNA-mediated silencing. Once the viral RNP is
transported into the chloroplasts, the VRC needs the anti-oxidant
enzyme NbGSTU4 to neutralize the oxidative stress inside
the chloroplasts for an efficient minus-strand RNA synthesis
(Figure 1).

THE FACTORS INVOLVED IN VIRAL RNA
MOVEMENT

Through a biochemical analysis of the BaMV movement
complex isolated by co-immunoprecipitation using an anti-
TGBp3 antibody, the movement trafficking complex was revealed
to harbor not only the MPs TGBp1, TGBp2, and TGBp3, but
also the coat protein and replicase (Chou et al., 2013). The
TGBps-mediated cell-to-cell trafficking was proposed to be in
two possible paths: TGBps-associated virion complex traffics
alongside the endoplasmic reticulum (ER) network, or the virions
and the MPs would associate with the TGBp2-induced vesicles
(Chou et al., 2013; Liou et al., 2015).

A few host factors were identified to participate in the process
of BaMV movement. A RabGTPase-activating protein (GAP)
designated as NbRabGAP1 was demonstrated to participate in
BaMV cell-to-cell and systemic movements (Huang et al., 2013).
Rabs, a family of small GTPases, are known to be involved in
all aspects of intracellular vesicle budding, targeting, docking,
and fusion (Johansen et al., 2009; Mizuno-Yamasaki et al., 2012;
Cherfils and Zeghouf, 2013). Two Rabs regulators, guanine
nucleotide exchange factors (GFFs), and GAPs play roles in
recycling Rabs for vesicles trafficking, in which GEFs exchange
GDP for GTP and GAPs accelerate GTP hydrolysis (Bos et al.,
2007).The results of the mutational analysis of NbRabGAP1in
BaMV accumulation suggest that the fully GAP function of
NbRabGAP1 is essential to support the efficient movement of
BaMV. The proposed role of NbRabGAP1 in BaMV movement
is that NbRabGAP1is to trigger one of the RabGTPases (not yet
identified) to release the vesicles containing the viral movement
complex trafficking to the plasmodesmata (PD) (Figure 2),
similar to those revealed in Chinese wheat mosaic virus (Andika
et al., 2013), or to shuttle TGB proteins from the PD via the
endocytotic pathway back to the ER, like those found in Potato
mop top virus (Haupt et al., 2005).

A serine/threonine kinase-like protein from N. benthamiana
(NbSTKL), an upregulated gene that is post BaMV inoculation,
was demonstrated to be critical in the movement step of the
BaMV infection cycle (Cheng et al., 2013). The results from the
sequence analysis and the intracellular localization indicated that
NbSTKL is plasma membrane-associated through myristoylation
at glycine, the second amino acid from the N-terminus. The
mutant that lost the kinase activity (NbSTKL/D224A) or failed
to associate with the plasma membrane (NbSTKL/G2A) also
failed to enhance the movement of BaMV. These results suggest
that NbSTKL might target a specific factor on the membrane,
regulating the gating of the PD for the passage of BaMV
(Figure 2). Furthermore, another kinase, casein kinase 2α

(CK2α), which interacts with BaMV CP in PD, might assist the
release of viral RNA from the RNP movement complex during
the virial RNP complex passage through the PD (Figure 2) (Hung
et al., 2014).

Taken together, the identification of NbRabGAP1 involved in
the movement of BaMV supports the idea that the movement
could be made through the vesicle trafficking path (Chou et al.,
2013; Liou et al., 2015). To reach an efficient movement of BaMV
requires at least two kinases, NbSTKL and CK2α, gating the PD
and releasing the viral RNA from the RNP complex (Figure 2).
Obviously, some other factors are also required for this process
such as the target of NbSTKL.

THE FACTORS INVOLVED IN DEFENSE
AGAINST VIRAL RNA REPLICATION

As mentioned previously, once a virus enters a host cell, it needs
not only to seek the host factors for assistance, but also to face the
challenges from the host itself. In plants, there already exist a few
defense mechanisms such as the RNA silencing pathway and the
elector-induced hypersensitive reaction. In addition, some novel
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FIGURE 2 | A schematic view of the hypothetical model for BaMV movement. The intracellular trafficking of BaMV movement complex is proposed to form
the vesicle and trafficking through the cytoskeleton toward the plasmodesmata (PD). The steps of the BaMV movement are illustrated as (1) the movement proteins
of BaMV, TGBp2 and TGBp3, are synthesized on the endoplasmic reticulum (ER) and transported via vesicles possibly regulated by one of the Rab-GTPases; (2) the
newly synthesized viral RNA is assembled with the capsid protein (CP), movement protein TGBp1, and the viral replicase to form a competent viral replication
complex (VRC); (3) the VRC and possibly some other host factors are recruited to TGBp2/TGBp3-containing vesicle to form a movement complex and trafficking
toward the PD; (4) the host factor STKL localized on the plasma membrane might control the gate of the PD; (5) the host factor CK2α targeting the CP of VRC and
release the vRNA from the VRC to the neighbor cell for further translation or replication; (6) TGBp2 and TGBp3 are released from the movement complex after
disassembly on the PD and might shuttle back from the plasma membrane to late endosome/multivesicle bodies/prevacuolar compartments (LE/MVB/PVC) with the
help of RabGAP1 to activate the Rab (unidentified yet); (7) RabG3f is possibly involved in shuttling the viral movement proteins back to Golgi and ER. One of the host
factors, TRXh2, is shown to play a negative role indicated as (−) in hindering the movement through the interaction with viral movement protein TGBp2.

proteins in host cells could display anti-viral activities beyond
their already known functions. A putative methyltransferase
(PMTS1) once interacted with BaMV RdRp, screened by a yeast
two-hybrid technique, and displayed an inhibitory effect on
the RdRp activity with a dosage-dependent fashion (Figure 1)
(Cheng et al., 2009). PMTS1 comprises an N-terminal signal
peptide predicted to target mitochondria or chloroplasts and two
putative AdoMet-binding motifs in the middle region. Removing
the signal peptide or abolishing the AdoMet-binding activity of
PMTS1 would cause the loss of its inhibitory effect. Because
BaMV has been demonstrated to replicate in chloroplasts, the
signal peptide of PMTS1 targeting the chloroplasts is highly
recommended.

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
found in the purified RdRp complexes could bind the
stem-loop C/poly(A) in the 3′ UTRs of satBaMV and the
pseudoknot/poly(A) in the 3′ UTR of BaMV (Prasanth et al.,
2011). Further analysis indicates that the cytosolic, GAPDH,
could inhibit the replication of BaMV/satBaMV (Figure 1). The
purified recombinant, GAPDH, could specifically inhibit the
synthesis of minus-strand RNA of BaMV/satBaMV in an in vitro

replication assay. GAPDH is a multifunctional enzyme involved
in quite diverse activities in cells, including glycolysis, cellular
dysfunction, cell death, apoptosis, association with cytoskeleton
and vesicles transport, exportation of nuclear RNA, and DNA
repair (Tristan et al., 2011). In Arabidopsis, cytosolic GAPDH was
found to be a prominent target of H2O2-dependent oxidation
(Hancock et al., 2005), but could be reversible back in the
presence of reductant GSH (Bedhomme et al., 2012). Although
the functions of GAPDH involved in BaMV replication are not
clear, the simple interaction of GAPDH with the 3′ UTRs of
BaMV and satBaMV could block the accessibility of RdRp for
initiating the minus-strand RNA synthesis.

THE FACTORS INVOLVED IN DEFENSE
AGAINST VIRAL RNA MOVEMENT

Regarding the movement of potexviruses, both MP and CP
are vital for efficient cell-to-cell movement and vascular
transport (Verchot-Lubicz, 2005; Verchot-Lubicz et al., 2010).
Post-translational modification, including ubiquitination,
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sumoylation, glycosylation, and phosphorylation of viral
proteins, were issued as parts of an important process in
modulating the structures and functions of viral proteins (Barajas
and Nagy, 2010; Alcaide-Loridan and Jupin, 2012; Mathur
et al., 2012; Perez Jde et al., 2013; Samuilova et al., 2013; Xiong
and Wang, 2013). Maintaining the protein structural integrity,
including those modifications of MP and CP, is critical for virus
movement.

One of the thioredoxin proteins, NbTRXh2, an upregulated
gene post BaMV inoculation, was demonstrated to restrict the
movement of BaMV (Chen et al., 2017). NbTRXh2 was localized
at the plasma membrane through myristoylation at the Glycine
of the second amino acid from the N-terminus. NbTRXh2 was
revealed to target the MP TGBp2 to reduce its disulfide bond
(Figure 2). Also, the two conserved cysteins forming the disulfide
bond were demonstrated to play a key role in BaMV movement
(Tseng et al., 2009). Therefore, NbTRXh2 targets TGBp2, which
could result in the loss of the structural integrity of TGBp2 and
their failure to interact with other movement-associated proteins,
including TGBps1 and 3.

SUMMARY AND FUTURE PROSPECTIVE

Taking all the available results into account, it can be concluded
that some of the host factors are unique to BaMV, while some

of them could be applied to other viruses. Some host factors
could assist virus replication and movement, but some of them
are involved in resisting virus infection. This review summarized
a few host factors identified with different strategies and their
possible roles in BaMV infection. However, to complete an
accurate understanding of BaMV infection, more host factors
need to be identified. Based on our current understandings, a
few processes in BaMV infection cycle are still unclear. One
of the most challenges is to uncover the process of how the
newly synthesized RNAs are transported out of the chloroplasts
where BaMV replicates. Hopefully, a much clearer picture of the
infection cycle of BaMV can be obtained in the near future by
knowing how of these factors involved.
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On inoculation of Nicotiana benthamiana with Bamboo mosaic virus (BaMV), a gene
with downregulated expression was found involved in the infection cycle of BaMV. To
uncover how this downregulated gene affects the accumulation of BaMV in plants, we
used loss- and gain-of-function experiments. Knockdown of this gene decreased the
accumulation of BaMV coat protein to approximately 60% in both plants and protoplasts
of N. benthamiana but had no effect on Potato virus X and Cucumber mosaic
virus infection. The full-length gene was cloned and revealed as an N. benthamiana
nuclear-encoded chloroplast carbonic anhydrase (CA) and so designated NbCA. As
compared with the accumulation of BaMV RNAs in NbCA-knockdown protoplasts,
both plus- and minus-strand RNAs were reduced. We further fused NbCA with Orange
fluorescent protein to confirm its localization in chloroplasts on confocal microscopy.
However, transiently expressed NbCA in chloroplasts did not considerably increase
BaMV accumulation. The addition of exogenous CA may not have any additive effect
on BaMV accumulation because of the natural abundance of CA in chloroplasts.
In an in vitro replication assay, the addition of Escherichia coli-expressed NbCA
enhanced exogenous template level (re-initiation and elongation) but not endogenous
template level (only elongation). These results suggest that NbCA is possibly involved
in re-initiation step of BaMV RNA replication. Further analysis indicated that proton
concentration could influence the endogenous and exogenous template activities.
Hence, our results implied that NbCA could be playing a role in harnessing proton
concentration and favoring the replicase with the re-initiation template.

Keywords: carbonic anhydrase, Bamboo mosaic virus, Nicotiana benthamiana, RNA replication, in vitro
replication, initiation/elongation switch

INTRODUCTION

Bamboo mosaic virus (BaMV), belonging to the Potexvirus genus of family Alphaflexiviridae (Lin
et al., 1994), has one single-stranded positive-sense RNA genome of approximately 6.4 kb long
[excluding the poly(A) tail]. The genome comprises a 5′ cap structure, 3′ poly(A) tail, and five open
reading frames (ORFs 1-5) (Lin et al., 1994). ORF1, encoding a 155-kDa polypeptide, harbors three
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functional domains (Meng and Lee, 2017): the capping enzyme
domain, which exerts AdoMet-dependent guanylyltransferase
activity (Li et al., 2001a; Huang et al., 2004; Hu et al.,
2011); the helicase-like domain, which contains NTPase and
RNA 5′-triphosphatase activities (Li et al., 2001b); and the
RNA-dependent RNA polymerase (RdRp) core domain (Li et al.,
1998; Cheng et al., 2001). ORFs 2-4, encoding 28-, 13-, and
6-kDa polypeptides, respectively, overlap and are called triple-
gene-block (TGB), designated TGBp1, -2, and -3, respectively.
The movement of BaMV requires these three TGB proteins
(Lin et al., 2004, 2006; Chou et al., 2013). ORF5, encoding
a 25-kDa polypeptide viral capsid protein (CP) is required
for cell-to-cell movement, symptom development, and virion
assembly (Lan et al., 2010; Hung et al., 2014a,b). The 3′
untranslated region (UTR) plays roles in minus-strand RNA
initiation, polyadenylation, and long-distance movement (Chen
et al., 2017).

Although bamboo is the natural host for BaMV, Nicotiana
benthamiana is the major assay host for studying the
infection cycle of BaMV at the molecular level. A putative
methyltransferase was identified to play a role in restricting
the accumulation of BaMV in a dose-dependent manner in
protoplasts (Cheng et al., 2009). Glyceraldehyde 3-phosphate
dehydrogenase was found to play an inhibiting role in regulating
minus-strand RNA synthesis by binding to the 3′ UTR of BaMV
RNA (Prasanth et al., 2011). The chloroplast phosphoglycerol
kinase (PGK) interacts with the 3′ UTR, including part of the
poly(A) tail, and ushers the viral RNA into the chloroplast
for BaMV replication (Lin et al., 2007; Cheng et al., 2013a).
A heat shock protein 90 homolog binds to the viral replicase,
and the 3′ UTR enhances the early stage of BaMV replication
(Huang et al., 2012). A glutathione transferase, NbGSTU4,
interacts with the 3′ UTR of BaMV RNA and enhances the
minus-strand RNA synthesis (Chen et al., 2013). Another viral
replicase-associated host protein, XRN4, with RNase activity,
assists the accumulation of BaMV (Lee et al., 2015). NbRabG3f,
an Rab-GTPase protein, is involved in positive regulation of
BaMV replication (Huang et al., 2016). The host factor Ser/Thr
kinase-like protein (NbSTKL), localized mainly on the cell
membrane, can facilitate BaMV intercellular movement (Cheng
et al., 2013b). An RabGTPase-activating protein (NbRabGAP1)
is involved in BaMV cell-to-cell and systemic movement (Huang
et al., 2013).

Carbonic anhydrase (CA) is a zinc metalloenzyme
that can catalyze the interconversion of carbon dioxide
(CO2) and bicarbonate (HCO3

−). The reaction of
CO2 + H2O ↔ HCO3

−
+ H+ reaches equilibrium

spontaneously but slowly and can be accelerated by the
catalyzation of CA (Dimario et al., 2017). CA also plays
vital roles in many biochemical processes that involve pH
homeostasis and ion transport (Tashian, 1989) and carboxylation
or decarboxylation reactions such as photosynthesis and
respiration, respectively (Moroney et al., 2001). From the
structures and amino acid sequences, CAs can be divided into
five distinct classes: α, β, γ, δ, and ε, which share little sequence
similarity and are assumed to have evolved independently
(Hewett-Emmett and Tashian, 1996; Tripp et al., 2001; So

et al., 2004; Sawaya et al., 2006; Floryszak-Wieczorek and
Arasimowicz-Jelonek, 2017). The CAs of algae and plants are
all belong to α, β, and γ classes, with the β class most prevalent
(Moroney et al., 2001). Furthermore, in C3 plants such as
N. benthamiana, CA is found in the stroma of mesophyll
chloroplasts and has been found with some characteristics such
as the ability to bind salicylic acid (SA), antioxidant activities in
response to pathogens (Slaymaker et al., 2002; Restrepo et al.,
2005), the provision of HCO3

− for lipid biosynthesis (Hoang and
Chapman, 2002) and the regulation of CO2-mediated stomatal
closure (Hu et al., 2010).

The relation between CA and plant pathogens has been
studied lately. CA is identified as a SA-binding protein 3 (SABP3)
and exhibits CA enzymatic, SA-binding, and antioxidant
activities in N. tabacum plants. Furthermore, reducing the
expression of CA in plants suppressed the hypersensitive reaction
(HR) in disease resistance (Slaymaker et al., 2002). In CA-silenced
N. benthamiana plants, the growth of Phytophthora infestans was
considerably increased, probably also due to suppression of the
HR (Restrepo et al., 2005).

Although this earlier research mostly documented that the
host CA is necessary for plant defense, in this study, we
found that CA could, by contrast, help BaMV accumulation.
Therefore, we investigated how CA could play a role in assisting
BaMV accumulation in plants. Furthermore, we studied whether
CA is involved in the initiation step of BaMV replication in
N. benthamiana.

MATERIALS AND METHODS

Plants and Viruses
Nicotiana benthamiana plants were grown in a growth room at
28◦C with 16 h light and 8 h dark. Three viruses were used for
inoculation: BaMV strain S (Lin and Hsu, 1994), Potato virus X
(PVX) strain Taiwan, and Cucumber mosaic virus (CMV) strain
NT9 (Hsu et al., 1995).

Virus-Induced Gene Silencing (VIGS) and
Mechanical Inoculation of Viruses
The cDNA fragment of ACAC10-1 (fragment of NbCA gene)
was cloned into the pGEM-T Easy vector (Promega, Madison,
WI, United States) in a previous study (Cheng et al., 2010).
To use ACAC10-1 in Tobacco rattle virus (TRV)-based VIGS
(Liu et al., 2002) in N. benthamiana plants, ACAC10-1 in the
pGEM-T Easy vector was digested with EcoRI and subcloned into
the pTRV2 vector to generate pTRV2-NbCA and transformed
into Agrobacterium C58C1 strain. Furthermore, Agrobacterium
carrying a pTRV2-containing luciferase (Luc) gene or phytoene
desaturase (PDS) gene were used as a negative or positive control,
respectively. Agrobacterium containing pTRV1, pTRV2-NbCA,
pTRV2-Luc, or pTRV2-PDS was cultured at 30◦C to OD600
0.8∼1.0; the cells were collected by centrifugation at 5000 rpm,
then suspended in the induction medium (10 mM MgCl2,

10 mM MES pH5.6, and 150 µM acetosyringone) at 30◦C for
1 h. After induction, equal volumes of both cultures (pTRV1
and pTRV2-NbCA, pTRV2-Luc or pTRV2-PDS) were mixed
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before agroinfiltration onto the second, third, and fourth leaf
of true leaves of a 1-month old N. benthamiana. When the
PDS-knockdown plants had a photo-bleach phenotype, 500 ng
of BaMV virion was mechanically inoculated onto the fourth leaf
above the infiltrated leaves.

The knockdown efficiency of NbCA was calculated by
measuring the expression ratio normalized to the expression
of actin between the NbCA-knockdown and control
plants. Two sets of primers were used for the RT-PCR to
amplify NbCA and actin gene expression: NbCA/F (5′-A
GTGCATGTGGAGGTATCAAAGGT-3′)/NbCA/R (5′-GTCG
ACTACGGAAAGAGAAGG-3′) and actin/3′ (5′- GTGG
TTTCATGAATGCCAGCA-3′)/actin/5′ (5′-GATGAAGATAC
TCACAGAAAGA-3′).

Protoplast Preparation and Viral RNA
Inoculation
The preparation of protoplasts from N. benthamiana and viral
RNA inoculation was described previously (Tsai et al., 1999).
Approximately 2 g of agroinfiltrated leaf was collected from the
knockdown N. benthamiana and digested with pectinase and
cellulase at 25◦C overnight. The mesophyll protoplasts were
isolated from the interface zone between the Mannitol-MES
buffer and the sucrose. After a few washes, protoplasts were
stained with fluorescein diacetate to examine the quality of
cells under a fluorescent microscope. Approximately 2.5 × 105

protoplasts were inoculated with 1.5 µg BaMV, PVX, or CMV
viral RNA with 40% polyethyleneglycol-6000. Total protein or
RNA was extracted from protoplasts and detected by western blot
analysis or real-time qRT-PCR, respectively.

Western Blot Analysis
The total protein of inoculated leaves or protoplasts was
extracted with plant extraction buffer (50 mM Tris-HCl pH
6.8, 10% glycerol, and 2% SDS), boiled with the SDS sample
buffer (10% glycerol, 12.5 µg/ml bromophenol blue, 10 mg/ml
SDS, 125 mM Tris-HCl pH 6.8, 2.5% β-mercaptoethanol) for
5 min, separated on a 12% polyacrylamide gel containing 0.1%
SDS, transferred onto a nitrocellulose membrane (PROTRAN
BA 85 Schleicher and Schnell), and probed with primary
antibody [anti-Orange fluorescent protein (OFP), -BaMV, -PVX,
or -CMV] and with the secondary antibody [affinity purified
anti-rabbit IgG conjugated IRDye 800 (ROCKLAND)]. Finally,
membranes with fluorescent bands were scanned by using
LI-COR Odyssey (LI-COR Biosciences). In addition, rbcL
(RuBisCo large subunit) stained with Coomassie blue was used
as a loading control.

Total RNA Extraction
Total RNA was extracted from leaves with STE buffer (400 mM
Tris-HCl pH8.0, 400 mM NaCl, and 40 mM EDTA), 1% SDS, and
3.3 mg/ml bentonite and an equal volume of phenol/chloroform.
After ethanol precipitation, the RNA was further precipitated
with 3 M NH4OAc, washed, dried, and dissolved in 30 µl
de-ionized H2O. For RNA extracted from protoplasts, cells were
mixed with 200 µl protoplast RNA extraction buffer (100 mM

Tris-HCl pH 8.0, 10 mM EDTA, 100 mM NaCl, 1% SDS,
and 600 µg bentonite). After phenol/chloroform extraction and
ethanol precipitation, RNA was further precipitated with 3 M
NH4OAc and dissolved in 13 µl de-ionized H2O.

qRT-PCR
qRT-PCR was used to detect both BaMV plus- and minus-strand
genomic RNA. The cDNA synthesis reaction involved use of
ImProm-II Reverse Transcriptase (Promega, Carlsbad, CA,
United States) as instructed with the primers for Oligo dT(25T)
and BaMV+51 (5′-ACTGCCAATTGTCCCCTACA-3′) for
the plus- and minus-strand, respectively. For quantifying
the accumulation of BaMV genomic RNA or minus-
strand RNA, primers for BaMV+51 and BaMV-282
(5′-TGTGCTGAACGGGTTATGAG-3′) or BaMV+1766
(5′-CACATCCGGCACTTACCA-3′) and BaMV-2002 (5′-AT
GTATCACGGAAATAAGAGTT-3′) were used, respectively,
in the reaction containing a 1000X dilution of SYBR green I
(Cambrex Bio Science Rockland, ME, United States). qPCR was
performed in 0.2-ml PCR tubes with 0.6 mM primer, 0.2 mM
each deoxyribonucleoside triphosphate, 10 mM Tris-HCl pH 8.8,
1.5 mM MgCl2, 50 mM KCl, 0.1% Triton X-100, 2 µl cDNA, 3
units of Taq DNA polymerase (Promega) and RNase-free water
to a final volume of 20 µl. Cycling conditions began with an
initial hold at 95◦C for 5 min, followed by about 30 cycles of 94◦C
for 30 s, 56◦C for 30 s and 72◦C for 30 s. Reactions were carried
out in a RotorGene 3000 (Corbett Research, Sydney, Australia)
with data acquisition at 72◦C on the channel, excitation at
470 nm and detection at 585 nm, by using a high-pass filter for
both plus- and minus-strand. The reaction without template
or reverse transcriptase was a negative control, and actin was
detected for normalization. All samples were run at least three
times.

NbCA Cloning and Visualizing Its
Localization
The full-length CA cDNA of N. benthamiana was cloned
into the pEpyon binary vector that carries the mOrange2
reporter gene (Shaner et al., 2008) to express the fusion
protein NbCA-OFP. The ORF of the NbCA was amplified
with NbCA/F, 5′-GGATCCATGTCAACTGCTTCCA-3′, and
NbCA/R, 5′-GGTACCTACGGAAAGAGAAG-3′ (BamHI and
KpnI underlined, respectively). The PCR product was first
cloned into the pGEM-T easy vector (Promega, Madison, WI,
United States), then sub-cloned into pEpyon with BamHI and
KpnI after sequence verification.

Agrobacterium containing the binary vector with NbCA-OFP
or vector alone was cultured and infiltrated into N. benthamiana
plants. The fluorescent signals were detected at 3 days post-
infiltration by confocal laser scanning microscope (FV1000,
Olympus). To observe whether NbCA altered its localization
after BaMV infection, pKBG, a plasmid containing an infectious
cDNA of BaMV with a GFP reporter (Prasanth et al., 2011)
was co-infiltrated with NbCA-OFP. The fluorescent signals were
detected at 4 days post-infiltration by confocal laser scanning
microscope.

Frontiers in Microbiology | www.frontiersin.org October 2017 | Volume 8 | Article 2046 | 36

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02046 October 16, 2017 Time: 12:43 # 4

Chen et al. NbCA Assists BaMV Replication

Transient Expression of NbCA-OFP
Fusion Protein
NbCA-OFP was transiently expressed via agroinfiltration on a
leaf for 1 day and the BaMV virion was inoculated on the same
leaf for another 3 days. The expression of this fusion protein and
accumulation of BaMV coat protein were detected by western
blot analysis.

NbCA Expression and Purification from
Escherichia coli
The coding sequence of NbCA without the predicted transit
peptide (Slaymaker et al., 2002) was amplified with the primer set
CAgene/F, 5′-GGATCCGAATTGCAATCATCAGATGG-3′, and
CAgene/R, 5′-GCTCGAGTACGGAAAGAGAAGGAGAAA-3′
(BamHI and XhoI site underlined, respectively). The PCR
product was cloned into the pGEM-T easy vector and the
sequence was verified. Finally, NbCA was subcloned from the
T-vector into the pET29a(+) expression vector (Invitrogen) and
transformed into E. coli BL21(DE3). The resulting clone was
designated pET29a(+)-NbCA.

Escherichia coli containing pET29a(+)-NbCA was cultured to
OD600 = 0.7 ∼ 1.2 (100 ml in total volume), the expression
was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside
(IPTG) at 16◦C for 1 day, then samples were centrifuged at
7000 rpm at 4◦C for 7 min. The cell pellet was resuspended
with 8 ml buffer A (50 mM NaH2PO4 pH 8.0, 300 mM NaCl)
containing protease inhibitor cocktail (Roche, Germany) and
subjected to the French Press to break cells: the sample was
loaded into the French Press and squeezed out four times, then
centrifuged at 12000 rpm at 4◦C for 10 min. The supernatant was
incubated with 1 ml complete His-tag Purification Resin (Roche,
Germany) overnight, washed with 10 ml buffer A containing
50 mM imidazole, and eluted with buffer A containing 250 mM
imidazole. Finally, the eluted protein was dialyzed with 150 ml
buffer A four times to remove imidazole and stored at −80◦C
with the addition of final 10% glycerol. The vector-only construct
was manipulated under the same condition as the negative
control.

Replicase Complex Preparation and
in Vitro Replication Assay
Bamboo mosaic virus-infected leaves were collected at 5 dpi
and homogenized with polytron in replicase complex extraction
buffer (50 mM Tris-HCl pH 7.6, 15 mM MgCl2, 120 mM
KCl, 0.1% β-mercaptoethanol, 20% glycerol, 1 µM pepstatin
A, 0.1 mM phenylmethylsulfonyl fluoride) with a 2 ml/g of
buffer/leaf ratio. The leaf slur was filtrated through Miracloth
(Calbiochem) and centrifuged at 500 × g for 10 min to remove
the cell debris. The pellet was resuspended in suspension buffer
(50 mM Tris-HCl pH 8.2, 10 mM MgCl2, 1 mM dithiothreitol,
1 µM pepstatin A, 1 µM leupeptin) after centrifugation at
30,000 × g for 35 min. Approximately 2 ml of the extract was
loaded on 28 ml of 20∼ 60% continuous gradient of sucrose with
the gradient buffer (50 mM Tris-HCl pH 8.0, 10 mM NaCl, 1 mM
EDTA, 5% glycerol, 1 µM pepstatin A, 0.1 mM PMSF, 1 mM
dithiothreitol) and centrifuged at 72,100 × g for 7.2 h. The 5th

and 6th fractions of the 10 fractions (from top to bottom) with the
highest RdRp activity were pooled and stirred with 1.5% NP-40
for 1 h to solubilize the membrane-associated RdRp.

For the in vitro replication assay with the endogenous RNA
templates, 15 µl of the replicase complex preparation (pH 8.0)
was added to a total 50 µl reaction containing 2 mM (A, C, and
G) TP, 2 µM UTP, 3 mM MgCl2, 10 mM dithiothreitol, 50 mM
Tris-HCl pH 8.2 (6.8, 7.4, 7.8, 8.8, or 9.0 was used in testing
the proton concentration for the in vitro replication assays), 12
unit RNase OUT (Invitrogen, Carlsbad, CA, United States), 8 mg
bentonite, 0.066 µM [α-32P]UTP (3000 Ci mmol/1, Dupont-
NEN) and 5.2 µg recombinant NbCA at 30◦C for 1 h (the
reaction made up of final pH is 8.1 when reaction buffer is 8.2).
Therefore, the Tris-HCl buffer at different pH was used in the
reaction to reach the final target pH as 7.1, 7.5, 7.8, 8.6, or 8.8,
respectively. The reaction was stopped by adding 150 µl 5 mM
EDTA, extracted with phenol/chloroform, and precipitated with
ethanol. The radioactive RNA products were resolved on a 1%
agarose gel and quantified by using the PhosphoImaging analyzer
BAS-2500 (FUJIFILM).

For the exogenous RNA templates, 15 µl of the replicase
complex preparation was first treated with 10 units of
micrococcal ribonuclease containing 2.5 mM Ca(OAc)2 to
remove endogenous RNA at 30◦C for 30 min in a total volume
of 11.5 µl reaction. Then the reaction was terminated by adding
16 mM EGTA and set on ice for 1 ∼ 2 min. An aliquot
of 15 µl mixture was subjected to a total 50 µl reaction as
in the endogenous RNA template reaction. The radioactive
RNA products were resolved on a 5% polyacrylamide gel and
quantified by using the PhosphoImaging analyzer BAS-2500
(FUJIFILM).

RNA Preparation
Ba-77 RNA (the 3′-end 77 nt of BaMV minus-strand RNA) and
r138/40A RNA (the 3′ UTR of BaMV RNA) was prepared in
an in vitro transcription with plasmids constructed previously
(Cheng et al., 2001). The reaction was carried out in 100 µl
containing 10 µg linearized plasmid (EcoRI and BamHI for Ba-77
and r138/40A, respectively, in pUC18), 40 mM Tris-HCl pH 8.0,
2 mM spermidine, 8 mM MgCl2, 10 mM dithiothreitol, 0.4 mM
NTP and 200 U T7 RNA polymerase at 37◦C for 2 h. The RNA
was then gel purified, quantified, and stored at−80◦C.

RESULTS

The Accumulation of BaMV in
NbCA-Knockdown Plants Is Reduced
The sequence of a gene, ACAC10-1, found downregulated
in N. benthamiana plants by cDNA-amplified fragment
polymorphism (AFLP) after BaMV inoculation (Cheng et al.,
2010), showed 100% match with an EST clone 30F62 containing
a nuclear-encoded chloroplast CA gene. The gene was designated
NbCA. To gain a better understanding of the relation between
NbCA and BaMV infection, we inoculated BaMV virion into
leaves of N. benthamiana with Tobacco rattle virus (TRV)-based
NbCA knockdown.
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FIGURE 1 | The relative expression of NbCA in Nicotiana benthamiana leaves with NbCA-knockdown and the accumulation of Bamboo mosaic virus (BaMV).
(A) Real-time quantitative RT-PCR analysis of the efficiency of NbCA knockdown in NbCA- and Luc-knockdown leaves. The numbers above each bar are the mean
relative expression of NbCA with the standard error obtained from at least three independent experiments. (B) Western blot analysis of the relative accumulation of
BaMV coat protein in Luc- and NbCA-knockdown N. benthamiana leaves after 5 days post-inoculation (dpi). Total proteins were extracted from seven individual
plants (n = 7). The numbers are the mean levels of coat protein with the standard error obtained from three independent experiments. The accumulation of BaMV
coat protein in Luc-knockdown plants was set to 100%. Luc, luciferase-knockdown plants; NbCA, NbCA-knockdown plants; CP, coat protein; rbcL, Rubisco large
subunit used as a loading control. ∗∗∗p < 0.001 by Student’s t-test.

FIGURE 2 | The relative accumulation of viral coat protein in NbCA-knockdown protoplasts. Western blot analysis of the accumulation of BaMV (A), Cucumber
mosaic virus (CMV) (B), and Potato virus X (PVX) (C) coat protein extracted from NbCA- and Luc-knockdown protoplasts at 24 and 48 h post-inoculation (hpi).
Protoplasts were isolated from NbCA- and Luc-knockdown N. benthamiana plants and inoculated with 1.5 µg BaMV, CMV, or PVX viral RNA. The accumulation of
viral coat protein detected from Luc-knockdown protoplasts at 24 hpi was set to 100%. The numbers are the mean levels of coat protein with the standard error
obtained from three independent experiments. Luc, luciferase-knockdown protoplasts; NbCA, NbCA-knockdown plants; CP, coat protein; rbcL, Rubisco large
subunit used as a loading control; ∗p < 0.05, ∗∗p < 0.01 by Student’s t-test.
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FIGURE 3 | The relative accumulation of BaMV plus- and minus-strand RNA
in NbCA-knockdown protoplasts. Real-time RT-PCR was used to quantify the
accumulation of BaMV plus- and minus-strand RNA in Luc- and
NbCA-knockdown N. benthamiana protoplasts at 24 and 48 hpi. The
accumulation of BaMV RNA detected from Luc-knockdown protoplasts at
24 hpi was set to 100%. The numbers are the average accumulation of BaMV
plus- and minus-strand RNA with the standard error obtained from three
independent experiments; ∗p < 0.05 by Student’s t-test.

The reduced NbCA expression in N. benthamiana did not
cause any morphological change as compared with control
plants (infiltrated with a TRV vector-carrying luciferase gene)
(Supplementary Figure S1). The mRNA level of NbCA in
NbCA-knockdown plants was approximately 50% that in the
control plants (Figure 1A). At 5 days post-inoculation (dpi), the
accumulation of BaMV in NbCA-knockdown plants was reduced
to 64% that in Luc-knockdown control plants (Figure 1B). Hence,
NbCA could be a positive regulator for BaMV infection in
N. benthamiana.

The Requirement of NbCA for Viral
Replication Is Specific to BaMV
To determine whether the role of NbCA for BaMV accumulation
is involved in virus replication or movement, cell wall-
excluded protoplasts were prepared for viral RNA inoculation to
eliminate the involvement of viral movement. The accumulation
of BaMV coat protein in NbCA-knockdown protoplasts was
reduced to 64 and 61% that of control protoplasts at 24
and 48 h post-inoculation (hpi), respectively (Figure 2A). To
determine whether the involvement of NbCA is specific to the
BaMV infection cycle, CMV and PVX were inoculated into
NbCA-knockdown protoplasts. The accumulation of the coat
protein of these two viruses in knockdown protoplasts did
not differ from that in control protoplasts at 24 and 48 hpi
(Figures 2B,C).

Furthermore, to elucidate whether this deficiency results from
a defect in synthesizing the plus- or minus-strand viral RNA,

qRT-PCR was used to quantify the accumulation of BaMV RNAs
in knockdown protoplasts. At 24 hpi, the accumulation of the
plus- and minus-strand of BaMV RNA in NbCA-knockdown
protoplasts was reduced by approximately 30 and 44% as
compared with control protoplasts. The similar reduced ratio in
both plus- and minus-strand of BaMV RNA was observed at
48 hpi (42 and 47%, respectively). Therefore, the accumulation
of plus- and minus-strand BaMV RNAs were similarly affected
by the reduction in NbCA levels (Figure 3). These results suggest
that NbCA is most likely involved in BaMV replication.

NbCA Is Localized in N. benthamiana
Chloroplasts
To clone the NbCA full-length gene, a primer was designed for
the 3′ rapid amplification of cDNA ends (RACE) experiment
to obtain the downstream sequence of ACAC10-1. The cDNA
fragment derived from 3′ RACE contains the stop codon of
NbCA. The upstream sequence of ACAC10-1 including the
start codon of NbCA was retrieved from the transcriptome
of the N. benthamiana draft genome (Hewett-Emmett and
Tashian, 1996; Bombarely et al., 2012). Two specific primers
were used to amplify the full-length NbCA coding region and
cloned into the pEpyon binary vector (Chen et al., 2011),
which carries the mOrange2 reporter gene (OFP), to produce
the NbCA-OFP fusion protein. Furthermore, the amino acid
sequence of NbCA (accession no.: MF346699) was aligned with
those from N. tabacum (NtCA; accession no.: P27141), and
Arabidopsis (AtCA; accession no.: NP_186799) (Supplementary
Figure S2). The sequence of NbCA shared 97 and 68% identity
with those of NtCA and AtCA, respectively.

To visualize the localization of NbCA in plant cells,
NbCA-OFP was transiently expressed in N. benthamiana leaves
by agroinfiltration to detect the fluorescent signal emitted
from the OFP merged with the autofluorescence signal emitted
from chloroplasts (Figure 4). NbCA was mainly localized in
chloroplasts. Moreover, to observe whether the localization of
NbCA was altered after BaMV inoculation, we co-infiltrated the
infectious BaMV viral vector pKBG carrying green fluorescent
protein (GFP) driven by subgenomic RNA promoter (Prasanth
et al., 2011) with NbCA-OFP and found no re-localization of
NbCA after BaMV inoculation (Figure 4B).

NbCA Enhances BaMV Replication
in Vitro
Since we found that the accumulation of BaMV coat protein and
viral RNA was reduced in NbCA-knockdown plants (Figure 1)
and protoplasts (Figures 2, 3), NbCA may assist viral RNA
replication. To validate this hypothesis, we transiently expressed
NbCA-OFP in N. benthamiana followed by BaMV inoculation.
However, accumulation of BaMV coat protein was not enhanced
at 3 dpi. The pool of NbCA in cells may be enough for
BaMV replication and the addition of exogenous NbCA by
transient expression might not provide additional help for BaMV
accumulation. Hence, we used in vitro replication (Cheng et al.,
2001; Lin et al., 2005b) to exclude the effect of sufficient amount
of CA in chloroplasts. We cloned and expressed the full-length

Frontiers in Microbiology | www.frontiersin.org October 2017 | Volume 8 | Article 2046 | 39

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02046 October 16, 2017 Time: 12:43 # 7

Chen et al. NbCA Assists BaMV Replication

FIGURE 4 | Localization of NbCA in N. benthamiana cells. The pEpyon vector and NbCA-Orange fluorescent protein (NbCA-OFP) constructs were transiently
expressed on N. benthamiana leaves by agroinfiltration for 3 days without (A) or with (B) inoculation of BaMV vector carrying a GFP reporter. NbCA-OFP is labeled in
cyan and chloroplast is in red. BaMV infection carrying GFP is in green. Images were taken under an Olympus Fluoview FV1000 Confocal Microscope with 488, 543,
and 633 nm laser excitations for GFP, OFP, and autofluorescence, respectively. Scale bar: 40 µm.

CA in E. coli to acquire the purified-NbCA for in vitro replication
experiments. The E. coli BL21 (DE3)-expressed recombinant
NbCA-His was purified through a Nickel-chelating resin column
(Figure 5A).

First, we tested whether NbCA affects endogenous RNA
template activity, which represents the elongation step of BaMV
replication. Viral RNA synthesis did not differ with or without the
addition of the E. coli-expressed NbCA in the replication assay
(Figure 5B). Second, we tested whether NbCA is involved in the
initiation of BaMV replication. In the in vitro replication, we
tested the two RNA templates, r138/40A (the 3′ UTR of BaMV,
the promoter for minus-strand RNA synthesis) (Cheng et al.,
2001) and Ba-77 (the 3′-end 77 nt of the minus-strand genome,
the promoter for plus-strand RNA synthesis) (Lin et al., 2005a).
The addition of NbCA in the in vitro replication assay with
the exogenous templates r138/40A and Ba-77 increased RNA
synthesis to 150 and 120%, respectively, that with vector alone
(Figures 5C,D).

BaMV Replication Could Be Regulated
by the Proton Concentration
Carbonic anhydrase activity condenses carbon dioxide with water
to produce a free proton in the reaction. We wondered whether

the proton concentration affects the viral RNA replication. In
the in vitro replication assay, CA affected the exogenous but not
the endogenous template activities. If the CA activity provides
the free proton to change the micro-environment (reducing
pH) such as the membrane-housed viral replication site, the
condition for the re-initiation of the plus- or minus-strand
RNA temples by BaMV replicase complex could be regulated.
To test this hypothesis, we used various pH conditions for
in vitro replication assays with endogenous and exogenous
templates. The endogenous template (the viral RNAs already
on the replicase complex and presumably at the elongation
step) favored a higher pH condition (Figure 6). By contrast,
the exogenous template (endogenous templates was removed by
micrococcal nulcease and presumably at the re-initiation step)
favored a lower pH condition. These results are implying that CA
might be trapped into the viral replication site to produce free
protons to create a more acidic microenvironment favoring the
re-initiation of viral RNA replication.

DISCUSSION

In C4 plants, CA is mainly found in the cytoplasm and
involved in converting CO2 into bicarbonate for carbon fixation
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FIGURE 5 | The expression of NbCA in Escherichia coli and in vitro replication assays with endogenous and exogenous templates. (A) Total proteins were extracted
from E. coli that expressed vector only (vec) or NbCA with or without the induction of IPTG as indicated, separated on a 12% polyacrylamide gel/SDS, and stained
with Coomassie blue. The eluents indicated as elute were the total proteins eluted from His-tag purification resin. In vitro replication assay involved use of the purified
replicase complex from infected plants with the addition of E. coli-expressed proteins (A) to test the RdRp activity of the endogenous templates (B) and exogenous
templates r138/40A (C) and Ba-77 (D). RdRp activity with the addition of E. coli-expressed eluent of vector only was set to 100%. Representative results are shown.
The numbers shown above each bar are the mean relative RdRp activity with the standard errors derived from at least three independent experiments. ∗∗∗p < 0.001
by Student’s t-test.
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(Hatch and Burnell, 1990). By contrast, β-CA activity is found
mostly in the stroma of mesophyll chloroplasts in C3 plants
(Poincelot, 1972), where it can represent up to 2% of total
leaf protein (Okabe et al., 1984; Peltier et al., 2006). However,
using antisense RNA to reduce this abundant chloroplast CA
in C3 plants had only a marginal effect on CO2 assimilation
as well as phenotypic changes (Price et al., 1994), which we
observed (Supplementary Figure S1). Although the full-length
CA of N. benthamiana, a C3 plant, has not yet been characterized,
we obtained the coding region of NbCA, which showed 95%
identity with NtCA (Supplementary Figure S2), and generated
the NbCA-OFP to show chloroplast localization as predicted
(Figure 4) (Fett and Coleman, 1994). Even though most research
has revealed that CA suppression might reduce the HR response
and thereby increase the susceptibility of pathogens (Slaymaker
et al., 2002; Restrepo et al., 2005), CA positively regulated BaMV
replication.

Carbonic anhydrase of alfalfa or tobacco was able to
complement 1NCE103, the Saccharomyces cerevisiae CA-like
gene deletion strain sensitive to an oxidized environment such
as in the presence of H2O2; hence, these two CAs were found
to exhibit antioxidant activities (Gotz et al., 1999). Furthermore,
NtCA exhibited enzymatic and antioxidant activities and also
a salicylic acid-binding ability and was further called salicylic
acid-binding protein 3 (SABP3) (Gotz et al., 1999; Slaymaker
et al., 2002). One of the SABPs (designated SABP1) was
identified as a cytosolic (peroxisomal) tobacco catalase, which
exhibits H2O2-degrading activity (Chen et al., 1993a,b; Conrath
et al., 1995). Accordingly, SABP3/NtCA or NbCA may also
have antioxidant ability to degrade H2O2 and then dampen
the load of host defense. Furthermore, one of the glutathione
S-transferases (GSTs) was demonstrated to play an critical role
in the minus-strand RNA synthesis of BaMV and was also
involved in anti-oxidation processes in cells (Chen et al., 2013).
Therefore, relieving oxidative stress by providing antioxidants
such as GST or CA might provide an optimal condition for
virus replication. In other words, disturbing the appropriate
environment by reducing GST or CA could rapidly affect virus
replication at the early time point of infection. We found reduced
BaMV accumulation in the CA-knockdown N. benthamiana
protoplasts at 24 hpi (Figure 2A). If NbCA is simply an
antioxidant in general, it should favor both endogenous and
exogenous templates in the in vitro replication assays. By
contrast, the coat protein accumulation of CMV and another
potexvirus, PVX, did not differ from that in the control
(Figure 2). We assumed that chloroplast-localized NbCA would
affect viruses that replicate in chloroplasts. CA is involved in
various biological processes including SA binding (Slaymaker
et al., 2002), however, the main receptors for SA signaling are
unlikely in chloroplasts (Yan and Dong, 2014). Although SA
is synthesized in chloroplast, it needs to be exported to the
cytoplasm to regulate immune responses (Serrano et al., 2013).
The SA-mediated defense pathway might be affected by virus
infection (Li et al., 2016), but not simply affected by reducing CA
expression.

Another possibility for NbCA assisting BaMV is fine-
tuning the condition for viral RNA replication. Because BaMV

FIGURE 6 | In vitro replication assay with the RNA templates in various pH
conditions. (A) The relative RdRp activity of in vitro replication assay with
endogenous and exogenous templates as indicated. The RdRp activity with
pH 8.1 was set to 100%. Each point on the graph is the mean relative RdRp
activity with the standard errors derived from three independent experiments.
(B) Representative results of the in vitro replication assay.

replicates in chloroplasts and possibly associates with the
thylakoid membrane in stroma (Cheng et al., 2013a). The
pH value of the stroma is approximately 8, as the condition
we have used in the in vitro replication assay (Figure 6).
The replication complex associated with various host proteins
including CA on the thylakoid membrane might create a
replication competent microenvironment. Thus, the optimal
condition for BaMV initiation and elongation could be regulated
(Figure 6).

One of the CA activities in general is converting one carbon
dioxide into bicarbonate and releasing one proton, which might
act on the replicase complex and change the proton concentration
at the microenvironment level to initiate RNA synthesis. Once
the initiation kicks in, a switch from initiation to elongation is
needed to increase pH for efficient elongation by turning off
the NbCA activity or using another factor to replace NbCA.
A possible candidate that could reduce the proton concentration
is ferredoxin-NADP+ oxidoreductase (FNR). FNR transfers
electrons from the reduced form of ferredoxin (Fd) to NADP+
and produces NADPH that consumes a proton with the reaction
2 Fdred + NADP+ + H+ → 2 Fdox + NADPH (Mulo,
2011).

CONCLUSION

We have identified a host factor that could assist in BaMV
RNA replication. This factor, NbCA, could play a role in
regulating the switch of initiation and elongation of RNA
synthesis.
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Viruses move intracellularly to their replication compartments, and the newly synthesized
viral complexes are transported to neighboring cells through hijacking of the host
endomembrane systems. During these processes, numerous interactions occur among
viral proteins, host proteins, and the cytoskeleton system. This review mainly focuses
on the plant endomembrane network, which may be utilized by Bamboo mosaic virus
(BaMV) to move to its replication compartment, and summarizes the host factors that
may be directly involved in delivering BaMV cargoes during intracellular movement.
Accumulating evidence indicates that plant endomembrane systems are highly similar
but exhibit significant variations from those of other eukaryotic cells. Several Nicotiana
benthamiana host proteins have recently been identified to participate in the intracellular
movement of BaMV. Chloroplast phosphoglycerate kinase, a host protein transported
to chloroplasts, binds to BaMV RNAs and facilitates BaMV replication. NbRABG3f is a
small GTPase that plays an essential role in vesicle transportation and is also involved
in BaMV replication. These two host proteins may deliver BaMV to the replication
compartment. Rab GTPase activation protein 1, which switches Rab GTPase to the
inactive conformation, participates in the cell-to-cell movement of BaMV, possibly by
trafficking BaMV cargo to neighboring cells after replication. By analyzing the host
factors involved in the intracellular movement of BaMV and the current knowledge of
plant endomembrane systems, a tentative model for BaMV transport to its replication
site within plant cells is proposed.

Keywords: Bamboo mosaic virus, intracellular movement, vesicle trafficking, endomembrane system, host
factors

INTRODUCTION

Membrane trafficking delivers materials between the endomembrane system and the plasma
membrane and therefore plays an essential role in cell survival and development (Cheung and
de Vries, 2008). Many animal microbes that reproduce intracellularly, including viruses and
bacteria, have been shown to utilize host endomembrane trafficking and the autophagy system
for intracellular transport within the host cells (Cossart and Helenius, 2014; Yamauchi and Greber,
2016), whereas other microbes alter the degradation pathway used by the host cells to destroy the
intruding pathogens (Miller and Krijnse-Locker, 2008; Mudhakir and Harashima, 2009; Yamauchi
and Greber, 2016). Rab proteins are small GTPases involved in membrane trafficking of cells,
specifically in vesicle formation and fusion. Recent studies of Salmonella enterica Typhimurium,
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an animal pathogenic bacterium, have identified several bacterial
effectors that target various Rab proteins for replication within
the host cells (Spano et al., 2011, 2016; McGourty et al., 2012;
D’Costa et al., 2015).

Many plant viruses induce membrane remodeling after
infecting their host cells. Studies focusing on the modification
of endomembrane systems induced by plant viruses have
substantially improved our understanding of the intracellular
movement of plant viruses. Membrane targeting or recruitment
by viral proteins in the viral replication compartment is
often the cause of endomembrane remodeling, as has been
demonstrated for many viruses (Wei et al., 2010, 2013; Hyodo
et al., 2014; Xu and Nagy, 2014). Grapevine fanleaf nepovirus
(GFLV) infection induces structural changes in the endoplasmic
reticulum (ER) membranes to allow virus replication in the
ER-derived membrane. Although host factors have not been
identified, inhibitor treatment has demonstrated that vesicle
transport between Golgi and ER is essential for GFLV replication
(Ritzenthaler et al., 2002; Fuchs et al., 2017). A study on
plant potyviruses revealed that the 6k2 viral protein of Turnip
mosaic virus (TuMV) induces the formation of vesicles derived
from ER and targets them to the chloroplasts for replication
(Wei et al., 2010). Melon necrotic spot virus (MNSV) has been
shown to replicate in mitochondria, which is significantly altered
by the virus-encoded p29 protein targeting the mitochondria
membrane (Mochizuki et al., 2009; Gomez-Aix et al., 2015).
ER disorder has also been observed, and the p7B movement
protein of MNSV is localized to ER, Golgi, actin filaments,
and plasmodesmata. Disruption of the transport between ER
and Golgi results in the accumulation of p7B within the ER.
Therefore, the ER-to-Golgi secretory pathway could be involved
in the intra- and intercellular movement of MNSV (Genoves
et al., 2010).

In addition to the viral encoded proteins, host factors are
also involved in the membrane remodeling process. Using yeast
as a model system and by performing further testing in host
plants, several studies on Tomato bushy stunt virus (TBSV) have
demonstrated that host factors are responsible for delivering
components to remodel the membrane-associated compartment
for viral replication (Barajas et al., 2014; Xu and Nagy, 2016).
Heat shock protein 70 is associated with the replication complex
of TBSV and facilitates the insertion of viral replication proteins
into the yeast membrane (Wang et al., 2009). The GTP-bound
active form of Rab5-positive endosome is hijacked by TBSV for
enrichment of phosphatidylethanolamine at the replication site
(Xu and Nagy, 2016). A host SNARE protein, Syp71, mediates
the fusion between the TuMV-induced vesicles and chloroplasts,
which is required for TuMV infection (Wei et al., 2013). In
yeast, membrane-shaping reticulon homology domain proteins
are crucial for the formation of the replication compartment
induced by the Brome mosaic virus (BMV) 1a protein (Diaz et al.,
2010). These findings indicate that membrane trafficking and
targeting are essential processes for plant virus replication.

Several pathways of intracellular movement have been
proposed for animal viruses after they enter the host cells
(Mudhakir and Harashima, 2009). By contrast, the trafficking
pathways for the intracellular movement of plant viruses to their

replication sites within the host cells remain largely unknown.
Particularly, the endomembrane trafficking systems in plants
seem to be more complicated and have not been completely
revealed (Saito and Ueda, 2009; Uemura, 2016). Moreover,
studies of the intracellular movement of plant viruses have mostly
focused on cell-to-cell movement through the plasmodesmata;
these intracellular movement pathways of plant viruses have been
reviewed in several articles (Park et al., 2014; Heinlein, 2015; Liou
et al., 2015). Host factors participating in membrane trafficking
or protein targeting may play roles in delivering BaMV or its
cargoes to the replication sites. Based on the current knowledge
of intracellular trafficking pathways in plants, a model for the
intracellular movement of BaMV to its replication compartment
is proposed. After replication, plant viruses travel intracellularly
to reach plasmodesmata for cell-to-cell movement. A vesicle
trafficking-related host protein participates in BaMV cell-to-cell
movement; its potential role in BaMV intracellular movement is
also discussed in this review.

POSSIBLE REPLICATION
COMPARTMENTS FOR BaMV

Virus infection commonly induces the formation of dynamic
membrane-associated structures that are associated to the virus
replication and movement (Grangeon et al., 2012; Heinlein,
2015). Chloroplasts are one of the types of compartments suitable
for plant virus replication (Wei et al., 2010; Zhao et al., 2016).
Using BaMV 3′ RNA as a probe for in situ hybridization
through electronic microscopy, BaMV viral RNAs were detected
within several organelles of green bamboo leaf cells, including
chloroplasts, mitochondria, and nuclei (Lin et al., 1993). Phage
MS2 coat protein can specifically bind to its own RNA sequence,
and viral genomic RNA engineered to contain the MS2 sequence
can be traced within the cells through the binding of GFP-
fused MS2 coat protein (Zhang and Simon, 2003). Recently,
through confocal microscopy, BaMV viral RNA expressing the
phage MS2 coat protein binding sequence was found to localize
within chloroplasts. Furthermore, negative-strand BaMV RNA
was found in the isolated chloroplasts, demonstrating that
chloroplasts may be among the BaMV replication compartments
within the host cells (Cheng et al., 2013a).

In contrast, Potato virus X (PVX), another potexvirus, has
been found to replicate in the ER membrane (Doronin and
Hemenway, 1996; Park et al., 2014); in addition, TGB2/3
has recently been shown to remodel the ER membrane
at plasmodesmata, where PVX coupled the replication and
movement to the neighboring cells (Tilsner et al., 2013).

HOST FACTORS PROBABLY INVOLVED
IN THE INTRACELLULAR TARGETING
OF BaMV TO THE REPLICATION
COMPARTMENT

After entering the host cells, similar to other viruses, BaMV
must travel to its replication site intracellularly. Recently, several
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host factors involved in BaMV replication have been identified
through copurification with the BaMV replicase complex (Cheng
et al., 2009; Prasanth et al., 2011; Huang et al., 2012; Lee et al.,
2015), binding to the viral RNAs (Lin et al., 2007; Cheng et al.,
2013a), and cDNA-amplified fragment length polymorphism
(cDNA-AFLP) analysis (Chen et al., 2013; Huang et al., 2013,
2016). Among these host factors, three are possibly involved in
the transportation of BaMV or its related cargoes within host
cells. Chloroplast phosphoglycerate kinase (chl-PGK) (Lin et al.,
2007; Cheng et al., 2013a) and NbRABG3f (Huang et al., 2016) are
related to BaMV replication, whereas NbRabGAP1 is essential for
the intercellular movement of BaMV (Huang et al., 2013).

In Nicotiana benthamiana, chl-PGK, a nuclear-encoded
chloroplast protein, was found to bind to the 3′ untranslated
region (3′ UTR) of BaMV genomic RNAs (Lin et al., 2007).
Knocking down the expression or mistargeting of chl-PGK
reduced BaMV accumulation in N. benthamiana protoplasts,
indicating that chl-PGK participates in BaMV replication (Cheng
et al., 2013a). Redirecting a BaMV RNA binding protein, EF1a,
to chloroplasts rescued the reduction of BaMV caused by the
knock-down of chl-PGK. These results demonstrate that chl-
PGK likely assists in the targeting of BaMV to the chloroplasts
for replication (Cheng et al., 2013a). Recently, a chl-PGK from
Arabidopsis thaliana was identified as a requirement for efficient
Watermelon mosaic virus (WMV) (Ouibrahim et al., 2014) and
Plum pox virus (Poque et al., 2015) infection. Although the
replication compartment of WMV is unknown, the 6K protein
of other potyviruses induces the formation of mobile vesicles and
transports the viruses from the ER to the chloroplast membrane
for viral replication (Wei et al., 2010). Therefore, chl-PGK may be
involved in the intracellular transport of different plant viruses to
the chloroplasts for replication.

A recent study identified that NbRABG3f, a Rab small GTPase,
is involved in BaMV replication (Huang et al., 2016). Rab small
GTPases are involved in vesicle trafficking within cells. Rab
proteins alternate between a GTP-bound active form and GDP-
bound inactive form, and this switching is accelerated by their
regulatory proteins (Cherfils and Zeghouf, 2013). GTP-bound
Rab proteins bud from the donor compartment and fuse with
the acceptor compartment, where GTP is hydrolyzed by GTPase-
activating proteins (GAPs) (Cherfils and Zeghouf, 2013). Based
on sequence comparison, NbRABG3f is homologous to animal
cell Rab7 protein and to A. thaliana RabG3f (Huang et al., 2016).
cDNA-AFLP analysis revealed that NbRABG3f expression was
upregulated after BaMV inoculation (Cheng et al., 2010). The
GDP-bound form of Rab GTPase can be used to trace the donor
compartment of Rab proteins (Sieczkarski and Whittaker, 2002);
thus, confocal microscopy revealed that the GDP-bound form
mutant of NbRABG3f was localized to the Golgi compartment
(Huang et al., 2016). In plant endomembrane trafficking systems,
endocytotic materials are transferred to the trans-Golgi network
for further sorting (Zhuang et al., 2015). As a plant defense
mechanism pathway, intruding pathogens are likely delivered
to the multi-vesicular body (MVE)/prevacuolar compartment
(PVC), or autophagosome and then delivered to the vacuoles
for degradation (Teh and Hofius, 2014). Successful pathogen
infection results from a redirection of the pathway to their

replication compartments rather than the degradation pathway
(Patarroyo et al., 2012; Dong and Levine, 2013). According to the
finding that NbRABG3f is derived from the Golgi compartment
(Huang et al., 2016) and that chloroplasts are likely to be the
replication sites of BaMV (Lin et al., 1993; Cheng et al., 2013a),
BaMV may utilize NbRABG3f or NbRABG3f-associated vesicles
for transport to chloroplasts. However, the acceptor membrane
of NbRABG3f has not yet been identified. Knowledge of the
destination of NbRABG3f in the endomembrane systems will
verify whether BaMV hijacks NbRABG3f and redirects its route
or instead utilizes NbRABG3f-associated vesicle and follows
its pathway. Further investigation of the interaction of BaMV
with NbRABG3f and other Rab proteins and further evaluation
of the colocalization of BaMV and various marker proteins
involved in endomembrane trafficking will reveal the intracellular
transportation pathway for BaMV.

POSSIBLE MODEL FOR BaMV
INTRACELLULAR MOVEMENT TO ITS
REPLICATION COMPARTMENT

In uninfected N. benthamiana cells, NbRABG3f and its
associated vesicles are generated by the Golgi compartment
(Huang et al., 2016). The destination of NbRABG3f is
currently unknown. According to a putative model proposed
for Arabidopsis, the endocytosed materials can be (1) delivered
to the MVE/PVC, or autophagosome and then transported to
the vacuoles for degradation, or (2) recycled into the plasma
membrane (Uemura, 2016; Vukasinovic and Zarsky, 2016).
A previous study demonstrated that Arabidopsis AtRABG3f
mediates transport from PVC to the vacuole (Cui et al., 2014).
Although the donor membrane of NbRABG3f is different
from that of AtRABG3f, possibly because of variation in
the C-terminal sequence, based on the fact that NbRABG3f
is highly homologous to AtRABG3f (Huang et al., 2016),
NbRABG3f likely participates in the transport of vesicles to
other endomembrane systems rather than in their delivery to the
recycling pathway.

According to current knowledge of the intracellular trafficking
pathways in plants and studies of NbRABG3f and chl-PGK,
BaMV may utilize NbRABG3f-associated vesicles for vesicle
trafficking. During vesicle trafficking, chl-PGK is recruited and
assists in the targeting of the BaMV complex to the chloroplasts,
which are one of the types of BaMV replication compartments
(Cheng et al., 2013a) (Figure 1, upper). By contrast, similar to
the role of Rab5 protein in TBSV replication (Xu and Nagy,
2016), NbRABG3f may deliver the materials required for BaMV
replication to the chloroplasts, and chl-PGK may bind BaMV
RNA and direct the BaMV complex to the chloroplast for
replication (Figure 1, lower).

Although the transportation pathway for chloroplast-
targeting proteins to the chloroplast is not completely clear,
to date, several pathways have been proposed for proteins
transported to the chloroplasts after translation (Radhamony
and Theg, 2006; Shi and Theg, 2013). Most chloroplast proteins
contain an N-terminal cleavable transit peptide that mediates the
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FIGURE 1 | A possible model for BaMV intracellular movement to the chloroplasts. In the normal membrane-trafficking pathway, NbRABG3f-associated
vesicles bud from Golgi compartment. There are two possible pathways that NbRABG3f and chl-PGK may participate in delivering of BaMV cargoes to the
chloroplasts. (1) When BaMV infects the cells, it may hijack the NbRABG3f-associated vesicles and redirect the vesicles to the chloroplast which is one of its
replication compartments. During the transportation to the chloroplasts, chl-PGK is recruited to the BaMV complex and targets BaMV complex to the chloroplasts
stroma (Upper). (2) Alternatively, NbRABG3f-associated vesicles may deliver materials required for BaMV replication to the chloroplasts and chl-PGK binds to BaMV
viral RNA and targets it to the chloroplast stroma for replication (Lower).

targeting of the protein to the chloroplasts (Shi and Theg, 2013).
N. benthamiana chl-PGK also contains a putative N-terminal
transit peptide (Cheng et al., 2013a), indicating that it can be
transported from the ER to the chloroplast stroma, and that such
transport is directed by the N-terminal transit peptide. Whether
chl-PGK is recruited to the NbRABG3f-associated vesicle or
these two host proteins are involved in separate steps of BaMV
transportation is an interesting question that remains to be
explored. Future studies should investigate whether chl-PGK
interacts with NbRABG3f or NbRABG3f-associated vesicles
during the transportation process.

A HOST FACTOR POSSIBLY INVOLVED
IN BaMV VESICLE TRAFFICKING TO THE
PLASMODESMATA FOR
INTERCELLULAR MOVEMENT

After the replication of plant viruses, virion or virus
ribonucleoprotein (vRNP) facilitates their intercellular
movement through the plasmodesmata. Unlike PVX, which
moves intercellularly as vRNP, BaMV is likely to move as a virion
associated with TGBp2 and TGBp3-based ER membrane (Chou
et al., 2013). Several BaMV viral proteins and N. benthamiana
host factors have been demonstrated to facilitate the intercellular
movement, but not the replication, of BaMV (Cheng et al.,
2013b; Huang et al., 2013; Hung et al., 2014). A recent, thorough
review of the intercellular movement of BaMV hypothesizes the
possible roles of the viral and host proteins in the intercellular
movement of BaMV (Liou et al., 2015). Among the host proteins
involved in the intercellular movement of BaMV, NbRabGAP1,

a Rab-GTPase activation protein, has been identified through
cDNA-AFLP analysis, and its expression is upregulated after
BaMV inoculation (Huang et al., 2013). RabGAP contains the
TBC (Tre2/Bub2/Cdc16) catalytic domain that can promote
GTP hydrolysis and thus inactivates Rab proteins (Frasa et al.,
2012). Rab proteins participate in the regulation of vesicle
formation and trafficking in the endomembrane system. In the
study of NbRabGAP1, low NbRabGAP1 expression reduced
BaMV accumulation in N. benthamiana leaves, but not in
protoplasts, whereas overexpression of NbRabGAP1 exerted the
opposite effect. Based on these results, it is hypothesized that
NbRabGAP1 is involved in the delivery of the BaMV/BaMV-
related cargo from the virus replication complex to neighboring
cells (Huang et al., 2013; Liou et al., 2015). An attempt to
examine the interaction between NbRabGAP1 and NbRABG3f
was unsuccessful (unpublished data). This outcome was expected
because NbRabG3f participates in BaMV replication, whereas
NbRabGAP1 assists in the intercellular movement of BaMV.
Similar to PVX, the BaMV movement proteins TGBp2 and
TGBp3 are ER-targeting membrane proteins (Hsu et al., 2008).
The BaMV infectious complex has been proposed to move
from perinuclear ER-derived membrane-bound bodies (MBB)
to the plasmodesmata (Wu et al., 2011; Liou et al., 2015).
After BaMV replication, NbRabGAP1 possibly participates in
the delivery of BaMV cargoes with an unknown Rab protein
toward the plasmodesmata through ER and post-ER secretory
pathways. Alternatively, NbRabGAP1 may recycle the BaMV
movement proteins from plasmodesmata to assist in the next
round of BaMV transportation (Huang et al., 2013). However,
the connection between chloroplasts and the MBB requires
further investigation to unveil the intracellular route after BaMV
replication.
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Studies in PVX have indicated that its TGB2/3 movement
proteins induce ER-derived granular vesicles, which are essential
for PVX cell-to-cell movement (Ju et al., 2007); therefore,
the PVX movement complex may be transported through
these vesicles to plasmodesmata (Verchot-Lubicz et al., 2010).
Accordingly, as yet unidentified host factors may be present that
function as Rab or RabGAP proteins to facilitate PVX movement.

The kinases CK2 and NbSTKL are other host factors also
involved in the cell-to-cell movement of BaMV (Cheng et al.,
2013b; Hung et al., 2014). Knowledge on host factors that affect
the intercellular movement of potexviruses have been reviewed
recently (Park et al., 2014; Liou et al., 2015). Their functions in
assisting BaMV or other potexvirus movement have also been
discussed in a recent review, which reported that they might not
directly participate in the transportation of BaMV cargoes (Liou
et al., 2015). Therefore, they are not included in this review.

SUMMARY

In this review, I summarized the host factors that participate in
membrane trafficking and a specific chloroplast targeting protein
that may participate in BaMV transportation within the cells.
A possible model was proposed to demonstrate how BaMV
is delivered to its replication compartment. One of the host
factors, NbRABG3f, is a small GTPase that mediates vesicle
trafficking and is derived from the Golgi compartment. Both
GTPase activity and membrane-targeting ability are essential
for BaMV replication. Another host protein, chl-PGK, is a

chloroplast-targeting protein, and its targeting ability is required
for BaMV replication. Therefore, NbRABG3f and chl-PGK may
play roles in delivering BaMV and its related complex to
chloroplasts, which are a type of BaMV replication compartment.
After completing replication, BaMV cargoes are delivered to
the plasmodesmata for intercellular movement. NbRabGAP1,
a Rab-associated protein, is not involved in BaMV replication
but participates in its intercellular movement. Accordingly,
NbRabGAP1 may be involved in the intracellular transport of the
BaMV complex to the plasmodesmata after BaMV replication.
Additional studies on dissecting the co-localization or interaction
between BaMV and other vesicle proteins are required to clarify
the intracellular movement pathway for BaMV.
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Satellite RNAs (satRNAs) are sub-viral agents that may interact with their cognate helper
virus (HV) and host plant synergistically and/or antagonistically. SatRNAs totally depend
on the HV for replication, so satRNAs and HV usually evolve similar secondary or tertiary
RNA structures that are recognized by a replication complex, although satRNAs and HV
do not share an appreciable sequence homology. The satRNAs of Bamboo mosaic virus
(satBaMV), the only satRNAs of the genus Potexvirus, have become one of the models
of how satRNAs can modulate HV replication and virus-induced symptoms. In this
review, we summarize the molecular mechanisms underlying the interaction of interfering
satBaMV and BaMV. Like other satRNAs, satBaMV mimics the secondary structures of
5′- and 3′-untranslated regions (UTRs) of BaMV as a molecular pretender. However,
a conserved apical hairpin stem loop (AHSL) in the 5′-UTR of satBaMV was found
as the key determinant for downregulating BaMV replication. In particular, two unique
nucleotides (C60 and C83) in the AHSL of satBaMVs determine the satBaMV interference
ability by competing for the replication machinery. Thus, transgenic plants expressing
interfering satBaMV could confer resistance to BaMV, and interfering satBaMV could be
used as biological-control agent. Unlike two major anti-viral mechanisms, RNA silencing
and salicylic acid-mediated immunity, our findings in plants by in vivo competition
assay and RNA deep sequencing suggested replication competition is involved in this
transgenic satBaMV-mediated BaMV interference. We propose how a single nucleotide
of satBaMV can make a great change in BaMV pathogenicity and the underlying
mechanism.

Keywords: interfereing, satellite RNA, BaMV, competition, RNA silencing

INTRODUCTION

Satellite RNAs (satRNAs) are short RNA molecules that share no or little sequence homology
to their cognate helper virus (HV) but totally depend on the HV for replication, encapsidation
and efficient movement (Hu et al., 2009; Briddon et al., 2012). The homology sequence between
satRNAs and their HVs often resides at the 5′ and 3′ regions. Usually conserved secondary structure
functions such as the cis-acting element are essential for replicase recognition acting as mimicry of
molecular pretenders at the 5′ and 3′ regions. SatRNA mimicry is mostly conserved in higher-order
RNA structures. As well, satRNAs may adopt different mimicry at different stages of virus infection
such as replication and translation (Huang et al., 2010).

Satellite RNAs have attracted great interest in the past decades because they can modulate
symptoms caused by their HVs (Palukaitis, 1988; Li and Simon, 1990; Collmer and Howell,
1992; Hsu et al., 1998), alter HV RNA accumulation (Buzayan et al., 1986; Gal-On et al., 1995;
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Hsu et al., 1998), enhance HV movement (Zhang and Simon,
2003; Simon et al., 2004) and in at least one case, affect
the infection cycle of their HV, for example, during insect
transmission (Robinson et al., 1999; Taliansky et al., 2000).
One of the most fascinating characteristics of satRNAs is
their interference ability. There are many cases of symptom-
attenuating satRNAs, such as satRNAs of isolates of the species
Bamboo mosaic virus (BaMV), Cucumber mosaic virus (CMV),
Peanut stunt virus (PSV), Grapevine fanleaf virus, Artichoke
mottled crinkle virus, Cymbidium ringspot virus (CymRSV),
Tobacco ringspot virus (TobRSV), and Groundnut rosette virus
(GRV) (Roossinck et al., 1992; Simon et al., 2004).

Satellite RNAs of BaMV (satBaMVs) are well studied.
Natural isolates of satBaMVs have been collected from BaMV-
infected symptomatic bamboo plants worldwide to analyze the
genetic evolution and phylogeny of satBaMVs (Liu et al., 1997;
Wang et al., 2014). The mimicry of satBaMVs among the
5′- and 3′-untranslated regions (UTRs) have been investigated
thoroughly (Annamalai et al., 2003; Huang et al., 2009), and
the biological function of satBaMV-encoded protein elucidated
its role in satBaMV replication (Lin et al., 1996), movement
(Vijayapalani et al., 2006, 2012; Chang et al., 2016) and
interference in BaMV replication (Hsu et al., 2006).

In this review, we focus on studies of interfering satBaMVs
and a possible mechanism of satBaMVs interfering in BaMV
infection.

BAMV AND ITS ASSOCIATED SATBAMVS

Bamboo mosaic virus is a single-stranded positive-sense RNA
virus containing five open reading frames (ORFs) that belongs
to the genus Potexvirus of the family Alphaflexiviridae (Lin
et al., 1994). ORF1 encodes a replicase-related protein with three
functional domains for BaMV replication: methyltransferase (Li
et al., 2001a; Huang et al., 2004), helicase (Li et al., 2001b)
and RNA-dependent RNA polymerase (RdRp) (Li et al., 1998).
ORF2 to four encode triple gene block proteins, which are three
overlapping proteins essential for BaMV movement (Wung et al.,
1999; Lin et al., 2004, 2006). ORF5 encodes a coat protein (CP) for
BaMV encapsidation, movement (Lee et al., 2011) and symptom
formation (Lan et al., 2010) (Figure 1A).

Bamboo mosaic virus causes mosaic symptoms on infected
bamboo leaves and infects at least 13 economically important
bamboo species in Taiwan (Lin et al., 1993). In BaMV-infected
bamboo, small single-stranded positive-sense RNA molecules
that share no sequence homology with BaMV but replicate and
encapsidate associated BaMV are defined as satBaMVs (Lin
and Hsu, 1994). SatBaMV is the only potexvirus-associated
satRNA. It is a 836-nt linear RNA molecule that encodes a
20-kDa non-structural protein (P20) flanked by a 159-nt 5′-UTR
and 125-nt 3′-UTR (Lin and Hsu, 1994; Figure 1A). P20 is
not essential for satBaMV replication (Lin et al., 1996), but it
preferentially binds to satBaMV RNA (Tsai et al., 1999). However,
P20 is necessary for satBaMV long-distance transport in BaMV–
co-infected Nicotiana benthamiana (Vijayapalani et al., 2006,
2012; Chang et al., 2016). In the absence of BaMV, satBaMV RNA

could undergo autonomous long-distance movement in planta
(Chang et al., 2016).

Three phylogenetic satBaMV groups were classified from
natural satBaMV isolates derived from 10 infected bamboo
species in different locations of Taiwan, Hainan Island of China
and Delhi, India (Liu et al., 1997; Yeh et al., 2004; Wang et al.,
2014). Clade I contains all other satBaMVs except most of those
isolated from Ma bamboo (Dendrocalamus latiflorus Munro) and
all populations from Bambusa vulgaris. All satBaMVs in clades
II and III are derived almost entirely from Ma bamboo from
the Taipei Botanical Garden in Taiwan and B. vulgaris in India,
respectively (Wang et al., 2014).

Sequence analysis of satBaMV isolates showed a hypervariable
region with the greatest sequence variation in the satBaMV
5′-UTR but a conserved secondary RNA structure (Yeh et al.,
2004). SatBaMV is totally dependent on BaMV for replication
and encapsidation (Lin and Hsu, 1994). Therefore, 5′- and
3′-UTRs of satBaMV evolved similar RNA secondary structures
and functional RNA elements with BaMV to recruit the RdRp
encoded by BaMV for replication. These features include
GAAA(A) repeats at the 5′-UTR and conserved hexanucleotides
(ACCUAA) and polyadenylation signals (AAUAAA) at the
3′-UTR (Lin and Hsu, 1994; Lin et al., 1994). As well, the
secondary structures of the satBaMV 3′-UTR contain two small
stem-loops (SLA and SLB) and one large stem-loop (SLC) that
are similar to the domains B, C, and D of the BaMV 3′-UTR,
respectively (Cheng and Tsai, 1999; Huang et al., 2009). One of
the alluring properties of satBaMVs is that some natural satBaMV
isolates feature antagonistic ability against BaMV replication
(Hsu et al., 1998, 2006). However, interfering satBaMVs isolated
from different bamboo species and locations are not grouped in
the same phylogenetic clades (Yeh et al., 2004). The mechanisms
underlying satRNA-mediated HV interference is fascinating, but
most cases have not been clearly demonstrated.

THE DETERMINANT OF SATBAMV
INTERFERENCE RESIDES IN THE 5′-UTR
APICAL HAIRPIN STEM LOOP (AHSL)

Two satBaMV isolates, BSF4 and BSL6, exhibit different
phenotypes in N. benthamiana co-infected with BaMV and
satBaMV (Hsu et al., 1998). Attenuated BaMV-induced
symptoms were found associated with reduced BaMV level (Hsu
et al., 1998). The sequence of the BSF4 and BSL6 5′-UTR shares
92% identity, with only 13 mismatches (Figure 1B), but the
secondary structures greatly differed, as revealed by enzymatic
probing with RNases A, T1, T2, and V1. The secondary structures
of the non-interfering BSF4 5′-UTR contain a large stem loop
(LSL) and a small stem loop (SSL) (Figure 1C; Annamalai
et al., 2003), whereas the interfering BSL6 5′-UTR contains
five SSLs (Figure 1D; Chen et al., 2007). However, the 5′-UTR
hypervariable region of both BSF4 (in LSL) and BSL6 (SSL-III)
features a conserved apical hairpin stem loop (AHSL) structure
including two internal loops (ILs; IL-1 and I-2) (Figures 1C,D;
Annamalai et al., 2003; Chen et al., 2007). In silico secondary
structure prediction of the 5′-UTR of natural satBaMV isolates
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FIGURE 1 | Genome map of satellite Bamboo mosaic virus (satBaMV) and BaMV (A), sequence alignment of BaMV, BSF4, and BSL6 5′-UTR (B) and
secondary structures of 5′-UTR of satBaMV, BSF4 (C) and BSL6 (D) and 5′-termini of BaMV (E) and their derived mutants. ∗ indicates identical nucleotide. Different
nucleotides between BSF4 and BSL6 sequence are marked by gray shade. The apical hairpin stem loop (AHSL) structures of satBaMV and BaMV are boxed, and all
contain an apical stem loop (ASL) and two internal loops (IL-1 and IL-2). The common GAAA(A) repeats in the 5′-UTRs are indicated. The AUG sequence indicates
the start codon of the BaMV open reading frame 1 (ORF1). Green and red indicate the non-interfering and interfering type. LSL, large stem loop; SSL, small stem
loop.
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by MFOLD revealed that most of the analyzed satBaMV isolates
retained an identical AHSL structure despite their grouping
into different phylogenetic clades (Yeh et al., 2004). Moreover,
the RNA sequence in the AHSL region of BSF4 and BSL6 is
interchangeable, and chimeric satBaMVs can replicate to a
similar level as BSF4 and BSL6 when co-infected with BaMV in
N. benthamiana protoplasts, so maintaining a conserved AHSL
structure but not the sequence itself is essential for satBaMV
replication (Yeh et al., 2004).

To elucidate the determinant of BSL6 interference of both
BaMV-induced symptoms and BaMV level, chimeric satBaMV
mutants with different combinations of BSF4 and BSL6 between
the 5′-UTR, most coding regions of P20 and the 3′-UTR were
investigated. All mutants containing the 5′-UTR of BSL6 could
reduce BaMV level in both positive (+) and negative (−) strands
without altering satBaMV level in N. benthamiana protoplasts
and caused symptomless infection in N. benthamiana plants
(Hsu et al., 2006). Moreover, both a BSL6 mutant expressing the
truncated form of P20 and a frameshift mutant could reduce
BaMV level, so P20 is not required for BSL6-mediated BaMV
interference (Hsu et al., 2006). Furthermore, the BSL6 5′ UTR
alone was sufficient to interfere with (+)- and (−)-strand BaMV
level and BaMV-caused symptoms when expressed in a BaMV
vector driven by a sub-genomic promoter in Chenopodium
quinoa (Hsu et al., 2006). Thus, the BSL6 5′-UTR is the
determinant of the interference in BaMV replication and the
interference is independent of P20 translation.

On further analyzing the RNA secondary structure of natural
satBaMV isolates, an identical AHSL structure was found shared
by all natural interfering satBaMVs. SatBaMV mutants that swap
the AHSL region of BSF4 and BSL6 revealed that the AHSL
in the 5′-UTR is the determinant of satBaMV-mediated BaMV
interference (Hsu et al., 2006). To further clarify whether the
structure or sequence of AHSL is more important for BSL6-
mediated interference, BSL6-derived mutants with disrupted
AHSL structure or only sequence substitution were used to test
BaMV interference. On co-inoculation with BaMV, all mutants
with disrupted AHSL structure lost the ability to reduce BaMV
level. Moreover, an identical AHSL structure with the sequence
(81UGC83) in IL-1 was found in all natural interfering satBaMVs,
whereas a less-conserved AHSL structure or identical AHSL
structure but with different sequence (81UGU83) in IL-1 was
found in non-interfering satBaMVs (Chen et al., 2007). Further
analysis revealed that only one nucleotide substitution in U82 to
C82 or C83 to U83 of BSF4 or BSL6, respectively, could change
the phenotype (Chen et al., 2007). Another nucleotide C60 in
IL-2 was also essential for BSL6-mediated interference. BSL6
C60U no longer reduced BaMV level (Chen et al., 2007). Thus,
both the AHSL structure and two nucleotides C60 in IL-2 and
C83 in IL-1 are essential for BSL6-mediated BaMV interference
(Figures 1C,D).

Different hosts also feature a one-nucleotide substitution
altering satRNA-induced symptoms or their ability to modulate
HV-induced symptoms. With CMV in tomato, C215, C286 and
A330 of WLM2-satCMV could independently affect necrosis
induction with different CMV strains (Wu and Kaper, 1992; Sleat
et al., 1994), and the satCMV Y-strain nucleotide 185/186 caused

yellow mosaic symptoms in tobacco (Jaegle et al., 1990). For the
PSV system, U226 and C262 determine symptom attenuation of
PSV G-satRNA in tobacco (Naidu et al., 1992). These examples all
imply that the pathogenicity of satRNAs result from the complex
interaction between the host, HV and satRNAs.

However, only an approximate idea was proposed for the
altered RNA secondary or tertiary structure being essential
for necrosis induction of WLM2-satCMV caused by a single
nucleotide change (Sleat et al., 1994). How a single nucleotide
of satBaMV results in such a great change in the interference of
BaMV-induced symptoms and BaMV replication is a fascinating
mystery that remains to be solved.

CONSERVED SECONDARY
STRUCTURES IN THE 5′-UTR OF BAMV
AND SATBAMV ARE INVOLVED IN
COMPETITION FOR REPLICATION
COMPLEXES

Because of the HV RdRp-dependent replication of satRNAs,
competition for viral RdRp between satRNAs and HV was
the first hypothesized and demonstrated as a mechanism
for CMV and satCMV (Wu and Kaper, 1995). However,
the authors used in vitro replication assay, which may not
reflect the complex interaction between CMV and satCMV
in co-infected plants (Wu and Kaper, 1995). Although many
satRNAs reduce HV accumulation, no further studies have
implied RdRp competition as the determinants of satRNAs-
mediated interference. In contrast, a more complete analysis
of the conserved secondary structure of BaMV and satBaMV
implied that replication complex competition could be the major
mechanism of satBaMV-reduced BaMV level.

First, interfering satBaMV is dominant among progeny
populations in protoplasts with mixed-infected BaMV and
non-interfering satBaMV (Chen et al., 2012). In addition,
an in vivo replication system revealed that the replication
efficiency is higher for BSL6 than BSF4 when the two are
individually supported by abundant BaMV ORF1-encoded RdRp
for replication in N. benthamiana protoplasts (Chen et al., 2012).
Hence, replication is more competent with interfering satBaMV
than BaMV and non-interfering satBaMV.

Both BaMV and satBaMV depend on BaMV RdRp for
replication, so whether BaMV contains a similar AHSL structure
in the 5′-UTR is of interest. The 5′-UTR RNA secondary
structures of all natural BaMV isolates were analyzed by MFOLD
but showed no secondary structure because of a highly repetitive
sequence. The conserved AHSL in LSL was found only when the
sequence extended to the ORF1 region (1-173 nt) (Figure 1E;
Chen et al., 2012). This secondary structure of BaMV-S was
confirmed by enzyme probing (Chen et al., 2010). As predicted,
all analyzed BaMV isolates showed an identical AHSL structure
with C86 in IL-1 and C64 in IL-2 regardless of whether
satBaMV was associated with their replication or whether the
associated satBaMV was interfering or non-interfering (Chen
et al., 2012). The C60 in IL-2 and C83 in IL-1 of BSL6
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(corresponding nucleotide C86 in IL-1 and C64 in IL-2 of
BaMV) are essential for satBaMV-mediated BaMV interference
(Figure 1D; Chen et al., 2007) and also important for BaMV
replication (Chen et al., 2012). The BaMV-C86U mutant lost
replication ability in N. benthamiana protoplasts and C. quinoa.
The replication efficiency was reduced with BaMV-C64U–mutant
infection as compared with BaMV infection alone. Thus, BaMV
C86 is essential and C64 is important for BaMV replication.
Furthermore, non-interfering satBaMV BSF4 could reduce the
number of local lesions and BaMV-C64U level on co-infection in
C. quinoa, so BSF4 may be more competent than BaMV-C64U for
replication. In addition, increased level of BaMV was associated
with reduced BSL6 level in the mixed inoculum (Chen et al.,
2012). These results demonstrate that satBaMVs interfere with
BaMV replication in a dose-dependent manner via replication
complex competition.

TRILATERAL INTERACTION AMONG
BAMV, SATBAMV AND HOST PLANTS:
POSSIBLE INVOLVEMENT OF RNA
SILENCING IN SATBAMV-MEDIATED
BAMV INTERFERENCE

Interfering satRNAs attenuating HV-caused symptoms and
reducing the HV level are complex interactions between the host
plant, HV and satRNAs. However, the model of competition
for replication complexes explains the interaction between only
the HV and satRNAs. No other mechanisms were proposed and
proven until large studies of RNA silencing and the generation
of a large amount of next-generation sequence data from
virus-infected samples. These “big” data reveal the trilateral
interactions of host, HV and satRNAs. For example, small RNAs
(sRNAs) of satRNAs (sat-sRNAs) can target HV and induce
silencing of HV for CMV (Zhu et al., 2011); the satCMV
of SD-CMV can reduce level of RNA-4A, which encodes the
viral suppressor of RNA silencing 2b (VSR2b) protein, thereby
diminishing the viral counter-defense strength by host immunity
(Hou et al., 2011). In addition, Y satRNAs (Y-sat) of CMV can
interfere in the function of VSRs by saturating the sRNA binding
capacity of VSR (Shen et al., 2015). All this evidence shows that
satRNAs take advantage of the host defense system and RNA
silencing to interfere in HV replication.

RNA silencing is the major antiviral defense mechanism
operating in a sequence-specific manner in plants (Ding, 2010).
In general, double-stranded RNA formed during virus replication
or the highly structured viral RNA can trigger RNA silencing by
recognizing and dicing into 20- to 24-nt viral sRNAs (vsRNAs) by
RNase III-like proteins, Dicer-like (DCLs) (Blevins et al., 2006).
These vsRNAs are then recruited by ARGONAUTE proteins
(AGOs) (Mallory and Vaucheret, 2010) and target the viral RNA
or host genes with a complementary sequence. The viral RNAs or
target genes would be cleaved and silenced by vsRNAs via RNA
degradation. However, viruses also evolve to have the counter-
defense mechanism by encoding a VSR. VSRs suppress RNA
silencing by four major mechanisms. The most straight-forward

and common way is by binding sRNAs. Second, they prevent
the recognition and dicing of viral RNA by inhibiting DCLs.
Third, they prevent the assembly of the RNA-induced silencing
complex by targeting its components, such as AGOs. Finally,
they inhibit the amplification of antiviral signals by interacting
with RdRp or its interacting complexes (Burgyan and Havelda,
2011).

Satellite RNAs are both inducers and targets of RNA silencing.
Highly structured satRNAs or satRNA-replication intermediate
double-stranded RNAs induce RNA silencing and produce
sat-sRNAs (Du et al., 2007; Lin et al., 2010). These sat-sRNAs can
direct RNA cleavage of host genes (Shimura et al., 2011; Smith
et al., 2011) or the HV genome (Zhu et al., 2011) and cause DNA
methylation of host genes (Wang et al., 2001). However, unlike
the HV, no satRNA encoded proteins were reported as VSRs.
How interfering satBaMV manipulates the host RNA silencing
immune system to reduce HV replication remains largely
unknown, although strategies mediated by different satCMVs
have been reported (Moriones et al., 1992; Hou et al., 2011; Shen
et al., 2015). From small-RNA sequencing data, BaMV-derived
sRNA (BaMV-sRNA) levels were not increased in BaMV and
BSL6 co-infected samples, and no specific satBaMV-sRNAs of
BSL6 could target BaMV genome (Lin et al., 2010). Although
the 5′-UTR of BaMV contains a stretch of homologous sequence
from nucleotides 1 to 30 (Figure 1B), BaMV-sRNAs and
satBaMV-sRNAs of BSF4 and BSL6 generated from this region
are extremely low in number (Lin et al., 2010). The sRNA
hotspots within the 5′-UTR of BaMV and BSF4 located in the
region from nucleotides 80 to 120 formed SLB and SLC and one
strand of the stem region of SLC (Lin et al., 2010). Hence, RNA
silencing may not be directly involved in satBaMV-mediated
reduction in BaMV infection.

APPLICATION OF INTERFERING
SATBAMV IN BAMV RESISTANCE

Bamboo mosaic virus infects more than 90% of bamboo plants
with pachymorph rhizomes in Taiwan, which results in great
economic loss (Lin and Chen, 1991; Lin et al., 1993). Because
bamboo is usually vegetatively propagated, the use of indexed,
non-infected bamboo generated from meristem tip culture as
propagation materials would greatly improve BaMV disease
control (Hsu et al., 2000). However, BaMV spread may be
through unknown vectors, mechanical injury or contaminated
tools used for propagation or harvesting. How to eliminate BaMV
infection in healthy plants in the field is critical. One of the
promising strategies is the use of virus-resistant cultivars.

Because satRNAs can attenuate HV-induced symptoms
and/or reduce HV replication, they are good candidates as
biological-control agents. In the late 1980s, satCMV transgenic
plants showing CMV resistance were established despite the
underlying mechanism remaining unknown (Harrison et al.,
1987). Interfering satBaMV could attenuate symptoms and
reduce the BaMV level in co-infected plants. Thus, transgenic
plants expressing interfering satBaMV would be a feasible
approach to alleviate infection with BaMV. In transgenic
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N. benthamiana expressing BSL6 satBaMV, two phenotypes
were observed after BaMV infection: one group showed mild
BaMV symptoms, and another group was symptomless (Lin
et al., 2013). Moreover, BSL6 transgenic plants were resistant
to both BaMV viral-RNA and virion infection and with better
resistance to BaMV viral RNA than virion. The transgene, BSL6
replicon, was expressed at a relatively low level in transgenic
lines but was highly induced after BaMV infection. Thus, highly
inducing the transgene only after BaMV infection could avoid
the highly expressed transgene-induced silencing in plant growth
and development. Moreover, BSL6-transgenic plants are highly
resistant whether under attack by BaMV viral RNA or virions.
With all these features, interfering satBaMV-transgenic plants
may be a good option for BaMV disease control.

RNA silencing may not be involved in the mechanism
of satBaMV-mediated BaMV resistance in transgenic plants.
Moreover, the plant innate immune system involving salicylic
acid and jasmonic acid pathways was also not enhanced in
satBaMV-transgenic plants. However, the resistance of satBaMV
transgenic plants to BaMV was associated with the transgene
expression level in transgenic lines under the mock condition.
Non-replication satBaMV transgenic plants could not reduce
BaMV replication (Lin et al., 2013). Thus, competition for
replication complexes with BaMV is the possible mechanism
in BaMV-resistant transgenic plants expressing interfering
satBaMV.

PERSPECTIVES

The AHSL secondary structure and two unique nucleotides (C60

and C83) of satBaMV 5′-UTR are critical for the interfering
satBaMV reducing BaMV level and infection in plants. This
AHSL structure and the critical nucleotide C in IL-1 is conserved
in the BaMV 5′-UTR and also important for replication.
Moreover, interfering satBaMV dose-dependently reduces BaMV
level. Thus, interfering satBaMV-reduced BaMV level competes
for the replication complex.

How a single nucleotide determines the interference ability
of satBaMV deserves further investigation. Here we propose the
possible underlying mechanism.

Long-Distance RNA–RNA interaction
Viral RNAs are four-dimensional because of the complex tertiary
interactions with the host and viral factors in specific viral
infection stages. These long-distance RNA–RNA interactions
control virus replication, translation and sub-genomic RNA
transcription (Miller and White, 2006). Whether C60 in IL-2
and C83 in IL-1 interact with a terminal or internal element
of satBaMV or BaMV critical for BaMV interference remains
unknown. However, a BaMV chimeric mutant expressing the
BSL6 5′-UTR driven by a sub-genomic promoter is sufficient to
reduce both (+) genomic and sub-genomic RNA level without
affecting (−) sub-genomic RNA level. As well, the reduced (+)
genomic RNA level is greater than the (+) sub-genomic RNA
level (Hsu et al., 2006). This result may imply that possible long-
distance RNA–RNA interaction of satRNAs and BaMV affects

only activation or assembly of an RdRp complex competent for
(+)- but not (−)-strand synthesis.

RNA methylation
Another hypothesis for a single nucleotide of satBaMV causing
a great change in interference in BaMV-induced symptoms and
BaMV replication is methylation of this specific nucleotide.
Ribonucleotides are ubiquitously methylated in life at nitrogen,
the oxygen of the 2′OH moiety at fifth-position carbon atoms
in pyrimidine, and second- and eighth-position carbon atoms
in adenosines (Motorin and Helm, 2011). Methylated cytosine
(m5C) is the most privileged. Cytosine can be easily transformed
into uracil via deamination. However, m5C cannot be converted
to uracil. Cellular RNAs containing m5C include transfer RNA
(tRNA), ribosomal RNA, mRNA and non-coding RNA in both
eukaryotes and prokaryotes (Squires et al., 2012; Edelheit et al.,
2013; Hussain et al., 2013; Burgess et al., 2015; Delatte et al.,
2016). Also, m5C was found in some animal viruses (Dubin
and Stollar, 1975; Sommer et al., 1976). M5C is important
for stabilization and Mg2+ binding of tRNA (Basti et al.,
1996; Stuart et al., 2003; Helm, 2006), translation of mRNA
(Strobel and Abelson, 1986) and weakening stimuli to the human
innate immune system (Kariko et al., 2005). In adenovirus-
infected HeLa cells, m5C was found only in adenovirus RNA
(Sommer et al., 1976) but not mRNA (Furuichi et al., 1975;
Salditt-Georgieff et al., 1976). As well, the tRNA-like structure
of an isolate of Turnip yellow mosaic virus injected into
Xenopus oocytes could be methylated at cytosine (Brule et al.,
1998).

How viral RNAs are specifically methylated and the biological
function of m5C in viral RNA needs further study. Here, we
propose two hypotheses. One is that m5C60 and m5C83 may
appropriately and efficiently dock into the active site of key
factors of replication complexes. Alternatively, the methylation
of cytosine in the tRNA-like structure of BaMV 3′-UTR may
be critical for the interaction between replication complexes,
BaMV 5′-UTR and 3′-UTR, and this interaction may be affected
by the interfering satBaMV 5′-UTR during replication, thus
reducing BaMV replication at both the (+)- and (−)-strand
level. Bisulfite sequencing (Schaefer et al., 2009) could be used
to elucidate whether C60 and C83 of satBaMV and C of BaMV
3′-UTR are methylated or not. However, the biological function
of these methylated satBaMVs on BaMV replication is difficult
to prove. A putative methyltransferase was found to interact
with BaMV RdRp and suppress BaMV replication (Cheng
et al., 2009). The involvement of RNA m5C methyltransferases
in satBaMV-mediated BaMV interference is worthy of further
investigation.

Host factors or miRNAs involved
Whether specific host factors are recruited by interfering
satBaMV for interference remains unknown but could be
tested by comparing the protein profiles bound to the 5′-
UTR of BSF4 and BSL6. The specific AHSL-interacting
proteins can be detected by using the 5′-UTR of BSF4
and BSL6 as probes, followed by mass spectrometry
identification.
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Moreover, sRNA sequencing and array analysis revealed that
the plant innate immune system is not involved and RNA
silencing may not be directly involved in the mechanism of
satBaMV-mediated BaMV interference. However, interfering
satBaMV-induced specific microRNAs (miRNAs) or specific
satBaMV-sRNAs may likely target the host gene, which is
important for BaMV replication or essential effectors of the host
innate immune system other than RNA silencing. Thus, the
involvement of RNA silencing in BSL6-mediated interference
remains an open question. It could be evaluated by using
plant mutants defective in key components of RNA silencing
or plants overexpressing VSRs and further analyzing satBaMV-
induced specific satBaMV-sRNAs, miRNAs and other types
of host endogenous small RNAs. The mechanism underlying
interfering satBaMV reducing BaMV level and host symptom

development remains a fascinating question requiring long-term
study.
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Abscisic acid (ABA) is a key hormone involved in tuning responses to several abiotic
stresses and also has remarkable impacts on plant defense against various pathogens.
The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing
or reducing defense responses depending on its time of action. However, ABA
induces different resistance mechanisms to viruses regardless of the induction time.
Recent studies have linked ABA to the antiviral silencing pathway, which interferes
with virus accumulation, and the micro RNA (miRNA) pathway through which ABA
affects the maturation and stability of miRNAs. ABA also induces callose deposition at
plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic
virus (BaMV) is a member of the potexvirus group and is one of the most studied viruses
in terms of the effects of ABA on its accumulation and resistance. In this review, we
summarize how ABA interferes with the accumulation and movement of BaMV and
other viruses. We also highlight aspects of ABA that may have an effect on other types
of resistance and that require further investigation.

Keywords: abscisic acid, plant-virus interactions, defense responses, BaMV

INTRODUCTION

Plants adapt to or tolerate stress through production of specific hormones that are produced at very
low concentrations. One of the classical and well-studied phytohormones is abscisic acid (ABA),
the importance of which is highlighted by its various roles in development (such as seed dormancy,
germination, and floral induction) and stress responses (such as drought, salinity, and pathogen
infection) (Mauch-Mani and Mauch, 2005; Wasilewska et al., 2008; Finkelstein, 2013; Humplik
et al., 2017).

Abscisic acid affects the plant defense response to pathogens of different lifestyles, such as
biotrophs that thrive on a living host without killing it and necrotrophs that cause host death
and thrive on dead matter (Mauch-Mani and Mauch, 2005; Fan et al., 2009; Xu et al., 2013).
However, the effects of ABA are multifaceted, depending on the pathosystem studied and the
timing of induction (Ton et al., 2009). ABA can enhance plant defense if it is triggered at early
stages of infection by closing stomata and inducing callose deposition at cell walls (Ton et al., 2009;
Ellinger et al., 2013). In contrast, if a pathogen is successfully established inside a plant tissue, then
ABA induction can hamper plant defense by antagonizing other hormone pathways such as those
responsible for salicylic acid (SA) or ethylene synthesis (Anderson et al., 2004; Yasuda et al., 2008).

While ABA can both induce and reduce plant defense against fungal and bacterial pathogens,
it appears to only enhance plant antiviral defense as shown for several viruses (Chen et al.,
2013; Alazem et al., 2014; Alazem and Lin, 2015). Two ABA-dependent defense mechanisms
against viruses have been reported in plants, callose deposition at plasmodesmata (PD)
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(Iglesias and Meins, 2000; De Storme and Geelen, 2014) and the
RNA silencing pathway (Alazem and Lin, 2015; Alazem et al.,
2017). In addition, ABA-related recessive resistance has been
reported for two RNA viruses, bamboo mosaic virus (BaMV)
and cucumber mosaic virus (CMV) (Alazem et al., 2014). These
findings have attributed novel antiviral roles to ABA in plants,
and have raised outstanding questions discussed below that
require further investigations.

Bamboo mosaic virus is a positive-sense, single-stranded RNA
virus of the Potexvirus genus (Family Alphaflexiviridae) with a
genomic RNA of 6.4 Kb (Lin et al., 1994). BaMV genome encodes
five open reading frames that translate into a replicase composed
of three domains (a capping enzyme domain, a helicase-like
domain, and an RNA-dependent RNA polymerase domain) (Li
et al., 1998, 2001a,b; Huang et al., 2004), three movement proteins
(Lin et al., 1994, 2004, 2006), and a capsid protein (Lan et al.,
2010).

Since ABA effects on plant antiviral defense have been mostly
studied using BaMV, here we summarize how ABA interferes
with the accumulation, movement, and symptom development
of BaMV and other viruses following infection. We also highlight
several aspects of the ABA signaling pathway that may have
potential effects on other types of antiviral resistance and that
require further investigation.

VIRUS INFECTION INDUCES ABA

Several RNA viruses have been shown to induce drought
tolerance in plants, a phenomenon observed following infection
by CMV, tobacco mosaic virus (TMV) and tobacco rattle virus
(TRV) in different host plants including Nicotiana tabacum,
Beta vulgaris, and Oryza sativa (Xu et al., 2008). Xu et al.
(2008) ascribed this drought tolerance to the increase in the
concentrations of osmoprotectants and antioxidants following
viral infection. However, apart from the effects of osmolytes,
drought tolerance is usually attributed to the increase of ABA
content (Finkelstein, 2013). In fact, the increase of ABA content
in virus-infected hosts has been reported for a number of
compatible interactions (successful infection leading to disease)
such as CMV/Nicotiana benthamiana (Alazem et al., 2014),
BaMV/Arabidopsis thaliana and BaMV/N. benthamiana (Alazem
et al., 2014), and TMV/N. tabacum (Fraser and Whenham, 1989).
However, in some incompatible interactions (successful plant
defense), viral infection does not induce ABA (Kovac et al.,
2009; Baebler et al., 2014). For example, infection by potato
virus Y (PVYNTN) of the resistant potato cultivar Sante, which
harbors the Rysto extreme resistance gene, did not induce ABA.
Instead, jasmonic acid (JA) increased within the first few hours
after PVYNTN infection (Flis et al., 2005; Kovac et al., 2009).
Unaltered ABA content has also been reported for the resistant
potato cultivar Rywal (carrying the R-gene Ny-1) following PVY
infection, and for a resistant tomato cultivar (carrying the R-gene
Tm-1) infected with TMV, although, in this latter case, the tomato
cultivar resistant to TMV contained more ABA than a susceptible
cultivar (Whenham et al., 1986; Baebler et al., 2014). Another
study has shown that infecting resistant soybean (carrying the

R-gene Rsv3) with an avirulent strain (G5H) of soybean mosaic
virus (SMV) resulted in higher ABA content during the first 24 h
of infection. Interestingly, SA was not induced throughout the
time course of the experiment, but was increased late in response
to a virulent SMV strain (G7H) (Seo et al., 2014).

Although viroids represent an interesting class of infectious
entities without encoded proteins, studies on defense responses to
viroids are still preliminary and lack solid conclusions on the roles
of ABA or other hormones. For example, in response to potato
spindle tuber viroid (PSTVd) infection (RG1 severe strain), ABA-
related genes have shown different patterns of expression in
tomato cultivars. Some genes in the ABA biosynthesis pathway
were upregulated, such as the subunit of farnesyl transferase
and the phospholipase D α-1, whereas few components of the
guard cell ABA signaling pathway were downregulated (Owens
et al., 2012). A similar study showed that no ABA or SA genes
were induced following infection with the PSTVd RG1 strain,
but only β-1,3-glucanase was induced at 25 days post-infection
(Itaya et al., 2002). The difference between these two studies
may be attributable to annotation of the tomato genome, which
was not available at the time of the latter study. However, given
the documented effect of ABA on callose accumulation, it can
be speculated that ABA contributes to defense against viroids
through callose. We will discuss the example of chrysanthemum
stunt viroid (CSVd) spread in apical domains in the following
section.

Since SA plays a major role in R-gene-mediated resistance, it
is taken for granted that SA levels are elevated following viral
infections (Baebler et al., 2014; de Ronde et al., 2014). However,
there are some cases where JA or ABA are increased during
early responses, such as of PVYNTN or SMV (Kovac et al., 2009;
Baebler et al., 2014; Seo et al., 2014). In both examples, SA was
induced at later stages of infection. This concurrent induction
of ABA/JA then SA suggests that each hormone contributes
differently to defense. It remains unanswered why hormone
responses in incompatible interactions differ according to the
infecting virus.

Abscisic acid deficiency has been reported to have an
influential role in R-gene-mediated resistance against bacterial
pathogens. For example, high temperature inhibits nuclear
localization of the proteins SNC1 and RSP4, which is required for
resistance against the bacterial pathogen Pseudomonas syringae.
However, when the ABA biosynthesis pathway was impaired,
nuclear localization of both proteins was enhanced regardless
of temperature, leading to temperature-insensitive resistance
against P. syringae (Mang et al., 2012). Since the effect of ABA
was achieved through the biosynthesis pathway (by testing aba1
and aba2 mutants) rather than through ABA signaling (by
testing abi1-1 and abi4-1 mutants), the authors suggested a role
for ABA2 in R-gene-mediated resistance (Mang et al., 2012).
Similar effects of ABA on R-genes that function against viruses
are possible. Some R-genes have previously been shown to be
temperature-sensitive, such as the Rx-gene against potato virus
X (PVX) and the N-gene against TMV, but when plant culture
temperatures were increased from 22 to 28◦C the hypersensitive
response disappeared in infected tobacco and tomato plants
(Samuel, 1931; Whitham et al., 1996; Wang et al., 2009). A recent
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study revealed that the temperature-sensitive Wsm1 gene, which
confers resistance to wheat streak mosaic virus (WSMV) and
triticum mosaic virus (TriMV), and Wsm2 that confers resistance
to WSMV alone, block the systemic movement of both viruses
in wheat at low temperature. Both viruses failed to enter the leaf
sheaths of inoculated leaves at 18◦C (but not at 24◦C), thereby
conferring resistance by impairing their long-distance movement
(Tatineni et al., 2016). Whether or not ABA mediates these effects
has yet to be investigated.

ABA-DEPENDENT CALLOSE
ACCUMULATION IS AN ANTIVIRAL
MECHANISM

Plant viruses move from cell to cell via PD, with specific
viral proteins (mostly movement proteins) modifying PD and
increasing the size exclusion limit (which determines the size
of the molecules traversing PD), thereby allowing the large viral
movement complex to pass through (Fridborg et al., 2003; Lucas,
2006; Su et al., 2010; Heinlein, 2015). Trafficking through PD
can be modulated by the controlled deposition of callose, a
polysaccharide of the class β-1,3-glucan, at the necks of PD
(Iglesias and Meins, 2000; Li et al., 2012b). Callose is a key
component involved in cell fortification, and is found in different
tissues at various developmental stages because it is required for
growth and development. It is encoded by callose synthase (CalS)
genes (or glucan synthase-like [gsl]), a gene family comprising 12
members in Arabidopsis that are involved in producing callose
in different tissues/organelles (Verma and Hong, 2001; Dong
et al., 2008; Ellinger and Voigt, 2014). Callose is also involved
in plant response to biotic stress, with its deposition on the
cell wall and at PD being important for restricting pathogen
progression (Mauch-Mani and Mauch, 2005; Luna et al., 2011;
Ellinger and Voigt, 2014). Among CalS genes, CalS10 (or GSL8)
has been identified as the primary regulator of callose deposition
at PD (Guseman et al., 2010; Ellinger and Voigt, 2014; Han et al.,
2014).

Plants control callose levels by the action of β-1,3-glucanases,
which are hydrolytic enzymes that catalyze cleavage the 1,3-
β-D-glucosidic linkages into single β-1,3-glucan units (Doxey
et al., 2007; De Storme and Geelen, 2014). β-1,3-glucanases
are a diverse group of enzymes of different sizes, structure
and localization (Doxey et al., 2007), and genes encoding these
enzymes (e.g., PR2) are known to be induced during viral
infections, which result in the removal of callose and thereby
facilitates viral trafficking (Rezzonico et al., 1998; Kitajima and
Sato, 1999; Oide et al., 2013).

In contrast, ABA has been shown to suppress expression of
PR2, which allows more callose to accumulate at PD (Rezzonico
et al., 1998) and thereby reduces viral intercellular movement and
spread (Iglesias and Meins, 2000; Heinlein, 2015). The negative
effect of ABA on β-1,3 glucanases suggests that ABA can increase
callose accumulation in different tissues and organelles (PD, cell
wall, phloem sieve plates). In fact, few studies listed below have
shown the link between ABA induction, callose deposition and
restriction of virus movement.

Below, we summarize the findings on the roles of callose in
both compatible and incompatible plant–virus interactions:

Roles of Callose in Compatible
Interactions
Most of the cases reporting a role for ABA in plant defense against
viruses involve compatible interactions. ABA pretreatment has
been shown to reduce levels of different RNA viruses, such
as tobacco necrosis virus (TNV) on Phaseolus vulgaris (Iriti
and Faoro, 2008), TMV on N. tabacum (Whenham et al.,
1986; Fraser and Whenham, 1989), and BaMV on A. thaliana
(Alazem et al., 2014). These works postulated that enhanced
callose deposition at PD could explain the ABA-dependent
resistance, which is supported by the inability of TNV, for
example, to spread in ABA-treated leaves (Iriti and Faoro,
2008).

In compatible interactions, the response of plants to virus
or viroid infections is not strong enough to prevent spread
of the viral agents to other tissues, which is evident from
the levels of defense responses such as ABA, SA, callose and
reactive oxygen species (ROS) (Kovac et al., 2009; Baebler et al.,
2014; Seo et al., 2014; Lopez-Gresa et al., 2016). Considering
that the biosynthesis pathway of ABA (like other hormones
such as SA and JA) takes place in the chloroplast (Finkelstein,
2013), and that certain viruses and viroids interfere with several
machineries in such plastids (Zhao et al., 2016), this might
be the reason why some plants do not produce sufficient
amounts of ABA or callose in response to infection in leaves.
In contrast, callose deposition in meristemic tissues seems to
be more efficient in preventing viroid spread. For instance,
the response of two different Argyranthemum cultivars (Yellow
Empire and Border Dark Red) to infection with chrysanthemum
stunt viroid (CSVd) revealed that less callose was deposited
at PD in the shoot apical meristem (SAM) of Yellow Empire
compared to Border Dark Red, which resulted in the spread
of CSVd to the uppermost cell layers in the apical dome
and the youngest leaf primordia 1 and 2 of Yellow Empire
(Zhang Z. et al., 2015). However, the SAM in the Border Dark
Red cultivar presented more callose particles, which prevented
CSVd from spreading beyond the lower part of the apical
domain and elder leaf primordia (Zhang Z. et al., 2015).
Which factor controls or induces callose deposition in SAM
is unknown. Notably, both cultivars showed disease symptoms
after infection with CSVd, which raises the question of whether
callose deposition at PD occurs in other tissues (such as leaves)
and whether this accumulation affects CSVd movement (Flores,
2016).

Roles of Callose in Incompatible
Interactions
Callose deposition has been documented in resistant soybean
plants (carrying the R-resistance gene) in response to SMV.
This response restricted SMV to the inoculated sites as no
SMV RNA was detected beyond these sites (Li et al., 2012b).
The same study also showed that susceptible soybean plants
infected with SMV could not accumulate callose and, as a
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result, SMV infection spread (Li et al., 2012b). A similar
study showed that another soybean cultivar that possessed
the Rsv3 gene exhibited extreme resistance to SMV (Seo
et al., 2014). This resistance was achieved by a subset of
PP2C-encoding genes that comprise components of the ABA
signaling pathway and that are induced by ABA. Recognition
of SMV’s cylindrical inclusion effector by the cultivar’s Rsv3
protein induced the ABA pathway and activated the PP2Ca3
gene which, in turn, induced callose deposition and conferred
extreme resistance against SMV (Seo et al., 2014). However,
the mechanism linking PP2C proteins and CalS genes (or
their protein products) or β-1,3-glucanases is unknown. Thus,
induction of ABA in some incompatible plant–virus interactions
suggests a role for ABA in innate immunity that needs to
be experimentally validated (Whenham et al., 1986; Melotto
et al., 2008; Kovac et al., 2009; Pacheco et al., 2012; Seo et al.,
2014).

Callose in the Early Antiviral Response:
Is it Controlled by SA or ABA?
Early induction of ABA in some incompatible interactions
supports the hypothesis that ABA plays a role during early
immune responses against some viruses (Whenham et al.,
1986; Melotto et al., 2008; Pacheco et al., 2012; Seo et al.,
2014). However, it remains unclear whether or not callose
deposition at that stage is completely ABA-dependent because
no ABA mutants have been assessed to confirm the role of
ABA-dependent callose deposition in incompatible interactions
(Figure 1A).

In contrast, much more is known about how SA affects
PD and callose. Several reports have shown that SA induces
PD closure and impairs their permeability by increasing the
amount of callose deposited at PD (Wang et al., 2013; Cui and
Lee, 2016). This effect requires the action of plasmodesmata-
located protein 5 (PDLP5), which is dependent on NPR-1
(Wang et al., 2013). PDLP5 controls the expression of CalS1
and CalS8 genes that are responsible for callose synthesis
and deposition at PD in response to SA treatment (Cui and
Lee, 2016). The major gene involved in callose deposition
at PD, CalS10, functions independently of PDLP5 or SA, as
evidenced by the normal plasmodesmal permeability induced
by exogenous SA in the cals10-1 mutant (Cui and Lee,
2016).

Despite the fact that both SA and ABA enhance callose
deposition at PD (Figure 1B), the mechanism regulating this
effect is quite different in each case. While the action of SA
is mediated directly via specific genes (PDLP5, CalS1, and
CalS8), ABA exerts a general indirect effect by transcriptionally
decreasing β-1,3-glucanases that proteins may target all kinds
of callose (Oide et al., 2013; Wang et al., 2013; Cui and Lee,
2016).

It is important to note that, in some cases, ABA does
not lead to more callose deposition and, depending on
growth conditions, its effect on callose deposition can
even be reversed. For example, under conditions of low
light intensity, high sucrose levels and the addition of

FIGURE 1 | Antiviral Roles of ABA and SA in plants. (A) ABA’s documented
roles against viruses in compatible interactions: (i) Enhanced callose
deposition at plasmodesmata (PD). (ii) Positive regulation of several AGO
genes in the sRNA pathway, which reduces BaMV and PVX levels. ABA has
an additional role in non-host resistance against PVX because ABA deficiency
resulted in limited accumulation of AGO2 so that Arabidopsis became
susceptible to PVX accumulation and systemic movement. The role of ABA in
incompatible interactions has not been addressed. However, the effects of
ABA on the callose and sRNA pathway, as well as the increased ABA content
in some incompatible interactions, may suggest a role in such interactions.
(B) The antagonistic pathways SA and ABA positively regulate common
subsets of antiviral resistance mechanisms: callose deposition and sRNA
(half-green half-blue circles). SA controls R-gene resistance, induces
hypersensitive responses (HR), and the accumulation of reactive oxygen
species (ROS) (green circles). SA contributes to the production of siRNAs and
enhances callose deposition during early immune responses in incompatible
interactions. In addition, exogenous application of SA increases plant
tolerance to viruses in compatible interactions, which is supported by the
increased susceptibility in lines with an impaired SA pathway.

Gamborg’s vitamin to growth medium, applications of ABA
have been shown to repress callose deposition (Luna et al.,
2011).

Suppression of Callose-Mediated
Defense
Although ABA reduces the expression of β-1,3-glucanases, which
are responsible for callose degradation, some viroids have evolved
different ways to overcome the potential increase in callose
deposition at PD. For example, PSTVd in tomato benefits
from the activation of the small RNA (sRNA) pathway that
produces sRNAs derived from the virulence modulating region
of PSTVd. These viroid-derived sRNAs target the CalS11-like
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and CalS12-like genes to interfere with callose synthase mRNA
levels. However, their roles in callose accumulation at PD in
tomato plants is unknown (Adkar-Purushothama et al., 2015a).
In addition, some viruses recruit host factors that help degrade
or remove callose from PD such as TAG4.4/SAG2.3, AtBG_ppap
(a beta-glucanase), ANK/TIP1-3, or others, so that callose
does not hinder viral intercellular trafficking (Burch-Smith and
Zambryski, 2016).

Several gaps remain in our knowledge of the roles of
the antagonistic ABA and SA pathways in callose-mediated
restriction of virus spread in incompatible interactions. Some
studies addressed the roles of either hormone in incompatible
interactions and callose deposition (Figure 1B). However, since
both hormones appear to affect callose levels, a study that jointly
tests the effects of both hormones on β-1,3-glucanase and CalS
genes and proteins, and consequent callose accumulation at PD
or cell walls, would greatly clarify how cells react early to infection
and induce defense responses.

ABA-DEPENDENT ANTIVIRAL DEFENSE
THROUGH RNA SILENCING PATHWAYS

Because sRNAs are repressors of gene expression, their
mechanism of action is referred as RNA silencing, gene
silencing, or RNA interference (Vaucheret, 2006). RNA silencing
occurs on two levels; transcriptional gene silencing, and RNA
degradation [or post-transcriptional gene silencing (PTGS)],
which correlates with the accumulation of short-interference
small RNAs (siRNAs) (Vaucheret, 2006). siRNAs are loaded
into the RNA-Induced Silencing Complex (RISC) and guide
Argonaute (AGO) proteins (the key player in RISC) to cleave
or inactivate RNAs derived from transposons, viral-, trans-,
or endogenous- genes leading to their degradation (Vaucheret,
2006; Chapman and Carrington, 2007). In Arabidopsis, the
backbone of the RNA silencing pathway consists of proteins
from three families: (1) The Dicer-Like (DCL) family, which
comprises four genes (DCL1, DCL2, DCL3, and DCL4). (2)
The AGO family, which comprises of 10 functional members
(From AGO1 to AGO10, with a pseudo AGO8) (Takeda et al.,
2008; Mallory and Vaucheret, 2010; Seo et al., 2013). (3) The
RNA-directed RNA polymerase (RDR)s family, which comprises
three functional genes; RDR1, RDR2, and RDR6. The antiviral
RNA silencing pathway is PTGS-based, and several genes in
the DCL, AGO, and RDR families appear to have redundancy
in their function against invading viruses (Vaucheret, 2008;
Garcia-Ruiz et al., 2010, 2015; Pelaez and Sanchez, 2013; Seo
et al., 2013). While siRNAs, which are derived from viruses,
transgenes or from a subset of endogenous genes, are cis-acting
siRNAs and therefore their action is termed as autosilencing,
micro-RNAs (miRNA) originate from distinct genes, different
from the ones they regulate, with their action referred to as
heterosilencing (Bartel, 2004; Vaucheret, 2006). Viruses have
evolved viral suppressors for RNA silencing (VSR) that enable
them to counteract the antiviral RNA silencing pathway (Li
and Ding, 2006; Burgyan and Havelda, 2011). Generally, VSR
are multifunctional and play vital roles is viruses’ movement,

replication or pathogenesis (Cao et al., 2010; Csorba et al.,
2015). For example, the movement protein “triple gene block
protein 1” in several potexviruses has VSR function along with
its role in virus movement (Senshu et al., 2009; Lim et al.,
2010; Brosseau and Moffett, 2015). Viruses often encode one
VSR that can interfere the RNA silencing pathway at different
steps such as binding dsRNA, preventing siRNA translocation
or RISC assembly, or interacting with AGO proteins and
impairing their silencing function (Li and Ding, 2006; Jin
and Zhu, 2010; Burgyan and Havelda, 2011; Kenesi et al.,
2017).

Until very recently, ABA-dependent callose deposition at PD
was the only documented link between ABA and resistance to
viruses. However, a recently revealed connection between ABA
and the RNA silencing pathway has added another role for
ABA in resistance to viruses (Alazem and Lin, 2015; Alazem
et al., 2017). ABA-dependent defense against BaMV and PVX in
Arabidopsis, for example, is mainly achieved through the RNA
silencing pathway, not through callose deposition at PD (Jaubert
et al., 2011; Alazem et al., 2017).

Role of ABA in Endogenous sRNA
Pathways
Expanding evidence has attributed a regulatory role for ABA
in sRNA pathways, such as the siRNA and miRNA pathways.
Previous works reported that ABA is required for stabilization
of Cap binding proteins (CBP) 20 and 80 in a post-translational
mechanism (Kim et al., 2008). These two proteins function in
the formation of pre-miRNA transcripts and facilitate splicing
during miRNA biogenesis. In addition, cbp20 and cbp80 mutants
render plants hypersensitive to ABA. It is known that CBP20
is a negative regulator of ABA-dependent drought tolerance,
and mutation of this gene renders plants tolerant to drought
(Papp et al., 2004; Kim et al., 2008; Kuhn et al., 2008). Similarly,
CBP80 downregulation in potato reduced miR159 levels, thereby
allowing accumulation of the miR159-target genes MYB33 and
101 and consequently increasing drought tolerance (Pieczynski
et al., 2013). In fact, mutants of several components of the
miRNA pathway such as hyponastic leaves 1 (HYL1), HUA
enhancer 1 (HEN1) or DCL1 also exhibit hypersensitivity to
ABA (Lu and Fedoroff, 2000; Zhang et al., 2008). Other mutants
have shown ABA supersensitivity such as dcl2, dcl3, dcl4 and
their corresponding triple mutant. Expression of ABA-responsive
genes such as RD22 and ABF3 was significantly increased in
all dcl mutants. The mutants dcl2, dcl3 and dcl4, but not dcl1,
showed increased levels of ABI3, ABI4, and ABI5 gene products
(Zhang et al., 2008). Of note, abi3-1 and abi4-1 increased plant
susceptibility to BaMV infection, but the genes regulated by
these factors are still unknown (Alazem et al., 2014). Actually,
several works have indicated that abiotic stresses such as drought,
salinity, or cold stress (all of which are partially regulated by
ABA) induce genes in the DCL and RDR families in tomato,
maize and Populus trichocarpa (Qian et al., 2011; Bai et al., 2012;
Zhao et al., 2015). The direct effect of ABA on the expression
of DCLs or RDR is exemplified by the increased expression of
RDR1 in A. thaliana and of all RDRs in O. sativa, but only RDR6
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was responsible for persistent ABA post-transcriptional control
of gene silencing in O. sativa (Yang et al., 2008; Hunter et al.,
2013).

Antiviral Role of ABA through Regulation
of AGOs
Argonaute proteins are integral players in all sRNA pathways
in plants and animals, comprising a family of 10 members
in Arabidopsis (Carbonell, 2017). By associating with different
sRNAs, they regulate the expression of many genes and thereby
control several aspects of growth, development and resistance
to viruses (Vaucheret, 2008; Carbonell and Carrington, 2015;
Zhang H. et al., 2015). All AGOs have been reported to
reduce levels of different viruses, with variations in efficiency
probably due to the effects of VSRs (Brosseau and Moffett,
2015; Carbonell and Carrington, 2015; Brosseau et al., 2016;
Alazem et al., 2017). For example, when deleting the VSR of
PVX (1P25), all overexpressed AGOs downregulated PVX-
1P25 in N. benthamiana (Brosseau and Moffett, 2015). miR168
levels, which maintains AGO1 homeostasis, are regulated by
ABA (Li et al., 2012a). Li et al. (2012a) found that AGO1 RNA
is not induced within 12 h of ABA treatment in Arabidopsis
seedlings because of the effect of miR168, but another study
found that extending the effect of ABA to 4 days induced
not only AGO1 but also AGO2 and AGO3 (Alazem et al.,
2017). The latter study conducted experiments on ∼30 day-
old Arabidopsis, compared to the 7-day old seedlings used
by Li et al. (2012a). These results were confirmed in ABA-
deficient mutants (aba2-1 and aao3), showing that AGO1,
AGO2, and AGO3 were expressed at very low levels (Alazem
et al., 2017). In that study, BaMV infection also induced
AGO1, 2 and 3 expression, but when aba2-1- and aao3-
deficient mutants were infected with BaMV, AGO1 and 2 but
not 3 failed to accumulate to wild-type levels, indicating the
expression of these AGOs is ABA-dependent. Furthermore,
ABA was found to have negative effects on AGO4 and AGO10
expression, but differential effects on AGO7 expression, since
ABA treatment did not induce AGO7 mRNA accumulation in
wild-type plants but ABA-deficient mutants (aba2-1 and aao3)
showed significantly reduced expression of AGO7 (Alazem et al.,
2017). These findings imply that ABA generally affects several
genes in the RNA silencing pathway, perhaps representing an
important tool by which ABA tunes plant responses to different
stimuli.

Although AGO1 has antiviral activity against several viruses
(Morel et al., 2002; Qu et al., 2008), BaMV levels were not reduced
in the 4mAGO1 transgenic line in which AGO1 was made
resistant to the downregulatory effect of the AGO1–miR168
complex by four mismatches that prevent binding with miR168a.
In the same context, the miR168a-2 mutant accumulates the
AGO1 protein, but BaMV levels were still unaffected in this
mutant compared to wild-type plants (Vaucheret, 2009; Alazem
et al., 2017). It could be that either AGO1 has no clear effect
against BaMV or that a VSR of BaMV (probably TGBp1)
impairs the antiviral activity of AGO1. In contrast, the ago1-
27 mutant showed reduced BaMV levels compared to wild-
type plants because of the increased expression of AGO2

FIGURE 2 | Abscisic acid (ABA) effects pathway on BaMV accumulation and
plant antiviral resistance. A large part of ABA biosynthesis takes place in the
chloroplast. Impairment of genes that function in the chloroplast, such as
ABA1 in Nicotiana benthamiana or NCED3 in Arabidopsis thaliana,
significantly reduces BaMV levels. The last two steps in ABA biosynthesis take
place in the cytosol, where ABA2 coverts xanthosin into ABA-aldehyde and
AAO3 reduces ABA-aldehyde to produce ABA. ABA2 mutants have markedly
reduced levels of BaMV (-)RNA. Whether ABA2, ABA-aldehyde or other
factors controlled by ABA2 are required for BaMV to accumulate is unknown.
In contrast, mutation of AAO3 and downstream genes increases susceptibility
to BaMV. ABA partially controls the expression of the AGO gene family and
induces AGO1, 2 and 3, with AGO2 and 3 but not AGO1 acting against
BaMV. In addition, ABA induction of callose is ineffective against BaMV
because plants silenced in CalS10 still show resistance after ABA treatment.
HF, host factor.

and AGO3 levels in this mutant. Surprisingly, BaMV levels
were not affected in the ABA-treated ago3-2 mutant and were
not significantly reduced in the ABA-treated ago2-1 mutant
compared with corresponding mock-treated mutant (Alazem
et al., 2017). These findings imply that ABA-dependent resistance
to BaMV is mainly achieved through AGO2 and AGO3, and
that callose deposition at PD may not be the main resistance
mechanism controlled by ABA, at least in some compatible
interactions. In fact, restriction of viruses to the sites of infection
during incompatible interactions can also be ascribed to the
activity of the RNA silencing pathway, and further studies
on this topic could reveal much about the involvement of
ABA in incompatible interactions. In the same context, it was
found that the RNA silencing pathway controls the non-host
resistance of A. thaliana to PVX infection, mainly through
AGO2 (Jaubert et al., 2011). This finding was also confirmed for
the aba2-1 mutant, which produces very little AGO2, thereby
allowing PVX to accumulate locally and move systemically
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compared to the scenario in wild-type plants (Alazem et al.,
2017).

Several studies have addressed the roles of the RNA silencing
pathway in resistance to viroids since RNA or DNA replication
intermediates trigger this pathway (Minoia et al., 2014; Adkar-
Purushothama et al., 2015b; Carbonell and Daros, 2017). Since
ABA regulates several genes in this pathway, ABA could also play
a role in mediating resistance to viroids. For example, Minoia
et al. (2014) found that A. thaliana AGO1, AGO2, AGO2, AGO3,
AGO4, AGO5, and AGO9 were loaded with PSTVd-derived
sRNA in infected N. benthamiana plants. Given the regulatory
role of ABA in AGO1, 2, and 3, it is possible that ABA may
participate in resistance to viroids through these AGOs.

ABA AND RECESSIVE RESISTANCE

Recessive resistance is defined as the loss of susceptibility when an
important host factor required for virus replication is impaired
(Hashimoto et al., 2016). To date, most of the discovered
recessive-resistance genes belong to the translation initiation
factor (eIF) 4E and eIF4G groups (Hashimoto et al., 2016).
However, other host factors are involved in BaMV accumulation
and they localize to the cytosol and chloroplast (Figure 2).
Further information on those factors is described in a recent
review (Huang et al., 2017). Here, we briefly focus on the
chloroplast-related genes since ABA and other hormones are
biosynthesized in chloroplasts.

Chloroplast phosphoglycerate kinase (cPGK) interacts with
the 3′-untranslated region of BaMV to direct BaMV RNA
to the chloroplasts, and silencing or mislocalization of cPGK
significantly reduces BaMV levels (Lin et al., 2007; Cheng et al.,
2013). BaMV Minus-strand (-) RNA has been detected within
chloroplasts, which suggests localization of BaMV replication
intermediates there (Lin et al., 2007; Cheng et al., 2013). In
accordance with these findings, the Arabidopsis genotype Cvi-
0 comprises a natural recessive resistance gene, rwm1, which
encodes a mutated cPGK protein and confers resistance to two
potyviruses (watermelon mosaic virus and plum pox virus) but
not to the potexvirus PVX or the cucumovirus CMV (Lin et al.,
2007; Ouibrahim et al., 2014; Poque et al., 2015). Furthermore,
the ABA biosynthesis gene ABA2 and the upstream gene NCED3
are important for BaMV (-)RNA accumulation (Alazem et al.,
2014). Because of the feedback loop in the ABA biosynthesis
pathway, the nced3 mutant exhibited low levels of ABA2,
accounting for the low level of BaMV in that mutant. Hence,
ABA2 is required for a step preceding BaMV translation, and a
similar role was also suggested for the accumulation of CMV in
A. thaliana (Alazem et al., 2014).

In the same context, in the ABA biosynthesis pathway, ABA1
and NCED3 are localized in the chloroplasts, whereas ABA2
and AAO3 (the aao3 mutant is highly susceptibility to BaMV

unlike the aba2-1 mutant; Alazem et al., 2014) are localized in the
cytosol. Hence, the ABA biosynthesis pathway in the chloroplasts
may be required for BaMV accumulation (Figure 2). It is still
not known whether this recessive resistance is the result of ABA2
substrate or other factors controlled by ABA2. The different
localization of cPGK and ABA2 (Cheng et al., 2002) and the
different nature of the substrates handled by them may suggest
different roles.

CONCLUDING REMARKS

The increased expression of several genes of the AGO, RDR, and
DCL families in response to ABA, as well as the observation that
several of these genes are important players in the antiviral RNA
silencing pathway, strengthens the notion that the antiviral role
of ABA is partially achieved through the RNA silencing pathway.
The additional effect of ABA-dependent callose deposition at PD
thus endows ABA with a dual function in restricting virus spread
(Figure 1A). Both mechanisms have been assessed only for BaMV
(Figure 2), and the findings have shown that callose deposition
is not the only defense mechanism mediated by ABA. Further
studies with other viruses and viroids will reveal how efficient
these mechanisms are in different pathosystems.

The antagonism between SA and ABA is well-documented,
whereby downstream genes of either pathway are suppressed if
the other hormone is applied or induced (Yasuda et al., 2008;
Zabala et al., 2009; Moeder et al., 2010). It is known that viruses
disrupt hormonal balance in compatible interactions, leading to
simultaneous induction of some antagonistic pathways such as
ABA and SA in the case of BaMV and CMV (Alazem et al., 2014).
However, because of the positive effects that both hormones
have on the same subset of defense responses (Figure 1B), it is
not clear whether these two antagonistic pathways actually act
antagonistically during viral infections. Antagonism is evident
in some incompatible interactions in which the induction of
these pathways is strong, sequential and not concurrent, implying
that each hormone takes a role in triggering several redundant
antiviral mechanisms (Alazem and Lin, 2015), but experimental
evidence is lacking.
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Bamboo mosaic virus (BaMV), a member of the genus Potexvirus, is the major threat to
bamboo cultivation. Similar to most potexviruses, the transmission of BaMV by insect
vectors has not been documented previously. However, field observations of BaMV
disease incidences suggested that insect vectors might be involved. In this study, we
aimed to investigate the possibility of insect-mediated transmission of BaMV among
bamboo clumps, in order to provide further insights into the infection cycles of BaMV
for the development of effective disease management measures. From the major insects
collected from infected bamboo plantations, BaMV genomic RNAs were detected inside
the bodies of two dipteran insects, Gastrozona fasciventris and Atherigona orientalis,
but not in thrips (Scirtothrips dorsalis). Artificial feeding assays using green fluorescent
protein-tagged BaMV virions revealed that BaMV could enter the digestive systems and
survive in the regurgitant and excretion of the dipterans. BaMV RNA could be retained
in the dipterans for up to 4 weeks. Insect-mediated transmission assays indicated that
both dipterans could transmit BaMV to bamboo seedlings through artificially created
wounds with low infection efficiency (14 – 41%), suggesting that the dipterans may
mediate the transmission in a mechanical-like manner. These results demonstrated
that dipterans with sponge-like mouthparts may also serve as vectors for at least one
potexvirus, BaMV, among bamboo plants. The finding suggested that dipteran insect
control should be integrated into the disease management measures against BaMV
infections.

Keywords: insect transmission, Diptera, Gastrozona fasciventris, Atherigona orientalis, Potexvirus, Bamboo
mosaic virus, bamboo

INTRODUCTION

Bamboos are economically important crops for their broad applications in both agriculture and
industry. However, the cultivation of bamboo crops is under the threat of a major pathogen,
Bamboo mosaic virus (BaMV), a member of the genus Potexvirus in the family Flexiviridae (Lin
et al., 1992). BaMV has been reported to infect different bamboos in Brazil, Taiwan, California and
Florida (USA), Australia, Hawaii, and Mainland China (Lin et al., 1977, 1979, 1993, 1995, 2014; Lin
and Chen, 1991; Elliot and Zettler, 1996; Dodman and Thomas, 1999; Nelson and Borth, 2011). At
least 10 commercially cultivated species of bamboos are susceptible to the infections of BaMV (Lin
et al., 1993). Typical symptoms of infected bamboos include mosaic or chlorotic streaks in between
the veins of the leaves, necrotic tissues (brown to black spots or streaks) in the shoots and culms,
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aborted shoots, reduced vigor, and even death of the bamboo
clumps (Lin et al., 1993; Hsu and Lin, 2004; Nelson and Borth,
2011). The necrotic tissues in the shoots greatly reduce the yield,
quality, and value of the bamboo products, and are usually
referred to by farmers as bamboo shoot “nails” due to the
resemblance in appearance and texture. With a disease prevalence
of about 70–80% in bamboo plantations in Taiwan (Lin et al.,
1993), BaMV is recognized as one of the major limiting factors
for bamboo cultivation.

Being a potexvirus, BaMV has the typical flexible filamentous
virion structure (Dimaio et al., 2015), harboring a positive-
sense, single-stranded RNA genome of about 6.4 kb in
length, with a 5′-cap and a 3′ poly(A) tail (Lin et al., 1992;
Chen et al., 2005). BaMV is believed to spread through
vegetative propagation of bamboos using seedlings produced
from BaMV-infected bamboo mother stocks, or mechanical
transmission by BaMV-contaminated tools used in harvesting
or pruning (Elliot and Zettler, 1996; Hsu and Lin, 2004; Nelson
and Borth, 2011). However, the possible involvement of other
transmission routes, such as via insect vectors, has not been
ruled out.

It has been considered that most of the potexviruses are not
transmitted by insect vectors (Koenig and Lesemann, 1978), with
only few exceptions in earlier archives (Schmutterer, 1961; Goth,
1962; Kassanis and Govier, 1971), including a distinct potexvirus,
Strawberry mild yellow edge associated virus (SMYEaV) that has
been reported to be transmitted by aphids in a persistent mode
(Jelkmann et al., 1990), although the involvement of a luteovirus
(Yoshikawa et al., 1984; Martin and Converse, 1985; Spiegel
et al., 1986) as the helper could not be ruled out (Jelkmann
et al., 1990). Similar to most potexviruses, insect-mediated
transmission of BaMV has not been reported previously. Thus,
the control and prevention of insect pests are not included in the
current recommendations for BaMV disease management (e.g.,
Nelson and Borth, 2011). However, field observations suggested
that insect vectors may be involved in BaMV transmission
among bamboos. Firstly, the BaMV-infected bamboo clumps in
bamboo plantations are not usually distributed closely together.
Rather, the patterns of the disease incidence are often sporadic,
discontinuous, and not correlated to the route of harvesting or
pruning. If BaMV is only transmitted by contaminated tools,
one would expect to see disease incidences connected to the
sources of contamination or along the paths of maintenance
work. Secondly, the cut surfaces of the rootstocks of harvested
bamboo shoots (Figure 1A) and the pruned culms attract large
amounts of insects, mostly of the order Diptera, within minutes.
The dipterans stay probing and feeding on the cut surfaces till
the surfaces dry out if not disturbed, and fly on to the newly
generated wounds of the bamboo clumps, possibly far away from
the original clump as the harvesting or pruning processes proceed
while the insects are feeding. If the dipterans are actually involved
in BaMV transmission among bamboos, the lack of measures
against insect pests may constitute a loophole in the current
integrated disease management of BaMV.

In this study, we aimed to explore the possibility that insects
may mediate the transmission of BaMV, a potexvirus, among
bamboos. Several lines of evidence were provided in support

of the notion that at least two dipteran insects may serve as
vectors for transmission of BaMV among bamboos. The results
revealed the potential threat of the dipteran insects with sponge-
like mouthparts as vectors for at least one plant virus, and
suggested that the control of these insects should be integrated
into the current systems for disease management against BaMV
infections.

MATERIALS AND METHODS

Extraction of Total Nucleic Acids from
Bamboo Tissues and Insects
To prevent the contamination of non-specific nucleic acids on
the outer surfaces of the insects, RNase Away (Sigma–Aldrich,
Shanghai, China) treatment was included as the first step
of sample preparation. To determine the efficiency of RNase
Away in removing the contaminating nucleic acids, BaMV-free
Gastrozona fasciventris were anesthetized with acetone vapor and
placed into 1.5-ml Eppendorf tubes containing 20 µl of BaMV
(0.1 mg/ml in 0.5 M sodium borate buffer, pH 8.0) individually.
The tubes were then incubated on ice for 5 min to coat BaMV
onto the surfaces of the insects and the tubes. Following the
removal of BaMV solution by manual pipetting, RNase Away
(200 µl) was added to each tube. The tubes were then incubated at
room temperature with gentle shaking for 1, 2, or 3 min, followed
by thorough washing with 1 ml of de-ionized H2O for three times
(3 min each). Then the samples were subjected to RNA extraction
and analyses as described below. It was thus determined that the
bamboo tissue and insect samples should be treated with RNase
Away for 3 min to remove the contaminating nucleic acids on
the surfaces before extraction of total nucleic acids (see Results).
Total nucleic acids were extracted from bamboo or insect tissues
according to the methods described previously (Haible et al.,
2006), with minor modifications. Briefly, the RNase Away-treated
bamboo (0.1 g leaf or shoot tissue) or insect (whole body) samples
were ground to powders in liquid nitrogen and the total nucleic
acids were extracted by the addition of 0.2 ml of extraction buffer
(100 mM Tris–HCl pH 7.5; 1 mM EDTA; 100 mM NaCl; 100 mM
DTT, 0.6% SDS) and equal volume of saturated phenol. After
centrifugation at 12000 × g for 10 min, the supernatants were
transferred to new tubes and the nucleic acids precipitated by
the addition of 2.5 volume of 95% ethanol. The final nucleic acid
pellets were re-suspended in 20 µl of de-ionized H2O for further
analyses.

Molecular Identification of Dipteran
Insects and Detection of BaMV RNA by
Reverse-Transcription-Polymerase
Chain Reaction (RT-PCR)
To identify the dipteran insects collected from bamboo
plantations, the chromosomal cytochrome oxidase I (COI),
28S rDNA and, mitochondrial 16S rDNA gene segments were
amplified by PCR using gene-specific primer pairs (Table 1),
cloned, and sequenced following standard protocols described in
the Barcode of Life Database (Ratnasingham and Hebert, 2013;
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FIGURE 1 | The main insect species collected in bamboo plantations in southern Taiwan. (A) After the harvesting of the bamboo shoots, the cut surfaces
exposed on the ground attracted many dipteran insects within minutes. (B) The surface of the harvested bamboo shoots also attracts some dipetran insects. The
most abundant dipteran insects were identified as Gastrozona fasciventris (C) and Atherigona orientalis (D), respectively.

Smit et al., 2013). For the detection of BaMV genomic RNA,
the aforementioned total nucleic acids (2.5 µl) were used as the
template in a mixture (10 µl) containing 50 pmole of oligo dT
primer. The template-primer mixtures were heated to 65◦C for
2 min, snap-chilled on ice for 1 min, then transferred to a RT
reaction containing 10 mM DTT, 0.25 mM dNTPs, and 5 units
of SuperScript III reverse transcriptase (Thermo Fisher Scientific,
Waltham, MA, USA). The RT reaction mixture was incubated
at 37◦C for 60 min, followed by inactivation at 85◦C for 5 min.
The cDNA products were used as the template in the polymerase
chain reaction (PCR) for the detection of BaMV in bamboo tissue
and dipteran insect samples using BaMV-specific primer pairs
(Table 1). The PCR mixture (50 µl) contained 5 µl of 10× rTaq
buffer, 5 µl of dNTP mixture (2.5 mM each), 0.25 µM of specific
primer pair (e.g., B-5981R plus B-6366), 1.0 unit of rTaq DNA
polymerase (Toyobo Life Science, Osaka, Japan) and 1–2 µl of
the aforementioned total nucleic acids or cDNA products as the
template. PCR was performed as follows: reaction mixtures were
heated to 94◦C for 4 min for initial denaturation, followed by 35
cycles of denaturing at 94◦C for 40 s, annealing at 47◦C for 45 s,

and extension at 72◦C for 45 s, with a final extension at 72◦C for
20 min. The PCR products were then analyzed by electrophoresis
through a 1% agarose gel, stained with ethidium bromide (EtBr),
and examined by UV illumination.

Purification of Green Fluorescent Protein
(GFP)-Tagged BaMV Virions
To track the ingestion of BaMV virions, a mutant BaMV
construct that generates GFP-tagged BaMV virions in plants,
designated pCB-GFP2a-CP, was constructed based on a mutant
infectious clone of BaMV, pBS-d35CP (Yang et al., 2007). The
coding sequences of FMDV 2A cotranslational dissociation
peptide (LLNFDLLKLAGDVESNPGP) (Ryan et al., 1991) was
amplified by PCR with primers FMDV2aF and FMDV2aR
(Table 1), and inserted to the 5′-end of truncated CP ORF
on pBS-d35CP following restriction digestion with BamHI and
PspOMI. The GFP coding region (Sheen et al., 1995) was
amplified with primers GFP F and GFP R (Table 1), digested with
BamHI and then inserted to the 5′-terminus of the FMDV 2A
coding region to give pCB-GFP2a-CP. Due to the presence of
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TABLE 1 | Primers used in this study.

Name Sequence (5′ to 3′) Target gene Reference

FMDV2aF GGGATCCGCGGCCGCGCT FMDV 2A peptide Ryan et al., 1991

GTTGAATTTTGACTTCTTA

AGCTTGCGGG

FMDV2aR CCTGGGCCCGGGTCCGGG FMDV 2A peptide Ryan et al., 1991

GTTGGACTCGACGTCTCC

CGCAAGCTTAAGAAGG

GFP F AAGGATCCATGGTGAGCAAGGG nts 1-14 of GFP This study

GFP R TGGGATCCTTACTTGTACAGCTCG nts 702-717 of GFP This study

1R GAAAACCACTCCAAACG nts 1-17 of BaMV This study

331 GGAGATATGAGGCCGTCCG nts 313-331 of BaMV This study

2934R ACTGCATCCAAACCGAAAAC nts 2934-2953 of BaMV This study

3527 TCTTGAGACTGGTCATACG nts 3509-3527 of BaMV This study

5981R CACAATATAAATGGTGTGCG nts 5981-6000 of BaMV This study

6366 TGGAAAAAACTGTAGAAACCAAAAGG nts 6341-6366 of BaMV This study

16S-F TAGTTTTTTTAGAAATAAATTTAATTTA 16S rDNA Smith et al., 2003

16S-R GCCTTCAATTAAAAGACTAA 16S rDNA Smith et al., 2003

28SS GACCCGTCTTGAAMCAMGGA 28S rDNA Asokan et al., 2013

28SA TCGGARGGAACCAGCTACTA 28S rDNA Asokan et al., 2013

TEPCOIF TAAACTTCAGCCATTTAATC COI Smit et al., 2013

TEPCOIR TTTTCCTGATTCTTGTCTAA COI Smit et al., 2013

FMDV 2A cotranslational dissociation peptide, the inoculation
of pCB-GFP2a-CP in plants would generate both GFP-fused and
unfused BaMV CP to assemble into GFP-tagged BaMV virions,
together with free GFP-2a fusion proteins. The incorporation
of FMDV 2A peptide would increase the assembly efficiency
and stability of the GFP-tagged BaMV virions, compared to the
construct without FMDV 2A peptide (Hsu et al., unpublished).
Leaves of Chenopodium quinoa mechanically inoculated with
purified plasmid pCB-GFP2a-CP DNA (1 µg/µl in de-ionized
water, 10 µl/leaf, 5 leaves/plant) or wild type BaMV virions
(0.1 µg/µl in de-ionized water, 10 µl/leaf, 5 leaves/plant) were
harvested at 10 dpi. The leaves were ground in de-ionized water
(1:10 w/v) to prepare the inoculum used for mass-inoculation of
C. quinoa plants (50–100 plants/batch). At 10 dpi, the leaves were
harvested, and the GFP-tagged or wild type BaMV virions were
subsequently purified from the leaves as described by Lin and
Chen (1991). The yield was determined spectrophotometrically
by absorbance at 280 nm (Lin and Chen, 1991). Purified BaMV
virions were dissolved in BE buffer (50 mM Borate, pH 8.0, 1 mM
EDTA), then stored at −20◦C until used. It should be noted
that the purification procedure include an ultracentrifugation
through a 5-ml 20% sucrose cushion, which precludes most of
the unassembled viral proteins in the pellets (Muthamilselvan
et al., 2016). However, the possibility of the presence of some
unassembled BaMV CP, GFP-tagged BaMV CP, and GFP-2a
fusion proteins in the virion preparations could not be ruled out.

Dipteran Insect-Mediated Transmission
BaMV-free green bamboo (Bambusa oldhamii) seedlings
originating from meristem tip-cultured bamboos (Hsu et al.,
2000) were kindly provided by Dr. Choun-Sea Lin (Agricultural
Biotechnology Research Center, Academia Sinica, Taiwan).

Alternatively, BaMV-free green bamboo seedlings propagated by
air-layering on BaMV-free bamboo plants were obtained from a
bamboo seedling plantation of Mr. Kuo-Chen Chang, which is
regularly indexed for BaMV infection. The air-layered bamboo
seedlings were used as the hosts for BaMV-transmission assays
due to their ability to produce more bamboo shoots. To facilitate
the feeding of the flies, the newly emerged bamboo shoots were
cross-sectioned at the crown region to mimic the harvesting
process. The dipterans were co-incubated with restrained the
bamboo seedlings in 200-mesh insect domes for infection assays.
For inoculation, 4-7 dipterans fed with liquid medium (10%
sucrose, 2% yeast extract) supplemented with purified BaMV
virions (0.1 mg/ml, mimicking the concentration of BaMV
in bamboos) were released into the insect domes containing
bamboo seedlings with wounds. After incubation for 24 h, the
dipterans were removed manually, and the bamboo seedlings
were maintained in the greenhouse or insect domes for at least
60 days until assayed. To confirm the BaMV-free condition of
the test plants, the un-inoculated siblings of the tested bamboo
seedlings from the same mother-stocks were assayed for the
presence of BaMV following the inoculation assays by northern
and western blot analyses.

Northern, and Western Blot Analyses
To verify the infection and replication of BaMV in bamboo
plants, northern and western blot analyses were performed
as described by Huang et al. (2012) and Hung et al. (2014),
respectively. For northern blot hybridization, 32P-labeled probes
specific for the 3′ untranslated regions of BaMV RNAs (Hsu
et al., 2000) were used to detect the presence of genomic and two
major subgenomic RNAs, which are only transcribed following
the successful replication of BaMV genomic RNAs. For western
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TABLE 2 | Detection of BaMV in two major dipterans found in different
bamboo plantations in Taiwan.

Location Atherigona orientalis Gastrozona fasciventris

Baihe #1, Tainan City 25/26a 18/24

Baihe #2, Tainan City 17/20 5/9

Tanzi #1, Taichung City 1/7 6/14

Tanzi #2, Taichung City 3/8 5/7

Wugu, New Taipei City 10/11 4/4

aNumber of BaMV-positive insects/number of tested insects.

blot analysis, specific antibody (Hung et al., 2014) against the
triple gene block protein 1 (TGBp1) of BaMV, which is translated
from subgenomic RNA 1 and not present in the inoculum, was
used to demonstrate successful infection and gene expression of
BaMV in inoculated bamboos.

RESULTS

BaMV Could be Detected in Two Major
Dipteran Insect Species Collected from
BaMV-Infected Bamboo Plantations
The harvesting, pruning, and other regular maintenance of
bamboo crops create cut surfaces or wounds that attract
many insects within minutes, mostly in the order Diptera
(Figures 1A,B). Two major insect species were identified
to be Gastrozona fasciventris (Figure 1C) and Atherigona
orientalis (Figure 1D), based on the morphology, wing

markings (Permkam, 2005), and nucleotide sequences of
the chromosomal COI, 28S rDNA and, mitochondrial 16S
rDNA gene segments (Smith et al., 2003; Ratnasingham and
Hebert, 2013; Smit et al., 2013). Other minor species included
Taeniostola vittigera, Stypocladius appendiculatus, and Drosophila
melanogaster, identified based on the morphologies. To test
whether BaMV may have insect vectors, we collected insects
from five bamboo plantations (Table 2) located in the major
bamboo production areas in southern (two plantations in Baihe,
Tainan City), central (two plantations in Tanzi, Taichung City),
and northern Taiwan (one plantation in Wugu, New Taipei City).
The BaMV disease incidences in these plantations ranged from
40 to 70%. RT-PCR was used to detect the presence of BaMV
in the main insect species collected. RNase Away was used to
avoid the contamination of BaMV on the outer surfaces. To
determine the treatment conditions, a pre-test was performed
using BaMV-coated G. fasciventris. As shown in Figure 2A, the
treatment of RNase Away for 1 min was enough to remove
the contamination of BaMV. For the following experiments,
the insect samples were treated with RNase-Away for 3 min to
ensure the removal of the possible contaminations of RNases
and RNAs, and thoroughly rinsed with RNase-free de-ionized
water before being subjected to total nucleic acid extraction.
RT was performed using oligo-dT as the sole primer. The
cDNA products were then subjected to PCR with primer pair
specific to BaMV 3′-terminus (B-5981R and B-6366). The results
revealed that BaMV could be detected in the dipteran insect
samples, A. orientalis and G. fasciventris, but not in the thrips
(Scirtothrips dorsalis) collected from the backside of the leaves
of BaMV-infected bamboos (Figure 2). The results of the BaMV

FIGURE 2 | Detection of BaMV RNA in insects collected from BaMV-infected bamboo plantation. (A) Determination of RNase-Away treatment time. See
Section “Materials and Methods” for details. Briefly, BaMV-coated G. fasciventris individuals were treated with RNase-Away for 1–3 min as shown on top of the
lanes, or untreated (as indicated by the “−” sign), rinsed thoroughly and tested for presence of BaMV by RT-PCR by primers B-5981R and B-6366 (Table 1). The
expected position of BaMV-specific products is indicated by the arrow. (B–D) Detection of BaMV RNA in insect samples by RT-PCR using the same condition as in
(A). Lane M, 1 kb ladder size marker; lanes 1 through 11, A. orientalis (B), G. fasciventris (C) or Thrips spp. (D) samples; lanes 12, 13, surface and inner tissues of
bamboo shoots, respectively; lane 14 bamboo leaf sample collected from BaMV-infected plantation. The plasmid pCB (1 ng, Yang et al., 2007) and total nucelic
acids from BaMV-free bamboo samples were used as positive and negative controls (lanes + and – ), respectively.
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FIGURE 3 | Tracking the ingestion of BaMV in G. fasciventris. (A) Schematic representation of the plasmid pCB-GFP2a-CP. The coding sequences of FMDV
2A co-translational dissociation peptide (short black box) and GFP inserted at N-terminus of BaMV CP genes. The genome of BaMV is represented by the thick
black line. ORFs were shown as boxes with identities indicated. The relative positions and directions of the primers used in Figure 5 are also shown. (B) Purified
GFP-tagged BaMV particles (1 mg/ml, tube on the right) under UV illumination (360–390 nm). Equal volume of the wild type BaMV was shown on the left.
(C) Virus-feeding treatment. Groups of two to seven G. fasciventris flies were fed with media containing GFP-tagged BaMV through the cotton matrix (indicated by
the arrow) affixed to the cap of the tube. (D,E) Examination of the ingestion of GFP-tagged BaMV in G. fasciventris. The flies were fed with liquid medium
supplemented with wild type BaMV (two flies in the upper row) or GFP-tagged BaMV (three flies in the lower row) for 24 h, anesthetized by acetone vapor, and
examined by illumination of blue light (485 nm, D) or white light (E). Note that the flies were only slightly anesthetized by acetone for imaging to retain their ability for
feeding and flying in the virus-transmission assay, which led to the movement of some of the flies in the matching photos in (D,E). The flies were turned upside down
to show the ventral views. (F) Detection of BaMV RNA in A. orientalis and G. fasciventris flies fed with BaMV-containing medium. To test the ability of dipteran insects
in acquiring BaMV through feeding, A. orientalis and G fasciventris flies were fed with BaMV-containing medium (10% sucrose, 2% yeast extract, and 0.01% BaMV)
or virus-free medium for 24 h, as indicated on top of the lanes. The presence of BaMV in insect bodies was assayed by RT-PCR as described above.

detection in A. orientalis and G. fasciventris collected from the
five bamboo plantations were summarized in Table 2. BaMV
detection was not performed on T. vittigera, S. appendiculatus,
and D. melanogaster, since these minor insects were not always
trapped in all bamboo plantations surveyed, and thus not
included in further analyses.

To further explore the possibility that the dipteran insects may
mediate the transmission of BaMV, we established BaMV-free
colonies ofG. fasciventris andA. orientalis on BaMV-free bamboo
seedlings in 200-mesh insect domes. The insects and the bamboo
seedlings were indexed bi-weekly to ensure the BaMV-free status
(data not shown). These BaMV-free dipteran insects were used in
the following assays.

BaMV Could be Ingested into the Bodies
of the Dipteran Insects
To explore the relationship between BaMV and the dipterans,
GFP-tagged BaMV virions were purified from C. quinoa leaves
inoculated with pCB-GFP2a-CP (Figure 3A), which express

GFP-fused BaMV CP. Examination of the purified GFP-tagged
BaMV virions under UV illumination confirmed the presence of
GFP-tags on the purified virions (Figure 3B, tube on the right),
as compared to the wild type BaMV virions (Figure 3B, tube on
the left). The dipterans were fed with liquid medium containing
0.1 mg/ml of purified GFP-tagged or wild type BaMV virions
(Figure 3C) in a inversed 50-ml Falcon conical tube for 24 h.
The presence of GFP signals (likely representing the GFP-tagged
BaMV virions) in dipterans were examined by using a LAS-4000
Chemiluminescence and Fluorescence Imaging System (Fujitsu
Life Sciences, Tokyo, Japan). The result revealed that green
fluorescence was clearly visible in the abdomen portion of
G. fasciventris fed with GFP-tagged BaMV virions (Figures 3D,E,
lower row), while those fed with wild type BaMV exhibited only
background fluorescence. However, the green fluorescence might
also be contributed by the unassembled GFP-tagged BaMV CP
or GFP-2a proteins in the virion preparations, thus the presence
of BaMV RNAs in the dipterans were further assayed. Following
surface decontamination by RNase Away and RNA extraction,
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FIGURE 4 | Verification of the internal localization of BaMV in the dipterans. Following feeding with BaMV-containing medium for 24 h and virus-free medium
for 72 h, the presence of BaMV RNA on the external surfaces (lanes labeled “External”) and within insect bodies (lanes labeled “Internal”) of individual A. orientalis (A)
and G. fasciventris (B) flies were assayed by RT-PCR as described above. RT-PCR products using nucleic acids extracted from insects fed on healthy bamboo
plants or BaMV-containing medium (1 µl) as the templates were used as negative (lanes −) and positive controls (lanes +), respectively. (C) Detection of the retention
of BaMV within dipteran insects by RT-PCR. The presence of BaMV RNA within G. fasciventris samples fed with GFP-tagged BaMV was examined at two-week
intervals (indicated on top of the lanes) by RT-PCR as described above (four insects per group). Lanes A1 and A2, A. orientalis samples collected at 4 weeks post
BaMV-feeding; lane M, size marker, lane +, positive control.

the presence of BaMV genomic RNA in A. orientalis and
G. fasciventris fed with BaMV-containing medium was confirmed
by RT-PCR (Figure 3F). The observations suggested that BaMV
may actually enter the digestive systems of dipterans, instead of
just temporarily associated with the mouthparts of the insects as
in the cases for non-persistent type transmission (Ng and Falk,
2006).

BaMV May Be Retained Inside the
Bodies of A. orientalis and G. fasciventris
To verify the localization of BaMV on the dipterans, A. orientalis
and G. fasciventris insects were fed with BaMV-containing
medium for 24 h as described above, followed by virus-free
medium for 72 h. The flies were collected individually in 1.5-ml
Eppendorf tubes, and then soaked in nucleic acid extraction
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FIGURE 5 | Detection of GFP-tagged BaMV in the regurgitant and excretion fluids of dipteran insects. To investigate whether BaMV RNA could pass
through the digestive systems of diptera insects, the reguritant and excretion fluids (as indicated on the top of the lanes) were collected from A. orientalis (A) and
G. fasciventris (B) fed with GFP-tagged BaMV-containing media and subjected to RT-PCR analysis for the presence of BaMV RNA, using different primer pairs (as
indicated at the bottom of each gel). To test whether the walls of the feeding tube were contaminated during the feeding process, aliquots of nucleic acid extraction
buffer (2 µl) were used to elute materials surrounding the regurgitant or excretion droplets, and subjected to RT-PCR analysis concurrently (lanes labeled “Wall”). For
the positive control, 1 µl of GFP-BaMV-supplemented medium was assayed concurrently. Lane M, size marker.
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buffer (120 µl) with gentle shaking (60 rpm) for 3 min to elute
the virus particles possibly adhered to the external surfaces.
The eluate was then collected and subjected to total nucleic
acid extraction as describe above. The washed insect bodies
were centrifuged twice at 1000 × g for 10 s to remove excess
wash buffer, and also subjected to total nucleic acid extraction.
Total nucleic acids from insects fed on healthy plants were
used as the templates for the negative controls. The presence
of BaMV genomic RNAs was assayed by RT-PCR using primer
pair B-5981R and B-6366. The result revealed that BaMV RNAs
could only be detected in the insect bodies, not in the eluates
of the external portions of A. orientalis and G. fasciventris
(Figures 4A,B, respectively). The above observations suggested
that BaMV virions are not simply adhering to the surfaces
of A. orientalis and G. fasciventris for dispersion by the
mechanical contacts between insects and plants. To test the
ability of the dipterans to retain BaMV RNAs, the dipterans
were fed with BaMV-containing medium for 24 h, followed
by feeding with virus-free medium for up to 6 weeks. Total
RNAs were extracted from samples collected at 2-week intervals
and subjected to RT-PCR analysis for the presence of BaMV
RNA. The results showed that BaMV RNAs could be retained
by G. fasciventris for up to 4 weeks (Figure 4C). On the other
hand, the BaMV RNA appeared to be degraded after 4 weeks in
A. orientalis, but barely detectable amount of RT-PCR products
was still observed at least in one of the samples (Figure 4C,
lane A1).

BaMV May Survive the Digestive
Systems of the Dipterans
For a virus to be transmitted by an insect vector following
ingestion into the abdomen, the virus must survive and pass
through the digestive system of the insect. When dipterans
feed, they constantly regurgitate crop fluids with digestive
enzymes to help dissolve the substrate (Coronado-Gonzalez
et al., 2008). The excretions are regularly deposited around
the feeding sites. Therefore, the presence of BaMV RNAs in
the regurgitants and excretions were examined by RT-PCR to
test the survival of BaMV RNA through the digestive system.
A. orientalis and G. fasciventris adults were starved for 4 h,
and then fed with media containing GFP-tagged BaMV in
50-ml Falcon conical tubes for 24 h. The regurgitants and
excretions of the flies on the wall of the tubes were collected
by dissolving in nucleic acid extraction buffer (2 µl) under
a dissecting microscope, and subjected to RNA extraction
and RT-PCR analysis as described above. Although it has
been shown that BaMV RNA could not be detected on

TABLE 3 | Summary of insect transmission assays on bamboos.

Experiment Bamboo
seedling type

Dipteran
insect species

# BaMV-infected/
# tested plants

1 Air-layering G. fasciventris 1/6

2 Tissue-cultured G. fasciventris 2/12

3 Air-layering A. orientalis 2/14

4 Air-layering G. fasciventris 5/12

the external surfaces of these insects (Figures 4A,B), there
is still the possibility that the walls of the tubes could be
contaminated by GFP-tagged BaMV from the evaporation of
the medium or the streaking of the insects. To test the
possibility of contamination on the walls, aliquots of 2-µl
nucleic acid extraction buffer were used to elute any possible
contaminants present on the areas surrounding the regurgitant
and excretion droplets. The eluates (lanes labeled “Wall” in
Figure 5) were then subjected to nucleic acid extraction and
RT-PCR analysis concurrently with the regurgitant and excretion
samples, serving as negative controls. To overcome the problem
of relative inefficient amplification of full-length GFP-tagged
BaMV RNAs (∼7.0 kb) directly by RT-PCR using primers
1R and oligo dT, an alternative approach was adopted by
using different primer pairs (as shown in Figure 3A) to detect
different portions of the GFP-tagged BaMV RNA throughout
the entire length, using the first-strand cDNA synthesized
using the oligo-dT primer as the only template. Since the first
strand cDNA is synthesized using oligo-dT primer starting
from the 3′-poly(A) tail of BaMV genome, the amplification
of the different fragments, especially the one corresponding
to the very 5′ terminus (amplified by primers 1R and 331),
indicated that the intact BaMV genomic RNA was present
in the sample. The results revealed that intact BaMV RNAs
could survive the digestive enzymes in the regurgitants and pass
through the digestive system to reach the excretion portion of
both A. orientalis and G. fasciventris (Figure 5, lanes labeled
“Regurgitant” and “Excretion”). In contrast, no BaMV RNA
was detected in the eluates from the wall areas surrounding
the regurgitant and excretion droplets (Figure 5, lanes labeled
“Wall”). The above observations raised the possibility that
BaMV might be transmitted by the dipterans through the
regurgitants or excretions while probing and feeding on
bamboos.

A. orientalis and G. fasciventris Could
Mediate the Transmission of BaMV to
Bamboo Seedlings
To test the abilities of the dipterans in transmitting BaMV among
bamboo plants, the following experiments were conducted.
To simulate the possible insect-mediated transmission during
harvesting process, the newly emerged bamboo shoots were
cross-sectioned at the crowns to create wounds for insect-
mediated virus transmission assays. Since the fusion of the GFP
at the N-terminus of BaMV CP interfered with the infectivity in
bamboos, the dipterans were fed with liquid media containing
purified wild type BaMV virions (0.1 mg/ml) for 24 h, and
then subjected to inoculation assays by co-incubation with
the bamboo seedlings with cross-sectioned shoots in 200-mesh
insect domes. Within each dome, four to seven A. orientalis
or G. fasciventris fed with liquid media containing wild type
BaMV were used to inoculate the bamboo seedlings. The
dipterans were allowed to feed freely for 24 h, and then
removed manually. The newly emerged leaves from the new
shoots of the inoculated bamboo seedlings were assayed for the
presence of BaMV RNA by RT-PCR at day 60 post inoculation.
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FIGURE 6 | Analysis of the G. fasciventris -mediate BaMV transmission by RT-PCR. (A) BaMV-free bamboo seedlings were inoculated by G. fasciventris fed
with BaMV-containing medium in the insect domes. Samples were collected from the newly emerged leaves at the 60th day post inoculation (dpi), and subjected to
total nucleic acid extraction and RT-PCR analysis as described above. Lane M, size marker; lane C, sample of cotton balls used for the feeding of the dipterans at
the beginning of the experiment; lanes − and +, negative and positive controls as described in Figure 2. To verify the inoculation results, northern (B) and western
blot (C) were performed using 32P-labeled probes specific for BaMV RNA 3′ untranslated region (Hsu et al., 2000) or antibody against TGBp1 (Hung et al., 2014).
Lanes 1–4, RNA or protein extracts of the un-inoculated siblings from the same mother-stock of the bamboo seedlings tested positive in (A); lanes 5–7, RNA or
protein extracts from newly emerged leaves of seedlings tested positive for BaMV in panel A (samples #2, #3 and #12, respectively). Lanes − and +, samples from
healthy and BaMV-infected bamboo plants, respectively. The positions of BaMV genomic RNA (gRNA), CP subgenomic RNA (CP sgRNA), and TGBp1 are indicated
by the arrows.
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The results of dipteran insect-mediated BaMV transmission
assays were summarized in Table 3. The representative result
(Figure 6A from Experiment 4 in Table 3) demonstrated
that G. fasciventris may actually mediate the transmission of
BaMV to bamboo seedlings. To test the possibility of BaMV
contamination in the tested plants before the inoculation, we
have traced back and examined the un-inoculated siblings from
the same mother-stock of the seedlings which tested positive
for BaMV after the completion of Experiment 4 (Table 3) by
northern (Figure 6B) and western blot (Figure 6C) analyses
using 32P.-labeled probe specific to the 3′ untranslated region
of BaMV RNA (Hsu et al., 2000) and antiserum specific to
TGBp1 (Hung et al., 2014), respectively. Three of the inoculated
bamboo seedlings (Figure 6A, lanes 2, 3, and 12) which tested
positive for BaMV in Experiment 4 (Table 3) were also assayed
concurrently for the products of BaMV infections in the newly
emerged leaves. As shown in Figures 6B,C, the un-inoculated
siblings from the same mother stock (lanes 1–4) remained
BaMV-free, while the subgenomic RNAs and TGBp1 protein,
which are produced only after the successful infection of
BaMV, could be detected in those tested positive (lanes 5–7) in
the insect-mediated inoculation assays (Figure 6A, lanes 2, 3,
and 12).

DISCUSSION

A Novel Finding That Dipterans May
Mediate the Transmission of BaMV, a
Potexvirus, among Bamboos
Based on the field observations, we explored the possibility
of insect-mediated transmission of BaMV among bamboos in
this study. Several lines of evidence were provided to support
the notion that dipterans may serve as the vector for BaMV,
including the association of BaMV with the internal portion of
the dipterans, the survival of BaMV RNA through the digestive
systems, and the inoculation assays on bamboo seedlings. Our
study revealed a novel finding with regards to the role of dipterans
as vectors for a plant virus, and the insect-mediated transmission
of a potexvirus.

For the role of dipterans as vectors for a plant virus, the
flies have been known to transmit many animal pathogens,
including viruses (see Baldacchino et al., 2013 for an excellent
review), but, to our knowledge, the transmission of a plant virus
by dipteran insects with sponge-like mouthparts has not been
reported previously. As vectors for animal pathogens, dipterans
is believed to transmit viruses by a “mechanical mode,” which
appears to occur through either contamination of mouthparts
or regurgitation of the contents of the digestive systems onto
the openings or wounds of the animals (Baldacchino et al.,
2013). This mode of transmission appears to be suitable for
plant viruses, especially for those with highly stable virions
such as Tobacco mosaic virus or Potato virus X. However,
to our knowledge, no dipterans with sponge-like mouthparts
have been reported to transmit plant viruses prior to this
study.

As for the insect-mediated transmission of a potexvirus,
most potexviruses are not known or thought to be transmitted
by insect vectors (Koenig and Lesemann, 1978; Jelkmann
et al., 1990). Recent reviews on the insect-transmission of
plant viruses did not consider potexviruses in the discussions
(e.g., Blanc et al., 2014; Whitfield et al., 2015). In an earlier
review (Ng and Falk, 2006), humans are listed as the only
rare animal vector for potexvirus transmission. However, Potato
virus X and White clover mosaic virus has been reported
to be transmitted by grasshoppers and aphids, respectively
(Schmutterer, 1961; Goth, 1962). It has also been reported that
Potato aucuba mosaic virus could be transmitted by aphids
in the presence of a helper virus in the genus Potyvirus
(Kassanis and Govier, 1971). In addition, the transmission of
SMYEaV, by aphids in a persistent mode has been reported
(Jelkmann et al., 1990), although it is possible that an SMYE
associated luteovirus reported previously (Yoshikawa et al., 1984;
Martin and Converse, 1985; Spiegel et al., 1986) may serve
as the helper virus for heterologous encapsidation and aphid
transmission, or SMYEaV may be aphid-transmitted by other
unknown mechanism (Jelkmann et al., 1990). Nevertheless,
the transmission of potexviruses by dipterans with sponge-like
mouthparts has not been known previously. The findings in this
study thus revealed a novel role of the dipterans with sponge-like
mouthparts as a vector for a plant virus, at least for a potexvirus,
BaMV.

Relationship between BaMV and
Dipterans
The results in this study also provide information for dissecting
the relationship in transmission between BaMV and the
dipterans. Based on the transmission characteristics, the insect
transmission modes of plant viruses have been practically
categorized as “non-persistent,” “semi-persistent,” “persistent-
circulative,” and “persistent-propagative,” etc. (Ng and Falk,
2006). In this study, we demonstrated that BaMV may
actually be ingested into the abdomen (Figures 3D–F),
remain associated with the dipterans for up to 4 weeks, and
survive in the regurgitants and excretions (Figures 4, 5).
These results suggested that the relationship between BaMV
and these dipterans could be classified as being semi-
persistent or persistent (Ng and Falk, 2006). However, it
remains unknown whether BaMV may circulate within the
hemolymph of the flies and finally into the salivary gland to
be regurgitated, or whether BaMV could replicate within the
dipterans.

Female phytophagous flies are known to feed by piercing the
surface of plants by the ovipositors (as seen on the posterior
portion of G. fasciventris in Figure 1C), then sucking the fluids
without laying eggs. During the probing and feeding process, the
dipterans with sponge-like mouthparts would regurgitate crop
fluid and deposit excretions around the feeding sites (Coronado-
Gonzalez et al., 2008). The digestive enzymes in the regurgitants
or the excretions may assist in the penetration of cell walls
or membranes to facilitate the infection of bamboo tissues by
BaMV. This may be one of the possible scenarios how dipterans
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mediate the transmission of BaMV to bamboos. However,
the low infection efficiency in the dipteran insect-mediated
transmission assays (14–41%, Table 3) and the involvement
of artificially created wounds in the assays suggested that
the dipteran insects may transmit BaMV in a mechanical-like
manner, not directly feeding BaMV into the plants. Further
studies are required to fully analyze the relationship between
BaMV and the dipterans and the mode of transmission
involved.

The Impact on Current Integrated Pest
Management System for BaMV Disease
in Bamboos
As mentioned above, no known insect vectors have been
reported for BaMV (Elliot and Zettler, 1996; Hsu and
Lin, 2004; Nelson and Borth, 2011), thus the current
recommendation for the management of BaMV in bamboos
did not include the control and prevention of dipterans.
The present production systems of BaMV-free bamboo
seedlings in Taiwan use indexed bamboo seedlings originated
from meristem-tip tissue cultures (Hsu et al., 2000), but
the amplification of the original BaMV-free seedlings for
downstream growers is dependent on the seedling nurseries in
the fields.

The finding in this study that dipterans may mediate
the transmission of BaMV highlights the importance of the
integration of dipteran insect control and prevention measures
into the current disease management system against BaMV. Since
the dipterans tested in this study exhibited much longer virus
acquisition feeding time, virus retention time, and transmission
feeding time, compared to those of the non-persistent mode
of transmission, the transmission mode of BaMV by the
dipterans may be categorized as at least “semi-persistent,” if not
“persistent.” Thus, the dipterans may be controlled by using
suitable pesticides, without the concern of causing increased
dispersals of the viral diseases as seen for “non-persistent” mode
of transmission.

CONCLUSION

To our knowledge, this is the first report describing the
transmission of a plant virus by dipterans with sponge-like
mouthparts, These results expanded the types of insects as vectors
for plant viruses, and suggested that dipteran insect control
should be concerned and integrated into the disease management
measures against viruses, such as BaMV, that are structurally
stable enough to survive through the digestive systems of these
insects.
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Bamboo mosaic virus (BaMV), a plant potexvirus, has been found only in infected
bamboo species. It is frequently associated with a large, linear single-stranded satellite
RNA (satBaMV) that encodes a non-structural protein. Decades of collecting across
a wide geographic area in Asia have accumulated a sizable number of BaMV and
satBaMV isolates. In this study, we reconstructed the BaMV phylogeny and satBaMV
phylogeny with partial coat protein gene sequences and partial genomic sequences,
respectively. The evolutionary relationships allowed us to infer the phylogeography
of BaMV and satBaMV on the Asian continent and its outlying islands. The BaMV
phylogeny suggests that the BaMV isolates from Taiwan, unsurprisingly, are most likely
derived from China. Interestingly, the newly available satBaMV isolates from China were
found to be most closely related to the previously established Clade III, which is found
in India. The general pattern of clustering along the China/India and Taiwan divide led
us to hypothesize that the Taiwan Strait has been a physical barrier to gene flow in
the past evolutionary history of both BaMV and satBaMV. Lastly, cophylogeny analyses
revealed a complex association pattern between BaMV and satBaMV isolates from
China. In general, closely related BaMV sequences tend to carry closely related satBaMV
sequences as well; but instances of mismatching with distantly related satBaMV isolates
were also found. We hypothesize plausible scenarios of infection and superinfection of
bamboo hosts that may be responsible for the observed association pattern. However,
a more systematic sampling throughout the geographic distribution of various bamboo
species is needed to unambiguously establish the origin, movement, and evolution of
BaMV and satBaMV.

Keywords: BaMV, satBaMV, phylogeography, cophylogeny, evolution

INTRODUCTION

Population genetic surveys and phylogenetic reconstructions of plant viruses and their associated
satellites offer us invaluable insights into not only the observed patterns and inferred processes
of plant virus evolution (García-Arenal et al., 2003) but also the ecological interactions that may
contribute to long-distance dispersal and emergence of new diseases (Fargette et al., 2006). Ever
since the enigmatic RNA 5 was confirmed to be a satellite RNA (satRNA) associated with the
Cucumber mosaic virus (CMV) (Kaper et al., 1976), this model system has become the most
widely studied combination of helper virus and satRNA. Recent works span their basic biology
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(Palukaitis et al., 1992; Roossinck et al., 1992; García-Arenal
and Palukaitis, 1999; Palukaitis and García-Arenal, 2003;
Jacquemond, 2012), their ecology (Gallitelli, 2000) and evolution
(Roossinck, 2001, 2002). Especially interesting is a series of field
surveys and subsequent experimental studies that investigate
a multi-year epidemic of CMV and its associated satRNAs
(satCMV) in Eastern Spain (Fraile and García-Arenal, 1991;
Jordá et al., 1992; Aranda et al., 1993; Alonso-Prados et al.,
1998; Escriu et al., 2000a,b; Betancourt et al., 2011). A multi-
year epidemic ravaged by CMV and satCMV in Italy yielded a
similar pattern of genetic variation in the field (Grieco et al.,
1997). Various phylogenetic and phylogeographic studies of plant
viruses and their associated satellites in nature have revealed
clustering of isolates based on symptoms, plant hosts, and/or
geographic origins (Grieco et al., 1997; Cabrera et al., 2000;
Abubakar et al., 2003; Pinel et al., 2003; Fargette et al., 2004;
Tomitaka and Ohshima, 2006; Olarte Castillo et al., 2011;
Venkataravanappa et al., 2011; Cuevas et al., 2012a,b). However,
it is to be noted that most of these studies are with viruses that
adopt the acute lifestyle (Roossinck, 2010), infecting plant hosts
that are predominantly annual crops.

Bamboos are a group of evergreen perennial grasses belonging
to the grass family Poaceae (Kelchner and Bamboo Phylogeny
Group, 2013; Clark et al., 2015). There are approximately 1,400
to 1,500 bamboo species, distributed worldwide, except Europe
and Antarctica (Kelchner and Bamboo Phylogeny Group, 2013;
Clark et al., 2015). Of the two main bamboo types, the most
economically, ecological, and culturally important, and also what
we are most familiar with, is the woody bamboos (as opposed
to the herbaceous bamboos). Of the reported bamboo diseases,
only two are caused by viruses (Su and Wang, 2015). Bamboo
mosaic virus (BaMV) was first recognized in Brazil in 1974 in
two bamboo species, Bambusa multiplex and B. vulgaris (Lin
et al., 1977). Besides South America, BaMV has subsequently
been reported in various parts of the world, including North
America, Asia, and Australia (Lin et al., 1992, 1993, 1995, 2015;
Thomas and Dodman, 1999; Nelson and Borth, 2011). Curiously,
no case of BaMV infection has been reported on the African
continent, where many bamboo species are found (Clark et al.,
2015). It should not come as a surprise if BaMV is eventually
reported in Africa as well.

Bamboo mosaic virus belongs to the genus Potexvirus of the
family Alphaflexiviridae (Adams et al., 2011). It is a flexuous
rod of approximately 490 nm × 15 nm in size (Lin et al.,
1977; DiMaio et al., 2015). Its single-stranded RNA genome is
approximately 6,400 nucleotides long, encoding a polymerase,
triple-gene block (proteins involved in cell-to-cell movement),
and a coat protein (CP) (Lin et al., 1992, 1994). In the field,
BaMV is frequently associated with a satellite RNA (satBaMV)
(Lin and Hsu, 1994; Yeh et al., 2004; Wang et al., 2014). Although
the genome of the type member, satBaMV-BSF4, is only 836
nucleotides long, it nevertheless belongs to a group of large linear
single-stranded satellite RNAs (satRNAs) (Mayo, 1991; Briddon
et al., 2012). However, unlike most other members of this satRNA
group, all of which are all associated with helper viruses in
the family Secoviridae, satBaMV is the only known example of
satRNA associated with a member in the family Alphaflexiviridae

(Mayo, 1991; Briddon et al., 2012). As is typical of this large
satRNA group, satBaMV also encodes a non-structural protein,
P20, which is involved in the systemic movement of satBaMV
within the infected host (Lin et al., 1996; Palani et al., 2006, 2012;
Chang et al., 2016). The P20 protein is the only known large
satRNA-encoded protein not required for satRNA replication
(Lin et al., 1996).

Since satBaMV depends on its helper virus for genome
replication, cell-to-cell movement, and encapsidation, it can be
viewed as a molecular parasite exploiting various vital functions
of its host BaMV (Nee, 2000). That is, interaction between
the help virus and its associated satRNA is typically seen
as antagonistic, presumably via competition for accessing the
viral encoded RNA-dependent RNA polymerase (RdRp) for
replication (Wu and Kaper, 1995). For BaMV and satBaMV, the
competition for RdRp is likely mediated through the untranslated
5′-end regions of their genomes (Chen et al., 2007, 2010, 2012).
One of the consequences of such an interaction is manifested
as the severity of the infected plant hosts’ symptoms (Collmer
and Howell, 1992). BSF4 and BSL6 are two of the most
frequently studied satBaMV isolates. Their disease symptoms,
when coinfected with BaMV separately, represent the opposite
ends of the spectrum, with BSF4 infection showing a severe
mosaic symptom, while BSL6 infection a relatively mild one
(Hsu et al., 1998). This apparent antagonistic interaction, albeit
manifested with a wide range of symptom severity, is further
complicated by other indirect interactions mediated through
the defense mechanisms of the host plant (Hu et al., 2009).
Consequently, the coevolutionary patterns may be host plant
dependent. One possible consequence of long-term interaction
is the evolution of helper virus specificity by the satRNA. For
example, some large Nepovirus-associated satellite RNAs can be
supported only by certain isolates or serotypes of their helper
viruses (Murant and Mayo, 1982; Roossinck et al., 1992; Fritsch
et al., 1993; Oncino et al., 1995). In the most extreme case, the
specificity can simply be determined by the presence or absence of
a single amino acid residue (Roossinck et al., 1997). But it should
be noted that there is no solid empirical demonstration for the
hypothesized arms race dynamics between isolates of BaMV and
satBaMV, and consequently it is not clear to what extent these
interactions are a driving force for sequence evolution.

In contrast to well-established plant virus systems, BaMV has
not been subjected to phylogeographic investigation. However,
limited studies with full-length genomic sequences do reveal a
clustering pattern, and suggest that isolates from Taiwan are
derived from China (Lin et al., 2016, 2017b). In comparison,
we have previously reported a more extensive study on various
satBaMV isolates sampled from parts of China, India, and Taiwan
(Wang et al., 2014). Phylogenetic analysis uncovered three
distinct and well-supported satBaMV clades that most likely have
persisted for many decades, if not longer. Interestingly, there is no
single characteristic, such as geographic origin or host bamboo
species, defining these clades. For example, Clade I, exemplified
by the type sequence BSF4, is composed of isolates from various
BaMV-infected bamboo species on Taiwan and the Hainan Island
of China and also, interestingly, one single sample from the
United States. Isolates in Clade II, e.g., the type sequence BSL6,
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are almost exclusively found in Ma bamboo (Dendrocalamus
latiflorus Munro) on Taiwan. Clade III is currently found only
in India infecting B. vulgaris. As more samples from different
geographic locations and host bamboo species are included in the
analysis, it is not clear whether these three satBaMV clades will
persist.

In this study, we take advantage of newly available BaMV and
satBaMV sequences from China that were isolated from various
bamboo species in three botanical garden settings (Lin et al., 2015,
2016, 2017a). We investigate how BaMV and satBaMV may have
migrated across the Asian continent. We also hypothesize the
mechanisms responsible for the observed cophylogeny pattern
between BaMV and satBaMV.

MATERIALS AND METHODS

Sequence Acquisition
We used sequence information of BaMV and its associated
satBaMV from three sources: (1) novel sequences from China
deposited at the GenBank (accession numbers KP233222 and
KP256025-256071 for BaMV, and KP233223 and KP256110-
KP256146 for satBaMV), (2) sequences from our previous
studies (Yeh et al., 2004; Wang et al., 2014), and (3) BaMV
CP gene sequences from Taiwan that are new to this study.
In our previous study (Wang et al., 2014), a total of 568
sequences, most of which from Taiwan, were used to reconstruct
the satBaMV tree. To facilitate phylogenetic reconstruction
and to avoid over-representation of satBaMV sequences from
Taiwan, we selected five sequences from each of the six groups
(B. oldhamii, B. vulgaris, D. latiflorus, and D. latiflorus cv.
Mei-nung from Taiwan; B. ventricosa from Hainan Island,
China; and B. vulgaris from India) for this study. The goal
of the selection is to have maximal diversity represented for
each group. The selection is guided by within-group pairwise
comparisons using MEGA7 v7.0.20 (Kumar et al., 2016). The
new BaMV sequences from Taiwan were isolated in 1994–2000,
from various infected bamboo species and locations (Yeh
et al., 2004). BaMV virions from infected bamboo leaves were
purified and the viral RNA extracted as described previously
(Lin and Chen, 1991). Purified viral RNA was used as the
template and oligonucleotides B81 (5′-ACGGGAGCTCT20-3′,
underlined letters indicate the SacI site) as the primer for reverse
transcription to synthesize the first strand cDNA. The primer
pair of B81 and B43 (5′-CGACGTTGGAAATAATAATAAAC-3′,
underlined letters indicate the BstXI site), which complements
the 5′ flanking promotor region of the CP gene, were used
to amplify the CP gene. The DNA amplicon was separated
with 1% agarose gel, gel-purified, ligated into pGEM-T Easy
cloning vector (Promega, Madison, WI, United States), and then
transformed into Escherichia coli DH5α. The resulting plasmid,
carrying the inserted sequence, was selected and sequenced. DNA
sequencing was performed by ABI 377A Sequencer using the
BigDye Terminator Cycle Sequencing Kit (Applied Biosystems,
Foster City, CA, United States).

All new sequences are deposited at the GenBank.
Supplementary Material S1 lists all sequences used in this

study, including isolate names, locations and dates of sampling,
and GenBank accession numbers. Supplementary Material S2
shows the map with the approximate sampling locations.

Sequence Alignment
The recently available data from China are partial sequences of
BaMV CP genes and partial genomic sequences of satBaMV.
For sequence alignment, all other sequences were trimmed to
the same lengths as those from China. To avoid confusion
and to facilitate orientation, the BaMV-S and satBaMV-
BSF4 genomic sequences, accession numbers AF018156 and
AY205227, respectively, are used as references for positioning the
nucleotide and protein sequences used in this study. For BaMV,
the nucleotide sequences corresponding to the BaMV-S genomic
sequence, nucleotides 5611–6138 (528 nucleotides; 72.4% of the
CP gene sequence; encoding amino acid residues 39–213), are
used. For satBaMV, the nucleotide sequences corresponding to
the satBaMV-BSF4 genomic sequence, nucleotides 271–742 (472
nucleotides; 56.5% of the genomic sequence; encoding P20 amino
acid residues 38–183), are used.

The most closely related sequences to BaMV CP and satBaMV
P20 proteins are the CP proteins of the Foxtail mosaic virus
(FoMV, GenBank accession number NC_001483) (Yamaji et al.,
2001) and the Panicum mosaic satellite virus (SPMV, GenBank
accession number NC_003847) (Liu and Lin, 1995), respectively.
Therefore, these two sequences were used as outgroups to
root the corresponding BaMV and satBaMV trees. Two pairs
of full-length protein sequences, FoMV CP/BaMV-S CP and
SPMV CP/satBaMV-BSF4 P20, were aligned separately using
Expresso of the T-coffee online service1 (Notredame et al., 2000;
Armougom et al., 2006; Di Tommaso et al., 2011). The partial
BaMV and satBaMV nucleotide sequences were aligned using the
online service, Clustal Omega2 (Sievers et al., 2011). The initial
nucleotide sequence alignments were then manually adjusted
using the protein sequence alignments as guides.

Phylogenetic Reconstruction
We used both the Bayesian inference (BI) and maximum
likelihood (ML) methods to infer the relationships among the
aligned BaMV and satBaMV sequences. For each method,
alignments with or without the outgroup sequences were also
constructed. The substitution model “GTR+G+I,” selected by
the automatic model selection function of the PhyML server
version 3.03 (Guindon et al., 2010), was used for all tree
constructions, except for that of the BaMV ML tree with
FoMV as the outgroup, for which the model “GTR+G” was
used. For the BI method, MrBayes (Huelsenbeck and Ronquist,
2001), version 3.2 (Ronquist et al., 2012) running on Mac OS
X version 10.12, was used. All reconstructions with MrBayes
were run for 10,000,000 generations and had 25% burn-in. The
convergence of the runs was assessed using the program Tracer
v1.6 (Rambaut et al., 2014). For all runs, the ESS (effective
sample size) values for the log likelihood LnL ranged from

1http://tcoffee.crg.cat/apps/tcoffee/do:expresso
2http://www.ebi.ac.uk/Tools/msa/clustalo/
3http://www.atgc-montpellier.fr/phyml/
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1519 to 3196, and the PSRF (potential scale reduction factor)
values were all close to 1.0. For the ML trees, we used the
online PhyML server (see above). A bootstrap of 500 replicates
was used to estimate branch support. We used the program
TreeGraph 2 (Stöver and Müller, 2010) to collapse branches with
low support values. For the BI trees, the criterion of branch
collapsing is for the posterior probability <0.90, and for the ML
trees the criterion is replicate number <375 (75%). The program
FigTree, version 1.4.3 (Rambaut, 2012), was used to visualize
and manipulate the trees, including the function of midpoint
rooting.

Cophylogeny Analysis
Both Jane version 4.0.1 (Conow et al., 2010) and PACo
version 1.1.r (Balbuena et al., 2013) were used for cophylogeny
analysis. For analysis using Jane, we employed default costs of
“cospeciation” = 0, “duplication” = 1, “duplication and host
switch” = 2, “loss” = 1, and “failure to diverge” = 1. We
found that the values for the Genetic Algorithm parameters have
some effects on the estimated minimum cost. We conducted
an initial exploration of the parameter space of the “number
of generations” and “population size” by varying their values
from the default of 100 to a range of 30 to 1,500 to obtain
the corresponding range of the estimated minimum costs. All
estimated costs ranged from 45 to 52. Because the higher the
values are the longer it takes to complete a single simulation,
therefore we used the values of 50 and 1,500 for “number of
generations” and “population size,” respectively, as a compromise
between the precision of cost estimation and the time to complete
the subsequent randomizations. We used 100 randomizations
to obtain the cost distribution of randomized associations. The
PACo, version 1.1, is an R script and the analysis was conducted
using RStudio (v. 0.99.903) (RStudio Team, 2012) running on top
of R (v. 3.3.1) (R Core Team, 2016). We used the cophylo function
from the phytools package (Revell, 2012) to visualize associations
between BaMV and satBaMV isolates from China.

The input files for these two analyses are based on the
collapsed Bayesian trees shown in Figures 1, 2, although they
are not the same. For the PACo analysis, which requires the
information on branch length, the original tree files from
Figures 1, 2 were used. For the Jane analysis, which requires
each “parasite species” to have at least one corresponding “host
species,” so the tree file for Figure 2 is not suitable for the
analysis. To circumvent this problem, the tree topologies of
the 38 Chinese BaMV and satBaMV isolates were manually
extracted from Figures 1, 2 to be used as the input files
for the Jane analysis. The cophylo plot in Figure 3 also used
the same input file used in the Jane analysis to simplify the
presentation.

RESULTS AND DISCUSSION

Phylogeography of BaMV
Although BaMV has been detected in various parts of
the world (Nelson and Borth, 2011), almost all available
BaMV sequences are derived from samples obtained in

Taiwan. Recent additions from China (Lin et al., 2015,
2016) provide an opportunity to explore the evolutionary
history among the BaMV isolates over a larger geographic
area.

A total of 101 BaMV sequences, 53 from Taiwan and 48 from
China, were used to reconstruct the phylogenetic relationship.
The 528-nucleotide-long sequences (nucleotides 5611–6138, with
BaMV-S genome as the reference, see Materials and Methods)
encompass part of the CP gene, encoding 176 of the full-
length 242 amino acid residues. To establish the character
polarity, e.g., place of origin, a rooted tree is required. Although
there are several approaches to rooting a phylogenetic tree
(Kinene et al., 2016), the most commonly used are outgroup
rooting and midpoint rooting. The outgroup rooting requires
a homologous sequence known a priori. Typically, if possible,
the outgroup rooting is preferred. Alternatively, the midpoint
rooting is commonly used when no suitable outgroup is available.
The midpoint rooting is found to be relatively successful at
identifying the root of a phylogenetic tree (Hess and Russo,
2007). In this study, we used the BI and the ML methods
to infer evolutionary histories among the BaMV isolates.
For each method, we also reconstructed the trees with or
without the presence of an outgroup sequence to evaluate
the proper placement of the root. Of the two reconstruction
methods, the BI method with midpoint rooting was able to
produce a reasonably resolved phylogenetic relationship with
high branch supports (Figure 1). On the other hand, the ML
method produced a star phylogeny (polytomy) encompassing
the majority of the sequences, thus rendering most of the
relationships unresolved (see Supplementary Material S3).
Furthermore, the phylogenetic relationships are better resolved
with midpoint rooting than with outgroup rooting. This may
be due to the fact that, over the region analyzed, the outgroup
FoMV CP sequence shows a relatively low sequence identity
of 29.5% with that of the BaMV CP. At the nucleotide level,
the average number of nucleotide difference between the FoMV
CP and BaMV CP gene is 276, while the average nucleotide
difference between two BaMV sequences is only 64. It is
likely that some nucleotide differences among the BaMV CP
sequences are seen as “noises,” thus not contributing to the
resolution of their relationships (Li and Graur, 1991; Mount,
2004). Nevertheless, despite the seemingly unresolved trees, the
topologies of BI and ML trees are consistent in crucial aspects
that are pertinent to our study. Therefore, we will focus our
discussions based on the midpoint-rooted BI tree, as shown in
Figure 1.

Several interesting patterns emerge from Figure 1. First,
the majority of the isolates from Taiwan form a single
clade and those from China two clades. There is no single
instance in which the Chinese and Taiwanese isolates are
found interspersed with each other. This complete coincidence
between clade formation and geographic origin suggests that
BaMV has a relatively independent evolutionary history in these
two geographically proximate locations. Second, one of the
Chinese clades forms the basal group of the tree, suggesting
that the Taiwanese isolates originated in China. More limited
studies, but with full-length genomic sequences, showed the

Frontiers in Microbiology | www.frontiersin.org May 2017 | Volume 8 | Article 886 | 87

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00886 May 19, 2017 Time: 16:25 # 5

Wang et al. Phylogeography and Coevolution of BaMV and satBaMV

FIGURE 1 | Phylogeny of BaMV isolates from Taiwan and China. Partial sequences of the CP gene were aligned and phylogeny reconstructed with the BI
method. Isolates within the dash-lined boxes are from Taiwan; the rest, with the prefix “BaMV-,” are from China. Colored fonts indicate the general regions from
which the isolates were collected: northern (blue), central (green), southern (red), northeastern (magenta), and eastern (cyan) Taiwan; southern (orange) and central
(black) China. For location details, please see the Supplementary Material S1. The phylogeny is midpoint rooted. Numbers show the posterior probabilities (PPs).
Branches with PP <0.9 are collapsed to polytomy.
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FIGURE 2 | Phylogeny of satBaMV. Partial sequences of satBaMV isolates were aligned and phylogeny reconstructed with the BI method. Membership in
previously identified three clades (Wang et al., 2014) are shown in the dash-lined boxes. Isolates from China are indicated with the right curly bracket symbols.
Colored fonts, as shown in Figure 1, indicate the general regions from which the isolates were collected. It is to be noted that the isolates with the prefix “n-” in
Clade I are sequences from the Hainan Island of China in our previous study. The phylogeny is midpoint-rooted. Numbers show the PPs. Branches with PP <0.9 are
collapsed to polytomy.
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FIGURE 3 | Cophylogeny plot of BaMV and satBaMV isolates from China. Unrooted BI trees of BaMV (left) and satBaMV (right) of 38 isolates from China were
manually extracted from Figures 1, 2, respectively. Isolate names are shown at the tips of each branch. Dashed lines connect BaMV and satBaMV isolates collected
from the same infected bamboo host.

same pattern as well (Lin et al., 2016, 2017b). Third, multiple
instances of independent BaMV introduction from China to
Taiwan are discernible from the reconstructed phylogenetic
trees.

While illuminating, these patterns are not unexpected,
for the inferred direction of BaMV introduction followed
the same typical route of species introduction/invasion from
the mainland to an island (MacArthur and Wilson, 1967;
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Lomolino et al., 2010). With the frequent exchange of goods
and movement of both people and agricultural practices
between Taiwan and China since ancient times, multiple,
independent introductions of pathogens, including viruses,
should be expected. However, we note that these BaMV
isolates are not contemporaneous. The isolates from Taiwan
were collected between 1994 and 2000 (Yeh et al., 2004) and
those from China in 2014 (see Supplementary Material S1
for details). It is not clear whether almost two decades of
difference in evolution could drastically alter the inferred tree
topology, thus resulting in an erroneous inference of movement
direction (e.g., the current isolates from China may actually be
derived from the older isolates from Taiwan). Nevertheless, our
current analysis provides motivation for the need of a more
systematic and wider geographic sampling of BaMV in the
field.

Phylogeography of satBaMV
Our previous analysis on the evolution of satBaMV revealed
three well-supported clades. Clade I is composed of isolates
from Taiwan (collected from various bamboo species from
various locations on the island, see Supplementary Material S1
for details) and southern China (Hainan Island, specifically).
Clade II is composed of isolates from the infected Ma
bamboo (D. latiflorus Munro) in Taiwan, and Clade III
of isolates from India (Wang et al., 2014). The recently
available satBaMV sequences from China are collected from
a much wider geographic area (Lin et al., 2015, 2017a),
thus providing an opportunity to infer the phylogeography
of satBaMV isolates. In this study, a total of 98 sequences
were analyzed, with 60 previously analyzed and published
data and 38 recently added sequences from China. The 472-
nucleotide-long sequences [nucleotides 271–742, with satBaMV-
BSF4 genome (AY205227) (Lin and Hsu, 1994) as the
reference] encompass part of the P20 gene, encoding 146
of the full-length 183 amino acid residues. Since the CP
gene from SPMV (GenBank accession number NC_003847)
is the most closely related sequence to satBaMV’s P20
gene, it is used as an outgroup to root the satBaMV tree.
Over the region analyzed, the average number of nucleotide
difference between SPMV CP and satBaMV sequence is
159, while the average difference between two satBaMV
sequences is 23. It is apparent that the SPMV CP gene
is only distantly related to the satBaMV CP gene. For
this reason, we focus on midpoint-rooted BI tree for our
discussion.

As shown in Figure 2, two interesting patterns emerge.
First, the inferred midpoint-root bisects the satBaMV phylogeny
at the point where it separates the previously defined Clades
I and II into one of the dichotomous branches and Clade
III into the other. That is, the satBaMV isolates collected
from Taiwan are more closely related to each other than
those collected from infected B. vulgaris bamboos in India
(Wang et al., 2014). The same tree topology is also shown
in the midpoint-rooted ML tree (see the Supplementary
Material S3). This pattern suggests a deep genetic differentiation
of satBaMV isolates between China and Taiwan. The only

region where Chinese and Taiwanese isolates co-mingled is
the Hainan Island of China. However, we note that the
outgroup-rooted BI tree shows a different tree topology,
with the root being placed within the Clade I, from which
Clades II, III, and the Chinese isolates are derived (see the
Supplementary Material S3). Such a tree topology would
imply an intriguing Taiwan-origin hypothesis for the way
satBaMV evolved and migrated within the Asian continent.
Second, more interestingly, the isolates from China, instead of
scattering throughout the satBaMV phylogeny, are clustered
together and are most closely related to those from India.
This pattern further accentuates our finding that geographic
distance (long distance between India and China versus short
distance between Taiwan and China) does not seem to be a
major determinant of phylogenetic relatedness among these
satBaMV isolates. The relative lack of geographic differentiation
is also seen within the East Asian continent. All of Chinese
isolates are from three locations: two of them (Fujian Agriculture
and Forestry University and Fuzhou National Forest Park)
are in the city Fuzhou, Fujian; the other is in the city
Chengdu (Wangjiang Park), Sichuan. Despite a distance of
approximately 1,500 km between these two cities, there is
no discernible clustering of isolates based on locations. As
mentioned previously, there is an overwhelming clustering of
Taiwanese and Chinese isolates, despite a much shorter distance
of approximately 250 km between Taipei and Fuzhou. Therefore,
we hypothesize that the Taiwan Strait forms a physical barrier,
thus greatly limiting gene flow between mainland China and
Taiwan. However, we note that satBaMV sequences from the
Hainan Island, China are clustered with those from Taiwan,
despite large swaths of South China Sea in between these two
islands.

Taken together with the results from BaMV, we conclude
that, despite gene flow, as evidenced by several independent
introductions of BaMV from China to Taiwan, both BaMV
and satBaMV in Taiwan have diverged greatly from those
on the Asian continent. Although we do not have BaMV
sequences from India or the Hainan Island, we predict that
the Indian BaMV should be found allied with those in China,
while the Hainan Island BaMV should cluster with those
from Taiwan. Our current study also highlights the need for
a more systematic sampling in various parts of the Asian
continent proper and outlying islands, especially islands of
Southeast Asia, to give us a more comprehensive picture
on the origin, evolution, and phylogeography of BaMV and
satBaMV.

Coevolution between BaMV and
satBaMV
When a parasite depends completely on its host for vital
functions, it is ordinarily anticipated that both the parasite and
host will coevolve. Therefore, speciation of the host should
lead to corresponding speciation of the parasite, essentially
coevolution via descent. Alternatively, evolution of parasite
host range can sometimes lead to colonization of a new host
species phylogenetically distant from the original host, thus
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resulting in coevolution through colonization. The pattern
of cophylogeny between the host species and the parasite
species can be used to differentiate these two alternatives.
Strict congruence between the host and parasite phylogenies
suggests coevolution by descent. Otherwise, incongruence
indicates events of shifted or expanded host range in the
parasite. We reasoned that the cophylogeny study, commonly
applied to investigating coevolution between host and parasite
at the species level, can be used to investigate coevolution
between BaMV and satBaMV at the population level as well.
Of the 48 available BaMV sequences from China, 38 have
corresponding satBaMV sequences that are isolated from the
same infected bamboo (Lin et al., 2015, 2016, 2017a). These
sequence pairs provide us an opportunity to explore the
level of coevolution between the host BaMV and the parasite
satBaMV.

We employed a cophylogeny plot, as shown in Figure 3,
to visualize the degree of congruence between the BaMV and
satBaMV phylogenies. Figure 3 reveals a complex association
pattern, indicating instances of incongruence between the two
phylogenies (in the form of crisscrossing lines connecting
individual BaMV/satBaMV pairs isolated from the same infected
bamboo). We then used more quantitative approaches to
explore the cophylogeny between BaMV and satBaMV from
China.

Two general approaches are frequently used for cophylogeny
study: global-fit and event-based methods, each has their
advantages and disadvantages (Desdevises, 2007; Filipiak et al.,
2016). In this study, we used PACo (Procrustean Approach
to Cophylogeny) (Balbuena et al., 2013), a global-fit method,
and Jane (Conow et al., 2010), an event-based method,
to investigate the pattern of cophylogeny between BaMV
and satBaMV sequences. An overall congruence would
suggest that the BaMV/satBaMV pair in an infected host
is frequently co-transmitted to a new host bamboo in their
evolutionary history. In contrast, an incongruence between
BaMV and satBaMV phylogenies would suggest relatively
independent transmission histories of these two entities.
Trees presented in Figures 1, 2 are used as the data for each
analysis.

Procrustean Approach to Cophylogeny uses the statistical
process of Procrustes superimposition to obtain the Procrustes
distance between two objects as a measure of “similarity in
shape” (called “global goodness-of-fit,” symbolized by m2

XY).
In the context of the cophylogeny analysis, the objects are
the topologies of the host tree and the parasite tree. The
significance of the observed m2

XY can then be assessed by
comparing to the distribution of sample m2

XY generated through
randomized associations between the host and parasite taxa. With
the current topologies of the BaMV and satBaMV trees, the
observed m2

XY is 1.715, while the mean m2
XY for the random

samples is 2.047 (obtained from 100,000 randomizations). Since
the resulting probability is 1.71 × 10−3, we can reject the
null hypothesis that the topology of the BaMV (host) tree
cannot predict the topology of the satBaMV (parasite) tree.
That is, at least a significant portion of the satBaMV tree
topology depends on (i.e., can be predicted by) the BaMV

tree topology. Such a dependency suggests the presence of
coevolution.

The advantage of the global-fit method, such as PACo,
is that we can quickly obtain a statistical fit between two
phylogenies without intensive computation. Its disadvantage
is that we cannot have a detailed sense of what may have
been the evolutionary events responsible for the observed
pattern. For the event-based method of Jane (Conow et al.,
2010), five mutually exclusive and exhaustive event types –
cospeciation, duplication, duplication and host switch, loss, and
failure to diverge – are assumed responsible for any given
cophylogeny pattern. Various costs, or ranges of costs, are
assigned to each event a priori. In the default setting, only
the cospeciation event does not carry a cost, all the others
have varying degrees of cost associated with them. Possible
historical events (solutions) were found by minimizing the
total costs. The minimum cost for the hypothesized historical
event(s) can then be compared to a prescribed number of
sample costs obtained by finding the minimum cost for each
of the randomized association between the host and parasites.
The details for the chosen parameters used in the analysis can
be found in Section “Materials and Methods.” In the current
cophylogeny study for BaMV and satBaMV, the best minimum
cost for the current trees is 48, while the sample costs from
100 randomized associations ranged from 48 to 62, with a
mean of 55.65 and a standard deviation of 3.15. This result
showed that the observed BaMV and satBaMV topologies have
a significantly lower cost than two randomly generated trees
(p= 3.19× 10−8), suggesting that cospeciation is the major cause
for the observed tree topologies. That is, BaMV and satBaMV
isolates in general coevolve within the same infected bamboo
individual.

Besides giving an overall statistical test, events that best fit
our current cophylogeny pattern were also identified by the
Jane analysis. Of the five possible event types, 16 “cospeciation,”
21 “duplication and host switch,” and 6 “loss” events were
hypothesized. That is, a total of 43 evolutionary steps are needed
to render the BaMV and satBaMV trees congruent. How do
we interpret these hypothetical events in the ecological context
of BaMV/satBaMV? It is interesting to note that, unlike other
potexviruses, it is somewhat difficult to infect bamboos with
BaMV/satBaMV preparation, even in the laboratory setting.
Since bamboos are perennials, with some species having a
lifespan of up to several decades, the difficulty in BaMV/satBaMV
transmission would suggest a state of chronic infection. That
is, the within-host population dynamics of viral infection
is likely dominated by a set of BaMV/satBaMV that, given
time, will coevolve from, say, the ancestral A/a sequences (or
closely related mutant swarms) to the descendant A1/a1. If
the ancestral set was also able to infect and establish in a
different host successfully, the set can also coevolve to A2/a2
via accumulation of phylogenetically informative mutations
either independently, like genetic drift, or driven by natural
selection, e.g., in the form of evolutionary arms race. That
is, the typical ecological process of infection, in the context
of BaMV/satBaMV biology, can be seen as the source of
“cospeciation” event, as defined by the Jane analysis. If the
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A/a set infects a bamboo that is already infected with a
phylogenetically more distant coevolving set, say C/c, the A/a set
can completely take over the C/c sequences, thus resulting in a
cospeciation event. Or the process of superinfection can result in
the successful establishment of A/c or C/a pairing, which, given
time, will coevolve to A3/c3 or C3/a3, respectively. Either way,
a “loss” and a “duplication and host switch” event will then be
counted in the Jane analysis.

Despite the apparent difficulty in transmitting
BaMV/satBaMV from individual to individual bamboo, our
cophylogeny analyses showed that successful establishment
of infection or differential survival of superinfection by
phylogenetically distinct BaMV and/or satBaMV sequences may
not be uncommon. In fact, an in planta experiment showed
differential accumulations of viral progeny between two BaMV
isolates, suggesting one isolate having a fitness advantage over
the other during coinfection, and presumably superinfection as
well (Lin et al., 2017b). However, it is to be noted that all the
Chinese isolate used in the cophylogeny analysis were collected
in three areas and from many different bamboo species. All
the sampling sites are in a botanical garden setting (W. Lin,
personal communication), therefore, all infected bamboo hosts
are presumed to be in close proximity to each other. However,
we did not observe obvious clustering of sequences based on
location of sampling (see Figure 2), suggesting that at least
some of the BaMV/satBaMV isolates were preexisting before
being placed in the same botanical gardens. Unfortunately, the
actual geographic origins and natural host species are not clear
for these BaMV/satBaMV isolates. Again, for a more detailed
phylogeographic and cophylogenetic analyses, a more systematic
collection of BaMV and satBaMV isolates in the field and full
genomic sequences are needed.
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Japanese encephalitis virus (JEV) is among the major threats to public health in Asia. For
disease control and prevention, the efficient production of safe and effective vaccines
against JEV is in urgent need. In this study, we produced a plant-made JEV vaccine
candidate using a chimeric virus particle (CVP) strategy based on bamboo mosaic virus
(BaMV) for epitope presentation. The chimeric virus, designated BJ2A, was constructed
by fusing JEV envelope protein domain III (EDIII) at the N-terminus of BaMV coat
protein, with an insertion of the foot-and-mouth disease virus 2A peptide to facilitate the
production of both unfused and epitope-presenting for efficient assembly of the CVP
vaccine candidate. The strategy allowed stable maintenance of the fusion construct
over long-term serial passages in plants. Immuno-electron microscopy examination
and immunization assays revealed that BJ2A is able to present the EDIII epitope on
the surface of the CVPs, which stimulated effective neutralizing antibodies against
JEV infection in mice. This study demonstrates the efficient production of an effective
CVP vaccine candidate against JEV in plants by the BaMV-based epitope presentation
system.

Keywords: bamboo mosaic virus-based vector, chimeric virus particles (CVPs), foot-and-mouth disease virus 2A,
Japanese encephalitis virus, vaccine, plant-made

INTRODUCTION

Japanese encephalitis virus (JEV), the causal agent of Japanese encephalitis (JE), is a plus-strand
RNA virus of the family Flaviviridae (Vaughn and Hoke, 1992; Unni et al., 2011). JE is a major
public health problem in Asia, causes up to 50,000 encephalitis cases and 10,000 deaths annually in
humans (Campbell et al., 2011; Unni et al., 2011; Li et al., 2014; Tarantola et al., 2014; Cappelle et al.,
2016). With the lack of specific antiviral treatment, vaccination against JEV is crucial for prevention
(Li et al., 2014), and is recommended by the World Health Organization (WHO) for the at-risk
populations (WHO, 2015). However, the successful implementation of vaccination programs in
such areas may depend largely on the cost-effectiveness and safety concerns of the vaccines, similar
to the cases for a close relative of JEV, the West Nile virus (Zohrabian et al., 2006; Martina et al.,
2010; Chen, 2015).

Currently inactivated JEV vaccines prepared from infected mouse brains (BIKEN or JEVAX)
or primary hamster kidney cells and a live attenuated vaccine (SA14-14-2) have been successfully
developed to control JEV infection (Mackenzie et al., 2004; Ghosh and Basu, 2009). Nevertheless,
the use of inactivated JEV vaccine does not confer sufficient long-term immunity to provide
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effective protection (Mackenzie et al., 2004; Ghosh and Basu,
2009). In addition, there are also concerns of side effects (Shlim
and Solomon, 2002). Accordingly, WHO has designated JEV
vaccines as a high-priority target for development of a new
vaccine to fight against JE worldwide (Tsai, 2000).

The applications of plants as bioreactors to produce valuable
proteins, including vaccines, have attracted considerable interests
in recent years (Takeyama et al., 2015). Plants can produce
large volumes of products efficiently and can have significant
advantages in decreasing manufacturing costs (Thomas et al.,
2011; Moustafa et al., 2016). The production of foreign proteins
can be achieved through stable transformation of the nuclear
or chloroplast genomes, or the transient expression mediated by
Agrobacterium- or virus-based vector systems (Lico et al., 2008;
Chen and Lai, 2013). Among these commonly used approaches,
virus-based transient expression vector systems are particularly
promising for rapid expression of recombinant proteins at
levels higher than with stable transgenic plants (Daniell et al.,
2009).

Plant viral vector systems explore various strategies for
recombinant protein expression, including gene insertion or
substitution, modular or deconstructed vector design, and
protein fusion (peptide display) (Lico et al., 2008). The
presentation of heterologous epitopes on plant virus particles is
very convenient for peptide-based production of therapeutics and
vaccines. The protein fusion strategy has been used extensively
to display target peptides on the surface of chimeric virus
particles (CVPs) to enhance immunogenicity (e.g., Gerloni et al.,
2000; Smith et al., 2006; Massa et al., 2008; Hassani-Mehraban
et al., 2015), and to facilitate easy antigen purification. In a
previous study, we have reported the use of a bamboo mosaic
virus (BaMV)-based vector as an effective epitope presentation
system, and demonstrated that the foot-and-mouth disease virus
(FMDV) VP1 epitopes expressed on BaMV CVPs can effectively
induce humoral and cell-mediated immune responses in swine
and provide full protection against FMDV challenges in that
host (Yang et al., 2007). This BaMV-based CVP vector system
presents an alternative approach for the development of a vaccine
candidate against JEV.

Japanese encephalitis virus RNA contains a single open
reading frame (ORF) that codes for a polyprotein which is
proteolytically processed into three structural proteins designated
envelope (E), membrane (M), and capsid (C) and seven non-
structural proteins, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and
NS5 (Unni et al., 2011). The E protein appears to play an
important role in viral attachment, membrane fusion for entry
into the host cell (Stiasny and Heinz, 2006), virus assembly
and maturation, and most notably, inducing virus-neutralizing
antibodies (Mason et al., 1989; Kurane, 2002). The key domain
of E protein, EDIII, forms a β-barrel type structure resembling
the immunoglobulin constant domain and can be independently
folded as an individual fragment by forming a disulfide bond
(between residues 304 and 335) to maintain its conformation
(Wu K. P. et al., 2003). Moreover, neutralizing epitopes in the
EDIII have been identified on the lateral surface (Cecilia and
Gould, 1991; Seif et al., 1995; Lin and Wu, 2003). Therefore, EDIII
represents a potential antigen for producing vaccine candidates.

The use of autonomously replicating viruses as expression
vectors provides an attractive means for the transient expression
of CVPs displaying JEV EDIII antigens in plants. However,
the sizes of the epitope presented in our previous BaMV-based
CVP vector was limited to 37 amino acids (Yang et al., 2007),
which is also a common barrier encountered by other CVP-based
expression systems (e.g., Bendahmane et al., 1999; Jiang et al.,
2006; Uhde-Holzem et al., 2010; Zhang et al., 2010). For epitopes
with larger sizes, such as the EDIII epitope of JEV, or other
unfavorable structural features, alternative strategies are required
to improve the survival rate and the stability of the fusion
proteins.

In this study, we aimed to develop a BaMV-based CVP vaccine
against JEV by fusing JEV EDIII to BaMV coat protein (CP)
and displaying the EDIII epitopes on the surfaces of CVPs.
To overcome the size-limitations of the epitope-presentation
systems, we have adopted the strategy of Cruz et al. (1996)
by inserting the 2A co-translational dissociation sequence from
FMDV (designated 2A) to the junction of JEV EDIII and
BaMV CP, providing enhanced solidity of the CVPs while
retaining the presentation of EDIII epitopes on portions of
virion surfaces. Detailed analysis were performed to investigate
the genetic stabilities of the chimeric virus and the proportions
of EDIII-2A-BaMV CP fusion proteins assembled into CVPs
among those produced in plant cells. Immunization assays were
also conducted to examine the effectiveness of these chimeric
CVPs to stimulate the immune responses in mice. Evidence
was provided to support that the BaMV-based CVP may offer
an alternative vaccine candidate to elicit the generation of
neutralization antibodies in mice.

MATERIALS AND METHODS

Construction of Chimeric BaMV
Infectious Clone
The infectious recombinant constructs used in this study were
derived from a mutant BaMV cDNA plasmid, pBS-d35CP (Yang
et al., 2007) (Figure 1A), in which the N-terminal 35 amino acids
of CP have been deleted. The coding sequence of JEV (CH2195LA
strain) EDIII region, from nucleotide position 874 to 1206, was
amplified with primers 5′ ggactagtaccatggacaaactggccctgaaaggc
3′ and 5′ cgttccagctccagacattgcggccgccgtgcttcctgctttgtg 3′ (with
JEV EDIII coding sequences italicized, and restriction sites
for SpeI, and NotI, respectively, underlined) by PCR using
plasmid pET32a/LD3 (Wu S. C. et al., 2003) as the template.
The PCR-amplified fragment was purified and inserted into
plasmid pBS-d35CP at the NheI and NotI site, resulting
in plasmid pBJ (Figure 1A). The DNA fragment coding
for the FMDV 2A peptide (LLNFDLLKLAGDVESNPGP)
(Ryan et al., 1991) was amplified by PCR with primers
5′ ggctagcgcggccgcgctgttgaattttgaccttcttaagcttgcggg 3′ and 5′
cctgggccccgggtccggggttggactcgacgtctcccgcaagcttaagaagg 3′ (with
FMDV 2A coding sequence italicized, restriction sites underlined
for NheI, NotI, in conjunction, and PspOMI, respectively, and
complementary sequences in boldface). Plasmid pB2A was
constructed by inserting the FMDV 2A coding sequence at the
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FIGURE 1 | Japanese encephalitis virus (JEV) EDIII is expressed in plants infected with chimeric BaMV. (A) Schematic representation of the recombinant
constructs based on BaMV genome. (B) Infectivity and symptom of various recombinant BaMV construct on Chenopodium quinoa. Leaves inoculated with H2O
(mock) or recombinant plasmids pBS-d35CP, pB2A, pBJ, or pBJ2A were shown. The photos were taken at 10 days post-inoculation (dpi). (C) SDS-PAGE
separation and immunoblot analysis of proteins extracted from inoculated or systemically infected leaves of N. benthamiana, as indicated on top of each panel.
Leaves were H2O-inoculated (mock) or inoculated with recombinant plasmids pBS-d35CP, pB2A, pBJ, or pBJ2A as indicated. Total proteins extracted from
inoculated leaves (accounting for 1 mg fresh weight of leaf) from each treatment were separated in a 12% SDS-PAGE (Top panel), and stained with coomassie blue
(CB). The proteins were transferred to PVDF membranes and reacted with antisera against BaMV CP (anti-CP, middle panel), or JEV EDIII (anti-EDIII, bottom panel),
respectively. The relative molecular weights (in kDa) are given on the left of each panel, and positions of each target proteins on the right. IB, immuno-blot.
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5′-terminus of the truncated CP ORF of pBS-d35CP with proper
restriction enzyme digestions (Figure 1A). The above-mentioned
JEV EDIII coding sequence was inserted into plasmid pB2A
at the NheI and NotI site to give plasmid pBJ2A (Figure 1A).
The identities of all plasmids were confirmed by nucleotide
sequencing.

Preparation of Recombinant EDIII (rEDIII)
Japanese encephalitis virus EDIII fragments were obtained from
pET32a/LD3 plasmid (Wu S. C. et al., 2003) by digestion with
NcoI and NotI, and cloned into plasmid pET21d (Novagen)
at the respective sites for over-expression in Escherichia coli.
Methods used for expression and purification of rEDIII protein
were as previously reported (Seif et al., 1995), except that the
E. coli strain BL21(DE3) (Novagen) was transformed with the
rEDIII-expression plasmid and grown overnight in LB medium
in the presence of ampicillin (50 µg ml−1). The cells were
then diluted 50-fold in LB medium containing ampicillin and
grown at 37◦C. The rEDIII protein was further dialyzed against
phosphate-buffered saline (PBS). The purified rEDIII was further
subjected to raise specific antiserum in rabbits following standard
procedures (Lin and Chen, 1991).

Protein Analysis of the Infected Plant
Tissue and Stability of Chimeras during
Sequential Transmission
The genetic stability of BJ2A chimeric virus was tested using
local-lesion host Chenopodium quinoa, while the systemic
movement of the chimeric virus was tested on systemic-infection
host Nicotiana benthamiana. The infectious viral cDNA clones
of pBS-d35CP, pB2A, pBJ, and pBJ2A were inoculated onto
N. benthamiana or C. quinoa as previously reported (Yang et al.,
2007). The plants were grown in a greenhouse exposed to normal
daylight. After local lesions appeared on the pBJ2A-inoculated
leaves of C. quinoa at 10 days post-inoculation (dpi), leaves were
excised and ground in deionized H2O (1:10; weight:volume). The
crude sap was mechanically inoculated to healthy C. quinoa. The
above-mentioned procedure was repeated for nine times, and the
progeny virus, BJ2A, on C. quinoa leaves was assayed each time
to examine the stability of the chimeric virus during successive
passages in plants. Total proteins extracted from inoculated leaves
were separated by electrophoresis on a 12% polyacrylamide gel
containing 1% sodium dodecyl sulfate (SDS-PAGE), and stained
with coomassie blue (CB). The proteins were then transferred to
PVDF membranes (Millipore) and reacted with antisera against
BaMV CP (Lin and Chen, 1991) or rEDIII, respectively.

Detection of EDIII in Inoculated Plants by
Enzyme-Linked Immunosorbent Assay
(ELISA)
The plant-made JEV EDIII proteins in C. quinoa leaves
inoculated with pBJ2A were examined by indirect ELISA using
the rabbit antiserum against rEDIII. ELISA was performed
as described previously with minor modifications (Saejung
et al., 2007). The bound protein-antibodies were detected
with biotin-conjugated goat anti- rabbit IgG using the

VECTASTAIN Elite ABC kit (avidin biotinylated peroxidase;
Vector Laboratories). Following color development, the
absorbance at 450 nm was measured on an ELISA reader
(Spectramax M2, Molecular Device, USA). Known amounts of
purified JEV rEDIII protein was used to establish the standard
curve for quantification. Protein extract from a healthy plant was
used as a negative control.

BJ2A CVP Purification
Chenopodium quinoa was chosen as the host plant for the
production of BJ2A CVPs to avoid the potential side effects
of nicotine and other alkaloids present in N. benthamiana
(Mishra et al., 2015). Leaves of C. quinoa inoculated with
pBJ2A were harvested at 10 dpi. The BJ2A CVPs were
subsequently purified from the leaves and the yield was
determined spectrophotometrically by absorbance at 280 nm
as described previously (Lin and Chen, 1991). Purified BJ2A
CVPs were dissolved in BE buffer (50 mM Borate, pH 8.0,
1 mM EDTA), then stored at −20◦C until used. Chimeric BJ2A
virions were separated on a 12% SDS-PAGE. The protein bands
corresponding to the EDIII-2A-CP fusion protein or cleaved CP
on the gel were quantitated by using the Alpha Imager 2200 V5.04
documentation and analysis system.

Immunoelectron Microscopy
Methods used for the examination of chimeric BJ2A virions by
immunoelectron microscopy were as previously reported (Lin,
1984). Gold-labeled antibodies specific for BaMV CP (Lin and
Chen, 1991), JEV EDIII, and pre-immune serum were used in the
respective experiments. The grids were finally negatively stained
with 2% uranyl acetate and examined with transmission electron
microscopy (Philips CM 100 Bio) at 80 KV. Control grids were
treated with pre-immune rabbit antiserum.

Mouse Immune Response
Three groups of 6-week-old female BALB/c ByJ mice, six mice
per group, obtained from the National Laboratory Animal
Center (Taipei, Taiwan), were immunized by intraperitoneal
injection. The care of the animals was provided in accordance
with guidelines approved by the animal committee of the
Institute of Biomedical Sciences, Academia Sinica. One group
was immunized with 200 µg BJ2A CVPs. The second group
was immunized with 30 µg rEDIII as the positive control. The
third group was injected with saline as the negative control.
All the mice were boosted with the same dose on day 12. The
primary antigens were emulsified in Freund’s complete adjuvant
(Difco) and boosters emulsified in Freund’s incomplete adjuvant
(Sigma). Sera were collected on days 0 and 49. The titers and
reactivity of sera were tested using indirect ELISA, indirect
immunofluorescence assay and plaque reduction neutralization,
described as follows.

Analysis of EDIII-Specific Antibody in
Mice Sera by ELISA
Serum samples were collected by periorbital route and heat-
inactivated at 56◦C for 30 min. JEV EDIII-specific antibodies
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in serum samples were analyzed by indirect ELISA as described
previously (Yang et al., 2007), except that ELISA plates (Nunc)
were coated with rEDIII (1 µg per well) as antigens, and bound
antibodies were detected with biotin-conjugated goat anti-mouse
IgG (H+L). Following color development, the absorbance at
450 nm was measured on an ELISA reader. For background
reactions, mice pre-immune sera were used in the ELISA.

Indirect Immunofluorescence Assay
To analyze whether the BJ2A CVPs elicited the production
of effective JEV EDIII-specific antibodies in the immunized
mice, indirect immunofluorescence assay was performed as
described previously (Wu et al., 2002), except that BHK-21 cells
were infected with JEV (RP-9 strain) and the sera obtained
from the immunized mice were pooled and 100-fold diluted.
Fluorescence was observed with a Leica fluorescence microscope.
Cell nuclei were visualized by 4, 6-diamidino-2 -phenylindole
(DAPI) staining in 0.9% sodium chloride. Pictures were
taken using an inverted fluorescent microscope (Leica) by
double exposure of the same fields with filters for FITC
and DAPI.

Neutralization Test
Neutralizing antibody was assayed by plaque reduction
neutralization test (PRNT) in BHK-21 cells as previously
described (Chen et al., 2005) with minor modifications. Briefly,
serum samples were subjected to a serial twofold dilution in
5% fetal bovine serum (FBS)-PBS on ice. Then, equal volumes
of infectious JEV in minimum essential medium (MEM)
supplemented with FBS were mixed with the serially diluted
serum sample to make a mixture containing approximately
100 pfu of virus per well. The virus-antibody complex was
added to six-well plates (in triplicates) containing confluent
monolayers of BHK-21 cells. The plates were incubated at 37◦C
for 1 hr with gentle rocking every 15 min. The wells were then
overlaid with 2 ml of 1% methyl cellulose prepared in MEM,
supplemented with 5% FBS and incubated at 37◦C in 5% CO2
for 4 days. Plaques were stained with naphthol blue black and
counted. The neutralizing antibody titer was calculated as the
reciprocal of the highest dilution resulting in a 70% reduction of
plaques compared to that of a control of virus without antibody
added.

RESULTS

Production of JEV EDIII Using Chimeric
BaMV Vectors in Plants
To achieve better yield and stability of JEV EDIII in plants, we
explored two different strategies by using BaMV-based vector: (i)
direct fusion of JEV EDIII to the N-terminus of truncated BaMV
CP, and (ii) insertion of FMDV 2A co-translational dissociation
peptide sequence in between JEV EDIII and BaMV CP. The first
approach was expected to result in higher yield of the epitope,
with JEV EDIII presented on every BaMV CP subunits, at the
cost of losing virion stability. The second approach allowed for

the production of both the JEV EDIII-2A-BaMV CP recombinant
protein and the unfused BaMV CP, leading to the display of
JEV EDIII on only portions of the chimeric BaMV virions,
with the expected increase in stability of the CVP. Accordingly,
two recombinant plasmids, pBJ and pBJ2A, were constructed
based on a modified BaMV vector pBS-d35CP (Figure 1A).
The infectivity of the recombinant viral vectors was assayed in
both N. benthamiana and C. quinoa. The result revealed that
infection with pBJ2A led to stronger mosaic symptoms than
that with pBS-d35CP in N. benthamiana, whereas chlorotic local
lesions distinct from those caused by pBS-d35CP were observed
after pBJ2A inoculation in C. quinoa (Figure 1B). In contrast,
inoculation with pBJ did not cause any visible symptom on both
N. benthamiana and C. quinoa (Figure 1B).

To determine whether fusion proteins were produced properly
in plants inoculated with the chimeric viruses, total proteins from
the inoculated leaves of N. benthamiana infected with distilled
water (mock), pBS-d35CP, pB2A, pBJ, or pBJ2A were subjected
to analyses by SDS-PAGE (Figure 1C) and western blotting
assay using BaMV CP-specific antibodies (Figure 1C, middle
panel). As anticipated, no BaMV CP was detected in protein
extract of mock-inoculated leaves (Figure 1C, mock). The FMDV
2A-BaMV CP fusion protein and N-terminal 35-amino-acid
truncated BaMV CP (Figure 1C, middle panel, B2A) were
both detected in the protein extract of pB2A-inoculated leaves,
which migrated slightly faster than the chimeric CP from
pBJ2A-inoculated leaves (Figure 1C, middle panel, BJ2A). In
contrast, no BaMV CP was detected in the pBJ-inoculated
leaves (Figure 1C, middle panel, BJ). To further verify that
chimeric CP generated from pBJ2A-inoculated leaves harbored
JEV EDIII peptide, western blotting analysis using rEDIII-
specific antiserum was performed (Figure 1C, lower panel).
Two proteins of 36.8 and 14.1 kDa were detected by rEDIII-
specific antiserum, corresponding to the chimeric EDIII-2A-CP
fusion protein and the free JEV EDIII, respectively (Figure 1C,
lower panel, BJ2A). In contrast, no protein band was detected
by the rEDIII-specific antiserum in protein extracts from leaves
inoculated with pBS-d35CP, pB2A, or pBJ (Figure 1C, lower
panel). Similar results were obtained when total protein extracts
from systemic leaves of the infected N. benthamiana were
assayed by western blotting using either BaMV CP- or rEDIII-
specific antisera, respectively (Figure 1C, right panel). The above
results suggested that the incorporation of FMDV 2A peptide
did not affect the replication and systemic movement of the
chimeric viruses, and indeed improved the infectivity of pBJ2A
as compared to pBJ in both host plants tested.

Stability of BJ2A Chimeras during
Successive Passages in C. quinoa
To examine the stability of the chimeric BJ2A virus during
successive passages in plants, infectious recombinant pBJ2A
plasmid was inoculated onto C. quinoa leaves to generate the
initial inoculum, designated P0, which was then subjected to
nine sequential transmissions (P1 through P9) in C. quinoa. The
presence of the EDIII-2A-CP fusion protein was monitored at
each transfer by western blot analysis using specific antisera. All
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inoculated leaves developed lesions similar in appearance and
number to those observed on P0-infected plants. Results from
western blot analyses using antisera specific to BaMV CP or
JEV EDIII clearly identified fusion-form BJ2A CP (36.8 kDa),
EDIII2A polyprotein (14.1 kDa) and free CP (22.7 kDa) in total
protein extracts from all the serially inoculated C. quinoa plants
(Figure 2). After quantification of the proteins by using ELISA,
the level of JEV EDIII expressed in the leaves of the C. quinoa
plants was estimated to be 8.9 ± 4.3 µg mg−1, corresponding
to 0.89 ± 0.43% of total soluble protein (TSP). The result
demonstrated that the insertion of foreign coding sequences
could be stably maintained in the genome of the chimeric virus
over serial passages.

JEV EDIII Peptides on the Outer Surfaces
of CVPs
Following the successful observation of the stable expression
of both BJ2A fusion proteins and free CP in the inoculated
plants, it is important to examine whether the CVPs could be
properly assembled with the EDIII peptides presented on the
outer surfaces. Results of the electron microscopy observation
revealed that the BJ2A CVPs appeared typically filamentous with
lengths approximately the same as those of the wild type BaMV
virions (480 mm) (Figures 3A–C). Immunogold labeling using
polyclonal antibodies against EDIII confirmed that the foreign
EDIII epitopes were accessible and exposed on the surface of

the CPVs (Figure 3B). As controls, BJ2A CVPs were labeled
with gold-conjugated antiserum against BaMV CP (Figure 3C),
but not with pre-immune serum (Figure 3A). The results
demonstrated that the CPs and EDIII-2A-CP fusions can be
properly assembled into BJ2A CVPs.

Induction of Anti-JEV Antibody in Mice
Immunized with Purified BJ2A CVPs
To determine immunogenicity and efficacy of the CVPs with
target proteins presented on the surface, immune responses
in mice were assayed as describes in section “Materials and
Methods.” Blood samples from each group were collected from
the periorbital route at days 0 and 49 after immunization.
The reactivity to JEV EDIII by sera from BJ2A CVPs-
immunized mice was examined by ELISA. The result showed that
BJ2A-immunization elicited high levels of anti-EDIII antibodies
in sera of the treated mice, similar to those observed for sera
from rEDIII-immunized mice as a positive control (Figure 4A).
The antibody reactivity was weak in the negative control group,
which received a combination of saline and adjuvant throughout
the experiment (Figure 4A). Subsequently, the reactivity of BJ2A
CVP-immunized sera was tested by immunofluorescence assay
in JEV infected BHK 21 cells. The results showed that sera
from BJ2A CVP- or rEDIII-immunized mice recognized the JEV
infected BHK 21 cells (Figure 4B), demonstrating their ex vivo
reactivity. As a negative control, no fluorescence was detected

FIGURE 2 | Analysis of the stability of the chimeric BJ2A over serial passages in C. quinoa plants by SDS-PAGE and immunoblot. Leaves were
H2O-inoculated (mock) or inoculated with recombinant plasmids pBS-d35CP, pB2A, pBJ, or pBJ2A, respectively. BJ2A P0 denotes the initial inoculation with the
plasmid DNA as inoculum, whereas P1to P9 indicate the 1st to 9th passage using crude leaf sap from P0 as inocula, respectively. SDS-PAGE and immunoblot
assays were performed as described in Figure 1C.
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FIGURE 3 | Immunoelectron microscopy for the identification of JEV
EDIII on the surface of BJ2A virus particles. Purified BJ2A virions were
incubated with pre-immune rabbit antiserum (A), or antisera specific for JEV
EDIII (B) or BaMV CP (C), followed by gold-labeled goat anti-rabbit IgG
secondary antibody, and subjected to examination by transmission electron
microscopy. Scale bars, 100 nm.

FIGURE 4 | Immune response of mice injected intraperitoneally with
chimeric virus BJ2A as a vaccine candidate. (A) Determination of immune
response by ELISA. Sera from mice immunized with saline, BJ2A, or rEDIII,
were subjected to ELISA using rDEIII as the antigen. The titers of antisera
were determined by blocking ELISA as described (Yang et al., 2007). The
columns represent the mean O.D. (at 450 nm) values obtained with sera from
individual mice with standard deviations shown as error bars. (B) Analysis of
effective JEV EDIII-specific antibodies by indirect immunofluorescence assay.
BHK-21 cells, infected with JEV or uninfected as indicated on the top, were
fixed and stained with pooled sera prepared from mice immunized with saline,
BJ2A, or rEDIII and an FITC-conjugated secondary antibody, followed by
examination with an inverted fluorescent microscope (Leica) (panels denoted
by “FITC”). Cell nuclei were stained by DAPI (panels denoted by “DAPI”).

when using sera from the group that received a combination
of saline and adjuvant throughout the experiment, nor in non-
infected BHK 21 cells (Figure 4B).

To further demonstrate the potential of the BJ2A CVPs as
a vaccine candidate, JEV-specific neutralizing antibodies were
measured by PRNT, which provides a reasonable immunogenic
correlation to protection (Chen et al., 2005). Neutralization
efficacy was determined by PRNT 70 titer (serum dilution giving
a 70% plaque reduction compared with plaque formation in
virus-only controls). Seroconversion was defined as a fourfold
or greater increase in PRNT 70 titer (WHO, 2005). Indeed, a
fourfold increase of JEV-specific neutralizing antibody titers were
detected in pooled sera from mice immunized with BJ2A CVPs
(PRNT 70 = 1:160) than from those immunized with saline
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(Table 1). The result suggested that the BJ2A CVPs could elicit
effective immunity against JEV infections.

DISCUSSION

Circumventing the Epitope
Size-Limitation Problems for
Virus-Based Vector Systems by the
Incorporation of FMDV 2A Peptide
The use of plants as safer and less expensive production systems
for vaccine antigens has been actively investigated for more
than 20 years (Rybicki, 2010), including several plant virus-
based expression systems (for excellent reviews, see Lico et al.,
2008; Rybicki, 2014; Chen, 2015; Streatfield et al., 2015; Shahid
and Daniell, 2016). The CP genes of viruses are commonly
exploited for the development of various strategies, since CP
genes are usually expressed with high efficiency and provide
natural scaffoldings for the target proteins to be displayed
on the surface of CVPs (Lico et al., 2008). However, the
production of antigens using plant viral vectors is hindered
by several common limitations that stem from the interference
of the normal biological functions of viral proteins by the
fused peptides. These problems include: (1) the reliability of
epitope presentation affected by the nature and sizes of foreign
peptides (e.g., Bendahmane et al., 1999; Jiang et al., 2006; Uhde-
Holzem et al., 2010; Zhang et al., 2010); (2) mutual restriction
between encoding recombination virus RNA and the chimeric CP
(e.g., Rao, 2006; Schneemann, 2006), and virus-host interactions
(e.g., Porta et al., 2003; Ahlquist et al., 2005; Chen et al.,
2007); (3) the stability of the foreign fragments over long-
term successive passages (e.g., Porta and Lomonossoff, 1998;
Porta et al., 2003; Lico et al., 2006); (4) reduced efficiency
for virion assembly caused by special structural features of the
chimeric CP (e.g., Canizares et al., 2005), and (5) the changes
in virion morphology and stability due to cysteine residues in
the foreign peptide (e.g., Li et al., 2007). Likewise, the construct
pBJ, harboring direct fusion between JEV EDIII and BaMV CP,
was not infectious, and the fusion protein was not detected in
inoculated plants (Figures 1C, 2). In this study, we presented
several lines of evidence that these obstacles were circumvented
by the incorporation of FMDV 2A co-translational dissociation
peptide in between JEV EDIII and BaMV CP. The resulting
construct, pBJ2A, was infectious, and generated chimeric virus

TABLE 1 | Plaque reduction neutralization titers of sera obtained from
mice immunized with BJ2A chimeric virus particles.

Immunogen Plaque neutralization titers∗

Saline 1:40

BJ2A 1:160

rEDIII 1:320

∗Represented as the serum dilution yielding 70% reduction in plaque number.
Pooled sera from six mice were used for the study. Sera from mice immunized with
saline or rEDIII were used as negative and positive controls, respectively.

progeny BJ2A which expressed two fusion proteins, EDIII-2A-
CP and EDIII-2A, and one non-recombinant BaMV CP in
plants (Figures 1C, left panel, 2). The chimeric virus BJ2A
could infect N. benthamiana systemically and produce JEV EDIII
throughout whole plants (Figure 1C, right panel). The coding
sequence of the foreign peptide EDIII-2A was stably maintained
in the genome of the chimeric virus BJ2A after nine serial
passages in C. quinoa leaves (Figure 2). The fusion protein
EDIII-2A-CP and free-form BaMV CP subunits were able to
assemble into filamentous BJ2A CVPs (Figures 3A–C). Although
these JEV EDIII contain two cysteines, which potentially could
cause changes in virion morphology and stability (Li et al.,
2007), BJ2A CVPs exhibited the same particle morphology as
that of the wild type BaMV’s (Figures 3A–C). Furthermore,
JEV EDIII antibody could specifically recognize BJ2A CVPs,
indicating that the JEV EDIII peptide was properly presented
on the surface of BJ2A CVPs (Figures 3B,C). Most importantly,
BJ2A CVPs elicited immuno-responses in mice to generate
neutralizing antibodies against the infection of JEV (Figure 4 and
Table 1).

Foot-and-mouth disease virus 2A peptide leads to partial
dissociation of the fusion proteins with various efficiency
for different fusion constructs (Donnelly et al., 2001). In
this study, the incorporation of FMDV 2A peptide allowed
production of enough free-form BaMV CP and the EDIII-
2A-Cp fusion protein for both the assembly of stable CVPs
and proper display of the epitope on the surface. In contrast,
the CP produced by the construct pBJ is expected to be the
EDIII-CP fusion form only, which might hinder the virion
assembly process and result in the loss of infectivity of pBJ
(as shown in Figure 1). The use of FMDV 2A peptide might
have facilitated the virion assembly of the chimeric viruses
in planta and likely contributed to the maintenance of the
foreign coding sequences over long-term successive passages
(Figure 2). Furthermore, the BaMV virion-based epitope-
presentation system might provide an adjuvant-like function
(Gerloni et al., 2000; Savard et al., 2011) and compensated
for the partial incorporation of the EDIII-2A-CP in the
CVPs.

The immunization assays in mice further confirmed
that the EDIII peptide was presented in a biologically
functional conformation on the surfaces of the CVPs, since
the BJ2A CVPs elicited effective immuno-response against
JEV infection in mice (Figure 4 and Table 1). These results
demonstrated the potential and applicability of the BaMV-
based vector system in producing potent vaccine candidates in
plants.

Comparison with Other Plant-Based
Vaccine Candidate Producing Systems
against JEV or Related Viruses
As mentioned above, plants have been actively explored as
effective vaccine candidate-producing systems in recent years.
For JEV and related flaviviruses, transgenic and transient
expression approaches have been documented (Martinez et al.,
2012; Chen and Lai, 2013). JEV subunit vaccine candidate
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produced in transgenic rice has been reported to elicit antigen-
specific neutralizing antibodies in mice previously (Wang et al.,
2009). However, the yields of JEV E protein expressed in the
leaves of transgenic rice were relatively low, amounting to
1.1–1.9 µg mg−1 (corresponding to 0.11–0.19% of TSP) (Wang
et al., 2009). For transient expression approach, the EDIII of
Dengue virus type 2 (D2EDIII), with only slight differences in
structure from that of JEV EDIII (Chavez et al., 2010), was
successfully produced in N. benthamiana using tobacco mosaic
virus (TMV)-based duplicated-promoter strategy. The yield of
D2EDIII protein accounted for 0.28% of TSP (Saejung et al.,
2007). For another closely related virus, West Nile virus (WNV),
Chen et al. (2011) developed a virus-like particle (VLP) vaccine
by fusing the EDIII of WNV to the C-terminus of hepatitis B
core antigen (HBcAg) and utilized a geminivirus-based vector to
express the recombinant protein in N. benthamiana (Chen et al.,
2011). The assembly of the VLP and the effectiveness in inducing
strong B and T-cell responses were demonstrated. The yield of the
WNV EDIII-HBcAg fusion protein was estimated to be∼0.35 µg
mg−1 fresh leaf weight (FLW). By using the MagnICON vector
system, the accumulation level was increased to >1 µg mg−1

FLW (Chen, 2015). In contrast, the BJ2A virus expressed JEV
EDIII-2A-CP fusion proteins in the leaves at levels reaching
8.9 ± 4.3 µg mg−1 FLW. Therefore, the BaMV-based vector
systems have enabled rapid expression of recombinant proteins
at levels comparable to or higher than those produced with
previous transgenic or other transient expression approaches in
plants.

As for immunogenicity, the plant-made D2EDIII elicited
only low level of anti-dengue virus antibodies, and no antibody
induction was detected when mice were immunized without
adjuvant (Saejung et al., 2007), possibly due to the small
size of D2EDIII fragment expressed. In comparison, the BJ2A
virus displayed the peptide of interest on the surface of
assembled CVPs, enhancing immunogenicity (Table 1) by taking
advantage of using BaMV CP as the dominant pathogen-
derived antigens (Gerloni et al., 2000; Massa et al., 2008).
VLPs and CVPs have been known to induce strong protective
responses in the absence of adjuvants (Roldao et al., 2010).
The repetitive display of the epitopes on the quasi-crystalline
surface of CVPs may serve as the prime target for B-cell
recognition and trigger strong B-cell responses (Fehr et al.,
1998). It has been shown that the immunization by using
JEV EDIII can elicit the generation of neutralizing antibodies
to protect against JEV infection (Kaur et al., 2002). In this
study, we have found that BJ2A CVPs could induce IgG-
level immune responses in mice (Figure 4A). Moreover,
the fluorescence staining results indicated that BJ2A CVPs
successfully induced the anti-JEV virus antibody in mice
(Figure 4B).

As for the preparation of immunogens, the D2EDIII proteins
were purified by immobilized metal ion affinity chromatography
(Saejung et al., 2007). In this study, the macromolecular
nature of BJ2A CVPs allowed for the development of easy
procedures for virion purification and the recovery of high doses
of recombinant protein by simple centrifugation. Therefore,
BaMV-based epitope presentation strategy provides an efficient

alternative for convenient, rapid, and low-cost expression of
vaccine candidates.

The Advantages of BaMV-Based Epitope
Presentation System
Plants have been explored as bioreactors for the production
of therapeutic proteins, and several plant-produced
biopharmaceuticals have been through Phases II and III
clinical trials in humans (Daniell et al., 2009; Rybicki, 2010,
2014; Thomas et al., 2011; Chen, 2015). It has also been
shown that the plant-produced CVPs administered to animals
intranasally, intraperitoneally or orally are able to induce strong
neutralizing immune responses (Pogue et al., 2002; Rybicki,
2010). In addition, many achievements have been made using
plant virus-based vector with FMDV 2A strategy for expressing
foreign proteins as vaccines (e.g., Smolenska et al., 1998; O’Brien
et al., 2000; Marconi et al., 2006; Zelada et al., 2006; Uhde-
Holzem et al., 2010). In this study, we demonstrated that the
BaMV-based vector system allowed expression of longer peptide,
up to 111 amino acids, on CVPs than Potato virus X-based
vector did (Marconi et al., 2006; Uhde-Holzem et al., 2010).
The BaMV-based vector offered some advantages compared
to other available systems. Firstly, BaMV has a narrow host
range in nature, and therefore is ecologically safer for field use
(Hsu and Lin, 2004), minimizing the concern for environmental
contaminations. Secondly, by the incorporation of FMDV 2A
peptide, BaMV-based epitope-presentation vector was stable
over long-term successive passages, as opposed to the previously
described systems (Porta and Lomonossoff, 1998; Porta et al.,
2003; Lico et al., 2006). Thirdly, the plant, C. quinoa, used for
the production of JEV subunit vaccine candidate is a widely
cultivated crop (Bhargava et al., 2006), and poses minimal
safety concern in animals. Furthermore, we have resolved the
atomic model of the BaMV virion structure by using cryo-
electron microscopy recently (DiMaio et al., 2015). This model
provides the theoretical basis for the modeling of more candidate
epitopes to be presented on BaMV-based vector system by using
convenient in silico analyses.

CONCLUSION

To our knowledge, this is the first report describing the
production of a vaccine candidate of JEV EDIII using plant
virus-based vector system. Our results also demonstrated the
feasibility of using FMDV 2A peptide to circumvent some
commonly encountered problems for plant virus-based epitope
presentation systems. This strategy enabled the production of
large quantity of both EDIII-2A-CP fusion protein and free
CP in plant cells, allowing the self-assembly of stable CVPs
using the two forms of CPs. As compared to the construct
pBJ, which does not express non-recombinant BaMV CP, the
incorporation of 2A peptide improved the infectivity of the
chimeric virus BJ2A and might contribute to the enhanced
stability over serial passages and the preservation of key
structural features of the CVPs. The BaMV-based CVP vaccine
successfully induced the generation of neutralizing antibodies
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against JEV infection. Together, these results demonstrated that
the BaMV-based CVP system may serve as an alternative for the
production of effective and useful vaccine candidates against JEV
infections.
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